US3289761A - Method and means for sealing wells - Google Patents
Method and means for sealing wells Download PDFInfo
- Publication number
- US3289761A US3289761A US359903A US35990364A US3289761A US 3289761 A US3289761 A US 3289761A US 359903 A US359903 A US 359903A US 35990364 A US35990364 A US 35990364A US 3289761 A US3289761 A US 3289761A
- Authority
- US
- United States
- Prior art keywords
- retaining casing
- cement
- sac
- casing
- retaining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007789 sealing Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title claims description 6
- 239000004568 cement Substances 0.000 claims description 36
- 239000012530 fluid Substances 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000004744 fabric Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005553 drilling Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
- E21B33/134—Bridging plugs
Definitions
- FIG 5 ROBBIE J. SMITH 8 BILLY R. WATSON INVENTORS.
- FIG. 5 METHOD AND MEANS FOR SEALING WELLS 2 SheetS--Sheeil Filed April l5, 1964 FIG. 5
- a sac is used to contain the cement an-d prevent it from dispersing within the well bore.
- An object of this invention is to seal otf intervals in a well.
- Another object of this invention is to seal off an interval while leaving a hole through the well without the necessity of drilling out the cement by which the interval was sealed.
- a further object of this invention is to provide an irnproved seal between a cement containing sac and the w-alls of the well bore.
- Still further objects are to achieve the above with la device that is sturdy, compact, durable, simple, versatile, and reliable, yet inexpensive and easy to manufacture and operate.
- Still further objects are to achieve the above with a method that is rapid, inexpensive, and easy for inexperienced, Aunskilled people to perform.
- FIG. 1 is a sectional view of the well with an elev-ational view of an embodiment of this invention as it is lowered into the well, broken in parts due to its length.
- FIG. 2 is a sectional View of the tool of FIG. 1 in place opposite the interval to be sea-led ott.
- FIG. 3 l is a sectional view of the tool with the cement in the sae showing excessive cement being washed away.
- FIG. 4 is an elevational View of -a portion of the tool Showing details of construction.
- FIG. 5 is a detail view partially broken away showing the sa-c weeping cement.
- this equiment is adapted to be used within a well within the earth.
- the well will be defined by the wall of the bore of the well.
- the object -as stated above is to seal oi or -plug permeable intervals 12.
- the equipment is adapted to be attached to ltubing 14. It will be understood that adapters could be made and the equipment could be attached to any type of tubular good such as .a string of drill steam.
- Sub 16 is threaded on its upper end to thread within the tubing 14.
- the sub 16 on its lower end branches so that there are concentric passageways. Stated otherwise, washout tube 13 is threaded onto the bottom of the sub 16.
- a flange Ztl is attached as by welding to the sub and extends outward and downwardly concentric with the washout tube 18 at the top thereof.
- the top of retain-ingl casing 22 is detachably attached to the flange 2t) ot the sub 16. There are many means for making a detachable attachment.
- a pin 24 att-ached to the flange 2t] ⁇ which extends through a I slot 26 in the -top of the retaining casing.
- the retaining casing 22 is constructed of some drillable material. These Amaterials are known to the art and may consist of a synthetic ⁇ resin material such as Bakelite or they may be made of certain metals which are drillable such as certain alloys of aluminum well known to the art. Centering bow springs 28 are attached to the casing 22 at the top and bottom thereof to maintain the retaining casing 22 centered within the well bore.
- Sac 30 is attached to the retaining casing 22 between the centering springs 28.
- the sac is sea-led to the retaining casing at the top and bottom of the sac as by split rings 32.
- the sac 30 is constructed of semiporous material such as coarse woven nylon. We refer to this is semi-porous and by this we mean that air will readily pass through interstices of the weave and that the fabric is quite permeable to water. However, the cement will only ooze or weep through the fabric. The larger solids of the cement are maintained within th-e sac 30, but the extremely small particles of cement wil-l pass through the fabric and sufficient cement will pass through the fabric to 'be sufficient t-o form a good seal between the fabric of the sac 30 and the wall 10 of the well bore.
- the sac 311 is quite pliable and flexible and when lled with pressure, it will conform to the retaining surroundings of the contour of the Wall 10 of the well bore.
- the retaining casing 22 is telescoped over the flange 20 with a snug t so that it forms a uid seal -at that point.
- Internal flange 34 extends into the retaining casing near the bottom thereof. The fiange is attached by threading it to internal threads upon the botto-rn of the retaining casing or it may be bonded thereto by cement.
- Fitting 36 is threaded to the bottom of the washout tube 18.
- the tting 36 has an external liange 3S.
- This external flange has a peripheral groove which contains O ring 4t) which forms a uid tight seal against the internal face of internal ilange 34.
- the tting 36 also has an internal ange 42 which forms a stop for plug 44 which is shown in the drawing as formed of metal with O rings forming a seal between it and the inside of the washout tube 18. lt will be understood by those skilled in the art that it could be solid rubber. Holes 46 extend through the washout tube 1S near the bottom thereof. When the plug 44 is in the lower position resting upon internal flange 42, the holes will be just above the top of the plug 44 in such position. Approximately opposite the holes 46 the retaining casing 22 has holes 48 providing access from within the retaining casing to within the sac 30 on the outside of the retaining casing. A short rubber tube or band 50 surrounds the holes 48 on the outside of the retaining casing 22. It is held in place by a metal band 52.
- rubber tube Sil forms a check valve for the holes 48 permitting fluid to be pumped out of the chamber, but prohibiting it from returning into the chamber.
- I have provided means for pumping cement from the surface of the ground to within the sac 30 outside of the retaining casin g 22.
- elastic bands 54 hold the sac 30 tight.
- the tool shown in FIG. l is attached to the tubing 14 and lowered into the well so that the tool is opposite or adjacent the interval 12 to be plugged off.
- the tubing 14 is empty while it is lowered into the well.
- a predetermined, measured amount of cement is introduced into the tubing 14 and a separation plug placed on top of it, then the cement pumped down with water on top thereof.
- Plug 44 is forced to the bottom of the washout tube 18 to rest upon internal flange 42. Any air or water within the tubing will flow through the holes 46 into the chamber and out of the chamber through holes 48 to within the sac 30 and any air or water will pass through the semi-porous sac 30.
- the cement will follow the same path into the sac, but because of the nature of the fabric of which the sac is constructed, it will not leave the sac. If there is an excess of water in the cement, some of the water might be squeezed from the sac, but basically, the mixture will be retained within the sac.
- the pressure is removed from the surface of the ground and the washout tube 1S disconnected from the retaining casing at the connection between the sub 16 and the retaining casing 22 by the l slot 26 the operation of which is well known.
- the tube 14 and the washout tubing 18 are raised a few inches so that there is a tluid passageway between the bottom of the washout tube 18 and the internal flange 34.
- the water is circulated between the wall 10 of the well bore and the tubing 14, down through the retaining casing 22, and back through the holes 46 into the washout tube 18, as shown by arrows in FIG. 3.
- any cement within the retaining casing is washed free from the area and back through the washout tube 18 to the surface of the ground. Therefore, upon the completion of the operation, the inside of the retaining casing 22 is washed free of cement leaving an open hole through the well bore.
- the retaining casing 22 Normally, the retaining casing 22 remains in place and any operations (including fluid passage as in production or injection) below it are carried on through it. However, it will be understoood that if the internal diameter of the retaining casing 22 is not sufficient for the operation, it is constructed of drillable material so that it may be readily removed by drilling as is well known in the art.
- cement is used in its broad sense and by cement we mean to include not only Portland cement, but other types including liquid plastics of synthetic resins which solidify.
- a device for sealing off intervals in wells leaving an open hole therethrough comprising in combination:
- check valve means associated with the holes in retaining casing for permitting fluid to flow out of said chamber but not return, and;
- a device for sealing oif intervals in wells leaving an open hole therethrough comprising in combination:
- check valve means for permitting fluid to flow out of said retaining casing, but not to return
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
Dec. 6, 1966 R. J. SMITH ETAL METHOD AND MEANS FOR SEALING WELLS 2 Sheets-Sheet l Filed April l5, 1964 FIG, 4
FIG 5 ROBBIE J. SMITH 8 BILLY R. WATSON INVENTORS.
Dec. 6, 1966 R. .1. SMITH ETAL.
METHOD AND MEANS FOR SEALING WELLS 2 SheetS--Sheeil Filed April l5, 1964 FIG. 5
WEEWAWII .r
FIG. 2
ROBBIE J. SMITH 81 BILLY R. WATSON INVENTORS.
United States Patent Oiitice 3,239,761 Patented Dee. 6, i956 3,289,761 METHQD ANI) MEANS FR SEALING WELLS Robbie El. Smith, 12.0. Box 1765, and Billy R. Watson, R0. Box 756, both of Monahans, Tex. Filed Apr. 15, 1964, Ser. No. 359,903 Claims. (Cl. 1166-27) This invention relates to sealing off an interval in a well.
In the drilling and production of wells, more particularly oil wells, often diiiculty is experienced by an area of permeability. During the life of producing wells or drilling new `wells that have more than one permeable zone due to watering out, thiefing, excessive gas production, etc., it is extremely desirous that an interval be sealed oit as is explained in the prior patent of R. I Smith, one of the co-.inventors here, U.S. Patent No. 3,032,115. After the interval has been sealed off or plugged, it is desirable to have an open hole therethrough so that items such as pipe strings lor eduction tubing .may be run in and out the well. Also on production and injection wells it is desirable to have an open hole.
In lthe sealing off of these intervals a sac is used to contain the cement an-d prevent it from dispersing within the well bore. We have found it desirable to have this cement to ooze through the fabric of the sac so that a good bond is formed between the sac and the walls of the well bore.
An object of this invention is to seal otf intervals in a well.
Another object of this invention is to seal off an interval while leaving a hole through the well without the necessity of drilling out the cement by which the interval was sealed.
A further object of this invention is to provide an irnproved seal between a cement containing sac and the w-alls of the well bore.
Still further objects are to achieve the above with la device that is sturdy, compact, durable, simple, versatile, and reliable, yet inexpensive and easy to manufacture and operate.
Still further objects are to achieve the above with a method that is rapid, inexpensive, and easy for inexperienced, Aunskilled people to perform.
The specific nature of the invention as well as other objects, uses, and advantages thereof will clearly appear from the following description and from the accompanying drawing the different views of `which are not to the same scale, in which:
FIG. 1 is a sectional view of the well with an elev-ational view of an embodiment of this invention as it is lowered into the well, broken in parts due to its length.
FIG. 2 is a sectional View of the tool of FIG. 1 in place opposite the interval to be sea-led ott.
FIG. 3 lis a sectional view of the tool with the cement in the sae showing excessive cement being washed away.
FIG. 4 is an elevational View of -a portion of the tool Showing details of construction.
FIG. 5 is a detail view partially broken away showing the sa-c weeping cement.
Referring more particularly to the drawings, it `may be seen that this equiment is adapted to be used within a well within the earth. The well will be defined by the wall of the bore of the well. The object -as stated above is to seal oi or -plug permeable intervals 12.
The equipment is adapted to be attached to ltubing 14. It will be understood that adapters could be made and the equipment could be attached to any type of tubular good such as .a string of drill steam. Sub 16 `is threaded on its upper end to thread within the tubing 14. The sub 16 on its lower end branches so that there are concentric passageways. Stated otherwise, washout tube 13 is threaded onto the bottom of the sub 16. A flange Ztl is attached as by welding to the sub and extends outward and downwardly concentric with the washout tube 18 at the top thereof. The top of retain-ingl casing 22 is detachably attached to the flange 2t) ot the sub 16. There are many means for making a detachable attachment. Illustrated is a pin 24 att-ached to the flange 2t]` which extends through a I slot 26 in the -top of the retaining casing. By moving the sub 16 downward and rotating in the correct direction, the retaining casing 22 may be detached from the sub 16 at the will of the operator.
The retaining casing 22 is constructed of some drillable material. These Amaterials are known to the art and may consist of a synthetic `resin material such as Bakelite or they may be made of certain metals which are drillable such as certain alloys of aluminum well known to the art. Centering bow springs 28 are attached to the casing 22 at the top and bottom thereof to maintain the retaining casing 22 centered within the well bore.
It will be understood the sac 311 is quite pliable and flexible and when lled with pressure, it will conform to the retaining surroundings of the contour of the Wall 10 of the well bore.
The retaining casing 22 is telescoped over the flange 20 with a snug t so that it forms a uid seal -at that point. Internal flange 34 extends into the retaining casing near the bottom thereof. The fiange is attached by threading it to internal threads upon the botto-rn of the retaining casing or it may be bonded thereto by cement.
Fitting 36 is threaded to the bottom of the washout tube 18. The tting 36 has an external liange 3S. This external flange has a peripheral groove which contains O ring 4t) which forms a uid tight seal against the internal face of internal ilange 34. Thus, it may be seen that there is a chamber formed between the retaining casing 22 telescoped around the washout tube 18, dened at the top by the flange 20 an-d at the bottom by the internal flange 34.
The tting 36 also has an internal ange 42 which forms a stop for plug 44 which is shown in the drawing as formed of metal with O rings forming a seal between it and the inside of the washout tube 18. lt will be understood by those skilled in the art that it could be solid rubber. Holes 46 extend through the washout tube 1S near the bottom thereof. When the plug 44 is in the lower position resting upon internal flange 42, the holes will be just above the top of the plug 44 in such position. Approximately opposite the holes 46 the retaining casing 22 has holes 48 providing access from within the retaining casing to within the sac 30 on the outside of the retaining casing. A short rubber tube or band 50 surrounds the holes 48 on the outside of the retaining casing 22. It is held in place by a metal band 52. Therefore, it may be seen that if there is pressure within the retaining casing 22, that the pressure will push the flexible rubber tube 50 from around the holes permitting the uid to flow. However, material cannot ow from within the sac 30 to within the retaining casing 22. Therefore, it may be seen that rubber tube Sil forms a check valve for the holes 48 permitting fluid to be pumped out of the chamber, but prohibiting it from returning into the chamber.
Also, with the passageway described, it may be seen that I have provided means for pumping cement from the surface of the ground to within the sac 30 outside of the retaining casin g 22.
To insure that the sac 30 lies close against the retaining casing 22 while the tool is being lowered into the hole, elastic bands 54 hold the sac 30 tight.
Operation In operation, the tool shown in FIG. l is attached to the tubing 14 and lowered into the well so that the tool is opposite or adjacent the interval 12 to be plugged off. The tubing 14 is empty while it is lowered into the well. After it has been lowered into the well, a predetermined, measured amount of cement is introduced into the tubing 14 and a separation plug placed on top of it, then the cement pumped down with water on top thereof. Plug 44 is forced to the bottom of the washout tube 18 to rest upon internal flange 42. Any air or water within the tubing will flow through the holes 46 into the chamber and out of the chamber through holes 48 to within the sac 30 and any air or water will pass through the semi-porous sac 30. The cement will follow the same path into the sac, but because of the nature of the fabric of which the sac is constructed, it will not leave the sac. If there is an excess of water in the cement, some of the water might be squeezed from the sac, but basically, the mixture will be retained within the sac.
After the sac 30 has been expanded to the limits of the wall of the bore hole, the pressure is removed from the surface of the ground and the washout tube 1S disconnected from the retaining casing at the connection between the sub 16 and the retaining casing 22 by the l slot 26 the operation of which is well known. The tube 14 and the washout tubing 18 are raised a few inches so that there is a tluid passageway between the bottom of the washout tube 18 and the internal flange 34. Then from the top of the ground, the water is circulated between the wall 10 of the well bore and the tubing 14, down through the retaining casing 22, and back through the holes 46 into the washout tube 18, as shown by arrows in FIG. 3. Therefore, any cement within the retaining casing is washed free from the area and back through the washout tube 18 to the surface of the ground. Therefore, upon the completion of the operation, the inside of the retaining casing 22 is washed free of cement leaving an open hole through the well bore.
Normally, the retaining casing 22 remains in place and any operations (including fluid passage as in production or injection) below it are carried on through it. However, it will be understoood that if the internal diameter of the retaining casing 22 is not sufficient for the operation, it is constructed of drillable material so that it may be readily removed by drilling as is well known in the art.
Therefore, it may be seen that we have provided means for sealing off an interval in a well bore while leaving .an open hole therethrough.
The term cement is used in its broad sense and by cement we mean to include not only Portland cement, but other types including liquid plastics of synthetic resins which solidify.
It will be apparent that the embodiment shown is only exemplary and that various modifications can be made in construction, materials, and arrangement within the scope of the invention as defined in the appended claims.
We claim as our invention:
1. A device for sealing off intervals in wells leaving an open hole therethrough comprising in combination:
(a) a washout tube,
(b) means for attaching the top of said washout tube to a string of tubing extending upward from the bottom of the Well,
(c) a retaining casing,
(d) said retaining casing constructed of drillable material,
(e) means at the top of the retaining casing for detachably attaching the casing to the top of the Washout tube,
(f) an internal ange at the bottom of the retaining casing,
(g) a seal between the bottom of the washout tube and said internal flange, thus forming a chamber between the washout tube and retaining casing,
(h) means in the washout tube for plugging the bottom of the washout tube,
(j) the washout tube having holes therethrough above the means for plugging,
(k) the retaining casing having holes therethrough,
(m) check valve means associated with the holes in retaining casing for permitting fluid to flow out of said chamber but not return, and;
(n) a sac surrounding the retaining casing to prevent dispersement of the cement thereforrn.
2. The invention as defined in claim 1 wherein said sac is pervious to water and weeps cement.
3. A device for sealing oif intervals in wells leaving an open hole therethrough comprising in combination:
(a) a washout tube,
(b) means for attaching the top of said washout tube to a string of tubing extending upward from the bottom of the well,
(c) a retaining casing,
(d) means at the top of the retaining casing for detachably attaching the casing to the top of the washout tube,
(e) means on the bottom of the retaining casing for forming a releasable seal between the bottom of the washout tube and bottom of the retaining caslng,
(f) the washout tube having holes therethrough,
(g) the retaining casing having holes therethrough,
(h) check valve means for permitting fluid to flow out of said retaining casing, but not to return, and
(j) a sac surrounding the retaining casing to prevent dispersement of cement therefrom.
4. The invention defined in claim 3 wherein said sac is pervious to water and weeps cement.
5. The method of sealing off an interval in a well bore leaving an open hole therethrough comprising (a) lowering a retaining casing into the well adjacent the interval to be sealed olf,
(b) pumping cement between the retaining casing and the well bore,
(c) preventing the cement from dispersing into the well bore by pumping it into a sac,
(d) sealing the sac to the well bore by causing a small amount of cement to ooze through the sac,
(e) preventing any cement between the retaining casing and well lbore from flowing into the retaining casing, and
(f) washing the cement within the retaining casing to the surface of the ground.
References Cited by the Examiner UNITED STATES PATENTS 2,922,478 1/1960 Maly 166-187 3,134,439 4/1964 Shuelds 166-51 3,216,497 11/1965 Howard et al. 166-51 CHARLES E. OCONNELL, Primary Examiner'.
I. A. LEPPINK, Assistant Examiner.
Claims (2)
- 3. A DEVICE FOR SEALING OFF INTERVALS IN WELLS LEAVING AN OPEN HOLE THERETHROUGH COMPRISING IN COMBINATION: (A) A WASHOUT TUBE, (B) MEANS FOR ATTACHING THE TOP OF SAID WASHOUT TUBE TO A STRING OF TUBING EXTENDING UPWARD FROM THE BOTTOM OF THE WELL, (C) A RETAINING CASING, (D) MEASNS TO THE TOP OF THE RETAINING CASING FOR DETACHABLY ATTACHING THE CASING TO THE TOP OF THE WASHOUT TUBE, (E) MEANS ON THE BOTTOM OF THE RETAINING CASING FOR FORMING A RELEASABLE SEAL BETWEEN THE BOTTOM OF THE WASHOUT TUBE AND BOTTOM OF THE RETAINING CASING, (F) THE WASHOUT TUBE HAVING HOLES THERETHROUGH, (G) THE RETAINING CASING HAVING HOLES THERETHROUGH, (H) CHECK VALVE MEANS FOR PERMITTING FLUID TO FLOW OUT OF SAID RETAINING CASING, BUT NOT TO RETURN, AND (J) A SAC SURROUNDING THE RETAINING CASING TO PREVENT DISPERSEMENT OF CEMENT THEREFROM.
- 5. THE METHOD OF SEALING OFF AN INTERVAL IN A WELL BORE LEAVING AN OPEN HOLE THERETHROUGH COMPRISING (A) LOWERING A RETAINING CASING INTO THE WELL ADJACENT THE INTERVAL TO BE SEALED OFF, (B) PUMPING CEMENT BETWEEN THE RETAINING CASING AND THE WELL BORE, (C) PREVENTING THE CEMENT FROM DISPERSING INTO THE WELL BORE BY PUMPING IT INTO A SAC, (D) SEALING THE SAC TO THE WELL BORE BY CAUSING A SMALL AMOUNT OF CEMENT TO OOZE THROUGH THE SAC, (E) PREVENTING ANY CEMENT BETWEEN THE RETAINING CASING AND WELL BORE FROM FLOWING INTO THE RETAINING CASING, AND (F) WASHING THE CEMENT WITHIN THE RETAINING CASING TO THE SURFACE OF THE GROUND.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US359903A US3289761A (en) | 1964-04-15 | 1964-04-15 | Method and means for sealing wells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US359903A US3289761A (en) | 1964-04-15 | 1964-04-15 | Method and means for sealing wells |
Publications (1)
Publication Number | Publication Date |
---|---|
US3289761A true US3289761A (en) | 1966-12-06 |
Family
ID=23415766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US359903A Expired - Lifetime US3289761A (en) | 1964-04-15 | 1964-04-15 | Method and means for sealing wells |
Country Status (1)
Country | Link |
---|---|
US (1) | US3289761A (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753628A (en) * | 1972-05-15 | 1973-08-21 | J Becker | Rotary type oil or water pump |
US3915231A (en) * | 1973-10-12 | 1975-10-28 | William Duncan Mackie | Method for drilling through cavities during earth drilling operations |
US4413929A (en) * | 1979-12-18 | 1983-11-08 | Kubota, Ltd. | Rock bolt |
US4655301A (en) * | 1984-11-21 | 1987-04-07 | Funderingstechnieken Verstraeten B.V. | Expansible drive core |
US4979570A (en) * | 1989-11-28 | 1990-12-25 | Baker Hughes Incorporated | Inflatable tool with rib expansion support |
US5392853A (en) * | 1992-11-25 | 1995-02-28 | Solinst Canada Ltd. | Plugging system for boreholes |
US5469919A (en) * | 1993-12-30 | 1995-11-28 | Carisella; James V. | Programmed shape inflatable packer device and method |
US5711375A (en) * | 1996-08-02 | 1998-01-27 | Halliburton Company | Well stabilization tools and methods |
US6138774A (en) * | 1998-03-02 | 2000-10-31 | Weatherford Holding U.S., Inc. | Method and apparatus for drilling a borehole into a subsea abnormal pore pressure environment |
US6263982B1 (en) | 1998-03-02 | 2001-07-24 | Weatherford Holding U.S., Inc. | Method and system for return of drilling fluid from a sealed marine riser to a floating drilling rig while drilling |
US6470975B1 (en) | 1999-03-02 | 2002-10-29 | Weatherford/Lamb, Inc. | Internal riser rotating control head |
US6913092B2 (en) | 1998-03-02 | 2005-07-05 | Weatherford/Lamb, Inc. | Method and system for return of drilling fluid from a sealed marine riser to a floating drilling rig while drilling |
US7159669B2 (en) | 1999-03-02 | 2007-01-09 | Weatherford/Lamb, Inc. | Internal riser rotating control head |
US7237623B2 (en) | 2003-09-19 | 2007-07-03 | Weatherford/Lamb, Inc. | Method for pressurized mud cap and reverse circulation drilling from a floating drilling rig using a sealed marine riser |
EP1865146A1 (en) | 2006-06-07 | 2007-12-12 | Foralith Erdwärme AG | Packer for continuous sealing and closing of different ground water levels and artesian inflow in a borehole |
US7487837B2 (en) | 2004-11-23 | 2009-02-10 | Weatherford/Lamb, Inc. | Riser rotating control device |
US7836946B2 (en) | 2002-10-31 | 2010-11-23 | Weatherford/Lamb, Inc. | Rotating control head radial seal protection and leak detection systems |
US7926593B2 (en) | 2004-11-23 | 2011-04-19 | Weatherford/Lamb, Inc. | Rotating control device docking station |
US7997345B2 (en) | 2007-10-19 | 2011-08-16 | Weatherford/Lamb, Inc. | Universal marine diverter converter |
US8286734B2 (en) | 2007-10-23 | 2012-10-16 | Weatherford/Lamb, Inc. | Low profile rotating control device |
US8322432B2 (en) | 2009-01-15 | 2012-12-04 | Weatherford/Lamb, Inc. | Subsea internal riser rotating control device system and method |
US8347983B2 (en) | 2009-07-31 | 2013-01-08 | Weatherford/Lamb, Inc. | Drilling with a high pressure rotating control device |
US8347982B2 (en) | 2010-04-16 | 2013-01-08 | Weatherford/Lamb, Inc. | System and method for managing heave pressure from a floating rig |
US8826988B2 (en) | 2004-11-23 | 2014-09-09 | Weatherford/Lamb, Inc. | Latch position indicator system and method |
US8844652B2 (en) | 2007-10-23 | 2014-09-30 | Weatherford/Lamb, Inc. | Interlocking low profile rotating control device |
US9175542B2 (en) | 2010-06-28 | 2015-11-03 | Weatherford/Lamb, Inc. | Lubricating seal for use with a tubular |
US9359853B2 (en) | 2009-01-15 | 2016-06-07 | Weatherford Technology Holdings, Llc | Acoustically controlled subsea latching and sealing system and method for an oilfield device |
US10041335B2 (en) | 2008-03-07 | 2018-08-07 | Weatherford Technology Holdings, Llc | Switching device for, and a method of switching, a downhole tool |
US20230070661A1 (en) * | 2021-09-03 | 2023-03-09 | Saudi Arabian Oil Company | Flexi-string for washout below a casing shoe |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2922478A (en) * | 1956-07-30 | 1960-01-26 | Halliburton Oil Well Cementing | Well packer |
US3134439A (en) * | 1960-06-27 | 1964-05-26 | Gulf Oil Corp | Gravel packing apparatus |
US3216497A (en) * | 1962-12-20 | 1965-11-09 | Pan American Petroleum Corp | Gravel-packing method |
-
1964
- 1964-04-15 US US359903A patent/US3289761A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2922478A (en) * | 1956-07-30 | 1960-01-26 | Halliburton Oil Well Cementing | Well packer |
US3134439A (en) * | 1960-06-27 | 1964-05-26 | Gulf Oil Corp | Gravel packing apparatus |
US3216497A (en) * | 1962-12-20 | 1965-11-09 | Pan American Petroleum Corp | Gravel-packing method |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753628A (en) * | 1972-05-15 | 1973-08-21 | J Becker | Rotary type oil or water pump |
US3915231A (en) * | 1973-10-12 | 1975-10-28 | William Duncan Mackie | Method for drilling through cavities during earth drilling operations |
US4413929A (en) * | 1979-12-18 | 1983-11-08 | Kubota, Ltd. | Rock bolt |
US4655301A (en) * | 1984-11-21 | 1987-04-07 | Funderingstechnieken Verstraeten B.V. | Expansible drive core |
US4979570A (en) * | 1989-11-28 | 1990-12-25 | Baker Hughes Incorporated | Inflatable tool with rib expansion support |
US5392853A (en) * | 1992-11-25 | 1995-02-28 | Solinst Canada Ltd. | Plugging system for boreholes |
US5813459A (en) * | 1993-12-30 | 1998-09-29 | Carisella; James V. | Programmed shape inflatable packer device |
US5469919A (en) * | 1993-12-30 | 1995-11-28 | Carisella; James V. | Programmed shape inflatable packer device and method |
US5564504A (en) * | 1993-12-30 | 1996-10-15 | Carisella; James V. | Programmed shape inflatable packer device and method |
US5823273A (en) * | 1996-08-02 | 1998-10-20 | Halliburton Company | Well stabilization tools and methods |
US5711375A (en) * | 1996-08-02 | 1998-01-27 | Halliburton Company | Well stabilization tools and methods |
US7448454B2 (en) | 1998-03-02 | 2008-11-11 | Weatherford/Lamb, Inc. | Method and system for return of drilling fluid from a sealed marine riser to a floating drilling rig while drilling |
US6138774A (en) * | 1998-03-02 | 2000-10-31 | Weatherford Holding U.S., Inc. | Method and apparatus for drilling a borehole into a subsea abnormal pore pressure environment |
US6263982B1 (en) | 1998-03-02 | 2001-07-24 | Weatherford Holding U.S., Inc. | Method and system for return of drilling fluid from a sealed marine riser to a floating drilling rig while drilling |
US6913092B2 (en) | 1998-03-02 | 2005-07-05 | Weatherford/Lamb, Inc. | Method and system for return of drilling fluid from a sealed marine riser to a floating drilling rig while drilling |
US6470975B1 (en) | 1999-03-02 | 2002-10-29 | Weatherford/Lamb, Inc. | Internal riser rotating control head |
US7258171B2 (en) | 1999-03-02 | 2007-08-21 | Weatherford/Lamb, Inc. | Internal riser rotating control head |
US7159669B2 (en) | 1999-03-02 | 2007-01-09 | Weatherford/Lamb, Inc. | Internal riser rotating control head |
US8714240B2 (en) | 2002-10-31 | 2014-05-06 | Weatherford/Lamb, Inc. | Method for cooling a rotating control device |
US8353337B2 (en) | 2002-10-31 | 2013-01-15 | Weatherford/Lamb, Inc. | Method for cooling a rotating control head |
US7934545B2 (en) | 2002-10-31 | 2011-05-03 | Weatherford/Lamb, Inc. | Rotating control head leak detection systems |
US7836946B2 (en) | 2002-10-31 | 2010-11-23 | Weatherford/Lamb, Inc. | Rotating control head radial seal protection and leak detection systems |
US8113291B2 (en) | 2002-10-31 | 2012-02-14 | Weatherford/Lamb, Inc. | Leak detection method for a rotating control head bearing assembly and its latch assembly using a comparator |
US7237623B2 (en) | 2003-09-19 | 2007-07-03 | Weatherford/Lamb, Inc. | Method for pressurized mud cap and reverse circulation drilling from a floating drilling rig using a sealed marine riser |
US7926593B2 (en) | 2004-11-23 | 2011-04-19 | Weatherford/Lamb, Inc. | Rotating control device docking station |
US7487837B2 (en) | 2004-11-23 | 2009-02-10 | Weatherford/Lamb, Inc. | Riser rotating control device |
US10024154B2 (en) | 2004-11-23 | 2018-07-17 | Weatherford Technology Holdings, Llc | Latch position indicator system and method |
US9784073B2 (en) | 2004-11-23 | 2017-10-10 | Weatherford Technology Holdings, Llc | Rotating control device docking station |
US9404346B2 (en) | 2004-11-23 | 2016-08-02 | Weatherford Technology Holdings, Llc | Latch position indicator system and method |
US8408297B2 (en) | 2004-11-23 | 2013-04-02 | Weatherford/Lamb, Inc. | Remote operation of an oilfield device |
US8939235B2 (en) | 2004-11-23 | 2015-01-27 | Weatherford/Lamb, Inc. | Rotating control device docking station |
US8701796B2 (en) | 2004-11-23 | 2014-04-22 | Weatherford/Lamb, Inc. | System for drilling a borehole |
US8826988B2 (en) | 2004-11-23 | 2014-09-09 | Weatherford/Lamb, Inc. | Latch position indicator system and method |
EP1865146A1 (en) | 2006-06-07 | 2007-12-12 | Foralith Erdwärme AG | Packer for continuous sealing and closing of different ground water levels and artesian inflow in a borehole |
US7997345B2 (en) | 2007-10-19 | 2011-08-16 | Weatherford/Lamb, Inc. | Universal marine diverter converter |
US8286734B2 (en) | 2007-10-23 | 2012-10-16 | Weatherford/Lamb, Inc. | Low profile rotating control device |
US9004181B2 (en) | 2007-10-23 | 2015-04-14 | Weatherford/Lamb, Inc. | Low profile rotating control device |
US8844652B2 (en) | 2007-10-23 | 2014-09-30 | Weatherford/Lamb, Inc. | Interlocking low profile rotating control device |
US10087701B2 (en) | 2007-10-23 | 2018-10-02 | Weatherford Technology Holdings, Llc | Low profile rotating control device |
US10041335B2 (en) | 2008-03-07 | 2018-08-07 | Weatherford Technology Holdings, Llc | Switching device for, and a method of switching, a downhole tool |
US9359853B2 (en) | 2009-01-15 | 2016-06-07 | Weatherford Technology Holdings, Llc | Acoustically controlled subsea latching and sealing system and method for an oilfield device |
US8322432B2 (en) | 2009-01-15 | 2012-12-04 | Weatherford/Lamb, Inc. | Subsea internal riser rotating control device system and method |
US8770297B2 (en) | 2009-01-15 | 2014-07-08 | Weatherford/Lamb, Inc. | Subsea internal riser rotating control head seal assembly |
US8636087B2 (en) | 2009-07-31 | 2014-01-28 | Weatherford/Lamb, Inc. | Rotating control system and method for providing a differential pressure |
US9334711B2 (en) | 2009-07-31 | 2016-05-10 | Weatherford Technology Holdings, Llc | System and method for cooling a rotating control device |
US8347983B2 (en) | 2009-07-31 | 2013-01-08 | Weatherford/Lamb, Inc. | Drilling with a high pressure rotating control device |
US9260927B2 (en) | 2010-04-16 | 2016-02-16 | Weatherford Technology Holdings, Llc | System and method for managing heave pressure from a floating rig |
US8347982B2 (en) | 2010-04-16 | 2013-01-08 | Weatherford/Lamb, Inc. | System and method for managing heave pressure from a floating rig |
US8863858B2 (en) | 2010-04-16 | 2014-10-21 | Weatherford/Lamb, Inc. | System and method for managing heave pressure from a floating rig |
US9175542B2 (en) | 2010-06-28 | 2015-11-03 | Weatherford/Lamb, Inc. | Lubricating seal for use with a tubular |
US20230070661A1 (en) * | 2021-09-03 | 2023-03-09 | Saudi Arabian Oil Company | Flexi-string for washout below a casing shoe |
US11808094B2 (en) * | 2021-09-03 | 2023-11-07 | Saudi Arabian Oil Company | Flexi-string for washout below a casing shoe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3289761A (en) | Method and means for sealing wells | |
US3277962A (en) | Gravel packing method | |
US3102599A (en) | Subterranean drilling process | |
US4498543A (en) | Method for placing a liner in a pressurized well | |
US2753940A (en) | Method and apparatus for fracturing a subsurface formation | |
US3963076A (en) | Method and apparatus for gravel packing well bores | |
US4421165A (en) | Multiple stage cementer and casing inflation packer | |
US2833354A (en) | Screen and set shoe assembly for wells | |
US4474243A (en) | Method and apparatus for running and cementing pipe | |
US2708000A (en) | Apparatus for sealing a bore hole casing | |
US3102595A (en) | Apparatus for cementing tubing strings in well bores | |
US2797755A (en) | Junk basket with positive fluid circulation | |
US2802482A (en) | Piston float valve | |
US2117534A (en) | Well cementing device | |
US2016919A (en) | Method for cementing and testing wells | |
US3301329A (en) | Tool for cementing and/or plugging a well or the like | |
US2095899A (en) | Bottom hole choke | |
US2190250A (en) | Apparatus for testing oil and gas wells | |
US2902094A (en) | Device for testing tubing | |
US2054353A (en) | Method and apparatus for shutting off water intrusion through perforated casings | |
US2157964A (en) | Tubing hanger | |
US2109197A (en) | Combination clean-out and sample tool | |
US2179017A (en) | Cementing shoe | |
US2203595A (en) | Device for use in wells | |
US2687774A (en) | Method of preparing wells for production |