[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US2181213A - Refrigerating apparatus - Google Patents

Refrigerating apparatus Download PDF

Info

Publication number
US2181213A
US2181213A US750842A US75084234A US2181213A US 2181213 A US2181213 A US 2181213A US 750842 A US750842 A US 750842A US 75084234 A US75084234 A US 75084234A US 2181213 A US2181213 A US 2181213A
Authority
US
United States
Prior art keywords
refrigerant
compressor
condenser
evaporator
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US750842A
Inventor
Harry F Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
General Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Motors Corp filed Critical General Motors Corp
Priority to US750842A priority Critical patent/US2181213A/en
Application granted granted Critical
Publication of US2181213A publication Critical patent/US2181213A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D15/00Devices not covered by group F25D11/00 or F25D13/00, e.g. non-self-contained movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/02Refrigerant pumps

Definitions

  • This invention relates to refrigeration.
  • An object of this invention is to provide a novel refrigerating system which is useful for many purposes and particularly for use in coni nection with the cooling of rooms or the like.
  • Fig. 1 is a vertical cross-sectional View, somewhat diagrammatic, of an'apparatus embodying features of my invention
  • Fig. 2 is a vertical cross-sectional view of the liquid refrigerant pump at the end of the drive shaft of the compressor shown in Figs. 1 and 3;
  • Fig.3 is a view somewhat similar to Fig. 1, but showing a slightly modified form
  • Fig. 4 is a detailed cross-sectional view of a portion of the flexible connections shown in Figs. 1 and 3 and taken along the line 4-4 of Fig. 5;
  • Fig. 5 is a cross-sectional view taken along the line 55 of Fig. 4.
  • Fig. 6 is a cross-sectional view of a portion of a slightly modified compressor which may be used in lieu of the form shown in Figs. 1 and 3.
  • Fig. 7 is a diagrammaticshowing of the fluid flow circuits of the apparatus shown in Fig. 1;
  • Fig. 8 is a diagrammatic showing of the electric circuits of said apparatus.
  • a refrigerating apparatus embodying features of my invention includes in general a compressor or refrigerant translating device III, a condenser II and an evaporator 12 arranged in refrigerant flcw relationshi
  • the compressor 10 and evaporator I2 are preferably assembled with a cabinet l3 so that they are adapted to be placed in the room I4 which is to be cooled.
  • the condenser 40 II is adapted to be carried on a mounting l5 so that the same may be placed outside of the room 14.
  • the ararigement is such that heat is absorbed from the air which is being conditioned for the room M, the heat being absorbed into the 5 evaporator l2.
  • This heat eventually is discharged into the atmosphere outside of the room through the walls of the condenser II, the heat being pumped (for instance along with the refrigerant) by the csmpressor or refrigerant tran lating device 19 from the vaporator to the condenser.
  • Means are provided whereby the heat gener ated by the compressor and by the motor 16, which drives the compressor l0 may also be discharged through the walls of the condenser H.
  • refrigerant' vapor is discharged from the compressor H) to the condenser II where the refrigerant is liquefied.
  • a portion (or all) of the refrigrant thus liquefied is circulated while under 5 high pressure liquid form in thermal exchange relationship with the compressor and/or the motor in such a manner that the liquid refrigerant absorbs heat therefrom.
  • Refrigerant flow connections are also provided for delivering liquid refrigerant to the evaporator where it is 15 reduced in pressure and is vaporized and from whence it flows, in vapor form, through the vapor line to the compressor.
  • the foregoing refrigerant flow is attained in the embodiment shown in Fig. 1 by providing a compressed vapor refrigerant line I! which connects an outlet valve chamber ll! of the compressor III with a liquid refrigerant receiver 19.
  • the refrigerant vapor flows from the receiver 19 through the connection 20 to a flexible fluid-flow structure 21 through which it flows through the wall or window of the room 14 to the condenser ll.
  • the refrigerant is liquefied and flows back in liquid form through the fluid-flow flexible connection 2
  • Liquid refrigerant flows from the receiver I9 through the line 21 to an automatic expansion valve 28 and from thence into the evaporator 12 where the refrigerant is reduced in pressure and vaporized and from whence it returns through the expanded refrigerant line 29 to thecompres- F01 Ill.
  • the valve 28 is of the type which automatically introduces liquid refrigerant into the evaporator l2 whenever the pressure'therein is reduced below a predetermined limit.
  • This valve is "also provided with a thermostatic bulb control 30 which automatically throttles the valve 28 whenever the refrigerating effect reaches the bulb 30 through the line 29 and thus prevents the flooding of the compressor In with unvaporized shown more in detail in Figs. 4 and 5.
  • the coupling 22 is provided with a connection 3
  • the liquefied high pressure refrigerant flows from the condenser l I through the flexible metallic pipe 33 through the coupling 22 to the connection 34 into the pipe 23 previously described.
  • the connection 34 may form the usual flare joint with the line 23.
  • the coupling 22 is connected with the pipes 32 and 33, the pipe 32 being secured thereto by the bolt and strap construction 35, while the pipe 33 is connected by means of the flare joint 33 well-known in the art.
  • the pipe 32 may be of any flexible refrigerant resisting material, and where a fluorine hydrocarbon derivative refrigerant is used such as dichloro-tetrafiuoroethane, this rubber-like material may be a synthetic rubber now marketed under the trade name duprene, and known as chloro-2-butadiene-1,3.
  • may have a coupling 22a which is similar to the coupling 22 and which connects with the inlet and outlet of the condenser I l as is readily apparent.
  • the air passing overthe evaporator l2 has its temperature reduced often below its dew point. When this occurs, water is condensed therefrom, and it is desirable to discharge this water outside of the room.
  • This may be accomplished by providing a drain pan 40 from which the water drains through the pipe 4
  • Means are provided for the circulation of air.
  • a fan 46 driven by a motor 4'I,-causes air to flow through the inlet 43 past the evaporator I2 and out the grille 49 into the room l4, the air having been cooled and dehumidified thereby.
  • no means has been shown for introducing outside air into the evaporator compartment. It is obvious, however, that any conventional means may be used for bringing outside air into the evaporator compartment in the event that it is desired to introduce fresh air into the room being conditioned. Air may also be circulated over the condenser ll.
  • a fan 50 driven by a motor 5
  • This bulb 55 may be placed where it is responsive to conditions in the apparatus and preferably to temperature conditions in the room I:
  • This bulb 55 may be responsive either to dry bulb or vwet bulb temperatures, or to a combination of both, and may be conveniently placed near the inlet 48 where it is representative of the temperature or relative humidity conditions of the room l4.
  • bulb 55 opens and closes a snap switch 56 which starts and stops the motors l6 and 5
  • the pump 24 may be hermetically sealed to the compressor It by means of the bolts 51 as shown in Fig. 2.
  • the compressor It may be provided with a drive shaft or crankshaft 58, which is driven by the motor 15 through the medium of the belt 53 at one end.
  • the other end of the-shaft is provided with an eccentric 59a which drives the oscillating piston 60 of the pump 24.
  • the pump 24 may be of any well-known type which may be driven from an eccentric 59a at the end of crankshaft 53, and since pumps of thistype are wellknown in the art, further description thereof is not necessary.
  • the material of which the tube 32 is made if rubber-like in character, is likely to be damaged by exceedingly high temperatures.
  • the ordinary superheat' of compressed refrigerant, as discharged from a compressor, is likely to damage such material, .but by introducing liquid refrigerant into thermal contact with the compressed refrigerant before it is discharged into the tube 32, this superheat is removed and damage to the tube 32 is therefore prevented.
  • the pipe 25b which may be representative of either pipes 25 or 2541, discharge the liquid refrigerant in thermal exchange with the wall 12 of the out-
  • the refrigerant then continues to flow through the pipe 13 into the receiver IS in the case of Fig. 1, or into the pipe 10 in the case of Fig. 3.
  • the compressed refrigerant flows through the pipe 80 either to the receiver IS in the case of Fig. 1 or directly to the condenser Na in the case of Fig. 3.
  • a compressor in refrigerating apparatus, a compressor, a condenser and an evaporator in refrigerant flow relationship forming a closed refrigerant flow system, said compressor having a compressed refrigerant outlet valve and an outlet valve chamber, and means to introduce liquid refrigerant from said condenser into said chamber to commingle with compressed gases passing through said valve.
  • a refrigerating apparatus comprising a compressor, condenser, evaporator and refrigerant liquid receiver, a refrigerant vapor discharge connection between said compressor and receiver, means for conveying refrigerant vapor from said receiver to said condenser and refrigerant liquid from said condenser to said receiver, and a pump for circulating liquid refrigerant in thermal exchange with said compressor.
  • a refrigerating apparatus comprising a compressor, condenser, evaporator and refrigerant liquid receiver, a refrigerant vapor discharge connection between said compressor and receiver, means for conveying refrigerant vapor from said receiver to said condenser and refrigerant liquid from said condenser to said receiver, a motor drivingly connected to said compressor, and a pump for circulating liquid refrigerant in thermal exchange with said motor.
  • a refrigerating apparatus comprising a compressor, condenser and evaporator in refrigerant flow relationship and forming a closed refrigerant flow circuit, said compressor including a drive shaft, a pump hermetically sealed to said compressor and driven by said shaft and refrigerant flow connections whereby said pump circulates liquid refrigerant from said refrigerant flow circuit in thermal exchange with said compressor.
  • a refrigerating apparatus comprising a compressor, condenser and evaporator in refrigerant flow relationship and forming a closed refrigerant flow circuit, said compressor including a drive shaft, a motor connected to said drive shaft, a pump hermetically sealed to said compressor and driven by said shaft and refrigerant fiow connections whereby said pump circulates liquid refrigerant from said refrigerant flow circuit in thermal exchange with said motor.
  • a compressor In a refrigerating apparatus, a compressor, a condenser and an evaporator, said compressor including a discharge valve and discharge valve chamber, a refrigerant vapor line connecting said chamber and condenser, a refrigerant liquid line connecting said condenser and evaporator, a refrigerant vapor line connecting said evaporator and compressor, and connections for introducing refrigerant liquefied in said condenser into said chamber.
  • a compressor in a refrigerating apparatus, a compressor, a condenser and an evaporator, said compressor including a discharge valve and discharge valve chamber, a refrigerant vapor line connecting said chamber and condenser, a refrigerant liquid line connecting said condenser and evaporator, a refrigerant vapor line connecting said evaporator and compressor, and connections for introducing liquid refrigerant from said condenser into said chamber above said valve.
  • a refrigerant apparatus comprising a refrigerant translating device, a condenser and evaporator, refrigerant flow connections between said device, condenser and evaporator, said connections including a flexible refrigerant vapor line and a flexible refrigerant liquid line, one of said lines surrounding the other, and a water line surrounding both of said ligies.
  • a condenser and an evaporator in refrigerant flow relationship and forming a closed refrigerant fiow system
  • said compressor having a compressed refrigerant outlet valve and an outlet valve passage
  • a pump operated in unison with said compressor having means for withdrawing liquid refrigerant from said condenser and injecting the same into said passage to commingle with compressed gases discharged through said valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

Nov. 28,1939. H. F. SMITH 2,181,213
REFRIGERATING APPARATUS Filed Oct. 31, 1934 3 Sheets-Sheet l 12 Q Q a 2: 5/ 28 000000 00%;; H I Y m c: Q a f I; 1 $0 zza. &4 v w 4.5
,'f' I, 22 15 j Z Z0 ATTORNEYS Nov. 28, 1939; H, F MITH 2,181,213
REFRIGERATING APPARATUS v Filed Oct. 51, 1954 5 Sheets-Sheet 2 I y INI ENT Q R.
ATTORNEY; I
Nov. 28, 1939. H. F. SMITH 2,181,213
REFRIGERATING APPARATUS Filed Oct. 51, 1934 3 Sheets-Sheet 3 Patented Nov. 28, 1939 2,181,213 REFRIGERATING APPARATUS Harry F. Smith, Dayton, Ohio, assignor to General Motors Corporation, Dayton, Ohio, a corporation of Delaware Application October 31, 1934, Serial No. 750,842
9 Claims.
This invention relates to refrigeration. An object of this invention is to provide a novel refrigerating system which is useful for many purposes and particularly for use in coni nection with the cooling of rooms or the like. I Further objects and advantages of the present invention will be apparent from the following description, reference being had to the following drawings, wherein a preferred form of the present invention is clearly shown.
In the drawings:
Fig. 1 is a vertical cross-sectional View, somewhat diagrammatic, of an'apparatus embodying features of my invention Fig. 2 is a vertical cross-sectional view of the liquid refrigerant pump at the end of the drive shaft of the compressor shown in Figs. 1 and 3;
Fig.3 is a view somewhat similar to Fig. 1, but showing a slightly modified form;
Fig. 4 is a detailed cross-sectional view of a portion of the flexible connections shown in Figs. 1 and 3 and taken along the line 4-4 of Fig. 5;
Fig. 5 is a cross-sectional view taken along the line 55 of Fig. 4; and
25 Fig. 6 is a cross-sectional view of a portion of a slightly modified compressor which may be used in lieu of the form shown in Figs. 1 and 3.
, Fig. 7 is a diagrammaticshowing of the fluid flow circuits of the apparatus shown in Fig. 1;
Fig. 8 is a diagrammatic showing of the electric circuits of said apparatus.
A refrigerating apparatus embodying features of my invention includes in general a compressor or refrigerant translating device III, a condenser II and an evaporator 12 arranged in refrigerant flcw relationshi The compressor 10 and evaporator I2 are preferably assembled with a cabinet l3 so that they are adapted to be placed in the room I4 which is to be cooled. The condenser 40 II is adapted to be carried on a mounting l5 so that the same may be placed outside of the room 14. The ararigement is such that heat is absorbed from the air which is being conditioned for the room M, the heat being absorbed into the 5 evaporator l2. This heat eventually is discharged into the atmosphere outside of the room through the walls of the condenser II, the heat being pumped (for instance along with the refrigerant) by the csmpressor or refrigerant tran lating device 19 from the vaporator to the condenser.
Means are provided whereby the heat gener ated by the compressor and by the motor 16, which drives the compressor l0 may also be discharged through the walls of the condenser H.
To this end arrangements, are provided whereby refrigerant' vapor is discharged from the compressor H) to the condenser II where the refrigerant is liquefied. A portion (or all) of the refrigrant thus liquefied is circulated while under 5 high pressure liquid form in thermal exchange relationship with the compressor and/or the motor in such a manner that the liquid refrigerant absorbs heat therefrom. If any of the liquid refrigerant is vaporized, it may be returned to the condenser II where it delivers the heat thus absorbed from the motor and/or compressor and where the refrigerant is reliquefied. Refrigerant flow connections are also provided for delivering liquid refrigerant to the evaporator where it is 15 reduced in pressure and is vaporized and from whence it flows, in vapor form, through the vapor line to the compressor.
The foregoing refrigerant flow is attained in the embodiment shown in Fig. 1 by providing a compressed vapor refrigerant line I! which connects an outlet valve chamber ll! of the compressor III with a liquid refrigerant receiver 19. The refrigerant vapor flows from the receiver 19 through the connection 20 to a flexible fluid-flow structure 21 through which it flows through the wall or window of the room 14 to the condenser ll. Here the refrigerant is liquefied and flows back in liquid form through the fluid-flow flexible connection 2| to the coupling 22 from whence the liquid refrigerant flows through the pipe 23 to the liquid refrigerant pump 24 at the end of the crankshaft of the compressor. It is then circulated by the pump 24 in thermal exchange relationship with the motor 16 by the pipe 25, which conveniently may be wrapped around the motor l6, and from whence it is discharged into the outlet valve chamber [8 above the outlet valve 26 where it removes heat from the compressor and superheat from the compressed refrigerant. The vaporized refrigerant is discharged with the refrigerant being compressed by the compressor into the line 12 and finds its way to the condenser ll through connection 2| while any unvaporized liquid refrigerant is separated at the receiver I9 by gravity.
Liquid refrigerant flows from the receiver I9 through the line 21 to an automatic expansion valve 28 and from thence into the evaporator 12 where the refrigerant is reduced in pressure and vaporized and from whence it returns through the expanded refrigerant line 29 to thecompres- F01 Ill. The valve 28 is of the type which automatically introduces liquid refrigerant into the evaporator l2 whenever the pressure'therein is reduced below a predetermined limit. This valve is "also provided with a thermostatic bulb control 30 which automatically throttles the valve 28 whenever the refrigerating effect reaches the bulb 30 through the line 29 and thus prevents the flooding of the compressor In with unvaporized shown more in detail in Figs. 4 and 5. The coupling 22 is provided with a connection 3| which forms the usual flare joint with the pipe 20 and thus permits the introduction of refrigerant in vapor form into the interior of the rubber-like pipe 32 and from thence to the condenser ll. The liquefied high pressure refrigerant flows from the condenser l I through the flexible metallic pipe 33 through the coupling 22 to the connection 34 into the pipe 23 previously described. The connection 34 may form the usual flare joint with the line 23. The coupling 22 is connected with the pipes 32 and 33, the pipe 32 being secured thereto by the bolt and strap construction 35, while the pipe 33 is connected by means of the flare joint 33 well-known in the art. The pipe 32 may be of any flexible refrigerant resisting material, and where a fluorine hydrocarbon derivative refrigerant is used such as dichloro-tetrafiuoroethane, this rubber-like material may be a synthetic rubber now marketed under the trade name duprene, and known as chloro-2-butadiene-1,3. The other end of the structure 2| may have a coupling 22a which is similar to the coupling 22 and which connects with the inlet and outlet of the condenser I l as is readily apparent.
The air passing overthe evaporator l2 has its temperature reduced often below its dew point. When this occurs, water is condensed therefrom, and it is desirable to discharge this water outside of the room. This may be accomplished by providing a drain pan 40 from which the water drains through the pipe 4| to a pump 42, driven by the motor l6 through the medium of belt 42; and from whence the water is discharged through the pipe 43, which is wrapped around the rubberlike pipe 32 as shown at 44, and eventually the water is discharged at the spray-head 45 over the condenser where the water is evaporated by the heat of the condenser and is discharged, in vapor form, into the air outside the room.
Means are provided for the circulation of air. Thus a fan 46, driven by a motor 4'I,-causes air to flow through the inlet 43 past the evaporator I2 and out the grille 49 into the room l4, the air having been cooled and dehumidified thereby. In order to simplify the disclosure in the drawings no means has been shown for introducing outside air into the evaporator compartment. It is obvious, however, that any conventional means may be used for bringing outside air into the evaporator compartment in the event that it is desired to introduce fresh air into the room being conditioned. Air may also be circulated over the condenser ll. Thus a fan 50, driven by a motor 5|, causes air tocirculate from outside the room through the inlet 52 and be discharged out- .let valve chamber l8b.
may be placed where it is responsive to conditions in the apparatus and preferably to temperature conditions in the room I: This bulb 55 may be responsive either to dry bulb or vwet bulb temperatures, or to a combination of both, and may be conveniently placed near the inlet 48 where it is representative of the temperature or relative humidity conditions of the room l4. Thus bulb 55 opens and closes a snap switch 56 which starts and stops the motors l6 and 5|, these motors being started when the temperature and/ or relative humidity in the room rises above a predetermined limit and being stopped when the temperature and/or relative humidity falls below another and lower predetermined limit. The pump 24 may be hermetically sealed to the compressor It by means of the bolts 51 as shown in Fig. 2. The compressor It may be provided with a drive shaft or crankshaft 58, which is driven by the motor 15 through the medium of the belt 53 at one end. The other end of the-shaft is provided with an eccentric 59a which drives the oscillating piston 60 of the pump 24. The pump 24 may be of any well-known type which may be driven from an eccentric 59a at the end of crankshaft 53, and since pumps of thistype are wellknown in the art, further description thereof is not necessary. A
The material of which the tube 32 is made, if rubber-like in character, is likely to be damaged by exceedingly high temperatures. The ordinary superheat' of compressed refrigerant, as discharged from a compressor, is likely to damage such material, .but by introducing liquid refrigerant into thermal contact with the compressed refrigerant before it is discharged into the tube 32, this superheat is removed and damage to the tube 32 is therefore prevented.
In the modification shown in Fig. 3,substantially all of the parts of the apparatus may be exactly as shown in Fig. 1 with the exceptions hereafter noted. Refrigerant is discharged from the.outlet valve chamber l8a, through the pipe 10, into the coupling 22b. Thus refrigerant both in liquid and vapor form flow through a tube similar to the tube 32 to the condenser II a. Here the vaporized refrigerant is condensed and refrigerant in liquid form flows through a pipe similar to the pipe 33 through the coupling 22?) to the pipe 23a. The arrangement is such that a portion only of the liquid refrigerant need be circulated in thermal exchange with the compressor Illa and 'motor in. This is accomplished by providing a pipe H which connects the pipe 231: with the receiver I3a. Anyexcess liquid refrigerant which is not pumped by the pump 24a flows through the pipe 1| into the receiver l9a. The pump 24a may be chosen to be of such a capacity that only the necessary amount of liquid refrigerant is circulated through the pipe 25a into the chamber 18a. The other parts of the apparatus have their counterparts in Fig. 1 and it is believed that they need not be further described.
It may sometimes be desirable not to discharge the refrigerant from the pipes 25 and 25a directly into the chambers l8 or I 8a, but only-in thermal exchange therewith. Under such conditions, the pipe 25b which may be representative of either pipes 25 or 2541, discharge the liquid refrigerant in thermal exchange with the wall 12 of the out- The refrigerant then continues to flow through the pipe 13 into the receiver IS in the case of Fig. 1, or into the pipe 10 in the case of Fig. 3. The compressed refrigerant flows through the pipe 80 either to the receiver IS in the case of Fig. 1 or directly to the condenser Na in the case of Fig. 3.
While the form of embodiment of the invention as herein disclosed, constitutes a preferred form, it is to be understood that other forms might be adopted, all coming within the scope of the claims which follow.
What is claimed is as follows:
1. In a refrigerating apparatus, a compressor, a condenser and an evaporator in refrigerant flow relationship forming a closed refrigerant flow system, said compressor having a compressed refrigerant outlet valve and an outlet valve chamber, and means to introduce liquid refrigerant from said condenser into said chamber to commingle with compressed gases passing through said valve.
2. A refrigerating apparatus comprising a compressor, condenser, evaporator and refrigerant liquid receiver, a refrigerant vapor discharge connection between said compressor and receiver, means for conveying refrigerant vapor from said receiver to said condenser and refrigerant liquid from said condenser to said receiver, and a pump for circulating liquid refrigerant in thermal exchange with said compressor.
3. A refrigerating apparatus comprising a compressor, condenser, evaporator and refrigerant liquid receiver, a refrigerant vapor discharge connection between said compressor and receiver, means for conveying refrigerant vapor from said receiver to said condenser and refrigerant liquid from said condenser to said receiver, a motor drivingly connected to said compressor, and a pump for circulating liquid refrigerant in thermal exchange with said motor.
4. A refrigerating apparatus comprising a compressor, condenser and evaporator in refrigerant flow relationship and forming a closed refrigerant flow circuit, said compressor including a drive shaft, a pump hermetically sealed to said compressor and driven by said shaft and refrigerant flow connections whereby said pump circulates liquid refrigerant from said refrigerant flow circuit in thermal exchange with said compressor. Q
5. A refrigerating apparatus comprising a compressor, condenser and evaporator in refrigerant flow relationship and forming a closed refrigerant flow circuit, said compressor including a drive shaft, a motor connected to said drive shaft, a pump hermetically sealed to said compressor and driven by said shaft and refrigerant fiow connections whereby said pump circulates liquid refrigerant from said refrigerant flow circuit in thermal exchange with said motor.
6. In a refrigerating apparatus, a compressor, a condenser and an evaporator, said compressor including a discharge valve and discharge valve chamber, a refrigerant vapor line connecting said chamber and condenser, a refrigerant liquid line connecting said condenser and evaporator, a refrigerant vapor line connecting said evaporator and compressor, and connections for introducing refrigerant liquefied in said condenser into said chamber.
7. In a refrigerating apparatus, a compressor, a condenser and an evaporator, said compressor including a discharge valve and discharge valve chamber, a refrigerant vapor line connecting said chamber and condenser, a refrigerant liquid line connecting said condenser and evaporator, a refrigerant vapor line connecting said evaporator and compressor, and connections for introducing liquid refrigerant from said condenser into said chamber above said valve.
8. A refrigerant apparatus comprising a refrigerant translating device, a condenser and evaporator, refrigerant flow connections between said device, condenser and evaporator, said connections including a flexible refrigerant vapor line and a flexible refrigerant liquid line, one of said lines surrounding the other, and a water line surrounding both of said ligies.
9. In a refrigerating apparatus, a compressor,
a condenser and an evaporator in refrigerant flow relationship and forming a closed refrigerant fiow system, said compressor having a compressed refrigerant outlet valve and an outlet valve passage, and a pump operated in unison with said compressor having means for withdrawing liquid refrigerant from said condenser and injecting the same into said passage to commingle with compressed gases discharged through said valve.
HARRY F. SMITH.
US750842A 1934-10-31 1934-10-31 Refrigerating apparatus Expired - Lifetime US2181213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US750842A US2181213A (en) 1934-10-31 1934-10-31 Refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US750842A US2181213A (en) 1934-10-31 1934-10-31 Refrigerating apparatus

Publications (1)

Publication Number Publication Date
US2181213A true US2181213A (en) 1939-11-28

Family

ID=25019378

Family Applications (1)

Application Number Title Priority Date Filing Date
US750842A Expired - Lifetime US2181213A (en) 1934-10-31 1934-10-31 Refrigerating apparatus

Country Status (1)

Country Link
US (1) US2181213A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2577107A (en) * 1947-05-09 1951-12-04 Gen Electric Compressor head cooling system for refrigerator machines
US2708835A (en) * 1954-01-18 1955-05-24 Joseph G Nigro Mobile and portable air conditioner
US2708833A (en) * 1953-02-27 1955-05-24 Joseph G Nigro Mobile air conditioning means for window openings
US2760354A (en) * 1953-12-09 1956-08-28 Lawrence P Brady Portable air conditioning unit
US2770107A (en) * 1954-02-15 1956-11-13 Drying Systems Inc Air to air heat pump apparatus
US3938352A (en) * 1974-07-10 1976-02-17 Weil-Mclain Company, Inc. Water to air heat pump employing an energy and condensate conservation system
US4599873A (en) * 1984-01-31 1986-07-15 Hyde Robert E Apparatus for maximizing refrigeration capacity
US5749237A (en) * 1993-09-28 1998-05-12 Jdm, Ltd. Refrigerant system flash gas suppressor with variable speed drive

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2577107A (en) * 1947-05-09 1951-12-04 Gen Electric Compressor head cooling system for refrigerator machines
US2708833A (en) * 1953-02-27 1955-05-24 Joseph G Nigro Mobile air conditioning means for window openings
US2760354A (en) * 1953-12-09 1956-08-28 Lawrence P Brady Portable air conditioning unit
US2708835A (en) * 1954-01-18 1955-05-24 Joseph G Nigro Mobile and portable air conditioner
US2770107A (en) * 1954-02-15 1956-11-13 Drying Systems Inc Air to air heat pump apparatus
US3938352A (en) * 1974-07-10 1976-02-17 Weil-Mclain Company, Inc. Water to air heat pump employing an energy and condensate conservation system
US4599873A (en) * 1984-01-31 1986-07-15 Hyde Robert E Apparatus for maximizing refrigeration capacity
US5749237A (en) * 1993-09-28 1998-05-12 Jdm, Ltd. Refrigerant system flash gas suppressor with variable speed drive

Similar Documents

Publication Publication Date Title
US3153442A (en) Heating and air conditioning apparatus
US2677944A (en) Plural stage refrigeration apparatus
US2881600A (en) Mechanically refrigerated railway car
US2362729A (en) Refrigerating apparatus
US2175946A (en) Refrigerating apparatus
US2251960A (en) Refrigerating apparatus
US2684579A (en) Apparatus for cooling oil of refrigerant compressors
US2181213A (en) Refrigerating apparatus
US3218825A (en) Refrigerating apparatus including means for cooling compressor motor
US2978881A (en) Air conditioning apparatus
US2010546A (en) Vibration eliminating means for refrigerating systems
US1436444A (en) Refrigerating apparatus
US2570808A (en) Low-temperature drying apparatus
US2541921A (en) Refrigerating apparatus for railway cars
US2155831A (en) Refrigerating apparatus
US2649698A (en) Special valve arrangement on centrifugal condensers and coolers
US1559883A (en) Air-cooled refrigerating machine
US1934189A (en) Inclosed motor pump unit
US2068677A (en) Refrigerating system
US2150993A (en) Air conditioning apparatus
US2125727A (en) Air conditioning apparatus
US2268186A (en) Air conditioning apparatus
US1933703A (en) Device for cooling condenser water
US2117693A (en) Apparatus for refrigerating purposes
US2032012A (en) Refrigerating apparatus