US3360157A - Method of forming a coated metal container and article produced thereby - Google Patents
Method of forming a coated metal container and article produced thereby Download PDFInfo
- Publication number
- US3360157A US3360157A US453017A US45301765A US3360157A US 3360157 A US3360157 A US 3360157A US 453017 A US453017 A US 453017A US 45301765 A US45301765 A US 45301765A US 3360157 A US3360157 A US 3360157A
- Authority
- US
- United States
- Prior art keywords
- ironing
- blank
- die
- tin
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/201—Work-pieces; preparation of the work-pieces, e.g. lubricating, coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/22—Deep-drawing with devices for holding the edge of the blanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/28—Deep-drawing of cylindrical articles using consecutive dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D45/00—Ejecting or stripping-off devices arranged in machines or tools dealt with in this subclass
- B21D45/06—Stripping-off devices
- B21D45/065—Stripping-off devices for deep-drawn cans, e.g. using stripping fingers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/001—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by extrusion or drawing
Definitions
- ABSTRACT OF THE DISCLOSURE A low carbon steel blank which has been electro-plated with tin having a matte finish is then coated with a suitable oil type lubricant and drawn and ironed into a seamless article, such as a container, the tin coating preventing fracture of the steel by flowing at the ironing die and retaining lubricant through the die, the ironing operation increasing the specularity of the tin to result in an article having a specular side wall.
- This invention relates to the manufacture of coated seamless containers and in particular to metal coated steel containers produced by drawing and ironing a precoated blank, without excessive friction.
- the cup As drawn, the cup usually has bottom and side wall thicknesses substantially equal to the thickness of the blank.
- the ironing die thins the side Wall of the drawn cup and forces the metal back, thereby also increasing 'theheight of the container. Additional ironing steps may be added to achieve a desired body Wall thickness and container height.
- drawing may be defined as the forming of recessed parts by forcing the plastic flow of metal in dies, and refers to the operation wherein a peripheral margin of a flat blank is turned inwardly and simultaneously smoothed by means of a drawing punch and die to form a cup having a wrinkle free side wall, whose thickness is substantially equal to the thickness of the original blank. Subsequent redrawing of the cup merely turns up more of the end material in the side wall,
- Ironing may be defined as thinning the walls of a deep-drawn article by reducing the clearance between punch and die.
- the side wall of the cup is elongated by reducing its thickness with no reduction in the inside diameter of the cup. It is generally accomplished by placing the cup on a closely fitting punch or mandrel and forcing the cup and mandrel through an ironing or reducing die, whose diameter is slightly less than the outer diameter of the cup, thereby forcing the excess metal back and producing a longer but thinner side wall.
- Ironing sometimes has been compared to extrusion of metals, since there is an actual squeezing out of the metal. However, the punch pushes the part downwardly resulting in a pulling? of the material in the ironing process. In extrusion, the metal is pushed through a die in the same direction'with the punch. Both processes, however, squeeze the metal.
- an object of the present invention is to provide a method of forming a thin-walled cup-shaped steel container having a thinner side Wall than the end thereof.
- Another object is to provide a method of forming a coated, thin-walled, cup-shaped steel container directly from sheet stock.
- An additional object is to provide a method for forming a coated steel cup-shaped container having an end thickness equal to and a side wall thickness substantially less than the thickness of the original blank.
- a further object is to provide a method of drawing and ironing a steel cup-shaped container without fracture of the metal during drawing and ironing.
- a still further object is to provide a method of forming a steel cup-shaped container wherein lubrication during forming may be readily and easily accomplished.
- the above and other object are accomplished by depositing a metal coating which is softer than the basis metal sheet upon which the coating is applied. Thereafter, a blank is provided, by cutting or other-suitable means, from coated basis sheet. The blank is then coated with a suitable oil type lubricant and is placed in a drawing and ironing press. A mandrel then draws the blank into a shallow seamless cup without substantially thinning the end and side wall of the cup. Thereafter, the side wall of the drawn cup is ironed, thus elongating and thinning the side wall while also increasing the specularity of the metal coating on the side Wall as the coating flows and provides lubrication during the ironing.
- the side wall of the drawn and ironed metal container has a specular coating thereon brighter than and of the same metal as the as-deposited coating on the end.
- FIGURE 1 is a fragmentary, enlarged, cross-sectional view of the steel sheet having a softer metal coating thereon;
- FIGURE 2 is a sectional view of the drawing and ironing die gang and the mandrel used to force the sheet blankthrough the gang;
- FIGURES 3 through 5 are fragmentary views, similar to FIGURE 2 showing a blank being formed to a desired container configuration
- FIGURE 6 is a perspective view of the container parts broken away and partly in section.
- a sheet or strip of low carbon, cold-rolled steel is electrolytically coated with a thin layer of tin by means well known to those skilled in the art. This procedure is quite familiar to those knowledgeable in general tin plating for the can-making industry.
- the thickness of the tin coating may vary considerably depending upon the length and thickness of the final sidewall and the desired thickness of the tin on the final side wall.
- the final tin thickness must be sufficient to completely cover both surfaces of the final side wall. For example, a coating thickness of approximately 45 microinches be used in the instant process when the thickness of the material is reduced about 50%. Heavier coatings may be utilized but it is preferred that a minimum thickness of tin be used for economic purposes.
- tin will be the metal coating utilized for the steel sheet.
- other metals which are softer than the basis metal, may also be used for the coating.
- some of these metals are copper, zinc, brass, nickel, silver, etc.
- other basis metals may also be utilized, the principal criteria being that the metal coating be softer than the basis metal.
- the tin coating is melted and flow-brightened subsequent to plating, it is preferred in the present invention that no flow brightening take place.
- the tin plate is in what is commonly called the matte condition. The reason for this will be more fully explained hereinafter.
- FIGURE 1 shows a cross-section of steel 6 with a matte tin deposit 7 covering its surface.
- a circular blank 8 is cut therefrom by suitable means such as a punch press.
- FIGURE 2 shows a gang of dies, generally designated 10, within a die carrier 12. Both the gang 10 and the carrier 12 are mounted in a suitable hydraulic press. An annular die 14 having a die aperture 16 is suitably mounted in the die carrier 12. The die aperture 16 has a rounded drawing face 18 adjacent the upper surface of the die 14.
- a cylindrical forming punch 20 having a lower surface 22.
- the shape of the end surface 22 determines the endshape of the article to be formed and may be fiat, conical, spheroidal or a combination of these shapes.
- a flat end surface 22 is used for producing flat-ended containers.
- the flat circular blank is coated with suitable oil type lubricant which impregnates the matte tin coating 7 and the blank 8 is inserted between the die 14 and an annular blank holder 24 disposed above the die.
- the blank holder 24 has an inner diameter slightly greater than the diameter of the punch 20 and a spaced series of guide holes 26 extending through the blank holder adjacent the outer edge. Studs 28, having shanks 29 and heads 30, are threadably engaged to the die carrier 12 with the shank portions extending upwardly through the holes 26 in the blank holder 24 to prevent the blank holder from moving transversely relative to the die 14, while permitting it to move upwardly along the longitudinal axis of the die.
- a circular recess 32 of substantially the same diameter as that of the blank 8 and having a depth which is slightly less than the thickness of the blank, the recess 32 serving to position the blank in axial alignment with the die aperture 16.
- the marginal edge 34 of the blank 8 is gripped between the die 14 and the blank holder 24 with a substantial predetermined force due to the action of the compressed springs 36*, disposed about the stud shanks 29 between the blank holder 24 and the stud heads 30.
- the upper end of the punch 20 is attached to a piston rod 38 which in turn is actuated by a suitable power source such as a hydraulic cylinder, which is not shown. Upon actuation, the punch 20 moves downwardly, bringing the lower surface 22 of the punch into contact with the blank 8.
- the punch 20 progressively pulls the marginal edge 34 of the blank 8 from beneath the blank holder 24 and forces it into contact with the drawing face 18 of the die 14.
- the edge 34 is thus drawn across the drawing face 13 and is stretched and shaped into a tubular configuration to form a side wall 40 of a cup-shaped article having an end 42 (FIGURE 3).
- both the side wall 40 and the end 42 of the drawn article have thicknesses substantially equal to the thickness of the blank 8.
- the force with which the marginal edge 34 of the blank 8 is gripped between the blank holder 24 and the die 14 is maintained at a level sufficient to insure that the blank 8 is plastically stretched rather than being wrinkled or folded, as the marginal edge is withdrawn from beneath the blank holder, but is not so great as to result in tearing or cracking of the metal.
- the metal is simultaneously subjected to two types of loading in the drawing operation, i.e. a compressive loading on the marginal edge 34 of the blank 8 due to the holding force, and a tension or stretching load on the metal adjacent the drawing face 18 as the metal is drawn from the flat to the tubular form.
- the holding force used will be determined by the particular forming operation. For example, in the drawing and ironing of a 6.125 inch diameter x 0.018 inch thick tin coated steel blank into a 3.285 inch diameter cup having a 0.0008 inch sidewall thickness, a holding force equivalent to approximately 10,000 pounds on the marginaledge of the blank is preferred.
- the cup-shaped article While still being engaged by the drawing face 18, the cup-shaped article enters an annular ironing die 44 mounted in the die holder 12, below the die 14 (FIGURE 4).
- the ironing die 44 has an ironing face 45 which is smaller than and axially aligned with the drawing face 18 of the die 14.
- Aspacer plate 46 is disposed between the die 14 and the die 45 to produce a predetermined spacing between the respective dies. The downward movement of the punch 20 forces the tin coated sidewall of the cup shaped article past the ironing face 45, thereby reducing the thickness of and also elongating the sidewall 40.
- the soft metal coating and the oily lubricant with which it has been impregnated both serve to lubricate the steel sidewall during its cold reduction.
- the oil, absorbed on the matte finished plate is held more tenaciously than on conventional flow brightened tin plate, and lubricates better under the extreme ironing pressures encountered.
- the oil within and upon the tin surface lubricates during the ironing process and the soft coating itself is also burnished and mechanically worked on the outside and stretched on the inside during ironing.
- a second ironing die 48 having an ironing face 49 is similarly mounted in die holder 12 below the ironing die 44.
- a spacer 50 disposed between the ironing dies 44 and 48 produces a predetermined spacing between the respective ironing faces 45 and 49 thereof.
- the punch 20 continues downwardly it carries a cup-shaped article into the ironing face 49 while the side wall is still engaged in the ironing face 45 of the first ironing die 44.
- the side wall may also still be engaged by the drawing face 18 of the drawing die 14 when it initially enters the ironing face 49 of the second ironing die 48.
- the side is then disengaged from the drawing face 18 while still engaged by the ironing faces 45 and 49 of the ironing dies 46 and 48 respectively (FIG- URE 5).
- the drawn and ironed container 52 finally formed, has the end 42 of substantially the same thickness as that of the blank 8 and a side wall 54 whose thickness is substantially less than that of the blank 8. It is to be understood that, While the drawings show only two ironing dies, additional ironing dies may be used to produce any desired side wall length and thickness.
- the formation of the coated container from the fiat circular blank has been shown as a one-step operation, it is possible to first draw the blank into a shallow seamless cup, and then transfer the cup to another machine containing the ironing dies, where the cup is then forced through the ironing dies in order to thin and also elongate the side Wall.
- the stripper 56 consists of a segmented fiat annular ring 58 having a series of segments 60 adapted to slide radially within a recess 62 in the lower surface of the die holder 12.
- the segments 60 are urged radially inwardly by springs 64 and are retained within the recess 62 by an annular flat retaining ring 66, secured to the die holder 12 by screws 68.
- the segmented ring 58 has a substantially cylindrical inner surface 70 whose diameter is slightly less than the diameter of the punch 20, With a smoothly rounded upper edge 72 and a sharp lower edge 74.
- the formed container 52 As the formed container 52 (FIGURE 6) is conveyed toward the stripper 56 by the punch 20, it contacts the rounded upper edge 72 of the segmented ring 58 forcing the segments 60 outwardly to allow the punch and container to pass through the ring. After the container 52 has passed through the ring 58, the springs 64 move the segments 60 inwardly against the punch 20. By suitable means (not shown), the punch 20 is then moved upwardly. During the upward movement of the punch 20, the upper rim 76 of the formed container 52 engages the sharp lower edge 74 of the segmented ring 58. This prevents any further upward movement of the container, thereby stripping it from the punch 20.
- the exterior coating 7a on the container 52 has undergone a deformation and change different from that of the interior metal coating 7b. With each ironing step, the coating 7a undergoes severe deformation as it is squeezed between the particular ironing face and the mandrel. During this squeezing, the oil that has been impregnated within the soft metal coating 7 on the exterior of the container provides some degree of lubrication for the ironing.
- the soft metal coating on the exterior surface of the container flows and is thinned by each succeeding ironing die which reduces the thickness of the side wall 54 and increases its height.
- the severe mechanical working and burnishing of the coating 7a not only thins the coating and provides lubrication for the ironing operation, but also increases the specularity of the coating until it is brighter than a conventional can made from conventional flow brightened tin plate.
- this coating is different than conventional tin plate in that it has not been actually melted and thus-there is no layer of a tin-iron alloy between the tin coating and the steel basis metal as is found in conventional flow brightened or hot dipped tin plate.
- the asdeposited tin coating provides greater lubrication during the ironing due to its softness and its ability to absorb lubricating oil applied to its surface.
- the tin coating 7b on the interior side wall of the container has not been burnished, and therefore, does not exhibit the bright surface characteristics of the exterior coating 7a.
- the interior side wall coating has only been forced to undergo a degree tensional bend in the drawing operation and then elongation or stretching during ironing period.
- it since it has not been mechanically worked or burnished during the ironing operation, its appearance in generally of the same specularity as it was on the blank, although considerably thinner due to the stretching and the elongating of the side wall.
- a method of drawing and ironingan article from a flat blank comprising the steps of:
- a method of drawing and ironing an article from a flat bank comprising the steps of:
- a drawn and ironed one-piece tin plated steel con- 2,801,604 8/1957 Russell et a1 113120 tainer comprising: 3,293,895 12/1966 Kohan et a1.
- Assistant Examiner Disclaimer 3,360,157.Richa1-d Robert Bolt, Lake Villa and Delbert Ed'mlmd Wobbe,
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
Dec. 26, 1967 R. B T ET AL 3,360,157
. METHOD OF F ING A ATED METAL CONTAINER AND ARTICLE PRODUCED THEREBY Filed May 4, 1965 2 Sheets-Sheet 1 1; i0 26 /4 Z w .57
74 M U 14 1/ fzamfpzxwsaf k lg/ mweo 205597" .504 r v Edam/QM Dec. 26, 1967 R. .BOLT ET AL 3,360,157
METHOD OF FORM A COATED METAL CONTAINER AND ARTICLE PRODUCED THERE Filed May 4, 1965 2 Sheets-Sheet 2 4% W L 4; 4; 7/25? 4AM 7; f5 M/Z v 5% D114 m 5/ @794 AI ll /l W Z1 M (/5 4 41 if AZ 3.5 g; 1/
a 74 if INVENTORS.
0.4-2 BEE r :auwvo Waaaz e/ r meo eaeaev- 50; r
United States Patent M 3,360,157 METHOD OF FORMING A COATED METAL CON- TAINER AND ARTICLE PRODUCED THEREBY Richard Robert Bolt, Lake Villa, and Delbert Edmund Wobbe, Cary, Ill., assignors to American Can Company, New York, N.Y., a corporation of New Jersey Filed May 4, 1965, Ser. No. 453,017 4 Claims. (Cl. 220-64) ABSTRACT OF THE DISCLOSURE A low carbon steel blank which has been electro-plated with tin having a matte finish is then coated with a suitable oil type lubricant and drawn and ironed into a seamless article, such as a container, the tin coating preventing fracture of the steel by flowing at the ironing die and retaining lubricant through the die, the ironing operation increasing the specularity of the tin to result in an article having a specular side wall.
This invention relates to the manufacture of coated seamless containers and in particular to metal coated steel containers produced by drawing and ironing a precoated blank, without excessive friction.
Many processes are presently being utilized for forming seamless containers from flat blanks. One of these procedures involves first drawing the blank into cup form by forcing the blank through a drawing die by means of a punch mounted upon a press. After drawing, the cup is passed through one or more ironing dies, whose inside diameters are progressively smaller than the outside diameter of the cup.
As drawn, the cup usually has bottom and side wall thicknesses substantially equal to the thickness of the blank. The ironing die thins the side Wall of the drawn cup and forces the metal back, thereby also increasing 'theheight of the container. Additional ironing steps may be added to achieve a desired body Wall thickness and container height.
As used herein, the term drawing may be defined as the forming of recessed parts by forcing the plastic flow of metal in dies, and refers to the operation wherein a peripheral margin of a flat blank is turned inwardly and simultaneously smoothed by means of a drawing punch and die to form a cup having a wrinkle free side wall, whose thickness is substantially equal to the thickness of the original blank. Subsequent redrawing of the cup merely turns up more of the end material in the side wall,
thereby elongating the. side wall, but resulting in, a substantial reduction in the diameter of the cup.
Ironing may be defined as thinning the walls of a deep-drawn article by reducing the clearance between punch and die. In the ironing operation the side wall of the cup is elongated by reducing its thickness with no reduction in the inside diameter of the cup. It is generally accomplished by placing the cup on a closely fitting punch or mandrel and forcing the cup and mandrel through an ironing or reducing die, whose diameter is slightly less than the outer diameter of the cup, thereby forcing the excess metal back and producing a longer but thinner side wall.
Ironing sometimes has been compared to extrusion of metals, since there is an actual squeezing out of the metal. However, the punch pushes the part downwardly resulting in a pulling? of the material in the ironing process. In extrusion, the metal is pushed through a die in the same direction'with the punch. Both processes, however, squeeze the metal.
While the drawing and ironing process has been used extensively in the manufacture of seamless aluminum containers, difficulty has been encountered in utilizing this technique in the manufacture of steel seamless containers. This is thought to be due principally to the fact that steel has much higher tensile and yield strengths and is not as ductile as is aluminum. Since the drawing and ironing process subjects the steel to extreme mechanical deformation, especially during ironing, fracture of the steel and pushing through of the container bottom has frequently been encountered.
Accordingly, an object of the present invention is to provide a method of forming a thin-walled cup-shaped steel container having a thinner side Wall than the end thereof.
Another object is to provide a method of forming a coated, thin-walled, cup-shaped steel container directly from sheet stock.
An additional object is to provide a method for forming a coated steel cup-shaped container having an end thickness equal to and a side wall thickness substantially less than the thickness of the original blank.
A further object is to provide a method of drawing and ironing a steel cup-shaped container without fracture of the metal during drawing and ironing.
A still further object is to provide a method of forming a steel cup-shaped container wherein lubrication during forming may be readily and easily accomplished.
Numerous other objects and advantages of the invention will be apparent as it is better understood from that following description, which, taken in connection with the accompanying drawing, discloses a preferred embodiment thereof.
The above and other object are accomplished by depositing a metal coating which is softer than the basis metal sheet upon which the coating is applied. Thereafter, a blank is provided, by cutting or other-suitable means, from coated basis sheet. The blank is then coated with a suitable oil type lubricant and is placed in a drawing and ironing press. A mandrel then draws the blank into a shallow seamless cup without substantially thinning the end and side wall of the cup. Thereafter, the side wall of the drawn cup is ironed, thus elongating and thinning the side wall while also increasing the specularity of the metal coating on the side Wall as the coating flows and provides lubrication during the ironing. This produces a drawn and ironed one piece coated metal container having an end with the as-deposited soft metal coating thereon and a seamless side Wall Whose thickness is substantially thinner than the end. The side wall of the drawn and ironed metal container has a specular coating thereon brighter than and of the same metal as the as-deposited coating on the end.
Referring to the drawings:
FIGURE 1 is a fragmentary, enlarged, cross-sectional view of the steel sheet having a softer metal coating thereon;
FIGURE 2 is a sectional view of the drawing and ironing die gang and the mandrel used to force the sheet blankthrough the gang;
FIGURES 3 through 5 are fragmentary views, similar to FIGURE 2 showing a blank being formed to a desired container configuration; and
FIGURE 6 is a perspective view of the container parts broken away and partly in section.
As a preferred or exemplary embodiment of the instant invention, a sheet or strip of low carbon, cold-rolled steel is electrolytically coated with a thin layer of tin by means well known to those skilled in the art. This procedure is quite familiar to those knowledgeable in general tin plating for the can-making industry. The thickness of the tin coating may vary considerably depending upon the length and thickness of the final sidewall and the desired thickness of the tin on the final side wall. The final tin thickness must be sufficient to completely cover both surfaces of the final side wall. For example, a coating thickness of approximately 45 microinches be used in the instant process when the thickness of the material is reduced about 50%. Heavier coatings may be utilized but it is preferred that a minimum thickness of tin be used for economic purposes.
For purposes of description, tin will be the metal coating utilized for the steel sheet. However, it has been found that other metals, which are softer than the basis metal, may also be used for the coating. In the case of steel, some of these metals are copper, zinc, brass, nickel, silver, etc. It may be readily understood that other basis metals may also be utilized, the principal criteria being that the metal coating be softer than the basis metal.
As an example of a steel which may be used, the following illustrates a nominal percentage chemical analysis:
Carbon 0.05-0.12 Manganese 0.25-0.60 Sulphur e maximum 0.05 Phosphorus do 0.02 Silicon do 0.10 Copper do 0.20 Iron Balance Typical average mechanical properties of the steel are:
Ultimate tensile strength p.s.i 73,200 Yield strength p.s.i 70,700 Tensile elongation percent 13 Impact elongation do w 1 Hardness 67 R3OT It is readily understood that these are average composition and property values and may vary slightly from melt to melt. Other compositions of steel may also be used without departing from the spirit and scope of the invention, the above steel being used as an example only.
Whereas in general manufacture of electro-tin plate, the tin coating is melted and flow-brightened subsequent to plating, it is preferred in the present invention that no flow brightening take place. Thus, the tin plate is in what is commonly called the matte condition. The reason for this will be more fully explained hereinafter.
FIGURE 1 shows a cross-section of steel 6 with a matte tin deposit 7 covering its surface.
After the electro-tin sheet is dried, a circular blank 8 is cut therefrom by suitable means such as a punch press.
FIGURE 2 shows a gang of dies, generally designated 10, within a die carrier 12. Both the gang 10 and the carrier 12 are mounted in a suitable hydraulic press. An annular die 14 having a die aperture 16 is suitably mounted in the die carrier 12. The die aperture 16 has a rounded drawing face 18 adjacent the upper surface of the die 14.
Reciprocally mounted above the die 14 in axial alignment with the die aperture 16 is a cylindrical forming punch 20 having a lower surface 22. The shape of the end surface 22 determines the endshape of the article to be formed and may be fiat, conical, spheroidal or a combination of these shapes. In the preferred embodiment shown in the drawings, a flat end surface 22 is used for producing flat-ended containers.
The flat circular blank is coated with suitable oil type lubricant which impregnates the matte tin coating 7 and the blank 8 is inserted between the die 14 and an annular blank holder 24 disposed above the die. The blank holder 24 has an inner diameter slightly greater than the diameter of the punch 20 and a spaced series of guide holes 26 extending through the blank holder adjacent the outer edge. Studs 28, having shanks 29 and heads 30, are threadably engaged to the die carrier 12 with the shank portions extending upwardly through the holes 26 in the blank holder 24 to prevent the blank holder from moving transversely relative to the die 14, while permitting it to move upwardly along the longitudinal axis of the die.
Within the lower surface of the blank holder 24, is a circular recess 32 of substantially the same diameter as that of the blank 8 and having a depth which is slightly less than the thickness of the blank, the recess 32 serving to position the blank in axial alignment with the die aperture 16. As thus positioned, the marginal edge 34 of the blank 8 is gripped between the die 14 and the blank holder 24 with a substantial predetermined force due to the action of the compressed springs 36*, disposed about the stud shanks 29 between the blank holder 24 and the stud heads 30. p
The upper end of the punch 20 is attached to a piston rod 38 which in turn is actuated by a suitable power source such as a hydraulic cylinder, which is not shown. Upon actuation, the punch 20 moves downwardly, bringing the lower surface 22 of the punch into contact with the blank 8.
Continuing its downward movement, the punch 20 progressively pulls the marginal edge 34 of the blank 8 from beneath the blank holder 24 and forces it into contact with the drawing face 18 of the die 14. The edge 34 is thus drawn across the drawing face 13 and is stretched and shaped into a tubular configuration to form a side wall 40 of a cup-shaped article having an end 42 (FIGURE 3). At this point both the side wall 40 and the end 42 of the drawn article have thicknesses substantially equal to the thickness of the blank 8.
During the drawing operation, the force with which the marginal edge 34 of the blank 8 is gripped between the blank holder 24 and the die 14 is maintained at a level sufficient to insure that the blank 8 is plastically stretched rather than being wrinkled or folded, as the marginal edge is withdrawn from beneath the blank holder, but is not so great as to result in tearing or cracking of the metal.
Thus the metal is simultaneously subjected to two types of loading in the drawing operation, i.e. a compressive loading on the marginal edge 34 of the blank 8 due to the holding force, and a tension or stretching load on the metal adjacent the drawing face 18 as the metal is drawn from the flat to the tubular form.
Generally, the holding force used will be determined by the particular forming operation. For example, in the drawing and ironing of a 6.125 inch diameter x 0.018 inch thick tin coated steel blank into a 3.285 inch diameter cup having a 0.0008 inch sidewall thickness, a holding force equivalent to approximately 10,000 pounds on the marginaledge of the blank is preferred.
While still being engaged by the drawing face 18, the cup-shaped article enters an annular ironing die 44 mounted in the die holder 12, below the die 14 (FIGURE 4). The ironing die 44 has an ironing face 45 which is smaller than and axially aligned with the drawing face 18 of the die 14. Aspacer plate 46 is disposed between the die 14 and the die 45 to produce a predetermined spacing between the respective dies. The downward movement of the punch 20 forces the tin coated sidewall of the cup shaped article past the ironing face 45, thereby reducing the thickness of and also elongating the sidewall 40.
During this ironing operation, the soft metal coating and the oily lubricant with which it has been impregnated, both serve to lubricate the steel sidewall during its cold reduction. The oil, absorbed on the matte finished plate is held more tenaciously than on conventional flow brightened tin plate, and lubricates better under the extreme ironing pressures encountered. The oil within and upon the tin surface lubricates during the ironing process and the soft coating itself is also burnished and mechanically worked on the outside and stretched on the inside during ironing.
A second ironing die 48 having an ironing face 49 is similarly mounted in die holder 12 below the ironing die 44. A spacer 50 disposed between the ironing dies 44 and 48 produces a predetermined spacing between the respective ironing faces 45 and 49 thereof. As the punch 20 continues downwardly it carries a cup-shaped article into the ironing face 49 while the side wall is still engaged in the ironing face 45 of the first ironing die 44. Depending upon the spacings between the respective ironing faces, the side wall may also still be engaged by the drawing face 18 of the drawing die 14 when it initially enters the ironing face 49 of the second ironing die 48. As it is moved downwardly, the side is then disengaged from the drawing face 18 while still engaged by the ironing faces 45 and 49 of the ironing dies 46 and 48 respectively (FIG- URE 5).
Further ironing of the side wall is done by the ironing face 49 in order to reduce the side wall thickness and increase its length. The drawn and ironed container 52, finally formed, has the end 42 of substantially the same thickness as that of the blank 8 and a side wall 54 whose thickness is substantially less than that of the blank 8. It is to be understood that, While the drawings show only two ironing dies, additional ironing dies may be used to produce any desired side wall length and thickness.
Although the formation of the coated container from the fiat circular blank has been shown as a one-step operation, it is possible to first draw the blank into a shallow seamless cup, and then transfer the cup to another machine containing the ironing dies, where the cup is then forced through the ironing dies in order to thin and also elongate the side Wall.
After passing the second ironing die 48, the continuous downward movement of the punch 20 carries the formed container 52 through a conventional stripper, generally designated 56. The stripper 56 consists of a segmented fiat annular ring 58 having a series of segments 60 adapted to slide radially within a recess 62 in the lower surface of the die holder 12. The segments 60 are urged radially inwardly by springs 64 and are retained within the recess 62 by an annular flat retaining ring 66, secured to the die holder 12 by screws 68. At the extreme inwardly position of the segments 60, the segmented ring 58 has a substantially cylindrical inner surface 70 whose diameter is slightly less than the diameter of the punch 20, With a smoothly rounded upper edge 72 and a sharp lower edge 74.
As the formed container 52 (FIGURE 6) is conveyed toward the stripper 56 by the punch 20, it contacts the rounded upper edge 72 of the segmented ring 58 forcing the segments 60 outwardly to allow the punch and container to pass through the ring. After the container 52 has passed through the ring 58, the springs 64 move the segments 60 inwardly against the punch 20. By suitable means (not shown), the punch 20 is then moved upwardly. During the upward movement of the punch 20, the upper rim 76 of the formed container 52 engages the sharp lower edge 74 of the segmented ring 58. This prevents any further upward movement of the container, thereby stripping it from the punch 20.
It is apparent from the foregoing description of the process that the soft metal coatings on the interior and exterior side walls surfaces of the drawn and iron container are subjected to different mechanical actions. The
internal side wall surface is forced to undergo a 90 degree tensional bend around a curved drawing die and a tensional force during ironing, whereas the exterior side wall surface undergoes a 90 degree compressive bend in the drawing and is then exposed to an extrusion or squeezing action when passing through the ironing dies. On the other hand, the bottom end of the container has not been essentially deformed.
It is also apparent that the exterior coating 7a on the container 52 has undergone a deformation and change different from that of the interior metal coating 7b. With each ironing step, the coating 7a undergoes severe deformation as it is squeezed between the particular ironing face and the mandrel. During this squeezing, the oil that has been impregnated within the soft metal coating 7 on the exterior of the container provides some degree of lubrication for the ironing.
On the other hand, the soft metal coating on the exterior surface of the container flows and is thinned by each succeeding ironing die which reduces the thickness of the side wall 54 and increases its height. The severe mechanical working and burnishing of the coating 7a not only thins the coating and provides lubrication for the ironing operation, but also increases the specularity of the coating until it is brighter than a conventional can made from conventional flow brightened tin plate. Of course, this coating is different than conventional tin plate in that it has not been actually melted and thus-there is no layer of a tin-iron alloy between the tin coating and the steel basis metal as is found in conventional flow brightened or hot dipped tin plate.
Thus, compared to flow brightened tin plate, the asdeposited tin coating provides greater lubrication during the ironing due to its softness and its ability to absorb lubricating oil applied to its surface.
The tin coating 7b on the interior side wall of the container has not been burnished, and therefore, does not exhibit the bright surface characteristics of the exterior coating 7a. As mentioned hereinbefore, the interior side wall coating has only been forced to undergo a degree tensional bend in the drawing operation and then elongation or stretching during ironing period. Thus since it has not been mechanically worked or burnished during the ironing operation, its appearance in generally of the same specularity as it was on the blank, although considerably thinner due to the stretching and the elongating of the side wall.
It should be noted, however, that both the interior and exterior surfaces of the bottom end 42 of the container, which has been neither drawn nor ironed, retain the asdeposited soft metal coating without the brightness of the exterior coating 7a nor the stretched condition of the interior coating 7b.
It is thought that the invention and many of its attendant advantages will be understood from the foregoing description and it will be apparent that various changes may be made in the form, construction, and arrangement of the parts and in the steps of the method described and their order of accomplishment without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the form being hereinbefore described being merely a preferred embodiment.
We claim:
1. A method of drawing and ironingan article from a flat blank comprising the steps of:
providing a low carbon steel blank electro-plated with a metal softer and more ductile than said steel, which metal has not been reflowed so that said blank has no alloy layer between said soft metal and said steel;
coating said blank with a lubricant;
forcing said blank through a drawing die to form a shallow cup;
forcing said shallow cup through an ironing die so that the thickness of both said steel and said soft metal is decreased and said side wall is elongated to form said article.
2. A method of drawing and ironing an article from a flat bank comprising the steps of:
providing a low carbon steel blank electro-plated with tin of matte finish having no tin-iron layer between said steel and said tin;
coating said blank with a lubricant;
forcing said blank through a drawing die to form a.
shallow cup;
forcing said shallow cup through an ironing die so that the thickness of both said steel and said tin at the side wall of said cup are decreased, said side wall is elongated to form said article, said tin flows through said ironing die while retaining lubricant to prevent fracture of said steel, and the specularity of said tin increases as it passes through said ironing die.
7 8 3. The method defined in'cla'iin 2" wherein the drawing specular tin on the outer surface thereof and an inand ironing steps are carriedout continuously, by placing tenor coating of matte tin.
said blank over axially aligned drawing and ironing dies and forcing said blank through said dies with a reciprocal References C'ted punch; 5 UNITED" STATES PATENTS 4. A drawn and ironed one-piece tin plated steel con- 2,801,604 8/1957 Russell et a1 113120 tainer comprising: 3,293,895 12/1966 Kohan et a1. 7246 an end having a coating of tin of matte finish; V a seamless side Wall, said side Wall having a thickness THERON CONDON Pr'mary Examiner substantially thinner than said end, and coating of 10 G. T. HALL, Assistant Examiner Disclaimer 3,360,157.Richa1-d Robert Bolt, Lake Villa and Delbert Ed'mlmd Wobbe,
Carry, Ill. METHOD OF FORMIN G A COATED METAL CON- TAINER AND ARTICLE PRODUCED THEREBY. Patent dated Dec. 26, 1967. Disclaimer filed Sept. 4, 1973, by the assignee, American Gan Company. Hereby enters this disclaimer '00 claim 1 of said patent.
[Oficial Gazette December 4, 1973.]
Claims (1)
- 4. A DRAWN AND IRONED ONE-PIECE TIN PLATED STEEL CONTAINER COMPRISING: AN END HAVING A COATING OF TIN OF MATTE FINISH; A SEAMLESS SIDE WALL, SAID SIDE WALL HAVING A THICKNESS SUBSTANTIALLY THINNER THAN SAID END, AND COATING OF SPECULAR TIN ON THE OUTER SURFACE THEREOF AND AN INTERIOR COATING OF MATTE TIN.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US453017A US3360157A (en) | 1965-05-04 | 1965-05-04 | Method of forming a coated metal container and article produced thereby |
DE1527908A DE1527908B2 (en) | 1965-05-04 | 1966-04-29 | Method of forming a sheet metal container |
GB19297/66A GB1140258A (en) | 1965-05-04 | 1966-05-02 | Method of forming a cup-shaped container |
NL6605958A NL6605958A (en) | 1965-05-04 | 1966-05-03 | |
SE06056/66A SE326935B (en) | 1965-05-04 | 1966-05-03 | |
CH646366A CH445421A (en) | 1965-05-04 | 1966-05-04 | Method for forming a cylindrical container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US453017A US3360157A (en) | 1965-05-04 | 1965-05-04 | Method of forming a coated metal container and article produced thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
US3360157A true US3360157A (en) | 1967-12-26 |
Family
ID=23798895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US453017A Expired - Lifetime US3360157A (en) | 1965-05-04 | 1965-05-04 | Method of forming a coated metal container and article produced thereby |
Country Status (6)
Country | Link |
---|---|
US (1) | US3360157A (en) |
CH (1) | CH445421A (en) |
DE (1) | DE1527908B2 (en) |
GB (1) | GB1140258A (en) |
NL (1) | NL6605958A (en) |
SE (1) | SE326935B (en) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3655349A (en) * | 1969-09-05 | 1972-04-11 | Bethlehem Steel Corp | Coated seamless containers and method of forming |
US3670543A (en) * | 1969-01-27 | 1972-06-20 | American Can Co | Drawing and ironing process |
US3685337A (en) * | 1969-12-30 | 1972-08-22 | Betzalel Avitzur | Shaping of hollow workpieces |
US3738528A (en) * | 1971-04-03 | 1973-06-12 | Daiwa Can Co Ltd | Container and a method for producing same |
US3765206A (en) * | 1969-09-05 | 1973-10-16 | Bethlehem Steel Corp | Method of forming coated seamless containers |
US3774426A (en) * | 1971-03-24 | 1973-11-27 | Steel Corp | Apparatus for and method of forming a workpiece |
US3832962A (en) * | 1971-08-23 | 1974-09-03 | Aluminum Co Of America | Precoating of aluminum can sheet |
JPS49117189A (en) * | 1973-03-12 | 1974-11-08 | ||
US3849868A (en) * | 1969-08-01 | 1974-11-26 | Texas Instruments Inc | Method of making magnesium anode battery |
USRE28511E (en) * | 1969-12-30 | 1975-08-12 | Shaping of hollow workpieces | |
US3904069A (en) * | 1972-01-31 | 1975-09-09 | American Can Co | Container |
US3934527A (en) * | 1973-08-09 | 1976-01-27 | National Steel Corporation | Manufacturing methods for selective coating characteristic tinplated steel cans |
US3978803A (en) * | 1974-07-15 | 1976-09-07 | Nippon Steel Corporation | Container or can and a method for manufacturing the same |
US3994252A (en) * | 1975-12-22 | 1976-11-30 | United States Steel Corporation | Method for the production of black plate with improved surface lubricity |
US4033274A (en) * | 1975-12-31 | 1977-07-05 | American Can Company | Containers |
US4054227A (en) * | 1973-08-09 | 1977-10-18 | National Steel Corporation | Selective coating characteristic tinplated steel cans |
US4055272A (en) * | 1975-12-31 | 1977-10-25 | American Can Company | Containers |
DE2725189A1 (en) * | 1976-07-14 | 1978-01-26 | American Can Co | DIE FOR METAL FORMING |
US4095544A (en) * | 1976-10-26 | 1978-06-20 | National Steel Corporation | Production of corrosion resistant seam-free can bodies from tinplate |
US4326896A (en) * | 1980-09-15 | 1982-04-27 | National Can Corporation | Method of making tin-layered stock material and containers therefrom |
WO1982002683A1 (en) * | 1981-02-11 | 1982-08-19 | Steel Corp Nat | Improved steel container stock,methods of forming drawn and ironed containers therefrom,and containers formed thereby |
FR2499882A1 (en) * | 1981-02-13 | 1982-08-20 | American Can Co | TOOL FOR FORMING STAMPED CONTAINERS |
FR2499884A1 (en) * | 1981-02-13 | 1982-08-20 | American Can Co | CONTAINER MADE BY STAMPING |
US4346580A (en) * | 1980-08-26 | 1982-08-31 | National Steel Corporation | Manufacture of lightweight drawn and ironed can bodies |
US4407149A (en) * | 1981-02-11 | 1983-10-04 | National Steel Corporation | Process for forming a drawn and ironed container |
US4442692A (en) * | 1981-11-23 | 1984-04-17 | National Can Corporation | Tandem ironing land assembly |
US4457150A (en) * | 1982-02-11 | 1984-07-03 | National Steel Corporation | Method of forming D&I cans from coated steel |
US4457450A (en) * | 1981-02-11 | 1984-07-03 | National Steel Corporation | Nickel-zinc alloy coated drawn and ironed can |
US4507339A (en) * | 1982-01-15 | 1985-03-26 | American Can Company | Coated metal container and method of making the same |
US4541265A (en) * | 1979-06-07 | 1985-09-17 | Purolator Products Inc. | Process for forming a deep drawn and ironed pressure vessel having selectively controlled side-wall thicknesses |
WO1986006705A1 (en) * | 1985-05-17 | 1986-11-20 | J.C. Schumacher Company | Disposable chemical container |
EP0251759A2 (en) * | 1986-06-30 | 1988-01-07 | Kawasaki Steel Corporation | Steel sheets for use in forming cans by deep-drawing and ironing |
US5139889A (en) * | 1990-05-16 | 1992-08-18 | Toyo Seikan Kaisha, Ltd. | Thickness-reduced draw-formed can |
US5199596A (en) * | 1985-03-15 | 1993-04-06 | Weirton Steel Corporation | Drawn can body methods, apparatus and products |
US5360649A (en) * | 1991-11-12 | 1994-11-01 | Toyo Seikan Kaisha, Ltd. | Thickness-reduced draw-formed can |
US5409130A (en) * | 1985-03-15 | 1995-04-25 | Weirton Steel Corporation | One-piece draw-process can bodies |
US5575400A (en) * | 1990-12-22 | 1996-11-19 | Carnaudmetalbox Plc | Containers |
US5803301A (en) * | 1996-09-12 | 1998-09-08 | Toyo Seikan Kaisha, Ltd. | Seamless can and process for making the same |
US5921126A (en) * | 1996-05-31 | 1999-07-13 | General Electric Company | Metalworking dies with soft metal lubricant platings |
US20040134912A1 (en) * | 2000-07-18 | 2004-07-15 | Tarulis George J | Drawn wall ironed can for light colored fruits |
US20060159989A1 (en) * | 2005-01-19 | 2006-07-20 | Truelove & Maclean, Inc. | System and process for forming battery cans |
US20080028817A1 (en) * | 2006-08-07 | 2008-02-07 | Advanced Engineered Systems, Inc. | Servo-driven cupping press |
US20090049880A1 (en) * | 2006-02-16 | 2009-02-26 | Mueller Weingarten Ag | Rolling tool with integrated drawing stage |
US8661686B2 (en) * | 2003-09-16 | 2014-03-04 | Ntn Corporation | Method of manufacturing a shell type needle roller bearing including drawing and ironing operations |
CN106794508A (en) * | 2015-07-01 | 2017-05-31 | 鲍尔公司 | Punch head surface texture processing in canister manufacture |
CN110538923A (en) * | 2019-09-25 | 2019-12-06 | 中材科技(成都)有限公司 | Method for deep drawing aluminum inner container of pressure container |
CN116351938A (en) * | 2023-03-16 | 2023-06-30 | 江阴市伦一金属制品有限公司 | Production process and equipment of high-strength unoriented silicon steel sheet for automobile driving motor |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2967280D1 (en) * | 1978-06-15 | 1984-12-06 | Nat Can Corp | IRONING THE FOR IRONING PRESS |
US4412440A (en) * | 1981-02-13 | 1983-11-01 | American Can Company | Process for making container |
US4485663A (en) * | 1981-02-13 | 1984-12-04 | American Can Company | Tool for making container |
DE3604792A1 (en) * | 1986-02-15 | 1987-08-20 | Helmuth Supik | Process for the production of tin-free objects by deep-drawing or ironing tinned sheet iron |
US5329799A (en) * | 1992-05-29 | 1994-07-19 | Toyota Jidosha Kabushiki Kaisha | Process and apparatus for press-forming tubular container-like article from strip, including forward and backward ironing steps |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2801604A (en) * | 1951-01-03 | 1957-08-06 | Nat Glaco Chemical Corp | Processed drawn implement |
US3293895A (en) * | 1962-10-23 | 1966-12-27 | American Can Co | Method of forming a coated metal container |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE416194C (en) * | 1923-02-05 | 1925-07-11 | Gaston De Dudzeele | Process for stretching, rolling and drawing metals |
DE461067C (en) * | 1925-05-17 | 1928-06-13 | Metallurg De L Ariege Soc | Process for preparing metallic objects for mechanical processing |
DE523111C (en) * | 1929-08-02 | 1931-04-20 | Fr Des Metaux Ouvres Sa Soc | Device for the production of containers with thickened bottom and edge parts and thin, cylindrical side walls |
CH149482A (en) * | 1930-07-28 | 1931-09-15 | Epos Aluminium Werk E Pfaendle | Drawing process and drawing tool for the production of hollow metal bodies, in particular high, medium-high and low cooking pots made of aluminum. |
US2434290A (en) * | 1941-03-05 | 1948-01-13 | Carnegie Illinois Steel Corp | Electrolytic tin plate |
GB558536A (en) * | 1942-11-05 | 1944-01-10 | Robert Dale Carr | Improvements in or relating to the production of hollow articles |
GB798082A (en) * | 1953-10-09 | 1958-07-16 | Ici Ltd | Improvements in or relating to the fabrication of titanium or titanium base alloys |
-
1965
- 1965-05-04 US US453017A patent/US3360157A/en not_active Expired - Lifetime
-
1966
- 1966-04-29 DE DE1527908A patent/DE1527908B2/en not_active Ceased
- 1966-05-02 GB GB19297/66A patent/GB1140258A/en not_active Expired
- 1966-05-03 NL NL6605958A patent/NL6605958A/xx unknown
- 1966-05-03 SE SE06056/66A patent/SE326935B/xx unknown
- 1966-05-04 CH CH646366A patent/CH445421A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2801604A (en) * | 1951-01-03 | 1957-08-06 | Nat Glaco Chemical Corp | Processed drawn implement |
US3293895A (en) * | 1962-10-23 | 1966-12-27 | American Can Co | Method of forming a coated metal container |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3670543A (en) * | 1969-01-27 | 1972-06-20 | American Can Co | Drawing and ironing process |
US3849868A (en) * | 1969-08-01 | 1974-11-26 | Texas Instruments Inc | Method of making magnesium anode battery |
US3655349A (en) * | 1969-09-05 | 1972-04-11 | Bethlehem Steel Corp | Coated seamless containers and method of forming |
US3765206A (en) * | 1969-09-05 | 1973-10-16 | Bethlehem Steel Corp | Method of forming coated seamless containers |
US3685337A (en) * | 1969-12-30 | 1972-08-22 | Betzalel Avitzur | Shaping of hollow workpieces |
USRE28511E (en) * | 1969-12-30 | 1975-08-12 | Shaping of hollow workpieces | |
US3774426A (en) * | 1971-03-24 | 1973-11-27 | Steel Corp | Apparatus for and method of forming a workpiece |
US3738528A (en) * | 1971-04-03 | 1973-06-12 | Daiwa Can Co Ltd | Container and a method for producing same |
US3832962A (en) * | 1971-08-23 | 1974-09-03 | Aluminum Co Of America | Precoating of aluminum can sheet |
US3904069A (en) * | 1972-01-31 | 1975-09-09 | American Can Co | Container |
JPS49117189A (en) * | 1973-03-12 | 1974-11-08 | ||
JPS5344867B2 (en) * | 1973-03-12 | 1978-12-02 | ||
US3934527A (en) * | 1973-08-09 | 1976-01-27 | National Steel Corporation | Manufacturing methods for selective coating characteristic tinplated steel cans |
US4054227A (en) * | 1973-08-09 | 1977-10-18 | National Steel Corporation | Selective coating characteristic tinplated steel cans |
US3978803A (en) * | 1974-07-15 | 1976-09-07 | Nippon Steel Corporation | Container or can and a method for manufacturing the same |
US3994252A (en) * | 1975-12-22 | 1976-11-30 | United States Steel Corporation | Method for the production of black plate with improved surface lubricity |
US4033274A (en) * | 1975-12-31 | 1977-07-05 | American Can Company | Containers |
US4055272A (en) * | 1975-12-31 | 1977-10-25 | American Can Company | Containers |
DE2725189A1 (en) * | 1976-07-14 | 1978-01-26 | American Can Co | DIE FOR METAL FORMING |
US4095544A (en) * | 1976-10-26 | 1978-06-20 | National Steel Corporation | Production of corrosion resistant seam-free can bodies from tinplate |
US4541265A (en) * | 1979-06-07 | 1985-09-17 | Purolator Products Inc. | Process for forming a deep drawn and ironed pressure vessel having selectively controlled side-wall thicknesses |
US4346580A (en) * | 1980-08-26 | 1982-08-31 | National Steel Corporation | Manufacture of lightweight drawn and ironed can bodies |
US4326896A (en) * | 1980-09-15 | 1982-04-27 | National Can Corporation | Method of making tin-layered stock material and containers therefrom |
WO1982002683A1 (en) * | 1981-02-11 | 1982-08-19 | Steel Corp Nat | Improved steel container stock,methods of forming drawn and ironed containers therefrom,and containers formed thereby |
US4457450A (en) * | 1981-02-11 | 1984-07-03 | National Steel Corporation | Nickel-zinc alloy coated drawn and ironed can |
US4407149A (en) * | 1981-02-11 | 1983-10-04 | National Steel Corporation | Process for forming a drawn and ironed container |
US4405058A (en) * | 1981-02-13 | 1983-09-20 | American Can Company | Container |
FR2499884A1 (en) * | 1981-02-13 | 1982-08-20 | American Can Co | CONTAINER MADE BY STAMPING |
FR2499882A1 (en) * | 1981-02-13 | 1982-08-20 | American Can Co | TOOL FOR FORMING STAMPED CONTAINERS |
US4442692A (en) * | 1981-11-23 | 1984-04-17 | National Can Corporation | Tandem ironing land assembly |
US4507339A (en) * | 1982-01-15 | 1985-03-26 | American Can Company | Coated metal container and method of making the same |
US4457150A (en) * | 1982-02-11 | 1984-07-03 | National Steel Corporation | Method of forming D&I cans from coated steel |
US5199596A (en) * | 1985-03-15 | 1993-04-06 | Weirton Steel Corporation | Drawn can body methods, apparatus and products |
US5409130A (en) * | 1985-03-15 | 1995-04-25 | Weirton Steel Corporation | One-piece draw-process can bodies |
WO1986006705A1 (en) * | 1985-05-17 | 1986-11-20 | J.C. Schumacher Company | Disposable chemical container |
EP0251759A2 (en) * | 1986-06-30 | 1988-01-07 | Kawasaki Steel Corporation | Steel sheets for use in forming cans by deep-drawing and ironing |
EP0251759A3 (en) * | 1986-06-30 | 1989-07-26 | Kawasaki Steel Corporation | Steel sheets for use in forming cans by deep-drawing and ironing |
US5139889A (en) * | 1990-05-16 | 1992-08-18 | Toyo Seikan Kaisha, Ltd. | Thickness-reduced draw-formed can |
AU638561B2 (en) * | 1990-05-16 | 1993-07-01 | Toyo Seikan Kaisha Ltd. | Thickness-reduced draw-formed can |
US5575400A (en) * | 1990-12-22 | 1996-11-19 | Carnaudmetalbox Plc | Containers |
US5360649A (en) * | 1991-11-12 | 1994-11-01 | Toyo Seikan Kaisha, Ltd. | Thickness-reduced draw-formed can |
US5921126A (en) * | 1996-05-31 | 1999-07-13 | General Electric Company | Metalworking dies with soft metal lubricant platings |
US5803301A (en) * | 1996-09-12 | 1998-09-08 | Toyo Seikan Kaisha, Ltd. | Seamless can and process for making the same |
US20040134912A1 (en) * | 2000-07-18 | 2004-07-15 | Tarulis George J | Drawn wall ironed can for light colored fruits |
US8661686B2 (en) * | 2003-09-16 | 2014-03-04 | Ntn Corporation | Method of manufacturing a shell type needle roller bearing including drawing and ironing operations |
US20060159989A1 (en) * | 2005-01-19 | 2006-07-20 | Truelove & Maclean, Inc. | System and process for forming battery cans |
US20090049880A1 (en) * | 2006-02-16 | 2009-02-26 | Mueller Weingarten Ag | Rolling tool with integrated drawing stage |
US7743637B2 (en) | 2006-02-16 | 2010-06-29 | Mueller Weingarten Ag | Rolling tool with integrated drawing stage |
US20080028817A1 (en) * | 2006-08-07 | 2008-02-07 | Advanced Engineered Systems, Inc. | Servo-driven cupping press |
CN106794508A (en) * | 2015-07-01 | 2017-05-31 | 鲍尔公司 | Punch head surface texture processing in canister manufacture |
CN110538923A (en) * | 2019-09-25 | 2019-12-06 | 中材科技(成都)有限公司 | Method for deep drawing aluminum inner container of pressure container |
CN116351938A (en) * | 2023-03-16 | 2023-06-30 | 江阴市伦一金属制品有限公司 | Production process and equipment of high-strength unoriented silicon steel sheet for automobile driving motor |
CN116351938B (en) * | 2023-03-16 | 2024-03-19 | 江阴市伦一金属制品有限公司 | Production process and equipment of high-strength unoriented silicon steel sheet for automobile driving motor |
Also Published As
Publication number | Publication date |
---|---|
GB1140258A (en) | 1969-01-15 |
NL6605958A (en) | 1966-11-07 |
CH445421A (en) | 1967-10-31 |
SE326935B (en) | 1970-08-10 |
DE1527908B2 (en) | 1980-02-07 |
DE1527908A1 (en) | 1970-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3360157A (en) | Method of forming a coated metal container and article produced thereby | |
CA1146018A (en) | Method and tool for redrawing | |
US3924437A (en) | Process for the non-cutting production of sheet steel containers | |
US3655349A (en) | Coated seamless containers and method of forming | |
US3029507A (en) | One piece thin walled metal container and method of manufacturing same | |
US5394727A (en) | Method of forming a metal container body | |
US4587826A (en) | Container end panel forming method and apparatus | |
US9849500B2 (en) | Can manufacture | |
US3670543A (en) | Drawing and ironing process | |
EP1773522A2 (en) | Method and apparatus for shaping a metallic container end closure | |
US3293895A (en) | Method of forming a coated metal container | |
KR890002574B1 (en) | Process for making container | |
US3603275A (en) | Method of forming can bodies | |
US3765206A (en) | Method of forming coated seamless containers | |
EP3988225B1 (en) | Ironing die | |
GB2112685A (en) | Tandem ironing land assembly | |
US4457150A (en) | Method of forming D&I cans from coated steel | |
US4374902A (en) | Nickel-zinc alloy coated steel sheet | |
US4407149A (en) | Process for forming a drawn and ironed container | |
US3058195A (en) | Method for the manufacture from sheet metal of hollow objects having a wall thickness in the closed end exceeding the wall thickness of the starting material | |
JPH07275961A (en) | Manufacture of seamless can | |
US4457450A (en) | Nickel-zinc alloy coated drawn and ironed can | |
US447265A (en) | Necticut | |
RU2761507C2 (en) | Method for extrusion of thin-walled glasses with thick bottom and device for its implementation | |
Demeri | Deep drawing |