US2462880A - Primary cell of the lead-zinc type - Google Patents
Primary cell of the lead-zinc type Download PDFInfo
- Publication number
- US2462880A US2462880A US622649A US62264945A US2462880A US 2462880 A US2462880 A US 2462880A US 622649 A US622649 A US 622649A US 62264945 A US62264945 A US 62264945A US 2462880 A US2462880 A US 2462880A
- Authority
- US
- United States
- Prior art keywords
- separator
- lead
- cathode
- cell
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
- H01M6/12—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
Definitions
- Figure 3 is a plan view of Figure 2 folded
- Figure 6 is a plan of the elements of the previous figures showing them in their relative positions as first assembled
- Figure 8 is an elevation of Figure '7.
- Figure 1 shows a plate III, which constitutes the cathode of the cell, and consists of lead peroxide paste II filling the spaces of a a lead-antimony grid I2, being the same as the cathode used in the lead-sulphuric acid-lead peroxide type of cell.
- Theplate I is provided with a terminal I3 at its'upper edge.
- Figure 4 shows a. separator I9 which is of the same height as theplate I0 and separator I5 and has a width substantially four times that of the, former plate and twice that of the latter, and is adapted to be folded zig-zag along thelines 20, 2
- the separator may be of any suitable absorbent material, such as blotting paper for example, adapted to absorb and hold the electrolyte of the cell, which is dilute sulphuric acid of specific gravity 1.250.
- Figure 6 shows the previously described elements I 0; I5 and I9 preliminarily assembled in their relative positions, in which the cathode I0 is disposed in the center fold of the separator, i. e., between the inner surfaces of the two-inner sections of the separator.
- the folded perforated zinc plate I5 fits over the two inner sections of the separator I9 so that its own two sections are each positioned in an outer fold of the separator, i. e., between an outer section and the adjacent inner section of the separator.
- the zinc plate I5 is perforated for thepurpose of allowing current to pass from the anode, said perforations containing electrolyte expressed from the separator when the elements of the cell are pressed-together into the position 3
- an enclosing wrapping 28 which is of a nonconducting material not attacked by the dilute sulphuric acid constituting the electrolyte.
- Such wrapping may be made from a sheet of a suitable synthetic plastic material such, for example, as polystyrene.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hybrid Cells (AREA)
- Electrolytic Production Of Metals (AREA)
Description
H. J. MANDEL PRIMARY CELL OF THE LEAD-ZINC TYPE March 1, 1949.
Filed Oct. 16, 1945 INVENTOR HYMAN' J. MANDEL F IG.7.
w ww 2 ,2414.
ATTORNEY Patented Mar. 1, 1949 s PA'TENT OFFICE PRIMARY CELL OF THE LEAD-ZINC TYPE Hyman J. Mandel, RedBank, N. J.,- assignor to the United States of America as represented by the Secretary of War Application October 16, 1945, Serial No. 622,649 3 Claims. (Cl. 136-118) -(Granted under the act of March 3, 1883. as amended April so, 192s; are 0. G. 757) The invention described herein may be manufactured and used by or for the Government for v the cell is under a high current drain. Also, the
construction which I have provided, and which is hereinafter disclosed, provides a cell having a steadier voltage, under high current drain, than previous cells operating under the mentioned system. Furthermore, my invention has so improved thezinc-sulphuric acid-lead peroxide cell to such an extent that it is now substantially equivalent to the heavier type heretofore used, viz; the lead-sulphuric acid depolarizing cathode type.
The invention is illustrated in the accompanying drawings, which show Figure 1 is an elevational view of the lead peroxide plate;
Figure 2 is an elevation of a perforated zinc plate;
Figure 3 is a plan view of Figure 2 folded;
Figure 4 is an elevation of a separator;
Figure 5 is a plan of Figure 4 folded;
Figure 6 is a plan of the elements of the previous figures showing them in their relative positions as first assembled;
Figure 7 is a plan view of the same elements as shown in Figure 6, but in their final form and enclosed by a retaining wrapper; and
Figure 8 is an elevation of Figure '7.
Referring to the drawings for a more detailed description of the invention, Figure 1 shows a plate III, which constitutes the cathode of the cell, and consists of lead peroxide paste II filling the spaces of a a lead-antimony grid I2, being the same as the cathode used in the lead-sulphuric acid-lead peroxide type of cell. Theplate I is provided with a terminal I3 at its'upper edge.
Figure 2 shows part of the anode of the cell as a zinc plate I which has the same height as,
and substantially twice the width of, the plate i0, and is adapted to be folded along the center line it as illustrated in Figure 3." It is seen that the plate I5 has perforations ill, the purpose of V 2 I which will be explained below, and that it has a terminal I8 on its upper edge.
Figure 4 shows a. separator I9 which is of the same height as theplate I0 and separator I5 and has a width substantially four times that of the, former plate and twice that of the latter, and is adapted to be folded zig-zag along thelines 20, 2| and 22, as illustratedin Figure 5. The separator may be of any suitable absorbent material, such as blotting paper for example, adapted to absorb and hold the electrolyte of the cell, which is dilute sulphuric acid of specific gravity 1.250.
Figure 6 shows the previously described elements I 0; I5 and I9 preliminarily assembled in their relative positions, in which the cathode I0 is disposed in the center fold of the separator, i. e., between the inner surfaces of the two-inner sections of the separator. The folded perforated zinc plate I5 fits over the two inner sections of the separator I9 so that its own two sections are each positioned in an outer fold of the separator, i. e., between an outer section and the adjacent inner section of the separator. As also shown in Figure 6, the assembled elements I0, I5 and I5 are disposed within a foldedv unperforated or solid zinc plate 25 which constitutes part of the anode of the cell, the other part, as pointed out above, being the perforated zinc plate I5. The plate 25 has a terminal 26 on its upper edge and this terminal is soldered to the terminal I8 of the perforated zinc plate I5 so that the latter plate and the solid zinc plate together constitute the anode of the cell.
The elements shown in Figure 6 are pressed together as shown in Figure 7, so that the electrolyte-saturated separator I9 contacts both sides of the cathode I0 and also both sides of the perforated zinc plate I5, as well as the inside surface of the solid zinc plate 25. Electrically conductive paths between the cathode and both plates of the anode are therefore provided within the cell, it being evident that the current between the cathode In and the perforated Zinc plate I5 travels through the inner sections of the separator i9 and that the current between the cathode and the solid zinc plate 25 travels through the inner sections of the separator and through the perforated zinc plate 15 and the outer sectionsof the separator. that the zinc plate I5 is perforated for thepurpose of allowing current to pass from the anode, said perforations containing electrolyte expressed from the separator when the elements of the cell are pressed-together into the position 3 It is thus seen shown in Figure 7, in which position they are held by an enclosing wrapping 28 which is of a nonconducting material not attacked by the dilute sulphuric acid constituting the electrolyte. Such wrapping may be made from a sheet of a suitable synthetic plastic material such, for example, as polystyrene.
I claim:
1. In an electric cell, a depolarizing cathode, an absorbent separator folded zig-zag into four sections and adapted to' hold a sulphuric acid elec- 2. In'an electric cell, a lead-peroxide cathode,
an absorbent separator folded zig-zag into four sections and adapted to hold a sulphuric acid electrolyte, a zinc anode comprising two plates one of which is perforated, the other unperforated, each of said plates folded into two sections, said cathode disposed in the middle fold of the separator with both faces contacted thereby, the mentioned perforated zinc plate having each of its sections in an outer fold of the separator with both faces of each section contacted by the Number 4 separator, said cathode, anode and separator disposed within the fold of the unperforated zinc plate, and retaining means around the cathode, anode and separator to hold these elements in contacting relation.
3. In an electric cell, a cathode, an absorbent separator folded zig-zag into four sections and adapted to hold a sulphuric acid electrolyte, an anode comprising two plates one of which is perforated, the other unperforated, each of said plates folded into two sections, said cathode disposed in the middle fold of the separator with both faces contacted thereby, the mentioned perforated plate having each of its sections in an outer fold of the separator with both faces of each section contacted by the separator, said cathode, anode and separator disposed within the fold of the unperforated plate.
HYMAN J. MANDEL.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS FOREIGN PATENTS Country I Date French Nov. 4, 1922 Number
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US622649A US2462880A (en) | 1945-10-16 | 1945-10-16 | Primary cell of the lead-zinc type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US622649A US2462880A (en) | 1945-10-16 | 1945-10-16 | Primary cell of the lead-zinc type |
Publications (1)
Publication Number | Publication Date |
---|---|
US2462880A true US2462880A (en) | 1949-03-01 |
Family
ID=24494974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US622649A Expired - Lifetime US2462880A (en) | 1945-10-16 | 1945-10-16 | Primary cell of the lead-zinc type |
Country Status (1)
Country | Link |
---|---|
US (1) | US2462880A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2640863A (en) * | 1950-04-05 | 1953-06-02 | Us Army | Deferred action type battery |
US2715858A (en) * | 1953-03-02 | 1955-08-23 | Filser D Hoppert | Regulator means for a firearm gas piston |
US3972734A (en) * | 1957-12-27 | 1976-08-03 | Catalyst Research Corporation | Thermal deferred action battery |
US4034143A (en) * | 1960-02-24 | 1977-07-05 | Catalyst Research Corporation | Thermal deferred action battery with interconnecting, foldable electrodes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US902173A (en) * | 1906-09-18 | 1908-10-27 | Georges Schauli | Electric cell. |
US905952A (en) * | 1907-09-23 | 1908-12-08 | Joseph Theodor Szek | Galvanic cell. |
FR548892A (en) * | 1921-07-25 | 1923-01-27 | positive electrode for batteries | |
US2317711A (en) * | 1936-02-04 | 1943-04-27 | Andre Henri Georges | Accumulator |
-
1945
- 1945-10-16 US US622649A patent/US2462880A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US902173A (en) * | 1906-09-18 | 1908-10-27 | Georges Schauli | Electric cell. |
US905952A (en) * | 1907-09-23 | 1908-12-08 | Joseph Theodor Szek | Galvanic cell. |
FR548892A (en) * | 1921-07-25 | 1923-01-27 | positive electrode for batteries | |
US2317711A (en) * | 1936-02-04 | 1943-04-27 | Andre Henri Georges | Accumulator |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2640863A (en) * | 1950-04-05 | 1953-06-02 | Us Army | Deferred action type battery |
US2715858A (en) * | 1953-03-02 | 1955-08-23 | Filser D Hoppert | Regulator means for a firearm gas piston |
US3972734A (en) * | 1957-12-27 | 1976-08-03 | Catalyst Research Corporation | Thermal deferred action battery |
US4034143A (en) * | 1960-02-24 | 1977-07-05 | Catalyst Research Corporation | Thermal deferred action battery with interconnecting, foldable electrodes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2564495A (en) | Deferred action primary battery | |
IT1121304B (en) | REFINEMENTS MADE TO MULTI-ELEMENT BATTERIES | |
GB761629A (en) | Electric battery construction | |
US2462880A (en) | Primary cell of the lead-zinc type | |
US3486944A (en) | Battery with reserve cell | |
US3050576A (en) | Battery structure | |
US3748182A (en) | Button type cell casing and sealed button type battery | |
US2212054A (en) | Multiple cell battery | |
KR940020613A (en) | Rechargeable batterles | |
US3078329A (en) | Battery assembly | |
US2701271A (en) | Alkaline type silver cell | |
US2666800A (en) | Method and device for interconnecting battery cells | |
US2788474A (en) | Rectifier assembly | |
WO2019225620A1 (en) | Lead storage battery | |
US2014832A (en) | Battery | |
US2658098A (en) | Dry battery with conductive tape intercell connections | |
US1657543A (en) | Primary cell | |
US2632783A (en) | Method of making dry cells and batteries | |
US2684988A (en) | Deferred action pile type battery | |
US2705251A (en) | Primary cell and battery | |
US2632782A (en) | Dry battery and cell with improved anode | |
US3576678A (en) | Alkaline galvanic cell | |
US2684395A (en) | Electric battery | |
GB1373226A (en) | Battery | |
US1626173A (en) | Dry cell |