US2979528A - Nitrogen-containing polyoxyalkylene detergent compositions - Google Patents
Nitrogen-containing polyoxyalkylene detergent compositions Download PDFInfo
- Publication number
- US2979528A US2979528A US705730A US70573057A US2979528A US 2979528 A US2979528 A US 2979528A US 705730 A US705730 A US 705730A US 70573057 A US70573057 A US 70573057A US 2979528 A US2979528 A US 2979528A
- Authority
- US
- United States
- Prior art keywords
- reactive hydrogen
- compounds
- chains
- compositions
- oxypropylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/02—Foam dispersion or prevention
- B01D19/04—Foam dispersion or prevention by addition of chemical substances
- B01D19/0404—Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance
- B01D19/0413—Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance compounds containing N-atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/42—Amino alcohols or amino ethers
- C11D1/44—Ethers of polyoxyalkylenes with amino alcohols; Condensation products of epoxyalkanes with amines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S516/00—Colloid systems and wetting agents; subcombinations thereof; processes of
- Y10S516/01—Wetting, emulsifying, dispersing, or stabilizing agents
- Y10S516/07—Organic amine, amide, or n-base containing
Definitions
- a basically new approach for the chemical structure of a polyoxyalkylene nonionic surface active agent is dis- 1 closed in U.S. 2,674,619.
- polyoxyalkylene nonionic surface active agents were known which were composed of a long hydrocarbon chain or alkyl-substituted ring compound, e.g., nonylphenol, and a water-solubilizing polyoxyethylene chain.
- compositions disclosed in U.S. 2,674,619 depart from of ethylene oxide condensed with the polyoxypropylene chain.
- the compositions of US. 2,674,619 are initially prepared by condensing the required amount of propylene oxide with a lower molecular weight reactive hydrogen compound, followed by condensation with ethylene oxide so as to produce water solubility and introduce surface active properties.
- the disclosure of U.S. 2,674,619 teaches thatany of a broad group of reactive hydrogen compounds can be used which have at least two reactive hydrogen atoms and are relatively low molecular weight materials which arenot hydrophobic in and of themselves. It is indicated that, ordinarily, the reactive hydrogen compound constitutes such a relatively small proportion of the block polymer surfactant composition that the reactive hydrogen compound has little or no material effect on the properties of the final detergent composition.
- compositions of this invention are based on their effective- 1 ness as detergents and in many cases the polyoxyalkylene nonionic surface active agents are in direct competition with Other different synthetic detergents, such as the welllatter condition that the compositions of this invention,
- An object of this invention is, therefore, to provide polyoxyalkylene nonionic surface active agents which have improved effectiveness as detergents.
- polyoxyalkylene nonionic surface active agents of the general class disclosed in U.S. 2,674,619 but where the reactive hydrogen compound employed is one of a specific class of reactive hydrogen compounds, i.e., nitrogen-containing reactive hydrogen compounds.
- the polyoxyalkylene nonionic detergent compositions of this invention constitute a superior classof detergents in several respects when compared to the polyoxyalkylene nonionic detergent compositions of U.S. 2,674,619 as exemplified by those prepared with propylene glycol as the reactive hydrogen compound.
- nitrogen-containing polyoxyalkylene nonionic detergent compositions of this invention can be prepared which produce higher detergency effectiveness than that of other propylene glycol-based compositions disclosed in U.S. 2,674,619 regardless of the proportions of propylene oxide and ethylene oxide employed in preparing the latter.
- the nitrogen-containing compositions of this invention have unusually superior detergency effectiveness in relatively cold water, i.e., at F.
- nitrogen-containing polyoxyalkylene compositions of this invention can be and have been prepared which are better detergents "at 90 F. than can be prepared using propylene'glycol or other reactive hydrogen compounds disclosed in U.S. 2,674,619 regardless of the proportions of propylene oxide and ethylene oxide used inthe latter.
- the compositions of this invention are at least as efiective at F., and usually more effective, detergents than are such compositions of U.S. 2,674,619.
- compositions of this invention constitute a specific class of compositions within the scope of the disclosure of U.S. 2,674,619 but possessing unusually superior detergency properties when compared to other compositions of the broad class disclosed in the patent.
- compositions of this invention possess a still further unique and characterizing feature when compared to the glycol-based surfactants disclosed in U.S. 2,674,619
- the significant and characterizing feature of the compositions of this invention is the class of reactive hydrogen compounds that is employed.
- the reactive hydrogen compound must contain at least one nitrogen atom and contain at least two reactive hydrogen atoms and not more than about six reactive hydrogen atoms. Usually, at least one of the reactive hydrogen atoms is attached to a nitrogen atom.
- An exception is in the case where the reactive hydrogen compound is derived from a reactive hydrogen compound in which one or more reactive hydrogen atoms were attached to a nitrogen atom. Triisopropanolamine, derived from ammonia and propylene oxide, is an example of the latter.
- the expression reactive hydrogen atom is well known to those skilled in the art of alkylene oxide chemistry.
- reactive hydrogen atom is used in this application to mean that the compound contains a hydrogen atom which is sufiiciently labile to open the epoxide ring of 1,2-propylene oxide and will react with methyl magnesium iodide to liberate methane in the classical Zerewitinofii reaction (see Niederl and Niederl, Micromethods of Quantitative Organic Analysis, page 263, John Wiley & Sons, New York City, 1946).
- the compounds used must be relatively lower molecular weight compounds which are not essentially hydrophobic in and of themselves.
- the condensation product of the reactive hydrogen compound with ethylene oxide alone would not yield a detergent having a carbon soil removal value of 100 by the procedure for determining the carbon soil removal value set forth in U.S. 2,674,619, column-6, lines 11-75 and column 7, lines 1-49.
- the nitrogen-containing reactive hydrogen compound used is one which is not sufliciently hydrophobic so that it could serve as the hydrophobic element of a nonionic surfactant and the latter must be provided by the defined oxypropylene chains in the compositions.
- the nitrogen-containing reactive hydrogen compound has up to about six, in-- elusive, carbon atoms.
- the nitrogen-containing reactive hydrogen compound is so defined, there still remains a reasonably broad group of such compounds which can be used.
- Ammonia, primary amines, alkylene polyamines, alkanolamines, heterocyclic nitrogen compounds are examples of the classes of nitrogen-containing reactive hydrogen compounds which can be used.
- primary amines having not over six carbon atoms such as methylamine, ethylamine, propylamine, butylamine, amylamine, hexylamine and aniline are satisfactory.
- Alkylene polyamines, especially aliphatic primary diamines, having not over six carbon atoms are the preferred reactive hydrogen compounds since the highest detergency values have been obtained when these were used. These include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, phenylenediamine and the like.
- Alkanolamines having not over six carbon atoms can be used such as monoethanolarnine, diethanolamine, triethanolamine, isopropanolamine, tri(2-propanol)a mine, Z-aminol-butanol, N-butyl-di(2-propanol)amine and the like.
- heterocyclic nitrogen compounds containing a hetero N atom can be employed, such as piperazine, Z-methylpiperazine, 2,5-dimethylpiperazine, imidazimidazole, pyrazolidine, pyrazolidone, hydantoin, dimethylhydantoin and the like. Hydroxyl amine and the hydroxylamine derivatives and aminophenol and aminophenol derivatives can also be used.
- compositions of this invention are surface active mixtures of conjugated polyoxypropylene-polyoxyethylene compounds based on the nitrogen-containing reactive 5 harness a p ,--.a
- compositions are prepared by condensing propylene oxide with the nitrogen-containing reactive hydrogen compound and subsequentlycondensing ethylene oxide with the propylene oxide-reactive hydrogen compound condensate.
- the collective molecular weight of the oxypropylene chains attached to the nitrogen-containing reactive hydrogen compound must be at least about 900 and can range up to about 25,000 or higher. Since the reactive hydrogen compound employed is one having not more than about six carbon atoms, it is not sufficiently hydrophobic in and of itself so that a detergent would be obtained by simply condensing ethylene oxide with the reactive hydrogen compound. Therefore, the hydrophobic element of the surface active compositions of the invention necessarily is found in the defined oxypropylene chains. This significant feature distinguishes the compositions from those known in the art prior to U.S. 2,674,619 wherein propylene oxide and ethylene oxide were treated as comparable materials and condensed with long carbon chain reactive hydrogen compounds in order to introduce water solubility.
- compositions of this invention rely on the hydrophobic oxypropylene chain just as do the compositions of U.S. 2,674,619, but distinguish over the general broad class of compositions disclosed in U.S. 2,674,619 by virtue of the specific class of reactive hydrogen compounds here employed.
- the advantages for the compositions of this invention set forth hereinabove are obtained when the compositions have oxypropylene chains having a molecular weight of at least about 900 and up to 25,000.
- the best detergent compositions are obtained, however, when the molecular weight of the oxypropylene chains is in the range of about 1000 to 15,000.
- the molecular weight stated and that reported in the examples to follow is for the molecular weight of the oxypropylene chains themselves and does not include the molecular weight of the particular reactive hydrogen compound employed.
- ethylene oxide can be included in the propylene oxide employed to prepare the hydrophobic reactive hydrogen compound-propylene oxide condensate without significant alteration of the detergent properties of the final composition.
- the ethylene oxide subsequently condensed with the hydrophobic propylene oxide-reactive hydrogen compound condensate can also contain small amounts, such as up to about 5 weight percent, of propylene oxide without significant alteration of the detergent properties of the compositions of the invention.
- compositions of this invention are mixtures of compounds which are defined by molecular weight of the polyoxypropylene chains and weight percent of oxyethylene groups.
- compositions of the invention contain chains of oxyethylene groups attached to the oxypropylene chains. formed by condensing ethylene oxide with the propylene oxide-reactive hydrogen compound condensate.
- the ;amount of ethylene oxide employed is such that the oxyethylene groups constituteabout 20 to 90weight percent of the final composition.
- Compositions having outstanding detergent properties are obtained when the weight percent of oxyethylene groups falls within this range.
- the very highest detergency values at 90 F.” have been obtained in compositions of the invention having from about 25 to 55 weight percent of oxyethylene groups.
- the condensation of propylene oxide with the nitrogencontaining reactive hydrogen compound and the subse- .quent condensation of ethylene oxide therewith are carried out in the known manner for condensing alkylene oxides with reactive hydrogen compounds.
- the process is normally carried out at elevated temperatures and pressures in the presence of alkaline catalysts, such as sodium hydroxide, potassium hydroxide, sodium alkoxide, qua- Zternary ammonium bases, and thelike.
- alkaline catalysts such as sodium hydroxide, potassium hydroxide, sodium alkoxide, qua- Zternary ammonium bases, and thelike.
- the condensation reactions can also be carried out in the presence of acidcatalysts.
- the manipulative steps will vary to some extent depending'upon the normal'physical state of the reactive hydrogen compound.
- these compounds are normally gases, e.g., ammonia and methylamine, and propylene oxide can be condensed with these compounds by carrying out the reaction under sufficient pressure to liquefy the nitrogen-containing reactive hydrogen compound, or the normally gaseous nitrogencontaining reactive hydrogen compound can be dissolved in an inert solvent.
- the reactive hydrogen compound is a solid at reaction temperatures, ,it is normally dissolved in an inert solvent.
- the adduct becomes a liquid and the inert solvent can be removed by distillation. Thereafter, it is preferred to simply add the propylene oxide to ,the liquid reaction mixture without the use of a solvent.
- the reaction of propylene oxide with the reactive hydrogen compound can be carried out by simply heating a mixture of the reactants under pressure at a sufiiciently high temperature, this method is not ordifnarily used as the temperatures and pressure required are excessive and control of the reaction is difiicult.
- the preferred method is to add the propylene oxide to' a stirred and heated mixture of the desired nitrogen-containing reactive hydrogen compound and an alkaline catalyst'in' a sealed reaction vessel. By adding the propylene oxide "to the reaction vessel at such a rate that it reacts as rapidly, as added, an excess of propylene oxide is avoided and control of the reaction is simplified.
- the condensation of ethylene oxide with the propylene oxide-reactive hydrogen compound condensate is carried out in an analogousmanner.
- nitrogen-containing reactive hydrogen compound with propylene oxide was carried out in two or three stages ,due to volume limitations imposedby the reactors employed. Due to the basic nature of the nitrogen-conitaining reactive hydrogen compounds, the first stage re- ,action. with propylene oxide was carried out in the presence of about 10 weight percent of water and sub- ;Seqirhtcondensations with propylene oxide and ethylene [oxide were carried out with added potassium or sodium "hydroxide as the catalyst.
- composition was thus prepared by condensin g propylene oxide with the indicated reactive hydrogen compound and subsequently condensing ethylenev oxide with the previously formed reactive hydrogen compoundpropylene oxide condensate.
- compositions are summarized below in Table I together with the results of detergency tests in terms of carbon soil removal values at F.
- the compositions are characterized by the molecular weight of the oxypropylene chains and weight percent or the oxyethylene chains.
- the molecular weight of the oxypropylene chains is the theoretical molecular weight based on the weight in grams of propylene oxide used per mol of reactiveihy- 'drogen compound and the weight percent of oxyethylene chains is based on the weight of the total composition.
- compositions of this invention are as detergents at 90 F.
- Higher carbon soil removal values at 90 F. canbe obtained when a nitrogen-containing reactive hydrogen .compound is employed in accordance with this invention than can be obtained when other reactive hydrogen compounds of the classes disclosed in U.S. 2,674,619 are used.
- propylene glycol is employed as the reactive hydrogen compound
- the highest carbon soil removal value at 90 F. that has been obtained is Ireported in U.S. 2,674,619, column 8, Table II, run No.
- compositions employinga nitrogen-containing reactive hydrogen com- pound which far exceed the best thatcan beobtained at this temperature when other reactive hydrogen compounds, such as propylene glycol, are used.
- other reactive hydrogen compounds such as propylene glycol
- Reactive hydrogen compounds 'of the general classes "disclosed in U.S. 2,674,619 otherthan those of this invention and other than propylene glycol haveshown similar carbon soil removal values at 90 F. Those which have been prepared and tested are set forth below in Table III.
- Carbon Soil 1 Molecular Weight Removal -Ex. Reactive Hydrogen Weight of Percent 01 Value, No. Compound Oxypropyl- Oxyethyl- 0.10% Conene Chains ene Chains 'centration at 90F.
- compositions of the invention set forth in'Table IV asExamriles 42 69, dilute solutions (03%) of-afformulate'd medium titer alkali metal fatty acid'soap wierepreparedin 180 p.p.m. hard water (as CaCO and coritainingafZ/l mol ratio of Ca to'Mg').
- the formulatedtsoap was a proprietary ,product comprising 60% medium titer .soap,.approximately 30% builders .(phosphates, silicates and sodaash) and 10% moisture.
- the soap ingredient was asodium soap, 38 C.
- compositions of'this invention have thesignificant property offdispersinglime soaps as Well as'outstanding. detergencyin relatively cold water,i'.e., at 90F.
- A.surface active mixture of conjugatedpolyoxyalkylene compounds consisting of oxypropylenegroups, oxye'thylene ggroups and'thenucleus of a nitrogen-cont-aining .-reactive hydrogen compound having notmore than 6 carbon atoms ,per molecule and being selected from :the group consisting of ammonia, primary Zalkyl .75 amines, alkylene polyamines, alkanolamines, piperaiirie CRT and aminophenol, the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the reactive hydrogen compound at the sites of the reactive hydrogen atoms, and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the average molecular weight of the oxypropylene chains being at least about 900 and to about 25,000, and the oxyethylene groups being present in an amount so as to constitute from 20 to 90 weight percent of the mixture
- a surface active mixture of conjugated polyoxyalkylene compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of ethylenediamine as a reactive hydrogen compound, the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the ethylenediamine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.
- a surface active mixture of conjugated polyoxyalkylene compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of triethylenetetramine as a reactive hydrogen compound, the structure of the compounds being such'that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the triethylenetetramine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.
- a surface active mixture of conjugated polyoxyalkylene-compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of n-butylamine as a reactive hydrogen compound the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the n-butylamine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Toxicology (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Detergent Compositions (AREA)
Description
United States Patent NITROGEN-CONTAINING POLYOXYALKYLENE 1 DETERGENT COMPOSITIONS Lester G. Lnndsted, Grosse lle, Mich., assignor to Wyantlotte Chemicals Corporation, Wyandotte, Mich., a corporation of Michigan I No Drawing. Filed Dec. 30, 1957, Ser. No. 705,730
Claims. c1. 260-584) ice known alkylarylsulfonates. Thus, it is desirable that compositions be found which have the highest detergency effectiveness and, particularly, it is desirable that compositions be found which are superior to other synthetic detergents with respect to detergency effectiveness.
In industrial laundering practice, two general temperature ranges are employed depending on the type of fabric and dyes involved. For white cottons and fast-colored cotton, the temperature of the detergent solution is usually'about 140-160 F. On the other hand, for woolens, delicate synthetic fabrics and fabrics containing dyes which tend to run at 140-160 F., the laundering process is usually carried out at about 90-95 F. It is under the tion Serial No. 316,984 was a continuation-in-part of my application Serial No. 153,946, filed April 4, 1950, now abandoned.
A basically new approach for the chemical structure of a polyoxyalkylene nonionic surface active agent is dis- 1 closed in U.S. 2,674,619. Prior to the disclosure of U.S. 2,674,619, polyoxyalkylene nonionic surface active agents were known which were composed of a long hydrocarbon chain or alkyl-substituted ring compound, e.g., nonylphenol, and a water-solubilizing polyoxyethylene chain.
The compositions disclosed in U.S. 2,674,619 depart from of ethylene oxide condensed with the polyoxypropylene chain. The compositions of US. 2,674,619 are initially prepared by condensing the required amount of propylene oxide with a lower molecular weight reactive hydrogen compound, followed by condensation with ethylene oxide so as to produce water solubility and introduce surface active properties. The disclosure of U.S. 2,674,619 teaches thatany of a broad group of reactive hydrogen compounds can be used which have at least two reactive hydrogen atoms and are relatively low molecular weight materials which arenot hydrophobic in and of themselves. It is indicated that, ordinarily, the reactive hydrogen compound constitutes such a relatively small proportion of the block polymer surfactant composition that the reactive hydrogen compound has little or no material effect on the properties of the final detergent composition.
Although such nonionic surface active agents have important "and unique chemical and physical properties,
many uses of these compounds are based on their effective- 1 ness as detergents and in many cases the polyoxyalkylene nonionic surface active agents are in direct competition with Other different synthetic detergents, such as the welllatter condition that the compositions of this invention,
as aspecifal class, are unusually superior to those generally disclosed'in U.S. 2,674,619.
An object of this invention is, therefore, to provide polyoxyalkylene nonionic surface active agents which have improved effectiveness as detergents.
which is, therefore, a specific improvement over the general' class of such detergents disclosed in U.S. 2,674,619.
I'have found that the foregoing objectives and others to be indicated herein are attained by polyoxyalkylene nonionic surface active agents of the general class disclosed in U.S. 2,674,619 but where the reactive hydrogen compound employed is one of a specific class of reactive hydrogen compounds, i.e., nitrogen-containing reactive hydrogen compounds. The polyoxyalkylene nonionic detergent compositions of this invention constitute a superior classof detergents in several respects when compared to the polyoxyalkylene nonionic detergent compositions of U.S. 2,674,619 as exemplified by those prepared with propylene glycol as the reactive hydrogen compound. Specifically, nitrogen-containing polyoxyalkylene nonionic detergent compositions of this invention can be prepared which produce higher detergency effectiveness than that of other propylene glycol-based compositions disclosed in U.S. 2,674,619 regardless of the proportions of propylene oxide and ethylene oxide employed in preparing the latter. The nitrogen-containing compositions of this invention have unusually superior detergency effectiveness in relatively cold water, i.e., at F. Thus, nitrogen-containing polyoxyalkylene compositions of this invention can be and have been prepared which are better detergents "at 90 F. than can be prepared using propylene'glycol or other reactive hydrogen compounds disclosed in U.S. 2,674,619 regardless of the proportions of propylene oxide and ethylene oxide used inthe latter. Furthermore, the compositions of this invention are at least as efiective at F., and usually more effective, detergents than are such compositions of U.S. 2,674,619.
Thus, the compositions of this invention constitute a specific class of compositions within the scope of the disclosure of U.S. 2,674,619 but possessing unusually superior detergency properties when compared to other compositions of the broad class disclosed in the patent.
The compositions of this invention possess a still further unique and characterizing feature when compared to the glycol-based surfactants disclosed in U.S. 2,674,619
of this invention and which greatly reduce undesirable lime soap formation by maintaining the lime soap curds in a dispersed condition.
It will be recognized from the foregoing that the significant and characterizing feature of the compositions of this invention is the class of reactive hydrogen compounds that is employed. The reactive hydrogen compound must contain at least one nitrogen atom and contain at least two reactive hydrogen atoms and not more than about six reactive hydrogen atoms. Usually, at least one of the reactive hydrogen atoms is attached to a nitrogen atom. An exception is in the case where the reactive hydrogen compound is derived from a reactive hydrogen compound in which one or more reactive hydrogen atoms were attached to a nitrogen atom. Triisopropanolamine, derived from ammonia and propylene oxide, is an example of the latter. The expression reactive hydrogen atom is well known to those skilled in the art of alkylene oxide chemistry. It may be stated, however, that the expression reactive hydrogen atom. is used in this application to mean that the compound contains a hydrogen atom which is sufiiciently labile to open the epoxide ring of 1,2-propylene oxide and will react with methyl magnesium iodide to liberate methane in the classical Zerewitinofii reaction (see Niederl and Niederl, Micromethods of Quantitative Organic Analysis, page 263, John Wiley & Sons, New York City, 1946).
An equally important characteristic of the class of nitrogen-cntaining reactive hydrogen compounds is that the compounds used must be relatively lower molecular weight compounds which are not essentially hydrophobic in and of themselves. By this is meant that the condensation product of the reactive hydrogen compound with ethylene oxide alone would not yield a detergent having a carbon soil removal value of 100 by the procedure for determining the carbon soil removal value set forth in U.S. 2,674,619, column-6, lines 11-75 and column 7, lines 1-49. Thus, the nitrogen-containing reactive hydrogen compound used is one which is not sufliciently hydrophobic so that it could serve as the hydrophobic element of a nonionic surfactant and the latter must be provided by the defined oxypropylene chains in the compositions. Generally, the nitrogen-containing reactive hydrogen compound has up to about six, in-- elusive, carbon atoms. When the nitrogen-containing reactive hydrogen compound is so defined, there still remains a reasonably broad group of such compounds which can be used. Ammonia, primary amines, alkylene polyamines, alkanolamines, heterocyclic nitrogen compounds are examples of the classes of nitrogen-containing reactive hydrogen compounds which can be used.
Thus, primary amines having not over six carbon atoms such as methylamine, ethylamine, propylamine, butylamine, amylamine, hexylamine and aniline are satisfactory. Alkylene polyamines, especially aliphatic primary diamines, having not over six carbon atoms are the preferred reactive hydrogen compounds since the highest detergency values have been obtained when these were used. These include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, phenylenediamine and the like. Alkanolamines having not over six carbon atoms can be used such as monoethanolarnine, diethanolamine, triethanolamine, isopropanolamine, tri(2-propanol)a mine, Z-aminol-butanol, N-butyl-di(2-propanol)amine and the like. Furthermore, heterocyclic nitrogen compounds containing a hetero N atom can be employed, such as piperazine, Z-methylpiperazine, 2,5-dimethylpiperazine, imidazimidazole, pyrazolidine, pyrazolidone, hydantoin, dimethylhydantoin and the like. Hydroxyl amine and the hydroxylamine derivatives and aminophenol and aminophenol derivatives can also be used.
The compositions of this invention are surface active mixtures of conjugated polyoxypropylene-polyoxyethylene compounds based on the nitrogen-containing reactive 5 harness a p ,--.a
hydrogen compound wherein chains of oxypropylene groups having a defined molecular weight are attached to the nucleus of the reactive hydrogen compound at the sites of the reactive hydrogen atoms and wherein chains of oxyethylene groups are attached to the ends of the oxypropylene chains. The compositions are prepared by condensing propylene oxide with the nitrogen-containing reactive hydrogen compound and subsequentlycondensing ethylene oxide with the propylene oxide-reactive hydrogen compound condensate.
The collective molecular weight of the oxypropylene chains attached to the nitrogen-containing reactive hydrogen compound must be at least about 900 and can range up to about 25,000 or higher. Since the reactive hydrogen compound employed is one having not more than about six carbon atoms, it is not sufficiently hydrophobic in and of itself so that a detergent would be obtained by simply condensing ethylene oxide with the reactive hydrogen compound. Therefore, the hydrophobic element of the surface active compositions of the invention necessarily is found in the defined oxypropylene chains. This significant feature distinguishes the compositions from those known in the art prior to U.S. 2,674,619 wherein propylene oxide and ethylene oxide were treated as comparable materials and condensed with long carbon chain reactive hydrogen compounds in order to introduce water solubility. The compositions of this invention rely on the hydrophobic oxypropylene chain just as do the compositions of U.S. 2,674,619, but distinguish over the general broad class of compositions disclosed in U.S. 2,674,619 by virtue of the specific class of reactive hydrogen compounds here employed. The advantages for the compositions of this invention set forth hereinabove are obtained when the compositions have oxypropylene chains having a molecular weight of at least about 900 and up to 25,000. The best detergent compositions are obtained, however, when the molecular weight of the oxypropylene chains is in the range of about 1000 to 15,000. The molecular weight stated and that reported in the examples to follow is for the molecular weight of the oxypropylene chains themselves and does not include the molecular weight of the particular reactive hydrogen compound employed.
It is to be noted that it is not necessary to use pure propylene oxide in producing the oxypropylene chains of the detergent compositions, although this is preferred. Small amounts, for example up to about 5 weight percent, of ethylene oxide can be included in the propylene oxide employed to prepare the hydrophobic reactive hydrogen compound-propylene oxide condensate without significant alteration of the detergent properties of the final composition. In this connection, the ethylene oxide subsequently condensed with the hydrophobic propylene oxide-reactive hydrogen compound condensate can also contain small amounts, such as up to about 5 weight percent, of propylene oxide without significant alteration of the detergent properties of the compositions of the invention.
It is further to be noted that when molecular weight is stated in this specification and claims, unless otherwise noted, there is meant the average theoretical molecular weight which equals the total of the grams of the propylene oxide employed per mol of reactive hydrogen compound. It is well recognized in the field of alkylene oxide chemistry that the polyoxyalkylene compositions one obtains by condensing an alkylene oxide with a reactive hydrogen compound are actually mixtures of compounds rather than a single molecular compound. The mixture contains closely related homologues wherein the statistical average number of oxyalkylene groups equals the number of mols of the alkylene oxide employed and the individual members in the mixture contain varying numbers of oxyalkylene groups. Thus, the compositions of this invention are mixtures of compounds which are defined by molecular weight of the polyoxypropylene chains and weight percent of oxyethylene groups.
As has been noted above, the compositions of the invention contain chains of oxyethylene groups attached to the oxypropylene chains. formed by condensing ethylene oxide with the propylene oxide-reactive hydrogen compound condensate. The ;amount of ethylene oxide employed is such that the oxyethylene groups constituteabout 20 to 90weight percent of the final composition. Compositions having outstanding detergent properties are obtained when the weight percent of oxyethylene groups falls within this range. The very highest detergency values at 90 F." have been obtained in compositions of the invention having from about 25 to 55 weight percent of oxyethylene groups. The condensation of propylene oxide with the nitrogencontaining reactive hydrogen compound and the subse- .quent condensation of ethylene oxide therewith are carried out in the known manner for condensing alkylene oxides with reactive hydrogen compounds. The process is normally carried out at elevated temperatures and pressures in the presence of alkaline catalysts, such as sodium hydroxide, potassium hydroxide, sodium alkoxide, qua- Zternary ammonium bases, and thelike. The condensation reactions can also be carried out in the presence of acidcatalysts. The manipulative steps will vary to some extent depending'upon the normal'physical state of the reactive hydrogen compound. Certain of these compounds are normally gases, e.g., ammonia and methylamine, and propylene oxide can be condensed with these compounds by carrying out the reaction under sufficient pressure to liquefy the nitrogen-containing reactive hydrogen compound, or the normally gaseous nitrogencontaining reactive hydrogen compound can be dissolved in an inert solvent. Similarly, if the reactive hydrogen compound is a solid at reaction temperatures, ,it is normally dissolved in an inert solvent. After a few mols of propylene oxide havebeen condensed with the reactive Yhydrogen compound, the adduct becomes a liquid and the inert solvent can be removed by distillation. Thereafter, it is preferred to simply add the propylene oxide to ,the liquid reaction mixture without the use of a solvent. Although the reaction of propylene oxide with the reactive hydrogen compound can be carried out by simply heating a mixture of the reactants under pressure at a sufiiciently high temperature, this method is not ordifnarily used as the temperatures and pressure required are excessive and control of the reaction is difiicult. The preferred method is to add the propylene oxide to' a stirred and heated mixture of the desired nitrogen-containing reactive hydrogen compound and an alkaline catalyst'in' a sealed reaction vessel. By adding the propylene oxide "to the reaction vessel at such a rate that it reacts as rapidly, as added, an excess of propylene oxide is avoided and control of the reaction is simplified. The condensation of ethylene oxide with the propylene oxide-reactive hydrogen compound condensateis carried out in an analogousmanner.
" l EXAMPLES A series of compositions according to this invention was prepared using exemplary nitrogen-containing reacgive". hydrogen compounds and varying amounts of propylene oxide and ethylene oxide. The procedure by .which these compositions were made is that generallyset forthin U.S. 2,674,619. The initial reaction of the The oxyethylene chains are I.
nitrogen-containing reactive hydrogen compound with propylene oxide was carried out in two or three stages ,due to volume limitations imposedby the reactors employed. Due to the basic nature of the nitrogen-conitaining reactive hydrogen compounds, the first stage re- ,action. with propylene oxide was carried out in the presence of about 10 weight percent of water and sub- ;Seqirhtcondensations with propylene oxide and ethylene [oxide were carried out with added potassium or sodium "hydroxide as the catalyst. I
1. Ethylenediamine...;
Each composition was thus prepared by condensin g propylene oxide with the indicated reactive hydrogen compound and subsequently condensing ethylenev oxide with the previously formed reactive hydrogen compoundpropylene oxide condensate. a 1
These compositions are summarized below in Table I together with the results of detergency tests in terms of carbon soil removal values at F. The compositions are characterized by the molecular weight of the oxypropylene chains and weight percent or the oxyethylene chains. The molecular weight of the oxypropylene chains is the theoretical molecular weight based on the weight in grams of propylene oxide used per mol of reactiveihy- 'drogen compound and the weight percent of oxyethylene chains is based on the weight of the total composition.
The carbon soil removal values were obtained by the procedure set forth in U.S. 2,674,619, previouslycited, except that the test solutions were 0.10% oncentration instead of 0.25% concentration as set' forth in U.S. 2,674,619.
I Table I COMPOSITIONS OF INVENTION a Carbon Soil Weight Removal. Weight of Percent of Value, Oxypropyl- Oxyethyl- 0.1% Conene Chains ene Chains centration at 90. F.
. Molecular Ex. Reactive Hydrogen No. Compound The foregoing results show how very effective the compositions of this invention are as detergents at 90 F. Higher carbon soil removal values at 90 F. canbe obtained when a nitrogen-containing reactive hydrogen .compound is employed in accordance with this invention than can be obtained when other reactive hydrogen compounds of the classes disclosed in U.S. 2,674,619 are used. For example, when propylene glycol is employed as the reactive hydrogen compound, the highest carbon soil removal value at 90 F. that has been obtained is Ireported in U.S. 2,674,619, column 8, Table II, run No.
4, where a propylene g1ycol-polyoxypropylene-polyoxyjethylene condensate having a molecular weight, based on the hydroxyl number test, in the oxypropylene chains of 2320 and having 44 weight percent of oxyethylene chains 7 hainsins'uch compositions. 'ComparisoneXamples which bear-this outare set 'forth below. It should be .noted tha'tExample No. 37 having o'xypr'opylene chains with a "molecular weight ersrso has the highest oxypropylen'e chain molecular weight which has been made and tested.
Table II COMPOSITIONS F us. 2,674,619
Carbon Soil Molecular Weight Ex 1 'ReaetlveHydrogen Weightof Percent of '.Particular attention is called to Examples 1, 2, 5, 6, 9,
l0, 13, 14,18 and '19 in Table I wherein compositions employinga nitrogen-containing reactive hydrogen com- :pound which far exceed the best thatcan beobtained at this temperature when other reactive hydrogen compounds, such as propylene glycol, are used. Furthermore, it will be observed that thehighest carbon soil .removal values at F. were obtained when theweight percent ofoxyethylenechains was "in therange of'2'5 55. Compositions of thisinvention-having this proportion of oxyethylene chains are speciallypreferred, therefore.
Reactive hydrogen compounds 'of the general classes "disclosed in U.S. 2,674,619 otherthan those of this invention and other than propylene glycol haveshown similar carbon soil removal values at 90 F. Those which have been prepared and tested are set forth below in Table III.
. Table III fooMP'osrmoNs or-Us. 2,674,619
Carbon Soil 1 Molecular Weight Removal -Ex. Reactive Hydrogen Weight of Percent 01 Value, No. Compound Oxypropyl- Oxyethyl- 0.10% Conene Chains ene Chains 'centration at 90F.
Glycerl.ue.-.-.. 4, 000 46. 0 172 Trimeth ylolpropaneu -'5, 000 66.1 Pentserythritoln 9, 500' 33. 2, 33. 0 144 1,5-Pentanedl0l 6, 000
Table IV A Molecular Weight Ex.'No. Reactive'Hydrogen Weight Percent Compound Oxypropyl- 0xyethylone Chains eno Chains .42 Ethylenediamiue 1,860 '43. 1,860 44 1, 860i 3, 965 64 Triisopropanolaminc 1, 716 65- .1, 716. 66 do 1, 716 75. 67 n-Butylamine 2. 969 25. B8 .2. 069 50. 69- do 2, 969 75.
, 1 Based on hydroxyl number procedure, OGG ct 211, Industrial and Engineering Chemistry, Analytical Edition, vol. 17,1). 395 (1945).
In testing the compositions of the invention set forth in'Table IV asExamriles 42 69, dilute solutions (03%) of-afformulate'd medium titer alkali metal fatty acid'soap wierepreparedin 180 p.p.m. hard water (as CaCO and coritainingafZ/l mol ratio of Ca to'Mg'). The formulatedtsoap was a proprietary ,product comprising 60% medium titer .soap,.approximately 30% builders .(phosphates, silicates and sodaash) and 10% moisture. The soap ingredient was asodium soap, 38 C. titer, having anacid number of 227 and being derived from a mixture'of approximately-10 parts tallow and 1 part coconut oil. A smalLproportion (0.02%) of the lime soap 'clispersant Wasadded-tO the above prepared soap solutions. .T his quantity of lime soap dispersant constituted 10 Weight percent of' the actual soap present in the proprietary formulation. One .part of each of the soap .solutions containinga lime soap dispersant .was then diluted with nine parts of 180 ppm. hard water. The resulting solutions ,were maintained at 120 .F. for twenty minutes and werestirred with-a mechanical stirrer at 80..r.p.m. After this period of time, the. solutions wereexamined visually fortthe ipresencetof lime soapcurds.
.All of. the solutions containing the lime soapdispersant -were r essentially free of insoluble soap curds, -or at .most contained only a slight trace .of.flocculated material. Moreover,xthe:solutions :were opalescent, thus indicating thatzthe .lime .soap was highly dispersed throughout the solutionrasza colloid. .In contrast to these results, acontrol solution prepared as stated above but containing .no'lime soap dispersant contained copious quantities of lime soap curds.
'Similarlresults were obtained when theiproportion of .lime soap dispersant was varied from 4 to 25 Weight percent of..the soap present in the ,properietary formulation.
Thus, the compositions of'this invention have thesignificant property offdispersinglime soaps as Well as'outstanding. detergencyin relatively cold water,i'.e., at 90F.
I claim:
.1. A.surface active mixture of conjugatedpolyoxyalkylene compounds consisting of oxypropylenegroups, oxye'thylene ggroups and'thenucleus of a nitrogen-cont-aining .-reactive hydrogen compound having notmore than 6 carbon atoms ,per molecule and being selected from :the group consisting of ammonia, primary Zalkyl .75 amines, alkylene polyamines, alkanolamines, piperaiirie CRT and aminophenol, the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the reactive hydrogen compound at the sites of the reactive hydrogen atoms, and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the average molecular weight of the oxypropylene chains being at least about 900 and to about 25,000, and the oxyethylene groups being present in an amount so as to constitute from 20 to 90 weight percent of the mixture of compounds.
2. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein said reactive hydrogen compound is ammonia.
3. A surface active mixture of conjugated polyoxyalkylene compounds ac-cording to claim 1 wherein said reactive hydrogen compound is a primary alkyl amine.
4. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein said reactive hydrogen compound is an alkylene polyamine.
' 5. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein said reactive hydrogen compound is an alkanolamine.
6. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein the molecular weight of the oxypropylene chains is in the range of 1000 to 10,000.
7. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein the weight percent of oxyethylene groups is in the range of 25-55.
8. A surface active mixture of conjugated polyoxyalkylene compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of ethylenediamine as a reactive hydrogen compound, the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the ethylenediamine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.
9. A surface active mixture of conjugated polyoxyalkylene compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of triethylenetetramine as a reactive hydrogen compound, the structure of the compounds being such'that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the triethylenetetramine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.
10. A surface active mixture of conjugated polyoxyalkylene-compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of n-butylamine as a reactive hydrogen compound, the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the n-butylamine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.
References Cited in the file of this patent UNITED STATES PATENTS 2,174,762 Schuette et al. Oct. 3, 1939 2,220,147 Dreyfus Nov. 5, 1940 2,552,530 De Groote May 15, 1951 2,552,534 De Groote May 15, 1951 2,589,199 Monson Mar. 11, 1952 2,674,619 Lundstead Apr. 6, 1954 2,677,700 Jackson May 4, 1954 2,742,455 Sundberg Apr. 17, 1956 2,786,080 Patton Mar. 19, 1957 2,792,367 De Groote et al. Mar. 14, 1957 2,792,369 Dickson May 14, 1957 FOREIGN PATENTS 297,484 Great Britain Sept. 24, 1924
Claims (2)
1. A SURFACE ACTIVE MIXTURE OF CONJUGATED POLYOXYALKYLENE COMPOUNDS CONSISTING OF OXYPROPYLENE GROUPS, OXYETHYLENE GROUPS AND THE NUCLEUS OF A NITROGEN-CONTAINING REACTIVE HYDROGEN COMPOUND HAVING NOT NORE THAN 6 CARBON ATOMS PER MOLECULE AND BEING SELECTED FROM THE GROUP CONSISTING OF AMMONIA, PRIMARY ALKYL AMINES, ALKYLENE POLYAMINES, ALKANOLAMINES, PIPERAZINE AND CARBON-SUBSTITUTED ALKYLPIPERAZINES, HYDROXYLAMINE AND AMINOPHENOL, THE STRUCTURE OF THE COMPOUNDS BEING SUCH THAT ALL OF THE OXYPROPYLENE GROUPS ARE PRESENT IN OXYPROPYLENE CHAINS THAT ARE ATTACHED TO THE REACTIVE HYDROGEN COMPOUND AT THE SITES OF THE REACTIVE HYDROGEN ATOMS, AND ALL OF THE OXYETHYLENE GROUPS ARE PRESENT IN OXYETHYLENE CHAINS THAT ARE ATTACHED TO THE ENDS OF THE OXYPROPYLENE CHAINS, THE AVERAGE MOLECULAR WEIGHT OF THE OXYPROPYLENE CHAINS BEING AT LEAST ABOUT 900 AND TO ABOUT 25,000, AND THE OXYETHYLENE GROUPS BEING PRESENT IN AN AMOUNT SO AS TO CONSTITUTE FROM 20 TO 90 WEIGHT PERCENT OF THE MIXTURE OF COMPOUNDS.
4. A SURFACE ACTIVE MIXTURE OF CONJUGATED POLYOXYALKYLENE COMPOUNDS ACCORDING TO CLAIM 1 WHEREIN SAID REACTIVE HYDROGEN COMPOUND IS AN ALKYLENE POLYAMINE.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US705730A US2979528A (en) | 1953-10-19 | 1957-12-30 | Nitrogen-containing polyoxyalkylene detergent compositions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US386945A US2674619A (en) | 1953-10-19 | 1953-10-19 | Polyoxyalkylene compounds |
US705730A US2979528A (en) | 1953-10-19 | 1957-12-30 | Nitrogen-containing polyoxyalkylene detergent compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US2979528A true US2979528A (en) | 1961-04-11 |
Family
ID=27011676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US705730A Expired - Lifetime US2979528A (en) | 1953-10-19 | 1957-12-30 | Nitrogen-containing polyoxyalkylene detergent compositions |
Country Status (1)
Country | Link |
---|---|
US (1) | US2979528A (en) |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123559A (en) * | 1964-03-03 | Hccjhio | ||
US3239381A (en) * | 1962-05-21 | 1966-03-08 | Monsanto Co | Battery separator impregnated with a phenol-aldehyde resin composition |
US3287145A (en) * | 1965-08-10 | 1966-11-22 | Union Carbide Corp | Chemical admixture for hydraulic cementitious mixtures |
US3337463A (en) * | 1963-10-18 | 1967-08-22 | Wyandotte Chemicals Corp | Foaming detergent compositions |
DE2440531A1 (en) * | 1973-08-24 | 1975-03-06 | Cooper & Co Ltd Edwin | LUBRICANT MIXTURE, ITS USE AS HYDRAULIC LIQUID AND ADDITIVE CONCENTRATE IN ITS PRODUCTION |
US3905932A (en) * | 1973-03-29 | 1975-09-16 | Toyo Soda Mfg Co Ltd | Process for preparing polychloroprene latex |
US3923707A (en) * | 1973-06-20 | 1975-12-02 | Huels Chemische Werke Ag | Process for the production of pourable, pulverulent rubbers |
US3929707A (en) * | 1973-06-28 | 1975-12-30 | Huels Chemische Werke Ag | Process for the production of pourable, pulverulent rubber-filler mixtures |
US3932659A (en) * | 1970-07-24 | 1976-01-13 | Beecham Group Limited | Biologically active substance |
US3945978A (en) * | 1973-05-12 | 1976-03-23 | Chemische Werke Huels Aktiengesellschaft | Process for the production of pourable, pulverulent filler mixtures containing plasticizer oils |
US4043972A (en) * | 1975-10-06 | 1977-08-23 | Phillips Fibers Corporation | Stabilizing polyamide antistatic compositions |
US4049557A (en) * | 1972-07-17 | 1977-09-20 | Colgate-Palmolive Company | Fabric conditioning compositions |
US4075130A (en) * | 1976-08-30 | 1978-02-21 | Texaco Development Corporation | Polyoxypropylene polyamine derivatives as defoamers |
US4218218A (en) * | 1977-10-08 | 1980-08-19 | Basf Aktiengesellschaft | Stable finely dispersed aqueous formulations of disperse dyes and optical brighteners, and their use |
US4244832A (en) * | 1979-07-27 | 1981-01-13 | Basf Wyandotte Corporation | Phosphate-free machine dishwashing detergents useful at low temperatures |
US4294581A (en) * | 1978-11-30 | 1981-10-13 | Basf Aktiengesellschaft | Uniformly dyed water-swellable cellulosic fibers |
US4305835A (en) * | 1979-12-14 | 1981-12-15 | Ethyl Corporation | Lubricating composition containing emulsion-sludge inhibitors |
US4305834A (en) * | 1980-01-02 | 1981-12-15 | Ethyl Corporation | Lubricating composition containing emulsion-sludge inhibitors |
US4351753A (en) * | 1980-10-24 | 1982-09-28 | Basf Wyandotte Corporation | Liquified normally solid polyoxyalkylene block copolymers |
EP0078483A2 (en) * | 1981-11-02 | 1983-05-11 | Basf Wyandotte Corporation | Coal-oil slurries containing a surfactant |
US4445908A (en) * | 1980-12-01 | 1984-05-01 | The United States Of America As Represented By The United States Department Of Energy | Extracting alcohols from aqueous solutions |
US4456543A (en) * | 1982-06-17 | 1984-06-26 | The Buckeye Cellulose Corporation | Bisbiguanide based antibacterial cleansing products |
US4464193A (en) * | 1980-02-19 | 1984-08-07 | Basf Wyandotte Corporation | Anionic biocide emulsions in aqueous solutions of strongly ionizable salts |
FR2541908A1 (en) * | 1983-03-04 | 1984-09-07 | Ugine Kuhlmann | ANTI-FOAMING COMPOSITION, METHOD OF MANUFACTURE AND APPLICATION THEREOF |
US4474753A (en) * | 1983-05-16 | 1984-10-02 | Merck & Co., Inc. | Topical drug delivery system utilizing thermosetting gels |
US4474752A (en) * | 1983-05-16 | 1984-10-02 | Merck & Co., Inc. | Drug delivery system utilizing thermosetting gels |
US4474751A (en) * | 1983-05-16 | 1984-10-02 | Merck & Co., Inc. | Ophthalmic drug delivery system utilizing thermosetting gels |
US4478822A (en) * | 1983-05-16 | 1984-10-23 | Merck & Co., Inc. | Drug delivery system utilizing thermosetting gels |
US4478602A (en) * | 1982-02-12 | 1984-10-23 | Diamond Shamrock Chemicals Company | Carbonaceous oil slurries stabilized by binary surfactant mixtures |
US4534959A (en) * | 1983-08-22 | 1985-08-13 | Basf Wyandotte Corporation | Aerosol gel |
US4548744A (en) * | 1983-07-22 | 1985-10-22 | Connor Daniel S | Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions |
US4551506A (en) * | 1982-12-23 | 1985-11-05 | The Procter & Gamble Company | Cationic polymers having clay soil removal/anti-redeposition properties useful in detergent compositions |
US4659802A (en) * | 1982-12-23 | 1987-04-21 | The Procter & Gamble Company | Cationic compounds having clay soil removal/anti-redeposition properties useful in detergent compositions |
US4661275A (en) * | 1985-07-29 | 1987-04-28 | The Lubrizol Corporation | Water-based functional fluid thickening combinations of surfactants and hydrocarbyl-substituted succinic acid and/or anhydride/amine terminated poly(oxyalkylene) reaction products |
US4661288A (en) * | 1982-12-23 | 1987-04-28 | The Procter & Gamble Company | Zwitterionic compounds having clay soil removal/anti/redeposition properties useful in detergent compositions |
US4664834A (en) * | 1985-07-29 | 1987-05-12 | The Lubrizol Corporation | Hydrocarbyl-substituted succinic acid and/or anhydride/amine terminated poly(oxyalkylene) reaction products, and aqueous systems containing same |
US4664848A (en) * | 1982-12-23 | 1987-05-12 | The Procter & Gamble Company | Detergent compositions containing cationic compounds having clay soil removal/anti-redeposition properties |
US4676921A (en) * | 1982-12-23 | 1987-06-30 | The Procter & Gamble Company | Detergent compositions containing ethoxylated amine polymers having clay soil removal/anti-redeposition properties |
US4726909A (en) * | 1985-12-23 | 1988-02-23 | Basf Corporation | Low odor surfactant |
WO1988001272A2 (en) | 1986-08-14 | 1988-02-25 | The Lubrizol Corporation | Borated amine salts of monothiophosphoric acids |
WO1988001873A1 (en) * | 1986-09-22 | 1988-03-24 | Emory University | Vaccine and method of preparation |
WO1989004653A1 (en) * | 1987-11-20 | 1989-06-01 | S.C. Johnson & Son, Inc. | Composition and method for hot curling hair treatment |
US4859358A (en) * | 1988-06-09 | 1989-08-22 | The Procter & Gamble Company | Liquid automatic dishwashing compositions containing metal salts of hydroxy fatty acids providing silver protection |
AU596986B2 (en) * | 1985-06-18 | 1990-05-24 | Emory University | Biologically-active copolymers |
US4988452A (en) * | 1988-06-09 | 1991-01-29 | The Procter & Gamble Company | Liquid automatic dishwashing detergent compositions containing bleach-stable nonionic surfactant |
US4995944A (en) * | 1988-09-16 | 1991-02-26 | Dearborn Chemical Company Ltd. | Controlling deposits on paper machine felts using cationic polymer and cationic surfactant mixture |
US5034508A (en) * | 1988-08-31 | 1991-07-23 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Dispersant for nonaqueous systems |
US5082498A (en) * | 1989-06-21 | 1992-01-21 | Basf Aktiengesellschaft | Highly concentrated solid pigment formulations |
US5116897A (en) * | 1990-06-27 | 1992-05-26 | Basf Corporation | Antistatic composition |
US5126068A (en) * | 1989-05-05 | 1992-06-30 | Burke John J | Hard surface cleaning composition containing polyacrylate copolymers as performance boosters |
US5130043A (en) * | 1988-06-09 | 1992-07-14 | The Procter & Gamble Company | Liquid automatic dishwashing compositions having enhanced stability |
US5298260A (en) * | 1990-05-01 | 1994-03-29 | Mediventures, Inc. | Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality |
EP0594479A1 (en) * | 1992-10-23 | 1994-04-27 | Institut Francais Du Petrole | Process to reduce the tendency to agglomerate of hydrates in production effluents |
US5346703A (en) * | 1990-08-07 | 1994-09-13 | Mediventures, Inc. | Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels |
US5366735A (en) * | 1988-11-16 | 1994-11-22 | Mediventures, Inc. | Method and composition for post-surgical adhesion reduction |
US5466445A (en) * | 1985-06-18 | 1995-11-14 | Emory University | Methods for reducing salmonella in chickens |
US5494660A (en) * | 1985-06-18 | 1996-02-27 | Emory University | Method for inhibiting microbial binding to surfaces |
US5498355A (en) * | 1994-09-20 | 1996-03-12 | Ethyl Corporation | Lubricant compositions of enhanced performance capabilities |
US5505878A (en) * | 1993-08-16 | 1996-04-09 | Exxon Chemical Patents Inc. | Method of demulsifying water-in-oil emulsions |
EP0713907A2 (en) | 1994-09-26 | 1996-05-29 | Ethyl Petroleum Additives Limited | Zinc additives of enhanced performance capabilities |
US5554372A (en) * | 1986-09-22 | 1996-09-10 | Emory University | Methods and vaccines comprising surface-active copolymers |
US5612305A (en) * | 1995-01-12 | 1997-03-18 | Huntsman Petrochemical Corporation | Mixed surfactant systems for low foam applications |
US5622649A (en) * | 1991-06-27 | 1997-04-22 | Emory University | Multiple emulsions and methods of preparation |
US5648071A (en) * | 1986-05-15 | 1997-07-15 | Emory University | Method of treating tumors |
US5674911A (en) * | 1987-02-20 | 1997-10-07 | Cytrx Corporation | Antiinfective polyoxypropylene/polyoxyethylene copolymers and methods of use |
US5696298A (en) * | 1991-03-19 | 1997-12-09 | Cytrx Corporation | Polyoxypropylene/polyoxyethylene copolymers with improved biological activity |
US5800711A (en) * | 1996-10-18 | 1998-09-01 | Mdv Technologies, Inc. | Process for the fractionation of polyoxyalkylene block copolymers |
US5811088A (en) * | 1987-02-20 | 1998-09-22 | Emory University | Antiinfective compounds and methods of use |
US5824322A (en) * | 1995-08-21 | 1998-10-20 | Cytrx Corporation | Compositions and methods for growth promotion |
US5843470A (en) * | 1995-10-06 | 1998-12-01 | Mdv Technologies, Inc. | Method and composition for inhibiting post-surgical adhesions |
US5958859A (en) * | 1997-07-29 | 1999-09-28 | Basf Corporation | Aqueous based solvent free cleaner compositions containing a blend of polyoxyalkylene block copolymers |
US5990241A (en) * | 1991-03-19 | 1999-11-23 | Cytrx, Corporation | Polyoxypropylene/polyoxyethylene copolymers with improved biological activity |
US6060531A (en) * | 1995-10-16 | 2000-05-09 | Basf Aktiengesellschaft | Production of low-fogging polyurethane foams, and specific polyoxyalkylene-polyols which can be used for this purpose |
US6123740A (en) * | 1996-12-02 | 2000-09-26 | Basf Aktiengesellschaft | Dye preparations containing methine dyes |
US6171445B1 (en) | 1999-07-30 | 2001-01-09 | Hercules Incorporated | Process for controlling deposit of sticky material |
US6280745B1 (en) | 1997-12-23 | 2001-08-28 | Alliance Pharmaceutical Corp. | Methods and compositions for the delivery of pharmaceutical agents and/or the prevention of adhesions |
US6294592B1 (en) | 1997-06-30 | 2001-09-25 | Basf Aktiengesellschaft | Pigment preparations with radiation curable binder suitable for ink jet printing method |
US6332943B1 (en) | 1997-06-30 | 2001-12-25 | Basf Aktiengesellschaft | Method of ink-jet printing with pigment preparations having a dispersant |
US6436425B1 (en) | 1988-11-16 | 2002-08-20 | Mdv Technologies, Inc. | Method and non-gelling composition for inhibiting post-surgical adhesions |
US6537331B1 (en) | 1997-12-05 | 2003-03-25 | Basf Aktiengesellschaft | Dye preparations containing azo dyes |
US6607565B1 (en) | 1997-11-26 | 2003-08-19 | Basf Aktiengesellschaft | Colorant preparations |
USRE38558E1 (en) | 1991-03-19 | 2004-07-20 | Cytrx Corporation | Polyoxypropylene/polyoxyethylene copolymers with improved biological activity |
US6790816B2 (en) | 1999-09-24 | 2004-09-14 | Bausch & Lomb Incorporated | High osmolyte cleaning and disinfection method and solution for contact lenses |
US20040214735A1 (en) * | 2000-10-06 | 2004-10-28 | Groemminger Suzanne F. | Cleaner for contact lens |
US20040248833A1 (en) * | 1991-03-19 | 2004-12-09 | Emanuele R Martin | Therapeutic delivery compositions and methods of use thereof |
US20050131095A1 (en) * | 2002-08-02 | 2005-06-16 | Jianming Yu | Novel polyols |
US6933286B2 (en) | 1991-03-19 | 2005-08-23 | R. Martin Emanuele | Therapeutic delivery compositions and methods of use thereof |
US7202225B1 (en) | 1993-10-15 | 2007-04-10 | Emanuele R Martin | Therapeutic delivery compositions and methods of use thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB297484A (en) * | 1927-05-23 | 1928-09-24 | Ig Farbenindustrie Ag | Improvements in the manufacture and production of amines of the hydroaromatic-aliphatic series |
US2174762A (en) * | 1935-04-13 | 1939-10-03 | Ig Farbenindustrie Ag | Condensation products derived from amines and method of producing them |
US2220147A (en) * | 1936-09-19 | 1940-11-05 | Dreyfus Henry | Manufacture of alkylolamines |
US2552534A (en) * | 1950-03-04 | 1951-05-15 | Petrolite Corp | Processes for breaking petroleum emulsions |
US2552530A (en) * | 1949-07-28 | 1951-05-15 | Petrolite Corp | Process for breaking petroleum emulsions |
US2589199A (en) * | 1950-08-26 | 1952-03-11 | Petrolite Corp | Process for breaking emulsions of the oil-in-water class |
US2674619A (en) * | 1953-10-19 | 1954-04-06 | Wyandotte Chemicals Corp | Polyoxyalkylene compounds |
US2677700A (en) * | 1951-05-31 | 1954-05-04 | Wyandotte Chemicals Corp | Polyoxyalkylene surface active agents |
US2742455A (en) * | 1951-09-24 | 1956-04-17 | Gen Aniline & Film Corp | Production of n, n-polyoxyethylated rosin amines |
US2786080A (en) * | 1953-11-25 | 1957-03-19 | Wyandotte Chemicals Corp | Stabilized polyoxyalkylene compositions |
US2792367A (en) * | 1953-10-05 | 1957-05-14 | Petrolite Corp | Process for breaking petroleum emulsions employing certain oxyalkylation products derived in turn from reactive nitrogen containing compounds |
US2792369A (en) * | 1954-09-15 | 1957-05-14 | Petrolite Corp | Process for breaking petroleum emulsions employing certain oxyalkylated diethylene triamines |
-
1957
- 1957-12-30 US US705730A patent/US2979528A/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB297484A (en) * | 1927-05-23 | 1928-09-24 | Ig Farbenindustrie Ag | Improvements in the manufacture and production of amines of the hydroaromatic-aliphatic series |
US2174762A (en) * | 1935-04-13 | 1939-10-03 | Ig Farbenindustrie Ag | Condensation products derived from amines and method of producing them |
US2220147A (en) * | 1936-09-19 | 1940-11-05 | Dreyfus Henry | Manufacture of alkylolamines |
US2552530A (en) * | 1949-07-28 | 1951-05-15 | Petrolite Corp | Process for breaking petroleum emulsions |
US2552534A (en) * | 1950-03-04 | 1951-05-15 | Petrolite Corp | Processes for breaking petroleum emulsions |
US2589199A (en) * | 1950-08-26 | 1952-03-11 | Petrolite Corp | Process for breaking emulsions of the oil-in-water class |
US2677700A (en) * | 1951-05-31 | 1954-05-04 | Wyandotte Chemicals Corp | Polyoxyalkylene surface active agents |
US2742455A (en) * | 1951-09-24 | 1956-04-17 | Gen Aniline & Film Corp | Production of n, n-polyoxyethylated rosin amines |
US2792367A (en) * | 1953-10-05 | 1957-05-14 | Petrolite Corp | Process for breaking petroleum emulsions employing certain oxyalkylation products derived in turn from reactive nitrogen containing compounds |
US2674619A (en) * | 1953-10-19 | 1954-04-06 | Wyandotte Chemicals Corp | Polyoxyalkylene compounds |
US2786080A (en) * | 1953-11-25 | 1957-03-19 | Wyandotte Chemicals Corp | Stabilized polyoxyalkylene compositions |
US2792369A (en) * | 1954-09-15 | 1957-05-14 | Petrolite Corp | Process for breaking petroleum emulsions employing certain oxyalkylated diethylene triamines |
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123559A (en) * | 1964-03-03 | Hccjhio | ||
US3239381A (en) * | 1962-05-21 | 1966-03-08 | Monsanto Co | Battery separator impregnated with a phenol-aldehyde resin composition |
US3337463A (en) * | 1963-10-18 | 1967-08-22 | Wyandotte Chemicals Corp | Foaming detergent compositions |
US3287145A (en) * | 1965-08-10 | 1966-11-22 | Union Carbide Corp | Chemical admixture for hydraulic cementitious mixtures |
US3932659A (en) * | 1970-07-24 | 1976-01-13 | Beecham Group Limited | Biologically active substance |
US4049557A (en) * | 1972-07-17 | 1977-09-20 | Colgate-Palmolive Company | Fabric conditioning compositions |
US3905932A (en) * | 1973-03-29 | 1975-09-16 | Toyo Soda Mfg Co Ltd | Process for preparing polychloroprene latex |
US3945978A (en) * | 1973-05-12 | 1976-03-23 | Chemische Werke Huels Aktiengesellschaft | Process for the production of pourable, pulverulent filler mixtures containing plasticizer oils |
US3923707A (en) * | 1973-06-20 | 1975-12-02 | Huels Chemische Werke Ag | Process for the production of pourable, pulverulent rubbers |
US3929707A (en) * | 1973-06-28 | 1975-12-30 | Huels Chemische Werke Ag | Process for the production of pourable, pulverulent rubber-filler mixtures |
DE2440531A1 (en) * | 1973-08-24 | 1975-03-06 | Cooper & Co Ltd Edwin | LUBRICANT MIXTURE, ITS USE AS HYDRAULIC LIQUID AND ADDITIVE CONCENTRATE IN ITS PRODUCTION |
US4043972A (en) * | 1975-10-06 | 1977-08-23 | Phillips Fibers Corporation | Stabilizing polyamide antistatic compositions |
US4075130A (en) * | 1976-08-30 | 1978-02-21 | Texaco Development Corporation | Polyoxypropylene polyamine derivatives as defoamers |
US4218218A (en) * | 1977-10-08 | 1980-08-19 | Basf Aktiengesellschaft | Stable finely dispersed aqueous formulations of disperse dyes and optical brighteners, and their use |
US4294581A (en) * | 1978-11-30 | 1981-10-13 | Basf Aktiengesellschaft | Uniformly dyed water-swellable cellulosic fibers |
US4244832A (en) * | 1979-07-27 | 1981-01-13 | Basf Wyandotte Corporation | Phosphate-free machine dishwashing detergents useful at low temperatures |
US4305835A (en) * | 1979-12-14 | 1981-12-15 | Ethyl Corporation | Lubricating composition containing emulsion-sludge inhibitors |
US4305834A (en) * | 1980-01-02 | 1981-12-15 | Ethyl Corporation | Lubricating composition containing emulsion-sludge inhibitors |
US4464193A (en) * | 1980-02-19 | 1984-08-07 | Basf Wyandotte Corporation | Anionic biocide emulsions in aqueous solutions of strongly ionizable salts |
US4351753A (en) * | 1980-10-24 | 1982-09-28 | Basf Wyandotte Corporation | Liquified normally solid polyoxyalkylene block copolymers |
US4434077A (en) | 1980-10-24 | 1984-02-28 | Basf Wyandotte Corporation | Liquefied normally solid polyoxyalkylene copolymers |
US4434078A (en) | 1980-10-24 | 1984-02-28 | Basf Wyandotte Corporation | Liquefied normally solid polyoxyalkylene copolymers |
US4445908A (en) * | 1980-12-01 | 1984-05-01 | The United States Of America As Represented By The United States Department Of Energy | Extracting alcohols from aqueous solutions |
EP0078483A3 (en) * | 1981-11-02 | 1984-10-17 | Basf Wyandotte Corporation | Coal-oil slurries containing a surfactant |
EP0078483A2 (en) * | 1981-11-02 | 1983-05-11 | Basf Wyandotte Corporation | Coal-oil slurries containing a surfactant |
US4478602A (en) * | 1982-02-12 | 1984-10-23 | Diamond Shamrock Chemicals Company | Carbonaceous oil slurries stabilized by binary surfactant mixtures |
US4456543A (en) * | 1982-06-17 | 1984-06-26 | The Buckeye Cellulose Corporation | Bisbiguanide based antibacterial cleansing products |
US4551506A (en) * | 1982-12-23 | 1985-11-05 | The Procter & Gamble Company | Cationic polymers having clay soil removal/anti-redeposition properties useful in detergent compositions |
US4676921A (en) * | 1982-12-23 | 1987-06-30 | The Procter & Gamble Company | Detergent compositions containing ethoxylated amine polymers having clay soil removal/anti-redeposition properties |
US4664848A (en) * | 1982-12-23 | 1987-05-12 | The Procter & Gamble Company | Detergent compositions containing cationic compounds having clay soil removal/anti-redeposition properties |
US4661288A (en) * | 1982-12-23 | 1987-04-28 | The Procter & Gamble Company | Zwitterionic compounds having clay soil removal/anti/redeposition properties useful in detergent compositions |
US4659802A (en) * | 1982-12-23 | 1987-04-21 | The Procter & Gamble Company | Cationic compounds having clay soil removal/anti-redeposition properties useful in detergent compositions |
FR2541908A1 (en) * | 1983-03-04 | 1984-09-07 | Ugine Kuhlmann | ANTI-FOAMING COMPOSITION, METHOD OF MANUFACTURE AND APPLICATION THEREOF |
US4474752A (en) * | 1983-05-16 | 1984-10-02 | Merck & Co., Inc. | Drug delivery system utilizing thermosetting gels |
US4474753A (en) * | 1983-05-16 | 1984-10-02 | Merck & Co., Inc. | Topical drug delivery system utilizing thermosetting gels |
US4474751A (en) * | 1983-05-16 | 1984-10-02 | Merck & Co., Inc. | Ophthalmic drug delivery system utilizing thermosetting gels |
US4478822A (en) * | 1983-05-16 | 1984-10-23 | Merck & Co., Inc. | Drug delivery system utilizing thermosetting gels |
US4548744A (en) * | 1983-07-22 | 1985-10-22 | Connor Daniel S | Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions |
US4534959A (en) * | 1983-08-22 | 1985-08-13 | Basf Wyandotte Corporation | Aerosol gel |
AU596986B2 (en) * | 1985-06-18 | 1990-05-24 | Emory University | Biologically-active copolymers |
US5466445A (en) * | 1985-06-18 | 1995-11-14 | Emory University | Methods for reducing salmonella in chickens |
US5494660A (en) * | 1985-06-18 | 1996-02-27 | Emory University | Method for inhibiting microbial binding to surfaces |
US4664834A (en) * | 1985-07-29 | 1987-05-12 | The Lubrizol Corporation | Hydrocarbyl-substituted succinic acid and/or anhydride/amine terminated poly(oxyalkylene) reaction products, and aqueous systems containing same |
US4661275A (en) * | 1985-07-29 | 1987-04-28 | The Lubrizol Corporation | Water-based functional fluid thickening combinations of surfactants and hydrocarbyl-substituted succinic acid and/or anhydride/amine terminated poly(oxyalkylene) reaction products |
US4726909A (en) * | 1985-12-23 | 1988-02-23 | Basf Corporation | Low odor surfactant |
US5648071A (en) * | 1986-05-15 | 1997-07-15 | Emory University | Method of treating tumors |
WO1988001272A2 (en) | 1986-08-14 | 1988-02-25 | The Lubrizol Corporation | Borated amine salts of monothiophosphoric acids |
US4861583A (en) * | 1986-09-04 | 1989-08-29 | S. C. Johnson & Son, Inc. | Hot curling hair treatment |
US5554372A (en) * | 1986-09-22 | 1996-09-10 | Emory University | Methods and vaccines comprising surface-active copolymers |
WO1988001873A1 (en) * | 1986-09-22 | 1988-03-24 | Emory University | Vaccine and method of preparation |
US5811088A (en) * | 1987-02-20 | 1998-09-22 | Emory University | Antiinfective compounds and methods of use |
US5674911A (en) * | 1987-02-20 | 1997-10-07 | Cytrx Corporation | Antiinfective polyoxypropylene/polyoxyethylene copolymers and methods of use |
WO1989004653A1 (en) * | 1987-11-20 | 1989-06-01 | S.C. Johnson & Son, Inc. | Composition and method for hot curling hair treatment |
US4988452A (en) * | 1988-06-09 | 1991-01-29 | The Procter & Gamble Company | Liquid automatic dishwashing detergent compositions containing bleach-stable nonionic surfactant |
US4859358A (en) * | 1988-06-09 | 1989-08-22 | The Procter & Gamble Company | Liquid automatic dishwashing compositions containing metal salts of hydroxy fatty acids providing silver protection |
US5130043A (en) * | 1988-06-09 | 1992-07-14 | The Procter & Gamble Company | Liquid automatic dishwashing compositions having enhanced stability |
US5034508A (en) * | 1988-08-31 | 1991-07-23 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Dispersant for nonaqueous systems |
US4995944A (en) * | 1988-09-16 | 1991-02-26 | Dearborn Chemical Company Ltd. | Controlling deposits on paper machine felts using cationic polymer and cationic surfactant mixture |
US6436425B1 (en) | 1988-11-16 | 2002-08-20 | Mdv Technologies, Inc. | Method and non-gelling composition for inhibiting post-surgical adhesions |
US5366735A (en) * | 1988-11-16 | 1994-11-22 | Mediventures, Inc. | Method and composition for post-surgical adhesion reduction |
US5126068A (en) * | 1989-05-05 | 1992-06-30 | Burke John J | Hard surface cleaning composition containing polyacrylate copolymers as performance boosters |
US5082498A (en) * | 1989-06-21 | 1992-01-21 | Basf Aktiengesellschaft | Highly concentrated solid pigment formulations |
US5298260A (en) * | 1990-05-01 | 1994-03-29 | Mediventures, Inc. | Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality |
US5116897A (en) * | 1990-06-27 | 1992-05-26 | Basf Corporation | Antistatic composition |
US5346703A (en) * | 1990-08-07 | 1994-09-13 | Mediventures, Inc. | Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels |
US6346272B1 (en) | 1990-08-07 | 2002-02-12 | Mdv Technologies, Inc. | Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels |
US5990241A (en) * | 1991-03-19 | 1999-11-23 | Cytrx, Corporation | Polyoxypropylene/polyoxyethylene copolymers with improved biological activity |
US20040248833A1 (en) * | 1991-03-19 | 2004-12-09 | Emanuele R Martin | Therapeutic delivery compositions and methods of use thereof |
US6359014B1 (en) | 1991-03-19 | 2002-03-19 | Cytrx Corporation | Polyoxypropylene/polyoxyethylene copolymers with improved biological activity |
US6747064B2 (en) | 1991-03-19 | 2004-06-08 | Cytrx Corporation | Polyoxypropylene/polyoxyethylene copolymers with improved biological activity |
US5696298A (en) * | 1991-03-19 | 1997-12-09 | Cytrx Corporation | Polyoxypropylene/polyoxyethylene copolymers with improved biological activity |
USRE38558E1 (en) | 1991-03-19 | 2004-07-20 | Cytrx Corporation | Polyoxypropylene/polyoxyethylene copolymers with improved biological activity |
US6933286B2 (en) | 1991-03-19 | 2005-08-23 | R. Martin Emanuele | Therapeutic delivery compositions and methods of use thereof |
US5622649A (en) * | 1991-06-27 | 1997-04-22 | Emory University | Multiple emulsions and methods of preparation |
EP0594479A1 (en) * | 1992-10-23 | 1994-04-27 | Institut Francais Du Petrole | Process to reduce the tendency to agglomerate of hydrates in production effluents |
US5426258A (en) * | 1992-10-23 | 1995-06-20 | Institut Francais Du Petrole | Process for reducing the agglomeration tendency of hydrates in the production effluent |
US5505878A (en) * | 1993-08-16 | 1996-04-09 | Exxon Chemical Patents Inc. | Method of demulsifying water-in-oil emulsions |
US7202225B1 (en) | 1993-10-15 | 2007-04-10 | Emanuele R Martin | Therapeutic delivery compositions and methods of use thereof |
US5498355A (en) * | 1994-09-20 | 1996-03-12 | Ethyl Corporation | Lubricant compositions of enhanced performance capabilities |
EP0713907A2 (en) | 1994-09-26 | 1996-05-29 | Ethyl Petroleum Additives Limited | Zinc additives of enhanced performance capabilities |
US5612305A (en) * | 1995-01-12 | 1997-03-18 | Huntsman Petrochemical Corporation | Mixed surfactant systems for low foam applications |
US5824322A (en) * | 1995-08-21 | 1998-10-20 | Cytrx Corporation | Compositions and methods for growth promotion |
US5843470A (en) * | 1995-10-06 | 1998-12-01 | Mdv Technologies, Inc. | Method and composition for inhibiting post-surgical adhesions |
US6034088A (en) * | 1995-10-06 | 2000-03-07 | Mdv Technologies, Inc. | Method and composition for inhibiting post-surgical adhesions |
US6060531A (en) * | 1995-10-16 | 2000-05-09 | Basf Aktiengesellschaft | Production of low-fogging polyurethane foams, and specific polyoxyalkylene-polyols which can be used for this purpose |
US20030108610A1 (en) * | 1996-02-09 | 2003-06-12 | Flore Stephen G. | Methods and compositions for the delivery of pharmaceutical agents and/or the prevention of adhesions |
US5800711A (en) * | 1996-10-18 | 1998-09-01 | Mdv Technologies, Inc. | Process for the fractionation of polyoxyalkylene block copolymers |
US6123740A (en) * | 1996-12-02 | 2000-09-26 | Basf Aktiengesellschaft | Dye preparations containing methine dyes |
US6294592B1 (en) | 1997-06-30 | 2001-09-25 | Basf Aktiengesellschaft | Pigment preparations with radiation curable binder suitable for ink jet printing method |
US6332943B1 (en) | 1997-06-30 | 2001-12-25 | Basf Aktiengesellschaft | Method of ink-jet printing with pigment preparations having a dispersant |
US5958859A (en) * | 1997-07-29 | 1999-09-28 | Basf Corporation | Aqueous based solvent free cleaner compositions containing a blend of polyoxyalkylene block copolymers |
US6607565B1 (en) | 1997-11-26 | 2003-08-19 | Basf Aktiengesellschaft | Colorant preparations |
US6537331B1 (en) | 1997-12-05 | 2003-03-25 | Basf Aktiengesellschaft | Dye preparations containing azo dyes |
US6669740B2 (en) | 1997-12-05 | 2003-12-30 | Basf Aktiengesellschaft | Dye preparations comprising azo dyes |
US6280745B1 (en) | 1997-12-23 | 2001-08-28 | Alliance Pharmaceutical Corp. | Methods and compositions for the delivery of pharmaceutical agents and/or the prevention of adhesions |
US6171445B1 (en) | 1999-07-30 | 2001-01-09 | Hercules Incorporated | Process for controlling deposit of sticky material |
US6790816B2 (en) | 1999-09-24 | 2004-09-14 | Bausch & Lomb Incorporated | High osmolyte cleaning and disinfection method and solution for contact lenses |
US20040214735A1 (en) * | 2000-10-06 | 2004-10-28 | Groemminger Suzanne F. | Cleaner for contact lens |
US6872695B1 (en) | 2000-10-06 | 2005-03-29 | Bausch & Lomb Incorporated | Method for in-eye cleaning of contact lens comprising polymeric beads |
US20050131095A1 (en) * | 2002-08-02 | 2005-06-16 | Jianming Yu | Novel polyols |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2979528A (en) | Nitrogen-containing polyoxyalkylene detergent compositions | |
US3022335A (en) | Surface active polyoxyalkylene compounds having a plurality of heteric polyoxypropylene-polyoxyethylene chains | |
US3454494A (en) | Textile softener compositions | |
US3869399A (en) | Liquid detergent compositions | |
CA1167054A (en) | Mono acyl esters of bis-polyoxyalkylene ammonium compounds, their preparation and use as fabric softeners | |
CA1286059C (en) | Textile treatment composition | |
US4110262A (en) | Liquid detergent composition | |
US4065257A (en) | Inhibition of dye staining during laundering of textile materials | |
EP2217689B1 (en) | Laundry formulations and method of cleaning | |
US3324183A (en) | Terg-o-tometee test results | |
US3775316A (en) | Softening finishes for washed laundry | |
US2441063A (en) | Salts of alkylolamine boric esters | |
US4147649A (en) | Liquid detergent composition | |
US3928213A (en) | Fabric softener and soil-release composition and method | |
GB1565808A (en) | Fabric softeners and detergent compositions containing imidazolines derivatives | |
US4263179A (en) | Heavy-duty liquid detergent compositions containing alkoxylated alkylene diamines | |
CN107541949A (en) | A kind of environment-friendly low-temperature scouring agent | |
US2304369A (en) | Condensation product | |
JPS62257463A (en) | Clothing treatment composition and method | |
US2206928A (en) | Production of condensation products | |
US2751358A (en) | Non-foaming detergents | |
CA1086178A (en) | Liquid detergent composition | |
US3262951A (en) | High molecular weight fatty acid amido amine surfactant and preparation thereof | |
US3969282A (en) | Acidic surfactant composition, stock surfactant solution prepared therefrom, and method of washing soiled substrates employing the same | |
US3853770A (en) | Fabric softener compositions |