[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20240002861A1 - Compositions and methods for treatment of bleeding disorders - Google Patents

Compositions and methods for treatment of bleeding disorders Download PDF

Info

Publication number
US20240002861A1
US20240002861A1 US18/253,975 US202118253975A US2024002861A1 US 20240002861 A1 US20240002861 A1 US 20240002861A1 US 202118253975 A US202118253975 A US 202118253975A US 2024002861 A1 US2024002861 A1 US 2024002861A1
Authority
US
United States
Prior art keywords
day
vwf
control
fviii
vwd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/253,975
Inventor
James C. Gilbert
Shuhao Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Band Therapeutics LLC
Original Assignee
Band Therapeutics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Band Therapeutics LLC filed Critical Band Therapeutics LLC
Priority to US18/253,975 priority Critical patent/US20240002861A1/en
Publication of US20240002861A1 publication Critical patent/US20240002861A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3521Methyl

Definitions

  • the present disclosure relates to agents, compositions and methods for treatment of bleeding disorders such as hereditary bleeding disorders (e.g., hemophilia A and von Willebrand disease (VWD)).
  • the methods use agents binding to VWF and pharmaceutical compositions and formulations thereof.
  • Bleeding disorders are a heterogeneous group of conditions in which the blood cannot properly coagulate. As a result, patients with bleeding disorders will experience extensive bleeding after injury, trauma or surgery, etc. Some patients could develop severe, and spontaneous bleeding. Bleeding disorders can be inherited or acquired. Inherited bleeding disorders are often caused by deficiencies in factors involved on blood coagulation (i.e., coagulation factors; also known as clotting factors), and abnormalities of blood vessels and platelets. Hereditary bleeding disorders caused by deficient coagulation proteins include hemophilia A and B, von Willebrand Disease (VWD) Type 1, Type 2 (including subtypes 2a, 2b, 2m and 2n), and Type 3 and other rare bleeding disorders. Platelet-caused bleeding disorders include the inherited thrombocytopenia with less platelet counts Bernard-Soulier syndrome and Glanzmann's thrombasthenia.
  • VWD von Willebrand Disease
  • Blood coagulation is a complex process including the sequential interaction of a series of components, in particular of fibrinogen, Factor II (FII), Factor V(FV), Factor VII (FVII), Factor VIII (FVIII), Factor IX (FIX), Factor X (FX), Factor XI (FXI), Factor XII (FXII) and von Willebrand Factor (VWF).
  • the clotting components interact with platelet in the blood to maintain normal hemostasis.
  • Hemophilia is an X-linked inherited bleeding disorder with a frequency of about one in 10,000 births. Hemophilia is caused by a deficiency of coagulation factor VIII (FVIII) (hemophilia A) or factor IX (FIX) (hemophilia B) (e.g., reviewed by Samuelson et al., Blood Rev., 2019, 35:43-50). Mutations in the gene coding FVIII can result in hemophilia A. The clinical presentation for hemophilia A is usually characterized by episodes of spontaneous and prolonged bleedings, ranging from mild, moderate to severe.
  • FVIII coagulation factor VIII
  • FIX factor IX
  • VWF Von Willebrand factor
  • VWF mediates platelet adhesion to exposed sub-endothelial collagen at sites of vascular injury to facilitate platelet mediated plug formation.
  • VWF also performs its hemostatic functions through binding to Factor VIII (FVIII) and to platelets surface glycoproteins, and to localize FVIII to sites of platelet plug and subsequent clot formation.
  • FVIII Factor VIII
  • VWF complexed with FVIII also stabilizes the FVIII protein in plasma and protects it from proteolytic degradation by activated protein C in the circulation. The FVIII-VWF complex therefore extends the circulatory life of FVIII.
  • VWD von Willebrand disease
  • the most common symptoms of VWD include mucocutaneous bleeding, hematomas, and bleeding after trauma or surgery, similar to hemophilia A due to the rapid degradation FVIII caused by lacking VWF cofactor.
  • VWD is the most common inherited bleeding disorder with an estimated prevalence of ⁇ 1%. Clinically relevant bleeding symptoms are present in approximately 1:10,000 individuals.
  • VWD can be caused by a quantitative and/or qualitative defect in VWF.
  • Quantitative deficiencies of VWF are often associated with severe VWD Type 1 and Type 3.
  • VWD Type 2 is usually caused by qualitative defects in VWF (i.e., functional defects in VWF).
  • VWD Type 2b is characterised by an increased binding affinity of VWF to platelet glycoprotein 1b, which leads to consumption of VWF and thrombocytopenia in some VWD patients with a resulting severe bleeding phenotype.
  • hemophilia A is treated with protein replacement therapy using either plasma derived or recombinant FVIII.
  • FVIII replacement/substitute could markedly improve the life of patients suffering from hemophilia, hemophilia patients are still at risk for severe bleeding episodes and chronic joint damage, since prophylactic treatment is restricted by the short half-life, the limited availability, and the high cost of purified FVIII proteins.
  • Treatment and prevention of bleedings in VWD patients focus on increasing plasma VWF and FVIII levels to adequate hemostatic levels.
  • Current treatments include stimulation of the release of endogenous VWF by administration of desmopressin (DDAVP) and infusion of VWF-containing factor concentrates (e.g., VWF/FVIII concentrates) or recombinant VWF preparations.
  • DDAVP desmopressin
  • VWF-containing factor concentrates e.g., VWF/FVIII concentrates
  • Choice of treatment is dependent on the type of disease and the severity of the bleeding.
  • the present disclosure provides VWF targeting agents to treat bleeding disorders, in particular hemophilia A, including mild, moderate and severe hemophilia, and von Willebrand disease (VWD) Type 1, Type 2 (e.g., Type 2a. Type 2b, Type 2m and Type 2n) and Type 3.
  • the VWF targeting agents include VWF binding aptamers and variants thereof.
  • methods for treating a bleeding disorder in a patient comprise administering to the patient a pharmaceutically efficient amount of a composition comprising a VWF targeting agent.
  • the patient is diagnosed with a bleeding disorder.
  • the bleeding disorder is a hereditary bleeding disorder, including hemophilia A (e.g., mild, moderate or severe hemophilia), and VWD (e.g., VWD Type 1, VWD Type 2a, Type 2b, Type 2m and Type 2n, and VWD Type 3), inherited thrombocytopenia and a rare bleeding disorder.
  • the bleeding disorder may also be acquired, e.g., inhibitor induced thrombocytopenia.
  • the patient is diagnosed with hemophilia A.
  • the patient may have mild hemophilia, moderate hemophilia, or severe hemophilia.
  • the patient is diagnosed with VWD Type 1, Type 2 such as Type 2a, Type 2b and Type 2n, or Type 3.
  • the VWF targeting agent is a VWF binding agent that binds to VWF.
  • the VWF targeting agent is an antibody, a nanobody, a peptide, an oligonucleotide, an RNA (e.g., siRNA, microRNA), a synthetic polynucleotide (e.g., an aptamer), or a small molecule.
  • the VWF binding agent is a synthetic polynucleotide selected from SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5).
  • BT200 SEQ ID No.: 6
  • ARC15105 SEQ ID No.: 7
  • ARC1779 SEQ ID No.: 8
  • the patient having a bleeding disorder may receive a single dose, or multiple doses of the VWF targeting agent. In one embodiment, the patient receives multiple doses of the VWF binding agent.
  • the VWF targeting agent is BT200, a PEGylated aptamer that specifically binds to the A1 domain of human VWF.
  • BT200 is administered at a dose ranging from 1.0 mg to 10.0 mg, or from 1.0 mg to 6.0 mg.
  • the present disclosure provides methods for increasing the circulatory level of VWF in a blood system of a subject.
  • the method comprises administering to the subject a composition comprising a VWF targeting agent.
  • the VWF targeting agent binds to VWF and increase the VWF levels in the circulation.
  • the VWF targeting agent is a VWF binding agent that binds to VWF.
  • the VWF binding agent is a synthetic polynucleotide selected from SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5), BT200 (SEQ ID No.: 6), ARC15105 (SEQ ID No.: 7), ARC1779 (SEQ ID No.: 8) or a variant thereof.
  • the VWF target agent is BT200, a PEGylated aptamer that specifically binds to the A1 domain of human VWF.
  • BT200 is administered at a dose ranging from 1.0 mg to 10.0 mg, or from 1.0 mg to 6.0 mg.
  • the subject is diagnosed with VWD, e.g., VWD Type 1, VWD Type 2 including Type 2a. Type 2b and Type 2n, and VWD Type 3.
  • the subject is diagnosed with VWD including Type 1, Type 2 and Type 3 and receives a factor replacement treatment.
  • the present disclosure provides methods for extending the circulatory life of FVIII in a blood system of a subject.
  • the method comprises administering to the subject a composition comprising a VWF targeting agent.
  • the VWF targeting agent binds to VWF and increases the FVIII levels in the circulation.
  • the VWF targeting agent is a VWF binding agent that binds to VWF.
  • the VWF binding agent is a synthetic polynucleotide selected from SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5), BT200 (SEQ ID No.: 6), ARC15105 (SEQ ID No.: 7), ARC1779 (SEQ ID No.: 8) or a variant thereof.
  • the VWF target agent is BT200, a PEGylated aptamer that specifically binds to the A1 domain of human VWF.
  • BT200 is administered at a dose ranging from 1.0 mg to 10.0 mg, or from 1.0 mg to 6.0 mg.
  • the subject is diagnosed with hemophilia A, e.g., mild, moderate or severe hemophilia. In some examples, the subject is diagnosed with hemophilia A and receives a factor replacement treatment. In other embodiments, the subject is diagnosed with VWD Type 1, or VWD Type 2 (including Type 2a, Type 2b and Type 2n), or VWD Type 3. In some examples, the subject is diagnosed with VWD and receives a VWF replacement treatment.
  • FIG. 1 displays additive effects on the levels of VWF and FVIII by coadministration of BT200 and desmopressin in healthy volunteers.
  • FIG. 2 is a histogram demonstrating platelet counts in patients with VWD Type 2b, after subcutaneous injection of BT200.
  • FIG. 3 displays increased FVIII levels and activity (aPTT FS) in patients with VWD Type2b after subcutaneous injection of BT200.
  • FIG. 4 A shows increased VWF levels after subcutaneous injection of BT200
  • FIG. 4 B shows increased VWF activity after subcutaneous injection of BT200 in patients with VWD Type 2b.
  • FIG. 5 shows increased Factor VIII activity (%) after BT200 prophylactic treatment in patients with mild hemophilia A.
  • the present disclosure relates to methods, agents, and pharmaceutical compositions and formulations thereof, for treating a bleeding disorder such as an inherited bleeding disorder (e.g., hemophilia A and VWD).
  • a method for treating a bleeding disorder in a patient comprises administering to the patient a therapeutically effective amount of a pharmaceutical composition comprising an agent targeting to von Willebrand factor (VWF).
  • VWF von Willebrand factor
  • the agents herein relate to any molecules that can target to VWF in the blood.
  • the VWF targeting agents can bind to VWF to mediate VWF hemostatic function.
  • a VWF targeting agent may be an antibody, a nanobody, a peptide, an oligonucleotide, an RNA (e.g., siRNA, microRNA), an aptamer and a variant thereof, or a small molecule.
  • the VWF targeting agent is a synthetic polynucleotide derived from an aptamer that specifically binds to VWF.
  • the targeting agent may be further modified with one or more chemical modifications and conjugates.
  • the agent and VWF complexes protect circulating VWF from clearance, thereby increasing the levels of VWF and FVIII in the blood to increase clotting.
  • composition As used herein, the term “pharmaceutical composition” is sometimes used interchangeably with the term “pharmaceutical formulation”. It refers to the combination of an active compound with a pharmaceutically acceptable carrier or excipient, inert or active, making the composition suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.
  • the active compound may be one or more compound that can be used to treat a bleeding disorder.
  • compositions that are generally safe, non-toxic and neither biologically nor otherwise undesirable, and includes a carrier or excipient that is acceptable for veterinary use as well as human pharmaceutical use.
  • a “pharmaceutically acceptable carrier or excipient” as used in the specification and claims includes both one and more than one such carrier or excipient.
  • pharmaceutically acceptable carrier encompasses any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents.
  • compositions and formulations also can include stabilizers and preservatives.
  • pharmaceutically acceptable refers to molecular entities and compositions that are physiologically tolerable and do not typically produce untoward reactions when administered to a human.
  • pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans, or generally recognized as safe for use in parenteral products.
  • therapeutically effective amount refers to the amount of the compound that is sufficient to result in a therapeutic response.
  • therapeutically effective amount may refer to the amount of an anti-VWF aptamer that is sufficient to result in a therapeutic response.
  • a therapeutic response may be any response that a user (e.g., a clinician) will recognize as an effective response to the therapy. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the particular therapeutic agent, its mode and/or route of administration, and the like. It will be understood, however, that the total daily usage of the compounds and compositions of the present disclosure can be decided by an attending physician within the scope of sound medical judgment.
  • Preventing, prevention or prevent As used herein, the terms “prevent,” “preventing,” and “prevention” and grammatical variations thereof are used interchangeably. These terms refer to a method of partially or completely delaying or precluding the onset or recurrence of a disorder or conditions and/or one or more of its attendant symptoms or barring a subject from acquiring or reacquiring a disorder or condition or reducing a subjects risk of acquiring or reacquiring a disorder or condition or one or more of its attendant symptoms.
  • Treating, treatment or treat refers to administering to a subject an effective amount of a pharmaceutical composition, such that at least one symptom of a disease is reversed, cured, alleviated, improved, reduced, decreased, or reaches beneficial or desired clinical results such as diminishment of extent of disease, stabilized (e.g., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (partial or total; and detectable or undetectable).
  • subject is used interchangeably with the terms “individual” and “patient”, and refers to a vertebrate, preferably a mammal, more preferably a human.
  • injection or “injectable formulation” refer to a composition that can be drawn into a syringe and injected subcutaneously, intraperitoneally, or intramuscularly into a subject (e.g., human).
  • parenteral administration of a pharmaceutical formulation means administration to a subject by a route other than topical or oral (i.e., a non-topical and non-oral route).
  • parenteral routes include subcutaneous, intramuscular, intravascular (including intraarterial or intravenous), intraperitoneal, intraorbital, retrobulbar, peribulbar, intranasal, intrapulmonary, intrathecal, intraventricular, intraspinal, intracisternal, intracapsular, intrasternal or intralesional administration.
  • Parenteral administration may be, e.g., by bolus injection or continuous infusion, either constant or intermittent and/or pulsatile, and may be via a needle or via a catheter or other tubing.
  • Subcutaneous administration refers to a common route of administration of a pharmaceutical composition, including but not limited to subcutaneous injection and infusion.
  • the infusion may be continuous or in spurts using infusion pumps or any other commercially available devices.
  • Blood coagulation is a complex and dynamic biological process involving the sequential interactions of clotting components including coagulation factors: Factor II (FII), Factor V(FV), Factor VII (FVII), Factor VIII (FVIII), Factor IX (FIX), Factor X (FX), Factor XI (FXI), Factor XII (FXII) and cofactor, von Willebrand Factor (VWF).
  • FII Factor II
  • FV Factor VII
  • FVII Factor VIII
  • FIX Factor IX
  • FX Factor X
  • FXII Factor XII
  • VWF von Willebrand Factor
  • FVIII Factor VIII
  • anti-hemophilic factor A a large, plasma glycoprotein
  • FVIII is a key component of the fluid phase blood coagulation cascade.
  • FVIII is primarily produced by hepatocytes and vascular endothelial cells.
  • Human FVIII is one of the largest coagulation factors including three A-domains, a unique B-domain, and two C-domains and activated via proteolytic cleavage by FXa and thrombin to generate the activated FVIII heterotrimer (FVIIIa).
  • FVIIIa acts as a non-enzymatic cofactor for the prothrombinase and tenase complex in the coagulation cascade that accelerates FX activation in the presence of FIXa, phospholipids and calcium ions (Fay et al., Blood Reviews, 2004, 18: 1-15).
  • the half-life of FVIII is about 12 hours.
  • FVIIIa must be inactivated soon after activation, by Protein C (APC) mediated cleavage.
  • APC Protein C
  • the inactivation of FVIIIa is a rapid process, which explains the short half-life of FVTIla in the blood.
  • the terms “Factor VIII(a)” and “FVIII(a)” include both VIII and FVIIIa.
  • the term “Factor VIII” and “FVIII” may include both FVIII and FVIIIa.
  • VWF von Willebrand factor
  • VWF von Willebrand factor
  • Human VWF preproprotein GeneBank Ref. No. NP_000543.2; SEQ ID No.: 1 (encoded by cDNA: GeneBank Ref. No. NM_000552.3; SEQ ID No.: 2) is processed to be a mature polypeptide comprising multiple subdomains with different functions (Hassan and Saxena, Blood Coagul. Fibrinolysis, 2012, 23(1):11-22).
  • VWF is the carrier protein for FVIII, binding FVIII to platelets surface glycoproteins and localizing FVIII to sites of platelet plug and subsequent clot formation. VWF also acts as a stabilizer of FVIII in the circulation by the formation of the non-covalently bound VWF-FVIII complex that protects VIII from degradation by activated protein C (APC), thereby preventing FVIII from premature proteolysis (Koppelman et al., Blood. 1996; 87:2292-2300). In addition, VWF blocks the interaction of FVIII with lipoprotein-related receptors and thereby increases the half-life of FVIII in the circulation.
  • APC activated protein C
  • VWF has an important protective role for FVIII both under normal physiological conditions and in patients with hemophilia.
  • FVIII inhibitors e.g., antibodies to FVIII substitute
  • VWF may protect exogenous FVIII from the binding of inhibitory antibodies (Gensana et al., Hemophilia. 2001; 7:369-374).
  • Plasma levels of VWF can affect risk of bleeding (lower level of VWF) or thrombosis (higher level of VWF).
  • Quantitative deficiencies (low levels) of plasma VWF e.g., ⁇ 50%) are associated with an increased risk for bleeding, while high plasma levels of VWF (e.g., >150%) increase the risk for thrombosis (e.g., higher risk for venous thromboembolic disease, ischemic stroke, coronary artery disease, myocardial infarction and peripheral vascular disease).
  • a deficiency in the coagulation process may increase the risk of bleeding, For example, coagulation factor deficiencies and defects in platelet number or function cause bleeding disorders. Bleeding can occur inside the body (internal bleeding) or underneath the skin or from the surface of the skin (external bleeding).
  • bleeding disorders refer to a heterogeneous group of conditions that result when the blood cannot clot properly.
  • platelets stick together and form a plug at the site of an injured blood vessel.
  • Coagulation factors in the blood interact to form a fibrin clot, essentially a gel plug, which holds the platelets in place and allows healing to occur at the site of the injury while preventing blood from escaping the blood vessel.
  • the inability to form clots can be very dangerous, resulting in excessive bleeding.
  • Bleeding can result from either too few or abnormal platelets, abnormal or low amounts of coagulation factors, dysfunctional coagulation factors (e.g., mutations in the genes encoding coagulation factors), or abnormal blood vessels.
  • the bleeding severity can be assessed according to guidelines such as the assessment tool reviewed by Rodeghiero et al., ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J Thromb Haemost . Sep. 2010; 8(9):2063-5. doi:10.1111/j.1538-7836.2010.03975.x).
  • a person with a bleeding disorder can have both internal and external bleeds. Common symptoms of a bleeding disorder include but not limited to, extended bleeding after injury, surgery, trauma, or menstruation; excessive bruising; bleeding into joints, muscles and soft tissues; gastrointestinal bleeding; spontaneous bleeding without a known or identifiable cause.
  • Bleeding disorders can be hereditary or acquired.
  • the term “hereditary bleeding disorders” (also called “congenital bleeding disorders”) refers to a group of rare disorders caused by genetic deficiency of clotting components.
  • the most common bleeding disorders include hemophilia (e.g., hemophilia A and B) and VWD (e.g., Types 1, 2 and 3).
  • Hemophilia A or Hemophilia B is a rare, hereditary bleeding disorder that can range from mild, moderate to severe, depending on how much the residual factor activity is present in in a patient's plasma.
  • the incidence of hemophilia A is ⁇ 1 in 5000 live male births and that of hemophilia B is 1 in 25 000 live male births.
  • Von Willebrand disease VWD is the most common inherited bleeding disorder in America affecting up to 1% of the US population.
  • Bleeding may also result from a low platelet (thrombocyte) count in the blood, a condition called thrombocytopenia.
  • a normal platelet count in adults ranges from 150,000 to 450,000 platelets per microliter of blood.
  • a platelet count of less than 150,000 platelets per microliter is lower than normal (thrombocytopenia).
  • the risk for serious bleeding does not occur until the count becomes very low—less than 10,000 or 20,000 platelets per microliter. When the count is less than 50,000 platelets per microliter, mild bleeding sometimes occurs. If the count is very low, less than 10,000 or 20,000 platelets per microliter, the risk for serious bleeding may occur. In rare cases, the number of platelets can be so low that dangerous internal bleeding occurs.
  • Thrombocytopenia may occur in various conditions, such as the inherited bleeding disorders and acquired conditions (e.g., a side effect from medications).
  • a low platelet count (thrombocytopenia) occurs may be due to not enough platelets made by bone marrow, deficiency in maintaining enough platelets in the blood, and/or abnormality in spleen which holds on too many platelets.
  • thrombocytopenia Conditions that cause a low platelet count include, for example, thrombotic thrombocytopenic purpura (TTP); disseminated intravascular coagulation (DIC); immune thrombocytopenia (ITP); an autoimmune disease; an enlarged spleen condition caused by cancer, severe liver disease, and a bone marrow deficiency; a viral or bacterial infection; and a side reaction to medicine.
  • TTP thrombotic thrombocytopenic purpura
  • DI disseminated intravascular coagulation
  • ITP immune thrombocytopenia
  • an autoimmune disease an enlarged spleen condition caused by cancer, severe liver disease, and a bone marrow deficiency
  • a viral or bacterial infection and a side reaction to medicine.
  • Classic hemophilia or hemophilia A is an inherited bleeding disorder caused by a chromosome X-linked deficiency of FVIII and affects almost exclusively males.
  • a mutation in the gene coding FVIII i.e., the F8 gene results in hemophilia A.
  • the genetic mutations could cause absence or decreased synthesis of FVIII or abnormal protein synthesis (Hong et al., Thrombosis Res., 2007, 119:1-13).
  • the X-chromosome defect is transmitted by female carriers who are not themselves hemophiliacs. Due to random chromosome activation, some women carriers may range from asymptomatic to symptomatic depending on how much of their FVIII is inactivated.
  • hemophilia A Because blood does not clot properly without enough FVIII, the clinical manifestation of hemophilia A is an increased bleeding tendency, e. g., a small cut or injury carrying the risk of excessive bleeding. In addition, people with hemophilia may suffer from internal bleeding that can damage joints (including the knee, ankle, elbow and hip joints), muscles, organs, and tissues (e.g., soft tissue under the skin) over time. Hemophilia bleeding intensity depends on the level of FVIII deficiency. There are three forms of hemophilia A: mild, moderate or severe in individual patients (Table 1), which are determined based on deficient plasma FVIII (IU) (Bolton-Maggs and Pasi, Lancet, 2003, 361: 1801-1809).
  • IU deficient plasma FVIII
  • bleeding symptoms also occur in otherwise healthy individuals. Although patients with mild bleeding disorders may not often suffer from bleeding in daily life, problems may occur after a hemostatic challenge, including but not limited to trauma, dental extractions and surgery.
  • hemophilia A mainly focuses on increasing blood activity of deficient coagulation factor VIII with factor substitute, in order to inhibit and/or prevent active bleedings in patients.
  • Current available therapeutics include human plasma derived lyophilized FVIII concentrates and recombinant coagulation factors produced by genetically engineered cells.
  • FVIII concentrates have a short half-life in plasma, with an average of about 12 hours in adults, ranging in individual patients with hemophilia A between 6 hours and 29 hours, and even shorter in younger children.
  • FVIII substitute treatment for hemophilia often requires frequent intravenous injections of therapeutics.
  • VWF targeting agents can bind to VWF and extend the half-life of VWF, thereby extending the half-life of FVIII.
  • VWD Von Willebrand's Disease
  • VWD von Willebrand disease
  • Types 1, 2, and 3 based on the levels of VWF and FVIII activity in the blood.
  • VWD Type 3 is the most severe and least common form with complete deficiency of VWF. Patients with Type 3 VWD have little or no VWF in their blood. The amount of FVII in the blood also drops to low levels without VWF to act as a carrier. Type 3 VWD patients have trouble making both a platelet plug and a fibrin clot. VWD Type 3 patients have spontaneous bleedings into their joints and muscles, frequent bleeding from their noses and mouths. Women with Type 3 VWD may have long menstrual periods with very heavy bleeding.
  • VWD Type 2 relates to qualitative defects of VWF and can be as severe as VWD Type 3 in some patients, which include four subtypes: Types 2a, 2b, 2m and 2n.
  • Type 2a is caused by defects in VWF multimerization due to the wrong size of the VWF protein. The abnormal VWF multimers stop the platelets from making a good platelet plug.
  • Type 2b the VWF protein is abnormally active with variants of spontaneous platelet binding. The attachment of VWF causes the body to quickly get rid of the platelets, which causes a shortage of both platelets and VWF in the blood.
  • Type 2m is caused by VWF defects in ligand binding with intact multimers.
  • Type 2n VWF has defects in FVIII binding, failing to act as the carrier and protector of FVIII.
  • VWD Type 2b results from a mutation in the A1 domain of VWF causing constitutive activation of A1 domain binding to the GPIb receptor on platelets, leading to a consumptive deficiency of VWF, FVIII, and platelets.
  • VWD Type 1 is the mildest and most common form accounting for up to 85% pf VWD (reviewed by Robertson et al., Pediatr Clin North Am., 2008, 55(2): 377-392), which relates to a quantitative loss of VWF but with qualitatively normal VWF. Because there is not enough VWF in the blood, a lower level of FVIII may be seen in Type 1. A small number of patients with Type 1 VWD can have severe bleedings.
  • VWD Type 1 is a very heterogeneous family of genetic defects representing 85 unique SNPs at last count and has only partial deficiency of VWF. For example, type Vicenza variant of VWD Type 1 is characterized by a low plasma VWF level and supranormal VWF multimers, caused by increased rate of VWF clearance (Alessandra et al., Blood 2002, 99(1): 180-184).
  • Deficiencies in other coagulation factors could cause rare bleeding disorders, e.g., rare factor deficiencies including Factor I, II, V, VII, X, XI, XII and XIII deficiency.
  • rare bleeding disorders e.g., rare factor deficiencies including Factor I, II, V, VII, X, XI, XII and XIII deficiency.
  • other bleeding disorders may be acquired, e.g., platelet disorders which are the most common cause of acquired bleeding disorder.
  • the inventors of the present disclosure surprisingly found that a VWF targeting aptamer that is modified with PEG conjugation can increase the VWF and FVIII levels in the blood after a single dose treatment.
  • the VWF targeting nucleic acid does not interfere the functionality of FVIII in plasma at any concentration, and at relatively low concentrations does not interfere with the function of VWF in plasma.
  • a VWF targeting agent is provided to bind to VWF in plasma and block its clearance, thereby increasing half-life of the VWF-FVIIII complex in the plasma.
  • the VWF targeting agent can be used to treat a hereditary bleeding disease, in particular, hemophilia A and VWD (e.g., Type 1, Vicenza subtype, Type 2 including subtypes 2a, 2b, 2m and 2n, and Type 3).
  • the term “targeting agent” refers to an agent that specifically binds to and interacts with a molecule of interest.
  • a VWF targeting agent is an agent that binds to VWF, directly or indirectly through another agent, to regulate VWF biologic activities (also referred to as “VWF binding agent), e.g., interaction of VWF with FVIII and half-life of VWF and FVIII-VWF complex.
  • the targeting agent may be an antibody, a nanobody, a peptide, an oligonucleotide, an RNA (e.g., siRNA, microRNA), a synthetic polynucleotide (e.g., an aptamer), or a small molecule that can bind to VWF.
  • the VWF targeting agent also includes an agent that binds to VWF, thereby blocking the clearance mechanism.
  • the VWF targeting agent can be used for treatment of bleeding disorders, particularly hemophilia A and VWD.
  • the VWF targeting agent may also be used for blocking VWF clearance in the blood.
  • the VWF targeting agents may be nucleic acid based, particularly aptamers that bind to VWF, and variants thereof.
  • a VWF binding agent is an aptamer or salt thereof.
  • Aptamers are short (i.e., typically 12-80 nucleotides in length) single-stranded nucleic acid polymers that bind with high affinity and specificity to VWF.
  • the aptamer is a synthetic polynucleotide that can be isolated using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process.
  • An aptamer is a biomolecule that binds to a specific target molecule and modulates the target's activity, structure, or function. Aptamers often are referred to as “chemical antibodies,” having similar characteristics as antibodies.
  • An aptamer can be nucleic acid or amino acid based, i.e., either a nucleic acid aptamer or peptide aptamer. Nucleic acid aptamers have specific binding affinity to target molecules through interactions other than classic Watson-Crick base pairing. Nucleic acid aptamers are capable of specifically binding to selected targets and, through binding, block their targets' ability to function. Aptamers of the present disclosure are synthetic oligonucleotides.
  • a typical nucleic acid aptamer is approximately 10-15 kDa in size, binds its target with sub-nanomolar affinity, and discriminates against closely related targets.
  • a target of a nucleic acid aptamer may be but is not limited to, a protein, a nucleic acid molecule, a peptide, a small molecule and a whole cell.
  • Nucleic acid aptamers may be ribonucleic acid (RNA), deoxyribonucleic acid (DNA), or mixed ribonucleic acid and deoxyribonucleic acid (DNA/RNA hybrid). Aptamers may be single stranded.
  • a suitable nucleotide length for an aptamer ranges from about 15 to about 150 nucleotide (nt), and in various other preferred embodiments, 15-30 nt, 20-25 nt, 20-45 nt, 30-100 nt, 30-60 nt, 25-70 nt, 25-60 nt, 40-60 nt, 25-40 nt, 30-40 nt, any of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 nt, or 30-50 nt, 40-70 nt, or 50-100 nt in length.
  • the sequence can be designed with sufficient flexibility such that it can accommodate interactions of aptamers with targets.
  • nucleic acid As used herein, the terms “nucleic acid,” “polynucleotide,” “oligonucleotide” are used interchangeably.
  • a nucleic acid molecule is a polymer of nucleotides consisting of at least two nucleotides covalently linked together.
  • a nucleic acid molecule is a DNA (deoxyribonucleotide), an RNA (ribonucleotide), as well as a recombinant RNA and DNA molecule or an analogue of DNA or RNA generated using nucleotide analogues.
  • the nucleic acids may be single stranded or double stranded, linear or circular.
  • the term also comprises fragments of nucleic acids, such as naturally occurring RNA or DNA which may be recovered using the extraction methods disclosed, or artificial DNA or RNA molecules that are artificially synthesized in vitro (i.e., synthetic polynucleotides).
  • Molecular weights of nucleic acids are also not limited, may be optional in a range from several base pairs (bp) to several hundred base pairs, for example from about 2 nucleotides to about 1,0000 nucleotides, or from about 10 nucleotides to 5,000 nucleotides, or from about 10 nucleotides to about 1,000 nucleotides.
  • nucleotide (nt) refers to the monomer of nucleic acids, a chemical compound comprised of a heterocyclic base, a sugar and one or more phosphate groups.
  • the base is a derivative of purine and pyrimidine and the sugar is a pentose, either deoxyribose or ribose.
  • modification refers to the technique of chemically reacting a nucleic acid, e.g., an oligonucleotide, with chemical reagents.
  • a nucleic acid may be modified in the base moiety, sugar moiety or phosphate backbone.
  • the modifications include, but are not limited to, 2′-position sugar modifications, 5-position pyrimidine, modifications, 8-position purine modifications, modifications at exocyclic amines, substitution of 4-thiouridine, substitution of 5-bromo or 5-iodo-uracil, backbone modifications, phosphorothioate or alkyl phosphate modifications, methylations, unusual base-pairing combinations such as the isobases isocytidine and isoguanidine and the like. Modifications can also include 3′ and 5′ modifications such as capping.
  • the nucleic acid molecule may also be modified by conjugation to a moiety having desired biological properties.
  • Such moiety may include, but is not limited to, compounds, peptides and proteins, carbohydrates, antibodies, enzymes, polymers, drugs and fluorophores.
  • the polynucleotide is conjugated to a lipophilic compound such as cholesterol, dialkyl glycerol, diacyl glycerol, or a non-immunogenic, high molecular weight compound or polymer such as PEG (polyethylene glycol) or other water soluble pharmaceutically acceptable polymers including, but not limited to, polyaminoamines (PAMAM) and polysaccharides such as dextran, or polyoxazolines (POZ).
  • PEG polyethylene glycol
  • POZ polyoxazolines
  • Aptamers may be either monovalent or multivalent. Aptamers may be monomeric, dimeric, trimeric, tetrameric or other higher multimeric. Individual aptamer monomers may be linked to form multimeric aptamer fusion molecules.
  • a linking oligonucleotide i.e., linker
  • a small trimeric or tetrameric (i.e., a Holliday junction-like) DNA nanostructure will be engineered to include sequences complementary to the 3′-arm regions of the random aptamers, therefore creating multimeric aptamer fusion through hybridization.
  • 3 to 5 or 5 to 10 dT rich nucleotides can be engineered into the linker polynucleotides as a single stranded region between the aptamer-binding motifs, which offers flexibility and freedom of multiple aptamers to coordinate and synergize multivalent interactions with cellular ligands or receptors.
  • multimeric aptamers can also be formed by mixing biotinylated aptamers with streptavidin.
  • multimeric aptamer or “multivalent aptamer” refers to an aptamer that comprises multiple monomeric units, wherein each of the monomeric units can be an aptamer on its own. Multivalent aptamers have multivalent binding characteristics.
  • a multimeric aptamer can be a homomultimer or a heteromultimer.
  • the term “homomultimer” refers to a multimeric aptamer that comprises multiple binding units of the same kind, i.e., each unit binds to the same binding site of the same target molecule.
  • heteromultimer refers to a multimeric aptamer that comprises multiple binding units of different kinds, i.e., each binding unit binds to a different binding site of the same target molecule, or each binding unit binds to a binding site on different target molecule.
  • a heteromultimer can refer to a multimeric aptamer that binds to one target molecule at different binding sites or a multimeric aptamer that binds to different target molecules.
  • a heteromultimer that binds to different target molecules can also be referred to as a multi-specific multimer.
  • Aptamers can be generated against a target molecule (e.g., VWF) using a process called either in vitro selection (Ellington and Szostak, Nature, 1990; 346: 818-822) or SELEX (Tuerk and Gold, Science, 1990, 249: 505-510).
  • This method allows the in vitro evolution of nucleic acid molecules with highly specific binding to target molecules.
  • the SELEX method is described in, for example, U.S. Pat. Nos. 7,087,735, 5,475,096 and 5,270,163; the contents of each of which are incorporated herein by reference in their entirety.
  • Nucleic acid aptamers can be synthesized using methods well-known in the art. For example, the disclosed aptamers may be synthesized using standard oligonucleotide synthesis technology known in the art.
  • VWF targeting agents are polynucleotides, salts thereof, or derivatives thereof, that target VWF to, e.g., regulate the interaction between VWF and FVIII in plasma.
  • VWF targeting agents are aptamers specifically binding to VWF. Accordingly, anti-VWF aptamers are also referred to as “VWF binding agents”.
  • the synthetic polynucleotide when binding to VWF, can block the clearance mechanism in the blood, thereby increasing the levels of VWF antigen in the blood.
  • the blockage could increase the level of Factor VIII in the blood as the FVIII-VWF complex is protected from protein degradation.
  • the synthetic polynucleotide binding to VWF may be 15 to 50 nucleotides in length, or 20 to 30 nucleotides in length (e.g., 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, and 30 nucleotides in length).
  • Said synthetic polynucleotide may further comprise a double stranded region.
  • the double stranded region may be from about 6 to about 9 nucleotides.
  • the double stranded region is formed by 6 nucleotides, or 7 nucleotides, or 8 nucleotides, or 9 nucleotides. Furthermore, the double stranded region is formed by 6 or more of the 3′ and 5′ nucleotides at or near the termini of the sequence.
  • the synthetic polynucleotides may be chemically modified. Each nucleotide may contain at least one chemical modification. Such chemical modification may be at the sugar, nucleobase or inter-nucleoside linker of the synthetic polynucleotide. Modifications to the sugar may comprise but are not limited to 2′-amino, 2′-O-alkyl, 2-fluoro, and 2′-O-methyl modification. As a non-limiting example, the synthetic polynucleotide targeting to VWF comprises 2′-O-methyl modification. In some embodiments, a terminal cap structure may be incorporated to the 3′ and/or 5′ termini of the synthetic polynucleotide.
  • the cap structure includes 5′-5′ inverted nucleotide cap at the 5′ terminus of the synthetic polynucleotide and a 3′-3′ inverted nucleotide cap at the 3′ terminus of the synthetic polynucleotide.
  • the cap structure may be an inverted deoxythymidine or amino group (NH2).
  • the synthetic polynucleotide may be further modified to comprise one or more conjugates such as a PEG (polyethylene glycol) moiety at the 5′ or 3′ termini of the synthetic polynucleotides.
  • PEG polyethylene glycol
  • the PEG moiety may be of any size or branch configuration.
  • PEGs can range in size from about 5 kD to about 200 kD.
  • PEGs may be linear chain PEGs or branched PEGs with multiple PEG chains attached together.
  • the 3′- and 5′-short PEG conjugates do not interfere with the binding specificity and they do not influence the target affinity of the synthetic polynucleotides.
  • the VWF binding agent is a synthetic polynucleotide comprising at least 21 contiguous nucleotides of SEQ ID No.: 3 (5′GCCAGGGACCUAAGACACAUGUCCCUGGC-3′); the sequence is derived from an aptamer that binds specifically to VWF.
  • the VWF binding agent may be a synthetic polynucleotide comprising at least 21 contiguous nucleotides of SEQ ID No.: 3.
  • the synthetic polynucleotide may exhibit a double stranded region having at least 6 nucleotides, or at least 7 nucleotides, or at least 8 nucleotides, or at least 9 nucleotides.
  • the double stranded region of 6 or more nucleotides is at or near (e.g., within 1-10 nucleotides) the termini of the synthetic polynucleotide.
  • the synthetic polynucleotide comprises an inverted deoxythymidine at the 3′ terminus of the sequence.
  • the VWF targeting agent is a synthetic polynucleotide comprising the structure: mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAmCmAmUmGmUmCmCmC mUmGmGmC-idT (SEQ ID No.: 4) (BT99), where “NH” is a 5′-hexylamine linker phosphoramidite, “idT” is an inverted deoxythymidine, “mN” is a 2′-O-Methyl containing residue.
  • the synthetic polynucleotide comprises an inverted deoxythymidine at the 3′ terminus of the sequence and an amino group (NH2) at the 5′ terminus of the sequence.
  • the VWF targeting agent is a synthetic polynucleotide comprising the structure: NH2-mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAmCmAmUmGmUmCmCmC mC mC mC mUmGmGmGmC-idT (SEQ ID No.: 5) (BT100), where “NH” is a 5′-hexylamine linker phosphoramidite. “idT” is an inverted deoxythymidine, “mN” is a 2′-O-Methyl containing residue.
  • the synthetic polynucleotide binding to VWF further comprises a PEG moiety conjugated at the 5′ terminus of the sequence.
  • the VWF targeting agent is a synthetic polynucleotide comprising the structure: PEG40K-NH-mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAmCmAmUmGmUmCmCmC mUmGmGmC-idT (SEQ ID No.: 6) (BT200), where “NH” is a 5′-hexylamine linker phosphoramidite, “idT” is an inverted deoxythymidine, “mN” is a 2′-O-Methyl containing residue and “PEG” is a polyethylene glycol and PEG40K is a PEGylation moiety having a molecular weight of approximately 40 KDa.
  • the PEGylated BT200 specifically binds to the A1 domain of VWF in plasma, interfering its regulation and functionality (Zhu et al., J Thromb Haemost. 2020 May; 18(5):1113-1123: the contents of which are incorporated herein by reference in their entirety).
  • One mechanism is that the binding of BT200 to VWF may protect the nucleic acid-protein complex from clearance by inhibiting the interaction of VWF with the macrophage low density lipoprotein receptor related protein-1 (LRP1) (Fazavana et al., J Thromb Haemost., 2020, 1278-1290).
  • LRP1 macrophage low density lipoprotein receptor related protein-1
  • BT200 can be used as an anti-bleeding agent.
  • BT200 blocks the clearance of VWF Antigen from the circulation and leads to a sustained increase in concentrations of both VWF antigen (VWF Ag) and FVIII but has a negligible effect on the activity of either.
  • VWF Ag VWF antigen
  • FVIII FVIII activity
  • BT200 blocks clearance of VWF and inhibits the activity of VWF but does not inhibit FVIII activity. Therefore, BT200 may be used to correct deficiency of VWF and/or FVIII in patients with hereditary bleeding disorders (e.g., VWD Type 1, Type 2b and Type 3).
  • BT200 by subcutaneous injections demonstrates an extended half-life, lasting 7-12 days in the circulation that provides good subcutaneous bioavailability (Zhu et al., J Thromb Haemost. 2020, 1113-1123).
  • the VWF binding agents are aptamers comprising the sequence: PEG40K-NH-mGmGmGmAmCmCmUmAmAmGmAmCmAmUmGmUmCmC-idT (ARC15105) (SEQ ID No.: 7), or the sequence: PEG20K-NH-mGmCmGmUdGdCdAmGmUmGmCmCmUmUmCmGmGmCdCmGsdTmGdCdGdGdTm GmCdCmUdCdCmGmUdCmAmCmGmCidT (ARC1779) (SEQ ID No.: 8), where “NH” is a 5-hexylamine linker phosphoramidite, “idT” is an inverted deoxythymidine, “mN” is a 2′-O-Methyl containing residue, “dN” is a deoxynucleo
  • the VWF binding agent may include a synthetic polynucleotide having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID No.: 3.
  • VWF aptamers and variants SEQ ID Agent Sequence (5′-3′) and modifications NO.: VWF GCCAGGGACCUAAGACACAUGUCCCUGGC 3 aptamer BT99 mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAm 4 CmAmUmGmUmCmCmCmUmGmGmC-idT BT100 NH 2 -mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAm 5 CmAmUmGmUmCmCmCmUmGmGmC-idT BT200 PEG40K-NH- 6 mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAmCm AmUmGmUmCmCmUmGmGmC-idT ARC15105 PEG40K-NH- 7 mG
  • compositions and formulations including any one of anti-VWF aptamers of the present disclosure are provided.
  • the VWF binding agents are formulated in formulations suitable for administration to a subject in need.
  • Formulations which are suitable for the pharmaceutical compositions of the present disclosure, particularly the nucleic acid-based compositions, are taught in International Patent Publication No. WO2013/090648 (Application PCT/US2012/069610), the contents of which are incorporated herein by reference in their entirety.
  • Methods of making formulations are well known in the art, for example, in Remington: The Science and Practice of Pharmacy (20th ed., ed. A. R. Gennaro AR.), Lippincott Williams & Wilkins, 2000; the contents of which are incorporated herein by reference in their entirety.
  • compositions of the present disclosure may comprise at least one VWF targeting agent as active ingredient, e.g., BT200.
  • compositions further include at least one pharmaceutically acceptable carrier, diluent or excipient, e.g., saline or distilled water.
  • the compositions may include excipients that stabilize the aptamer agent, thereby maintaining therapeutic activity of the agent.
  • the compositions may comprise excipients such as salts, sugars and alcohols that facilitate diffusion of the aptamer agent.
  • excipients may include saccharides such as sucrose, trehalose, fructose, galactose, mannitol, dextran and glucose; poly-alcohols such as glycerol and sorbitol; proteins such as albumin; hydrophobic molecules such as oils; hydrophilic polymers such as polyethylene glycol; isomers such as diastereomers and enantiomers, mixtures of isomers, including racemic mixtures, salts, solvates, and polymorphs thereof.
  • saccharides such as sucrose, trehalose, fructose, galactose, mannitol, dextran and glucose
  • poly-alcohols such as glycerol and sorbitol
  • proteins such as albumin
  • hydrophobic molecules such as oils
  • hydrophilic polymers such as polyethylene glycol
  • isomers such as diastereomers and enantiomers, mixtures of isomers, including racemic mixtures, salts,
  • the composition may be in the form of liquid solutions or suspensions. In some cases, the composition is sterile for injection.
  • the VWF targeting agents of the present disclosure are formulated for oral administration.
  • Formulations may be in the form of tablets or capsules.
  • the VWF agents of the present disclosure are formulated for intranasal administration.
  • Intranasal formulations may be in the form of powders, nasal drops, or aerosols.
  • the VWF agents of the present disclosure are formulated for parenteral administration.
  • the formulations include only pharmaceutically acceptable excipients, diluents, carriers and adjuvants that are safe for parenteral administration to humans at the concentrations used, under the same or similar standards as for excipients, diluents, carriers and adjuvants deemed safe by the Federal Drug Administration or other foreign national authorities.
  • the pharmaceutical formulation may be in a ready-to-usc solution form, concentrated form, or a lyophilized preparation that may be reconstituted with a directed amount of diluent suitable for parenteral injection such as water, salt solution, or buffer solution.
  • diluent suitable for parenteral injection
  • the formulation is a stable aqueous pharmaceutical formulation that remains within its physical, chemical, microbiological, therapeutic and toxicological specifications throughout its shelf life.
  • the VWF targeting agents of the present disclosure are formulated for inhalation.
  • the VWF targeting agents of the present disclosure may be formulated for controlled release of the active agent.
  • formulations for controlled release may comprise biocompatible polymers.
  • biocompatible polymers suitable for sustained release include, but are not limited to, biodegradable polymers such as polyamides such as poly(amino acids) and poly(peptides); polyesters such as poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), and poly(caprolactonc); poly(anhydrides); polyorthoesters; polycarbonates and chemical derivatives thereof; copolymers and mixtures thereof.
  • Biocompatible polymers may include non-degradable polymers such as polysaccharides; polyethers (e.g., poly(ethylene oxide), poly(ethylene glycol), and poly(tetramethylene oxide)); vinyl polymers (e.g., polyacrylates, acrylic acids, poly(vinyl alcohol), poly(vinyl pyrolidone), and poly(vinyl acetate)); polyurethanes; cellulose-based polymers (e.g., cellulose, alkyl cellulose, hydroxyalkyl cellulose, cellulose ethers, cellulose esters, nitrocellulose, and cellulose acetates); polysiloxanes and other silicone derivatives.
  • non-degradable polymers such as polysaccharides; polyethers (e.g., poly(ethylene oxide), poly(ethylene glycol), and poly(tetramethylene oxide)); vinyl polymers (e.g., polyacrylates, acrylic acids, poly(vinyl alcohol), poly(vinyl pyrolidone), and poly(viny
  • the sustained release of the agents may last for more than two months, for one month, for three weeks, for two weeks, for one week, for six days, for five days, for four days, for three days, for two days, or for one day.
  • the amount of the agents in the compositions for sustained release may comprise about 0.1% to about 30%, or about 0.1% to about 10%, or about 1% to about 10%, or about 0.5% to about 5% (w/w) of the formulation, e.g., about 0.1% (w/w), about 0.2% (w/w), about 0.5% (w/w), about 1.0% (w/w), about 2.0% (w/w), about 5.0% (w/w), about 10% (w/w), about 12% (w/w), about 15% (w/w), about 20% (w/w), about 25% (w/w), or about 30% (w/w) of the formulation.
  • the VWF targeting agents are formulated as injectable thermosensitive gel formulations.
  • thermosensitive gel formulation means a formulation that exists as a mobile viscous liquid at low temperatures but forms a rigid semisolid gel at higher temperatures. Specifically, the formulation is liquid at room temperature or at lower temperature, but gels once injected, thus producing a depot of drug at the injection site.
  • the formulations may contain thermo-sensitive polymers.
  • gel refers to the semi-solid phase that spontaneously occurs as the temperature of the thermo-sensitive polymer solution is raised to or above the gelation temperature of the polymer.
  • thermo-sensitive polymers may include PLGA-PEG-PLGA triblock copolymer, poloxamer, Pluronic acid F127, and polyoxyethylene-polyoxypropylene (PEO-PPO) block copolymers.
  • the gelation temperature of the formulation is from about 30° C. to about 40° C.
  • the VWF targeting agents may be encapsulated with liposomal formulations.
  • liposome means a formulation consisting of at least one lipid bilayer membrane enclosing an aqueous internal compartment. Liposomes may be small unilamellar vesicles (SUVs) having a single membrane and typically range between 0.02 and 0.05 ⁇ m in diameter, or large unilamellar vesicles (LUVs) that are typically larger than 0.05 ⁇ m, or oliglamellar large vesicles having multiple, usually concentric, membrane layers that are typically larger than 0.1 ⁇ m. Liposomes are formulated to carry the VWF agents contained within the aqueous interior space or partitioned into the lipid bilayer.
  • SUVs small unilamellar vesicles
  • LUVs large unilamellar vesicles
  • the VWF targeting agents may be formulated as implantable solid formulations, or coated to the surface of implants (e.g., stent).
  • the concentrations of the VWF targeting agent in the pharmaceutical formulation vary depending on a variety of factors, including the dosage of the drug to be administered, and the route of administration.
  • the VWF targeting agents of the present disclosure may be used for treating a bleeding disorder, and more specifically for treating a hereditary bleeding disorder, e.g., hemophilia A (mild, moderate and severe hemophilia), and VWD (Type 1, Type 2b and Type 3).
  • a hereditary bleeding disorder e.g., hemophilia A (mild, moderate and severe hemophilia), and VWD (Type 1, Type 2b and Type 3).
  • the VWF targeting agents of the present disclosure may be used in the therapy and prophylactic treatment of a bleeding disorder.
  • prophylactic treatment is commonly referred to as a preventive treatment to avoid bleeding, by regular infusion of blood coagulation factor concentrates to a patient with a bleeding disorder.
  • Patients with a severe form of the bleeding disorder e.g., severe hemophilia and VWD Type 3 who receive the prophylactic treatment may experience reduced risk of bleeding and less joint damages.
  • the VWF targeting agents of the present disclosure may be used in combination with coagulation factor replacement therapy (also known as coagulation factor substitute).
  • coagulation factor replacement therapy also known as coagulation factor substitute
  • the VWF targeting agents may be used in combination with FVIII replacement therapy for treating hemophilia A, such as mild hemophilia, moderate hemophilia and severe hemophilia, in a patient.
  • hemophilia A such as mild hemophilia, moderate hemophilia and severe hemophilia
  • the patient is diagnosed with severe hemophilia.
  • VWF peptide can effectively prolong endogenous FVIII survival in VWF-deficient mice and that extending the half-life of plasma VWF carrier fragment can result in a significant prolongation in FVIII half-life in VWF-deficient mice (Yee et al., Blood, 2014, 124:445-452).
  • Agents that can elevate the VWF levels may be used for extending the half-life of FVIII in the blood, thereby elevating the FVIII levels in patients with low FVIII activity (e.g., hemophilia and VWD).
  • the studies performed by the inventors demonstrated that administration of a VWF binding agent, BT200 can increase the VWF and FVIII levels in the blood, in a dose-dependent manner. BT200 binds to VWF and prevents VWF from clearance in the blood. Elevated VWF forms FVIII-VWF complexes, thereby increasing the FVIII levels in the blood.
  • the VWF targeting agents of the present disclosure may be used in combination with a recombinant FVIII preparation, or plasma derived FVIII concentrates, to extend the half-life of FVIII in the blood of a hemophilia patient.
  • the patient may have mild, moderate or severe hemophilia. In particular, the patient has severe hemophilia.
  • the VWF targeting agents of the present disclosure may be used in combination with VWF replacement therapy for treating VWD, particularly VWD Type 3 and VWD Type 2 and VWD Type 1.
  • the VWF targeting agents may be used in combination with a VWF replacement preparation.
  • the VWF replacement preparation may be a plasma-derived factor concentrate containing both FVIII and VWF (i.e., a FVIII/VWF concentrate), and a recombinant VWF preparation.
  • the recombinant VWF preparation may be Vonicog alfa, rVWF that is produced in genetically altered CHO cells expressing both VWF and FVIII (Turecek et al., Hamostaseologie. 2009, 29(Suppl.):S32-38).
  • the present VWF targeting agents may be used in combination with DDAVP treatment.
  • the VWF targeting agent may stabilize and increase the endogenous VWF and FVIII levels released by stimulation of DDAVP.
  • the VWF targeting agents of the present disclosure may be used to maintain adequate VWF levels in the blood to protect FVIII from degradation.
  • VWF may be endogenous, released by in vivo VWF producing cells, or exogenous, infused with in vitro VWF substitute.
  • FVIII may be endogenous or exogenous.
  • the VWF targeting agents may be used to increase platelet counts in a patient with VWD Type 2b, in particular, the VWD Type 2b patient with thrombocytopenia which is formed due to platelet aggregation.
  • the present VWF targeting agent such as BT200 may raise platelet counts in the blood.
  • the present VWF targeting agent can increase platelet counts in the blood. Accordingly, a VWF targeting agent, can be used to treat thrombocytopenia, a condition in which a patient has a low platelet count in the blood. Thrombocytopenia may occur in various conditions, c g., a bone marrow disorder, a side effect from medications, an enlarged spleen associated with cancer and severe liver disease, an autoimmune disease, a condition by exposing a toxic chemical, and an infection.
  • thrombocytopenia may occur in various conditions, c g., a bone marrow disorder, a side effect from medications, an enlarged spleen associated with cancer and severe liver disease, an autoimmune disease, a condition by exposing a toxic chemical, and an infection.
  • BT200 can maintain sustained elevation of VWF and FVIII levels in the blood.
  • the present VWF targeting agents, compositions and methods may be used to treat other rare deficiencies in clotting components.
  • Rare inherited bleeding disorders include, for example, deficiencies of coagulation factors fibrinogen, FII. FV, combined FV and FVIII, FVII, FX, FXI, FXIII, and congenital deficiency of vitamin K-dependent factors (VKCFDs).
  • the methods comprise administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising at least one VWF targeting agent.
  • the targeting agent is a VWF binding agent.
  • the VWF binding agent is an antibody, a nanobody, a peptide, an oligonucleotide, an RNA (e.g., siRNA, microRNA), a synthetic polynucleotide (e.g., an aptamer), or a small molecule.
  • the VWF binding agent is a synthetic polynucleotide selected from the group consisting of SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5), BT200 (SEQ ID No.: 6), ARC15105 (SEQ ID No.: 7), and ARC1779 (SEQ ID No.: 8) and variants thereof.
  • the VWF binding agent is BT200 (SEQ ID No.: 6).
  • the VWF targeting agent may increase the levels of FVIII and VWF in the blood of the subject being treated with said agent.
  • the VWF targeting agent may raise platelet counts in the subject as well.
  • the VWF targeting agent is BT200 (SEQ ID No.: 6).
  • the treatment regimen such as doses, dose-response relationship, loading and maintenance doses and dosing schedules (such as intervals and timing), administration routes, formulations, etc. are discussed and determined.
  • the VWF targeting agents may be administered to the subject in need in any administration routes.
  • the agents and compositions may be formulated for administration by parental administration or enteral administration, or other appropriate routes.
  • Parental administration may be performed by injection, or by the insertion of an indwelling catheter, including but not limited to intravenous (IV), intramuscular (IM), subcutaneous (SC), epicutaneous injection, peridural injection, intracerebral (into the cerebrum) administration, intracerebroventricular (into the cerebral ventricles) administration, extra-amniotic administration, nasal administration, intra-arterial, intracardiac, intraosseous infusion (IO), intraperitoncal infusion or injection, transdermal diffusion, enteral and gastrointestinal routes, topical administration and oral routes.
  • IV intravenous
  • IM intramuscular
  • SC subcutaneous
  • epicutaneous injection peridural injection
  • intracerebral into the cerebrum
  • intracerebroventricular into the cerebral ventricles
  • extra-amniotic administration
  • the VWF targeting agent is administered by subcutaneous injection.
  • the therapeutically effective dosage of a medicine varies from patient to patient and depends upon factors such as the age and condition of the patient and the route of delivery. Such dosages can be determined in accordance with routine pharmacological procedures known to those skilled in the art. Factors that may influence the dosage required to effectively treat a subject, include but are not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a therapeutic polynucleotide disclosed herein can include a single treatment or can include a series of treatments. The effective dosage of a therapeutic polynucleotide disclosed herein used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.
  • a therapeutically effective amount or dosage of the VWF targeting agent may range from about 0.001 ⁇ g/kg or 0.01 ⁇ g/kg to about 250 mg/kg or 500 mg/kg body weight, with other ranges including but not limited to, about 0.01 ⁇ g/kg to 100 mg/kg body weight, about 0.01 ⁇ g/kg to 50 mg/kg body weight, about 0.1 ⁇ g/kg to 20 mg/kg body weight, about 0.1 ⁇ g/kg to 10 mg/kg body weight, about 1 ⁇ g/kg to 100 mg/kg body weight, about 1 ⁇ g/kg to 50 mg/kg body weight, about 10 ⁇ g/kg to 100 mg/kg body weight, about 10 ⁇ g/kg to 50 mg/kg body weight, about 20 ⁇ g/kg to 100 mg/kg body weight, about 20 ⁇ g/kg to 50 mg/kg body weight, about 1 mg/kg to 100 mg/kg body weight, about 1 mg/kg to 50 mg/kg body weight, or about 20 mg/kg to 50 mg/kg body weight, about 0.
  • the pharmaceutical compositions may be administered to the subject in need in a single dose.
  • a single dose of BT200 may be 0.1 mg. 0.2 mg, 0.5 mg, 1.0 mg, 1.5 mg, 2.0 mg, 2.5 mg, 3.0 mg, 3.5 mg, 4.0 mg, 4.5 mg, 5.0 mg, 5.5 mg, 6.0 mg, 6.5 g, 7.0 mg, 7.5 mg, 8.0 mg, 8.5 mg, 9.0 mg, 10.0 mg, 11.0 mg, 12.0 mg, 13.0 mg, 14.0 mg, 15.0 mg, 16.0 mg, 17.0 mg. 18.0 mg, 19.0 mg, 20.0 mg, 21.0 mg, 22.0 mg, 23.0 mg.
  • 24.0 mg 25.0 mg, 26.0 mg, 27.0 mg, 28.0 mg, 29.0 mg, 30.0 mg, 31.0 mg, 32.0 mg, 33.0 mg, 34.0 mg, 35.0 mg, 36.0 mg, 37.0 mg, 38.0 mg, 39.0 mg, 40.0 mg, 41.0 mg, 42.0 mg, 43.0 mg, 44.0 mg, 45.0 mg, 46.0 mg, 47.0 mg, 48.0 mg, 49.0 mg, 50.0 mg.
  • the single dose of BT200 is about 1.0 mg to 10.0 mg, or about 1.0 mg to 6.0 mg.
  • the pharmaceutical compositions may be administered to the subject in need in multiple doses.
  • the dosing schedules provided herein are safe and effective to prevent bleeding.
  • a patient may be treated with the present VWF targeting agent one time per week.
  • the effective dosage of an agent used for treatment may increase or decrease over the course of a particular treatment.
  • the agents of the present disclosure can be administered simultaneously or separately.
  • a multiple dosing regimen including a loading dose of BT200 and sequential maintenance doses of BT200.
  • the loading dose and maintenance doses may range from, but are not limited to, 0.1 mg to 10.0 mg of BT200, or 1.0 mg to 6.0 mg of BT200.
  • BT200 may be dosed at 0.1 mg, 0.2 mg, 0.5 mg, 1.0 mg, 1.5 mg, 2.0 mg, 2.5 mg, 3.0 mg, 3.5 mg, 4.0 mg, 4.5 mg, 5.0 mg, 5.5 mg, 6.0 mg, 6.5 mg, 7.0 mg, 8.0 mg, 9.0 mg, 10.0 mg, 15 mg, or 20 mg. In some embodiments, BT200 may be dosed at 3.0 mg. 6.0 mg, 9.0 mg or 10.0 mg.
  • the VWF targeting agents or pharmaceutical formulations thereof may be administered to a patient about every day, about every other day, about every 3 days, about every 4 days, about every 5 days, about every 6 days, about every 7 days, about every 8 to 10 days, about every 11 to 14 days, or about every three weeks to the patient in need thereof.
  • the VWF agent or pharmaceutical formulations thereof can be administered about every 7 days.
  • the VWF targeting agents or pharmaceutical formulations thereof can be administered as a single time administration. In other examples, administration of the VWF targeting agents or pharmaceutical formulations thereof can continue for about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about two months, about three to four months, about four to six months, or about one year. In some examples, administration of the VWF agents or pharmaceutical formulations thereof is about every 7 days for about 5 weeks. In certain embodiments, administration can be intermittent after, for example, about 4 weeks, or about 5 weeks. As a non-limiting example, a subject in need may be treated once a week for about 5 weeks and then treated about 3 to about 4 times over the following years. In some embodiments, the VWF agents or pharmaceutical formulations thereof may be administered to the subject intermittently to maintain the patency of a vessel, or to keep VWF at certain levels. Dosing schedules and use of methods in combination with other bleeding prevention therapies are included.
  • the VWF targeting agent may be administered once every other day, once every three days, once every five days, once a week, or once every other week.
  • the VWF targeting agent may be administered at least one loading dose and at least one maintenance dose.
  • the loading dose and maintenance dose may be the same or different.
  • the VWF targeting agents or pharmaceutical formulations thereof can be administered with 2 loading doses, and 3 maintenance doses every 7 days.
  • articles such as “a.” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context.
  • the disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process.
  • the disclosure includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process.
  • any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the disclosure (e.g., any antibiotic, therapeutic or active ingredient; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.
  • Example 1 Dosing Window of BT200 for Treating a Bleeding Disorder
  • the blood levels of Factor VIII and VWF were measured after a single dose of BT200 at a dose ranging from 0.18 mg up to 48 mg in healthy volunteers.
  • the blood levels of Factor VIII and VWF antigen were increased in a dose- and time-dependent manner (as shown in Table 3 (Factor VIII) and Table 4 (VWF antigen).
  • Table 3 Factor VIII
  • Table 4 VWF antigen
  • the description column of Table 3 and Table 4 the description includes the cohort number, the therapeutic given and the patient identifier.
  • “1-BT200-A” means the patient A of cohort which was given BT200
  • “1-Control-A” means patient A of the control group.
  • VWF The functions of VWF were also tested in the treated individuals. In three different activity tests: Multiplate aggregometer. Platelet Function Analyzer and ELISA for free A1 domains of VWF, no effect is observed as compared to non-treated individuals. The function of Factor VIII is also increased in BT200 treated volunteers.
  • a diverse set of up to 25 patients with severe congenital hemophilia A without inhibitors, mild-moderate hemophilia A, heterozygous carriers of hemophilia A with subnormal FVIII levels, VWD Type 1, “Vicenza” type, or VWD Type 2b are enrolled to a study to evaluate dose titration and dose-response.
  • BT200 subcutaneous
  • BT200 doses were then titrated thereafter between 3 and 9 mg on Days 14, 21, and 28 depending on the bleeding disorder patients have.
  • FVIII activity is measured in patients with Hemophilia A or VWD Type 1. Platelet counts and/or FVIII activity are measured in patients with VWD Type 2b.
  • VWD Type 2b Five patients with VWD Type 2b (3 males: 2 females) (Table 5), were dosed with 3 mg BT200 on Days 1 and 4 and followed by doses of 6-9 mg BT200 every week (Days 7, 14, 21 and 28). The patients have a median age of 61 years (ranging from 24-72 years). Four of five patients presented with thrombocytopenia and two patients were on regular recombinant VWF substitution therapy because of recurrent severe bleedings. Efficacy was measured by VWF parameters, VIII activity, and platelet counts, and other clinical outcome parameters before, during and after therapy. Statistical analysis was performed by Friedman ANOVA.
  • the results indicate clinically meaningful responses occurred in patients within 4 days after the first subcutaneous injection of BT200 (first dose 3 mg BT200). Platelet counts rose from a median of 60 at baseline to 159/nL at 28 days (p 0.012). i.e., up to 4-fold in all patients with thrombocytopenia, and normalized in % of these patients ( FIG. 2 ). All thrombocytopenic patients responded with an increase in platelet counts after 96 hours after first dose of BT200. Plasma levels of FVIIIc doubled from 67% (44-91%) to 134%(114-200%) (p ⁇ 0.001), and normalized in the patient with subnormal FVIIIc activity (from 44% at baseline to 135% 1 week after the last dose).
  • aPTT-FS uniformly prolonged activated partial thromboplastin time
  • BT200 administrations increased circulating VWF antigen levels from 64% (32-106%) to 143% (103-351%, p ⁇ 0.001) ( FIG. 4 A ).
  • the increased ristocetin BT200 was very well tolerated without any relevant adverse effect.
  • BT200 specifically corrects the underlying pathophysiology of VWD Type 2b, rapidly and strongly increasing platelet counts in patients with thrombocytopenia, and elevating VWF and FVIIIc in all patients. It is hypothesized that BT200 may be of potential benefit for VWD Type 2b patients by increasing circulating VWF and FVIII levels in all patients, as well as platelet counts in thrombocytopenic patients.
  • BT200 has a prolong half-life of 7 to 12 days. BT200 can induce sustained increases in VWF levels and activity, as well as increases in FVIII levels and activity measured by increased aPTT shortening and increased thrombin generation.
  • FVIII therapy Refacto AF/three patients; Elocta/one patient; Afstyla/two patients: Kovaltry/one patient; and Advate/one patient.
  • BT200 increases the half-life of FVIII therapy Pre-BT200 Post-BT200
  • FVIII FVIII half- FVIII half- Fold ID therapy BT200 dosing life(hr) life(hr) Increase 014 Refacto AF 3 mg on Days 1, 4 and 7; 4 mg on 19 42.5 2.24 Day 14; 5 mg on day 21; and 6 mg on Day 28 017 Refacto AF 3 mg on Days 1, 4 and 7: 5 mg on 11 36.5 3.34 Day 14: 5 mg on day 21; and 7 mg on Day 28 020 Elocta 3 mg on Days 1, 4 and 7; 5 mg on 24.2 62 2.56 Day 14; 6 mg on Day 21; and 7 mg on Day 28 021 Afstyla 3 mg on Days 1, 4 and 7; 5 mg on 14.5 29 2.00 Day 14; 6 mg on Day 21; and 7 mg on Day 28 022 Kovaltry 3 mg on Days 1, 4 and 7; 4 mg on 7.7 26.7 3.47 Day 14: 5 mg on Day 21; and 7 mg on Day 28 023

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present disclosure relates to treatment of bleeding disorders, in particular, hemophilia A (mild, moderate or severe hemophilia) and von Willebrand disease (VWD), Type 1 or Type 2 or Type 3, using VWF targeting agents such as a PEGylated anti-VWF aptamer, BT200.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of priority to U.S. Provisional Patent Application Nos.: 63/117,545, filed on Nov. 24, 2020; 63/155,012, filed on Mar. 1, 2021; and 63/216,601, filed on Jun. 30, 2021: the contents of each of which are incorporated herein by reference in their entirety.
  • REFERENCE TO THE SEQUENCE LISTING
  • The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled 20591009PCTSEQLST.txt, created on Nov. 24, 2021, which is 40,029 bytes in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates to agents, compositions and methods for treatment of bleeding disorders such as hereditary bleeding disorders (e.g., hemophilia A and von Willebrand disease (VWD)). The methods use agents binding to VWF and pharmaceutical compositions and formulations thereof.
  • BACKGROUND OF THE DISCLOSURE
  • Bleeding disorders are a heterogeneous group of conditions in which the blood cannot properly coagulate. As a result, patients with bleeding disorders will experience extensive bleeding after injury, trauma or surgery, etc. Some patients could develop severe, and spontaneous bleeding. Bleeding disorders can be inherited or acquired. Inherited bleeding disorders are often caused by deficiencies in factors involved on blood coagulation (i.e., coagulation factors; also known as clotting factors), and abnormalities of blood vessels and platelets. Hereditary bleeding disorders caused by deficient coagulation proteins include hemophilia A and B, von Willebrand Disease (VWD) Type 1, Type 2 (including subtypes 2a, 2b, 2m and 2n), and Type 3 and other rare bleeding disorders. Platelet-caused bleeding disorders include the inherited thrombocytopenia with less platelet counts Bernard-Soulier syndrome and Glanzmann's thrombasthenia.
  • Blood coagulation is a complex process including the sequential interaction of a series of components, in particular of fibrinogen, Factor II (FII), Factor V(FV), Factor VII (FVII), Factor VIII (FVIII), Factor IX (FIX), Factor X (FX), Factor XI (FXI), Factor XII (FXII) and von Willebrand Factor (VWF). The clotting components interact with platelet in the blood to maintain normal hemostasis.
  • Deficiencies in any of the clotting components and/or disruptions of the regulation between clotting components and platelet could result in bleeding disorders. Genetic defects in clotting factors, e.g., mutations in the genes encoding these factors cause rare hereditary bleeding, e.g., hemophilia. Hemophilia is an X-linked inherited bleeding disorder with a frequency of about one in 10,000 births. Hemophilia is caused by a deficiency of coagulation factor VIII (FVIII) (hemophilia A) or factor IX (FIX) (hemophilia B) (e.g., reviewed by Samuelson et al., Blood Rev., 2019, 35:43-50). Mutations in the gene coding FVIII can result in hemophilia A. The clinical presentation for hemophilia A is usually characterized by episodes of spontaneous and prolonged bleedings, ranging from mild, moderate to severe.
  • Von Willebrand factor (VWF), a large plasma glycoprotein, circulates in plasma and plays essential roles in normal hemostasis. VWF mediates platelet adhesion to exposed sub-endothelial collagen at sites of vascular injury to facilitate platelet mediated plug formation. VWF also performs its hemostatic functions through binding to Factor VIII (FVIII) and to platelets surface glycoproteins, and to localize FVIII to sites of platelet plug and subsequent clot formation. VWF complexed with FVIII also stabilizes the FVIII protein in plasma and protects it from proteolytic degradation by activated protein C in the circulation. The FVIII-VWF complex therefore extends the circulatory life of FVIII.
  • Deficiencies and/or defects of VWF can result in von Willebrand disease (VWD). The most common symptoms of VWD include mucocutaneous bleeding, hematomas, and bleeding after trauma or surgery, similar to hemophilia A due to the rapid degradation FVIII caused by lacking VWF cofactor. VWD is the most common inherited bleeding disorder with an estimated prevalence of ˜1%. Clinically relevant bleeding symptoms are present in approximately 1:10,000 individuals. VWD can be caused by a quantitative and/or qualitative defect in VWF. Quantitative deficiencies of VWF are often associated with severe VWD Type 1 and Type 3. VWD Type 2 is usually caused by qualitative defects in VWF (i.e., functional defects in VWF). For example, VWD Type 2b is characterised by an increased binding affinity of VWF to platelet glycoprotein 1b, which leads to consumption of VWF and thrombocytopenia in some VWD patients with a resulting severe bleeding phenotype.
  • Currently hemophilia A is treated with protein replacement therapy using either plasma derived or recombinant FVIII. Although FVIII replacement/substitute could markedly improve the life of patients suffering from hemophilia, hemophilia patients are still at risk for severe bleeding episodes and chronic joint damage, since prophylactic treatment is restricted by the short half-life, the limited availability, and the high cost of purified FVIII proteins. Treatment and prevention of bleedings in VWD patients focus on increasing plasma VWF and FVIII levels to adequate hemostatic levels. Current treatments include stimulation of the release of endogenous VWF by administration of desmopressin (DDAVP) and infusion of VWF-containing factor concentrates (e.g., VWF/FVIII concentrates) or recombinant VWF preparations. Choice of treatment is dependent on the type of disease and the severity of the bleeding.
  • The present disclosure provides VWF targeting agents to treat bleeding disorders, in particular hemophilia A, including mild, moderate and severe hemophilia, and von Willebrand disease (VWD) Type 1, Type 2 (e.g., Type 2a. Type 2b, Type 2m and Type 2n) and Type 3. The VWF targeting agents include VWF binding aptamers and variants thereof.
  • SUMMARY OF THE DISCLOSURE
  • In one aspect of the present disclosure, methods for treating a bleeding disorder in a patient are provided. The methods comprise administering to the patient a pharmaceutically efficient amount of a composition comprising a VWF targeting agent.
  • In accordance with the present disclosure, the patient is diagnosed with a bleeding disorder. The bleeding disorder is a hereditary bleeding disorder, including hemophilia A (e.g., mild, moderate or severe hemophilia), and VWD (e.g., VWD Type 1, VWD Type 2a, Type 2b, Type 2m and Type 2n, and VWD Type 3), inherited thrombocytopenia and a rare bleeding disorder. The bleeding disorder may also be acquired, e.g., inhibitor induced thrombocytopenia. In one embodiment, the patient is diagnosed with hemophilia A. The patient may have mild hemophilia, moderate hemophilia, or severe hemophilia. In another embodiment, the patient is diagnosed with VWD Type 1, Type 2 such as Type 2a, Type 2b and Type 2n, or Type 3.
  • In some embodiments, the VWF targeting agent is a VWF binding agent that binds to VWF. The VWF targeting agent is an antibody, a nanobody, a peptide, an oligonucleotide, an RNA (e.g., siRNA, microRNA), a synthetic polynucleotide (e.g., an aptamer), or a small molecule.
  • In some embodiments, the VWF binding agent is a synthetic polynucleotide selected from SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5). BT200 (SEQ ID No.: 6), ARC15105 (SEQ ID No.: 7), ARC1779 (SEQ ID No.: 8) or a variant thereof.
  • In some embodiments, the patient having a bleeding disorder may receive a single dose, or multiple doses of the VWF targeting agent. In one embodiment, the patient receives multiple doses of the VWF binding agent.
  • In one preferred embodiment, the VWF targeting agent is BT200, a PEGylated aptamer that specifically binds to the A1 domain of human VWF. In one embodiment, BT200 is administered at a dose ranging from 1.0 mg to 10.0 mg, or from 1.0 mg to 6.0 mg.
  • In another aspect, the present disclosure provides methods for increasing the circulatory level of VWF in a blood system of a subject. The method comprises administering to the subject a composition comprising a VWF targeting agent. The VWF targeting agent binds to VWF and increase the VWF levels in the circulation. In some embodiments, the VWF targeting agent is a VWF binding agent that binds to VWF. As non-limiting examples, the VWF binding agent is a synthetic polynucleotide selected from SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5), BT200 (SEQ ID No.: 6), ARC15105 (SEQ ID No.: 7), ARC1779 (SEQ ID No.: 8) or a variant thereof. In one preferred embodiment, the VWF target agent is BT200, a PEGylated aptamer that specifically binds to the A1 domain of human VWF. BT200 is administered at a dose ranging from 1.0 mg to 10.0 mg, or from 1.0 mg to 6.0 mg. In some embodiments, the subject is diagnosed with VWD, e.g., VWD Type 1, VWD Type 2 including Type 2a. Type 2b and Type 2n, and VWD Type 3. In other embodiments, the subject is diagnosed with VWD including Type 1, Type 2 and Type 3 and receives a factor replacement treatment.
  • In yet another aspect, the present disclosure provides methods for extending the circulatory life of FVIII in a blood system of a subject. The method comprises administering to the subject a composition comprising a VWF targeting agent. The VWF targeting agent binds to VWF and increases the FVIII levels in the circulation. In some embodiments, the VWF targeting agent is a VWF binding agent that binds to VWF. As non-limiting examples, the VWF binding agent is a synthetic polynucleotide selected from SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5), BT200 (SEQ ID No.: 6), ARC15105 (SEQ ID No.: 7), ARC1779 (SEQ ID No.: 8) or a variant thereof. In one preferred embodiment, the VWF target agent is BT200, a PEGylated aptamer that specifically binds to the A1 domain of human VWF. BT200 is administered at a dose ranging from 1.0 mg to 10.0 mg, or from 1.0 mg to 6.0 mg. In some embodiments, the subject is diagnosed with hemophilia A, e.g., mild, moderate or severe hemophilia. In some examples, the subject is diagnosed with hemophilia A and receives a factor replacement treatment. In other embodiments, the subject is diagnosed with VWD Type 1, or VWD Type 2 (including Type 2a, Type 2b and Type 2n), or VWD Type 3. In some examples, the subject is diagnosed with VWD and receives a VWF replacement treatment.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 displays additive effects on the levels of VWF and FVIII by coadministration of BT200 and desmopressin in healthy volunteers.
  • FIG. 2 is a histogram demonstrating platelet counts in patients with VWD Type 2b, after subcutaneous injection of BT200.
  • FIG. 3 displays increased FVIII levels and activity (aPTT FS) in patients with VWD Type2b after subcutaneous injection of BT200.
  • FIG. 4A shows increased VWF levels after subcutaneous injection of BT200;
  • FIG. 4B shows increased VWF activity after subcutaneous injection of BT200 in patients with VWD Type 2b.
  • FIG. 5 shows increased Factor VIII activity (%) after BT200 prophylactic treatment in patients with mild hemophilia A.
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • The details of one or more embodiments of the disclosure are set forth in the accompanying description below. Although any materials and methods similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, the preferred materials and methods are now described. Other features, objects and advantages of the disclosure will be apparent from the description. In the description, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the case of conflict, the present description will control.
  • The present disclosure relates to methods, agents, and pharmaceutical compositions and formulations thereof, for treating a bleeding disorder such as an inherited bleeding disorder (e.g., hemophilia A and VWD). A method for treating a bleeding disorder in a patient comprises administering to the patient a therapeutically effective amount of a pharmaceutical composition comprising an agent targeting to von Willebrand factor (VWF).
  • Particularly the agents herein relate to any molecules that can target to VWF in the blood. The VWF targeting agents can bind to VWF to mediate VWF hemostatic function. A VWF targeting agent may be an antibody, a nanobody, a peptide, an oligonucleotide, an RNA (e.g., siRNA, microRNA), an aptamer and a variant thereof, or a small molecule. In accordance with the present disclosure, the VWF targeting agent is a synthetic polynucleotide derived from an aptamer that specifically binds to VWF. The targeting agent may be further modified with one or more chemical modifications and conjugates. The agent and VWF complexes protect circulating VWF from clearance, thereby increasing the levels of VWF and FVIII in the blood to increase clotting.
  • Definitions
  • To more clearly and concisely describe the subject matter of the claimed disclosure, the following definitions are provided for specific terms, which are used in the following description and the appended claims. Throughout the specification, exemplification of specific terms should be considered as non-limiting examples.
  • Pharmaceutical composition: As used herein, the term “pharmaceutical composition” is sometimes used interchangeably with the term “pharmaceutical formulation”. It refers to the combination of an active compound with a pharmaceutically acceptable carrier or excipient, inert or active, making the composition suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo. In the context of the present disclosure, the active compound may be one or more compound that can be used to treat a bleeding disorder.
  • Pharmaceutically acceptable excipient: As used herein, the term “pharmaceutically acceptable excipient” means a carrier or excipient that is useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable, and includes a carrier or excipient that is acceptable for veterinary use as well as human pharmaceutical use. A “pharmaceutically acceptable carrier or excipient” as used in the specification and claims includes both one and more than one such carrier or excipient. As used herein, the term “pharmaceutically acceptable carrier” encompasses any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents. In some examples, the compositions and formulations also can include stabilizers and preservatives. The term “pharmaceutically acceptable” refers to molecular entities and compositions that are physiologically tolerable and do not typically produce untoward reactions when administered to a human. Preferably, as used herein, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans, or generally recognized as safe for use in parenteral products.
  • Therapeutically effective amount: As used herein, the term “therapeutically effective amount” refers to the amount of the compound that is sufficient to result in a therapeutic response. In connection with the present disclosure, the term “therapeutically effective amount” may refer to the amount of an anti-VWF aptamer that is sufficient to result in a therapeutic response. A therapeutic response may be any response that a user (e.g., a clinician) will recognize as an effective response to the therapy. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the particular therapeutic agent, its mode and/or route of administration, and the like. It will be understood, however, that the total daily usage of the compounds and compositions of the present disclosure can be decided by an attending physician within the scope of sound medical judgment.
  • Preventing, prevention or prevent: As used herein, the terms “prevent,” “preventing,” and “prevention” and grammatical variations thereof are used interchangeably. These terms refer to a method of partially or completely delaying or precluding the onset or recurrence of a disorder or conditions and/or one or more of its attendant symptoms or barring a subject from acquiring or reacquiring a disorder or condition or reducing a subjects risk of acquiring or reacquiring a disorder or condition or one or more of its attendant symptoms.
  • Treating, treatment or treat: As used herein, the terms “treating,” “treatment” and “to treat” and grammatical variations thereof, refer to administering to a subject an effective amount of a pharmaceutical composition, such that at least one symptom of a disease is reversed, cured, alleviated, improved, reduced, decreased, or reaches beneficial or desired clinical results such as diminishment of extent of disease, stabilized (e.g., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (partial or total; and detectable or undetectable).
  • Subject: As used herein, the term “subject” is used interchangeably with the terms “individual” and “patient”, and refers to a vertebrate, preferably a mammal, more preferably a human.
  • Injection: As used herein, the terms “injection” or “injectable formulation” refer to a composition that can be drawn into a syringe and injected subcutaneously, intraperitoneally, or intramuscularly into a subject (e.g., human).
  • Parenteral administration: As used herein, the term “parenteral administration” of a pharmaceutical formulation means administration to a subject by a route other than topical or oral (i.e., a non-topical and non-oral route). Examples of parenteral routes include subcutaneous, intramuscular, intravascular (including intraarterial or intravenous), intraperitoneal, intraorbital, retrobulbar, peribulbar, intranasal, intrapulmonary, intrathecal, intraventricular, intraspinal, intracisternal, intracapsular, intrasternal or intralesional administration. Parenteral administration may be, e.g., by bolus injection or continuous infusion, either constant or intermittent and/or pulsatile, and may be via a needle or via a catheter or other tubing.
  • Subcutaneous administration: As used herein, the term “subcutaneous administration” refers to a common route of administration of a pharmaceutical composition, including but not limited to subcutaneous injection and infusion. The infusion may be continuous or in spurts using infusion pumps or any other commercially available devices.
  • Hemostasis and Clotting Components
  • Blood coagulation is a complex and dynamic biological process involving the sequential interactions of clotting components including coagulation factors: Factor II (FII), Factor V(FV), Factor VII (FVII), Factor VIII (FVIII), Factor IX (FIX), Factor X (FX), Factor XI (FXI), Factor XII (FXII) and cofactor, von Willebrand Factor (VWF).
  • Factor VIII (FVIII) (also known as anti-hemophilic factor A), a large, plasma glycoprotein, is a key component of the fluid phase blood coagulation cascade. FVIII is primarily produced by hepatocytes and vascular endothelial cells. Human FVIII is one of the largest coagulation factors including three A-domains, a unique B-domain, and two C-domains and activated via proteolytic cleavage by FXa and thrombin to generate the activated FVIII heterotrimer (FVIIIa). FVIIIa acts as a non-enzymatic cofactor for the prothrombinase and tenase complex in the coagulation cascade that accelerates FX activation in the presence of FIXa, phospholipids and calcium ions (Fay et al., Blood Reviews, 2004, 18: 1-15). The half-life of FVIII is about 12 hours. To avoid excessive coagulation, FVIIIa must be inactivated soon after activation, by Protein C (APC) mediated cleavage. The inactivation of FVIIIa is a rapid process, which explains the short half-life of FVTIla in the blood. As used herein, the terms “Factor VIII(a)” and “FVIII(a)” include both VIII and FVIIIa. Similarly, the term “Factor VIII” and “FVIII” may include both FVIII and FVIIIa.
  • FVIII present in plasma is in association with von Willebrand factor (VWF), forming a noncovalent FVIII-VWF complex. Von Willebrand factor (VWF) is a large, multimeric glycoprotein and plays a key role in hemostasis and thrombosis. Human VWF preproprotein (GeneBank Ref. No. NP_000543.2; SEQ ID No.: 1) (encoded by cDNA: GeneBank Ref. No. NM_000552.3; SEQ ID No.: 2) is processed to be a mature polypeptide comprising multiple subdomains with different functions (Hassan and Saxena, Blood Coagul. Fibrinolysis, 2012, 23(1):11-22). VWF is the carrier protein for FVIII, binding FVIII to platelets surface glycoproteins and localizing FVIII to sites of platelet plug and subsequent clot formation. VWF also acts as a stabilizer of FVIII in the circulation by the formation of the non-covalently bound VWF-FVIII complex that protects VIII from degradation by activated protein C (APC), thereby preventing FVIII from premature proteolysis (Koppelman et al., Blood. 1996; 87:2292-2300). In addition, VWF blocks the interaction of FVIII with lipoprotein-related receptors and thereby increases the half-life of FVIII in the circulation.
  • Furthermore, the interaction between VWF and FVIII plays a crucial role in FVIII function, immunogenicity, and clearance, with VWF essentially serving as a chaperone for FVIII. VWF has an important protective role for FVIII both under normal physiological conditions and in patients with hemophilia. In hemophilia patents who have developed FVIII inhibitors (e.g., antibodies to FVIII substitute) after treatment with FVIIII replacement therapy, VWF may protect exogenous FVIII from the binding of inhibitory antibodies (Gensana et al., Hemophilia. 2001; 7:369-374).
  • Plasma levels of VWF can affect risk of bleeding (lower level of VWF) or thrombosis (higher level of VWF). Quantitative deficiencies (low levels) of plasma VWF (e.g., <50%) are associated with an increased risk for bleeding, while high plasma levels of VWF (e.g., >150%) increase the risk for thrombosis (e.g., higher risk for venous thromboembolic disease, ischemic stroke, coronary artery disease, myocardial infarction and peripheral vascular disease).
  • Bleeding and Bleeding Disorders
  • A deficiency in the coagulation process may increase the risk of bleeding, For example, coagulation factor deficiencies and defects in platelet number or function cause bleeding disorders. Bleeding can occur inside the body (internal bleeding) or underneath the skin or from the surface of the skin (external bleeding).
  • As used herein, the term “bleeding disorders” refer to a heterogeneous group of conditions that result when the blood cannot clot properly. In normal clotting, platelets stick together and form a plug at the site of an injured blood vessel. Coagulation factors in the blood interact to form a fibrin clot, essentially a gel plug, which holds the platelets in place and allows healing to occur at the site of the injury while preventing blood from escaping the blood vessel. The inability to form clots can be very dangerous, resulting in excessive bleeding. Bleeding can result from either too few or abnormal platelets, abnormal or low amounts of coagulation factors, dysfunctional coagulation factors (e.g., mutations in the genes encoding coagulation factors), or abnormal blood vessels. The bleeding severity can be assessed according to guidelines such as the assessment tool reviewed by Rodeghiero et al., ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J Thromb Haemost. Sep. 2010; 8(9):2063-5. doi:10.1111/j.1538-7836.2010.03975.x). A person with a bleeding disorder can have both internal and external bleeds. Common symptoms of a bleeding disorder include but not limited to, extended bleeding after injury, surgery, trauma, or menstruation; excessive bruising; bleeding into joints, muscles and soft tissues; gastrointestinal bleeding; spontaneous bleeding without a known or identifiable cause.
  • Bleeding disorders can be hereditary or acquired. As used herein, the term “hereditary bleeding disorders” (also called “congenital bleeding disorders”) refers to a group of rare disorders caused by genetic deficiency of clotting components. The most common bleeding disorders include hemophilia (e.g., hemophilia A and B) and VWD (e.g., Types 1, 2 and 3). Hemophilia A or Hemophilia B is a rare, hereditary bleeding disorder that can range from mild, moderate to severe, depending on how much the residual factor activity is present in in a patient's plasma. The incidence of hemophilia A is ˜1 in 5000 live male births and that of hemophilia B is 1 in 25 000 live male births. Collectively, they are among the most common inherited bleeding disorders in the world. Von Willebrand disease (VWD) is the most common inherited bleeding disorder in America affecting up to 1% of the US population.
  • Bleeding may also result from a low platelet (thrombocyte) count in the blood, a condition called thrombocytopenia. A normal platelet count in adults ranges from 150,000 to 450,000 platelets per microliter of blood. A platelet count of less than 150,000 platelets per microliter is lower than normal (thrombocytopenia). The risk for serious bleeding does not occur until the count becomes very low—less than 10,000 or 20,000 platelets per microliter. When the count is less than 50,000 platelets per microliter, mild bleeding sometimes occurs. If the count is very low, less than 10,000 or 20,000 platelets per microliter, the risk for serious bleeding may occur. In rare cases, the number of platelets can be so low that dangerous internal bleeding occurs. Thrombocytopenia may occur in various conditions, such as the inherited bleeding disorders and acquired conditions (e.g., a side effect from medications). A low platelet count (thrombocytopenia) occurs may be due to not enough platelets made by bone marrow, deficiency in maintaining enough platelets in the blood, and/or abnormality in spleen which holds on too many platelets.
  • Conditions that cause a low platelet count (thrombocytopenia) include, for example, thrombotic thrombocytopenic purpura (TTP); disseminated intravascular coagulation (DIC); immune thrombocytopenia (ITP); an autoimmune disease; an enlarged spleen condition caused by cancer, severe liver disease, and a bone marrow deficiency; a viral or bacterial infection; and a side reaction to medicine.
  • Hemophilia A
  • Classic hemophilia or hemophilia A(also known as Factor FVIII deficiency) is an inherited bleeding disorder caused by a chromosome X-linked deficiency of FVIII and affects almost exclusively males. A mutation in the gene coding FVIII (i.e., the F8 gene) results in hemophilia A. The genetic mutations could cause absence or decreased synthesis of FVIII or abnormal protein synthesis (Hong et al., Thrombosis Res., 2007, 119:1-13). The X-chromosome defect is transmitted by female carriers who are not themselves hemophiliacs. Due to random chromosome activation, some women carriers may range from asymptomatic to symptomatic depending on how much of their FVIII is inactivated.
  • Because blood does not clot properly without enough FVIII, the clinical manifestation of hemophilia A is an increased bleeding tendency, e. g., a small cut or injury carrying the risk of excessive bleeding. In addition, people with hemophilia may suffer from internal bleeding that can damage joints (including the knee, ankle, elbow and hip joints), muscles, organs, and tissues (e.g., soft tissue under the skin) over time. Hemophilia bleeding intensity depends on the level of FVIII deficiency. There are three forms of hemophilia A: mild, moderate or severe in individual patients (Table 1), which are determined based on deficient plasma FVIII (IU) (Bolton-Maggs and Pasi, Lancet, 2003, 361: 1801-1809).
  • TABLE 1
    Three forms of hemophilia
    Form of FVIII activity
    hemophilia (IU/ml) Main symptoms
    mild >0.05 but < 0.50 Excessive bleeding after
    (>5-50% of injuries, trauma, accidents,
    normal range) tooth extractions, surgeries
    moderate 0.01-0.05 (1-5% Joint and muscle bleedings
    of normal range) following mild trauma; excessive
    bleeding after injuries, trauma,
    accidents, tooth extractions, surgeries
    severe <0.01 (<1% of Spontaneous joint and muscle bleedings;
    normal range) excessive bleeding after injuries, trauma,
    accidents, tooth extractions, surgeries
    *IU: international unit
  • With regard to mild inherited bleeding disorders, bleeding symptoms also occur in otherwise healthy individuals. Although patients with mild bleeding disorders may not often suffer from bleeding in daily life, problems may occur after a hemostatic challenge, including but not limited to trauma, dental extractions and surgery.
  • The treatment of hemophilia A mainly focuses on increasing blood activity of deficient coagulation factor VIII with factor substitute, in order to inhibit and/or prevent active bleedings in patients. Current available therapeutics include human plasma derived lyophilized FVIII concentrates and recombinant coagulation factors produced by genetically engineered cells. FVIII concentrates have a short half-life in plasma, with an average of about 12 hours in adults, ranging in individual patients with hemophilia A between 6 hours and 29 hours, and even shorter in younger children. FVIII substitute treatment for hemophilia often requires frequent intravenous injections of therapeutics.
  • For patients with severe hemophilia A, an increased amount and dosing intervals are required for prophylactic treatment.
  • Several technologies are developing to extend the half-life of FVIII in the blood. As the vast majority of plasma FVIII circulates in a high-affinity complex with VWF, FVIII is mostly cleared while not coupled to VWF. It has been supported by studies showing that FVIII in hemophilia patients is significantly influenced by plasma VWF levels. For example, Valentino has shown that the FVIII half-life is significantly longer in patients with elevated VWF levels (Valentino et al., Haemophiha, 2014, 20: 607-615). Targeting VWF chaperon to increase plasma FVIII-VWF complex levels may provide alternative strategies to extend half-life of FVIII in plasma.
  • In accordance with the present disclosure, VWF targeting agents can bind to VWF and extend the half-life of VWF, thereby extending the half-life of FVIII.
  • Von Willebrand's Disease (VWD)
  • Although deficiencies of Factor VIII (hemophilia A) and Factor IX (hemophilia B) are well recognized, von Willebrand disease (VWD) is much more common. Deficiencies in VWF (e.g., quantitatively reduced, functional defect, or completely missing) lead to different types of VWD. VWD can affect both males and females. Conversely, abnormally elevated VWF concentrations or function can also cause severe medical disorders like venous thromboembolic disease (VTE). VWD is classified into three different types ( Types 1, 2, and 3), based on the levels of VWF and FVIII activity in the blood.
  • VWD Type 3 is the most severe and least common form with complete deficiency of VWF. Patients with Type 3 VWD have little or no VWF in their blood. The amount of FVII in the blood also drops to low levels without VWF to act as a carrier. Type 3 VWD patients have trouble making both a platelet plug and a fibrin clot. VWD Type 3 patients have spontaneous bleedings into their joints and muscles, frequent bleeding from their noses and mouths. Women with Type 3 VWD may have long menstrual periods with very heavy bleeding.
  • VWD Type 2 relates to qualitative defects of VWF and can be as severe as VWD Type 3 in some patients, which include four subtypes: Types 2a, 2b, 2m and 2n. Type 2a is caused by defects in VWF multimerization due to the wrong size of the VWF protein. The abnormal VWF multimers stop the platelets from making a good platelet plug. In Type 2b, the VWF protein is abnormally active with variants of spontaneous platelet binding. The attachment of VWF causes the body to quickly get rid of the platelets, which causes a shortage of both platelets and VWF in the blood. Type 2m is caused by VWF defects in ligand binding with intact multimers. In Type 2n, VWF has defects in FVIII binding, failing to act as the carrier and protector of FVIII. The level of FVIII in the blood is low because of lacking enough VWF to keep it from being degradation. A Type 2n VWD patient can appear to have mild hemophilia with some of the same symptoms. VWD Type 2b in particular results from a mutation in the A1 domain of VWF causing constitutive activation of A1 domain binding to the GPIb receptor on platelets, leading to a consumptive deficiency of VWF, FVIII, and platelets.
  • VWD Type 1 is the mildest and most common form accounting for up to 85% pf VWD (reviewed by Robertson et al., Pediatr Clin North Am., 2008, 55(2): 377-392), which relates to a quantitative loss of VWF but with qualitatively normal VWF. Because there is not enough VWF in the blood, a lower level of FVIII may be seen in Type 1. A small number of patients with Type 1 VWD can have severe bleedings. VWD Type 1 is a very heterogeneous family of genetic defects representing 85 unique SNPs at last count and has only partial deficiency of VWF. For example, type Vicenza variant of VWD Type 1 is characterized by a low plasma VWF level and supranormal VWF multimers, caused by increased rate of VWF clearance (Alessandra et al., Blood 2002, 99(1): 180-184).
  • Other Rare Bleeding Disorders
  • Deficiencies in other coagulation factors could cause rare bleeding disorders, e.g., rare factor deficiencies including Factor I, II, V, VII, X, XI, XII and XIII deficiency. In additional hereditary disorders, other bleeding disorders may be acquired, e.g., platelet disorders which are the most common cause of acquired bleeding disorder.
  • Currently, the standard treatment of Hemophilia A and VWD involves frequent intravenous infusions of FVIII and VWF preparations or concentrates comprising a complex of FVIII and VWF derived from the plasmas of human donors, recombinant FVIII preparations, or recombinant VWF preparations. In severe hemophilia A patients, FVIII injection is used for prophylactic treatment. Because of the short plasma half-life of FVIII, patients have to be administered intravenously about 3 times per week. VWD can be treated by replacement therapy with concentrates containing VWF of plasmatic or recombinant origin. One approach to increase functional half-life of VWF is by PEGylation of VWF, which pegylated VWF by having an increased half-life would indirectly also enhance the half-life of FVIII present in plasma (PCT Application Publication No.: WO2006/071801; the contents of which are incorporated by reference in their entirety.) PEGylation of VWF antigen at specific sites can protect VWF from macrophage-mediated clearance in plasma (Fazavaza et al., J. Thromb. Haemost., 2020; 18:1278-1290; the contents of which are incorporated herein by reference in their entirety).
  • It is highly desirable to create new treatments that can increase functional half-life of FVIII and VWF in patients with bleeding disorders (e.g., hemophilia and VWD), while drugs can be administered less frequently or by other less cumbersome and less painful means of administration.
  • The inventors of the present disclosure surprisingly found that a VWF targeting aptamer that is modified with PEG conjugation can increase the VWF and FVIII levels in the blood after a single dose treatment. The VWF targeting nucleic acid does not interfere the functionality of FVIII in plasma at any concentration, and at relatively low concentrations does not interfere with the function of VWF in plasma.
  • In accordance with the present disclosure, a VWF targeting agent is provided to bind to VWF in plasma and block its clearance, thereby increasing half-life of the VWF-FVIIII complex in the plasma. The VWF targeting agent can be used to treat a hereditary bleeding disease, in particular, hemophilia A and VWD (e.g., Type 1, Vicenza subtype, Type 2 including subtypes 2a, 2b, 2m and 2n, and Type 3).
  • VWF Targeting Agents
  • As used herein, the term “targeting agent” refers to an agent that specifically binds to and interacts with a molecule of interest. A VWF targeting agent is an agent that binds to VWF, directly or indirectly through another agent, to regulate VWF biologic activities (also referred to as “VWF binding agent), e.g., interaction of VWF with FVIII and half-life of VWF and FVIII-VWF complex. In general, the targeting agent may be an antibody, a nanobody, a peptide, an oligonucleotide, an RNA (e.g., siRNA, microRNA), a synthetic polynucleotide (e.g., an aptamer), or a small molecule that can bind to VWF. The VWF targeting agent also includes an agent that binds to VWF, thereby blocking the clearance mechanism. In some embodiments, the VWF targeting agent can be used for treatment of bleeding disorders, particularly hemophilia A and VWD. The VWF targeting agent may also be used for blocking VWF clearance in the blood.
  • In some embodiments, the VWF targeting agents may be nucleic acid based, particularly aptamers that bind to VWF, and variants thereof. In some examples, a VWF binding agent is an aptamer or salt thereof. Aptamers are short (i.e., typically 12-80 nucleotides in length) single-stranded nucleic acid polymers that bind with high affinity and specificity to VWF. The aptamer is a synthetic polynucleotide that can be isolated using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process.
  • Aptamers
  • An aptamer is a biomolecule that binds to a specific target molecule and modulates the target's activity, structure, or function. Aptamers often are referred to as “chemical antibodies,” having similar characteristics as antibodies. An aptamer can be nucleic acid or amino acid based, i.e., either a nucleic acid aptamer or peptide aptamer. Nucleic acid aptamers have specific binding affinity to target molecules through interactions other than classic Watson-Crick base pairing. Nucleic acid aptamers are capable of specifically binding to selected targets and, through binding, block their targets' ability to function. Aptamers of the present disclosure are synthetic oligonucleotides. A typical nucleic acid aptamer is approximately 10-15 kDa in size, binds its target with sub-nanomolar affinity, and discriminates against closely related targets. A target of a nucleic acid aptamer may be but is not limited to, a protein, a nucleic acid molecule, a peptide, a small molecule and a whole cell.
  • Nucleic acid aptamers may be ribonucleic acid (RNA), deoxyribonucleic acid (DNA), or mixed ribonucleic acid and deoxyribonucleic acid (DNA/RNA hybrid). Aptamers may be single stranded. A suitable nucleotide length for an aptamer ranges from about 15 to about 150 nucleotide (nt), and in various other preferred embodiments, 15-30 nt, 20-25 nt, 20-45 nt, 30-100 nt, 30-60 nt, 25-70 nt, 25-60 nt, 40-60 nt, 25-40 nt, 30-40 nt, any of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 nt, or 30-50 nt, 40-70 nt, or 50-100 nt in length. However, the sequence can be designed with sufficient flexibility such that it can accommodate interactions of aptamers with targets.
  • As used herein, the terms “nucleic acid,” “polynucleotide,” “oligonucleotide” are used interchangeably. A nucleic acid molecule is a polymer of nucleotides consisting of at least two nucleotides covalently linked together. A nucleic acid molecule is a DNA (deoxyribonucleotide), an RNA (ribonucleotide), as well as a recombinant RNA and DNA molecule or an analogue of DNA or RNA generated using nucleotide analogues. The nucleic acids may be single stranded or double stranded, linear or circular. The term also comprises fragments of nucleic acids, such as naturally occurring RNA or DNA which may be recovered using the extraction methods disclosed, or artificial DNA or RNA molecules that are artificially synthesized in vitro (i.e., synthetic polynucleotides). Molecular weights of nucleic acids are also not limited, may be optional in a range from several base pairs (bp) to several hundred base pairs, for example from about 2 nucleotides to about 1,0000 nucleotides, or from about 10 nucleotides to 5,000 nucleotides, or from about 10 nucleotides to about 1,000 nucleotides.
  • The term “nucleotide (nt)” refers to the monomer of nucleic acids, a chemical compound comprised of a heterocyclic base, a sugar and one or more phosphate groups. The base is a derivative of purine and pyrimidine and the sugar is a pentose, either deoxyribose or ribose.
  • As used herein, the term “modification” refers to the technique of chemically reacting a nucleic acid, e.g., an oligonucleotide, with chemical reagents. A nucleic acid may be modified in the base moiety, sugar moiety or phosphate backbone. The modifications include, but are not limited to, 2′-position sugar modifications, 5-position pyrimidine, modifications, 8-position purine modifications, modifications at exocyclic amines, substitution of 4-thiouridine, substitution of 5-bromo or 5-iodo-uracil, backbone modifications, phosphorothioate or alkyl phosphate modifications, methylations, unusual base-pairing combinations such as the isobases isocytidine and isoguanidine and the like. Modifications can also include 3′ and 5′ modifications such as capping. The nucleic acid molecule may also be modified by conjugation to a moiety having desired biological properties. Such moiety may include, but is not limited to, compounds, peptides and proteins, carbohydrates, antibodies, enzymes, polymers, drugs and fluorophores. In some examples, the polynucleotide is conjugated to a lipophilic compound such as cholesterol, dialkyl glycerol, diacyl glycerol, or a non-immunogenic, high molecular weight compound or polymer such as PEG (polyethylene glycol) or other water soluble pharmaceutically acceptable polymers including, but not limited to, polyaminoamines (PAMAM) and polysaccharides such as dextran, or polyoxazolines (POZ). The modifications may be intended, for example, to increase the in vivo stability of nucleic acid molecules or to enhance or to mediate delivery of the molecules.
  • Aptamers may be either monovalent or multivalent. Aptamers may be monomeric, dimeric, trimeric, tetrameric or other higher multimeric. Individual aptamer monomers may be linked to form multimeric aptamer fusion molecules. As a non-limiting example, a linking oligonucleotide (i.e., linker) may be designed to contain sequences complementary to both 5′-arm and 3′-arm regions of random aptamers to form dimeric aptamers. For trimeric or tetrameric aptamers, a small trimeric or tetrameric (i.e., a Holliday junction-like) DNA nanostructure will be engineered to include sequences complementary to the 3′-arm regions of the random aptamers, therefore creating multimeric aptamer fusion through hybridization. In addition, 3 to 5 or 5 to 10 dT rich nucleotides can be engineered into the linker polynucleotides as a single stranded region between the aptamer-binding motifs, which offers flexibility and freedom of multiple aptamers to coordinate and synergize multivalent interactions with cellular ligands or receptors. Alternatively, multimeric aptamers can also be formed by mixing biotinylated aptamers with streptavidin.
  • As used herein, the term “multimeric aptamer” or “multivalent aptamer” refers to an aptamer that comprises multiple monomeric units, wherein each of the monomeric units can be an aptamer on its own. Multivalent aptamers have multivalent binding characteristics. A multimeric aptamer can be a homomultimer or a heteromultimer. The term “homomultimer” refers to a multimeric aptamer that comprises multiple binding units of the same kind, i.e., each unit binds to the same binding site of the same target molecule. The term “heteromultimer” refers to a multimeric aptamer that comprises multiple binding units of different kinds, i.e., each binding unit binds to a different binding site of the same target molecule, or each binding unit binds to a binding site on different target molecule. Thus, a heteromultimer can refer to a multimeric aptamer that binds to one target molecule at different binding sites or a multimeric aptamer that binds to different target molecules. A heteromultimer that binds to different target molecules can also be referred to as a multi-specific multimer.
  • Aptamers can be generated against a target molecule (e.g., VWF) using a process called either in vitro selection (Ellington and Szostak, Nature, 1990; 346: 818-822) or SELEX (Tuerk and Gold, Science, 1990, 249: 505-510). This method allows the in vitro evolution of nucleic acid molecules with highly specific binding to target molecules. The SELEX method is described in, for example, U.S. Pat. Nos. 7,087,735, 5,475,096 and 5,270,163; the contents of each of which are incorporated herein by reference in their entirety. Nucleic acid aptamers can be synthesized using methods well-known in the art. For example, the disclosed aptamers may be synthesized using standard oligonucleotide synthesis technology known in the art.
  • VWF Aptamers
  • In accordance with the present disclosure, VWF targeting agents are polynucleotides, salts thereof, or derivatives thereof, that target VWF to, e.g., regulate the interaction between VWF and FVIII in plasma. In some embodiments, VWF targeting agents are aptamers specifically binding to VWF. Accordingly, anti-VWF aptamers are also referred to as “VWF binding agents”.
  • The synthetic polynucleotide, when binding to VWF, can block the clearance mechanism in the blood, thereby increasing the levels of VWF antigen in the blood. The blockage could increase the level of Factor VIII in the blood as the FVIII-VWF complex is protected from protein degradation.
  • In some embodiments, the synthetic polynucleotide binding to VWF may be 15 to 50 nucleotides in length, or 20 to 30 nucleotides in length (e.g., 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, and 30 nucleotides in length). Said synthetic polynucleotide may further comprise a double stranded region. The double stranded region may be from about 6 to about 9 nucleotides. The double stranded region is formed by 6 nucleotides, or 7 nucleotides, or 8 nucleotides, or 9 nucleotides. Furthermore, the double stranded region is formed by 6 or more of the 3′ and 5′ nucleotides at or near the termini of the sequence.
  • In some embodiments, the synthetic polynucleotides may be chemically modified. Each nucleotide may contain at least one chemical modification. Such chemical modification may be at the sugar, nucleobase or inter-nucleoside linker of the synthetic polynucleotide. Modifications to the sugar may comprise but are not limited to 2′-amino, 2′-O-alkyl, 2-fluoro, and 2′-O-methyl modification. As a non-limiting example, the synthetic polynucleotide targeting to VWF comprises 2′-O-methyl modification. In some embodiments, a terminal cap structure may be incorporated to the 3′ and/or 5′ termini of the synthetic polynucleotide. The cap structure includes 5′-5′ inverted nucleotide cap at the 5′ terminus of the synthetic polynucleotide and a 3′-3′ inverted nucleotide cap at the 3′ terminus of the synthetic polynucleotide. The cap structure may be an inverted deoxythymidine or amino group (NH2).
  • The synthetic polynucleotide may be further modified to comprise one or more conjugates such as a PEG (polyethylene glycol) moiety at the 5′ or 3′ termini of the synthetic polynucleotides. The PEG moiety may be of any size or branch configuration. PEGs can range in size from about 5 kD to about 200 kD. PEGs may be linear chain PEGs or branched PEGs with multiple PEG chains attached together. The 3′- and 5′-short PEG conjugates do not interfere with the binding specificity and they do not influence the target affinity of the synthetic polynucleotides.
  • In one embodiment, the VWF binding agent is a synthetic polynucleotide comprising at least 21 contiguous nucleotides of SEQ ID No.: 3 (5′GCCAGGGACCUAAGACACAUGUCCCUGGC-3′); the sequence is derived from an aptamer that binds specifically to VWF. In one embodiment, the VWF binding agent may be a synthetic polynucleotide comprising at least 21 contiguous nucleotides of SEQ ID No.: 3. Additionally, the synthetic polynucleotide may exhibit a double stranded region having at least 6 nucleotides, or at least 7 nucleotides, or at least 8 nucleotides, or at least 9 nucleotides. In one embodiment, the double stranded region of 6 or more nucleotides is at or near (e.g., within 1-10 nucleotides) the termini of the synthetic polynucleotide.
  • In some embodiments, the synthetic polynucleotide comprises an inverted deoxythymidine at the 3′ terminus of the sequence. As a non-limiting example, the VWF targeting agent is a synthetic polynucleotide comprising the structure: mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAmCmAmUmGmUmCmCmC mUmGmGmC-idT (SEQ ID No.: 4) (BT99), where “NH” is a 5′-hexylamine linker phosphoramidite, “idT” is an inverted deoxythymidine, “mN” is a 2′-O-Methyl containing residue.
  • In some embodiments, the synthetic polynucleotide comprises an inverted deoxythymidine at the 3′ terminus of the sequence and an amino group (NH2) at the 5′ terminus of the sequence. As a non-limiting example, the VWF targeting agent is a synthetic polynucleotide comprising the structure: NH2-mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAmCmAmUmGmUmCmCmC mUmGmGmC-idT (SEQ ID No.: 5) (BT100), where “NH” is a 5′-hexylamine linker phosphoramidite. “idT” is an inverted deoxythymidine, “mN” is a 2′-O-Methyl containing residue.
  • In some embodiments, the synthetic polynucleotide binding to VWF further comprises a PEG moiety conjugated at the 5′ terminus of the sequence. As a non-limiting example, the VWF targeting agent is a synthetic polynucleotide comprising the structure: PEG40K-NH-mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAmCmAmUmGmUmCmCmC mUmGmGmC-idT (SEQ ID No.: 6) (BT200), where “NH” is a 5′-hexylamine linker phosphoramidite, “idT” is an inverted deoxythymidine, “mN” is a 2′-O-Methyl containing residue and “PEG” is a polyethylene glycol and PEG40K is a PEGylation moiety having a molecular weight of approximately 40 KDa.
  • The PEGylated BT200 specifically binds to the A1 domain of VWF in plasma, interfering its regulation and functionality (Zhu et al., J Thromb Haemost. 2020 May; 18(5):1113-1123: the contents of which are incorporated herein by reference in their entirety). One mechanism is that the binding of BT200 to VWF may protect the nucleic acid-protein complex from clearance by inhibiting the interaction of VWF with the macrophage low density lipoprotein receptor related protein-1 (LRP1) (Fazavana et al., J Thromb Haemost., 2020, 1278-1290). In this rcgard, BT200 can be used as an anti-bleeding agent. The inventors of the present disclosure have found that at low doses, BT200 blocks the clearance of VWF Antigen from the circulation and leads to a sustained increase in concentrations of both VWF antigen (VWF Ag) and FVIII but has a negligible effect on the activity of either. At higher doses, BT200 blocks clearance of VWF and inhibits the activity of VWF but does not inhibit FVIII activity. Therefore, BT200 may be used to correct deficiency of VWF and/or FVIII in patients with hereditary bleeding disorders (e.g., VWD Type 1, Type 2b and Type 3).
  • BT200 by subcutaneous injections demonstrates an extended half-life, lasting 7-12 days in the circulation that provides good subcutaneous bioavailability (Zhu et al., J Thromb Haemost. 2020, 1113-1123).
  • In other embodiments, the VWF binding agents are aptamers comprising the sequence: PEG40K-NH-mGmGmGmAmCmCmUmAmAmGmAmCmAmCmAmUmGmUmCmCmC-idT (ARC15105) (SEQ ID No.: 7), or the sequence: PEG20K-NH-mGmCmGmUdGdCdAmGmUmGmCmCmUmUmCmGmGmCdCmGsdTmGdCdGdGdTm GmCdCmUdCdCmGmUdCmAmCmGmCidT (ARC1779) (SEQ ID No.: 8), where “NH” is a 5-hexylamine linker phosphoramidite, “idT” is an inverted deoxythymidine, “mN” is a 2′-O-Methyl containing residue, “dN” is a deoxynucleotide residue, “sdT” is a phosphorothioate deoxythymidine residue and “PEG” is a polyethylene glycol and PEG20K is a PEGylation moiety having a molecular weight of approximately 20 Kda.
  • In some embodiments, the VWF binding agent may include a synthetic polynucleotide having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID No.: 3.
  • TABLE 2
    VWF aptamers and variants
    SEQ ID
    Agent Sequence (5′-3′) and modifications NO.:
    VWF GCCAGGGACCUAAGACACAUGUCCCUGGC 3
    aptamer
    BT99 mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAm 4
    CmAmUmGmUmCmCmCmUmGmGmC-idT
    BT100 NH2-mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAm 5
    CmAmUmGmUmCmCmCmUmGmGmC-idT
    BT200 PEG40K-NH- 6
    mGmCmCmAmGmGmGmAmCmCmUmAmAmGmAmCmAmCm
    AmUmGmUmCmCmCmUmGmGmC-idT
    ARC15105 PEG40K-NH- 7
    mGmGmGmAmCmCmUmAmAmGmAmCmAmCmAmUmGmUmCmCmC-
    idT
    ARC1779 PEG20K-NH- 8
    mGmCmGmUdGdCdAmGmUmGmCmCmUmUmCmGmGmCdCmGsdTmGdC
    dGdGdTmGmCdCmUdCdCmGmUdCmAmCmGmCidT
  • Pharmaceutical Compositions
  • In another aspect of the present disclosure, pharmaceutical compositions and formulations including any one of anti-VWF aptamers of the present disclosure are provided. The VWF binding agents are formulated in formulations suitable for administration to a subject in need. Formulations which are suitable for the pharmaceutical compositions of the present disclosure, particularly the nucleic acid-based compositions, are taught in International Patent Publication No. WO2013/090648 (Application PCT/US2012/069610), the contents of which are incorporated herein by reference in their entirety. Methods of making formulations are well known in the art, for example, in Remington: The Science and Practice of Pharmacy (20th ed., ed. A. R. Gennaro AR.), Lippincott Williams & Wilkins, 2000; the contents of which are incorporated herein by reference in their entirety.
  • Pharmaceutical compositions of the present disclosure may comprise at least one VWF targeting agent as active ingredient, e.g., BT200.
  • The compositions further include at least one pharmaceutically acceptable carrier, diluent or excipient, e.g., saline or distilled water. Optionally, the compositions may include excipients that stabilize the aptamer agent, thereby maintaining therapeutic activity of the agent. In some embodiments, the compositions may comprise excipients such as salts, sugars and alcohols that facilitate diffusion of the aptamer agent.
  • As non-limiting examples, excipients may include saccharides such as sucrose, trehalose, fructose, galactose, mannitol, dextran and glucose; poly-alcohols such as glycerol and sorbitol; proteins such as albumin; hydrophobic molecules such as oils; hydrophilic polymers such as polyethylene glycol; isomers such as diastereomers and enantiomers, mixtures of isomers, including racemic mixtures, salts, solvates, and polymorphs thereof.
  • In some embodiments, the composition may be in the form of liquid solutions or suspensions. In some cases, the composition is sterile for injection.
  • In some embodiments, the VWF targeting agents of the present disclosure are formulated for oral administration. Formulations may be in the form of tablets or capsules. In some embodiments, the VWF agents of the present disclosure are formulated for intranasal administration. Intranasal formulations may be in the form of powders, nasal drops, or aerosols. In some embodiments, the VWF agents of the present disclosure are formulated for parenteral administration. The formulations include only pharmaceutically acceptable excipients, diluents, carriers and adjuvants that are safe for parenteral administration to humans at the concentrations used, under the same or similar standards as for excipients, diluents, carriers and adjuvants deemed safe by the Federal Drug Administration or other foreign national authorities. The pharmaceutical formulation may be in a ready-to-usc solution form, concentrated form, or a lyophilized preparation that may be reconstituted with a directed amount of diluent suitable for parenteral injection such as water, salt solution, or buffer solution. In some examples, the formulation is a stable aqueous pharmaceutical formulation that remains within its physical, chemical, microbiological, therapeutic and toxicological specifications throughout its shelf life. In some embodiments, the VWF targeting agents of the present disclosure are formulated for inhalation.
  • In some embodiments, the VWF targeting agents of the present disclosure may be formulated for controlled release of the active agent. As non-limiting examples, formulations for controlled release may comprise biocompatible polymers. The choice of the polymer depending on the rate of drug release required in a particular treatment regimen. Biocompatible polymers suitable for sustained release include, but are not limited to, biodegradable polymers such as polyamides such as poly(amino acids) and poly(peptides); polyesters such as poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), and poly(caprolactonc); poly(anhydrides); polyorthoesters; polycarbonates and chemical derivatives thereof; copolymers and mixtures thereof. Biocompatible polymers may include non-degradable polymers such as polysaccharides; polyethers (e.g., poly(ethylene oxide), poly(ethylene glycol), and poly(tetramethylene oxide)); vinyl polymers (e.g., polyacrylates, acrylic acids, poly(vinyl alcohol), poly(vinyl pyrolidone), and poly(vinyl acetate)); polyurethanes; cellulose-based polymers (e.g., cellulose, alkyl cellulose, hydroxyalkyl cellulose, cellulose ethers, cellulose esters, nitrocellulose, and cellulose acetates); polysiloxanes and other silicone derivatives. The sustained release of the agents may last for more than two months, for one month, for three weeks, for two weeks, for one week, for six days, for five days, for four days, for three days, for two days, or for one day. The amount of the agents in the compositions for sustained release may comprise about 0.1% to about 30%, or about 0.1% to about 10%, or about 1% to about 10%, or about 0.5% to about 5% (w/w) of the formulation, e.g., about 0.1% (w/w), about 0.2% (w/w), about 0.5% (w/w), about 1.0% (w/w), about 2.0% (w/w), about 5.0% (w/w), about 10% (w/w), about 12% (w/w), about 15% (w/w), about 20% (w/w), about 25% (w/w), or about 30% (w/w) of the formulation.
  • In some embodiments, the VWF targeting agents are formulated as injectable thermosensitive gel formulations. As used herein, the term “thermosensitive gel formulation” means a formulation that exists as a mobile viscous liquid at low temperatures but forms a rigid semisolid gel at higher temperatures. Specifically, the formulation is liquid at room temperature or at lower temperature, but gels once injected, thus producing a depot of drug at the injection site. The formulations may contain thermo-sensitive polymers. As used herein, the term “gel” refers to the semi-solid phase that spontaneously occurs as the temperature of the thermo-sensitive polymer solution is raised to or above the gelation temperature of the polymer. Exemplary thermo-sensitive polymers may include PLGA-PEG-PLGA triblock copolymer, poloxamer, Pluronic acid F127, and polyoxyethylene-polyoxypropylene (PEO-PPO) block copolymers. In some embodiments, the gelation temperature of the formulation is from about 30° C. to about 40° C.
  • In some embodiments, the VWF targeting agents may be encapsulated with liposomal formulations. As used herein, the term “liposome” means a formulation consisting of at least one lipid bilayer membrane enclosing an aqueous internal compartment. Liposomes may be small unilamellar vesicles (SUVs) having a single membrane and typically range between 0.02 and 0.05 μm in diameter, or large unilamellar vesicles (LUVs) that are typically larger than 0.05 μm, or oliglamellar large vesicles having multiple, usually concentric, membrane layers that are typically larger than 0.1 μm. Liposomes are formulated to carry the VWF agents contained within the aqueous interior space or partitioned into the lipid bilayer.
  • In some embodiments, the VWF targeting agents may be formulated as implantable solid formulations, or coated to the surface of implants (e.g., stent).
  • The concentrations of the VWF targeting agent in the pharmaceutical formulation vary depending on a variety of factors, including the dosage of the drug to be administered, and the route of administration.
  • Treatment, Administration and Dosage
  • In one aspect, the VWF targeting agents of the present disclosure may be used for treating a bleeding disorder, and more specifically for treating a hereditary bleeding disorder, e.g., hemophilia A (mild, moderate and severe hemophilia), and VWD (Type 1, Type 2b and Type 3).
  • In some embodiments, the VWF targeting agents of the present disclosure may be used in the therapy and prophylactic treatment of a bleeding disorder. As used herein, the term “prophylactic treatment” is commonly referred to as a preventive treatment to avoid bleeding, by regular infusion of blood coagulation factor concentrates to a patient with a bleeding disorder. Patients with a severe form of the bleeding disorder (e.g., severe hemophilia and VWD Type 3) who receive the prophylactic treatment may experience reduced risk of bleeding and less joint damages.
  • In some embodiments, the VWF targeting agents of the present disclosure may be used in combination with coagulation factor replacement therapy (also known as coagulation factor substitute). For example, the VWF targeting agents may be used in combination with FVIII replacement therapy for treating hemophilia A, such as mild hemophilia, moderate hemophilia and severe hemophilia, in a patient. In one preferred embodiment, the patient is diagnosed with severe hemophilia.
  • Regular treatment with FVIII prophylaxis can significantly protect against spontaneous bleeding symptoms in patients with hemophilia A, particularly with severe hemophilia. Plasma derived FVIII concentrates and recombinant FVIII preparations are currently available treatments of hemophilia A. As the short circulatory half-life of FVIII in the blood requires regular intravenous FVIII infusions to maintain therapeutic plasma FVIII levels, the dosing schedule clinically has important implications for patient compliance. Recent effort focuses on developing new approaches to extend half-lives of FVIII substitute, e.g., modification of recombinant FVIII. However, clinical studies with modified recombinant FVIII molecules have demonstrated more moderate increases in half-life (≈1.5-fold) than for wild-type recombinant FVIII (Pipe et al., Blood, 2016, 128: 2007-2016).
  • It is recently reported that VWF peptide can effectively prolong endogenous FVIII survival in VWF-deficient mice and that extending the half-life of plasma VWF carrier fragment can result in a significant prolongation in FVIII half-life in VWF-deficient mice (Yee et al., Blood, 2014, 124:445-452). Agents that can elevate the VWF levels may be used for extending the half-life of FVIII in the blood, thereby elevating the FVIII levels in patients with low FVIII activity (e.g., hemophilia and VWD). The studies performed by the inventors demonstrated that administration of a VWF binding agent, BT200 can increase the VWF and FVIII levels in the blood, in a dose-dependent manner. BT200 binds to VWF and prevents VWF from clearance in the blood. Elevated VWF forms FVIII-VWF complexes, thereby increasing the FVIII levels in the blood.
  • In some embodiments, the VWF targeting agents of the present disclosure may be used in combination with a recombinant FVIII preparation, or plasma derived FVIII concentrates, to extend the half-life of FVIII in the blood of a hemophilia patient. The patient may have mild, moderate or severe hemophilia. In particular, the patient has severe hemophilia.
  • In some embodiments, the VWF targeting agents of the present disclosure may be used in combination with VWF replacement therapy for treating VWD, particularly VWD Type 3 and VWD Type 2 and VWD Type 1. In some examples, the VWF targeting agents may be used in combination with a VWF replacement preparation. The VWF replacement preparation may be a plasma-derived factor concentrate containing both FVIII and VWF (i.e., a FVIII/VWF concentrate), and a recombinant VWF preparation. As a non-limiting example, the recombinant VWF preparation may be Vonicog alfa, rVWF that is produced in genetically altered CHO cells expressing both VWF and FVIII (Turecek et al., Hamostaseologie. 2009, 29(Suppl.):S32-38).
  • In other examples, the present VWF targeting agents may be used in combination with DDAVP treatment. The VWF targeting agent may stabilize and increase the endogenous VWF and FVIII levels released by stimulation of DDAVP.
  • In some embodiments, the VWF targeting agents of the present disclosure may be used to maintain adequate VWF levels in the blood to protect FVIII from degradation. VWF may be endogenous, released by in vivo VWF producing cells, or exogenous, infused with in vitro VWF substitute. FVIII may be endogenous or exogenous.
  • In some embodiments, the VWF targeting agents may be used to increase platelet counts in a patient with VWD Type 2b, in particular, the VWD Type 2b patient with thrombocytopenia which is formed due to platelet aggregation. The present VWF targeting agent such as BT200 may raise platelet counts in the blood.
  • The present VWF targeting agent can increase platelet counts in the blood. Accordingly, a VWF targeting agent, can be used to treat thrombocytopenia, a condition in which a patient has a low platelet count in the blood. Thrombocytopenia may occur in various conditions, c g., a bone marrow disorder, a side effect from medications, an enlarged spleen associated with cancer and severe liver disease, an autoimmune disease, a condition by exposing a toxic chemical, and an infection.
  • In particular, BT200 can maintain sustained elevation of VWF and FVIII levels in the blood.
  • In some embodiments, the present VWF targeting agents, compositions and methods may be used to treat other rare deficiencies in clotting components. Rare inherited bleeding disorders (RBDs) include, for example, deficiencies of coagulation factors fibrinogen, FII. FV, combined FV and FVIII, FVII, FX, FXI, FXIII, and congenital deficiency of vitamin K-dependent factors (VKCFDs).
  • In accordance with the present disclosure, the methods comprise administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising at least one VWF targeting agent. In some examples, the targeting agent is a VWF binding agent. The VWF binding agent is an antibody, a nanobody, a peptide, an oligonucleotide, an RNA (e.g., siRNA, microRNA), a synthetic polynucleotide (e.g., an aptamer), or a small molecule. In some embodiments, The VWF binding agent is a synthetic polynucleotide selected from the group consisting of SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5), BT200 (SEQ ID No.: 6), ARC15105 (SEQ ID No.: 7), and ARC1779 (SEQ ID No.: 8) and variants thereof. In one preferred embodiment, the VWF binding agent is BT200 (SEQ ID No.: 6).
  • The VWF targeting agent may increase the levels of FVIII and VWF in the blood of the subject being treated with said agent. The VWF targeting agent may raise platelet counts in the subject as well.
  • As a non-limiting example, the VWF targeting agent is BT200 (SEQ ID No.: 6).
  • In accordance with the present disclosure, the treatment regimen such as doses, dose-response relationship, loading and maintenance doses and dosing schedules (such as intervals and timing), administration routes, formulations, etc. are discussed and determined.
  • In some embodiments, the VWF targeting agents may be administered to the subject in need in any administration routes. The agents and compositions may be formulated for administration by parental administration or enteral administration, or other appropriate routes. Parental administration may be performed by injection, or by the insertion of an indwelling catheter, including but not limited to intravenous (IV), intramuscular (IM), subcutaneous (SC), epicutaneous injection, peridural injection, intracerebral (into the cerebrum) administration, intracerebroventricular (into the cerebral ventricles) administration, extra-amniotic administration, nasal administration, intra-arterial, intracardiac, intraosseous infusion (IO), intraperitoncal infusion or injection, transdermal diffusion, enteral and gastrointestinal routes, topical administration and oral routes.
  • As a non-limiting example, the VWF targeting agent is administered by subcutaneous injection.
  • The therapeutically effective dosage of a medicine varies from patient to patient and depends upon factors such as the age and condition of the patient and the route of delivery. Such dosages can be determined in accordance with routine pharmacological procedures known to those skilled in the art. Factors that may influence the dosage required to effectively treat a subject, include but are not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a therapeutic polynucleotide disclosed herein can include a single treatment or can include a series of treatments. The effective dosage of a therapeutic polynucleotide disclosed herein used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.
  • In some embodiments, a therapeutically effective amount or dosage of the VWF targeting agent may range from about 0.001 μg/kg or 0.01 μg/kg to about 250 mg/kg or 500 mg/kg body weight, with other ranges including but not limited to, about 0.01 μg/kg to 100 mg/kg body weight, about 0.01 μg/kg to 50 mg/kg body weight, about 0.1 μg/kg to 20 mg/kg body weight, about 0.1 μg/kg to 10 mg/kg body weight, about 1 μg/kg to 100 mg/kg body weight, about 1 μg/kg to 50 mg/kg body weight, about 10 μg/kg to 100 mg/kg body weight, about 10 μg/kg to 50 mg/kg body weight, about 20 μg/kg to 100 mg/kg body weight, about 20 μg/kg to 50 mg/kg body weight, about 1 mg/kg to 100 mg/kg body weight, about 1 mg/kg to 50 mg/kg body weight, or about 20 mg/kg to 50 mg/kg body weight. The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present.
  • In some embodiments, the pharmaceutical compositions may be administered to the subject in need in a single dose. A single dose of BT200 may be 0.1 mg. 0.2 mg, 0.5 mg, 1.0 mg, 1.5 mg, 2.0 mg, 2.5 mg, 3.0 mg, 3.5 mg, 4.0 mg, 4.5 mg, 5.0 mg, 5.5 mg, 6.0 mg, 6.5 g, 7.0 mg, 7.5 mg, 8.0 mg, 8.5 mg, 9.0 mg, 10.0 mg, 11.0 mg, 12.0 mg, 13.0 mg, 14.0 mg, 15.0 mg, 16.0 mg, 17.0 mg. 18.0 mg, 19.0 mg, 20.0 mg, 21.0 mg, 22.0 mg, 23.0 mg. 24.0 mg, 25.0 mg, 26.0 mg, 27.0 mg, 28.0 mg, 29.0 mg, 30.0 mg, 31.0 mg, 32.0 mg, 33.0 mg, 34.0 mg, 35.0 mg, 36.0 mg, 37.0 mg, 38.0 mg, 39.0 mg, 40.0 mg, 41.0 mg, 42.0 mg, 43.0 mg, 44.0 mg, 45.0 mg, 46.0 mg, 47.0 mg, 48.0 mg, 49.0 mg, 50.0 mg. 51.0 mg, 52.0 mg, 53.0 mg, 54.0 mg, 55.0 mg, 56.0 mg, 57.0 mg, 58.0 mg, 59.0 mg, 60.0 mg, 61.0 mg, 62.0 mg, 63.0 mg, 64.0 mg, 65.0 mg, 66.0 mg, 67.0 mg, 68.0 mg, 69.0 mg, 70.0 mg, 71.0 mg, 72.0 mg, 73.0 mg, 74.0 mg, 75.0 mg, 76.0 mg, 77.0 mg, 78.0 mg, 79.0 mg, 80.0 mg, 81.0 mg, 82.0 mg, 83.0 mg, 84.0 mg, 85.0 mg, 86.0 mg, 87.0 mg. 88.0 mg, 89.0 mg, 90.0 mg, 91.0 mg, 92.0 mg, 93.0 mg. 94.0 mg, 95.0 mg, 96.0 mg, 97.0 mg, 98.0 mg, 99.0 mg, or 100.0 mg.
  • In one preferred embodiment, the single dose of BT200 is about 1.0 mg to 10.0 mg, or about 1.0 mg to 6.0 mg.
  • In some embodiments, the pharmaceutical compositions may be administered to the subject in need in multiple doses. The dosing schedules provided herein are safe and effective to prevent bleeding. As a non-limiting example, a patient may be treated with the present VWF targeting agent one time per week. It will also be appreciated that the effective dosage of an agent used for treatment may increase or decrease over the course of a particular treatment. The agents of the present disclosure can be administered simultaneously or separately.
  • In one preferred embodiment, a multiple dosing regimen is provided, including a loading dose of BT200 and sequential maintenance doses of BT200. The loading dose and maintenance doses may range from, but are not limited to, 0.1 mg to 10.0 mg of BT200, or 1.0 mg to 6.0 mg of BT200.
  • As non-limiting examples, BT200 may be dosed at 0.1 mg, 0.2 mg, 0.5 mg, 1.0 mg, 1.5 mg, 2.0 mg, 2.5 mg, 3.0 mg, 3.5 mg, 4.0 mg, 4.5 mg, 5.0 mg, 5.5 mg, 6.0 mg, 6.5 mg, 7.0 mg, 8.0 mg, 9.0 mg, 10.0 mg, 15 mg, or 20 mg. In some embodiments, BT200 may be dosed at 3.0 mg. 6.0 mg, 9.0 mg or 10.0 mg.
  • In some embodiments, the VWF targeting agents or pharmaceutical formulations thereof may be administered to a patient about every day, about every other day, about every 3 days, about every 4 days, about every 5 days, about every 6 days, about every 7 days, about every 8 to 10 days, about every 11 to 14 days, or about every three weeks to the patient in need thereof. In one embodiment, the VWF agent or pharmaceutical formulations thereof can be administered about every 7 days.
  • In some examples, the VWF targeting agents or pharmaceutical formulations thereof can be administered as a single time administration. In other examples, administration of the VWF targeting agents or pharmaceutical formulations thereof can continue for about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about two months, about three to four months, about four to six months, or about one year. In some examples, administration of the VWF agents or pharmaceutical formulations thereof is about every 7 days for about 5 weeks. In certain embodiments, administration can be intermittent after, for example, about 4 weeks, or about 5 weeks. As a non-limiting example, a subject in need may be treated once a week for about 5 weeks and then treated about 3 to about 4 times over the following years. In some embodiments, the VWF agents or pharmaceutical formulations thereof may be administered to the subject intermittently to maintain the patency of a vessel, or to keep VWF at certain levels. Dosing schedules and use of methods in combination with other bleeding prevention therapies are included.
  • In accordance with the present disclosure, the VWF targeting agent may be administered once every other day, once every three days, once every five days, once a week, or once every other week. In one preferred embodiment, the VWF targeting agent may be administered at least one loading dose and at least one maintenance dose. The loading dose and maintenance dose may be the same or different. As a non-limiting example, the VWF targeting agents or pharmaceutical formulations thereof can be administered with 2 loading doses, and 3 maintenance doses every 7 days.
  • Equivalents and Scope
  • Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the disclosure described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.
  • In the claims, articles such as “a.” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The disclosure includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process.
  • It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the term “consisting of” is thus also encompassed and disclosed.
  • Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the disclosure, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.
  • In addition, it is to be understood that any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the disclosure (e.g., any antibiotic, therapeutic or active ingredient; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.
  • It is to be understood that the words which have been used are words of description rather than limitation, and that changes may be made within the purview of the appended claims without departing from the true scope and spirit of the disclosure in its broader aspects.
  • While the present disclosure has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such claims in view of the prior art and, therefore, to effectively encompass the intended scope of the disclosure.
  • EXAMPLES Example 1: Dosing Window of BT200 for Treating a Bleeding Disorder
  • The blood levels of Factor VIII and VWF were measured after a single dose of BT200 at a dose ranging from 0.18 mg up to 48 mg in healthy volunteers. One week after dosing, the blood levels of Factor VIII and VWF antigen were increased in a dose- and time-dependent manner (as shown in Table 3 (Factor VIII) and Table 4 (VWF antigen). In the description column of Table 3 and Table 4, the description includes the cohort number, the therapeutic given and the patient identifier. For example “1-BT200-A” means the patient A of cohort which was given BT200 and “1-Control-A” means patient A of the control group.
  • TABLE 3
    Factor VIII Activity
    Result Absolute Relative
    Description Visit (%) Change Change
    1-BT200-A Day 0, 1 h prior IMP 59
    1-BT200-A Day 2 138 79 1.34
    1-BT200-A Day 7 101 42 0.71
    1-BT200-A Day 14 93 34 0.58
    1-BT200-A Day 21 117 58 0.98
    1-BT200-A Day 28 69 10 0.17
    1-BT200-B Day 0, 1 h prior IMP 92
    1-BT200-B Day 2 103 11 0.12
    1-BT200-B Day 7 79 −13 −0.14
    1-BT200-B Day 14 97 5 0.05
    1-BT200-B Day 21 130 38 0.41
    1-BT200-B Day 28 147 55 0.6
    1-BT200-C Day 0, 1 h prior IMP 82
    1-BT200-C Day 2 58 −24 −0.29
    1-BT200-C Day 7 71 −13 −0.13
    1-BT200-C Day 14 99 17 0.21
    1-BT200-C Day 21 79 −3 −0.04
    1-BT200-C Day 28 72 −10 −0.12
    1-BT200-D Day 0, 1 h prior IMP 89
    1-BT200-D Day 2 129 40 0.45
    1-BT200-D Day 7 62 −27 −0.3
    1-BT200-D Day 14 89 0 0
    1-BT200-D Day 21 123 34 0.38
    1-BT200-D Day 28 154 65 0.73
    1-BT200-E Day 0, 1 h prior IMP 49
    1-BT200-E Day 2 63 14 0.29
    1-BT200-E Day 7 50 1 0.02
    1-BT200-E Day 14 65 16 0.33
    1-BT200-E Day 21 56 7 0.14
    1-BT200-E Day 28 52 3 0.06
    1-BT200-F Day 0, 1 h prior IMP 44
    1-BT200-F Day 2 68 24 0.55
    1-BT200-F Day 7 43 −1 −0.02
    1-BT200-F Day 14 74 30 0.68
    1-BT200-F Day 21 101 57 1.3
    1-BT200-F Day 28 124 80 1.82
    1-Control-A Day 0, 1 h prior IMP 66
    1-Control-A Day 2 67 1 0.02
    1-Control-A Day 7 47 −19 −0.29
    1-Control-A Day 14 115 49 0.74
    1-Control-A Day 21 132 66 1
    1-Control-A Day 28 87 21 0.32
    1-Control-B Day 0, 1 h prior IMP 80
    1-Control-B Day 2 104 24 0.3
    1-Control-B Day 7 101 21 0.26
    1-Control-B Day 21 161 81 1.01
    1-Control-B Day 28 99 19 0.24
    2-BT200-A Day 0, 1 h prior IMP 27
    2-BT200-A Day 2 49 22 0.81
    2-BT200-A Day 7 49 22 0.81
    2-BT200-A Day 14 64 37 1.37
    2-BT200-A Day 21 56 29 1.07
    2-BT200-A Day 28 40 13 0.48
    2-BT200-B Day 0, 1 h prior IMP 68
    2-BT200-B Day 2 133 65 0.96
    2-BT200-B Day 7 185 117 1.72
    2-BT200-B Day 14 158 90 1.32
    2-BT200-B Day 21 176 108 1.59
    2-BT200-B Day 28 118 50 0.74
    2-BT200-C Day 0, 1 h prior IMP 112
    2-BT200-C Day 2 137 25 0.22
    2-BT200-C Day 7 72 −40 −0.36
    2-BT200-C Day 14 132 20 0.18
    2-BT200-C Day 21 132 20 0.18
    2-BT200-C Day 28 150 38 0.34
    2-BT200-D Day 0, 1 h prior IMP 70
    2-BT200-D Day 2 141 71 1.01
    2-BT200-D Day 7 134 64 0.91
    2-BT200-D Day 14 176 106 1.53
    2-BT200-D Day 21 137 67 0.96
    2-BT200-D Day 28 147 77 1.1
    2-BT200-E Day 0, 1 h prior IMP 101
    2-BT200-E Day 2 111 10 0.1
    2-BT200-E Day 7 88 −13 −0.13
    2-BT200-E Day 14 107 6 0.06
    2-BT200-E Day 21 119 18 0.18
    2-BT200-E Day 28 101 0 0
    2-BT200-F Day 0, 1 h prior IMP 74
    2-BT200-F Day 2 141 67 0.91
    2-BT200-F Day 7 116 42 0.57
    2-BT200-F Day 14 113 39 0.53
    2-BT200-F Day 21 86 12 0.16
    2-BT200-F Day 28 135 61 0.82
    2-Control-A Day 0, 1 h prior IMP 31
    2-Control-A Day 2 28 −3 −0.1
    2-Control-A Day 7 86 55 1.77
    2-Control-A Day 14 42 11 0.35
    2-Control-A Day 21 42 11 0.35
    2-Control-A Day 28 44 13 0.42
    2-Control-B Day 0, 1 h prior IMP 112
    2-Control-B Day 2 144 32 0.29
    2-Control-B Day 7 125 13 0.12
    2-Control-B Day 14 160 48 0.43
    2-Control-B Day 21 148 36 0.32
    2-Control-B Day 28 122 10 0.09
    3-BT200-A Day 0, 1 h prior IMP 163
    3-BT200-A Day 2 144 −19 −0.12
    3-BT200-A Day 7 202 39 0.24
    3-BT200-A Day 14 144 −19 −0.12
    3-BT200-A Day 21 134 −29 −0.18
    3-BT200-A Day 28 117 −46 −0.28
    3-BT200-B Day 0, 1 h prior IMP 75
    3-BT200-B Day 2 126 51 0.68
    3-BT200-B Day 7 130 55 0.73
    3-BT200-B Day 14 91 16 0.21
    3-BT200-B Day 21 94 19 0.25
    3-BT200-B Day 28 113 38 0.53
    3-BT200-C Day 0, 1 h prior IMP 126
    3-BT200-C Day 2 197 71 0.56
    3-BT200-C Day 7 197 71 0.56
    3-BT200-C Day 14 189 63 0.5
    3-BT200-C Day 21 188 62 0.49
    3-BT200-C Day 28 167 41 0.33
    3-BT200-D Day 0, 1 h prior IMP 70
    3-BT200-D Day 2 82 12 0.17
    3-BT200-D Day 7 158 88 1.26
    3-BT200-D Day 14 133 63 0.9
    3-BT200-D Day 21 106 36 0.51
    3-BT200-D Day 28 112 42 0.6
    3-BT200-E Day 0, 1 h prior IMP 67
    3-BT200-E Day 2 95 28 0.42
    3-BT200-E Day 7 107 40 0.6
    3-BT200-E Day 14 100 33 0.49
    3-BT200-E Day 21 87 20 0.3
    3-BT200-E Day 28 81 14 0.21
    3-BT200-F Day 0, 1 h prior IMP 68
    3-BT200-F Day 2 105 37 0.54
    3-BT200-F Day 7 120 52 0.76
    3-BT200-F Day 14 75 7 0.1
    3-BT200-F Day 21 110 42 0.62
    3-BT200-F Day 28 93 25 0.37
    3-Control-A Day 0, 1 h prior IMP 100
    3-Control-A Day 2 98 −2 −0.02
    3-Control-A Day 7 117 17 0.17
    3-Control-A Day 14 98 −2 −0.02
    3-Control-A Day 21 114 14 0.14
    3-Control-A Day 28 101 1 0.01
    3-Control-B Day 0, 1 h prior IMP 112
    3-Control-B Day 2 102 −10 −0.09
    3-Control-B Day 7 146 34 0.3
    3-Control-B Day 14 138 26 0.23
    3-Control-B Day 21 106 −6 −0.05
    3-Control-B Day 28 130 18 0.16
    4-BT200-A Day 0, 1 h prior IMP 137
    4-BT200-A Day 2 151 14 0.1
    4-BT200-A Day 7 187 50 0.36
    4-BT200-A Day 14 211 74 0.54
    4-BT200-A Day 21 96 −41 −0.3
    4-BT200-A Day 28 88 −49 −0.36
    4-BT200-B Day 0, 1 h prior IMP 101
    4-BT200-B Day 2 167 66 0.65
    4-BT200-B Day 7 207 106 1.05
    4-BT200-B Day 14 142 41 0.41
    4-BT200-B Day 21 93 −8 −0.08
    4-BT200-B Day 28 88 −13 −0.13
    4-BT200-C Day 0, 1 h prior IMP 74
    4-BT200-C Day 2 175 101 1.36
    4-BT200-C Day 7 138 64 0.86
    4-BT200-C Day 14 90 16 0.22
    4-BT200-C Day 21 98 24 0.32
    4-BT200-C Day 28 50 −24 −0.32
    4-BT200-D Day 0, 1 h prior IMP 97
    4-BT200-D Day 2 190 93 0.96
    4-BT200-D Day 7 165 68 0.7
    4-BT200-D Day 14 128 31 0.32
    4-BT200-D Day 21 116 19 0.2
    4-BT200-D Day 28 91 −6 0.06
    4-BT200-E Day 0, 1 h prior IMP 238
    4-BT200-E Day 2 143 −95 −0.4
    4-BT200-E Day 7 257 19 0.08
    4-BT200-E Day 14 271 33 0.14
    4-BT200-E Day 21 279 41 0.17
    4-BT200-E Day 28 238 0 0
    4-BT200-F Day 0, 1 h prior IMP 201
    4-BT200-F Day 2 261 60 0.3
    4-BT200-F Day 7 254 53 0.26
    4-BT200-F Day 14 257 56 0.28
    4-BT200-F Day 21 203 2 0.01
    4-BT200-F Day 28 185 −16 0.08
    4-Control-A Day 0, 1 h prior IMP 59
    4-Control-A Day 2 83 24 0.41
    4-Control-A Day 7 68 9 0.15
    4-Control-A Day 14 73 14 0.24
    4-Control-A Day 21 76 17 0.29
    4-Control-A Day 28 77 18 0.31
    4-Control-B Day 0, 1 h prior IMP 79
    4-Control-B Day 2 71 −8 −0.1
    4-Control-B Day 7 45 −34 −0.43
    4-Control-B Day 14 83 4 0.05
    4-Control-B Day 21 45 −34 −0.43
    4-Control-B Day 28 89 10 0.13
    5-BT200-A Day 0, 1 h prior IMP 85
    5-BT200-A Day 2 221 136 1.6
    5-BT200-A Day 7 312 227 2.67
    5-BT200-A Day 14 218 133 1.56
    5-BT200-A Day 21 183 98 1.15
    5-BT200-A Day 28 132 47 0.55
    5-BT200-B Day 0, 1 h prior IMP 80
    5-BT200-B Day 2 226 146 1.83
    5-BT200-B Day 7 396 316 3.95
    5-BT200-B Day 14 167 87 1.09
    5-BT200-B Day 28 124 44 0.55
    5-BT200-C Day 0, 1 h prior IMP 90
    5-BT200-C Day 2 210 120 1.33
    5-BT200-C Day 7 306 216 2.4
    5-BT200-C Day 14 192 102 1.13
    5-BT200-C Day 21 169 79 0.88
    5-BT200-C Day 28 130 40 0.44
    5-BT200-D Day 0, 1 h prior IMP 83
    5-BT200-D Day 2 185 102 1.23
    5-BT200-D Day 7 258 175 2.11
    S-BT200-I Day 14 155 72 0.87
    5-BT200-D Day 21 133 50 0.6
    5-BT200-D Day 28 91 8 0.1
    5-BT200-E Day 0, 1 h prior IMP 63
    5-BT200-E Day 2 170 107 1.7
    5-BT200-E Day 7 236 173 2.75
    5-BT200-E Day 14 156 93 1.48
    5-BT200-E Day 21 162 99 1.57
    5-BT200-E Day 28 90 27 0.43
    5-BT200-F Day 0, 1 h prior IMP 79
    5-BT200-F Day 2 220 141 1.78
    5-BT200-F Day 7 278 199 2.52
    5-BT200-F Day 14 170 91 1.15
    5-BT200-F Day 21 114 35 0.44
    5-BT200-F Day 28 76 −3 −0.04
    5-Control-A Day 0, 1 h prior IMP 67
    5-Control-A Day 2 77 10 0.15
    5-Control-A Day 7 65 −2 −0.03
    5-Control-A Day 14 50 −17 −0.25
    5-Control-A Day 21 78 11 0.16
    5-Control-A Day 28 69 2 0.03
    5-Control-B Day 0, 1 h prior IMP 95
    5-Control-B Day 2 132 37 0.39
    5-Control-B Day 7 133 38 0.4
    5-Control-B Day 14 72 −23 −0.24
    5-Control-B Day 21 109 14 0.15
    5-Control-B Day 28 93 2 −0.02
    6-BT200-A Day 0, 1 h prior IMP 120
    6-BT200-A Day 2 164 44 0.37
    6-BT200-A Day 7 231 111 0.93
    6-BT200-A Day 14 238 118 0.98
    6-BT200-A Day 21 171 51 0.43
    6-BT200-A Day 28 98 −22 −0.18
    6-BT200-B Day 0, 1 h prior IMP 90
    6-BT200-B Day 2 151 61 0.68
    6-BT200-B Day 7 280 190 2.11
    6-BT200-B Day 14 241 151 1.68
    6-BT200-B Day 21 188 98 1.09
    6-BT200-B Day 28 119 29 0.32
    6-BT200-C Day 0, 1 h prior IMP 104
    6-BT200-C Day 2 227 123 1.18
    6-BT200-C Day 7 254 150 1.44
    6-BT200-C Day 14 146 42 0.4
    6-BT200-C Day 21 143 39 0.38
    6-BT200-C Day 28 124 20 0.19
    6-BT200-D Day 0, 1 h prior IMP 134
    6-BT200-D Day 2 171 37 0.28
    5-BT200-D Day 7 315 181 1.35
    6-BT200-D Day 14 297 163 1.22
    6-BT200-D Day 21 261 127 0.95
    6-BT200-D Day 28 178 44 0.33
    6-BT200-E Day 0, 1 h prior IMP 57
    6-BT200-E Day 2
    6-BT200-E Day 7 142 85 1.49
    6-BT200-E Day 14 145 88 1.54
    6-BT200-E Day 21 125 68 1.19
    6-BT200-E Day 28 84 27 0.47
    6-BT200-F Day 0, 1 h prior IMP 84
    6-BT200-F Day 2 166 82 0.98
    6-BT200-F Day 7 335 251 2.99
    6-BT200-F Day 14 202 118 1.4
    6-BT200-F Day 21 125 41 0.49
    6-BT200-F Day 28 71 −13 −0.15
    6-Control-A Day 0, 1 h prior IMP 122
    6-Control-A Day 2 90 −32 −0.26
    6-Control-A Day 7 126 4 0.03
    6-Control-A Day 14 107 −15 −0.12
    6-Control-A Day 21 106 −16 −0.13
    6-Control-A Day 28 106 −16 −0.13
    6-Control-B Day 0, 1 h prior IMP 59
    6-Control-B Day 2 103 44 0.75
    6-Control-B Day 7 94 35 0.59
    6-Control-B Day 14 144 85 1.44
    6-Control-B Day 21 105 46 0.78
    6-Control-B Day 28 54 −5 −0.08
    7-BT200-A Day 0, 1 h prior IMP 104
    7-BT200-A Day 2 247 143 1.38
    7-BT200-A Day 7 295 191 1.84
    7-BT200-A Day 14 255 151 1.45
    7-BT200-A Day 21 160 56 0.54
    7-BT200-A Day 28 100 −4 −0.04
    7-BT200-B Day 0, 1 h prior IMP 90
    7-BT200-B Day 2 240 150 1.67
    7-BT200-B Day 7 281 191 2.12
    7-BT200-B Day 14 205 115 1.28
    7-BT200-B Day 21 114 24 0.27
    7-BT200-B Day 28 95 5 0.06
    7-BT200-C Day 0, 1 h prior IMP 74
    7-BT200-C Day 2 212 138 1.86
    7-BT200-C Day 7 312 238 3.22
    7-BT200-C Day 14 210 136 1.84
    7-BT200-C Day 21 165 91 1.23
    7-BT200-C Day 28 106 32 0.43
    7-BT200-D Day 0, 1 h prior IMP 68
    7-BT200-D Day 2 125 57 0.84
    7-BT200-D Day 7 223 155 2.28
    7-BT200-D Day 14 139 71 1.04
    7-BT200-D Day 21 131 63 0.93
    7-BT200-D Day 28 116 48 0.71
    7-BT200-E Day 0, 1 h prior IMP 101
    7-BT200-E Day 2 201 100 0.99
    7-BT200-E Day 7 249 148 1.47
    7-BT200-E Day 14 212 111 1.1
    7-BT200-E Day 21 144 43 0.43
    7-BT200-E Day 28 114 13 0.13
    7-BT200-F Day 0, 1 h prior IMP 56
    7-BT200-F Day 2 246 190 3.39
    7-BT200-F Day 7 399 343 6.13
    7-BT200-F Day 14 238 182 3.25
    7-BT200-F Day 21 132 76 1.36
    7-BT200-F Day 28 91 35 0.63
    7-Control-A Day 0, 1 h prior IMP 102
    7-Control-A Day 2 145 43 0.42
    7-Control-A Day 7 123 21 0.21
    7-Control-A Day 14 91 −11 −0.11
    7-Control-A Day 21 102 0 0
    7-Control-A Day 28 119 17 0.17
    7-Control-B Day 0, 1 h prior IMP 162
    7-Control-B Day 2 176 14 0.09
    7-Control-B Day 7 142 −20 −0.12
    7-Control-B Day 14 166 4 0.02
    7-Control-B Day 21 99 −63 −0.39
    7-Control-B Day 28
    8-BT200-A Day 0, 1 h prior IMP 143
    8-BT200-A Day 2 288 145 1.01
    8-BT200-A Day 7 482 339 2.37
    8-BT200-A Day 14 444 301 2.1
    8-BT200-A Day 21 282 139 0.97
    8-BT200-A Day 28 245 102 0.71
    8-BT200-B Day 0, 1 h prior IMP 74
    8-BT200-B Day 2 248 174 2.35
    8-BT200-B Day 7 406 332 4.49
    8-BT200-B Day 14 297 223 3.01
    8-BT200-B Day 21 216 142 1.92
    8-BT200-B Day 28 186 112 1.51
    8-BT200-C Day 0, 1 h prior IMP 99
    8-BT200-C Day 2 295 196 1.98
    8-BT200-C Day 7 451 352 3.56
    8-BT200-C Day 14 389 290 2.93
    8-BT200-C Day 21 256 157 1.59
    8-BT200-C Day 28 226 127 1.28
    8-BT200-D Day 0, 1 h prior IMP 87
    8-BT200-D Day 2 258 171 1.97
    8-BT200-D Day 7 406 319 3.67
    8-BT200-D Day 14 293 206 2.37
    8-BT200-D Day 21 193 106 1.22
    8-BT200-D Day 28 130 43 0.49
    8-BT200-E Day 0, 1 h prior IMP 66
    8-BT200-E Day 2 335 269 4.08
    8-BT200-E Day 7 310 244 3.7
    8-BT200-E Day 14 323 257 3.89
    8-BT200-E Day 21 146 80 1.21
    8-BT200-E Day 28 249 183 2.77
    8-BT200-F Day 0, 1 h prior IMP 154
    8-BT200-F Day 2 247 93 0.6
    8-BT200-F Day 7 359 205 1.33
    8-BT200-F Day 21 277 123 0.8
    8-BT200-F Day 28 242 88 0.57
    8-Control-A Day 0, 1 h prior IMP 156
    8-Control-A Day 2 157 1 0.01
    8-Control-A Day 7 95 −61 −0.39
    8-Control-A Day 14 127 −29 −0.19
    8-Control-A Day 21 114 −42 −0.27
    8-Control-A Day 28 66 −90 −0.58
    8-Control-B Day 0, 1 h prior IMP 176
    8-Control-B Day 2 149 −27 −0.15
    8-Control-B Day 7 197 21 0.12
    8-Control-B Day 14 192 16 0.09
    8-Control-B Day 21 229 53 0.3
    8-Control-B Day 28 195 19 0.11
    9-BT200-A Day 0, 1 h prior IMP 143
    9-BT200-A Day 2 220 77 0.54
    9-BT200-A Day 7 298 155 1.08
    9-BT200-A Day 21 289 146 1.02
    9-BT200-A Day 28 247 104 0.73
    9-BT200-B Day 0, 1 h prior IMP 153
    9-BT200-B Day 2 336 183 1.2
    9-BT200-B Day 7 463 310 2.03
    9-BT200-B Day 14 372 219 1.43
    9-BT200-B Day 21 287 134 0.88
    9-BT200-B Day 28 271 118 0.77
    9-BT200-C Day 0, 1 h prior IMP 117
    9-BT200-C Day 2 263 146 1.25
    9-BT200-C Day 7 400 283 2.42
    9-BT200-C Day 14 300 183 1.56
    9-BT200-C Day 21 229 112 0.96
    9-BT200-C Day 28 196 79 0.68
    9-BT200-D Day 0, 1 h prior IMP 87
    9-BT200-D Day 2 214 127 1.46
    9-BT200-D Day 7 336 249 2.86
    9-BT200-D Day 14 400 313 3.6
    9-BT200-D Day 21 282 195 2.24
    9-BT200-D Day 28 228 141 1.62
    9-BT200-E Day 0, 1 h prior IMP 123
    9-BT200-E Day 2 295 172 1.4
    9-BT200-E Day 7 390 267 2.17
    9-BT200-E Day 14 325 202 1.64
    9-BT200-E Day 21 254 131 1.07
    9-BT200-E Day 28 204 81 0.66
    9-BT200-F Day 0, 1 h prior IMP 113
    9-BT200-F Day 2 246 133 1.18
    9-BT200-F Day 7 392 279 2.47
    9-BT200-F Day 14 326 213 1.88
    9-BT200-F Day 21 185 72 0.64
    9-BT200-F Day 28 241 128 1.13
    9-Control-A Day 0, 1 h prior IMP 104
    9-Control-A Day 2 117 13 0.13
    9-Control-A Day 7 69 −35 −0.34
    9-Control-A Day 14 89 −15 −0.14
    9-Control-A Day 21 60 −44 −0.42
    9-Control-A Day 28 92 −12 −0.12
    9-Control-B Day 0, 1 h prior IMP 130
    9-Control-B Day 2 240 110 0.85
    9-Control-B Day 7 188 58 0.45
    9-Control-B Day 14 196 66 0.51
    9-Control-B Day 21 139 9 0.07
    9-Control-B Day 28 209 79 0.61
    10-BT200-A Day 0, 1 h prior IMP 162
    10-BT200-A Day 2 337 175 1.08
    10-BT200-A Day 7 434 272 1.68
    10-BT200-A Day 14 290 128 0.79
    10-BT200-A Day 21 394 232 1.43
    10-BT200-B Day 0, 1 h prior IMP 108
    10-BT200-B Day 2 224 116 1.07
    10-BT200-B Day 7 318 210 1.94
    10-BT200-B Day 14 305 197 1.82
    10-BT200-B Day 21 233 125 1.16
    10-BT200-B Day 28 92 −16 −0.15
    10-BT200-C Day 0, 1 h prior IMP 69
    10-BT200-C Day 2 224 155 2.25
    10-BT200-C Day 7 245 176 2.55
    10-BT200-C Day 14 268 199 2.88
    10-BT200-C Day 21 241 172 2.49
    10-BT200-C Day 28 160 91 1.32
    10-BT200-D Day 0, 1 h prior IMP 195
    10-BT200-D Day 2 389 194 0.99
    10-BT200-D Day 7 498 303 1.55
    10-BT200-D Day 14 400 205 1.05
    10-BT200-D Day 21 382 187 0.96
    10-BT200-D Day 28 267 72 0.37
    10-BT200-E Day 0, 1 h prior IMP 90
    10-BT200-E Day 2 220 130 1.44
    10-BT200-E Day 7 303 213 2.37
    10-BT200-E Day 14 297 207 2.3
    10-BT200-E Day 21 238 148 1.64
    10-BT200-E Day 28 180 90 1
    10-BT200-F Day 0, 1 h prior IMP 145
    10-BT200-F Day 2 304 159 1.1
    10-BT200-F Day 7 556 411 2.83
    10-BT200-F Day 14 452 307 2.12
    10-BT200-F Day 21 263 118 0.81
    10-BT200-F Day 28 151 6 0.04
    10-Control-A Day 0, 1 h prior IMP 125
    10-Control-A Day 2 122 −3 −0.02
    10-Control-A Day 7 139 14 0.11
    10-Control-A Day 14 60 −65 −0.52
    10-Control-A Day 21 117 −8 −0.06
    10-Control-A Day 28 124 − 1 −0.01
    10-Control-B Day 0, 1 h prior IMP 165
    10-Control-B Day 2 193 28 0.17
    10-Control-B Day 7 131 −34 −0.21
    10-Control-B Day 14 235 70 0.42
    10-Control-B Day 21 228 63 0.38
    10-Control-B Day 28 142 −23 −0.14
  • TABLE 4
    VWF Antigen
    Result Absolute Relative
    Description Timing (%) Change Change
    1-BT200-A Day 0, 1 h prior IMP 79
    1-BT200-A Day 2 146 67 0.85
    1-BT200-A Day 7 91 12 0.15
    1-BT200-A Day 14 80 1 0.01
    1-BT200-A Day 21 78 −1 −0.01
    1-BT200-A Day 28 68 −11 −0.14
    1-BT200-B Day 0, 1 h prior IMP 64
    1-BT200-B Day 2 64 0 0
    1-BT200-B Day 7 47 −17 −0.27
    1-BT200-B Day 14 51 −13 −0.2
    1-BT200-B Day 21 69 5 0.08
    1-BT200-B Day 28 70 6 0.09
    1-BT200-C Day 0, 1 h prior IMP 58
    1-BT200-C Day 2 67 9 0.16
    1-BT200-C Day 7 63 5 0.09
    1-BT200-C Day 14 57 −1 −0.02
    1-BT200-C Day 21 54 −4 −0.07
    1-BT200-C Day 28 49 −9 −0.16
    1-BT200-D Day 0, 1 h prior IMP 111
    1-BT200-D Day 2 131 20 0.18
    1-BT200-D Day 7 89 −22 −0.2
    1-BT200-D Day 14 97 −14 −0.13
    L-BT200-D Day 21 105 −6 −0.05
    1-BT200-D Day 28 128 17 0.15
    1-BT200-E Day 0, 1 h prior IMP 52
    1-BT200-E Day 2 75 23 0.44
    1-BT200-E Day 7 42 −10 −0.19
    1-BT200-E Day 14 61 9 0.17
    1-BT200-E Day 21 34 −18 −0.35
    1-BT200-E Day 28 45 −7 −0.13
    1-BT200-F Day 0, 1 h prior IMP 76
    1-BT200-F Day 2 80 4 0.05
    1-BT200-F Day 7
    1-BT200-F Day 14 77 1 0.01
    1-BT200-F Day 21 87 11 0.14
    1-BT200-F Day 28 104 28 0.37
    1-Control-A Day 0, 1 h prior IMP 73
    1-Control-A Day 2 88 15 0.21
    1-Control-A Day 7 56 −17 −0.23
    1-Control-A Day 14 97 24 0.33
    1-Control-A Day 21 112 39 0.53
    1-Control-A Day 28 76 3 0.04
    1-Control-B Day 0, 1 h prior IMP 89
    1-Control-B Day 2 122 33 0.37
    1-Control-B Day 7 105 16 0.18
    1-Control-B Day 21 135 46 0.52
    1-Control-B Day 28 103 14 0.16
    2-BT200-A Day 0, 1 h prior IMP 29
    2-BT200-A Day 2 58 29 1
    2-BT200-A Day 7 57 28 0.97
    2-BT200-A Day 14 55 26 0.9
    2-BT200-A Day 21 47 18 0.62
    2-BT200-A Day 28 55 26 0.9
    2-BT200-B Day 0, 1 h prior IMP 79
    2-BT200-B Day 2 167 88 1.11
    2-BT200-B Day 7 154 75 0.95
    2-BT200-B Day 14 146 67 0.85
    2-BT200-B Day 21 194 115 1.46
    2-BT200-B Day 28 145 66 0.84
    2-BT200-C Day 0, 1 h prior IMP 133
    2-BT200-C Day 2 119 −14 −0.11
    2-BT200-C Day 7 66 −67 −0.5
    2-BT200-C Day 14 101 −32 −0.24
    2-BT200-C Day 21 125 −8 −0.06
    2-BT200-C Day 28 113 −20 −0.15
    2-BT200-D Day 0, 1 h prior IMP 87
    2-BT200-D Day 2 114 27 0.31
    2-BT200-D Day 7 99 12 0.14
    2-BT200-D Day 14 107 20 0.23
    2-BT200-D Day 21 121 34 0.39
    2-BT200-D Day 28 94 7 0.08
    2-BT200-E Day 0, 1 h prior IMP 134
    2-BT200-E Day 2 116 −18 −0.13
    2-BT200-E Day 7 91 −43 −0.32
    2-BT200-E Day 14 96 −38 −0.28
    2-BT200-E Day 21 123 −11 −0.08
    2-BT200-E Day 28 121 −13 −0.1
    2-BT200-F Day 0, 1 h prior IMP 81
    2-BT200-F Day 2 105 24 0.3
    2-BT200-F Day 7 93 12 0.15
    2-BT200-F Day 14 85 4 0.05
    2-BT200-F Day 21 59 −22 −0.27
    2-BT200-F Day 28 85 4 0.05
    2-Control-A Day 0, 1 h prior IMP 42
    2-Control-A Day 2 41 −0.02
    2-Control-A Day 7 74 32 0.76
    2-Control-A Day 14 54 12 0.29
    2-Control-A Day 21 47 5 0.12
    2-Control-A Day 28 53 11 0.26
    2-Control-B Day 0, 1 h prior IMP 123
    2-Control-B Day 2 129 6 0.05
    2-Control-B Day 7 317 −6 −0.05
    2-Control-B Day 14 142 19 0.15
    2-Control-B Day 21 103 −20 −0.16
    2-Control-B Day 28 131 8 0.07
    3-BT200-A Day 0, 1 h prior IMP 106
    3-BT200-A Day 2 135 29 0.27
    3-BT200-A Day 7 147 41 0.39
    3-BT200-A Day 14 114 8 0.08
    3-BT200-A Day 21 96 −10 −0.09
    3-BT200-A Day 28 107 1 0.01
    3-BT200-B Day 0, 1 h prior IMP 64
    3-BT200-B Day 2 92 28 0.44
    3-BT200-B Day 7 95 31 0.48
    3-BT200-B Day 14 93 29 0.45
    3-BT200-B Day 21 74 10 0.16
    3-BT200-B Day 28 80 16 0.25
    3-BT200-C Day 0, 1 h prior IMP 141
    3-BT200-C Day 2 217 76 0.54
    3-BT200-C Day 7 193 52 0.37
    3-BT200-C Day 14 227 86 0.61
    3-BT200-C Day 21 175 34 0.24
    3-BT200-C Day 28 180 39 0.28
    3-BT200-D Day 0, 1 h prior IMP 96
    3-BT200-D Day 2 35 −61 −0.64
    3-BT200-D Day 7 127 31 0.32
    3-BT200-D Day 14 96 0 0
    3-BT200-D Day 21 101 5 0.05
    3-BT200-D Day 28 100 4 0.04
    3-BT200-E Day 0, 1 h prior IMP 70
    3-BT200-E Day 2 91 21 0.3
    3-BT200-E Day 7 98 28 0.4
    3-BT200-E Day 14 94 24 0.34
    3-BT200-E Day 21 109 39 0.56
    3-BT200-E Day 28 80 10 0.14
    3-BT200-F Day 0, 1 h prior IMP 49
    3-BT200-F Day 2 80 31 0.63
    3-BT200-F Day 7 73 24 0.49
    3-BT200-F Day 14 71 22 0.45
    3-BT200-F Day 21 66 17 0.35
    3-BT200-F Day 28 63 14 0.29
    3-Control-A Day 0, 1 h prior IMP 78
    3-Control-A Day 2 77 −1 −0.01
    3-Control-A Day 7 100 22 0.28
    3-Control-A Day 14 83 5 0.06
    3-Control-A Day 21 88 10 0.13
    3-Control-A Day 28 97 19 0.24
    3-Control-B Day 0, 1 h prior IMP 101
    3-Control-B Day 2 84 −17 −0.17
    3-Control-B Day 7 117 16 0.16
    3-Control-B Day 14 113 12 0.12
    3-Control-B Day 21 112 11 0.11
    3-Control-B Day 28 102 1 0.01
    4-BT200-A Day 0, 1 h prior IMP 104
    4-BT200-A Day 2 184 80 0.77
    4-BT200-A Day 7 243 139 1.34
    4-BT200-A Day 14 195 91 0.88
    4-BT200-A Day 21 106 2 0.02
    4-BT200-A Day 28 105 1 0.01
    4-BT200-B Day 0, 1 h prior IMP 95
    4-BT200-B Day 2 146 51 0.54
    4-BT200-B Day 7 214 119 1.25
    4-BT200-B Day 14 181 86 0.91
    4-BT200-B Day 21 102 7 0.07
    4-BT200-B Day 28 76 −19 −0.2
    4-BT200-C Day 0, 1 h prior IMP 68
    4-BT200-C Day 2 176 108 1.59
    4-BT200-C Day 7 148 80 1.18
    4-BT200-C Day 14 105 37 0.54
    4-BT200-C Day 21 89 21 0.31
    4-BT200-C Day 28 55 −13 −0.19
    4-BT200-D Day 0, 1 h prior IMP 103
    4-BT200-D Day 2 156 53 0.51
    4-BT200-D Day 7 172 69 0.67
    4-BT200-D Day 14 140 37 0.36
    4-BT200-D Day 21 119 16 0.16
    4-BT200-D Day 28 76 −27 −0.26
    4-BT200-E Day 0, 1 h prior IMP 198
    4-BT200-E Day 2 212 14 0.07
    4-BT200-E Day 7 328 130 0.66
    4-BT200-E Day 14 271 73 0.37
    4-BT200-E Day 21 265 67 0.34
    4-BT200-E Day 28 275 77 0.39
    4-BT200-F Day 0, 1 h prior IMP 150
    4-BT200-F Day 2 258 108 0.72
    4-BT200-F Day 7 325 175 1.17
    4-BT200-F Day 14 208 58 0.39
    4-BT200-F Day 21 193 43 0.29
    4-BT200-F Day 28 151 1 0.01
    4-Control-A Day 0, 1 h prior IMP 61
    4-Control-A Day 2 67 6 0.1
    4-Control-A Day 7 69 8 0.13
    4-Control-A Day 14 57 −4 −0.07
    4-Control-A Day 21 72 11 0.18
    4-Control-A Day 28 67 6 0.1
    4-Control-B Day 0, 1 h prior IMP 67
    4-Control-B Day 2 69 2 0.03
    4-Control-B Day 7 22 −45 −0.67
    4-Control-B Day 14 67 0 0
    4-Control-B Day 21 47 −20 −0.3
    4-Control-B Day 28 68 1 0.01
    5-BT200-A Day 0, 1 h prior IMP 100
    5-BT200-A Day 2 198 98 0.98
    5-BT200-A Day 7 311 211 2.11
    5-BT200-A Day 14 303 203 2.03
    5-BT200-A Day 21 165 65 0.65
    5-BT200-A Day 28 125 25 0.25
    5-BT200-B Day 0, 1 h prior IMP 99
    5-BT200-B Day 2 218 119 1.2
    5-BT200-B Day 7 408 309 3.12
    5-BT200-B Day 14 247 148 1.49
    5-BT200-B Day 28 117 18 0.18
    5-BT200-C Day 0, 1 h prior IMP 107
    5-BT200-C Day 2 193 86 0.8
    5-BT200-C Day 7 323 216 2.02
    5-BT200-C Day 14 230 123 1.15
    5-BT200-C Day 21 159 52 0.49
    5-BT200-C Day 28 134 27 0.25
    5-BT200-D Day 0, 1 h prior IMP 104
    5-BT200-D Day 2 203 99 0.95
    5-BT200-D Day 7 399 295 2.84
    5-BT200-D Day 14 215 111 1.07
    5-BT200-D Day 21 108 4 0.04
    5-BT200-D Day 28 110 6 0.06
    5-BT200-E Day 0, 1 h prior IMP 96
    5-BT200-E Day 2 183 87 0.91
    5-BT200-E Day 7 304 208 2.17
    5-BT200-E Day 14 275 179 1.86
    5-BT200-E Day 21 171 75 0.78
    5-BT200-E Day 28 11.2 16 0.17
    5-BT200-F Day 0, 1 h prior IMP 66
    5-BT200-F Day 2 192 126 1.91
    5-BT200-F Day 7 314 248 3.76
    5-BT200-F Day 14 172 106 1.61
    5-BT200-F Day 21 102 36 0.55
    5-BT200-F Day 28 66 0 0
    5-Control-A Day 0, 1 h prior IMP 69
    5-Control-A Day 2 72 3 0.04
    5-Control-A Day 7 75 6 0.09
    5-Control-A Day 14 77 8 0.12
    5-Control-A Day 21 70 1 0.01
    5-Control-A Day 28 71 2 0.03
    5-Control-B Day 0, 1 h prior IMP 107
    5-Control-B Day 2 109 2 0.02
    5-Control-B Day 7 98 −9 −0.08
    5-Control-B Day 14 88 −19 −0.18
    5-Control-B Day 21 97 −10 −0.09
    5-Control-B Day 28 90 −17 −0.16
    6-BT200-A Day 0, 1 h prior IMP 129
    6-BT200-A Day 2 220 91 0.71
    6-BT200-A Day 7 441 312 2.42
    6-BT200-A Day 14 309 180 1.4
    6-BT200-A Day 21 248 119 0.92
    6-BT200-A Day 28 124 −5 −0.04
    6-BT200-B Day 0, 1 h prior IMP 115
    6-BT200-B Day 2 184 69 0.6
    6-BT200-B Day 7 362 247 2.15
    6-BT200-B Day 14 358 243 2.11
    6-BT200-B Day 21 233 118 1.03
    6-BT200-B Day 28 140 25 0.22
    6-BT200-C Day 0, 1 h prior IMP 149
    6-BT200-C Day 2 248 99 0.66
    6-BT200-C Day 7 288 139 0.93
    6-BT200-C Day 14 201 52 0.35
    6-BT200-C Day 21 152 3 0.02
    6-BT200-C Day 28 118 −31 −0.21
    6-BT200-D Day 0, 1 h prior IMP 216
    6-BT200-D Day 2 202 −14 −0.06
    6-BT200-D Day 7 420 204 0.94
    6-BT200-D Day 14 420 204 0.94
    6-BT200-D Day 21 374 158 0.73
    6-BT200-D Day 28 250 34 0.16
    6-BT200-E Day 0, 1 h prior IMP 80
    6-BT200-E Day 2 5
    6-BT200-E Day 7 148 68 0.85
    6-BT200-E Day 14 121 41 0.51
    6-BT200-E Day 21 109 29 0.36
    6-BT200-E Day 28 100 20 0.25
    6-BT200-F Day 0, 1 h prior IMP 73
    6-BT200-F Day 2 166 93 1.27
    6-BT200-F Day 7 402 329 4.51
    6-BT200-F Day 14 296 223 3.05
    6-BT200-F Day 21 132 59 0.81
    6-BT200-F Day 28 87 14 0.19
    6-Control-A Day 0, 1 h prior IMP 95
    6-Control-A Day 2 97 2 0.02
    6-Control-A Day 7 101 6 0.06
    6-Control-A Day 14 86 −9 −0.09
    6-Control-A Day 21 95 0 0
    6-Control-A Day 28 87 −8 −0.08
    6-Control-B Day 0, 1 h prior IMP 93
    6-Control-B Day 2 107 14 0.15
    6-Control-B Day 7 110 17 0.18
    6-Control-B Day 14 130 37 0.4
    6-Control-B Day 21 119 26 0.28
    6-Control-B Day 28 80 −13 −0.14
    7-BT200-A Day 0, 1 h prior IMP 101
    7-BT200-A Day 2 192 91 0.9
    7-BT200-A Day 7 420 319 3.16
    7-BT200-A Day 14 299 198 1.96
    7-BT200-A Day 21 182 81 0.8
    7-BT200-A Day 28 97 −4 −0.04
    7-BT200-B Day 0, 1 h prior IMP 86
    7-BT200-B Day 2 188 102 1.19
    7-BT200-B Day 7 357 271 3.15
    7-BT200-B Day 14 284 198 2.3
    7-BT200-B Day 21 141 55 0.64
    7-BT200-B Day 28 104 18 0.21
    7-BT200-C Day 0, 1 h prior IMP 83
    7-BT200-C Day 2 207 124 1.49
    7-BT200-C Day 7 420 337 4.06
    7-BT200-C Day 14 351 268 3.23
    7-BT200-C Day 21 217 134 1.61
    7-BT200-C Day 28 115 32 0.39
    7-BT200-D Day 0, 1 h prior IMP 92
    7-BT200-D Day 2 106 14 0.15
    7-BT200-D Day 7 221 129 1.4
    7-BT200-D Day 14 153 61 0.66
    7-BT200-D Day 21 131 39 0.42
    7-BT200-D Day 28 118 26 0.28
    7-BT200-E Day 0, 1 h prior IMP 89
    7-BT200-E Day 2 165 76 0.85
    7-BT200-E Day 7 213 124 1.39
    7-BT200-E Day 14 222 133 1.49
    7-BT200-E Day 21 136 47 0.53
    7-BT200-E Day 28 112 23 0.26
    7-BT200-F Day 0, 1 h prior IMP 66
    7-BT200-F Day 2 207 141 2.14
    7-BT200-F Day 7 366 300 4.55
    7-BT200-F Day 14 297 231 3.5
    7-BT200-F Day 21 139 73 1.11
    7-BT200-F Day 28 93 27 0.41
    7-Control-A Day 0, 1 h prior IMP 124
    7-Control-A Day 2 123 −1 −0.01
    7-Control-A Day 7 104 −20 −0.16
    7-Control-A Day 14 98 −26 −0.21
    7-Control-A Day 21 112 −12 −0.1
    7-Control-A Day 28 129 5 0.04
    7-Control-B Day 0, 1 h prior IMP 151
    7-Control-B Day 2 142 −9 −0.06
    7-Control-B Day 7 107 −44 −0.29
    7-Control-B Day 14 165 14 0.09
    7-Control-B Day 21 116 −35 −0.23
    7-Control-B Day 28
    8-BT200-A Day 0, 1 h prior IMP 120
    8-BT200-A Day 2 300 180 1.5
    8-BT200-A Day 7 420 300 2.5
    8-BT200-A Day 14 420 300 2.5
    8-BT200-A Day 21 234 114 0.95
    8-BT200-A Day 28 204 84 0.7
    8-BT200-B Day 0, 1 h prior IMP 84
    8-BT200-B Day 2 292 208 2.48
    8-BT200-B Day 7 408 324 3.86
    8-BT200-B Day 14 408 324 3.86
    8-BT200-B Day 21 294 210 2.5
    8-BT200-B Day 28 164 80 0.95
    8-BT200-C Day 0, 1 h prior IMP 136
    8-BT200-C Day 2 327 191 1.4
    8-BT200-C Day 7 563 427 3.14
    8-BT200-C Day 14 420 284 2.09
    8-BT200-C Day 21 367 231 1.7
    8-BT200-C Day 28 264 128 0.94
    8-BT200-D Day 0, 1 h prior IMP 91
    8-BT200-D Day 2 253 162 1.78
    8-BT200-D Day 7 485 394 4.33
    8-BT200-D Day 14 345 254 2.79
    8-BT200-D Day 21 125 34 0.37
    8-BT200-D Day 28 119 28 0.31
    8-BT200-E Day 0, 1 h prior IMP 68
    8-BT200-E Day 2 281 213 3.13
    8-BT200-E Day 7 293 225 3.31
    8-BT200-E Day 14 324 256 3.76
    8-BT200-E Day 21 145 77 1.13
    8-BT200-E Day 28 137 69 1.01
    8-BT200-F Day 0, 1 h prior IMP 111
    8-BT200-F Day 2 202 91 0.82
    8-BT200-F Day 7 307 196 1.77
    8-BT200-F Day 21 240 129 1.16
    8-BT200-F Day 28 177 66 0.59
    8-Control-A Day 0, 1 h prior IMP 124
    8-Control-A Day 2 93 −31 −0.25
    8-Control-A Day 7 82 −42 −0.34
    8-Control-A Day 14 98 −26 −0.21
    8-Control-A Day 21 96 −28 −0.23
    8-Control-A Day 28 44 −80 −0.65
    8-Control-B Day 0, 1 h prior IMP 156
    8-Control-B Day 2 163 7 0.04
    8-Control-B Day 7 175 19 0.12
    8-Control-B Day 14 159 3 0.02
    8-Control-B Day 21 182 26 0.17
    8-Control-B Day 28 194 38 0.24
    9-BT200-A Day 0, 1 h prior IMP 148
    9-BT200-A Day 2 261 113 0.76
    9-BT200-A Day 7 468 320 2.16
    9-BT200-A Day 21 420 272 1.84
    9-BT200-A Day 28 337 189 1.28
    9-BT200-B Day 0, 1 h prior IMP 132
    9-BT200-B Day 2 247 115 0.87
    9-BT200-B Day 7 420 288 2.18
    9-BT200-B Day 14 420 288 2.18
    9-BT200-B Day 21 368 236 1.79
    9-BT200-B Day 28 270 138 1.05
    9-BT200-C Day 0, 1 h prior IMP 93
    9-BT200-C Day 2 183 90 0.97
    9-BT200-C Day 7 420 327 3.52
    9-BT200-C Day 14 326 233 2.51
    9-BT200-C Day 21 230 137 1.47
    9-BT200-C Day 28 142 49 0.53
    9-BT200-D Day 0, 1 h prior IMP 101
    9-BT200-D Day 2 231 130 1.29
    9-BT200-D Day 7 468 367 3.63
    9-BT200-D Day 14 420 319 3.16
    9-BT200-D Day 21 360 259 2.56
    9-BT200-D Day 28 221 120 1.19
    9-BT200-E Day 0, 1 h prior IMP 82
    9-BT200-E Day 2 223 141 1.72
    9-BT200-E Day 7 374 292 3.56
    9-BT200-E Day 14 355 273 3.33
    9-BT200-E Day 21 222 140 1.71
    9-BT200-E Day 28 133 51 0.62
    9-BT200-F Day 0, 1 h prior IMP 95
    9-BT200-F Day 2 231 136 1.43
    9-BT200-F Day 7 418 323 3.4
    9-BT200-F Day 14 416 321 3.38
    9-BT200-F Day 21 268 173 1.82
    9-BT200-F Day 28 263 168 1.77
    9-Control-A Day 0, 1 h prior IMP 98
    9-Control-A Day 2 88 −10 −0.3
    9-Control-A Day 7 88 −10 −0.1
    9-Control-A Day 14 110 12 0.12
    9-Control-A Day 21 89 −9 −0.09
    9-Control-A Day 28 103 5 0.05
    9-Control-B Day 0, 1 h prior IMP 137
    9-Control-B Day 2 242 105 0.77
    9-Control-B Day 7 184 47 0.34
    9-Control-B Day 14 169 32 0.23
    9-Control-B Day 21 136 −1 −0.01
    9-Control-B Day 28 172 35 0.26
    10-BT200-A Day 0, 1 h prior IMP 118
    10-BT200-A Day 2 260 142 1.2
    10-BT200-A Day 7 420 302 2.56
    10-BT200-A Day 14 420 302 2.56
    10-BT200-A Day 21 420 302 2.56
    10-BT200-B Day 0, 1 h prior IMP 93
    10-BT200-B Day 2 218 125 1.34
    10-BT200-B Day 7 395 302 3.25
    10-BT200-B Day 14 387 294 3.16
    10-BT200-B Day 21 234 141 1.52
    10-BT200-B Day 28 73 −20 −0.22
    10-BT200-C Day 0, 1 h prior IMP 76
    10-BT200-C Day 2 171 95 1.25
    10-BT200-C Day 7 329 253 3.33
    10-BT200-C Day 14 417 341 4.49
    10-BT200-C Day 21 274 198 2.61
    10-BT200-C Day 28 156 80 1.05
    10-BT200-D Day 0, 1 h prior IMP 127
    10-BT200-D Day 2 311 184 1.45
    10-BT200-D Day 7 420 293 2.31
    10-BT200-D Day 14 420 293 2.31
    10-BT200-D Day 21 420 293 2.31
    10-BT200-D Day 28 322 195 1.54
    10-BT200-E Day 0, 1 h prior IMP 59
    10-BT200-E Day 2 119 60 1.02
    10-BT200-E Day 7 240 181 3.07
    10-BT200-E Day 14 263 204 3.46
    10-BT200-E Day 21 186 127 2.15
    10-BT200-E Day 28 129 70 1.19
    10-BT200-F Day 0, 1 h prior IMP 142
    10-BT200-F Day 2 255 113 0.8
    10-BT200-F Day 7 420 278 1.96
    10-BT200-F Day 14 420 278 1.96
    10-BT200-F Day 21 269 127 0.89
    10-BT200-F Day 28 104 −38 −0.27
    10-Control-A Day 0, 1 h prior IMP 129
    10-Control-A Day 2 152 23 0.18
    10-Control-A Day 7 146 17 0.13
    10-Control-A Day 14 47 −82 −0.64
    10-Control-A Day 21 96 −33 −0.26
    10-Control-A Day 28 123 −6 −0.05
    10-Control-B Day 0, 1 h prior IMP 137
    10-Control-B Day 2 130 −7 −0.05
    10-Control-B Day 7 138 1 0.01
    10-Control-B Day 14 231 94 0.69
    10-Control-B Day 21 172 35 0.26
    10-Control-B Day 28 104 −33 −0.24
  • The functions of VWF were also tested in the treated individuals. In three different activity tests: Multiplate aggregometer. Platelet Function Analyzer and ELISA for free A1 domains of VWF, no effect is observed as compared to non-treated individuals. The function of Factor VIII is also increased in BT200 treated volunteers.
  • The results in healthy volunteers show that a lower dose, 0.6 mg BT200, approximately doubles the baseline FVIII activity at 48 hours post-dose and maintains nearly half of that increase for 1 week post-dose. However, in the same time period, no effect on the function of VWF is observed using PFA-100® assay, a highly sensitive functional assay which uses undiluted whole blood.
  • The results also indicate that a 10-fold higher dose of BT200, 6 mg, maintains the doubling of baseline FVIII for 2 weeks after a single dose, without any evidence of VWF functional inhibition seen with the PFA-100® assay.
  • These observations indicate that BT200 can dose-dependently enhance the VWF/FVIII levels.
  • After single dose administration, the elimination half-life of BT200 in healthy volunteers are approximately 5-12 days, indicating a long half-life and good tolerability of BT200 after subcutaneous injection. No off-target adverse effects were observed upon BT200 administration.
  • Co-administration of BT200 and desmopressin demonstrated an additive effect on the levels of VWF and FVIII (as shown in FIG. 1 ) in the blood.
  • Example 2: Individual Dose-Titration to Dose-Response in Patients
  • A diverse set of up to 25 patients with severe congenital hemophilia A without inhibitors, mild-moderate hemophilia A, heterozygous carriers of hemophilia A with subnormal FVIII levels, VWD Type 1, “Vicenza” type, or VWD Type 2b are enrolled to a study to evaluate dose titration and dose-response.
  • Patients are dosed via subcutaneous (SC) injection, with 3 mg BT200 on Days 1, Day 4 and Day 7 (±2 days). BT200 doses were then titrated thereafter between 3 and 9 mg on Days 14, 21, and 28 depending on the bleeding disorder patients have. FVIII activity is measured in patients with Hemophilia A or VWD Type 1. Platelet counts and/or FVIII activity are measured in patients with VWD Type 2b.
  • Five patients with VWD Type 2b (3 males: 2 females) (Table 5), were dosed with 3 mg BT200 on Days 1 and 4 and followed by doses of 6-9 mg BT200 every week ( Days 7, 14, 21 and 28). The patients have a median age of 61 years (ranging from 24-72 years). Four of five patients presented with thrombocytopenia and two patients were on regular recombinant VWF substitution therapy because of recurrent severe bleedings. Efficacy was measured by VWF parameters, VIII activity, and platelet counts, and other clinical outcome parameters before, during and after therapy. Statistical analysis was performed by Friedman ANOVA.
  • TABLE 5
    Patients with VWF Type 2b
    Patients Age: gender Mutations
    #
    1 54; female 3922 C > T het
    #2 61; male C3916C > T
    #3 24; male C3916C > T
    #9 72; male 3946G > A het
    #
    10 61; female C3939G > C
  • The results indicate clinically meaningful responses occurred in patients within 4 days after the first subcutaneous injection of BT200 (first dose 3 mg BT200). Platelet counts rose from a median of 60 at baseline to 159/nL at 28 days (p=0.012). i.e., up to 4-fold in all patients with thrombocytopenia, and normalized in % of these patients (FIG. 2 ). All thrombocytopenic patients responded with an increase in platelet counts after 96 hours after first dose of BT200. Plasma levels of FVIIIc doubled from 67% (44-91%) to 134%(114-200%) (p<0.001), and normalized in the patient with subnormal FVIIIc activity (from 44% at baseline to 135% 1 week after the last dose). This was mirrored by a shortening of the uniformly prolonged activated partial thromboplastin time (aPTT-FS) from 43 s to 32 s (p=0.002) (FIG. 3 ) and increased thrombin generation. BT200 administrations increased circulating VWF antigen levels from 64% (32-106%) to 143% (103-351%, p<0.001) (FIG. 4A). VWF collagen binding activity (VWF:CBA) increased 2-4 fold in all patients, VWF ristocetin cofactor (VWF:RCo) activity and VWF:GpIbM activity increased 2-3 fold in all thrombocytopenic patients, but only by a small amount in the one patient without thrombocytopenia (all p-values <0.05 for n=5) (FIG. 4B). The increased ristocetin BT200 was very well tolerated without any relevant adverse effect.
  • These clinical observations indicate that BT200 specifically corrects the underlying pathophysiology of VWD Type 2b, rapidly and strongly increasing platelet counts in patients with thrombocytopenia, and elevating VWF and FVIIIc in all patients. It is hypothesized that BT200 may be of potential benefit for VWD Type 2b patients by increasing circulating VWF and FVIII levels in all patients, as well as platelet counts in thrombocytopenic patients.
  • Patients with haemophilia A were treated with BT200 with the same dosing schedule demonstrated increased FVIII activity (FIG. 5 ).
  • These results indicate that BT200 has a prolong half-life of 7 to 12 days. BT200 can induce sustained increases in VWF levels and activity, as well as increases in FVIII levels and activity measured by increased aPTT shortening and increased thrombin generation.
  • Example 3: BT200 Increases the Half-Life of FVIII Therapy
  • Patients were treated with a FVIII therapy (Refacto AF/three patients; Elocta/one patient; Afstyla/two patients: Kovaltry/one patient; and Advate/one patient). FVIII therapy's half-life before BT200 treatment was based on historical values known in the art. Patients were dosed with splitting loading doses and weekly doses followed with the loading doses (Table 6). The half-life of each FVIII therapy in each patient post BT200 treatment was measured one month after the BT200 treatment. All the FVIII values were generated through Chromogenic assay (Patients #014, 017, 020-024), or by one-stage clotting assay (Patient #027). The average increase is 3.1 folder (Median=2.8 folder) (Table 6). These observations suggest that BT200 can increase the half-life of almost all the FVIII product on the market.
  • TABLE 6
    BT200 increases the half-life of FVIII therapy
    Pre-BT200 Post-BT200
    Patient FVIII FVIII half- FVIII half- Fold
    ID therapy BT200 dosing life(hr) life(hr) Increase
    014 Refacto AF 3 mg on Days 1, 4 and 7; 4 mg on 19 42.5 2.24
    Day 14; 5 mg on day 21; and 6 mg
    on Day 28
    017 Refacto AF 3 mg on Days 1, 4 and 7: 5 mg on 11 36.5 3.34
    Day 14: 5 mg on day 21; and 7 mg
    on Day 28
    020 Elocta 3 mg on Days 1, 4 and 7; 5 mg on 24.2 62 2.56
    Day 14; 6 mg on Day 21; and 7 mg
    on Day 28
    021 Afstyla 3 mg on Days 1, 4 and 7; 5 mg on 14.5 29 2.00
    Day 14; 6 mg on Day 21; and 7 mg
    on Day 28
    022 Kovaltry 3 mg on Days 1, 4 and 7; 4 mg on 7.7 26.7 3.47
    Day 14: 5 mg on Day 21; and 7 mg on
    Day 28
    023 Afstyla 3 mg on Days 1, 4 and 7; 6 mg on 7.5 22.8 3.04
    Day 14; 7 mg on Day 21, and 9 mg
    on Day 28
    024 Advate 3 mg on Days 1, 4 and 7; 5 mg on 13.5 34.5 2.56
    Day 14; 6 mg on Day 21; and 7 mg
    on Day 28
    027 Refacto AF 3 mg on Days 1, 4 and 7; 5 mg on 10 57 5.70
    Day 14, 6 mg on day 21; and 8 mg
    on Day 28

Claims (35)

1. A method for treating a hereditary bleeding disorder in a subject comprising administering to the subject a therapeutic effective amount of a pharmaceutic composition comprising a VWF targeting agent.
2. The method of claim 1, wherein the hereditary bleeding disorder is an acquired platelet function defect, congenital platelet function defects, disseminated intravascular coagulation (DIC), prothrombin deficiency, fibrinogen deficiency, FV deficiency, FVII deficiency, FX deficiency, FXI deficiency (hemophilia C), FXIII deficiency, combined FV and FVIII deficiency (F5F8D), VKCFD, Glanzmann thrombasthenia, hemophilia A, hemophilia B, immune thrombocytopenic purpura (ITP), von Willebrand disease (VWD) Type 1, von Willebrand disease (VWD) Type 2, and Von Willebrand disease (VWD) Type 3.
3. The method of claim 2, wherein the hereditary bleeding disorder is hemophilia A, VWD Type 1, VWD Type 2, or VWD Type 3.
4. The method of claim 3, wherein the hereditary bleeding disorder is hemophilia A, mild hemophilia, moderate hemophilia, or severe hemophilia.
5. The method of claim 3, wherein the hereditary bleeding disorder is VWD Type 1, VWD Type 1 Vicenza subtype, VWD Type 2a, VWD Type 2b, VWD Type 2b with thrombocytopenia, VWD Type 2m, VWD Type 2n, or VWD Type 3.
6. The method of any one of claims 1-5, wherein the VWF targeting agent is a VWF binding agent selected from the group consisting of an antibody, a nanobody, a peptide, an oligonucleotide, a siRNA, a microRNA, a synthetic polynucleotide, and a small molecule.
7. The method of claim 6, wherein the VWF binding agent is a synthetic polynucleotide selected from the group consisting of SEQ ID No.: 3, BT99 (SEQ ID No.: 4), BT100 (SEQ ID No.: 5), BT200 (SEQ ID No.: 6), ARC15105 (SEQ ID No.: 7), and ARC1779 (SEQ ID No.: 8) and variants thereof.
8. The method of claim 7, wherein the VWF binding agent is BT200 (SEQ ID No.: 6) or a variant thereof.
9. The method of claim 8, wherein BT200 increases the levels and activity of VWF, the levels and activity of FVIII, and/or the platelet counts in the blood.
10. The method of claim 8, wherein BT200 is administered to the subject at a dose ranging from 0.1 mg to 48.0 mg, or from 0.1 mg to 20.0 mg, or from 1.0 mg to 10 mg.
11. The method of claim 10, wherein BT200 is administered to the subject at a dose ranging from 0.6 mg to 6.0 mg.
12. The method of claim 8, wherein the VWF binding agent is administered to the subject via subcutaneous injection.
13. The method of claim 12, wherein the VWF binding agent is administered to the subject with multiple doses, and wherein each dose is administered once every other day, or once every three days, or once every five days, or once a week, or once every other week.
14. The method of any one of claims 1-13, wherein the treatment of the hereditary bleeding disorder is a therapy treatment or a prophylactic treatment.
15. The method of claim 3, wherein the VWF targeting agent is administered in combination with coagulation factor substitute treatment; the coagulation factor substitute is plasma derived FVIII/VWF concentrates, recombinant FVIII preparations, or recombinant VWF preparations.
16. A method for preventing a chronic bleeding condition, and/or spontaneous bleeding in a subject comprising administering to the subject a therapeutic effective amount of a pharmaceutic composition comprising a VWF targeting agent.
17. The method of claim 16, wherein the VWF targeting agent is a VWF binding agent selected from the group consisting of an antibody, a nanobody, a peptide, an oligonucleotide, a siRNA, a microRNA, a synthetic polynucleotide, and a small molecule.
18. The method of claim 17, wherein the VWF binding agent is a synthetic polynucleotide comprising PEGylated nucleic acids.
19. The method of claim 18, wherein the VWF binding agent is BT200 (SEQ ID No.: 6), or a variant thereof.
20. The method of claim 19, wherein BT200 is administered at a dose ranging from 1.0 mg to 10.0 mg, or alternatively at a dose ranging from 1.0 mg to 6.0 mg.
21. A method for blocking VWF clearance in the blood comprising providing an effective amount of a VWF targeting agent that is a synthetic polynucleotide comprising a PEGylation moiety.
22. The method of claim 21, wherein the VWF targeting agent is BT200 (SEQ ID No.: 6), or a variant thereof.
23. The method of claim 22, wherein BT200 is provided at an amount ranging from 0.6 mg to 6.0 mg, or from 1.0 mg to 6.0 mg, or from 1.0 mg to 10.0 mg.
24. The method of claim 23, wherein BT200 increases VWF levels in the blood.
25. A method for elevating the FVIII levels in the blood of a subject comprising administering to the subject an efficient amount of a composition comprising a VWF targeting agent that is a synthetic polynucleotide comprising a PEGylation moiety.
26. The method of claim 25, wherein the subject is diagnosed with hemophilia A, VWD Type 1, VWD Type 2, or VWD Type 3.
27. The method of claim 26, wherein the VWF targeting agent is BT200 (SEQ ID No.: 6).
28. The method of claim 27, wherein BT200 increases FVIII clotting activity.
29. A method for increasing platelet counts in the blood of a patient comprising administering to the patient an efficient amount of a composition comprising BT200 (SEQ ID No.: 6), wherein the patient has a low platelet count (thrombocytopenia).
30. The method of claim 29, wherein the thrombocytopenia is associated with a genetic disorder that causes a low platelet count, an enlarged spleen that holds abnormal platelets, a side reaction to a medicine, an autoimmune disease, or a viral infection.
31. The method of claim 30, wherein the disorder is VWD Type 2a, VWD Type 2b with thrombocytopenia, VWD Type 2b, VWD Type 2m, or VWD Type 2n.
32. A method for treating a hereditary bleeding disorder in a patient with a pharmaceutical composition comprising a VWF binding agent, BT200, comprising:
a) assessing the hereditary bleeding disorder of said patient and the baseline coagulation function in said patient;
b) determining the optimal dose of BT200 with the assessment of step a) for initial treatment; and
c) providing a weekly dose of BT200 after one-week treatment with the initial dose of BT200 in said patient.
33. The method of claim 32, wherein the hereditary bleeding disorder may be hemophilia A, severe hemophilia, VWD Type 1, VWD Type 2a, VWD Type 2b, VWD Type 2m, VWD Type 2n, or VWD Type 3.
34. The method of claim 33, wherein the assessment includes FVIII activity, VWF antigen levels and/or platelet counts in the blood.
35. The method of claim 33, wherein the patient is treated with a coagulation factor substitute.
US18/253,975 2020-11-24 2021-11-24 Compositions and methods for treatment of bleeding disorders Pending US20240002861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/253,975 US20240002861A1 (en) 2020-11-24 2021-11-24 Compositions and methods for treatment of bleeding disorders

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063117545P 2020-11-24 2020-11-24
US202163155012P 2021-03-01 2021-03-01
US202163216601P 2021-06-30 2021-06-30
US18/253,975 US20240002861A1 (en) 2020-11-24 2021-11-24 Compositions and methods for treatment of bleeding disorders
PCT/US2021/060678 WO2022115502A1 (en) 2020-11-24 2021-11-24 Compositions and methods for treatment of bleeding disorders

Publications (1)

Publication Number Publication Date
US20240002861A1 true US20240002861A1 (en) 2024-01-04

Family

ID=81754981

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/253,975 Pending US20240002861A1 (en) 2020-11-24 2021-11-24 Compositions and methods for treatment of bleeding disorders

Country Status (10)

Country Link
US (1) US20240002861A1 (en)
EP (1) EP4251272A4 (en)
JP (1) JP2023552281A (en)
KR (1) KR20230136593A (en)
AU (1) AU2021387981A1 (en)
CA (1) CA3201315A1 (en)
IL (1) IL303089A (en)
MX (1) MX2023006094A (en)
TW (1) TW202237149A (en)
WO (1) WO2022115502A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150495A2 (en) * 2007-06-01 2008-12-11 Archemix Corp. Vwf aptamer formulations and methods for use
WO2010091396A2 (en) * 2009-02-09 2010-08-12 Archemix Corp. Aptamers to von willerbrand factor and their use as thrombotic, hematologic and cardiovascular disease therapeutics
JP6704420B2 (en) * 2015-03-06 2020-06-03 ツェー・エス・エル・ベーリング・レングナウ・アクチエンゲゼルシャフト Compounds to improve the half-life of von Willebrand factor
IL269641B1 (en) * 2017-05-19 2024-08-01 Band Therapeutics Llc Compositions and methods for the treatment of complications and disorders relating to von willebrand factor

Also Published As

Publication number Publication date
AU2021387981A1 (en) 2023-07-06
JP2023552281A (en) 2023-12-15
WO2022115502A1 (en) 2022-06-02
EP4251272A4 (en) 2024-10-09
KR20230136593A (en) 2023-09-26
CA3201315A1 (en) 2022-06-02
IL303089A (en) 2023-07-01
AU2021387981A9 (en) 2024-02-08
TW202237149A (en) 2022-10-01
EP4251272A1 (en) 2023-10-04
MX2023006094A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
Peyvandi et al. Advances in the treatment of bleeding disorders
ES2860450T3 (en) Treatment of a coagulation disease by administration of recombinant VWF
JP5653916B2 (en) Von Willebrand factor or Factor VIII and von Willebrand factor for treating coagulopathy induced by inhibitors of platelets
JP2019077677A (en) Compositions and methods for counteracting factor xa inhibition
US20090203766A1 (en) vWF aptamer formulations and methods for use
JP2023093535A (en) Compositions and methods for the treatment of complications and disorders relating to von willebrand factor
US8501694B2 (en) Method of administering porcine B-domainless fVIII
Spira et al. Evaluation of liposomal dose in recombinant factor VIII reconstituted with pegylated liposomes for the treatment of patients with severe haemophilia A
TW202216172A (en) Methods and compositions for treating hemophilia
EP3833381B1 (en) Modified factor vii polypeptides for subcutaneous administration
US20240002861A1 (en) Compositions and methods for treatment of bleeding disorders
JP6535036B2 (en) Composition of human prothrombin and activated factor X for improving hemostasis in the treatment of hemorrhagic diseases
CN116723863A (en) Compositions and methods for treating hemorrhagic disorders
RU2806844C2 (en) Compositions and methods of treatment of complications and disorders associated with the von willebrand factor
CN118434425A (en) Non-toxilan for improving patient reporting outcome for hemophiliacs

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION