US20240002547A1 - Therapeutic multi-targeting constructs and uses thereof - Google Patents
Therapeutic multi-targeting constructs and uses thereof Download PDFInfo
- Publication number
- US20240002547A1 US20240002547A1 US18/348,229 US202318348229A US2024002547A1 US 20240002547 A1 US20240002547 A1 US 20240002547A1 US 202318348229 A US202318348229 A US 202318348229A US 2024002547 A1 US2024002547 A1 US 2024002547A1
- Authority
- US
- United States
- Prior art keywords
- peptide
- seq
- toxin
- peptides
- construct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001225 therapeutic effect Effects 0.000 title claims description 10
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 743
- 239000003053 toxin Substances 0.000 claims abstract description 338
- 231100000765 toxin Toxicity 0.000 claims abstract description 336
- 108700012359 toxins Proteins 0.000 claims abstract description 336
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 293
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 167
- 239000000427 antigen Substances 0.000 claims abstract description 73
- 108091007433 antigens Proteins 0.000 claims abstract description 73
- 102000036639 antigens Human genes 0.000 claims abstract description 73
- 201000011510 cancer Diseases 0.000 claims abstract description 73
- 230000027455 binding Effects 0.000 claims abstract description 68
- 125000000885 organic scaffold group Chemical group 0.000 claims abstract description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 100
- 239000002202 Polyethylene glycol Substances 0.000 claims description 90
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 83
- 102000001301 EGF receptor Human genes 0.000 claims description 76
- 108060006698 EGF receptor Proteins 0.000 claims description 76
- 150000001413 amino acids Chemical class 0.000 claims description 76
- 108010074708 B7-H1 Antigen Proteins 0.000 claims description 65
- 102000008096 B7-H1 Antigen Human genes 0.000 claims description 65
- 239000008194 pharmaceutical composition Substances 0.000 claims description 60
- 101710088791 Elongation factor 2 Proteins 0.000 claims description 45
- 102000040430 polynucleotide Human genes 0.000 claims description 40
- 108091033319 polynucleotide Proteins 0.000 claims description 40
- 239000002157 polynucleotide Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 37
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 34
- 229920001184 polypeptide Polymers 0.000 claims description 22
- 230000030833 cell death Effects 0.000 claims description 19
- 150000007523 nucleic acids Chemical class 0.000 claims description 18
- 102000039446 nucleic acids Human genes 0.000 claims description 17
- 108020004707 nucleic acids Proteins 0.000 claims description 17
- 102100022623 Hepatocyte growth factor receptor Human genes 0.000 claims description 16
- 101000972946 Homo sapiens Hepatocyte growth factor receptor Proteins 0.000 claims description 16
- 125000004122 cyclic group Chemical group 0.000 claims description 16
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 14
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 14
- 230000001939 inductive effect Effects 0.000 claims description 14
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 claims description 13
- 101000844260 Thrixopelma pruriens Beta/omega-theraphotoxin-Tp1a Proteins 0.000 claims description 12
- 101000844259 Thrixopelma pruriens Beta/omega-theraphotoxin-Tp2a Proteins 0.000 claims description 12
- XOAUGYVLRSCGBG-UHFFFAOYSA-N protx ii Chemical compound O=C1NC(CCC(N)=O)C(=O)NC(CCCCN)C(=O)NC(CC=2C3=CC=CC=C3NC=2)C(=O)NC(CCSC)C(=O)NC(CC=2C3=CC=CC=C3NC=2)C(=O)NC(C(C)O)C(=O)NC(C(NC(CC(O)=O)C(=O)NC(CO)C(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NC(CCCCN)C(=O)NC(CSSCC(NC(=O)C(CC=2C3=CC=CC=C3NC=2)NC(=O)C(CC(C)C)NC(=O)C(CCCNC(N)=N)NC2=O)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CC=3C4=CC=CC=C4NC=3)C(O)=O)C(=O)N3)=O)CSSCC2NC(=O)C(C(C)C)NC(=O)C(CCSC)NC(=O)CNC(=O)C(CCC(O)=O)NC(=O)C3CSSCC1NC(=O)C(N)CC1=CC=C(O)C=C1 XOAUGYVLRSCGBG-UHFFFAOYSA-N 0.000 claims description 12
- 239000003998 snake venom Substances 0.000 claims description 12
- 241000193738 Bacillus anthracis Species 0.000 claims description 11
- 108030001720 Bontoxilysin Proteins 0.000 claims description 11
- 241000651013 Californiconus californicus Species 0.000 claims description 11
- 108010053187 Diphtheria Toxin Proteins 0.000 claims description 11
- 102000016607 Diphtheria Toxin Human genes 0.000 claims description 11
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 claims description 11
- 108010039491 Ricin Proteins 0.000 claims description 11
- 108010084592 Saporins Proteins 0.000 claims description 11
- 229940053031 botulinum toxin Drugs 0.000 claims description 11
- 239000009562 momordin Substances 0.000 claims description 11
- 108040000983 polyphosphate:AMP phosphotransferase activity proteins Proteins 0.000 claims description 11
- ODJLBQGVINUMMR-HZXDTFASSA-N strophanthidin Chemical compound C1([C@H]2CC[C@]3(O)[C@H]4[C@@H]([C@]5(CC[C@H](O)C[C@@]5(O)CC4)C=O)CC[C@@]32C)=CC(=O)OC1 ODJLBQGVINUMMR-HZXDTFASSA-N 0.000 claims description 11
- 108090000623 proteins and genes Proteins 0.000 claims description 9
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 claims description 8
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 claims description 7
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 3
- 230000008685 targeting Effects 0.000 abstract description 47
- 230000000259 anti-tumor effect Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 135
- 239000012634 fragment Substances 0.000 description 128
- 235000001014 amino acid Nutrition 0.000 description 77
- 229940024606 amino acid Drugs 0.000 description 76
- 108010069514 Cyclic Peptides Proteins 0.000 description 35
- 102000001189 Cyclic Peptides Human genes 0.000 description 35
- 239000000243 solution Substances 0.000 description 29
- 230000000694 effects Effects 0.000 description 28
- 238000006467 substitution reaction Methods 0.000 description 28
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 24
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 23
- 238000011282 treatment Methods 0.000 description 23
- 101100153643 Phaeosphaeria nodorum (strain SN15 / ATCC MYA-4574 / FGSC 10173) Tox1 gene Proteins 0.000 description 19
- -1 poly(ethylene glycol) Polymers 0.000 description 19
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 16
- 239000002953 phosphate buffered saline Substances 0.000 description 16
- 208000035475 disorder Diseases 0.000 description 14
- 102100032187 Androgen receptor Human genes 0.000 description 13
- 108010080146 androgen receptors Proteins 0.000 description 13
- 239000002246 antineoplastic agent Substances 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 239000003814 drug Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 102100023990 60S ribosomal protein L17 Human genes 0.000 description 12
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 12
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 12
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 12
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 12
- 229940045513 CTLA4 antagonist Drugs 0.000 description 12
- 102000000905 Cadherin Human genes 0.000 description 12
- 108050007957 Cadherin Proteins 0.000 description 12
- 102000010180 Endothelin receptor Human genes 0.000 description 12
- 108050001739 Endothelin receptor Proteins 0.000 description 12
- 108091008794 FGF receptors Proteins 0.000 description 12
- 102000004300 GABA-A Receptors Human genes 0.000 description 12
- 108090000839 GABA-A Receptors Proteins 0.000 description 12
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 12
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 12
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 description 12
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 description 12
- 108010008707 Mucin-1 Proteins 0.000 description 12
- 102000007298 Mucin-1 Human genes 0.000 description 12
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 12
- 101150042165 Ogfr gene Proteins 0.000 description 12
- 102100026949 Opioid growth factor receptor Human genes 0.000 description 12
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 12
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 12
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 12
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 12
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 12
- 108091008605 VEGF receptors Proteins 0.000 description 12
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 102000052178 fibroblast growth factor receptor activity proteins Human genes 0.000 description 12
- 108020005243 folate receptor Proteins 0.000 description 12
- 102000006815 folate receptor Human genes 0.000 description 12
- 230000024033 toxin binding Effects 0.000 description 12
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 11
- 241000699670 Mus sp. Species 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 9
- 239000013598 vector Substances 0.000 description 9
- 125000000539 amino acid group Chemical group 0.000 description 8
- 231100000135 cytotoxicity Toxicity 0.000 description 8
- 230000003013 cytotoxicity Effects 0.000 description 8
- 230000005764 inhibitory process Effects 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 239000005557 antagonist Substances 0.000 description 7
- 230000002147 killing effect Effects 0.000 description 7
- 108010005636 polypeptide C Proteins 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 231100000337 synergistic cytotoxicity Toxicity 0.000 description 7
- 210000004881 tumor cell Anatomy 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 101800003838 Epidermal growth factor Proteins 0.000 description 6
- 102400001368 Epidermal growth factor Human genes 0.000 description 6
- 101800005149 Peptide B Proteins 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000013543 active substance Substances 0.000 description 6
- 239000012888 bovine serum Substances 0.000 description 6
- 229940116977 epidermal growth factor Drugs 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 108010091748 peptide A Proteins 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 231100000331 toxic Toxicity 0.000 description 6
- 230000002588 toxic effect Effects 0.000 description 6
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 206010027476 Metastases Diseases 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 5
- 230000009401 metastasis Effects 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 230000002062 proliferating effect Effects 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 5
- 230000035899 viability Effects 0.000 description 5
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000000118 anti-neoplastic effect Effects 0.000 description 4
- 229940034982 antineoplastic agent Drugs 0.000 description 4
- 230000035578 autophosphorylation Effects 0.000 description 4
- 231100000433 cytotoxic Toxicity 0.000 description 4
- 229940127089 cytotoxic agent Drugs 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 208000014018 liver neoplasm Diseases 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 206010041823 squamous cell carcinoma Diseases 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 229960005486 vaccine Drugs 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 3
- NGNQZCDZXSOVQU-UHFFFAOYSA-N 8,16,18,26,34,36-hexahydroxyhentetracontane-2,6,10,14,24,28,32-heptone Chemical compound CCCCCC(O)CC(O)CC(=O)CCCC(=O)CC(O)CC(=O)CCCCCC(O)CC(O)CC(=O)CCCC(=O)CC(O)CC(=O)CCCC(C)=O NGNQZCDZXSOVQU-UHFFFAOYSA-N 0.000 description 3
- 101001023095 Anemonia sulcata Delta-actitoxin-Avd1a Proteins 0.000 description 3
- 101000641989 Araneus ventricosus Kunitz-type U1-aranetoxin-Av1a Proteins 0.000 description 3
- 101000939689 Araneus ventricosus U2-aranetoxin-Av1a Proteins 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 101000633673 Buthacus arenicola Beta-insect depressant toxin BaIT2 Proteins 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 3
- 101001028691 Carybdea rastonii Toxin CrTX-A Proteins 0.000 description 3
- 101000685083 Centruroides infamatus Beta-toxin Cii1 Proteins 0.000 description 3
- 101000654318 Centruroides noxius Beta-mammal toxin Cn2 Proteins 0.000 description 3
- 101000685085 Centruroides noxius Toxin Cn1 Proteins 0.000 description 3
- 101000874088 Centruroides noxius Toxin Cn3 Proteins 0.000 description 3
- 101001028688 Chironex fleckeri Toxin CfTX-1 Proteins 0.000 description 3
- 101001028695 Chironex fleckeri Toxin CfTX-2 Proteins 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 101000644407 Cyriopagopus schmidti U6-theraphotoxin-Hs1a Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 101000761023 Loxosceles intermedia U2-sicaritoxin-Li1a Proteins 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 101000675481 Naja sputatrix Neurotoxin 3 Proteins 0.000 description 3
- 101000723129 Oxyuranus scutellatus scutellatus Short neurotoxin 1 Proteins 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 101000679608 Phaeosphaeria nodorum (strain SN15 / ATCC MYA-4574 / FGSC 10173) Cysteine rich necrotrophic effector Tox1 Proteins 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000001093 anti-cancer Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 3
- 229930195731 calicheamicin Natural products 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000009931 harmful effect Effects 0.000 description 3
- 102000048776 human CD274 Human genes 0.000 description 3
- 102000045108 human EGFR Human genes 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 201000007270 liver cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000011275 oncology therapy Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 231100000614 poison Toxicity 0.000 description 3
- 230000007096 poisonous effect Effects 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 238000007363 ring formation reaction Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000010189 synthetic method Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 231100000699 Bacterial toxin Toxicity 0.000 description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 108700012941 GNRH1 Proteins 0.000 description 2
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- 102400001103 Neurotensin Human genes 0.000 description 2
- 101800001814 Neurotensin Proteins 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 102400000745 Potential peptide Human genes 0.000 description 2
- 101800001357 Potential peptide Proteins 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 2
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 2
- 229960003437 aminoglutethimide Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 2
- 239000003098 androgen Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 239000012911 assay medium Substances 0.000 description 2
- 239000000688 bacterial toxin Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 229960001101 ifosfamide Drugs 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 201000005296 lung carcinoma Diseases 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- QZGIWPZCWHMVQL-UIYAJPBUSA-N neocarzinostatin chromophore Chemical compound O1[C@H](C)[C@H](O)[C@H](O)[C@@H](NC)[C@H]1O[C@@H]1C/2=C/C#C[C@H]3O[C@@]3([C@@H]3OC(=O)OC3)C#CC\2=C[C@H]1OC(=O)C1=C(O)C=CC2=C(C)C=C(OC)C=C12 QZGIWPZCWHMVQL-UIYAJPBUSA-N 0.000 description 2
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 208000017805 post-transplant lymphoproliferative disease Diseases 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 229960004622 raloxifene Drugs 0.000 description 2
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- 229940095743 selective estrogen receptor modulator Drugs 0.000 description 2
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 150000003431 steroids Chemical group 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- PVYJZLYGTZKPJE-UHFFFAOYSA-N streptonigrin Chemical compound C=1C=C2C(=O)C(OC)=C(N)C(=O)C2=NC=1C(C=1N)=NC(C(O)=O)=C(C)C=1C1=CC=C(OC)C(OC)=C1O PVYJZLYGTZKPJE-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 238000002626 targeted therapy Methods 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229960001196 thiotepa Drugs 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 230000005748 tumor development Effects 0.000 description 2
- 229960004441 tyrosine Drugs 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 229960005356 urokinase Drugs 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 231100000747 viability assay Toxicity 0.000 description 2
- 238000003026 viability measurement method Methods 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- FDKWRPBBCBCIGA-REOHCLBHSA-N (2r)-2-azaniumyl-3-$l^{1}-selanylpropanoate Chemical compound [Se]C[C@H](N)C(O)=O FDKWRPBBCBCIGA-REOHCLBHSA-N 0.000 description 1
- WDQLRUYAYXDIFW-RWKIJVEZSA-N (2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 WDQLRUYAYXDIFW-RWKIJVEZSA-N 0.000 description 1
- IYKLZBIWFXPUCS-VIFPVBQESA-N (2s)-2-(naphthalen-1-ylamino)propanoic acid Chemical compound C1=CC=C2C(N[C@@H](C)C(O)=O)=CC=CC2=C1 IYKLZBIWFXPUCS-VIFPVBQESA-N 0.000 description 1
- FLWWDYNPWOSLEO-HQVZTVAUSA-N (2s)-2-[[4-[1-(2-amino-4-oxo-1h-pteridin-6-yl)ethyl-methylamino]benzoyl]amino]pentanedioic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1C(C)N(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FLWWDYNPWOSLEO-HQVZTVAUSA-N 0.000 description 1
- XHBJLKMBAFTWJD-JTQLQIEISA-N (2s)-2-amino-3-(3-ethynylphenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC(C#C)=C1 XHBJLKMBAFTWJD-JTQLQIEISA-N 0.000 description 1
- PEMUHKUIQHFMTH-QMMMGPOBSA-N (2s)-2-amino-3-(4-bromophenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(Br)C=C1 PEMUHKUIQHFMTH-QMMMGPOBSA-N 0.000 description 1
- PPDNGMUGVMESGE-JTQLQIEISA-N (2s)-2-amino-3-(4-ethynylphenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(C#C)C=C1 PPDNGMUGVMESGE-JTQLQIEISA-N 0.000 description 1
- CDYBDVURNMMPPW-VIFPVBQESA-N (2s)-2-amino-3-(5-bromo-1h-indol-2-yl)propanoic acid Chemical compound BrC1=CC=C2NC(C[C@H](N)C(O)=O)=CC2=C1 CDYBDVURNMMPPW-VIFPVBQESA-N 0.000 description 1
- FLHDTNWRXMTPMP-NSHDSACASA-N (2s)-2-amino-3-(5-ethynyl-1h-indol-3-yl)propanoic acid Chemical compound C1=C(C#C)C=C2C(C[C@H](N)C(O)=O)=CNC2=C1 FLHDTNWRXMTPMP-NSHDSACASA-N 0.000 description 1
- XVALICRNYTVUGO-VIFPVBQESA-N (2s)-2-amino-3-(6-bromo-1h-indol-2-yl)propanoic acid Chemical compound C1=C(Br)C=C2NC(C[C@H](N)C(O)=O)=CC2=C1 XVALICRNYTVUGO-VIFPVBQESA-N 0.000 description 1
- BICOQUSYRMBRLR-VIFPVBQESA-N (2s)-2-amino-3-(6-chloro-1h-indol-2-yl)propanoic acid Chemical compound C1=C(Cl)C=C2NC(C[C@H](N)C(O)=O)=CC2=C1 BICOQUSYRMBRLR-VIFPVBQESA-N 0.000 description 1
- UIKHEWRXMDFLKN-NSHDSACASA-N (2s)-2-amino-3-(6-ethynyl-1h-indol-3-yl)propanoic acid Chemical compound C#CC1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 UIKHEWRXMDFLKN-NSHDSACASA-N 0.000 description 1
- HTFFMYRVHHNNBE-YFKPBYRVSA-N (2s)-2-amino-6-azidohexanoic acid Chemical compound OC(=O)[C@@H](N)CCCCN=[N+]=[N-] HTFFMYRVHHNNBE-YFKPBYRVSA-N 0.000 description 1
- NEMHIKRLROONTL-QMMMGPOBSA-N (2s)-2-azaniumyl-3-(4-azidophenyl)propanoate Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N=[N+]=[N-])C=C1 NEMHIKRLROONTL-QMMMGPOBSA-N 0.000 description 1
- NNWQLZWAZSJGLY-VKHMYHEASA-N (2s)-2-azaniumyl-4-azidobutanoate Chemical compound OC(=O)[C@@H](N)CCN=[N+]=[N-] NNWQLZWAZSJGLY-VKHMYHEASA-N 0.000 description 1
- ZXSBHXZKWRIEIA-JTQLQIEISA-N (2s)-3-(4-acetylphenyl)-2-azaniumylpropanoate Chemical compound CC(=O)C1=CC=C(C[C@H](N)C(O)=O)C=C1 ZXSBHXZKWRIEIA-JTQLQIEISA-N 0.000 description 1
- CGMTUJFWROPELF-YPAAEMCBSA-N (3E,5S)-5-[(2S)-butan-2-yl]-3-(1-hydroxyethylidene)pyrrolidine-2,4-dione Chemical compound CC[C@H](C)[C@@H]1NC(=O)\C(=C(/C)O)C1=O CGMTUJFWROPELF-YPAAEMCBSA-N 0.000 description 1
- TVIRNGFXQVMMGB-OFWIHYRESA-N (3s,6r,10r,13e,16s)-16-[(2r,3r,4s)-4-chloro-3-hydroxy-4-phenylbutan-2-yl]-10-[(3-chloro-4-methoxyphenyl)methyl]-6-methyl-3-(2-methylpropyl)-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetrone Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H](O)[C@@H](Cl)C=2C=CC=CC=2)C/C=C/C(=O)N1 TVIRNGFXQVMMGB-OFWIHYRESA-N 0.000 description 1
- XRBSKUSTLXISAB-XVVDYKMHSA-N (5r,6r,7r,8r)-8-hydroxy-7-(hydroxymethyl)-5-(3,4,5-trimethoxyphenyl)-5,6,7,8-tetrahydrobenzo[f][1,3]benzodioxole-6-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H](CO)[C@@H]2C(O)=O)=C1 XRBSKUSTLXISAB-XVVDYKMHSA-N 0.000 description 1
- XRBSKUSTLXISAB-UHFFFAOYSA-N (7R,7'R,8R,8'R)-form-Podophyllic acid Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C(CO)C2C(O)=O)=C1 XRBSKUSTLXISAB-UHFFFAOYSA-N 0.000 description 1
- AESVUZLWRXEGEX-DKCAWCKPSA-N (7S,9R)-7-[(2S,4R,5R,6R)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione iron(3+) Chemical compound [Fe+3].COc1cccc2C(=O)c3c(O)c4C[C@@](O)(C[C@H](O[C@@H]5C[C@@H](N)[C@@H](O)[C@@H](C)O5)c4c(O)c3C(=O)c12)C(=O)CO AESVUZLWRXEGEX-DKCAWCKPSA-N 0.000 description 1
- JXVAMODRWBNUSF-KZQKBALLSA-N (7s,9r,10r)-7-[(2r,4s,5s,6s)-5-[[(2s,4as,5as,7s,9s,9ar,10ar)-2,9-dimethyl-3-oxo-4,4a,5a,6,7,9,9a,10a-octahydrodipyrano[4,2-a:4',3'-e][1,4]dioxin-7-yl]oxy]-4-(dimethylamino)-6-methyloxan-2-yl]oxy-10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2 Chemical compound O([C@@H]1C2=C(O)C=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C2[C@@H](O[C@@H]2O[C@@H](C)[C@@H](O[C@@H]3O[C@@H](C)[C@H]4O[C@@H]5O[C@@H](C)C(=O)C[C@@H]5O[C@H]4C3)[C@H](C2)N(C)C)C[C@]1(O)CC)[C@H]1C[C@H](N(C)C)[C@H](O)[C@H](C)O1 JXVAMODRWBNUSF-KZQKBALLSA-N 0.000 description 1
- INAUWOVKEZHHDM-PEDBPRJASA-N (7s,9s)-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-7-[(2r,4s,5s,6s)-5-hydroxy-6-methyl-4-morpholin-4-yloxan-2-yl]oxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1 INAUWOVKEZHHDM-PEDBPRJASA-N 0.000 description 1
- RCFNNLSZHVHCEK-IMHLAKCZSA-N (7s,9s)-7-(4-amino-6-methyloxan-2-yl)oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound [Cl-].O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)C1CC([NH3+])CC(C)O1 RCFNNLSZHVHCEK-IMHLAKCZSA-N 0.000 description 1
- NOPNWHSMQOXAEI-PUCKCBAPSA-N (7s,9s)-7-[(2r,4s,5s,6s)-4-(2,3-dihydropyrrol-1-yl)-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCC=C1 NOPNWHSMQOXAEI-PUCKCBAPSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- IEXUMDBQLIVNHZ-YOUGDJEHSA-N (8s,11r,13r,14s,17s)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(3-hydroxypropyl)-13-methyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one Chemical compound C1=CC(N(C)C)=CC=C1[C@@H]1C2=C3CCC(=O)C=C3CC[C@H]2[C@H](CC[C@]2(O)CCCO)[C@@]2(C)C1 IEXUMDBQLIVNHZ-YOUGDJEHSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- AGNGYMCLFWQVGX-AGFFZDDWSA-N (e)-1-[(2s)-2-amino-2-carboxyethoxy]-2-diazonioethenolate Chemical compound OC(=O)[C@@H](N)CO\C([O-])=C\[N+]#N AGNGYMCLFWQVGX-AGFFZDDWSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- FONKWHRXTPJODV-DNQXCXABSA-N 1,3-bis[2-[(8s)-8-(chloromethyl)-4-hydroxy-1-methyl-7,8-dihydro-3h-pyrrolo[3,2-e]indole-6-carbonyl]-1h-indol-5-yl]urea Chemical compound C1([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C4=CC(O)=C5NC=C(C5=C4[C@H](CCl)C3)C)=C2C=C(O)C2=C1C(C)=CN2 FONKWHRXTPJODV-DNQXCXABSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- BLCJBICVQSYOIF-UHFFFAOYSA-N 2,2-diaminobutanoic acid Chemical compound CCC(N)(N)C(O)=O BLCJBICVQSYOIF-UHFFFAOYSA-N 0.000 description 1
- SKWCZPYWFRTSDD-UHFFFAOYSA-N 2,3-bis(azaniumyl)propanoate;chloride Chemical compound Cl.NCC(N)C(O)=O SKWCZPYWFRTSDD-UHFFFAOYSA-N 0.000 description 1
- BTOTXLJHDSNXMW-POYBYMJQSA-N 2,3-dideoxyuridine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(=O)NC(=O)C=C1 BTOTXLJHDSNXMW-POYBYMJQSA-N 0.000 description 1
- BOMZMNZEXMAQQW-UHFFFAOYSA-N 2,5,11-trimethyl-6h-pyrido[4,3-b]carbazol-2-ium-9-ol;acetate Chemical compound CC([O-])=O.C[N+]1=CC=C2C(C)=C(NC=3C4=CC(O)=CC=3)C4=C(C)C2=C1 BOMZMNZEXMAQQW-UHFFFAOYSA-N 0.000 description 1
- QCXJFISCRQIYID-IAEPZHFASA-N 2-amino-1-n-[(3s,6s,7r,10s,16s)-3-[(2s)-butan-2-yl]-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-10-propan-2-yl-8-oxa-1,4,11,14-tetrazabicyclo[14.3.0]nonadecan-6-yl]-4,6-dimethyl-3-oxo-9-n-[(3s,6s,7r,10s,16s)-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-3,10-di(propa Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N=C2C(C(=O)N[C@@H]3C(=O)N[C@H](C(N4CCC[C@H]4C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]3C)=O)[C@@H](C)CC)=C(N)C(=O)C(C)=C2O2)C2=C(C)C=C1 QCXJFISCRQIYID-IAEPZHFASA-N 0.000 description 1
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 1
- AKVBCGQVQXPRLD-UHFFFAOYSA-N 2-aminooctanoic acid Chemical compound CCCCCCC(N)C(O)=O AKVBCGQVQXPRLD-UHFFFAOYSA-N 0.000 description 1
- OFYAYGJCPXRNBL-UHFFFAOYSA-N 2-azaniumyl-3-naphthalen-1-ylpropanoate Chemical compound C1=CC=C2C(CC(N)C(O)=O)=CC=CC2=C1 OFYAYGJCPXRNBL-UHFFFAOYSA-N 0.000 description 1
- FDAYLTPAFBGXAB-UHFFFAOYSA-N 2-chloro-n,n-bis(2-chloroethyl)ethanamine Chemical compound ClCCN(CCCl)CCCl FDAYLTPAFBGXAB-UHFFFAOYSA-N 0.000 description 1
- VNBAOSVONFJBKP-UHFFFAOYSA-N 2-chloro-n,n-bis(2-chloroethyl)propan-1-amine;hydrochloride Chemical compound Cl.CC(Cl)CN(CCCl)CCCl VNBAOSVONFJBKP-UHFFFAOYSA-N 0.000 description 1
- YIMDLWDNDGKDTJ-QLKYHASDSA-N 3'-deamino-3'-(3-cyanomorpholin-4-yl)doxorubicin Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1C#N YIMDLWDNDGKDTJ-QLKYHASDSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- PWMYMKOUNYTVQN-UHFFFAOYSA-N 3-(8,8-diethyl-2-aza-8-germaspiro[4.5]decan-2-yl)-n,n-dimethylpropan-1-amine Chemical compound C1C[Ge](CC)(CC)CCC11CN(CCCN(C)C)CC1 PWMYMKOUNYTVQN-UHFFFAOYSA-N 0.000 description 1
- GSWYUZQBLVUEPH-UHFFFAOYSA-N 3-(azaniumylmethyl)benzoate Chemical compound NCC1=CC=CC(C(O)=O)=C1 GSWYUZQBLVUEPH-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- DODQJNMQWMSYGS-QPLCGJKRSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-phenylbut-1-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 DODQJNMQWMSYGS-QPLCGJKRSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- PZNQZSRPDOEBMS-QMMMGPOBSA-N 4-iodo-L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(I)C=C1 PZNQZSRPDOEBMS-QMMMGPOBSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- WYXSYVWAUAUWLD-SHUUEZRQSA-N 6-azauridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=N1 WYXSYVWAUAUWLD-SHUUEZRQSA-N 0.000 description 1
- YCWQAMGASJSUIP-YFKPBYRVSA-N 6-diazo-5-oxo-L-norleucine Chemical compound OC(=O)[C@@H](N)CCC(=O)C=[N+]=[N-] YCWQAMGASJSUIP-YFKPBYRVSA-N 0.000 description 1
- 229960005538 6-diazo-5-oxo-L-norleucine Drugs 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- CEIZFXOZIQNICU-UHFFFAOYSA-N Alternaria alternata Crofton-weed toxin Natural products CCC(C)C1NC(=O)C(C(C)=O)=C1O CEIZFXOZIQNICU-UHFFFAOYSA-N 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 108090000644 Angiozyme Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 102000014654 Aromatase Human genes 0.000 description 1
- 108010078554 Aromatase Proteins 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- VGGGPCQERPFHOB-MCIONIFRSA-N Bestatin Chemical compound CC(C)C[C@H](C(O)=O)NC(=O)[C@@H](O)[C@H](N)CC1=CC=CC=C1 VGGGPCQERPFHOB-MCIONIFRSA-N 0.000 description 1
- 229940122361 Bisphosphonate Drugs 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- MBABCNBNDNGODA-LTGLSHGVSA-N Bullatacin Natural products O=C1C(C[C@H](O)CCCCCCCCCC[C@@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)=C[C@H](C)O1 MBABCNBNDNGODA-LTGLSHGVSA-N 0.000 description 1
- KGGVWMAPBXIMEM-ZRTAFWODSA-N Bullatacinone Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@H]2OC(=O)[C@H](CC(C)=O)C2)CC1 KGGVWMAPBXIMEM-ZRTAFWODSA-N 0.000 description 1
- KGGVWMAPBXIMEM-JQFCFGFHSA-N Bullatacinone Natural products O=C(C[C@H]1C(=O)O[C@H](CCCCCCCCCC[C@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)C1)C KGGVWMAPBXIMEM-JQFCFGFHSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- SHHKQEUPHAENFK-UHFFFAOYSA-N Carboquone Chemical compound O=C1C(C)=C(N2CC2)C(=O)C(C(COC(N)=O)OC)=C1N1CC1 SHHKQEUPHAENFK-UHFFFAOYSA-N 0.000 description 1
- AOCCBINRVIKJHY-UHFFFAOYSA-N Carmofur Chemical compound CCCCCCNC(=O)N1C=C(F)C(=O)NC1=O AOCCBINRVIKJHY-UHFFFAOYSA-N 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- XCDXSSFOJZZGQC-UHFFFAOYSA-N Chlornaphazine Chemical compound C1=CC=CC2=CC(N(CCCl)CCCl)=CC=C21 XCDXSSFOJZZGQC-UHFFFAOYSA-N 0.000 description 1
- MKQWTWSXVILIKJ-LXGUWJNJSA-N Chlorozotocin Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)NC(=O)N(N=O)CCCl MKQWTWSXVILIKJ-LXGUWJNJSA-N 0.000 description 1
- 206010010254 Concussion Diseases 0.000 description 1
- 229930188224 Cryptophycin Natural products 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- FDKWRPBBCBCIGA-UWTATZPHSA-N D-Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 1
- 108010002156 Depsipeptides Proteins 0.000 description 1
- AUGQEEXBDZWUJY-ZLJUKNTDSA-N Diacetoxyscirpenol Chemical compound C([C@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)C)O2 AUGQEEXBDZWUJY-ZLJUKNTDSA-N 0.000 description 1
- AUGQEEXBDZWUJY-UHFFFAOYSA-N Diacetoxyscirpenol Natural products CC(=O)OCC12CCC(C)=CC1OC1C(O)C(OC(C)=O)C2(C)C11CO1 AUGQEEXBDZWUJY-UHFFFAOYSA-N 0.000 description 1
- 108700021041 Disintegrin Proteins 0.000 description 1
- ZQZFYGIXNQKOAV-OCEACIFDSA-N Droloxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=C(O)C=CC=1)\C1=CC=C(OCCN(C)C)C=C1 ZQZFYGIXNQKOAV-OCEACIFDSA-N 0.000 description 1
- 229930193152 Dynemicin Natural products 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- AFMYMMXSQGUCBK-UHFFFAOYSA-N Endynamicin A Natural products C1#CC=CC#CC2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3C34OC32C(C)C(C(O)=O)=C(OC)C41 AFMYMMXSQGUCBK-UHFFFAOYSA-N 0.000 description 1
- SAMRUMKYXPVKPA-VFKOLLTISA-N Enocitabine Chemical compound O=C1N=C(NC(=O)CCCCCCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 SAMRUMKYXPVKPA-VFKOLLTISA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- OBMLHUPNRURLOK-XGRAFVIBSA-N Epitiostanol Chemical compound C1[C@@H]2S[C@@H]2C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 OBMLHUPNRURLOK-XGRAFVIBSA-N 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 229930189413 Esperamicin Natural products 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- NIGWMJHCCYYCSF-UHFFFAOYSA-N Fenclonine Chemical compound OC(=O)C(N)CC1=CC=C(Cl)C=C1 NIGWMJHCCYYCSF-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 108010069236 Goserelin Proteins 0.000 description 1
- 101500025419 Homo sapiens Epidermal growth factor Proteins 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- MPBVHIBUJCELCL-UHFFFAOYSA-N Ibandronate Chemical compound CCCCCN(C)CCC(O)(P(O)(O)=O)P(O)(O)=O MPBVHIBUJCELCL-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ZFOMKMMPBOQKMC-KXUCPTDWSA-N L-pyrrolysine Chemical compound C[C@@H]1CC=N[C@H]1C(=O)NCCCC[C@H]([NH3+])C([O-])=O ZFOMKMMPBOQKMC-KXUCPTDWSA-N 0.000 description 1
- JLERVPBPJHKRBJ-UHFFFAOYSA-N LY 117018 Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCC3)=CC=2)C2=CC=C(O)C=C2S1 JLERVPBPJHKRBJ-UHFFFAOYSA-N 0.000 description 1
- 229920001491 Lentinan Polymers 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 206010025312 Lymphoma AIDS related Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- VJRAUFKOOPNFIQ-UHFFFAOYSA-N Marcellomycin Natural products C12=C(O)C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C=C2C(C(=O)OC)C(CC)(O)CC1OC(OC1C)CC(N(C)C)C1OC(OC1C)CC(O)C1OC1CC(O)C(O)C(C)O1 VJRAUFKOOPNFIQ-UHFFFAOYSA-N 0.000 description 1
- 229930126263 Maytansine Natural products 0.000 description 1
- 208000006395 Meigs Syndrome Diseases 0.000 description 1
- 206010027139 Meigs' syndrome Diseases 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- IVDYZAAPOLNZKG-KWHRADDSSA-N Mepitiostane Chemical compound O([C@@H]1[C@]2(CC[C@@H]3[C@@]4(C)C[C@H]5S[C@H]5C[C@@H]4CC[C@H]3[C@@H]2CC1)C)C1(OC)CCCC1 IVDYZAAPOLNZKG-KWHRADDSSA-N 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 108010049746 Microcystins Proteins 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- SYNHCENRCUAUNM-UHFFFAOYSA-N Nitrogen mustard N-oxide hydrochloride Chemical compound Cl.ClCC[N+]([O-])(C)CCCl SYNHCENRCUAUNM-UHFFFAOYSA-N 0.000 description 1
- KGTDRFCXGRULNK-UHFFFAOYSA-N Nogalamycin Natural products COC1C(OC)(C)C(OC)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=C4C5(C)OC(C(C(C5O)N(C)C)O)OC4=C3C3=O)=C3C=C2C(C(=O)OC)C(C)(O)C1 KGTDRFCXGRULNK-UHFFFAOYSA-N 0.000 description 1
- GEYBMYRBIABFTA-VIFPVBQESA-N O-methyl-L-tyrosine Chemical compound COC1=CC=C(C[C@H](N)C(O)=O)C=C1 GEYBMYRBIABFTA-VIFPVBQESA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 229930187135 Olivomycin Natural products 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 101100242312 Oryza sativa subsp. japonica OSK1 gene Proteins 0.000 description 1
- 101100533605 Oryza sativa subsp. japonica SKP1 gene Proteins 0.000 description 1
- VREZDOWOLGNDPW-ALTGWBOUSA-N Pancratistatin Chemical compound C1=C2[C@H]3[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)[C@@H]3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-ALTGWBOUSA-N 0.000 description 1
- VREZDOWOLGNDPW-MYVCAWNPSA-N Pancratistatin Natural products O=C1N[C@H]2[C@H](O)[C@H](O)[C@H](O)[C@H](O)[C@@H]2c2c1c(O)c1OCOc1c2 VREZDOWOLGNDPW-MYVCAWNPSA-N 0.000 description 1
- 108010057150 Peplomycin Proteins 0.000 description 1
- 206010048734 Phakomatosis Diseases 0.000 description 1
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920001054 Poly(ethylene‐co‐vinyl acetate) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102100024924 Protein kinase C alpha type Human genes 0.000 description 1
- 101710109947 Protein kinase C alpha type Proteins 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 1
- OWPCHSCAPHNHAV-UHFFFAOYSA-N Rhizoxin Natural products C1C(O)C2(C)OC2C=CC(C)C(OC(=O)C2)CC2CC2OC2C(=O)OC1C(C)C(OC)C(C)=CC=CC(C)=CC1=COC(C)=N1 OWPCHSCAPHNHAV-UHFFFAOYSA-N 0.000 description 1
- NSFWWJIQIKBZMJ-YKNYLIOZSA-N Roridin A Chemical compound C([C@]12[C@]3(C)[C@H]4C[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)[C@@H](O)[C@H](C)CCO[C@H](\C=C\C=C/C(=O)O4)[C@H](O)C)O2 NSFWWJIQIKBZMJ-YKNYLIOZSA-N 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 229920000519 Sizofiran Polymers 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- BXFOFFBJRFZBQZ-QYWOHJEZSA-N T-2 toxin Chemical compound C([C@@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@H]1[C@]3(COC(C)=O)C[C@@H](C(=C1)C)OC(=O)CC(C)C)O2 BXFOFFBJRFZBQZ-QYWOHJEZSA-N 0.000 description 1
- CGMTUJFWROPELF-UHFFFAOYSA-N Tenuazonic acid Natural products CCC(C)C1NC(=O)C(=C(C)/O)C1=O CGMTUJFWROPELF-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 101710183280 Topoisomerase Proteins 0.000 description 1
- IWEQQRMGNVVKQW-OQKDUQJOSA-N Toremifene citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 IWEQQRMGNVVKQW-OQKDUQJOSA-N 0.000 description 1
- UMILHIMHKXVDGH-UHFFFAOYSA-N Triethylene glycol diglycidyl ether Chemical compound C1OC1COCCOCCOCCOCC1CO1 UMILHIMHKXVDGH-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- SPJCRMJCFSJKDE-ZWBUGVOYSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] 2-[4-[bis(2-chloroethyl)amino]phenyl]acetate Chemical compound O([C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)C(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 SPJCRMJCFSJKDE-ZWBUGVOYSA-N 0.000 description 1
- IFJUINDAXYAPTO-UUBSBJJBSA-N [(8r,9s,13s,14s,17s)-17-[2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]acetyl]oxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-yl] benzoate Chemical compound C([C@@H]1[C@@H](C2=CC=3)CC[C@]4([C@H]1CC[C@@H]4OC(=O)COC(=O)CCCC=1C=CC(=CC=1)N(CCCl)CCCl)C)CC2=CC=3OC(=O)C1=CC=CC=C1 IFJUINDAXYAPTO-UUBSBJJBSA-N 0.000 description 1
- IHGLINDYFMDHJG-UHFFFAOYSA-N [2-(4-methoxyphenyl)-3,4-dihydronaphthalen-1-yl]-[4-(2-pyrrolidin-1-ylethoxy)phenyl]methanone Chemical compound C1=CC(OC)=CC=C1C(CCC1=CC=CC=C11)=C1C(=O)C(C=C1)=CC=C1OCCN1CCCC1 IHGLINDYFMDHJG-UHFFFAOYSA-N 0.000 description 1
- XZSRRNFBEIOBDA-CFNBKWCHSA-N [2-[(2s,4s)-4-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-3,4-dihydro-1h-tetracen-2-yl]-2-oxoethyl] 2,2-diethoxyacetate Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)C(OCC)OCC)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 XZSRRNFBEIOBDA-CFNBKWCHSA-N 0.000 description 1
- AIWRTTMUVOZGPW-HSPKUQOVSA-N abarelix Chemical compound C([C@@H](C(=O)N[C@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCNC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C)C(N)=O)N(C)C(=O)[C@H](CO)NC(=O)[C@@H](CC=1C=NC=CC=1)NC(=O)[C@@H](CC=1C=CC(Cl)=CC=1)NC(=O)[C@@H](CC=1C=C2C=CC=CC2=CC=1)NC(C)=O)C1=CC=C(O)C=C1 AIWRTTMUVOZGPW-HSPKUQOVSA-N 0.000 description 1
- 108010023617 abarelix Proteins 0.000 description 1
- 229960002184 abarelix Drugs 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- ZOZKYEHVNDEUCO-XUTVFYLZSA-N aceglatone Chemical compound O1C(=O)[C@H](OC(C)=O)[C@@H]2OC(=O)[C@@H](OC(=O)C)[C@@H]21 ZOZKYEHVNDEUCO-XUTVFYLZSA-N 0.000 description 1
- 229950002684 aceglatone Drugs 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229950004955 adozelesin Drugs 0.000 description 1
- BYRVKDUQDLJUBX-JJCDCTGGSA-N adozelesin Chemical compound C1=CC=C2OC(C(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C[C@H]4C[C@]44C5=C(C(C=C43)=O)NC=C5C)=CC2=C1 BYRVKDUQDLJUBX-JJCDCTGGSA-N 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000012996 alamarblue reagent Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 108700025316 aldesleukin Proteins 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- BBDAGFIXKZCXAH-CCXZUQQUSA-N ancitabine Chemical compound N=C1C=CN2[C@@H]3O[C@H](CO)[C@@H](O)[C@@H]3OC2=N1 BBDAGFIXKZCXAH-CCXZUQQUSA-N 0.000 description 1
- 229950000242 ancitabine Drugs 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 239000013059 antihormonal agent Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 150000008209 arabinosides Chemical class 0.000 description 1
- 229940078010 arimidex Drugs 0.000 description 1
- 229940087620 aromasin Drugs 0.000 description 1
- 239000003886 aromatase inhibitor Substances 0.000 description 1
- 229940046844 aromatase inhibitors Drugs 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 229950011321 azaserine Drugs 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229950008548 bisantrene Drugs 0.000 description 1
- 150000004663 bisphosphonates Chemical class 0.000 description 1
- 229950006844 bizelesin Drugs 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000015624 blood vessel development Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229960005520 bryostatin Drugs 0.000 description 1
- MJQUEDHRCUIRLF-TVIXENOKSA-N bryostatin 1 Chemical compound C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)[C@H]([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-TVIXENOKSA-N 0.000 description 1
- MUIWQCKLQMOUAT-AKUNNTHJSA-N bryostatin 20 Natural products COC(=O)C=C1C[C@@]2(C)C[C@]3(O)O[C@](C)(C[C@@H](O)CC(=O)O[C@](C)(C[C@@]4(C)O[C@](O)(CC5=CC(=O)O[C@]45C)C(C)(C)C=C[C@@](C)(C1)O2)[C@@H](C)O)C[C@H](OC(=O)C(C)(C)C)C3(C)C MUIWQCKLQMOUAT-AKUNNTHJSA-N 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- MBABCNBNDNGODA-LUVUIASKSA-N bullatacin Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-LUVUIASKSA-N 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 108700002839 cactinomycin Proteins 0.000 description 1
- 229950009908 cactinomycin Drugs 0.000 description 1
- IVFYLRMMHVYGJH-PVPPCFLZSA-N calusterone Chemical compound C1C[C@]2(C)[C@](O)(C)CC[C@H]2[C@@H]2[C@@H](C)CC3=CC(=O)CC[C@]3(C)[C@H]21 IVFYLRMMHVYGJH-PVPPCFLZSA-N 0.000 description 1
- 229950009823 calusterone Drugs 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229960002115 carboquone Drugs 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 208000025188 carcinoma of pharynx Diseases 0.000 description 1
- XREUEWVEMYWFFA-CSKJXFQVSA-N carminomycin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XREUEWVEMYWFFA-CSKJXFQVSA-N 0.000 description 1
- 229930188550 carminomycin Natural products 0.000 description 1
- XREUEWVEMYWFFA-UHFFFAOYSA-N carminomycin I Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XREUEWVEMYWFFA-UHFFFAOYSA-N 0.000 description 1
- 229960003261 carmofur Drugs 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 229950001725 carubicin Drugs 0.000 description 1
- BBZDXMBRAFTCAA-AREMUKBSSA-N carzelesin Chemical compound C1=2NC=C(C)C=2C([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)C3=CC4=CC=C(C=C4O3)N(CC)CC)=C2C=C1OC(=O)NC1=CC=CC=C1 BBZDXMBRAFTCAA-AREMUKBSSA-N 0.000 description 1
- 229950007509 carzelesin Drugs 0.000 description 1
- 108010047060 carzinophilin Proteins 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229950008249 chlornaphazine Drugs 0.000 description 1
- 229960001480 chlorozotocin Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 1
- 229960002286 clodronic acid Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000009514 concussion Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 108010089438 cryptophycin 1 Proteins 0.000 description 1
- PSNOPSMXOBPNNV-VVCTWANISA-N cryptophycin 1 Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H]2[C@H](O2)C=2C=CC=CC=2)C/C=C/C(=O)N1 PSNOPSMXOBPNNV-VVCTWANISA-N 0.000 description 1
- 108010090203 cryptophycin 8 Proteins 0.000 description 1
- PSNOPSMXOBPNNV-UHFFFAOYSA-N cryptophycin-327 Natural products C1=C(Cl)C(OC)=CC=C1CC1C(=O)NCC(C)C(=O)OC(CC(C)C)C(=O)OC(C(C)C2C(O2)C=2C=CC=CC=2)CC=CC(=O)N1 PSNOPSMXOBPNNV-UHFFFAOYSA-N 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 229960005052 demecolcine Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229950003913 detorubicin Drugs 0.000 description 1
- 230000009025 developmental regulation Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- WVYXNIXAMZOZFK-UHFFFAOYSA-N diaziquone Chemical compound O=C1C(NC(=O)OCC)=C(N2CC2)C(=O)C(NC(=O)OCC)=C1N1CC1 WVYXNIXAMZOZFK-UHFFFAOYSA-N 0.000 description 1
- 229950002389 diaziquone Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical compound CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 description 1
- 229930188854 dolastatin Natural products 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229950005454 doxifluridine Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229950004203 droloxifene Drugs 0.000 description 1
- NOTIQUSPUUHHEH-UXOVVSIBSA-N dromostanolone propionate Chemical compound C([C@@H]1CC2)C(=O)[C@H](C)C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](OC(=O)CC)[C@@]2(C)CC1 NOTIQUSPUUHHEH-UXOVVSIBSA-N 0.000 description 1
- 229950004683 drostanolone propionate Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229960005501 duocarmycin Drugs 0.000 description 1
- VQNATVDKACXKTF-XELLLNAOSA-N duocarmycin Chemical compound COC1=C(OC)C(OC)=C2NC(C(=O)N3C4=CC(=O)C5=C([C@@]64C[C@@H]6C3)C=C(N5)C(=O)OC)=CC2=C1 VQNATVDKACXKTF-XELLLNAOSA-N 0.000 description 1
- 229930184221 duocarmycin Natural products 0.000 description 1
- AFMYMMXSQGUCBK-AKMKHHNQSA-N dynemicin a Chemical compound C1#C\C=C/C#C[C@@H]2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3[C@@]34O[C@]32[C@@H](C)C(C(O)=O)=C(OC)[C@H]41 AFMYMMXSQGUCBK-AKMKHHNQSA-N 0.000 description 1
- FSIRXIHZBIXHKT-MHTVFEQDSA-N edatrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CC(CC)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FSIRXIHZBIXHKT-MHTVFEQDSA-N 0.000 description 1
- 229950006700 edatrexate Drugs 0.000 description 1
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 1
- 229960002759 eflornithine Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- XOPYFXBZMVTEJF-PDACKIITSA-N eleutherobin Chemical compound C(/[C@H]1[C@H](C(=CC[C@@H]1C(C)C)C)C[C@@H]([C@@]1(C)O[C@@]2(C=C1)OC)OC(=O)\C=C\C=1N=CN(C)C=1)=C2\CO[C@@H]1OC[C@@H](O)[C@@H](O)[C@@H]1OC(C)=O XOPYFXBZMVTEJF-PDACKIITSA-N 0.000 description 1
- XOPYFXBZMVTEJF-UHFFFAOYSA-N eleutherobin Natural products C1=CC2(OC)OC1(C)C(OC(=O)C=CC=1N=CN(C)C=1)CC(C(=CCC1C(C)C)C)C1C=C2COC1OCC(O)C(O)C1OC(C)=O XOPYFXBZMVTEJF-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229950000549 elliptinium acetate Drugs 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JOZGNYDSEBIJDH-UHFFFAOYSA-N eniluracil Chemical compound O=C1NC=C(C#C)C(=O)N1 JOZGNYDSEBIJDH-UHFFFAOYSA-N 0.000 description 1
- 229950010213 eniluracil Drugs 0.000 description 1
- 229950011487 enocitabine Drugs 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 230000010502 episomal replication Effects 0.000 description 1
- 229950002973 epitiostanol Drugs 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- 150000003883 epothilone derivatives Chemical class 0.000 description 1
- ITSGNOIFAJAQHJ-BMFNZSJVSA-N esorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)C[C@H](C)O1 ITSGNOIFAJAQHJ-BMFNZSJVSA-N 0.000 description 1
- 229950002017 esorubicin Drugs 0.000 description 1
- LJQQFQHBKUKHIS-WJHRIEJJSA-N esperamicin Chemical compound O1CC(NC(C)C)C(OC)CC1OC1C(O)C(NOC2OC(C)C(SC)C(O)C2)C(C)OC1OC1C(\C2=C/CSSSC)=C(NC(=O)OC)C(=O)C(OC3OC(C)C(O)C(OC(=O)C=4C(=CC(OC)=C(OC)C=4)NC(=O)C(=C)OC)C3)C2(O)C#C\C=C/C#C1 LJQQFQHBKUKHIS-WJHRIEJJSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- QSRLNKCNOLVZIR-KRWDZBQOSA-N ethyl (2s)-2-[[2-[4-[bis(2-chloroethyl)amino]phenyl]acetyl]amino]-4-methylsulfanylbutanoate Chemical compound CCOC(=O)[C@H](CCSC)NC(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 QSRLNKCNOLVZIR-KRWDZBQOSA-N 0.000 description 1
- 229960005237 etoglucid Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 229950011548 fadrozole Drugs 0.000 description 1
- 229940043168 fareston Drugs 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical group 0.000 description 1
- 229940087476 femara Drugs 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229940020967 gemzar Drugs 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229940116978 human epidermal growth factor Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229940015872 ibandronate Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- DBIGHPPNXATHOF-UHFFFAOYSA-N improsulfan Chemical compound CS(=O)(=O)OCCCNCCCOS(C)(=O)=O DBIGHPPNXATHOF-UHFFFAOYSA-N 0.000 description 1
- 229950008097 improsulfan Drugs 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 235000015122 lemonade Nutrition 0.000 description 1
- 229940115286 lentinan Drugs 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- YROQEQPFUCPDCP-UHFFFAOYSA-N losoxantrone Chemical compound OCCNCCN1N=C2C3=CC=CC(O)=C3C(=O)C3=C2C1=CC=C3NCCNCCO YROQEQPFUCPDCP-UHFFFAOYSA-N 0.000 description 1
- 229950008745 losoxantrone Drugs 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- RVFGKBWWUQOIOU-NDEPHWFRSA-N lurtotecan Chemical compound O=C([C@]1(O)CC)OCC(C(N2CC3=4)=O)=C1C=C2C3=NC1=CC=2OCCOC=2C=C1C=4CN1CCN(C)CC1 RVFGKBWWUQOIOU-NDEPHWFRSA-N 0.000 description 1
- 229950002654 lurtotecan Drugs 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- MQXVYODZCMMZEM-ZYUZMQFOSA-N mannomustine Chemical compound ClCCNC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CNCCCl MQXVYODZCMMZEM-ZYUZMQFOSA-N 0.000 description 1
- 229950008612 mannomustine Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229950009246 mepitiostane Drugs 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- VJRAUFKOOPNFIQ-TVEKBUMESA-N methyl (1r,2r,4s)-4-[(2r,4s,5s,6s)-5-[(2s,4s,5s,6s)-5-[(2s,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-4-(dimethylamino)-6-methyloxan-2-yl]oxy-2-ethyl-2,5,7,10-tetrahydroxy-6,11-dioxo-3,4-dihydro-1h-tetracene-1-carboxylat Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1C[C@H](O)[C@H](O)[C@H](C)O1 VJRAUFKOOPNFIQ-TVEKBUMESA-N 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- 229960003539 mitoguazone Drugs 0.000 description 1
- MXWHMTNPTTVWDM-NXOFHUPFSA-N mitoguazone Chemical compound NC(N)=N\N=C(/C)\C=N\N=C(N)N MXWHMTNPTTVWDM-NXOFHUPFSA-N 0.000 description 1
- VFKZTMPDYBFSTM-GUCUJZIJSA-N mitolactol Chemical compound BrC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-GUCUJZIJSA-N 0.000 description 1
- 229950010913 mitolactol Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- NJSMWLQOCQIOPE-OCHFTUDZSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine Chemical compound N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 NJSMWLQOCQIOPE-OCHFTUDZSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- GVUGOAYIVIDWIO-UFWWTJHBSA-N nepidermin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CS)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C(C)C)C(C)C)C1=CC=C(O)C=C1 GVUGOAYIVIDWIO-UFWWTJHBSA-N 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- 229960001420 nimustine Drugs 0.000 description 1
- VFEDRRNHLBGPNN-UHFFFAOYSA-N nimustine Chemical compound CC1=NC=C(CNC(=O)N(CCCl)N=O)C(N)=N1 VFEDRRNHLBGPNN-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- KGTDRFCXGRULNK-JYOBTZKQSA-N nogalamycin Chemical compound CO[C@@H]1[C@@](OC)(C)[C@@H](OC)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=C4[C@@]5(C)O[C@H]([C@H]([C@@H]([C@H]5O)N(C)C)O)OC4=C3C3=O)=C3C=C2[C@@H](C(=O)OC)[C@@](C)(O)C1 KGTDRFCXGRULNK-JYOBTZKQSA-N 0.000 description 1
- 229950009266 nogalamycin Drugs 0.000 description 1
- 229940085033 nolvadex Drugs 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- CZDBNBLGZNWKMC-MWQNXGTOSA-N olivomycin Chemical class O([C@@H]1C[C@@H](O[C@H](C)[C@@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1)O[C@H]1O[C@@H](C)[C@H](O)[C@@H](OC2O[C@@H](C)[C@H](O)[C@@H](O)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@H](O)[C@H](OC)[C@H](C)O1 CZDBNBLGZNWKMC-MWQNXGTOSA-N 0.000 description 1
- 229950011093 onapristone Drugs 0.000 description 1
- 239000002997 ophthalmic solution Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- VREZDOWOLGNDPW-UHFFFAOYSA-N pancratistatine Natural products C1=C2C3C(O)C(O)C(O)C(O)C3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- QIMGFXOHTOXMQP-GFAGFCTOSA-N peplomycin Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCN[C@@H](C)C=1C=CC=CC=1)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QIMGFXOHTOXMQP-GFAGFCTOSA-N 0.000 description 1
- 229950003180 peplomycin Drugs 0.000 description 1
- 201000002628 peritoneum cancer Diseases 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 description 1
- 229960000952 pipobroman Drugs 0.000 description 1
- NUKCGLDCWQXYOQ-UHFFFAOYSA-N piposulfan Chemical compound CS(=O)(=O)OCCC(=O)N1CCN(C(=O)CCOS(C)(=O)=O)CC1 NUKCGLDCWQXYOQ-UHFFFAOYSA-N 0.000 description 1
- 229950001100 piposulfan Drugs 0.000 description 1
- 229960001221 pirarubicin Drugs 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229940087463 proleukin Drugs 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 231100000654 protein toxin Toxicity 0.000 description 1
- WOLQREOUPKZMEX-UHFFFAOYSA-N pteroyltriglutamic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(=O)NC(CCC(=O)NC(CCC(O)=O)C(O)=O)C(O)=O)C(O)=O)C=C1 WOLQREOUPKZMEX-UHFFFAOYSA-N 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- BMKDZUISNHGIBY-UHFFFAOYSA-N razoxane Chemical compound C1C(=O)NC(=O)CN1C(C)CN1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-UHFFFAOYSA-N 0.000 description 1
- 229960000460 razoxane Drugs 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- OWPCHSCAPHNHAV-LMONGJCWSA-N rhizoxin Chemical compound C/C([C@H](OC)[C@@H](C)[C@@H]1C[C@H](O)[C@]2(C)O[C@@H]2/C=C/[C@@H](C)[C@]2([H])OC(=O)C[C@@](C2)(C[C@@H]2O[C@H]2C(=O)O1)[H])=C\C=C\C(\C)=C\C1=COC(C)=N1 OWPCHSCAPHNHAV-LMONGJCWSA-N 0.000 description 1
- 229950004892 rodorubicin Drugs 0.000 description 1
- MBABCNBNDNGODA-WPZDJQSSSA-N rolliniastatin 1 Natural products O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@H]1[C@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-WPZDJQSSSA-N 0.000 description 1
- IMUQLZLGWJSVMV-UOBFQKKOSA-N roridin A Natural products CC(O)C1OCCC(C)C(O)C(=O)OCC2CC(=CC3OC4CC(OC(=O)C=C/C=C/1)C(C)(C23)C45CO5)C IMUQLZLGWJSVMV-UOBFQKKOSA-N 0.000 description 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 description 1
- 201000003804 salivary gland carcinoma Diseases 0.000 description 1
- 229930182947 sarcodictyin Natural products 0.000 description 1
- ZKZBPNGNEQAJSX-UHFFFAOYSA-N selenocysteine Natural products [SeH]CC(N)C(O)=O ZKZBPNGNEQAJSX-UHFFFAOYSA-N 0.000 description 1
- 235000016491 selenocysteine Nutrition 0.000 description 1
- 229940055619 selenocysteine Drugs 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229950001403 sizofiran Drugs 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 229950006315 spirogermanium Drugs 0.000 description 1
- ICXJVZHDZFXYQC-UHFFFAOYSA-N spongistatin 1 Natural products OC1C(O2)(O)CC(O)C(C)C2CCCC=CC(O2)CC(O)CC2(O2)CC(OC)CC2CC(=O)C(C)C(OC(C)=O)C(C)C(=C)CC(O2)CC(C)(O)CC2(O2)CC(OC(C)=O)CC2CC(=O)OC2C(O)C(CC(=C)CC(O)C=CC(Cl)=C)OC1C2C ICXJVZHDZFXYQC-UHFFFAOYSA-N 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- YFTWHEBLORWGNI-UHFFFAOYSA-N tiamiprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC(N)=NC2=C1NC=N2 YFTWHEBLORWGNI-UHFFFAOYSA-N 0.000 description 1
- 229950011457 tiamiprine Drugs 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- IUCJMVBFZDHPDX-UHFFFAOYSA-N tretamine Chemical compound C1CN1C1=NC(N2CC2)=NC(N2CC2)=N1 IUCJMVBFZDHPDX-UHFFFAOYSA-N 0.000 description 1
- 229950001353 tretamine Drugs 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- PXSOHRWMIRDKMP-UHFFFAOYSA-N triaziquone Chemical compound O=C1C(N2CC2)=C(N2CC2)C(=O)C=C1N1CC1 PXSOHRWMIRDKMP-UHFFFAOYSA-N 0.000 description 1
- 229960004560 triaziquone Drugs 0.000 description 1
- 229930013292 trichothecene Natural products 0.000 description 1
- 150000003327 trichothecene derivatives Chemical class 0.000 description 1
- KVJXBPDAXMEYOA-CXANFOAXSA-N trilostane Chemical compound OC1=C(C#N)C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@@]32O[C@@H]31 KVJXBPDAXMEYOA-CXANFOAXSA-N 0.000 description 1
- 229960001670 trilostane Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- 229950000212 trioxifene Drugs 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 229960000875 trofosfamide Drugs 0.000 description 1
- UMKFEPPTGMDVMI-UHFFFAOYSA-N trofosfamide Chemical compound ClCCN(CCCl)P1(=O)OCCCN1CCCl UMKFEPPTGMDVMI-UHFFFAOYSA-N 0.000 description 1
- 229950010147 troxacitabine Drugs 0.000 description 1
- RXRGZNYSEHTMHC-BQBZGAKWSA-N troxacitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)OC1 RXRGZNYSEHTMHC-BQBZGAKWSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- HDZZVAMISRMYHH-LITAXDCLSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@@H](CO)[C@H](O)[C@H]1O HDZZVAMISRMYHH-LITAXDCLSA-N 0.000 description 1
- 229950009811 ubenimex Drugs 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 102000009816 urokinase plasminogen activator receptor activity proteins Human genes 0.000 description 1
- 108040001269 urokinase plasminogen activator receptor activity proteins Proteins 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 208000012991 uterine carcinoma Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- GBABOYUKABKIAF-IELIFDKJSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IELIFDKJSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229960001771 vorozole Drugs 0.000 description 1
- XLMPPFTZALNBFS-INIZCTEOSA-N vorozole Chemical compound C1([C@@H](C2=CC=C3N=NN(C3=C2)C)N2N=CN=C2)=CC=C(Cl)C=C1 XLMPPFTZALNBFS-INIZCTEOSA-N 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940053867 xeloda Drugs 0.000 description 1
- 229950009268 zinostatin Drugs 0.000 description 1
- FBTUMDXHSRTGRV-ALTNURHMSA-N zorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(\C)=N\NC(=O)C=1C=CC=CC=1)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 FBTUMDXHSRTGRV-ALTNURHMSA-N 0.000 description 1
- 229960000641 zorubicin Drugs 0.000 description 1
- JPZXHKDZASGCLU-LBPRGKRZSA-N β-(2-naphthyl)-alanine Chemical compound C1=CC=CC2=CC(C[C@H](N)C(O)=O)=CC=C21 JPZXHKDZASGCLU-LBPRGKRZSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K17/00—Carrier-bound or immobilised peptides; Preparation thereof
- C07K17/02—Peptides being immobilised on, or in, an organic carrier
- C07K17/08—Peptides being immobilised on, or in, an organic carrier the carrier being a synthetic polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/6415—Toxins or lectins, e.g. clostridial toxins or Pseudomonas exotoxins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/33—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4748—Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70532—B7 molecules, e.g. CD80, CD86
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/82—Translation products from oncogenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/55—Fusion polypeptide containing a fusion with a toxin, e.g. diphteria toxin
Definitions
- the invention relates to constructs comprising a plurality of peptides capable of targeting at least two different extracellular tumor antigens and at least one toxin, optionally connected to an organic scaffold and use of such constructs in treating cancer are provided as well.
- the invention also relates to particular peptides binding certain extracellular tumor antigens as well as toxins having antitumor activity, and conjugates of these peptides and toxins.
- Targeted cancer therapies are drugs or other substances designed to interfere with specific molecules involved in cancer cell growth and survival. In contrast to traditional chemotherapy drugs, which usually act against all actively dividing cells, a primary goal of targeted therapies is to fight cancer cells with more precision and potentially fewer side effects.
- Targeted cancer therapies that have been approved for use against specific cancers include agents that prevent cell growth signaling, interfere with tumor blood vessel development, promote the death of cancer cells, stimulate the immune system to destroy cancer cells, and deliver toxic drugs to cancer cells.
- the latter mainly includes monoclonal antibodies that deliver toxic molecules. Once the antibody has bound to its target cell, the toxic molecule that is linked to the antibody, such as a radioactive substance, a toxic polypeptide or a poisonous chemical, is taken up by the cell, ultimately killing that cell. The toxin will not affect cells that lack the target for the antibody.
- Efficient tumor targeting is challenging for a number of reasons. First, it requires identifying a target that is sufficiently specific to the tumor cells to avoid as much as possible non-specific killing of cells.
- cancer cells tend to be variable, both between cancer types and within the same type of cancer: the expression pattern of surface targets may vary between cells of a particular tumor. Cancer cells may also alter expression of their cell surface receptors during tumor development or become resistant to the therapy. Resistance may occur in two ways: the target itself changes through mutation so that the targeted therapy no longer interacts well with it, and/or the tumor finds a new pathway to achieve tumor growth that does not depend on the target. Most anti-cancer drugs attack a specific target on, or in, the cancer cell. Inhibiting the target usually aims to block a physiological pathway that promotes cancer. Mutations in the targets, or in their downstream physiological pathways, make the targets not relevant to the cancerous nature of the cell.
- the construct is a single-chain polypeptide consisting of human epidermal growth factor (EGF), a fragment of urokinase and truncated pseudomonas exotoxin (PE38).
- compositions comprising modified bacterial toxins and methods for using the modified bacterial toxins for targeting particular cell populations and for treating diseases.
- US 2004/0058865 discloses synthetic multimeric ligands that provide for enhanced cell-, and organ-specific targeting, and methods of their preparation and use.
- compositions that bind to multiple epitopes of IGF-1R for example, combinations of monospecific binding molecules or multispecific binding molecules (e.g., bispecific molecules). Methods of making the subject binding molecules and methods of using the binding molecules to antagonize IGF-1R signaling are also disclosed.
- WO 2007/093373 discloses in vivo stable branched peptides, in particular derived from the sequence of Neurotensin (NT) and Luteinizing hormone-releasing hormone (LHRH), conjugated to functional units for specific targeting of cancer cells, either for tumor diagnosis or therapy.
- NT Neurotensin
- LHRH Luteinizing hormone-releasing hormone
- WO 2008/088422 discloses a composition of matter comprising an OSK1 peptide analog, and in some embodiments, a pharmaceutically acceptable salt thereof. Further disclosed are pharmaceutical compositions comprising the composition and a pharmaceutically acceptable carrier, DNAs encoding the composition of matter, an expression vector comprising the DNA, and host cells comprising the expression vector. Methods of treating an autoimmune disorder and of preventing or mitigating a relapse of a symptom of multiple sclerosis are also disclosed.
- the present invention relates to a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier.
- the invention is based on an unexpected observation that a construct comprising two peptides binding two different targets on cancer cells and a toxin has an advantageous and, in some cases, a synergic cytotoxic effect in comparison to constructs having only one of these peptides.
- the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier.
- At least one of the peptides binds specifically to an extracellular tumor antigen selected from human epidermal growth factor receptor (EGFR) and human Programmed death-ligand 1 (PD-L1).
- the another one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- the construct can comprise from 3 to 10 different peptides binding to different extracellular tumor antigens.
- the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier and wherein at least one of the peptides binds specifically to EGFR.
- peptide comprises the amino acid sequence as set forth in SEQ ID NO: 1 (CHPGDKQEDPNCLQADK) or being an analog thereof.
- the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier and wherein at least one of the peptides binds specifically to PD-L1.
- the peptide comprises the amino acid sequence as set forth in SEQ ID NO: 2 (CEGLPADWAAAC) or being an analog thereof.
- the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier and wherein one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1.
- the EGFR the peptide that binds specifically to EGFR is a peptide having SEQ ID NO: 1 or an analog thereof
- the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2 or an analog thereof.
- the construct comprises multiple copies of at least one or of at least two of the peptides. In some embodiments, the construct comprises from 2 to 50 copies of at least one of the peptides.
- the toxin is a peptide, polypeptide or protein toxin.
- the toxin is selected from a toxin binding to a eukaryotic elongation factor 2, BIM-BH3 consisting of SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin.
- BIM-BH3 consisting of SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake
- the toxin binding to eukaryotic elongation factor 2 is a toxin comprising the amino acid sequence selected from SEQ ID NO: 3 (CSARWGPTMPWC), SEQ ID NO: 4 (CRRGSRASGAHC), or an analog thereof.
- the construct comprises 2 to 10 different toxins.
- the construct comprises a toxin having SEQ ID NO: 3 and a toxin having SEQ ID NO: 4.
- the construct comprises multiple copies of at least one or of at least two of the toxins. According to one embodiment, the construct comprises from 2 to 50 copies of the at least one of the toxins. According to another embodiment, the construct comprises 2 to 50 copies of a toxin having SEQ ID NO: 3 and 2 to 50 copies of a toxin having SEQ ID NO: 4.
- the present invention provides a construct, wherein one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1 and the toxin is selected from a toxin binding specifically to eukaryotic elongation factor 2 and a toxin having SEQ ID NO: 5.
- the construct comprises a peptide having SEQ ID NO: 1 or an analog thereof, a peptide having SEQ ID NO: 2 or an analog thereof, and at least one toxin having amino acid sequence selected from SEQ ID NO: 3, 4, and 5.
- the construct comprises a peptide comprising SEQ ID NO: 1 or an analog thereof, a peptide comprising SEQ ID NO: 2 or an analog thereof, a toxin comprising SEQ ID NO: 3, and a toxin comprising SEQ ID NO: 4.
- the construct comprises multiple copies of each one of the peptides and the toxin(s).
- the carrier is an organic scaffold.
- each one of the peptides and of the toxin(s) are bound to a carrier, wherein the carrier is an organic scaffold.
- the scaffold is a polyethylene glycol (PEG) molecule or a modified PEG molecule.
- the PEG molecule is a branched molecule.
- the PEG molecules comprises a plurality of sites for binging the peptides and/or the toxin(s) of the present invention.
- the PEG molecule comprises 8 to 56 sites available to bind the peptides and the toxin(s).
- the present invention provides a construct comprising multiple copies of each one of at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin(s) are bound to the scaffold and wherein at least one of the peptides binds specifically to the extracellular tumor antigens selected from EGFR or PD-L1.
- one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1.
- the peptide that binds specifically to EGFR is a peptide having SEQ ID NO: 1 or an analog thereof
- the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2 or an analog thereof
- the toxin comprises the amino acid sequence selected from SEQ ID NO: 3, 4 and 5, or an analog thereof.
- the scaffold is PEG scaffold.
- the PEG molecule comprises 8 to 56 sites available to bind the peptides and the toxin(s).
- the construct comprises multiple copies of each one of the: (i) a peptide having SEQ ID NO: 1, (ii) a peptide having SEQ ID NO: 2, (iii) a toxin having SEQ ID NO: 3 and (iv) a toxin having SEQ ID NO: 4, wherein each one of the peptides and the toxins is bound to the scaffold.
- the scaffold is PEG scaffold.
- the construct comprises multiple copies of each one of the: (i) a peptide consisting of SEQ ID NO: 1, (ii) a peptide consisting of SEQ ID NO: 2, (iii) a toxin consisting of SEQ ID NO: 3, and (iv) a toxin consisting of SEQ ID NO: 4.
- the stoichiometric molar ratio between the peptide having or consisting of SEQ ID NO: 1, the peptide having or consisting of SEQ ID NO: 2, the toxin having or consisting of SEQ ID NO: 3 and the toxin having or consisting of SEQ ID NO: 4 is 1:1:3:3.
- At least one of the peptides or of the toxins is connected to the scaffold through a linker or spacer.
- the construct further comprises a permeability-enhancing moiety.
- the present invention provides a composition comprising a construct of the present invention.
- the composition is a pharmaceutical composition.
- the present invention provides a pharmaceutical composition comprising a construct of the present invention and a pharmaceutically acceptable excipient.
- the pharmaceutical composition comprises a construct comprising multiple copies of each one of at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin(s) are bound to the scaffold and wherein at least one of the peptides binds specifically to the extracellular tumor antigens selected from EGFR or PD-L1.
- one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1.
- the peptide that binds specifically to EGFR is a peptide having SEQ ID NO: 1 or an analog thereof
- the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2 or an analog thereof.
- the toxin comprises the amino acid sequence selected from SEQ ID NO: 3, 4 and 5, or an analog thereof.
- the scaffold is PEG scaffold.
- the pharmaceutical composition comprises a the construct comprising multiple copies of each one of the: (i) a peptide having SEQ ID NO: 1, (ii) a peptide having SEQ ID NO: 2, (iii) a toxin having SEQ ID NO: 3 and (iv) a toxin having SEQ ID NO: 4, wherein each one of the peptides and the toxins is bound to the scaffold.
- the scaffold is PEG scaffold.
- the construct comprises multiple copies of each one of the: (i) a peptide consisting of SEQ ID NO: 1 (ii) a peptide consisting of SEQ ID NO: 2, (iii) a toxin consisting of SEQ ID NO: 3, and (iv) a toxin consisting of SEQ ID NO: 4.
- the stoichiometric molar ratio between the peptide having or consisting of SEQ ID NO: 1, the peptide having or consisting of SEQ ID NO: 2, the toxin having or consisting of SEQ ID NO: 3 and the toxin having or consisting of SEQ ID NO: 4 is 1:1:3:3.
- the pharmaceutical composition of the present invention is for use in treating cancer.
- the present invention provides a method of treating cancer in a subject in need thereof comprising administering to said subject a pharmaceutical composition of the present invention.
- the pharmaceutical composition comprises a construct of the present invention.
- the present invention provides a method of treating cancer in a subject in need thereof comprising administering a therapeutically effective amount of the construct of the present invention.
- the present invention provides a peptide that binds specifically to human eukaryotic Elongation Factor 2 (eEF2), wherein the peptide comprises the amino acid sequence selected from SEQ ID NO:3, SEQ ID NO: 4 and an analogs thereof.
- the peptide or the analog is cyclic.
- the peptide comprising or consisting of SEQ ID NO:3, or an analog thereof enhances eEF2 activity.
- the peptide comprising or consisting of SEQ ID NO:4, or an analog thereof enhances eEF2 activity.
- the peptide or analog is for use in inducing cell death.
- the present invention provides a peptide comprising the amino acids sequence set forth in SEQ ID NO: 1 or an analog thereof.
- the peptide or the analog is an antagonist of a human Epidermal Growth Factor Receptor (EGFR).
- EGFR Epidermal Growth Factor Receptor
- the peptide or the analog is cyclic.
- the peptide or the analog is for use in targeting cancer cells.
- the present invention provides a peptide comprising the amino acids sequence set forth in SEQ ID NO: 2 or an analog thereof.
- the peptide or the analog is an antagonist of a human Programmed death-ligand 1 (PD-L1).
- the peptide or the analog is cyclic.
- the peptide or the analog is for use in targeting cancer cells.
- the present invention provides a conjugate comprising at least one peptide of the present invention.
- the peptide is selected from a peptide comprising or consisting of SEQ ID NO:1, a peptide comprising or consisting of SEQ ID NO:2, a peptide comprising or consisting of SEQ ID NO:3, a peptide comprising or consisting of SEQ ID NO: 4 and an analog of said peptides.
- the present invention provides a composition comprising the peptide of the present invention or the conjugate of the present invention.
- the composition is a pharmaceutical composition.
- the present invention provides a pharmaceutical composition comprising the peptide of the present invention or the conjugate of the present invention.
- the peptide is selected from a peptide comprising or consisting of SEQ ID NO:1, a peptide comprising or consisting of SEQ ID NO:2, a peptide comprising or consisting of SEQ ID NO:3, a peptide comprising or consisting of SEQ ID NO: 4 and an analog of said peptides.
- the conjugate is a conjugate of said peptides.
- the pharmaceutical composition is for use in treating cancer.
- the present invention provides a method of treating cancer in a subject in need thereof comprising administering a therapeutically effective amount of the peptides of the present invention or of the conjugates of the present invention.
- the method of treating cancer comprises administering a pharmaceutical composition comprising said peptides or said conjugates.
- the peptide is selected from a peptide comprising or consisting of SEQ ID NO: 1, a peptide comprising or consisting of SEQ ID NO: 2, a peptide comprising or consisting of SEQ ID NO: 3, a peptide comprising or consisting of SEQ ID NO: 4 and an analog of said peptides.
- the conjugate is a conjugate of said peptides.
- the method comprises administering the pharmaceutical composition of the present invention comprising said peptides or said conjugates.
- the present invention provides an isolated polynucleotide comprising a sequence encoding the peptide or analog of the present invention.
- the peptide is selected from a peptide comprising or consisting of SEQ ID NO: 1, a peptide comprising or consisting of SEQ ID NO: 2, a peptide comprising or consisting of SEQ ID NO: 3, and a peptide comprising or consisting of SEQ ID NO: 4.
- the analog is an analog of said peptides.
- the present invention provides an isolated polynucleotide comprising a sequence encoding for a polypeptide comprising (i) at least one copy of SEQ ID NO: 1; (ii) at least one copy of SEQ ID NO: 2; (iii) at least one copy of SEQ ID NO: 3, 4 or combination thereof.
- the present invention provides a nucleic acid construct comprising the polynucleotide of the present invention.
- the polynucleotide is operably linked to a promoter.
- the present invention provides a vector comprising at least one polynucleotide or at least one nucleic acid construct of the present invention.
- the present invention provides a cell comprising at least one polynucleotide or at least one nucleic acid construct of the present invention.
- FIG. 1 shows schematic structure of a multi-arm-PEG complex loaded with two targeting molecules such as E13.3 and PL-L1-GR peptides (solid circles and squares) and a toxin (hollow circles) such as Tox1 and/or Tox2.
- two targeting molecules such as E13.3 and PL-L1-GR peptides (solid circles and squares) and a toxin (hollow circles) such as Tox1 and/or Tox2.
- FIG. 2 shows the result of the ELISA experiment demonstrating the binding of several peptides (toxins) to eEF2 or BSA at two different incubation times: 1.5 min and 30 min (TB2—Tox2, GW—Tox1).
- FIG. 3 shows the results of the activity of several peptides (toxins) tested in the in vitro transcription/translation system (TB2—Tox2, GW—Tox1, GR—non-eEF2-binding control).
- FIG. 4 A - FIG. 4 D , FIG. 5 A - FIG. 5 F , FIG. 6 A - FIG. 6 F and FIG. 7 A - FIG. 7 F show the effect of PEG-E13.3-toxin construct on A431 and MCF-7 cells.
- FIG. 5 A - FIG. 5 F show: the effect of PEG-E13.3-BIM ( FIG. 5 A-C ) construct and of PEG-E13.3-Tox1-Tox2 ( FIG. 5 D- 5 F ) on A431 cells at different concentrations: 1 ⁇ M ( FIGS. 5 A and 5 D ), 3 ⁇ M ( FIGS. 5 B and 5 E ) and 8 ⁇ M ( FIGS. 5 C and 5 F ). The pictures were taken 48 hours after the treatment.
- FIG. 6 A - FIG. 6 F show the effect of PEG-E13.3-BIM ( FIG. 6 A-C ) construct and of PEG-E13.3-Tox1-Tox2 ( FIG. 6 D- 6 F ) on MCF-7 cells at different concentrations: 1 ⁇ M ( FIGS. 6 A and 6 D ), 3 ⁇ M ( FIGS. 6 B and 6 E ) and 8 ⁇ M ( FIGS. 6 C and 6 F ). The pictures were taken 48 hours after the treatment.
- FIG. 7 A - FIG. 7 F show treatment of A431 cells ( FIGS. 7 A- 7 C ) and MCF-7 ( FIGS. 7 D- 7 F ) with a complex of PEG-BIM (without E13.3) at different concentrations: 1 ⁇ M ( FIGS. 7 A and 6 D ), 3 ⁇ M ( FIGS. 7 B and 7 E ) and 8 ⁇ M ( FIGS. 7 C and 7 F ).
- the pictures were taken 48 hours after the treatment.
- FIG. 8 A - FIG. 8 M show the effect of treatment of A431 cells with different constructs: PEG-BIM ( FIG. 8 B - FIG. 8 D ), PEG-E13.3-BIM ( FIG. 8 E - FIG. 8 G ), PEG-PD-L1-GR-BIM ( FIG. 8 H -FIG. J) and PEG-PD-L1 GR-E13.3-BIM ( FIG. 8 K -FIG. M) at different concentrations: 10 nM ( FIG. 8 B , FIG. 8 E , FIG. 8 H and FIG. 8 K ), 100 nM ( FIG. 8 C , FIG. 8 F , FIG. 8 I and FIG. 8 L ) and 1 ⁇ M ( FIG. 8 D , FIG. 8 G , FIG. 8 J and FIG. 8 M ).
- FIG. 8 A is a control. The pictures were taken 48 hours after the treatment.
- FIG. 9 A - FIG. 9 D shows effect of treatment of A-549 cells with PEG-E13.3-(PD-L1-GR)-Tox1-Tox2: 3 and 10 ⁇ M ( FIGS. 9 C and 9 D , respectively) or PEG-E13.3-(PD-L1-GR)-BIM 10 ⁇ M.
- FIG. 9 B- 9 D were taken 48 hours after the treatment.
- FIG. 10 shows the Coomassie Plus stained electrophoresis gel of selected peptides: lanes (from left to right): 1—E7.1; 2—E10.2; 3—E13.3; 4—E14.1.1; 5—E14.1.4; 6—E2313; 7—E2315; 8—E15.1.3-T; 9—A4.3.12-T; 10—Protein Marker (Fermentas).
- FIG. 11 shows the normalized results of inhibition analysis of the selected peptides by measuring auto phosphorylation of EGFR.
- FIG. 12 shows the result for measurement of the stability of selected peptides incubated in bovine serum for different time periods.
- FIG. 13 A and FIG. 13 B shows the result of assessment of inhibitory activity of the selected peptides at different concentrations ( FIG. 13 A general view and FIG. 13 B shows E13.3 alone).
- FIG. 14 shows the in vivo stability of E13.3 peptide alone or in complex with 8-armed PEG.
- FIG. 15 shows the effect of E13.3 on viability of two cancer cell lines.
- FIG. 16 shows the accumulation of E13.3-PEG complex in kidney, liver and tumor in mice.
- FIG. 17 show a picture of cancer cells that were isolated from a tumor in mice 1 hour (left panel) and 24 hour (right panel) following IV injection of fluorescently marked E13.3-PEG complex.
- FIG. 18 A - FIG. 18 C show the effect of the treatment of A-549 cells with 1 ⁇ M of: PEG-E13.3-BIM ( 18 B), PEG-(PD-L1-GR)-BIM ( 18 C) and PEG-E13.3-(PD-L1-GR)-BIM ( 18 D) using PBS as a control ( 18 A).
- the present invention relates to therapeutic constructs comprising a plurality of multi-target peptides and at least one toxin moiety.
- a construct according to the present invention comprises a plurality of peptides each directed against a different cell-target.
- Peptides contained in a construct according to the invention are capable of binding, blocking, inhibiting, or activating at least two different antigens expressed on the membrane of cancer cells.
- the present invention provides, according to one aspect, a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier.
- peptide refers to a short chain of amino acid residues linked by peptide bonds, i.e., a covalent bond formed between the carboxyl group of one amino acid and an amino group of an adjacent amino acid.
- peptide refers to short sequences having up to 50 amino acids.
- a chain of amino acids monomers longer than 50 amino acid is referred as a “polypeptide”.
- polypeptides when having more than 50 amino acid residues, can also be classified as proteins, more particularly, proteins of low or medium molecular weight.
- peptide encompasses also the term “peptide analog”.
- peptide analog and “analog” are used herein interchangeably and refer to an analog of a peptide having at least 70% identity with the original peptide, wherein the analog retains the activity of the original peptide.
- active analog may be used interchangeably.
- the term ““analog” refer to a peptide which contains substitutions, rearrangements, deletions, additions and/or chemical modifications in the amino acid sequence of the parent peptide.
- analog refers also to analogs of peptide toxins, i.e. toxins being peptides.
- the peptide analog has at least 80%, at least 90% or at least 95% sequence identity to the original peptide. According to one embodiment, the analog has about 70% to about 95%, about 80% to about 90% or about 85% to about 95% sequence identity to the original peptide. According to some embodiments, the analog of the present invention comprises the sequence of the original peptide in which 1, 2, 3, 4, or 5 substitutions were made.
- substitutions of the amino acids may be conservative or non-conservative substitution.
- the non-conservative substitution encompasses substitution of one amino acid by any other amino acid.
- the amino acid is substituted by a non-natural amino acid.
- amino acid refers to an organic compound comprising both amine and carboxylic acid functional groups, which may be either a natural or non-natural amino acid.
- the twenty two natural amino acids are aspartic acid (Asp), tyrosine (Tyr), leucine (Leu), tryptophan (Trp), arginine (Arg), valine (Val), glutamic acid (Glu), methionine (Met), phenylalanine (Phe), serine (Ser), alanine (Ala), glutamine (Gln), glycine (Gly), proline (Pro), threonine (Thr), asparagine (Asn), lysine (Lys), histidine (His), isoleucine (Ile), cysteine (Cys), selenocysteine (Sec), and pyrrolysine (Pyl).
- Non-limiting examples of non-natural amino acids include diaminopropionic acid (Dap), diaminobutyric acid (Dab), ornithine (Orn), aminoadipic acid, 0-alanine, 1-naphthylalanine, 3-(1-naphthyl)alanine, 3-(2-naphthyl)alanine, 7-aminobutiric acid (GABA), 3-(aminomethyl) benzoic acid, p-ethynyl-phenylalanine, p-propargly-oxy-phenylalanine, m-ethynyl-phenylalanine, p-bromophenylalanine, p-iodophenylalanine, p-azidophenylalanine, p-acetylphenylalanine, azidonorleucine, 6-ethynyl-tryptophan, 5-ethynyl-trypto
- analog encompasses also the term “conservative analog”.
- Conservative substitutions of amino acids as known to those skilled in the art are within the scope of the present invention.
- Conservative amino acid substitutions include replacement of one amino acid with another having the same type of functional group or side chain, e.g., aliphatic, aromatic, positively charged, negatively charged.
- One of skill will recognize that individual substitutions, is a “conservatively modified analog” where the alteration results in the substitution of an amino acid with a chemically similar amino acid.
- Conservative substitution tables providing functionally similar amino acids are well known in the art. One typical example of conservative substitution is provided below.
- the following six groups each contain amino acids that are conservative substitutions for one another: (1) Alanine (A), Serine (S), Threonine (T); (2) Aspartic acid (D), Glutamic acid (E); (3) Asparagine (N), Glutamine (Q); (4) Arginine (R), Lysine (K); (5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and (6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
- the conservative substitution encompass substitution with a chemically similar non-natural amino acid.
- the analog is a conservative analog of the peptide.
- the conservative analog of the present invention comprises the sequence of the original peptide in which 1, 2, 3, 4, or 5 conservative substitutions were made.
- the analog consists of the amino acid sequence of the original peptide in which 1, 2 or 3 conservative substitution were made.
- the analog consists of the amino acid sequence of the original peptide with 1, 2 or 3 conservative substitutions.
- fragment refers to a fragment of the original peptide or of an analog thereof wherein said fragment retains the activity of the original peptide or analog.
- fragment and active fragment may be used interchangeably.
- the fragment consists of at least 6, at least 8, at least 9, or at least 10 consecutive amino acids of the original sequence or of an analog thereof.
- the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of the original sequence or analog thereof.
- the peptides, analogs and fragments of present invention may be produced by any method known in the art, including recombinant (for peptides consisting of genetically encoded amino acids) and synthetic methods. Synthetic methods include exclusive solid phase synthesis, partial solid phase synthesis, fragment condensation, or classical solution synthesis. Solid phase peptide synthesis procedures are well known to one skilled in the art. Synthetic methods to produce peptides include but are not limited to FMOC solid phase peptide synthesis described, for example in Fields G. B., Noble R., Int. J. Pept. Protein Res., 35: 161-214, 1990. Methods for synthesizing peptides on PEG are described for example in DeNardo et al. Ibid.
- synthetic peptides are purified by preparative high performance liquid chromatography and the peptide sequence is confirmed via amino acid sequencing by methods known to one skilled in the art.
- recombinant protein techniques are used to generate peptides and peptide multimers (consisting of genetically encoded amino acids) of the present invention.
- the term “toxin” refers to a peptide or polypeptide substance which is poisonous, harmful or toxic (cytotoxic) to mammalian cells, such as human cells.
- the toxin according to the present invention may be originated from living organism such as a microorganism, plant, or higher organism, or which may be synthetically prepared, produced, or designed using any known technique, for example as described in WO 2007/010525.
- the toxin typically interacts with cellular biological macromolecules such as enzymes and receptors to mediate its effect.
- the term encompasses biologically active subunits or fragments of a toxin.
- the toxin is a peptide toxin, consisting of up to 50 amino acids.
- the toxin being a peptide may be a cyclic peptide.
- the toxin being a cyclic peptide is referred as a “cyclotoxin” or “cyclic toxin”.
- a toxin moiety confers at least some of its properties to the construct, and the construct mediates poisonous or harmful effects on the target cells.
- peptide toxin include cyanobacteria toxins such as Microcystins and Nodularins, ProTx-I and ProTx-II toxins, snake venom-derived disintegrins such as Viperistatin or fragments thereof, and Hm-1 and Hm-2 toxins.
- carrier refers to any molecule that covalently binds or capable of binding to the at least two different peptides and/or a toxin.
- carrier refers to any molecule that covalently binds or capable of binding to the at least two different peptides and/or a toxin.
- one peptide and one toxin are bound via a carrier and the second peptide is bound directly to the first peptide or to the toxin.
- two peptides are bound via a carrier, and the toxin is bound to one of the peptides.
- all peptides and toxin(s) are covalently bound to a carrier.
- the peptides and/or the toxin(s) are bound via a linker.
- linker and “spacer” are used herein interchangeably and refer to any molecule that covalently binds and therefore linking two molecules.
- Non-limiting examples of the linker are amino acids, peptides, or any other organic substance that can be used to allow distance between two linked molecules.
- target and “cell target” refer to molecules found on cancer cells that may be a marker of cancer cell and may be involved in cancer cell growth, proliferation, survival and metastasis development.
- targets include cell-surface proteins, which upon binding to their counterparts, such as ligands, initiate a cascade that promotes tumor growth and development.
- a target according to the present invention is optionally highly expressed on cancer cells and not found, or found in substantially lower levels, on normal non-cancerous cells.
- target encompass therefore the term “extracellular tumor antigen”.
- tumor antigen or “extracellular tumor antigen” are used herein interchangeably and include both tumor associated antigens (TAAs) and tumor specific antigens (TSAs).
- a tumor-associated antigen means an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on normal cells or an antigen that is expressed on normal cells during fetal development.
- a tumor specific antigen is an antigen that is unique to tumor cells and is not expressed on normal cells.
- the term tumor antigen includes TAAs or TSAs that have been already identified and those that have yet to be identified and includes fragments, epitopes and any and all modifications to the tumor antigens.
- a cell-targeting peptide specifically recognizes and binds a cell target on cancer cells.
- the cell-targeting peptide directs the entire construct to the cancerous tissue, to facilitate specific killing/inhibition of cancerous cells. Killing/inhibition of cancerous cells is typically affected via the toxin present in the construct, but in some embodiments it may be affected directly by the binding of the cell-targeting peptide.
- the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently connected directly or through a carrier.
- the construct comprises at least 3 different said peptides.
- the construct comprises at least 4 different said peptides.
- the construct comprises two or more different peptides binding to two or more different extracellular tumor antigens.
- the construct comprises three or more different peptides binding to three or more different extracellular tumor antigens.
- the construct comprises 4 or more different peptides binding to 4 or more different extracellular tumor antigens.
- the extracellular tumor antigens are EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR, thus according to one embodiment, at least one of the peptides binds specifically to one such extracellular tumor antigen.
- At least one of the peptides binds specifically to an extracellular tumor antigens selected from Epidermal Growth Factor Receptor (EGFR) or programmed death-ligand 1 (PD-L1).
- EGFR Epidermal Growth Factor Receptor
- P-L1 programmed death-ligand 1
- EGFR epidermal Growth Factor Receptor
- PD-L1 human PD-L1
- EGFR epidermal Growth Factor Receptor
- EGFR human EGFR
- the other one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- an extracellular tumor antigen selected from the group consisting of EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- At least one of the peptides binds specifically to EGFR or PD-L1 and the other one of the at least two peptides binds specifically to an extracellular tumor antigen selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- an extracellular tumor antigen selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- the peptide consists of 5 to 30 amino acids. According to other embodiments, each peptide consists of 6 to 25 amino acids. According to yet other embodiments, each peptide consists of 7 to 20 amino acids. According to some embodiments, each peptide consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acids. Each possibility represents a separate embodiment of the invention.
- the peptide of the present invention is a cyclic peptide.
- the terms “cyclic peptide” and “cyclopeptide” are used herein interchangeably and refer to a peptide having an intramolecular bond between two non-adjacent amino acids.
- the cyclization can be effected through a covalent or non-covalent bond.
- Intramolecular bonds include, but are not limited to, backbone to backbone, side-chain to backbone and side-chain to side-chain bonds.
- the cyclization occurs between the cysteines of the peptide, analogs of fragments.
- the cyclization occurs between the N-terminal and C-terminal amino acids.
- the construct comprises two or more peptides binding to two or more different extracellular tumor antigens.
- the construct comprises 2 to 10 different peptides binding to 2 to 10 different extracellular tumor antigens.
- the construct comprises 3 to 8, 3 to 10, or 4 to 6 different peptides.
- the construct comprises 2 different peptides binding to 2 different extracellular tumor antigens.
- the construct comprises 3 different peptides binding to 3 different extracellular tumor antigens.
- the construct comprises 4 different peptides binding to 4 different extracellular tumor antigens.
- the construct comprises 5, 6, 7 or 8 different peptides binding to 5, 6, 7 or 8 different extracellular tumor antigens, respectively.
- at least one of the peptides bind specifically to EGFR or PD-L1.
- the extracellular tumor antagonist is human EGFR.
- at least one of the peptides binds specifically to EGFR.
- the peptide is a peptide having the amino sequence set forth in SEQ ID NO: 1 (CHPGDKQEDPNCLQADK).
- the peptide is a peptide consisting of the amino sequence set forth in SEQ ID NO: 1.
- the peptide comprising or consisting of SEQ ID NO: 2 is cyclic.
- the peptide is an analog of the peptide having SEQ ID NO: 1.
- the peptide is a conservative analog of SEQ ID NO: 1.
- the peptide is an analog having at least 70%, at least 75%, at least 80%, at least 85, at least 90% or at least 95% identity to SEQ ID NO: 1.
- the analog is a peptide having 70% to 95%, 75% to 90%, or 80% to 85% sequence identity to SEQ ID NO: 1.
- the analog of SEQ ID NO: 1 is a conservative analog of SEQ ID NO: 1 that has 1, 2, 3, 4 or 5 conservative substitutions.
- the peptide is a fragment of SEQ ID NO: 1 or of an analog thereof.
- the fragment consists of at least 6, at least 8, at least 10, at least 12, at least 14 or at least 16 consecutive amino acids of SEQ ID NO: 1 or analog thereof.
- the fragment consists of 5 to 16, 6 to 14, 7 to 13, 8 to 12, 8 to 12, or 9 to 11 consecutive amino acids of SEQ ID NO: 1 or analog thereof.
- the peptide fragment consists of 6 to 16, 8 to 14 or 10 to 12 consecutive amino acids of SEQ ID NO: 1
- the terms “peptide comprising the amino acid sequence set forth in SEQ ID NO: X”, “peptide comprising SEQ ID NO: X” and “peptide having SEQ ID NO: X” are used herein interchangeably.
- the terms “peptide consisting of the amino acid sequence set forth in SEQ ID NO: X”, “peptide consisting of SEQ ID NO: X” and “peptide of SEQ ID NO: X” are used herein interchangeably.
- the extracellular tumor antagonist is human PD-L1.
- at least one of the peptides binds specifically to PD-L1.
- the peptide is a peptide having the amino sequence set forth in SEQ ID NO: 2 (CEGLPADWAAAC).
- the peptide is a peptide consisting of SEQ ID NO: 2.
- the peptide comprising or consisting of SEQ ID NO: 2 is cyclic.
- the peptide is an analog of SEQ ID NO: 2.
- the peptide is a conservative variant of SEQ ID NO: 2.
- the analog is a peptide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% identity to SEQ ID NO: 2.
- the analog is a peptide having 70% to 95%, 75% to 90%, or 80% to 85% identity to SEQ ID NO: 2.
- the analog is a conservative analog of SEQ ID NO: 2 that has 1, 2, 3, 4 or 5 conservative substitutions.
- the peptide is a fragment of SEQ ID NO: 2 or of an analog thereof.
- the fragment consists as least 6, at least 7, at least 8, at least 9, at least 10 or 11 consecutive amino acids of SEQ ID NO: 2 or analog thereof.
- the fragment consists of 5 to 16, 6 to 14, 7 to 13, 8 to 12, 8 to 12, or 9 to 11 consecutive amino acids of SEQ ID NO: 1 or analog thereof.
- the peptide fragment consists of 6 to 16, 8 to 14 or 10 to 12 consecutive amino acids of SEQ ID NO: 1
- the peptides comprising or consisting of SEQ ID NO: 1 or 2 are cyclic peptides, analogs or fragments.
- the construct of the present invention has a synergistic cytotoxicity.
- the term “synergistic cytotoxicity” as used herein refers to a condition in which the cytotoxicity of the construct comprising two or more tumor antigen targeting peptides is higher that the cytotoxicity of 2 or more constructs, respectively, when each such construct comprises only one of the targeting peptides.
- the cytotoxicity of a construct comprising PD-L1 and EGFR targeting peptides is higher that a cytotoxicity of two constructs each comprising PD-L1 or EGFR targeting peptides (considering the concentrations of the constructs).
- the construct comprises one peptide that binds specifically to EGFR and another peptide that binds specifically to PD-L1.
- the peptide that binds to EGFR is a peptide having SEQ ID NO: 1, analog or fragment thereof.
- the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2, analog or fragment thereof.
- the construct comprises a peptide having SEQ ID NO:1, analog or fragment thereof and a peptide having SEQ ID NO: 2, analog or fragment thereof.
- the construct comprises a peptide having SEQ ID NO: 1 and a peptide having SEQ ID NO: 2.
- the construct comprises a peptide of SEQ ID NO: 1 and a peptide of SEQ ID NO: 2.
- the peptides comprising or consisting of SEQ ID NO: 1 or 2 analogs of fragments thereof are cyclic peptides, analogs or fragments.
- the construct of the present invention has a synergistic cytotoxicity.
- the construct of the present invention comprises multiple copies of at least one of the different peptides.
- the construct of the present invention comprises multiple copies of each one of the at least two of the different peptides. According to another embodiment, the construct comprises multiple copies of each one of the peptides.
- different peptides refer to peptides binding to different binding site and not to two copies of the same peptide.
- the construct comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of a peptide.
- the construct comprises 2 to 50 copies of a peptide.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of a peptide.
- the construct comprises 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of each one of the two different peptides.
- the construct comprises 2 to 50 copies of each one of the two different peptides.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of each one of the two different peptides.
- the contract comprises from 7 or from 14 to 28 copies of each one of the 3, 4 or 5 different peptides.
- the construct comprises multiple copies of a peptide that binds specifically to EGFR and/or multiple copies of a peptide that binds specifically to PD-L1.
- the construct comprises multiple copies of the peptide having the SEQ ID NO: 1, analog or fragment thereof and multiple copies of the peptide having the SEQ ID NO: 2, analog or fragment thereof.
- the construct comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of the peptide having SEQ ID NO: 1, analog or fragment thereof and/or of the peptide having the SEQ ID NO: 2, analog or fragment thereof.
- the construct comprises 2 to 50 copies of the peptide having SEQ ID NO: 1, analog or fragment thereof and/or of the peptide having the SEQ ID NO: 2, analog or fragment thereof.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, or from 7 to 21 copies of the peptide having the SEQ ID NO: 1.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, or from 7 to 21 copies of the peptide having the SEQ ID NO: 2.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, or from 7 to 21 copies of the each one of the peptide having the SEQ ID NO: 1 and 2.
- the peptides comprising or consisting of SEQ ID NO: 1 or 2 analogs of fragments thereof are cyclic peptides, analogs or fragments.
- the toxin is selected from a peptide toxin, polypeptide toxin or peptide toxin.
- the toxin is selected from the group consisting of a toxin binding to a eukaryotic elongation factor 2 or analog of that toxins, BIM-BH3 toxin, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin.
- the BIM-BH3 toxin consists of the amino acid sequence MRPEIWIAQELRRIGDEFNA (SEQ ID NO: 5).
- the toxin binding to eukaryotic elongation factor 2 is a toxin having the amino acid sequence selected from CSARWGPTMPWC (as set forth in SEQ ID NO: 3) or CRRGSRASGAHC (as set forth in SEQ ID NO: 4), or an analog thereof.
- the toxin is selected from the group consisting a toxin having SEQ ID NO: 3, a toxin having SEQ ID NO: 4, a toxin of SEQ ID NO: 5 (BIM-BH3 toxin), Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin.
- a toxin having SEQ ID NO: 3 a toxin having SEQ ID NO: 4
- SEQ ID NO: 5 BIM-BH3 toxin
- Diphtheria toxin Pseudomonas exotoxin
- Anthrax toxin botulinum toxin
- Ricin Ricin
- PAP Saporin
- Gelonin Momordin
- the toxin is a toxin comprising SEQ ID NO: 3.
- the toxin is a toxin comprising SEQ ID NO: 4.
- the toxin consists of SEQ ID NO: 3.
- the toxin consists of SEQ ID NO: 4.
- the toxin consists of SEQ ID NO: 5.
- the toxin is an analog of a toxin comprising the SEQ ID NO: 3 or 4.
- the toxin is an analog of a toxin consisting of the SEQ ID NO: 3 or 4.
- the toxin or analog thereof is cyclic toxin or analog.
- the analog of a toxin comprising SEQ ID NO: 3 has at least 70%, at least 75%, at least 80%, at least 85, at least 90% or at least 95% identity to SEQ ID NO: 3.
- the analog is a peptide having 70% to 95%, 75% to 90%, or 80% to 85% sequence identity to SEQ ID NO: 3.
- the analog is a conservative analog of SEQ ID NO: 3 that has 1, 2, 3, 4 or 5 conservative substitutions.
- the analog of a toxin comprising SEQ ID NO: 4 has at least 70%, at least 75%, at least 80%, at least 85, at least 90% or at least 95% identity to SEQ ID NO: 4.
- the analog is a peptide having 70% to 95%, 75% to 90%, or 80% to 85% identity to SEQ ID NO: 4.
- the analog is a conservative analog of SEQ ID NO: 4 that has 1, 2, 3, 4 or 5 conservative substitutions.
- the toxins binding to eEF2 and in particular the toxins comprising or consisting of SEQ ID NO: 3, or, analogs or fragments thereof have cyclic structure, i.e. being cyclotoxins.
- the construct comprises 2 to 10 different toxins. According to one embodiment, the construct comprises 2 different toxins. According to another embodiment, the construct comprises 3 different toxins. According to a further embodiment, the construct comprises 4, 5, 6, 7, 8, 9 or 10 different toxins.
- the construct comprises a toxin having the amino acid SEQ ID NO: 3 and a toxin having the amino acid SEQ ID NO: 4.
- the construct of the present invention comprises multiple copies of at least one of the toxins. According to other embodiment, the construct comprises multiple copies of at least two toxins.
- the construct comprises multiple copies of at least one toxin having SEQ ID NO: 3 or 4. According to other embodiments, the construct comprises multiple copies of at least one toxin having SEQ ID NO: 3, or 4.
- the construct comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of a toxin.
- the construct comprises 2 to 50 copies of a toxin.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of a toxin.
- the construct comprises 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of each one of two different toxins.
- the construct comprises 2 to 50 copies of each one of two different toxins.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of each one of two different toxins.
- the contract comprises from 7 or from 14 to 28 copies of each one of the 3, 4 or 5 different toxins.
- the construct comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25, 2 to 50, or 10 to 20 copies of a toxin having SEQ ID NO: 3, analog or fragment thereof and/or of the toxin having the SEQ ID NO: 4, analog or fragment thereof.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the toxin having the SEQ ID NO: 3.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the toxin having the SEQ ID NO: 4.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the each one of the toxins having the SEQ ID NO: 3 and 4.
- the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1. According to some embodiments, the ratio is about 0.2:1 to 8:1, about 0.4:1 to 6:1 about 0.5:1 to 5:1 about 0.6:1 to 4:1, about 0.8 to 1 to 2:1 or about 1:1. According to one embodiment, the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is 1:1.
- the present invention provides a construct of the present invention comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1 and the toxin is selected from a toxin binding to a eukaryotic elongation factor 2, BIM-BH3 toxin having the amino acid sequence set forth in SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, cyanotoxin, and any combination thereof.
- BIM-BH3 toxin having the amino acid sequence set forth in SEQ ID NO: 5, Diphtheria
- the toxin is a toxin binding to eukaryotic elongation factor 2.
- the present invention provides a construct in which one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1 and the toxin binds to a eukaryotic elongation factor 2 or the toxin of SEQ ID NO: 5.
- the peptides that binds specifically to EGFR is a peptide having SEQ ID NO:1, an analog or a fragment thereof
- the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2, an analog or a fragment thereof
- the toxin is selected from a toxin having SEQ ID NO: 3 or 4.
- the construct comprises multiple copies of (i) one peptide, (ii) two peptides, (iii) one toxin and/or (iv) two toxins.
- the construct comprises multiple copies of: (i) a peptide having SEQ ID NO:1, an analog or a fragment thereof, (ii) a peptide having SEQ ID NO: 2, an analog or a fragment thereof, and (iii) a toxin selected from a toxin having SEQ ID NO: 3 or 4, or combination thereof.
- the construct comprises multiple copies of (i) a peptide of SEQ ID NO:1, (ii) a peptide of SEQ ID NO: 2, (iii) the toxin of SEQ ID NO: 3 or 4, or a combination thereof.
- the construct comprises multiple copies of each one of: (i) a peptide of SEQ ID NO: 1, (ii) a peptide of SEQ ID NO: 2, (iii) the toxin of SEQ ID NO: 3, and (iv) the toxin of SEQ ID NO: 4.
- the construct of the present invention has a synergistic cytotoxicity.
- the peptides, analogs thereof or the fragments thereof and/or the toxins, the analogs thereof or the fragments thereof are cyclic peptides, analogs or the fragments and/or cyclic toxins, analogs of fragments thereof, respectively.
- the peptides of the present invention are covalently bound to each other.
- the peptides and the toxins are bound directly, i.e. without a carrier.
- the peptides of the present invention are covalently bound through a carrier.
- the carrier is an organic scaffold, thus the peptides are covalently bound through a scaffold.
- the scaffold is a peptidic scaffold.
- the peptidic scaffold connects the peptides to each other on a single location in the scaffold, or to a different location on a scaffold.
- the scaffold comprises at least one Lysine (Lys) residue.
- the scaffold comprises at least three Lys residues.
- the at least three Lys residues are connected together by amide bonds to form a branched multimeric scaffold.
- at least one amide bond is formed between the epsilon amine of a Lys residue and the carboxy group of another Lys residue.
- the construct comprises a molecule according to one of the schemes presented below,
- X represents the peptide's and/or the toxin's C-terminal selected from carboxy acid, amide or alcohol group and optionally a linker or spacer
- peptide denotes a peptide according to the present invention, e.g. having 7-20 amino acids capable of binding to a cell-target.
- At least one of the peptides and/or the toxin(s) is present in multiple copies.
- the multiple copies are linked thereby forming a multi-target peptide multimer.
- the peptide and/or the toxin(s) copies are linked through a linker.
- the peptides and/or the toxin(s) copies are linked directly.
- the multimer comprises copies linked both directly and via a linker.
- the construct comprises a peptide multimer comprising a plurality of cell-targeting peptides arranged in an alternating sequential polymeric structure B(X 1 X 2 X 3 . . . X m ) n B or in a block copolymer structure B(X 1 ) nZ (X 2 ) nZ (X 3 ) n Z . . . (X m ) n , wherein B is an optional sequence of 1-10 amino acid residues; n is at each occurrence independently an integer of 2-50; m is an integer of 3-50; each of X 1 , X 2 . . .
- X m is an identical or different peptide consisting of 5-30 amino acid residues; Z at each occurrence is a bond or a spacer of 1-4 amino acid residues.
- n is at each occurrence independently an integer of 2-10; m is an integer of 3-10; each of X 1 , X 2 . . . X m is an identical or different peptide consisting of 7-20 amino acid residues; Z at each occurrence is a bond or a spacer of 1-4 amino acid residues.
- the peptide multimer comprises 2-8 different or identical peptides. According to a particular embodiment, the peptide multimer comprises 4-10 copies of a single peptide sequence. According to yet other embodiments, the peptide multimer consists of 2-10, 3-9, 4-8, or 10-100 different or identical peptides. Each possibility represents a separate embodiment of the present invention.
- the scaffold comprises or formed from a polyethylene glycol (PEG) molecule(s) or a modified PEG molecule(s).
- the scaffold comprises a branched PEG molecule.
- the branched molecule comprises at least two sites available to bind a peptide of the present invention.
- the scaffold comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20, or 2 to 50 sites available to bind a peptide.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 sites available to bind a peptide.
- the scaffold comprises 8 or 56 sites available to bind a peptide.
- the scaffold comprises 42 or 49 to 56 sites available for binding a peptide.
- the PEG molecule is a branched molecule, comprising at least two separate connections to a peptide.
- the PEG has 8 binding sites.
- the PEG is bound to additional PEG molecules.
- multiple PEG molecules are bound to provide a multi-armed PEG molecule.
- eight 8-armed PEG molecules are abound to one central 8-armed PEG molecule to provide one PEG molecules with 56 sites capable of binding the peptides of the toxins of the present invention.
- the peptides are connected to the PEG scaffold through amide bonds formed between amino groups of an NH 2 —PEG molecule.
- at least one peptide is connected to PEG scaffold though a Lys residue.
- the peptides are bound to a PEG scaffold though a Lys residue.
- the present invention provides a construct in which at least one of the peptides bound to PEG scaffold binds specifically to an extracellular tumor antigen selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- at least one of the peptides bound to PEG scaffold binds specifically to EGFR or PD-L1.
- the peptide that binds specifically to EGFR and the peptide that binds specifically to PD-L1 are both bound to the scaffold.
- the peptide that binds to EGFR is a peptide having SEQ ID NO: 1, analog or fragment thereof.
- the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2, analog or fragment thereof.
- the construct comprises the peptide having SEQ ID NO: 1, analog or fragment thereof and a peptide having SEQ ID NO: 2, analog or fragment thereof both bound to the scaffold.
- the construct comprises a peptide having SEQ ID NO: 1 and peptide having SEQ ID NO: 2 bound to the scaffold.
- the construct comprises a peptide of SEQ ID NO: 1 and a peptide of SEQ ID NO: 2 bound to the scaffold.
- the peptides comprising or consisting of SEQ ID NO: 1 or 2 analogs of fragments thereof are cyclic peptides, analogs or fragments.
- the present invention provides a construct, wherein the scaffold is bound to multiple copies of at least one of the peptides.
- the scaffold is bound to multiple copies of each of the at least two of the peptides.
- at least one of the peptides that is bound to PEG scaffold binds specifically to EGFR or PD-L1.
- the scaffold is bound to multiple copies of a peptide that binds specifically to EGFR.
- the scaffold is bound to multiple copies of a peptide that binds specifically to PD-L1.
- the scaffold is bound to multiple copies of a peptide that binds specifically to EGFR and to multiple copies of a peptide that binds specifically to PD-L1.
- the peptide that binds to EGFR is a peptide having SEQ ID NO: 1, analog or fragment thereof.
- the peptide that binds specifically to PD-L1 is peptide having SEQ ID NO: 2, analog or fragment thereof.
- the scaffold is bound to multiple copies of the peptide having SEQ ID NO: 1 and to multiple copies of the peptide having SEQ ID NO: 2.
- the peptides comprising or consisting of SEQ ID NO: 1 or 2 analogs of fragments thereof are cyclic peptides, analogs or fragments.
- the scaffold comprises a carbohydrate moiety.
- the toxin is bound to a carrier.
- the carrier may be as described herein above.
- the carrier is a scaffold.
- the carrier is a peptidic scaffold.
- the scaffold is PEG scaffold, i.e. formed from PEG.
- the scaffold comprises a branched PEG molecule.
- the branched molecule comprises at least one available site to bind a toxin.
- the scaffold comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20, or 2 to 50 sites available to bind a toxin.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 sites available to bind a toxin.
- the scaffold comprises 8 or 56, or 42 or 49 to 56 sites available for bind a toxin.
- the present invention provides as a construct, wherein the PEG scaffold is bound to multiple copies of at least one toxin.
- the present invention provides a construct, where the scaffold is bound to multiple copies of at least two toxins.
- the toxin is selected from the groups consisting of a toxin having SEQ ID NO: 3, a toxin having SEQ ID NO: 4, a toxin having SEQ ID NO: 5 (BIM-BH3 toxin), Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, cyanotoxin, and any combination thereof.
- the toxin is a toxin of SEQ ID NO: 3 or 4.
- the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 3, an analog or fragment thereof. According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 4, an analog or fragment thereof. According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 5. According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin of SEQ ID NO: 3 or 4.
- the PEG scaffold is bound to multiple copies of each one of the toxins. According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 3 and to multiple copies of a toxin having SEQ ID NO: 4. According to one embodiment, the PEG scaffold is bound to multiple copies of the toxin of SEQ ID NO: 3 and to multiple copies of a toxin of SEQ ID NO: 4.
- the peptides comprising or consisting of SEQ ID NO: 1 or 2 are cyclic peptides, analogs or fragments.
- the peptides comprising or consisting of SEQ ID NO: 3 or 4 are cyclic, i.e. cyclic toxins.
- the present invention provides a construct comprising a PEG scaffold bound to at least two different peptides binding to at least two different extracellular tumor antigens, and to at least one toxin, wherein at least one of peptides binds specifically to the extracellular tumor antigens is selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens and at least one toxin, wherein each of said peptides and toxin(s) is bound to a PEG scaffold and wherein at least one of peptides binds specifically to the extracellular tumor antigens selected from EGFR and PD-L1.
- one of the peptides binds specifically to EGFR and the another one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- an extracellular tumor antigen selected from the group consisting of PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- one of the peptides binds specifically to PD-L1 and the another one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of EGFR, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- one of the peptides binds specifically to EGFR and the other one of the at least two peptides binds specifically to PD-L1.
- the peptides binds specifically to EGFR is a peptide having SEQ ID NO:1, an analog or fragment thereof. According to some embodiments, the peptides binds specifically to PD-L1 is a peptide having SEQ ID NO:2, an analog or fragment thereof. According to some such embodiments, the peptide is a cyclopeptide.
- the toxin is selected from the groups consisting of a toxin having SEQ ID NO: 3, a toxin having SEQ ID NO: 4, a toxin having SEQ ID NO: 5 (BIM-BH3 toxin), Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin.
- a toxin having SEQ ID NO: 3 a toxin having SEQ ID NO: 4
- SEQ ID NO: 5 BIM-BH3 toxin
- Diphtheria toxin Pseudomonas exotoxin
- Anthrax toxin botulinum toxin
- Ricin Ricin
- PAP Saporin
- Gelonin Momor
- the toxin is selected from the groups consisting of a toxin of SEQ ID NO: 3, a toxin of SEQ ID NO: 4, and a toxin of SEQ ID NO: 5.
- the scaffold is bound to 2, 3, or 4 different toxins.
- the PEG scaffold is bound to multiple copies of at least one of the peptides.
- the PEG scaffold is bound to multiple copies of each one of the at least two peptides.
- the PEG scaffold is bound to multiple copies of a toxin.
- the PEG scaffold is bound to multiple copies of each one of two or more toxins.
- the scaffold is bound to multiple copies of a peptide having SEQ ID NO:1.
- the scaffold is bound to multiple copies of a peptide having SEQ ID NO:2.
- the scaffold is bound to multiple copies of a peptide having SEQ ID NO: 1 and to multiple copies of a peptide having SEQ ID NO:2.
- the scaffold is bound to multiple copies of a toxin having SEQ ID NO: 3.
- the scaffold is bound to multiple copies of a toxin having SEQ ID NO: 4.
- the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 3 and to multiple copies of a toxin having SEQ ID NO: 4.
- the PEG scaffold is bound to multiple copies of the toxin of SEQ ID NO: 3 and to multiple copies of a toxin of SEQ ID NO: 4.
- the molar ratio of the toxin having the amino acid SEQ ID NO: 3 or 5 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1 or 1:1.
- the construct of the present invention has a synergistic cytotoxicity.
- the present invention provides a construct comprising multiple copies of a peptide having SEQ ID NO:1, multiple copies of a peptide having SEQ ID NO:2, multiple copies of a toxin having SEQ ID NO: 3 and multiple copies of a toxin having SEQ ID NO: 4, wherein each of the copies of the peptides and the toxins is bound to a PEG scaffold.
- the present invention provides a construct comprising a PEG scaffold bound to multiple copies of a peptide of SEQ ID NO:1, to multiple copies of a peptide of SEQ ID NO:2, multiple copies of a toxin of SEQ ID NO: 3 and to multiple copies of a toxin of SEQ ID NO: 4.
- the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1 or 1:1.
- the stoichiometric molar ratio between the peptide having SEQ ID NO:1, the peptide of SEQ ID NO:2, the toxin having SEQ ID NO: 3 and the toxin having SEQ ID NO: 3 is 1:1:3:3.
- the stoichiometric molar ratio between the peptide having SEQ ID NO:1, the peptide of SEQ ID NO:2, the toxin having SEQ ID NO: 3 and the toxin having SEQ ID NO: 4 is selected from 1:2:3:2, 1:2:2:3, 2:1:3:2, 2:1:2:3 and 2:2:2:2.
- the peptides comprising or consisting of SEQ ID NO: 1 or 2 are cyclopeptides and the toxins comprising or consisting of SEQ ID NO: 3 or 4 are cyclotoxins.
- the construct of the present invention has a synergistic cytotoxicity.
- the peptides and/or the toxin(s) are bound directly or through a spacer.
- the peptides and/or the toxin(s) are bound to the carrier, e.g. to a scaffold, through a spacer.
- the spacer comprises at least one amino acid residue.
- the construct further comprises a permeability-enhancing moiety.
- the permeability-enhancing moiety may be bound directly to a peptide and/or to a toxin, or may be bound to the scaffold, optionally via a spacer.
- the term “permeability-enhancing moiety” refers to any moiety known in the art to facilitate actively or passively or enhance permeability of the compound through body barriers or into the cells.
- Non-limitative examples of permeability-enhancing moiety include: hydrophobic moieties such as fatty acids, steroids and bulky aromatic or aliphatic compounds; moieties which may have cell-membrane receptors or carriers, such as steroids, vitamins and sugars, natural and non-natural amino acids and transporter peptides, nanoparticles and liposomes.
- permeability refers to the ability of an agent or substance to penetrate, pervade, or diffuse through a barrier, membrane, or a skin layer.
- the present invention provides a composition comprising a construct of the present invention.
- the composition is a pharmaceutical composition.
- the present invention provides a pharmaceutical composition comprising a construct of the present invention and a pharmaceutically acceptable excipient. All definitions, terms and embodiments of previous aspects are explicitly encompassed by this aspect.
- composition refers to a composition comprising the construct of the present invention as disclosed herein optionally formulated with one or more pharmaceutically acceptable excipients.
- Formulation of the pharmaceutical composition may be adjusted according to applications.
- the pharmaceutical composition may be formulated using a method known in the art so as to provide rapid, continuous or delayed release of the active ingredient after administration to mammals.
- the formulation may be any one selected from among plasters, granules, lotions, liniments, lemonades, aromatic waters, powders, syrups, ophthalmic ointments, liquids and solutions, aerosols, extracts, elixirs, ointments, fluidextracts, emulsions, suspensions, decoctions, infusions, ophthalmic solutions, tablets, suppositories, injections, spirits, capsules, creams, troches, tinctures, pastes, pills, and soft or hard gelatin capsules.
- pharmaceutically acceptable carrier or “pharmaceutically acceptable excipient” as used herein refers to any and all solvents, dispersion media, preservatives, antioxidants, coatings, isotonic and absorption delaying agents, surfactants, fillers, disintegrants, binders, diluents, lubricants, glidants, pH adjusting agents, buffering agents, enhancers, wetting agents, solubilizing agents, surfactants, antioxidants the like, that are compatible with pharmaceutical administration.
- suitable excipients are example, water, saline, phosphate buffered saline (PBS), dextrose, glycerol, ethanol, or the like and combinations thereof.
- PBS phosphate buffered saline
- dextrose glycerol
- ethanol or the like and combinations thereof.
- suitable carriers are well known to those skilled in the art.
- the use of such media and agents for pharmaceutically active substances is well known in the art.
- the compositions
- the constructs of the present invention could be, according to some embodiments, suspended in a sterile saline solution for therapeutic uses.
- suitable drug delivery systems include, e.g., implantable drug release systems, hydrogels, hydroxymethylcellulose, microcapsules, liposomes, microemulsions, microspheres, and the like.
- Controlled release preparations can be prepared through the use of polymers to complex or adsorb the molecule according to the present invention.
- biocompatible polymers include matrices of poly(ethylene-co-vinyl acetate) and matrices of a polyanhydride copolymer of a stearic acid dimer and sebaric acid. The rate of release of the molecule according to the present invention from such a matrix depends upon the molecular weight of the molecule, the amount of the molecule within the matrix, and the size of dispersed particles.
- the pharmaceutical composition of the present invention may be administered by any know method.
- the terms “administering” or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art.
- a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitonealy, intravenously, subcutaneously, ocularly, sublingually, orally (by ingestion), intranasally (by inhalation), intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct).
- a compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent.
- Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
- the administration includes both direct administration, including self-administration, and indirect administration, including the act of prescribing a drug.
- a physician who instructs a patient to self-administer a drug, or to have the drug administered by another and/or who provides a patient with a prescription for a drug is administering the drug to the patient.
- the pharmaceutical composition is administered by an invasive mode of administration such as intramuscularly, intravenously, intra-arterially, intraarticulary or parenterally.
- the therapeutically effective amount of the molecule according to the present invention will depend, inter alia upon the administration schedule, the unit dose of molecule administered, whether the molecule is administered in combination with other therapeutic agents, the immune status and health of the patient, the therapeutic activity of the molecule administered and the judgment of the treating physician.
- a “therapeutically effective amount” refers to the amount of a molecule required to alleviate one or more symptoms associated with a disorder being treated over a period of time.
- an appropriate dosage of a molecule of the invention varies depending on the administration route, type of molecule (polypeptide, polynucleotide, organic molecule etc.) age, body weight, sex, or conditions of the patient, it will be determined by the physician in the end. Various considerations in arriving at an effective amount are described, e.g., in Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th ed., Pergamon Press, 1990; and Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Co., Easton, Pa., 1990.
- the pharmaceutical composition of the present invention comprises a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier.
- at least one of the peptides binds specifically to an extracellular tumor antigens selected from EGFR and PD-L1.
- the other one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- the construct comprises from 2 to 10 different peptides.
- at least one of the peptides binds specifically to EGFR, and at least one of the peptides binds specifically to PD-L1.
- the peptide that binds to EGFR is a peptide having SEQ ID NO: 1, analog or fragment thereof.
- the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2, analog or fragment thereof.
- the construct comprises a peptide having or consisting of SEQ ID NO: 1 and a peptide having or consisting of SEQ ID NO: 2.
- the pharmaceutical composition comprises a construct comprising multiple copies of one or of two of said peptides.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42, from 28 to 35, or from 7 to 21 copies of the each one of the peptide having the SEQ ID NO: 1 and 2.
- the toxin is selected from the group consisting of a toxin binding to a eukaryotic elongation factor 2 or analog of that toxins, BIM-BH3 toxin, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin.
- the BIM-BH3 toxin consists of SEQ ID NO: 5.
- the toxin binding to eukaryotic elongation factor 2 is a toxin having the amino acid sequence selected from SEQ ID NO: 3 or 4, or an analog thereof.
- the construct comprises 2 to 10 different toxins.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, or from 7 to 21 copies of one or of two toxins.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the each one of the toxins having the SEQ ID NO: 3 or 4.
- the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the each one of the toxins having the SEQ ID NO: 3 and 4.
- the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1 or about 1:1.
- the peptide(s) is a cyclic peptide(s) and the toxin(s) is a cyclic toxin(s).
- the pharmaceutical composition of the present invention comprises a construct comprising a PEG scaffold, at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein at least one of peptides binds specifically to the extracellular tumor antigens selected from EGFR and PD-L1, and each one of the peptides and the toxins are bound to the scaffold.
- one of the peptides binds specifically to EGFR and the other one to the at least two peptides binds specifically to PD-L1.
- the peptides binds specifically to EGFR is a peptide having SEQ ID NO:1, an analog or fragment thereof.
- the peptides binds specifically to PD-L1 is a peptide having SEQ ID NO:2, an analog or fragment thereof.
- the present invention provides a construct comprising a PEG scaffold, multiple copies of a peptide having SEQ ID NO:1, multiple copies of a peptide having SEQ ID NO:2, and multiple copies of a toxin having SEQ ID NO: 3, wherein each copy of each one of the peptides and each copy of the toxin are bound to the scaffold.
- the construct comprising a PEG scaffold, multiple copies of a peptide having SEQ ID NO:1, multiple copies of a peptide having SEQ ID NO:2, and multiple copies of a toxin having SEQ ID NO: 4, wherein each copy of each one of the peptides and each copy of the toxin are bound to the scaffold.
- the present invention provides a construct comprising a PEG scaffold bound to multiple copies of a peptide having SEQ ID NO:1, to multiple copies of a peptide having SEQ ID NO:2, multiple copies of a toxin having SEQ ID NO: 3 and to multiple copies of a toxin having SEQ ID NO: 4.
- the present invention provides a construct comprising a PEG scaffold bound to multiple copies of a peptide of SEQ ID NO:1, to multiple copies of a peptide of SEQ ID NO:2, multiple copies of a toxin of SEQ ID NO: 3 and to multiple copies of a toxin of SEQ ID NO: 4.
- the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1 or 1:1.
- the stoichiometric molar ratio between the peptide having SEQ ID NO:1, the peptide of SEQ ID NO:2, the toxin having SEQ ID NO: 3 and the toxin having SEQ ID NO: 3 is 1:1:3:3.
- the stoichiometric molar ratio between the peptide having SEQ ID NO:1, the peptide of SEQ ID NO: 2, the toxin having SEQ ID NO: 3 and the toxin having SEQ ID NO: 4 is selected from 1:2:3:2, 1:2:2:3, 2:1:3:2, 2:1:2:3 and 2:2:2:2.
- the peptides comprising or consisting of SEQ ID NO: 1 or 2 are cyclopeptides and the toxins comprising or consisting of SEQ ID NO: 3 or 4 are cyclotoxins.
- the construct of the present invention has a synergistic cytotoxicity, therefore such pharmaceutical composition, when administered, provides a profound therapeutic effect.
- the pharmaceutical composition comprises a plurality of the constructs according to the present invention and according to the above embodiments.
- the present invention provides a pharmaceutical composition according to the present invention, for use in treating a cell proliferative disease or disorder.
- the cell proliferative disease or disorder is cancer.
- the pharmaceutical composition of the present invention is for use in treating cancer.
- treating of “treatment of” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results.
- beneficial or desired clinical results include, but are not limited to, or ameliorating abrogating, substantially inhibiting, slowing or reversing the progression of a disease, condition or disorder, substantially ameliorating or alleviating clinical or esthetical symptoms of a condition, substantially preventing the appearance of clinical or esthetical symptoms of a disease, condition, or disorder, and protecting from harmful or annoying symptoms.
- Treating further refers to accomplishing one or more of the following: (a) reducing the severity of the disorder; (b) limiting development of symptoms characteristic of the disorder(s) being treated; (c) limiting worsening of symptoms characteristic of the disorder(s) being treated; (d) limiting recurrence of the disorder(s) in patients that have previously had the disorder(s); and/or (e) limiting recurrence of symptoms in patients that were previously asymptomatic for the disorder(s).
- treating cancer comprises preventing or treatment tumor metastasis.
- the metastasis is decreased.
- the metastasis is prevented.
- treating cancer comprises increasing the duration of survival of a subject having cancer, comprising administering to the subject in need thereof a composition comprising a construct defined above whereby the administration of the construct increases the duration of survival.
- treating cancer comprises increasing the progression of free survival of a subject having cancer.
- treating cancer comprises increasing the duration of response of a subject having cancer. According to other embodiments, treating cancer comprises preventing tumor recurrence.
- the cancer amendable for treatment according to the present invention includes, but not limited to: carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer, lung cancer (including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer (including gastrointestinal cancer), pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer, as well as B-cell lymphoma (including low grade/follicular non-Hodgkin's lymphoma
- the cancer is selected from the group consisting of breast cancer, colorectal cancer, rectal cancer, non-small cell lung cancer, non-Hodgkins lymphoma (NHL), renal cell cancer, prostate cancer, liver cancer, pancreatic cancer, soft-tissue sarcoma, Kaposi's sarcoma, carcinoid carcinoma, head and neck cancer, melanoma, ovarian cancer, mesothelioma, and multiple myeloma.
- the cancerous conditions amendable for treatment of the invention include metastatic cancers.
- the cancer is a solid cancer.
- composition according to the present invention may be administered as a stand-alone treatment or in combination with a treatment with any other agent.
- constructs according to the present invention are administered to a subject in need thereof as part of a treatment regimen in combination with at least one anti-cancerous agent.
- the pharmaceutical composition according to the present invention may be administered in combination with the anti-cancerous agent or separately.
- the pharmaceutical composition according to the present invention may be administered together with an anti-neoplastic composition.
- the anti-neoplastic composition comprises at least one chemotherapeutic agent.
- anti-neoplastic composition refers to a composition useful in treating cancer comprising at least one active therapeutic agent capable of inhibiting or preventing tumor growth or function or metastasis, and/or causing destruction of tumor cells.
- Therapeutic agents suitable in an anti-neoplastic composition for treating cancer include, but not limited to, chemotherapeutic agents, radioactive isotopes, toxins, cytokines such as interferons, and antagonistic agents targeting cytokines, cytokine receptors or antigens associated with tumor cells.
- chemotherapeutic agent is a chemical compound useful in the treatment of cancer.
- examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophyc
- calicheamicin especially calicheamicin gammalI and calicheamicin omegaIl (e.g., Agnew, Chem Intl. Ed. Engl. 33:183-186 (1994)); dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin (
- anti-hormonal agents that act to regulate or inhibit hormone action on tumors
- SERMs selective estrogen receptor modulators
- tamoxifen including NOLVADEX® tamoxifen
- raloxifene including NOLVADEX® tamoxifen
- droloxifene 4-hydroxytamoxifen
- trioxifene keoxifene
- LY117018 onapristone
- aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestanie, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole
- anti-androgens such as flutamide, nilu
- the present invention provides a method of treating cancer in a subject in need thereof comprising administering to said subject a pharmaceutical composition of the present invention.
- the present invention provides a method of treating cancer in a subject in need thereof comprising administering to said subject a therapeutically effective amount of a construct of the present invention.
- the pharmaceutical composition is administered as part of a treatment regimen together with at least one anti-cancer agent.
- therapeutically effective amount is an amount of a drug, compound, construct etc. that, when administered to a subject will have the intended therapeutic effect. The full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses.
- the present invention provides a peptide that binds specifically to human eukaryotic Elongation Factor 2 (eEF2), an analog or fragment thereof.
- eEF2 human eukaryotic Elongation Factor 2
- the present invention provides a peptide that binds specifically to human eEF2.
- the peptide is a toxin.
- the peptide consists of 5 to 30 amino acids.
- each peptide consists of 6 to 25 amino acids.
- each peptide consists of 7 to 20 amino acids.
- each peptide consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acids.
- Each possibility represents a separate embodiment of the invention.
- the peptide that binds to human eEF2 is a peptide having SEQ ID NO: 3.
- the present invention provides an analog of SEQ ID NO:3.
- the present invention provides a the fragment of the peptide or of the analog.
- the peptide is a peptide having SEQ ID NO: 3.
- the peptide is a peptide of SEQ ID NO: 3.
- the peptide is a cyclic peptide.
- the analog has a sequence identity of at least 70%, at least 80%, or at least 90% to SEQ ID NO: 3. According to some embodiments, the analog has at least 70%, at least 75%, at least 80%, at least 85, at least 90% or at least 95% sequence identity to SEQ ID NO: 3. According to other embodiments, the analog has about 70% to 95%, 75% to 90%, or 80% to 85% sequence identity to SEQ ID NO: 3. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 3. According to some embodiments, the conservative analog of SEQ ID NO: 3 has 1, 2, 3, 4 or 5 conservative substitutions in SEQ ID NO: 3. According to some embodiments, the analog is a cyclopeptide.
- the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of SEQ ID NO: 3 or analog thereof.
- the peptide comprising or consisting of SEQ ID NO: 3 enhances the activity of human eEF2.
- the peptide is an agonist of eEF2.
- the analog of SEQ ID NO: 3 or the fragment of the peptide or the analog enhances the activity of eEF2.
- the peptide comprising or consisting of SEQ ID NO:3, analog thereof or the fragment of the peptide or said analog is a toxin.
- the peptide is for use in inducing cell death in target cells.
- the cells are cancer cells.
- the peptide comprising SEQ ID NO:3 is for use in inducing cell death in target cells.
- the peptide consisting of SEQ ID NO:3 is for use in inducing cell death in target cells.
- the analog of a peptide comprising or consisting of SEQ ID NO: 3 is for use in inducing cell death in target cells.
- induce cell death and “promote cell death” are used herein interchangeably and mean that the of the present invention (i.e. the peptide, the analog or the fragment) can directly inducing cell death to cells, where cell death includes apoptosis and necrosis.
- the cell death may be caused due to interaction of the compound of the present invention with molecules molecule expressed on the cell surface or with molecules located within the cell such as molecule located in the cytosol, bound to the inner side of the cell membrane, located in the organelles or present on the membrane of the organelles, either inner or outer part of it.
- cell death as used herein encompasses both destruction and damage or impairment of cells.
- cell death encompasses cell ablation.
- the peptide that binds to human eEF2 is a peptide having SEQ ID NO: 4.
- the present invention provides an analog of SEQ ID NO: 4.
- the present invention provides a fragment of the peptide or of the analog.
- the peptide is a peptide having SEQ ID NO: 4.
- the peptide is a peptide of SEQ ID NO: 4.
- the peptide is a cyclic peptide.
- the analog has a sequence identity of at least 70%, at least 80%, or at least 90% to SEQ ID NO: 4. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 4. According to other embodiments, the analog has 70% to 95%, 75% to 90%, or 80% to 85% identity to SEQ ID NO: 4. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 4. According to some embodiments, the conservative analog of SEQ ID NO: 4 has 1, 2, 3, 4 or 5 conservative substitutions in SEQ ID NO: 4. According to some embodiments, the analog is a cyclic peptide.
- the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of SEQ ID NO: 4 or analog thereof.
- the peptide comprising or consisting of SEQ ID NO: 4 enhances the activity of human eEF2.
- the peptide is an agonist of eEF2.
- the analog of SEQ ID NO: 4 or the fragment of the peptide or the analog enhances the activity of eEF2.
- the peptide comprising or consisting of SEQ ID NO: 4, analog thereof or the fragment of the peptide or said analog is a toxin.
- the peptide is for use in inducing cell death in target cells.
- the cells are cancer cells.
- the peptide comprising SEQ ID NO: 4 is for use in inducing cell death in target cells.
- the peptide consisting of SEQ ID NO: 4 is for use in inducing cell death in target cells.
- the analog of a peptide comprising or consisting of SEQ ID NO: 4 is for use in inducing cell death in target cells.
- the present invention provides a conjugate of the peptide that binds specifically to human eEF2.
- the present invention provides a conjugate of the peptide selected from a peptide having or consisting of SEQ ID NO: 3, analog thereof or fragment thereof. According to one embodiment, the present invention provides a conjugate of the cyclopeptide having or consisting of SEQ ID NO: 3.
- the present invention provides a conjugate of the peptide selected from a peptide having or consisting of SEQ ID NO: 4, analog thereof or fragment thereof. According to one embodiment, the present invention provides a conjugate of the cyclopeptide having or consisting of SEQ ID NO: 4.
- conjugate refers to any substance formed from the joining together or binding of two or more molecules.
- conjugate encompasses a compound formed from binding of two or more peptides of any one of the above embodiments or a compound comprising said peptide bound to another molecule.
- the peptide, analog or fragment of the present invention is conjugated with a carrier protein or moiety which improves the peptide's antigenicity, solubility, stability or permeability.
- a fusion protein comprising at least one peptide according to the invention is also within this scope.
- the conjugate comprises at least two copies of the peptides comprising or consisting of SEQ ID NO: 3, analog or fragment thereof covalently bound.
- the conjugate comprises at least one peptide comprising or consisting of SEQ ID NO: 3, analog or fragment thereof and another molecule.
- said molecule can be any molecule.
- the molecule is selected from an active agent, an extracellular tumor antigen targeting molecule, a carrier, a toxin, a permeability-enhancing moiety and an anti-cancer agent.
- the conjugate comprises at least two copies of the peptide comprising or consisting of SEQ ID NO: 4, analog or fragment thereof covalently bound.
- the conjugate comprises at least one peptide comprising or consisting of SEQ ID NO: 4, analog or fragment thereof and another molecule.
- said molecule can be any molecule.
- the molecule is selected from an active agent, an extracellular tumor antigen targeting molecule, a carrier, a toxin, a permeability-enhancing moiety and an anti-cancer agent.
- the extracellular tumor antigen targeting molecule, a carrier, a toxin, an anti-cancer agent are as defined according to the present invention.
- active agent refers to an agent that has biological activity, pharmacologic effects and/or therapeutic utility.
- the extracellular tumor antigen is selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- the toxin is selected from the group consisting of a toxin binding to a eukaryotic elongation factor 2, BIM-BH3 toxin having the amino acid sequence set forth in SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin.
- BIM-BH3 toxin having the amino acid sequence set forth in SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-
- the carrier may be a scaffold carrier such as PEG carrier or peptidic carrier.
- the conjugate of the present invention is for use in inducing cell death in target cells.
- the present invention provides a peptide comprising the amino acids sequence set forth in SEQ ID NO: 1.
- the present invention provides an analog of the peptide having SEQ ID NO:1.
- the present invention provides a fragment of said peptide or said analog.
- the peptide consists of SEQ ID NO: 1.
- the peptide consists of 5 to 30 amino acids. According to other embodiments, each peptide consists of 6 to 25 amino acids. According to yet other embodiments, each peptide consists of 7 to 20 amino acids. According to some embodiments, each peptide consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acids. Each possibility represents a separate embodiment of the invention.
- the peptide having or consisting of SEQ ID NO:1, the analog or the fragment thereof binds specifically to a human Epidermal Growth Factor Receptor (EGFR).
- EGFR Epidermal Growth Factor Receptor
- the peptide, analog of the fragment is an antagonist of EGFR.
- the peptide is a cyclopeptide.
- the analog of SEQ ID NO: 1 has a sequence identity of at least 70%, at least 80%, or at least 90% to SEQ ID NO: 1. According to other embodiments, the analog has 70% to 95%, 75% to 90%, or 80% to 85% sequence identity to SEQ ID NO: 1. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 1. According to some embodiments, the conservative analog of SEQ ID NO: 1 has 1, 2, 3, 4 or 5 conservative substitutions. According to some embodiments, the analog is a cyclopeptide.
- the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of SEQ ID NO: 1 or of analog thereof.
- the peptide comprising or consisting of SEQ ID NO:1, analog or fragment thereof is a cancer cells targeting peptide.
- the peptide comprising or consisting of SEQ ID NO:1, analog or fragment thereof is for use in cancer cell targeting.
- the present invention provides a conjugate of the peptide selected from a peptide having or consisting of SEQ ID NO: 1, analog thereof or fragment thereof. According to one embodiment, the present invention provides a conjugate of the cyclopeptide having or consisting of SEQ ID NO: 1.
- the conjugate comprises at least two copies of the peptide comprising or consisting of SEQ ID NO: 1, analog or fragment thereof covalently bound.
- the conjugate comprises at least one peptide comprising or consisting of SEQ ID NO: 1, analog or fragment thereof and another molecule.
- said molecule can be any molecule.
- the molecule is selected from an active agent, an extracellular tumor antigen targeting molecule, a carrier, a permeability-enhancing moiety, a toxin, an anti-cancer agent and a combination thereof.
- extracellular tumor antigen targeting molecule a carrier, a toxin, an anti-cancer agent are as defined in the present invention.
- the extracellular tumor antigen is selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- the toxin is selected from the group consisting of a toxin binding to a eukaryotic elongation factor 2, BIM-BH3 toxin of SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin.
- the carrier may be a scaffold carrier such as PEG carrier or peptidic carrier.
- the present invention provides a peptide comprising the amino acids sequence set forth in SEQ ID NO: 2.
- the present invention provides an analog of the peptide having SEQ ID NO:2.
- the present invention provides a fragment of said peptide or said analog.
- the peptide consists of SEQ ID NO: 2.
- the peptide consists of 5 to 30 amino acids. According to other embodiments, each peptide consists of 6 to 25 amino acids. According to yet other embodiments, each peptide consists of 7 to 20 amino acids. According to some embodiments, each peptide consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acids. Each possibility represents a separate embodiment of the invention.
- the peptide having or consisting of SEQ ID NO:2, the analog or the fragment thereof binds specifically to a human Programmed death-ligand 1 (PD-L1).
- PD-L1 Human Programmed death-ligand 1
- the peptide, analog of the fragment is an antagonist of PD-L1.
- the peptide is a cyclopeptide.
- the analog of SEQ ID NO: 2 has a sequence identity of at least 70%, at least 80%, or at least 90% to SEQ ID NO: 2. According to other embodiments, the analog has 70% to 95%, 75% to 90%, or 80% to 85% identity to SEQ ID NO: 2. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 2. According to some embodiments, the conservative analog of SEQ ID NO: 2 has 1, 2, 3, 4 or 5 conservative substitutions. According to some embodiments, the analog is a cyclopeptide.
- the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of SEQ ID NO: 2 or of an analog thereof.
- the peptide comprising or consisting of SEQ ID NO:2, analog or fragment thereof is a cancer cells targeting peptide.
- the peptide comprising or consisting of SEQ ID NO:2, analog or fragment thereof is for use in cancer cell targeting.
- the present invention provides a conjugate of the peptide selected from a peptide having or consisting of SEQ ID NO: 2, analog thereof or fragment thereof. According to one embodiment, the present invention provides a conjugate of the cyclopeptide having or consisting of SEQ ID NO: 2.
- the conjugate comprises at least two copies of the peptide comprising or consisting of SEQ ID NO: 2, analog or fragment thereof covalently bound.
- the conjugate comprises at least one peptide comprising or consisting of SEQ ID NO: 2, analog or fragment thereof and another molecule.
- said molecule can be any molecule.
- the molecule is selected from an active agent, an extracellular tumor antigen targeting molecule, a carrier, a toxin, an anti-cancer agent, a permeability-enhancing moiety and a combination thereof.
- the extracellular tumor antigen targeting molecule, a carrier, a toxin, an anti-cancer agent are as defined in the present invention.
- the extracellular tumor antigen is selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- the toxin is selected from the group consisting of a toxin binding to a eukaryotic elongation factor 2, BIM-BH3 toxin having the amino acid sequence set forth in SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, cyanotoxin, and any combination thereof.
- the carrier may be a scaffold carrier such as PEG carrier of peptidic carrier.
- the present invention provides a composition comprising the peptide of the present invention, or the conjugate of the present invention.
- the composition is a pharmaceutical composition.
- the present invention provides a pharmaceutical composition comprising the peptide of the present invention, or the conjugate of the present invention.
- the pharmaceutical composition comprises a peptide comprising or consisting of SEQ ID NO: 1 according to any one of the above embodiments.
- the pharmaceutical composition comprises the analog of SEQ ID NO: 1 or a fragment of said peptide or said analog.
- the pharmaceutical composition comprises a plurality of said peptides, analogs or fragments.
- the pharmaceutical composition comprises one or more conjugates of the peptide comprising or consisting of SEQ ID NO:1, analog or fragment thereof according to any one of the above embodiments.
- the pharmaceutical composition comprises a peptide comprising or consisting of SEQ ID NO: 2 according to any one of the above embodiments.
- the pharmaceutical composition comprises the analog of SEQ ID NO: 2 or a fragment of said peptide or said analog.
- the pharmaceutical composition comprises a plurality of said peptides, analogs or fragments.
- the pharmaceutical composition comprises one or more conjugates of the peptide comprising or consisting of SEQ ID NO:2, analog or fragment thereof according to any one of the above embodiments.
- the pharmaceutical composition comprises a peptide comprising or consisting of SEQ ID NO: 3 according to any one of the above embodiments.
- the pharmaceutical composition comprises the analog of SEQ ID NO: 3 or a fragment of said peptide or said analog.
- the pharmaceutical composition comprises a plurality of said peptides, analogs or fragments.
- the pharmaceutical composition comprises one or more conjugates of the peptide comprising or consisting of SEQ ID NO:3, analog or fragment thereof according to any one of the above embodiments.
- the pharmaceutical composition comprises a peptide comprising or consisting of SEQ ID NO: 4 according to any one of the above embodiments.
- the pharmaceutical composition comprises the analog of SEQ ID NO: 4 or a fragment of said peptide or said analog.
- the pharmaceutical composition comprises a plurality of said peptides, analogs or fragments.
- the pharmaceutical composition comprises one or more conjugates of the peptide comprising or consisting of SEQ ID NO:4, analog or fragment thereof according to any one of the above embodiments.
- the pharmaceutical composition is for treating a cell proliferative disease or disorder.
- cell proliferative disease or disorder is cancer.
- the pharmaceutical composition comprises a peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, analog thereof or fragment thereof, as defined in any one of the embodiments of the present invention.
- the present invention provides a pharmaceutical composition comprising a peptide comprising or consisting of SEQ ID NO: 1 for use in treating cancer.
- the present invention provides a pharmaceutical composition comprising a peptide comprising or consisting of SEQ ID NO: 2 for use in treating cancer.
- the present invention provides a pharmaceutical composition comprising a peptide comprising or consisting of SEQ ID NO: 3 for use in treating cancer.
- the present invention provides a pharmaceutical composition comprising a peptide comprising or consisting of SEQ ID NO: 4 for use in treating cancer.
- the pharmaceutical composition comprises one or more conjugates of said peptides as defined in any one of the embodiments of the present invention.
- the present invention provides a method of treating a proliferative disease or disorder in a subject in need thereof comprising administering a therapeutically effective amount of the peptides or conjugates of the present invention.
- the method comprises administering a pharmaceutical composition comprising the peptides or conjugates of the present invention.
- the peptide is selected from the group consisting of a peptide comprising or consisting of SEQ ID NO: 1, a peptide comprising or consisting of SEQ ID NO: 2, a peptide comprising or consisting of SEQ ID NO: 3, a peptide comprising or consisting of SEQ ID NO: 4, analogs thereof, and fragments of said peptides.
- the conjugate is a conjugated of said peptides.
- the peptide, analog or fragment is cyclic.
- the present invention provides an isolated polynucleotide comprising a sequence encoding the peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4.
- the polynucleotide comprises a sequence encoding an analog of a peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, or fragment thereof, as defined in any one of the embodiments of the present invention.
- the polynucleotide comprises a sequence encoding the peptide comprising or consisting of SEQ ID NO: 1, analog thereof or fragment thereof. According to one embodiment, the polynucleotide comprises the sequence encoding the peptide having SEQ ID NO: 1. According to another embodiment, the polynucleotide comprises the sequence encoding the peptide of SEQ ID NO: 1.
- the polynucleotide comprises a sequence encoding the peptide comprising or consisting of SEQ ID NO: 2, analog thereof or fragment thereof. According to one embodiment, the polynucleotide comprises the sequence encoding the peptide having SEQ ID NO: 2. According to another embodiment, the polynucleotide comprises the sequence encoding the peptide of SEQ ID NO: 2.
- the polynucleotide comprises a sequence encoding the peptide comprising or consisting of SEQ ID NO: 3, analog thereof or fragment thereof. According to one embodiment, the polynucleotide comprises the sequence encoding the peptide having SEQ ID NO: 3. According to another embodiment, the polynucleotide comprises the sequence encoding the peptide of SEQ ID NO: 3.
- the polynucleotide comprises a sequence encoding the peptide comprising or consisting of SEQ ID NO: 4, analog thereof or fragment thereof. According to one embodiment, the polynucleotide comprises the sequence encoding the peptide having SEQ ID NO: 4. According to another embodiment, the polynucleotide comprises the sequence encoding the peptide of SEQ ID NO: 4
- the present invention provides a polynucleotide comprising a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 3.
- the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 4.
- the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2, (iii) SEQ ID NO: 3 and SEQ ID NO: 4.
- the present invention provides a nucleic acid construct, comprising the polynucleotide according to any one of the above embodiments.
- the polynucleotide is operably linked to a promoter.
- the nucleic acid construct comprises a polynucleotide comprising a sequence encoding the peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, analog thereof or fragment thereof, as defined in any one of the embodiments of the present invention.
- the nucleic acid construct comprises a polynucleotide comprising a sequence encoding the comprising a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 3.
- the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 4.
- the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2, (iii) SEQ ID NO: 3 and SEQ ID NO: 4.
- nucleic acid construct refers to an artificially constructed segment of nucleic acid. It can be an isolated or integrated in another nucleic acid molecule.
- operably linked As used herein, the term “operably linked”, “operably encodes”, and “operably associated” are used herein interchangeably and refer to the functional linkage between a promoter and nucleic acid sequence, wherein the promoter initiates transcription of RNA corresponding to the DNA sequence.
- promoter is a regulatory sequence that initiates transcription of a downstream nucleic acid.
- the term “promoter” refers to a DNA sequence within a larger DNA sequence defining a site to which RNA polymerase may bind and initiate transcription.
- a promoter may include optional distal enhancer or repressor elements. The promoter may be either homologous, i.e., occurring naturally to direct the expression of the desired nucleic acid, or heterologous, i.e., occurring naturally to direct the expression of a nucleic acid derived from a gene other than the desired nucleic acid.
- a promoter may be constitutive or inducible.
- a constitutive promoter is a promoter that is active under most environmental and developmental conditions.
- An inducible promoter is a promoter that is active under environmental or developmental regulation, e.g., upregulation in response to xylose availability.
- the present invention provides a vector comprising the polynucleotide sequence or the nucleic acid construct of the present invention.
- the present invention provides a vector comprising the polynucleotide comprising a sequence encoding the peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, analog thereof or fragment thereof, as defined in any one of the embodiments of the present invention.
- the vector comprises the polynucleotide comprising a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 3.
- the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 4. According to a further embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2, (iii) SEQ ID NO: 3 and SEQ ID NO: 4.
- vector and “expression vector” are used herein interchangeably and refer to any non-viral vector such as plasmid, cosmid, artificial chromosome (bacterial or yeast), or viral vector such as virus, retrovirus, bacteriophage, or phage, binary vector in double or single stranded linear or circular form, or nucleic acid, sequence which is able to transform host cells and optionally capable of replicating in a host cell.
- the vector may contain an optional marker suitable for use in the identification of transformed cells, e.g., tetracycline resistance or ampicillin resistance.
- the vector is a plasmid.
- the vector is a phage or bacteriophage.
- Plasmid refers to circular, optionally double-stranded DNA capable of inserting a foreign DNA fragment to a cell and optionally capable of autonomous replication in a given cell. Plasmids usually contain further sequences in addition to the ones, which should be expressed, like marker genes for their specific selection and in some cases sequences for their episomal replication in a target cell. In certain embodiments, the plasmid is designed for amplification and expression in bacteria. Plasmids can be engineered by standard molecular biology techniques.
- the present invention provides a cell comprising the polynucleotide comprising a sequence encoding the peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, analog thereof or fragment thereof, as defined in any one of the embodiments of the present invention, the nucleic acid construct of the present invention.
- the present invention provides a cell comprising the polynucleotide comprising a sequence encoding the polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 3.
- the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 4. According to a further embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2, (iii) SEQ ID NO: 3 and SEQ ID NO: 4.
- a library of constructs comprising a branched PEG, a toxin peptide and two target-binding peptides.
- Each construct comprises a branched PEG with eight connecting arms, each having an NHS (N-Hydroxysuccinimide) terminus to which an amino moiety of a peptide is connected.
- NHS N-Hydroxysuccinimide
- toxins 1—Nodularin
- 2 ProTx-I
- 3 Viperistatin fragment
- the binding peptides are directed against the following targets: A—androgen receptor, B—ERBB4, and C—CXCR4.
- Toxin 1 cyclotoxin of SEQ ID NO: 3
- Toxin 2 cyclo-toxin of SEQ ID NO: 4
- Toxin 3 combination of cyclotoxins of SEQ ID NO: 3 and 4
- the peptides are Peptide A—cyclic peptide SEQ ID NO: 1
- Peptide B cyclic peptide SEQ ID NO: 3
- Peptide C is directed to bind androgen receptor, B—ERBB4, or C—CXCR4.
- constructs are synthesized using methods known in the art, including Fmoc-solid phase peptide synthesis, purified using HPLC and tested in in-vitro and in-vivo for a specific activity, such as anti-proliferative activity using assays and animal models well known in the art.
- cyclopeptides (referred as toxins or cyclotoxins Tox1 and Tox2) binding to human eukaryotic elongation factor 2 (eEF2) were generated and tested.
- eEF2 human eukaryotic elongation factor 2
- Binding of Tox 1 and Tox2 to eEF2 was tested by ELISA using eEF2 or BSA as ligands.
- target proteins eEF2 (Human; Yeast derived) or BSA (negative control) were applied to several wells of maxisorp plate (NUNC) in 50 ⁇ l PBS and incubated over night at 4° C. The solutions were removed, and each well was supplemented with 280 ⁇ l blocking solution (BSA 2 mg/ml). The plate was incubated 1 hr at 25° C.
- NUNC maxisorp plate
- Each well was supplemented with 50 ⁇ l of HRP/Anti-M13 Monoclonal Conjugate (GE Healthcare) diluted 1:5000. The plate was incubated 1 hr at 25° C. The solutions were discarded and the wells were washed 7 times with 280 ⁇ l washing solution (Tween 20 0.05%). Each well was supplemented with 50 ⁇ l of TMB (T0440; Sigma).
- Tox2 (denoted as TB2 in the figures) had the strongest effect.
- Tox1 and Tox2 were tested in the in vitro transcription/translation system using HeLa Lysate system 1-Step Human Coupled IVT Kit-DNA (ThermoFisher Scientific). The following peptides were tested: GW (Tox1), DRB RB, TB2 (Tox2), and BW. In addition, a non eEF2-binding control peptide, GR, was also tested.
- the IVT Kit components were mixed, and one portion was taken out to serve as a negative control. The rest of the mix was supplemented with pCFE-GFP DNA. This DNA, when transcribed and translated gives a fluorescence protein, GFP. The extent of fluorescence gives a measure of the extent of protein synthesis.
- the mix was split into 9 ml aliquots. Each aliquot was supplemented with lml of one concentration of a specific peptide. A positive control was supplemented with lml of PBS. The reaction mixtures were incubated 4 hr at 30° C.
- a construct of a branched PEG molecule covalently coupled with two different cancer-targeting moieties and two different toxin moieties was designed and synthesized (the schematic representation of the scaffold is shown in FIG. 1 ).
- the targeting moieties included in this example construct were the cyclic peptides E13.3 (consisting of SEQ ID NO:1) and PD-L1-GR (consisting of SEQ ID NO:2), and the toxin moieties were the cyclic peptides Tox1 (consisting of SEQ ID NO:3), and Tox2 (consisting of SEQ ID NO:4).
- the preparation method comprised two steps. At the first step a branched PEG containing eight arms was produced in which seven arms were coupled with targeting/toxin moieties (protected peptides) and one with a Lysine residue protected with FMOC (Fmoc-Lys).
- step 8 of the peptide/toxin-PEG molecules produced in step 1 were coupled to another branched PEG molecule of eight arms to obtain a construct of multi-branched PEG coupled with 56 toxin/targeting moieties, of which 42 moieties are toxin peptides (21 Tox1 and 21 Tox2), and 14 are targeting peptides (7 copies of EGRF targeting peptide E13.3 and 7 copies of PD-L1 targeting peptide PD-L1-GR).
- Step 1 Preparation of Branched PEG Coupled with One Type of Targeting or Toxin Moiety
- All peptides have only one primary amine, except for E13.3, which has 3, of which one is protected with dde, and the N-terminal is blocked with acetate residue.
- Each of the targeting peptides solutions were mixed with 1741 of Fmoc-Lys-OH solution and 1741 of PEG solution.
- Each of the toxin peptides solutions were mixed with 52 ⁇ l of Fmoc-Lys-OH solution and 5241 of PEG solution. Each mix was supplemented with TEA (trimethylamine) to 5%. Each solution was incubated for 15.5 hours at room temperature on a Rotamix at 30 rpm to obtain a clear solution of 8 armed PEG coupled with 7 molecules of a specific targeting/toxin moiety and one arm containing a primary amine (The Fmoc protection is removed in this process to give one free primary amine on each PEG molecule).
- TEA trimethylamine
- the branched PEG-peptide molecules are denoted PEG-E13.3, PEG-PD-L1-GR, PEG-Tox 1 and PEG-Tox 2.
- Step 2 Construction of Multi-Branched PEG Construct Coupled to 56 Targeting/Toxin Moieties.
- PEG-E13.3, PEG-PD-L1-GR, PEG-Tox1 and PEG-Tox2 were mixed together with 20 mM PEG-NHS solution in a stoichiometric molar ratio of PEG-NHS:PEG-E13.3:PEG-PD-L1-GR:PEG-Tox1:PEG-Tox2 of 1:1:1:3:3, and incubated for 2 hours at room temperature on a Rotamix at 30 rpm, followed by slow addition of 80% hydrazine to a final concentration of 5%. Hydrazine was used to remove the dde protecting group from the E13.3 moiety.
- the mixture was incubated for 2 hours at room temperature on a Rotamix at 30 rpm.
- the resultant construct is a multi-branched PEG coupled with 56 targeting/toxin moieties: 7 copies of E13.3 peptide, 7 copies of PD-L1-GR peptide, 21 copies of Tox1 and 21 copies of Tox 2.
- PBS was added with gentle mixing.
- the samples were ultrafiltrated with two additions of 20 ml PBS using Vivaspin 20 concentrator (30 K MWCO PES) to a concentration of ⁇ 206 ⁇ M of loaded multi-armed PEG denoted as PEG-E13.3-(PD-L1-GR)-Tox1-Tox2, and the buffer was substituted to PBS.
- a construct comprising a multi-arm-PEG scaffold bound to E13.3 targeting peptide having the sequence SEQ ID NO: 1 (CHPGDKQEDPNCLQADK) and a toxin selected from BIMBH3 (referred also as BIM and having the sequence SEQ ID NO: 5 MRPEIWIAQELRRIGDEFNA) or a combination of Tox1 and Tox2 was generated.
- the scaffolds were prepared as described in Example 5 and is denoted as PEG-E13.3-Tox1-Tox2 and PEG-13.3-BIM, accordingly
- A431 cells human squamous carcinoma express about 100,000 copies of EGFR on each cell
- MCF-7 cells breast cancer cell expressing about 3,000 copies of EGFR on each cell
- the plates were incubated until the next day at the following conditions: 37 ⁇ 1° C., humidified, and 5 ⁇ 0.5% CO 2 /air, to enable cells adherence to the wells.
- A549 cell was tested using Alamar Blue viability assay.
- Growth Media was replaced with 200 ⁇ l Assay Media that contained 2% FBS and Test Items at different concentrations of the construct (1, 3 and 8 ⁇ M), or Vehicle Control (PBS; concentration-0). Plates were incubated at 37 ⁇ 1° C., humidified 5 ⁇ 0.5% CO 2 /air. After 48 hours of incubation, images of cells treatments were taken on microscope (see: FIG. 4 A - FIG. 4 D , FIG. 5 A - FIG. 5 F , FIG. 6 A - FIG. 6 F and FIG. 7 A - FIG. 7 F ).
- a construct comprising a toxin such as Tox1, Tox2 or a combination thereof and targeting peptides, wherein at least one of them is E13.3 are potent in targeting and treating cancer.
- PEG-PD-L1-GR-BIM, PEG-E13.3-BIM and PEG-E13.3-PD-L1-GR-BIM constructs were prepared and tested for cytotoxicity using A431 cells and Alamar Blue Blue viability assay varying the concentration of the construct from 10 nM to 1 ⁇ M. After 48 hours of incubation, images of cells treatments were taken on microscope.
- test items PEG-E13.3-(PD-L1-GR)-Tox1-Tox2, and PEG-E13.3-(PD-L1-GR)-BIM were prepared as described in Example 5 and were used at concentration of 10 ⁇ M.
- Phosphate Buffered Saline (PBS) is used as a control.
- A-549 cells human lung tumor cells
- Cells were collected, counted and seeded in a 96 well tissue culture plate at the following densities: A-549: 5,000 cells/well.
- the plate was incubated until the next day at 37 ⁇ 1° C., humidified, 5 ⁇ 0.5% CO 2 /air, to enable cells adherence to the wells.
- Test Items Solutions prepared in Assay Medium (2% f FBS). Test Items Solutions are applied carefully (onto the sides of the well, not directly onto the cells) in volume of 200 ⁇ l/well to achieve the final concentrations as following: PEG-E13.3-(PD-L1-GR)-Tox1-Tox2: 3 or 10 ⁇ M and PEG-E13.3-(PD-L1-GR)-BIM—10 ⁇ M.
- the plate was incubated at 37 ⁇ 1° C., humidified 5 ⁇ 0.5% CO 2 /air.
- PEG-E13.3-(PD-L1-GR)-Tox1-Tox2 was effective in killing A549 cell both in concentration of 3 and 10 PM.
- PEG-E13.3-(PD-L1-GR)-Tox1-Tox2 at the concentration of 3 ⁇ M it was much more efficient than 10 ⁇ M PEG-E13.3-(PD-L1-GR)-BIM construct comprising well known BIM toxin.
- PEG-E13.3-(PD-L1-GR)-Tox1-Tox2 was prepared as described in Example 5 and injected intravenously to 3 Female Hsd:ICR (CD-1®) mice, 7 weeks old using 4 ml/kg dose according to the regiments described in Table 3.
- Animals 18 athymic nude female mice 6-7 weeks old divided into 3 groups (1 control group and 2 test items groups) are allowed to accumulate for at least 5 days. Following accumulation, A431 tumor cells are subcutaneously injected to right flan region of each mouse, the day of injection is denoted as Day 0.
- weight (twice a week)
- tumor size (measured with digital caliper and the tumor volume is calculated as width 2 ⁇ length/2.
- mice When the tumor reaches the size of 100-150 mm3, mice are subjected to 3 IV injections of test items during the first week. Animals are observed from additional 3 weeks.
- mice are euthanized, the tumor is excised, measured and fixed in 4% formaldehyde solution for further analysis.
- Bacteria comprising plasmids for expression of the identified peptides E7.1, E10.2, E10.3, E13.3, E15.1.3-T, E14.1.1, E14.1.4, E2313, E2315 and A4.3.12-T were started with 2.5 ⁇ l of cells comprising the plasmid of a relevant peptide in 5 ml 2YT medium with ampicillin and grown at 38° C. over night at 350 rpm. 2 ml of each starter were grown in 50 ml 2YT at 37° C.; the expression was induces with IPTG, 0.43 mM at OD 1.5-2.5 for 3 hours following which the cells were centrifuged and kept at ⁇ 20° C.
- the cells were lysed with lysozyme in the presence of DNases I and B-Per (Bacterial Protein Extraction Reagent), and the peptides were purified by affinity chromatography using Ni-NTA beads in a batch mode. Shortly, the peptides were loaded on Ni-NTA beads in the presence of 20 mM Imidazole, washed with PBS and eluted with 250 mM Imidazole. The buffer was exchange using PALL Life Science, Nanosep Centrifugal devices, 3K gray. The quantity of the peptides was tested by Coomassie Plus Protein Assay (see FIG. 10 ).
- the effect of several peptides on the phosphorylation levels of human EGFR in human epidermoid carcinoma cell line A431 was assessed by ELISA test. Briefly, exponentially growing A431 cell culture were detaches from the flask with 0.25% trypsin/EDTA solution, and 200 ⁇ l of cell suspension were transferred to 96-well plates at the concentration of 2 ⁇ 10 5 cells/ml and grown for about 3 days. Following medium exchange, 50 ⁇ l EGF dilutions and EGF+peptides (50 ng/ml and 0.2 mg/ml, respectively) were added. The plate was incubated for 7.5 min at 37° C. EGF-containing medium was removed and the cells were fixed by 150 ul of fixing solution and incubated for 20 min.
- the level of phosphorylates was assessed by incubation with phospho-EGFR (Tyr1045) antibody as a primary antibody and Anti-rabbit IgG as a secondary antibody.
- the ability of different peptides to inhibit auto-phosphorylation of EGFR is presented on FIG. 2 .
- the normalized percent of inhibition (of the EGFR auto-phosphorylation is presented in FIG. 11 and Table 4.
- the normalized percent of inhibition is calculated as the fluorescence signal of the test item divided by the fluorescence signal of the control that contains no test item, with the same concentration of EGF.
- E13.3 has the higher inhibitory activity among the peptides, having calculated IC 50 of 2 ⁇ M.
- the stability of the selected peptides in bovine serum was assessed by measurement of the inhibitory activity of the peptides after incubation of the peptides with bovine serum. The inhibitory activity was measured as described in Example 12. The inhibitory activity of the peptide was assessed following incubation of the peptides with bovine serum at 37° C. for different periods of time. EGF concentration in the samples was 50 ng/ml. The results are presented in FIG. 12 . It can be clearly seen that all peptides have similar stability in the bovine serum with t 0.5 of about 1.5 hours.
- Efficacy of different concentration of the selected peptide was assessed by ELISA in a similar was as in Example 12. The results are presented in FIGS. 13 A and FIG. 13 B .
- the IC 50 of all peptides was about 0.5-1 ⁇ M.
- E13.3(fmoc)Lys was dissolved in water to the final concentration of 20 mg/ml.
- 11.3 mg of 8 arm PEG Succinimidyl Carboxymethyl Ester, MW 73,000 (JENKEM TECHNOLOGY USA INC) with 565 ⁇ l dioxane was heated at 37° C. to a complete dissolution.
- E13.3 and PEG solution were mixed in the presence of 50 ⁇ l TEA and incubated overnight at room temperature.
- 50 ⁇ l piperidine was added and incubated for 0.5 at room temperature.
- 1 ml of ethyl acetate was added to obtain a suspension which was than centrifuged and the upper phase was removed.
- E13.3 human lung carcinoma cell line
- FaDu human pharyngeal carcinoma cell line
- the cell cultures were incubated in the presence or absence of E13.3 (at different concentrations) and tested for viability using alamarBlue reagent.
- the results are presented on FIG. 15 . It can be seen, that E13.3 bound to PEG could successfully reduce the viability of the cancer cells in all tested concentrations.
- E13.3-PEG was labeled with Flourescein and injected IV to Xenograft mice bearing subcutaneous NCI-H1650 tumor (lung cancer). Following anesthesia, kidney, liver and tumor were collected at specific time points and the fluorescence was measured. The results are presented in FIGS. 16 and 17 .
- PD-L1-GR One of the peptides, denoted as PD-L1-GR and having the sequence of CysGluGlyLeuProAlaAspTrpAlaAlaAlaCys (SEQ ID NO: 2) showed high affinity to the receptor at its binding site.
- Multi-armed PEG constructs comprising (i) PD-L1-GR cyclic peptide and BIM-BH3 (denoted as PEG-(PD-L1-GR)-BIM), (ii) E13.3 targeting peptide (SEQ ID NO:1) and BIM-BH3 toxin (denoted as PEG-E13.3-BIM), and (iii) E13.3, PD-L1-GR and BIM-BH3 toxin (denoted as PEG-E13.3-(PD-L1-GR)-BIM) were prepared as described in Example 5.
- the constructs were used as Test Items in cell proliferation assay in concentration of 1 ⁇ M.
- PBS was used as a control.
- A549 cells human lung carcinoma cell line
- the cells were collected, counted and seeded at the density of 7,000 cells/well in a 96 well tissue culture plate.
- the plate was incubated until the next day at 37 ⁇ 1° C., humidified, 5 ⁇ 0.5% CO 2 /air, to enable cells adherence to the wells.
- Growth Media are replaced with Test Items Solutions prepared in Assay Medium (2% f FBS). Test Items Solutions are applied carefully in volume of 200 ⁇ l/well to achieve the final concentrations of the Test Items of 1 ⁇ M. After 48 hours of incubation, representative images of cells treatments were taken on microscope and are presented in FIG. 18 A - FIG. 18 C .
- the construct comprising PEG-E13.3-(PD-L1-GR)-BIM was the only construct to inhibit cell proliferation at a concentration of 1 ⁇ M. This indicates that the complex comprising a combination of E13.3 and PD-L1-GR peptides has significantly higher cytotoxicity than the combined cytotoxicity of the constructs comprising only one of the peptides.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
The present invention provides constructs comprising a plurality of peptides capable of targeting at least two different extracellular tumor antigens and a toxin, optionally connected to an organic scaffold. Use of such constructs in treating cancer are provided as well. The invention also provides particular peptides binding certain extracellular tumor antigens as well as toxins having antitumor activity.
Description
- The invention relates to constructs comprising a plurality of peptides capable of targeting at least two different extracellular tumor antigens and at least one toxin, optionally connected to an organic scaffold and use of such constructs in treating cancer are provided as well. The invention also relates to particular peptides binding certain extracellular tumor antigens as well as toxins having antitumor activity, and conjugates of these peptides and toxins.
- Targeted cancer therapies are drugs or other substances designed to interfere with specific molecules involved in cancer cell growth and survival. In contrast to traditional chemotherapy drugs, which usually act against all actively dividing cells, a primary goal of targeted therapies is to fight cancer cells with more precision and potentially fewer side effects. Targeted cancer therapies that have been approved for use against specific cancers include agents that prevent cell growth signaling, interfere with tumor blood vessel development, promote the death of cancer cells, stimulate the immune system to destroy cancer cells, and deliver toxic drugs to cancer cells. The latter mainly includes monoclonal antibodies that deliver toxic molecules. Once the antibody has bound to its target cell, the toxic molecule that is linked to the antibody, such as a radioactive substance, a toxic polypeptide or a poisonous chemical, is taken up by the cell, ultimately killing that cell. The toxin will not affect cells that lack the target for the antibody.
- Efficient tumor targeting is challenging for a number of reasons. First, it requires identifying a target that is sufficiently specific to the tumor cells to avoid as much as possible non-specific killing of cells. In addition, cancer cells tend to be variable, both between cancer types and within the same type of cancer: the expression pattern of surface targets may vary between cells of a particular tumor. Cancer cells may also alter expression of their cell surface receptors during tumor development or become resistant to the therapy. Resistance may occur in two ways: the target itself changes through mutation so that the targeted therapy no longer interacts well with it, and/or the tumor finds a new pathway to achieve tumor growth that does not depend on the target. Most anti-cancer drugs attack a specific target on, or in, the cancer cell. Inhibiting the target usually aims to block a physiological pathway that promotes cancer. Mutations in the targets, or in their downstream physiological pathways, make the targets not relevant to the cancerous nature of the cell.
- DeNardo et al., 2003, Clin Cancer Res. 9(10 Pt 2): 3854S-64S report about the synthesis of branched poly(ethylene glycol) (PEGylated) polymers (Mr 40,000, Mr 70,000, Mr 100,000, and Mr 150,000) conjugated to tumor-specific or control peptides, to assess the effect of both molecular weight and tumor specificity on pharmacokinetics and biodistribution.
- Tsai et al., 2011, J Neurooncol. 103(2): 255-266, describe a bispecific ligand-directed toxin designed to simultaneously target epidermal growth factor receptor (EGFR) on human glioblastoma cells and urokinase receptor (uPAR) on tumor neovasculature. The construct is a single-chain polypeptide consisting of human epidermal growth factor (EGF), a fragment of urokinase and truncated pseudomonas exotoxin (PE38).
- McGuire et al., 2014, Sci Rep., 4:4480 report about the characterization of a suite of tumor targeting peptides for non-small cell lung cancer identified from phage-display libraries. The peptides were synthesized as monomers and homo-tetramers.
- U.S. Pat. No. 7,947,289 discloses compositions comprising modified bacterial toxins and methods for using the modified bacterial toxins for targeting particular cell populations and for treating diseases.
- US 2004/0058865 discloses synthetic multimeric ligands that provide for enhanced cell-, and organ-specific targeting, and methods of their preparation and use.
- US 2009/0130105 discloses compositions that bind to multiple epitopes of IGF-1R, for example, combinations of monospecific binding molecules or multispecific binding molecules (e.g., bispecific molecules). Methods of making the subject binding molecules and methods of using the binding molecules to antagonize IGF-1R signaling are also disclosed.
- WO 2007/093373 discloses in vivo stable branched peptides, in particular derived from the sequence of Neurotensin (NT) and Luteinizing hormone-releasing hormone (LHRH), conjugated to functional units for specific targeting of cancer cells, either for tumor diagnosis or therapy.
- WO 2008/088422 discloses a composition of matter comprising an OSK1 peptide analog, and in some embodiments, a pharmaceutically acceptable salt thereof. Further disclosed are pharmaceutical compositions comprising the composition and a pharmaceutically acceptable carrier, DNAs encoding the composition of matter, an expression vector comprising the DNA, and host cells comprising the expression vector. Methods of treating an autoimmune disorder and of preventing or mitigating a relapse of a symptom of multiple sclerosis are also disclosed.
- There still remains an unmet need for improved compositions and methods for targeted cancer therapy, with enhanced potency and reduced adverse non-specific effects.
- The present invention relates to a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier. The invention is based on an unexpected observation that a construct comprising two peptides binding two different targets on cancer cells and a toxin has an advantageous and, in some cases, a synergic cytotoxic effect in comparison to constructs having only one of these peptides.
- According to one aspect, the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier.
- According to some embodiments of the invention, at least one of the peptides binds specifically to an extracellular tumor antigen selected from human epidermal growth factor receptor (EGFR) and human Programmed death-ligand 1 (PD-L1). In certain embodiments, the another one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR, Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR.
- According to some embodiments, the construct can comprise from 3 to 10 different peptides binding to different extracellular tumor antigens.
- In some embodiments, the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier and wherein at least one of the peptides binds specifically to EGFR. In one embodiment, peptide comprises the amino acid sequence as set forth in SEQ ID NO: 1 (CHPGDKQEDPNCLQADK) or being an analog thereof.
- In other embodiments, the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier and wherein at least one of the peptides binds specifically to PD-L1. In one embodiment, the peptide comprises the amino acid sequence as set forth in SEQ ID NO: 2 (CEGLPADWAAAC) or being an analog thereof.
- In certain embodiment, the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier and wherein one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1. According to one embodiments, the EGFR the peptide that binds specifically to EGFR is a peptide having SEQ ID NO: 1 or an analog thereof, and the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2 or an analog thereof.
- According to any one of the above embodiments, the construct comprises multiple copies of at least one or of at least two of the peptides. In some embodiments, the construct comprises from 2 to 50 copies of at least one of the peptides.
- According to any one of the above embodiments, the toxin is a peptide, polypeptide or protein toxin. In some embodiments, the toxin is selected from a toxin binding to a
eukaryotic elongation factor 2, BIM-BH3 consisting of SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin. In one embodiments, the toxin binding toeukaryotic elongation factor 2 is a toxin comprising the amino acid sequence selected from SEQ ID NO: 3 (CSARWGPTMPWC), SEQ ID NO: 4 (CRRGSRASGAHC), or an analog thereof. According to some embodiments, the construct comprises 2 to 10 different toxins. According to certain embodiments, the construct comprises a toxin having SEQ ID NO: 3 and a toxin having SEQ ID NO: 4. - According to any one of the above embodiments, the construct comprises multiple copies of at least one or of at least two of the toxins. According to one embodiment, the construct comprises from 2 to 50 copies of the at least one of the toxins. According to another embodiment, the construct comprises 2 to 50 copies of a toxin having SEQ ID NO: 3 and 2 to 50 copies of a toxin having SEQ ID NO: 4.
- According to some embodiments, the present invention provides a construct, wherein one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1 and the toxin is selected from a toxin binding specifically to
eukaryotic elongation factor 2 and a toxin having SEQ ID NO: 5. According to one such embodiment, the construct comprises a peptide having SEQ ID NO: 1 or an analog thereof, a peptide having SEQ ID NO: 2 or an analog thereof, and at least one toxin having amino acid sequence selected from SEQ ID NO: 3, 4, and 5. According to one embodiment, the construct comprises a peptide comprising SEQ ID NO: 1 or an analog thereof, a peptide comprising SEQ ID NO: 2 or an analog thereof, a toxin comprising SEQ ID NO: 3, and a toxin comprising SEQ ID NO: 4. According to any one of such embodiments, the construct comprises multiple copies of each one of the peptides and the toxin(s). - According to any one of the above embodiments, at least one of the peptides and/or at least one toxin are covalently bound through a carrier. According to one embodiment, the carrier is an organic scaffold. According to another embodiment, each one of the peptides and of the toxin(s) are bound to a carrier, wherein the carrier is an organic scaffold. According to some embodiments, the scaffold is a polyethylene glycol (PEG) molecule or a modified PEG molecule. According to one embodiments, the PEG molecule is a branched molecule. According to another embodiment, the PEG molecules comprises a plurality of sites for binging the peptides and/or the toxin(s) of the present invention. According to one embodiment, the PEG molecule comprises 8 to 56 sites available to bind the peptides and the toxin(s).
- According to some embodiments, the present invention provides a construct comprising multiple copies of each one of at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin(s) are bound to the scaffold and wherein at least one of the peptides binds specifically to the extracellular tumor antigens selected from EGFR or PD-L1. According to some embodiments, one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1. According to one embodiment, the peptide that binds specifically to EGFR is a peptide having SEQ ID NO: 1 or an analog thereof, and the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2 or an analog thereof. According to certain embodiments, the toxin comprises the amino acid sequence selected from SEQ ID NO: 3, 4 and 5, or an analog thereof. According to one embodiments, the scaffold is PEG scaffold. According to one embodiment, the PEG molecule comprises 8 to 56 sites available to bind the peptides and the toxin(s).
- According to one embodiment, the construct comprises multiple copies of each one of the: (i) a peptide having SEQ ID NO: 1, (ii) a peptide having SEQ ID NO: 2, (iii) a toxin having SEQ ID NO: 3 and (iv) a toxin having SEQ ID NO: 4, wherein each one of the peptides and the toxins is bound to the scaffold. According to one embodiments, the scaffold is PEG scaffold. According to another embodiment, the construct comprises multiple copies of each one of the: (i) a peptide consisting of SEQ ID NO: 1, (ii) a peptide consisting of SEQ ID NO: 2, (iii) a toxin consisting of SEQ ID NO: 3, and (iv) a toxin consisting of SEQ ID NO: 4. According to some embodiments, the stoichiometric molar ratio between the peptide having or consisting of SEQ ID NO: 1, the peptide having or consisting of SEQ ID NO: 2, the toxin having or consisting of SEQ ID NO: 3 and the toxin having or consisting of SEQ ID NO: 4 is 1:1:3:3.
- According to any one of the above embodiments, at least one of the peptides or of the toxins is connected to the scaffold through a linker or spacer.
- According to any one of the above embodiments, the construct further comprises a permeability-enhancing moiety.
- According to another aspect, the present invention provides a composition comprising a construct of the present invention. According to one embodiment, the composition is a pharmaceutical composition. Thus, in some embodiments, the present invention provides a pharmaceutical composition comprising a construct of the present invention and a pharmaceutically acceptable excipient. According to one embodiment, the pharmaceutical composition comprises a construct comprising multiple copies of each one of at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin(s) are bound to the scaffold and wherein at least one of the peptides binds specifically to the extracellular tumor antigens selected from EGFR or PD-L1. According to some embodiments, one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1. According to one embodiment, the peptide that binds specifically to EGFR is a peptide having SEQ ID NO: 1 or an analog thereof, and the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2 or an analog thereof. According to certain embodiments, the toxin comprises the amino acid sequence selected from SEQ ID NO: 3, 4 and 5, or an analog thereof. According to one embodiments, the scaffold is PEG scaffold.
- According to one embodiment, the pharmaceutical composition comprises a the construct comprising multiple copies of each one of the: (i) a peptide having SEQ ID NO: 1, (ii) a peptide having SEQ ID NO: 2, (iii) a toxin having SEQ ID NO: 3 and (iv) a toxin having SEQ ID NO: 4, wherein each one of the peptides and the toxins is bound to the scaffold. According to one embodiments, the scaffold is PEG scaffold. According to another embodiment, the construct comprises multiple copies of each one of the: (i) a peptide consisting of SEQ ID NO: 1 (ii) a peptide consisting of SEQ ID NO: 2, (iii) a toxin consisting of SEQ ID NO: 3, and (iv) a toxin consisting of SEQ ID NO: 4. According to some embodiments, the stoichiometric molar ratio between the peptide having or consisting of SEQ ID NO: 1, the peptide having or consisting of SEQ ID NO: 2, the toxin having or consisting of SEQ ID NO: 3 and the toxin having or consisting of SEQ ID NO: 4 is 1:1:3:3.
- According to one embodiment, the pharmaceutical composition of the present invention is for use in treating cancer.
- According to certain aspects, the present invention provides a method of treating cancer in a subject in need thereof comprising administering to said subject a pharmaceutical composition of the present invention. According to one embodiment, the pharmaceutical composition comprises a construct of the present invention. According to one embodiment, the present invention provides a method of treating cancer in a subject in need thereof comprising administering a therapeutically effective amount of the construct of the present invention.
- According to one aspect, the present invention provides a peptide that binds specifically to human eukaryotic Elongation Factor 2 (eEF2), wherein the peptide comprises the amino acid sequence selected from SEQ ID NO:3, SEQ ID NO: 4 and an analogs thereof. According to one embodiment, the peptide or the analog is cyclic. According to one embodiment, the peptide comprising or consisting of SEQ ID NO:3, or an analog thereof enhances eEF2 activity. According to another embodiment, the peptide comprising or consisting of SEQ ID NO:4, or an analog thereof enhances eEF2 activity. According to one embodiment, the peptide or analog is for use in inducing cell death.
- According to another aspect, the present invention provides a peptide comprising the amino acids sequence set forth in SEQ ID NO: 1 or an analog thereof. According to one embodiment, the peptide or the analog is an antagonist of a human Epidermal Growth Factor Receptor (EGFR). According to another embodiment, the peptide or the analog is cyclic. According to one embodiment, the peptide or the analog is for use in targeting cancer cells.
- According to a further embodiment, the present invention provides a peptide comprising the amino acids sequence set forth in SEQ ID NO: 2 or an analog thereof. According to one embodiment, the peptide or the analog is an antagonist of a human Programmed death-ligand 1 (PD-L1). According to another embodiment, the peptide or the analog is cyclic. According to one embodiment, the peptide or the analog is for use in targeting cancer cells.
- According to certain aspects, the present invention provides a conjugate comprising at least one peptide of the present invention. According to one embodiment, the peptide is selected from a peptide comprising or consisting of SEQ ID NO:1, a peptide comprising or consisting of SEQ ID NO:2, a peptide comprising or consisting of SEQ ID NO:3, a peptide comprising or consisting of SEQ ID NO: 4 and an analog of said peptides.
- According to another aspect, the present invention provides a composition comprising the peptide of the present invention or the conjugate of the present invention. According to one embodiment, the composition is a pharmaceutical composition. Thus, in some embodiments, the present invention provides a pharmaceutical composition comprising the peptide of the present invention or the conjugate of the present invention. According to one embodiment, the peptide is selected from a peptide comprising or consisting of SEQ ID NO:1, a peptide comprising or consisting of SEQ ID NO:2, a peptide comprising or consisting of SEQ ID NO:3, a peptide comprising or consisting of SEQ ID NO: 4 and an analog of said peptides. According to another embodiment, the conjugate is a conjugate of said peptides. According to some embodiments, the pharmaceutical composition is for use in treating cancer.
- According to one aspect, the present invention provides a method of treating cancer in a subject in need thereof comprising administering a therapeutically effective amount of the peptides of the present invention or of the conjugates of the present invention. According to one embodiment, the method of treating cancer comprises administering a pharmaceutical composition comprising said peptides or said conjugates. According to one embodiment, the peptide is selected from a peptide comprising or consisting of SEQ ID NO: 1, a peptide comprising or consisting of SEQ ID NO: 2, a peptide comprising or consisting of SEQ ID NO: 3, a peptide comprising or consisting of SEQ ID NO: 4 and an analog of said peptides. According to another embodiment, the conjugate is a conjugate of said peptides. According to some embodiments, the method comprises administering the pharmaceutical composition of the present invention comprising said peptides or said conjugates.
- According to a further aspect, the present invention provides an isolated polynucleotide comprising a sequence encoding the peptide or analog of the present invention. According to one embodiment, the peptide is selected from a peptide comprising or consisting of SEQ ID NO: 1, a peptide comprising or consisting of SEQ ID NO: 2, a peptide comprising or consisting of SEQ ID NO: 3, and a peptide comprising or consisting of SEQ ID NO: 4. According to another embodiment, the analog is an analog of said peptides.
- According to further aspect, the present invention provides an isolated polynucleotide comprising a sequence encoding for a polypeptide comprising (i) at least one copy of SEQ ID NO: 1; (ii) at least one copy of SEQ ID NO: 2; (iii) at least one copy of SEQ ID NO: 3, 4 or combination thereof.
- According to yet another aspect, the present invention provides a nucleic acid construct comprising the polynucleotide of the present invention. According to one embodiment, the polynucleotide is operably linked to a promoter.
- According to certain aspects, the present invention provides a vector comprising at least one polynucleotide or at least one nucleic acid construct of the present invention.
- According to a further aspect, the present invention provides a cell comprising at least one polynucleotide or at least one nucleic acid construct of the present invention.
-
FIG. 1 shows schematic structure of a multi-arm-PEG complex loaded with two targeting molecules such as E13.3 and PL-L1-GR peptides (solid circles and squares) and a toxin (hollow circles) such as Tox1 and/or Tox2. -
FIG. 2 shows the result of the ELISA experiment demonstrating the binding of several peptides (toxins) to eEF2 or BSA at two different incubation times: 1.5 min and 30 min (TB2—Tox2, GW—Tox1). -
FIG. 3 shows the results of the activity of several peptides (toxins) tested in the in vitro transcription/translation system (TB2—Tox2, GW—Tox1, GR—non-eEF2-binding control). - The following figures:
FIG. 4A -FIG. 4D ,FIG. 5A -FIG. 5F ,FIG. 6A -FIG. 6F andFIG. 7A -FIG. 7F show the effect of PEG-E13.3-toxin construct on A431 and MCF-7 cells. -
FIG. 4A -FIG. 4D show a control (no treatment):FIGS. 4A and 4B : A431 cell at T=0 and 48 h, respectively;FIGS. 4C and 4D : MCS-7 cell at T=0 and 48 h, respectively. -
FIG. 5A -FIG. 5F show: the effect of PEG-E13.3-BIM (FIG. 5A-C ) construct and of PEG-E13.3-Tox1-Tox2 (FIG. 5D-5F ) on A431 cells at different concentrations: 1 μM (FIGS. 5A and 5D ), 3 μM (FIGS. 5B and 5E ) and 8 μM (FIGS. 5C and 5F ). The pictures were taken 48 hours after the treatment. -
FIG. 6A -FIG. 6F show the effect of PEG-E13.3-BIM (FIG. 6A-C ) construct and of PEG-E13.3-Tox1-Tox2 (FIG. 6D-6F ) on MCF-7 cells at different concentrations: 1 μM (FIGS. 6A and 6D ), 3 μM (FIGS. 6B and 6E ) and 8 μM (FIGS. 6C and 6F ). The pictures were taken 48 hours after the treatment. -
FIG. 7A -FIG. 7F show treatment of A431 cells (FIGS. 7A-7C ) and MCF-7 (FIGS. 7D-7F ) with a complex of PEG-BIM (without E13.3) at different concentrations: 1 μM (FIGS. 7A and 6D ), 3 μM (FIGS. 7B and 7E ) and 8 μM (FIGS. 7C and 7F ). The pictures were taken 48 hours after the treatment. -
FIG. 8A -FIG. 8M show the effect of treatment of A431 cells with different constructs: PEG-BIM (FIG. 8B -FIG. 8D ), PEG-E13.3-BIM (FIG. 8E -FIG. 8G ), PEG-PD-L1-GR-BIM (FIG. 8H -FIG. J) and PEG-PD-L1 GR-E13.3-BIM (FIG. 8K -FIG. M) at different concentrations: 10 nM (FIG. 8B ,FIG. 8E ,FIG. 8H andFIG. 8K ), 100 nM (FIG. 8C ,FIG. 8F ,FIG. 8I andFIG. 8L ) and 1 μM (FIG. 8D ,FIG. 8G ,FIG. 8J andFIG. 8M ).FIG. 8A is a control. The pictures were taken 48 hours after the treatment. -
FIG. 9A -FIG. 9D shows effect of treatment of A-549 cells with PEG-E13.3-(PD-L1-GR)-Tox1-Tox2: 3 and 10 μM (FIGS. 9C and 9D , respectively) or PEG-E13.3-(PD-L1-GR)-BIM 10 μM.FIGS. 9A (T=0) and 9B (T=48 h) are used as a control.FIG. 9B-9D were taken 48 hours after the treatment. -
FIG. 10 shows the Coomassie Plus stained electrophoresis gel of selected peptides: lanes (from left to right): 1—E7.1; 2—E10.2; 3—E13.3; 4—E14.1.1; 5—E14.1.4; 6—E2313; 7—E2315; 8—E15.1.3-T; 9—A4.3.12-T; 10—Protein Marker (Fermentas). -
FIG. 11 shows the normalized results of inhibition analysis of the selected peptides by measuring auto phosphorylation of EGFR. -
FIG. 12 shows the result for measurement of the stability of selected peptides incubated in bovine serum for different time periods. -
FIG. 13A andFIG. 13B shows the result of assessment of inhibitory activity of the selected peptides at different concentrations (FIG. 13A general view andFIG. 13B shows E13.3 alone). -
FIG. 14 shows the in vivo stability of E13.3 peptide alone or in complex with 8-armed PEG. -
FIG. 15 shows the effect of E13.3 on viability of two cancer cell lines. -
FIG. 16 . shows the accumulation of E13.3-PEG complex in kidney, liver and tumor in mice. -
FIG. 17 show a picture of cancer cells that were isolated from a tumor inmice 1 hour (left panel) and 24 hour (right panel) following IV injection of fluorescently marked E13.3-PEG complex. -
FIG. 18A -FIG. 18C show the effect of the treatment of A-549 cells with 1 μM of: PEG-E13.3-BIM (18B), PEG-(PD-L1-GR)-BIM (18C) and PEG-E13.3-(PD-L1-GR)-BIM (18D) using PBS as a control (18A). - The present invention relates to therapeutic constructs comprising a plurality of multi-target peptides and at least one toxin moiety. In particular, a construct according to the present invention comprises a plurality of peptides each directed against a different cell-target. Peptides contained in a construct according to the invention are capable of binding, blocking, inhibiting, or activating at least two different antigens expressed on the membrane of cancer cells. The present invention provides, according to one aspect, a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier.
- The term “peptide” refers to a short chain of amino acid residues linked by peptide bonds, i.e., a covalent bond formed between the carboxyl group of one amino acid and an amino group of an adjacent amino acid. The term “peptide” refers to short sequences having up to 50 amino acids. A chain of amino acids monomers longer than 50 amino acid is referred as a “polypeptide”. Such polypeptides, when having more than 50 amino acid residues, can also be classified as proteins, more particularly, proteins of low or medium molecular weight.
- The term “peptide” encompasses also the term “peptide analog”. The term “peptide analog” and “analog” are used herein interchangeably and refer to an analog of a peptide having at least 70% identity with the original peptide, wherein the analog retains the activity of the original peptide. Thus, the terms “analog” and “active analog” may be used interchangeably. The term ““analog” refer to a peptide which contains substitutions, rearrangements, deletions, additions and/or chemical modifications in the amino acid sequence of the parent peptide. The term “analog” refers also to analogs of peptide toxins, i.e. toxins being peptides. According to some embodiments, the peptide analog has at least 80%, at least 90% or at least 95% sequence identity to the original peptide. According to one embodiment, the analog has about 70% to about 95%, about 80% to about 90% or about 85% to about 95% sequence identity to the original peptide. According to some embodiments, the analog of the present invention comprises the sequence of the original peptide in which 1, 2, 3, 4, or 5 substitutions were made.
- The substitutions of the amino acids may be conservative or non-conservative substitution. The non-conservative substitution encompasses substitution of one amino acid by any other amino acid. In one particular embodiment, the amino acid is substituted by a non-natural amino acid.
- The term “amino acid” as used herein refers to an organic compound comprising both amine and carboxylic acid functional groups, which may be either a natural or non-natural amino acid. The twenty two natural amino acids are aspartic acid (Asp), tyrosine (Tyr), leucine (Leu), tryptophan (Trp), arginine (Arg), valine (Val), glutamic acid (Glu), methionine (Met), phenylalanine (Phe), serine (Ser), alanine (Ala), glutamine (Gln), glycine (Gly), proline (Pro), threonine (Thr), asparagine (Asn), lysine (Lys), histidine (His), isoleucine (Ile), cysteine (Cys), selenocysteine (Sec), and pyrrolysine (Pyl). Non-limiting examples of non-natural amino acids include diaminopropionic acid (Dap), diaminobutyric acid (Dab), ornithine (Orn), aminoadipic acid, 0-alanine, 1-naphthylalanine, 3-(1-naphthyl)alanine, 3-(2-naphthyl)alanine, 7-aminobutiric acid (GABA), 3-(aminomethyl) benzoic acid, p-ethynyl-phenylalanine, p-propargly-oxy-phenylalanine, m-ethynyl-phenylalanine, p-bromophenylalanine, p-iodophenylalanine, p-azidophenylalanine, p-acetylphenylalanine, azidonorleucine, 6-ethynyl-tryptophan, 5-ethynyl-tryptophan, 3-(6-chloroindolyl)alanine, 3-(6-bromoindolyl)alanine, 3-(5-bromoindolyl)alanine, azidohomoalanine, p-chlorophenylalanine, α-aminocaprylic acid, O-methyl-L-tyrosine, N-acetylgalactosamine-α-threonine, and N-acetylgalactosamine-α-serine. According to one embodiment, the substitution is substitution with a non-natural amino acid.
- According to some embodiments, the term “analog” encompasses also the term “conservative analog”.
- Conservative substitutions of amino acids as known to those skilled in the art are within the scope of the present invention. Conservative amino acid substitutions include replacement of one amino acid with another having the same type of functional group or side chain, e.g., aliphatic, aromatic, positively charged, negatively charged. One of skill will recognize that individual substitutions, is a “conservatively modified analog” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. One typical example of conservative substitution is provided below.
- The following six groups each contain amino acids that are conservative substitutions for one another: (1) Alanine (A), Serine (S), Threonine (T); (2) Aspartic acid (D), Glutamic acid (E); (3) Asparagine (N), Glutamine (Q); (4) Arginine (R), Lysine (K); (5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and (6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W). In other embodiments, the conservative substitution encompass substitution with a chemically similar non-natural amino acid.
- Thus, in some embodiments, the analog is a conservative analog of the peptide. According to some embodiments, the conservative analog of the present invention comprises the sequence of the original peptide in which 1, 2, 3, 4, or 5 conservative substitutions were made. According to another embodiment, the analog consists of the amino acid sequence of the original peptide in which 1, 2 or 3 conservative substitution were made. Thus, the analog consists of the amino acid sequence of the original peptide with 1, 2 or 3 conservative substitutions.
- The term “peptide” encompasses also the term “peptide fragment”. The term “fragment” refers to a fragment of the original peptide or of an analog thereof wherein said fragment retains the activity of the original peptide or analog. Thus, the terms “fragment” and “active fragment” may be used interchangeably. According to some embodiments, the fragment consists of at least 6, at least 8, at least 9, or at least 10 consecutive amino acids of the original sequence or of an analog thereof. According to one embodiment, the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of the original sequence or analog thereof.
- The peptides, analogs and fragments of present invention may be produced by any method known in the art, including recombinant (for peptides consisting of genetically encoded amino acids) and synthetic methods. Synthetic methods include exclusive solid phase synthesis, partial solid phase synthesis, fragment condensation, or classical solution synthesis. Solid phase peptide synthesis procedures are well known to one skilled in the art. Synthetic methods to produce peptides include but are not limited to FMOC solid phase peptide synthesis described, for example in Fields G. B., Noble R., Int. J. Pept. Protein Res., 35: 161-214, 1990. Methods for synthesizing peptides on PEG are described for example in DeNardo et al. Ibid.
- In some embodiments, synthetic peptides are purified by preparative high performance liquid chromatography and the peptide sequence is confirmed via amino acid sequencing by methods known to one skilled in the art.
- In some embodiments, recombinant protein techniques, well known in the art, are used to generate peptides and peptide multimers (consisting of genetically encoded amino acids) of the present invention.
- As used herein, the term “toxin” refers to a peptide or polypeptide substance which is poisonous, harmful or toxic (cytotoxic) to mammalian cells, such as human cells. The toxin according to the present invention may be originated from living organism such as a microorganism, plant, or higher organism, or which may be synthetically prepared, produced, or designed using any known technique, for example as described in WO 2007/010525. The toxin typically interacts with cellular biological macromolecules such as enzymes and receptors to mediate its effect. The term encompasses biologically active subunits or fragments of a toxin. According to certain embodiments, the toxin is a peptide toxin, consisting of up to 50 amino acids. According to some embodiments, the toxin being a peptide may be a cyclic peptide. For the sake of clarity, the toxin being a cyclic peptide is referred as a “cyclotoxin” or “cyclic toxin”. Within a construct of the present invention, a toxin moiety confers at least some of its properties to the construct, and the construct mediates poisonous or harmful effects on the target cells. None limiting examples of peptide toxin include cyanobacteria toxins such as Microcystins and Nodularins, ProTx-I and ProTx-II toxins, snake venom-derived disintegrins such as Viperistatin or fragments thereof, and Hm-1 and Hm-2 toxins.
- The terms “carrier” refers to any molecule that covalently binds or capable of binding to the at least two different peptides and/or a toxin. Several possible binding arrangements are encompassed. According to one embodiment, one peptide and one toxin are bound via a carrier and the second peptide is bound directly to the first peptide or to the toxin. According to another embodiment, two peptides are bound via a carrier, and the toxin is bound to one of the peptides. According to a further embodiment, all peptides and toxin(s) are covalently bound to a carrier.
- According to any one of the above embodiment, the peptides and/or the toxin(s) are bound via a linker. The terms “linker” and “spacer” are used herein interchangeably and refer to any molecule that covalently binds and therefore linking two molecules. Non-limiting examples of the linker are amino acids, peptides, or any other organic substance that can be used to allow distance between two linked molecules.
- As used herein, the terms “target” and “cell target” refer to molecules found on cancer cells that may be a marker of cancer cell and may be involved in cancer cell growth, proliferation, survival and metastasis development. Particular examples of targets include cell-surface proteins, which upon binding to their counterparts, such as ligands, initiate a cascade that promotes tumor growth and development. A target according to the present invention is optionally highly expressed on cancer cells and not found, or found in substantially lower levels, on normal non-cancerous cells. The term “target” encompass therefore the term “extracellular tumor antigen”. The term “tumor antigen” or “extracellular tumor antigen” are used herein interchangeably and include both tumor associated antigens (TAAs) and tumor specific antigens (TSAs). A tumor-associated antigen means an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on normal cells or an antigen that is expressed on normal cells during fetal development. A tumor specific antigen is an antigen that is unique to tumor cells and is not expressed on normal cells. The term tumor antigen includes TAAs or TSAs that have been already identified and those that have yet to be identified and includes fragments, epitopes and any and all modifications to the tumor antigens.
- As used herein, the term “cell-targeting”, when referring to a moiety, particularly a peptide, that is part of a construct of the present invention, indicates that the peptide provides cell-, tissue- or organ-specific targeting. In particular, a cell-targeting peptide specifically recognizes and binds a cell target on cancer cells. By virtue of its binding, the cell-targeting peptide directs the entire construct to the cancerous tissue, to facilitate specific killing/inhibition of cancerous cells. Killing/inhibition of cancerous cells is typically affected via the toxin present in the construct, but in some embodiments it may be affected directly by the binding of the cell-targeting peptide.
- In one embodiment, the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently connected directly or through a carrier. According to some embodiments, the construct comprises at least 3 different said peptides. According to other embodiments, the construct comprises at least 4 different said peptides. According to certain embodiments, the construct comprises two or more different peptides binding to two or more different extracellular tumor antigens. According to one embodiment, the construct comprises three or more different peptides binding to three or more different extracellular tumor antigens. According to another embodiment, the construct comprises 4 or more different peptides binding to 4 or more different extracellular tumor antigens.
- Not limiting examples of the extracellular tumor antigens are EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR, thus according to one embodiment, at least one of the peptides binds specifically to one such extracellular tumor antigen. - According to some embodiments, at least one of the peptides binds specifically to an extracellular tumor antigens selected from Epidermal Growth Factor Receptor (EGFR) or programmed death-ligand 1 (PD-L1). The terms “PD-L1” and “human PD-L1” are used herein interchangeably. The terms “EGFR” and “human EGFR” are used herein interchangeably.
- According to other embodiments, the other one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. - According to a further embodiment, at least one of the peptides binds specifically to EGFR or PD-L1 and the other one of the at least two peptides binds specifically to an extracellular tumor antigen selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. - According to any one of the above embodiments, the peptide consists of 5 to 30 amino acids. According to other embodiments, each peptide consists of 6 to 25 amino acids. According to yet other embodiments, each peptide consists of 7 to 20 amino acids. According to some embodiments, each peptide consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acids. Each possibility represents a separate embodiment of the invention.
- According to any one of the above embodiments, the peptide of the present invention is a cyclic peptide. The terms “cyclic peptide” and “cyclopeptide” are used herein interchangeably and refer to a peptide having an intramolecular bond between two non-adjacent amino acids. The cyclization can be effected through a covalent or non-covalent bond. Intramolecular bonds include, but are not limited to, backbone to backbone, side-chain to backbone and side-chain to side-chain bonds. According to some embodiments, the cyclization occurs between the cysteines of the peptide, analogs of fragments. According to other embodiments, the cyclization occurs between the N-terminal and C-terminal amino acids.
- According to any one of the above embodiments, the construct comprises two or more peptides binding to two or more different extracellular tumor antigens. According to some embodiments, the construct comprises 2 to 10 different peptides binding to 2 to 10 different extracellular tumor antigens. According to other embodiments, the construct comprises 3 to 8, 3 to 10, or 4 to 6 different peptides. According to one embodiment, the construct comprises 2 different peptides binding to 2 different extracellular tumor antigens. According to a further embodiment, the construct comprises 3 different peptides binding to 3 different extracellular tumor antigens. According to another embodiment, the construct comprises 4 different peptides binding to 4 different extracellular tumor antigens. According to certain embodiments, the construct comprises 5, 6, 7 or 8 different peptides binding to 5, 6, 7 or 8 different extracellular tumor antigens, respectively. According to some embodiments, at least one of the peptides bind specifically to EGFR or PD-L1.
- According to one embodiment, the extracellular tumor antagonist is human EGFR. Thus, according to one embodiment, at least one of the peptides binds specifically to EGFR. According to some embodiments, the peptide is a peptide having the amino sequence set forth in SEQ ID NO: 1 (CHPGDKQEDPNCLQADK). According to other embodiments, the peptide is a peptide consisting of the amino sequence set forth in SEQ ID NO: 1. According to some such embodiments, the peptide comprising or consisting of SEQ ID NO: 2 is cyclic.
- According to another embodiment, the peptide is an analog of the peptide having SEQ ID NO: 1. In yet another embodiment, the peptide is a conservative analog of SEQ ID NO: 1. According to some embodiments, the peptide is an analog having at least 70%, at least 75%, at least 80%, at least 85, at least 90% or at least 95% identity to SEQ ID NO: 1. According to other embodiments, the analog is a peptide having 70% to 95%, 75% to 90%, or 80% to 85% sequence identity to SEQ ID NO: 1. According to some embodiments, the analog of SEQ ID NO: 1 is a conservative analog of SEQ ID NO: 1 that has 1, 2, 3, 4 or 5 conservative substitutions.
- According to a further embodiment, the peptide is a fragment of SEQ ID NO: 1 or of an analog thereof. According to some embodiments, the fragment consists of at least 6, at least 8, at least 10, at least 12, at least 14 or at least 16 consecutive amino acids of SEQ ID NO: 1 or analog thereof. According to one embodiment, the fragment consists of 5 to 16, 6 to 14, 7 to 13, 8 to 12, 8 to 12, or 9 to 11 consecutive amino acids of SEQ ID NO: 1 or analog thereof. In another embodiment, the peptide fragment consists of 6 to 16, 8 to 14 or 10 to 12 consecutive amino acids of SEQ ID NO: 1
- According to any one of the aspects and embodiments of the invention, the terms “peptide comprising the amino acid sequence set forth in SEQ ID NO: X”, “peptide comprising SEQ ID NO: X” and “peptide having SEQ ID NO: X” are used herein interchangeably. The terms “peptide consisting of the amino acid sequence set forth in SEQ ID NO: X”, “peptide consisting of SEQ ID NO: X” and “peptide of SEQ ID NO: X” are used herein interchangeably.
- According to one embodiment, the extracellular tumor antagonist is human PD-L1. Thus according to one embodiment, at least one of the peptides binds specifically to PD-L1. According to some embodiments, the peptide is a peptide having the amino sequence set forth in SEQ ID NO: 2 (CEGLPADWAAAC). According to certain embodiments, the peptide is a peptide consisting of SEQ ID NO: 2. According to some such embodiments, the peptide comprising or consisting of SEQ ID NO: 2 is cyclic.
- According to another embodiment, the peptide is an analog of SEQ ID NO: 2. In yet another embodiment, the peptide is a conservative variant of SEQ ID NO: 2. According to some embodiments, the analog is a peptide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% identity to SEQ ID NO: 2. According to other embodiments, the analog is a peptide having 70% to 95%, 75% to 90%, or 80% to 85% identity to SEQ ID NO: 2. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 2 that has 1, 2, 3, 4 or 5 conservative substitutions.
- According to a further embodiment, the peptide is a fragment of SEQ ID NO: 2 or of an analog thereof. According to some embodiments, the fragment consists as least 6, at least 7, at least 8, at least 9, at least 10 or 11 consecutive amino acids of SEQ ID NO: 2 or analog thereof. According to one embodiment, the fragment consists of 5 to 16, 6 to 14, 7 to 13, 8 to 12, 8 to 12, or 9 to 11 consecutive amino acids of SEQ ID NO: 1 or analog thereof. In another embodiment, the peptide fragment consists of 6 to 16, 8 to 14 or 10 to 12 consecutive amino acids of SEQ ID NO: 1
- According to any one of the above embodiments, the peptides comprising or consisting of SEQ ID NO: 1 or 2, analogs of fragments thereof are cyclic peptides, analogs or fragments.
- According to some embodiments, at least one of the peptides binds specifically to EGFR, and at least one of the peptides binds specifically to PD-L1. According to some embodiments, the construct of the present invention has a synergistic cytotoxicity. The term “synergistic cytotoxicity” as used herein refers to a condition in which the cytotoxicity of the construct comprising two or more tumor antigen targeting peptides is higher that the cytotoxicity of 2 or more constructs, respectively, when each such construct comprises only one of the targeting peptides. Thus, the cytotoxicity of a construct comprising PD-L1 and EGFR targeting peptides is higher that a cytotoxicity of two constructs each comprising PD-L1 or EGFR targeting peptides (considering the concentrations of the constructs). According to some embodiments, the construct comprises one peptide that binds specifically to EGFR and another peptide that binds specifically to PD-L1. According to one embodiment, the peptide that binds to EGFR is a peptide having SEQ ID NO: 1, analog or fragment thereof. According to another embodiment, the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2, analog or fragment thereof. According to certain embodiments, the construct comprises a peptide having SEQ ID NO:1, analog or fragment thereof and a peptide having SEQ ID NO: 2, analog or fragment thereof. According to certain embodiments, the construct comprises a peptide having SEQ ID NO: 1 and a peptide having SEQ ID NO: 2. According to certain embodiments, the construct comprises a peptide of SEQ ID NO: 1 and a peptide of SEQ ID NO: 2. According to some such embodiments, the peptides comprising or consisting of SEQ ID NO: 1 or 2, analogs of fragments thereof are cyclic peptides, analogs or fragments. According to some embodiments, the construct of the present invention has a synergistic cytotoxicity.
- According to any one of the above embodiments, the construct of the present invention comprises multiple copies of at least one of the different peptides.
- According to other embodiments, the construct of the present invention comprises multiple copies of each one of the at least two of the different peptides. According to another embodiment, the construct comprises multiple copies of each one of the peptides.
- The term “different peptides” refer to peptides binding to different binding site and not to two copies of the same peptide.
- According to some embodiments, the construct comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of a peptide. According to one embodiment, the construct comprises 2 to 50 copies of a peptide. According to another embodiment, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of a peptide. According to other embodiments, the construct comprises 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of each one of the two different peptides. According to one embodiment, the construct comprises 2 to 50 copies of each one of the two different peptides. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of each one of the two different peptides. In certain embodiments, the contract comprises from 7 or from 14 to 28 copies of each one of the 3, 4 or 5 different peptides.
- According to some embodiments, the construct comprises multiple copies of a peptide that binds specifically to EGFR and/or multiple copies of a peptide that binds specifically to PD-L1. According to some other embodiments, the construct comprises multiple copies of the peptide having the SEQ ID NO: 1, analog or fragment thereof and multiple copies of the peptide having the SEQ ID NO: 2, analog or fragment thereof. According to some embodiments, the construct comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of the peptide having SEQ ID NO: 1, analog or fragment thereof and/or of the peptide having the SEQ ID NO: 2, analog or fragment thereof. According to one embodiment, the construct comprises 2 to 50 copies of the peptide having SEQ ID NO: 1, analog or fragment thereof and/or of the peptide having the SEQ ID NO: 2, analog or fragment thereof. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, or from 7 to 21 copies of the peptide having the SEQ ID NO: 1. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, or from 7 to 21 copies of the peptide having the SEQ ID NO: 2. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, or from 7 to 21 copies of the each one of the peptide having the SEQ ID NO: 1 and 2. According to any one of the above embodiments, the peptides comprising or consisting of SEQ ID NO: 1 or 2, analogs of fragments thereof are cyclic peptides, analogs or fragments.
- According to any one of the above embodiments, the toxin is selected from a peptide toxin, polypeptide toxin or peptide toxin.
- According to some embodiments, the toxin is selected from the group consisting of a toxin binding to a
eukaryotic elongation factor 2 or analog of that toxins, BIM-BH3 toxin, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin. According to some embodiments, the BIM-BH3 toxin consists of the amino acid sequence MRPEIWIAQELRRIGDEFNA (SEQ ID NO: 5). - According to some embodiments, the toxin binding to
eukaryotic elongation factor 2 is a toxin having the amino acid sequence selected from CSARWGPTMPWC (as set forth in SEQ ID NO: 3) or CRRGSRASGAHC (as set forth in SEQ ID NO: 4), or an analog thereof. - According to another embodiment, the toxin is selected from the group consisting a toxin having SEQ ID NO: 3, a toxin having SEQ ID NO: 4, a toxin of SEQ ID NO: 5 (BIM-BH3 toxin), Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin.
- According to some embodiments, the toxin is a toxin comprising SEQ ID NO: 3. According to other embodiments, the toxin is a toxin comprising SEQ ID NO: 4. According to another embodiment, the toxin consists of SEQ ID NO: 3. According to yet another embodiment, the toxin consists of SEQ ID NO: 4. According to one embodiment, the toxin consists of SEQ ID NO: 5. According to some embodiments, the toxin is an analog of a toxin comprising the SEQ ID NO: 3 or 4. According to certain embodiments, the toxin is an analog of a toxin consisting of the SEQ ID NO: 3 or 4. According to some such embodiments, the toxin or analog thereof is cyclic toxin or analog.
- According to some embodiments, the analog of a toxin comprising SEQ ID NO: 3 has at least 70%, at least 75%, at least 80%, at least 85, at least 90% or at least 95% identity to SEQ ID NO: 3. According to other embodiments, the analog is a peptide having 70% to 95%, 75% to 90%, or 80% to 85% sequence identity to SEQ ID NO: 3. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 3 that has 1, 2, 3, 4 or 5 conservative substitutions.
- According to some embodiments, the analog of a toxin comprising SEQ ID NO: 4 has at least 70%, at least 75%, at least 80%, at least 85, at least 90% or at least 95% identity to SEQ ID NO: 4. According to other embodiments, the analog is a peptide having 70% to 95%, 75% to 90%, or 80% to 85% identity to SEQ ID NO: 4. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 4 that has 1, 2, 3, 4 or 5 conservative substitutions.
- According to some such embodiments, the toxins binding to eEF2, and in particular the toxins comprising or consisting of SEQ ID NO: 3, or, analogs or fragments thereof have cyclic structure, i.e. being cyclotoxins.
- According to some embodiments, the construct comprises 2 to 10 different toxins. According to one embodiment, the construct comprises 2 different toxins. According to another embodiment, the construct comprises 3 different toxins. According to a further embodiment, the construct comprises 4, 5, 6, 7, 8, 9 or 10 different toxins.
- According to certain embodiments, the construct comprises a toxin having the amino acid SEQ ID NO: 3 and a toxin having the amino acid SEQ ID NO: 4.
- According some embodiments, the construct of the present invention comprises multiple copies of at least one of the toxins. According to other embodiment, the construct comprises multiple copies of at least two toxins.
- According to some embodiments, the construct comprises multiple copies of at least one toxin having SEQ ID NO: 3 or 4. According to other embodiments, the construct comprises multiple copies of at least one toxin having SEQ ID NO: 3, or 4.
- According to some embodiments, the construct comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of a toxin. According to one embodiment, the construct comprises 2 to 50 copies of a toxin. According to another embodiment, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of a toxin. According to other embodiments, the construct comprises 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20 copies of each one of two different toxins. According to one embodiment, the construct comprises 2 to 50 copies of each one of two different toxins. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of each one of two different toxins. In certain embodiments, the contract comprises from 7 or from 14 to 28 copies of each one of the 3, 4 or 5 different toxins.
- According to some embodiments, the construct comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25, 2 to 50, or 10 to 20 copies of a toxin having SEQ ID NO: 3, analog or fragment thereof and/or of the toxin having the SEQ ID NO: 4, analog or fragment thereof. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the toxin having the SEQ ID NO: 3. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the toxin having the SEQ ID NO: 4. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the each one of the toxins having the SEQ ID NO: 3 and 4.
- According to one embodiment, the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1. According to some embodiments, the ratio is about 0.2:1 to 8:1, about 0.4:1 to 6:1 about 0.5:1 to 5:1 about 0.6:1 to 4:1, about 0.8 to 1 to 2:1 or about 1:1. According to one embodiment, the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is 1:1.
- According to some embodiments, the present invention provides a construct of the present invention comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1 and the toxin is selected from a toxin binding to a
eukaryotic elongation factor 2, BIM-BH3 toxin having the amino acid sequence set forth in SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, cyanotoxin, and any combination thereof. According to some embodiments, the toxin is a toxin binding toeukaryotic elongation factor 2. According to some embodiments, the present invention provides a construct in which one of the peptides binds specifically to EGFR and one of the peptides binds specifically to PD-L1 and the toxin binds to aeukaryotic elongation factor 2 or the toxin of SEQ ID NO: 5. According to some embodiments, the peptides that binds specifically to EGFR is a peptide having SEQ ID NO:1, an analog or a fragment thereof, the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2, an analog or a fragment thereof, and the toxin is selected from a toxin having SEQ ID NO: 3 or 4. According to some embodiments, the construct comprises multiple copies of (i) one peptide, (ii) two peptides, (iii) one toxin and/or (iv) two toxins. According to some embodiments, the construct comprises multiple copies of: (i) a peptide having SEQ ID NO:1, an analog or a fragment thereof, (ii) a peptide having SEQ ID NO: 2, an analog or a fragment thereof, and (iii) a toxin selected from a toxin having SEQ ID NO: 3 or 4, or combination thereof. According to other embodiments, the construct comprises multiple copies of (i) a peptide of SEQ ID NO:1, (ii) a peptide of SEQ ID NO: 2, (iii) the toxin of SEQ ID NO: 3 or 4, or a combination thereof. According to other embodiments, the construct comprises multiple copies of each one of: (i) a peptide of SEQ ID NO: 1, (ii) a peptide of SEQ ID NO: 2, (iii) the toxin of SEQ ID NO: 3, and (iv) the toxin of SEQ ID NO: 4. According to some embodiments, the construct of the present invention has a synergistic cytotoxicity. According to some such embodiments, the peptides, analogs thereof or the fragments thereof and/or the toxins, the analogs thereof or the fragments thereof are cyclic peptides, analogs or the fragments and/or cyclic toxins, analogs of fragments thereof, respectively. - According to any one of the above embodiment, the peptides of the present invention are covalently bound to each other. According to one embodiment, the peptides and the toxins are bound directly, i.e. without a carrier. According to other embodiments, the peptides of the present invention are covalently bound through a carrier. According to one embodiment, the carrier is an organic scaffold, thus the peptides are covalently bound through a scaffold.
- According to some embodiments, the scaffold is a peptidic scaffold. According to other embodiments, the peptidic scaffold connects the peptides to each other on a single location in the scaffold, or to a different location on a scaffold. Each possibility represents a separate embodiment of the invention. According to some embodiments, the scaffold comprises at least one Lysine (Lys) residue. According to other embodiments, the scaffold comprises at least three Lys residues. According to further embodiments, the at least three Lys residues are connected together by amide bonds to form a branched multimeric scaffold. According to some embodiments, at least one amide bond is formed between the epsilon amine of a Lys residue and the carboxy group of another Lys residue.
- According to a particular embodiment, the construct comprises a molecule according to one of the schemes presented below,
- wherein X represents the peptide's and/or the toxin's C-terminal selected from carboxy acid, amide or alcohol group and optionally a linker or spacer, and peptide denotes a peptide according to the present invention, e.g. having 7-20 amino acids capable of binding to a cell-target. Each possibility represents a separate embodiment of the present invention.
- According to some specific embodiments, at least one of the peptides and/or the toxin(s) is present in multiple copies. According to some embodiments, the multiple copies are linked thereby forming a multi-target peptide multimer. According to some embodiments, the peptide and/or the toxin(s) copies are linked through a linker. According to other embodiments, the peptides and/or the toxin(s) copies are linked directly. According to a further embodiments, the multimer comprises copies linked both directly and via a linker.
- According to some embodiments, the construct comprises a peptide multimer comprising a plurality of cell-targeting peptides arranged in an alternating sequential polymeric structure B(X1X2X3 . . . Xm)nB or in a block copolymer structure B(X1)nZ(X2)nZ(X3)nZ . . . (Xm)n, wherein B is an optional sequence of 1-10 amino acid residues; n is at each occurrence independently an integer of 2-50; m is an integer of 3-50; each of X1, X2 . . . Xm is an identical or different peptide consisting of 5-30 amino acid residues; Z at each occurrence is a bond or a spacer of 1-4 amino acid residues. According to particular embodiments, n is at each occurrence independently an integer of 2-10; m is an integer of 3-10; each of X1, X2 . . . Xm is an identical or different peptide consisting of 7-20 amino acid residues; Z at each occurrence is a bond or a spacer of 1-4 amino acid residues. Each possibility represents a separate embodiment of the present invention.
- According to some embodiments, the peptide multimer comprises 2-8 different or identical peptides. According to a particular embodiment, the peptide multimer comprises 4-10 copies of a single peptide sequence. According to yet other embodiments, the peptide multimer consists of 2-10, 3-9, 4-8, or 10-100 different or identical peptides. Each possibility represents a separate embodiment of the present invention.
- According to other embodiments, the scaffold comprises or formed from a polyethylene glycol (PEG) molecule(s) or a modified PEG molecule(s). According to certain embodiments, the scaffold comprises a branched PEG molecule. According to some embodiments, the branched molecule comprises at least two sites available to bind a peptide of the present invention. According to other embodiments, the scaffold comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20, or 2 to 50 sites available to bind a peptide. According to one embodiment, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 sites available to bind a peptide. According to certain embodiment, the scaffold comprises 8 or 56 sites available to bind a peptide. According to further embodiments, the scaffold comprises 42 or 49 to 56 sites available for binding a peptide.
- According to some embodiments, the PEG molecule is a branched molecule, comprising at least two separate connections to a peptide. According to some embodiments, the PEG has 8 binding sites. According to other embodiments, the PEG is bound to additional PEG molecules. According to certain embodiments, multiple PEG molecules are bound to provide a multi-armed PEG molecule. According to some embodiments, eight 8-armed PEG molecules are abound to one central 8-armed PEG molecule to provide one PEG molecules with 56 sites capable of binding the peptides of the toxins of the present invention. According certain embodiments, the peptides are connected to the PEG scaffold through amide bonds formed between amino groups of an NH2—PEG molecule. According to yet other embodiments, at least one peptide is connected to PEG scaffold though a Lys residue.
- According to some embodiments, the peptides are bound to a PEG scaffold though a Lys residue.
- According to some embodiments, the present invention provides a construct in which at least one of the peptides bound to PEG scaffold binds specifically to an extracellular tumor antigen selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. According to certain embodiments, at least one of the peptides bound to PEG scaffold binds specifically to EGFR or PD-L1. According to some embodiments, the peptide that binds specifically to EGFR and the peptide that binds specifically to PD-L1 are both bound to the scaffold. According to one embodiment, the peptide that binds to EGFR is a peptide having SEQ ID NO: 1, analog or fragment thereof. According to another embodiment, the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2, analog or fragment thereof. According to certain embodiments, the construct comprises the peptide having SEQ ID NO: 1, analog or fragment thereof and a peptide having SEQ ID NO: 2, analog or fragment thereof both bound to the scaffold. According to certain embodiments, the construct comprises a peptide having SEQ ID NO: 1 and peptide having SEQ ID NO: 2 bound to the scaffold. According to certain embodiments, the construct comprises a peptide of SEQ ID NO: 1 and a peptide of SEQ ID NO: 2 bound to the scaffold. According to some such embodiments, the peptides comprising or consisting of SEQ ID NO: 1 or 2, analogs of fragments thereof are cyclic peptides, analogs or fragments. - According to some embodiments, the present invention provides a construct, wherein the scaffold is bound to multiple copies of at least one of the peptides. According to some embodiments, the scaffold is bound to multiple copies of each of the at least two of the peptides. According to certain embodiments, at least one of the peptides that is bound to PEG scaffold binds specifically to EGFR or PD-L1. According to some embodiments, the scaffold is bound to multiple copies of a peptide that binds specifically to EGFR. According to other embodiments, the scaffold is bound to multiple copies of a peptide that binds specifically to PD-L1. According to a further embodiment, the scaffold is bound to multiple copies of a peptide that binds specifically to EGFR and to multiple copies of a peptide that binds specifically to PD-L1. According to one embodiment, the peptide that binds to EGFR is a peptide having SEQ ID NO: 1, analog or fragment thereof. According to another embodiment, the peptide that binds specifically to PD-L1 is peptide having SEQ ID NO: 2, analog or fragment thereof. According to one embodiment, the scaffold is bound to multiple copies of the peptide having SEQ ID NO: 1 and to multiple copies of the peptide having SEQ ID NO: 2. According to some such embodiments, the peptides comprising or consisting of SEQ ID NO: 1 or 2, analogs of fragments thereof are cyclic peptides, analogs or fragments.
- According to some embodiments, the scaffold comprises a carbohydrate moiety.
- According to other embodiments, the toxin is bound to a carrier. The carrier may be as described herein above. Thus, according to one embodiment, the carrier is a scaffold. According to certain embodiments, the carrier is a peptidic scaffold.
- According to other embodiments, the scaffold is PEG scaffold, i.e. formed from PEG. According to certain embodiments, the scaffold comprises a branched PEG molecule. According to some embodiments, the branched molecule comprises at least one available site to bind a toxin.
- According to other embodiments, the scaffold comprises from 2 to 100, 3 to 90, 4 to 60, 5 to 50, 6 to 40, 7 to 35, 8 to 30, 9 to 25 or 10 to 20, or 2 to 50 sites available to bind a toxin. According to one embodiment, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 sites available to bind a toxin. According to certain embodiment, the scaffold comprises 8 or 56, or 42 or 49 to 56 sites available for bind a toxin.
- According to some embodiments, the present invention provides as a construct, wherein the PEG scaffold is bound to multiple copies of at least one toxin. According to some embodiments, the present invention provides a construct, where the scaffold is bound to multiple copies of at least two toxins. According to some embodiments, the toxin is selected from the groups consisting of a toxin having SEQ ID NO: 3, a toxin having SEQ ID NO: 4, a toxin having SEQ ID NO: 5 (BIM-BH3 toxin), Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, cyanotoxin, and any combination thereof. According to some embodiments, the toxin is a toxin of SEQ ID NO: 3 or 4.
- According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 3, an analog or fragment thereof. According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 4, an analog or fragment thereof. According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 5. According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin of SEQ ID NO: 3 or 4.
- According to one embodiment, the PEG scaffold is bound to multiple copies of each one of the toxins. According to one embodiment, the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 3 and to multiple copies of a toxin having SEQ ID NO: 4. According to one embodiment, the PEG scaffold is bound to multiple copies of the toxin of SEQ ID NO: 3 and to multiple copies of a toxin of SEQ ID NO: 4.
- According to some such embodiments, the peptides comprising or consisting of SEQ ID NO: 1 or 2, analogs of fragments thereof are cyclic peptides, analogs or fragments. Additionally, the peptides comprising or consisting of SEQ ID NO: 3 or 4, analogs or fragments thereof are cyclic, i.e. cyclic toxins.
- According to some embodiments, the present invention provides a construct comprising a PEG scaffold bound to at least two different peptides binding to at least two different extracellular tumor antigens, and to at least one toxin, wherein at least one of peptides binds specifically to the extracellular tumor antigens is selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. - According to some embodiments, the present invention provides a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens and at least one toxin, wherein each of said peptides and toxin(s) is bound to a PEG scaffold and wherein at least one of peptides binds specifically to the extracellular tumor antigens selected from EGFR and PD-L1. According to one embodiment, one of the peptides binds specifically to EGFR and the another one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. According to another embodiment, one of the peptides binds specifically to PD-L1 and the another one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of EGFR, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. According to other embodiments, one of the peptides binds specifically to EGFR and the other one of the at least two peptides binds specifically to PD-L1. According to some embodiments, the peptides binds specifically to EGFR is a peptide having SEQ ID NO:1, an analog or fragment thereof. According to some embodiments, the peptides binds specifically to PD-L1 is a peptide having SEQ ID NO:2, an analog or fragment thereof. According to some such embodiments, the peptide is a cyclopeptide. According to some embodiments, the toxin is selected from the groups consisting of a toxin having SEQ ID NO: 3, a toxin having SEQ ID NO: 4, a toxin having SEQ ID NO: 5 (BIM-BH3 toxin), Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin. According to some embodiments, the toxin is selected from the groups consisting of a toxin of SEQ ID NO: 3, a toxin of SEQ ID NO: 4, and a toxin of SEQ ID NO: 5. According to some embodiments, the scaffold is bound to 2, 3, or 4 different toxins. According to some embodiments, the PEG scaffold is bound to multiple copies of at least one of the peptides. According to other embodiments, the PEG scaffold is bound to multiple copies of each one of the at least two peptides. According to further embodiments, the PEG scaffold is bound to multiple copies of a toxin. According to certain embodiments, the PEG scaffold is bound to multiple copies of each one of two or more toxins. According to one embodiment, the scaffold is bound to multiple copies of a peptide having SEQ ID NO:1. According to another embodiment, the scaffold is bound to multiple copies of a peptide having SEQ ID NO:2. According to a further embodiment, the scaffold is bound to multiple copies of a peptide having SEQ ID NO: 1 and to multiple copies of a peptide having SEQ ID NO:2. According to one embodiment, the scaffold is bound to multiple copies of a toxin having SEQ ID NO: 3. According to another embodiment, the scaffold is bound to multiple copies of a toxin having SEQ ID NO: 4. According to a further embodiment, the PEG scaffold is bound to multiple copies of a toxin having SEQ ID NO: 3 and to multiple copies of a toxin having SEQ ID NO: 4. According to yet another embodiment, the PEG scaffold is bound to multiple copies of the toxin of SEQ ID NO: 3 and to multiple copies of a toxin of SEQ ID NO: 4. According to one embodiment, the molar ratio of the toxin having the amino acid SEQ ID NO: 3 or 5 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1 or 1:1. According to some embodiments, the construct of the present invention has a synergistic cytotoxicity. - According to some embodiments, the present invention provides a construct comprising multiple copies of a peptide having SEQ ID NO:1, multiple copies of a peptide having SEQ ID NO:2, multiple copies of a toxin having SEQ ID NO: 3 and multiple copies of a toxin having SEQ ID NO: 4, wherein each of the copies of the peptides and the toxins is bound to a PEG scaffold. According to some embodiments, the present invention provides a construct comprising a PEG scaffold bound to multiple copies of a peptide of SEQ ID NO:1, to multiple copies of a peptide of SEQ ID NO:2, multiple copies of a toxin of SEQ ID NO: 3 and to multiple copies of a toxin of SEQ ID NO: 4. According to one embodiment, the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1 or 1:1. According to some embodiments, the stoichiometric molar ratio between the peptide having SEQ ID NO:1, the peptide of SEQ ID NO:2, the toxin having SEQ ID NO: 3 and the toxin having SEQ ID NO: 3 is 1:1:3:3. According to other embodiments, the stoichiometric molar ratio between the peptide having SEQ ID NO:1, the peptide of SEQ ID NO:2, the toxin having SEQ ID NO: 3 and the toxin having SEQ ID NO: 4 is selected from 1:2:3:2, 1:2:2:3, 2:1:3:2, 2:1:2:3 and 2:2:2:2. In the abovementioned embodiments, the peptides comprising or consisting of SEQ ID NO: 1 or 2 are cyclopeptides and the toxins comprising or consisting of SEQ ID NO: 3 or 4 are cyclotoxins. According to some embodiments, the construct of the present invention has a synergistic cytotoxicity.
- According to any one of the above embodiments, the peptides and/or the toxin(s) are bound directly or through a spacer. According to other embodiments, the peptides and/or the toxin(s) are bound to the carrier, e.g. to a scaffold, through a spacer. According to some specific embodiments, the spacer comprises at least one amino acid residue.
- According to any one of the above embodiments, the construct further comprises a permeability-enhancing moiety. The permeability-enhancing moiety may be bound directly to a peptide and/or to a toxin, or may be bound to the scaffold, optionally via a spacer. The term “permeability-enhancing moiety” refers to any moiety known in the art to facilitate actively or passively or enhance permeability of the compound through body barriers or into the cells. Non-limitative examples of permeability-enhancing moiety include: hydrophobic moieties such as fatty acids, steroids and bulky aromatic or aliphatic compounds; moieties which may have cell-membrane receptors or carriers, such as steroids, vitamins and sugars, natural and non-natural amino acids and transporter peptides, nanoparticles and liposomes. The term “permeability” refers to the ability of an agent or substance to penetrate, pervade, or diffuse through a barrier, membrane, or a skin layer.
- According to another aspect, the present invention provides a composition comprising a construct of the present invention. According to one embodiment, the composition is a pharmaceutical composition. Thus, in some embodiments, the present invention provides a pharmaceutical composition comprising a construct of the present invention and a pharmaceutically acceptable excipient. All definitions, terms and embodiments of previous aspects are explicitly encompassed by this aspect.
- The term “pharmaceutical composition” as used herein refers to a composition comprising the construct of the present invention as disclosed herein optionally formulated with one or more pharmaceutically acceptable excipients.
- Formulation of the pharmaceutical composition may be adjusted according to applications. In particular, the pharmaceutical composition may be formulated using a method known in the art so as to provide rapid, continuous or delayed release of the active ingredient after administration to mammals. For example, the formulation may be any one selected from among plasters, granules, lotions, liniments, lemonades, aromatic waters, powders, syrups, ophthalmic ointments, liquids and solutions, aerosols, extracts, elixirs, ointments, fluidextracts, emulsions, suspensions, decoctions, infusions, ophthalmic solutions, tablets, suppositories, injections, spirits, capsules, creams, troches, tinctures, pastes, pills, and soft or hard gelatin capsules.
- The term “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” as used herein refers to any and all solvents, dispersion media, preservatives, antioxidants, coatings, isotonic and absorption delaying agents, surfactants, fillers, disintegrants, binders, diluents, lubricants, glidants, pH adjusting agents, buffering agents, enhancers, wetting agents, solubilizing agents, surfactants, antioxidants the like, that are compatible with pharmaceutical administration. Non-limiting examples of suitable excipients are example, water, saline, phosphate buffered saline (PBS), dextrose, glycerol, ethanol, or the like and combinations thereof. Other suitable carriers are well known to those skilled in the art. The use of such media and agents for pharmaceutically active substances is well known in the art. The compositions may contain other active compounds providing supplemental, additional, or enhanced therapeutic functions.
- The constructs of the present invention could be, according to some embodiments, suspended in a sterile saline solution for therapeutic uses. Numerous suitable drug delivery systems are known and include, e.g., implantable drug release systems, hydrogels, hydroxymethylcellulose, microcapsules, liposomes, microemulsions, microspheres, and the like. Controlled release preparations can be prepared through the use of polymers to complex or adsorb the molecule according to the present invention. For example, biocompatible polymers include matrices of poly(ethylene-co-vinyl acetate) and matrices of a polyanhydride copolymer of a stearic acid dimer and sebaric acid. The rate of release of the molecule according to the present invention from such a matrix depends upon the molecular weight of the molecule, the amount of the molecule within the matrix, and the size of dispersed particles.
- The pharmaceutical composition of the present invention may be administered by any know method. The terms “administering” or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art. For example, a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitonealy, intravenously, subcutaneously, ocularly, sublingually, orally (by ingestion), intranasally (by inhalation), intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct). A compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods. In some embodiments, the administration includes both direct administration, including self-administration, and indirect administration, including the act of prescribing a drug. For example, as used herein, a physician who instructs a patient to self-administer a drug, or to have the drug administered by another and/or who provides a patient with a prescription for a drug is administering the drug to the patient.
- According to some embodiments, the pharmaceutical composition is administered by an invasive mode of administration such as intramuscularly, intravenously, intra-arterially, intraarticulary or parenterally.
- It will be apparent to those of ordinary skill in the art that the therapeutically effective amount of the molecule according to the present invention will depend, inter alia upon the administration schedule, the unit dose of molecule administered, whether the molecule is administered in combination with other therapeutic agents, the immune status and health of the patient, the therapeutic activity of the molecule administered and the judgment of the treating physician. As used herein, a “therapeutically effective amount” refers to the amount of a molecule required to alleviate one or more symptoms associated with a disorder being treated over a period of time.
- Although an appropriate dosage of a molecule of the invention varies depending on the administration route, type of molecule (polypeptide, polynucleotide, organic molecule etc.) age, body weight, sex, or conditions of the patient, it will be determined by the physician in the end. Various considerations in arriving at an effective amount are described, e.g., in Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th ed., Pergamon Press, 1990; and Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Co., Easton, Pa., 1990.
- In one particular embodiment, the pharmaceutical composition of the present invention comprises a construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein the peptides and the toxin are covalently bound directly or through a carrier. According to some embodiments, at least one of the peptides binds specifically to an extracellular tumor antigens selected from EGFR and PD-L1. According to another embodiment, the other one of the at least two peptides binds specifically to an extracellular tumor antigen selected from the group consisting of EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. According to certain embodiments, the construct comprises from 2 to 10 different peptides. According to some embodiments, at least one of the peptides binds specifically to EGFR, and at least one of the peptides binds specifically to PD-L1. According to one embodiment, the peptide that binds to EGFR is a peptide having SEQ ID NO: 1, analog or fragment thereof. According to another embodiment, the peptide that binds specifically to PD-L1 is a peptide having SEQ ID NO: 2, analog or fragment thereof. According to a further embodiment, the construct comprises a peptide having or consisting of SEQ ID NO: 1 and a peptide having or consisting of SEQ ID NO: 2. According to some embodiments, the pharmaceutical composition comprises a construct comprising multiple copies of one or of two of said peptides. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42, from 28 to 35, or from 7 to 21 copies of the each one of the peptide having the SEQ ID NO: 1 and 2. According to some embodiments, the toxin is selected from the group consisting of a toxin binding to aeukaryotic elongation factor 2 or analog of that toxins, BIM-BH3 toxin, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin. According to some embodiments, the BIM-BH3 toxin consists of SEQ ID NO: 5. According to certain embodiments, the toxin binding toeukaryotic elongation factor 2 is a toxin having the amino acid sequence selected from SEQ ID NO: 3 or 4, or an analog thereof. According to some embodiments, the construct comprises 2 to 10 different toxins. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, or from 7 to 21 copies of one or of two toxins. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the each one of the toxins having the SEQ ID NO: 3 or 4. According to some embodiments, the construct comprises from 7 to 56, from 14 to 48, from 21 to 42 from 28 to 35, from 7 to 21 copies of the each one of the toxins having the SEQ ID NO: 3 and 4. According to one embodiment, the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1 or about 1:1. According to some embodiments, the peptide(s) is a cyclic peptide(s) and the toxin(s) is a cyclic toxin(s). - According to some embodiments, the pharmaceutical composition of the present invention comprises a construct comprising a PEG scaffold, at least two different peptides binding to at least two different extracellular tumor antigens, and at least one toxin, wherein at least one of peptides binds specifically to the extracellular tumor antigens selected from EGFR and PD-L1, and each one of the peptides and the toxins are bound to the scaffold. According to other embodiments, one of the peptides binds specifically to EGFR and the other one to the at least two peptides binds specifically to PD-L1. According to some embodiments, the peptides binds specifically to EGFR is a peptide having SEQ ID NO:1, an analog or fragment thereof. According to some embodiments, the peptides binds specifically to PD-L1 is a peptide having SEQ ID NO:2, an analog or fragment thereof. According to some embodiments, the present invention provides a construct comprising a PEG scaffold, multiple copies of a peptide having SEQ ID NO:1, multiple copies of a peptide having SEQ ID NO:2, and multiple copies of a toxin having SEQ ID NO: 3, wherein each copy of each one of the peptides and each copy of the toxin are bound to the scaffold. According to one embodiment, the construct comprising a PEG scaffold, multiple copies of a peptide having SEQ ID NO:1, multiple copies of a peptide having SEQ ID NO:2, and multiple copies of a toxin having SEQ ID NO: 4, wherein each copy of each one of the peptides and each copy of the toxin are bound to the scaffold.
- According to some embodiments, the present invention provides a construct comprising a PEG scaffold bound to multiple copies of a peptide having SEQ ID NO:1, to multiple copies of a peptide having SEQ ID NO:2, multiple copies of a toxin having SEQ ID NO: 3 and to multiple copies of a toxin having SEQ ID NO: 4. According to some embodiments, the present invention provides a construct comprising a PEG scaffold bound to multiple copies of a peptide of SEQ ID NO:1, to multiple copies of a peptide of SEQ ID NO:2, multiple copies of a toxin of SEQ ID NO: 3 and to multiple copies of a toxin of SEQ ID NO: 4. According to one embodiment, the molar ratio of the toxin having the amino acid SEQ ID NO: 3 to the toxin having the amino acid SEQ ID NO: 4 is about 0.1:1 to about 10:1 or 1:1. According to some embodiments, the stoichiometric molar ratio between the peptide having SEQ ID NO:1, the peptide of SEQ ID NO:2, the toxin having SEQ ID NO: 3 and the toxin having SEQ ID NO: 3 is 1:1:3:3. According to other embodiments, the stoichiometric molar ratio between the peptide having SEQ ID NO:1, the peptide of SEQ ID NO: 2, the toxin having SEQ ID NO: 3 and the toxin having SEQ ID NO: 4 is selected from 1:2:3:2, 1:2:2:3, 2:1:3:2, 2:1:2:3 and 2:2:2:2. In the abovementioned embodiments, the peptides comprising or consisting of SEQ ID NO: 1 or 2 are cyclopeptides and the toxins comprising or consisting of SEQ ID NO: 3 or 4 are cyclotoxins. According to some embodiments, the construct of the present invention has a synergistic cytotoxicity, therefore such pharmaceutical composition, when administered, provides a profound therapeutic effect.
- According to any one of the above embodiments, the pharmaceutical composition comprises a plurality of the constructs according to the present invention and according to the above embodiments.
- According to another embodiment, the present invention provides a pharmaceutical composition according to the present invention, for use in treating a cell proliferative disease or disorder. According to some embodiments, the cell proliferative disease or disorder is cancer. Thus, according to one embodiment, the pharmaceutical composition of the present invention is for use in treating cancer.
- The terms “treating” of “treatment of” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results. Beneficial or desired clinical results include, but are not limited to, or ameliorating abrogating, substantially inhibiting, slowing or reversing the progression of a disease, condition or disorder, substantially ameliorating or alleviating clinical or esthetical symptoms of a condition, substantially preventing the appearance of clinical or esthetical symptoms of a disease, condition, or disorder, and protecting from harmful or annoying symptoms. Treating further refers to accomplishing one or more of the following: (a) reducing the severity of the disorder; (b) limiting development of symptoms characteristic of the disorder(s) being treated; (c) limiting worsening of symptoms characteristic of the disorder(s) being treated; (d) limiting recurrence of the disorder(s) in patients that have previously had the disorder(s); and/or (e) limiting recurrence of symptoms in patients that were previously asymptomatic for the disorder(s).
- According to some embodiments, treating cancer comprises preventing or treatment tumor metastasis. According to certain embodiments, the metastasis is decreased. According to other embodiments, the metastasis is prevented.
- According to some embodiments, treating cancer comprises increasing the duration of survival of a subject having cancer, comprising administering to the subject in need thereof a composition comprising a construct defined above whereby the administration of the construct increases the duration of survival.
- According to some embodiments, treating cancer comprises increasing the progression of free survival of a subject having cancer.
- According to some embodiments, treating cancer comprises increasing the duration of response of a subject having cancer. According to other embodiments, treating cancer comprises preventing tumor recurrence.
- The cancer amendable for treatment according to the present invention includes, but not limited to: carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer, lung cancer (including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer (including gastrointestinal cancer), pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer, as well as B-cell lymphoma (including low grade/follicular non-Hodgkin's lymphoma (NHL); small lymphocytic (SL) NHL; intermediate grade/follicular NHL; intermediate grade diffuse NHL; high-grade immunoblastic NHL; high-grade lymphoblastic NHL; high-grade small non-cleaved cell NHL; bulky disease NHL; mantle cell lymphoma; AIDS-related lymphoma; and Waldenstrom's Macroglobulinemia); chronic lymphocytic leukemia (CLL); acute lymphoblastic leukemia (ALL); Hairy cell leukemia; chronic myeloblastic leukemia; and post-transplant lymphoproliferative disorder (PTLD), as well as abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome.
- According to some embodiments, the cancer is selected from the group consisting of breast cancer, colorectal cancer, rectal cancer, non-small cell lung cancer, non-Hodgkins lymphoma (NHL), renal cell cancer, prostate cancer, liver cancer, pancreatic cancer, soft-tissue sarcoma, Kaposi's sarcoma, carcinoid carcinoma, head and neck cancer, melanoma, ovarian cancer, mesothelioma, and multiple myeloma. The cancerous conditions amendable for treatment of the invention include metastatic cancers.
- According to other embodiments, the cancer is a solid cancer.
- The pharmaceutical composition according to the present invention may be administered as a stand-alone treatment or in combination with a treatment with any other agent. According to a specific embodiment, constructs according to the present invention are administered to a subject in need thereof as part of a treatment regimen in combination with at least one anti-cancerous agent. The pharmaceutical composition according to the present invention may be administered in combination with the anti-cancerous agent or separately.
- The pharmaceutical composition according to the present invention may be administered together with an anti-neoplastic composition.
- According to a specific embodiment, the anti-neoplastic composition comprises at least one chemotherapeutic agent.
- The term “anti-neoplastic composition” refers to a composition useful in treating cancer comprising at least one active therapeutic agent capable of inhibiting or preventing tumor growth or function or metastasis, and/or causing destruction of tumor cells. Therapeutic agents suitable in an anti-neoplastic composition for treating cancer include, but not limited to, chemotherapeutic agents, radioactive isotopes, toxins, cytokines such as interferons, and antagonistic agents targeting cytokines, cytokine receptors or antigens associated with tumor cells.
- A “chemotherapeutic agent” is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e. g., calicheamicin, especially calicheamicin gammalI and calicheamicin omegaIl (e.g., Agnew, Chem Intl. Ed. Engl. 33:183-186 (1994)); dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, Oreg.); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2′, 2″-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g., TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE™ Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Ill.), and TAXOTERE® doxetaxel (Rhone-Poulenc Rorer, Antony, France); chloranbucil; GEMZAR® gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum coordination complexes such as cisplatin, oxaliplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; NAVELBINE® vinorelbine; novantrone; teniposide; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; irinotecan (e.g., CPT-11); topoisomerase inhibitor RFS 2000; difluorometlhylornithine (DMFO); retinoids such as retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
- Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and FARESTON toremifene; aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestanie, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole; and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those which inhibit expression of genes in signaling pathways implicated in aberrant cell proliferation, such as, for example, PKC-alpha, Raf and H-Ras; ribozymes such as a VEGF expression inhibitor (e.g., ANGIOZYME® ribozyme) and a HER2 expression inhibitor; vaccines such as gene therapy DNA-based vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; PROLEUKIN® rIL-2; LURTOTECAN® topoisomerase 1 inhibitor; ABARELIX® rmRH; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
- According to another aspect, the present invention provides a method of treating cancer in a subject in need thereof comprising administering to said subject a pharmaceutical composition of the present invention. According to one embodiment, the present invention provides a method of treating cancer in a subject in need thereof comprising administering to said subject a therapeutically effective amount of a construct of the present invention. According to some embodiments, the pharmaceutical composition is administered as part of a treatment regimen together with at least one anti-cancer agent. The term “therapeutically effective amount” is an amount of a drug, compound, construct etc. that, when administered to a subject will have the intended therapeutic effect. The full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses.
- According to another aspect, the present invention provides a peptide that binds specifically to human eukaryotic Elongation Factor 2 (eEF2), an analog or fragment thereof. According to one embodiment, the present invention provides a peptide that binds specifically to human eEF2. According to some embodiments, the peptide is a toxin. According some embodiments, the peptide consists of 5 to 30 amino acids. According to other embodiments, each peptide consists of 6 to 25 amino acids. According to yet other embodiments, each peptide consists of 7 to 20 amino acids. According to some embodiments, each peptide consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acids. Each possibility represents a separate embodiment of the invention.
- According to some embodiments, the peptide that binds to human eEF2 is a peptide having SEQ ID NO: 3. According to certain embodiments the present invention provides an analog of SEQ ID NO:3. According to a further embodiment, the present invention provides a the fragment of the peptide or of the analog. According to one embodiment, the peptide is a peptide having SEQ ID NO: 3. According to another embodiment, the peptide is a peptide of SEQ ID NO: 3. According to some embodiments, the peptide is a cyclic peptide.
- According to some embodiments, the analog has a sequence identity of at least 70%, at least 80%, or at least 90% to SEQ ID NO: 3. According to some embodiments, the analog has at least 70%, at least 75%, at least 80%, at least 85, at least 90% or at least 95% sequence identity to SEQ ID NO: 3. According to other embodiments, the analog has about 70% to 95%, 75% to 90%, or 80% to 85% sequence identity to SEQ ID NO: 3. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 3. According to some embodiments, the conservative analog of SEQ ID NO: 3 has 1, 2, 3, 4 or 5 conservative substitutions in SEQ ID NO: 3. According to some embodiments, the analog is a cyclopeptide.
- According to one embodiment, the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of SEQ ID NO: 3 or analog thereof.
- According to some embodiments, the peptide comprising or consisting of SEQ ID NO: 3 enhances the activity of human eEF2. According to one embodiment, the peptide is an agonist of eEF2. According to another embodiment, the analog of SEQ ID NO: 3 or the fragment of the peptide or the analog enhances the activity of eEF2.
- According to one embodiment, the peptide comprising or consisting of SEQ ID NO:3, analog thereof or the fragment of the peptide or said analog is a toxin. In one embodiment, the peptide is for use in inducing cell death in target cells. According to some embodiments, the cells are cancer cells. According to one embodiment, the peptide comprising SEQ ID NO:3 is for use in inducing cell death in target cells. According to another embodiment, the peptide consisting of SEQ ID NO:3 is for use in inducing cell death in target cells. According to a further embodiment, the analog of a peptide comprising or consisting of SEQ ID NO: 3 is for use in inducing cell death in target cells.
- The terms “induce cell death” and “promote cell death” are used herein interchangeably and mean that the of the present invention (i.e. the peptide, the analog or the fragment) can directly inducing cell death to cells, where cell death includes apoptosis and necrosis. The cell death may be caused due to interaction of the compound of the present invention with molecules molecule expressed on the cell surface or with molecules located within the cell such as molecule located in the cytosol, bound to the inner side of the cell membrane, located in the organelles or present on the membrane of the organelles, either inner or outer part of it.
- The term “cell death” as used herein encompasses both destruction and damage or impairment of cells. The term “cell death” encompasses cell ablation.
- According to some embodiments, the peptide that binds to human eEF2 is a peptide having SEQ ID NO: 4. According to certain embodiments, the present invention provides an analog of SEQ ID NO: 4. According to a further embodiment, the present invention provides a fragment of the peptide or of the analog. According to one embodiment, the peptide is a peptide having SEQ ID NO: 4. According to another embodiment, the peptide is a peptide of SEQ ID NO: 4. According to some embodiments, the peptide is a cyclic peptide.
- According to some embodiments, the analog has a sequence identity of at least 70%, at least 80%, or at least 90% to SEQ ID NO: 4. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 4. According to other embodiments, the analog has 70% to 95%, 75% to 90%, or 80% to 85% identity to SEQ ID NO: 4. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 4. According to some embodiments, the conservative analog of SEQ ID NO: 4 has 1, 2, 3, 4 or 5 conservative substitutions in SEQ ID NO: 4. According to some embodiments, the analog is a cyclic peptide.
- According to one embodiment, the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of SEQ ID NO: 4 or analog thereof.
- According to some embodiments, the peptide comprising or consisting of SEQ ID NO: 4 enhances the activity of human eEF2. According to one embodiment, the peptide is an agonist of eEF2. According to another embodiment, the analog of SEQ ID NO: 4 or the fragment of the peptide or the analog enhances the activity of eEF2.
- According to one embodiment, the peptide comprising or consisting of SEQ ID NO: 4, analog thereof or the fragment of the peptide or said analog is a toxin. In one embodiment, the peptide is for use in inducing cell death in target cells. According to some embodiments, the cells are cancer cells. According to one embodiment, the peptide comprising SEQ ID NO: 4 is for use in inducing cell death in target cells. According to another embodiment, the peptide consisting of SEQ ID NO: 4 is for use in inducing cell death in target cells. According to a further embodiment, the analog of a peptide comprising or consisting of SEQ ID NO: 4 is for use in inducing cell death in target cells.
- According to another aspect, the present invention provides a conjugate of the peptide that binds specifically to human eEF2.
- According to one embodiment, the present invention provides a conjugate of the peptide selected from a peptide having or consisting of SEQ ID NO: 3, analog thereof or fragment thereof. According to one embodiment, the present invention provides a conjugate of the cyclopeptide having or consisting of SEQ ID NO: 3.
- According to one embodiment, the present invention provides a conjugate of the peptide selected from a peptide having or consisting of SEQ ID NO: 4, analog thereof or fragment thereof. According to one embodiment, the present invention provides a conjugate of the cyclopeptide having or consisting of SEQ ID NO: 4.
- The term “conjugate” refers to any substance formed from the joining together or binding of two or more molecules. In particular, the term conjugate encompasses a compound formed from binding of two or more peptides of any one of the above embodiments or a compound comprising said peptide bound to another molecule. According to some embodiments, the peptide, analog or fragment of the present invention is conjugated with a carrier protein or moiety which improves the peptide's antigenicity, solubility, stability or permeability. A fusion protein comprising at least one peptide according to the invention is also within this scope.
- Thus, according to some embodiments, the conjugate comprises at least two copies of the peptides comprising or consisting of SEQ ID NO: 3, analog or fragment thereof covalently bound.
- According to another embodiment, the conjugate comprises at least one peptide comprising or consisting of SEQ ID NO: 3, analog or fragment thereof and another molecule. According to some embodiments, said molecule can be any molecule. According to one embodiment, the molecule is selected from an active agent, an extracellular tumor antigen targeting molecule, a carrier, a toxin, a permeability-enhancing moiety and an anti-cancer agent.
- According to some embodiments, the conjugate comprises at least two copies of the peptide comprising or consisting of SEQ ID NO: 4, analog or fragment thereof covalently bound.
- According to another embodiment, the conjugate comprises at least one peptide comprising or consisting of SEQ ID NO: 4, analog or fragment thereof and another molecule. According to some embodiments, said molecule can be any molecule. According to one embodiment, the molecule is selected from an active agent, an extracellular tumor antigen targeting molecule, a carrier, a toxin, a permeability-enhancing moiety and an anti-cancer agent.
- The extracellular tumor antigen targeting molecule, a carrier, a toxin, an anti-cancer agent are as defined according to the present invention. The term “active agent” refers to an agent that has biological activity, pharmacologic effects and/or therapeutic utility.
- According to one embodiment, the extracellular tumor antigen is selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. - According to another embodiment, the toxin is selected from the group consisting of a toxin binding to a
eukaryotic elongation factor 2, BIM-BH3 toxin having the amino acid sequence set forth in SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin. - According to yet another embodiment, the carrier may be a scaffold carrier such as PEG carrier or peptidic carrier.
- According to some embodiments, the conjugate of the present invention is for use in inducing cell death in target cells.
- According to another aspect, the present invention provides a peptide comprising the amino acids sequence set forth in SEQ ID NO: 1. According to one embodiment, the present invention provides an analog of the peptide having SEQ ID NO:1. According to a further embodiment, the present invention provides a fragment of said peptide or said analog. According to one embodiment, the peptide consists of SEQ ID NO: 1.
- According some embodiments, the peptide consists of 5 to 30 amino acids. According to other embodiments, each peptide consists of 6 to 25 amino acids. According to yet other embodiments, each peptide consists of 7 to 20 amino acids. According to some embodiments, each peptide consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acids. Each possibility represents a separate embodiment of the invention.
- According to some embodiments, the peptide having or consisting of SEQ ID NO:1, the analog or the fragment thereof binds specifically to a human Epidermal Growth Factor Receptor (EGFR). According to one embodiment, the peptide, analog of the fragment is an antagonist of EGFR. According to some embodiments, the peptide is a cyclopeptide.
- According to some embodiments, the analog of SEQ ID NO: 1 has a sequence identity of at least 70%, at least 80%, or at least 90% to SEQ ID NO: 1. According to other embodiments, the analog has 70% to 95%, 75% to 90%, or 80% to 85% sequence identity to SEQ ID NO: 1. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 1. According to some embodiments, the conservative analog of SEQ ID NO: 1 has 1, 2, 3, 4 or 5 conservative substitutions. According to some embodiments, the analog is a cyclopeptide.
- According to one embodiment, the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of SEQ ID NO: 1 or of analog thereof.
- According to some embodiments, the peptide comprising or consisting of SEQ ID NO:1, analog or fragment thereof is a cancer cells targeting peptide. Thus, in one embodiment, the peptide comprising or consisting of SEQ ID NO:1, analog or fragment thereof is for use in cancer cell targeting.
- According to one embodiment, the present invention provides a conjugate of the peptide selected from a peptide having or consisting of SEQ ID NO: 1, analog thereof or fragment thereof. According to one embodiment, the present invention provides a conjugate of the cyclopeptide having or consisting of SEQ ID NO: 1.
- According to some embodiments, the conjugate comprises at least two copies of the peptide comprising or consisting of SEQ ID NO: 1, analog or fragment thereof covalently bound. According to another embodiment, the conjugate comprises at least one peptide comprising or consisting of SEQ ID NO: 1, analog or fragment thereof and another molecule. According to some embodiments, said molecule can be any molecule. According to one embodiment, the molecule is selected from an active agent, an extracellular tumor antigen targeting molecule, a carrier, a permeability-enhancing moiety, a toxin, an anti-cancer agent and a combination thereof.
- The terms extracellular tumor antigen targeting molecule, a carrier, a toxin, an anti-cancer agent are as defined in the present invention.
- According to one embodiment, the extracellular tumor antigen is selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. - According to another embodiment, the toxin is selected from the group consisting of a toxin binding to a
eukaryotic elongation factor 2, BIM-BH3 toxin of SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin. - According to yet another embodiment, the carrier may be a scaffold carrier such as PEG carrier or peptidic carrier.
- According to another aspect, the present invention provides a peptide comprising the amino acids sequence set forth in SEQ ID NO: 2. According to one embodiment, the present invention provides an analog of the peptide having SEQ ID NO:2. According to a further embodiment, the present invention provides a fragment of said peptide or said analog. According to one embodiment, the peptide consists of SEQ ID NO: 2.
- According some embodiments, the peptide consists of 5 to 30 amino acids. According to other embodiments, each peptide consists of 6 to 25 amino acids. According to yet other embodiments, each peptide consists of 7 to 20 amino acids. According to some embodiments, each peptide consists of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acids. Each possibility represents a separate embodiment of the invention.
- According to some embodiments, the peptide having or consisting of SEQ ID NO:2, the analog or the fragment thereof binds specifically to a human Programmed death-ligand 1 (PD-L1).
- According to any one of the above embodiments, the peptide, analog of the fragment is an antagonist of PD-L1.
- According to some embodiments, the peptide is a cyclopeptide.
- According to some embodiments, the analog of SEQ ID NO: 2 has a sequence identity of at least 70%, at least 80%, or at least 90% to SEQ ID NO: 2. According to other embodiments, the analog has 70% to 95%, 75% to 90%, or 80% to 85% identity to SEQ ID NO: 2. According to some embodiments, the analog is a conservative analog of SEQ ID NO: 2. According to some embodiments, the conservative analog of SEQ ID NO: 2 has 1, 2, 3, 4 or 5 conservative substitutions. According to some embodiments, the analog is a cyclopeptide.
- According to one embodiment, the fragment consists of 6 to 11, 7 to 10 or 8 to 9 consecutive amino acids of SEQ ID NO: 2 or of an analog thereof.
- According to some embodiments, the peptide comprising or consisting of SEQ ID NO:2, analog or fragment thereof is a cancer cells targeting peptide. Thus, in one embodiment, the peptide comprising or consisting of SEQ ID NO:2, analog or fragment thereof is for use in cancer cell targeting.
- According to one embodiment, the present invention provides a conjugate of the peptide selected from a peptide having or consisting of SEQ ID NO: 2, analog thereof or fragment thereof. According to one embodiment, the present invention provides a conjugate of the cyclopeptide having or consisting of SEQ ID NO: 2.
- Thus, according to some embodiments, the conjugate comprises at least two copies of the peptide comprising or consisting of SEQ ID NO: 2, analog or fragment thereof covalently bound. According to another embodiment, the conjugate comprises at least one peptide comprising or consisting of SEQ ID NO: 2, analog or fragment thereof and another molecule. According to some embodiments, said molecule can be any molecule. According to one embodiment, the molecule is selected from an active agent, an extracellular tumor antigen targeting molecule, a carrier, a toxin, an anti-cancer agent, a permeability-enhancing moiety and a combination thereof.
- The extracellular tumor antigen targeting molecule, a carrier, a toxin, an anti-cancer agent are as defined in the present invention.
- According to one embodiment, the extracellular tumor antigen is selected from EGFR, PD-L1, HER2, androgen receptor, benzodiazepine receptor, Cadherin, CXCR4, CTLA-4, CD2, CD19, endothelin receptor, ERBB4, FGFR, folate receptor, HER4, HGFR,
Mucin 1, OGFR, PD-1, PD-L2, PDGFR, and VEGFR. - According to another embodiment, the toxin is selected from the group consisting of a toxin binding to a
eukaryotic elongation factor 2, BIM-BH3 toxin having the amino acid sequence set forth in SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, cyanotoxin, and any combination thereof. - According to yet another embodiment, the carrier may be a scaffold carrier such as PEG carrier of peptidic carrier.
- According to another aspect, the present invention provides a composition comprising the peptide of the present invention, or the conjugate of the present invention. According to one embodiment, the composition is a pharmaceutical composition. Thus, in some embodiments, the present invention provides a pharmaceutical composition comprising the peptide of the present invention, or the conjugate of the present invention.
- According to one embodiment, the pharmaceutical composition comprises a peptide comprising or consisting of SEQ ID NO: 1 according to any one of the above embodiments. According to another embodiment, the pharmaceutical composition comprises the analog of SEQ ID NO: 1 or a fragment of said peptide or said analog. According to some embodiments, the pharmaceutical composition comprises a plurality of said peptides, analogs or fragments. According to yet another embodiment, the pharmaceutical composition comprises one or more conjugates of the peptide comprising or consisting of SEQ ID NO:1, analog or fragment thereof according to any one of the above embodiments.
- According to some embodiments, the pharmaceutical composition comprises a peptide comprising or consisting of SEQ ID NO: 2 according to any one of the above embodiments. According to another embodiment, the pharmaceutical composition comprises the analog of SEQ ID NO: 2 or a fragment of said peptide or said analog. According to some embodiments, the pharmaceutical composition comprises a plurality of said peptides, analogs or fragments. According to yet another embodiment, the pharmaceutical composition comprises one or more conjugates of the peptide comprising or consisting of SEQ ID NO:2, analog or fragment thereof according to any one of the above embodiments.
- According to certain embodiments, the pharmaceutical composition comprises a peptide comprising or consisting of SEQ ID NO: 3 according to any one of the above embodiments. According to another embodiment, the pharmaceutical composition comprises the analog of SEQ ID NO: 3 or a fragment of said peptide or said analog. According to some embodiments, the pharmaceutical composition comprises a plurality of said peptides, analogs or fragments. According to yet another embodiment, the pharmaceutical composition comprises one or more conjugates of the peptide comprising or consisting of SEQ ID NO:3, analog or fragment thereof according to any one of the above embodiments.
- According to another embodiment, the pharmaceutical composition comprises a peptide comprising or consisting of SEQ ID NO: 4 according to any one of the above embodiments. According to another embodiment, the pharmaceutical composition comprises the analog of SEQ ID NO: 4 or a fragment of said peptide or said analog. According to some embodiments, the pharmaceutical composition comprises a plurality of said peptides, analogs or fragments. According to yet another embodiment, the pharmaceutical composition comprises one or more conjugates of the peptide comprising or consisting of SEQ ID NO:4, analog or fragment thereof according to any one of the above embodiments.
- All definitions and embodiments of other aspects of the present invention related to said peptides and conjugates are encompassed by this aspect as well.
- According to some embodiments, the pharmaceutical composition is for treating a cell proliferative disease or disorder. According to some embodiments, cell proliferative disease or disorder is cancer. According to one embodiment, the pharmaceutical composition comprises a peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, analog thereof or fragment thereof, as defined in any one of the embodiments of the present invention. Thus, in certain embodiment, the present invention provides a pharmaceutical composition comprising a peptide comprising or consisting of SEQ ID NO: 1 for use in treating cancer. According to a further embodiment, the present invention provides a pharmaceutical composition comprising a peptide comprising or consisting of SEQ ID NO: 2 for use in treating cancer. According to yet another embodiment, the present invention provides a pharmaceutical composition comprising a peptide comprising or consisting of SEQ ID NO: 3 for use in treating cancer. According to certain embodiments, the present invention provides a pharmaceutical composition comprising a peptide comprising or consisting of SEQ ID NO: 4 for use in treating cancer. According to another embodiment, the pharmaceutical composition comprises one or more conjugates of said peptides as defined in any one of the embodiments of the present invention.
- According to another aspect, the present invention provides a method of treating a proliferative disease or disorder in a subject in need thereof comprising administering a therapeutically effective amount of the peptides or conjugates of the present invention. According to one embodiment, the method comprises administering a pharmaceutical composition comprising the peptides or conjugates of the present invention. According to one embodiments, the peptide is selected from the group consisting of a peptide comprising or consisting of SEQ ID NO: 1, a peptide comprising or consisting of SEQ ID NO: 2, a peptide comprising or consisting of SEQ ID NO: 3, a peptide comprising or consisting of SEQ ID NO: 4, analogs thereof, and fragments of said peptides. According to one embodiment, the conjugate is a conjugated of said peptides. According to one embodiment, the peptide, analog or fragment is cyclic.
- According to another aspect, the present invention provides an isolated polynucleotide comprising a sequence encoding the peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4. According to some embodiment, the polynucleotide comprises a sequence encoding an analog of a peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, or fragment thereof, as defined in any one of the embodiments of the present invention.
- According to some embodiments, the polynucleotide comprises a sequence encoding the peptide comprising or consisting of SEQ ID NO: 1, analog thereof or fragment thereof. According to one embodiment, the polynucleotide comprises the sequence encoding the peptide having SEQ ID NO: 1. According to another embodiment, the polynucleotide comprises the sequence encoding the peptide of SEQ ID NO: 1.
- According to certain embodiments, the polynucleotide comprises a sequence encoding the peptide comprising or consisting of SEQ ID NO: 2, analog thereof or fragment thereof. According to one embodiment, the polynucleotide comprises the sequence encoding the peptide having SEQ ID NO: 2. According to another embodiment, the polynucleotide comprises the sequence encoding the peptide of SEQ ID NO: 2.
- According to another embodiment, the polynucleotide comprises a sequence encoding the peptide comprising or consisting of SEQ ID NO: 3, analog thereof or fragment thereof. According to one embodiment, the polynucleotide comprises the sequence encoding the peptide having SEQ ID NO: 3. According to another embodiment, the polynucleotide comprises the sequence encoding the peptide of SEQ ID NO: 3.
- According to yet another embodiment, the polynucleotide comprises a sequence encoding the peptide comprising or consisting of SEQ ID NO: 4, analog thereof or fragment thereof. According to one embodiment, the polynucleotide comprises the sequence encoding the peptide having SEQ ID NO: 4. According to another embodiment, the polynucleotide comprises the sequence encoding the peptide of SEQ ID NO: 4
- According to one embodiment, the present invention provides a polynucleotide comprising a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 3. According to another embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 4. According to a further embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2, (iii) SEQ ID NO: 3 and SEQ ID NO: 4.
- According to another aspect, the present invention provides a nucleic acid construct, comprising the polynucleotide according to any one of the above embodiments. According to one embodiment, the polynucleotide is operably linked to a promoter. According to one embodiment, the nucleic acid construct comprises a polynucleotide comprising a sequence encoding the peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, analog thereof or fragment thereof, as defined in any one of the embodiments of the present invention. According to another embodiment, the nucleic acid construct comprises a polynucleotide comprising a sequence encoding the comprising a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 3. According to another embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 4. According to a further embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2, (iii) SEQ ID NO: 3 and SEQ ID NO: 4.
- The term “nucleic acid construct”, as used herein, refers to an artificially constructed segment of nucleic acid. It can be an isolated or integrated in another nucleic acid molecule.
- As used herein, the term “operably linked”, “operably encodes”, and “operably associated” are used herein interchangeably and refer to the functional linkage between a promoter and nucleic acid sequence, wherein the promoter initiates transcription of RNA corresponding to the DNA sequence.
- The term “promoter” is a regulatory sequence that initiates transcription of a downstream nucleic acid. The term “promoter” refers to a DNA sequence within a larger DNA sequence defining a site to which RNA polymerase may bind and initiate transcription. A promoter may include optional distal enhancer or repressor elements. The promoter may be either homologous, i.e., occurring naturally to direct the expression of the desired nucleic acid, or heterologous, i.e., occurring naturally to direct the expression of a nucleic acid derived from a gene other than the desired nucleic acid. A promoter may be constitutive or inducible. A constitutive promoter is a promoter that is active under most environmental and developmental conditions. An inducible promoter is a promoter that is active under environmental or developmental regulation, e.g., upregulation in response to xylose availability.
- According to another aspect, the present invention provides a vector comprising the polynucleotide sequence or the nucleic acid construct of the present invention. Thus, in one embodiment, the present invention provides a vector comprising the polynucleotide comprising a sequence encoding the peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, analog thereof or fragment thereof, as defined in any one of the embodiments of the present invention. According to another embodiment, the vector comprises the polynucleotide comprising a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 3. According to another embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 4. According to a further embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2, (iii) SEQ ID NO: 3 and SEQ ID NO: 4.
- The terms “vector” and “expression vector” are used herein interchangeably and refer to any non-viral vector such as plasmid, cosmid, artificial chromosome (bacterial or yeast), or viral vector such as virus, retrovirus, bacteriophage, or phage, binary vector in double or single stranded linear or circular form, or nucleic acid, sequence which is able to transform host cells and optionally capable of replicating in a host cell. The vector may contain an optional marker suitable for use in the identification of transformed cells, e.g., tetracycline resistance or ampicillin resistance. According to one embodiment, the vector is a plasmid. According to another embodiment, the vector is a phage or bacteriophage.
- The term “plasmid” refers to circular, optionally double-stranded DNA capable of inserting a foreign DNA fragment to a cell and optionally capable of autonomous replication in a given cell. Plasmids usually contain further sequences in addition to the ones, which should be expressed, like marker genes for their specific selection and in some cases sequences for their episomal replication in a target cell. In certain embodiments, the plasmid is designed for amplification and expression in bacteria. Plasmids can be engineered by standard molecular biology techniques.
- According to another aspect, the present invention provides a cell comprising the polynucleotide comprising a sequence encoding the peptide selected from a peptide comprising or consisting of amino acid sequence selected from SEQ ID NO: 1, 2, 3 and 4, analog thereof or fragment thereof, as defined in any one of the embodiments of the present invention, the nucleic acid construct of the present invention. According to another embodiment, the present invention provides a cell comprising the polynucleotide comprising a sequence encoding the polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 3. According to another embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2 and (iii) SEQ ID NO: 4. According to a further embodiment, the polynucleotide comprises a sequence encoding a polypeptide comprising at least one copy of (i) SEQ ID NO: 1, (ii) SEQ ID NO: 2, (iii) SEQ ID NO: 3 and SEQ ID NO: 4.
- The terms “comprising”, “comprise(s)” “include(s),” “having,” “has,” “contain(s),” as used in this specification means “consisting at least in part of”. When interpreting each statement in this specification that includes the term “comprising”, features other than that or those prefaced by the term may also be present. Related terms such as “comprise” and “comprises” are to be interpreted in the same manner. The terms “have”, “has”, having” and “comprising” may also encompass the meaning of “consisting” and “consisting essentially of”, and may be substituted by these terms. The term “consisting of” excludes any component, step or procedure not specifically delineated or listed. The term “consisting essentially of” means that the composition or component may include additional ingredients, but only if the additional ingredients do not materially alter the basic and novel characteristics of the claimed compositions or methods.
- As used herein, the term “about”, when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of +/−10%, or +1-5%, +/−1%, or even +/−0.1% from the specified value.
- The following examples are intended to illustrate how to make and use the compounds and methods of this invention and are in no way to be construed as a limitation. Although the invention will now be described in conjunction with specific embodiments thereof, it is evident that many modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such modifications and variations that fall within the spirit and broad scope of the appended claims.
- A library of constructs comprising a branched PEG, a toxin peptide and two target-binding peptides. Each construct comprises a branched PEG with eight connecting arms, each having an NHS (N-Hydroxysuccinimide) terminus to which an amino moiety of a peptide is connected. To each scaffold eight peptides are connected: six copies of a peptide toxin and 1 copy of each of two target-binding peptides.
- Different combinations of peptide toxins and target-binding peptides are included in the different constructs of the library (see Table 1).
-
TABLE 1 Examples of constructs Construct No. Toxin Target-binding Peptides AE- 1AB Toxin 1 Peptide A Peptide B AE- 1AC Toxin 1 Peptide A Peptide C AE- 1BC Toxin 1 Peptide B Peptide C AE- 2AB Toxin 2 Peptide A Peptide B AE- 2AC Toxin 2 Peptide A Peptide C AE- 2BC Toxin 2 Peptide B Peptide C AE-3AB Toxin 3 Peptide A Peptide B AE-3BC Toxin 3 Peptide A Peptide C AE-3AC Toxin 3 Peptide B Peptide C - One exemplary arrangement is as following the toxins are 1—Nodularin, 2—ProTx-I, 3—Viperistatin fragment and the binding peptides are directed against the following targets: A—androgen receptor, B—ERBB4, and C—CXCR4.
- Another exemplary arrangement is
Toxin 1—cyclotoxin of SEQ ID NO: 3,Toxin 2—cyclo-toxin of SEQ ID NO: 4; Toxin 3—combination of cyclotoxins of SEQ ID NO: 3 and 4; the peptides are Peptide A—cyclic peptide SEQ ID NO: 1; Peptide B—cyclic peptide SEQ ID NO: 3; Peptide C is directed to bind androgen receptor, B—ERBB4, or C—CXCR4. - The constructs are synthesized using methods known in the art, including Fmoc-solid phase peptide synthesis, purified using HPLC and tested in in-vitro and in-vivo for a specific activity, such as anti-proliferative activity using assays and animal models well known in the art.
- Using the technique described in WO 2007/010525, cyclopeptides (referred as toxins or cyclotoxins Tox1 and Tox2) binding to human eukaryotic elongation factor 2 (eEF2) were generated and tested. The sequences of the cyclic peptides denoted as Tox1 (consisting of SEQ ID NO: 3) and Tox2 (consisting of SEQ ID NO: 4) are provided in Table 2.
-
TABLE 2 Two toxic peptides. Tox1 Cys-Ser-Ala-Arg-Trp-Gly-Pro-Thr-Met-Pro-Trp-Cys (SEQ ID NO: 3) (S-S cyclic) Tox2 Cys-Arg-Arg-Gly-Ser-Arg-Ala-Ser-Gly-Ala-His-Cys (SEQ ID NO: 4) (S-S cyclic) - Binding of
Tox 1 and Tox2 to eEF2 was tested by ELISA using eEF2 or BSA as ligands. - Experimental Part
- 0.25 μg of target proteins, eEF2 (Human; Yeast derived) or BSA (negative control) were applied to several wells of maxisorp plate (NUNC) in 50 μl PBS and incubated over night at 4° C. The solutions were removed, and each well was supplemented with 280 μl blocking solution (
BSA 2 mg/ml). The plate was incubated 1 hr at 25° C. - To 1.5
ml tubes 100 μl of blocking solution+109 pfu (plaque forming units) of M13 phages that express the following peptides: eEF2-binding: RB, LBR1, TB2 (Tox2), Y02, GW (Tox1), DRB, PY, BW were added. The plate was incubated 1 hr at 25° C. The solution were discarded and the wells were washed 7 times with 280 μl washing solution (Tween 20 0.05%). - Each well was supplemented with 50 μl of HRP/Anti-M13 Monoclonal Conjugate (GE Healthcare) diluted 1:5000. The plate was incubated 1 hr at 25° C. The solutions were discarded and the wells were washed 7 times with 280 μl washing solution (
Tween 20 0.05%). Each well was supplemented with 50 μl of TMB (T0440; Sigma). - The plate was photographed using a scanner after incubation time of 1.5 min and 30 min. It can be seen from
FIG. 2 that Tox2 (denoted as TB2 in the figures) had the strongest effect. - The effect of Tox1 and Tox2 was tested in the in vitro transcription/translation system using HeLa Lysate system 1-Step Human Coupled IVT Kit-DNA (ThermoFisher Scientific). The following peptides were tested: GW (Tox1), DRB RB, TB2 (Tox2), and BW. In addition, a non eEF2-binding control peptide, GR, was also tested.
- The IVT Kit components were mixed, and one portion was taken out to serve as a negative control. The rest of the mix was supplemented with pCFE-GFP DNA. This DNA, when transcribed and translated gives a fluorescence protein, GFP. The extent of fluorescence gives a measure of the extent of protein synthesis.
- The mix was split into 9 ml aliquots. Each aliquot was supplemented with lml of one concentration of a specific peptide. A positive control was supplemented with lml of PBS. The reaction mixtures were incubated 4 hr at 30° C.
- 40 ml of PBS were added to each reaction mixtures. The mixtures were transferred to a 96 well black ELISA plate, and the fluorescence was measured at ex/em 482/512 nm.
- It can be seen from the results (see
FIG. 3 ), most of the peptides gave higher fluorescence than the positive control (that contained no peptide; orange dot), and more than the non eEF2-binding control peptide at concentration of 5 μM. That means that they enhanced protein synthesis, when TB2 and GW provided the highest effect. - A construct of a branched PEG molecule covalently coupled with two different cancer-targeting moieties and two different toxin moieties was designed and synthesized (the schematic representation of the scaffold is shown in
FIG. 1 ). The targeting moieties included in this example construct were the cyclic peptides E13.3 (consisting of SEQ ID NO:1) and PD-L1-GR (consisting of SEQ ID NO:2), and the toxin moieties were the cyclic peptides Tox1 (consisting of SEQ ID NO:3), and Tox2 (consisting of SEQ ID NO:4). - The preparation method comprised two steps. At the first step a branched PEG containing eight arms was produced in which seven arms were coupled with targeting/toxin moieties (protected peptides) and one with a Lysine residue protected with FMOC (Fmoc-Lys). At the second step eight of the peptide/toxin-PEG molecules produced in
step 1 were coupled to another branched PEG molecule of eight arms to obtain a construct of multi-branched PEG coupled with 56 toxin/targeting moieties, of which 42 moieties are toxin peptides (21 Tox1 and 21 Tox2), and 14 are targeting peptides (7 copies of EGRF targeting peptide E13.3 and 7 copies of PD-L1 targeting peptide PD-L1-GR). - In more details:
-
Step 1—Preparation of Branched PEG Coupled with One Type of Targeting or Toxin Moiety - 2.4 μmole of a targeting peptide or 7.3 μmole of toxin peptide were dissolved in DMSO.
- All peptides have only one primary amine, except for E13.3, which has 3, of which one is protected with dde, and the N-terminal is blocked with acetate residue.
- 5.9 mg Fmoc-Lys-OH (Novabiochem (Merck) Cat. Num. 852023; MW=368.43) was dissolved in 150 μl of HCl 0.1 M, followed by addition of 650 μl of DMSO to reach a concentration of 20 mM.
- 33.4 mg of 8-arm star PEG-NHS (
Mw 10 KDa, Creative Biotechnologies) were dissolved in 16741 of dioxane to reach a concentration of 20 mM. - Each of the targeting peptides solutions were mixed with 1741 of Fmoc-Lys-OH solution and 1741 of PEG solution.
- Each of the toxin peptides solutions were mixed with 52 μl of Fmoc-Lys-OH solution and 5241 of PEG solution. Each mix was supplemented with TEA (trimethylamine) to 5%. Each solution was incubated for 15.5 hours at room temperature on a Rotamix at 30 rpm to obtain a clear solution of 8 armed PEG coupled with 7 molecules of a specific targeting/toxin moiety and one arm containing a primary amine (The Fmoc protection is removed in this process to give one free primary amine on each PEG molecule).
- The branched PEG-peptide molecules are denoted PEG-E13.3, PEG-PD-L1-GR, PEG-
Tox 1 and PEG-Tox 2. -
Step 2—Construction of Multi-Branched PEG Construct Coupled to 56 Targeting/Toxin Moieties. - The branched PEG-peptide solutions: PEG-E13.3, PEG-PD-L1-GR, PEG-Tox1 and PEG-Tox2 were mixed together with 20 mM PEG-NHS solution in a stoichiometric molar ratio of PEG-NHS:PEG-E13.3:PEG-PD-L1-GR:PEG-Tox1:PEG-Tox2 of 1:1:1:3:3, and incubated for 2 hours at room temperature on a Rotamix at 30 rpm, followed by slow addition of 80% hydrazine to a final concentration of 5%. Hydrazine was used to remove the dde protecting group from the E13.3 moiety. The mixture was incubated for 2 hours at room temperature on a Rotamix at 30 rpm. The resultant construct is a multi-branched PEG coupled with 56 targeting/toxin moieties: 7 copies of E13.3 peptide, 7 copies of PD-L1-GR peptide, 21 copies of Tox1 and 21 copies of
Tox 2. At the end of the reaction, PBS was added with gentle mixing. - Step 3—Ultrafiltration
- The samples were ultrafiltrated with two additions of 20 ml
PBS using Vivaspin 20 concentrator (30 K MWCO PES) to a concentration of ˜206 μM of loaded multi-armed PEG denoted as PEG-E13.3-(PD-L1-GR)-Tox1-Tox2, and the buffer was substituted to PBS. - In a similar way, additional multi-branched PEGs carrying alternative toxins or peptides (such as BIM) were produces. Examples of such multi-armed PEG is PEG-E13.3-PD-L1-GR-BIM, in which the toxins Tox 1 and
Tox 2 were substituted by BIM. - A construct comprising a multi-arm-PEG scaffold bound to E13.3 targeting peptide having the sequence SEQ ID NO: 1 (CHPGDKQEDPNCLQADK) and a toxin selected from BIMBH3 (referred also as BIM and having the sequence SEQ ID NO: 5 MRPEIWIAQELRRIGDEFNA) or a combination of Tox1 and Tox2 was generated. The scaffolds were prepared as described in Example 5 and is denoted as PEG-E13.3-Tox1-Tox2 and PEG-13.3-BIM, accordingly
- Cells Culture and Seeding:
- A431 cells (human squamous carcinoma express about 100,000 copies of EGFR on each cell) and MCF-7 cells (breast cancer cell expressing about 3,000 copies of EGFR on each cell) were thawed and cultivated to achieve exponentially growing cultures. Cells were collected, counted and seeded at the density of 7,000 cells/well and 5,000 cells/well, respectively, in a 96 well tissue culture plate.
- The plates were incubated until the next day at the following conditions: 37±1° C., humidified, and 5±0.5% CO2/air, to enable cells adherence to the wells.
- Treatment:
- The cell viability of A549 cell was tested using Alamar Blue viability assay. At the next day following the seeding, Growth Media was replaced with 200 μl Assay Media that contained 2% FBS and Test Items at different concentrations of the construct (1, 3 and 8 μM), or Vehicle Control (PBS; concentration-0). Plates were incubated at 37±1° C., humidified 5±0.5% CO2/air. After 48 hours of incubation, images of cells treatments were taken on microscope (see:
FIG. 4A -FIG. 4D ,FIG. 5A -FIG. 5F ,FIG. 6A -FIG. 6F andFIG. 7A -FIG. 7F ). - Several concussions can be made from these experiments. First, it can be seen on the figures that the typical cells aggregates characterizing A431 and MCF-7 disappeared when a construct comprising PEG-E13.3 and any one of the toxin was added (
FIG. 5A -FIG. 5F ,FIG. 6A -FIG. 6F ). Moreover the phenomena was dose dependent. However, when the construct lacked E13.3 peptide (FIG. 7A -FIG. 7F ), increasing the concentration of the toxin did not increase the ratio of dead cells significantly and actually was not different from the control. This result clearly indicate that E13.3 targeted the construct to the cell. - Second, the proportion of dead cells increased with increasing the concentration of the toxins (for both, BIM and combination of Tox1 and Tox2), indicating for dose dependent effect. Moreover, comparing the images obtained for BIM and a combination of Tox1 and Tox2, it can be seen that the combination was more potent causing to more severe cell death. As expected MCF-7 cells, expressing less EGFR were less sensitive than A431 cells.
- Concluding all said above it is clear that a construct comprising a toxin such as Tox1, Tox2 or a combination thereof and targeting peptides, wherein at least one of them is E13.3 are potent in targeting and treating cancer.
- In condition similar to those of Examples 5 and 6, PEG-PD-L1-GR-BIM, PEG-E13.3-BIM and PEG-E13.3-PD-L1-GR-BIM constructs were prepared and tested for cytotoxicity using A431 cells and Alamar Blue Blue viability assay varying the concentration of the construct from 10 nM to 1 μM. After 48 hours of incubation, images of cells treatments were taken on microscope.
- The results are presented in
FIG. 8A -FIG. 8M . It can be seen that the construct PEG-PD-L1-GR-BIM and PEG-E13.3-BIM had limited ability of killing A431 cells at 1 μM concentration. The combination of E13.3 and PD-L1-GR targeting peptides on the other hand provided killing or more than 60% of the cells. Actually the cytotoxic effect of the construct comprising both targeting peptides was higher than the additive effect of the two constructs comprising one of two these peptides. This clearly indicates for the synergistic cytotoxic effect that the construct comprising two targeting peptides and a combination of Tox1 and Tox2 has. - Materials and Methods
- The test items PEG-E13.3-(PD-L1-GR)-Tox1-Tox2, and PEG-E13.3-(PD-L1-GR)-BIM were prepared as described in Example 5 and were used at concentration of 10 μM. Phosphate Buffered Saline (PBS) is used as a control.
- A-549 cells (human lung tumor cells) were thawed and cultivated to achieve exponentially growing cultures. Cells were collected, counted and seeded in a 96 well tissue culture plate at the following densities: A-549: 5,000 cells/well.
- The plate was incubated until the next day at 37±1° C., humidified, 5±0.5% CO2/air, to enable cells adherence to the wells.
- Treatment
- At the next day after the seeding, Growth Media were replaced with Test Items Solutions prepared in Assay Medium (2% f FBS). Test Items Solutions are applied carefully (onto the sides of the well, not directly onto the cells) in volume of 200 μl/well to achieve the final concentrations as following: PEG-E13.3-(PD-L1-GR)-Tox1-Tox2: 3 or 10 μM and PEG-E13.3-(PD-L1-GR)-BIM—10 μM.
- The plate was incubated at 37±1° C., humidified 5±0.5% CO2/air.
- After 48 hours of incubation, representative images of cells treatments were taken on microscope. The results are presented on
FIG. 9 - Results
- As can be clearly seen from
FIG. 9A -FIG. 9D PEG-E13.3-(PD-L1-GR)-Tox1-Tox2 was effective in killing A549 cell both in concentration of 3 and 10 PM. Interestingly, PEG-E13.3-(PD-L1-GR)-Tox1-Tox2 at the concentration of 3 μM it was much more efficient than 10 μM PEG-E13.3-(PD-L1-GR)-BIM construct comprising well known BIM toxin. - PEG-E13.3-(PD-L1-GR)-Tox1-Tox2 was prepared as described in Example 5 and injected intravenously to 3 Female Hsd:ICR (CD-1®) mice, 7 weeks old using 4 ml/kg dose according to the regiments described in Table 3.
-
TABLE 3 Administration schedule Dosing Observation Group on Concen- period & Animal Dosing Study tration following Sex No session day (μM) Volume administration 1F 1, 2, 3 1 0 25 4 5 2 6 75 14
The weight and individual clinical signs were observed for 20 days. No significant abnormalities were seen neither in weight nor in the tested clinical signs. The animals were euthanized onday 20 and individual gross necropsy was performed. No abnormality was detected during the examination. Results of this example clearly indicate that PEG-E13.3-(PD-L1-GR)-Tox1-Tox2 construct is perfectly safe in vivo. - Material and Methods
- Animals: 18 athymic nude female mice 6-7 weeks old divided into 3 groups (1 control group and 2 test items groups) are allowed to accumulate for at least 5 days. Following accumulation, A431 tumor cells are subcutaneously injected to right flan region of each mouse, the day of injection is denoted as
Day 0. - The following parameters are monitored: weight (twice a week), tumor size (measured with digital caliper and the tumor volume is calculated as width2×length/2.
- When the tumor reaches the size of 100-150 mm3, mice are subjected to 3 IV injections of test items during the first week. Animals are observed from additional 3 weeks.
- Following observation period, mice are euthanized, the tumor is excised, measured and fixed in 4% formaldehyde solution for further analysis.
- Screening
- Using the technique described in WO 2007/010525, a series of new peptides (cyclopeptides) binding to human Epidermal Growth Factor Receptor (EGFR) were generated and tested. After identification of several potential peptide, a few further cycles of optimization were performed. One of the peptides, denoted as E13.3 and having the sequence of CHPGDKQEDPNCLQADK (SEQ ID NO: 1) showed high affinity to the receptor at its binding site.
- Expression and Purification
- Bacteria comprising plasmids for expression of the identified peptides E7.1, E10.2, E10.3, E13.3, E15.1.3-T, E14.1.1, E14.1.4, E2313, E2315 and A4.3.12-T were started with 2.5 μl of cells comprising the plasmid of a relevant peptide in 5 ml 2YT medium with ampicillin and grown at 38° C. over night at 350 rpm. 2 ml of each starter were grown in 50 ml 2YT at 37° C.; the expression was induces with IPTG, 0.43 mM at OD 1.5-2.5 for 3 hours following which the cells were centrifuged and kept at −20° C.
- The cells were lysed with lysozyme in the presence of DNases I and B-Per (Bacterial Protein Extraction Reagent), and the peptides were purified by affinity chromatography using Ni-NTA beads in a batch mode. Shortly, the peptides were loaded on Ni-NTA beads in the presence of 20 mM Imidazole, washed with PBS and eluted with 250 mM Imidazole. The buffer was exchange using PALL Life Science, Nanosep Centrifugal devices, 3K gray. The quantity of the peptides was tested by Coomassie Plus Protein Assay (see
FIG. 10 ). - The effect of several peptides on the phosphorylation levels of human EGFR in human epidermoid carcinoma cell line A431 was assessed by ELISA test. Briefly, exponentially growing A431 cell culture were detaches from the flask with 0.25% trypsin/EDTA solution, and 200 μl of cell suspension were transferred to 96-well plates at the concentration of 2×105 cells/ml and grown for about 3 days. Following medium exchange, 50 μl EGF dilutions and EGF+peptides (50 ng/ml and 0.2 mg/ml, respectively) were added. The plate was incubated for 7.5 min at 37° C. EGF-containing medium was removed and the cells were fixed by 150 ul of fixing solution and incubated for 20 min. at room temperature, following which the plate was washed 2 times with triton washing solution. The level of phosphorylates was assessed by incubation with phospho-EGFR (Tyr1045) antibody as a primary antibody and Anti-rabbit IgG as a secondary antibody. The ability of different peptides to inhibit auto-phosphorylation of EGFR is presented on
FIG. 2 . The normalized percent of inhibition (of the EGFR auto-phosphorylation is presented inFIG. 11 and Table 4. The normalized percent of inhibition is calculated as the fluorescence signal of the test item divided by the fluorescence signal of the control that contains no test item, with the same concentration of EGF. -
TABLE 4 Normalized Percent of EGFR autophosphorylation inhibition Clone A4.3.12 E23I5 E23I3 E14.1.4 E14.1.1 E15.1.3 E13.3 E10.2 E7.1 % 23 35 66 72 80 61 99.4 68 30 Inhibition - As it can be clearly seen from the
FIG. 11 and Table 4, E13.3 has the higher inhibitory activity among the peptides, having calculated IC50 of 2 μM. - The stability of the selected peptides in bovine serum was assessed by measurement of the inhibitory activity of the peptides after incubation of the peptides with bovine serum. The inhibitory activity was measured as described in Example 12. The inhibitory activity of the peptide was assessed following incubation of the peptides with bovine serum at 37° C. for different periods of time. EGF concentration in the samples was 50 ng/ml. The results are presented in
FIG. 12 . It can be clearly seen that all peptides have similar stability in the bovine serum with t0.5 of about 1.5 hours. - Efficacy of different concentration of the selected peptide was assessed by ELISA in a similar was as in Example 12. The results are presented in
FIGS. 13A andFIG. 13B . The IC50 of all peptides was about 0.5-1 μM. - 9.8 mg of E13.3(fmoc)Lys was dissolved in water to the final concentration of 20 mg/ml. 11.3 mg of 8 arm PEG Succinimidyl Carboxymethyl Ester, MW 73,000 (JENKEM TECHNOLOGY USA INC) with 565 μl dioxane was heated at 37° C. to a complete dissolution. E13.3 and PEG solution were mixed in the presence of 50 μl TEA and incubated overnight at room temperature. To the obtained solution, 50 μl piperidine was added and incubated for 0.5 at room temperature. To the solution, 1 ml of ethyl acetate was added to obtain a suspension which was than centrifuged and the upper phase was removed. These steps of washing with ethyl acetate were repeated 4-5 times. Finally, the upper phase was removed completely and the remained pellet was dissolved in 200 μl PBS. The buffer was further exchanged to
PBS using Vivaspin 20 ml Concentrator to eliminate any traces of ethyl acetate. - The stability of the fluorescently marked peptide E13.3 alone or bound to 8-armed PEG was evaluated in vivo by injecting the compounds to the tail vein of mice. The blood of the animals was analyzed for the presence of the peptide (fluorescence) at different time intervals. It can be clearly seen from the result presented in
FIG. 14 that t0.5 of the free peptide is much shorter (about several minutes) than that of the peptides bound to PEG (t0.5 of about 3.5 hours). - The anti-cancer activity of E13.3 was assessed using several cancer cell lines (A549—human lung carcinoma cell line and FaDu—human pharyngeal carcinoma cell line). The cell cultures were incubated in the presence or absence of E13.3 (at different concentrations) and tested for viability using alamarBlue reagent. The results are presented on
FIG. 15 . It can be seen, that E13.3 bound to PEG could successfully reduce the viability of the cancer cells in all tested concentrations. - E13.3-PEG was labeled with Flourescein and injected IV to Xenograft mice bearing subcutaneous NCI-H1650 tumor (lung cancer). Following anesthesia, kidney, liver and tumor were collected at specific time points and the fluorescence was measured. The results are presented in
FIGS. 16 and 17 . - As it can be seen from
FIG. 16 , there was a fast increase in the fluorescence in kidney and liver with a typical elimination curve afterwards. Contrary to that, the fluorescence was accumulated in the cancer cells indicating that E13.3 effectively binds, enters and accumulated in the cancer cells. Results shown onFIG. 17 further support that most of the cancer cells interact with E13.3-PEG and internalize the fluorescent peptide. - Screening
- Using the technique described in WO 2007/010525, a series of new peptides (cyclopeptides) binding to binding to a human PD-L1 were generated and tested. After identification of several potential peptides, a few further cycles of optimization were performed. One of the peptides, denoted as PD-L1-GR and having the sequence of CysGluGlyLeuProAlaAspTrpAlaAlaAlaCys (SEQ ID NO: 2) showed high affinity to the receptor at its binding site.
- Multi-armed PEG constructs comprising (i) PD-L1-GR cyclic peptide and BIM-BH3 (denoted as PEG-(PD-L1-GR)-BIM), (ii) E13.3 targeting peptide (SEQ ID NO:1) and BIM-BH3 toxin (denoted as PEG-E13.3-BIM), and (iii) E13.3, PD-L1-GR and BIM-BH3 toxin (denoted as PEG-E13.3-(PD-L1-GR)-BIM) were prepared as described in Example 5.
- The constructs were used as Test Items in cell proliferation assay in concentration of 1 μM. PBS was used as a control. For the assay, A549 cells (human lung carcinoma cell line) were thawed and cultivate to achieve exponentially growing. The cells were collected, counted and seeded at the density of 7,000 cells/well in a 96 well tissue culture plate. The plate was incubated until the next day at 37±1° C., humidified, 5±0.5% CO2/air, to enable cells adherence to the wells. At the next day, Growth Media are replaced with Test Items Solutions prepared in Assay Medium (2% f FBS). Test Items Solutions are applied carefully in volume of 200 μl/well to achieve the final concentrations of the Test Items of 1 μM. After 48 hours of incubation, representative images of cells treatments were taken on microscope and are presented in
FIG. 18A -FIG. 18C . - It can be seen from
FIG. 18A -FIG. 18C , the construct comprising PEG-E13.3-(PD-L1-GR)-BIM was the only construct to inhibit cell proliferation at a concentration of 1 μM. This indicates that the complex comprising a combination of E13.3 and PD-L1-GR peptides has significantly higher cytotoxicity than the combined cytotoxicity of the constructs comprising only one of the peptides. - Although the present invention has been described herein above by way of preferred embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.
Claims (17)
1. A peptide selected from the group consisting of:
(i) a peptide binding specifically to an extracellular tumor antigen selected from human Epidermal Growth Factor Receptor (EGFR) and human Programmed death-ligand 1 (PD-L1), wherein the peptide comprises an amino acid sequence selected from SEQ ID NO: 1 and SEQ ID NO: 2;
(ii) a peptide binding specifically to human eukaryotic Elongation Factor 2 (eEF2), wherein the peptide comprises an amino acid sequence selected from SEQ ID NO:3 and SEQ ID NO: 4; and
(iii) a cyclic form of the peptide of (i) or (ii).
2. An analog of the peptide of claim 1 , having a sequence identity of at least 90% to the peptide.
3. A conjugate comprising at least one peptide of claim 1(i).
4. The conjugate of claim 3 , wherein the conjugate comprises an amino acid sequence selected from SEQ ID NO: 1 and SEQ ID NO: 2 and a peptide comprising an amino acid sequence selected from SEQ ID NO: 3 and SEQ ID NO: 4.
5. A construct comprising multiple copies of the peptides of claim 1(i) and multiple copies of a toxin, wherein the multiple copies of the peptides and the toxin are covalently bound through an organic scaffold comprising a polyethylene glycol (PEG) molecule or a modified PEG molecule comprising a plurality of sites.
6. A pharmaceutical composition comprising the peptide of claim 1 , a conjugate thereof, or a construct comprising the peptide, and a pharmaceutically acceptable carrier.
7. A method of treating cancer in a subject in need thereof comprising administering a therapeutically effective amount of a peptide of claim 1 or of a conjugate or construct comprising the peptide.
8. A method of inducing cell death comprising contacting cells with a composition comprising at least one peptide according to claim 1 or of a conjugate thereof.
9. An isolated polynucleotide or a nucleic acid construct thereof, comprising a sequence encoding a peptide according to claim 1 .
10. A construct comprising at least two different peptides binding to at least two different extracellular tumor antigens, and multiple copies of at least one toxin, wherein the two different peptides are selected from peptides that bind specifically to a tumor antigen selected from EGFR, PD-L1, HGFR (cMET) and HER2, wherein the peptides and the toxin are covalently bound through an organic scaffold, and wherein each one of the peptides consists of up to 50 amino acids.
11. The construct of claim 10 , wherein the construct comprises (i) a plurality of peptides that binds specifically to EGFR and a plurality of peptides that binds specifically to PD-L1; (i) a plurality of peptides that binds specifically to EGFR and a plurality of peptides that binds specifically to HGFR (cMET); or (iii) a plurality of peptides that binds specifically to PD-L1 and a plurality of peptides that binds specifically to HGFR (cMET).
12. The construct of claim 10 , wherein the peptide that binds specifically to EGFR is a peptide comprising the amino acid sequence SEQ ID NO: 1, and the peptide that binds specifically to PD-L1 is a peptide comprising the amino acid sequence SEQ ID NO: 2.
13. The construct of claim 10 , wherein the construct is characterized by at least one of:
(i) the construct comprises from 3 to 10 different peptides or from 2 to 10 different toxins;
(ii) the at least one toxin is a peptide, polypeptide or protein selected from the group consisting of a toxin specifically binding to a eukaryotic elongation factor 2, BIM-BH3 of SEQ ID NO: 5, Diphtheria toxin, Pseudomonas exotoxin, Anthrax toxin, botulinum toxin, Ricin, PAP, Saporin, Gelonin, Momordin, ProTx-I ProTx-II, Conus californicus toxin, snake-venom toxin, and cyanotoxin;
(iii) the at least one toxin comprises an amino acid sequence selected from SEQ ID NOs: 3, 4 and 5;
(iv) the organic scaffold comprises a polyethylene glycol (PEG) molecule or a modified PEG molecule comprising a plurality of sites available to bind the peptides and the toxin(s)
(v) each one of the peptides and the toxins is bound to the scaffold.
14. The construct of claim 10 , wherein construct comprises a plurality of peptides that bind specifically to EGFR, a plurality of peptides that binds specifically to PD-L1 and a plurality of peptides that binds specifically to HGFR (cMET).
15. The construct of claim 10 , wherein construct comprises multiple copies of a toxin comprising the amino acid sequence SEQ ID NOs: 3 and multiple copies of a toxin comprising the amino acid sequence SEQ ID NOs: 4.
16. A pharmaceutical composition comprising a construct according to claim 10 , and a pharmaceutically acceptable excipient.
17. A method of treating cancer in a subject in need thereof comprising administering to said subject therapeutical amount of the construct according to claim 10 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/348,229 US20240002547A1 (en) | 2016-09-29 | 2023-07-06 | Therapeutic multi-targeting constructs and uses thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662401192P | 2016-09-29 | 2016-09-29 | |
US201662401195P | 2016-09-29 | 2016-09-29 | |
PCT/IL2017/051094 WO2018061004A1 (en) | 2016-09-29 | 2017-09-27 | Therapeutic multi-targeting constructs and uses thereof |
US201916337163A | 2019-03-27 | 2019-03-27 | |
US18/348,229 US20240002547A1 (en) | 2016-09-29 | 2023-07-06 | Therapeutic multi-targeting constructs and uses thereof |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2017/051094 Continuation WO2018061004A1 (en) | 2016-09-29 | 2017-09-27 | Therapeutic multi-targeting constructs and uses thereof |
US16/337,163 Continuation US11739163B2 (en) | 2016-09-29 | 2017-09-27 | Therapeutic multi-targeting constructs and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240002547A1 true US20240002547A1 (en) | 2024-01-04 |
Family
ID=61763358
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/337,163 Active 2038-06-25 US11739163B2 (en) | 2016-09-29 | 2017-09-27 | Therapeutic multi-targeting constructs and uses thereof |
US18/348,229 Pending US20240002547A1 (en) | 2016-09-29 | 2023-07-06 | Therapeutic multi-targeting constructs and uses thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/337,163 Active 2038-06-25 US11739163B2 (en) | 2016-09-29 | 2017-09-27 | Therapeutic multi-targeting constructs and uses thereof |
Country Status (8)
Country | Link |
---|---|
US (2) | US11739163B2 (en) |
EP (1) | EP3518953A4 (en) |
JP (1) | JP7133225B2 (en) |
CN (1) | CN109789183A (en) |
AU (2) | AU2017333442A1 (en) |
CA (1) | CA3037261A1 (en) |
IL (1) | IL265236B2 (en) |
WO (1) | WO2018061004A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018061004A1 (en) * | 2016-09-29 | 2018-04-05 | Aebi Ltd. | Therapeutic multi-targeting constructs and uses thereof |
WO2019064297A1 (en) * | 2017-09-27 | 2019-04-04 | Aebi Ltd. | Cytotoxic peptides and conjugates thereof |
KR102268983B1 (en) | 2019-09-11 | 2021-06-24 | 경북대학교 산학협력단 | Use for inhibiting exosome secretion or PD-L1 expression by endothelin receptor antagonists |
CN112252362A (en) * | 2020-10-10 | 2021-01-22 | 无锡市市政设施建设工程有限公司 | Method for realizing erection of subway station main structure disc buckle support based on BIM |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11739163B2 (en) * | 2016-09-29 | 2023-08-29 | Aebi Ltd. | Therapeutic multi-targeting constructs and uses thereof |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040058865A1 (en) | 2001-11-26 | 2004-03-25 | Danishefsky Samuel J | Homing peptide multimers, their preparation and uses |
AU2004217894B2 (en) | 2003-03-03 | 2010-07-15 | Bracco International B.V. | Peptides that specifically bind HGF receptor (cMet) and uses thereof |
US7947289B2 (en) | 2004-02-09 | 2011-05-24 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Multimeric protein toxins to target cells having multiple identifying characteristics |
DK1915617T3 (en) | 2005-07-21 | 2011-11-21 | Aebi Ltd | Methods and compositions for identifying a peptide having an intermolecular interaction with a target of interest |
CN101379088A (en) | 2005-12-06 | 2009-03-04 | 杜门蒂斯有限公司 | Bispecific ligands with binding specificity to cell surface targets and methods of use therefor |
EP1991561B1 (en) | 2006-02-14 | 2015-06-17 | Universita' Degli Studi di Siena | Branched multimeric peptides for tumor diagnosis and therapy |
US20080131428A1 (en) * | 2006-02-24 | 2008-06-05 | Arius Research, Inc. | Cytotoxicity mediation of cells evidencing surface expression of TROP-2 |
CA2667678A1 (en) | 2006-10-25 | 2008-07-24 | Amgen Inc. | Toxin peptide therapeutic agents |
WO2008079973A2 (en) * | 2006-12-21 | 2008-07-03 | Centocor, Inc. | Egfr binding peptides and uses thereof |
US20090130105A1 (en) | 2007-08-28 | 2009-05-21 | Biogen Idec Ma Inc. | Compositions that bind multiple epitopes of igf-1r |
CN102007145A (en) | 2008-02-14 | 2011-04-06 | 百时美施贵宝公司 | Targeted therapeutics based on engineered proteins that bind egfr |
US8822213B2 (en) | 2008-11-06 | 2014-09-02 | University Of Washington | Bispecific intracellular delivery vehicles |
JP2010154842A (en) | 2008-12-03 | 2010-07-15 | Koji Kawakami | New anticancer chimeric peptide with egfr as target |
US8741839B2 (en) | 2009-01-18 | 2014-06-03 | The Board Of Trustees Of The Leland Stanford Junior University | Polypeptides targeting vascular endothelial growth factor receptor-2 and αvβ3 integrin |
US9321820B2 (en) * | 2009-10-14 | 2016-04-26 | The Regents Of The University Of Colorado | Compositions and methods for treating bladder cancer |
NZ710434A (en) | 2010-03-19 | 2017-01-27 | Baxter Healthcare Sa | Tfpi inhibitors and methods of use |
EP2714738B1 (en) * | 2011-05-24 | 2018-10-10 | Zyngenia, Inc. | Multivalent and monovalent multispecific complexes and their uses |
JP2015509501A (en) | 2012-02-23 | 2015-03-30 | プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ | Modified microbial toxin receptor for delivering agents to cells |
CA3212759A1 (en) * | 2012-04-30 | 2013-11-07 | Biocon Limited | Targeted/immunomodulatory fusion proteins and methods for making same |
JP6103832B2 (en) * | 2012-06-25 | 2017-03-29 | Hoya株式会社 | EGFR binding peptide |
RU2698975C2 (en) | 2013-03-12 | 2019-09-02 | Биокон Лтд. | Fused immunomodulatory proteins and methods for production thereof |
JP2016526892A (en) | 2013-07-18 | 2016-09-08 | ユートロピクス ファーマシューティカルズ, インコーポレイテッド | Differential BH3 mitochondrial profiling |
US10786497B2 (en) | 2013-08-16 | 2020-09-29 | Equip, Llc | Discrete PEG constructs |
WO2015195721A1 (en) | 2014-06-16 | 2015-12-23 | Purdue Research Foundation | Compositions and methods for treating cancer |
WO2019064297A1 (en) | 2017-09-27 | 2019-04-04 | Aebi Ltd. | Cytotoxic peptides and conjugates thereof |
US20200339629A1 (en) | 2019-04-24 | 2020-10-29 | Aebi Ltd. | Therapeutic constructs comprising cmet binding peptides |
-
2017
- 2017-09-27 WO PCT/IL2017/051094 patent/WO2018061004A1/en unknown
- 2017-09-27 CA CA3037261A patent/CA3037261A1/en active Pending
- 2017-09-27 EP EP17855166.9A patent/EP3518953A4/en active Pending
- 2017-09-27 US US16/337,163 patent/US11739163B2/en active Active
- 2017-09-27 AU AU2017333442A patent/AU2017333442A1/en not_active Abandoned
- 2017-09-27 IL IL265236A patent/IL265236B2/en unknown
- 2017-09-27 CN CN201780060289.8A patent/CN109789183A/en active Pending
- 2017-09-27 JP JP2019517069A patent/JP7133225B2/en active Active
-
2022
- 2022-08-24 AU AU2022221434A patent/AU2022221434A1/en not_active Abandoned
-
2023
- 2023-07-06 US US18/348,229 patent/US20240002547A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11739163B2 (en) * | 2016-09-29 | 2023-08-29 | Aebi Ltd. | Therapeutic multi-targeting constructs and uses thereof |
Non-Patent Citations (2)
Title |
---|
Seffernick et al, Bacteriol. 183(8): 2405-2410, 2001. (Year: 2001) * |
Witkowski et al, Biochemistry 38:11643-11650, 1999. (Year: 1999) * |
Also Published As
Publication number | Publication date |
---|---|
US11739163B2 (en) | 2023-08-29 |
EP3518953A4 (en) | 2020-10-28 |
WO2018061004A1 (en) | 2018-04-05 |
AU2022221434A1 (en) | 2022-10-06 |
CN109789183A (en) | 2019-05-21 |
AU2017333442A1 (en) | 2019-04-04 |
US20190225711A1 (en) | 2019-07-25 |
CA3037261A1 (en) | 2018-04-05 |
IL265236B2 (en) | 2023-11-01 |
EP3518953A1 (en) | 2019-08-07 |
IL265236B1 (en) | 2023-07-01 |
JP7133225B2 (en) | 2022-09-08 |
JP2020501513A (en) | 2020-01-23 |
IL265236A (en) | 2019-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240002547A1 (en) | Therapeutic multi-targeting constructs and uses thereof | |
US11535838B2 (en) | Serine protease molecules and therapies | |
JP2016040269A (en) | Combination treatment with vegf-c antagonist | |
CN103347514B (en) | FGFR1 extracellular domain combination therapies | |
US20210054047A1 (en) | Novel anticancer fusion protein and use thereof | |
JP2022525223A (en) | Treatment of cancer with sEphB4-HSA fusion protein | |
US20200339629A1 (en) | Therapeutic constructs comprising cmet binding peptides | |
US20210198319A1 (en) | Cytotoxic peptides and conjugates thereof | |
KR101732380B1 (en) | A novel anticancer agent targeting epidermal growth factor receptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |