[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20230211308A1 - De novo synthesized gene libraries - Google Patents

De novo synthesized gene libraries Download PDF

Info

Publication number
US20230211308A1
US20230211308A1 US18/067,652 US202218067652A US2023211308A1 US 20230211308 A1 US20230211308 A1 US 20230211308A1 US 202218067652 A US202218067652 A US 202218067652A US 2023211308 A1 US2023211308 A1 US 2023211308A1
Authority
US
United States
Prior art keywords
substrate
genes
nucleic acid
less
resolved loci
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/067,652
Inventor
William Banyai
Bill James Peck
Andres Fernandez
Siyuan Chen
Pierre Indermuhle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Twist Bioscience Corp
Original Assignee
Twist Bioscience Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52428204&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20230211308(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Twist Bioscience Corp filed Critical Twist Bioscience Corp
Priority to US18/067,652 priority Critical patent/US20230211308A1/en
Publication of US20230211308A1 publication Critical patent/US20230211308A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • C40B40/08Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • C40B50/18Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support using a particular method of attachment to the solid support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00378Piezoelectric or ink jet dispensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • B01J2219/00587High throughput processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • B01J2219/00619Delimitation of the attachment areas by chemical means using hydrophilic or hydrophobic regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis

Definitions

  • the present invention provides a gene library as described herein.
  • the gene library comprises a collection of genes.
  • the collection comprises at least 100 different preselected synthetic genes that can be of at least 0.5 kb length with an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes.
  • the present invention also provides a gene library that comprises a collection of genes.
  • the collection may comprise at least 100 different preselected synthetic genes that can be each of at least 0.5 kb length.
  • synthesized nucleic acids are compared against these predetermined sequences, in some cases by sequencing at least a portion of the synthesized nucleic acids, e.g. using next-generation sequencing methods.
  • at least 90% of the preselected synthetic genes comprise an error rate of less than 1 in 5000 bp compared to predetermined sequences comprising the genes.
  • at least 0.05% of the preselected synthetic genes are error free.
  • at least 0.5% of the preselected synthetic genes are error free.
  • At least 90% of the preselected synthetic genes comprise an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, at least 90% of the preselected synthetic genes are error free or substantially error free. In some embodiments, the preselected synthetic genes comprise a deletion rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the preselected synthetic genes comprise an insertion rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the preselected synthetic genes comprise a substitution rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes.
  • the gene library as described herein further comprises at least 10 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 100 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 1000 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 1000000 copies of each synthetic gene. In some embodiments, the collection of genes as described herein comprises at least 500 genes. In some embodiments, the collection comprises at least 5000 genes. In some embodiments, the collection comprises at least 10000 genes. In some embodiments, the preselected synthetic genes are at least 1 kb. In some embodiments, the preselected synthetic genes are at least 2 kb.
  • the preselected synthetic genes are at least 3 kb. In some embodiments, the predetermined sequences comprise less than 20 bp in addition compared to the preselected synthetic genes. In some embodiments, the predetermined sequences comprise less than 15 bp in addition compared to the preselected synthetic genes. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 0.10%. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 0.1%. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 10%. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 10%.
  • the gene library as described herein further comprises synthetic genes that are of less than 2 kb with an error rate of less than 1 in 20000 bp compared to preselected sequences of the genes.
  • a subset of the deliverable genes is covalently linked together.
  • a first subset of the collection of genes encodes for components of a first metabolic pathway with one or more metabolic end products.
  • the gene library as described herein further comprises selecting of the one or more metabolic end products, thereby constructing the collection of genes.
  • the one or more metabolic end products comprise a biofuel.
  • a second subset of the collection of genes encodes for components of a second metabolic pathway with one or more metabolic end products.
  • the gene library is in a space that is less than 100 m 3 . In some embodiments, the gene library is in a space that is less than 1 m 3 . In some embodiments, the gene library is in a space that is less than 1 m 3 .
  • the present invention also provides a method of constructing a gene library.
  • the method comprises the steps of: entering before a first timepoint, in a computer readable non-transient medium at least a first list of genes and a second list of genes, wherein the genes are at least 500 bp and when compiled into a joint list, the joint list comprises at least 100 genes; synthesizing more than 90% of the genes in the joint list before a second timepoint, thereby constructing a gene library with deliverable genes.
  • the second timepoint is less than a month apart from the first timepoint.
  • the method as described herein further comprises delivering at least one gene at a second timepoint.
  • at least one of the genes differs from any other gene by at least 0.10% in the gene library.
  • each of the genes differs from any other gene by at least 0.1% in the gene library.
  • at least one of the genes differs from any other gene by at least 10% in the gene library.
  • each of the genes differs from any other gene by at least 10% in the gene library.
  • at least one of the genes differs from any other gene by at least 2 base pairs in the gene library.
  • each of the genes differs from any other gene by at least 2 base pairs in the gene library.
  • at least 90% of the deliverable genes are error free.
  • the deliverable genes comprises an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the joint list of genes.
  • at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the joint list of genes.
  • genes in a subset of the deliverable genes are covalently linked together.
  • a first subset of the joint list of genes encode for components of a first metabolic pathway with one or more metabolic end products.
  • any of the methods of constructing a gene library as described herein further comprises selecting of the one or more metabolic end products, thereby constructing the first, the second or the joint list of genes.
  • the one or more metabolic end products comprise a biofuel.
  • a second subset of the joint list of genes encode for components of a second metabolic pathway with one or more metabolic end products.
  • the joint list of genes comprises at least 500 genes.
  • the joint list of genes comprises at least 5000 genes.
  • the joint list of genes comprises at least 10000 genes.
  • the genes can be at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • a method of constructing a gene library comprises the steps of: entering at a first timepoint, in a computer readable non-transient medium a list of genes; synthesizing more than 90% of the list of genes, thereby constructing a gene library with deliverable genes; and delivering the deliverable genes at a second timepoint.
  • the list comprises at least 100 genes and the genes can be at least 500 bp.
  • the second timepoint is less than a month apart from the first timepoint.
  • the method as described herein further comprises delivering at least one gene at a second timepoint.
  • at least one of the genes differs from any other gene by at least 0.10% in the gene library.
  • each of the genes differs from any other gene by at least 0.1% in the gene library.
  • at least one of the genes differs from any other gene by at least 10% in the gene library.
  • each of the genes differs from any other gene by at least 10% in the gene library.
  • at least one of the genes differs from any other gene by at least 2 base pairs in the gene library.
  • each of the genes differs from any other gene by at least 2 base pairs in the gene library.
  • at least 90% of the deliverable genes are error free.
  • the deliverable genes comprises an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes.
  • at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes.
  • genes in a subset of the deliverable genes are covalently linked together.
  • a first subset of the list of genes encode for components of a first metabolic pathway with one or more metabolic end products.
  • the method of constructing a gene library further comprises selecting of the one or more metabolic end products, thereby constructing the list of genes.
  • the one or more metabolic end products comprise a biofuel.
  • a second subset of the list of genes encode for components of a second metabolic pathway with one or more metabolic end products. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • the list of genes comprises at least 500 genes. In some embodiments, the list comprises at least 5000 genes. In some embodiments, the list comprises at least 10000 genes. In some embodiments, the genes are at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint as described in the methods of constructing a gene library is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • the present invention also provides a method of synthesizing n-mer oligonucleotides on a substrate.
  • the method comprises a) providing a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling; and b) coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 12 nucleotides per hour according to a locus specific predetermined sequence, thereby synthesizing a plurality of oligonucleotides that are n basepairs long.
  • Various embodiments related to the method of synthesizing n-mer oligonucleotides on a substrate are described herein.
  • the methods further comprise coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 15 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 20 nucleotides per hour.
  • the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 25 nucleotides per hour.
  • at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/500 bp.
  • at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/1000 bp.
  • At least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/2000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/500 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/1000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/2000 bp.
  • the building blocks comprise an adenine, guanine, thymine, cytosine, or uridine group, or a modified nucleotide. In some embodiments, the building blocks comprise a modified nucleotide. In some embodiments, the building blocks comprise dinucleotides or trinucleotides. In some embodiments, the building blocks comprise phosphoramidite. In some embodiments, n of the n-mer oligonucleotides is at least 100. In some embodiments, n is at least 200. In some embodiments, n is at least 300. In some embodiments, n is at least 400. In some embodiments, the surface comprises at least 100,000 resolved loci and at least two of the plurality of growing oligonucleotides can be different from each other.
  • the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises vacuum drying the substrate before coupling.
  • the building blocks comprise a blocking group.
  • the blocking group comprises an acid-labile DMT.
  • the acid-labile DMT comprises 4,4′-dimethoxytrityl.
  • the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises oxidation or sulfurization.
  • the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises chemically capping uncoupled oligonucleotide chains.
  • the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises removing the blocking group, thereby deblocking the growing oligonucleotide chain.
  • the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the vacuum drying step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the oxidation step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the capping step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the deblocking step.
  • the substrate comprises at least 10,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 100,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 1,000,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • a system for conducting a set of parallel reactions comprises: a first surface with a plurality of resolved loci; a capping element with a plurality of resolved reactor caps.
  • the system aligns the plurality of resolved reactor caps with the plurality of resolved loci on the first surface forming a temporary seal between the first surface and the capping element, thereby physically dividing the loci on the first surface into groups of at least two loci into a reactor associated with each reactor cap.
  • each reactor holds a first set of reagents.
  • the reactor caps upon release from the first surface, retain at least a portion of the first set of reagents. In some embodiments, the portion is about 30%. In some embodiments, the portion is about 90%. In some embodiments, the plurality of resolved loci resides on microstructures fabricated into a support surface. In some embodiments, the plurality of resolved loci is at a density of at least 1 per mm 2 . In some embodiments, the plurality of resolved loci is at a density of at least 10 per mm 2 . In some embodiments, the plurality of resolved loci are at a density of at least 100 per mm 2 .
  • the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 ⁇ m. In some embodiments, at least one of the channels is shorter than 1000 ⁇ m. In some embodiments, at least one of the channels is wider than 50 ⁇ m in diameter. In some embodiments, at least one of the channels is narrower than 100 ⁇ m in diameter. In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 0.1 per mm 2 .
  • the system further comprises a second surface with a plurality of resolved loci at a density of at least 1 per mm 2 . In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 10 per mm 2 .
  • the resolved loci of the first surface comprise a coating of reagents.
  • the resolved loci of the second surface comprise a coating of reagents.
  • the coating of reagents is covalently linked to the first or second surface.
  • the coating of reagents comprises oligonucleotides.
  • the coating of reagents has a surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the coating of reagents has a surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the coating of reagents has a surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the resolved loci in the plurality of resolved loci comprise a nominal arclength of the perimeter at a density of at least 0.001 ⁇ m/ ⁇ m 2 .
  • the resolved loci in the plurality of resolved loci comprise a nominal arclength of the perimeter at a density of at least 0.01 ⁇ m/ ⁇ m 2 .
  • the resolved loci in the plurality of resolved loci of the first surface comprise a high energy surface.
  • the first and second surfaces comprise a different surface tension with a given liquid.
  • the high surface energy corresponds to a water contact angle of less than 20 degree.
  • the plurality of resolved loci are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the capping elements comprise a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • the present invention also provides an array of enclosures.
  • the array of enclosures comprise: a plurality of resolved reactors comprising a first substrate and a second substrate comprising reactor caps; at least 2 resolved loci in each reactor.
  • the resolved reactors are separated with a releasable seal.
  • the reactor caps retain at least a part of the contents of the reactors upon release of the second substrate from the first substrate.
  • the reactor caps on the second substrate have a density of at least 0.1 per mm 2 .
  • reactor caps on the second substrate have a density of at least 1 per mm 2 .
  • reactor caps on the second substrate have a density of at least 10 per mm 2 .
  • the reactor caps retain at least 30% of the contents of the reactors. In some embodiments, the reactor caps retain at least 90% of the contents of the reactors. In some embodiments, the resolved loci are at a density of at least 2/mm 2 . In some embodiments, the resolved loci are at a density of at least 100/mm 2 . In some embodiments, the array of enclosures further comprises at least 5 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 20 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 50 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 100 resolved loci in each reactor.
  • the resolved loci reside on microstructures fabricated into a support surface.
  • the microstructures comprise at least two channels in fluidic communication with each other.
  • the at least two channels comprise two channels with different width.
  • the at least two channels comprise two channels with different length.
  • at least one of the channels is longer than 100 ⁇ m.
  • at least one of the channels is shorter than 1000 ⁇ m.
  • at least one of the channels is wider than 50 ⁇ m in diameter.
  • at least one of the channels is narrower than 100 ⁇ m in diameter.
  • the microstructures comprise a nominal arclength of the perimeter of the at least two channels that has a density of at least 0.01 ⁇ m/square ⁇ m. In some embodiments, the microstructures comprise a nominal arclength of the perimeter of the at least two channels that has a density of at least 0.001 ⁇ m/square ⁇ m. In some embodiments, the resolved reactors are separated with a releasable seal. In some embodiments, the seal comprises a capillary burst valve.
  • the plurality of resolved loci of the first substrate comprise a coating of reagents.
  • the plurality of resolved loci of the second substrate comprises a coating of reagents.
  • the coating of reagents is covalently linked to the first or second surface.
  • the coating of reagents comprises oligonucleotides.
  • the coating of reagents has a surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the coating of reagents has a surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the coating of reagents has a surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the plurality of resolved loci of the first substrate comprises a high energy surface.
  • the first and second substrates comprise a different surface tension with a given liquid.
  • the surface energy corresponds to a water contact angle of less than 20 degree.
  • the plurality of resolved loci or the reactor caps are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays or systems provided in the current invention.
  • the present invention also provides a method of conducting a set of parallel reactions.
  • the method comprises: (a) providing a first surface with a plurality of resolved loci; (b) providing a capping element with a plurality of resolved reactor caps; (c) aligning the plurality of resolved reactor caps with the plurality of resolved loci on the first surface and forming a temporary seal between the first surface and the capping element, thereby physically dividing the loci on the first surface into groups of at least two loci; (d) performing a first reaction, thereby forming a first set of reagents; and (e) releasing the capping element from the first surface, wherein each reactor cap retains at least a portion of the first set of reagents in a first reaction volume.
  • the portion is about 30%. In some embodiments, the portion is about 90%.
  • the method of conducting a set of parallel reactions as described herein further comprises the steps of: (f) providing a second surface with a plurality of resolved loci; (g) aligning the plurality of resolved reactor caps with the plurality of resolved loci on the second surface and forming a temporary seal between the second surface and the capping element, thereby physically dividing the loci on the second surface; (h) performing a second reaction using the portion of the first set of reagents, thereby forming a second set of reagents; and (i) releasing the capping element from the second surface, wherein each reactor cap can retain at least a portion of the second set of reagents in a second reaction volume.
  • the portion is about 30%. In some embodiments, the portion is about 90%.
  • the plurality of resolved loci can have a density of at least 1 per mm 2 on the first surface. In some embodiments, the plurality of resolved loci have a density of at least 10 per mm 2 on the first surface. In some embodiments, the plurality of resolved loci have a density of at least 100 per mm 2 on the first surface. In some embodiments, the plurality of resolved reactor caps have a density of at least 0.1 per mm 2 on the capping element. In some embodiments, the plurality of resolved reactor caps have a density of at least 1 per mm 2 on the capping element.
  • the plurality of resolved reactor caps have a density of at least 10 per mm 2 on the capping element. In some embodiments, the plurality of resolved loci have a density of more than 0.1 per mm 2 on the second surface. In some embodiments, the plurality of resolved loci have a density of more than 1 per mm 2 on the second surface. In some embodiments, the plurality of resolved loci have a density of more than 10 per mm 2 on the second surface.
  • the releasing of the capping elements from the surface steps such as the releasing steps in (e) and (i) as described herein can be performed at a different velocity.
  • the resolved loci of the first surface comprise a coating of reagents for the first reaction.
  • the resolved loci of the second surface comprise a coating of reagents for the second reaction.
  • the coating of reagents is covalently linked to the first or second surface.
  • the coating of reagents comprises oligonucleotides.
  • the coating of reagents has a surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area. In some embodiments, the oligonucleotides are at least 25 bp. In some embodiments, the oligonucleotides are at least 200 bp. In some embodiments, the oligonucleotides are at least 300 bp.
  • the resolved loci of the first surface comprise a high energy surface.
  • the first and second surfaces comprise a different surface tension with a given liquid.
  • the surface energy corresponds to a water contact angle of less than 20 degree.
  • the plurality of resolved loci or the resolved reactor caps are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the first and second reaction volumes are different.
  • the first or second reaction comprises polymerase cycling assembly.
  • the first or second reaction comprises enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, solid-phase assembly, Sloning building block technology, or RNA ligation mediated gene synthesis.
  • the methods of conducting a set of parallel reactions as described herein further comprises cooling the capping element.
  • the method of conducting a set of parallel reactions as described herein further comprises cooling the first surface.
  • the method of conducting a set of parallel reactions as described herein further comprises cooling the second surface. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays or systems provided in the current invention.
  • the present invention provides a substrate having a functionalized surface.
  • the substrate having a functionalized surface can comprise a solid support having a plurality of resolved loci.
  • the resolved loci are functionalized with a moiety that increases the surface energy of the solid support.
  • the resolved loci are localized on microchannels.
  • the moiety is a chemically inert moiety.
  • the microchannels comprise a volume of less than 1 nl.
  • the microchannels comprise a density of the nominal arclength of the perimeter of 0.036 ⁇ m/square ⁇ m.
  • the functionalized surface comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate.
  • the functionalized surface comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate.
  • the functionalized surface comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate.
  • the resolved loci in the plurality of resolved loci comprise a coating of reagents.
  • the coating of reagents is covalently linked to the substrate.
  • the coating of reagents comprises oligonucleotides.
  • at least one of the microchannels is longer than 100 ⁇ m. In some embodiments, at least one of the microchannels is shorter than 1000 ⁇ m. In some embodiments, at least one of the microchannels is wider than 50 ⁇ m in diameter.
  • the microchannels is narrower than 100 ⁇ m in diameter.
  • the surface energy corresponds to a water contact angle of less than 20 degree.
  • the solid support comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the plurality of resolved loci is at a density of at least 1/mm 2 . In some embodiments, the plurality of resolved loci is at a density of at least 100/mm 2 . It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method for synthesizing oligonucleotides on a substrate having a functionalized surface.
  • the method comprises: (a) applying through at least one inkjet pump at least one drop of a first reagent to a first locus of a plurality of loci; (b) applying negative pressure to the substrate; and (c) applying through at least one inkjet pump at least one drop of a second reagent to the first locus.
  • the first and second reagents can be different.
  • the first locus is functionalized with a moiety that increases their surface energy.
  • the moiety is a chemically inert moiety.
  • the plurality of loci resides on microstructures fabricated into the substrate surface.
  • the microstructures comprise at least two channels in fluidic communication with each other.
  • the at least two channels comprise two channels with different width.
  • the at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 ⁇ m.
  • the substrate surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the volume of the drop of the first and/or the second reagents is at least 2 ⁇ l. In some embodiments, the volume of the drop is about 40 ⁇ l. In some embodiments, the volume of the drop is at most 100 ⁇ l.
  • the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/ ⁇ m 2 . In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m/ ⁇ m 2 .
  • the functionalized surface comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate. In some embodiments, the pressure surrounding the substrate is reduced to less than 1 mTorr. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises coupling at least a first building block originating from the first drop to a growing oligonucleotide chain on the first locus.
  • the building blocks comprise a blocking group.
  • the blocking group comprises an acid-labile DMT.
  • the acid-labile DMT comprises 4,4′-dimethoxytrityl.
  • the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises oxidation or sulfurization.
  • the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises chemically capping uncoupled oligonucleotide chains. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises removing the blocking group, thereby deblocking the growing oligonucleotide chain.
  • the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the coupling step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the oxidation step.
  • the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the capping step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the deblocking step.
  • the first locus resides on a microstructure fabricated into the substrate surface.
  • at least one reagent for the oxidation step is provided by flooding the microstructure with a solution comprising the at least one reagent. In some embodiments, at least one reagent for the capping step is provided by flooding the microstructure with a solution comprising the at least one reagent.
  • the first locus resides on a microstructure fabricated into the substrate surface and at least one reagent for the deblocking step can be provided by flooding the microstructure with a solution comprising the at least one reagent.
  • the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises enclosing the substrate within a sealed chamber. In some embodiments, the sealed chamber allows for purging of liquids from the first locus. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises draining a liquid through a drain that is operably linked to the first locus.
  • the moisture content on the substrate is less than 1 ppm. In some embodiments, the surface energy is increased corresponding to a water contact angle of less than 20 degree. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention provides a method of depositing reagents to a plurality of resolved loci.
  • the method comprises applying through an inkjet pump at least one drop of a first reagent to a first locus of the plurality of loci; applying through an inkjet pump at least one drop of a second reagent to a second locus of the plurality of resolved loci.
  • the second locus is adjacent to the first locus.
  • the first and second reagents are different.
  • the first and second loci reside on microstructures fabricated into a support surface.
  • the microstructures comprise at least one channel that is more than 100 ⁇ m deep.
  • the microstructures comprise at least two channels in fluidic communication with each other.
  • the at least two channels comprise two channels with different width.
  • the at least two channels comprise two channels with different length.
  • the first locus receives less than 0.1% of the second reagent and the second locus receives less than 0.1% of the first reagent.
  • the loci comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/square ⁇ m.
  • the loci comprise a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m/square ⁇ m.
  • the first and second loci comprise a coating of reagents.
  • the coating of reagents is covalently linked to the substrate.
  • the coating of reagents comprises oligonucleotides.
  • at least one of the channels is longer than 100 ⁇ m. In some embodiments, at least one of the channels is shorter than 1000 ⁇ m. In some embodiments, at least one of the channels is wider than 50 ⁇ m in diameter. In some embodiments, at least one of the channels is narrower than 100 ⁇ m in diameter.
  • the support surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the plurality of resolved loci is at a density of at least 1/mm 2 . In some embodiments, the plurality of resolved loci is at a density of at least 100/mm 2 .
  • the volume of the drop is at least 2 ⁇ l. In some embodiments, the volume of the drop is about 40 ⁇ l. In some embodiments, the volume of the drop is at most 100 ⁇ l. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention provides a microfluidic system.
  • the microfluidic system comprises a first surface with a plurality of microwells at a density of at least 10 per mm 2 ; and a droplet inside one of the plurality of microwells.
  • the droplet inside one of the plurality of microwells has a Reynolds number at a range of about 1-1000.
  • the plurality of microwells is at a density of at least 1 per mm 2 .
  • plurality of microwells is at a density of at least 10 per mm 2 .
  • the microfluidic system further comprises an inkjet pump.
  • the droplet is deposited by the inkjet pump.
  • the droplet is moving in the lower half of a first microwell dimension.
  • the droplet is moving in the middle third of a first microwell dimension.
  • the plurality of microwells is at a density of at least 100 per mm 2 .
  • the first microwell dimension is larger than the droplet.
  • the microwell is longer than 100 ⁇ m.
  • the microwell is shorter than 1000 ⁇ m.
  • the microwell is wider than 50 ⁇ m in diameter.
  • the microwell is narrower than 100 ⁇ m in diameter. In some embodiments, the volume of the droplet is at least 2 ⁇ l. In some embodiments, the volume of the droplet is about 40 ⁇ l. In some embodiments, the volume of the droplet is at most 100 ⁇ l.
  • each of the plurality of microwells is fluidically connected to at least one microchannel. In some embodiments, the at least one microchannel is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree.
  • the microwells are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/square ⁇ m. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of 0.001 ⁇ m/ ⁇ m 2 .
  • the surface coated with the moiety comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the droplet comprises a reagent that enables oligonucleotide synthesis.
  • the reagent is a nucleotide or nucleotide analog.
  • the present invention provides a method of depositing droplets to a plurality of microwells.
  • the method comprises applying through an inkjet pump at least one droplet to a first microwell of the plurality of microwells.
  • the droplet inside one of the plurality of microwells has a Reynolds number at a range of about 1-1000.
  • the plurality of microwells has a density of at least 1/mm 2 .
  • the plurality of microwells has a density of at least 10/mm 2 .
  • the plurality of microwells can have a density of at least 100/mm 2 .
  • the microwell is longer than 100 ⁇ m.
  • the microwell is shorter than 1000 ⁇ m.
  • the microwell is wider than 50 ⁇ m in diameter.
  • the microwell is narrower than 100 ⁇ m in diameter.
  • the droplet is applied at a velocity of at least 2 m/sec.
  • the volume of the droplet is at least 2 ⁇ l. In some embodiments, the volume of the droplet is about 40 ⁇ l.
  • the volume of the droplet is at most 100 ⁇ l.
  • each of the plurality of microwells is fluidically connected to at least one microchannel.
  • the at least one microwell is coated with a moiety that increases surface energy.
  • the moiety is a chemically inert moiety.
  • the surface energy corresponds to a water contact angle of less than 20 degree.
  • the microwells are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/square ⁇ m. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m 2 m/ ⁇ m 2 . In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • a droplet inside a microwell is traveling in the middle third of the microwell.
  • a droplet inside a microwell is traveling in the bottom half of the microwell.
  • droplet comprises a reagent that enables oligonucleotide synthesis.
  • the reagent is a nucleotide or nucleotide analog. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method of partitioning.
  • the method of partitioning comprises contacting a first surface comprising a liquid at a first plurality of resolved loci with a second surface comprising a second plurality of resolved loci; determining a velocity of release such that a desired fraction of the liquid can be transferred from the first plurality of resolved loci to the second plurality of resolved loci; and detaching the second surface from the first surface at said velocity.
  • the first surface comprises a first surface tension with the liquid
  • the second surface can comprise a second surface tension with the liquid.
  • a portion of the first surface can be coated with a moiety that increases surface tension.
  • the moiety is a chemically inert moiety.
  • the surface tension of the first surface corresponds to a water contact angle of less than 20 degree.
  • the surface tension of the second surface corresponds to a water contact angle of more than 90 degree.
  • the first surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the plurality of resolved loci comprises a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/ ⁇ m 2 . In some embodiments, the plurality of resolved loci comprises a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m/ ⁇ m 2 . In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the first plurality of resolved loci is at a density of at least 1/mm 2 . In some embodiments, the first plurality of resolved loci is at a density of at least 100/mm 2 .
  • the first or the second surface comprises microchannels holding at least a portion of the liquid. In some embodiments, the first or the second surface comprises nanoreactors holding at least a portion of the liquid.
  • the method of partitioning as described herein further comprises contacting a third surface with a third plurality of resolved loci.
  • the liquid comprises a nucleic acid.
  • the desired fraction is more than 30%. In some embodiments, the desired fraction is more than 90%. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method of mixing as described herein.
  • the method comprises: (a) providing a first substrate comprising a plurality of microstructures fabricated thereto; (b) providing a second substrate comprising a plurality of resolved reactor caps; (c) aligning the first and second substrates such that a first reactor cap of the plurality can be configured to receive liquid from n microstructures in the first substrate; and (d) delivering liquid from the n microstructures into the first reactor cap, thereby mixing liquid from the n microstructures forming a mixture.
  • the plurality of resolved reactor caps can be at a density of at least 0.1/mm 2 . In some embodiments, the plurality of resolved reactor caps are at a density of at least 1/mm 2 . In some embodiments, plurality of resolved reactor caps are at a density of at least 10/mm 2 . In some embodiments, each of the plurality of microstructures can comprise at least two channels of different width. In some embodiments, the at least one of the channels is longer than 100 ⁇ m. In some embodiments, the at least one of the channels is shorter than 1000 ⁇ m. In some embodiments, the at least one of the channels is wider than 50 ⁇ m in diameter.
  • the at least one of the channels is narrower than 100 ⁇ m in diameter. In some embodiments, the at least one of the channels is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety.
  • the microstructures are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/square ⁇ m.
  • the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m/ ⁇ m 2 .
  • the surface coated with the moiety comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the plurality of microstructures comprises a coating of reagents.
  • the coating of reagents is covalently linked to the first surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the microstructures are at a density of at least 1/mm 2 . In some embodiments, the microstructures are at a density of at least 100/mm 2 .
  • step (c) which is aligning the first and second substrates such that a first reactor cap of the plurality can be configured to receive liquid from n microstructures in the first substrate, there is a gap of less than 100 ⁇ m between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 50 ⁇ m between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 20 ⁇ m between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 10 ⁇ m between the first and the second substrates. In some embodiments, the mixture partially spreads into the gap.
  • the method of mixing further comprises sealing the gap by bringing the first and the second substrate closer together.
  • one of the two channels is coated with a moiety that increases surface energy corresponding to a water contact angle of less than 20 degree.
  • the moiety is a chemically inert moiety.
  • the delivering is performed by pressure.
  • the volume of the mixture is greater than the volume of the reactor cap.
  • the liquid comprises a nucleic acid.
  • n is at least 10.
  • n is at least 25.
  • the number of microstructures from which the liquid is mixed forming a mixture can be at least 50.
  • n is at least 75.
  • n is at least 100. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method of synthesizing n-mer oligonucleotides on a substrate as described herein.
  • the method comprises: providing a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling; and coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci according to a locus specific predetermined sequence without transporting the substrate between the couplings of the at least two building blocks, thereby synthesizing a plurality of oligonucleotides that are n basepairs long.
  • the method can further comprise coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 12 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 15 nucleotides per hour.
  • the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 20 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 25 nucleotides per hour. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/500 bp.
  • At least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/1000 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/2000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/500 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/1000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/2000 bp.
  • the building blocks comprise an adenine, guanine, thymine, cytosine, or uridine group, or a modified nucleotide. In some embodiments, the building blocks comprise a modified nucleotide. In some embodiments, the building blocks comprise dinucleotides. In some embodiments, the building blocks comprise phosphoramidite. In some embodiments, n is at least 100. In some embodiments, wherein n is at least 200. In some embodiments, n is at least 300. In some embodiments, n is at least 400.
  • the substrate comprises at least 100,000 resolved loci and at least two of the plurality of growing oligonucleotides are different from each other.
  • the method further comprise vacuum drying the substrate before coupling.
  • the building blocks comprise a blocking group.
  • the blocking group comprises an acid-labile DMT.
  • the acid-labile DMT comprises 4,4′-dimethoxytrityl.
  • the method further comprise oxidation or sulfurization.
  • the method further comprise chemically capping uncoupled oligonucleotide chains.
  • the method further comprise removing the blocking group, thereby deblocking the growing oligonucleotide chain.
  • the substrate comprises at least 10,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 100,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 1,000,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method of constructing a gene library as described herein.
  • the method comprises: entering at a first timepoint, in a computer readable non-transient medium a list of genes, wherein the list comprises at least 100 genes and wherein the genes are at least 500 bp; synthesizing more than 90% of the list of genes, thereby constructing a gene library with deliverable genes; preparing a sequencing library that represents the gene library; obtaining sequence information; selecting at least a subset of the deliverable genes based on the sequence information; and delivering the selected deliverable genes at a second timepoint, wherein the second timepoint is less than a month apart from the first timepoint.
  • the sequence information can be obtained bia next-generation sequencing.
  • the sequence information can be obtained by Sanger sequencing.
  • the method further comprises delivering at least one gene at a second timepoint.
  • at least one of the genes differ from any other gene by at least 0.1% in the gene library.
  • each of the genes differ from any other gene by at least 0.1% in the gene library.
  • at least one of the genes differ from any other gene by at least 10% in the gene library.
  • each of the genes differ from any other gene by at least 10% in the gene library.
  • at least one of the genes differ from any other gene by at least 2 base pairs in the gene library.
  • each of the genes differ from any other gene by at least 2 base pairs in the gene library.
  • at least 90% of the deliverable genes are error free.
  • the deliverable genes comprise an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes.
  • at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes.
  • a subset of the deliverable genes are covalently linked together.
  • a first subset of the list of genes encode for components of a first metabolic pathway with one or more metabolic end products.
  • the method further comprises selecting of the one or more metabolic end products, thereby constructing the list of genes.
  • the one or more metabolic end products comprise a biofuel.
  • a second subset of the list of genes encode for components of a second metabolic pathway with one or more metabolic end products.
  • the list comprises at least 500, genes.
  • the list comprises at least 5000 genes.
  • the list comprises at least 10000 genes.
  • the genes are at least 1 kb.
  • the genes are at least 2 kb.
  • the genes are at least 3 kb.
  • the second timepoint is less than 25 days apart from the first timepoint.
  • the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • a microfluidic device for nucleic acid synthesis comprising a substantially planar substrate portion comprising n groupings of m microfluidic connections between opposite surfaces, wherein each one of the n*m microfluidic connections comprises a first channel and a second channel, and wherein the first channel within each of the n groupings is common to all m microfluidic connections, wherein the plurality of microfluidic connections span the substantially planar substrate portion along the smallest dimension of the substrate, and wherein n and m are at least 2.
  • the second channel is functionalized with a coating that is capable of facilitating the attachment of an oligonucleotide to the device.
  • the device further comprises a first oligonucleotide that is attached to the second channels in k of the n groupings. In some embodiments, k is 1. In some embodiments, the device further comprises a second oligonucleotide that is attached to 1 of the n groupings. In some embodiments, 1 is 1. In some embodiments, the none of the groupings in the 1 groupings are in the k groupings.
  • the oligonucleotide is at least 10 nucleotides, 25 nucleotides, 50 nucleotides, 75 nucleotides, 100 nucleotides, 125 nucleotides, 150 nucleotides, or 200 nucleotides long.
  • the first and the second oligonucleotides differ by at least 2 nucleotides, 3 nucleotides, 4 nucleotides, 5 nucleotides, or 10 nucleotides.
  • the n*m microfluidic connections are at most 5 mm, 1.5 mm, 1.0 mm, or 0.5 mm long.
  • the first channel within each of the n groupings is at most 5 mm, 1.5 mm, 1.0 mm, or 0.5 mm long.
  • the first channel within each of the n groupings is at least 0.05 mm, 0.75 mm, 0.1 mm, 0.2 mm, 0.3 mm, or 0.4 mm long.
  • the second channel in each of the n*m microfluidic connections is at most 0.2 mm, 0.1 mm, 0.05 mm, 0.04 mm, or 0.03 mm long.
  • the second channel in each of the n*m microfluidic connections is at least 0.001 mm, 0.005 mm, 0.01 mm, 0.02 mm, or 0.03 mm long.
  • the cross section of the first channel within each of the n groupings is at least 0.01 mm, 0.025 mm, 0.05 mm, or 0.075 mm.
  • the cross section of the first channel within each of the n groupings is at most 1 mm, 0.5 mm, 0.25 mm, 0.1 mm, or 0.075 mm.
  • the cross section of the second channel in each of the n*m microfluidic connections is at least 0.001 mm, 0.05 mm, 0.01 mm, 0.015 mm, or 0.02 mm. In some embodiments, the cross section of the second channel in each of the n*m microfluidic connections is at most 0.25 mm, 0.125 mm, 0.050 mm, 0.025 mm, 0.02 mm. In some embodiments, the standard deviation in the cross section of the second channels in each of the n*m microfluidic connections is less than 25%, 20%, 15%, 10%, 5%, or 1% of the mean of the cross section. In some embodiments, the variation in the cross section within at least 90% of the second channels of the n*m microfluidic connections is at most 25%, 20%, 15%, 10%, 5%, or 1%.
  • n is at least 10, 25, 50, 100, 1000, or 10000. In some embodiments, m is at least 3, 4, or 5.
  • the substrate comprises at least 5%, 10%, 25%, 50%, 80%, 90%, 95%, or 99% silicon.
  • At least 90% of the second channels of the n*m microfluidic connections is functionalized with a moiety that increases surface energy.
  • the surface energy is increased to a level corresponding to a water contact angle of less than 75, 50, 30, or 20 degrees.
  • the aspect ratio for at least 90% of the second channels of the n*m microfluidic connections is less than 1, 0.5, or 0.3. In some embodiments, the aspect ratio for at least 90% of the first channels in the n groupings is less than 0.5, 0.3, or 0.2.
  • the total length of at least 10%, 25%, 50%, 75%, 90%, or 95% of the n*m fluidic connections are within 10%, 20%, 30%, 40%, 50%, 100%, 200%, 500%, or 1000% of the smallest dimension of the substantially planar substrate.
  • the substantially planar portion of the device is fabricated from a SOI wafer.
  • the invention in another aspect, relates to a method of nucleic acid amplification, comprising: (a) providing a sample comprising n circularized single stranded nucleic acids, each comprising a different target sequence; (b) providing a first adaptor that is hybridizable to at least one adaptor hybridization sequence on m of the n circularized single stranded nucleic acids; (c) providing conditions suitable for extending the first adaptor using the m circularized single stranded nucleic acids as a template, thereby generating m single stranded amplicon nucleic acids, wherein each of the m single stranded amplicon nucleic acids comprises a plurality of replicas of the target sequence from its template; (d) providing a first auxiliary oligonucleotide that is hybridizable to the first adaptor; and (e) providing a first agent under conditions suitable for the first agent to cut the m single stranded amplicon nucleic acids at a plurality of
  • n or m is at least 2. In some embodiments, n or m is at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150, 200, 300, 400, or 500. In some embodiments, m is less than n.
  • the sample comprising the n circularized single stranded nucleic acid is formed by providing at least n linear single stranded nucleic acids, each comprising one of the different target sequences and circularizing the n linear single stranded nucleic acids, thereby generating the n circularized single stranded nucleic acids.
  • the first adaptor is hybridizable to both ends of the n linear single stranded nucleic acids concurrently.
  • the different target sequences in the n linear single stranded nucleic acids are flanked by a first and a second adaptor hybridization sequence.
  • the at least n linear single stranded nucleic acids are generated by de novo oligonucleotide synthesis.
  • the first adaptor hybridization sequence in each of the n linear single stranded nucleic acids differ by no more than two nucleotide bases.
  • the first or the second adaptor hybridization sequence is at least 5 nucleotides long. In some embodiments, the first or the second adaptor hybridization sequence is at most 75, 50, 45, 40, 35, 30, or 25 nucleotides long.
  • the ends of the n linear single stranded nucleic acids pair with adjacent bases on the first adaptor when the first adaptor is hybridized to the both ends of the linear single stranded nucleic acid concurrently.
  • the locations of the plurality of cutting sites are such that the adaptor hybridization sequence is severed from at least 5% of a remainder sequence portion of the m circularized single stranded nucleic acid replicas. In some embodiments, at least 5% of the sequence of the m circularized single stranded nucleic acid replicas other than the at least one adaptor hybridization sequence remains uncut. In some embodiments, the locations of the plurality of cutting sites are outside the at least one adaptor hybridization sequence.
  • the locations of the plurality of cutting sites are independent of the target sequences. In some embodiments, the locations of the plurality of cutting sites are determined by at least one sequence element within the sequence of the first adaptor or the first auxiliary oligonucleotide. In some embodiments, the sequence element comprises a recognition site for a restriction endonuclease. In some embodiments, the first auxiliary oligonucleotide or the first adaptor oligonucleotide comprises a recognition site for a Type IIS restriction endonuclease. In some embodiments, the recognition sites are at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides away from the cutting sites.
  • the plurality of cutting sites are at junctures of single and double stranded nucleic acids.
  • the double stranded nucleic acids comprise the first adaptor and the first auxiliary oligonucleotide.
  • the single stranded nucleic acids consists essentially of the m different target sequences.
  • the m different target sequences have at most 95% pairwise similarity.
  • the m different target sequences have at most 90% pairwise similarity.
  • the m different target sequences have at most 80% pairwise similarity.
  • the m different target sequences have at most 50% pairwise similarity.
  • generating the m single stranded amplicon nucleic acid comprises strand displacement amplification.
  • the first auxiliary oligonucleotide comprises an affinity tag.
  • the affinity tag comprises biotin or biotin derivative.
  • the method further comprises isolating double stranded nucleic acids from the sample.
  • the isolating comprises affinity purification, chromatography, or gel purification.
  • the first agent comprises a restriction endonuclease.
  • the first agent comprises at least two restriction endonucleases.
  • the first agent comprises a Type IIS restriction endonuclease.
  • the first agent comprises a nicking endonuclease. In some embodiments, the first agent comprises at least two nicking endonucleases. In some embodiments, the first agent comprises at least one enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI
  • the first agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site, as any of the listed sfirst agents and variants.
  • the at least two restriction enzymes comprise MlyI and BciVI or BfuCI and MlyI.
  • the method further comprises (a) partitioning the sample into a plurality of fractions; (b) providing at least one fraction with a second adaptor that is hybridizable to at least one adaptor hybridization sequence on k of the n different circularized single stranded nucleic acids; (c) providing conditions suitable for extending the second adaptor using the k circularized single stranded nucleic acids as a template, thereby generating k single stranded amplicon nucleic acids, wherein the second single stranded amplicon nucleic acid comprises a plurality of replicas of the target sequence from its template; (d) providing a second auxiliary oligonucleotide that is hybridizable to the second adaptor; and (e) providing a second agent under conditions suitable for the agent to cut the k single stranded amplicon nucleic acids at a second plurality of cutting sites, thereby generating a plurality of single stranded replicas of the target sequences in the k circular
  • the first and the second adaptors are the same. In some embodiments, the first and the second auxiliary oligonucleotides are the same. In some embodiments, the first and the second agents are the same. In some embodiments, k+m is less than n. In some embodiments, k is at least 2. In some embodiments, the sample comprising the n circularized single stranded nucleic acid is formed by single stranded nucleic acid amplification.
  • the single stranded nucleic acid amplification comprises: (a) providing a sample comprising at least m circularized single stranded precursor nucleic acids; (b) providing a first precursor adaptor that is hybridizable to the m circularized single stranded precursor nucleic acids; (c) providing conditions suitable for extending the first precursor adaptor using the m circularized single stranded precursor nucleic acids as a template, thereby generating m single stranded precursor amplicon nucleic acids, wherein the single stranded amplicon nucleic acid comprises a plurality of replicas of the m circularized single stranded precursor nucleic acid; (d) providing a first precursor auxiliary oligonucleotide that is hybridizable to the first precursor adaptor; and (e) providing a first precursor agent under conditions suitable for the first precursor agent to cut the first single stranded precursor amplicon nucleic acid at a plurality of cutting sites, thereby generating the
  • the method further comprises circularizing the m linear precursor nucleic acids, thereby forming replicas of the m circularized single stranded precursor nucleic acids.
  • the m circularized single stranded precursor nucleic acid is amplified by at least 10, 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 10000-fold, or more in single stranded replicas.
  • at least one of the m circularized single stranded nucleic acids is at a concentration of about or at most about 100 nM, 10 nM, 1 nM, 50 pM, 1 pM, 100 fM, 10 fM, 1 fM, or less.
  • circularizing comprises ligation.
  • ligation comprises the use of a ligase selected from the group consisting of T4 DNA ligase, T3 DNA ligase, T7 DNA ligase, E. coli DNA ligase, Taq DNA ligase, and 9N DNA ligase.
  • the invention in various embodiments relates to a kit comprising: (a) a first adaptor; (b) a first auxiliary oligonucleotide that is hybridizable to the adaptor; (c) a ligase; and (d) a first cleaving agent, comprising at least one enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MiuCI, Sau3AI, Tsp509I, B
  • the first agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site as any of the listed first agents and variants.
  • the kit further comprises a second cleaving agent.
  • the second cleaving agent comprises and enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I,
  • the second agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site as any of the listed second agents and variants.
  • the first cleaving agents comprises MlyI.
  • the second cleaving agent comprises BciVI or BfuCI.
  • the invention relates to a method of nucleic acid amplification, comprising: (a) providing a sample comprising n circularized single stranded nucleic acids, each comprising a different target sequence; (b) providing a first adaptor that is hybridizable to at least one adaptor hybridization sequence on m of the n circularized single stranded nucleic acids; (c) providing conditions suitable for extending the first adaptor using the m circularized single stranded nucleic acids as a template, thereby generating m single stranded amplicon nucleic acids, wherein each of the m single stranded amplicon nucleic acids comprises a plurality of replicas of the target sequence from its template; (d) generating double stranded recognition sites for a first agent on the m single stranded amplicon nucleic acids; and (e) providing the first agent under conditions suitable for the first agent to cut the m single stranded amplicon nucleic acids at
  • the double stranded recognition sites comprise a first portion of the first adaptor on a first strand of the double stranded recognition sites and a second strand of the first adaptor on the second strand of the double stranded recognition sites.
  • the adaptor comprises a palindromic sequence.
  • the double stranded recognition sites are generated by hybridizing the first and second portions of the first adaptor to each other.
  • the m single stranded amplicon nucleic acids comprise a plurality of double stranded self-hybridized regions.
  • the invention relates to a method for generating a long nucleic acid molecule, the method comprising the steps of: (a) providing a plurality of nucleic acids immobilized on a surface, wherein said plurality of nucleic acids comprises nucleic acids having overlapping complementary sequences; (b) releasing said plurality of nucleic acids into solution; and (c) providing conditions promoting: i) hybridization of said overlapping complementary sequences to form a plurality of hybridized nucleic acids; and ii) extension or ligation of said hybridized nucleic acids to synthesize the long nucleic acid molecule.
  • the invention in another aspect, relates to an automated system capable of processing one or more substrates, comprising: an inkjet print head for spraying a microdroplet comprising a chemical species on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and not comprising a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell, wherein said treating transport and said scanning transport are different elements.
  • the invention relates to an automated system for synthesizing oligonucleotides on a substrate, said automated system capable of processing one or more substrates, comprising: an inkjet print head for spraying a solution comprising a nucleoside or activated nucleoside on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the nucleoside at specified sites; a flow cell for treating the substrate on which the monomer is deposited by exposing the substrate to one or more selected fluids; an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and not comprising a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell, wherein said treating transport and said scanning transport are different elements.
  • the invention relates to an automated system comprising: an inkjet print head for spraying a microdroplet comprising a chemical species on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; and an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and wherein the system does NOT comprise a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell.
  • FIG. 1 A- 1 C demonstrates an example process outlining the gene synthesis and nanoreactor technologies.
  • FIG. 1 A illustrates an example process for oligonucleotide synthesis on a substrate using an inkjet printer
  • FIG. 1 B illustrates an example process for gene amplification in a resolved enclosure, or a nanoreactor.
  • FIG. 1 C illustrates an example of the use of a plurality of wafers linking microfluidic reactions for oligonucleotide synthesis and gene assembly in parallel.
  • FIGS. 2 A- 2 C are block diagrams demonstrating exemplary business process flows. Cloning of the synthesized genes may be skipped ( FIG. 2 B ). In FIG. 2 C , synthesized genes are cloned prior to shipment ( FIG. 2 C ).
  • FIG. 3 demonstrates an exemplary outline of a system for oligonucleotide synthesis, including a printer, e.g. inkjet printer, for reagent deposition, a substrate (wafer), schematics outlining the alignment of the system elements in multiple directions, and exemplary setups for reagent flow.
  • a printer e.g. inkjet printer
  • FIG. 4 illustrates an example of the design microstructures built into a substrate (oligonucleotide wafer reactor).
  • FIG. 5 is a diagram demonstrating an exemplary process for reagent deposition into the microstructures illustrated in FIG. 4 .
  • the selected area for surface functionalization allows reagent spreading into the smaller functionalized wells under wetting conditions.
  • FIG. 6 A are illustrations further exemplifying the microstructures illustrated in FIG. 4 .
  • FIG. 6 B are illustrations of various alternative designs for the microstructures.
  • FIG. 6 C illustrates a layout design for the microstructures on the substrate (wafer).
  • FIG. 7 illustrates an exemplary layout of reactor caps on a capping element.
  • FIG. 8 is a diagram demonstrating an exemplary process workflow for gene synthesis to shipment.
  • FIG. 9 part A show illustrations of an exemplary flowcell with lid opened or closed.
  • FIG. 9 part B illustrates a cross-sectional view of an exemplary flowcell and waste collector assembly.
  • FIG. 9 part C illustrates a magnified cross-sectional view of an exemplary flowcell and waste collector assembly.
  • FIG. 10 part A illustrates an example of a single groove vacuum chuck with a single 1-5 mm groove, 198 mm diameter.
  • FIG. 10 part B illustrates a sintered metal insert in between a substrate (wafer) and the vacuum chuck and an optional thermal control element incorporated into the receiving element.
  • FIG. 10 part C illustrates a cross-sectional view of the single groove vacuum chuck exemplified in FIG. 10 part A.
  • FIG. 11 illustrates exemplary application standard phosphoramidite chemistry for oligonucleotide synthesis.
  • FIG. 12 illustrates an exemplary application of the polymerase chain assembly (PCA).
  • PCA polymerase chain assembly
  • FIG. 13 are diagrams demonstrating the advantage of using longer oligonucleotides (e.g. about 300 bp) vs. shorter oligonucleotides (e.g. about 50 kb). Longer oligonucleotides can be used in the assembly of gene products with reduced error.
  • FIG. 14 are diagrams demonstrating an exemplary combined application of PCA and Gibson methods for assembly of oligonucleotides into gene products.
  • FIG. 15 is a diagram demonstrating an error correction method especially suited for application to gene synthesis products with higher error rates.
  • FIG. 16 is a diagram demonstrating an error correction method especially suited for application to gene synthesis products with lower error rates.
  • FIG. 17 is a diagram demonstrating the use of padlock probes for the generation of molecularly barcoded sequencing libraries and quality control (QC) processes comprising next generation sequencing (NGS).
  • QC quality control
  • FIG. 18 illustrates an example for an inkjet assembly, with 10 inkjet heads that have silicon orifice plates with 256 nozzles on 254 ⁇ m centers, and 100 ⁇ m fly height.
  • FIG. 19 illustrates an example of a computer system that can be used in connection with example embodiments of the present invention.
  • FIG. 20 is a block diagram illustrating a first example architecture of a computer system 2000 that can be used in connection with example embodiments of the present invention.
  • FIG. 21 is a diagram demonstrating a network 2100 configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS) that can be used in connection with example embodiments of the present invention.
  • NAS Network Attached Storage
  • FIG. 22 is a block diagram of a multiprocessor computer system 2200 using a shared virtual address memory space that can be used in connection with example embodiments of the present invention.
  • FIG. 23 is a diagram demonstrating exemplary steps constituting the front end processing for the manufacturing of microstructures on a substrate (e.g. silicon wafer).
  • a substrate e.g. silicon wafer
  • FIG. 24 is a diagram demonstrating exemplary steps constituting the back end processing for the functionalizing of the microstructure surfaces on a substrate (e.g. silicon wafer).
  • a substrate e.g. silicon wafer
  • FIGS. 25 A- 25 C depict different views of a cluster comprising a high density of groupings.
  • FIG. 25 F depicts the device view of a diagram of a microfluidic device comprising a substantially planar substrate portion having 108 reaction wells and a designated area for a label.
  • FIG. 25 G depicts the device view of a cluster comprising 109 groupings.
  • FIG. 26 A depicts a cross-section view of a diagram of a nanoreactor, where the view shows a row of the nanoreactor comprising 11 wells.
  • FIG. 26 B depicts a device view of a diagram of a nanoreactor comprising 108 raised wells.
  • the detail F depicts a detailed view of one well of the nanoreactor.
  • FIG. 26 C depicts an angled device view of the nanoreactor diagram shown in FIG. 26 B .
  • FIG. 26 D depicts a handle view of a diagram of a nanoreactor.
  • the detail H depicts a detailed view of a fiducial marking on the handle side of the nanoreactor.
  • FIG. 26 E depicts a device view of a diagram of nanoreactor comprising 108 wells and a label.
  • FIG. 27 illustrates in detail the design features of an exemplary oligonucleotide synthesis device that is differentially functionalized.
  • FIG. 28 illustrates a workflow for the front-end manufacturing process for the exemplary device in FIG. 15 .
  • FIG. 29 illustrates an exemplary baseline process flow for the back-end manufacturing of the exemplary oligonucleotide synthesis device of FIG. 15 for differential functionalization.
  • FIG. 30 illustrates a functionalized surface with a controlled density of active groups for nucleic acid synthesis.
  • FIG. 31 parts A-B shows an image of a device manufactured according to the methods described herein.
  • FIG. 32 illustrates the design details of an exemplary nanoreactor device.
  • FIG. 33 parts A-H illustrates an exemplary baseline process flow for the front-end manufacturing of the exemplary device described in FIG. 20 .
  • FIG. 34 parts A-D illustrates an exemplary baseline process flow for the back-end manufacturing of the exemplary nanoreactor device of FIG. 20 for functionalization.
  • FIG. 35 illustrates the nanowells in a nanoreactor device manufactured as described herein.
  • FIG. 35 part B illustrates a close-up view of the nanowells illustrated in FIG. 35 part A.
  • FIG. 36 parts A-F illustrates various configurations for differential functionalization.
  • the light shaded line indicates an active surface, while a dark line indictaes a passive surface.
  • FIG. 36 part A illustrates a uniformly functionalized surface.
  • FIG. 36 parts B-F illustrate differentially functionalized surfaces in various configurations.
  • FIG. 37 parts A-F illustrate a process flow for device funtionalization.
  • FIG. 38 depicts an exemplary illustration of resist application, wherein resist is pulled into small structures and stopped by sharp edges.
  • FIG. 39 parts A-B illustrate use of underlying structures to either stop or wick the resist application in an exemplary embodiment.
  • FIG. 40 parts A-C illustrate post-lithographic resist patterns in an exemplary differential functionalization configuration.
  • FIG. 40 part A illustrates a bright field view of a post-lithographic resist patern.
  • FIG. 40 part B illustrates a dark field view of a post-lithographic resist patern.
  • FIG. 40 part C illustrates a cross-sectional schematic view of a post-lithographic resist patern.
  • FIG. 41 parts A-C illustrate post-lithographic resist patterns in another exemplary differential functionalization configuration.
  • FIG. 41 part A illustrates a bright field view of a post-lithographic resist patern.
  • FIG. 41 part B illustrates a dark field view of a post-lithographic resist patern.
  • FIG. 41 part C illustrates a cross-sectional schematic view of a post-lithographic resist patern.
  • FIG. 42 parts A-C illustrate a post resist strip after functionalization with a fluorosilane.
  • FIG. 42 part A illustrates a bright field view.
  • FIG. 42 part B illustrates a dark field view.
  • FIG. 42 part C illustrates a cross-sectional schematic view.
  • FIG. 43 parts A-C illustrate an exemplary oligonucleotide synthesis device (“Keratin chip”), fully loaded with DMSO.
  • FIG. 43 part A illustrates a bright field view of the Keratin chip fully loaded with DMSO. Hydrophilic and hydrophobic regions are indicated.
  • FIG. 43 part B illustrates a dark field view of the Keratin chip fully loaded with DMSO.
  • FIG. 43 part C illustrates a cross-sectional schematic view of the Keratin chip fully loaded with DMSO, indicating spontaneous wetting of the revolvers.
  • FIG. 44 parts A-F outline an exemplary process flow for configuration 6 illustrated in FIG. 36 .
  • FIG. 45 parts A-B indicate a spot sampling configuration from an oligonucleotide synthesis device (A) and corresponding BioAnalyzer data (B) for each of the five spots in FIG. 45 part A.
  • FIG. 46 indicates BioAnalyzer data of surface extracted 100-mer oligonucleotides synthesized on a silicon oligonucleotide synthesis device.
  • FIG. 47 indicates BioAnalyzer data of surface extracted 100-mer oligonucleotides synthesized on a silicon oligonucleotide synthesis device after PCR amplification.
  • FIG. 48 represents a sequence alignment for the samples taken from spot 8, where “x” denotes a single base deletion, “star” denotes single base mutation, and “+” denotes low quality spots in Sanger sequencing.
  • FIG. 49 represents a sequence alignment for the samples taken from spot 7, where “x” denotes a single base deletion, “star” denotes single base mutation, and “+” denotes low quality spots in Sanger sequencing.
  • FIG. 50 parts A-B provide BioAnalzyer results for a 100-mer oligonucleotide synthesized on a three dimensional oligonucleotide device after extraction (part A) and after PCR amplification (part B).
  • FIG. 51 represents a sequence alignment map for a PCR amplified sample of a 100-mer oligonucleotide that was synthesized on a 3D oligonucleotide device.
  • FIG. 52 represents correction results through the application of two rounds of error correction using CorrectASE.
  • FIG. 53 parts A-C illustrate a surface functionalization pattern in an exemplary differential functionalization configuration after functionalization.
  • FIG. 53 part A illustrates a bright field view.
  • FIG. 53 part B illustrates a dark field view.
  • FIG. 53 part C illustrates a cross-sectional schematic view of the surface functionalization pattern and an aqueous fluid bulging out avoiding hydrophobic regions.
  • FIG. 54 parts A-D depicts an exemplary workflow for functionalization of an nanoreactor device. Cleaning is followed by resist deposition, functionalization, and finally a resist strip.
  • FIG. 55 depicts BioAnalyzer results for a number of oligonucleotides transferred into individual nanoreactor wells from an oligonucleotide synthesis device following a blotting method.
  • FIG. 56 parts A-B depict alternate flow cell designs.
  • FIG. 56 part A depicts a line source/line drain design for a flowcell.
  • FIG. 56 part B depicts a point source/point drain design for a flowcell.
  • FIG. 57 illustrates an oligonucleotide synthesis device and a nanoreactor device mounted in a configuration having a 50 um gap. In an exemplary embodiment, the devices are maintained in this configuration for for 10 minutes.
  • FIG. 58 parts A-B show the redistribution of oligos over time, without being bound by theory, by diffusion, from an oligonucleotide synthesis device to a nanoreactor device.
  • FIG. 58 part A shows oligos concentrated in a liquid in the revolver channels, and few or no oligonucleotides in a nanoreactor chamber.
  • FIG. 58 part B schematizes oligonucleotides uniformly distributed through liquid in revolver chambers and in a nanoreactor chamber at a later time point relative to FIG. 58 part A.
  • FIG. 59 shows views of a nanoreactor well array used for gene assembly before and after a PCA reaction.
  • FIG. 60 parts A-C depict the results of the assembly of a gene in various wells of a nanoreactor device.
  • FIG. 60 part A depicts a device in which oligos were synthesized. Wells 1-10 are marked.
  • FIG. 60 part B depcits analysis of the genes assembled in the wells in FIG. 60 part A. Peaks corresponding to the gene in each well are labeled with the well number.
  • FIG. 60 part C depicts electrophoresis of the oligos analyzed in FIG. 60 part B.
  • FIG. 61 parts A-B present block views of a high capacity oligonucleotide synthesis device consistent with the disclosure herein.
  • FIG. 61 part A presents a full, angled view of a block as disclosed herein.
  • FIG. 61 part B presents an angled view of a cross-sectional slice through a block as disclosed herein.
  • FIG. 62 depicts a block view of another high capacity oligonucleotide synthesis device consistent with the disclosure herein, having an array of posts on its surface, which increase surface area.
  • FIG. 63 depicts electrophoresis of amplified single stranded nucleic acids using rolling circle amplification, wherein the amplification product is cut with various combintions of cleaving agents.
  • FIG. 64 parts A-F represent a method for the amplification of single stranded nucleic acids.
  • FIG. 65 parts A-F represent method for the amplification of single stranded nucleic acids, which may be coupled to the method illustrated in FIG. 64 .
  • the present invention provides a gene library as described herein.
  • the gene library comprises a collection of genes.
  • the collection comprises at least 100 different preselected synthetic genes that can be of at least 0.5 kb length with an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes.
  • the present invention also provides a gene library that comprises a collection of genes.
  • the collection may comprise at least 100 different preselected synthetic genes that can be each of at least 0.5 kb length.
  • synthesized nucleic acids are compared against these predetermined sequences, in some cases by sequencing at least a portion of the synthesized nucleic acids, e.g. using next-generation sequencing methods.
  • at least 90% of the preselected synthetic genes comprise an error rate of less than 1 in 5000 bp compared to predetermined sequences comprising the genes.
  • at least 0.05% of the preselected synthetic genes are error free.
  • at least 0.5% of the preselected synthetic genes are error free.
  • At least 90% of the preselected synthetic genes comprise an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, at least 90% of the preselected synthetic genes are error free or substantially error free. In some embodiments, the preselected synthetic genes comprise a deletion rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the preselected synthetic genes comprise an insertion rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the preselected synthetic genes comprise a substitution rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes.
  • the gene library as described herein further comprises at least 10 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 100 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 1000 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 1000000 copies of each synthetic gene. In some embodiments, the collection of genes as described herein comprises at least 500 genes. In some embodiments, the collection comprises at least 5000 genes. In some embodiments, the collection comprises at least 10000 genes. In some embodiments, the preselected synthetic genes are at least 1 kb. In some embodiments, the preselected synthetic genes are at least 2 kb.
  • the preselected synthetic genes are at least 3 kb. In some embodiments, the predetermined sequences comprise less than 20 bp in addition compared to the preselected synthetic genes. In some embodiments, the predetermined sequences comprise less than 15 bp in addition compared to the preselected synthetic genes. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 0.1%. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 0.1%. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 10%. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 10%.
  • the gene library as described herein further comprises synthetic genes that are of less than 2 kb with an error rate of less than 1 in 20000 bp compared to preselected sequences of the genes.
  • a subset of the deliverable genes is covalently linked together.
  • a first subset of the collection of genes encodes for components of a first metabolic pathway with one or more metabolic end products.
  • the gene library as described herein further comprises selecting of the one or more metabolic end products, thereby constructing the collection of genes.
  • the one or more metabolic end products comprise a biofuel.
  • a second subset of the collection of genes encodes for components of a second metabolic pathway with one or more metabolic end products.
  • the gene library is in a space that is less than 100 m 3 . In some embodiments, the gene library is in a space that is less than 1 m 3 . In some embodiments, the gene library is in a space that is less than 1 m 3 .
  • the present invention also provides a method of constructing a gene library.
  • the method comprises the steps of: entering before a first timepoint, in a computer readable non-transient medium at least a first list of genes and a second list of genes, wherein the genes are at least 500 bp and when compiled into a joint list, the joint list comprises at least 100 genes; synthesizing more than 90% of the genes in the joint list before a second timepoint, thereby constructing a gene library with deliverable genes.
  • the second timepoint is less than a month apart from the first timepoint.
  • the method as described herein further comprises delivering at least one gene at a second timepoint.
  • at least one of the genes differs from any other gene by at least 0.10% in the gene library.
  • each of the genes differs from any other gene by at least 0.1% in the gene library.
  • at least one of the genes differs from any other gene by at least 10% in the gene library.
  • each of the genes differs from any other gene by at least 10% in the gene library.
  • at least one of the genes differs from any other gene by at least 2 base pairs in the gene library.
  • each of the genes differs from any other gene by at least 2 base pairs in the gene library.
  • at least 90% of the deliverable genes are error free.
  • the deliverable genes comprises an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the joint list of genes.
  • at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the joint list of genes.
  • genes in a subset of the deliverable genes are covalently linked together.
  • a first subset of the joint list of genes encode for components of a first metabolic pathway with one or more metabolic end products.
  • any of the methods of constructing a gene library as described herein further comprises selecting of the one or more metabolic end products, thereby constructing the first, the second or the joint list of genes.
  • the one or more metabolic end products comprise a biofuel.
  • a second subset of the joint list of genes encode for components of a second metabolic pathway with one or more metabolic end products.
  • the joint list of genes comprises at least 500 genes.
  • the joint list of genes comprises at least 5000 genes.
  • the joint list of genes comprises at least 10000 genes.
  • the genes can be at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • a method of constructing a gene library comprises the steps of: entering at a first timepoint, in a computer readable non-transient medium a list of genes; synthesizing more than 90% of the list of genes, thereby constructing a gene library with deliverable genes; and delivering the deliverable genes at a second timepoint.
  • the list comprises at least 100 genes and the genes can be at least 500 bp.
  • the second timepoint is less than a month apart from the first timepoint.
  • the method as described herein further comprises delivering at least one gene at a second timepoint.
  • at least one of the genes differs from any other gene by at least 0.10% in the gene library.
  • each of the genes differs from any other gene by at least 0.1% in the gene library.
  • at least one of the genes differs from any other gene by at least 10% in the gene library.
  • each of the genes differs from any other gene by at least 10% in the gene library.
  • at least one of the genes differs from any other gene by at least 2 base pairs in the gene library.
  • each of the genes differs from any other gene by at least 2 base pairs in the gene library.
  • at least 90% of the deliverable genes are error free.
  • the deliverable genes comprises an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes.
  • at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes.
  • genes in a subset of the deliverable genes are covalently linked together.
  • a first subset of the list of genes encode for components of a first metabolic pathway with one or more metabolic end products.
  • the method of constructing a gene library further comprises selecting of the one or more metabolic end products, thereby constructing the list of genes.
  • the one or more metabolic end products comprise a biofuel.
  • a second subset of the list of genes encode for components of a second metabolic pathway with one or more metabolic end products. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • the list of genes comprises at least 500 genes. In some embodiments, the list comprises at least 5000 genes. In some embodiments, the list comprises at least 10000 genes. In some embodiments, the genes are at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint as described in the methods of constructing a gene library is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • the present invention also provides a method of synthesizing n-mer oligonucleotides on a substrate.
  • the method comprises a) providing a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling; and b) coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 12 nucleotides per hour according to a locus specific predetermined sequence, thereby synthesizing a plurality of oligonucleotides that are n basepairs long.
  • Various embodiments related to the method of synthesizing n-mer oligonucleotides on a substrate are described herein.
  • the methods further comprise coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 15 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 20 nucleotides per hour.
  • the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 25 nucleotides per hour.
  • at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/500 bp.
  • at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/1000 bp.
  • At least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/2000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/500 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/1000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/2000 bp.
  • the building blocks comprise an adenine, guanine, thymine, cytosine, or uridine group, or a modified nucleotide. In some embodiments, the building blocks comprise a modified nucleotide. In some embodiments, the building blocks comprise dinucleotides or trinucleotides. In some embodiments, the building blocks comprise phosphoramidite. In some embodiments, n of the n-mer oligonucleotides is at least 100. In some embodiments, n is at least 200. In some embodiments, n is at least 300. In some embodiments, n is at least 400. In some embodiments, the surface comprises at least 100,000 resolved loci and at least two of the plurality of growing oligonucleotides can be different from each other.
  • the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises vacuum drying the substrate before coupling.
  • the building blocks comprise a blocking group.
  • the blocking group comprises an acid-labile DMT.
  • the acid-labile DMT comprises 4,4′-dimethoxytrityl.
  • the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises oxidation or sulfurization.
  • the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises chemically capping uncoupled oligonucleotide chains.
  • the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises removing the blocking group, thereby deblocking the growing oligonucleotide chain.
  • the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the vacuum drying step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the oxidation step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the capping step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the deblocking step.
  • the substrate comprises at least 10,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 100,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 1,000,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • a system for conducting a set of parallel reactions comprises: a first surface with a plurality of resolved loci; a capping element with a plurality of resolved reactor caps.
  • the system aligns the plurality of resolved reactor caps with the plurality of resolved loci on the first surface forming a temporary seal between the first surface and the capping element, thereby physically dividing the loci on the first surface into groups of at least two loci into a reactor associated with each reactor cap.
  • each reactor holds a first set of reagents.
  • the reactor caps upon release from the first surface, retain at least a portion of the first set of reagents. In some embodiments, the portion is about 30%. In some embodiments, the portion is about 90%. In some embodiments, the plurality of resolved loci resides on microstructures fabricated into a support surface. In some embodiments, the plurality of resolved loci is at a density of at least 1 per mm 2 . In some embodiments, the plurality of resolved loci is at a density of at least 10 per mm 2 . In some embodiments, the plurality of resolved loci are at a density of at least 100 per mm 2 .
  • the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 ⁇ m. In some embodiments, at least one of the channels is shorter than 1000 ⁇ m. In some embodiments, at least one of the channels is wider than 50 ⁇ m in diameter. In some embodiments, at least one of the channels is narrower than 100 ⁇ m in diameter. In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 0.1 per mm 2 .
  • the system further comprises a second surface with a plurality of resolved loci at a density of at least 1 per mm 2 . In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 10 per mm 2 .
  • the resolved loci of the first surface comprise a coating of reagents.
  • the resolved loci of the second surface comprise a coating of reagents.
  • the coating of reagents is covalently linked to the first or second surface.
  • the coating of reagents comprises oligonucleotides.
  • the coating of reagents has a surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the coating of reagents has a surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the coating of reagents has a surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the resolved loci in the plurality of resolved loci comprise a nominal arclength of the perimeter at a density of at least 0.001 ⁇ m/ ⁇ m 2 .
  • the resolved loci in the plurality of resolved loci comprise a nominal arclength of the perimeter at a density of at least 0.01 ⁇ m/ ⁇ m 2 .
  • the resolved loci in the plurality of resolved loci of the first surface comprise a high energy surface.
  • the first and second surfaces comprise a different surface tension with a given liquid.
  • the high surface energy corresponds to a water contact angle of less than 20 degree.
  • the plurality of resolved loci are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the capping elements comprise a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • the present invention also provides an array of enclosures.
  • the array of enclosures comprise: a plurality of resolved reactors comprising a first substrate and a second substrate comprising reactor caps; at least 2 resolved loci in each reactor.
  • the resolved reactors are separated with a releasable seal.
  • the reactor caps retain at least a part of the contents of the reactors upon release of the second substrate from the first substrate.
  • the reactor caps on the second substrate have a density of at least 0.1 per mm 2 .
  • reactor caps on the second substrate have a density of at least 1 per mm 2 .
  • reactor caps on the second substrate have a density of at least 10 per mm 2 .
  • the reactor caps retain at least 30% of the contents of the reactors. In some embodiments, the reactor caps retain at least 90% of the contents of the reactors. In some embodiments, the resolved loci are at a density of at least 2/mm 2 . In some embodiments, the resolved loci are at a density of at least 100/mm 2 . In some embodiments, the array of enclosures further comprises at least 5 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 20 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 50 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 100 resolved loci in each reactor.
  • the resolved loci reside on microstructures fabricated into a support surface.
  • the microstructures comprise at least two channels in fluidic communication with each other.
  • the at least two channels comprise two channels with different width.
  • the at least two channels comprise two channels with different length.
  • at least one of the channels is longer than 100 ⁇ m.
  • at least one of the channels is shorter than 1000 ⁇ m.
  • at least one of the channels is wider than 50 ⁇ m in diameter.
  • at least one of the channels is narrower than 100 ⁇ m in diameter.
  • the microstructures comprise a nominal arclength of the perimeter of the at least two channels that has a density of at least 0.01 ⁇ m/square ⁇ m. In some embodiments, the microstructures comprise a nominal arclength of the perimeter of the at least two channels that has a density of at least 0.001 ⁇ m/square ⁇ m. In some embodiments, the resolved reactors are separated with a releasable seal. In some embodiments, the seal comprises a capillary burst valve.
  • the plurality of resolved loci of the first substrate comprise a coating of reagents.
  • the plurality of resolved loci of the second substrate comprises a coating of reagents.
  • the coating of reagents is covalently linked to the first or second surface.
  • the coating of reagents comprises oligonucleotides.
  • the coating of reagents has a surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the coating of reagents has a surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the coating of reagents has a surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area.
  • the plurality of resolved loci of the first substrate comprises a high energy surface.
  • the first and second substrates comprise a different surface tension with a given liquid.
  • the surface energy corresponds to a water contact angle of less than 20 degree.
  • the plurality of resolved loci or the reactor caps are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays or systems provided in the current invention.
  • the present invention also provides a method of conducting a set of parallel reactions.
  • the method comprises: (a) providing a first surface with a plurality of resolved loci; (b) providing a capping element with a plurality of resolved reactor caps; (c) aligning the plurality of resolved reactor caps with the plurality of resolved loci on the first surface and forming a temporary seal between the first surface and the capping element, thereby physically dividing the loci on the first surface into groups of at least two loci; (d) performing a first reaction, thereby forming a first set of reagents; and (e) releasing the capping element from the first surface, wherein each reactor cap retains at least a portion of the first set of reagents in a first reaction volume.
  • the portion is about 30%. In some embodiments, the portion is about 90%.
  • the method of conducting a set of parallel reactions as described herein further comprises the steps of: (f) providing a second surface with a plurality of resolved loci; (g) aligning the plurality of resolved reactor caps with the plurality of resolved loci on the second surface and forming a temporary seal between the second surface and the capping element, thereby physically dividing the loci on the second surface; (h) performing a second reaction using the portion of the first set of reagents, thereby forming a second set of reagents; and (i) releasing the capping element from the second surface, wherein each reactor cap can retain at least a portion of the second set of reagents in a second reaction volume.
  • the portion is about 30%. In some embodiments, the portion is about 90%.
  • the plurality of resolved loci can have a density of at least 1 per mm 2 on the first surface. In some embodiments, the plurality of resolved loci have a density of at least 10 per mm 2 on the first surface. In some embodiments, the plurality of resolved loci have a density of at least 100 per mm 2 on the first surface. In some embodiments, the plurality of resolved reactor caps have a density of at least 0.1 per mm 2 on the capping element. In some embodiments, the plurality of resolved reactor caps have a density of at least 1 per mm 2 on the capping element.
  • the plurality of resolved reactor caps have a density of at least 10 per mm 2 on the capping element. In some embodiments, the plurality of resolved loci have a density of more than 0.1 per mm 2 on the second surface. In some embodiments, the plurality of resolved loci have a density of more than 1 per mm 2 on the second surface. In some embodiments, the plurality of resolved loci have a density of more than 10 per mm 2 on the second surface.
  • the releasing of the capping elements from the surface steps such as the releasing steps in (e) and (i) as described herein can be performed at a different velocity.
  • the resolved loci of the first surface comprise a coating of reagents for the first reaction.
  • the resolved loci of the second surface comprise a coating of reagents for the second reaction.
  • the coating of reagents is covalently linked to the first or second surface.
  • the coating of reagents comprises oligonucleotides.
  • the coating of reagents has a surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area. In some embodiments, the oligonucleotides are at least 25 bp. In some embodiments, the oligonucleotides are at least 200 bp. In some embodiments, the oligonucleotides are at least 300 bp.
  • the resolved loci of the first surface comprise a high energy surface.
  • the first and second surfaces comprise a different surface tension with a given liquid.
  • the surface energy corresponds to a water contact angle of less than 20 degree.
  • the plurality of resolved loci or the resolved reactor caps are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the first and second reaction volumes are different.
  • the first or second reaction comprises polymerase cycling assembly.
  • the first or second reaction comprises enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, solid-phase assembly, Sloning building block technology, or RNA ligation mediated gene synthesis.
  • the methods of conducting a set of parallel reactions as described herein further comprises cooling the capping element.
  • the method of conducting a set of parallel reactions as described herein further comprises cooling the first surface.
  • the method of conducting a set of parallel reactions as described herein further comprises cooling the second surface. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays or systems provided in the current invention.
  • the present invention provides a substrate having a functionalized surface.
  • the substrate having a functionalized surface can comprise a solid support having a plurality of resolved loci.
  • the resolved loci are functionalized with a moiety that increases the surface energy of the solid support.
  • the resolved loci are localized on microchannels.
  • the moiety is a chemically inert moiety.
  • the microchannels comprise a volume of less than 1 nl.
  • the microchannels comprise a density of the nominal arclength of the perimeter of 0.036 ⁇ m/square ⁇ m.
  • the functionalized surface comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate.
  • the functionalized surface comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate.
  • the functionalized surface comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate.
  • the resolved loci in the plurality of resolved loci comprise a coating of reagents.
  • the coating of reagents is covalently linked to the substrate.
  • the coating of reagents comprises oligonucleotides.
  • at least one of the microchannels is longer than 100 ⁇ m. In some embodiments, at least one of the microchannels is shorter than 1000 ⁇ m. In some embodiments, at least one of the microchannels is wider than 50 ⁇ m in diameter.
  • the microchannels is narrower than 100 ⁇ m in diameter.
  • the surface energy corresponds to a water contact angle of less than 20 degree.
  • the solid support comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the plurality of resolved loci is at a density of at least 1/mm 2 . In some embodiments, the plurality of resolved loci is at a density of at least 100/mm 2 . It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method for synthesizing oligonucleotides on a substrate having a functionalized surface.
  • the method comprises: (a) applying through at least one inkjet pump at least one drop of a first reagent to a first locus of a plurality of loci; (b) applying negative pressure to the substrate; and (c) applying through at least one inkjet pump at least one drop of a second reagent to the first locus.
  • the first and second reagents can be different.
  • the first locus is functionalized with a moiety that increases their surface energy.
  • the moiety is a chemically inert moiety.
  • the plurality of loci resides on microstructures fabricated into the substrate surface.
  • the microstructures comprise at least two channels in fluidic communication with each other.
  • the at least two channels comprise two channels with different width.
  • the at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 ⁇ m.
  • the substrate surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the volume of the drop of the first and/or the second reagents is at least 2 ⁇ l. In some embodiments, the volume of the drop is about 40 ⁇ l. In some embodiments, the volume of the drop is at most 100 ⁇ l.
  • the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/ ⁇ m 2 . In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m/ ⁇ m 2 .
  • the functionalized surface comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the substrate. In some embodiments, the pressure surrounding the substrate is reduced to less than 1 mTorr. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises coupling at least a first building block originating from the first drop to a growing oligonucleotide chain on the first locus.
  • the building blocks comprise a blocking group.
  • the blocking group comprises an acid-labile DMT.
  • the acid-labile DMT comprises 4,4′-dimethoxytrityl.
  • the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises oxidation or sulfurization.
  • the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises chemically capping uncoupled oligonucleotide chains. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises removing the blocking group, thereby deblocking the growing oligonucleotide chain.
  • the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the coupling step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the oxidation step.
  • the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the capping step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the deblocking step.
  • the first locus resides on a microstructure fabricated into the substrate surface.
  • at least one reagent for the oxidation step is provided by flooding the microstructure with a solution comprising the at least one reagent. In some embodiments, at least one reagent for the capping step is provided by flooding the microstructure with a solution comprising the at least one reagent.
  • the first locus resides on a microstructure fabricated into the substrate surface and at least one reagent for the deblocking step can be provided by flooding the microstructure with a solution comprising the at least one reagent.
  • the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises enclosing the substrate within a sealed chamber. In some embodiments, the sealed chamber allows for purging of liquids from the first locus. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises draining a liquid through a drain that is operably linked to the first locus.
  • the moisture content on the substrate is less than 1 ppm. In some embodiments, the surface energy is increased corresponding to a water contact angle of less than 20 degree. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention provides a method of depositing reagents to a plurality of resolved loci.
  • the method comprises applying through an inkjet pump at least one drop of a first reagent to a first locus of the plurality of loci; applying through an inkjet pump at least one drop of a second reagent to a second locus of the plurality of resolved loci.
  • the second locus is adjacent to the first locus.
  • the first and second reagents are different.
  • the first and second loci reside on microstructures fabricated into a support surface.
  • the microstructures comprise at least one channel that is more than 100 ⁇ m deep.
  • the microstructures comprise at least two channels in fluidic communication with each other.
  • the at least two channels comprise two channels with different width.
  • the at least two channels comprise two channels with different length.
  • the first locus receives less than 0.1% of the second reagent and the second locus receives less than 0.1% of the first reagent.
  • the loci comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/square ⁇ m.
  • the loci comprise a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m/square ⁇ m.
  • the first and second loci comprise a coating of reagents.
  • the coating of reagents is covalently linked to the substrate.
  • the coating of reagents comprises oligonucleotides.
  • at least one of the channels is longer than 100 ⁇ m. In some embodiments, at least one of the channels is shorter than 1000 ⁇ m. In some embodiments, at least one of the channels is wider than 50 ⁇ m in diameter. In some embodiments, at least one of the channels is narrower than 100 ⁇ m in diameter.
  • the support surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the plurality of resolved loci is at a density of at least 1/mm 2 . In some embodiments, the plurality of resolved loci is at a density of at least 100/mm 2 .
  • the volume of the drop is at least 2 ⁇ l. In some embodiments, the volume of the drop is about 40 ⁇ l. In some embodiments, the volume of the drop is at most 100 ⁇ l. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention provides a microfluidic system.
  • the microfluidic system comprises a first surface with a plurality of microwells at a density of at least 10 per mm 2 ; and a droplet inside one of the plurality of microwells.
  • the droplet inside one of the plurality of microwells has a Reynolds number at a range of about 1-1000.
  • the plurality of microwells is at a density of at least 1 per mm 2 .
  • plurality of microwells is at a density of at least 10 per mm 2 .
  • the microfluidic system further comprises an inkjet pump.
  • the droplet is deposited by the inkjet pump.
  • the droplet is moving in the lower half of a first microwell dimension.
  • the droplet is moving in the middle third of a first microwell dimension.
  • the plurality of microwells is at a density of at least 100 per mm 2 .
  • the first microwell dimension is larger than the droplet.
  • the microwell is longer than 100 ⁇ m.
  • the microwell is shorter than 1000 ⁇ m.
  • the microwell is wider than 50 ⁇ m in diameter.
  • the microwell is narrower than 100 ⁇ m in diameter. In some embodiments, the volume of the droplet is at least 2 ⁇ l. In some embodiments, the volume of the droplet is about 40 ⁇ l. In some embodiments, the volume of the droplet is at most 100 ⁇ l.
  • each of the plurality of microwells is fluidically connected to at least one microchannel. In some embodiments, the at least one microchannel is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree.
  • the microwells are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/square ⁇ m. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of 0.001 ⁇ m/ ⁇ m 2 .
  • the surface coated with the moiety comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the droplet comprises a reagent that enables oligonucleotide synthesis.
  • the reagent is a nucleotide or nucleotide analog.
  • the present invention provides a method of depositing droplets to a plurality of microwells.
  • the method comprises applying through an inkjet pump at least one droplet to a first microwell of the plurality of microwells.
  • the droplet inside one of the plurality of microwells has a Reynolds number at a range of about 1-1000.
  • the plurality of microwells has a density of at least 1/mm 2 .
  • the plurality of microwells has a density of at least 10/mm 2 .
  • the plurality of microwells can have a density of at least 100/mm 2 .
  • the microwell is longer than 100 ⁇ m.
  • the microwell is shorter than 1000 ⁇ m.
  • the microwell is wider than 50 ⁇ m in diameter.
  • the microwell is narrower than 100 ⁇ m in diameter.
  • the droplet is applied at a velocity of at least 2 m/sec.
  • the volume of the droplet is at least 2 ⁇ l. In some embodiments, the volume of the droplet is about 40 ⁇ l.
  • the volume of the droplet is at most 100 ⁇ l.
  • each of the plurality of microwells is fluidically connected to at least one microchannel.
  • the at least one microwell is coated with a moiety that increases surface energy.
  • the moiety is a chemically inert moiety.
  • the surface energy corresponds to a water contact angle of less than 20 degree.
  • the microwells are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/square ⁇ m. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m 2 m/ ⁇ m 2 . In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • a droplet inside a microwell is traveling in the middle third of the microwell.
  • a droplet inside a microwell is traveling in the bottom half of the microwell.
  • droplet comprises a reagent that enables oligonucleotide synthesis.
  • the reagent is a nucleotide or nucleotide analog. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method of partitioning.
  • the method of partitioning comprises contacting a first surface comprising a liquid at a first plurality of resolved loci with a second surface comprising a second plurality of resolved loci; determining a velocity of release such that a desired fraction of the liquid can be transferred from the first plurality of resolved loci to the second plurality of resolved loci; and detaching the second surface from the first surface at said velocity.
  • the first surface comprises a first surface tension with the liquid
  • the second surface can comprise a second surface tension with the liquid.
  • a portion of the first surface can be coated with a moiety that increases surface tension.
  • the moiety is a chemically inert moiety.
  • the surface tension of the first surface corresponds to a water contact angle of less than 20 degree.
  • the surface tension of the second surface corresponds to a water contact angle of more than 90 degree.
  • the first surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • the plurality of resolved loci comprises a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/ ⁇ m 2 . In some embodiments, the plurality of resolved loci comprises a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m/ ⁇ m 2 . In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the first plurality of resolved loci is at a density of at least 1/mm 2 . In some embodiments, the first plurality of resolved loci is at a density of at least 100/mm 2 .
  • the first or the second surface comprises microchannels holding at least a portion of the liquid. In some embodiments, the first or the second surface comprises nanoreactors holding at least a portion of the liquid.
  • the method of partitioning as described herein further comprises contacting a third surface with a third plurality of resolved loci.
  • the liquid comprises a nucleic acid.
  • the desired fraction is more than 30%. In some embodiments, the desired fraction is more than 90%. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method of mixing as described herein.
  • the method comprises: (a) providing a first substrate comprising a plurality of microstructures fabricated thereto; (b) providing a second substrate comprising a plurality of resolved reactor caps; (c) aligning the first and second substrates such that a first reactor cap of the plurality can be configured to receive liquid from n microstructures in the first substrate; and (d) delivering liquid from the n microstructures into the first reactor cap, thereby mixing liquid from the n microstructures forming a mixture.
  • the plurality of resolved reactor caps can be at a density of at least 0.1/mm 2 . In some embodiments, the plurality of resolved reactor caps are at a density of at least 1/mm 2 . In some embodiments, plurality of resolved reactor caps are at a density of at least 10/mm 2 . In some embodiments, each of the plurality of microstructures can comprise at least two channels of different width. In some embodiments, the at least one of the channels is longer than 100 ⁇ m. In some embodiments, the at least one of the channels is shorter than 1000 ⁇ m. In some embodiments, the at least one of the channels is wider than 50 ⁇ m in diameter.
  • the at least one of the channels is narrower than 100 ⁇ m in diameter. In some embodiments, the at least one of the channels is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety.
  • the microstructures are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 ⁇ m/square ⁇ m.
  • the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 ⁇ m/ ⁇ m 2 .
  • the surface coated with the moiety comprises a nominal surface area of at least 1 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.25 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the surface coated with the moiety comprises a nominal surface area of at least 1.45 ⁇ m 2 per 1.0 ⁇ m 2 of planar surface area of the first surface.
  • the plurality of microstructures comprises a coating of reagents.
  • the coating of reagents is covalently linked to the first surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the microstructures are at a density of at least 1/mm 2 . In some embodiments, the microstructures are at a density of at least 100/mm 2 .
  • step (c) which is aligning the first and second substrates such that a first reactor cap of the plurality can be configured to receive liquid from n microstructures in the first substrate, there is a gap of less than 100 ⁇ m between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 50 ⁇ m between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 20 ⁇ m between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 10 ⁇ m between the first and the second substrates. In some embodiments, the mixture partially spreads into the gap.
  • the method of mixing further comprises sealing the gap by bringing the first and the second substrate closer together.
  • one of the two channels is coated with a moiety that increases surface energy corresponding to a water contact angle of less than 20 degree.
  • the moiety is a chemically inert moiety.
  • the delivering is performed by pressure.
  • the volume of the mixture is greater than the volume of the reactor cap.
  • the liquid comprises a nucleic acid.
  • n is at least 10.
  • n is at least 25.
  • the number of microstructures from which the liquid is mixed forming a mixture can be at least 50.
  • n is at least 75.
  • n is at least 100. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method of synthesizing n-mer oligonucleotides on a substrate as described herein.
  • the method comprises: providing a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling; and coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci according to a locus specific predetermined sequence without transporting the substrate between the couplings of the at least two building blocks, thereby synthesizing a plurality of oligonucleotides that are n basepairs long.
  • the method can further comprise coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 12 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 15 nucleotides per hour.
  • the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 20 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 25 nucleotides per hour. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/500 bp.
  • At least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/1000 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/2000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/500 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/1000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/2000 bp.
  • the building blocks comprise an adenine, guanine, thymine, cytosine, or uridine group, or a modified nucleotide. In some embodiments, the building blocks comprise a modified nucleotide. In some embodiments, the building blocks comprise dinucleotides. In some embodiments, the building blocks comprise phosphoramidite. In some embodiments, n is at least 100. In some embodiments, wherein n is at least 200. In some embodiments, n is at least 300. In some embodiments, n is at least 400.
  • the substrate comprises at least 100,000 resolved loci and at least two of the plurality of growing oligonucleotides are different from each other.
  • the method further comprise vacuum drying the substrate before coupling.
  • the building blocks comprise a blocking group.
  • the blocking group comprises an acid-labile DMT.
  • the acid-labile DMT comprises 4,4′-dimethoxytrityl.
  • the method further comprise oxidation or sulfurization.
  • the method further comprise chemically capping uncoupled oligonucleotide chains.
  • the method further comprise removing the blocking group, thereby deblocking the growing oligonucleotide chain.
  • the substrate comprises at least 10,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 100,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 1,000,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • the present invention also provides a method of constructing a gene library as described herein.
  • the method comprises: entering at a first timepoint, in a computer readable non-transient medium a list of genes, wherein the list comprises at least 100 genes and wherein the genes are at least 500 bp; synthesizing more than 90% of the list of genes, thereby constructing a gene library with deliverable genes; preparing a sequencing library that represents the gene library; obtaining sequence information; selecting at least a subset of the deliverable genes based on the sequence information; and delivering the selected deliverable genes at a second timepoint, wherein the second timepoint is less than a month apart from the first timepoint.
  • the sequence information can be obtained bia next-generation sequencing.
  • the sequence information can be obtained by Sanger sequencing.
  • the method further comprises delivering at least one gene at a second timepoint.
  • at least one of the genes differ from any other gene by at least 0.1% in the gene library.
  • each of the genes differ from any other gene by at least 0.1% in the gene library.
  • at least one of the genes differ from any other gene by at least 10% in the gene library.
  • each of the genes differ from any other gene by at least 10% in the gene library.
  • at least one of the genes differ from any other gene by at least 2 base pairs in the gene library.
  • each of the genes differ from any other gene by at least 2 base pairs in the gene library.
  • at least 90% of the deliverable genes are error free.
  • the deliverable genes comprise an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes.
  • at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes.
  • a subset of the deliverable genes are covalently linked together.
  • a first subset of the list of genes encode for components of a first metabolic pathway with one or more metabolic end products.
  • the method further comprises selecting of the one or more metabolic end products, thereby constructing the list of genes.
  • the one or more metabolic end products comprise a biofuel.
  • a second subset of the list of genes encode for components of a second metabolic pathway with one or more metabolic end products.
  • the list comprises at least 500, genes.
  • the list comprises at least 5000 genes.
  • the list comprises at least 10000 genes.
  • the genes are at least 1 kb.
  • the genes are at least 2 kb.
  • the genes are at least 3 kb.
  • the second timepoint is less than 25 days apart from the first timepoint.
  • the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • a microfluidic device for nucleic acid synthesis comprising a substantially planar substrate portion comprising n groupings of m microfluidic connections between opposite surfaces, wherein each one of the n*m microfluidic connections comprises a first channel and a second channel, and wherein the first channel within each of the n groupings is common to all m microfluidic connections, wherein the plurality of microfluidic connections span the substantially planar substrate portion along the smallest dimension of the substrate, and wherein n and m are at least 2.
  • the second channel is functionalized with a coating that is capable of facilitating the attachment of an oligonucleotide to the device.
  • the device further comprises a first oligonucleotide that is attached to the second channels in k of the n groupings. In some embodiments, k is 1. In some embodiments, the device further comprises a second oligonucleotide that is attached to 1 of the n groupings. In some embodiments, 1 is 1. In some embodiments, the none of the groupings in the 1 groupings are in the k groupings.
  • the oligonucleotide is at least 10 nucleotides, 25 nucleotides, 50 nucleotides, 75 nucleotides, 100 nucleotides, 125 nucleotides, 150 nucleotides, or 200 nucleotides long.
  • the first and the second oligonucleotides differ by at least 2 nucleotides, 3 nucleotides, 4 nucleotides, 5 nucleotides, or 10 nucleotides.
  • the n*m microfluidic connections are at most 5 mm, 1.5 mm, 1.0 mm, or 0.5 mm long.
  • the first channel within each of the n groupings is at most 5 mm, 1.5 mm, 1.0 mm, or 0.5 mm long.
  • the first channel within each of the n groupings is at least 0.05 mm, 0.75 mm, 0.1 mm, 0.2 mm, 0.3 mm, or 0.4 mm long.
  • the second channel in each of the n*m microfluidic connections is at most 0.2 mm, 0.1 mm, 0.05 mm, 0.04 mm, or 0.03 mm long.
  • the second channel in each of the n*m microfluidic connections is at least 0.001 mm, 0.005 mm, 0.01 mm, 0.02 mm, or 0.03 mm long.
  • the cross section of the first channel within each of the n groupings is at least 0.01 mm, 0.025 mm, 0.05 mm, or 0.075 mm.
  • the cross section of the first channel within each of the n groupings is at most 1 mm, 0.5 mm, 0.25 mm, 0.1 mm, or 0.075 mm.
  • the cross section of the second channel in each of the n*m microfluidic connections is at least 0.001 mm, 0.05 mm, 0.01 mm, 0.015 mm, or 0.02 mm. In some embodiments, the cross section of the second channel in each of the n*m microfluidic connections is at most 0.25 mm, 0.125 mm, 0.050 mm, 0.025 mm, 0.02 mm. In some embodiments, the standard deviation in the cross section of the second channels in each of the n*m microfluidic connections is less than 25%, 20%, 15%, 10%, 5%, or 1% of the mean of the cross section. In some embodiments, the variation in the cross section within at least 90% of the second channels of the n*m microfluidic connections is at most 25%, 20%, 15%, 10%, 5%, or 1%.
  • n is at least 10, 25, 50, 100, 1000, or 10000. In some embodiments, m is at least 3, 4, or 5.
  • the substrate comprises at least 5%, 10%, 25%, 50%, 80%, 90%, 95%, or 99% silicon.
  • At least 90% of the second channels of the n*m microfluidic connections is functionalized with a moiety that increases surface energy.
  • the surface energy is increased to a level corresponding to a water contact angle of less than 75, 50, 30, or 20 degrees.
  • the aspect ratio for at least 90% of the second channels of the n*m microfluidic connections is less than 1, 0.5, or 0.3. In some embodiments, the aspect ratio for at least 90% of the first channels in the n groupings is less than 0.5, 0.3, or 0.2.
  • the total length of at least 10%, 25%, 50%, 75%, 90%, or 95% of the n*m fluidic connections are within 10%, 20%, 30%, 40%, 50%, 100%, 200%, 500%, or 1000% of the smallest dimension of the substantially planar substrate.
  • the substantially planar portion of the device is fabricated from a SOI wafer.
  • the invention in another aspect, relates to a method of nucleic acid amplification, comprising: (a) providing a sample comprising n circularized single stranded nucleic acids, each comprising a different target sequence; (b) providing a first adaptor that is hybridizable to at least one adaptor hybridization sequence on m of the n circularized single stranded nucleic acids; (c) providing conditions suitable for extending the first adaptor using the m circularized single stranded nucleic acids as a template, thereby generating m single stranded amplicon nucleic acids, wherein each of the m single stranded amplicon nucleic acids comprises a plurality of replicas of the target sequence from its template; (d) providing a first auxiliary oligonucleotide that is hybridizable to the first adaptor; and (e) providing a first agent under conditions suitable for the first agent to cut the m single stranded amplicon nucleic acids at a plurality of
  • n or m is at least 2. In some embodiments, n or m is at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150, 200, 300, 400, or 500. In some embodiments, m is less than n.
  • the sample comprising the n circularized single stranded nucleic acid is formed by providing at least n linear single stranded nucleic acids, each comprising one of the different target sequences and circularizing the n linear single stranded nucleic acids, thereby generating the n circularized single stranded nucleic acids.
  • the first adaptor is hybridizable to both ends of the n linear single stranded nucleic acids concurrently.
  • the different target sequences in the n linear single stranded nucleic acids are flanked by a first and a second adaptor hybridization sequence.
  • the at least n linear single stranded nucleic acids are generated by de novo oligonucleotide synthesis.
  • the first adaptor hybridization sequence in each of the n linear single stranded nucleic acids differ by no more than two nucleotide bases.
  • the first or the second adaptor hybridization sequence is at least 5 nucleotides long. In some embodiments, the first or the second adaptor hybridization sequence is at most 75, 50, 45, 40, 35, 30, or 25 nucleotides long.
  • the ends of the n linear single stranded nucleic acids pair with adjacent bases on the first adaptor when the first adaptor is hybridized to the both ends of the linear single stranded nucleic acid concurrently.
  • the locations of the plurality of cutting sites are such that the adaptor hybridization sequence is severed from at least 5% of a remainder sequence portion of the m circularized single stranded nucleic acid replicas. In some embodiments, at least 5% of the sequence of the m circularized single stranded nucleic acid replicas other than the at least one adaptor hybridization sequence remains uncut. In some embodiments, the locations of the plurality of cutting sites are outside the at least one adaptor hybridization sequence.
  • the locations of the plurality of cutting sites are independent of the target sequences. In some embodiments, the locations of the plurality of cutting sites are determined by at least one sequence element within the sequence of the first adaptor or the first auxiliary oligonucleotide. In some embodiments, the sequence element comprises a recognition site for a restriction endonuclease. In some embodiments, the first auxiliary oligonucleotide or the first adaptor oligonucleotide comprises a recognition site for a Type IIS restriction endonuclease. In some embodiments, the recognition sites are at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides away from the cutting sites.
  • the plurality of cutting sites are at junctures of single and double stranded nucleic acids.
  • the double stranded nucleic acids comprise the first adaptor and the first auxiliary oligonucleotide.
  • the single stranded nucleic acids consists essentially of the m different target sequences.
  • the m different target sequences have at most 95% pairwise similarity.
  • the m different target sequences have at most 90% pairwise similarity.
  • the m different target sequences have at most 80% pairwise similarity.
  • the m different target sequences have at most 50% pairwise similarity.
  • generating the m single stranded amplicon nucleic acid comprises strand displacement amplification.
  • the first auxiliary oligonucleotide comprises an affinity tag.
  • the affinity tag comprises biotin or biotin derivative.
  • the method further comprises isolating double stranded nucleic acids from the sample.
  • the isolating comprises affinity purification, chromatography, or gel purification.
  • the first agent comprises a restriction endonuclease.
  • the first agent comprises at least two restriction endonucleases.
  • the first agent comprises a Type IIS restriction endonuclease.
  • the first agent comprises a nicking endonuclease. In some embodiments, the first agent comprises at least two nicking endonucleases. In some embodiments, the first agent comprises at least one enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI
  • the first agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site, as any of the listed sfirst agents and variants.
  • the at least two restriction enzymes comprise MlyI and BciVI or BfuCI and MlyI.
  • the method further comprises (a) partitioning the sample into a plurality of fractions; (b) providing at least one fraction with a second adaptor that is hybridizable to at least one adaptor hybridization sequence on k of the n different circularized single stranded nucleic acids; (c) providing conditions suitable for extending the second adaptor using the k circularized single stranded nucleic acids as a template, thereby generating k single stranded amplicon nucleic acids, wherein the second single stranded amplicon nucleic acid comprises a plurality of replicas of the target sequence from its template; (d) providing a second auxiliary oligonucleotide that is hybridizable to the second adaptor; and (e) providing a second agent under conditions suitable for the agent to cut the k single stranded amplicon nucleic acids at a second plurality of cutting sites, thereby generating a plurality of single stranded replicas of the target sequences in the k circular
  • the first and the second adaptors are the same. In some embodiments, the first and the second auxiliary oligonucleotides are the same. In some embodiments, the first and the second agents are the same. In some embodiments, k+m is less than n. In some embodiments, k is at least 2. In some embodiments, the sample comprising the n circularized single stranded nucleic acid is formed by single stranded nucleic acid amplification.
  • the single stranded nucleic acid amplification comprises: (a) providing a sample comprising at least m circularized single stranded precursor nucleic acids; (b) providing a first precursor adaptor that is hybridizable to the m circularized single stranded precursor nucleic acids; (c) providing conditions suitable for extending the first precursor adaptor using the m circularized single stranded precursor nucleic acids as a template, thereby generating m single stranded precursor amplicon nucleic acids, wherein the single stranded amplicon nucleic acid comprises a plurality of replicas of the m circularized single stranded precursor nucleic acid; (d) providing a first precursor auxiliary oligonucleotide that is hybridizable to the first precursor adaptor; and (e) providing a first precursor agent under conditions suitable for the first precursor agent to cut the first single stranded precursor amplicon nucleic acid at a plurality of cutting sites, thereby generating the
  • the method further comprises circularizing the m linear precursor nucleic acids, thereby forming replicas of the m circularized single stranded precursor nucleic acids.
  • the m circularized single stranded precursor nucleic acid is amplified by at least 10, 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 10000-fold, or more in single stranded replicas.
  • at least one of the m circularized single stranded nucleic acids is at a concentration of about or at most about 100 nM, 10 nM, 1 nM, 50 pM, 1 pM, 100 fM, 10 fM, 1 fM, or less.
  • circularizing comprises ligation.
  • ligation comprises the use of a ligase selected from the group consisting of T4 DNA ligase, T3 DNA ligase, T7 DNA ligase, E. coli DNA ligase, Taq DNA ligase, and 9N DNA ligase.
  • the invention in various embodiments relates to a kit comprising: (a) a first adaptor; (b) a first auxiliary oligonucleotide that is hybridizable to the adaptor; (c) a ligase; and (d) a first cleaving agent, comprising at least one enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I,
  • the first agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site as any of the listed first agents and variants.
  • the kit further comprises a second cleaving agent.
  • the second cleaving agent comprises and enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I,
  • the second agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site as any of the listed second agents and variants.
  • the first cleaving agents comprises MlyI.
  • the second cleaving agent comprises BciVI or BfuCI.
  • the invention relates to a method of nucleic acid amplification, comprising: (a) providing a sample comprising n circularized single stranded nucleic acids, each comprising a different target sequence; (b) providing a first adaptor that is hybridizable to at least one adaptor hybridization sequence on m of the n circularized single stranded nucleic acids; (c) providing conditions suitable for extending the first adaptor using the m circularized single stranded nucleic acids as a template, thereby generating m single stranded amplicon nucleic acids, wherein each of the m single stranded amplicon nucleic acids comprises a plurality of replicas of the target sequence from its template; (d) generating double stranded recognition sites for a first agent on the m single stranded amplicon nucleic acids; and (e) providing the first agent under conditions suitable for the first agent to cut the m single stranded amplicon nucleic acids at
  • the double stranded recognition sites comprise a first portion of the first adaptor on a first strand of the double stranded recognition sites and a second strand of the first adaptor on the second strand of the double stranded recognition sites.
  • the adaptor comprises a palindromic sequence.
  • the double stranded recognition sites are generated by hybridizing the first and second portions of the first adaptor to each other.
  • the m single stranded amplicon nucleic acids comprise a plurality of double stranded self-hybridized regions.
  • the invention relates to a method for generating a long nucleic acid molecule, the method comprising the steps of (a) providing a plurality of nucleic acids immobilized on a surface, wherein said plurality of nucleic acids comprises nucleic acids having overlapping complementary sequences; (b) releasing said plurality of nucleic acids into solution; and (c) providing conditions promoting: i) hybridization of said overlapping complementary sequences to form a plurality of hybridized nucleic acids; and ii) extension or ligation of said hybridized nucleic acids to synthesize the long nucleic acid molecule.
  • the invention in another aspect, relates to an automated system capable of processing one or more substrates, comprising: an inkjet print head for spraying a microdroplet comprising a chemical species on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and not comprising a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell, wherein said treating transport and said scanning transport are different elements.
  • the invention relates to an automated system for synthesizing oligonucleotides on a substrate, said automated system capable of processing one or more substrates, comprising: an inkjet print head for spraying a solution comprising a nucleoside or activated nucleoside on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the nucleoside at specified sites; a flow cell for treating the substrate on which the monomer is deposited by exposing the substrate to one or more selected fluids; an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and not comprising a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell, wherein said treating transport and said scanning transport are different elements.
  • the invention relates to an automated system comprising: an inkjet print head for spraying a microdroplet comprising a chemical species on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; and an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and wherein the system does NOT comprise a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell.
  • FIGS. 1 A- 1 C and 2 A- 2 C show the present invention embodied in compositions, systems and methods in FIGS. 1 A- 1 C and 2 A- 2 C .
  • the methods, systems, and compositions may vary in configuration and in the details of the individual parts in various embodiments of the invention. Further, the methods may vary in detail and the order of the events or acts.
  • the invention is described primarily in terms of use with nucleic acids, in particular, DNA oligomers and polynucleotides. It should be understood, however, that the invention may be used with a variety of different types of molecules, including RNA or other nucleic acids, peptides, proteins, or other molecules of interest. Suitable building blocks for each of these larger molecules of interest are known in the art.
  • the present invention provides compositions, systems, and methods useful in the preparation and the synthesis of libraries of molecules of interest, including nucleic acids, polypeptides, proteins and combinations thereof.
  • the invention contemplates the use of static and dynamic wafers, e.g. those that are manufactured from silicon substrates, for performing micro-, nano-, or picoliter scale reactions in parallel.
  • the same can be applied to micro-, nano-, or picoliter manipulation of fluids in parallel to allow for linking a plurality of reactions in resolved volumes.
  • the manipulation of fluids may comprise flowing, combining, mixing, fractionation, generation of drops, heating, condensation, evaporation, sealing, stratification, pressurizing, drying, or any other suitable fluid manipulation known in the art.
  • the wafers provide architectures for fluid manipulation that are built into the surface.
  • Features of varying shape and size may be architected inside or through a wafer substrate.
  • the methods and compositions of the invention make use of specifically architected devices exemplified in further detail herein, for the synthesis of biological molecules.
  • the invention provides for the de novo synthesis of large, high-density libraries comprising long, high-quality oligonucleotides and polynucleotides, e.g. using standard phosphoramidite chemistry and suitable gene assembly techniques, by precisely controlling reaction conditions such as time, dosage and temperature.
  • the invention in various embodiments contemplates the use of one or more static or dynamic wafers for fluid manipulation.
  • the wafers may be constructed from a number of suitable materials as further described herein, e.g. silicon.
  • Nanoreactor wafers may be configured to receive and hold liquids in a plurality of features. Additional wafers, for example those that are used for in situ synthesis reactions, may be contacted with nanoreactor wafers to collect and/or mix liquids.
  • the nanoreactors may collect liquids from a plurality of additional wafers. Typically, nanoreactors are aligned with one or more resolved loci on additional wafers when the nanoreactor wafer is contacted.
  • Reagents and solvents may be provided within the nanoreactor prior to contact.
  • nanoreactors may be empty prior to contacting an additional wafer.
  • nanoreactors collect oligonucleotides synthesized in one or more resolved locus of a DNA synthesis wafer. These oligonucleotides can be assembled into a longer gene within the nanoreactor.
  • the nanoreactors may be sealed upon alignment and contact of an additional wafer by any suitable means, e.g. capillary burst valves, pressure, adhesives, or any other suitable sealing means known the art. The seal may be releasable. Reactions within the nanoreactor wafer may be carried out in sealed volumes and may comprise temperature cycling, e.g.
  • the DNA synthesis wafers may be configured to perform in situ synthesis of oligonucleotides at resolved loci on or inside the surface with precise control.
  • An inkjet printhead may be utilized to deliver drops of reagents for synthesis, e.g. standard phosphoramidite synthesis onto the resolved loci of the synthesis wafer.
  • Other reagents that are common to a plurality of resolved loci may be passed through them in bulk.
  • DNA synthesis wafers are replaced with synthesis wafers for the in situ synthesis of molecules other than DNA oligonucleotides as further described elsewhere herein.
  • the invention contemplates fast synthesis of large libraries of oligonucleotides and long genes with high-quality through the precise control of reaction conditions in a plurality of small volumes.
  • a further benefit of the invention is a reduced reagent use in comparison to the traditional synthesis methods known in the art.
  • FIGS. 2 A- 2 C illustrates exemplary applications of the methods and compositions of the invention for the synthesis of large, high quality gene libraries with long sequences in parallel.
  • static and dynamic wafers enable a plurality of reactions in a process flow.
  • oligonucleotide synthesis typically in situ on a DNA synthesis wafer, may be followed by a gene assembly reaction, such as polymerase cycling assembly (PCA), of the synthesized oligonucleotides into longer sequences.
  • PCA polymerase cycling assembly
  • the assembled sequences may be amplified, e.g. through PCR.
  • Suitable error correction reactions described herein or known in the art can be used to minimize the number of assembled sequences that deviate from a target sequence.
  • Sequencing libraries may be built and a fraction of the product may be aliquoted for sequencing, such as next generation sequencing (NGS).
  • NGS next generation sequencing
  • the gene synthesis processes as exemplified in FIGS. 2 A- 2 C may be adjusted according to the needs of a requester.
  • the assembled genes with acceptable error rates may be shipped, e.g. on a plate, to a requester ( FIG. 2 B ).
  • the methods and compositions of the invention allow for error rates less than about 1/10 kb to be easily achieved, although alternative error thresholds may be set as described in further detail elsewhere herein.
  • de novo synthesized/assembled sequences may be cloned purified from single colonies. The identity of a correct desired sequence may be tested through sequencing, e.g. NGS.
  • a higher confidence for the accuracy of the sequencing information may be obtained, e.g. via another sequencing method such as Sanger sequencing.
  • Verified sequences may be shipped, e.g. on a plate, to a requester ( FIG. 2 C ) Methods for generation of sequencing libraries are described in further detail elsewhere herein.
  • a substrate having a functionalized surface made by any of the methods described herein and methods of synthesizing oligonucleotides on the substrate having a functionalized surface are described herein.
  • the substrate can comprise a solid support having a plurality of resolved loci.
  • the plurality of resolved loci may have any geometry, orientation or organization.
  • the resolved loci may be in any scale (e.g., micro-scale or nano-scale), or contain microstructures fabricated into the substrate surface.
  • the resolved loci can be localized on microchannels with at least one dimension. Individual resolved loci of a substrate may be fluidically disconnected from each other, e.g.
  • a first resolved locus for the synthesis of a first oligonucleotide may be on a first via between the two surfaces of a substrate and a second resolved locus for the synthesis of a second oligonucleotide may be on a second via between the two surfaces of a substrate, the first and second vias not being fluidically connected within the substrate, but starting and ending from the same two surfaces of the substrate.
  • the microstructure of resolved loci can be microchannels or microwells in 2-D or 3-D.
  • a “3-D” microchannel means the cavity of the microchannel can be interconnected or extend within the solid support.
  • the surface of the secondary features may be functionalized with a moiety that can decrease the surface energy of the surface of the secondary features.
  • Droplets of reagents for synthesizing oligonucleotides can be deposited into the microchannels or microwells.
  • a microwell refers to a structure of microfluidic scale that can hold a liquid.
  • microwells allow liquid flow between a top and a bottom end, through a fluidic opening on each end, therefore acting like a microchannel.
  • the terms microwell and microchannel are used interchangeably throughout the specification.
  • FIG. 3 illustrates an example of the system for oligonucleotide synthesis comprising a first substrate and, optionally, a second substrate as described herein.
  • the inkjet printer printheads can move in X-Y direction to the location of the first substrate.
  • a second substrate can move in Z direction to seal with the first substrate, forming a resolved reactor.
  • the synthesized oligonucleotides can be delivered from the first substrate to the second substrate.
  • current invention also concerns a system for oligonucleotide assembly.
  • the system for oligonucleotide assembly can comprise a system for wafer handling.
  • FIG. 4 illustrates an example for the layout design of a substrate, according to various embodiments of the invention.
  • the substrate can comprise a plurality of microwells and the microwells can be arrayed on a uniform pitch, e.g. a 1.5 mm pitch.
  • a uniform pitch e.g. a 1.5 mm pitch.
  • multiple pitches may be picked in different directions of the layout, for example, rows of microstructures can be defined by a first pitch and within each row, the microstructures may be separated by a second pitch.
  • the pitch may comprise any suitable size, e.g.
  • the microwell can be designed having any suitable dimensions, for example a diameter of 80 ⁇ m as exemplified in FIG.
  • microwells can be connected to a plurality of smaller microwells.
  • the surface of the smaller microwells can be functionalized at selected regions facilitating liquid of reagents to flow into, for example via a high energy surface functionalization. As illustrated in FIG.
  • the diameter of the smaller microwells can be about 20 ⁇ m, or any suitable diameter, including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 or 80 ⁇ m.
  • FIG. 5 illustrates a case when a droplet of reagent is deposited into a microwell by an inkjet printer. The liquid droplet can spread over and fill the smaller microwells, in some cases facilitated by a high energy surface modification of the surface of the microwells in comparison adjacent surfaces.
  • the functionalized surface of the substrate may comprise any suitable density of resolved loci (e.g., a density suitable for synthesizing oligonucleotides with a given number of total different oligonucleotides to be synthesized, given amount of time for the synthesis process, or for a given cost per oligonucleotide, gene, or library).
  • a density suitable for synthesizing oligonucleotides with a given number of total different oligonucleotides to be synthesized given amount of time for the synthesis process, or for a given cost per oligonucleotide, gene, or library.
  • the surface has a density of resolved loci of about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 sites per 1 mm 2 .
  • the surface has a density of resolved loci of at least about 50, at least 75, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 1500, at least about 2000, at least about 3000, at least about 4000, at least about 5000, at least about 6000, at least about 7000, at least about 8000, at least about 9000, at least about 10000, at least about 20000, at least about 40000, at least about 60000, at least about 80000, at least about 100000, or at least about 500000 sites per 1 mm 2 .
  • the resolved loci on the substrate can have any different organization.
  • the resolved loci can be clustered in close proximity to form one or more circular region, rectangular region, elliptical region, irregular region and the like.
  • the resolved loci are closely packed and have a low amount or no amount of cross-contamination (e.g., the droplets of reagents that are deposited into one resolved locus will not substantially mix with the droplets of reagents that are deposited into another nearest resolved locus).
  • the organization of the resolved loci on the substrate can be designed such that it allows each sub-region or the entire region to be covered together creating a sealed cavity with controlled humidity, pressure or gas content in the sealed cavity so that the each sub-region or the entire region can have the same humidity, pressure or gas content, or substantially similar humidity, pressure or gas content as allowed under fluidically connected conditions.
  • FIG. 6 B part b is a design of a layout referred to as Array of Holes
  • FIG. 6 B part c is a design of a layout referred to as Flowers
  • FIG. 6 B part d is a design of a layout referred to as Gunsight
  • FIG. 6 B part b is a design of a layout referred to as Array of Holes
  • FIG. 6 B part c is a design of a layout referred to as Flowers
  • FIG. 6 B part d is a design of a layout referred to as Gunsight
  • FIG. 6 B part e is a design of a layout referred to as Radial Flower.
  • FIG. 6 C exemplifies a design of the substrate covered with a series of microwells on a 97.765 ⁇ m stencil. The microwells as exemplified in FIG. 6 C are clustered into islands. The microwells can be filled with reagents from the inkjet head.
  • Each of the resolved loci on the substrate can have any shape that is known in the art, or the shapes that can be made by methods known in the art.
  • each of the resolved loci can have an area that is in a circular shape, a rectangular shape, elliptical shape, or irregular shape.
  • the resolved loci can be in a shape that allows liquid to easily flow through without creating air bubbles.
  • the resolved loci can have a circular shape, with a diameter that can be about, at least about, or less than about 1 micrometers ( ⁇ m), 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇
  • the resolved loci may have a monodisperse size distribution, i.e. all of the microstructures may have approximately the same width, height, and/or length.
  • the resolved loci of may have a limited number of shapes and/or sizes, for example the resolved loci may be represented in 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or more distinct shapes, each having a monodisperse size.
  • the same shape can be repeated in multiple monodisperse size distributions, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or more monodisperse size distributions.
  • a monodisperse distribution may be reflected in a unimodular distribution with a standard deviation of less than 25%, 20%, 15%, 10%, 5%, 3%, 2%, 1%, 0.1%, 0.05%, 0.01%, 0.001% of the mode or smaller.
  • a substrate having a high density of resolved loci typically results in a resolved locus within a small area. Consequently, it can result in a small microchannel.
  • the microchannels can contain deposited droplets of reagents in different volumes.
  • the microchannels can have any suitable dimensions that allow sufficiently large surface areas and/or volumes for the various embodiments of the invention.
  • the volume of the microchannel is suitably large such that a reagent in a droplet that is deposited in the microchannel is not fully depleted during the oligonucleotide synthesis.
  • the volume of a well structure can guide the time period or density with which oligonucleotides can be synthesized.
  • Each of the resolved loci can have any suitable area for carrying out the reactions according to various embodiments of the invention described herein.
  • the plurality of resolved loci can occupy any suitable percentage of the total surface area of the substrate.
  • the area of the resolved loci can be the cross-sectional area of microchannels or microwells built into a substrate.
  • the plurality of the microstructures or resolved loci directly can occupy about, at least about, or less than about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% of the surface of the substrate.
  • the plurality of resolved loci can occupy about, at least about, or less than about 10 mm 2 , 11 mm 2 , 12 mm 2 , 13 mm 2 , 14 mm 2 , 15 mm 2 , 16 mm 2 , 17 mm 2 , 18 mm 2 , 19 mm 2 , 20 mm 2 , 25 mm 2 , 30 mm 2 , 35 mm 2 , 40 mm 2 , 50 mm 2 , 75 mm 2 , 100 mm 2 , 200 mm 2 300 mm 2 , 400 mm 2 , 500 mm 2 , 600 mm 2 , 700 mm 2 , 800 mm 2 , 900 mm 2 , 1000 mm 2 , 1500 mm 2 , 2000 mm 2 , 3000 mm 2 , 4000 mm 2 , 5000 mm 2 , 7500 mm 2 , 10000 mm 2 , 15000 mm 2 , 20000 mm 2 , 25000 mm 2 , 30
  • the microstructures built into a substrate may comprise microchannels or microwells, wherein the microstructures start from a top or bottom surface of the substrate and in some cases are fluidically connected to a typically opposing surface (e.g. bottom or top).
  • the terms “top” and “bottom” do not necessarily relate to the position of the substrate with respect to gravity at any given time, but are generally used for convenience and clarity.
  • the microchannels or microwells can have any suitable depth or length. In some cases, the depth or length of the microchannel or microwell is measured from the surface of the substrate (and/or bottom of the solid support) to the top of the solid support. In some cases, the depth or length of the microchannel or microwell is approximately equal to the thickness of the solid support.
  • the microchannels or microwells are about, less than about, or greater than about 1 micrometer ( ⁇ m), 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 125 ⁇ m, 150 ⁇ m, 175 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m or 500 ⁇ m deep or long.
  • microchannels or microwells can have any length of perimeter that is suitable for the embodiments of the invention described herein.
  • the perimeter of the microchannel or microwell is measured as the perimeter of a cross-sectional area, e.g. a cross sectional area that is perpendicular to fluid flow direction through said microchannel or microwell.
  • the microchannels or microwells have about, less than about, or at least about 1 micrometer ( ⁇ m), 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, m n, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 31 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 125 ⁇ m, 150 ⁇ m, 175 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m or 500 ⁇ m in perimeter.
  • ⁇ m micrometer
  • the nominal arclength density of the microchannels or microwells can have any suitable arclength per ⁇ m 2 of the planar substrate area.
  • the arclength density refers to the length of the perimeters of the cross-sections of the microchannels or microwells per surface area of the planar substrate.
  • the nominal arclength density of the microchannels or microwells can be at least 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ⁇ m/ ⁇ m 2 , or more.
  • the nominal arclength density of the microchannels or microwells can be 0.036 ⁇ m/ ⁇ m 2 .
  • the nominal arclength density of the microchannels or microwells can be at least 0.001 ⁇ m/ ⁇ m 2 . In some embodiments, the nominal arclength density of the microchannels or microwells can be at least 0.01 ⁇ m/ ⁇ m 2 . Further, the nominal surface area of the microchannels or microwells that is suitable for reactions described herein, e.g. through surface coating with a suitable moiety, can be maximized. The surface area of the microchannels or microwells that is coated with suitable moieties as described herein can facilitate the attachment of oligonucleotides to the surface.
  • the nominal surface area of the microchannels or microwells suitable for reactions described herein, such as oligonucleotide synthesis is at least 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5 or 5 ⁇ m 2 of the planar substrate area.
  • the microchannels or microwells can have any volume that is suitable for the methods and compositions described herein.
  • the microchannels or microwells have a volume that is less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 picoliter ( ⁇ l), less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 990 nanoliter (nl), less than about 0.5 microliters ( ⁇ l), less than about 1 ⁇ l, less than about 1.5 ⁇ l, less than about 2 ⁇ l, less than about 2.5 ⁇ l,
  • the microchannels or microwells have a volume that is equal to or greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 picoliter ( ⁇ l), equal or greater than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 990 nanoliter (nl), equal or greater than about 0.5 microliters ( ⁇ l), about 1 ⁇ l, about 1.5 ⁇ l, about 2 ⁇ l, about 2.5 ⁇ l, about 3 ⁇ l, about 3.5 ⁇ l, about 4 ⁇ l, about 4.5 ⁇ l,
  • the microchannels or microwells can have an aspect ratio of less than 1.
  • the term “aspect ratio,” refers to the ratio of a channel's width to that channel's depth. Thus, a channel having an aspect ratio of less than 1, is deeper than it is wide, while a channel having an aspect ratio greater than 1 is wider than it is deep.
  • the aspect ratio of the microchannels or microwells can be less than or equal to about 0.5, about 0.2, about 0.1, about 0.05 or less. In some embodiments, the aspect ratio of the microchannels or microwells can be about 0.1. In some embodiments, the aspect ratio of the microchannels or channels can be about 0.05.
  • microstructures described herein may include channels having one, two, three, four, five, six or more corners, turns, and the like.
  • the microstructures described herein may include the aspect ratios described, e.g., less than 1, 0.1 or 0.05, with respect to all microchannels or microwells contained within a particular resolved locus, e.g., one or more intersecting channels, some of these channels, a single channel and even a portion or portions of one or more microchannels or microwells.
  • Other designs and methods of fabricating the microchannels with low aspect ratios are described in U.S. Pat. No. 5,842,787, which is incorporated herein by reference.
  • microstructures such as microchannels or microwells on a substrate having a plurality of resolved loci can be manufactured by any method that is described herein or otherwise known in the art (e.g., microfabrication processes).
  • Microfabrication processes that may be used in making the substrate disclosed herein include without limitation lithography; etching techniques such as wet chemical, dry, and photoresist removal; microelectromechanical (MEMS) techniques including microfluidics/lab-on-a-chip, optical MEMS (also called MOEMS), RF MEMS, PowerMEMS, and BioMEMS techniques and deep reactive ion etching (DRIE); nanoelectromechanical (NEMS) techniques; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition such as evaporation (filament, electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (
  • a substrate having a plurality of resolved loci can be manufactured using any method known in the art.
  • the material of the substrate having a plurality of resolved loci can be a semiconductor substrate such as silicon dioxide.
  • the materials of the substrate can also be other compound III-V or II-VI materials, such as Gallium arsenide (GaAs), a semiconductor produced via the Czochralski process (Grovenor, C. (1989). Microelectronic Materials . CRC Press. pp. 113-123).
  • the material can present a hard, planar surface that exhibits a uniform covering of reactive oxide (—OH) groups to a solution in contact with its surface. These oxide groups can be the attachment points for subsequent silanization processes.
  • a lipophillic and hydrophobic surface material can be deposited that mimics the etching characteristics of silicon oxide. Silicon nitride and silicon carbide surfaces may also be utilized for the manufacturing of suitable substrates according to the various embodiments of the invention.
  • a passivation layer can be deposited on the substrate, which may or may not have reactive oxide groups.
  • the passivation layer can comprise silicon nitride (Si 3 N 4 ) or polymide.
  • a photolithographic step can be used to define regions where the resolved loci form on the passivation layer.
  • the method for producing a substrate having a plurality of resolved loci can start with a substrate.
  • the substrate e.g., silicon
  • the substrate can have any number of layers disposed upon it, including but not limited to a conducting layer such as a metal.
  • the conducting layer can be aluminum in some instances.
  • the substrate can have a protective layer (e.g., titanium nitride).
  • the substrate can have a chemical layer with a high surface energy.
  • the layers can be deposited with the aid of various deposition techniques, such as, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma enhanced CVD (PECVD), plasma enhanced ALD (PEALD), metal organic CVD (MOCVD), hot wire CVD (HWCVD), initiated CVD (iCVD), modified CVD (MCVD), vapor axial deposition (VAD), outside vapor deposition (OVD) and physical vapor deposition (e.g., sputter deposition, evaporative deposition).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • PECVD plasma enhanced CVD
  • PEALD plasma enhanced ALD
  • MOCVD metal organic CVD
  • HWCVD hot wire CVD
  • iCVD initiated CVD
  • MCVD modified CVD
  • VAD vapor axial deposition
  • OTD vapor axial deposition
  • physical vapor deposition e.g., sputter deposition, evaporative de
  • an oxide layer is deposited on the substrate.
  • the oxide layer can comprise silicon dioxide.
  • the silicon dioxide can be deposited using tetraethyl orthosilicate (TEOS), high density plasma (HDP), or any combination thereof.
  • the silicon dioxide can be deposited using a low temperature technique.
  • the process is low-temperature chemical vapor deposition of silicon oxide.
  • the temperature is generally sufficiently low such that pre-existing metal on the chip is not damaged.
  • the deposition temperature can be about 50° C., about 100° C., about 150° C., about 200° C., about 250° C., about 300° C., about 350° C., and the like.
  • the deposition temperature is below about 50° C., below about 100° C., below about 150° C., below about 200° C., below about 250° C., below about 300° C., below about 350° C., and the like.
  • the deposition can be performed at any suitable pressure. In some instances, the deposition process uses RF plasma energy.
  • the oxide is deposited by a dry thermally grown oxide procedure (e.g., those that may use temperatures near or exceeding 1,000° C.).
  • the silicon oxide is produced by a wet steam process.
  • the silicon dioxide can be deposited to a thickness suitable for the manufacturing of suitable microstructures described in further detail elsewhere herein.
  • the silicon dioxide can be deposited to any suitable thickness.
  • the silicon dioxide layer may have a thickness of at least or at least about 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 300 nm, 400 nm or 500 nm, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m
  • the silicon dioxide layer may have a thickness of at most or at most about 2.0 ⁇ m, 1.9 ⁇ m, 1.8 ⁇ m, 1.7 ⁇ m, 1.6 ⁇ m, 1.5 ⁇ m, 1.4 m n, 1.3 ⁇ m, 1.2 ⁇ m, 1.1 ⁇ m, 1.0 ⁇ m, 500 nm, 400 nm, 300 nm, 200 nm, 175 nm, 150 nm, 125 nm, 100 nm, 95 nm, 90 nm, 85 nm, 80 nm, 75 nm, 70 nm, 65 nm, 60 nm, 55 nm, 50 nm, 45 nm, 40 nm, 35 nm, 30 nm, 25 nm, 20 nm, 15 nm, 10 nm, 9 nm, 8, nm, 7 nm, 6 nm, 5 nm, 4 nm, 3 nm, 2 nm, 1
  • the silicon diooxide layer may have a thickness that is between 1.0 nm-2.0 ⁇ m, 1.1-1.9 ⁇ m, 1.2-1.8 nm, 1.3-1.7 ⁇ m, 1.4-1.6 ⁇ m. Those of skills in the art will appreciate that.
  • the silicon diooxide layer may have a thickness that falls within any range bound by any of these values, for example (1.5-1.9 ⁇ m).
  • the silicon dioxide may have a thickness that falls within any range defined by any of the values serving as endpoints of the range.
  • the resolved loci e.g., microchannels or microwells
  • Such techniques may include semiconductor fabrication techniques.
  • the resolved loci are created using photolithographic techniques such as those used in the semiconductor industry.
  • a photo-resist e.g., a material that changes properties when exposed to electromagnetic radiation
  • the substrate including the photo-resist can be exposed to an electromagnetic radiation source.
  • a mask can be used to shield radiation from portions of the photo-resist in order to define the area of the resolved loci.
  • the photo-resist can be a negative resist or a positive resist (e.g., the area of the resolved loci can be exposed to electromagnetic radiation or the areas other than the resolved loci can be exposed to electromagnetic radiation as defined by the mask).
  • the area overlying the location in which the resolved loci are to be created is exposed to electromagnetic radiation to define a pattern that corresponds to the location and distribution of the resolved loci in the silicon dioxide layer.
  • the photoresist can be exposed to electromagnetic radiation through a mask defining a pattern that corresponds to the resolved loci.
  • the exposed portion of the photoresist can be removed, such as, e.g., with the aid of a washing operation (e.g., deionized water).
  • the removed portion of the mask can then be exposed to a chemical etchant to etch the substrate and transfer the pattern of resolved loci into the silicon dioxide layer.
  • the etchant can include an acid, such as, for example, sulfuric acid (H 2 SO 4 ).
  • the silicon dioxide layer can be etched in an anisotropic fashion.
  • high anisotropy manufacturing methods such as DRIE can be applied to fabricate microstructures, such as microwells or microchannels comprising loci of synthesis, on or within a substrate with side walls that deviate less than about ⁇ 3°, 2°, 1°, 0.5°, 0.1°, or less from the vertical with respect to the surface of the substrate.
  • Undercut values of less than about 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.1 ⁇ m or less can be achieved resulting in highly uniform microstructures.
  • etching procedures can be used to etch the silicon dioxide in the area where the resolved loci are to be formed.
  • the etch can be an isotropic etch (i.e., the etch rate alone one direction substantially equal or equal to the etch rate along an orthogonal direction), or an anisotropic etch (i.e., the etch rate along one direction is less than the etch rate alone an orthogonal direction), or variants thereof.
  • the etching techniques can be both wet silicon etches such as KOH, TMAH, EDP and the like, and dry plasma etches (for example DRIE). Both may be used to etch micro structures wafer through interconnections.
  • an anisotropic etch removes the majority of the volume of the resolved loci. Any suitable percentage of the volume of the resolved loci can be removed including about 60%, about 70%, about 80%, about 90%, or about 95%. In some cases, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% of the material is removed in an anisotropic etch. In some cases, at most about 60%, at most about 70%, at most about 80%, at most about 90%, or at most about 95% of the material is removed in an anisotropic etch. In some embodiments, the anisotropic etch does not remove silicon dioxide material all of the way through the substrate. An isotropic etch is used to remove material all of the way through the substrate creating a hole, according to some embodiments.
  • the wells are etched using a photo-lithographic step to define the resolved loci followed by a hybrid dry-wet etch.
  • the photo-lithographic step can comprise coating the silicon dioxide with a photo-resist and exposing the photo-resist to electromagnetic radiation through a mask (or reticle) having a pattern that defines the resolved loci.
  • the hybrid dry-wet etch comprises: (a) dry etching to remove the bulk of the silicon dioxide in the regions of the resolved loci defined in the photoresist by the photo-lithographic step; (b) cleaning the substrate; and (c) wet etching to remove the remaining silicon dioxide from the substrate in the regions of the resolved loci.
  • the substrate can be cleaned with the aid of a plasma etching chemistry, or exposure to an oxidizing agent, such as, for example, H 2 O 2 , O 2 , O 3 , H 2 SO 4 , or a combination thereof, such as a combination of H 2 O 2 and H 2 SO 4 .
  • the cleaning can comprise removing residual polymer, removing material that can block the wet etch, or a combination thereof.
  • the cleaning is plasma cleaning.
  • the cleaning step can proceed for any suitable period of time (e.g., 15 to 20 seconds). In an example, the cleaning can be performed for 20 seconds with an Applied Materials eMAx-CT machine with settings of 100 mT, 200 W, 20 G, 20 O 2 .
  • the dry etch can be an anisotropic etch that etches substantially vertically (e.g., toward the substrate) but not laterally or substantially laterally (e.g., parallel to the substrate).
  • the dry etch comprises etching with a fluorine based etchant such as CF 4 , CHF 3 , C 2 F 6 , C 3 F 6 , or any combination thereof.
  • the etching is performed for 400 seconds with an Applied Materials eMax-CT machine having settings of 100 mT, 1000 W, 20 G, and 50 CF 4 .
  • the substrates described herein can be etched by deep reactive-ion etching (DRIE).
  • DRIE deep reactive-ion etching
  • DRIE is a highly anisotropic etch process used to create deep penetration, steep-sided holes and trenches in wafers/substrates, typically with high aspect ratios.
  • the substrates can be etched using two main technologies for high-rate DRIE: cryogenic and Bosch. Methods of applying DRIE are described in the U.S. Pat. No. 5,501,893, which is herein incorporated by reference in its entirety.
  • the wet etch can be an isotropic etch that removes material in all directions. In some instances, the wet etch undercuts the photo-resist. Undercutting the photo-resist can make the photo-resist easier to remove in a later step (e.g., photo-resist “lift off”).
  • the wet etch is buffered oxide etch (BOE). In some cases, the wet oxide etches are performed at room temperature with a hydrofluoric acid base that can be buffered (e.g., with ammonium fluoride) to slow down the etch rate. Etch rate can be dependent on the film being etched and specific concentrations of HF and/or NH 4 F. The etch time needed to completely remove an oxide layer is typically determined empirically. In one example, the etch is performed at 22° C. with 15:1 BOE (buffered oxide etch).
  • the silicon dioxide layer can be etched up to an underlying material layer.
  • the silicon dioxide layer can be etched until a titanium nitride layer.
  • a method for preparing a substrate having a plurality of resolved loci comprises etching the resolved loci such as microwells or microchannels into a substrate, such as a silicon substrate comprising a silicon dioxide layer coated thereon using (a) a photo-lithographic step to define the resolved loci; (b) a dry etch to remove the bulk of the silicon dioxide in the regions of the resolved loci defined by the photo-lithographic step; and (c) a wet etch to remove the remaining silicon dioxide from the substrate in the regions of the resolved loci.
  • the method further comprises removing residual polymer, removing material that can block the wet etch, or a combination thereof.
  • the method can include a plasma cleaning step.
  • the photo-resist is not removed from the silicon dioxide following the photo-lithographic step or the hybrid wet-dry etch in some cases. Leaving the photo-resist can be used to direct metal selectively into the resolved loci and not onto the upper surface of the silicon dioxide layer in later steps.
  • the substrate is coated with a metal (e.g., aluminum) and the wet etch does not remove certain components on the metal, e.g. those that protect the metal from corrosion (e.g., titanium nitride (TiN)).
  • the photoresist layer can be removed, such as with the aid of chemical mechanical planarization (CMP).
  • functionalization of a surface may refer to any process by which the surface properties of a material are modified by the deposition of a chemical species on the surface.
  • a common method for achieving functionalization is deposition of an organosilane molecule by chemical vapor deposition. It can also be done in a wet silanization process.
  • Differential functionalization also commonly referred to as “selective area deposition” or “selective area functionalization,” may refer to any process that produces two or more distinct areas on a monolithic structure where at least one area has different surface or chemical properties than other areas on the same structure.
  • the properties include but are not limited to surface energy, chemical termination, surface concentration of a chemical moiety, etc.
  • the different areas may be contiguous.
  • Active functionalization may refer to the functionalization of surfaces that will take part in some downstream production step such as DNA synthesis, or DNA or protein binding.
  • a suitable functionalization method as described elsewhere herein or otherwise known in the art is selected to allow for the particular downstream production step to take place on the surface.
  • Passive functionalization may refer to the functionalization of surfaces that will render those areas ineffective at the principle function of the active areas. For example, if the active functionalization is designed to bind DNA, the passive functionalized areas will not bind DNA.
  • Photoresist typically refers to a light-sensitive material commonly used in standard industrial processes, such as photolithography, to form patterned coatings. It is applied as a liquid, but it solidifies on the substrate as volatile solvents in the mixture evaporate. It may be applied in a spin coating process as a thin film (1 um to 100 um) to a planar substrate. It may be patterned by exposing it to light through a mask or reticle, changing its dissolution rate in a developer. It may be “positive” (light exposure increases dissolution) or “negative” (light exposure decreases dissolution). It may be used as a sacrificial layer that serves as a blocking layer for subsequent steps that modify the underlying substrate (such as etching). Once that modification is complete, the resist is removed.
  • Photolithography may refer to a process for patterning substrates.
  • a common basic process comprises 1) applying a photoresist to a substrate, 2) exposing the resist to light through a binary mask that is opaque in some areas and clear in other areas, and then 3) developing the resist which results in patterning the resist based on what areas were exposed.
  • the patterned resist serves as a mask for subsequent processing steps, such as etching, ion implantation, or deposition.
  • the resist is typically removed, for example via plasma stripping or wet chemical removal.
  • photoresist facilitates manufacturing of substrates with differential functionalization.
  • a series of manufacturing steps may form the baseline of a differential functionalization process, wherein the individual steps may be modified, removed, or supplemented with additional steps to achieve the desired functionalization pattern on a surface, according to the various embodiments of the invention.
  • an initial preparation of the target surface may be achieved, for example, by a chemical clean and may include an initial active or passive surface functionalization.
  • the application of photoresist may be achieved by a variety of different techniques.
  • the flow of resist into different parts of the structure is controlled by the design of the structure, for example by taking advantage of the intrinsic pinning properties of fluids at various points of the structure, such as at sharp step edges.
  • the photoresist leaves behind a solid film once the transporting solvents of the resist evaporate.
  • photolithography may be optionally used to remove the resist in certain specific regions of the substrate so that those regions can be further modified.
  • plasma descum a, typically, short plasma cleaning step using, for example, an oxygen plasma, may be used to facilitate the removal of any residual organic contaminants in the resist cleared areas.
  • the surface may be functionalized while the areas covered in resist are protected from any active or passive functionalization.
  • Any suitable process that changes the chemical properties of the surface described herein or known in the art may be used to functionalize the surface, for example chemical vapor deposition of an organosilane. Typically, this results in the deposition of a self-assembled monolayer (SAM) of the functionalization species.
  • SAM self-assembled monolayer
  • the resist may be stripped and removed, for example by dissolving it in suitable organic solvents, plasma etching, exposure and development, etc., thereby exposing the areas of the substrate that had been covered by the resist.
  • a method that will not remove functionalization groups or otherwise damage the functionalized surfaces is selected for the resist strip.
  • a second functionalization step involving active or passive functionalization may optionally be performed.
  • the areas functionalized by the first functionalization step block the deposition of the functional groups used in the second functionalization step.
  • differential functionalization facilitates spatial control of the regions on the chip where DNA is synthesized. In some embodiments, differential functionalization provides improved flexibility to control the fluidic properties of the chip. In some embodiments, the process by which oligos are transferred from a oligonucleotide synthesis device to a nanowell device is therefore improved by differential functionalization. In some embodiments, differential functionalization provides for the manufacturing of devices, for example nanoreactor or oligonucleotide syntheses devices, where the walls of wells or channels are relatively hydrophilic, as described elsewhere herein, and the external surfaces are relatively hydrophobic, as described elsewhere herein.
  • FIG. 36 parts A-F illustrates exemplary applications of differential functionalization on the microfluidic devices according to the various embodiments of the invention.
  • the active and passive functionalization areas are shaded differently as denoted.
  • first channels (vias) and second channels that connect to them forming a so called revolver pattern are used in these examples to illustrate differential functionalization in three dimensions.
  • the specific layout of the three-dimensional features within these exemplary substrates is largely unimportant for the functionalization process, with the exception of a few guidelines that help control the application of resist.
  • FIG. 37 parts A-F illustrates an exemplary workflow for the generation of differential functionalization patterns illustrated in FIG. 37 part B-D.
  • the substrate may first be cleaned, for example using a piranha solution, followed by O 2 plasma exposure ( FIG. 37 part A).
  • Photoresist may be applied to the device layer embedding the second channels (aka revolvers; FIG. 37 part B).
  • a photolithography and/or a plasma descum step may be used to generate a desired pattern of photoresist on the substrate, using a suitable mask for the pattern ( FIG. 37 part C).
  • the mask pattern may be varied to control where the photoresist stays and where it is cleared.
  • a functionalization step for example with a fluorosilane, a hydrocarbon silane, or any group forming an organic layer that may passivate the surface, may be performed to define the passively functionalized areas on the device ( FIG. 37 part D).
  • the resist may be stripped using a suitable method described elsewhere herein or otherwise known in the art ( FIG. 37 part E). Once the resist is removed, the exposed areas may be subject to active functionalization leaving the desired differential functionalization pattern ( FIG. 37 part F).
  • the methods and compositions described herein relate to the application of photoresist for the generation of modified surface properties in selective areas, wherein the application of the photoresist relies on the fluidic properties of the substrates defining the spatial distribution of the photoresist.
  • surface tension effects related to the applied fluid may define the flow of the photoresist.
  • surface tension and/or capillary action effects may facilitate drawing of the photoresist into small structures in a controlled fashion before the resist solvents evaporate ( FIG. 38 ).
  • resist contact points get pinned by sharp edges, thereby controlling the advance of the fluid.
  • the underlying structures may be designed based on the desired flow patterns that are used to apply photoresist during the manufacturing and functionalization processes.
  • a solid organic layer left behind after solvents evaporate may be used to pursue the subsequent steps of the manufacturing process.
  • Substrates may be designed to control the flow of fluids by facilitating or inhibiting wicking effects into neighboring fluidic paths.
  • FIG. 39 part A illustrates a design avoiding overlap between top and bottom edges, which facilitates the keeping of the fluid in top structures allowing for a particular disposition of the resist.
  • FIG. 39 part B illustrates an alternative design, wherein the top and bottom edges do overlap, leading to the wicking of the applied fluid into bottom structures. Appropriate designs may be selected accordingly, depending on the desired application of the resist.
  • FIG. 40 illustrates bright field (part A) and dark field (part B) images of a device that is subjected to resist according to the illustrated small disk photoresist pattern in FIG. 40 part C after photolithography.
  • FIG. 41 illustrates bright field (part A) and dark field (part B) images of a device that is subjected to resist according to the illustrated full disk photoresist pattern in FIG. 41 part 41 C after photolithography.
  • FIG. 42 illustrates bright field (part A) and dark field (part B) images of a device that is functionalized according to the pattern in FIG. 42 part C after passive functionalization and stripping of the resist.
  • FIG. 43 illustrates the differing fluidic properties of the differentially functionalized surfaces in bright field (part A) and dark field (part B) images according to the pattern in FIG. 43 part C using dimethylsulfoxide (DMSO) as a fluid.
  • DMSO dimethylsulfoxide
  • FIG. 44 illustrates another exemplary workflow for the generation of differential functionalization patterns illustrated in FIG. 36 part F.
  • the substrate may first be cleaned, for example using a piranha solution, followed by O 2 plasma exposure ( FIG. 44 part 44 A).
  • a functionalization step for example with a fluorosilane, a hydrocarbon silane, or any group that can form an organic layer that may passivate the surface, may be performed to define the passively functionalized areas on the device ( FIG. 44 part B).
  • Photoresist may be applied to the device layer embedding the second channels (aka revolvers; FIG. 44 part C).
  • a photolithography and/or an etch step may be used to generate a desired pattern of photoresist on the substrate, using a suitable mask for the pattern ( FIG.
  • the mask pattern may be varied to control where the photoresist stays and where it is cleared.
  • the resist may be stripped using a suitable method described elsewhere herein or otherwise known in the art ( FIG. 44 part E). Once the resist is removed, the exposed areas may be subject to active functionalization leaving the desired differential functionalization pattern ( FIG. 44 part F).
  • the functionalization workflow is designed such that the resist is applied from the via (bottom) side and flown into the vias and the revolvers.
  • the exposed areas on the outer surfaces may be subjected to functionalization.
  • the resist may be removed, for example from the back (bottom) side of the device using lithography or etching, allowing active functionalization in the exposed areas leading to the pattern described in FIG. 36 part E.
  • an overlap design may be chosen between the vias and the revolver channel edges as shown in FIG. 39 part B.
  • the resist may be applied from the front (top) side wicking the fluid into the vias. Passive functionalization, stripping of the resist, followed by active functionalization would lead to the manufacturing of the pattern illustrated in FIG. 36 part E.
  • FIG. 25 part D An exemplary microfluidic device comprising a substantially planar substrate portion is shown as a diagram in FIG. 25 part D.
  • a cross-section of the diagram is shown in FIG. 25 part E.
  • the substrate comprises a plurality of clusters, wherein each cluster comprises a plurality of groupings of fluidic connections. Each grouping comprises a plurality of second channels extending from a first channel.
  • FIG. 25 part A is a device view of a cluster comprising a high density of groupings.
  • FIG. 25 part C is a handle view of the cluster of FIG. 25 A .
  • FIG. 25 part B is a section view of FIG. 25 part A.
  • a cluster of groupings may be arranged in any number of conformations.
  • the groupings are arranged in offset rows to form a cluster in a circle-like pattern.
  • FIG. 25 part C depicts arrangement of a plurality of such clusters on an exemplary microfluidic device.
  • individual clusters are contained within individual cluster regions whose interior forms a convex set.
  • the individual cluster regions are non-overlapping with each other.
  • the individual cluster regions may be a circle or any other suitable polygon, e.g. a triangle, a square, a rectangle, a, a parallelogram, a hexagon etc.
  • an exemplary distance between three rows of groupings may be from about 0.05 mm to about 1.25 mm, as measured from the center of each grouping.
  • the distance between 2, 3, 4, 5, or more rows of groupings may be about or at least about 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, 0.3 mm, 0.35 mm, 0.4 mm, 0.45 mm, 0.5 mm, 0.55 mm, 0.6 mm, 0.65 mm, 0.7 mm, 0.75 mm, 0.8 mm, 0.9 mm, 1 mm, 1.1 mm, 1.2 mm, 1.2 mm, or 1.3 mm.
  • the distance between 2, 3, 4, 5, or more rows of groupings may be about or at most about 1.3 mm, 1.2 mm, 1.1 mm, 1 mm, 0.9 mm, 0.8 mm, 0.75 mm, 0.65 mm, 0.6 mm, 0.55 mm, 0.5 mm, 0.45 mm, 0.4 mm, 0.35 mm, 0.3 mm, 0.25 mm, 0.2 mm, 0.15 mm, 0.1 mm, 0.05 mm or less.
  • the distance between 2, 3, 4, 5, or more rows of groupings may range between 0.05-1.3 mm, 0.1-1.2 mm, 0.15-1.1 mm, 0.2-1 mm, 0.25-0.9 mm, 0.3-0.8 mm, 0.35-0.8 mm, 0.4-0.7 mm, 0.45-0.75 mm, 0.5-0.6 mm, 0.55-0.65 mm, or 0.6-0.65 mm.
  • an exemplary distance between two groupings in a row of groupings may be from about 0.02 mm to about 0.5 mm, as measured from the center of each grouping.
  • the distance between two groupings in a row of groupings may be about or at least about 0.02 mm, 0.04 mm, 0.06 mm, 0.08 mm, 0.1 mm, 0.12 mm, 0.14 mm, 0.16 mm, 0.18 mm, 0.2 mm, 0.22 mm, 0.24 mm, 0.26 mm, 0.28 mm, 0.3 mm, 0.32 mm, 0.34 mm, 0.36 mm, 0.38 mm, 0.4 mm, 0.42 mm, 0.44 mm, 0.46 mm, 0.48 mm or 0.5 mm.
  • the distance between two groupings in a row of groupings may be about or at most about 0.5 mm, 0.48 mm, 0.46 mm, 0.44 mm, 0.42 mm, 0.4 mm, 0.38 mm, 0.36 mm, 0.34 mm, 0.32 mm, 0.3 mm, 0.28 mm, 0.26 mm, 0.24 mm, 0.22 mm, 0.2 mm, 0.18 mm, 0.16 mm, 0.14 mm, 0.12 mm, 0.1 mm, 0.08 mm, 0.06 mm, 0.04 mm, or 0.2 mm or less.
  • the distance between two groupings may range between 0.02-0.5 mm, 0.04-0.4 mm, 0.06-0.3 mm, or 0.08-0.2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.04 mm-0.2 mm.
  • the length and width of the first and second channels of each grouping may be optimized according to experimental conditions.
  • the cross-section of a first channel in a grouping, represented by 2504 is about or at least about 0.01 mm, 0.015 mm, 0.02 mm, 0.025 mm, 0.03 mm, 0.035 mm, 0.04 mm, 0.045 mm, 0.05 mm, 0.055 mm, 0.06 mm, 0.065 mm, 0.07 mm, 0.075 mm, 0.08 mm, 0.085 mm, 0.09 mm, 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, 0.3 mm, 0.35 mm, 0.4 mm, 0.45 mm, or 0.5 mm.
  • the cross-section of a first channel in a grouping is about or at most about 0.5 mm, 0.45 mm, 0.4 mm, 0.35 mm, 0.3 mm, 0.25 mm, 0.2 mm, 0.15 mm, 0.1 mm, 0.09 mm, 0.085 mm, 0.08 mm, 0.075 mm, 0.07 mm, 0.065 mm, 0.06 mm, 0.055 mm, 0.05 mm, 0.045 mm, 0.04 mm, 0.035 mm, 0.03 mm, 0.025 mm, 0.02 mm, 0.015 mm, or 0.01 mm or less.
  • the cross-section of a first channel in a grouping may range between 0.01-0.5 mm, 0.02-0.45 mm, 0.03-0.4 mm, 0.04-0.35 mm, 0.05-0.3 mm, 0.06-0.25, or 0.07-0.2 mm.
  • the distance may fall within any range bound by any of these values, for example 0.04 mm-0.2 mm.
  • the cross-section of a second channel in a grouping, represented by 2505 is about or at least about 0.001 mm, 0.002 mm, 0.004 mm, 0.006 mm, 0.008 mm, 0.01 mm, 0.012 mm, 0.014 mm, 0.016 mm, 0.018 mm, 0.02 mm, 0.025 mm, 0.03 mm, 0.035 mm, 0.04 mm, 0.045 mm, 0.05 mm, 0.055 mm, 0.06 mm, 0.065 mm, 0.07 mm, 0.075 mm, or 0.08 mm.
  • the cross-section of a second channel in a grouping is about or at most about 0.08 mm, 0.075 mm, 0.07 mm, 0.065 mm, 0.06 mm, 0.055 mm, 0.05 mm, 0.045 mm, 0.04 mm, 0.035 mm, 0.03 mm, 0.025 mm, 0.02 mm, 0.018 mm, 0.016 mm, 0.014 mm, 0.012 mm, 0.01 mm, 0.008 mm, 0.006 mm, 0.004 mm, 0.002 mm, 0.001 mm or less.
  • the cross-section of a second channel in a grouping may range between 0.001-0.08 mm, 0.004-0.07 mm, 0.008-0.06 mm, 0.01-0.05 mm, 0.015-0.04 mm, 0.018-0.03 mm, or 0.02-0.025 mm.
  • the distance may fall within any range bound by any of these values, for example 0.008 mm-0.04 mm.
  • FIG. 25 part B depicts an exemplary cross-section of a cluster comprising a row of 11 groupings.
  • the height of the second channel in each grouping is about or at least about 0.005 mm, 0.008 mm, 0.01 mm, 0.015 mm, 0.02 mm, 0.025 mm, 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.1 mm, 0.12 mm, 0.14 mm, 0.16 mm, 0.18 mm, or 0.2 mm long.
  • the height of the second channel, shown as 2501, in each grouping is about or at most about 0.2 mm, 0.18 mm, 0.16 mm, 0.14 mm, 0.12 mm, 0.1 mm, 0.08 mm, 0.07 mm, 0.06 mm, 0.05 mm, 0.04 mm, 0.03 mm, 0.025 mm, 0.02 mm, 0.015 mm, 0.01 mm, 0.008 mm, or 0.005 mm long.
  • the height of the second channel in each grouping may range between 0.005-0.2 mm, 0.008-0.018 mm, 0.01-0.16 mm, 0.015-0.1 mm, 0.02-0.08 mm, or 0.025-0.04 mm.
  • the distance may fall within any range bound by any of these values, for example 0.01 mm-0.04 mm.
  • the height of the first channel within each grouping, shown as 2502 is about or at most about 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.5 mm, 2 mm, 1.5 mm, 1.0 mm, 0.8 mm, 0.5 mm, 0.4 mm, 0.375 mm, 0.35 mm, 0.3 mm, 0.275 mm, 0.25 mm, 0.225 mm, 0.2 mm, 0.175 mm, 0.15 mm, 0.125 mm, 0.1 mm, 0.075 mm, or 0.05 mm.
  • the height of the first channel within each grouping, shown as 2502 is about or at least about 0.05 mm, 0.075 mm, 0.1 mm, 0.125 mm, 0.15 mm, 0.175 mm, 0.2 mm, 0.225 mm, 0.25 mm, 0.275 mm, 0.3 mm, 0.325 mm, 0.35 mm, 0.375 mm, 0.4 mm, 0.5 mm, 0.8 mm, 1.0 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or 5 mm.
  • the height of the first channel within each grouping may range between 0.05-5 mm, 0.075-4 mm, 0.1-3 mm, 0.15-2 mm, 0.2-1 mm, or 0.3-0.8 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-1 mm.
  • the cluster of groupings may be arranged in a conformation suitable for placement in a single reaction well of the substantially planar substrate portion of a microfluidic device, as shown in FIG. 25 part D.
  • FIG. 25 part D is a diagram of a substantially planar substrate portion of a microfluidic device comprising 108 reaction wells, wherein each reaction well comprises a plurality of groupings.
  • a substrate may comprise any number of wells, including but not limited to, any number between about 2 and about 250.
  • the number of wells includes from about 2 to about 225 wells, from about 2 to about 200 wells, from about 2 to about 175 wells, from about 2 to about 150 wells, from about 2 to about 125 wells, from about 2 to about 100 wells, from about 2 to about 75 wells, from about 2 to about 50 wells, from about 2 to about 25 wells, from about 25 to about 250 wells, from about 50 to about 250 wells, from about 75 to about 250 wells, from about 100 to about 250 wells, from about 125 to about 250 wells, from about 150 to about 250 wells, from about 175 to about 250 wells, from about 200 to about 250 wells, or from about 225 to about 250 wells.
  • each well may fall within any range bound by any of these values, for example 25-125.
  • each well can comprise a cluster of any number groupings, including, but not limited to, any number between about 2 and about 250 groupings.
  • a cluster comprises from about 2 to about 225 groupings, from about 2 to about 200 groupings, from about 2 to about 175 groupings, from about 2 to about 150 groupings, from about 2 to about 125 groupings, from about 2 to about 100 groupings, from about 2 to about 75 groupings, from about 2 to about 50 groupings, from about 2 to about 25 groupings, from about 25 to about 250 groupings, from about 50 to about 250 groupings, from about 75 to about 250 groupings, from about 100 to about 250 groupings, from about 125 to about 250 groupings, from about 150 to about 250 groupings, from about 175 to about 250 groupings, from about 200 to about 250 groupings, or from about 225 to about 250 groupings.
  • each of the 108 wells of the substrate shown in FIG. 25 part D can comprise a cluster of 109 groupings shown in FIG. 25 part A, resulting in 11,772 groupings present in the substantially planar substrate portion of the microfluidic device.
  • FIG. 25 part D includes an origin of reference indicated by a 0,0 (X,Y) axis, wherein the bottom left corner of an exemplary substantially planar substrate portion of a microfluidic device is diagramed.
  • the width of the substantially planar substrate, represented as 2508, is from about 5 mm to about 150 mm along one dimension, as measured from the origin.
  • the width of a substantially planar substrate, represented as 2519 is from about 5 mm to about 150 mm along another dimension, as measured from the origin.
  • the width of a substrate in any dimension is from about 5 mm to about 125 mm, from about 5 mm to about 100 mm, from about 5 mm to about 75 mm, from about 5 mm to about 50 mm, from about 5 mm to about 25 mm, from about 25 mm to about 150 mm, from about 50 mm to about 150 mm, from about 75 mm to about 150 mm, from about 100 mm to about 150 mm, or from about 125 mm to about 150 mm.
  • the substantially planar substrate portion shown in FIG. 25 part D comprises 108 clusters of groupings.
  • the clusters may be arranged in any configuration.
  • the clusters are arranged in rows forming a square shape. Regardless of arrangement, the clusters may start at a distance of about 0.1 mm to about 149 mm from the origin, as measured on the X- or Y-axis.
  • Lengths 2518 and 2509 represent the furthest distances of the center of a cluster on the X- and Y-axis, respectively.
  • Lengths 2517 and 2512 represent the closest distances of the center of a cluster on the X- and Y-axis, respectively.
  • the clusters are arranged so that there exists a repeated distance between two clusters.
  • the distance between two clusters may be from about 0.3 mm to about 9 mm apart. In some embodiments, the distance between two clusters is about or at least about 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the distance between two clusters is about or at most about 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, or 0.3 mm.
  • the distance between two clusters may range between 0.3-9 mm, 0.4-8 mm, 0.5-7 mm, 0.6-6 mm, 0.7-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.8 mm-2 mm.
  • Fiducial marks may be placed on microfluidic devices described herein to facilitate alignment of such devices with other components of a system.
  • Microfluidic devices of the invention may have one or more fiducial marks, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, or more fiducial marks.
  • the substantially planar substrate portion of an exemplary microfluidic device shown in FIG. 25 part D comprises three fiducial marks useful for aligning the device with other components of a system.
  • a fiducial mark may be located at any position within the substantially planar substrate portion of the microfluidic device. As shown by 2513 and 2516 , a fiducial mark may be located near the origin, where the fiducial mark is closer to the origin than any one cluster.
  • a fiducial mark is located near an edge of the substrate portion, as shown by 2511 and 2521 , where the distance from the edge is indicated by 2510 and 2520 , respectively.
  • the fiducial mark may be located from about 0.1 mm to about 10 mm from the edge of the substrate portion. In some embodiments, the fiducial mark is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the fiducial mark is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2
  • the fiducial mark may be located between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.1-6 mm, 0.2-5 mm, 0.3-4 mm, 0.4-3 mm, or 0.5-2 mm from the edge of the substrate. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-5 mm.
  • the fiducial mark may be located close in distance to a cluster, where exemplary X- and Y-axis distances are indicated by 2515 and 2514 , respectively.
  • a distance between a cluster and a fiducial mark is about or at least about 0.001 mm, 0.005 mm, 0.01 mm, 0.02 mm, 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.09 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.2 mm, 1.5 mm, 1.7 mm, 2 mm, 2.2 mm, 2.5 mm, 2.7 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, or 8 mm.
  • a distance between a cluster and a fiducial mark is about or at most about 8 mm, 6.5 mm, 6 mm, 5.5 mm, 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.7 mm, 2.5 mm, 2.2 mm, 2 mm, 1.7 mm, 1.5 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.09 mm, 0.08 mm, 0.07 mm, 0.06 mm, 0.05 mm, 0.04 mm, 0.03 mm, 0.02 mm, 0.01 mm, 0.005 mm, or 0.001 mm.
  • the distance between a cluster and a fiducial mark may be in a range between 0.001-8 mm, 0.01-7 mm, 0.05-6 mm, 0.1-5 mm, 0.5-4 mm, 0.6-3 mm, 0.7-2 mm, or 0.8-1.7 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.5-2 mm.
  • FIG. 25 part E depicts a cross section of the substantially planar substrate portion of an exemplary microfluidic device shown in FIG. 25 part D.
  • the section shows a row of 11 groupings, each comprising a cluster of groupings, wherein each grouping comprises a plurality of second channels extending from a first channel.
  • the total length of a grouping may be from about 0.05 mm to about 5 mm long.
  • the total length of a grouping is about or at least about 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.09 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.2 mm, 1.5 mm, 1.7 mm, 2 mm, 2.2 mm, 2.5 mm, 2.7 mm, 3 mm, 3.2 mm, 3.5 mm, 3.7 mm, 4 mm, 4.2 mm, 4.5 mm, 4.7 mm, or 5 mm.
  • the total length of a grouping is about or at most about 5 mm, 4.7 mm, 4.5 mm, 4.2 mm, 4 mm, 3.7 mm, 3.5 mm, 3.2 mm, 3 mm, 2.7 mm, 2.5 mm, 2.2 mm, 2 mm, 1.7 mm, 1.5 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.09 mm, 0.08 mm, 0.07 mm, 0.06 mm, or 0.05 mm or less.
  • the total length of a grouping may be in a range between 0.05-5 mm, 0.06-4 mm, 0.07-3 mm, 0.08-2 mm, 0.09-1 mm, 0.1-0.9 mm, 0.2-0.8 mm, or 0.3-0.7 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1-0.7 mm.
  • the microfluidic device may have a location for a label or a serial label, as exemplified in FIG. 25 part F depicting an exemplary layout of clusters in a microfluidic device.
  • the label may be located near an edge of the substrate, as exemplified by the distance 2603.
  • the label is located from about 0.1 mm to about 10 mm from the edge of the substrate. In some embodiments, the label is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the label is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or
  • the distance may be in a range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.6-5 mm, 0.7-4 mm, 0.8-3 mm, 0.9-2 mm or 1.5 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.5-2 mm.
  • the label may start at a position from about 0.1 mm to about 20 mm from the origin as exemplified by 2602 .
  • the label may have a length from about 1 mm to about 32 mm as exemplified by 2601 .
  • the invention provides for methods and systems for controlled flow and mass transfer paths for oligonucleotide synthesis on a surface.
  • the advantages of the systems and methods provided herein allow for improved levels of structure for the controlled and even distribution of mass transfer paths, chemical exposure times, and wash efficacy during oligonucleotide synthesis.
  • the methods and systems described herein allow for increased sweep efficiency, such as by providing sufficient volume for a growing oligonucleotide such that the excluded volume by the growing oligonucleotide does not take up more than 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing oligonucleotides.
  • the methods and systems described herein allow for an sufficient structure for the growth of oligomers beyond 80 mer to 100, 120, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500-mer or longer.
  • Structures such as small vias may be used to feed smaller structures, such as those found in the “revolver pattern” ( FIG. 56 B ). Structures having a low surface energy surface on the inner surface may cause gas to hang up on the walls. Gas bubbles may impede the flow rate and flow uniformity during oligonucleotide synthesis cycles or subsequent aqueous steps used for gene assembly. Accordingly, structures that are adapted for oligonucleotide synthesis may comprise a surface with increased surface energy as described elsewhere herein.
  • the methods and systems of the invention exploit silicon wafer processes for manufacturing substrates for oligonucleotide synthesis.
  • substrates may have a series of sites accessible to material deposition via a deposition device such as an inkjet.
  • Substrates manufactured according to the various embodiments of the invention may support flood chemistry steps that are shared among a plurality of such sites through their plane.
  • devices allow aqueous reagents to be injected and pooled in a large relief ( FIG. 61 parts A-B).
  • such oligonucleotide synthesis devices with large vias are created on a standard Silicon on Insulator (SOI) silicon wafer.
  • the oligonucleotide synthesis device may have a total width of at least or at least about 10 micrometer ( ⁇ m), 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m, 200 ⁇ m, 250 ⁇ m
  • the oligonucleotide synthesis device may have a total width of at most or at most about 1000 ⁇ m, 900 ⁇ m, 850 ⁇ m, 750 ⁇ m, 700 ⁇ m, 650 ⁇ m, 600 ⁇ m, 550 ⁇ m, 500 ⁇ m, 450 ⁇ m, 400 ⁇ m, 350 ⁇ m, 300 ⁇ m, 250 ⁇ m, 200 ⁇ m, 190 ⁇ m, 180 ⁇ m, 170 ⁇ m, 160 ⁇ m, 150 ⁇ m, 140 ⁇ m, 130 ⁇ m, 120 ⁇ m, 110 ⁇ m, 100 ⁇ m, 95 ⁇ m, 90 ⁇ m, 85 ⁇ m, 80 ⁇ m, 75 ⁇ m, 70 ⁇ m, 65 ⁇ m, 60 ⁇ m, 55 ⁇ m, 50 ⁇ m, 45 ⁇ m, 40 ⁇ m, 35 ⁇ m, 30 ⁇ m, 25 ⁇ m, 20 ⁇ m, 19 ⁇ m, 18 ⁇ m, 17 ⁇ m, 16
  • the oligonucleotide synthesis device may have a total width that is between 10-1000 ⁇ m, 11-950 ⁇ m, 12-900 ⁇ m, 13-850 ⁇ m, 14-800 ⁇ m, 15-750 ⁇ m, 16-700 ⁇ m, 17-650 ⁇ m, 18-600 ⁇ m, 19-550 ⁇ m, 20-500 ⁇ m, 25-450 ⁇ m, 30-400 ⁇ m, 35-350 ⁇ m, 40-300 ⁇ m, 45-250 ⁇ m, 50-200 ⁇ m, 55-150 ⁇ m, 60-140 ⁇ m, 65-130 ⁇ m, 70-120 ⁇ m, 75-110 ⁇ m, 70-100 ⁇ m, 75-80 ⁇ m, 85-90 ⁇ m or 90-95 ⁇ m.
  • the total width of the oligonucleotide synthesis device may fall within any range bound by any of these values, for example 20-80 ⁇ m.
  • the total width of the oligonucleotide device may fall within any range defined by any of the values serving as endpoints of the range. It may be subdivided into a handle layer and a device layer. All or portions of the device may be covered with a silicon dioxide layer.
  • the silicon dioxide layer may have a thickness of at least or at least about 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 300 nm, 400 nm, 500 nm, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m, 1.9 ⁇ m, 2.0 ⁇
  • the silicon dioxide layer may have a thickness of at most or at most about 2.0 ⁇ m, 1.9 rm, 1.8 ⁇ m, 1.7 ⁇ m, 1.6 ⁇ m, 1.5 ⁇ m, 1.4 ⁇ m, 1.3 ⁇ m, 1.2 ⁇ m, 1.1 ⁇ m, 1.0 ⁇ m, 500 nm, 400 nm, 300 nm, 200 nm, 175 nm, 150 nm, 125 nm, 100 nm, 95 nm, 90 nm, 85 nm, 80 nm, 75 nm, 70 nm, 65 nm, 60 nm, 55 nm, 50 nm, 45 nm, 40 nm, 35 nm, 30 nm, 25 nm, 20 nm, 15 nm, 10 nm, 9 nm, 8, nm, 7 nm, 6 nm, 5 nm, 4 nm, 3 nm, 2 nm, 1
  • the silicon diooxide layer may have a thickness that is between 1.0 nm-2.0 rm, 1.1-1.9 rm, 1.2-1.8 nm, 1.3-1.7 ⁇ m, 1.4-1.6 ⁇ m.
  • the silicon diooxide layer may have a thickness that falls within any range bound by any of these values, for example (1.5-1.9 ⁇ m).
  • the silicon dioxide may have a thickness that falls within any range defined by any of the values serving as endpoints of the range.
  • the device layer may comprise a plurality of structures suitable for oligonucleotide growth, as described elsewhere herein, such as a plurality of small holes ( FIG. 61 parts A-B).
  • the device layer may have a thickness of at least or at least about 1 micrometer ( ⁇ m), 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 200 ⁇ m, 300
  • the device layer may have a thickness of at most or at most about 500 rm, 400 ⁇ m, 300 ⁇ m, 200 ⁇ m, 100 ⁇ m, 95 ⁇ m, 90 ⁇ m, 85 ⁇ m, 80 ⁇ m, 75 ⁇ m, 70 ⁇ m, 65 ⁇ m, 60 ⁇ m, 55 ⁇ m, 50 ⁇ m, 45 ⁇ m, 40 ⁇ m, 35 ⁇ m, 30 ⁇ m, 25 ⁇ m, 20 ⁇ m, 19 ⁇ m, 18 ⁇ m, 17 ⁇ m, 16 ⁇ m, 15 ⁇ m, 14 ⁇ m, 13 ⁇ m, 12 ⁇ m, 11 ⁇ m, 10 ⁇ m, 9 ⁇ m, 8 ⁇ m, 7 ⁇ m, 6 ⁇ m, 5 ⁇ m, 4 ⁇ m, 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, or less.
  • the device layer may have a thickness that is between 1-100 ⁇ m, 2-95 ⁇ m, 3-90 ⁇ m, 4-85 ⁇ m, 5-80 ⁇ m, 6-75 ⁇ m, 7-70 ⁇ m, 8-65 ⁇ m, 9-60 ⁇ m, 10-55 ⁇ m, 11-50 ⁇ m, 12-45 ⁇ m, 13-40 ⁇ m, 14-35 ⁇ m, 15-30 ⁇ m, 16-25 ⁇ m, 17-20 ⁇ m, 18-19 ⁇ m.
  • the thickness of the device layer may fall within any range bound by any of these values, for example (20-60 ⁇ m).
  • the thickness of the device layer may fall within any range defined by any of the values serving as endpoints of the range.
  • the handle and/or the device layer may comprise deep features.
  • Such deep features may be manufactured using a suitable MEMS technique, such as deep reactive ion etching.
  • a series of etches may be used to construct the desired device geometry. One of the etches may be allowed to last longer and penetrate the insulator layer. Accordingly, passages that span the entire width of the device may be constructed. Such passages may be used to pass fluid from one surface of a substrate, such as a substantially planar substrate, to another.
  • the device layer has at least two and up to 500 sites, from at least 2 to about 250 sites, from at least 2 to about 200 sites, from at least 2 to about 175 sites, from at least 2 to about 150 sites, from at least 2 to about 125 sites, from at least 2 to about 100 sites, from at least 2 to about 75 sites, from at least 2 to about 50 sites, from at least 2 to about 25 sites, or from at least 2 to about 250 sites that penetrate through the device layer.
  • the device layer has at least or at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, or more sites.
  • the device layer may be at least or at least about 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m thick, or more.
  • the device layer may be at most or at most about 100 ⁇ m, 95 ⁇ m, 90 ⁇ m, 85 ⁇ m, 80 ⁇ m, 75 ⁇ m, 70 ⁇ m, 65 ⁇ m, 60 ⁇ m, 55 ⁇ m, 50 ⁇ m, 45 ⁇ m, 40 ⁇ m, 35 ⁇ m, 30 ⁇ m, 25 ⁇ m, 20 ⁇ m, 19 ⁇ m, 18 ⁇ m, 17 ⁇ m, 16 ⁇ m, 15 ⁇ m, 14 ⁇ m, 13 ⁇ m, 12 ⁇ m, 11 ⁇ m, 10 ⁇ m, 9 ⁇ m, 8 ⁇ m, 7 ⁇ m, 6 ⁇ m, 5 ⁇ m, 4 ⁇ m, 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, thick, or less.
  • the device layer can have any thickness that fall between 1-100 ⁇ m, 2-95 ⁇ m, 3-90 ⁇ m, 4-85 ⁇ m, 5-80 ⁇ m, 6-75 ⁇ m, 7-70 ⁇ m, 8-65 ⁇ m, 9-60 ⁇ m, 10-55 ⁇ m, 11-50 ⁇ m, 12-45 ⁇ m, 13-40 ⁇ m, 14-35 ⁇ m, 15-30 ⁇ m, 16-25 ⁇ m, 17-20 ⁇ m, 18-19 ⁇ m.
  • the device layer can have any thickness that may fall within any range bound by any of these values bound by any of these values, for example, 4-100 ⁇ m.
  • the thickness of the device layer may fall within any range defined by any of the values serving as endpoints of the range.
  • the handle layer may have a larger area etched into the wafer that neighbors the features in the device layer.
  • the handle layer may have a thickness of at least or at least about 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m, 200 ⁇
  • the handle layer may have a thickness of at most or at most about 1000 ⁇ m, 950 ⁇ m, 900 ⁇ m, 850 ⁇ m, 800 ⁇ m, 750 ⁇ m, 700 ⁇ m, 650 ⁇ m, 600 ⁇ m, 550 ⁇ m, 500 ⁇ m, 450 ⁇ m, 400 ⁇ m, 350 ⁇ m, 300 ⁇ m, 250 ⁇ m, 200 ⁇ m, 150 ⁇ m, 100 ⁇ m, 95 ⁇ m, 90 ⁇ m, 85 ⁇ m, 80 ⁇ m, 75 ⁇ m, 70 ⁇ m, 65 ⁇ m, 60 ⁇ m, 55 ⁇ m, 50 ⁇ m, 45 ⁇ m, 40 ⁇ m, 30 ⁇ m, 25 ⁇ m, 20 ⁇ m, 19 ⁇ m, 18 ⁇ m, 17 ⁇ m, 16 ⁇ m, 15 ⁇ m, 14 ⁇ m, 13 ⁇ m, 12 ⁇ m, 11 ⁇ m, 10 ⁇ m, 9 ⁇ m, 8 ⁇ m, 7
  • the handle layer can have any thickness that is between 10-1000 ⁇ m, 11-950 ⁇ m, 12-900 ⁇ m, 13-850 ⁇ m, 14-800 ⁇ m, 15-750 ⁇ m, 16-700 ⁇ m, 17-650 ⁇ m, 18-600 ⁇ m, 19-550 ⁇ m, 20-500 ⁇ m, 25-450 ⁇ m, 30-400 ⁇ m, 35-350 ⁇ m, 40-300 ⁇ m, 45-250 ⁇ m, 50-200 ⁇ m, 55-150 ⁇ m, 60-140 ⁇ m, 65-130 ⁇ m, 70-120 ⁇ m, 75-110 ⁇ m, 70-100 ⁇ m, 75-80 ⁇ m, 85-90 ⁇ m or 90-95 ⁇ m.
  • handle layer may have a thickness that falls within any range bound by any of these values, for example 20-350 ⁇ m. The thickness of the handle layer fall within any range defined by any of the values serving as endpoints of the range
  • Etched regions in the handle layer may form well-like structures embedded in the substrate.
  • etched regions within the handle layer may have a thickness of at least or about at least 100 ⁇ m, 101 ⁇ m, 102 ⁇ m, 103 ⁇ m, 104 ⁇ m, 105 ⁇ m, 106 ⁇ m, 107 ⁇ m, 108 ⁇ m, 109 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m, 600 ⁇ m, 650 ⁇ m, 700 ⁇ m, 750 ⁇ m, 800 ⁇ m, 850 ⁇ m, 900 ⁇ m, 950 ⁇ m, or 1000 ⁇ m, or more.
  • the etched region within the handle layer may have any thickness of at most or about at most 1000 ⁇ m, 950 ⁇ m, 900 ⁇ m, 850 ⁇ m, 800 ⁇ m, 750 ⁇ m, 700 ⁇ m, 650 ⁇ m, 600 ⁇ m, 550 ⁇ m, 500 ⁇ m, 450 ⁇ m, 400 ⁇ m, 350 ⁇ m, 300 ⁇ m, 250 ⁇ m, 200 ⁇ m, 190 ⁇ m, 180 ⁇ m, 170 ⁇ m, 160 ⁇ m, 150 ⁇ m, 140 ⁇ m, 130 ⁇ m, 120 ⁇ m, 110 ⁇ m, 109 ⁇ m, 108 ⁇ m, 107 ⁇ m, 106 ⁇ m, 105 ⁇ m, 104 ⁇ m, 103 ⁇ m, 102 ⁇ m, 101 ⁇ m, 100 ⁇ m, or less.
  • the etched region within the handle layer may have any thickness that is between 100-1000 ⁇ m, 101-950 ⁇ m, 102-900 ⁇ m, 103-850 ⁇ m, 104-800 ⁇ m, 105-750 ⁇ m, 106-700 ⁇ m, 105-650 ⁇ m, 106-600 ⁇ m, 107-550 ⁇ m, 108-500 ⁇ m, 109-450 ⁇ m, 110-400 ⁇ m, 120-350 ⁇ m, 130-300 ⁇ m, 140-250 ⁇ m, 150-200 ⁇ m, 160-190 ⁇ m, 170-180 ⁇ m.
  • handle layer may have a thickness that falls within any range bound by any of these values, for example 200-300 ⁇ m.
  • the shape of the etched regions within the handle layer may be rectangular or curvilinear.
  • large etched regions within the handle layer allow for easy transition from a gas phase to a liquid phase during the oligonucleotide synthesis cycle, and/or during oligonucleotide release, such as oligonucleotide release into gas phase.
  • the methods and systems described herein relate to oligonucleotide synthesis devices for the synthesis of high masses of oligonucleotides.
  • the synthesis may be in parallel.
  • the total number oilgonucleotides that may be synthesized in parallel may be between 2-100000, 3-50000, 4-10000, 5-1000, 6-900, 7-850, 8-800, 9-750, 10-700, 11-650, 12-600, 13-550, 14-500, 15-450, 16-400, 17-350, 18-300, 19-250, 20-200, 21-150,22-100, 23-50, 24-45, 25-40, 30-35.
  • the total number of oligonucleotides synthesized in parallel may fall within any range bound by any of these values, for example 25-100.
  • the total number of oligonucleotides synthesized in parallel may fall within any range defined by any of the values serving as endpoints of the range.
  • Total molar mass of oligonucleotides synthesized within the device or the molar mass of each of the oligonucleotides may be at least or at least about 10, 20, 30, 40, 50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 25000, 50000, 75000, 100000 picomoles, or more.
  • the length of each of the oligonucleotides or average length of the oligonucleotides within the device may be at least or about at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 300, 400, 500 nucleotides, or more.
  • the length of each of the oligonucleotides or average length of the oligonucleotides within the device may be at most or about at most 500, 400, 300, 200, 150, 100, 50, 45, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 nucleotides, or less.
  • each of the oligonucleotides or average length of the oligonucleotides within the device mayfall between 10-500, 9-400, 11-300, 12-200, 13-150, 14-100, 15-50, 16-45, 17-40, 18-35, 19-25.
  • the length of each of the oligonucleotides or average length of the oligonucleotides within the device may fall within any range bound by any of these values, for example 100-300.
  • the length of each of the oligonucleotides or average length of the oligonucleotides within the device may fall within any range defined by any of the values serving as endpoints of the range.
  • high surface areas are achieved by structuring the surface of a substrate with raised and/or lower features as exemplified in FIG. 62 .
  • the raised or lowered features may have sharp or rounded edges and may have cross-sections (widths) of any desired geometric shape, such as rectangular, circular, etc. They may form channels along the entire substrate surface or a portion of it.
  • the raised or lowered features may have an aspect ratio of at least or about at least 1:20, 2:20, 3:20, 4:20, 5:20, 6:20, 10:20, 15:20, 20:20, 20:10, 20:5, 20:1, or more.
  • the raised or lowered features may have an aspect ratio of at most or about at most 20:1, 20:5, 20:10, 20:20, 20:15, 20:10, 20:10, 6:20, 5:20, 4:20, 3:20, 2:20, 1:20, or less.
  • the raised or lowered features may have an aspect ratio that falls between 1:20-20:1, 2:20-20:5, 3:20-20:10, 4-20:20:15, 5:20-20:20, 6:20-20:20.
  • the raised or lowered features may have an aspect ratio that may fall within any range bound by any of these values, for example 3:20-4:20.
  • the raised or lowered features may have an aspect ratio that falls within any range defined by any of the values serving as endpoints of the range.
  • the raised or lowered features may have cross-sections of at least or about at least 10 nanometers (nm), 11 nm, 12 nm, 20 nm, 30 nm, 100 nm, 500 nm, 1000 nm, 10000 nm, 100000 nm, 1000000 nm, or more.
  • the raised or lowered features may have cross-sections of at least or most or about at most 1000000 nm, 100000 nm, 10000 nm, 1000 nm, 500 nm, 100 nm, 30 nm, 20 nm, 12 nm, 11 nm, 10 nm, or less.
  • the raised or lowered features may have cross-sections that fall between 10 nm-1000000 nm, 11 nm-100000 nm, 12 nm-10000 nm, 20 nm-1000 nm, 30 nm-500 nm. Those of skill in the art appreciate that the raised or lowered features may have cross-sections that may fall within any range bound by any of these values, for example 10 nm-100 nm. The raised or lowered features may have cross-sections that fall within any range defined by any of the values serving as endpoints of the range.
  • the raised or lowered features may have heights of at least or about at least 10 nanometers (nm), 11 nm, 12 nm, 20 nm, 30 nm, 100 nm, 500 nm, 1000 nm, 10000 nm, 100000 nm, 1000000 nm, or more.
  • the raised or lowered features may have heights of at most or about at most 1000000 nanometers (nm), 100000 nm, 10000 nm, 1000 nm, 500 nm, 100 nm, 30 nm, 20 nm, 12 nm, 11 nm, 10 nm, or less.
  • the raised or lowered features may have heights that fall between 10 nm-1000000 nm, 11 nm-100000 nm, 12 nm-10000 nm, 20 nm-1000 nm, 30 nm-500 nm. Those of skill in the art appreciate that the raised or lowered features may have heights that may fall within any range bound by any of these values, for example 100 nm-1000 nm. The raised or lowered features may have heights that fall within any range defined by any of the values serving as endpoints of the range.
  • the individual raised or lowered features may be separated from a neighboring raised or lowered feature by a distance of at least or at least about 5 nanometers (nm), 10 nm, 11 nm, 12 nm, 20 nm, 30 nm, 100 nm, 500 nm, 1000 nm, 10000 nm, 100000 nm, 1000000 nm, or more.
  • the individual raised or lowered features may be separated from a neighboring raised or lowered feature by a distance of at most or about at most 1000000 nanometers (nm), 100000 nm, 10000 nm, 1000 nm, 500 nm, 100 nm, 30 nm, 20 nm, 12 nm, 11 nm, 10 nm, 5 nm, or less.
  • the raised or lowered features may have heights that fall between 5-1000000 nm, 10-100000 nm, 11-10000 nm, 12-1000 nm, 20-500 nm, 30-100 nm.
  • the individual raised or lowered features may be separated from a neighboring raised or lowered feature by a distance that may fall within any range bound by any of these values, for example 100-1000 nm.
  • the individual raised or lowered features may be separated from a neighboring raised or lowered feature by a distance that falls within any range defined by any of the values serving as endpoints of the range.
  • the distance between two raised or lowered features is at least or about at least 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0 times, or more, the cross-section (width) or average cross-section of the raised or lowered features.
  • the distance between the two raised or lowered features is at most or about at most 10.0, 5.0, 3.0, 2.0, 1.0, 0.5, 0.2, 0.1 times, or less, the cross-section (width) or average cross-section of the raised or lowered features.
  • the distance between the two raised or lowered features may be between 0.1-10, 0.2-5.0, 1.0-3.0 times, the cross-section (width) or average cross-section of the raised or lowered features.
  • the distance between the two raised or lowered features may be between any times the cross-section (width) or average cross-section of the raised or lower features within any range bound by any of these values, for example 5-10 times.
  • the distance between the two raised or lowered features may be within any range defined by any of the values serving as endpoints of the range.
  • groups of raised or lowered features are separated from each other. Perimeters of groups of raised or lowered features may be marked by a different type of structural feature or by differential functionalization.
  • a group of raised or lowered features may be dedicated to the synthesis of a single oligonucleotide.
  • a group of raised of lowered features may span an area that is at least or about at least 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 20 ⁇ m, 50 ⁇ m, 70 ⁇ m, 90 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, or wider in cross section.
  • a group of raised of lowered features may span an area that is at most or about at most 200 ⁇ m, 150 ⁇ m, 100 ⁇ m, 90 ⁇ m, 70 ⁇ m, 50 ⁇ m, 20 ⁇ m, 15 ⁇ m, 14 ⁇ m, 13 ⁇ m, 12 ⁇ m, 11 ⁇ m, 10 ⁇ m, or narrower in cross section.
  • a group of raised of lowered features may span an area that is between 10-200 ⁇ m, 11-150 ⁇ m, 12-100 ⁇ m, 13-90 ⁇ m, 14-70 ⁇ m, 15-50 ⁇ m, 13-20 ⁇ m, wide in cross-section.
  • a group of raised of lowered features may span an area that falls within any range bound by any of these values, for example 12-200 ⁇ m.
  • a group of raised of lowered features may span an area that fall within any range defined by any of the values serving as endpoints of the range.
  • the raised or lowered features on a substrate increase the total available area for oligonucleotide synthesis by at least or at least about 1.1, 1.2, 1.3, 1.4, 2, 5, 10, 50, 100, 200, 500, 1000 fold, or more.
  • the raised or lowered features on a substrate increase the total available area for oligonucleotide synthesis between 1.1-1000, 1.2-500, 1.3-200, 1.4-100, 2-50, 5-10, fold.
  • the raised or lowered features on a substrate may increase the total available area for oligonucleotide synthesis between any fold bound by any of these values, for example 20-80 fold.
  • the raised or lowered features on a substrate increase the total available area for oligonucleotide synthesis by a factor that may fall within any range defined by any of the values serving as endpoints of the range.
  • the methods and systems of the invention using large oligonucleotide synthesis surfaces allow for the parallel synthesis of a number of oligonucleotides with nucleotide addition cycles times of at most or about at most 20 min, 15 min, 14 min, 13 min, 12 min, 11 min, 10 min, 1 min, 40 sec, 30 sec, or less.
  • the methods and systems of the invention using large oligonucleotide synthesis surfaces allow for the parallel synthesis of a number of oligonucleotides with nucleotide addition cycles times between 30 sec-20 min, 40 sec-10 min, 1 min-10 min.
  • the methods and systems of the invention using large oligonucleotide synthesis surfaces allow for the parallel synthesis of a number of oligonucleotides with nucleotide addition cycles times between any of these values, for example 30 sec-10 min.
  • the methods and systems of the invention using large oligonucleotide synthesis surfaces allow for the parallel synthesis of a number of oligonucleotides with nucleotide addition cycles times that may be fall between any range defined by any of the values serving as endpoints of the range.
  • the overall error rate or error rates for individual types of errors such as deletions, insertions, or substitutions for each oligonucleotide synthesized on the substrate, for at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleotides synthesized on the substrate, or for the substrate average may be at most or at most about 1:100, 1:500, 1:1000, 1:10000, 1:20000, 1:30000, 1:40000, 1:50000, 1:60000, 1:70000, 1:80000, 1:90000, 1:1000000, or less.
  • the overall error rate or error rates for individual types of errors such as deletions, insertions, or substitutions for each oligonucleotide synthesized on the substrate, for at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleotides synthesized on the substrate, or the substrate average may fall between 1:100 and 1:10000, 1:500 and 1:30000.
  • the overall error rate or error rates for individual types of errors such as deletions, insertions, or substitutions for each oligonucleotide synthesized on the substrate, for at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleotides synthesized on the substrate, or the substrate average may fall between any of these values, for example 1:500 and 1:10000.
  • the overall error rate or error rates for individual types of errors such as deletions, insertions, or substitutions for each oligonucleotide synthesized on the substrate, for at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleotides synthesized on the substrate, or the substrate average may fall between any range defined by any of the values serving as endpoints of the range.
  • Standard silicon wafer processes can be employed to create a substrate that will have a high surface area as described above and a managed flow, allowing rapid exchange of chemical exposure.
  • the oligonucleotide synthesis substrate can be created with a series of structures with sufficient separation to allow oligomer chains greater than at least or about at least 20 mer, 25 mer, 30 mer, 50 mer, 100 mer, 200 mer, 250 mer, 300 mer, 400 mer, 500 mer, or more to be synthesized without substantial influence on the overall channel or pore dimension, for example due to excluded volume effects, as the oligonucleotide grows.
  • the oligonucleotide synthesis substrate can be created with a series of structures with sufficient separation to allow oligomer chains greater than at most or about at most 500 mer, 200 mer, 100 mer, 50 mer, 30 mer, 25 mer, 20 mer, or less to be synthesized without substantial influence on the overall channel or pore dimension, for example due to excluded volume effects, as the oligonucleotide grows.
  • the oligonucleotide synthesis substrate can be created with a series of structures with sufficient separation to allow oligomer chains that are at least or at least about 20 mer, 50 mer, 75 mer, 100 mer, 125 mer, 150 mer, 175 mer, 200 mer, 250 mer, 300 mer, 350 mer, 400 mer, 500 mer, or more to be synthesized without substantial influence on the overall channel or pore dimension, for example due to excluded volume effects, as the oligonucleotide grows.
  • the oligonucleotide synthesis substrate can be created with a series of structures with sufficient separation to allow oligomer chains greater than between any of these values, for example, 20-300 mer200 mer to be synthesized without substantial influence on the overall channel or pore dimension, for example due to excluded volume effects, as the oligonucleotide grows.
  • FIG. 62 shows an exemplary substrate according to the embodiments of the invention with an array of structures.
  • the distance between the features may be greater than at least or about at least 5 nm, 10 nm, 20 nm, 100 nm, 1000 nm, 10000 nm, 100000 nm, 1000000 nm, or more.
  • the distance between the features may be greater than at most or about at most 1000000 nm, 100000 nm, 10000 nm, 1000 nm, 100 nm, 20 nm, 10 nm, 5 nm, or less.
  • the distance between the features may fall between 5-1000000 nm, 10-100000 nm, 20-10000 nm, 100-1000 nm.
  • the distance between the features may fall between any of these values, for example, 20-1000 nm.
  • the distance between the features may fall between any range defined by any of the values serving as endpoints of the range. In one embodiment, the distance between the features is greater than 200 nm.
  • the features may be created by any suitable MEMS processes described elsewhere herein or otherwise known in the art, such as a process employing a timed reactive ion etch process. Such semiconductor manufacturing processes can typically create feature sizes smaller than 200 nm, 100 nm, 50 nm, 40 nm, 30 nm, 25 nm, 20 nm, 10 nm, 5 nm, or less.
  • the feature size smaller than 200 nm can be between any of these values, for example, 20-100 nm.
  • the feature size can fall within any range defined by any of these values serving as endpoints of the range.
  • an array of 40 um wide posts are etched with 30 um depth, which about doubles the surface area available for synthesis.
  • the arrays of raised or lowered features may be segregated allowing material deposition of a phosphoramidite chemistry for highly complex and dense library generation.
  • the segration may be achieved by larger structures or by differential functionalization of the surface generating active and passive regions for oligonucleotide synthesis.
  • the locations for the synthesis of individual oligonucleotides may be separated from each other by creating regions of cleavable and non-cleavable oligonucleotide attachments to the surface under a certain condition.
  • a device such as an inkjet printer, may be used to deposit reagents to the individual oligonucleotide synthesis locations.
  • Differential functionalization can also achieve alternating the hydrophobicity across the substrate surface, thereby creating water contact angle effects that may cause beading or wetting of the deposited reagents.
  • Employing larger structures can decrease splashing and cross-contamination of individual oligonucleotide synthesis locations with reagents of the neighboring spots.
  • an array of enclosures is described herein.
  • the array of enclosures can comprise a plurality of resolved reactors comprising a first substrate and a second substrate comprising reactor caps.
  • at least two resolved loci are contained in each reactor.
  • the resolved reactors may be separated with a releasable seal.
  • the reactors caps may retain the contents of the reactors upon release of the second substrate from the first substrate.
  • the plurality of resolved reactors can be any suitable density at a density of at least 1 per mm 2 .
  • the plurality of reactor caps can be coated with a moiety.
  • the moiety can be a chemically inert or chemically active moiety.
  • the moiety that is coated onto the reactor caps can be a moiety that can minimize the attachment of the oligonucleotides.
  • the types of chemical moieties are described in further detail elsewhere herein.
  • the reactor caps described herein may relate to enclosures with an open top on the surface of a capping element substrate.
  • the reactor caps may resemble cylinders sticking out on top of the substrate surface.
  • the inner diameter of the reactor caps can be about, at least about, or less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 115, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475 or 500 ⁇ m.
  • the outer diameter of the reactor caps can be about, at least about, or less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 115, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, or 600 ⁇ m.
  • the rim of the cylinder can have a width of about, at least about, or less than about 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, or 400 ⁇ m.
  • the height of the reactor cap measured inside can be about, at least about, or less than about 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 50, 60, 70, 80, 90 or 100 ⁇ m.
  • FIG. 7 illustrates an exemplary embodiment of reactor caps on a capping element.
  • All or part of the reactor cap surfaces may be modified using suitable surface modification methods described in further detail elsewhere herein and otherwise known in the art.
  • surface irregularities are engineered. Chemical surface modifications and irregularities may serve to adjust the water contact angle of the rim. Similar surface treatments may also be applied on the surface of a substrate that is brought in close proximity to the reactor caps forming a seal, e.g. a reversible seal.
  • a capillary burst valve may be utilized between the two surfaces as described in further detail elsewhere herein. The surface treatments can be useful in precise control of such seals comprising capillary burst valves.
  • the reactor caps comprised in a substrate may be in any shape or design that is known in the art.
  • the reactor cap may contain a volume of cavity that is capable of enclosing the contents of the reactors.
  • the contents of the reactors may stem from a plurality of resolved loci on an adjacent substrate.
  • the reactor cap can be in circular, elliptical, rectangular or irregular shapes.
  • the reactor cap may have sharp corners. In some cases, the reactor cap may have round corners to minimize retaining any air bubble and to facilitate better mixing of the contents of the reactors.
  • the reactor cap can be fabricated in any shape, organization or design that allows controlled transfer or mixing of the contents of the reactors.
  • the reactor cap can be in similar design as the resolved loci on the substrate as described in the instant application.
  • the reactor caps can be in a shape that allows liquid to easily flow in without creating air bubbles.
  • the reactor caps can have a circular shape, with a diameter that can be about, at least about, or less than about 1 micrometers ( ⁇ m), 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇
  • the reactor caps may have a monodisperse size distribution, i.e. all of the microstructures may have approximately the same width, height, and/or length.
  • the reactor caps of may have a limited number of shapes and/or sizes, for example the reactor caps may be represented in 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or more distinct shapes, each having a monodisperse size.
  • the same shape can be repeated in multiple monodisperse size distributions, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or more monodisperse size distributions.
  • a monodisperse distribution may be reflected in a unimodular distribution with a standard deviation of less than 25%, 20%, 15%, 10%, 5%, 3%, 2%, 1%, 0.1%, 0.05%, 0.01%, 0.001% of the mode or smaller.
  • Each of the reactor caps can have any suitable area for carrying out the reactions according to various embodiments of the invention described herein.
  • the plurality of reactor caps can occupy any suitable percentage of the total surface area of the substrate.
  • the plurality of the reactor caps can occupy about, at least about, or less than about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 6%, 70%, 75%, 80%, 85%, 90%, or 95% of the surface of the substrate.
  • the reactor caps can occupy about, at least about, or less than about 0.1 mm 2 , 0.15 mm 2 , 0.2 mm 2 , 0.25 mm 2 , 0.3 mm 2 , 0.35 mm 2 , 0.4 mm 2 , 0.45 mm 2 , 0.5 mm 2 , 0.55 mm 2 , 0.6 mm 2 , 0.65 mm 2 , 0.7 mm 2 , 0.75 mm 2 , 0.8 mm 2 , 0.85 mm 2 , 0.9 mm 2 , 0.95 mm 2 , 1 mm 2 , 2 mm 2 , 3 mm 2 , 4 mm 2 , 5 mm 2 , 6 mm 2 , 7 mm 2 , 8 mm 2 , 9 mm 2 , 10 mm 2 , 11 mm 2 , 12 mm 2 , 13 mm 2 , 14 mm 2 , 15 mm 2 , 16 mm 2 , 17 mm 2 , 18 mm 2 ,
  • the resolved reactors, the resolved loci and the reactor caps can be in any density.
  • the surface can have a density of resolved reactors, resolved loci or reactor caps of about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 sites per 1 mm 2 .
  • the surface has a density of resolved reactors, resolved loci or reactor caps of at least about 50, at least 75, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 1500, at least about 2000, at least about 3000, at least about 4000, at least about 5000, at least about 6000, at least about 7000, at least about 8000, at least about 9000, at least about 10000, at least about 20000, at least about 40000, at least about 60000, at least about 80000, at least about 100000, or at least about 500000 sites per 1 mm 2 .
  • each reactor can comprise a number of resolved loci.
  • each reactor can comprise about, at least about, less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 resolved loci.
  • each reactor can comprise at least 100 resolved loci.
  • the resolved loci or reactor caps can reside on microstructures that are fabricated into a support surface.
  • the microstructures can be fabricated by any known methods in the art, as described in other paragraphs herein.
  • the microstructures can be microchannels or microwells that have any shape and design in 2D or 3D.
  • the microstructures (e.g., microchannels or microwells) may comprise at least two channels in fluidic communication with each other.
  • the microchannels can be interconnected, allowing fluid to perfuse through with given condition, such as vacuum suction.
  • Individual microstructures may be individually addressable and resolved, such that the contents of two resolved loci are kept unmixed.
  • the microchannels can comprise at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 channels in fluidic communications in any combinations, allowing controlled mixing, communicating or distributing of the fluid.
  • the connectivity of microchannels can be controlled by valve systems that are known in the art of microfluidic design.
  • a fluid control layer of substrate can be fabricated directly on top of the fluidic communicating layer of the substrate.
  • Different microfluidic valves systems are described in Marc A. Unger et al, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, vol. 288, no. 7, pp. 113-116, April 2000, and David C. Duffy et al., “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Analytical Chemistry, vol. 70, no. 23, pp. 4974-4984, December 1998.
  • the resolved loci or reactor caps can reside on microstructures such as microchannels or channels.
  • the dimensions and designs of the microchannels of the resolved loci on the adjacent substrate surface are described elsewhere herein.
  • the microstructures may comprise at least two channels that are in fluidic communications, wherein the at least two channels can comprise at least two channels with different width. In some cases, the at least two channels can have the same width, or a combination of the same or different width.
  • the width of the channels or microchannels can be about, at least about, or less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 ⁇ m.
  • the channels or microchannels can have any length that allows fluidic communications of the resolved loci.
  • At least one channel can comprise a ratio of surface area to length, or a perimeter, of about, at least about, less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 ⁇ m.
  • At least one channel can have a cross-sectional area that is in a circular shape and can comprise a radius of the cross-sectional area of about, at least about, less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 ⁇ m.
  • an array of enclosures can comprise a plurality of resolved reactors comprising a first substrate and a second substrate comprising reactor caps.
  • the resolved reactors can be formed by combining or capping the second substrate onto the first substrate, and sealed together.
  • the seal can be reversible or irreversible. In preferred embodiments, the seal is reversible or releasable.
  • the content of reactors such as oligonucleotides or reagents needed for amplification or other downstream reactions can be released and mixed within the resolved reactors.
  • the resolved reactors can be separated with a releasable seal and wherein the reactors caps can retain all or a portion of the contents of the reactors upon release of the second substrate from the first substrate.
  • the seal can be designed differently to allow reversible seal in between the first substrate and the second substrate, and forming the resolved reactors.
  • the first substrate and the second substrate can come in direct physical contact when forming the seal.
  • the first substrate and the second substrate can come in close proximity without their respective surfaces immediately around a nanoreactor or between two nanoreactors making a direct physical contact.
  • the seal can comprise a capillary burst valve.
  • the distance in between the first substrate and the second substrate when forming the seal can be about, at least about, less than about 0.1 ⁇ m, 0.2 ⁇ m, 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m, 1.9 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, 6.5 ⁇ m, 7 ⁇ m, 7.5 ⁇ m, 8 ⁇ m, 8.5 ⁇ m, 9 ⁇ m, 9.5 ⁇ m or 10 ⁇ m.
  • the seal can comprise a capillary burst valve.
  • the resolved enclosures may comprise pressure release holes.
  • the pressure release holes may allow separation of the first substrate and the second substrate. Design of microfluidic systems with pressure release system are described in European Patent No. EP 1987275 A1, which is herein incorporated by reference in its entirety.
  • the plurality of resolved reactor caps on a substrate can be manufactured by any method that is described herein or otherwise known in the art (e.g., microfabrication processes).
  • Microfabrication processes that may be used in making the substrate with the plurality of reactor caps or reactors disclosed herein include without limitation lithography; etching techniques such as wet chemical, dry, and photoresist removal; microelectromechanical (MEMS) techniques including microfluidics/lab-on-a-chip, optical MEMS (also called MOEMS), RF MEMS, PowerMEMS, and BioMEMS techniques and deep reactive ion etching (DRIE); nanoelectromechanical (NEMS) techniques; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition such as evaporation (filament, electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (CVD), epi
  • a substrate having a plurality of resolved reactor caps can be manufactured using any method known in the art.
  • the material of the substrate having a plurality of reactor caps can be a semiconductor substrate such as silicon dioxide.
  • the materials of the substrate can also be other compound III-V or II-VI materials, such as (GaAs), a semiconductor produced via the Czochralski process (Grovenor, C. (1989). Microelectronic Materials . CRC Press. pp. 113-123).
  • the material can present a hard, planar surface that exhibits a uniform covering of reactive oxide (—OH) groups to a solution in contact with its surface. These oxide groups can be the attachment points for subsequent silanization processes.
  • a lipophillic and hydrophobic surface material can be deposited that mimics the etching characteristics of silicon oxide. Silicon nitride and silicon carbide surfaces may also be utilized for the manufacturing of suitable substrates according to the various embodiments of the invention.
  • a passivation layer can be deposited on the substrate, which may or may not have reactive oxide groups.
  • the passivation layer can comprise silicon nitride (Si 3 N 4 ) or polymide.
  • a photolithographic step can be used to define regions where the resolved loci form on the passivation layer.
  • the method for producing a substrate having a plurality of reactor caps can start with a substrate.
  • the substrate e.g., silicon
  • the substrate can have any number of layers disposed upon it, including but not limited to a conducting layer such as a metal.
  • the conducting layer can be aluminum in some instances.
  • the substrate can have a protective layer (e.g., titanium nitride).
  • the substrate can have a chemical layer with a high surface energy.
  • the layers can be deposited with the aid of various deposition techniques, such as, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma enhanced CVD (PECVD), plasma enhanced ALD (PEALD), metal organic CVD (MOCVD), hot wire CVD (HWCVD), initiated CVD (iCVD), modified CVD (MCVD), vapor axial deposition (VAD), outside vapor deposition (OVD) and physical vapor deposition (e.g., sputter deposition, evaporative deposition).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • PECVD plasma enhanced CVD
  • PEALD plasma enhanced ALD
  • MOCVD metal organic CVD
  • HWCVD hot wire CVD
  • iCVD initiated CVD
  • MCVD modified CVD
  • VAD vapor axial deposition
  • OTD vapor axial deposition
  • physical vapor deposition e.g., sputter deposition, evaporative de
  • an oxide layer is deposited on the substrate.
  • the oxide layer can comprise silicon dioxide.
  • the silicon dioxide can be deposited using tetraethyl orthosilicate (TEOS), high density plasma (HDP), or any combination thereof.
  • the silicon dioxide can be deposited using a low temperature technique.
  • the process is low-temperature chemical vapor deposition of silicon oxide.
  • the temperature is generally sufficiently low such that pre-existing metal on the chip is not damaged.
  • the deposition temperature can be about 50° C., about 100° C., about 150° C., about 200° C., about 250° C., about 300° C., about 350° C., and the like.
  • the deposition temperature is below about 50° C., below about 100° C., below about 150° C., below about 200° C., below about 250° C., below about 300° C., below about 350° C., and the like.
  • the deposition can be performed at any suitable pressure. In some instances, the deposition process uses RF plasma energy.
  • the oxide is deposited by a dry thermally grown oxide procedure (e.g., those that may use temperatures near or exceeding 1,000° C.).
  • the silicon oxide is produced by a wet steam process.
  • the silicon dioxide can be deposited to a thickness suitable for the formation of reactor caps that can form a plurality of resolved reactors comprising a volume for reagents to be deposited and mixed that can be suitable for amplifying any desired amount of oligonucleotide or other downstream reactions as described in other paragraphs of the current invention.
  • the silicon dioxide can be deposited to any suitable thickness.
  • the silicon dioxide is about, at least about or less than about 1 nanoometer (nm), about 2 nm, about 3 nm, about 4 nm, about 5 nm, about 6 nm, about 7 nm, about 8 nm, about 9 nm, about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, about 100 nm, about 125 nm, about 150 nm, about 175 nm, about 200 nm, about 300 nm, about 400 nm or about 500 nm thick.
  • the reactor caps can be created in a silicon dioxide substrate using various manufacturing techniques that are known in the art. Such techniques may include semiconductor fabrication techniques. In some cases, the reactor caps are created using photolithographic techniques such as those used in the semiconductor industry. For example, a photo-resist (e.g., a material that changes properties when exposed to electromagnetic radiation) can be coated onto the silicon dioxide (e.g., by spin coating of a wafer) to any suitable thickness. The substrate including the photo-resist can be exposed to an electromagnetic radiation source. A mask can be used to shield radiation from portions of the photo-resist in order to define the area of the resolved loci.
  • a photo-resist e.g., a material that changes properties when exposed to electromagnetic radiation
  • a mask can be used to shield radiation from portions of the photo-resist in order to define the area of the resolved loci.
  • the photo-resist can be a negative resist or a positive resist (e.g., the area of the reactor caps can be exposed to electromagnetic radiation or the areas other than the reactor caps can be exposed to electromagnetic radiation as defined by the mask).
  • the area overlying the location in which the reactor caps are to be created is exposed to electromagnetic radiation to define a pattern that corresponds to the location and distribution of the reactor caps in the silicon dioxide layer.
  • the photoresist can be exposed to electromagnetic radiation through a mask defining a pattern that corresponds to the reactor caps.
  • the exposed portion of the photoresist can be removed, such as, e.g., with the aid of a washing operation (e.g., deionized water).
  • the removed portion of the mask can then be exposed to a chemical etchant to etch the substrate and transfer the pattern of reactor caps into the silicon dioxide layer.
  • the etchant can include an acid, such as, for example, sulfuric acid (H 2 SO 4 ).
  • the silicon dioxide layer can be etched in an anisotropic fashion.
  • high anisotropy manufacturing methods such as DRIE can be applied to fabricate microstructures, such as reactor caps, on or within a substrate with side walls that deviate less than about ⁇ 3, 2° 1° 0.5°, 0.1°, or less from the vertical with respect to the surface of the substrate. Undercut values of less than about 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.1 ⁇ m or less can be achieved resulting in highly uniform microstructures.
  • etching procedures can be used to etch the silicon dioxide in the area where the reactor caps are to be formed.
  • the etch can be an isotropic etch (i.e., the etch rate alone one direction is equal to the etch rate along an orthogonal direction), or an anisotropic etch (i.e., the etch rate along one direction is less than the etch rate alone an orthogonal direction), or variants thereof.
  • the etching techniques can be both wet silicon etches such as KOH, TMAH, EDP and the like, and dry plasma etches (for example DRIE). Both may be used to etch micro structures wafer through interconnections.
  • an anisotropic etch removes the majority of the volume of the reactor caps. Any suitable percentage of the volume of the reactor caps can be removed including about 60%, about 70%, about 80%, about 90%, or about 95%. In some cases, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% of the material is removed in an anisotropic etch. In some cases, at most about 60%, at most about 70%, at most about 80%, at most about 90%, or at most about 95% of the material is removed in an anisotropic etch. In some embodiments, the anisotropic etch does not remove silicon dioxide material all of the way through the substrate. An isotropic etch removes the silicon dioxide material all of the way through the substrate creating a hole in some instances.
  • the reactor caps are etched using a photo-lithographic step to define the reactor caps followed by a hybrid dry-wet etch.
  • the photo-lithographic step can comprise coating the silicon dioxide with a photo-resist and exposing the photo-resist to electromagnetic radiation through a mask (or reticle) having a pattern that defines the reactor caps.
  • the hybrid dry-wet etch comprises: (a) dry etching to remove the bulk of the silicon dioxide in the regions of the reactor caps defined in the photoresist by the photo-lithographic step; (b) cleaning the substrate; and (c) wet etching to remove the remaining silicon dioxide from the substrate in the regions of the reactor caps.
  • the substrate can be cleaned with the aid of a plasma etching chemistry, or exposure to an oxidizing agent, such as, for example, H 2 O 2 , O 2 , O 3 , H 2 SO 4 , or a combination thereof, such as a combination of H 2 O 2 and H 2 SO 4 .
  • the cleaning can comprise removing residual polymer, removing material that can block the wet etch, or a combination thereof.
  • the cleaning is plasma cleaning.
  • the cleaning step can proceed for any suitable period of time (e.g., 15 to 20 seconds). In an example, the cleaning can be performed for 20 seconds with an Applied Materials eMAx-CT machine with settings of 100 mT, 200 W, 20 G, 20 O 2 .
  • the dry etch can be an anisotropic etch that etches substantially vertically (e.g., toward the substrate) but not laterally or substantially laterally (e.g., parallel to the substrate).
  • the dry etch comprises etching with a fluorine based etchant such as CF 4 , CHF 3 , C 2 F 6 , C 3 F 6 , or any combination thereof.
  • the etching is performed for 400 seconds with an Applied Materials eMax-CT machine having settings of 100 mT, 1000 W, 20 G, and 50 CF 4 .
  • the substrates described herein can be etched by deep reactive-ion etching (DRIE).
  • DRIE deep reactive-ion etching
  • DRIE is a highly anisotropic etching process used to create deep penetration, steep-sided holes and trenches in wafers/substrates, typically with high aspect ratios.
  • the substrates can be etched using two main technologies for high-rate DRIE: cryogenic and Bosch. Methods of applying DRIE are described in the U.S. Pat. No. 5,501,893, which is herein incorporated by reference in its entirety.
  • the wet etch can be an isotropic etch that removes material in all directions. In some instances, the wet etch undercuts the photo-resist. Undercutting the photo-resist can make the photo-resist easier to remove in a later step (e.g., photo-resist “lift off”).
  • the wet etch is buffered oxide etch (BOE). In some cases, the wet oxide etches are performed at room temperature with a hydrofluoric acid base that can be buffered (e.g., with ammonium fluoride) to slow down the etch rate. Etch rate can be dependent on the film being etched and specific concentrations of HF and/or NH 4 F. The etch time needed to completely remove an oxide layer is typically determined empirically. In one example, the etch is performed at 22° C. with 15:1 BOE (buffered oxide etch).
  • the silicon dioxide layer can be etched up to an underlying material layer.
  • the silicon dioxide layer can be etched until a titanium nitride layer.
  • a method for preparing a substrate having a plurality of reactor caps comprises etching the cavity of the reactor caps into a substrate, such as a silicon substrate comprising a silicon dioxide layer coated thereon using (a) a photo-lithographic step to define the resolved loci; (b) a dry etch to remove the bulk of the silicon dioxide in the regions of the reactor caps defined by the photo-lithographic step; and (c) a wet etch to remove the remaining silicon dioxide from the substrate in the regions of the reactor caps.
  • the method further comprises removing residual polymer, removing material that can block the wet etch, or a combination thereof.
  • the method can include a plasma cleaning step.
  • the photo-resist is not removed from the silicon dioxide following the photo-lithographic step or the hybrid wet-dry etch in some cases. Leaving the photo-resist can be used to direct metal selectively into the reactor caps and not onto the upper surface of the silicon dioxide layer in later steps.
  • the substrate is coated with a metal (e.g., aluminum) and the wet etch does not remove certain components on the metal, e.g. those that protect the metal from corrosion (e.g., titanium nitride (TiN)).
  • the photoresist layer can be removed, such as with the aid of chemical mechanical planarization (CMP).
  • FIGS. 26 A-D An exemplary nanoreactor is shown in various views in FIGS. 26 A-D .
  • This nanoreactor comprises 108 wells which are individually raised from a base of the nanoreactor.
  • a cross-section of the nanoreactor is shown in FIG. 26 A .
  • a device view of the nanoreactor is shown in FIGS. 26 B and 26 C .
  • a handle view of the nanoreactor is shown in FIG. 26 D .
  • a nanoreactor can be configured to receive and hold liquids in a plurality of features.
  • the nanoreactor of FIGS. 26 A-D is designed to hold liquids in any number of the 108 wells.
  • a nanoreactor may be contacted and/or aligned with a substrate, such as that exemplified in FIG. 25 .
  • the wells of a nanoreactor are not limited to the configuration shown in FIG. 26 A-D , as any number of wells in any configuration may be arranged within a nanoreactor.
  • the nanoreactor wells are arranged in a configuration which aligns with a substrate configuration.
  • the height of a nanoreactor may be about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm, or 10 mm.
  • the height of a nanoreactor may be about or at most about 10 mm, 9.5 mm, 9 mm, 8.5 mm, 8 mm, 7.5 mm, 7 mm, 6.5 mm, 6 mm, 5.5 mm, 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.5 mm, 2 mm, 1.5 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm or less.
  • the height of a nanoreactor may range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.6-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm.
  • the distance may fall within any range bound by any of these values, for example 0.2 mm-0.8 mm.
  • the height of a well of a nanoreactor may be about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm, or 10 mm.
  • the height of a well of a nanoreactor may be about or at most about 10 mm, 9.5 mm, 9 mm, 8.5 mm, 8 mm, 7.5 mm, 7 mm, 6.5 mm, 6 mm, 5.5 mm, 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.5 mm, 2 mm, 1.5 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm or less.
  • the height of a well of a nanoreactor may range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.6-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm.
  • the distance may fall within any range bound by any of these values, for example 0.1 mm-0.6 mm.
  • FIG. 26 B includes an origin of reference indicated by a 0,0 (X,Y) axis, wherein the top left corner of an exemplary nanoreactor is diagramed.
  • the width of the nanoreactor, represented as 2703 is from about 5 mm to about 150 mm along one dimension, as measured from the origin.
  • the width of a nanoreactor, represented as 2704 is from about 5 mm to about 150 mm along another dimension, as measured from the origin.
  • the width of a nanoreactor in any dimension is from about 5 mm to about 125 mm, from about 5 mm to about 100 mm, from about 5 mm to about 75 mm, from about 5 mm to about 50 mm, from about 5 mm to about 25 mm, from about 25 mm to about 150 mm, from about 50 mm to about 150 mm, from about 75 mm to about 150 mm, from about 100 mm to about 150 mm, or from about 125 mm to about 150 mm.
  • the width may fall within any range bound by any of these values, for example 5-25 mm.
  • the width of a nanoreactor in any dimension is about or at least about 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 150 mm.
  • the width of a nanoreactor in any dimension is about or at most about 150 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, or 5 mm or less.
  • the nanoreactor shown in FIG. 26 B comprises 108 wells.
  • the wells may be arranged in any configuration. In FIG. 26 B , the wells are arranged in rows forming a square shape. Regardless of arrangement, the wells may start at a distance of about 0.1 mm to about 149 mm from the origin, as measured on the X- or Y-axis and end at a distance of about 1 mm to about 150 mm from the origin.
  • Lengths 2706 and 2705 represent the furthest distances of the center of a well on the X- and Y-axis from the origin, respectively.
  • Lengths 2710 and 2709 represent the closest distances of the center of a well on the X- and Y-axis from the origin, respectively.
  • the furthest distance of the center of a well in any dimension from the origin is about or at least about 1 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 150 mm.
  • the furthest distance of the center of a well in any dimension is about or at most about 150 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, 1 mm or less.
  • the furthest distance of the center of a well in any dimension is from about 5 mm to about 125 mm, from about 5 mm to about 100 mm, from about 5 mm to about 75 mm, from about 5 mm to about 50 mm, from about 5 mm to about 25 mm, from about 25 mm to about 150 mm, from about 50 mm to about 150 mm, from about 75 mm to about 150 mm, from about 100 mm to about 150 mm, or from about 125 mm to about 150 mm.
  • the distance may fall within any range bound by any of these values, for example 5-25 mm.
  • the closest distance of the center of a well in any dimension from the origin is about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 149 mm.
  • the closest distance of the center of a well in any dimension is about or at most about 149 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm or less.
  • the closest distance of the center of a well in any dimension is from about 0.1 mm to about 125 mm, from about 0.5 mm to about 100 mm, from about 0.5 mm to about 75 mm, from about 0.5 mm to about 50 mm, from about 0.5 mm to about 25 mm, from about 1 mm to about 50 mm, from about 1 mm to about 40 mm, from about 1 mm to about 30 mm, from about 1 mm to about 20 mm, or from about 1 mm to about 5 mm.
  • the distance may fall within any range bound by any of these values, for example 0.1-5 mm.
  • the wells of a nanoreactor may be located at any distance from the edge of a nanoreactor. Exemplary distances between a well and an edge of a nanoreactor are shown by 2707 and 2708 . In some embodiments, the distance between the center of a well and an edge of a nanoreactor in any dimension is about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 149 mm.
  • the distance between the center of well and an edge of a nanoreactor in any dimension is about or at most about 149 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm or less.
  • the distance between the center of well and an edge of a nanoreactor in any dimension is from about 0.1 mm to about 125 mm, from about 0.5 mm to about 100 mm, from about 0.5 mm to about 75 mm, from about 0.5 mm to about 50 mm, from about 0.5 mm to about 25 mm, from about 1 mm to about 50 mm, from about 1 mm to about 40 mm, from about 1 mm to about 30 mm, from about 1 mm to about 20 mm, or from about 1 mm to about 5 mm.
  • the distance may fall within any range bound by any of these values, for example 0.1-5 mm.
  • the wells are arranged so that there exists a repeated distance between two wells. As shown by 2711 and 2712 , the distance between two wells may be from about 0.3 mm to about 9 mm apart. In some embodiments, the distance between two wells is about or at least about 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the distance between two wells is about or at most about 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, or 0.3 mm.
  • the distance between two wells may range between 0.3-9 mm, 0.4-8 mm, 0.5-7 mm, 0.6-6 mm, 0.7-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.8 mm-2 mm.
  • the cross-section of the inside of a well is about or at least about 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, 8.8 mm, 8.8 mm,
  • the cross-section of the inside of a well is about or at most about 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, or 0.3 mm.
  • the cross-section of the inside of a well may range between 0.3-9 mm, 0.4-8 mm, 0.5-7 mm, 0.6-6 mm, 0.7-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the cross-section may fall within any range bound by any of these values, for example 0.8 mm-2 mm.
  • the cross-section of a well, including the rim of the well, as shown by 2720 is about or at least about 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the cross-section of a well is about or at most about 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, or
  • the cross-section of a well may range between 0.3-9 mm, 0.4-8 mm, 0.5-7 mm, 0.6-6 mm, 0.7-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the cross-section may fall within any range bound by any of these values, for example 0.8 mm-2 mm.
  • a nanoreactor may comprise any number of wells, including but not limited to, any number between about 2 and about 250.
  • the number of wells includes from about 2 to about 225 wells, from about 2 to about 200 wells, from about 2 to about 175 wells, from about 2 to about 150 wells, from about 2 to about 125 wells, from about 2 to about 100 wells, from about 2 to about 75 wells, from about 2 to about 50 wells, from about 2 to about 25 wells, from about 25 to about 250 wells, from about 50 to about 250 wells, from about 75 to about 250 wells, from about 100 to about 250 wells, from about 125 to about 250 wells, from about 150 to about 250 wells, from about 175 to about 250 wells, from about 200 to about 250 wells, or from about 225 to about 250 wells.
  • the well number may fall within any range bound by any of these values, for example 25-125.
  • Fiducial marks may be placed on a nanoreactor described herein to facilitate alignment of the nanoreactor with other components of a system, for example a microfluidic device or a component of a microfluidic device.
  • Nanoreactors of the invention may have one or more fiducial marks, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, or more fiducial marks.
  • the device view of the nanoreactor shown in FIG. 25 B comprises three fiducial marks useful for aligning the device with other components of a system.
  • a fiducial mark may be located at any position within the nanoreactor. As shown by 2716 and 2717 , a fiducial mark may be located near the origin, where the fiducial mark is closer to the origin than any one well.
  • a fiducial mark is located near an edge of the nanoreactor, as shown by 2713 , where the distance from the edge is exemplified by 2714 and 2715 .
  • the fiducial mark may be located from about 0.1 mm to about 10 mm from the edge of the nanoreactor. In some embodiments, the fiducial mark is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the fiducial mark is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2
  • the fiducial mark may be located between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.1-6 mm, 0.2-5 mm, 0.3-4 mm, 0.4-3 mm, or 0.5-2 mm from the edge of the nanoreactor. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-5 mm.
  • the fiducial mark may be located close in distance to a well, where exemplary X- and Y-axis distances are indicated by 2719 and 2718 , respectively.
  • a distance between a well and a fiducial mark is about or at least about 0.001 mm, 0.005 mm, 0.01 mm, 0.02 mm, 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.09 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.2 mm, 1.5 mm, 1.7 mm, 2 mm, 2.2 mm, 2.5 mm, 2.7 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, or 8 mm.
  • a distance between a well and a fiducial mark is about or at most about 8 mm, 6.5 mm, 6 mm, 5.5 mm, 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.7 mm, 2.5 mm, 2.2 mm, 2 mm, 1.7 mm, 1.5 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.09 mm, 0.08 mm, 0.07 mm, 0.06 mm, 0.05 mm, 0.04 mm, 0.03 mm, 0.02 mm, 0.01 mm, 0.005 mm, or 0.001 mm.
  • the distance between a well and a fiducial mark may be in a range between 0.001-8 mm, 0.01-7 mm, 0.05-6 mm, 0.1-5 mm, 0.5-4 mm, 0.6-3 mm, 0.7-2 mm, or 0.8-1.7 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.5-2 mm.
  • the handle view of the nanoreactor shown in FIG. 26 D comprises four fiducial marks useful for aligning the device with other components of a system.
  • a fiducial mark may be located at any position within the nanoreactor.
  • a fiducial mark may be located near a corner of a nanoreactor on the handle side.
  • the fiducial mark may be located from about 0.1 mm to about 10 mm from the corner of the nanoreactor.
  • the fiducial mark is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the fiducial mark is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2
  • the fiducial mark may be located between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.1-6 mm, 0.2-5 mm, 0.3-4 mm, 0.4-3 mm, or 0.5-2 mm from the corner of the nanoreactor. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-5 mm.
  • the fiducial mark may have any width suitable for function.
  • the width of a fiducial mark is about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the width of a fiducial mark is about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm,
  • the fiducial mark width may range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.1-6 mm, 0.2-5 mm, 0.3-4 mm, 0.4-3 mm, or 0.5-2 mm long. Those of skill in the art appreciate that the width may fall within any range bound by any of these values, for example 0.1 mm-5 mm.
  • a cross-section of a fiducial mark may be of any suitable size, as shown in by 2726 .
  • the cross-section of a fiducial mark is about or at least about 0.001 mm, 0.002 mm, 0.004 mm, 0.006 mm, 0.008 mm, 0.01 mm, 0.012 mm, 0.014 mm, 0.016 mm, 0.018 mm, 0.02 mm, 0.025 mm, 0.03 mm, 0.035 mm, 0.04 mm, 0.045 mm, 0.05 mm, 0.055 mm, 0.06 mm, 0.065 mm, 0.07 mm, 0.075 mm, 0.08 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, or 0.5 mm.
  • the cross-section of a fiducial mark is about or at most about 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.08 mm, 0.075 mm, 0.07 mm, 0.065 mm, 0.06 mm, 0.055 mm, 0.05 mm, 0.045 mm, 0.04 mm, 0.035 mm, 0.03 mm, 0.025 mm, 0.02 mm, 0.018 mm, 0.016 mm, 0.014 mm, 0.012 mm, 0.01 mm, 0.008 mm, 0.006 mm, 0.004 mm, 0.002 mm, 0.001 mm or less.
  • the cross-section of a fiducial mark may range between 0.001-0.5 mm, 0.004-0.4 mm, 0.008-0.3 mm, 0.01-0.2 mm, 0.015-0.1 mm, 0.018-0.1 mm, or 0.02-0.05 mm. Those of skill in the art appreciate that the cross-section may fall within any range bound by any of these values, for example 0.02 mm-0.1 mm.
  • the nanoreactor may have a location for a label or a serial label, as exemplified in FIG. 26 E depicting an exemplary layout of wells in a nanoreactor.
  • the label is a serial number.
  • the label may be located near an edge of the nanoreactor, as exemplified by the distances 2728 and 2727.
  • any portion of the label is located from about 0.1 mm to about 10 mm from the edge of the nanoreactor.
  • any portion of the label is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm.
  • the any portion of the label is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2
  • the distance may be in a range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.6-5 mm, 0.7-4 mm, 0.8-3 mm, 0.9-2 mm or 1.5 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.5-2 mm.
  • the label may have any length, including from about 1 mm to about 25 mm as exemplified by 2726 .
  • the length of a label is about or at least about 1 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 150 mm.
  • the length of a label is about or at most about 150 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, 1 mm or less.
  • the length of a label is from about 5 mm to about 125 mm, from about 5 mm to about 100 mm, from about 5 mm to about 75 mm, from about 5 mm to about 50 mm, from about 5 mm to about 25 mm, from about 25 mm to about 150 mm, from about 50 mm to about 150 mm, from about 75 mm to about 150 mm, from about 100 mm to about 150 mm, or from about 125 mm to about 150 mm.
  • the length may fall within any range bound by any of these values, for example 5-25 mm.
  • the substrates, the solid support or the microstructures or reactors therein may be fabricated from a variety of materials, suitable for the methods and compositions of the invention described herein.
  • the materials from which the substrates/solid supports of the comprising the invention are fabricated exhibit a low level of oligonucleotide binding.
  • material that are transparent to visible and/or UV light can be employed.
  • Materials that are sufficiently conductive, e.g. those that can form uniform electric fields across all or a portion of the substrates/solids support described herein, can be utilized. In some embodiments, such materials may be connected to an electric ground.
  • the substrate or solid support can be heat conductive or insulated.
  • the materials can be chemical resistant and heat resistant to support chemical or biochemical reactions such as a series of oligonucleotide synthesis reaction.
  • materials of interest can include: nylon, both modified and unmodified, nitrocellulose, polypropylene, and the like.
  • specific materials of interest include: glass; fuse silica; silicon, plastics (for example polytetraflouroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like); metals (for example, gold, platinum, and the like).
  • the substrate, solid support or reactors can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass.
  • the substrates/solid supports or the microstructures, reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.
  • surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of a substrate surface.
  • surface modification may involve (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.
  • the substrate surface, or the resolved loci, onto which the oligonucleotides or other moieties are deposited may be smooth or substantially planar, or have irregularities, such as depressions or elevations.
  • the surface may be modified with one or more different layers of compounds that serve to modify the properties of the surface in a desirable manner.
  • modification layers of interest include: inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules and the like.
  • Polymeric layers of interest include layers of: peptides, proteins, nucleic acids or mimetics thereof (for example, peptide nucleic acids and the like); polysaccharides, phospholipids, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyetheyleneamines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, and the like, or any other suitable compounds described herein or otherwise known in the art, where the polymers may be hetero- or homopolymeric, and may or may not have separate functional moieties attached thereto (for example, conjugated).
  • Other materials and methods for surface modification of the substrate or coating of the solid support are described in U.S. Pat. No. 6,773,888 and U.S. Pub. No. 2007/0054127, which are herein incorporated by reference in their entirety.
  • the resolved loci can be functionalized with a moiety that can increase or decrease the surface energy of the solid support.
  • the moiety can be chemically inert or alternatively, be a moiety that is suited to support a desired chemical reaction.
  • the surface energy, or hydrophobicity, of a surface can determine the affinity of an oligonucleotide to attach onto the surface.
  • a method for preparing a substrate can comprise: (a) providing a substrate having a surface that comprises silicon dioxide; and (b) silanizing the surface using, a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule.
  • the organofunctional alkoxysilane molecule can be dimethylchloro-octodecyl-silane, methyldichloro-octodecyl-silane, trichloro-octodecyl-silane, trimethyl-octodecyl-silane, triethyl-octodecyl-silane or any combination thereof.
  • the surface of the substrate can also be prepared to have a low surface energy using any method that is known in the art. Lowering the surface energy can facilitate oligonucleotides to attach to the surface.
  • the surface can be functionalized to enable covalent binding of molecular moieties that can lower the surface energy so that wettability can be reduced. In some embodiments, the functionalization of surfaces enables an increase in surface energy and wettability.
  • the surface of the substrate is contacted with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the substrate surface, typically via reactive hydrophilic moieties present on the substrate surface.
  • Silanization generally can be used to cover a surface through self-assembly with organofunctional alkoxysilane molecules.
  • a variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g. for lowering or increasing surface energy.
  • the organofunctional alkoxysilanes are classified according to their organic functions.
  • Non-limiting examples of siloxane functionalizing reagents include hydroxyalkyl siloxanes (silylate surface, functionalizing with diborane and oxidizing the alcohol by hydrogen peroxide), diol (dihydroxyalkyl) siloxanes (silylate surface, and hydrolyzing to diol), aminoalkyl siloxanes (amines require no intermediate functionalizing step), glycidoxysilanes (3-glycidoxypropyl-dimethyl-ethoxysilane, glycidoxy-trimethoxysilane), mercaptosilanes (3-mercaptopropyl-trimethoxysilane, 3-4 epoxycyclohexyl-ethyltrimethoxysilane or 3-mercaptopropyl-methyl-dimethoxysilane), bicyclohepthenyl-trichlorosilane, butyl-aldehydr-trimethoxysilane, or dimeric secondary aminoalkyl siloxanes.
  • the hydroxyalkyl siloxanes can include allyl trichlorochlorosilane turning into 3-hydroxypropyl, or 7-oct-1-enyl trichlorochlorosilane turning into 8-hydroxyoctyl.
  • the diol (dihydroxyalkyl) siloxanes include glycidyl trimethoxysilane-derived (2,3-dihydroxypropyloxy)propyl.
  • the aminoalkyl siloxanes include 3-aminopropyl trimethoxysilane turning into 3-aminopropyl (3-aminopropyl-triethoxysilane, 3-aminopropyl-diethoxy-methylsilane, 3-aminopropyl-dimethyl-ethoxysilane, or 3-aminopropyl-trimethoxysilane).
  • the dimeric secondary aminoalkyl siloxanes can be bis (3-trimethoxysilylpropyl) amine turning into bis(silyloxylpropyl)amine.
  • a number of alternative functionalized surfaces can be used in the present invention. Non-limiting examples include the following: 1.
  • polyethylene/polypropylene functionalized by gamma irradiation or chromic acid oxidation, and reduction to hydroxyalkyl surface
  • 2. highly crosslinked polystyrene-divinylbenzene (derivatized by chloromethylation, and aminated to benzylamine functional surface); 3. nylon (the terminal aminohexyl groups are directly reactive); or 4. etched, reduced polytetrafluoroethylene.
  • Other methods and functionalizing agents are described in U.S. Pat. No. 5,474,796, which is herein incorporated by reference in its entirety.
  • the mixture of functionalization groups, e.g. silanes can be in any different ratios.
  • the mixture can comprise at least two different types of functionalization agents, e.g. silanes.
  • the ratio of the at least two types of surface functionalization agents, e.g. silanes, in a mixture can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 2:3, 2:5, 2:7, 2:9, 2:11, 2:13, 2:15, 2:17, 2:19, 3:5, 3:7, 3:8, 3:10, 3:11, 3:13, 3:14, 3:16, 3:17, 3:19, 4:5, 4:7, 4:9, 4:11, 4:13, 4:15, 4:17, 4:19, 5:6, 5:8, 5:9, 5:11, 5:12, 5:13, 5:14, 5:16, 5:17, 5:18, 5:19, 6:7, 6:11, 6:13, 6:17, 6:19, 7:8, 7:9, 7:10, 7:11, 7:12, 7:13,
  • surface representation will be highly proportional to the ration of two groups in a mixture. Desired surface tensions, wettabilities, water contact angles, or contact angles for other suitable solvents according to the methods and compositions of the invention can be achieved by providing a ratio of functionalization agents. Further, the agents in the mixture may be chosen from suitable reactive and inert moieties for downstream reactions, diluting the surface density of reactive groups to a desired level according to the methods and compositions of the invention.
  • the density of the fraction of a surface functional group that reacts to form a growing oligonucleotide in an oligonucleotide synthesis reaction is about, less than about, or greater than about 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 7.0, 10.0, 15.0, 20.0, 50.0, 75.0, 100.0 ⁇ Mol/m 2 .
  • the surface is modified to have a higher surface energy, or become more hydrophilic with a coating of reactive hydrophilic moieties.
  • the spreading of the deposited reagent liquid can be adjusted, in some cases facilitated.
  • FIG. 5 A-C illustrates a case when a droplet of reagent is deposited into a microwell by an inkjet printer. The liquid droplet can spread over and fill the smaller microwells because the surface of the microwells has higher surface energy compared to the other surface nearby in this case.
  • the reactive hydrophilic moieties on the substrate surface can be hydroxyl groups, carboxyl groups, thiol groups, and/or substituted or unsubstituted amino groups.
  • Suitable materials include, but are not limited to, supports that can be used for solid phase chemical synthesis, e.g., cross-linked polymeric materials (e.g., divinylbenzene styrene-based polymers), agarose (e.g., Sepharose®), dextran (e.g., Sephadex®), cellulosic polymers, polyacrylamides, silica, glass (particularly controlled pore glass, or “CPG”), ceramics, and the like.
  • the supports may be obtained commercially and used as is, or they may be treated or coated prior to functionalization.
  • the surface energy, or hydrophobicity of a surface can be evaluated or measured by measuring a water contact angle.
  • Water contact angle is the angle between the drop surface and a solid surface where a water droplet meets the solid surface.
  • the solid surface can be a smooth, flat or planar surface. It can quantify the wetting of a solid surface by a liquid (e.g., water) via the Young equation. In some cases, water contact angle hysteresis can be observed, ranging from the so-called advancing (maximal) water contact angle to the receding (minimal) water contact angle. The equilibrium water contact can be found within those values, and can be calculated from them. Hydrophobicity and hydrophilicity can be expressed in relative quantitative terms using water contact angle.
  • a surface with a water contact angle of smaller than 90° the solid surface can be considered hydrophilic or polar.
  • a surface with a water contact angle of greater than 90°, the solid surface can be considered hydrophobic or apolar.
  • Highly hydrophobic surfaces with low surface energy can have water contact angle that is greater than 120°.
  • the surface can be selected to be inert to the conditions of ordinary oligonucleotide synthesis; e.g. the solid surface may be devoid of free hydroxy, amino, or carboxyl groups to the bulk solvent interface during monomer addition, depending on the selected chemistry.
  • the surface may comprise reactive moieties prior to the start of the first cycle, or first few cycles of the oligonucleotide synthesis and these reactive moieties can be quickly depleted to unmeasurable densities after one, two, three, four, five, or more cycles of the oligonucleotide synthesis reaction.
  • the surface can further be optimized for well or poor wetting, e.g. by common organic solvents such as acetonitrile and the glycol ethers or aqueous solvents, relative to surrounding surfaces.
  • the wetting phenomenon is understood to be a measure of the surface tension or attractive forces between molecules at a solid-liquid interface, and is expressed in dynes/cm2.
  • fluorocarbons have very low surface tension, which is typically attributed to the unique polarity (electronegativity) of the carbon-flourine bond.
  • surface tension of a layer can be primarily determined by the percent of fluorine in the terminus of the alkyl chains.
  • a single terminal trifluoromethyl group can render a surface nearly as lipophobic as a perfluoroalkyl layer.
  • the density of reactive sites can be lower than Langmuir-Blodgett and group density.
  • surface tension of a methyltrimethoxysilane surface can be about 22.5 mN/m and aminopropyltriethoxysilane surface can be about 35 mN/m.
  • silane surfaces are described in Arkles B et al., “The role of polarity in the structure of silanes employed in surface modification”, Silanes and Other Coupling Agents, Vol. 5, which is herein incorporated by reference in its entirety.
  • hydrophilic behavior of surfaces is generally considered to occur when critical surface tensions are greater than 45 mN/m. As the critical surface tension increases, the expected decrease in contact angle is accompanied with stronger adsorptive behavior. Hydrophobic behavior of surfaces is generally considered to occur when critical surface tensions are less than 35 mN/m. At first, the decrease in critical surface tension is associated with oleophilic behavior, i.e. the wetting of the surfaces by hydrocarbon oils. As the critical surface tensions decrease below 20 mN/m, the surfaces resist wetting by hydrocarbon oils and are considered both oleophobic as well as hydrophobic. For example, silane surface modification can be used to generate a broad range of critical surface tensions.
  • the methods and compositions of the invention may use surface coatings, e.g. those involving silanes, to achieve surface tensions of less than 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 115, 120 mN/m, or higher. Further, the methods and compositions of the invention may use surface coatings, e.g. those involving silanes, to achieve surface tensions of more than 115, 110, 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20, 15, 12, 10, 9, 8, 7, 6 mN/m or less.
  • Methods to measure water contact angle can use any method that is known in the art, including the static sessile drop method, the dynamic sessile drop method, dynamic Wilhelmy method, single-fiber Wilhelmy method, powder contact angle method, and the like.
  • the surface of the substrate, or a portion of the surface of the substrate as described herein in the current invention can be functionalized or modified to be hydrophobic, to have a low surface energy, or to have a water contact angle that would be measured to be greater than about 90°, 95°, 100°, 105°, 110°, 115°, 120°, 125°, 130°, 135°, 140°, 1450 or 1500 on an uncurved, smooth, or planar equivalent of the relevant functionalized surface of the substrate, as described herein.
  • the water contact angle of a functionalized surface described herein can refer to the contact angle of a water droplet on the functionalized surface in an uncurved, smooth, flat and planar geometry.
  • the surface of the substrate, or a portion of the surface of the substrate as described herein in the current invention can be functionalized or modified to be hydrophilic, to have a high surface energy, or to have a water contact angle that would be measured to be less than about 900, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° on an uncurved, smooth or planar equivalent of the relevant functionalized surface of the substrate, as described herein.
  • the surface of the substrate or a portion of the surface of the substrate can be functionalized or modified to be more hydrophilic or hydrophobic as compared to the surface or the portion of the surface prior to the functionalization or modification.
  • one or more surfaces can be modified to have a difference in water contact angle of greater than 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° as measured on one or more uncurved, smooth or planar equivalent surfaces.
  • the surface of the microstructures, channels, resolved loci, resolved reactor caps or other parts of the substrate may be modified to have a differential hydrophobicity corresponding to a difference in water contact angle that is greater than 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° as measured on uncurved, smooth or planar equivalent surfaces of such structures.
  • water contact angles mentioned herein correspond to measurements that would be taken on uncurved, smooth or planar equivalents of the surfaces in question.
  • hydrophilic resolved loci can be generated by first applying a protectant, or resist, over each loci within the substrate.
  • the unprotected area can be then coated with a hydrophobic agent to yield an unreactive surface.
  • a hydrophobic coating can be created by chemical vapor deposition of (tridecafluorotetrahydrooctyl)-triethoxysilane onto the exposed oxide surrounding the protected circles.
  • the protectant, or resist can be removed exposing the loci regions of the substrate for further modification and oligonucleotide synthesis.
  • the initial modification of such unprotected regions may resist further modification and retain their surface functionalization, while newly unprotected areas can be subjected to subsequent modification steps.
  • the system may comprise two or more substrates that can be sealed, e.g. releasably sealed, with each other, forming a plurality of individually addressable reaction volumes or reactors upon sealing. New sets of reactors may be formed by releasing a first substrate from a second substrate and aligning it with a third substrate.
  • Each substrate can carry reagents, e.g. oligonucleotides, enzymes, buffers, or solvents, for desired reactions.
  • the system comprises a first surface with a plurality of resolved loci at a first suitable density and a capping element with a plurality of resolved reactor caps at a second suitable density.
  • the system can align the plurality of resolved reactor caps with the plurality of resolved loci on the first surface forming a temporary seal between the first surface and the capping element.
  • the temporary seal between the aligned substrates may physically divide the loci on the first surface into groups of about at least about, or less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200 loci, or more.
  • a set of parallel reactions described herein can be conducted according to the methods and compositions of the invention.
  • a first surface with a plurality of resolved loci at a first density and a capping element with a plurality of resolved reactor caps at a second density can be aligned, such that the plurality of resolved reactor caps with the plurality of resolved loci on the first surface form a temporary seal between the first surface and the capping element and thereby physically divide the loci on the first surface into groups of about at least about, or less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200 loci, or more.
  • a first reaction can be performed, forming a first set of reagents.
  • the capping element may be released from the first surface.
  • the reactor caps may each retain at least a portion of the first set of reagents in the previously sealed reaction volumes.
  • the plurality of resolved loci can be at a density of about, at least about or less than about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 per 1 mm 2 .
  • the plurality of resolved loci can be at a density of about, at least about, less than about 100 per mm 2 .
  • the plurality of resolved reactor caps can be at a density of about, at least about, less than about 1 per mm 2 .
  • the plurality of resolved reactor caps can be at a density of about, at least about or less than about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 per 1 mm 2 .
  • the methods described herein can further comprise providing a second surface with a plurality of resolved loci at a third density and aligning the plurality of resolved reactor caps with the plurality of resolved loci on the second surface. and forming a seal, typically a temporary or releasable seal, between the second surface and the capping element.
  • the newly formed sealed may physically divide the loci on the second surface into groups of about at least about, or less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200 loci, or more.
  • a second reaction may be performed, optionally using a portion of the first set of reagents, thereby forming a second set of reagents.
  • the capping element may be released from the second surface.
  • the reactor caps may each retain at least a portion of the second set of reagents in the previously sealed second reaction volumes.
  • the second surface with a plurality of resolved loci can have a locus density of at least about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 per 1 mm 2 .
  • Various aspects of the embodiments of the systems, methods and instrumentations are described herein.
  • the system assembly can comprise any number of static wafers and any number of dynamic wafers.
  • the system can comprise three substrates in a column and four substrates in a row.
  • the transport system can comprise three static wafers (or substrates) and one dynamic wafer (or substrate).
  • the dynamic wafers can move or transport in between a plurality of static wafers.
  • a dynamic wafer can be transported between three statically mounted wafers.
  • the dynamic wafer can have a diameter that is about 50, 100, 150, 200 or 250 mm or 2, 4, 6, or 8 in or higher.
  • the dynamic wafers can be mounted in a temperature controlled vacuum chuck.
  • the systems of the invention allow for configurations, wherein the dynamic wafers can move in Z direction, which may be the direction that is perpendicular to the surface of a wafer that is to face a surface of a second wafer, with about or less than about 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5 or 3 ⁇ m control of z-position, and can align theta_z of wafers, the angle between the normals of the surfaces of two wafers that are to face each other, e.g. by matching a pattern on the dynamic wafer with another pattern on the static wafer within a range of tolerance.
  • the wafer positioning tolerances can be about or less than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300 350, 400, 450 or 500 micro radians in difference in angle of rotation in x-y plane. In some embodiments, the wafer positioning tolerances can be about or less than about 50 micro radians in difference in angle of rotation in x-y plane. The wafer positioning tolerances can be about or less than about 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 ⁇ m of distance in x-direction.
  • the wafer positioning tolerances can be about or less than about 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 ⁇ m of distance in y-direction.
  • the wafer positioning tolerances can be about or less than about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 micro radians in rotations of x-y plane in z-direction. In some embodiments, the wafer positioning tolerances can be about or less than about 5 micro radians in rotations of x-y plane in z-direction.
  • the wafer positioning tolerances can be about or less than about 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 or 5 ⁇ m of distance in z-direction. In some embodiments, the wafer positioning tolerances can be about or less than about 0.5 ⁇ m of distance in z-direction.
  • the systems and methods for conducting a set of parallel reactions can further comprise a third, a four, a fifth, a sixth, a seventh, a eighth, a ninth or a tenth surface with a plurality of resolved loci and/or a capping element with a plurality of resolved reactor caps.
  • the third, the four, the fifth, the sixth, the seventh, the eighth, the ninth or the tenth surfaces can be aligned and can form a temporary seal between the two surfaces and the corresponding capping element, thereby physically dividing the loci and/or reactor caps on the surfaces.
  • a third, a four, a fifth, a sixth, a seventh, a eighth, a ninth or a tenth reaction can be performed using a portion of the reagents that is retained from the previous reaction, namely, the second, a third, a four, a fifth, a sixth, a seventh, a eighth or a ninth set of reagents, thereby forming the third, the four, the fifth, the sixth, the seventh, the eighth, the ninth or the tenth set of reagents.
  • Each of the capping elements described herein can be released from its corresponding surface, wherein the reactor caps can retain at least a portion of the previous set of reagents of another reaction volume.
  • the second surface with a plurality of resolved loci can be at a density of at least 2/mm 2 .
  • the second surface with a plurality of resolved loci can have a locus density of at least about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 per 1 mm 2 .
  • the portion of the reagents retained each time can be different and controlled to be at a desirable portion depending on the reactions to be performed.
  • the invention in various embodiments, contemplates a system for conducting a set of parallel reactions comprising a first surface with a plurality of resolved loci and a capping element with a plurality of resolved reactor caps.
  • the plurality of resolved loci and the capping element with a plurality of resolved reactor caps can be combined to form a plurality of resolved reactors, as described in further detail elsewhere herein.
  • the resolved loci of the first surface of the first substrate can comprise a coating of reagents.
  • the resolved loci of the second surface of the second substrate can comprise a coating of reagents.
  • the coating of reagents can be covalently linked to the first or second surface.
  • each surface may comprise a coating of reagents.
  • the coating of reagents on the first surface or the second surface may comprise oligonucleotides.
  • the oligonucleotides can be any length as further described elsewhere herein, for example at least 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300 bp, or longer.
  • the oligonucleotides that are comprised within the coating of reagents may be released.
  • a variety of reactions can be conducted, for example, the oligonucleotide amplification reaction, PCA, generation of sequencing libraries, or error correction, inside of the plurality of resolved reactors.
  • the oligonucleotides can be released from the coated surface by a variety of suitable methods as described in further details elsewhere herein and known in the art, for example by enzymatic cleavage, as is well known in that art.
  • enzymatic cleavage include, but are not limited to, the use of restriction enzymes such as MIyI, or other enzymes or combinations of enzymes capable of cleaving single or double-stranded DNA such as, but not limited to, Uracil DNA glycosylase (UDG) and DNA Endonuclease IV.
  • cleavage known in the art may also be advantageously employed in the present invention, including, but not limited to, chemical (base labile) cleavage of DNA molecules or optical (photolabile) cleavage from the surface.
  • PCR or other amplification reactions can also be employed to generate building material for gene synthesis by copying the oligonucleotides while they are still anchored to the substrate. Methods of releasing oligonucleotides are described in P.C.T. Patent Publication No. WO2007137242, and U.S. Pat. No. 5,750,672 which is herein incorporated by reference in its entirety.
  • the releasing in the releasing the capping element from the first surface, and the releasing the capping element from the second surface can be performed at a different velocity.
  • the amount of the portion of reagents that is retained upon releasing the capping element from the corresponding surface can be controlled by the velocity or the surface energy of the capping element and the corresponding surface.
  • the first or second surface comprises a different surface tension, surface energy, or hydrophobicity with a given liquid, such as water.
  • the resolved loci of the first surface can comprise a high surface energy, surface tension or hydrophobicity.
  • the difference in the surface energy, or hydrophobicity, of the capping element and the corresponding surface can be a parameter to control the portion of the reagents that is retained upon release.
  • the volume of the first and the second reactions can be different.
  • the air pressure outside of the resolved reactors may be greater than the pressure inside the resolved reactors. In other cases, the air pressure outside of the resolved reactors may be less than the pressure inside of the resolved reactors.
  • the difference in the air pressure outside of the resolved reactors and the inside of the resolved reactors (or the differential pressure) can affect the sealing of the resolved reactors.
  • the differential pressure may result in a curve or straight air/liquid interface within a gap between the first surface and the reactor cap of the second surface.
  • the force needed to release the capping element from the surface can be controlled by the differential pressure, and the differential surface energy.
  • the surface can be modified to have a differential surface energy and differential pressure such that the capping element is capable of being released from the surface easily.
  • the first or second reaction, or any reaction after the second reaction may comprise various molecular or biochemical assays as described herein or any suitable reaction known in the art.
  • the first or second reaction can comprise polymerase cycling assembly.
  • the first or second reaction can comprise enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, solid-phase assembly, Sloning building block technology, or RNA ligation mediated gene synthesis.
  • the reactions or the method for conducting a set of parallel reactions may further comprise cooling the capping element, or cooling the first surface (second surface).
  • FIG. 8 The general process work flow of the methods and compositions of the present invention using the systems described herein is illustrated in FIG. 8 .
  • the current invention concerns systems and methods for oligonucleotide synthesis.
  • the system for oligonucleotide synthesis may comprise a scanning deposition system.
  • the systems for oligonucleotide synthesis can comprise a first substrate (e.g. oligonucleotide synthesis wafer) having a functionalized surface and a plurality of resolved loci and a inkjet printer, typically comprising a plurality of printheads.
  • Each printhead is typically configured to deposit one of a variety of building blocks for reactions that are performed in the resolved loci of a first substrate, e.g. nucleotide building blocks for phosphoramidite synthesis.
  • the resolved loci of the oligonucleotide synthesis wafer may reside in microchannels as described in further detail elsewhere herein.
  • the substrate may be sealed within a flow cell, e.g. by providing continuous flow of liquids such as those containing necessary reagents for the reactions within the resolved loci (e.g. oxidizer in toluene) or solvents (e.g. acetonitrile) allowing precise control of dosage and concentration of reagents at the sites of synthesis, e.g. the resolved loci of an oligonucleotide synthesis wafer.
  • Flow of an inert gas, such as nitrogen, may be used to dry the substrate, typically through enhanced evaporation of a volatile substrate.
  • a variety of means for example a vacuum source/a depressurizing pump or a vacuum tank, can be used to create reduced relative pressure (negative pressure) or vacuum to improve drying and reduce residual moisture amounts and any liquid droplets on the surface. Accordingly, the pressure immediately surrounding the substrates or the resolved loci thereof may measure to be about or less than about 100, 75, 50, 40, 30, 20, 15, 10, 5, 4, 3, 2, 1, 0.5, 0.1, 0.05, 0.01 mTorr, or less.
  • FIG. 3 illustrates an example of a system for oligonucleotide synthesis.
  • an oligonucleotide synthesis wafer is configured to provide the resolved loci for oligonucleotide synthesis with necessary bulk reagents through an inlet manifold and, optionally an outlet manifold.
  • for the bulk reagents can include any suitable reagents, carriers, solvents, buffers, or gasses for oligonucleotide synthesis that is commonly needed among a plurality of resolved loci in various embodiments, such as oxidizer, de-block, acetonitrile or nitrogen gas.
  • the inkjet printer printheads can move in X-Y direction to the addressable locations of the first substrate.
  • a second substrate such as a capping element, as described in further detail elsewhere herein, can move in the Z direction, and if needed, in the X and Y directions, to seal with the first substrate, forming a plurality of resolved reactors.
  • the second substrate may be stationary.
  • the synthesis substrate may move in the Z direction, and if necessary in X and Y directions, to align and seal with the second substrate.
  • the synthesized oligonucleotides can be delivered from the first substrate to the second substrate. Suitable amounts of fluids may be passed through an inlet manifold and the resolved loci of a first substrate, into a second substrate to facilitate the delivery of reagents from the first substrate/the resolved loci thereof into the second substrate.
  • current invention relates to a system for oligonucleotide assembly comprising wafer handling.
  • the present invention makes use of systems for scanning deposition.
  • the scanning deposition systems can comprise an inkjet that can be used to deposit reagents to the resolved loci or microwells etched into a substrate.
  • the scanning deposition system can use organic solvents or inks.
  • the scanning deposition system can comprise a plurality of wafers, such as silicon wafers, typically about 200 mm in diameter.
  • the entire system can be place and function in an atmospherically controlled enclosure.
  • the scanning deposition system can comprise a work envelope, a printhead assembly, a flowcell assembly, and/or a service envelope. In some cases, the printhead assembly can move while the flowcell assembly remains stationary.
  • the scanning deposition system can comprise one or more flowcells, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, or more flowcells servicing one or more substrates/wafers, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, or more substrates/wafers. Wafers can stay fixed within the flowcells. In some cases, the system can facilitate alignment of substrates through theta_z automation.
  • the service envelope may comprise printheads that are parked for servicing.
  • the service envelope can be environmentally isolated from a larger box.
  • the systems for the methods and compositions described herein comprise scanning deposition systems for oligonucleotide synthesis, oligonucleotide assembly, or more generally for the manufacturing of reagents.
  • the plurality of resolved loci and the plurality of resolved reactor caps may be located on microstructures that have interconnectivity or fluidic communications. Such fluidic communications allow washing and perfusing new reagents as droplets or using continuous flow, for different steps of reactions.
  • the fluid communication microchannels may contain inlets and outlets to and/or from the plurality of resolved loci and the plurality of resolved reactors.
  • the inlets and/or outlets can be made with any known methods in the art. For example, the inlets and/or outlets can be provided on a front side and the back side of the substrate. Methods of creating the inlets and/or outlets are described in U.S. Patent Publication No.
  • an may comprise making suitable microstructural components by lithographic and etching processes on a front side; drilling holes from the back side of said substrate in precise alignment with the microstructures on the front side, to provide inlets and/or outlets to and/or from said micromechanical structure.
  • the inlets and/or outlets may be Hele-Shaw type flowcells, with fluid flowing in a thin gap fed by a manifold.
  • the substrates described herein may form part of a flowcell.
  • the flowcell can be closed by sliding a lid over the top of the substrate (i.e. wafer) and can be clamped into place forming a pressure tight seal around the edge of the substrate.
  • the seal may be adequate to seal against vacuum or about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 atmospheres of pressure.
  • Reagents can be introduced into a thin gap underneath the substrate (i.e. wafer) and flow up through the substrate. Reagents can then be collected in the tapered waste collector as illustrated in FIG. 9 part B. After a final solvent wash step, in some embodiments, the wafer can be drained out, e.g. through the bottom of the assembly and then purged with nitrogen.
  • the chamber can be then pulled down to a vacuum to dry out the remaining solvent in any microstructures reducing the residual liquids or moisture to less than 50%, 30%, 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.1%, 0.01%, 0.001%, 0.0001%, 0.00001%, or less by volume.
  • the chamber can be then pulled down to a vacuum to reduce the pressure surrounding the substrate to be less than 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100, 200, 300, 400, 500 or 1000 mTorr.
  • the chamber can be filled with nitrogen subsequent to the vacuum step and the roof can be slid open again to allow access by auxiliary parts of the system, for example a printer.
  • the flowcell can be opened.
  • the substrate/wafer can be mounted with the waste manifold displaced sideways, as illustrated in FIG. 9 part B. This set-up can allow easier inkjet access to the wafer.
  • the reagents can be deposited into the microwells.
  • the lids of the resolved enclosures i.e. flowcells
  • FIG. 9 parts B and C represent an exemplary flow direction for the reagents.
  • reagents can enter through the thin gap on the bottom, passing through the holes in the substrate (e.g. a silicon wafer), and being collected in the waste collector as illustrated in FIG. 9 part C.
  • gas may be purged through an upper or bottom manifold to drive liquid out, e.g. through the bottom or top of the flowcell.
  • An exit or inlet port can be connected to vacuum to complete drying.
  • the vacuum port can be connected to the waste side or the inlet side, as illustrated in FIG. 10 parts A-C.
  • the plurality of holes can be more than a about 1000, 5000, 10,000, 50,000, 100,000, 500,000, 1,000,000 or 2,000,000. In some cases, the plurality of holes can be more than 5 millions.
  • the microstructures for synthesis as described in further detail elsewhere herein serve as pressure release holes. These holes can allow gas to pass through from one side of the wafer as the resolved enclosures are evacuated to dry down the substrate. In some cases, for example if the air is driven out of the waste collector side, the air pressure of the waste collector side, Pwaste, may be maintained at substantially the same level as the air pressure of the inlet side, Piniet. In some embodiments, a port that connects the inlet manifold to the waste collector can be used. Thus, a plurality of the steps described herein, such as scanning, depositing, flooding, washing, purging, and/or drying, can be performed without transporting the wafer substrates.
  • the resolved reactors formed by sealing the first substrate and the second substrate may be enclosed in chambers with controlled humidity, air content, vapor pressure, and/or pressure forming an assembly with a controlled environment.
  • the humidity of the chambers can be saturated or about 100% to prevent liquid evaporation from the resolved reactors during the reactions.
  • the humidity can be controlled to about, less than about, or more than about 100%, 99.5%, 99%, 98.5%, 98%, 97.5%, 97%, 96.5%, 96%, 95.5%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30% or 25%.
  • Systems described herein, such as those with controlled environment assemblies described above may include a vacuum device/chuck and/or a temperature control system operatively connected with the plurality of resolved reactors.
  • the substrates may be positioned on a vacuum chuck.
  • the vacuum chuck may include surface irregularities positioned directly underneath the substrate.
  • the surface irregularities may comprise channels or recesses.
  • the vacuum chuck may be in fluid communication with the substrate for drawing gas out of the spaces defined by the channels.
  • the substrate e.g. a silicon wafer
  • a chuck such as the vacuum chuck described above.
  • FIG. 10 parts A-C exemplifies a system assembly of a single groove vacuum chuck and a sintered metal piece in between the substrate and the temperature control device.
  • the vacuum chuck can comprise a single groove with suitable dimensions to hold a substrate.
  • the vacuum chuck is designed such that a substrate can be held in place during one or more of the methods described herein.
  • the vacuum chuck, illustrated in FIG. 10 part A as an example comprises a single 1-5 mm groove with approximately 198 mm in diameter. In some cases, single groove vacuum chuck designs can be used to provide improved heat transfer to the substrate.
  • FIG. 10 parts A-C exemplifies a system assembly of a single groove vacuum chuck and a sintered metal piece in between the substrate and the temperature control device.
  • the vacuum chuck can comprise a single groove with suitable dimensions to hold a substrate.
  • the vacuum chuck is designed such that a substrate
  • 10 part B illustrates a sintered metal insert that is situated in between the substrate (e.g. silicon wafer) and the vacuum chuck, being fixed in place with adhesives.
  • the chuck can be an electrostatic chuck, as further described in U.S. Pat. No. 5,530,516, which is herein incorporated by reference in its entirety.
  • the plurality of resolved reactor caps can be aligned with the plurality of resolved loci on the first surface forming a temporary seal between the first surface and the capping element using any methods that are known in the art, as described in the U.S. Pat. No. 8,367,016 and European Patent No. EP 0126621 B1, both of which are herein incorporated by reference in their entirety.
  • the locus depth center point can be located a known z dimension distance from a fiducial marking embedded within the substrate.
  • the substrate can be placed within an imaging system that can include an optical device capable of detecting the fiducial marking.
  • the optical device can define an optical path axially aligned with the z dimension and can have a focal plane perpendicular to the optical path.
  • the fiducial marking can be maximally detected when the focal plane is at the z depth in comparison to when the focal plane is not substantially in-plane with the z depth.
  • Fiducial markings can be selectively placed in a suitable spatial arrangement on a first substrate, for example a synthesis wafer comprising a plurality of resolved loci, and/or the second substrate, for example a reactor element comprising a plurality of capping elements.
  • the global alignment fiducial marking can be formed close to a resolved locus.
  • two of the fiducial markings may be within a vicinity of the resolve loci and the third fiducial marking may be at the edge of the substrate.
  • the pattern of the microstructures in substrates described herein may itself be selected in a recognizable fashion suitable for alignment, for example in an asymmetric pattern, and can be used for alignment.
  • the fiducial marking serves as an alignment point to correct for depth of field or other optical characteristics.
  • the system may comprise a heating component, a cooling component, or a temperature controlled element (e.g., a thermal cycling device).
  • a thermal cycling device for use with a plurality of resolved reactors may be configured to perform nucleic acid amplification or assembly, such as PCR or PCA or any other suitable nucleic acid reaction described herein or known in the art.
  • the temperature can be controlled such that the temperatures within the reactors can be uniform and heat can be conducted quickly.
  • the systems described herein may have detection components for end-point or real-time detection from the reactors or the individual microstructures within substrates, for example during oligonucleotide synthesis, gene assembly or nucleic acid amplification.
  • Any of the systems described herein may be operably linked to a computer and may be automated through a computer either locally or remotely.
  • Computers and computer systems for the control of the system components described herein are further described elsewhere herein.
  • oligonucleotides are short nucleic acid molecules.
  • oligonucleotides may be from about 10 to about 300 nucleotides, from about 20 to about 400 nucleotides, from about 30 to about 500 nucleotides, from about 40 to about 600 nucleotides, or more than about 600 nucleotides long.
  • oligonucleotide lengths may fall within any range bounded by any of these values (e.g., from about 10 to about 400 nucleotides or from about 300 to about 400 nucleotides etc.).
  • Suitably short or long oligonucleotides may be used as necessitated by the specific application.
  • Individual oligonucleotides may be designed to have a different length from another in a library.
  • Oligonucleotides can be relatively short, e.g. shorter than 200, 100, 80, 60, 50, 40, 30, 25, 20, 15, 12, 10, 9, 8, 7, 6, 5, or 4 nucleotides, more particularly. Relatively longer oligonucleotides are also contemplated; in some embodiments, oligonucleotides are longer than or equal to 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 500, 600 nucleotides, or longer. Typically, oligonucleotides are single-stranded DNA or RNA molecules.
  • a device for synthesizing a plurality of nucleic acids having a predetermined sequence can include a support having a plurality of features, each feature having a plurality of oligonucleotides.
  • the plurality oligonucleotides having a predefined sequence are immobilized at different discrete features of a solid support.
  • the oligonucleotides are single-stranded.
  • the plurality of oligonucleotide sequences may comprise degenerate sequences.
  • the oligonucleotides are support-bound.
  • the device comprises a solid support having a plurality of spots or features, and each of the plurality of spots includes a plurality of support-bound oligonucleotides.
  • the oligonucleotides are covalently linked through their 3′ end to the solid support. Yet, in other embodiments the oligonucleotides are covalently linked through their 5′ end to the solid support.
  • the surface or support-bound oligonucleotides are immobilized through their 3′ end.
  • 3′ end it is meant the sequence downstream to the 5′ end, for example 2, 3, 4, 5, 6, 7, 10, 15, 20 nucleotides or more downstream from the 5′ end, for another example on the 3′ half, third, or quarter of the sequence, for yet another example, less than 2, 3, 4, 5, 6, 7, 10, 15, or 20 nucleotides away from the absolute 3′ end and by 5′ end it is meant the sequence upstream to the 3′ end, for example 2, 3, 4, 5, 6, 7, 10, 15, 20 nucleotides or more upstream from the 3′ end, for another example on the 5′ half, third, or quarter of the sequence, for yet another example, less than 2, 3, 4, 5, 6, 7, 10, 15, or 20 nucleotides away from the absolute 5′ end.
  • an oligonucleotide may be immobilized on the support via a nucleotide sequence (e.g., a degenerate binding sequence), a linker or spacer (e.g., a moiety that is not involved in hybridization).
  • the oligonucleotide comprises a spacer or linker to separate the oligonucleotide sequence from the support.
  • Useful spacers or linkers include photocleavable linkers, or other traditional chemical linkers.
  • oligonucleotides may be attached to a solid support through a cleavable linkage moiety.
  • the solid support may be functionalized to provide cleavable linkers for covalent attachment to the oligonucleotides.
  • the linker moiety may be of six or more atoms in length.
  • the cleavable moiety may be within an oligonucleotide and may be introduced during in situ synthesis.
  • a broad variety of cleavable moieties are available in the art of solid phase and microarray oligonucleotide synthesis (see e.g., Pon, R., Methods Mol. Biol. 20:465-496 (1993); Verma et al, Annu. Rev. Biochem. 67:99-134 (1998); U.S. Pat. Nos.
  • a suitable cleavable moiety may be selected to be compatible with the nature of the protecting group of the nucleoside bases, the choice of solid support, and/or the mode of reagent delivery, among others.
  • the oligonucleotides cleaved from the solid support contain a free 3′-OH end.
  • the free 3′-OH end may also be obtained by chemical or enzymatic treatment, following the cleavage of oligonucleotides.
  • the invention relates to methods and compositions for release of support or surface bound oligonucleotides into solution.
  • the cleavable moiety may be removed under conditions which do not degrade the oligonucleotides.
  • the linker may be cleaved using two approaches, either simultaneously under the same conditions as the deprotection step or subsequently utilizing a different condition or reagent for linker cleavage after the completion of the deprotection step.
  • the oligonucleotides are in solution.
  • oligonucleotides may be provided within a discrete volume such as a droplet or microdroplet at different discrete features.
  • discrete microvolumes of between about 0.5 pL and about 100 nL may be used.
  • a suitable dispenser or continuous flow such as flow through microstructures that is actuated by a pump, may be used for transferring volumes of less than 100 nL, less than 10 nL, less than 5 nL, less than 100 pL, less than 10 pL, or less than 0.5 pL to and between microstructures of substrates described herein.
  • small volumes from one or more microstructures of an oligonucleotide synthesis wafer may be dispensed into a reactor cap of a capping element by pushing a fluid through the oligonucleotide synthesis wafer.
  • nucleic acid constructs are provided at different features of the support.
  • the nucleic acid constructs including short oligonucleotides and longer/assembled polynucleotides, are partially double-stranded or duplex oligonucleotides.
  • duplex refers to a nucleic acid molecule that is at least partially double-stranded.
  • nucleoside or nucleotide are intended to include those moieties which contain not only the known purine and pyrimidine bases, but also other heterocyclic bases that have been modified.
  • nucleoside and “nucleotide” include those moieties that contain not only conventional ribose and deoxyribose sugars, but other sugars as well. Modified nucleosides or nucleotides also include modifications on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like.
  • nucleoside and nucleotide refer to nucleosides and nucleotides containing not only the conventional purine and pyrimidine bases, i.e., adenine (A), thymine (T), cytosine (C), guanine (G) and uracil (U), but also protected forms thereof, e.g., wherein the base is protected with a protecting group such as acetyl, difluoroacetyl, trifluoroacetyl, isobutyryl or benzoyl, and purine and pyrimidine analogs.
  • A adenine
  • T thymine
  • C cytosine
  • G guanine
  • U uracil
  • Suitable analogs will be known to those skilled in the art and are described in the pertinent texts and literature. Common analogs include, but are not limited to, 1-methyladenine, 2-methyladenine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentyladenine, N,N-dimethyladenine, 8-bromoadenine, 2-thiocytosine, 3-methylcytosine, 5-methylcytosine, 5-ethylcytosine, 4-acetylcytosine, 1-methylguanine, 2-methylguanine, 7-methylguanine, 2,2-dimethylguanine, 8-bromoguanine, 8-chloroguanine, 8-aminoguanine, 8-methylguanine, 8-thioguanine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, 5-ethyluracil, 5-propyluracil, 5-meth
  • nucleoside and nucleotide include those moieties that contain not only conventional ribose and deoxyribose sugars, but other sugars as well. Modified nucleosides or nucleotides also include modifications on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like.
  • oligonucleotide shall be generic to polydeoxynucleotides (containing 2-deoxy-D-ribose), to polyribonucleotides (containing D-ribose), to any other type of polynucleotide that is an N-glycoside of a purine or pyrimidine base, and to other polymers containing nonnucleotidic backbones (for example PNAs), providing that the polymers contain nucleobases in a configuration that allows for base pairing and base stacking, such as is found in DNA and RNA.
  • these terms include known types of oligonucleotide modifications, for example, substitution of one or more of the naturally occurring nucleotides with an analog, inter-nucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), with negatively charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), and with positively charged linkages (e.g., aminoalkylphosphoramidates, aminoalkylphosphotriesters), those containing pendant moieties, such as, for example, proteins (including nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.
  • attached as in, for example, a substrate surface having a moiety “attached” thereto, includes covalent binding, adsorption, and physical immobilization.
  • binding and “bound” are identical in meaning to the term “attached.”
  • the invention relates to the synthesis, such as chemical synthesis, of molecules other than nucleic acids.
  • peptide such as chemical synthesis
  • peptidyl and peptidic as used throughout the specification and claims are intended to include any structure comprised of two or more amino acids.
  • the peptides in the present arrays comprise about 5 to 10,000 amino acids, preferably about 5 to 1000 amino acids.
  • amino acids forming all or a part of a peptide may be any of the twenty conventional, naturally occurring amino acids, i.e., alanine (A), cysteine (C), aspartic acid (D), glutamic acid (E), phenylalanine (F), glycine (G), histidine (H), isoleucine (I), lysine (K), leucine (L), methionine (M), asparagine (N), proline (P), glutamine (Q), arginine (R), serine (S), threonine (T), valine (V), tryptophan (W), and tyrosine (Y).
  • any of the amino acids in the peptidic molecules forming the present arrays may be replaced by a non-conventional amino acid.
  • conservative replacements are preferred.
  • Conservative replacements substitute the original amino acid with a non-conventional amino acid that resembles the original in one or more of its characteristic properties (e.g., charge, hydrophobicity, stearic bulk; for example, one may replace Val with Nval).
  • non-conventional amino acid refers to amino acids other than conventional amino acids, and include, for example, isomers and modifications of the conventional amino acids (e.g., D-amino acids), non-protein amino acids, post-translationally modified amino acids, enzymatically modified amino acids, constructs or structures designed to mimic amino acids (e.g., ⁇ , ⁇ -disubstituted amino acids, N-alkyl amino acids, lactic acid, ⁇ -alanine, naphthylalanine, 3-pyridylalanine, 4-hydroxyproline, 0-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, and nor-leucine), and peptides having the naturally occurring amide —CONH— linkage replaced at one or more sites within the peptide backbone with a non-conventional linkage such as N-substituted amide, ester, thioamide, retro
  • the peptidic molecules of the array include pseudopeptides and peptidomimetics.
  • the peptides of this invention can be (a) naturally occurring, (b) produced by chemical synthesis, (c) produced by recombinant DNA technology, (d) produced by biochemical or enzymatic fragmentation of larger molecules, (e) produced by methods resulting from a combination of methods (a) through (d) listed above, or (f) produced by any other means for producing peptides.
  • oligomer is meant to encompass any polynucleotide or polypeptide or other chemical compound with repeating moieties such as nucleotides, amino acids, carbohydrates and the like.
  • the device has at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 20, 25, 30, 40, 50, 100, 1,000, 4,000, 10,000, 100,000, 1,000,000, or more different features (or “regions” or “spots”) at a particular location (i.e., an “address”).
  • a device may comprise one or more solid supports.
  • Each addressable location of a device may hold a different composition, such as a different oligonucleotide.
  • groups of addressable location of a device may hold wholly or substantially similar compositions, e.g. oligonucleotides, that are different from those held in other groups of microstructures of a device.
  • each oligonucleotide which may be prepared by methods of the invention in individually addressable locations and/or in mixed populations can range from five to 500,000, from 500 to 500,000, from 1,000 to 500,000, from 5,000 to 500,000, from 10,000 to 500,000, from 20,000 to 500,000, from 30,000 to 500,000, from 5,000 to 250,000, from 5,000 to 100,000, from five to 5,000, from five to 50,000, from 5,000 to 800,000, from 5,000 to 1,000,000, from 5,000 to 2,000,000, from 10,000 to 2,000,000, from 20,000 to 1,000,000, from 30,000 to 2,000,000, etc.
  • about or more than about 5, 10, 20, 50, 100, 500, 1000, 10000, 100000, 1000000, 10000000, 100000000, or more copies of each oligonucleotide can be synthesized. In some cases, less than 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, or fewer copies of an oligonucleotide may be synthesized.
  • Oligonucleotide phosphorothioates are modified oligonucleotides where one of the oxygen atoms in the phosphate moiety is replaced by sulfur. Phosphorothioates having sulfur at a non-bridging position are widely used. OPS are substantially more stable towards hydrolysis by nucleases. This property renders OPS to be an advantageous candidate to be used as antisense oligonucleotides in in vitro and in vivo applications comprising extensive exposure to nucleases. Similarly, to improve the stability of siRNA, at least one phosphorothioate linkage is often introduced at the 3′-terminus of sense and/or antisense strands.
  • methods and compositions of the invention relate to the de novo/chemical synthesis of OPSs. The synthesis of a large number of OPSs may be carried out in parallel using the methods and compositions described herein.
  • single stranded nucleic acids e.g. single stranded DNA (ssDNA)
  • ssDNA single stranded DNA
  • the plurality of samples that can be amplified in parallel format may be at least or about at least 1, 2, 3, 4, 5, 10, 20, 25, 50, 55, 100, 150, 200, 250, 300, 350, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, or more.
  • the plurality of samples that can be amplified in parallel format may be between 1-1000, 2-950, 3-900, 4-850, 5-800, 10-800, 20-750, 25-700, 30-650, 35-600, 40-550, 45-500, 50-450, 55-400, 60-350, 65-250, 70-200, 75-150, 80-100.
  • the number of multiplexed amplification reactions may be at least or about at least 1, 2, 3, 4, 5, 10, 20, 25, 50, 100, or more.
  • the number of multiplexed amplification reactions may be between 1-100, 2-50, 3-25, 4-20, 5-10. Those of skill in the art will appreciate that the number of multiplexed amplification reactions may fall within any range bound by any of these values, for example 3-100.
  • the number of different single stranded nucleic acids within the same sample can be at least or about at least 1, 2, 3, 10, 50, 100, 150, 200, 1000, 10000, 100000, or more.
  • the number of different single stranded nucleic acid within the same sample can be at most or about at most 10000, 10000, 1000, 200, 150, 100, 50, 10,3, 2, 1, or less.
  • the number of different single stranded nucleic acids within the same sample can be between 1-100000, 2-10000, 3-1000, 10-200, 50-100. Those of skill in the art appreciate that the number of different single stranded nucleic acid within the same sample can be between any of these ranges, bound by any of these values, for example 3-100.
  • the single stranded target nucleic acids may be at least or about at least 10, 20, 50, 100, 200, 500, 1000, 3000, or more nucleotides long.
  • the single stranded target nucleic acids may be at most or about at most 3000, 1000, 500, 200, 100, 50, 20, 10, or less, nucleotides long.
  • the single stranded target nucleic acids may be between 50-500, 75-450, or 100-400 nucleotides long.
  • length of the single stranded target nucleic acids may fall within any range bound by any of these values, for example between 50-1000.
  • a single stranded target nucleic acid may be flanked with one or more adaptor hybridization sequences.
  • These adaptor hybridization sequences sequences may be at least or about at least 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nucleotides long.
  • These adaptor hybridization sequences sequences may be at least or about at least 20, 19, 18, 17, 16, 15, 14, 13, 12, or fewer nucleotides long.
  • the adaptor hybridization sequences may be between 15-20, 16-19, 17-18 nucleotides long. Those of skill in the art appreciate that length the adaptor hybridization sequences may fall between a range bound by any of these values, for example between 15-17, 12-20, or 13, 25.
  • the adaptor hybridization sequences may be shared by a plurality of nucleic acids within a sample, wherein such plurality of single stranded nucleic acids have varying single stranded target nucleic acid regions. Multiple groups of single stranded nucleic acids, each group having different adaptor hybridization sequences, may coexist within a sample and be subjected to the amplification methods described herein.
  • the different adaptor hybridization sequences may differ from each other by at least or at least about 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more, nucleotides.
  • the different adaptor hybridization sequences may differ from each other by at most or at most about 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 2, 1, or fewer nucleotides.
  • the different adaptor hybridization sequences may differ from each other by a number of nucleotides between 1-50, 2-45, 5-40, 10-35, 15-25, or 20-30. Those of skill in the art appreciate that, the different adaptor hybridization sequences may differ from each other by a number of nucleotides that falls in any ranges bound by any of these values, for example between 2-50. Thus, a single universal adaptor may be used for a number of single stranded nucleic acids sharing end sequences such that the universal adaptor is hybridizable to all of them.
  • a plurality of adaptors may be used in a sample with a plurality of groups of single stranded nucleic acids, wherein each of the adaptors is hybridizable to the end sequences in one or more of the groups. At least or at least about 1, 2, 3, 4, 5, 10, 20, 25, 30, 50, 100, or more adaptors may be used in a multiplexed fashion. At most or about at most 100, 50, 30, 25, 20, 10, 5, 4, 3, 21, 1 or fewer adaptors may be used in a multiplexed fashion. Between 1-100, 2-50, 3-30, 4-25, 5-20, adaptors may be used in a multiplexed fashion.
  • a first sequence on an adaptor may hybridize to the 5′ end of a single stranded nucleic acid and a second sequence on the adaptor may hybridize to the 3′ end of the same single stranded nucleic acid, facilitating the circularization of the single stranded nucleic acid.
  • the single stranded nucleic acids may be circularized upon hybridization with an adaptor.
  • the circularized single stranded nucleic acid may be joined at its 5′ and 3′ ends, forming a contiguous circle.
  • Various ligation methods and enzymes are suitable for the reaction as described elsewhere herein and otherwise known in the art.
  • the adaptor can be extended using the circularized single stranded nucleic acid as a template.
  • one or more different primers may be used to anneal elsewhere on the circle in addition or instead of the adaptor and can be extended with a polymerase enzyme.
  • the extension reaction such as rolling circle amplification, multi-primer rolling circle amplification or any other suitable extension reaction, can facilitate the creation of one long and linear single stranded amplicon nucleic acids comprising alternating replicas of the single stranded template nucleic acid and the adaptor hybridization sequences.
  • the combined replicas of the adaptor hybridization sequences are copies of the adaptor sequence, or differ by less than 8, 7, 6, 5, 4, 3, or 2 nucleotides. These sequences will together be referred to as “adaptor copies” for ease, but it is understood that they may refer to a number of different types of sequences generated from the extension reaction using the circle as a template.
  • One or more auxiliary oligonucleotides may be provided to anneal to the single stranded amplicon nucleic acids.
  • the auxiliary oligonucleotides may be partially or completely complementary to the adaptor copies.
  • the hybridization of the auxiliary oligonucleotide to the single stranded amplicon nucleic acid can form alternating single and double stranded regions.
  • the single stranded regions may correspond to replicas of the single stranded template nucleic acid sequence.
  • the hybridization of the auxiliary oligonucleotide to the single stranded amplicon nucleic acid e.g.
  • cleaving agent such as a restriction endonucleases, e.g. a Type IIS restriction endonucleases.
  • the sequences can be designed in such a way that the cutting site for the cleaving agent falls at or near the juncture of the single and double stranded regions.
  • a plurality of single stranded replicas of the single stranded target nucleic acids will be formed, wherein the single stranded target nucleic acids do not contain any portions from the adaptor copies, or contain less than 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 nucleotides from the adaptor copies.
  • the auxiliary oligonucleotides may have an affinity tag, such as biotin or a biotin derivative.
  • the affinity tag may be at the 5′ end, 3′ end, or in the middle of the oligonucleotide.
  • Purification of the auxiliary oligonucleotides from the sample may be facilitated using an affinity binding partner on a purification medium, such as streptavidin coated beads surfaces, or any other suitable affinity purification method.
  • Cleaved adaptor copies or portion thereof may also be purified along with the auxiliary oligonucleotides, facilitated by their hybridization with the auxiliary oligonucleotides.
  • a plurality of auxiliary oligonucleotides may be used, each hybridizing to a different group of single stranded amplicon nucleic acids, for example at the locations of the adaptor copies.
  • Alternative purification methods such as HPLC or PAGE purification, may be used with or without affinity tagged oligonucleotides.
  • single stranded nucleic acids may also be amplified in a similar way to the method described for FIG. 64 parts A-F, with the exception that the sequences and the cleaving agent is selected such that the cutting site falls within the adaptor copies such that single stranded replicas of the single stranded target nucleic acid sequence are formed with flanking regions.
  • flanking regions may be reverse complements of the flanking regions of the original single stranded target nucleic acid sequence. Alternatively, depending on the exact location of the cutting site, they may “shift” nucleotides from one flanking region to the other.
  • a reverse complementary oligonucleotide to the adaptor nucleotide can still effectively hybridize to the both ends facilitating another round of circularization.
  • the method illustrated in FIG. 65 parts A-F can be repeated a plurality of times, such as at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more times, alone or as a precursor reaction to the method illustrated in FIG. 64 parts A-F, to amplify the single stranded target nucleic acid.
  • the method illustrated in FIG. 64 parts A-F can be used as a last round to get rid of the flanking regions, leaving behind amplified single stranded copies or replicas of the single stranded target nucleic acids.
  • the extension reaction product such as a rolling cycle amplification product, comprising single-stranded repeating units of amplified desired oligonucleotides and adaptor oligonucleotides, may be cleaved within or near the adaptor oligonucleotides to generate released desired oligonucleotides, wherein the released desired oligonucleotides may or may not comprise adaptor nucleotides at the 5′ or 3′ ends of the desired oligonucleotide.
  • the cleaving is accomplished at the very juncture of the single-stranded repeating units of amplified desired oligonucleotides and adaptor sequences.
  • one or more regions of an adaptor sequence comprise a molecular barcode, protein binding site, restriction endonuclease site, or any combination thereof.
  • the amplification product is cleaved with one or more restriction endonucleases at or near a restriction endonuclease recognition site, wherein the recognition site is located within an adaptor oligonucleotide sequence.
  • the amplification product can be hybridized with an auxiliary oligonucleotide comprising a sequence complementary to the adaptor oligonucleotide sequence comprising the restriction endonuclease recognition site.
  • the amplification product may be cleaved at the 5′ end of a recognition site by Type II endonucleases.
  • the cutting site may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 nucleotides or more upstream from the first nucleotide of the recognition site.
  • the 5′ or 3′ end of a recognition site may form a 0, 1, 2, 3, 4, or 5 nucleotide overhang.
  • Blunt Type II endonucleases which cleave with a 0 nucleotide overhang include MlyI and SchI.
  • Type IIS endonucleases which generate 5′ overhangs include, but are not limited to, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, and LguI.
  • Nicking endonucleases which remove the recognition site and cleave on the 5′ site of the recognition site include, but are not limited to Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, and UbaPI.
  • the amplification product may be cleaved by non-Type IIS endonucleases which cleave at the 5′ end of the recognition site on both strands to generate a blunt end.
  • the amplification product may be cleaved by non-Type IIS endonucleases which cleave at the 5′ end of the recognition site on one strand and in the middle of the recognition site on the other strand, generating a 5′ overhang.
  • endonucleases which generate a 5′ overhang include, but are not limited to, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I, TasI, TspEI, AjnI, BstSCI, EcoRII, MaeIII, NmuCI, and Psp6I.
  • the amplification product may be cleaved by nicking endonucleases which cleave at the 5′ end of a recognition site to produce a nick.
  • the nicking site may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 nucleotides or more upstream from the first nucleotide of the recognition site.
  • Exemplary nicking endonucleases include, but are not limited to, Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, and UbaPI.
  • the amplification product may be cleaved at the 3′ end of a recognition site by Type IIS endonucleases.
  • the 5′ or 3′ end of a recognition site may form a 0, 1, 2, 3, 4, or 5 nucleotide overhang.
  • the cutting site may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 nucleotides or more downstream from the last nucleotide of the recognition site.
  • Type IIS endonucleases which cleave at 0 nucleotides downstream of the last nucleotide of the recognition site include MlyI and SchI.
  • Type IIS endonucleases which generate 3′ overhangs include, but are not limited to, MnlI, BspCNI, BsrI, BtsCI, HphI, HpyAV, MboII, AcuI, BeiVI, BmrI, BpmI, BpuEI, BseRI, BsgI, BsmI, BsrDI, BtsI, EciI, MmeI, NmeAIII, Hin4II, TscAI, Bce83I, BmuI, BsbI, and BscCI.
  • Non-Type II endonucleases which remove the recognition site on one strand and generate a 3′ overhang or blunt end on the other strand include, but are not limited to NlaIII, Hpy99I, TspRI, FaeI, Hin1II, Hsp92II, SetI, TaiI, TscI, TscAI, and TseFI.
  • Nicking endonucleases which remove the recognition site and cut on the 3′ end of the recognition site include Nt.AlwI, Nt.BsmAI, Nt.BstNBI, and Nt.BspQI.
  • restriction endonucleases with cutting sites located 1 base pair downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, ApaI, AscI, BmtI, BsaI, BsmBI, BsrGI, DdeI, DraIII, HpaI, MseI, PacI, PciI, PmeI, PvuI, SacII, SapI, Sau3AI, ScaI, Sfil, SmaI, SphI, StuI, and XmaI.
  • Restriction endonucleases with cutting sites located 2 base pairs downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, Alul, ApaI, AscI, BglII, BmtI, BsaI, BsiWI, BsmBI, BsrGI, BssHII, DdeI, DralII, EagI, HpaI, KpnI, MseI, NlaIII, Pacd, PciI, PmeI, PstI, PvuI, RsaI, SacII, SapI, Sau3AI, Sbfl, ScaI, Sfil, SmaI, SphI, SspI, StuI, Sty1, and XmaI.
  • Restriction endonucleases with cutting sites located 3 base pairs downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, Alul, ApaI, AscI, AvrII, Bam-JI, BglII, BmtI, BsaI, BsiWI, BsmBI, BsrGI, BssHII, DdeI, DralII, EagI, FseI, HindIII, HpaI, KpnI, MfeI, MluI, MseI, NcoI, NdeI, NheI, NlaIII, NsiI, PacI, PciI, PmeI, PstI, RsaI, SacI, SacII, SalI, SapI, Sau3AI, Sbfl, ScaI, Sfil, SmaI, SphI, SspI, StuI, Sty1, and XmaI.
  • Restriction endonucleases with cutting sites located 4 base pairs downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, Alul, ApaI, AscI, AvrII, Bam-JI, BglII, BmtI, BsaI, BsiWI, BsmBI, BsrGI, BssHII, ClaI, DdeI, DrallI, EagI, EcoRI, FseI, HindIII, HpaI, KpnI, MfeI, MluI, MseI, NcoI, NdeI, NheI, NlaIII, NsiI, Pacd, PciI, PmeI, PstI, PvuI, PvuII, RsaI, Sacd, SacII, SalI, SapI, Sau3AI, Sbfl, ScaI, Sfil, SmaI, SphI, Ssp
  • Restriction endonucleases with cutting sites located 5 base pairs downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, Alul, ApaI, AscI, AvrII, Bam-JI, BglII, BmtI, BsaI, BsiWI, BsmBI, BsrGI, BssHII, ClaI, DdeI, DrallI, EagI, EcoRI, EcoRV, FseI, HindIII, HpaI, KpnI, MfeI, MluI, MseI, NcoI, NdeI, NheI, NlaIII, NsiI, NspI, Pacd, PciI, PmeI, PstI, PvuI, PvuII, RsaI, Sacd, SacII, SaIl, SapI, Sau3AI, Sbfl, ScaI, Sfil, Sm
  • the adaptor sequence may comprise one or more restriction recognition sites.
  • the recognition site is at least 4, 5, or 6 base pairs long.
  • the recognition site is non-palindromic.
  • the adaptor oligonucleotide comprises two or more recognition sites. Two or more recognition sites may be cleaved with one or more restriction enzymes. It will be known to one of skill in the art that the cleavage of two or more recognition sites with two or more restriction enzymes may be achieved and/or perfected by buffer and reaction temperature optimization.
  • Exemplary pairs of recognition sites in an adaptor sequence include, but are not limited to, MlyI-MlyI, MlyI-Nt.AlwI, BsaI-MlyI, MlyI-BciVI, and BfuCI-MlyI.
  • the methods and compositions of the invention in various embodiments allow for the construction of gene libraries comprising a collection of individually accessible polynucleotides of interest.
  • the polynucleotides can be linear, can be maintained in vectors (e. g., plasmid or phage), cells (e. g., bacterial cells), as purified DNA, or in other suitable forms known in the art.
  • Library members can be stored in a variety of ways for retrieval and use, including for example, in multiwell culture or microtiter plates, in vials, in a suitable cellular environment (e.g., E.
  • a gene library may comprise at least about 10, 100, 200, 300, 400, 500, 600, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7500, 10000, 15000, 20000, 30000, 40000, 50000, 60000, 75000, 100000 members, or more.
  • Nucleic acid molecules described herein may be produced in microscale quantities (e.g., femtomoles to nanomoles quantities, such as from about 0.001 femtomole to about 1.0 nanomole, from about 0.01 femtomole to about 1.0 nanomole, from about 0.1 femtomole to about 1.0 nanomole, from about 0.001 femtomole to about 0.1 nanomole, from about 0.001 femtomole to about 0.01 nanomole, from about 0.001 femtomole to about 0.001 nanomole, from about 1.0 femtomole to about 1.0 nanomole, from about 1.0 femtomole to about 0.1 nanomole, from about 1.0 femtomole to about 0.01 nanomole, from about 1.0 femtomole to about 0.001 nanomole, from about 10 femtomoles to about 1.0 nanomole, from
  • nucleic acid quantity may fall within any range bounded by any of these values (e.g., from about 0.001 femtomole to about 1000 nanomoles or from about 0.001 femtomole to about 0.01 femtomole).
  • nucleic acid molecules may be produced at quantities of about or more than about 0.001, 0.01, 0.1, 1, 10, 100, femtomoles, 1, 10, 100 picomoles, 1, 10, 100 nanomoles, 1 micromole, or more.
  • nucleic acid molecules may be produced at quantities of less than about 1 micromole, 100, 10, 1 nanomoles, 100, 10, 1 picomoles, 100, 10, 1, 0.1, 0.001, 0.001 femtomoles or less. In some embodiments, nucleic acid molecules may be produced at concentrations of about or more than about 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 500, 750, 1000 nM. In some embodiments, the gene library is synthesized/assembled and/or held in a space that is less than 1000, 100, 10, 1 m 3 , 100, 10, 1 dm 3 , 100, 10, 1 cm 3 , or less.
  • the location of individually accessible members can be available or easily determined. Individually accessible members may be easily retrieved from the library.
  • the methods and compositions of the invention allow for production of synthetic (i.e. de novo synthesized) genes.
  • Libraries comprising synthetic genes may be constructed by a variety of methods described in further detail elsewhere herein, such as PCA, non-PCA gene assembly methods or hierarchical gene assembly, combining (“stitching”) two or more double-stranded polynucleotides (referred to here as “synthons”) to produce larger DNA units (i.e., multisynthons or chassis).
  • Libraries of large constructs may involve polynucleotides that are at least 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 400, 500 kb long or longer.
  • the large constructs can be bounded by an independently selected upper limit of about 5000, 10000, 20000 or 50000 base pairs.
  • polypeptide-segment encoding nucleotide sequences including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest.
  • the term “gene” as used herein refers broadly to any type of coding or non-coding, long polynucleotide or polynucleotide analog.
  • the methods and compositions of the invention relate to a library of genes.
  • the gene library may comprise a plurality of subsegments. In one or more subsegments, the genes of the library may be covalently linked together. In one or more subsegments, the genes of the library may encode for components of a first metabolic pathway with one or more metabolic end products. In one or more subsegments, genes of the library may be selected based on the manufacturing process of one or more targeted metabolic end products. The one or more metabolic end products comprise a biofuel. In one or more subsegments, the genes of the library may encode for components of a second metabolic pathway with one or more metabolic end products. The one or more end products of the first and second metabolic pathways may comprise one or more shared end products. In some cases, the first metabolic pathway comprises an end product that is manipulated in the second metabolic pathway.
  • a subsegment of the library may comprise, consists of, or consists essentially of genes encoding for a part or all of the genome of a synthetic organism, e.g. a virus or a bacterium.
  • a synthetic organism e.g. a virus or a bacterium.
  • the terms “gene”, “polynucleotide”, “nucleotide”, “nucleotide sequence”, “nucleic acid” and “oligonucleotide” are used interchangeably and refer to a nucleotide polymer. Unless otherwise limited, the same include known analogs of natural nucleotides that can function in a similar manner (e.g., hybridize) to naturally occurring nucleotides.
  • Polynucleotides can be of polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof.
  • Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown.
  • polynucleotides coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.
  • mRNA messenger RNA
  • transfer RNA transfer RNA
  • ribosomal RNA short interfering RNA
  • shRNA short-hairpin
  • a polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. Polynucleotide sequences, when provided, are listed in the 5′ to 3′ direction, unless stated otherwise.
  • nucleic acid encompasses double- or triple-stranded nucleic acids, as well as single-stranded molecules.
  • nucleic acid strands need not be coextensive (i.e., a double-stranded nucleic acid need not be double-stranded along the entire length of both strands).
  • nucleic acid also encompasses any chemical modification thereof, such as by methylation and/or by capping.
  • Nucleic acid modifications can include addition of chemical groups that incorporate additional charge, polarizability, hydrogen bonding, electrostatic interaction, and functionality to the individual nucleic acid bases or to the nucleic acid as a whole. Such modifications may include base modifications such as 2′-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at cytosine exocyclic amines, substitutions of 5-bromo-uracil, backbone modifications, unusual base pairing combinations such as the isobases isocytidine and isoguanidine, and the like.
  • nucleic acids can include polydeoxyribonucleotides (containing 2-deoxy-D-ribose), polyribonucleotides (containing D-ribose), and any other type of nucleic acid that is an N- or C-glycoside of a purine or pyrimidine base, as well as other polymers containing nonnucleotidic backbones, for example, polyamide (e.g., peptide nucleic acids (PNAs)) and polymorpholino (commercially available from the Anti-Virals, Inc., Corvallis, Oreg., as Neugene) polymers, and other synthetic sequence-specific nucleic acid polymers providing that the polymers contain nucleobases in a configuration which allows for base pairing and base stacking, such as is found in DNA and RNA.
  • PNAs peptide nucleic acids
  • nucleic acid also encompasses linked nucleic acids (LNAs), which are described in U.S. Pat. Nos. 6,794,499, 6,670,461, 6,262,490, and 6,770,748, which are incorporated herein by reference in their entirety for their disclosure of LNAs.
  • LNAs linked nucleic acids
  • the term “complementary” refers to the capacity for precise pairing between two nucleotides. If a nucleotide at a given position of a nucleic acid is capable of hydrogen bonding with a nucleotide of another nucleic acid, then the two nucleic acids are considered to be complementary to one another at that position. Complementarity between two single-stranded nucleic acid molecules may be “partial”, in which only some of the nucleotides bind, or it may be complete when total complementarity exists between the single-stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands.
  • Hybridization and “annealing” refer to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues.
  • the hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner.
  • the complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self hybridizing strand, or any combination of these.
  • a hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PCR or other amplification reactions, or the enzymatic cleavage of a polynucleotide by a ribozyme.
  • a first sequence that can be stabilized via hydrogen bonding with the bases of the nucleotide residues of a second sequence is said to be “hybridizable” to said second sequence.
  • the second sequence can also be said to be hybridizable to the first sequence.
  • hybridized refers to a polynucleotide in a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues.
  • the hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner.
  • the complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self hybridizing strand, or any combination of these.
  • the hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PCR reaction, or the enzymatic cleavage of a polynucleotide by a ribozyme.
  • a sequence hybridized with a given sequence is referred to as the “complement” of the given sequence.
  • Specific hybridization refers to the binding of a nucleic acid to a target nucleotide sequence in the absence of substantial binding to other nucleotide sequences present in the hybridization mixture under defined stringency conditions. Those of skill in the art recognize that relaxing the stringency of the hybridization conditions allows sequence mismatches to be tolerated.
  • a “complement” of a given sequence is a sequence that is fully or substantially complementary to and hybridizable to the given sequence.
  • a first sequence that is hybridizable to a second sequence or set of second sequences is specifically or selectively hybridizable to the second sequence or set of second sequences, such that hybridization to the second sequence or set of second sequences is preferred (e.g. thermodynamically more stable under a given set of conditions, such as stringent conditions commonly used in the art) to hybridization with non-target sequences during a hybridization reaction.
  • hybridizable sequences share a degree of sequence complementarity over all or a portion of their respective lengths, such as between 25%-100% complementarity, including at least about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and 100% sequence complementarity.
  • primer refers to an oligonucleotide that is capable of hybridizing (also termed “annealing”) with a nucleic acid and serving as an initiation site for nucleotide (RNA or DNA) polymerization under appropriate conditions (i.e., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature.
  • RNA or DNA nucleotide
  • the appropriate length of a primer depends on the intended use of the primer, but primers are typically at least 7 nucleotides long and, more typically range from 10 to 30 nucleotides, or even more typically from 15 to 30 nucleotides, in length.
  • primers can be somewhat longer, e.g., 30 to 50 or 40-70 nucleotides long. Those of skill in the art appreciate that the primer length may fall within any range bounded by any of these values (e.g., from 7 to 70 or from 50 to 70). Oligonucleotides of various lengths as further described herein can be used as primers or building blocks for amplification and/or gene assembly reactions.
  • primer length refers to the portion of an oligonucleotide or nucleic acid that hybridizes to a complementary “target” sequence and primes nucleotide synthesis. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.
  • a primer need not reflect the exact sequence of the template but must be sufficiently complementary to hybridize with a template.
  • the term “primer site” or “primer binding site” refers to the segment of the target nucleic acid to which a primer hybridizes.
  • a construct presenting a primer binding site is often referred to as a “priming ready construct” or “amplification ready construct”.
  • a primer is said to anneal to another nucleic acid if the primer, or a portion thereof, hybridizes to a nucleotide sequence within the nucleic acid.
  • the statement that a primer hybridizes to a particular nucleotide sequence is not intended to imply that the primer hybridizes either completely or exclusively to that nucleotide sequence.
  • Oligonucleotides synthesized on the substrates described herein may comprise greater than about 100, preferably greater than about 1000, more preferably greater than about 16,000, and most preferably greater than 50,000 or 250,000 or even greater than about 1,000.000 different oligonucleotide probes, preferably in less than 20, 10, 5, 1, 0.1 cm 2 , or smaller surface area.
  • a method of quickly synthesizing n-mer, such as about or at least about 100-, 150-, 200, 250-, 300, 350-, or longer nucleotide, oligonucleotides on a substrate is further described herein in various embodiments.
  • the method can use a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling. Standard phosphoramidite chemistry can be used in some cases.
  • At least two building blocks are coupled to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a fast rate, such as a rate of at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more.
  • adenine, guanine, thymine, cytosine, or uridine building blocks, or analogs/modified versions thereof are used as described in further detail elsewhere herein.
  • the added building blocks comprise dinucleotides, trinucleotides, or longer nucleotide based building blocks, such as building blocks containing about or at least about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more nucleotides.
  • large libraries of n-mer oligonucleotides are synthesized in parallel on substrate, e.g. a substrate with about or at least about 100, 1000, 10000, 100000, 1000000, 2000000, 3000000, 4000000, 5000000 resolved loci hosting oligonucleotide synthesis. Individual loci may host synthesis of olignucleotides that are different from each other.
  • reagent dosage can be accurately controlled through cycles of continuous/displacing flow of liquids and vacuum drying steps, such as a vacuum drying step prior to coupling of new building blocks.
  • the substrate may comprise vias, such as at least about 100, 1000, 10000, 100000, 1000000, or more vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. Substrates may be kept in place during one or all of the steps within a phosphoramidite chemistry cycle and flow reagents may be passed through the substrate.
  • a common method for the preparation of synthetic nucleic acids is based on the fundamental work of Caruthers and is known as the phosphoramidite method (M. H. Caruthers, Methods in Enzymology 154, 287-313, 1987; incorporated herein by reference in its entirety).
  • the sequence of the resultant molecules can be controlled by the order of synthesis.
  • Other methods, such as the H-phosphonate method serve the same purpose of successive synthesis of a polymer from its subunits.
  • the synthesis of DNA oligomers by the methods of the invention may be achieved through traditional phosphoramidite chemistry.
  • Phosphoramidite based chemical synthesis of nucleic acids is well known to those of skill in the art, being reviewed in Streyer, Biochemistry (1988) pp 123-124 and U.S. Pat. No. 4,415,732, herein incorporated by reference.
  • Phosporamidite reagents, including B-cyanoethyl (CE) phosphoramidite monomers and CPG (controlled porous glass) reagents usable with the invention may be purchased from numerous commercial sources, including American International Chemical (Natick Mass.), BD Biosciences (Palo Alto Calif.), and others.
  • the chemical synthesis of nucleic acids is overwhelmingly performed using variations of the phosphoramidite chemistry on solid surfaces (Beaucage S L, Caruthers M H. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 1981; 22:1859-1862; Caruthers M H. Gene synthesis machines—DNA chemistry and its uses. Science. 1985; 230:281-285), both of which are incorporated herein by reference in their entirety.
  • phosphoramidite based methods can be used to synthesize abundant base, backbone and sugar modifications of deoxyribo- and ribonucleic acids, as well as nucleic acid analogs (Beaucage S L, Iyer R P. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron. 1992; 48:2223-2311; Beigelman L, Matulic-Adamic J, Karpeisky A, Haeberli P, Sweedler D. Base-modified phosphoramidite analogs of pyrimidine ribonucleosides for RNA structure-activity studies. Methods Enzymol.
  • the phosphoramidite chemistry has been adapted for in situ synthesis of DNA on solid substrates, e.g. microarrays. Such synthesis is typically achieved by spatial control of one step of the synthesis cycle, which results in thousands to hundreds of thousands of unique oligonucleotides distributed in a small area, e.g. an area of a few square centimeters.
  • the areas and substrates architectures for the synthesis of oligonucleotides are further described elsewhere herein in greater detail.
  • Suitable methods used to achieve spatial control can include (i) control of the coupling step by inkjet printing (Agilent, Protogene; Hughes T R, Mao M, Jones A R, Burchard J, Marton M J, Shannon K W, Lefkowitz S M, Ziman M, Schelter J M, Meyer M R, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 2001; 19:342-347; Butler J H, Cronin M, Anderson K M, Biddison G M, Chatelain F, Cummer M, Davi D J, Fisher L, Oberdorf A W, Frueh F W, et al.
  • inkjet printing Align, Protogene; Hughes T R, Mao M, Jones A R, Burchard J, Marton M J, Shannon K W, Lefkowitz S M, Ziman M, Schelter J M, Meyer M R, et al
  • Oligonucleotides made on substrates can be cleaved from their solid surface and optionally pooled to enable new applications such as, gene assembly, nucleic acid amplification, sequencing libraries, shRNA libraries etc.
  • New applications such as, gene assembly, nucleic acid amplification, sequencing libraries, shRNA libraries etc.
  • stepwise coupling yields for example stepwise coupling yields that are at least about 99.5%.
  • the methods and compositions of the invention contemplate a coupling yield of more than 98%, 98.5%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, 99.95%, 99.96%, 99.97%, 99.98%, 99.99% or higher.
  • the coupling efficiency is lower, e.g. below 99%, the impact on sequence integrity typically follows one of two scenarios. If capping is used, the low coupling efficiency will be evidenced by short, truncated sequences.
  • depurination may affect sequence integrity by generating short, truncated sequences that can typically be mapped to purine nucleobases.
  • high yield, high quality synthesis of oligonucleotides is supported by control of depurination combined with highly efficient coupling and 5′-hydroxyl deprotection reactions.
  • high coupling yields and low depurination long, high quality oligonucleotides can be synthesized without the need for extensive purification and/or PCR amplification to compensate for the low yield.
  • the methods and compositions of the invention in various embodiments provide conditions to achieve such high coupling yields, low depurination, and effective removal of protecting groups.
  • the methods and compositions of the invention described herein rely on standard phosphoramidite chemistry on a functionalized substrate, e.g. a silylated wafer optionally using suitable modifications, known in the art.
  • a monomer e.g. a mononucleotide, a dinucleotide, or a longer oligonucleotide with suitable modifications for phosphoramidite chemistry
  • one or more of the following steps may be performed at least once to achieve the step-wise synthesis of high-quality polymers in situ: 1) Coupling, 2) Capping, 3) Oxidation, 4) Sulfurization, 5) Deblocking (detritylation), and 6) Washing.
  • FIG. 11 exemplifies a four-step phosphoramidite synthesis method comprising coupling, capping, oxidation and deblocking steps.
  • Elongation of a growing oligodeoxynucleotide may be achieved through subsequent additions of phosphoramidite building blocks typically via the formation of a phosphate triester internucleotide bond.
  • a solution of phosphoramidite building blocks e.g. nucleoside phosphoramidite (or a mixture of several phosphoramidites), typically at 0.02-0.2 M concentration, in acetonitrile may be activated, e.g.
  • the mixing may be achieved in fluid lines of an inkjet while the components are being delivered to selected spots of a suitable substrate described in further detail elsewhere herein.
  • the phosphoramidite building blocks such as those activated as described above, are typically provided in 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound material is then brought in contact with the starting solid support (first coupling) or a support-bound oligonucleotide precursor (following couplings).
  • 5′-hydroxy group of the precursor may be set to react with the activated phosphoramidite moiety of the incoming nucleoside phosphoramidite to form a phosphite triester linkage.
  • the reaction is also highly sensitive to the presence of water, particularly when dilute solutions of phosphoramidites are used, and is typically carried out in anhydrous acetonitrile.
  • any unbound reagents and by-products may be removed by a wash step.
  • the product of the coupling reaction may be treated with a capping agent that can e.g. esterify failure sequences and/or cleave phosphate reaction products on the heterocyclic bases.
  • the capping step may be performed by treating the solid support-bound material with a mixture of acetic anhydride and 1-methylimidazole or DMAP as catalysts and may serve two purposes: After the completion of the coupling reaction, a fraction of the solid support-bound 5′—OH groups (e.g. 0.1 to 1%) may remain unreacted. These unreacted groups can be permanently blocked from further chain elongation to prevent the formation of oligonucleotides with an internal base deletion commonly referred to as (n ⁇ 1) shortmers.
  • the unreacted 5′-hydroxy groups can be acetylated by the capping mixture.
  • phosphoramidites activated with 1H-tetrazole are understood to react, to a small extent, with the 06 position of guanosine.
  • this side product possibly via O6-N7 migration, may undergo depurination.
  • the apurinic sites may end up being cleaved in the course of the final deprotection of the oligonucleotide thus reducing the yield of the full-length product.
  • the 06 modifications may be removed by treatment with the capping reagent prior to oxidation with I 2 /water.
  • OPS oligonucleotide phosphorothioates
  • the support-bound material may be treated with iodine and water, typically in the presence of a weak base (e.g. pyridine, lutidine, or collidine) to affect oxidization of the phosphite triester into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester intemucleosidic linkage.
  • Oxidation may be carried out under anhydrous conditions using, e.g. tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO).
  • the step of oxidation may be substituted with a sulfurization step to obtain oligonucleotide phosphorothioates.
  • Synthesis of oligonucleotide phosphorothioates can be achieved similar to that of natural oligonucleotides using the methods and compositions of the invention in various embodiments. Briefly, the oxidation step can be replaced by the sulfur transfer reaction (sulfurization) and any capping steps can be performed after the sulfurization.
  • reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).
  • DDTT 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione
  • DDTT 3H-1,2-benzodithiol-3-one 1,1-dioxide
  • Beaucage reagent also known as Beaucage reagent
  • TETD N,N,N′N′-Tetraethylthiuram disulfide
  • a deblocking (or detrytilation) step may serve to remove blocking groups, such as the DMT group, e.g. with a solution of an acid, such as 2% trichloroacetic acid (TCA) or 3% dichloroacetic acid (DCA), in an inert solvent (dichloromethane or toluene).
  • a washing step may be performed.
  • the solid support-bound oligonucleotide precursor is affected to bear a free 5′-terminal hydroxyl group. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound oligonucleotide and thus reduces the yield of the desired full-length product.
  • Methods and compositions of the invention described herein provide for controlled deblocking conditions limiting undesired depurination reactions.
  • an oxidation solution comprising about 0.02 M 12 in THF/pyridine/H2O or any suitable variations obvious to one skilled in the art may be used.
  • the detritylation solution may be 3% dichloroacetic acid (DCA) or 2% tricholoroacetic acid (TCA) in toluene or dichloromethane or any other suitable inert solvent.
  • DCA dichloroacetic acid
  • TCA tricholoroacetic acid
  • Suitable variations of the detrytilation solution are understood to be obvious to one skilled in the art.
  • the methods and compositions of the invention allow for the displacement of the detrytilation solution without allowing for significant evaporation of the solvent, preventing concentrated spots of the depurinating components, e.g. DCA or TCA.
  • a chasing solution may be run after the detrytilation solution.
  • the density of the chasing solution may be adjusted to achieve a first in first out process.
  • a slightly denser chasing solution may be used to achieve this outcome.
  • the detrytilation solution may be chased with the oxidation solution.
  • the chasing solution may comprise a quenching agent, such as pyridine.
  • continuous liquid conditions are used until the deblocking solution is substantially removed from the oligonucleotide synthesis loci on a substrate.
  • the concentration of the depurinating components may be tightly controlled, e.g.
  • oligonucleotide synthesis loci of a substrate limiting their values on oligonucleotide synthesis loci of a substrate to be less than 3-, 2.5-, 2-, 1.5-, 1.4-, 1.3-, 1.25-, 1.2-, 1.15-, 1.1-, 1.05-, 1.04-, 1.03-, 1.02-, 1.01-, 1.005-fold or less of the original concentration.
  • the displacement process can be optimized to adequately control the chemical dosage on the oligonucleotide synthesis loci within a useful range.
  • the dosage may collectively refer to the summed kinetic effects of time, concentration and temperature on both the completion of the intended reaction (detritylation) and the extent of the side reaction (depurination).
  • detrytilation by virtue of being reversible, may result in the synthesis of a series of oligomers lacking one or more of the correct nucleotides.
  • a two-step chemistry proposed by Sierzchala et al. Solid-phase oligodeoxynucleotide synthesis: A two-step cycle using peroxy anion deprotection. J. Am. Chem. Soc. 2003; 125:13427-13441) can address the issue of depurination by eliminating the use of acid deprotection of the 5′ or 3′ ends of the growing chain.
  • the two-step synthesis cycle makes use of aqueous peroxy anions buffered under mildly basic conditions, e.g.
  • the peroxy anion solution or any suitable variation with strong nucleophylic and mildly oxidizing properties permits consolidating deblocking and oxidization steps into one. Further, high cyclical yields allows for the elimination of capping steps.
  • Deprotection and cleavage of the DNA from the substrate may be performed as described by Cleary et al. (Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nature Methods. 2004; 1:241-248), for example by treatment with NH 4 OH, by applying ultraviolet light to a photocleavable linker, by targeting, e.g. heat treating, apurinic sites, such as those generated by uracil-DNA glycosylase treatment of incorporated dU-residues, or any suitable cleavage method known in the art. Oligonucleotides may be recovered after cleavage by lyophylization.
  • the surface of the oligonucleotide synthesis loci of a substrate can be chemically modified to provide a proper site for the linkage of the growing nucleotide chain to the surface.
  • Various types of surface modification chemistry exist which allow a nucleotide to attached to the substrate surface. Surface modifications may vary in their implementation depending on whether the oligonucleotide chain is to be cleaved from the surface concomitant with deprotection of the nucleic acid bases, or left attached to the surface after deprotection.
  • Various types of suitable surface modification chemistries are known in the art and are described at www.glenresearch.com, which is incorporated herein by reference in its entirety.
  • One surface modification technique that allows for the exocyclic N atoms of the A, G and C bases to be deprotected while having the oligonucleotide chain remain attached to the substrate.
  • Another scheme comprises reacting a trialkoxysilyl amine (e.g. (CH3CH2O)3Si—(CH2)2-NH 2 ) with the glass or silica surface SiOH groups, followed by reaction with succinic anhydride with the amine to create and amide linkage and a free OH on which the nucleotide chain growth could commence.
  • a trialkoxysilyl amine e.g. (CH3CH2O)3Si—(CH2)2-NH 2
  • a third type of linker group may be based on photocleavable primers.
  • This type of linker allows for oligonucleotide to be removed from the substrate (by irradiation with light, e.g. ⁇ 350 nm light) without cleaving the protecting groups on the nitrogenous functionalities on each base.
  • the typical ammonia or NH3 treatment deprotects everything when used as the reagent to cleave the oligomers from the substrate.
  • the use of photocleavable linkers of this sort is described at www.glenresearch.com.
  • Various other suitable cleavable linker groups are known in the art and may alternatively be used.
  • Time frames for oxidation and detritylation may typically be about 30 s and 60 s, respectively.
  • the reagents may be drained, followed by washes of acetonitrile (ACN).
  • ACN acetonitrile
  • the detritylation solution may be driven out using a continuous inflow of oxidation solution without a drain step in between.
  • a water contact angle for the substrate in particular, for regions of in situ synthesis and/or surrounding areas, may be chosen in order to reduce depurination and/or speed of synthesis. Proper desired values of water contact angle are described elsewhere herein. In some embodiments, lower amount of depurination may be achieved on surfaces of higher surface energy, i.e. lower contact angle.
  • the methods and compositions of the invention allow for a reduced rate of depurination during oligonucleotide synthesis, e.g. at a rate of less than 0.1%, 0.09%%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001%, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002%, 0.0001% per cycle or less.
  • compositions of the invention described herein allow for the reduction or elimination of a depurination gradient across the surface of a substrate supporting in situ synthesis of oligonucleotides.
  • highly uniform, high quality, and high-yield oligonucleotide synthesis can be achieved on substrates that can host a high density of resolved oligonucleotide loci.
  • oligonucleotide features can gain substantial surface energy with increasing oligonucleotide length.
  • these sites or features consisting of protected oligonucleotide acquire enough surface energy to become spontaneously wetting to high surface tension organic solvents commonly used in phosphoramidite synthesis, such as acetonitrile or propylene carbonate, after about 10-20 synthesis cycles.
  • the methods and compositions of the invention allow for varying parameters, such as time, flow rate, temperature, volume, viscosity, or reagent concentration, during the synthesis of a growing oligonucleotide as a function of length to account for the changing surface properties on loci of oligonucleotide synthesis.
  • parameters such as time, flow rate, temperature, volume, viscosity, or reagent concentration
  • Such a variation may be applied by continuously changing parameters in constant or varying increments at repeating cycles of the synthesis.
  • parameters may be changed at only selected cycles of the synthesis and can optionally follow a pattern, such as every other cycle, every third, fourth, fifth, sixth, seventh, eighth, ninth, tenth cycle etc.
  • the methods and compositions of the invention contemplate a library of oligonucleotides synthesized on a substrate, wherein the library comprises oligonucleotides of varying sizes, as described in further detail elsewhere herein. Further, the methods and compositions of the invention allow for the synthesis of substantially similar amounts of oligonucleotides, or in some cases varying preselected amounts of oligonucleotides, of varying size, sequence or nucleotide composition on a substrate.
  • the variation in amounts may be limited to less than 50%, 40%, 30%, 25%, 20%, 5%1, 10%, 5%, 3%, 2%, 1%, 0.5%, 0.1% or less between any two synthesized oligonucleotides, or alternatively, as relative error or percent deviation across the library.
  • the methods and compositions of the invention described herein contemplate synthesized oligonucleotides on a substrate at desired amounts as described in further detail elsewhere herein.
  • the methods and compositions of the invention permit the synthesis of libraries of oligonucleotides on substrates, in which the stoichiometry of each oligonucleotide is tightly controlled and tunable by varying the relative number of features synthesized.
  • Suitable surface functionalizations and coatings to finetune the density of growing oligonucleotides on resolved loci of substrates are described in further detail elsewhere herein and can be uniformly applied to all microstructures of a substrate, or alternatively, can be applied at selected amounts and ratios to individual microstructures.
  • the in situ synthesis methods include those described in U.S. Pat. No. 5,449,754 for synthesizing peptide arrays, as well as WO 98/41531 and the references cited therein for synthesizing polynucleotides (specifically, DNA) using phosphoramidite or other chemistry. Additional patents describing in situ nucleic acid array synthesis protocols and devices include U.S. Pub. No. 2013/0130321 and U.S. Pub. No. 2013/0017977, and the references cited therein, incorporated herein by reference in their entirety.
  • Such in situ synthesis methods can be basically regarded as iterating the sequence of depositing droplets of: a protected monomer onto predetermined locations on a substrate to link with either a suitably activated substrate surface (or with previously deposited deprotected monomer); deprotecting the deposited monomer so that it can react with a subsequently deposited protected monomer; and depositing another protected monomer for linking.
  • Different monomers may be deposited at different regions on the substrate during any one cycle so that the different regions of the completed array will carry the different biopolymer sequences as desired in the completed array.
  • One or more intermediate further steps may be required in each iteration, such as oxidation, sulfurization, and/or washing steps.
  • in situ synthesis of oligonucleotides can be achieved applying various suitable methods of synthesis known in the art to the methods and compositions described herein.
  • One such method is based on a photolithographic technique which involves direct in situ synthesis of oligonucleotides at resolved pre-determined sites on the solid or polymeric surface, using photolabile protecting groups (Kumar et al., 2003).
  • the hydroxyl groups can be generated on the surface and blocked by photolabile-protecting groups.
  • ⁇ UV light e.g. through a photolithographic mask, a pattern of free hydroxyl groups on the surface may be generated.
  • hydroxyl groups can react with photoprotected nucleosidephosphoramidites, according to phosphoramidite chemistry.
  • a second photolithographic mask can be applied and the surface can be exposed to UV light to generate second pattern of hydroxyl groups, followed by coupling with 5′-photoprotected nucleosidephosphoramidite.
  • patterns can be generated and oligomer chains can be extended.
  • photolabile-protecting groups which can be removed cleanly and rapidly from the 5′-hydroxyl functionalities are known in the art. Without being bound by theory, the lability of a photocleavable group depends on the wavelength and polarity of a solvent employed and the rate of photocleavage may be affected by the duration of exposure and the intensity of light.
  • This method can leverage a number of factors, e.g. accuracy in alignment of the masks, efficiency of removal of photo-protecting groups, and the yields of the phosphoramidite coupling step. Further, unintended leakage of light into neighboring sites can be minimized.
  • the density of synthesized oligomer per spot can be monitored by adjusting loading of the leader nucleoside on the surface of synthesis.
  • compositions of the invention can make use of a number of suitable techniques of construction that are well known in the art e.g., maskless array synthesizers, light directed methods utilizing masks, flow channel methods, spotting methods etc.
  • construction and/or selection oligonucleotides may be synthesized on a solid support using maskless array synthesizer (MAS).
  • MAS maskless array synthesizer
  • Maskless array synthesizers are described, for example, in PCT application No. WO 99/42813 and in corresponding U.S. Pat. No. 6,375,903.
  • Other examples are known of maskless instruments which can fabricate a custom DNA microarray in which each of the features in the array has a single-stranded DNA molecule of desired sequence.
  • oligonucleotides include, for example, light-directed methods utilizing masks, flow channel methods, spotting methods, pin-based methods, and methods utilizing multiple supports.
  • Light directed methods utilizing masks e.g., VLSIPSTM methods
  • VLSIPSTM methods for the synthesis of oligonucleotides is described, for example, in U.S. Pat. Nos. 5,143,854, 5,510,270 and 5,527,681. These methods involve activating predefined regions of a solid support and then contacting the support with a preselected monomer solution. Selected regions can be activated by irradiation with a light source through a mask much in the manner of photolithography techniques used in integrated circuit fabrication.
  • reagents may be delivered to the support by flowing within a channel defined on predefined regions or “spotting” on predefined regions. Other approaches, as well as combinations of spotting and flowing, may be employed as well. In each instance, certain activated regions of the support are mechanically separated from other regions when the monomer solutions are delivered to the various reaction sites.
  • Flow channel methods involve, for example, microfluidic systems to control synthesis of oligonucleotides on a solid support.
  • diverse polymer sequences may be synthesized at selected regions of a solid support by forming flow channels on or in a surface of the support through which appropriate reagents flow or in which appropriate reagents are placed.
  • Spotting methods for preparation of oligonucleotides on a solid support involve delivering reactants in relatively small quantities by directly depositing them in selected regions or structures fluidically connected to the same. In some steps, the entire support surface can be sprayed or otherwise coated with a solution. Precisely measured aliquots of monomer solutions may be deposited dropwise by a dispenser that moves from region to region.
  • Pin-based methods for synthesis of oligonucleotides on a solid support are described, for example, in U.S. Pat. No. 5,288,514. Pin-based methods utilize a support having a plurality of pins or other extensions. The pins are each inserted simultaneously into individual reagent containers in a tray.
  • the methods and compositions described herein may facilitate the production of synthetic nucleic acids using in situ synthesis on substrates of various geometries, including planar or irregular surfaces.
  • substrates e.g. silicon
  • a substrate may be loaded with a multiplicity of different sequences during the synthesis.
  • In situ synthesis methods on substrates allows for the preparation of a multiplicity of oligomers of different and defined sequences at addressable locations on a common support.
  • the methods and compositions described herein allow for the in situ synthesis of oligonucleotides that are longer and higher quality as further described elsewhere herein.
  • the synthesis steps can incorporate various sets of feed materials, in the case of oligonucleotide synthesis, as a rule the 4 bases A, G, T and C, as well as suitable modified bases known in the art some of which are described herein, may be used building up desired sequences of nucleic acid polymers in a resolved manner on a support or substrate.
  • high density oligonucleotide arrays are synthesized using methods such as the Very Large Scale Immobilized Polymer Synthesis (VLSIPS) disclosed in U.S. Pat. Nos. 5,445,934 and 6,566,495, both incorporated herein for all purposes by reference. Each oligonucleotide occupies a known location on a substrate.
  • VLSIPS Very Large Scale Immobilized Polymer Synthesis
  • oligonucleotide analogue array can be synthesized on a solid substrate by a variety of methods, including, but not limited to, light-directed chemical coupling and mechanically directed coupling. See Pirrung et al., U.S. Pat. No. 5,143,854 (see also PCT Application No. WO 90/15070) and Fodor et al., PCT Publication Nos. WO 92/10092 and WO 93/09668 and U.S. Ser. No.
  • oligonucleotide analogue with a polyamide backbone is used in the VLSIPS procedure, it is often unsuitable to use phosphoramidite chemistry to perform the synthetic steps, since the monomers do not attach to one another via a phosphate linkage.
  • peptide synthetic methods can be substituted e. g., as described by Pirrung et al. in U.S. Pat. No. 5,143,854, which is herein incorporated by reference in its entirety.
  • the individual molecular species can be demarcated by separate fluidic compartments for addition of the synthesis feed materials, as is the case e.g. in the so-called in situ spotting method or piezoelectric techniques, based on inkjet printing technology (A. Blanchard, in Genetic Engineering, Principles and Methods, Vol. 20, Ed. J. Sedlow, 111-124, Plenum Press; A. P. Blanchard, R. J. Kaiser, L. E. Hood, High-Density Oligonucleotide Arrays, Biosens. & Bioelectronics 11, 687, 1996).
  • Resolved in situ synthesis of oligonucleotides can further be achieved by the spatially-resolved activation of synthesis sites, which is possible through selective illumination, through selective or spatially-resolved generation of activation reagents (deprotection reagents) or through selective addition of activation reagents (deprotection reagents).
  • In situ preparation of nucleic acid arrays can be achieved, 3′ to 5′, as well as the more traditional 5′ to 3′ direction.
  • Addition of reagents may be achieved by pulse-jet depositing, e.g. an appropriate nucleotide phosphoramidite and an activator to each resolved locus on or in a substrate surface, e.g., a coated silicon wafer surface.
  • the resolved loci of the substrate may further be subjected to additional reagents of the other phosphoramidite cycle steps (deprotection of the 5′-hydroxyl group, oxidation, sulfurization and/or sulfurization), which may be performed in parallel.
  • the deposition and common phosphoramidite cycle steps may be performed without moving the oligonucleotide synthesis wafer.
  • the reagents may be passed over resolved loci within a substrate, by flowing them through the substrate from one surface to the opposite surface of the substrate.
  • the substrate may be moved, e.g. to a flow cell, for some of the phosphoramidite cycle steps.
  • the substrate can then be repositioned, re-registered, and/or re-aligned before printing a next layer of monomers.
  • Substrates with oligonucleotides can be fabricated using drop deposition from pulsejets of either polynucleotide precursor units (such as monomers) in the case of in situ fabrication, or a previously synthesized polynucleotide.
  • polynucleotide precursor units such as monomers
  • in situ fabrication or a previously synthesized polynucleotide.
  • Such methods are described in detail in, for example, the U.S. Pub. No. 2013/0130321 and U.S. Pub. No. 2013/0017977, and the references cited therein, incorporated herein by reference in their entirety. These references are incorporated herein by reference.
  • Other drop deposition methods can be used for fabrication, as described elsewhere herein.
  • light directed fabrication methods may be used, as are known in the art. Interfeature areas need not be present particularly when the arrays are made by light directed synthesis protocols.
  • pulse-jet devices include, but are not limited to, those described in U.S. Pub. No. US2010/0256017, U.S. Pat. Pub. No. US20120050411, and U.S. Pat. No. 6,446,682, the disclosures of which patents are herein incorporated by reference in their entirety.
  • biopolymer arrays on or inside substrates can be fabricated using either deposition of the previously obtained biopolymers or in situ synthesis methods.
  • the deposition methods typically involve depositing biopolymers at predetermined locations on or in a substrate which are suitably activated such that the biopolymers can link thereto.
  • Biopolymers of different sequences may be deposited at different regions on or in a substrate.
  • Typical procedures known in the art for deposition of previously obtained polynucleotides, particularly DNA, such as whole oligomers or cDNA includes, but is not limited to loading the polynucleotide into a drop dispenser in the form of a pulse jet head and fired onto the substrate. Such a technique has been described in WO 95/25116 and WO 98/41531, both of which are herein incorporated by reference in their entirety.
  • Various suitable forms of inkjets for drop depositions to resolved sites of a substrate are known in the art.
  • the invention may rely on the use of pre-synthesized oligonucleotides within an entire oligonucleotide library or parts thereof, for example, an oligonucleotide library immobilized on a surface.
  • Substrates supporting a high density of nucleic acid arrays can be fabricated by depositing presynthesized or natural nucleic acids in predetermined positions on, in, or through a substrate. Synthesized or natural nucleic acids may be deposited on specific locations of a substrate by light directed targeting, oligonucleotide directed targeting, or any other suitable method known in the art. Nucleic acids can also be directed to specific locations.
  • a dispenser that moves from region to region to deposit nucleic acids in specific spots can be used.
  • the dispenser may deposit the nucleic acid through microchannels leading to selected regions.
  • Typical dispensers include a micropipette or capillary pin to deliver nucleic acid to the substrate and a robotic system to control the position of the micropipette with respect to the substrate.
  • the dispenser includes a series of tubes, a manifold, an array of pipettes or capillary pins, or the like so that various reagents can be delivered to the reaction regions simultaneously.
  • pre-synthesized oligonucleotides are attached to a support or are synthesized using a spotting methodology wherein monomers solutions are deposited dropwise by a dispenser that moves from region to region (e.g., inkjet).
  • oligonucleotides are spotted on a support using, for example, a mechanical wave actuated dispenser.
  • the systems described herein can further include a member for providing a droplet to a first spot (or feature) having a plurality of support-bound oligonucleotides.
  • the droplet can include one or more compositions comprising nucleotides or oligonucleotides (also referred herein as nucleotide addition constructs) having a specific or predetermined nucleotide to be added and/or reagents that allow one or more of hybridizing, denaturing, chain extension reaction, ligation, and digestion.
  • compositions or different nucleotide addition constructs may be deposited at different addresses on the support during any one iteration so as to generate an array of predetermined oligonucleotide sequences (the different features of the support having different predetermined oligonucleotide sequences).
  • One particularly useful way of depositing the compositions is by depositing one or more droplet, each droplet containing the desired reagent (e.g. nucleotide addition construct) from a pulsejet device spaced apart from the support surface, onto the support surface or features built into the support surface.
  • the method may employ a substrate surface directly or the method may employ a substrate surface of solid phases in the form of activated particles, which are packed in a column or microchannel in a substrate, e.g. controlled pore glass (CPG).
  • CPG controlled pore glass
  • the substrate surface at times can carry one specifically removable type of oligo with a predetermined sequence.
  • the individual synthesis reagents can be then added in a controllable manner.
  • the quantity of molecules synthesized can be controlled by various factors, including but not limited to the size of the dedicated substrate surface, amount of support material, the size of the reaction batches, available functionalized substrate area for synthesis, the degree of functionalization, or the duration of the synthesis reaction.
  • various embodiments of the invention relate to the manufacturing and use of substrates holding a library of compositions, typically oligonucleotides.
  • a substrate with resolved features is “addressable” when it has multiple regions of different moieties (e.g., different polynucleotide sequences) such that a region (i.e., a “feature” or “spot” of the substrate) at a particular predetermined location (i.e., an “address”) on the substrate will detect a particular target or class of targets (although a feature may incidentally detect non-targets of that location).
  • Substrate features are typically, but need not be, separated by intervening spaces.
  • features may be built into a substrate and may create one-, two-, or three-dimensional microfluidic geometries.
  • a “substrate layout” refers to one or more characteristics of the features, such as feature positioning on the substrate, one or more feature dimensions, and an indication of a moiety at a given location.
  • the subject methods and compositions can be used to synthesize other types of molecules of interest.
  • the synthesis of peptides at selected grid regions is one such case.
  • Various suitable chemistries used in stepwise growth of peptides on an array surface are known in the art.
  • the peptide synthesis techniques described in U.S. Pat. No. 5,449,754, incorporated herein by reference in its entirety, may be used with the present invention.
  • the methods and compositions of the invention described herein also find uses in chemical synthesis of drugs, protein inhibitors or any chemical synthesis in which the rapid synthesis of a plurality of compounds is desired.
  • the present invention relates to the preparation of a polynucleotide sequence (also called “gene”) using assembly of overlapping shorter oligonucleotides synthesized or spotted on substrate surfaces or alternatively, substrates housing suitable surfaces for the synthesis or spotting of oligonucleotides, e.g. beads.
  • the shorter oligonucleotides may be patchworked together on the same strand using annealing oligonucleotides with complementary regions to consecutive assembled oligonucleotides, e.g. using a polymerase lacking strand displacement activity, a ligase, Click chemistry, or any other suitable assembly method known in the art.
  • sequence of the annealing nucleotide may be replicated between the consecutive oligonucleotides of the opposing strand.
  • consecutive oligonucleotides of the same strand may be stitched together without the introduction of sequence elements from the annealing oligonucleotide, for example using a ligase, Click chemistry, or any other suitable assembly chemistry known in the art.
  • longer polynucleotides can be synthesized hierarchically through rounds of assembly involving shorter polynucleotides/oligonucleotides.
  • Genes or genomes can be synthesized de novo from oligonucleotides by assembling large polynucleotides as described in the synthesis of a viral genome (7.5 kb; Cello et al, Science, 2002, 297, 1016), bacteriophage genome (5.4 kb; Smith et al, Proc. Natl. Acad. Sci. USA, 2003, 100, 15440), and a gene cluster as large as 32 kb (Kodumal et al, Proc. Natl. Acad. Sci. USA, 2004, 101, 15573), all of which are herein incorporated by reference in their entirety.
  • Libraries of long synthetic DNA sequence can be manufactured, following the methods described in the 582 kb the genome assembly of a bacterium ( Mycoplasma genitalium ) by Venter and co-workers (Gibson et al, Science, 2008, 319, 1215), which is incorporated herein by reference in its entirety.
  • large DNA biomolecules can be constructed with oligonucleotides, as described for the case of a 15 kb nucleic acid (Tian et al, Nature, 2004, 432, 1050; incorporated herein by reference in its entirety).
  • the methods and compositions of the invention contemplate large libraries of de novo synthesized polynucleotide sequences using gene assembly methods described herein or known in the art. The synthesis of such sequences are typically performed in parallel in high densities on suitable regions of substrates that are described in further detail elsewhere herein. Further, these large libraries may be synthesized with very low error rates, described in further detail elsewhere herein.
  • Genes may be assembled from large numbers of synthesized oligonucleotides that are pooled. For example, gene synthesis using a pool of 600 distinct oligonucleotides can be applied as described by Tian et al. (Tian et al. Nature, 432:1050, 2004). The length of the assembled genes can be further extended by using longer oligonucleotides. For even larger genes and DNA fragments, for example larger than about 0.5, 1, 1.5, 2, 3, 4, 5 kb, or more, more than one rounds of synthesis may be applied, typically within a hierarchical gene assembly process. PCR assembly and synthesis from oligonucleotides as disclosed herein may be adapted for use in series, as described below.
  • a variety of gene assembly methods can be used according to the methods and compositions of the invention, ranging from methods such as ligase-chain reaction (LCR) (Chalmers and Curnow, Biotechniques, 30(2), 249-52, 2001; Wosnick et al, Gene, 60(1), 115-27, 1987) to suites of PCR strategies (Stemmer et al, 164, Gene, 49-53, 1995; Prodromou and L. H.
  • LCR ligase-chain reaction
  • PCR assembly typically makes use of unphosphorylated oligos, which undergo repetitive PCR cycling to extend and create a full length template. Additionally, the LCR processes may require oligo concentrations in the ⁇ M range, whereas both single stranded and double stranded PCR options have concentration requirements that are much lower (e.g. nM range).
  • oligos ranging in size from 20-70 bp, assembling through hybridization of overlaps (6-40 bp). Since many factors are determined by the length and composition of oligos (Tm, secondary structure, etc.), the size and heterogeneity of this population could have a large effect on the efficiency of assembly and quality of assembled genes. The percentage of correct final DNA product relies on the quality and number of “building block” oligos. Shorter oligos have lower mutated rate compared with that of longer oligos, but more oligos are required to build the DNA product.
  • a time varying thermal field refers to the time regulated heating of the microfluidic device to allow PCR amplification or PCA reactions to occur.
  • the time varying thermal field may be applied externally, for example by placing a device substrate with reactors, e.g. nanoreactors on top of a thermal heating block, or integrated within a microfluidic device, for example as a thin film heater located immediately below the PCA and PCR chambers.
  • a temperature controller can vary the temperature of the heating element in conjunction with a temperature sensor linked to a heater element, or integrated into the reaction chamber.
  • a timer can vary the duration of heat applied to the reaction chambers.
  • the temperature of the thermal field may vary according to the denaturation, annealing and extension steps of PCR or PCA reactions. Typically, nucleic acids are denatured at about 95° C. for 2 min, followed by 30 or more cycles of denaturation at 95° C. for 30 sec, annealing at 40-60° C. for 30 sec and extension at about 72° C. for 30 sec, and a last extension of 72° C. for 10 min.
  • the duration and temperatures used may vary depending on the composition of the oligonucleotides, PCR primers, amplified product size, template, and the reagents used, for example the polymerase.
  • Polymerases are enzymes that incorporate nucleoside triphosphates, or deoxynucleoside triphosphates, to extend a 3′ hydroxyl terminus of a PCR primer, an oligonucleotide or a DNA fragment.
  • Suitable polymerases include, but are not limited to, KOD polymerase; Pfu polymerase; Taq-polymerase; E.
  • nucleic acid fragments are joined together preferably by a specific hybridization reaction between overlapping regions of mutually complementary segments of the nucleic acid fragments, thereby obtaining longer synthetic double-stranded nucleic acids.
  • sequence segments used for building up longer nucleic acids can have a length of, e.g. 20-200, 50-300, 75-350 or 100-400 nucleotide building blocks. Those of skill in the art appreciate that the sequence segment length may fall within any range bounded by any of these values (e.g., 20-350 or 200-350).
  • sequence segments are preferably selected in such a way that they at least partially overlap a sequence segment of the antisense strand of the complementary nucleic acid that is to be synthesized, so that the nucleic acid strand to be synthesized can be built up by hybridization of individual sequence segments.
  • sequence segments are preferably selected so that the sequence segments on both strands of the nucleic acid to be synthesized completely overlap, and accordingly preparation of a more or less complete double strand now only requires covalent linkage of the phosphodiester backbone.
  • the length of the complementary regions or overlaps between individual fragments can be e.g. 10-50, 10-100, 12-25, 20-80, 15-20, or 15-25 nucleotide building blocks.
  • sequence segment length may fall within any range bounded by any of these values (e.g., 25-100 or 10-25). If the overlapping or complementarity region between two nucleic acid fragments has a high AT content, e.g. an AT content of greater than 50%, 60%, 65%, or higher the binding constant is lower in comparison with GC-richer sequences. Accordingly, for thermodynamic reasons, hybridization between these fragments may be of comparatively low efficiency. This can have an influence on the assembly of 2 or more fragments. A possible sequence-dependent consequence is a reduced yield of nucleic acid double strands with the correct target sequence.
  • sequence segments to assemble genes can be designed with desired levels of GC content in overlapping regions, for example GC content of more than 35, 40, 45, 50, 55, 60, 65%, or higher.
  • GC content of more than 35, 40, 45, 50, 55, 60, 65%, or higher.
  • PCR polymerase chain reaction
  • PCA non-polymerase-cycling-assembly
  • non-PCA-based chemical gene synthesis using different strategies and methods, including enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, Blue Heron solid support technology, Sloning building block technology, RNA-mediated gene assembly, the PCR-based thermodynamically balanced inside-out (TBIO) (Gao et al., 2003), two-step total gene synthesis method that combines dual asymmetrical PCR (DA-PCR) (Sandhu et al., 1992), overlap extension PCR (Young and Dong, 2004), PCR-based two-step DNA synthesis
  • the DNA sequences that have been chemically synthesized using the methods and compositions of the invention may extend to long polynucleotide sequences, for example, polynucleotide sequences of more than 500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 4000, 5000, 6000, 7500, 10000, 20000, 30000, 40000, 50000, 75000, 100000 base pairs or longer.
  • the methods and compositions of the invention also allow for chemically synthesized polynucleotide sequences with very low error rates, as further described elsewhere herein.
  • variations of the polymerase-mediated assembly techniques are used for chemical synthesis of polynucleotides.
  • Some of the commonly used technologies known in the art for custom gene synthesis are based on polymerase cycling assembly and may achieve de novo synthesis of longer polynucleotides through the assembly of a pool of oligonucleotides.
  • the pool of oligonucleotides may be synthesized as building blocks for use in various gene synthesis techniques.
  • the sequence, length and precise distribution of the oligonucleotides, as well as any sequence overlaps within the pool may be designed according to the desired polynucleotide sequence and the assembly method used.
  • the desired full-length DNA may be obtained, for example, by a few steps of PCR with necessary temperature conditions for denaturing, annealing, and elongating overlapping oligonucleotides.
  • PCA PCR Assembly
  • PCR assembly uses polymerase-mediated chain extension in combination with at least two oligonucleotides having complementary ends which can anneal such that at least one of the polynucleotides has a free 3′-hydroxyl capable of polynucleotide chain elongation by a polymerase (e.g., a thermostable polymerase such as Taq polymerase, VENTTM polymerase (New England Biolabs), KOD (Novagen) and the like).
  • a polymerase e.g., a thermostable polymerase such as Taq polymerase, VENTTM polymerase (New England Biolabs), KOD (Novagen) and the like.
  • Overlapping oligonucleotides may be mixed in a standard PCR reaction containing dNTPs, a polymerase, and buffer.
  • the overlapping ends of the oligonucleotides upon annealing, create regions of double-stranded nucleic acid sequences that serve as primers for the elongation by polymerase in a PCR reaction. Products of the elongation reaction serve as substrates for formation of a longer double-strand nucleic acid sequences, eventually resulting in the synthesis of full-length target sequence.
  • the PCR conditions may be optimized to increase the yield of the target long DNA sequence.
  • PCR based methods can be used to synthesize genes from oligonucleotides. These methods include, but are not limited to, the thermodynamically balanced inside-out (TBIO) method (Gao et al, Nucleic Acids Research, 31:e143, 2003), successive PCR (Xiong et al, Nucleic Acids Research, 32:e98, 2004), dual asymmetrical PCR (DA-PCR) (Sandhu et al, Biotechniques, 12:14, 1992), overlap extension PCR (OE-PCR) (Young and Dong, Nucleic Acids Research, 32:e59, 2004; Prodromou and Pearl, Protein Eng., 5:827, 1992) and PCR-based two step DNA synthesis (PTDS) (Xiong et al, Nucleic Acids Research, 32:e98, 2004), all of which are incorporated by reference herein in their entirety and can be adapted to assemble a PCR template in a microfluidic device.
  • TBIO thermo
  • DA-PCR is a one-step process for constructing synthetic genes.
  • four adjacent oligonucleotides of, e.g. 17-100 bases in length with overlaps of, e.g. 15-17 bases are used as primers in a PCR reaction.
  • Other suitable oligonucleotide and overlap sizes are within the bounds of the invention as further described herein.
  • the quantity of the two internal primers is highly limited, and the resultant reaction causes an asymmetric single-stranded amplification of the two halves of the total sequence due to an excess of the two flanking primers. In subsequent PCR cycles, these dual asymmetrically amplified fragments, which overlap each other, yield a double-stranded, full-length product.
  • TBIO synthesis requires only sense-strand primers for the amino-terminal half and only antisense-strand primers for the carboxy-terminal half of a gene sequence.
  • the TBIO primers may contain identical regions of temperature-optimized primer overlaps.
  • the TBIO method involves complementation between the next pair of outside primers with the termini of a fully synthesized inside fragment. TBIO bidirectional elongation is completed for a given outside primer pair before the next round of bidirectional elongation takes place.
  • Successive PCR is a single step PCR approach in which half the sense primers correspond to one half of the template to be assembled, and the antisense primers correspond to the second half of the template to be assembled.
  • bidirectional amplification with an outer primer pair will not occur until amplification using an inner primer pair is complete.
  • PDTS typically involves two steps. First individual fragments of the DNA of interest are synthesized: In some embodiments of the invention, 10-12 oligonucleotides, such as oligonucleotides of length of about 60, 80, 100, 125, 150, 175, 200, 250, 300, 350, or more nucleotides, with about 20 bp overlap are mixed and a PCR reaction is carried out with a polymerase, such as pfu DNA, to produce longer DNA fragments.
  • a polymerase such as pfu DNA
  • PCR products from the first step are combined and used as the template for a second PCR reaction with a polymerase, such as pyrobest DNA polymerase with two outermost oligonucleotides as primers.
  • a polymerase such as pyrobest DNA polymerase with two outermost oligonucleotides as primers.
  • PCR assembly using short oligonucleotides work well for relatively shorter nucleic acids, there may be a limit to the maximum number of oligonucleotides that can be assembled within a single reaction. This may impose a size limit on the double stranded DNA product.
  • a solution to this problem is to make the DNA in series. In this scheme, multiple smaller DNA segments are synthesized in parallel in separate chambers, in multiple chips, or in series and then introduced together as precursors for the PCA reaction for assembly into a “larger” DNA fragment for subsequent PCR amplification. In other words, PCR assembly using oligonucleotides would result in a template (a first-run template) for PCR amplification.
  • a number of first-run templates so produced may serve as precursors for PCA assembly of DNA fragments larger than the first-run templates, thus producing second-run templates.
  • the second-run templates may serve as the precursors for the assembly of a third-run template, and so on. The approach may be repeated until the desired DNA is obtained.
  • the oligonucleotides used in the synthesis reactions are typically single stranded molecules for assembling nucleic acids that are longer than the oligonucleotide itself.
  • An oligonucleotide may be e.g. 20-200, 50-300, 75-350 or 100-400 nucleotide building blocks. Those of skill in the art appreciate that the sequence segment length may fall within any range bounded by any of these values (e.g., 20-350 or 200-350).
  • a PCA chamber containing a plurality of oligonucleotides refers to the pool of oligonucleotides necessary to produce a template corresponding to a gene or to a DNA fragment.
  • FIG. 12 demonstrates the polymerase cycling assembly of longer constructs from a pool of overlapping oligonucleotides into gradually longer constructs through multiple cycles of the reaction.
  • oligonucleotides as described herein can be used advantageously in a variety of gene assembly methods to avoid assembly errors and increase the quality of synthesized genes ( FIG. 13 ).
  • Homologous repeats or high GC regions in a sequence to be assembled may introduce errors associated with the correct order and hybridization of smaller oligonucleotides.
  • Longer oligonucleotides can circumvent these problems by reducing the number of oligonucleotides to be ordered and aligned, by avoiding problematic sequences, such as homology repeats or high GC regions from sites of alignment, and/or by reducing the number of assembly cycles required to assemble the desired gene.
  • genes of intermediary length for example about 2 kb
  • a first gene assembly method such as PCA
  • a second gene assembly method e.g. Gibson Assembly (Gibson et al, Science, 2008, 319, 1215) may be utilized to combine the genes of intermediary length into larger genes, e.g. about 5 or 10 kb.
  • Hierarchical assembly can be applied in stages.
  • In vitro recombination techniques may be used to assemble cassettes of gene of intermediary length into increasingly longer sequences, e.g. more than 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000 kb or longer.
  • Oligonucleotides useful for the assembly of genes de novo may be synthesized on one or more solid supports.
  • Exemplary solid supports include, for example, slides, beads, chips, particles, strands, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, polymers, or a microfluidic device.
  • the solid supports may be biological, nonbiological, organic, inorganic, or combinations thereof.
  • the support On supports that are substantially planar, the support may be physically separated into regions, for example, with trenches, grooves, wells, or chemical barriers (e.g., hydrophobic coatings, etc.). Supports may also comprise physically separated regions built into a surface, optionally spanning the entire width of the surface. Suitable supports for improved oligonucleotide synthesis are further described herein.
  • the oligonucleotides may be provided on a solid support for use in a microfluidic device, for example, as part of the PCA reaction chamber.
  • oligonucleotides may be synthesized and subsequently introduced into a microfluidic device.
  • N variable or fixed length oligonucleotides
  • a suitable oligonucleotide length can be chosen, e.g. 20-200, 50-300, 75-350 or 100-400 nucleotide building blocks.
  • sequence segment length may fall within any range bounded by any of these values (e.g., 20-350 or 200-350).
  • the length of the overlap between sub-sequences is about or less than about N/2, but may be chosen as the needs of the assembly reaction dictates, e.g. 6-40 bp, 10-20 bp and 20-30 bp of overlap.
  • sequence segment length may fall within any range bounded by any of these values (e.g., 20-40 or 6-30).
  • the amount of partial base complementarity may vary depending on the assembly method used.
  • the PCA oligonucleotides may overlap at both the 5′ and 3′ ends, except those forming the ends of the resulting PCR template.
  • Base pair mismatches between oligonucleotides may affect hybridization depending on the nature of the mismatch. Mismatches at or near the 3′ end of the oligonucleotide may inhibit extension.
  • a G/C rich region of overlap may overcome mismatches thus resulting in templates containing errors. Accordingly, consideration of the overlap sequence, melting temperature, potential for cross-hybridization and secondary structure in oligonucleotide design can be taken into consideration.
  • Nucleic acid sequences resulting from a PCR assembly reaction may be referred as templates and serve as the target nucleic acid for the reproduction of a complementary strand by PCR.
  • the PCR assembly products may be double stranded DNA of variable sizes due perhaps to incomplete assembly and/or concatamers.
  • a first-run template is assembled from oligo-nucleotides.
  • a second-run template is assembled from DNA fragments comprising at least two first-run templates, the two templates being the PCR reaction products, optionally purified and/or error-filtered, obtained from the first two runs.
  • a third-run template is assembled from DNA fragments comprising at least two second-run templates, which may be similarly error-filtered and so on.
  • Non-polymerase-cycling-assembly-based strategies such as annealing and ligation reaction (Climie and Santi, 1990; Smith et al., 1990; Kalman et al., 1990), insertion gene synthesis (IGS) (Ciccarelli et al., 1990), gene synthesis via one strand (Chen et al., 1990), template-directed ligation (TDL) (Strizhov et al., 1996), ligase chain reaction (Au et al., 1998), or any suitable assembly method known in the art may also be used for chemical synthesis of polynucleotides.
  • annealing and ligation reaction (Climie and Santi, 1990; Smith et al., 1990; Kalman et al., 1990), insertion gene synthesis (IGS) (Ciccarelli et al., 1990), gene synthesis via one strand (Chen et al., 1990), template-directed ligation
  • Non-polymerase-cycling-assembly-based gene synthesis strategies include, but are not limited to microarray-based gene synthesis technology (Zhou et al., 2004), Blue Heron solid support technology, Sloning building block technology (Ball, 2004; Schmidt, 2006; Bugl et al., 2007), and RNA-mediated gene assembly from DNA arrays (Wu et al., 2012).
  • Enzymes that repair single-stranded breaks in double-stranded DNA can be used to join chemically synthesized oligonucleotides, such as deoxyribopolynucleotides, to form continuous bihelical structures (Gupta et al., 1968a).
  • DNA polymerase I Klenow
  • Oligonucleotides can further be joined together via ligation, for example using a ligase, such as using phage T4 polynucletide ligase. In some cases, oligonucleotides can be ligated hierarchically, forming longer and longer polynucleotides in each step.
  • a ligase such as using phage T4 polynucletide ligase.
  • oligonucleotides can be ligated hierarchically, forming longer and longer polynucleotides in each step.
  • Another approach for the facile synthesis of genes comprises assembly of a polynucleotide from many oligonucleotides through annealing and ligation reaction (Climie and Santi, 1990; Smith et al., 1990; Kalman et al., 1990).
  • both strands of the desired sequences can be divided with short cohesive ends so that adjacent pairs of complementary oligonucleotides can anneal.
  • the synthesized oligonucleotides can be phosphorylated, for example using a kinase, and annealed before ligation into a duplex.
  • the shotgun ligation approach comprises the assembly of a full gene from several synthesized blocks (Eren and Swenson, 1989). Accordingly, a gene may be sub-assembled in several sections, each constructed by the enzymatic ligation of several complementary pairs of chemically synthesized oligonucleotides with short single strands complementary to that of an adjacent pair. Co-ligation of the sections can achieve the synthesis of the final polynucleotide.
  • Insertion gene synthesis (IGS) (Ciccarelli et al., 1990) can be used to assemble a DNA sequence in a stepwise manner within a plasmid containing a single-stranded DNA phage origin of replication.
  • the IGS method is based upon consecutive targeted insertions of long DNA oligonucleotides within a plasmid by oligonucleotide-directed mutagenesis.
  • Gene synthesis via one strand refers to a method to synthesize a gene via one stand (Chen et al.; 1990).
  • a plus-stranded DNA of the target gene can be assembled by a stepwise or single-step T4 DNA ligase reaction with several, for example six, oligonucleotides in the presence of multiple, for example two, terminal complementary oligonucleotides and multiple, for example three, short interfragment complementary oligonucleotides.
  • the use of fewer synthesized bases, in comparison to the double-strand or overlap methods can reduce costs.
  • Template-directed ligation refers to a method to construct large synthetic genes by ligation of oligonucleotide modules, by partial annealing with a single-stranded DNA template derived from a wild-type gene (Strizhov et al.; 1996). Oligonucleotides comprising only one strand can be synthesized, in contrast to other technologies that require synthesis of two strands.
  • a ligase such as the Pfu DNA ligase, can be used to perform thermal cycling for assembly, selection and ligation of full-length oligonucleotides as well as for linear amplification of the template-directed ligation (TDL) product. Due to its reliance on a homologous template, this method is suitable to the synthesis of only a limited number of sequences with similarity to an existing polynucleotide molecule.
  • a ligase chain reaction can be used method for synthesis of polynucleotides (Au et al.; 1998). Fragments can be assembled from several oligonucleotides via ligation, using a ligase, for example Pfu DNA ligase. After LCR, the full-length gene can be amplified with the mixture of fragments which shared an overlap by denaturation and extension using the outer two oligonucleotides.
  • Microarray-mediated gene synthesis is based on the capacity to immobilize tens of thousands of specific probes on a small solid surface (Lockhart and Barlow, 2001).
  • DNA can either be synthesized directly on the solid support (Lipshutz et al., 1999; Hughes et al., 2001) or can be deposited in a pre-synthesized form onto the surface, for example with pins or ink-jet printers (Goldmann and Gonzalez, 2000).
  • the oligonucleotides obtained can be used in ligation under thermal cycling conditions to generate DNA constructs of several hundreds of base-pairs.
  • the Blue Heron technology developed by Blue Heron Biotechnology, is based on a solid-phase support strategy based on the GeneMaker platform and enables automation (Parker and Mulligan, 2003; Mulligan and Tabone, 2003; Mulligan et al., 2007).
  • the GeneMaker protocol may generally comprise a user sequence data entry, an algorithm designing suitable oligonucleotides for the assembly of entered sequence, oligonucleotides synthesis and hybridization into duplexes, automated ligation based solid-phase assembly through automated sequential additions inside a column on a solid support matrix, and/or cloning and sequence verification.
  • the Blue Heron technology relies on the sequential addition of building blocks to lower errors that occur with other gene assembly methods based on non-serial pools of building blocks, such as PCR methods.
  • Sloning building block technology (SlonomicsTM; Sloning Biotechnology GmbH, Puchheim, Germany) is another method using a ligation-based strategy for chemical gene synthesis (Adis International, 2006).
  • the Sloning synthesis method consists of a series of parallel iterative and standardized reaction steps (pipetting, mixing, incubation, washing) (Schatz and O'Connell, 2003; Schatz et al., 2004; Schatz, 2006).
  • Sloning technology uses a library of standardized building blocks that can be combined to form any desired sequence with a series of standardized, fully automated, cost-effective reaction steps (Schatz and O'Connell, 2003; Schatz, 2006).
  • the Golden-gate method offers standardized, multi-part DNA assembly.
  • the Golden-gate method can use Type IIs endonucleases, whose recognition sites are distal from their cutting sites. There are several different Type IIs endonucleases to choose from, for example BsaI.
  • the Golden-gate method can be advantageous by the use of a single Type IIs endonuclease.
  • the Golden-gate method is further described in U.S. Patent Pub. 2012/0258487, which is incorporated herein by reference in its entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.

Description

    CROSS-REFERENCE
  • This application is a continuation of U.S. application Ser. No. 16/039,256, filed Jul. 7, 2018, which is a continuation of U.S. application Ser. No. 15/729,564, filed on Oct. 10, 2017, now U.S. Pat. No. 10,639,609 issued May 5, 2020, which is a continuation of U.S. application Ser. No. 15/233,835 filed on Aug. 10, 2016, now U.S. Pat. No. 9,839,894, issued Dec. 12, 2017, which is a divisional of U.S. application Ser. No. 15/187,714 filed on Jun. 20, 2016, now U.S. Pat. No. 10,632,445 issued Apr. 28, 2020, which is a continuation of U.S. application Ser. No. 14/452,429, filed Aug. 5, 2014, now U.S. Pat. No. 9,409,139 issued Aug. 9, 2016, which claims the benefit of U.S. Provisional Application No. 61/862,445, filed Aug. 5, 2013 and U.S. Provisional Application No. 61/862,457, filed Aug. 5, 2013, which applications are incorporated herein by reference in their entirety.
  • SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted electronically in .xml format and is hereby incorporated by reference in its entirety. Said .xml copy, created on Dec. 16, 2022 is 44854-701_317_SL.xml; and is 116,326 bytes in size.
  • BACKGROUND OF THE INVENTION
  • Highly efficient chemical gene synthesis with high fidelity and low cost has a central role in biotechnology and medicine, and in basic biomedical research.
  • De novo gene synthesis is a powerful tool for basic biological research and biotechnology applications. While various methods are known for the synthesis of relatively short fragments in a small scale, these techniques suffer from scalability, automation, speed, accuracy, and cost. There is a need for devices for simple, reproducible, scalable, less error-prone and cost-effective methods that guarantee successful synthesis of desired genes and are amenable to automation.
  • SUMMARY OF THE INVENTION
  • As noted above, there exists a pressing need for methods, devices and systems that can quickly synthesize large gene libraries or relatively longer oligonucleotide fragments efficiently with less error. Similarly, there is also a need for methods that can partition and mix liquid reagents in a microfluidic scale for large numbers of individually addressable reactions in parallel. The present invention addresses these needs and provides related advantages as well.
  • In one aspect, the present invention provides a gene library as described herein. The gene library comprises a collection of genes. In some embodiments, the collection comprises at least 100 different preselected synthetic genes that can be of at least 0.5 kb length with an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In another aspect, the present invention also provides a gene library that comprises a collection of genes. The collection may comprise at least 100 different preselected synthetic genes that can be each of at least 0.5 kb length. At least 90% of the preselected synthetic genes may comprise an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. Desired predetermined sequences may be supplied by any method, typically by a user, e.g. a user entering data using a computerized system. In various embodiments, synthesized nucleic acids are compared against these predetermined sequences, in some cases by sequencing at least a portion of the synthesized nucleic acids, e.g. using next-generation sequencing methods. In some embodiments related to any of the gene libraries described herein, at least 90% of the preselected synthetic genes comprise an error rate of less than 1 in 5000 bp compared to predetermined sequences comprising the genes. In some embodiments, at least 0.05% of the preselected synthetic genes are error free. In some embodiments, at least 0.5% of the preselected synthetic genes are error free. In some embodiments, at least 90% of the preselected synthetic genes comprise an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, at least 90% of the preselected synthetic genes are error free or substantially error free. In some embodiments, the preselected synthetic genes comprise a deletion rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the preselected synthetic genes comprise an insertion rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the preselected synthetic genes comprise a substitution rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the gene library as described herein further comprises at least 10 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 100 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 1000 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 1000000 copies of each synthetic gene. In some embodiments, the collection of genes as described herein comprises at least 500 genes. In some embodiments, the collection comprises at least 5000 genes. In some embodiments, the collection comprises at least 10000 genes. In some embodiments, the preselected synthetic genes are at least 1 kb. In some embodiments, the preselected synthetic genes are at least 2 kb. In some embodiments, the preselected synthetic genes are at least 3 kb. In some embodiments, the predetermined sequences comprise less than 20 bp in addition compared to the preselected synthetic genes. In some embodiments, the predetermined sequences comprise less than 15 bp in addition compared to the preselected synthetic genes. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 0.10%. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 0.1%. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 10%. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 10%. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 2 base pairs. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 2 base pairs. In some embodiments, the gene library as described herein further comprises synthetic genes that are of less than 2 kb with an error rate of less than 1 in 20000 bp compared to preselected sequences of the genes. In some embodiments, a subset of the deliverable genes is covalently linked together. In some embodiments, a first subset of the collection of genes encodes for components of a first metabolic pathway with one or more metabolic end products. In some embodiments, the gene library as described herein further comprises selecting of the one or more metabolic end products, thereby constructing the collection of genes. In some embodiments, the one or more metabolic end products comprise a biofuel. In some embodiments, a second subset of the collection of genes encodes for components of a second metabolic pathway with one or more metabolic end products. In some embodiments, the gene library is in a space that is less than 100 m3. In some embodiments, the gene library is in a space that is less than 1 m3. In some embodiments, the gene library is in a space that is less than 1 m3.
  • In another aspect, the present invention also provides a method of constructing a gene library. The method comprises the steps of: entering before a first timepoint, in a computer readable non-transient medium at least a first list of genes and a second list of genes, wherein the genes are at least 500 bp and when compiled into a joint list, the joint list comprises at least 100 genes; synthesizing more than 90% of the genes in the joint list before a second timepoint, thereby constructing a gene library with deliverable genes. In some embodiments, the second timepoint is less than a month apart from the first timepoint.
  • In practicing any of the methods of constructing a gene library as provided herein, the method as described herein further comprises delivering at least one gene at a second timepoint. In some embodiments, at least one of the genes differs from any other gene by at least 0.10% in the gene library. In some embodiments, each of the genes differs from any other gene by at least 0.1% in the gene library. In some embodiments, at least one of the genes differs from any other gene by at least 10% in the gene library. In some embodiments, each of the genes differs from any other gene by at least 10% in the gene library. In some embodiments, at least one of the genes differs from any other gene by at least 2 base pairs in the gene library. In some embodiments, each of the genes differs from any other gene by at least 2 base pairs in the gene library. In some embodiments, at least 90% of the deliverable genes are error free. In some embodiments, the deliverable genes comprises an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the joint list of genes. In some embodiments, at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the joint list of genes. In some embodiments, genes in a subset of the deliverable genes are covalently linked together. In some embodiments, a first subset of the joint list of genes encode for components of a first metabolic pathway with one or more metabolic end products. In some embodiments, any of the methods of constructing a gene library as described herein further comprises selecting of the one or more metabolic end products, thereby constructing the first, the second or the joint list of genes. In some embodiments, the one or more metabolic end products comprise a biofuel. In some embodiments, a second subset of the joint list of genes encode for components of a second metabolic pathway with one or more metabolic end products. In some embodiments, the joint list of genes comprises at least 500 genes. In some embodiments, the joint list of genes comprises at least 5000 genes. In some embodiments, the joint list of genes comprises at least 10000 genes. In some embodiments, the genes can be at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In another aspect, a method of constructing a gene library is provided herein. The method comprises the steps of: entering at a first timepoint, in a computer readable non-transient medium a list of genes; synthesizing more than 90% of the list of genes, thereby constructing a gene library with deliverable genes; and delivering the deliverable genes at a second timepoint. In some embodiments, the list comprises at least 100 genes and the genes can be at least 500 bp. In still yet some embodiments, the second timepoint is less than a month apart from the first timepoint.
  • In practicing any of the methods of constructing a gene library as provided herein, in some embodiments, the method as described herein further comprises delivering at least one gene at a second timepoint. In some embodiments, at least one of the genes differs from any other gene by at least 0.10% in the gene library. In some embodiments, each of the genes differs from any other gene by at least 0.1% in the gene library. In some embodiments, at least one of the genes differs from any other gene by at least 10% in the gene library. In some embodiments, each of the genes differs from any other gene by at least 10% in the gene library. In some embodiments, at least one of the genes differs from any other gene by at least 2 base pairs in the gene library. In some embodiments, each of the genes differs from any other gene by at least 2 base pairs in the gene library. In some embodiments, at least 90% of the deliverable genes are error free. In some embodiments, the deliverable genes comprises an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes. In some embodiments, at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes. In some embodiments, genes in a subset of the deliverable genes are covalently linked together. In some embodiments, a first subset of the list of genes encode for components of a first metabolic pathway with one or more metabolic end products. In some embodiments, the method of constructing a gene library further comprises selecting of the one or more metabolic end products, thereby constructing the list of genes. In some embodiments, the one or more metabolic end products comprise a biofuel. In some embodiments, a second subset of the list of genes encode for components of a second metabolic pathway with one or more metabolic end products. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In practicing any of the methods of constructing a gene library as provided herein, in some embodiments, the list of genes comprises at least 500 genes. In some embodiments, the list comprises at least 5000 genes. In some embodiments, the list comprises at least 10000 genes. In some embodiments, the genes are at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint as described in the methods of constructing a gene library is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In another aspect, the present invention also provides a method of synthesizing n-mer oligonucleotides on a substrate. The method comprises a) providing a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling; and b) coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 12 nucleotides per hour according to a locus specific predetermined sequence, thereby synthesizing a plurality of oligonucleotides that are n basepairs long. Various embodiments related to the method of synthesizing n-mer oligonucleotides on a substrate are described herein.
  • In any of the methods of synthesizing n-mer oligonucleotides on a substrate as provided herein, in some embodiments, the methods further comprise coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 15 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 20 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 25 nucleotides per hour. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/500 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/1000 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/2000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/500 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/1000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/2000 bp.
  • In practicing any of the methods of synthesizing n-mer oligonucleotides on a substrate as provided herein, in some embodiments, the building blocks comprise an adenine, guanine, thymine, cytosine, or uridine group, or a modified nucleotide. In some embodiments, the building blocks comprise a modified nucleotide. In some embodiments, the building blocks comprise dinucleotides or trinucleotides. In some embodiments, the building blocks comprise phosphoramidite. In some embodiments, n of the n-mer oligonucleotides is at least 100. In some embodiments, n is at least 200. In some embodiments, n is at least 300. In some embodiments, n is at least 400. In some embodiments, the surface comprises at least 100,000 resolved loci and at least two of the plurality of growing oligonucleotides can be different from each other.
  • In some embodiments, the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises vacuum drying the substrate before coupling. In some embodiments, the building blocks comprise a blocking group. In some embodiments, the blocking group comprises an acid-labile DMT. In some embodiments, the acid-labile DMT comprises 4,4′-dimethoxytrityl. In some embodiments, the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises oxidation or sulfurization. In some embodiments, the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises chemically capping uncoupled oligonucleotide chains. In some embodiments, the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises removing the blocking group, thereby deblocking the growing oligonucleotide chain. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the vacuum drying step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the oxidation step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the capping step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the deblocking step. In some embodiments, the substrate comprises at least 10,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 100,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 1,000,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In another aspect of the present invention, a system for conducting a set of parallel reactions is provided herein. The system comprises: a first surface with a plurality of resolved loci; a capping element with a plurality of resolved reactor caps. In some embodiments, the system aligns the plurality of resolved reactor caps with the plurality of resolved loci on the first surface forming a temporary seal between the first surface and the capping element, thereby physically dividing the loci on the first surface into groups of at least two loci into a reactor associated with each reactor cap. In some embodiments, each reactor holds a first set of reagents.
  • In some embodiments related to any of the systems for conducting a set of parallel reactions as described herein, upon release from the first surface, the reactor caps retain at least a portion of the first set of reagents. In some embodiments, the portion is about 30%. In some embodiments, the portion is about 90%. In some embodiments, the plurality of resolved loci resides on microstructures fabricated into a support surface. In some embodiments, the plurality of resolved loci is at a density of at least 1 per mm2. In some embodiments, the plurality of resolved loci is at a density of at least 10 per mm2. In some embodiments, the plurality of resolved loci are at a density of at least 100 per mm2. In some embodiments, the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 μm. In some embodiments, at least one of the channels is shorter than 1000 μm. In some embodiments, at least one of the channels is wider than 50 μm in diameter. In some embodiments, at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 0.1 per mm2. In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 1 per mm2. In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 10 per mm2.
  • In some embodiments related to any of the systems for conducting a set of parallel reactions as described herein, the resolved loci of the first surface comprise a coating of reagents. In some embodiments, the resolved loci of the second surface comprise a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the first or second surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the coating of reagents has a surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the resolved loci in the plurality of resolved loci comprise a nominal arclength of the perimeter at a density of at least 0.001 μm/μm2. In some embodiments, the resolved loci in the plurality of resolved loci comprise a nominal arclength of the perimeter at a density of at least 0.01 μm/μm2. In some embodiments, the resolved loci in the plurality of resolved loci of the first surface comprise a high energy surface. In some embodiments, the first and second surfaces comprise a different surface tension with a given liquid. In some embodiments, the high surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the plurality of resolved loci are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the capping elements comprise a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In yet another aspect, the present invention also provides an array of enclosures. The array of enclosures comprise: a plurality of resolved reactors comprising a first substrate and a second substrate comprising reactor caps; at least 2 resolved loci in each reactor. In some cases, the resolved reactors are separated with a releasable seal. In some cases, the reactor caps retain at least a part of the contents of the reactors upon release of the second substrate from the first substrate. In some embodiments, the reactor caps on the second substrate have a density of at least 0.1 per mm2. In some embodiments, reactor caps on the second substrate have a density of at least 1 per mm2. In some embodiments, reactor caps on the second substrate have a density of at least 10 per mm2.
  • In some embodiments related to the array of enclosures as provided herein, the reactor caps retain at least 30% of the contents of the reactors. In some embodiments, the reactor caps retain at least 90% of the contents of the reactors. In some embodiments, the resolved loci are at a density of at least 2/mm2. In some embodiments, the resolved loci are at a density of at least 100/mm2. In some embodiments, the array of enclosures further comprises at least 5 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 20 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 50 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 100 resolved loci in each reactor.
  • In some embodiments related to the array of enclosures as described herein, the resolved loci reside on microstructures fabricated into a support surface. In some embodiments, the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, the at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 μm. In some embodiments, at least one of the channels is shorter than 1000 μm. In some embodiments, at least one of the channels is wider than 50 μm in diameter. In some embodiments, at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the microstructures comprise a nominal arclength of the perimeter of the at least two channels that has a density of at least 0.01 μm/square μm. In some embodiments, the microstructures comprise a nominal arclength of the perimeter of the at least two channels that has a density of at least 0.001 μm/square μm. In some embodiments, the resolved reactors are separated with a releasable seal. In some embodiments, the seal comprises a capillary burst valve.
  • In some embodiments related to the array of enclosures as described herein, the plurality of resolved loci of the first substrate comprise a coating of reagents. In some embodiments, the plurality of resolved loci of the second substrate comprises a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the first or second surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the coating of reagents has a surface area of at least 1 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the plurality of resolved loci of the first substrate comprises a high energy surface. In some embodiments, the first and second substrates comprise a different surface tension with a given liquid. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the plurality of resolved loci or the reactor caps are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays or systems provided in the current invention.
  • In still yet another aspect, the present invention also provides a method of conducting a set of parallel reactions. The method comprises: (a) providing a first surface with a plurality of resolved loci; (b) providing a capping element with a plurality of resolved reactor caps; (c) aligning the plurality of resolved reactor caps with the plurality of resolved loci on the first surface and forming a temporary seal between the first surface and the capping element, thereby physically dividing the loci on the first surface into groups of at least two loci; (d) performing a first reaction, thereby forming a first set of reagents; and (e) releasing the capping element from the first surface, wherein each reactor cap retains at least a portion of the first set of reagents in a first reaction volume. In some embodiments, the portion is about 30%. In some embodiments, the portion is about 90%.
  • In some embodiments, the method of conducting a set of parallel reactions as described herein further comprises the steps of: (f) providing a second surface with a plurality of resolved loci; (g) aligning the plurality of resolved reactor caps with the plurality of resolved loci on the second surface and forming a temporary seal between the second surface and the capping element, thereby physically dividing the loci on the second surface; (h) performing a second reaction using the portion of the first set of reagents, thereby forming a second set of reagents; and (i) releasing the capping element from the second surface, wherein each reactor cap can retain at least a portion of the second set of reagents in a second reaction volume. In some embodiments, the portion is about 30%. In some embodiments, the portion is about 90%.
  • In practicing any of the methods of conducting a set of parallel reactions as described herein, the plurality of resolved loci can have a density of at least 1 per mm2 on the first surface. In some embodiments, the plurality of resolved loci have a density of at least 10 per mm2 on the first surface. In some embodiments, the plurality of resolved loci have a density of at least 100 per mm2 on the first surface. In some embodiments, the plurality of resolved reactor caps have a density of at least 0.1 per mm2 on the capping element. In some embodiments, the plurality of resolved reactor caps have a density of at least 1 per mm2 on the capping element. In some embodiments, the plurality of resolved reactor caps have a density of at least 10 per mm2 on the capping element. In some embodiments, the plurality of resolved loci have a density of more than 0.1 per mm2 on the second surface. In some embodiments, the plurality of resolved loci have a density of more than 1 per mm2 on the second surface. In some embodiments, the plurality of resolved loci have a density of more than 10 per mm2 on the second surface.
  • In practicing any of the methods of conducting a set of parallel reactions as described herein, the releasing of the capping elements from the surface steps such as the releasing steps in (e) and (i) as described herein can be performed at a different velocity. In some embodiments, the resolved loci of the first surface comprise a coating of reagents for the first reaction. In some embodiments, the resolved loci of the second surface comprise a coating of reagents for the second reaction. In some embodiments, the coating of reagents is covalently linked to the first or second surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the coating of reagents has a surface area of at least 1 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the oligonucleotides are at least 25 bp. In some embodiments, the oligonucleotides are at least 200 bp. In some embodiments, the oligonucleotides are at least 300 bp. In some embodiments, the resolved loci of the first surface comprise a high energy surface. In some embodiments, the first and second surfaces comprise a different surface tension with a given liquid. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree.
  • In some embodiments related to the method of conducting a set of parallel reactions as described herein, the plurality of resolved loci or the resolved reactor caps are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the first and second reaction volumes are different. In some embodiments, the first or second reaction comprises polymerase cycling assembly. In some embodiments, the first or second reaction comprises enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, solid-phase assembly, Sloning building block technology, or RNA ligation mediated gene synthesis. In some embodiments, the methods of conducting a set of parallel reactions as described herein further comprises cooling the capping element. In some embodiments, the method of conducting a set of parallel reactions as described herein further comprises cooling the first surface. In some embodiments, the method of conducting a set of parallel reactions as described herein further comprises cooling the second surface. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays or systems provided in the current invention.
  • In another aspect, the present invention provides a substrate having a functionalized surface. The substrate having a functionalized surface can comprise a solid support having a plurality of resolved loci. In some embodiments, the resolved loci are functionalized with a moiety that increases the surface energy of the solid support. In some embodiments, the resolved loci are localized on microchannels.
  • In some embodiments related to the substrate having a functionalized surface as described herein, the moiety is a chemically inert moiety. In some embodiments, the microchannels comprise a volume of less than 1 nl. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of 0.036 μm/square μm. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the resolved loci in the plurality of resolved loci comprise a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the substrate. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, at least one of the microchannels is longer than 100 μm. In some embodiments, at least one of the microchannels is shorter than 1000 μm. In some embodiments, at least one of the microchannels is wider than 50 μm in diameter. In some embodiments, at least one of the microchannels is narrower than 100 μm in diameter. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the solid support comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the plurality of resolved loci is at a density of at least 1/mm2. In some embodiments, the plurality of resolved loci is at a density of at least 100/mm2. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In another aspect, the present invention also provides a method for synthesizing oligonucleotides on a substrate having a functionalized surface. The method comprises: (a) applying through at least one inkjet pump at least one drop of a first reagent to a first locus of a plurality of loci; (b) applying negative pressure to the substrate; and (c) applying through at least one inkjet pump at least one drop of a second reagent to the first locus.
  • In practicing any of the methods for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein, the first and second reagents can be different. In some embodiments, the first locus is functionalized with a moiety that increases their surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the plurality of loci resides on microstructures fabricated into the substrate surface. In some embodiments, the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, the at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 μm. In some embodiments, at least one of the channels is shorter than 1000 μm. In some embodiments, at least one of the channels is wider than 50 μm in diameter. In some embodiments, at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the substrate surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • In some embodiments related to the methods for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein, the volume of the drop of the first and/or the second reagents is at least 2 μl. In some embodiments, the volume of the drop is about 40 μl. In some embodiments, the volume of the drop is at most 100 μl. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/μm2. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 μm/μm2. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the pressure surrounding the substrate is reduced to less than 1 mTorr. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises coupling at least a first building block originating from the first drop to a growing oligonucleotide chain on the first locus. In some embodiments, the building blocks comprise a blocking group. In some embodiments, the blocking group comprises an acid-labile DMT. In some embodiments, the acid-labile DMT comprises 4,4′-dimethoxytrityl. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises oxidation or sulfurization. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises chemically capping uncoupled oligonucleotide chains. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises removing the blocking group, thereby deblocking the growing oligonucleotide chain. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the coupling step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the oxidation step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the capping step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the deblocking step. In some embodiments, the first locus resides on a microstructure fabricated into the substrate surface. In some embodiments, at least one reagent for the oxidation step is provided by flooding the microstructure with a solution comprising the at least one reagent. In some embodiments, at least one reagent for the capping step is provided by flooding the microstructure with a solution comprising the at least one reagent. In some embodiments, the first locus resides on a microstructure fabricated into the substrate surface and at least one reagent for the deblocking step can be provided by flooding the microstructure with a solution comprising the at least one reagent. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises enclosing the substrate within a sealed chamber. In some embodiments, the sealed chamber allows for purging of liquids from the first locus. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises draining a liquid through a drain that is operably linked to the first locus. In some embodiments, after applying the negative pressure to the substrate, the moisture content on the substrate is less than 1 ppm. In some embodiments, the surface energy is increased corresponding to a water contact angle of less than 20 degree. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In yet another aspect, the present invention provides a method of depositing reagents to a plurality of resolved loci. The method comprises applying through an inkjet pump at least one drop of a first reagent to a first locus of the plurality of loci; applying through an inkjet pump at least one drop of a second reagent to a second locus of the plurality of resolved loci. In some embodiments, the second locus is adjacent to the first locus. In still some embodiments, the first and second reagents are different. In still yet some embodiments, the first and second loci reside on microstructures fabricated into a support surface. In yet some embodiments, the microstructures comprise at least one channel that is more than 100 μm deep.
  • In practicing any of the methods of depositing reagents to a plurality of resolved loci as described herein, in some embodiments, the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, the at least two channels comprise two channels with different length. In some embodiments, the first locus receives less than 0.1% of the second reagent and the second locus receives less than 0.1% of the first reagent. In some embodiments, the loci comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/square μm. In some embodiments, the loci comprise a density of the nominal arclength of the perimeter of at least 0.001 μm/square μm. In some embodiments, the first and second loci comprise a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the substrate. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, at least one of the channels is longer than 100 μm. In some embodiments, at least one of the channels is shorter than 1000 μm. In some embodiments, at least one of the channels is wider than 50 μm in diameter. In some embodiments, at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the support surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the plurality of resolved loci is at a density of at least 1/mm2. In some embodiments, the plurality of resolved loci is at a density of at least 100/mm2. In some embodiments, the volume of the drop is at least 2 μl. In some embodiments, the volume of the drop is about 40 μl. In some embodiments, the volume of the drop is at most 100 μl. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In still yet another aspect, the present invention provides a microfluidic system. The microfluidic system comprises a first surface with a plurality of microwells at a density of at least 10 per mm2; and a droplet inside one of the plurality of microwells. In some embodiments, the droplet inside one of the plurality of microwells has a Reynolds number at a range of about 1-1000. In some embodiments, the plurality of microwells is at a density of at least 1 per mm2. In some embodiments, plurality of microwells is at a density of at least 10 per mm2.
  • In some embodiments related to the microfluidic system as provided herein, the microfluidic system further comprises an inkjet pump. In some embodiments, the droplet is deposited by the inkjet pump. In some embodiments, the droplet is moving in the lower half of a first microwell dimension. In some embodiments, the droplet is moving in the middle third of a first microwell dimension. In some embodiments, the plurality of microwells is at a density of at least 100 per mm2. In some embodiments, the first microwell dimension is larger than the droplet. In some embodiments, the microwell is longer than 100 μm. In some embodiments, the microwell is shorter than 1000 μm. In some embodiments, the microwell is wider than 50 μm in diameter. In some embodiments, the microwell is narrower than 100 μm in diameter. In some embodiments, the volume of the droplet is at least 2 μl. In some embodiments, the volume of the droplet is about 40 μl. In some embodiments, the volume of the droplet is at most 100 μl. In some embodiments, each of the plurality of microwells is fluidically connected to at least one microchannel. In some embodiments, the at least one microchannel is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the microwells are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/square μm. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of 0.001 μm/μm2. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the first surface. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention. In some embodiments, the droplet comprises a reagent that enables oligonucleotide synthesis. In some embodiments, the reagent is a nucleotide or nucleotide analog.
  • In another aspect, the present invention provides a method of depositing droplets to a plurality of microwells. The method comprises applying through an inkjet pump at least one droplet to a first microwell of the plurality of microwells. In some cases, the droplet inside one of the plurality of microwells has a Reynolds number at a range of about 1-1000. In some embodiments, the plurality of microwells has a density of at least 1/mm2. In yet some cases, the plurality of microwells has a density of at least 10/mm2.
  • In practicing any of the methods of depositing droplets to a plurality of microwells as provided herein, the plurality of microwells can have a density of at least 100/mm2. In some embodiments, the microwell is longer than 100 μm. In some embodiments, the microwell is shorter than 1000 μm. In some embodiments, the microwell is wider than 50 μm in diameter. In some embodiments, the microwell is narrower than 100 μm in diameter. In some embodiments, the droplet is applied at a velocity of at least 2 m/sec. In some embodiments, the volume of the droplet is at least 2 μl. In some embodiments, the volume of the droplet is about 40 μl. In some embodiments, the volume of the droplet is at most 100 μl. In some embodiments, each of the plurality of microwells is fluidically connected to at least one microchannel. In some embodiments, the at least one microwell is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the microwells are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/square μm. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 μm2m/μm2. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, a droplet inside a microwell is traveling in the middle third of the microwell. In some embodiments, a droplet inside a microwell is traveling in the bottom half of the microwell. In some embodiments, droplet comprises a reagent that enables oligonucleotide synthesis. In some embodiments, the reagent is a nucleotide or nucleotide analog. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In another aspect, the present invention also provides a method of partitioning. The method of partitioning comprises contacting a first surface comprising a liquid at a first plurality of resolved loci with a second surface comprising a second plurality of resolved loci; determining a velocity of release such that a desired fraction of the liquid can be transferred from the first plurality of resolved loci to the second plurality of resolved loci; and detaching the second surface from the first surface at said velocity. In some embodiments, the first surface comprises a first surface tension with the liquid, and the second surface can comprise a second surface tension with the liquid.
  • In practicing any of the methods of partitioning as provided herein, a portion of the first surface can be coated with a moiety that increases surface tension. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the surface tension of the first surface corresponds to a water contact angle of less than 20 degree. In some embodiments, the surface tension of the second surface corresponds to a water contact angle of more than 90 degree. In some embodiments, the first surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the plurality of resolved loci comprises a density of the nominal arclength of the perimeter of at least 0.01 μm/μm2. In some embodiments, the plurality of resolved loci comprises a density of the nominal arclength of the perimeter of at least 0.001 μm/μm2. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the first plurality of resolved loci is at a density of at least 1/mm2. In some embodiments, the first plurality of resolved loci is at a density of at least 100/mm2. In some embodiments, the first or the second surface comprises microchannels holding at least a portion of the liquid. In some embodiments, the first or the second surface comprises nanoreactors holding at least a portion of the liquid. In some embodiments, the method of partitioning as described herein further comprises contacting a third surface with a third plurality of resolved loci. In some embodiments, the liquid comprises a nucleic acid. In some embodiments, the desired fraction is more than 30%. In some embodiments, the desired fraction is more than 90%. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In yet another aspect, the present invention also provides a method of mixing as described herein. The method comprises: (a) providing a first substrate comprising a plurality of microstructures fabricated thereto; (b) providing a second substrate comprising a plurality of resolved reactor caps; (c) aligning the first and second substrates such that a first reactor cap of the plurality can be configured to receive liquid from n microstructures in the first substrate; and (d) delivering liquid from the n microstructures into the first reactor cap, thereby mixing liquid from the n microstructures forming a mixture.
  • In practicing any of the methods of mixing as described herein, the plurality of resolved reactor caps can be at a density of at least 0.1/mm2. In some embodiments, the plurality of resolved reactor caps are at a density of at least 1/mm2. In some embodiments, plurality of resolved reactor caps are at a density of at least 10/mm2. In some embodiments, each of the plurality of microstructures can comprise at least two channels of different width. In some embodiments, the at least one of the channels is longer than 100 μm. In some embodiments, the at least one of the channels is shorter than 1000 μm. In some embodiments, the at least one of the channels is wider than 50 μm in diameter. In some embodiments, the at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the at least one of the channels is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the microstructures are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/square μm. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 μm/μm2. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the plurality of microstructures comprises a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the first surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the microstructures are at a density of at least 1/mm2. In some embodiments, the microstructures are at a density of at least 100/mm2.
  • In some embodiments related to the methods of mixing as described herein, after step (c), which is aligning the first and second substrates such that a first reactor cap of the plurality can be configured to receive liquid from n microstructures in the first substrate, there is a gap of less than 100 μm between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 50 μm between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 20 μm between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 10 μm between the first and the second substrates. In some embodiments, the mixture partially spreads into the gap. In some embodiments, the method of mixing further comprises sealing the gap by bringing the first and the second substrate closer together. In some embodiments, one of the two channels is coated with a moiety that increases surface energy corresponding to a water contact angle of less than 20 degree. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the delivering is performed by pressure. In some embodiments, the volume of the mixture is greater than the volume of the reactor cap. In some embodiments, the liquid comprises a nucleic acid. In some embodiments, n is at least 10. In some embodiments, n is at least 25. In some embodiments, n, the number of microstructures from which the liquid is mixed forming a mixture, can be at least 50. In some embodiments, n is at least 75. In some embodiments, n is at least 100. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In yet another aspect, the present invention also provides a method of synthesizing n-mer oligonucleotides on a substrate as described herein. The method comprises: providing a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling; and coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci according to a locus specific predetermined sequence without transporting the substrate between the couplings of the at least two building blocks, thereby synthesizing a plurality of oligonucleotides that are n basepairs long.
  • In practicing any of the methods of synthesizing n-mer oligonucleotides on a substrate as described herein, the method can further comprise coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 12 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 15 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 20 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 25 nucleotides per hour. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/500 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/1000 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/2000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/500 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/1000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/2000 bp.
  • In some embodiments related to the method of synthesizing n-mer oligonucleotides on a substrate as described herein, the building blocks comprise an adenine, guanine, thymine, cytosine, or uridine group, or a modified nucleotide. In some embodiments, the building blocks comprise a modified nucleotide. In some embodiments, the building blocks comprise dinucleotides. In some embodiments, the building blocks comprise phosphoramidite. In some embodiments, n is at least 100. In some embodiments, wherein n is at least 200. In some embodiments, n is at least 300. In some embodiments, n is at least 400. In some embodiments, the substrate comprises at least 100,000 resolved loci and at least two of the plurality of growing oligonucleotides are different from each other. In some embodiments, the method further comprise vacuum drying the substrate before coupling. In some embodiments, the building blocks comprise a blocking group. In some embodiments, the blocking group comprises an acid-labile DMT. In some embodiments, the acid-labile DMT comprises 4,4′-dimethoxytrityl. In some embodiments, the method further comprise oxidation or sulfurization. In some embodiments, the method further comprise chemically capping uncoupled oligonucleotide chains. In some embodiments, the method further comprise removing the blocking group, thereby deblocking the growing oligonucleotide chain. In some embodiments, the substrate comprises at least 10,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 100,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 1,000,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In yet another aspect, the present invention also provides a method of constructing a gene library as described herein. The method comprises: entering at a first timepoint, in a computer readable non-transient medium a list of genes, wherein the list comprises at least 100 genes and wherein the genes are at least 500 bp; synthesizing more than 90% of the list of genes, thereby constructing a gene library with deliverable genes; preparing a sequencing library that represents the gene library; obtaining sequence information; selecting at least a subset of the deliverable genes based on the sequence information; and delivering the selected deliverable genes at a second timepoint, wherein the second timepoint is less than a month apart from the first timepoint.
  • In practicing any of the methods of constructing a gene library as described herein, the sequence information can be obtained bia next-generation sequencing. The sequence information can be obtained by Sanger sequencing. In some embodiments, the method further comprises delivering at least one gene at a second timepoint. In some embodiments, at least one of the genes differ from any other gene by at least 0.1% in the gene library. In some embodiments, each of the genes differ from any other gene by at least 0.1% in the gene library. In some embodiments, at least one of the genes differ from any other gene by at least 10% in the gene library. In some embodiments, each of the genes differ from any other gene by at least 10% in the gene library. In some embodiments, at least one of the genes differ from any other gene by at least 2 base pairs in the gene library. In some embodiments, each of the genes differ from any other gene by at least 2 base pairs in the gene library. In some embodiments, at least 90% of the deliverable genes are error free. In some embodiments, the deliverable genes comprise an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes. In some embodiments, at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes. In some embodiments, a subset of the deliverable genes are covalently linked together. In some embodiments, a first subset of the list of genes encode for components of a first metabolic pathway with one or more metabolic end products. In some embodiments, the method further comprises selecting of the one or more metabolic end products, thereby constructing the list of genes. In some embodiments, the one or more metabolic end products comprise a biofuel. In some embodiments, a second subset of the list of genes encode for components of a second metabolic pathway with one or more metabolic end products. In some embodiments, the list comprises at least 500, genes. In some embodiments, the list comprises at least 5000 genes. In some embodiments, the list comprises at least 10000 genes. In some embodiments, the genes are at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • Provided herein, in some embodiments, is a microfluidic device for nucleic acid synthesis, comprising a substantially planar substrate portion comprising n groupings of m microfluidic connections between opposite surfaces, wherein each one of the n*m microfluidic connections comprises a first channel and a second channel, and wherein the first channel within each of the n groupings is common to all m microfluidic connections, wherein the plurality of microfluidic connections span the substantially planar substrate portion along the smallest dimension of the substrate, and wherein n and m are at least 2. In some embodiments, the second channel is functionalized with a coating that is capable of facilitating the attachment of an oligonucleotide to the device. In some embodiments, the device further comprises a first oligonucleotide that is attached to the second channels in k of the n groupings. In some embodiments, k is 1. In some embodiments, the device further comprises a second oligonucleotide that is attached to 1 of the n groupings. In some embodiments, 1 is 1. In some embodiments, the none of the groupings in the 1 groupings are in the k groupings.
  • In some embodiments, the oligonucleotide is at least 10 nucleotides, 25 nucleotides, 50 nucleotides, 75 nucleotides, 100 nucleotides, 125 nucleotides, 150 nucleotides, or 200 nucleotides long.
  • In some embodiments, the first and the second oligonucleotides differ by at least 2 nucleotides, 3 nucleotides, 4 nucleotides, 5 nucleotides, or 10 nucleotides.
  • In some embodiments, the n*m microfluidic connections are at most 5 mm, 1.5 mm, 1.0 mm, or 0.5 mm long. In some embodiments, the first channel within each of the n groupings is at most 5 mm, 1.5 mm, 1.0 mm, or 0.5 mm long. In some embodiments, the first channel within each of the n groupings is at least 0.05 mm, 0.75 mm, 0.1 mm, 0.2 mm, 0.3 mm, or 0.4 mm long. In some embodiments, the second channel in each of the n*m microfluidic connections is at most 0.2 mm, 0.1 mm, 0.05 mm, 0.04 mm, or 0.03 mm long. In some embodiments, the second channel in each of the n*m microfluidic connections is at least 0.001 mm, 0.005 mm, 0.01 mm, 0.02 mm, or 0.03 mm long. In some embodiments, the cross section of the first channel within each of the n groupings is at least 0.01 mm, 0.025 mm, 0.05 mm, or 0.075 mm. In some embodiments, the cross section of the first channel within each of the n groupings is at most 1 mm, 0.5 mm, 0.25 mm, 0.1 mm, or 0.075 mm. In some embodiments, the cross section of the second channel in each of the n*m microfluidic connections is at least 0.001 mm, 0.05 mm, 0.01 mm, 0.015 mm, or 0.02 mm. In some embodiments, the cross section of the second channel in each of the n*m microfluidic connections is at most 0.25 mm, 0.125 mm, 0.050 mm, 0.025 mm, 0.02 mm. In some embodiments, the standard deviation in the cross section of the second channels in each of the n*m microfluidic connections is less than 25%, 20%, 15%, 10%, 5%, or 1% of the mean of the cross section. In some embodiments, the variation in the cross section within at least 90% of the second channels of the n*m microfluidic connections is at most 25%, 20%, 15%, 10%, 5%, or 1%.
  • In some embodiments, n is at least 10, 25, 50, 100, 1000, or 10000. In some embodiments, m is at least 3, 4, or 5.
  • In some embodiments, the substrate comprises at least 5%, 10%, 25%, 50%, 80%, 90%, 95%, or 99% silicon.
  • In some embodiments, at least 90% of the second channels of the n*m microfluidic connections is functionalized with a moiety that increases surface energy. In some embodiments, the surface energy is increased to a level corresponding to a water contact angle of less than 75, 50, 30, or 20 degrees.
  • In some embodiments, the aspect ratio for at least 90% of the second channels of the n*m microfluidic connections is less than 1, 0.5, or 0.3. In some embodiments, the aspect ratio for at least 90% of the first channels in the n groupings is less than 0.5, 0.3, or 0.2.
  • In some embodiments, the total length of at least 10%, 25%, 50%, 75%, 90%, or 95% of the n*m fluidic connections are within 10%, 20%, 30%, 40%, 50%, 100%, 200%, 500%, or 1000% of the smallest dimension of the substantially planar substrate.
  • In some embodiments, the substantially planar portion of the device is fabricated from a SOI wafer.
  • In another aspect, the invention relates to a method of nucleic acid amplification, comprising: (a) providing a sample comprising n circularized single stranded nucleic acids, each comprising a different target sequence; (b) providing a first adaptor that is hybridizable to at least one adaptor hybridization sequence on m of the n circularized single stranded nucleic acids; (c) providing conditions suitable for extending the first adaptor using the m circularized single stranded nucleic acids as a template, thereby generating m single stranded amplicon nucleic acids, wherein each of the m single stranded amplicon nucleic acids comprises a plurality of replicas of the target sequence from its template; (d) providing a first auxiliary oligonucleotide that is hybridizable to the first adaptor; and (e) providing a first agent under conditions suitable for the first agent to cut the m single stranded amplicon nucleic acids at a plurality of cutting sites, thereby generating a plurality of single stranded replicas of the target sequences in the m circularized single stranded nucleic acids. In some embodiments, n or m is at least 2. In some embodiments, n or m is at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150, 200, 300, 400, or 500. In some embodiments, m is less than n. In some embodiments, the sample comprising the n circularized single stranded nucleic acid is formed by providing at least n linear single stranded nucleic acids, each comprising one of the different target sequences and circularizing the n linear single stranded nucleic acids, thereby generating the n circularized single stranded nucleic acids. In some embodiments, the first adaptor is hybridizable to both ends of the n linear single stranded nucleic acids concurrently. In some embodiments, the different target sequences in the n linear single stranded nucleic acids are flanked by a first and a second adaptor hybridization sequence. In some embodiments, the at least n linear single stranded nucleic acids are generated by de novo oligonucleotide synthesis. In some embodiments, the first adaptor hybridization sequence in each of the n linear single stranded nucleic acids differ by no more than two nucleotide bases. In some embodiments, the first or the second adaptor hybridization sequence is at least 5 nucleotides long. In some embodiments, the first or the second adaptor hybridization sequence is at most 75, 50, 45, 40, 35, 30, or 25 nucleotides long. In some embodiments, the ends of the n linear single stranded nucleic acids pair with adjacent bases on the first adaptor when the first adaptor is hybridized to the both ends of the linear single stranded nucleic acid concurrently. In some embodiments, the locations of the plurality of cutting sites are such that the adaptor hybridization sequence is severed from at least 5% of a remainder sequence portion of the m circularized single stranded nucleic acid replicas. In some embodiments, at least 5% of the sequence of the m circularized single stranded nucleic acid replicas other than the at least one adaptor hybridization sequence remains uncut. In some embodiments, the locations of the plurality of cutting sites are outside the at least one adaptor hybridization sequence. In some embodiments, the locations of the plurality of cutting sites are independent of the target sequences. In some embodiments, the locations of the plurality of cutting sites are determined by at least one sequence element within the sequence of the first adaptor or the first auxiliary oligonucleotide. In some embodiments, the sequence element comprises a recognition site for a restriction endonuclease. In some embodiments, the first auxiliary oligonucleotide or the first adaptor oligonucleotide comprises a recognition site for a Type IIS restriction endonuclease. In some embodiments, the recognition sites are at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides away from the cutting sites. In some embodiments, the plurality of cutting sites are at junctures of single and double stranded nucleic acids. In some embodiments, the double stranded nucleic acids comprise the first adaptor and the first auxiliary oligonucleotide. In some embodiments, the single stranded nucleic acids consists essentially of the m different target sequences. In some embodiments, the m different target sequences have at most 95% pairwise similarity. In some embodiments, the m different target sequences have at most 90% pairwise similarity. In some embodiments, the m different target sequences have at most 80% pairwise similarity. In some embodiments, the m different target sequences have at most 50% pairwise similarity. In some embodiments, generating the m single stranded amplicon nucleic acid comprises strand displacement amplification. In some embodiments, the first auxiliary oligonucleotide comprises an affinity tag. In some embodiments, the affinity tag comprises biotin or biotin derivative. In some embodiments, the method further comprises isolating double stranded nucleic acids from the sample. In some embodiments, the isolating comprises affinity purification, chromatography, or gel purification. In some embodiments, the first agent comprises a restriction endonuclease. In some embodiments, the first agent comprises at least two restriction endonucleases. In some embodiments, the first agent comprises a Type IIS restriction endonuclease. In some embodiments, the first agent comprises a nicking endonuclease. In some embodiments, the first agent comprises at least two nicking endonucleases. In some embodiments, the first agent comprises at least one enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I, TasI, TspEI, AjnI, BstSCI, EcoRII, MaeIII, NmuCI, Psp6I, MnlI, BspCNI, BsrI, BtsCI, HphI, HpyAV, MboII, AcuI, BciVI, BmrI, BpmI, BpuEI, BseRI, BsgI, BsmI, BsrDI, BtsI, EciI, MmeI, NmeAIII, Hin4II, TscAI, Bce83I, BmuI, BsbI, BscCI, NlaIII, Hpy99I, TspRI, FaeI, Hin1II, Hsp92II, SetI, TaiI, TscI, TscAI, TseFI, Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, UbaPI, Nt.AlwI, Nt.BsmAI, Nt.BstNBI, and Nt.BspQI, and variants thereof. In some embodiments, the first agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site, as any of the listed sfirst agents and variants. In some embodiments, the at least two restriction enzymes comprise MlyI and BciVI or BfuCI and MlyI. In some embodiments, the method further comprises (a) partitioning the sample into a plurality of fractions; (b) providing at least one fraction with a second adaptor that is hybridizable to at least one adaptor hybridization sequence on k of the n different circularized single stranded nucleic acids; (c) providing conditions suitable for extending the second adaptor using the k circularized single stranded nucleic acids as a template, thereby generating k single stranded amplicon nucleic acids, wherein the second single stranded amplicon nucleic acid comprises a plurality of replicas of the target sequence from its template; (d) providing a second auxiliary oligonucleotide that is hybridizable to the second adaptor; and (e) providing a second agent under conditions suitable for the agent to cut the k single stranded amplicon nucleic acids at a second plurality of cutting sites, thereby generating a plurality of single stranded replicas of the target sequences in the k circularized single stranded nucleic acids. In some embodiments, the first and the second adaptors are the same. In some embodiments, the first and the second auxiliary oligonucleotides are the same. In some embodiments, the first and the second agents are the same. In some embodiments, k+m is less than n. In some embodiments, k is at least 2. In some embodiments, the sample comprising the n circularized single stranded nucleic acid is formed by single stranded nucleic acid amplification. In some embodiments, the single stranded nucleic acid amplification comprises: (a) providing a sample comprising at least m circularized single stranded precursor nucleic acids; (b) providing a first precursor adaptor that is hybridizable to the m circularized single stranded precursor nucleic acids; (c) providing conditions suitable for extending the first precursor adaptor using the m circularized single stranded precursor nucleic acids as a template, thereby generating m single stranded precursor amplicon nucleic acids, wherein the single stranded amplicon nucleic acid comprises a plurality of replicas of the m circularized single stranded precursor nucleic acid; (d) providing a first precursor auxiliary oligonucleotide that is hybridizable to the first precursor adaptor; and (e) providing a first precursor agent under conditions suitable for the first precursor agent to cut the first single stranded precursor amplicon nucleic acid at a plurality of cutting sites, thereby generating the m linear precursor nucleic acids. In some embodiments, the method further comprises circularizing the m linear precursor nucleic acids, thereby forming replicas of the m circularized single stranded precursor nucleic acids. In some embodiments, the m circularized single stranded precursor nucleic acid is amplified by at least 10, 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 10000-fold, or more in single stranded replicas. In some embodiments, at least one of the m circularized single stranded nucleic acids is at a concentration of about or at most about 100 nM, 10 nM, 1 nM, 50 pM, 1 pM, 100 fM, 10 fM, 1 fM, or less. In some embodiments, circularizing comprises ligation. In some embodiments, ligation comprises the use of a ligase selected from the group consisting of T4 DNA ligase, T3 DNA ligase, T7 DNA ligase, E. coli DNA ligase, Taq DNA ligase, and 9N DNA ligase.
  • In yet a further aspect, the invention, in various embodiments relates to a kit comprising: (a) a first adaptor; (b) a first auxiliary oligonucleotide that is hybridizable to the adaptor; (c) a ligase; and (d) a first cleaving agent, comprising at least one enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MiuCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I, TasI, TspEI, AjnI, BstSCI, EcoRII, MaeIII, NmuCI, Psp6I, MnlI, BspCNI, BsrI, BtsCI, HphI, HpyAV, MboII, AcuI, BeiVI, BmrI, BpmI, BpuEI, BseRI, BsgI, BsmI, BsrDI, BtsI, EciI, MmeI, NmeAIII, Hin4II, TscAI, Bce83I, BmuI, BsbI, BscCI, NlaIII, Hpy99I, TspRI, FaeI, Hin1II, Hsp92II, SetI, TaiI, TscI, TscAI, TseFI, Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, UbaPI, Nt.AlwI, Nt.BsmAI, Nt.BstNBI, and Nt.BspQI, and variants thereof. In some embodiments, the first agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site as any of the listed first agents and variants. In some embodiments, the kit further comprises a second cleaving agent. In some embodiments, the second cleaving agent comprises and enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I, TasI, TspEI, AjnI, BstSCI, EcoRII, MaeIII, NmuCI, Psp6I, MnlI, BspCNI, BsrI, BtsCI, HphI, HpyAV, MboII, AcuI, BciVI, BmrI, BpmI, BpuEI, BseRI, BsgI, BsmI, BsrDI, BtsI, EciI, MmeI, NmeAIII, Hin4II, TscAI, Bce83I, BmuI, BsbI, BscCI, NlaIII, Hpy99I, TspRI, FaeI, HinIII, Hsp92II, SetI, TaiI, TscI, TscAI, TseFI, Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, UbaPI, Nt.AlwI, Nt.BsmAI, Nt.BstNBI, and Nt.BspQI, and variants thereof. In some embodiments, the second agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site as any of the listed second agents and variants. In some embodiments, the first cleaving agents comprises MlyI. In some embodiments, the second cleaving agent comprises BciVI or BfuCI.
  • In yet another aspect, the invention relates to a method of nucleic acid amplification, comprising: (a) providing a sample comprising n circularized single stranded nucleic acids, each comprising a different target sequence; (b) providing a first adaptor that is hybridizable to at least one adaptor hybridization sequence on m of the n circularized single stranded nucleic acids; (c) providing conditions suitable for extending the first adaptor using the m circularized single stranded nucleic acids as a template, thereby generating m single stranded amplicon nucleic acids, wherein each of the m single stranded amplicon nucleic acids comprises a plurality of replicas of the target sequence from its template; (d) generating double stranded recognition sites for a first agent on the m single stranded amplicon nucleic acids; and (e) providing the first agent under conditions suitable for the first agent to cut the m single stranded amplicon nucleic acids at a plurality of cutting sites, thereby generating a plurality of single stranded replicas of the target sequences in the m circularized single stranded nucleic acids. In some embodiments, the double stranded recognition sites comprise a first portion of the first adaptor on a first strand of the double stranded recognition sites and a second strand of the first adaptor on the second strand of the double stranded recognition sites. In some embodiments, the adaptor comprises a palindromic sequence. In some embodiments, the double stranded recognition sites are generated by hybridizing the first and second portions of the first adaptor to each other. In some embodiments, the m single stranded amplicon nucleic acids comprise a plurality of double stranded self-hybridized regions.
  • In a yet further aspect, the invention relates to a method for generating a long nucleic acid molecule, the method comprising the steps of: (a) providing a plurality of nucleic acids immobilized on a surface, wherein said plurality of nucleic acids comprises nucleic acids having overlapping complementary sequences; (b) releasing said plurality of nucleic acids into solution; and (c) providing conditions promoting: i) hybridization of said overlapping complementary sequences to form a plurality of hybridized nucleic acids; and ii) extension or ligation of said hybridized nucleic acids to synthesize the long nucleic acid molecule.
  • In another aspect, the invention relates to an automated system capable of processing one or more substrates, comprising: an inkjet print head for spraying a microdroplet comprising a chemical species on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and not comprising a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell, wherein said treating transport and said scanning transport are different elements.
  • In yet another aspect, the invention relates to an automated system for synthesizing oligonucleotides on a substrate, said automated system capable of processing one or more substrates, comprising: an inkjet print head for spraying a solution comprising a nucleoside or activated nucleoside on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the nucleoside at specified sites; a flow cell for treating the substrate on which the monomer is deposited by exposing the substrate to one or more selected fluids; an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and not comprising a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell, wherein said treating transport and said scanning transport are different elements.
  • In yet a further aspect, the invention relates to an automated system comprising: an inkjet print head for spraying a microdroplet comprising a chemical species on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; and an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and wherein the system does NOT comprise a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent application file contains at least one drawing executed in color. Copies of this patent or patent application with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIG. 1A-1C demonstrates an example process outlining the gene synthesis and nanoreactor technologies. FIG. 1A illustrates an example process for oligonucleotide synthesis on a substrate using an inkjet printer; FIG. 1B illustrates an example process for gene amplification in a resolved enclosure, or a nanoreactor. FIG. 1C illustrates an example of the use of a plurality of wafers linking microfluidic reactions for oligonucleotide synthesis and gene assembly in parallel.
  • FIGS. 2A-2C are block diagrams demonstrating exemplary business process flows. Cloning of the synthesized genes may be skipped (FIG. 2B). In FIG. 2C, synthesized genes are cloned prior to shipment (FIG. 2C).
  • FIG. 3 demonstrates an exemplary outline of a system for oligonucleotide synthesis, including a printer, e.g. inkjet printer, for reagent deposition, a substrate (wafer), schematics outlining the alignment of the system elements in multiple directions, and exemplary setups for reagent flow.
  • FIG. 4 illustrates an example of the design microstructures built into a substrate (oligonucleotide wafer reactor).
  • FIG. 5 is a diagram demonstrating an exemplary process for reagent deposition into the microstructures illustrated in FIG. 4 . The selected area for surface functionalization allows reagent spreading into the smaller functionalized wells under wetting conditions.
  • FIG. 6A are illustrations further exemplifying the microstructures illustrated in FIG. 4 . FIG. 6B are illustrations of various alternative designs for the microstructures.
  • FIG. 6C illustrates a layout design for the microstructures on the substrate (wafer).
  • FIG. 7 illustrates an exemplary layout of reactor caps on a capping element.
  • FIG. 8 is a diagram demonstrating an exemplary process workflow for gene synthesis to shipment.
  • FIG. 9 part A show illustrations of an exemplary flowcell with lid opened or closed. FIG. 9 part B illustrates a cross-sectional view of an exemplary flowcell and waste collector assembly. FIG. 9 part C illustrates a magnified cross-sectional view of an exemplary flowcell and waste collector assembly.
  • FIG. 10 part A illustrates an example of a single groove vacuum chuck with a single 1-5 mm groove, 198 mm diameter. FIG. 10 part B illustrates a sintered metal insert in between a substrate (wafer) and the vacuum chuck and an optional thermal control element incorporated into the receiving element. FIG. 10 part C illustrates a cross-sectional view of the single groove vacuum chuck exemplified in FIG. 10 part A.
  • FIG. 11 illustrates exemplary application standard phosphoramidite chemistry for oligonucleotide synthesis.
  • FIG. 12 illustrates an exemplary application of the polymerase chain assembly (PCA).
  • FIG. 13 are diagrams demonstrating the advantage of using longer oligonucleotides (e.g. about 300 bp) vs. shorter oligonucleotides (e.g. about 50 kb). Longer oligonucleotides can be used in the assembly of gene products with reduced error.
  • FIG. 14 are diagrams demonstrating an exemplary combined application of PCA and Gibson methods for assembly of oligonucleotides into gene products.
  • FIG. 15 is a diagram demonstrating an error correction method especially suited for application to gene synthesis products with higher error rates.
  • FIG. 16 is a diagram demonstrating an error correction method especially suited for application to gene synthesis products with lower error rates.
  • FIG. 17 is a diagram demonstrating the use of padlock probes for the generation of molecularly barcoded sequencing libraries and quality control (QC) processes comprising next generation sequencing (NGS).
  • FIG. 18 illustrates an example for an inkjet assembly, with 10 inkjet heads that have silicon orifice plates with 256 nozzles on 254 μm centers, and 100 μm fly height.
  • FIG. 19 illustrates an example of a computer system that can be used in connection with example embodiments of the present invention.
  • FIG. 20 is a block diagram illustrating a first example architecture of a computer system 2000 that can be used in connection with example embodiments of the present invention.
  • FIG. 21 is a diagram demonstrating a network 2100 configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS) that can be used in connection with example embodiments of the present invention.
  • FIG. 22 is a block diagram of a multiprocessor computer system 2200 using a shared virtual address memory space that can be used in connection with example embodiments of the present invention.
  • FIG. 23 is a diagram demonstrating exemplary steps constituting the front end processing for the manufacturing of microstructures on a substrate (e.g. silicon wafer).
  • FIG. 24 is a diagram demonstrating exemplary steps constituting the back end processing for the functionalizing of the microstructure surfaces on a substrate (e.g. silicon wafer).
  • FIGS. 25A-25C depict different views of a cluster comprising a high density of groupings. FIGS. 25D-25E depict different views of a diagram of a microfluidic device comprising a substantially planar substrate portion. FIG. 25F depicts the device view of a diagram of a microfluidic device comprising a substantially planar substrate portion having 108 reaction wells and a designated area for a label. FIG. 25G depicts the device view of a cluster comprising 109 groupings.
  • FIG. 26A depicts a cross-section view of a diagram of a nanoreactor, where the view shows a row of the nanoreactor comprising 11 wells. FIG. 26B depicts a device view of a diagram of a nanoreactor comprising 108 raised wells. The detail F depicts a detailed view of one well of the nanoreactor. FIG. 26C depicts an angled device view of the nanoreactor diagram shown in FIG. 26B. FIG. 26D depicts a handle view of a diagram of a nanoreactor. The detail H depicts a detailed view of a fiducial marking on the handle side of the nanoreactor.
  • FIG. 26E depicts a device view of a diagram of nanoreactor comprising 108 wells and a label.
  • FIG. 27 illustrates in detail the design features of an exemplary oligonucleotide synthesis device that is differentially functionalized.
  • FIG. 28 illustrates a workflow for the front-end manufacturing process for the exemplary device in FIG. 15 .
  • FIG. 29 illustrates an exemplary baseline process flow for the back-end manufacturing of the exemplary oligonucleotide synthesis device of FIG. 15 for differential functionalization.
  • FIG. 30 illustrates a functionalized surface with a controlled density of active groups for nucleic acid synthesis.
  • FIG. 31 parts A-B shows an image of a device manufactured according to the methods described herein.
  • FIG. 32 illustrates the design details of an exemplary nanoreactor device.
  • FIG. 33 parts A-H illustrates an exemplary baseline process flow for the front-end manufacturing of the exemplary device described in FIG. 20 .
  • FIG. 34 parts A-D illustrates an exemplary baseline process flow for the back-end manufacturing of the exemplary nanoreactor device of FIG. 20 for functionalization.
  • FIG. 35 illustrates the nanowells in a nanoreactor device manufactured as described herein. FIG. 35 part B illustrates a close-up view of the nanowells illustrated in FIG. 35 part A.
  • FIG. 36 parts A-F illustrates various configurations for differential functionalization. In each figure, the light shaded line indicates an active surface, while a dark line indictaes a passive surface.
  • FIG. 36 part A illustrates a uniformly functionalized surface. FIG. 36 parts B-F illustrate differentially functionalized surfaces in various configurations.
  • FIG. 37 parts A-F illustrate a process flow for device funtionalization.
  • FIG. 38 depicts an exemplary illustration of resist application, wherein resist is pulled into small structures and stopped by sharp edges.
  • FIG. 39 parts A-B illustrate use of underlying structures to either stop or wick the resist application in an exemplary embodiment.
  • FIG. 40 parts A-C illustrate post-lithographic resist patterns in an exemplary differential functionalization configuration. FIG. 40 part A illustrates a bright field view of a post-lithographic resist patern. FIG. 40 part B illustrates a dark field view of a post-lithographic resist patern. FIG. 40 part C illustrates a cross-sectional schematic view of a post-lithographic resist patern.
  • FIG. 41 parts A-C illustrate post-lithographic resist patterns in another exemplary differential functionalization configuration. FIG. 41 part A illustrates a bright field view of a post-lithographic resist patern. FIG. 41 part B illustrates a dark field view of a post-lithographic resist patern. FIG. 41 part C illustrates a cross-sectional schematic view of a post-lithographic resist patern.
  • FIG. 42 parts A-C illustrate a post resist strip after functionalization with a fluorosilane. FIG. 42 part A illustrates a bright field view. FIG. 42 part B illustrates a dark field view. FIG. 42 part C illustrates a cross-sectional schematic view.
  • FIG. 43 parts A-C illustrate an exemplary oligonucleotide synthesis device (“Keratin chip”), fully loaded with DMSO. FIG. 43 part A illustrates a bright field view of the Keratin chip fully loaded with DMSO. Hydrophilic and hydrophobic regions are indicated. FIG. 43 part B illustrates a dark field view of the Keratin chip fully loaded with DMSO. FIG. 43 part C illustrates a cross-sectional schematic view of the Keratin chip fully loaded with DMSO, indicating spontaneous wetting of the revolvers.
  • FIG. 44 parts A-F outline an exemplary process flow for configuration 6 illustrated in FIG. 36 .
  • FIG. 45 parts A-B indicate a spot sampling configuration from an oligonucleotide synthesis device (A) and corresponding BioAnalyzer data (B) for each of the five spots in FIG. 45 part A.
  • FIG. 46 indicates BioAnalyzer data of surface extracted 100-mer oligonucleotides synthesized on a silicon oligonucleotide synthesis device.
  • FIG. 47 indicates BioAnalyzer data of surface extracted 100-mer oligonucleotides synthesized on a silicon oligonucleotide synthesis device after PCR amplification.
  • FIG. 48 represents a sequence alignment for the samples taken from spot 8, where “x” denotes a single base deletion, “star” denotes single base mutation, and “+” denotes low quality spots in Sanger sequencing.
  • FIG. 49 represents a sequence alignment for the samples taken from spot 7, where “x” denotes a single base deletion, “star” denotes single base mutation, and “+” denotes low quality spots in Sanger sequencing.
  • FIG. 50 parts A-B provide BioAnalzyer results for a 100-mer oligonucleotide synthesized on a three dimensional oligonucleotide device after extraction (part A) and after PCR amplification (part B).
  • FIG. 51 represents a sequence alignment map for a PCR amplified sample of a 100-mer oligonucleotide that was synthesized on a 3D oligonucleotide device.
  • FIG. 52 represents correction results through the application of two rounds of error correction using CorrectASE.
  • FIG. 53 parts A-C illustrate a surface functionalization pattern in an exemplary differential functionalization configuration after functionalization. FIG. 53 part A illustrates a bright field view. FIG. 53 part B illustrates a dark field view. FIG. 53 part C illustrates a cross-sectional schematic view of the surface functionalization pattern and an aqueous fluid bulging out avoiding hydrophobic regions.
  • FIG. 54 parts A-D depicts an exemplary workflow for functionalization of an nanoreactor device. Cleaning is followed by resist deposition, functionalization, and finally a resist strip.
  • FIG. 55 depicts BioAnalyzer results for a number of oligonucleotides transferred into individual nanoreactor wells from an oligonucleotide synthesis device following a blotting method. FIG. 56 parts A-B depict alternate flow cell designs.
  • FIG. 56 part A depicts a line source/line drain design for a flowcell.
  • FIG. 56 part B depicts a point source/point drain design for a flowcell.
  • FIG. 57 illustrates an oligonucleotide synthesis device and a nanoreactor device mounted in a configuration having a 50 um gap. In an exemplary embodiment, the devices are maintained in this configuration for for 10 minutes.
  • FIG. 58 parts A-B show the redistribution of oligos over time, without being bound by theory, by diffusion, from an oligonucleotide synthesis device to a nanoreactor device.
  • FIG. 58 part A shows oligos concentrated in a liquid in the revolver channels, and few or no oligonucleotides in a nanoreactor chamber. FIG. 58 part B schematizes oligonucleotides uniformly distributed through liquid in revolver chambers and in a nanoreactor chamber at a later time point relative to FIG. 58 part A.
  • FIG. 59 shows views of a nanoreactor well array used for gene assembly before and after a PCA reaction.
  • FIG. 60 parts A-C depict the results of the assembly of a gene in various wells of a nanoreactor device. FIG. 60 part A depicts a device in which oligos were synthesized. Wells 1-10 are marked. FIG. 60 part B depcits analysis of the genes assembled in the wells in FIG. 60 part A. Peaks corresponding to the gene in each well are labeled with the well number. FIG. 60 part C depicts electrophoresis of the oligos analyzed in FIG. 60 part B.
  • FIG. 61 parts A-B present block views of a high capacity oligonucleotide synthesis device consistent with the disclosure herein. FIG. 61 part A presents a full, angled view of a block as disclosed herein. FIG. 61 part B presents an angled view of a cross-sectional slice through a block as disclosed herein.
  • FIG. 62 depicts a block view of another high capacity oligonucleotide synthesis device consistent with the disclosure herein, having an array of posts on its surface, which increase surface area.
  • FIG. 63 depicts electrophoresis of amplified single stranded nucleic acids using rolling circle amplification, wherein the amplification product is cut with various combintions of cleaving agents.
  • FIG. 64 parts A-F represent a method for the amplification of single stranded nucleic acids.
  • FIG. 65 parts A-F represent method for the amplification of single stranded nucleic acids, which may be coupled to the method illustrated in FIG. 64 .
  • DETAILED DESCRIPTION OF THE INVENTION
  • Throughout this disclosure, various aspects of this invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention, unless the context clearly dictates otherwise.
  • In one aspect, the present invention provides a gene library as described herein. The gene library comprises a collection of genes. In some embodiments, the collection comprises at least 100 different preselected synthetic genes that can be of at least 0.5 kb length with an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In another aspect, the present invention also provides a gene library that comprises a collection of genes. The collection may comprise at least 100 different preselected synthetic genes that can be each of at least 0.5 kb length. At least 90% of the preselected synthetic genes may comprise an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. Desired predetermined sequences may be supplied by any method, typically by a user, e.g. a user entering data using a computerized system. In various embodiments, synthesized nucleic acids are compared against these predetermined sequences, in some cases by sequencing at least a portion of the synthesized nucleic acids, e.g. using next-generation sequencing methods. In some embodiments related to any of the gene libraries described herein, at least 90% of the preselected synthetic genes comprise an error rate of less than 1 in 5000 bp compared to predetermined sequences comprising the genes. In some embodiments, at least 0.05% of the preselected synthetic genes are error free. In some embodiments, at least 0.5% of the preselected synthetic genes are error free. In some embodiments, at least 90% of the preselected synthetic genes comprise an error rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, at least 90% of the preselected synthetic genes are error free or substantially error free. In some embodiments, the preselected synthetic genes comprise a deletion rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the preselected synthetic genes comprise an insertion rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the preselected synthetic genes comprise a substitution rate of less than 1 in 3000 bp compared to predetermined sequences comprising the genes. In some embodiments, the gene library as described herein further comprises at least 10 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 100 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 1000 copies of each synthetic gene. In some embodiments, the gene library as described herein further comprises at least 1000000 copies of each synthetic gene. In some embodiments, the collection of genes as described herein comprises at least 500 genes. In some embodiments, the collection comprises at least 5000 genes. In some embodiments, the collection comprises at least 10000 genes. In some embodiments, the preselected synthetic genes are at least 1 kb. In some embodiments, the preselected synthetic genes are at least 2 kb. In some embodiments, the preselected synthetic genes are at least 3 kb. In some embodiments, the predetermined sequences comprise less than 20 bp in addition compared to the preselected synthetic genes. In some embodiments, the predetermined sequences comprise less than 15 bp in addition compared to the preselected synthetic genes. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 0.1%. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 0.1%. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 10%. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 10%. In some embodiments, at least one of the synthetic genes differs from any other synthetic gene by at least 2 base pairs. In some embodiments, each of the synthetic genes differs from any other synthetic gene by at least 2 base pairs. In some embodiments, the gene library as described herein further comprises synthetic genes that are of less than 2 kb with an error rate of less than 1 in 20000 bp compared to preselected sequences of the genes. In some embodiments, a subset of the deliverable genes is covalently linked together. In some embodiments, a first subset of the collection of genes encodes for components of a first metabolic pathway with one or more metabolic end products. In some embodiments, the gene library as described herein further comprises selecting of the one or more metabolic end products, thereby constructing the collection of genes. In some embodiments, the one or more metabolic end products comprise a biofuel. In some embodiments, a second subset of the collection of genes encodes for components of a second metabolic pathway with one or more metabolic end products. In some embodiments, the gene library is in a space that is less than 100 m3. In some embodiments, the gene library is in a space that is less than 1 m3. In some embodiments, the gene library is in a space that is less than 1 m3.
  • In another aspect, the present invention also provides a method of constructing a gene library. The method comprises the steps of: entering before a first timepoint, in a computer readable non-transient medium at least a first list of genes and a second list of genes, wherein the genes are at least 500 bp and when compiled into a joint list, the joint list comprises at least 100 genes; synthesizing more than 90% of the genes in the joint list before a second timepoint, thereby constructing a gene library with deliverable genes. In some embodiments, the second timepoint is less than a month apart from the first timepoint.
  • In practicing any of the methods of constructing a gene library as provided herein, the method as described herein further comprises delivering at least one gene at a second timepoint. In some embodiments, at least one of the genes differs from any other gene by at least 0.10% in the gene library. In some embodiments, each of the genes differs from any other gene by at least 0.1% in the gene library. In some embodiments, at least one of the genes differs from any other gene by at least 10% in the gene library. In some embodiments, each of the genes differs from any other gene by at least 10% in the gene library. In some embodiments, at least one of the genes differs from any other gene by at least 2 base pairs in the gene library. In some embodiments, each of the genes differs from any other gene by at least 2 base pairs in the gene library. In some embodiments, at least 90% of the deliverable genes are error free. In some embodiments, the deliverable genes comprises an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the joint list of genes. In some embodiments, at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the joint list of genes. In some embodiments, genes in a subset of the deliverable genes are covalently linked together. In some embodiments, a first subset of the joint list of genes encode for components of a first metabolic pathway with one or more metabolic end products. In some embodiments, any of the methods of constructing a gene library as described herein further comprises selecting of the one or more metabolic end products, thereby constructing the first, the second or the joint list of genes. In some embodiments, the one or more metabolic end products comprise a biofuel. In some embodiments, a second subset of the joint list of genes encode for components of a second metabolic pathway with one or more metabolic end products. In some embodiments, the joint list of genes comprises at least 500 genes. In some embodiments, the joint list of genes comprises at least 5000 genes. In some embodiments, the joint list of genes comprises at least 10000 genes. In some embodiments, the genes can be at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In another aspect, a method of constructing a gene library is provided herein. The method comprises the steps of: entering at a first timepoint, in a computer readable non-transient medium a list of genes; synthesizing more than 90% of the list of genes, thereby constructing a gene library with deliverable genes; and delivering the deliverable genes at a second timepoint. In some embodiments, the list comprises at least 100 genes and the genes can be at least 500 bp. In still yet some embodiments, the second timepoint is less than a month apart from the first timepoint.
  • In practicing any of the methods of constructing a gene library as provided herein, in some embodiments, the method as described herein further comprises delivering at least one gene at a second timepoint. In some embodiments, at least one of the genes differs from any other gene by at least 0.10% in the gene library. In some embodiments, each of the genes differs from any other gene by at least 0.1% in the gene library. In some embodiments, at least one of the genes differs from any other gene by at least 10% in the gene library. In some embodiments, each of the genes differs from any other gene by at least 10% in the gene library. In some embodiments, at least one of the genes differs from any other gene by at least 2 base pairs in the gene library. In some embodiments, each of the genes differs from any other gene by at least 2 base pairs in the gene library. In some embodiments, at least 90% of the deliverable genes are error free. In some embodiments, the deliverable genes comprises an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes. In some embodiments, at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes. In some embodiments, genes in a subset of the deliverable genes are covalently linked together. In some embodiments, a first subset of the list of genes encode for components of a first metabolic pathway with one or more metabolic end products. In some embodiments, the method of constructing a gene library further comprises selecting of the one or more metabolic end products, thereby constructing the list of genes. In some embodiments, the one or more metabolic end products comprise a biofuel. In some embodiments, a second subset of the list of genes encode for components of a second metabolic pathway with one or more metabolic end products. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In practicing any of the methods of constructing a gene library as provided herein, in some embodiments, the list of genes comprises at least 500 genes. In some embodiments, the list comprises at least 5000 genes. In some embodiments, the list comprises at least 10000 genes. In some embodiments, the genes are at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint as described in the methods of constructing a gene library is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In another aspect, the present invention also provides a method of synthesizing n-mer oligonucleotides on a substrate. The method comprises a) providing a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling; and b) coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 12 nucleotides per hour according to a locus specific predetermined sequence, thereby synthesizing a plurality of oligonucleotides that are n basepairs long. Various embodiments related to the method of synthesizing n-mer oligonucleotides on a substrate are described herein.
  • In any of the methods of synthesizing n-mer oligonucleotides on a substrate as provided herein, in some embodiments, the methods further comprise coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 15 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 20 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 25 nucleotides per hour. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/500 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/1000 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/2000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/500 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/1000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/2000 bp.
  • In practicing any of the methods of synthesizing n-mer oligonucleotides on a substrate as provided herein, in some embodiments, the building blocks comprise an adenine, guanine, thymine, cytosine, or uridine group, or a modified nucleotide. In some embodiments, the building blocks comprise a modified nucleotide. In some embodiments, the building blocks comprise dinucleotides or trinucleotides. In some embodiments, the building blocks comprise phosphoramidite. In some embodiments, n of the n-mer oligonucleotides is at least 100. In some embodiments, n is at least 200. In some embodiments, n is at least 300. In some embodiments, n is at least 400. In some embodiments, the surface comprises at least 100,000 resolved loci and at least two of the plurality of growing oligonucleotides can be different from each other.
  • In some embodiments, the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises vacuum drying the substrate before coupling. In some embodiments, the building blocks comprise a blocking group. In some embodiments, the blocking group comprises an acid-labile DMT. In some embodiments, the acid-labile DMT comprises 4,4′-dimethoxytrityl. In some embodiments, the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises oxidation or sulfurization. In some embodiments, the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises chemically capping uncoupled oligonucleotide chains. In some embodiments, the method of synthesizing n-mer oligonucleotides on a substrate as described herein further comprises removing the blocking group, thereby deblocking the growing oligonucleotide chain. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the vacuum drying step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the oxidation step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the capping step. In some embodiments, the position of the substrate during the coupling step is within 10 cm of the position of the substrate during the deblocking step. In some embodiments, the substrate comprises at least 10,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 100,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 1,000,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In another aspect of the present invention, a system for conducting a set of parallel reactions is provided herein. The system comprises: a first surface with a plurality of resolved loci; a capping element with a plurality of resolved reactor caps. In some embodiments, the system aligns the plurality of resolved reactor caps with the plurality of resolved loci on the first surface forming a temporary seal between the first surface and the capping element, thereby physically dividing the loci on the first surface into groups of at least two loci into a reactor associated with each reactor cap. In some embodiments, each reactor holds a first set of reagents.
  • In some embodiments related to any of the systems for conducting a set of parallel reactions as described herein, upon release from the first surface, the reactor caps retain at least a portion of the first set of reagents. In some embodiments, the portion is about 30%. In some embodiments, the portion is about 90%. In some embodiments, the plurality of resolved loci resides on microstructures fabricated into a support surface. In some embodiments, the plurality of resolved loci is at a density of at least 1 per mm2. In some embodiments, the plurality of resolved loci is at a density of at least 10 per mm2. In some embodiments, the plurality of resolved loci are at a density of at least 100 per mm2. In some embodiments, the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 μm. In some embodiments, at least one of the channels is shorter than 1000 μm. In some embodiments, at least one of the channels is wider than 50 μm in diameter. In some embodiments, at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 0.1 per mm2. In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 1 per mm2. In some embodiments, the system further comprises a second surface with a plurality of resolved loci at a density of at least 10 per mm2.
  • In some embodiments related to any of the systems for conducting a set of parallel reactions as described herein, the resolved loci of the first surface comprise a coating of reagents. In some embodiments, the resolved loci of the second surface comprise a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the first or second surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the coating of reagents has a surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the resolved loci in the plurality of resolved loci comprise a nominal arclength of the perimeter at a density of at least 0.001 μm/μm2. In some embodiments, the resolved loci in the plurality of resolved loci comprise a nominal arclength of the perimeter at a density of at least 0.01 μm/μm2. In some embodiments, the resolved loci in the plurality of resolved loci of the first surface comprise a high energy surface. In some embodiments, the first and second surfaces comprise a different surface tension with a given liquid. In some embodiments, the high surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the plurality of resolved loci are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the capping elements comprise a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. It is noted that any of the embodiments described herein can be combined with any of the methods, devices or systems provided in the current invention.
  • In yet another aspect, the present invention also provides an array of enclosures. The array of enclosures comprise: a plurality of resolved reactors comprising a first substrate and a second substrate comprising reactor caps; at least 2 resolved loci in each reactor. In some cases, the resolved reactors are separated with a releasable seal. In some cases, the reactor caps retain at least a part of the contents of the reactors upon release of the second substrate from the first substrate. In some embodiments, the reactor caps on the second substrate have a density of at least 0.1 per mm2. In some embodiments, reactor caps on the second substrate have a density of at least 1 per mm2. In some embodiments, reactor caps on the second substrate have a density of at least 10 per mm2.
  • In some embodiments related to the array of enclosures as provided herein, the reactor caps retain at least 30% of the contents of the reactors. In some embodiments, the reactor caps retain at least 90% of the contents of the reactors. In some embodiments, the resolved loci are at a density of at least 2/mm2. In some embodiments, the resolved loci are at a density of at least 100/mm2. In some embodiments, the array of enclosures further comprises at least 5 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 20 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 50 resolved loci in each reactor. In some embodiments, the array of enclosures as described herein further comprises at least 100 resolved loci in each reactor.
  • In some embodiments related to the array of enclosures as described herein, the resolved loci reside on microstructures fabricated into a support surface. In some embodiments, the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, the at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 μm. In some embodiments, at least one of the channels is shorter than 1000 μm. In some embodiments, at least one of the channels is wider than 50 μm in diameter. In some embodiments, at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the microstructures comprise a nominal arclength of the perimeter of the at least two channels that has a density of at least 0.01 μm/square μm. In some embodiments, the microstructures comprise a nominal arclength of the perimeter of the at least two channels that has a density of at least 0.001 μm/square μm. In some embodiments, the resolved reactors are separated with a releasable seal. In some embodiments, the seal comprises a capillary burst valve.
  • In some embodiments related to the array of enclosures as described herein, the plurality of resolved loci of the first substrate comprise a coating of reagents. In some embodiments, the plurality of resolved loci of the second substrate comprises a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the first or second surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the coating of reagents has a surface area of at least 1 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the plurality of resolved loci of the first substrate comprises a high energy surface. In some embodiments, the first and second substrates comprise a different surface tension with a given liquid. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the plurality of resolved loci or the reactor caps are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays or systems provided in the current invention.
  • In still yet another aspect, the present invention also provides a method of conducting a set of parallel reactions. The method comprises: (a) providing a first surface with a plurality of resolved loci; (b) providing a capping element with a plurality of resolved reactor caps; (c) aligning the plurality of resolved reactor caps with the plurality of resolved loci on the first surface and forming a temporary seal between the first surface and the capping element, thereby physically dividing the loci on the first surface into groups of at least two loci; (d) performing a first reaction, thereby forming a first set of reagents; and (e) releasing the capping element from the first surface, wherein each reactor cap retains at least a portion of the first set of reagents in a first reaction volume. In some embodiments, the portion is about 30%. In some embodiments, the portion is about 90%.
  • In some embodiments, the method of conducting a set of parallel reactions as described herein further comprises the steps of: (f) providing a second surface with a plurality of resolved loci; (g) aligning the plurality of resolved reactor caps with the plurality of resolved loci on the second surface and forming a temporary seal between the second surface and the capping element, thereby physically dividing the loci on the second surface; (h) performing a second reaction using the portion of the first set of reagents, thereby forming a second set of reagents; and (i) releasing the capping element from the second surface, wherein each reactor cap can retain at least a portion of the second set of reagents in a second reaction volume. In some embodiments, the portion is about 30%. In some embodiments, the portion is about 90%.
  • In practicing any of the methods of conducting a set of parallel reactions as described herein, the plurality of resolved loci can have a density of at least 1 per mm2 on the first surface. In some embodiments, the plurality of resolved loci have a density of at least 10 per mm2 on the first surface. In some embodiments, the plurality of resolved loci have a density of at least 100 per mm2 on the first surface. In some embodiments, the plurality of resolved reactor caps have a density of at least 0.1 per mm2 on the capping element. In some embodiments, the plurality of resolved reactor caps have a density of at least 1 per mm2 on the capping element. In some embodiments, the plurality of resolved reactor caps have a density of at least 10 per mm2 on the capping element. In some embodiments, the plurality of resolved loci have a density of more than 0.1 per mm2 on the second surface. In some embodiments, the plurality of resolved loci have a density of more than 1 per mm2 on the second surface. In some embodiments, the plurality of resolved loci have a density of more than 10 per mm2 on the second surface.
  • In practicing any of the methods of conducting a set of parallel reactions as described herein, the releasing of the capping elements from the surface steps such as the releasing steps in (e) and (i) as described herein can be performed at a different velocity. In some embodiments, the resolved loci of the first surface comprise a coating of reagents for the first reaction. In some embodiments, the resolved loci of the second surface comprise a coating of reagents for the second reaction. In some embodiments, the coating of reagents is covalently linked to the first or second surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the coating of reagents has a surface area of at least 1 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the coating of reagents has a surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area. In some embodiments, the oligonucleotides are at least 25 bp. In some embodiments, the oligonucleotides are at least 200 bp. In some embodiments, the oligonucleotides are at least 300 bp. In some embodiments, the resolved loci of the first surface comprise a high energy surface. In some embodiments, the first and second surfaces comprise a different surface tension with a given liquid. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree.
  • In some embodiments related to the method of conducting a set of parallel reactions as described herein, the plurality of resolved loci or the resolved reactor caps are located on a solid substrate comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the first and second reaction volumes are different. In some embodiments, the first or second reaction comprises polymerase cycling assembly. In some embodiments, the first or second reaction comprises enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, solid-phase assembly, Sloning building block technology, or RNA ligation mediated gene synthesis. In some embodiments, the methods of conducting a set of parallel reactions as described herein further comprises cooling the capping element. In some embodiments, the method of conducting a set of parallel reactions as described herein further comprises cooling the first surface. In some embodiments, the method of conducting a set of parallel reactions as described herein further comprises cooling the second surface. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays or systems provided in the current invention.
  • In another aspect, the present invention provides a substrate having a functionalized surface. The substrate having a functionalized surface can comprise a solid support having a plurality of resolved loci. In some embodiments, the resolved loci are functionalized with a moiety that increases the surface energy of the solid support. In some embodiments, the resolved loci are localized on microchannels.
  • In some embodiments related to the substrate having a functionalized surface as described herein, the moiety is a chemically inert moiety. In some embodiments, the microchannels comprise a volume of less than 1 nl. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of 0.036 μm/square μm. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the resolved loci in the plurality of resolved loci comprise a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the substrate. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, at least one of the microchannels is longer than 100 μm. In some embodiments, at least one of the microchannels is shorter than 1000 μm. In some embodiments, at least one of the microchannels is wider than 50 μm in diameter. In some embodiments, at least one of the microchannels is narrower than 100 μm in diameter. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the solid support comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the plurality of resolved loci is at a density of at least 1/mm2. In some embodiments, the plurality of resolved loci is at a density of at least 100/mm2. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In another aspect, the present invention also provides a method for synthesizing oligonucleotides on a substrate having a functionalized surface. The method comprises: (a) applying through at least one inkjet pump at least one drop of a first reagent to a first locus of a plurality of loci; (b) applying negative pressure to the substrate; and (c) applying through at least one inkjet pump at least one drop of a second reagent to the first locus.
  • In practicing any of the methods for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein, the first and second reagents can be different. In some embodiments, the first locus is functionalized with a moiety that increases their surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the plurality of loci resides on microstructures fabricated into the substrate surface. In some embodiments, the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, the at least two channels comprise two channels with different length. In some embodiments, at least one of the channels is longer than 100 μm. In some embodiments, at least one of the channels is shorter than 1000 μm. In some embodiments, at least one of the channels is wider than 50 μm in diameter. In some embodiments, at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the substrate surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass.
  • In some embodiments related to the methods for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein, the volume of the drop of the first and/or the second reagents is at least 2 μl. In some embodiments, the volume of the drop is about 40 μl. In some embodiments, the volume of the drop is at most 100 μl. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/μm2. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 μm/μm2. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the functionalized surface comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the substrate. In some embodiments, the pressure surrounding the substrate is reduced to less than 1 mTorr. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises coupling at least a first building block originating from the first drop to a growing oligonucleotide chain on the first locus. In some embodiments, the building blocks comprise a blocking group. In some embodiments, the blocking group comprises an acid-labile DMT. In some embodiments, the acid-labile DMT comprises 4,4′-dimethoxytrityl. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises oxidation or sulfurization. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises chemically capping uncoupled oligonucleotide chains. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises removing the blocking group, thereby deblocking the growing oligonucleotide chain. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the coupling step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the oxidation step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the capping step. In some embodiments, the position of the substrate during the negative pressure application is within 10 cm of the position of the substrate during the deblocking step. In some embodiments, the first locus resides on a microstructure fabricated into the substrate surface. In some embodiments, at least one reagent for the oxidation step is provided by flooding the microstructure with a solution comprising the at least one reagent. In some embodiments, at least one reagent for the capping step is provided by flooding the microstructure with a solution comprising the at least one reagent. In some embodiments, the first locus resides on a microstructure fabricated into the substrate surface and at least one reagent for the deblocking step can be provided by flooding the microstructure with a solution comprising the at least one reagent. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises enclosing the substrate within a sealed chamber. In some embodiments, the sealed chamber allows for purging of liquids from the first locus. In some embodiments, the method for synthesizing oligonucleotides on a substrate having a functionalized surface as described herein further comprises draining a liquid through a drain that is operably linked to the first locus. In some embodiments, after applying the negative pressure to the substrate, the moisture content on the substrate is less than 1 ppm. In some embodiments, the surface energy is increased corresponding to a water contact angle of less than 20 degree. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In yet another aspect, the present invention provides a method of depositing reagents to a plurality of resolved loci. The method comprises applying through an inkjet pump at least one drop of a first reagent to a first locus of the plurality of loci; applying through an inkjet pump at least one drop of a second reagent to a second locus of the plurality of resolved loci. In some embodiments, the second locus is adjacent to the first locus. In still some embodiments, the first and second reagents are different. In still yet some embodiments, the first and second loci reside on microstructures fabricated into a support surface. In yet some embodiments, the microstructures comprise at least one channel that is more than 100 μm deep.
  • In practicing any of the methods of depositing reagents to a plurality of resolved loci as described herein, in some embodiments, the microstructures comprise at least two channels in fluidic communication with each other. In some embodiments, the at least two channels comprise two channels with different width. In some embodiments, the at least two channels comprise two channels with different length. In some embodiments, the first locus receives less than 0.1% of the second reagent and the second locus receives less than 0.1% of the first reagent. In some embodiments, the loci comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/square μm. In some embodiments, the loci comprise a density of the nominal arclength of the perimeter of at least 0.001 μm/square μm. In some embodiments, the first and second loci comprise a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the substrate. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, at least one of the channels is longer than 100 μm. In some embodiments, at least one of the channels is shorter than 1000 μm. In some embodiments, at least one of the channels is wider than 50 μm in diameter. In some embodiments, at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the support surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the plurality of resolved loci is at a density of at least 1/mm2. In some embodiments, the plurality of resolved loci is at a density of at least 100/mm2. In some embodiments, the volume of the drop is at least 2 μl. In some embodiments, the volume of the drop is about 40 μl. In some embodiments, the volume of the drop is at most 100 μl. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In still yet another aspect, the present invention provides a microfluidic system. The microfluidic system comprises a first surface with a plurality of microwells at a density of at least 10 per mm2; and a droplet inside one of the plurality of microwells. In some embodiments, the droplet inside one of the plurality of microwells has a Reynolds number at a range of about 1-1000. In some embodiments, the plurality of microwells is at a density of at least 1 per mm2. In some embodiments, plurality of microwells is at a density of at least 10 per mm2.
  • In some embodiments related to the microfluidic system as provided herein, the microfluidic system further comprises an inkjet pump. In some embodiments, the droplet is deposited by the inkjet pump. In some embodiments, the droplet is moving in the lower half of a first microwell dimension. In some embodiments, the droplet is moving in the middle third of a first microwell dimension. In some embodiments, the plurality of microwells is at a density of at least 100 per mm2. In some embodiments, the first microwell dimension is larger than the droplet. In some embodiments, the microwell is longer than 100 μm. In some embodiments, the microwell is shorter than 1000 μm. In some embodiments, the microwell is wider than 50 μm in diameter. In some embodiments, the microwell is narrower than 100 μm in diameter. In some embodiments, the volume of the droplet is at least 2 μl. In some embodiments, the volume of the droplet is about 40 μl. In some embodiments, the volume of the droplet is at most 100 μl. In some embodiments, each of the plurality of microwells is fluidically connected to at least one microchannel. In some embodiments, the at least one microchannel is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the microwells are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/square μm. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of 0.001 μm/μm2. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the first surface. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention. In some embodiments, the droplet comprises a reagent that enables oligonucleotide synthesis. In some embodiments, the reagent is a nucleotide or nucleotide analog.
  • In another aspect, the present invention provides a method of depositing droplets to a plurality of microwells. The method comprises applying through an inkjet pump at least one droplet to a first microwell of the plurality of microwells. In some cases, the droplet inside one of the plurality of microwells has a Reynolds number at a range of about 1-1000. In some embodiments, the plurality of microwells has a density of at least 1/mm2. In yet some cases, the plurality of microwells has a density of at least 10/mm2.
  • In practicing any of the methods of depositing droplets to a plurality of microwells as provided herein, the plurality of microwells can have a density of at least 100/mm2. In some embodiments, the microwell is longer than 100 μm. In some embodiments, the microwell is shorter than 1000 μm. In some embodiments, the microwell is wider than 50 μm in diameter. In some embodiments, the microwell is narrower than 100 μm in diameter. In some embodiments, the droplet is applied at a velocity of at least 2 m/sec. In some embodiments, the volume of the droplet is at least 2 μl. In some embodiments, the volume of the droplet is about 40 μl. In some embodiments, the volume of the droplet is at most 100 μl. In some embodiments, each of the plurality of microwells is fluidically connected to at least one microchannel. In some embodiments, the at least one microwell is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the surface energy corresponds to a water contact angle of less than 20 degree. In some embodiments, the microwells are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/square μm. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 μm2m/μm2. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, a droplet inside a microwell is traveling in the middle third of the microwell. In some embodiments, a droplet inside a microwell is traveling in the bottom half of the microwell. In some embodiments, droplet comprises a reagent that enables oligonucleotide synthesis. In some embodiments, the reagent is a nucleotide or nucleotide analog. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In another aspect, the present invention also provides a method of partitioning. The method of partitioning comprises contacting a first surface comprising a liquid at a first plurality of resolved loci with a second surface comprising a second plurality of resolved loci; determining a velocity of release such that a desired fraction of the liquid can be transferred from the first plurality of resolved loci to the second plurality of resolved loci; and detaching the second surface from the first surface at said velocity. In some embodiments, the first surface comprises a first surface tension with the liquid, and the second surface can comprise a second surface tension with the liquid.
  • In practicing any of the methods of partitioning as provided herein, a portion of the first surface can be coated with a moiety that increases surface tension. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the surface tension of the first surface corresponds to a water contact angle of less than 20 degree. In some embodiments, the surface tension of the second surface corresponds to a water contact angle of more than 90 degree. In some embodiments, the first surface comprises a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the plurality of resolved loci comprises a density of the nominal arclength of the perimeter of at least 0.01 μm/μm2. In some embodiments, the plurality of resolved loci comprises a density of the nominal arclength of the perimeter of at least 0.001 μm/μm2. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the first plurality of resolved loci is at a density of at least 1/mm2. In some embodiments, the first plurality of resolved loci is at a density of at least 100/mm2. In some embodiments, the first or the second surface comprises microchannels holding at least a portion of the liquid. In some embodiments, the first or the second surface comprises nanoreactors holding at least a portion of the liquid. In some embodiments, the method of partitioning as described herein further comprises contacting a third surface with a third plurality of resolved loci. In some embodiments, the liquid comprises a nucleic acid. In some embodiments, the desired fraction is more than 30%. In some embodiments, the desired fraction is more than 90%. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In yet another aspect, the present invention also provides a method of mixing as described herein. The method comprises: (a) providing a first substrate comprising a plurality of microstructures fabricated thereto; (b) providing a second substrate comprising a plurality of resolved reactor caps; (c) aligning the first and second substrates such that a first reactor cap of the plurality can be configured to receive liquid from n microstructures in the first substrate; and (d) delivering liquid from the n microstructures into the first reactor cap, thereby mixing liquid from the n microstructures forming a mixture.
  • In practicing any of the methods of mixing as described herein, the plurality of resolved reactor caps can be at a density of at least 0.1/mm2. In some embodiments, the plurality of resolved reactor caps are at a density of at least 1/mm2. In some embodiments, plurality of resolved reactor caps are at a density of at least 10/mm2. In some embodiments, each of the plurality of microstructures can comprise at least two channels of different width. In some embodiments, the at least one of the channels is longer than 100 μm. In some embodiments, the at least one of the channels is shorter than 1000 μm. In some embodiments, the at least one of the channels is wider than 50 μm in diameter. In some embodiments, the at least one of the channels is narrower than 100 μm in diameter. In some embodiments, the at least one of the channels is coated with a moiety that increases surface energy. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the microstructures are formed on a solid support comprising a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, PDMS, and glass. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.01 μm/square μm. In some embodiments, the microchannels comprise a density of the nominal arclength of the perimeter of at least 0.001 μm/μm2. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.25 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the surface coated with the moiety comprises a nominal surface area of at least 1.45 μm2 per 1.0 μm2 of planar surface area of the first surface. In some embodiments, the plurality of microstructures comprises a coating of reagents. In some embodiments, the coating of reagents is covalently linked to the first surface. In some embodiments, the coating of reagents comprises oligonucleotides. In some embodiments, the microstructures are at a density of at least 1/mm2. In some embodiments, the microstructures are at a density of at least 100/mm2.
  • In some embodiments related to the methods of mixing as described herein, after step (c), which is aligning the first and second substrates such that a first reactor cap of the plurality can be configured to receive liquid from n microstructures in the first substrate, there is a gap of less than 100 μm between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 50 μm between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 20 μm between the first and the second substrates. In some embodiments, after step (c), there is a gap of less than 10 μm between the first and the second substrates. In some embodiments, the mixture partially spreads into the gap. In some embodiments, the method of mixing further comprises sealing the gap by bringing the first and the second substrate closer together. In some embodiments, one of the two channels is coated with a moiety that increases surface energy corresponding to a water contact angle of less than 20 degree. In some embodiments, the moiety is a chemically inert moiety. In some embodiments, the delivering is performed by pressure. In some embodiments, the volume of the mixture is greater than the volume of the reactor cap. In some embodiments, the liquid comprises a nucleic acid. In some embodiments, n is at least 10. In some embodiments, n is at least 25. In some embodiments, n, the number of microstructures from which the liquid is mixed forming a mixture, can be at least 50. In some embodiments, n is at least 75. In some embodiments, n is at least 100. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In yet another aspect, the present invention also provides a method of synthesizing n-mer oligonucleotides on a substrate as described herein. The method comprises: providing a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling; and coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci according to a locus specific predetermined sequence without transporting the substrate between the couplings of the at least two building blocks, thereby synthesizing a plurality of oligonucleotides that are n basepairs long.
  • In practicing any of the methods of synthesizing n-mer oligonucleotides on a substrate as described herein, the method can further comprise coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 12 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 15 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 20 nucleotides per hour. In some embodiments, the method further comprises coupling at least two building blocks to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a rate of at least 25 nucleotides per hour. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/500 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/1000 bp. In some embodiments, at least one resolved locus comprises n-mer oligonucleotides deviating from the locus specific predetermined sequence with an error rate of less than 1/2000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/500 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/1000 bp. In some embodiments, the plurality of oligonucleotides on the substrate deviate from respective locus specific predetermined sequences at an error rate of less than 1/2000 bp.
  • In some embodiments related to the method of synthesizing n-mer oligonucleotides on a substrate as described herein, the building blocks comprise an adenine, guanine, thymine, cytosine, or uridine group, or a modified nucleotide. In some embodiments, the building blocks comprise a modified nucleotide. In some embodiments, the building blocks comprise dinucleotides. In some embodiments, the building blocks comprise phosphoramidite. In some embodiments, n is at least 100. In some embodiments, wherein n is at least 200. In some embodiments, n is at least 300. In some embodiments, n is at least 400. In some embodiments, the substrate comprises at least 100,000 resolved loci and at least two of the plurality of growing oligonucleotides are different from each other. In some embodiments, the method further comprise vacuum drying the substrate before coupling. In some embodiments, the building blocks comprise a blocking group. In some embodiments, the blocking group comprises an acid-labile DMT. In some embodiments, the acid-labile DMT comprises 4,4′-dimethoxytrityl. In some embodiments, the method further comprise oxidation or sulfurization. In some embodiments, the method further comprise chemically capping uncoupled oligonucleotide chains. In some embodiments, the method further comprise removing the blocking group, thereby deblocking the growing oligonucleotide chain. In some embodiments, the substrate comprises at least 10,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 100,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. In some embodiments, the substrate comprises at least 1,000,000 vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • In yet another aspect, the present invention also provides a method of constructing a gene library as described herein. The method comprises: entering at a first timepoint, in a computer readable non-transient medium a list of genes, wherein the list comprises at least 100 genes and wherein the genes are at least 500 bp; synthesizing more than 90% of the list of genes, thereby constructing a gene library with deliverable genes; preparing a sequencing library that represents the gene library; obtaining sequence information; selecting at least a subset of the deliverable genes based on the sequence information; and delivering the selected deliverable genes at a second timepoint, wherein the second timepoint is less than a month apart from the first timepoint.
  • In practicing any of the methods of constructing a gene library as described herein, the sequence information can be obtained bia next-generation sequencing. The sequence information can be obtained by Sanger sequencing. In some embodiments, the method further comprises delivering at least one gene at a second timepoint. In some embodiments, at least one of the genes differ from any other gene by at least 0.1% in the gene library. In some embodiments, each of the genes differ from any other gene by at least 0.1% in the gene library. In some embodiments, at least one of the genes differ from any other gene by at least 10% in the gene library. In some embodiments, each of the genes differ from any other gene by at least 10% in the gene library. In some embodiments, at least one of the genes differ from any other gene by at least 2 base pairs in the gene library. In some embodiments, each of the genes differ from any other gene by at least 2 base pairs in the gene library. In some embodiments, at least 90% of the deliverable genes are error free. In some embodiments, the deliverable genes comprise an error rate of less than 1/3000 resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes. In some embodiments, at least 90% of the deliverable genes comprise an error rate of less than 1 in 3000 bp resulting in the generation of a sequence that deviates from the sequence of a gene in the list of genes. In some embodiments, a subset of the deliverable genes are covalently linked together. In some embodiments, a first subset of the list of genes encode for components of a first metabolic pathway with one or more metabolic end products. In some embodiments, the method further comprises selecting of the one or more metabolic end products, thereby constructing the list of genes. In some embodiments, the one or more metabolic end products comprise a biofuel. In some embodiments, a second subset of the list of genes encode for components of a second metabolic pathway with one or more metabolic end products. In some embodiments, the list comprises at least 500, genes. In some embodiments, the list comprises at least 5000 genes. In some embodiments, the list comprises at least 10000 genes. In some embodiments, the genes are at least 1 kb. In some embodiments, the genes are at least 2 kb. In some embodiments, the genes are at least 3 kb. In some embodiments, the second timepoint is less than 25 days apart from the first timepoint. In some embodiments, the second timepoint is less than 5 days apart from the first timepoint. In some embodiments, the second timepoint is less than 2 days apart from the first timepoint. It is noted that any of the embodiments described herein can be combined with any of the methods, devices, arrays, substrates or systems provided in the current invention.
  • Provided herein, in some embodiments, is a microfluidic device for nucleic acid synthesis, comprising a substantially planar substrate portion comprising n groupings of m microfluidic connections between opposite surfaces, wherein each one of the n*m microfluidic connections comprises a first channel and a second channel, and wherein the first channel within each of the n groupings is common to all m microfluidic connections, wherein the plurality of microfluidic connections span the substantially planar substrate portion along the smallest dimension of the substrate, and wherein n and m are at least 2. In some embodiments, the second channel is functionalized with a coating that is capable of facilitating the attachment of an oligonucleotide to the device. In some embodiments, the device further comprises a first oligonucleotide that is attached to the second channels in k of the n groupings. In some embodiments, k is 1. In some embodiments, the device further comprises a second oligonucleotide that is attached to 1 of the n groupings. In some embodiments, 1 is 1. In some embodiments, the none of the groupings in the 1 groupings are in the k groupings.
  • In some embodiments, the oligonucleotide is at least 10 nucleotides, 25 nucleotides, 50 nucleotides, 75 nucleotides, 100 nucleotides, 125 nucleotides, 150 nucleotides, or 200 nucleotides long.
  • In some embodiments, the first and the second oligonucleotides differ by at least 2 nucleotides, 3 nucleotides, 4 nucleotides, 5 nucleotides, or 10 nucleotides.
  • In some embodiments, the n*m microfluidic connections are at most 5 mm, 1.5 mm, 1.0 mm, or 0.5 mm long. In some embodiments, the first channel within each of the n groupings is at most 5 mm, 1.5 mm, 1.0 mm, or 0.5 mm long. In some embodiments, the first channel within each of the n groupings is at least 0.05 mm, 0.75 mm, 0.1 mm, 0.2 mm, 0.3 mm, or 0.4 mm long. In some embodiments, the second channel in each of the n*m microfluidic connections is at most 0.2 mm, 0.1 mm, 0.05 mm, 0.04 mm, or 0.03 mm long. In some embodiments, the second channel in each of the n*m microfluidic connections is at least 0.001 mm, 0.005 mm, 0.01 mm, 0.02 mm, or 0.03 mm long. In some embodiments, the cross section of the first channel within each of the n groupings is at least 0.01 mm, 0.025 mm, 0.05 mm, or 0.075 mm. In some embodiments, the cross section of the first channel within each of the n groupings is at most 1 mm, 0.5 mm, 0.25 mm, 0.1 mm, or 0.075 mm. In some embodiments, the cross section of the second channel in each of the n*m microfluidic connections is at least 0.001 mm, 0.05 mm, 0.01 mm, 0.015 mm, or 0.02 mm. In some embodiments, the cross section of the second channel in each of the n*m microfluidic connections is at most 0.25 mm, 0.125 mm, 0.050 mm, 0.025 mm, 0.02 mm. In some embodiments, the standard deviation in the cross section of the second channels in each of the n*m microfluidic connections is less than 25%, 20%, 15%, 10%, 5%, or 1% of the mean of the cross section. In some embodiments, the variation in the cross section within at least 90% of the second channels of the n*m microfluidic connections is at most 25%, 20%, 15%, 10%, 5%, or 1%.
  • In some embodiments, n is at least 10, 25, 50, 100, 1000, or 10000. In some embodiments, m is at least 3, 4, or 5.
  • In some embodiments, the substrate comprises at least 5%, 10%, 25%, 50%, 80%, 90%, 95%, or 99% silicon.
  • In some embodiments, at least 90% of the second channels of the n*m microfluidic connections is functionalized with a moiety that increases surface energy. In some embodiments, the surface energy is increased to a level corresponding to a water contact angle of less than 75, 50, 30, or 20 degrees.
  • In some embodiments, the aspect ratio for at least 90% of the second channels of the n*m microfluidic connections is less than 1, 0.5, or 0.3. In some embodiments, the aspect ratio for at least 90% of the first channels in the n groupings is less than 0.5, 0.3, or 0.2.
  • In some embodiments, the total length of at least 10%, 25%, 50%, 75%, 90%, or 95% of the n*m fluidic connections are within 10%, 20%, 30%, 40%, 50%, 100%, 200%, 500%, or 1000% of the smallest dimension of the substantially planar substrate.
  • In some embodiments, the substantially planar portion of the device is fabricated from a SOI wafer.
  • In another aspect, the invention relates to a method of nucleic acid amplification, comprising: (a) providing a sample comprising n circularized single stranded nucleic acids, each comprising a different target sequence; (b) providing a first adaptor that is hybridizable to at least one adaptor hybridization sequence on m of the n circularized single stranded nucleic acids; (c) providing conditions suitable for extending the first adaptor using the m circularized single stranded nucleic acids as a template, thereby generating m single stranded amplicon nucleic acids, wherein each of the m single stranded amplicon nucleic acids comprises a plurality of replicas of the target sequence from its template; (d) providing a first auxiliary oligonucleotide that is hybridizable to the first adaptor; and (e) providing a first agent under conditions suitable for the first agent to cut the m single stranded amplicon nucleic acids at a plurality of cutting sites, thereby generating a plurality of single stranded replicas of the target sequences in the m circularized single stranded nucleic acids. In some embodiments, n or m is at least 2. In some embodiments, n or m is at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150, 200, 300, 400, or 500. In some embodiments, m is less than n. In some embodiments, the sample comprising the n circularized single stranded nucleic acid is formed by providing at least n linear single stranded nucleic acids, each comprising one of the different target sequences and circularizing the n linear single stranded nucleic acids, thereby generating the n circularized single stranded nucleic acids. In some embodiments, the first adaptor is hybridizable to both ends of the n linear single stranded nucleic acids concurrently. In some embodiments, the different target sequences in the n linear single stranded nucleic acids are flanked by a first and a second adaptor hybridization sequence. In some embodiments, the at least n linear single stranded nucleic acids are generated by de novo oligonucleotide synthesis. In some embodiments, the first adaptor hybridization sequence in each of the n linear single stranded nucleic acids differ by no more than two nucleotide bases. In some embodiments, the first or the second adaptor hybridization sequence is at least 5 nucleotides long. In some embodiments, the first or the second adaptor hybridization sequence is at most 75, 50, 45, 40, 35, 30, or 25 nucleotides long. In some embodiments, the ends of the n linear single stranded nucleic acids pair with adjacent bases on the first adaptor when the first adaptor is hybridized to the both ends of the linear single stranded nucleic acid concurrently. In some embodiments, the locations of the plurality of cutting sites are such that the adaptor hybridization sequence is severed from at least 5% of a remainder sequence portion of the m circularized single stranded nucleic acid replicas. In some embodiments, at least 5% of the sequence of the m circularized single stranded nucleic acid replicas other than the at least one adaptor hybridization sequence remains uncut. In some embodiments, the locations of the plurality of cutting sites are outside the at least one adaptor hybridization sequence. In some embodiments, the locations of the plurality of cutting sites are independent of the target sequences. In some embodiments, the locations of the plurality of cutting sites are determined by at least one sequence element within the sequence of the first adaptor or the first auxiliary oligonucleotide. In some embodiments, the sequence element comprises a recognition site for a restriction endonuclease. In some embodiments, the first auxiliary oligonucleotide or the first adaptor oligonucleotide comprises a recognition site for a Type IIS restriction endonuclease. In some embodiments, the recognition sites are at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides away from the cutting sites. In some embodiments, the plurality of cutting sites are at junctures of single and double stranded nucleic acids. In some embodiments, the double stranded nucleic acids comprise the first adaptor and the first auxiliary oligonucleotide. In some embodiments, the single stranded nucleic acids consists essentially of the m different target sequences. In some embodiments, the m different target sequences have at most 95% pairwise similarity. In some embodiments, the m different target sequences have at most 90% pairwise similarity. In some embodiments, the m different target sequences have at most 80% pairwise similarity. In some embodiments, the m different target sequences have at most 50% pairwise similarity. In some embodiments, generating the m single stranded amplicon nucleic acid comprises strand displacement amplification. In some embodiments, the first auxiliary oligonucleotide comprises an affinity tag. In some embodiments, the affinity tag comprises biotin or biotin derivative. In some embodiments, the method further comprises isolating double stranded nucleic acids from the sample. In some embodiments, the isolating comprises affinity purification, chromatography, or gel purification. In some embodiments, the first agent comprises a restriction endonuclease. In some embodiments, the first agent comprises at least two restriction endonucleases. In some embodiments, the first agent comprises a Type IIS restriction endonuclease. In some embodiments, the first agent comprises a nicking endonuclease. In some embodiments, the first agent comprises at least two nicking endonucleases. In some embodiments, the first agent comprises at least one enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I, TasI, TspEI, AjnI, BstSCI, EcoRII, MaeIII, NmuCI, Psp6I, MnlI, BspCNI, BsrI, BtsCI, HphI, HpyAV, MboII, AcuI, BciVI, BmrI, BpmI, BpuEI, BseRI, BsgI, BsmI, BsrDI, BtsI, EciI, MmeI, NmeAIII, Hin4II, TscAI, Bce83I, BmuI, BsbI, BscCI, NlaIII, Hpy99I, TspRI, FaeI, Hin1II, Hsp92II, SetI, TaiI, TscI, TscAI, TseFI, Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, UbaPI, Nt.AlwI, Nt.BsmAI, Nt.BstNBI, and Nt.BspQI, and variants thereof. In some embodiments, the first agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site, as any of the listed sfirst agents and variants. In some embodiments, the at least two restriction enzymes comprise MlyI and BciVI or BfuCI and MlyI. In some embodiments, the method further comprises (a) partitioning the sample into a plurality of fractions; (b) providing at least one fraction with a second adaptor that is hybridizable to at least one adaptor hybridization sequence on k of the n different circularized single stranded nucleic acids; (c) providing conditions suitable for extending the second adaptor using the k circularized single stranded nucleic acids as a template, thereby generating k single stranded amplicon nucleic acids, wherein the second single stranded amplicon nucleic acid comprises a plurality of replicas of the target sequence from its template; (d) providing a second auxiliary oligonucleotide that is hybridizable to the second adaptor; and (e) providing a second agent under conditions suitable for the agent to cut the k single stranded amplicon nucleic acids at a second plurality of cutting sites, thereby generating a plurality of single stranded replicas of the target sequences in the k circularized single stranded nucleic acids. In some embodiments, the first and the second adaptors are the same. In some embodiments, the first and the second auxiliary oligonucleotides are the same. In some embodiments, the first and the second agents are the same. In some embodiments, k+m is less than n. In some embodiments, k is at least 2. In some embodiments, the sample comprising the n circularized single stranded nucleic acid is formed by single stranded nucleic acid amplification. In some embodiments, the single stranded nucleic acid amplification comprises: (a) providing a sample comprising at least m circularized single stranded precursor nucleic acids; (b) providing a first precursor adaptor that is hybridizable to the m circularized single stranded precursor nucleic acids; (c) providing conditions suitable for extending the first precursor adaptor using the m circularized single stranded precursor nucleic acids as a template, thereby generating m single stranded precursor amplicon nucleic acids, wherein the single stranded amplicon nucleic acid comprises a plurality of replicas of the m circularized single stranded precursor nucleic acid; (d) providing a first precursor auxiliary oligonucleotide that is hybridizable to the first precursor adaptor; and (e) providing a first precursor agent under conditions suitable for the first precursor agent to cut the first single stranded precursor amplicon nucleic acid at a plurality of cutting sites, thereby generating the m linear precursor nucleic acids. In some embodiments, the method further comprises circularizing the m linear precursor nucleic acids, thereby forming replicas of the m circularized single stranded precursor nucleic acids. In some embodiments, the m circularized single stranded precursor nucleic acid is amplified by at least 10, 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 10000-fold, or more in single stranded replicas. In some embodiments, at least one of the m circularized single stranded nucleic acids is at a concentration of about or at most about 100 nM, 10 nM, 1 nM, 50 pM, 1 pM, 100 fM, 10 fM, 1 fM, or less. In some embodiments, circularizing comprises ligation. In some embodiments, ligation comprises the use of a ligase selected from the group consisting of T4 DNA ligase, T3 DNA ligase, T7 DNA ligase, E. coli DNA ligase, Taq DNA ligase, and 9N DNA ligase.
  • In yet a further aspect, the invention, in various embodiments relates to a kit comprising: (a) a first adaptor; (b) a first auxiliary oligonucleotide that is hybridizable to the adaptor; (c) a ligase; and (d) a first cleaving agent, comprising at least one enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I, TasI, TspEI, AjnI, BstSCI, EcoRII, MaeIII, NmuCI, Psp6I, MnlI, BspCNI, BsrI, BtsCI, HphI, HpyAV, MboII, AcuI, BciVI, BmrI, BpmI, BpuEI, BseRI, BsgI, BsmI, BsrDI, BtsI, EciI, MmeI, NmeAIII, Hin4II, TscAI, Bce83I, BmuI, BsbI, BscCI, NlaIII, Hpy99I, TspRI, FaeI, Hin1II, Hsp92II, SetI, TaiI, TscI, TscAI, TseFI, Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, UbaPI, Nt.AlwI, Nt.BsmAI, Nt.BstNBI, and Nt.BspQI, and variants thereof. In some embodiments, the first agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site as any of the listed first agents and variants. In some embodiments, the kit further comprises a second cleaving agent. In some embodiments, the second cleaving agent comprises and enzyme selected from the group consisting of MlyI, SchI, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, LguI, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I, TasI, TspEI, AjnI, BstSCI, EcoRII, MaeIII, NmuCI, Psp6I, MnlI, BspCNI, BsrI, BtsCI, HphI, HpyAV, MboII, AcuI, BciVI, BmrI, BpmI, BpuEI, BseRI, BsgI, BsmI, BsrDI, BtsI, EciI, MmeI, NmeAIII, Hin4II, TscAI, Bce83I, BmuI, BsbI, BscCI, NlaIII, Hpy99I, TspRI, FaeI, HinIII, Hsp92II, SetI, TaiI, TscI, TscAI, TseFI, Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, UbaPI, Nt.AlwI, Nt.BsmAI, Nt.BstNBI, and Nt.BspQI, and variants thereof. In some embodiments, the second agent comprises essentially the same function, recognizes the same or essentially the same recognition sequence, or cuts at the same or essentially same cutting site as any of the listed second agents and variants. In some embodiments, the first cleaving agents comprises MlyI. In some embodiments, the second cleaving agent comprises BciVI or BfuCI.
  • In yet another aspect, the invention relates to a method of nucleic acid amplification, comprising: (a) providing a sample comprising n circularized single stranded nucleic acids, each comprising a different target sequence; (b) providing a first adaptor that is hybridizable to at least one adaptor hybridization sequence on m of the n circularized single stranded nucleic acids; (c) providing conditions suitable for extending the first adaptor using the m circularized single stranded nucleic acids as a template, thereby generating m single stranded amplicon nucleic acids, wherein each of the m single stranded amplicon nucleic acids comprises a plurality of replicas of the target sequence from its template; (d) generating double stranded recognition sites for a first agent on the m single stranded amplicon nucleic acids; and (e) providing the first agent under conditions suitable for the first agent to cut the m single stranded amplicon nucleic acids at a plurality of cutting sites, thereby generating a plurality of single stranded replicas of the target sequences in the m circularized single stranded nucleic acids. In some embodiments, the double stranded recognition sites comprise a first portion of the first adaptor on a first strand of the double stranded recognition sites and a second strand of the first adaptor on the second strand of the double stranded recognition sites. In some embodiments, the adaptor comprises a palindromic sequence. In some embodiments, the double stranded recognition sites are generated by hybridizing the first and second portions of the first adaptor to each other. In some embodiments, the m single stranded amplicon nucleic acids comprise a plurality of double stranded self-hybridized regions.
  • In a yet further aspect, the invention relates to a method for generating a long nucleic acid molecule, the method comprising the steps of (a) providing a plurality of nucleic acids immobilized on a surface, wherein said plurality of nucleic acids comprises nucleic acids having overlapping complementary sequences; (b) releasing said plurality of nucleic acids into solution; and (c) providing conditions promoting: i) hybridization of said overlapping complementary sequences to form a plurality of hybridized nucleic acids; and ii) extension or ligation of said hybridized nucleic acids to synthesize the long nucleic acid molecule.
  • In another aspect, the invention relates to an automated system capable of processing one or more substrates, comprising: an inkjet print head for spraying a microdroplet comprising a chemical species on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and not comprising a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell, wherein said treating transport and said scanning transport are different elements.
  • In yet another aspect, the invention relates to an automated system for synthesizing oligonucleotides on a substrate, said automated system capable of processing one or more substrates, comprising: an inkjet print head for spraying a solution comprising a nucleoside or activated nucleoside on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the nucleoside at specified sites; a flow cell for treating the substrate on which the monomer is deposited by exposing the substrate to one or more selected fluids; an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and not comprising a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell, wherein said treating transport and said scanning transport are different elements.
  • In yet a further aspect, the invention relates to an automated system comprising: an inkjet print head for spraying a microdroplet comprising a chemical species on a substrate; a scanning transport for scanning the substrate adjacent to the print head to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; and an alignment unit for aligning the substrate correctly relative to the print head each time when the substrate is positioned adjacent to the print head for deposition; and wherein the system does NOT comprise a treating transport for moving the substrate between the print head and the flow cell for treatment in the flow cell.
  • With the above in mind, reference is made more specifically to the drawings which, for illustrative purposes, show the present invention embodied in compositions, systems and methods in FIGS. 1A-1C and 2A-2C. It will be appreciated that the methods, systems, and compositions may vary in configuration and in the details of the individual parts in various embodiments of the invention. Further, the methods may vary in detail and the order of the events or acts. In various embodiments, the invention is described primarily in terms of use with nucleic acids, in particular, DNA oligomers and polynucleotides. It should be understood, however, that the invention may be used with a variety of different types of molecules, including RNA or other nucleic acids, peptides, proteins, or other molecules of interest. Suitable building blocks for each of these larger molecules of interest are known in the art.
  • The present invention provides compositions, systems, and methods useful in the preparation and the synthesis of libraries of molecules of interest, including nucleic acids, polypeptides, proteins and combinations thereof. In various embodiments, the invention contemplates the use of static and dynamic wafers, e.g. those that are manufactured from silicon substrates, for performing micro-, nano-, or picoliter scale reactions in parallel. In addition, the same can be applied to micro-, nano-, or picoliter manipulation of fluids in parallel to allow for linking a plurality of reactions in resolved volumes. The manipulation of fluids may comprise flowing, combining, mixing, fractionation, generation of drops, heating, condensation, evaporation, sealing, stratification, pressurizing, drying, or any other suitable fluid manipulation known in the art. In various embodiments, the wafers provide architectures for fluid manipulation that are built into the surface. Features of varying shape and size may be architected inside or through a wafer substrate. The methods and compositions of the invention, in various embodiments, make use of specifically architected devices exemplified in further detail herein, for the synthesis of biological molecules. In particular, the invention provides for the de novo synthesis of large, high-density libraries comprising long, high-quality oligonucleotides and polynucleotides, e.g. using standard phosphoramidite chemistry and suitable gene assembly techniques, by precisely controlling reaction conditions such as time, dosage and temperature.
  • Referring now to FIG. 1C, the invention in various embodiments contemplates the use of one or more static or dynamic wafers for fluid manipulation. The wafers may be constructed from a number of suitable materials as further described herein, e.g. silicon. Nanoreactor wafers may be configured to receive and hold liquids in a plurality of features. Additional wafers, for example those that are used for in situ synthesis reactions, may be contacted with nanoreactor wafers to collect and/or mix liquids. The nanoreactors may collect liquids from a plurality of additional wafers. Typically, nanoreactors are aligned with one or more resolved loci on additional wafers when the nanoreactor wafer is contacted. Reagents and solvents may be provided within the nanoreactor prior to contact. Alternatively, nanoreactors may be empty prior to contacting an additional wafer. In some embodiments, nanoreactors collect oligonucleotides synthesized in one or more resolved locus of a DNA synthesis wafer. These oligonucleotides can be assembled into a longer gene within the nanoreactor. The nanoreactors may be sealed upon alignment and contact of an additional wafer by any suitable means, e.g. capillary burst valves, pressure, adhesives, or any other suitable sealing means known the art. The seal may be releasable. Reactions within the nanoreactor wafer may be carried out in sealed volumes and may comprise temperature cycling, e.g. as applied in PCR or PCA. Isothermal reactions, such as isothermal amplification, are further within the bounds of the invention. The DNA synthesis wafers may be configured to perform in situ synthesis of oligonucleotides at resolved loci on or inside the surface with precise control. An inkjet printhead may be utilized to deliver drops of reagents for synthesis, e.g. standard phosphoramidite synthesis onto the resolved loci of the synthesis wafer. Other reagents that are common to a plurality of resolved loci may be passed through them in bulk. In some embodiments, DNA synthesis wafers are replaced with synthesis wafers for the in situ synthesis of molecules other than DNA oligonucleotides as further described elsewhere herein. Thus, the invention contemplates fast synthesis of large libraries of oligonucleotides and long genes with high-quality through the precise control of reaction conditions in a plurality of small volumes. A further benefit of the invention is a reduced reagent use in comparison to the traditional synthesis methods known in the art.
  • Various methods are contemplated for the de novo synthesis of gene libraries with low error rates. FIGS. 2A-2C illustrates exemplary applications of the methods and compositions of the invention for the synthesis of large, high quality gene libraries with long sequences in parallel. In various embodiments, static and dynamic wafers enable a plurality of reactions in a process flow. For example, oligonucleotide synthesis typically in situ on a DNA synthesis wafer, may be followed by a gene assembly reaction, such as polymerase cycling assembly (PCA), of the synthesized oligonucleotides into longer sequences. The assembled sequences may be amplified, e.g. through PCR. Suitable error correction reactions described herein or known in the art can be used to minimize the number of assembled sequences that deviate from a target sequence. Sequencing libraries may be built and a fraction of the product may be aliquoted for sequencing, such as next generation sequencing (NGS).
  • The gene synthesis processes as exemplified in FIGS. 2A-2C may be adjusted according to the needs of a requester. According to the results obtained from an initial sequencing step, e.g. NGS, the assembled genes with acceptable error rates may be shipped, e.g. on a plate, to a requester (FIG. 2B). The methods and compositions of the invention allow for error rates less than about 1/10 kb to be easily achieved, although alternative error thresholds may be set as described in further detail elsewhere herein. To achieve higher degrees of purity, de novo synthesized/assembled sequences may be cloned purified from single colonies. The identity of a correct desired sequence may be tested through sequencing, e.g. NGS. Optionally, a higher confidence for the accuracy of the sequencing information may be obtained, e.g. via another sequencing method such as Sanger sequencing. Verified sequences may be shipped, e.g. on a plate, to a requester (FIG. 2C) Methods for generation of sequencing libraries are described in further detail elsewhere herein.
  • Substrates/Wafers
  • In an aspect, a substrate having a functionalized surface made by any of the methods described herein and methods of synthesizing oligonucleotides on the substrate having a functionalized surface are described herein. The substrate can comprise a solid support having a plurality of resolved loci. The plurality of resolved loci may have any geometry, orientation or organization. The resolved loci may be in any scale (e.g., micro-scale or nano-scale), or contain microstructures fabricated into the substrate surface. The resolved loci can be localized on microchannels with at least one dimension. Individual resolved loci of a substrate may be fluidically disconnected from each other, e.g. a first resolved locus for the synthesis of a first oligonucleotide may be on a first via between the two surfaces of a substrate and a second resolved locus for the synthesis of a second oligonucleotide may be on a second via between the two surfaces of a substrate, the first and second vias not being fluidically connected within the substrate, but starting and ending from the same two surfaces of the substrate. In some cases, the microstructure of resolved loci can be microchannels or microwells in 2-D or 3-D. A “3-D” microchannel means the cavity of the microchannel can be interconnected or extend within the solid support. Within the microchannels or microwells, there can be secondary microstructures or features with any geometry, orientation or organization. The surface of the secondary features may be functionalized with a moiety that can decrease the surface energy of the surface of the secondary features. Droplets of reagents for synthesizing oligonucleotides can be deposited into the microchannels or microwells. A microwell, as used herein, refers to a structure of microfluidic scale that can hold a liquid. In various embodiments, microwells allow liquid flow between a top and a bottom end, through a fluidic opening on each end, therefore acting like a microchannel. In these contexts, the terms microwell and microchannel are used interchangeably throughout the specification.
  • FIG. 3 illustrates an example of the system for oligonucleotide synthesis comprising a first substrate and, optionally, a second substrate as described herein. The inkjet printer printheads can move in X-Y direction to the location of the first substrate. A second substrate can move in Z direction to seal with the first substrate, forming a resolved reactor. The synthesized oligonucleotides can be delivered from the first substrate to the second substrate. In another aspect, current invention also concerns a system for oligonucleotide assembly. The system for oligonucleotide assembly can comprise a system for wafer handling. FIG. 4 illustrates an example for the layout design of a substrate, according to various embodiments of the invention. The substrate can comprise a plurality of microwells and the microwells can be arrayed on a uniform pitch, e.g. a 1.5 mm pitch. Alternatively, multiple pitches may be picked in different directions of the layout, for example, rows of microstructures can be defined by a first pitch and within each row, the microstructures may be separated by a second pitch. The pitch may comprise any suitable size, e.g. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, or 5 mm. The microwell can be designed having any suitable dimensions, for example a diameter of 80 μm as exemplified in FIG. 4 , or any suitable diameter, including 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400 or 500 μm, and the microwells can be connected to a plurality of smaller microwells. The surface of the smaller microwells can be functionalized at selected regions facilitating liquid of reagents to flow into, for example via a high energy surface functionalization. As illustrated in FIG. 4 , the diameter of the smaller microwells can be about 20 μm, or any suitable diameter, including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 or 80 μm. FIG. 5 illustrates a case when a droplet of reagent is deposited into a microwell by an inkjet printer. The liquid droplet can spread over and fill the smaller microwells, in some cases facilitated by a high energy surface modification of the surface of the microwells in comparison adjacent surfaces.
  • Having a high density of resolved loci on the substrate having a functionalized surface may be desirable for having a small device and/or synthesizing a large number of molecules with a small device and/or synthesizing a large number of different molecules. The functionalized surface of the substrate may comprise any suitable density of resolved loci (e.g., a density suitable for synthesizing oligonucleotides with a given number of total different oligonucleotides to be synthesized, given amount of time for the synthesis process, or for a given cost per oligonucleotide, gene, or library). In some embodiments, the surface has a density of resolved loci of about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 sites per 1 mm2. In some embodiments, the surface has a density of resolved loci of at least about 50, at least 75, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 1500, at least about 2000, at least about 3000, at least about 4000, at least about 5000, at least about 6000, at least about 7000, at least about 8000, at least about 9000, at least about 10000, at least about 20000, at least about 40000, at least about 60000, at least about 80000, at least about 100000, or at least about 500000 sites per 1 mm2. The resolved loci on the substrate can have any different organization. For example without limitations, the resolved loci can be clustered in close proximity to form one or more circular region, rectangular region, elliptical region, irregular region and the like. In an aspect, the resolved loci are closely packed and have a low amount or no amount of cross-contamination (e.g., the droplets of reagents that are deposited into one resolved locus will not substantially mix with the droplets of reagents that are deposited into another nearest resolved locus). The organization of the resolved loci on the substrate can be designed such that it allows each sub-region or the entire region to be covered together creating a sealed cavity with controlled humidity, pressure or gas content in the sealed cavity so that the each sub-region or the entire region can have the same humidity, pressure or gas content, or substantially similar humidity, pressure or gas content as allowed under fluidically connected conditions. Some examples of different designs for the resolved loci on the substrate are illustrated in FIG. 6 . For example, FIG. 6B part b is a design of a layout referred to as Array of Holes; FIG. 6B part c is a design of a layout referred to as Flowers; FIG. 6B part d is a design of a layout referred to as Gunsight; and FIG. 6B part e is a design of a layout referred to as Radial Flower. FIG. 6C exemplifies a design of the substrate covered with a series of microwells on a 97.765 μm stencil. The microwells as exemplified in FIG. 6C are clustered into islands. The microwells can be filled with reagents from the inkjet head.
  • Each of the resolved loci on the substrate can have any shape that is known in the art, or the shapes that can be made by methods known in the art. For example, each of the resolved loci can have an area that is in a circular shape, a rectangular shape, elliptical shape, or irregular shape. In some embodiments, the resolved loci can be in a shape that allows liquid to easily flow through without creating air bubbles. In some embodiments, the resolved loci can have a circular shape, with a diameter that can be about, at least about, or less than about 1 micrometers (μm), 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 110 μm, 120 μm, 130 μm, 140 μm, 150 μm, 160 μm, 170 μm, 180 μm, 190 μm, 200 μm, 250 μm, 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 650 μm, 700 μm or 750 μm. The resolved loci may have a monodisperse size distribution, i.e. all of the microstructures may have approximately the same width, height, and/or length. Alternatively, the resolved loci of may have a limited number of shapes and/or sizes, for example the resolved loci may be represented in 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or more distinct shapes, each having a monodisperse size. In some embodiments, the same shape can be repeated in multiple monodisperse size distributions, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or more monodisperse size distributions. A monodisperse distribution may be reflected in a unimodular distribution with a standard deviation of less than 25%, 20%, 15%, 10%, 5%, 3%, 2%, 1%, 0.1%, 0.05%, 0.01%, 0.001% of the mode or smaller.
  • A substrate having a high density of resolved loci typically results in a resolved locus within a small area. Consequently, it can result in a small microchannel. The microchannels can contain deposited droplets of reagents in different volumes. The microchannels can have any suitable dimensions that allow sufficiently large surface areas and/or volumes for the various embodiments of the invention. In an aspect, the volume of the microchannel is suitably large such that a reagent in a droplet that is deposited in the microchannel is not fully depleted during the oligonucleotide synthesis. In these aspects, amongst others, the volume of a well structure can guide the time period or density with which oligonucleotides can be synthesized.
  • Each of the resolved loci can have any suitable area for carrying out the reactions according to various embodiments of the invention described herein. In some cases, the plurality of resolved loci can occupy any suitable percentage of the total surface area of the substrate. In some cases, the area of the resolved loci can be the cross-sectional area of microchannels or microwells built into a substrate. In some embodiments, the plurality of the microstructures or resolved loci directly can occupy about, at least about, or less than about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% of the surface of the substrate. In some embodiments, the plurality of resolved loci can occupy about, at least about, or less than about 10 mm2, 11 mm2, 12 mm2, 13 mm2, 14 mm2, 15 mm2, 16 mm2, 17 mm2, 18 mm2, 19 mm2, 20 mm2, 25 mm2, 30 mm2, 35 mm2, 40 mm2, 50 mm2, 75 mm2, 100 mm2, 200 mm 2 300 mm2, 400 mm2, 500 mm2, 600 mm2, 700 mm2, 800 mm2, 900 mm2, 1000 mm2, 1500 mm2, 2000 mm2, 3000 mm2, 4000 mm2, 5000 mm2, 7500 mm2, 10000 mm2, 15000 mm2, 20000 mm2, 25000 mm2, 30000 mm2, 35000 mm2, 40000 mm2, 50000 mm2, 60000 mm2, 70000 mm2, 80000 mm2, 90000 mm2, 100000 mm2, 200000 mm2, 300000 mm2, or more of total area.
  • The microstructures built into a substrate may comprise microchannels or microwells, wherein the microstructures start from a top or bottom surface of the substrate and in some cases are fluidically connected to a typically opposing surface (e.g. bottom or top). The terms “top” and “bottom” do not necessarily relate to the position of the substrate with respect to gravity at any given time, but are generally used for convenience and clarity. The microchannels or microwells can have any suitable depth or length. In some cases, the depth or length of the microchannel or microwell is measured from the surface of the substrate (and/or bottom of the solid support) to the top of the solid support. In some cases, the depth or length of the microchannel or microwell is approximately equal to the thickness of the solid support. In some embodiments, the microchannels or microwells are about, less than about, or greater than about 1 micrometer (μm), 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 125 μm, 150 μm, 175 μm, 200 μm, 300 μm, 400 μm or 500 μm deep or long. The microchannels or microwells can have any length of perimeter that is suitable for the embodiments of the invention described herein. In some cases, the perimeter of the microchannel or microwell is measured as the perimeter of a cross-sectional area, e.g. a cross sectional area that is perpendicular to fluid flow direction through said microchannel or microwell. In some embodiments, the microchannels or microwells have about, less than about, or at least about 1 micrometer (μm), 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, m n, 20 μm, 25 μm, 30 μm, 31 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 125 μm, 150 μm, 175 μm, 200 μm, 300 μm, 400 μm or 500 μm in perimeter. In some embodiments, the nominal arclength density of the microchannels or microwells can have any suitable arclength per μm2 of the planar substrate area. As described herein, the arclength density refers to the length of the perimeters of the cross-sections of the microchannels or microwells per surface area of the planar substrate. For example, without limitation, the nominal arclength density of the microchannels or microwells can be at least 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 μm/μm2, or more. In some embodiments, the nominal arclength density of the microchannels or microwells can be 0.036 μm/μm2. In some embodiments, the nominal arclength density of the microchannels or microwells can be at least 0.001 μm/μm2. In some embodiments, the nominal arclength density of the microchannels or microwells can be at least 0.01 μm/μm2. Further, the nominal surface area of the microchannels or microwells that is suitable for reactions described herein, e.g. through surface coating with a suitable moiety, can be maximized. The surface area of the microchannels or microwells that is coated with suitable moieties as described herein can facilitate the attachment of oligonucleotides to the surface. In some embodiments, the nominal surface area of the microchannels or microwells suitable for reactions described herein, such as oligonucleotide synthesis, is at least 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5 or 5 μm2 of the planar substrate area.
  • The microchannels or microwells can have any volume that is suitable for the methods and compositions described herein. In some embodiments, the microchannels or microwells have a volume that is less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 picoliter (μl), less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 990 nanoliter (nl), less than about 0.5 microliters (μl), less than about 1 μl, less than about 1.5 μl, less than about 2 μl, less than about 2.5 μl, less than about 3 μl, less than about 3.5 μl, less than about 4 μl, less than about 4.5 μl, less than about 5 μl, less than about 5.5 μl, less than about 6 μl, less than about 6.5 μl, less than about 7 μl, less than about 7.5 μl, less than about 8 μl, less than about 8.5 μl, less than about 9 μl, less than about 9.5 μl, less than about 10 μl, less than about 11 μl, less than about 12 μl, less than about 13 μl, less than about 14 μl, less than about 15 μl, less than about 16 μl, less than about 17 μl, less than about 18 μl, less than about 19 μl, less than about 20 μl, less than about 25 μl, less than about 30 μl, less than about 35 μl, less than about 40 μl, less than about 45 μl, less than about 50 μl, less than about 55 μl, less than about 60 μl, less than about 65 μl, less than about 70 μl, less than about 75 μl, less than about 80 μl, less than about 85 μl, less than about 90 μl, less than about 95 μl or less than about 100 μl. In some embodiments, the microchannels or microwells have a volume that is equal to or greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 picoliter (μl), equal or greater than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 990 nanoliter (nl), equal or greater than about 0.5 microliters (μl), about 1 μl, about 1.5 μl, about 2 μl, about 2.5 μl, about 3 μl, about 3.5 μl, about 4 μl, about 4.5 μl, about 5 μl, about 5.5 μl, about 6 μl, about 6.5 μl, about 7 μl, about 7.5 μl, about 8 μl, about 8.5 μl, about 9 μl, about 9.5 μl, about 10 μl, about 11 μl, about 12 μl, about 13 μl, about 14 μl, about 15 μl, about 16 μl, about 17 μl, about 18 μl, about 19 μl, about 20 μl, about 25 μl, about 30 μl, about 35 μl, about 40 μl, about 45 μl, about 50 μl, about 55 μl, about 60 μl, about 65 μl, about 70 μl, about 75 μl, about 80 μl, about 85 μl, about 90 μl, about 95 μl or about 100 μl.
  • The microchannels or microwells can have an aspect ratio of less than 1. As used herein, the term “aspect ratio,” refers to the ratio of a channel's width to that channel's depth. Thus, a channel having an aspect ratio of less than 1, is deeper than it is wide, while a channel having an aspect ratio greater than 1 is wider than it is deep. In some aspects, the aspect ratio of the microchannels or microwells can be less than or equal to about 0.5, about 0.2, about 0.1, about 0.05 or less. In some embodiments, the aspect ratio of the microchannels or microwells can be about 0.1. In some embodiments, the aspect ratio of the microchannels or channels can be about 0.05. The microstructures described herein, e.g., microchannels or microwells having aspect ratios less than 1, 0.1 or 0.05, may include channels having one, two, three, four, five, six or more corners, turns, and the like. The microstructures described herein may include the aspect ratios described, e.g., less than 1, 0.1 or 0.05, with respect to all microchannels or microwells contained within a particular resolved locus, e.g., one or more intersecting channels, some of these channels, a single channel and even a portion or portions of one or more microchannels or microwells. Other designs and methods of fabricating the microchannels with low aspect ratios are described in U.S. Pat. No. 5,842,787, which is incorporated herein by reference.
  • The microstructures such as microchannels or microwells on a substrate having a plurality of resolved loci can be manufactured by any method that is described herein or otherwise known in the art (e.g., microfabrication processes). Microfabrication processes that may be used in making the substrate disclosed herein include without limitation lithography; etching techniques such as wet chemical, dry, and photoresist removal; microelectromechanical (MEMS) techniques including microfluidics/lab-on-a-chip, optical MEMS (also called MOEMS), RF MEMS, PowerMEMS, and BioMEMS techniques and deep reactive ion etching (DRIE); nanoelectromechanical (NEMS) techniques; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition such as evaporation (filament, electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (CVD), epitaxy (vapor phase, liquid phase, and molecular beam), electroplating, screen printing, and lamination. See generally Jaeger, Introduction to Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading Mass. 1988); Runyan, et al., Semiconductor Integrated Circuit Processing Technology (Addison-Wesley Publishing Co., Reading Mass. 1990); Proceedings of the IEEE Micro Electro Mechanical Systems Conference 1987-1998; Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997).
  • In an aspect, a substrate having a plurality of resolved loci can be manufactured using any method known in the art. In some embodiments, the material of the substrate having a plurality of resolved loci can be a semiconductor substrate such as silicon dioxide. The materials of the substrate can also be other compound III-V or II-VI materials, such as Gallium arsenide (GaAs), a semiconductor produced via the Czochralski process (Grovenor, C. (1989). Microelectronic Materials. CRC Press. pp. 113-123). The material can present a hard, planar surface that exhibits a uniform covering of reactive oxide (—OH) groups to a solution in contact with its surface. These oxide groups can be the attachment points for subsequent silanization processes. Alternatively, a lipophillic and hydrophobic surface material can be deposited that mimics the etching characteristics of silicon oxide. Silicon nitride and silicon carbide surfaces may also be utilized for the manufacturing of suitable substrates according to the various embodiments of the invention.
  • In some embodiments, a passivation layer can be deposited on the substrate, which may or may not have reactive oxide groups. The passivation layer can comprise silicon nitride (Si3N4) or polymide. In some instances, a photolithographic step can be used to define regions where the resolved loci form on the passivation layer.
  • The method for producing a substrate having a plurality of resolved loci can start with a substrate. The substrate (e.g., silicon) can have any number of layers disposed upon it, including but not limited to a conducting layer such as a metal. The conducting layer can be aluminum in some instances. In some cases, the substrate can have a protective layer (e.g., titanium nitride). In some cases, the substrate can have a chemical layer with a high surface energy. The layers can be deposited with the aid of various deposition techniques, such as, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma enhanced CVD (PECVD), plasma enhanced ALD (PEALD), metal organic CVD (MOCVD), hot wire CVD (HWCVD), initiated CVD (iCVD), modified CVD (MCVD), vapor axial deposition (VAD), outside vapor deposition (OVD) and physical vapor deposition (e.g., sputter deposition, evaporative deposition).
  • In some cases, an oxide layer is deposited on the substrate. In some instances, the oxide layer can comprise silicon dioxide. The silicon dioxide can be deposited using tetraethyl orthosilicate (TEOS), high density plasma (HDP), or any combination thereof.
  • In some instances, the silicon dioxide can be deposited using a low temperature technique. In some cases, the process is low-temperature chemical vapor deposition of silicon oxide. The temperature is generally sufficiently low such that pre-existing metal on the chip is not damaged. The deposition temperature can be about 50° C., about 100° C., about 150° C., about 200° C., about 250° C., about 300° C., about 350° C., and the like. In some embodiments, the deposition temperature is below about 50° C., below about 100° C., below about 150° C., below about 200° C., below about 250° C., below about 300° C., below about 350° C., and the like. The deposition can be performed at any suitable pressure. In some instances, the deposition process uses RF plasma energy.
  • In some cases, the oxide is deposited by a dry thermally grown oxide procedure (e.g., those that may use temperatures near or exceeding 1,000° C.). In some cases, the silicon oxide is produced by a wet steam process.
  • The silicon dioxide can be deposited to a thickness suitable for the manufacturing of suitable microstructures described in further detail elsewhere herein.
  • The silicon dioxide can be deposited to any suitable thickness. In some embodiments, the silicon dioxide layer may have a thickness of at least or at least about 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 300 nm, 400 nm or 500 nm, 1 μm, 1.1 μm, 1.2 μm, 1.3 μm, 1.4 μm, 1.5 μm, 1.6 μm, 1.7 μm, 1.8 μm, 1.9 μm, 2.0 μm, or more. The silicon dioxide layer may have a thickness of at most or at most about 2.0 μm, 1.9 μm, 1.8 μm, 1.7 μm, 1.6 μm, 1.5 μm, 1.4 m n, 1.3 μm, 1.2 μm, 1.1 μm, 1.0 μm, 500 nm, 400 nm, 300 nm, 200 nm, 175 nm, 150 nm, 125 nm, 100 nm, 95 nm, 90 nm, 85 nm, 80 nm, 75 nm, 70 nm, 65 nm, 60 nm, 55 nm, 50 nm, 45 nm, 40 nm, 35 nm, 30 nm, 25 nm, 20 nm, 15 nm, 10 nm, 9 nm, 8, nm, 7 nm, 6 nm, 5 nm, 4 nm, 3 nm, 2 nm, 1 nm, or less. The silicon diooxide layer may have a thickness that is between 1.0 nm-2.0 μm, 1.1-1.9 μm, 1.2-1.8 nm, 1.3-1.7 μm, 1.4-1.6 μm. Those of skills in the art will appreciate that. The silicon diooxide layer may have a thickness that falls within any range bound by any of these values, for example (1.5-1.9 μm). The silicon dioxide may have a thickness that falls within any range defined by any of the values serving as endpoints of the range. The resolved loci (e.g., microchannels or microwells) can be created in a silicon dioxide substrate using various manufacturing techniques that are known in the art. Such techniques may include semiconductor fabrication techniques. In some cases, the resolved loci are created using photolithographic techniques such as those used in the semiconductor industry. For example, a photo-resist (e.g., a material that changes properties when exposed to electromagnetic radiation) can be coated onto the silicon dioxide (e.g., by spin coating of a wafer) to any suitable thickness. The substrate including the photo-resist can be exposed to an electromagnetic radiation source. A mask can be used to shield radiation from portions of the photo-resist in order to define the area of the resolved loci. The photo-resist can be a negative resist or a positive resist (e.g., the area of the resolved loci can be exposed to electromagnetic radiation or the areas other than the resolved loci can be exposed to electromagnetic radiation as defined by the mask). The area overlying the location in which the resolved loci are to be created is exposed to electromagnetic radiation to define a pattern that corresponds to the location and distribution of the resolved loci in the silicon dioxide layer. The photoresist can be exposed to electromagnetic radiation through a mask defining a pattern that corresponds to the resolved loci. Next, the exposed portion of the photoresist can be removed, such as, e.g., with the aid of a washing operation (e.g., deionized water). The removed portion of the mask can then be exposed to a chemical etchant to etch the substrate and transfer the pattern of resolved loci into the silicon dioxide layer. The etchant can include an acid, such as, for example, sulfuric acid (H2SO4). The silicon dioxide layer can be etched in an anisotropic fashion. Using the methods described herein, high anisotropy manufacturing methods, such as DRIE can be applied to fabricate microstructures, such as microwells or microchannels comprising loci of synthesis, on or within a substrate with side walls that deviate less than about ±3°, 2°, 1°, 0.5°, 0.1°, or less from the vertical with respect to the surface of the substrate. Undercut values of less than about 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.1 μm or less can be achieved resulting in highly uniform microstructures.
  • Various etching procedures can be used to etch the silicon dioxide in the area where the resolved loci are to be formed. The etch can be an isotropic etch (i.e., the etch rate alone one direction substantially equal or equal to the etch rate along an orthogonal direction), or an anisotropic etch (i.e., the etch rate along one direction is less than the etch rate alone an orthogonal direction), or variants thereof. The etching techniques can be both wet silicon etches such as KOH, TMAH, EDP and the like, and dry plasma etches (for example DRIE). Both may be used to etch micro structures wafer through interconnections.
  • In some cases, an anisotropic etch removes the majority of the volume of the resolved loci. Any suitable percentage of the volume of the resolved loci can be removed including about 60%, about 70%, about 80%, about 90%, or about 95%. In some cases, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% of the material is removed in an anisotropic etch. In some cases, at most about 60%, at most about 70%, at most about 80%, at most about 90%, or at most about 95% of the material is removed in an anisotropic etch. In some embodiments, the anisotropic etch does not remove silicon dioxide material all of the way through the substrate. An isotropic etch is used to remove material all of the way through the substrate creating a hole, according to some embodiments.
  • In some cases, the wells are etched using a photo-lithographic step to define the resolved loci followed by a hybrid dry-wet etch. The photo-lithographic step can comprise coating the silicon dioxide with a photo-resist and exposing the photo-resist to electromagnetic radiation through a mask (or reticle) having a pattern that defines the resolved loci. In some instances, the hybrid dry-wet etch comprises: (a) dry etching to remove the bulk of the silicon dioxide in the regions of the resolved loci defined in the photoresist by the photo-lithographic step; (b) cleaning the substrate; and (c) wet etching to remove the remaining silicon dioxide from the substrate in the regions of the resolved loci.
  • The substrate can be cleaned with the aid of a plasma etching chemistry, or exposure to an oxidizing agent, such as, for example, H2O2, O2, O3, H2SO4, or a combination thereof, such as a combination of H2O2 and H2SO4. The cleaning can comprise removing residual polymer, removing material that can block the wet etch, or a combination thereof. In some instances, the cleaning is plasma cleaning. The cleaning step can proceed for any suitable period of time (e.g., 15 to 20 seconds). In an example, the cleaning can be performed for 20 seconds with an Applied Materials eMAx-CT machine with settings of 100 mT, 200 W, 20 G, 20 O2.
  • The dry etch can be an anisotropic etch that etches substantially vertically (e.g., toward the substrate) but not laterally or substantially laterally (e.g., parallel to the substrate). In some instances, the dry etch comprises etching with a fluorine based etchant such as CF4, CHF3, C2F6, C3F6, or any combination thereof. In one instance, the etching is performed for 400 seconds with an Applied Materials eMax-CT machine having settings of 100 mT, 1000 W, 20 G, and 50 CF4. The substrates described herein can be etched by deep reactive-ion etching (DRIE). DRIE is a highly anisotropic etch process used to create deep penetration, steep-sided holes and trenches in wafers/substrates, typically with high aspect ratios. The substrates can be etched using two main technologies for high-rate DRIE: cryogenic and Bosch. Methods of applying DRIE are described in the U.S. Pat. No. 5,501,893, which is herein incorporated by reference in its entirety.
  • The wet etch can be an isotropic etch that removes material in all directions. In some instances, the wet etch undercuts the photo-resist. Undercutting the photo-resist can make the photo-resist easier to remove in a later step (e.g., photo-resist “lift off”). In an embodiment, the wet etch is buffered oxide etch (BOE). In some cases, the wet oxide etches are performed at room temperature with a hydrofluoric acid base that can be buffered (e.g., with ammonium fluoride) to slow down the etch rate. Etch rate can be dependent on the film being etched and specific concentrations of HF and/or NH4F. The etch time needed to completely remove an oxide layer is typically determined empirically. In one example, the etch is performed at 22° C. with 15:1 BOE (buffered oxide etch).
  • The silicon dioxide layer can be etched up to an underlying material layer. For example, the silicon dioxide layer can be etched until a titanium nitride layer.
  • In an aspect, a method for preparing a substrate having a plurality of resolved loci comprises etching the resolved loci such as microwells or microchannels into a substrate, such as a silicon substrate comprising a silicon dioxide layer coated thereon using (a) a photo-lithographic step to define the resolved loci; (b) a dry etch to remove the bulk of the silicon dioxide in the regions of the resolved loci defined by the photo-lithographic step; and (c) a wet etch to remove the remaining silicon dioxide from the substrate in the regions of the resolved loci. In some cases, the method further comprises removing residual polymer, removing material that can block the wet etch, or a combination thereof. The method can include a plasma cleaning step.
  • In some embodiments, the photo-resist is not removed from the silicon dioxide following the photo-lithographic step or the hybrid wet-dry etch in some cases. Leaving the photo-resist can be used to direct metal selectively into the resolved loci and not onto the upper surface of the silicon dioxide layer in later steps. In some cases, the substrate is coated with a metal (e.g., aluminum) and the wet etch does not remove certain components on the metal, e.g. those that protect the metal from corrosion (e.g., titanium nitride (TiN)). In some cases, however, the photoresist layer can be removed, such as with the aid of chemical mechanical planarization (CMP).
  • Differential Functionalization of Substrates
  • As described herein, functionalization of a surface, for example the surface of a silicon wafer, may refer to any process by which the surface properties of a material are modified by the deposition of a chemical species on the surface. A common method for achieving functionalization is deposition of an organosilane molecule by chemical vapor deposition. It can also be done in a wet silanization process.
  • Differential functionalization, also commonly referred to as “selective area deposition” or “selective area functionalization,” may refer to any process that produces two or more distinct areas on a monolithic structure where at least one area has different surface or chemical properties than other areas on the same structure. The properties include but are not limited to surface energy, chemical termination, surface concentration of a chemical moiety, etc. The different areas may be contiguous.
  • Active functionalization may refer to the functionalization of surfaces that will take part in some downstream production step such as DNA synthesis, or DNA or protein binding. Thus, a suitable functionalization method as described elsewhere herein or otherwise known in the art, is selected to allow for the particular downstream production step to take place on the surface.
  • Passive functionalization may refer to the functionalization of surfaces that will render those areas ineffective at the principle function of the active areas. For example, if the active functionalization is designed to bind DNA, the passive functionalized areas will not bind DNA.
  • Photoresist typically refers to a light-sensitive material commonly used in standard industrial processes, such as photolithography, to form patterned coatings. It is applied as a liquid, but it solidifies on the substrate as volatile solvents in the mixture evaporate. It may be applied in a spin coating process as a thin film (1 um to 100 um) to a planar substrate. It may be patterned by exposing it to light through a mask or reticle, changing its dissolution rate in a developer. It may be “positive” (light exposure increases dissolution) or “negative” (light exposure decreases dissolution). It may be used as a sacrificial layer that serves as a blocking layer for subsequent steps that modify the underlying substrate (such as etching). Once that modification is complete, the resist is removed.
  • Photolithography may refer to a process for patterning substrates. A common basic process comprises 1) applying a photoresist to a substrate, 2) exposing the resist to light through a binary mask that is opaque in some areas and clear in other areas, and then 3) developing the resist which results in patterning the resist based on what areas were exposed. After development, the patterned resist serves as a mask for subsequent processing steps, such as etching, ion implantation, or deposition. After the processing steps, the resist is typically removed, for example via plasma stripping or wet chemical removal.
  • In various embodiments, methods using photoresist are employed wherein photoresist facilitates manufacturing of substrates with differential functionalization.
  • A series of manufacturing steps may form the baseline of a differential functionalization process, wherein the individual steps may be modified, removed, or supplemented with additional steps to achieve the desired functionalization pattern on a surface, according to the various embodiments of the invention. First, an initial preparation of the target surface may be achieved, for example, by a chemical clean and may include an initial active or passive surface functionalization.
  • Second, the application of photoresist may be achieved by a variety of different techniques. In various embodiments, the flow of resist into different parts of the structure is controlled by the design of the structure, for example by taking advantage of the intrinsic pinning properties of fluids at various points of the structure, such as at sharp step edges. The photoresist leaves behind a solid film once the transporting solvents of the resist evaporate.
  • Third, photolithography may be optionally used to remove the resist in certain specific regions of the substrate so that those regions can be further modified.
  • Fourth, plasma descum, a, typically, short plasma cleaning step using, for example, an oxygen plasma, may be used to facilitate the removal of any residual organic contaminants in the resist cleared areas.
  • Fifth, the surface may be functionalized while the areas covered in resist are protected from any active or passive functionalization. Any suitable process that changes the chemical properties of the surface described herein or known in the art may be used to functionalize the surface, for example chemical vapor deposition of an organosilane. Typically, this results in the deposition of a self-assembled monolayer (SAM) of the functionalization species.
  • Sixth, the resist may be stripped and removed, for example by dissolving it in suitable organic solvents, plasma etching, exposure and development, etc., thereby exposing the areas of the substrate that had been covered by the resist. In some embodiments, a method that will not remove functionalization groups or otherwise damage the functionalized surfaces is selected for the resist strip.
  • Seventh, a second functionalization step involving active or passive functionalization may optionally be performed. In some embodiments, the areas functionalized by the first functionalization step block the deposition of the functional groups used in the second functionalization step.
  • In various embodiments, differential functionalization facilitates spatial control of the regions on the chip where DNA is synthesized. In some embodiments, differential functionalization provides improved flexibility to control the fluidic properties of the chip. In some embodiments, the process by which oligos are transferred from a oligonucleotide synthesis device to a nanowell device is therefore improved by differential functionalization. In some embodiments, differential functionalization provides for the manufacturing of devices, for example nanoreactor or oligonucleotide syntheses devices, where the walls of wells or channels are relatively hydrophilic, as described elsewhere herein, and the external surfaces are relatively hydrophobic, as described elsewhere herein.
  • FIG. 36 parts A-F illustrates exemplary applications of differential functionalization on the microfluidic devices according to the various embodiments of the invention. The active and passive functionalization areas are shaded differently as denoted. In particular, first channels (vias) and second channels that connect to them forming a so called revolver pattern are used in these examples to illustrate differential functionalization in three dimensions. The specific layout of the three-dimensional features within these exemplary substrates is largely unimportant for the functionalization process, with the exception of a few guidelines that help control the application of resist.
  • FIG. 37 parts A-F illustrates an exemplary workflow for the generation of differential functionalization patterns illustrated in FIG. 37 part B-D. Accordingly, the substrate may first be cleaned, for example using a piranha solution, followed by O2 plasma exposure (FIG. 37 part A). Photoresist may be applied to the device layer embedding the second channels (aka revolvers; FIG. 37 part B). A photolithography and/or a plasma descum step may be used to generate a desired pattern of photoresist on the substrate, using a suitable mask for the pattern (FIG. 37 part C). The mask pattern may be varied to control where the photoresist stays and where it is cleared. A functionalization step, for example with a fluorosilane, a hydrocarbon silane, or any group forming an organic layer that may passivate the surface, may be performed to define the passively functionalized areas on the device (FIG. 37 part D). The resist may be stripped using a suitable method described elsewhere herein or otherwise known in the art (FIG. 37 part E). Once the resist is removed, the exposed areas may be subject to active functionalization leaving the desired differential functionalization pattern (FIG. 37 part F).
  • In various embodiments, the methods and compositions described herein relate to the application of photoresist for the generation of modified surface properties in selective areas, wherein the application of the photoresist relies on the fluidic properties of the substrates defining the spatial distribution of the photoresist. Without being bound by theory, surface tension effects related to the applied fluid may define the flow of the photoresist. For example surface tension and/or capillary action effects may facilitate drawing of the photoresist into small structures in a controlled fashion before the resist solvents evaporate (FIG. 38 ). In one embodiment, resist contact points get pinned by sharp edges, thereby controlling the advance of the fluid. The underlying structures may be designed based on the desired flow patterns that are used to apply photoresist during the manufacturing and functionalization processes. A solid organic layer left behind after solvents evaporate may be used to pursue the subsequent steps of the manufacturing process.
  • Substrates may be designed to control the flow of fluids by facilitating or inhibiting wicking effects into neighboring fluidic paths. For example, FIG. 39 part A illustrates a design avoiding overlap between top and bottom edges, which facilitates the keeping of the fluid in top structures allowing for a particular disposition of the resist. In contrast, FIG. 39 part B illustrates an alternative design, wherein the top and bottom edges do overlap, leading to the wicking of the applied fluid into bottom structures. Appropriate designs may be selected accordingly, depending on the desired application of the resist.
  • FIG. 40 illustrates bright field (part A) and dark field (part B) images of a device that is subjected to resist according to the illustrated small disk photoresist pattern in FIG. 40 part C after photolithography.
  • FIG. 41 illustrates bright field (part A) and dark field (part B) images of a device that is subjected to resist according to the illustrated full disk photoresist pattern in FIG. 41 part 41C after photolithography.
  • FIG. 42 illustrates bright field (part A) and dark field (part B) images of a device that is functionalized according to the pattern in FIG. 42 part C after passive functionalization and stripping of the resist.
  • FIG. 43 illustrates the differing fluidic properties of the differentially functionalized surfaces in bright field (part A) and dark field (part B) images according to the pattern in FIG. 43 part C using dimethylsulfoxide (DMSO) as a fluid. Spontaneous wetting of the revolvers was achieved using the hydrophilic surfaces within the revolvers surrounded by the hydrophobic areas.
  • FIG. 44 illustrates another exemplary workflow for the generation of differential functionalization patterns illustrated in FIG. 36 part F. Accordingly, the substrate may first be cleaned, for example using a piranha solution, followed by O2 plasma exposure (FIG. 44 part 44A). A functionalization step, for example with a fluorosilane, a hydrocarbon silane, or any group that can form an organic layer that may passivate the surface, may be performed to define the passively functionalized areas on the device (FIG. 44 part B). Photoresist may be applied to the device layer embedding the second channels (aka revolvers; FIG. 44 part C). A photolithography and/or an etch step may be used to generate a desired pattern of photoresist on the substrate, using a suitable mask for the pattern (FIG. 44 part D). The mask pattern may be varied to control where the photoresist stays and where it is cleared. The resist may be stripped using a suitable method described elsewhere herein or otherwise known in the art (FIG. 44 part E). Once the resist is removed, the exposed areas may be subject to active functionalization leaving the desired differential functionalization pattern (FIG. 44 part F).
  • In another embodiment, the functionalization workflow is designed such that the resist is applied from the via (bottom) side and flown into the vias and the revolvers. The exposed areas on the outer surfaces may be subjected to functionalization. The resist may be removed, for example from the back (bottom) side of the device using lithography or etching, allowing active functionalization in the exposed areas leading to the pattern described in FIG. 36 part E.
  • In yet another embodiment, an overlap design may be chosen between the vias and the revolver channel edges as shown in FIG. 39 part B. The resist may be applied from the front (top) side wicking the fluid into the vias. Passive functionalization, stripping of the resist, followed by active functionalization would lead to the manufacturing of the pattern illustrated in FIG. 36 part E.
  • An exemplary microfluidic device comprising a substantially planar substrate portion is shown as a diagram in FIG. 25 part D. A cross-section of the diagram is shown in FIG. 25 part E. The substrate comprises a plurality of clusters, wherein each cluster comprises a plurality of groupings of fluidic connections. Each grouping comprises a plurality of second channels extending from a first channel. FIG. 25 part A is a device view of a cluster comprising a high density of groupings. FIG. 25 part C is a handle view of the cluster of FIG. 25A. FIG. 25 part B is a section view of FIG. 25 part A.
  • A cluster of groupings may be arranged in any number of conformations. In FIG. 25 part A, the groupings are arranged in offset rows to form a cluster in a circle-like pattern. FIG. 25 part C depicts arrangement of a plurality of such clusters on an exemplary microfluidic device. In some embodiments, individual clusters are contained within individual cluster regions whose interior forms a convex set. In some embodiments, the individual cluster regions are non-overlapping with each other. The individual cluster regions may be a circle or any other suitable polygon, e.g. a triangle, a square, a rectangle, a, a parallelogram, a hexagon etc. As represented by 2503, an exemplary distance between three rows of groupings may be from about 0.05 mm to about 1.25 mm, as measured from the center of each grouping. The distance between 2, 3, 4, 5, or more rows of groupings may be about or at least about 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, 0.3 mm, 0.35 mm, 0.4 mm, 0.45 mm, 0.5 mm, 0.55 mm, 0.6 mm, 0.65 mm, 0.7 mm, 0.75 mm, 0.8 mm, 0.9 mm, 1 mm, 1.1 mm, 1.2 mm, 1.2 mm, or 1.3 mm. The distance between 2, 3, 4, 5, or more rows of groupings may be about or at most about 1.3 mm, 1.2 mm, 1.1 mm, 1 mm, 0.9 mm, 0.8 mm, 0.75 mm, 0.65 mm, 0.6 mm, 0.55 mm, 0.5 mm, 0.45 mm, 0.4 mm, 0.35 mm, 0.3 mm, 0.25 mm, 0.2 mm, 0.15 mm, 0.1 mm, 0.05 mm or less. The distance between 2, 3, 4, 5, or more rows of groupings may range between 0.05-1.3 mm, 0.1-1.2 mm, 0.15-1.1 mm, 0.2-1 mm, 0.25-0.9 mm, 0.3-0.8 mm, 0.35-0.8 mm, 0.4-0.7 mm, 0.45-0.75 mm, 0.5-0.6 mm, 0.55-0.65 mm, or 0.6-0.65 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.05 mm-0.8 mm. As shown by 2506, an exemplary distance between two groupings in a row of groupings may be from about 0.02 mm to about 0.5 mm, as measured from the center of each grouping. The distance between two groupings in a row of groupings may be about or at least about 0.02 mm, 0.04 mm, 0.06 mm, 0.08 mm, 0.1 mm, 0.12 mm, 0.14 mm, 0.16 mm, 0.18 mm, 0.2 mm, 0.22 mm, 0.24 mm, 0.26 mm, 0.28 mm, 0.3 mm, 0.32 mm, 0.34 mm, 0.36 mm, 0.38 mm, 0.4 mm, 0.42 mm, 0.44 mm, 0.46 mm, 0.48 mm or 0.5 mm. The distance between two groupings in a row of groupings may be about or at most about 0.5 mm, 0.48 mm, 0.46 mm, 0.44 mm, 0.42 mm, 0.4 mm, 0.38 mm, 0.36 mm, 0.34 mm, 0.32 mm, 0.3 mm, 0.28 mm, 0.26 mm, 0.24 mm, 0.22 mm, 0.2 mm, 0.18 mm, 0.16 mm, 0.14 mm, 0.12 mm, 0.1 mm, 0.08 mm, 0.06 mm, 0.04 mm, or 0.2 mm or less. The distance between two groupings may range between 0.02-0.5 mm, 0.04-0.4 mm, 0.06-0.3 mm, or 0.08-0.2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.04 mm-0.2 mm.
  • The length and width of the first and second channels of each grouping may be optimized according to experimental conditions. In some embodiments, the cross-section of a first channel in a grouping, represented by 2504, is about or at least about 0.01 mm, 0.015 mm, 0.02 mm, 0.025 mm, 0.03 mm, 0.035 mm, 0.04 mm, 0.045 mm, 0.05 mm, 0.055 mm, 0.06 mm, 0.065 mm, 0.07 mm, 0.075 mm, 0.08 mm, 0.085 mm, 0.09 mm, 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, 0.3 mm, 0.35 mm, 0.4 mm, 0.45 mm, or 0.5 mm. In some embodiments, the cross-section of a first channel in a grouping is about or at most about 0.5 mm, 0.45 mm, 0.4 mm, 0.35 mm, 0.3 mm, 0.25 mm, 0.2 mm, 0.15 mm, 0.1 mm, 0.09 mm, 0.085 mm, 0.08 mm, 0.075 mm, 0.07 mm, 0.065 mm, 0.06 mm, 0.055 mm, 0.05 mm, 0.045 mm, 0.04 mm, 0.035 mm, 0.03 mm, 0.025 mm, 0.02 mm, 0.015 mm, or 0.01 mm or less. The cross-section of a first channel in a grouping may range between 0.01-0.5 mm, 0.02-0.45 mm, 0.03-0.4 mm, 0.04-0.35 mm, 0.05-0.3 mm, 0.06-0.25, or 0.07-0.2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.04 mm-0.2 mm. In some embodiments, the cross-section of a second channel in a grouping, represented by 2505, is about or at least about 0.001 mm, 0.002 mm, 0.004 mm, 0.006 mm, 0.008 mm, 0.01 mm, 0.012 mm, 0.014 mm, 0.016 mm, 0.018 mm, 0.02 mm, 0.025 mm, 0.03 mm, 0.035 mm, 0.04 mm, 0.045 mm, 0.05 mm, 0.055 mm, 0.06 mm, 0.065 mm, 0.07 mm, 0.075 mm, or 0.08 mm. In some embodiments, the cross-section of a second channel in a grouping, is about or at most about 0.08 mm, 0.075 mm, 0.07 mm, 0.065 mm, 0.06 mm, 0.055 mm, 0.05 mm, 0.045 mm, 0.04 mm, 0.035 mm, 0.03 mm, 0.025 mm, 0.02 mm, 0.018 mm, 0.016 mm, 0.014 mm, 0.012 mm, 0.01 mm, 0.008 mm, 0.006 mm, 0.004 mm, 0.002 mm, 0.001 mm or less. The cross-section of a second channel in a grouping may range between 0.001-0.08 mm, 0.004-0.07 mm, 0.008-0.06 mm, 0.01-0.05 mm, 0.015-0.04 mm, 0.018-0.03 mm, or 0.02-0.025 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.008 mm-0.04 mm. FIG. 25 part B depicts an exemplary cross-section of a cluster comprising a row of 11 groupings. In some embodiments, the height of the second channel in each grouping is about or at least about 0.005 mm, 0.008 mm, 0.01 mm, 0.015 mm, 0.02 mm, 0.025 mm, 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.1 mm, 0.12 mm, 0.14 mm, 0.16 mm, 0.18 mm, or 0.2 mm long. In some embodiments, the height of the second channel, shown as 2501, in each grouping is about or at most about 0.2 mm, 0.18 mm, 0.16 mm, 0.14 mm, 0.12 mm, 0.1 mm, 0.08 mm, 0.07 mm, 0.06 mm, 0.05 mm, 0.04 mm, 0.03 mm, 0.025 mm, 0.02 mm, 0.015 mm, 0.01 mm, 0.008 mm, or 0.005 mm long. The height of the second channel in each grouping may range between 0.005-0.2 mm, 0.008-0.018 mm, 0.01-0.16 mm, 0.015-0.1 mm, 0.02-0.08 mm, or 0.025-0.04 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.01 mm-0.04 mm. In some embodiments, the height of the first channel within each grouping, shown as 2502, is about or at most about 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.5 mm, 2 mm, 1.5 mm, 1.0 mm, 0.8 mm, 0.5 mm, 0.4 mm, 0.375 mm, 0.35 mm, 0.3 mm, 0.275 mm, 0.25 mm, 0.225 mm, 0.2 mm, 0.175 mm, 0.15 mm, 0.125 mm, 0.1 mm, 0.075 mm, or 0.05 mm. In some embodiments, the height of the first channel within each grouping, shown as 2502, is about or at least about 0.05 mm, 0.075 mm, 0.1 mm, 0.125 mm, 0.15 mm, 0.175 mm, 0.2 mm, 0.225 mm, 0.25 mm, 0.275 mm, 0.3 mm, 0.325 mm, 0.35 mm, 0.375 mm, 0.4 mm, 0.5 mm, 0.8 mm, 1.0 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or 5 mm. The height of the first channel within each grouping may range between 0.05-5 mm, 0.075-4 mm, 0.1-3 mm, 0.15-2 mm, 0.2-1 mm, or 0.3-0.8 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-1 mm.
  • The cluster of groupings may be arranged in a conformation suitable for placement in a single reaction well of the substantially planar substrate portion of a microfluidic device, as shown in FIG. 25 part D. FIG. 25 part D is a diagram of a substantially planar substrate portion of a microfluidic device comprising 108 reaction wells, wherein each reaction well comprises a plurality of groupings. A substrate may comprise any number of wells, including but not limited to, any number between about 2 and about 250. In some embodiments, the number of wells includes from about 2 to about 225 wells, from about 2 to about 200 wells, from about 2 to about 175 wells, from about 2 to about 150 wells, from about 2 to about 125 wells, from about 2 to about 100 wells, from about 2 to about 75 wells, from about 2 to about 50 wells, from about 2 to about 25 wells, from about 25 to about 250 wells, from about 50 to about 250 wells, from about 75 to about 250 wells, from about 100 to about 250 wells, from about 125 to about 250 wells, from about 150 to about 250 wells, from about 175 to about 250 wells, from about 200 to about 250 wells, or from about 225 to about 250 wells. Those of skill in the art appreciate that the well number may fall within any range bound by any of these values, for example 25-125. In addition, each well can comprise a cluster of any number groupings, including, but not limited to, any number between about 2 and about 250 groupings. In some embodiments, a cluster comprises from about 2 to about 225 groupings, from about 2 to about 200 groupings, from about 2 to about 175 groupings, from about 2 to about 150 groupings, from about 2 to about 125 groupings, from about 2 to about 100 groupings, from about 2 to about 75 groupings, from about 2 to about 50 groupings, from about 2 to about 25 groupings, from about 25 to about 250 groupings, from about 50 to about 250 groupings, from about 75 to about 250 groupings, from about 100 to about 250 groupings, from about 125 to about 250 groupings, from about 150 to about 250 groupings, from about 175 to about 250 groupings, from about 200 to about 250 groupings, or from about 225 to about 250 groupings. Those of skill in the art appreciate that the number of groupings may fall within any range bound by any of these values, for example 25-125. As an example, each of the 108 wells of the substrate shown in FIG. 25 part D, can comprise a cluster of 109 groupings shown in FIG. 25 part A, resulting in 11,772 groupings present in the substantially planar substrate portion of the microfluidic device.
  • FIG. 25 part D includes an origin of reference indicated by a 0,0 (X,Y) axis, wherein the bottom left corner of an exemplary substantially planar substrate portion of a microfluidic device is diagramed. In some embodiments, the width of the substantially planar substrate, represented as 2508, is from about 5 mm to about 150 mm along one dimension, as measured from the origin. In some embodiments, the width of a substantially planar substrate, represented as 2519, is from about 5 mm to about 150 mm along another dimension, as measured from the origin. In some embodiments, the width of a substrate in any dimension is from about 5 mm to about 125 mm, from about 5 mm to about 100 mm, from about 5 mm to about 75 mm, from about 5 mm to about 50 mm, from about 5 mm to about 25 mm, from about 25 mm to about 150 mm, from about 50 mm to about 150 mm, from about 75 mm to about 150 mm, from about 100 mm to about 150 mm, or from about 125 mm to about 150 mm. Those of skill in the art appreciate that the width may fall within any range bound by any of these values, for example 25-100 mm. The substantially planar substrate portion shown in FIG. 25 part D comprises 108 clusters of groupings. The clusters may be arranged in any configuration. In FIG. 25 part D, the clusters are arranged in rows forming a square shape. Regardless of arrangement, the clusters may start at a distance of about 0.1 mm to about 149 mm from the origin, as measured on the X- or Y-axis. Lengths 2518 and 2509 represent the furthest distances of the center of a cluster on the X- and Y-axis, respectively. Lengths 2517 and 2512 represent the closest distances of the center of a cluster on the X- and Y-axis, respectively. In some embodiments, the clusters are arranged so that there exists a repeated distance between two clusters. As shown by 2507 and 2522, the distance between two clusters may be from about 0.3 mm to about 9 mm apart. In some embodiments, the distance between two clusters is about or at least about 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, or 9 mm. In some embodiments, the distance between two clusters is about or at most about 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, or 0.3 mm. The distance between two clusters may range between 0.3-9 mm, 0.4-8 mm, 0.5-7 mm, 0.6-6 mm, 0.7-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.8 mm-2 mm.
  • Fiducial marks may be placed on microfluidic devices described herein to facilitate alignment of such devices with other components of a system. Microfluidic devices of the invention may have one or more fiducial marks, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, or more fiducial marks. The substantially planar substrate portion of an exemplary microfluidic device shown in FIG. 25 part D comprises three fiducial marks useful for aligning the device with other components of a system. A fiducial mark may be located at any position within the substantially planar substrate portion of the microfluidic device. As shown by 2513 and 2516, a fiducial mark may be located near the origin, where the fiducial mark is closer to the origin than any one cluster. In some embodiments, a fiducial mark is located near an edge of the substrate portion, as shown by 2511 and 2521, where the distance from the edge is indicated by 2510 and 2520, respectively. The fiducial mark may be located from about 0.1 mm to about 10 mm from the edge of the substrate portion. In some embodiments, the fiducial mark is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, 9 mm, or 10 mm from the edge of the substrate portion. In some embodiments, the fiducial mark is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm from the substrate portion. The fiducial mark may be located between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.1-6 mm, 0.2-5 mm, 0.3-4 mm, 0.4-3 mm, or 0.5-2 mm from the edge of the substrate. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-5 mm. The fiducial mark may be located close in distance to a cluster, where exemplary X- and Y-axis distances are indicated by 2515 and 2514, respectively. In some embodiments, a distance between a cluster and a fiducial mark is about or at least about 0.001 mm, 0.005 mm, 0.01 mm, 0.02 mm, 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.09 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.2 mm, 1.5 mm, 1.7 mm, 2 mm, 2.2 mm, 2.5 mm, 2.7 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, or 8 mm. In some embodiments, a distance between a cluster and a fiducial mark is about or at most about 8 mm, 6.5 mm, 6 mm, 5.5 mm, 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.7 mm, 2.5 mm, 2.2 mm, 2 mm, 1.7 mm, 1.5 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.09 mm, 0.08 mm, 0.07 mm, 0.06 mm, 0.05 mm, 0.04 mm, 0.03 mm, 0.02 mm, 0.01 mm, 0.005 mm, or 0.001 mm. The distance between a cluster and a fiducial mark may be in a range between 0.001-8 mm, 0.01-7 mm, 0.05-6 mm, 0.1-5 mm, 0.5-4 mm, 0.6-3 mm, 0.7-2 mm, or 0.8-1.7 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.5-2 mm.
  • FIG. 25 part E depicts a cross section of the substantially planar substrate portion of an exemplary microfluidic device shown in FIG. 25 part D. The section shows a row of 11 groupings, each comprising a cluster of groupings, wherein each grouping comprises a plurality of second channels extending from a first channel. As exemplified by 2523, the total length of a grouping may be from about 0.05 mm to about 5 mm long. In some embodiments, the total length of a grouping is about or at least about 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.09 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.2 mm, 1.5 mm, 1.7 mm, 2 mm, 2.2 mm, 2.5 mm, 2.7 mm, 3 mm, 3.2 mm, 3.5 mm, 3.7 mm, 4 mm, 4.2 mm, 4.5 mm, 4.7 mm, or 5 mm. In some embodiments, the total length of a grouping is about or at most about 5 mm, 4.7 mm, 4.5 mm, 4.2 mm, 4 mm, 3.7 mm, 3.5 mm, 3.2 mm, 3 mm, 2.7 mm, 2.5 mm, 2.2 mm, 2 mm, 1.7 mm, 1.5 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.09 mm, 0.08 mm, 0.07 mm, 0.06 mm, or 0.05 mm or less. The total length of a grouping may be in a range between 0.05-5 mm, 0.06-4 mm, 0.07-3 mm, 0.08-2 mm, 0.09-1 mm, 0.1-0.9 mm, 0.2-0.8 mm, or 0.3-0.7 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1-0.7 mm. In some embodiments, the microfluidic device may have a location for a label or a serial label, as exemplified in FIG. 25 part F depicting an exemplary layout of clusters in a microfluidic device. The label may be located near an edge of the substrate, as exemplified by the distance 2603. In some embodiments, the label is located from about 0.1 mm to about 10 mm from the edge of the substrate. In some embodiments, the label is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, 9 mm, or 10 mm from the edge of a substrate. In some embodiments, the label is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm from the edge of a substrate. The distance may be in a range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.6-5 mm, 0.7-4 mm, 0.8-3 mm, 0.9-2 mm or 1.5 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.5-2 mm. The label may start at a position from about 0.1 mm to about 20 mm from the origin as exemplified by 2602. The label may have a length from about 1 mm to about 32 mm as exemplified by 2601.
  • Wafers with Large Sized Vias for High Mass Oligonucleotide Synthesis
  • In some embodiments, the invention provides for methods and systems for controlled flow and mass transfer paths for oligonucleotide synthesis on a surface. The advantages of the systems and methods provided herein allow for improved levels of structure for the controlled and even distribution of mass transfer paths, chemical exposure times, and wash efficacy during oligonucleotide synthesis. Further, the methods and systems described herein allow for increased sweep efficiency, such as by providing sufficient volume for a growing oligonucleotide such that the excluded volume by the growing oligonucleotide does not take up more than 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing oligonucleotides. In addition, the methods and systems described herein allow for an sufficient structure for the growth of oligomers beyond 80 mer to 100, 120, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500-mer or longer.
  • Accordingly, the methods and systems described herein provide solutions to achieve these advantages, such as collections of small parallel passages. Structures, such as small vias may be used to feed smaller structures, such as those found in the “revolver pattern” (FIG. 56B). Structures having a low surface energy surface on the inner surface may cause gas to hang up on the walls. Gas bubbles may impede the flow rate and flow uniformity during oligonucleotide synthesis cycles or subsequent aqueous steps used for gene assembly. Accordingly, structures that are adapted for oligonucleotide synthesis may comprise a surface with increased surface energy as described elsewhere herein.
  • In some embodiments, the methods and systems of the invention exploit silicon wafer processes for manufacturing substrates for oligonucleotide synthesis. Such substrates may have a series of sites accessible to material deposition via a deposition device such as an inkjet. Substrates manufactured according to the various embodiments of the invention may support flood chemistry steps that are shared among a plurality of such sites through their plane. In various embodiments, devices allow aqueous reagents to be injected and pooled in a large relief (FIG. 61 parts A-B).
  • In various embodiments, such oligonucleotide synthesis devices with large vias are created on a standard Silicon on Insulator (SOI) silicon wafer. The oligonucleotide synthesis device may have a total width of at least or at least about 10 micrometer (μm), 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 110 μm, 120 μm, 130 μm, 140 μm, 150 μm, 160 μm, 170 μm, 180 μm, 190 μm, 200 μm, 250 μm, 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 650 μm, 700 μm, 750 μm, 800 μm, 850 μm, 900 μm, 950 μm, 1000 μm, or more. The oligonucleotide synthesis device may have a total width of at most or at most about 1000 μm, 900 μm, 850 μm, 750 μm, 700 μm, 650 μm, 600 μm, 550 μm, 500 μm, 450 μm, 400 μm, 350 μm, 300 μm, 250 μm, 200 μm, 190 μm, 180 μm, 170 μm, 160 μm, 150 μm, 140 μm, 130 μm, 120 μm, 110 μm, 100 μm, 95 μm, 90 μm, 85 μm, 80 μm, 75 μm, 70 μm, 65 μm, 60 μm, 55 μm, 50 μm, 45 μm, 40 μm, 35 μm, 30 μm, 25 μm, 20 μm, 19 μm, 18 μm, 17 μm, 16 μm, 15 μm, 14 μm, 13 μm, 12 μm, 11 μm, 10 μm, or less. The oligonucleotide synthesis device may have a total width that is between 10-1000 μm, 11-950 μm, 12-900 μm, 13-850 μm, 14-800 μm, 15-750 μm, 16-700 μm, 17-650 μm, 18-600 μm, 19-550 μm, 20-500 μm, 25-450 μm, 30-400 μm, 35-350 μm, 40-300 μm, 45-250 μm, 50-200 μm, 55-150 μm, 60-140 μm, 65-130 μm, 70-120 μm, 75-110 μm, 70-100 μm, 75-80 μm, 85-90 μm or 90-95 μm. Those of skill in the art appreciate that the total width of the oligonucleotide synthesis device may fall within any range bound by any of these values, for example 20-80 μm. The total width of the oligonucleotide device may fall within any range defined by any of the values serving as endpoints of the range. It may be subdivided into a handle layer and a device layer. All or portions of the device may be covered with a silicon dioxide layer. The silicon dioxide layer may have a thickness of at least or at least about 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 300 nm, 400 nm, 500 nm, 1 μm, 1.1 μm, 1.2 μm, 1.3 μm, 1.4 μm, 1.5 μm, 1.6 μm, 1.7 μm, 1.8 μm, 1.9 μm, 2.0 μm, or more. The silicon dioxide layer may have a thickness of at most or at most about 2.0 μm, 1.9 rm, 1.8 μm, 1.7 μm, 1.6 μm, 1.5 μm, 1.4 μm, 1.3 μm, 1.2 μm, 1.1 μm, 1.0 μm, 500 nm, 400 nm, 300 nm, 200 nm, 175 nm, 150 nm, 125 nm, 100 nm, 95 nm, 90 nm, 85 nm, 80 nm, 75 nm, 70 nm, 65 nm, 60 nm, 55 nm, 50 nm, 45 nm, 40 nm, 35 nm, 30 nm, 25 nm, 20 nm, 15 nm, 10 nm, 9 nm, 8, nm, 7 nm, 6 nm, 5 nm, 4 nm, 3 nm, 2 nm, 1 nm, or less. The silicon diooxide layer may have a thickness that is between 1.0 nm-2.0 rm, 1.1-1.9 rm, 1.2-1.8 nm, 1.3-1.7 μm, 1.4-1.6 μm. Those of skills in the art will appreciate that the silicon diooxide layer may have a thickness that falls within any range bound by any of these values, for example (1.5-1.9 μm). The silicon dioxide may have a thickness that falls within any range defined by any of the values serving as endpoints of the range.
  • The device layer may comprise a plurality of structures suitable for oligonucleotide growth, as described elsewhere herein, such as a plurality of small holes (FIG. 61 parts A-B). The device layer may have a thickness of at least or at least about 1 micrometer (μm), 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 200 μm, 300 μm, 400 μm, 500 μm, or more. The device layer may have a thickness of at most or at most about 500 rm, 400 μm, 300 μm, 200 μm, 100 μm, 95 μm, 90 μm, 85 μm, 80 μm, 75 μm, 70 μm, 65 μm, 60 μm, 55 μm, 50 μm, 45 μm, 40 μm, 35 μm, 30 μm, 25 μm, 20 μm, 19 μm, 18 μm, 17 μm, 16 μm, 15 μm, 14 μm, 13 μm, 12 μm, 11 μm, 10 μm, 9 μm, 8 μm, 7 μm, 6 μm, 5 μm, 4 μm, 3 μm, 2 μm, 1 μm, or less. The device layer may have a thickness that is between 1-100 μm, 2-95 μm, 3-90 μm, 4-85 μm, 5-80 μm, 6-75 μm, 7-70 μm, 8-65 μm, 9-60 μm, 10-55 μm, 11-50 μm, 12-45 μm, 13-40 μm, 14-35 μm, 15-30 μm, 16-25 μm, 17-20 μm, 18-19 μm. Those of skill in the art appreciate that the thickness of the device layer may fall within any range bound by any of these values, for example (20-60 μm). The thickness of the device layer may fall within any range defined by any of the values serving as endpoints of the range. The handle and/or the device layer may comprise deep features. Such deep features may be manufactured using a suitable MEMS technique, such as deep reactive ion etching. A series of etches may be used to construct the desired device geometry. One of the etches may be allowed to last longer and penetrate the insulator layer. Accordingly, passages that span the entire width of the device may be constructed. Such passages may be used to pass fluid from one surface of a substrate, such as a substantially planar substrate, to another.
  • In some embodiments, the device layer has at least two and up to 500 sites, from at least 2 to about 250 sites, from at least 2 to about 200 sites, from at least 2 to about 175 sites, from at least 2 to about 150 sites, from at least 2 to about 125 sites, from at least 2 to about 100 sites, from at least 2 to about 75 sites, from at least 2 to about 50 sites, from at least 2 to about 25 sites, or from at least 2 to about 250 sites that penetrate through the device layer. In some embodiments, the device layer has at least or at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, or more sites. Those of skill in the art appreciate that the number of sites that penetrate through the device layer may fall within any range bound by any of these values, for example 75-150 sites. The device layer may be at least or at least about 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm thick, or more. The device layer may be at most or at most about 100 μm, 95 μm, 90 μm, 85 μm, 80 μm, 75 μm, 70 μm, 65 μm, 60 μm, 55 μm, 50 μm, 45 μm, 40 μm, 35 μm, 30 μm, 25 μm, 20 μm, 19 μm, 18 μm, 17 μm, 16 μm, 15 μm, 14 μm, 13 μm, 12 μm, 11 μm, 10 μm, 9 μm, 8 μm, 7 μm, 6 μm, 5 μm, 4 μm, 3 μm, 2 μm, 1 μm, thick, or less. The device layer can have any thickness that fall between 1-100 μm, 2-95 μm, 3-90 μm, 4-85 μm, 5-80 μm, 6-75 μm, 7-70 μm, 8-65 μm, 9-60 μm, 10-55 μm, 11-50 μm, 12-45 μm, 13-40 μm, 14-35 μm, 15-30 μm, 16-25 μm, 17-20 μm, 18-19 μm. Those skilled in the art appreciate that the device layer can have any thickness that may fall within any range bound by any of these values bound by any of these values, for example, 4-100 μm.
  • The thickness of the device layer may fall within any range defined by any of the values serving as endpoints of the range. The handle layer may have a larger area etched into the wafer that neighbors the features in the device layer. The handle layer may have a thickness of at least or at least about 10 μm, 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 110 μm, 120 μm, 130 μm, 140 μm, 150 μm, 160 μm, 170 μm, 180 μm, 190 μm, 200 μm, 250 μm, 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 650 μm, 700 μm, 750 μm, 800 μm, 850 μm, 900 μm, 950 μm, 1000 μm, or more. The handle layer may have a thickness of at most or at most about 1000 μm, 950 μm, 900 μm, 850 μm, 800 μm, 750 μm, 700 μm, 650 μm, 600 μm, 550 μm, 500 μm, 450 μm, 400 μm, 350 μm, 300 μm, 250 μm, 200 μm, 150 μm, 100 μm, 95 μm, 90 μm, 85 μm, 80 μm, 75 μm, 70 μm, 65 μm, 60 μm, 55 μm, 50 μm, 45 μm, 40 μm, 30 μm, 25 μm, 20 μm, 19 μm, 18 μm, 17 μm, 16 μm, 15 μm, 14 μm, 13 μm, 12 μm, 11 μm, 10 μm, 9 μm, 8 μm, 7 μm, 6 μm, 5 μm, 4 μm, 3 μm, 2 μm, 1 μm, or less. The handle layer can have any thickness that is between 10-1000 μm, 11-950 μm, 12-900 μm, 13-850 μm, 14-800 μm, 15-750 μm, 16-700 μm, 17-650 μm, 18-600 μm, 19-550 μm, 20-500 μm, 25-450 μm, 30-400 μm, 35-350 μm, 40-300 μm, 45-250 μm, 50-200 μm, 55-150 μm, 60-140 μm, 65-130 μm, 70-120 μm, 75-110 μm, 70-100 μm, 75-80 μm, 85-90 μm or 90-95 μm. Those of skill in the art appreciate that handle layer may have a thickness that falls within any range bound by any of these values, for example 20-350 μm. The thickness of the handle layer fall within any range defined by any of the values serving as endpoints of the range
  • Etched regions in the handle layer may form well-like structures embedded in the substrate. In some embodiments, etched regions within the handle layer may have a thickness of at least or about at least 100 μm, 101 μm, 102 μm, 103 μm, 104 μm, 105 μm, 106 μm, 107 μm, 108 μm, 109 μm, 110 μm, 120 μm, 130 μm, 140 μm, 150 μm, 160 μm, 170 μm, 180 μm, 190 μm, 200 μm, 250 μm, 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 650 μm, 700 μm, 750 μm, 800 μm, 850 μm, 900 μm, 950 μm, or 1000 μm, or more. The etched region within the handle layer may have any thickness of at most or about at most 1000 μm, 950 μm, 900 μm, 850 μm, 800 μm, 750 μm, 700 μm, 650 μm, 600 μm, 550 μm, 500 μm, 450 μm, 400 μm, 350 μm, 300 μm, 250 μm, 200 μm, 190 μm, 180 μm, 170 μm, 160 μm, 150 μm, 140 μm, 130 μm, 120 μm, 110 μm, 109 μm, 108 μm, 107 μm, 106 μm, 105 μm, 104 μm, 103 μm, 102 μm, 101 μm, 100 μm, or less. The etched region within the handle layer may have any thickness that is between 100-1000 μm, 101-950 μm, 102-900 μm, 103-850 μm, 104-800 μm, 105-750 μm, 106-700 μm, 105-650 μm, 106-600 μm, 107-550 μm, 108-500 μm, 109-450 μm, 110-400 μm, 120-350 μm, 130-300 μm, 140-250 μm, 150-200 μm, 160-190 μm, 170-180 μm. Those of skill in the art appreciate that handle layer may have a thickness that falls within any range bound by any of these values, for example 200-300 μm.
  • The shape of the etched regions within the handle layer may be rectangular or curvilinear.
  • In some embodiments, large etched regions within the handle layer allow for easy transition from a gas phase to a liquid phase during the oligonucleotide synthesis cycle, and/or during oligonucleotide release, such as oligonucleotide release into gas phase.
  • Substrates with High Surface Area Synthesis Sites
  • In various embodiments, the methods and systems described herein relate to oligonucleotide synthesis devices for the synthesis of high masses of oligonucleotides. The synthesis may be in parallel. For example at least or about at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 10000, 50000, 100000 or more oligonucleotides can be synthesized in parallel. The total number oilgonucleotides that may be synthesized in parallel may be between 2-100000, 3-50000, 4-10000, 5-1000, 6-900, 7-850, 8-800, 9-750, 10-700, 11-650, 12-600, 13-550, 14-500, 15-450, 16-400, 17-350, 18-300, 19-250, 20-200, 21-150,22-100, 23-50, 24-45, 25-40, 30-35. Those of skill in the art appreciate that the total number of oligonucleotides synthesized in parallel may fall within any range bound by any of these values, for example 25-100. The total number of oligonucleotides synthesized in parallel may fall within any range defined by any of the values serving as endpoints of the range. Total molar mass of oligonucleotides synthesized within the device or the molar mass of each of the oligonucleotides may be at least or at least about 10, 20, 30, 40, 50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 25000, 50000, 75000, 100000 picomoles, or more. The length of each of the oligonucleotides or average length of the oligonucleotides within the device may be at least or about at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 300, 400, 500 nucleotides, or more. The length of each of the oligonucleotides or average length of the oligonucleotides within the device may be at most or about at most 500, 400, 300, 200, 150, 100, 50, 45, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 nucleotides, or less. The length of each of the oligonucleotides or average length of the oligonucleotides within the device mayfall between 10-500, 9-400, 11-300, 12-200, 13-150, 14-100, 15-50, 16-45, 17-40, 18-35, 19-25. Those of skill in the art appreciate that the length of each of the oligonucleotides or average length of the oligonucleotides within the device may fall within any range bound by any of these values, for example 100-300. The length of each of the oligonucleotides or average length of the oligonucleotides within the device may fall within any range defined by any of the values serving as endpoints of the range.
  • In various embodiments, high surface areas are achieved by structuring the surface of a substrate with raised and/or lower features as exemplified in FIG. 62 . The raised or lowered features may have sharp or rounded edges and may have cross-sections (widths) of any desired geometric shape, such as rectangular, circular, etc. They may form channels along the entire substrate surface or a portion of it. The raised or lowered features may have an aspect ratio of at least or about at least 1:20, 2:20, 3:20, 4:20, 5:20, 6:20, 10:20, 15:20, 20:20, 20:10, 20:5, 20:1, or more. The raised or lowered features may have an aspect ratio of at most or about at most 20:1, 20:5, 20:10, 20:20, 20:15, 20:10, 20:10, 6:20, 5:20, 4:20, 3:20, 2:20, 1:20, or less. The raised or lowered features may have an aspect ratio that falls between 1:20-20:1, 2:20-20:5, 3:20-20:10, 4-20:20:15, 5:20-20:20, 6:20-20:20. Those of skill in the art appreciate that the raised or lowered features may have an aspect ratio that may fall within any range bound by any of these values, for example 3:20-4:20. The raised or lowered features may have an aspect ratio that falls within any range defined by any of the values serving as endpoints of the range.
  • The raised or lowered features may have cross-sections of at least or about at least 10 nanometers (nm), 11 nm, 12 nm, 20 nm, 30 nm, 100 nm, 500 nm, 1000 nm, 10000 nm, 100000 nm, 1000000 nm, or more. The raised or lowered features may have cross-sections of at least or most or about at most 1000000 nm, 100000 nm, 10000 nm, 1000 nm, 500 nm, 100 nm, 30 nm, 20 nm, 12 nm, 11 nm, 10 nm, or less. The raised or lowered features may have cross-sections that fall between 10 nm-1000000 nm, 11 nm-100000 nm, 12 nm-10000 nm, 20 nm-1000 nm, 30 nm-500 nm. Those of skill in the art appreciate that the raised or lowered features may have cross-sections that may fall within any range bound by any of these values, for example 10 nm-100 nm. The raised or lowered features may have cross-sections that fall within any range defined by any of the values serving as endpoints of the range.
  • The raised or lowered features may have heights of at least or about at least 10 nanometers (nm), 11 nm, 12 nm, 20 nm, 30 nm, 100 nm, 500 nm, 1000 nm, 10000 nm, 100000 nm, 1000000 nm, or more. The raised or lowered features may have heights of at most or about at most 1000000 nanometers (nm), 100000 nm, 10000 nm, 1000 nm, 500 nm, 100 nm, 30 nm, 20 nm, 12 nm, 11 nm, 10 nm, or less. The raised or lowered features may have heights that fall between 10 nm-1000000 nm, 11 nm-100000 nm, 12 nm-10000 nm, 20 nm-1000 nm, 30 nm-500 nm. Those of skill in the art appreciate that the raised or lowered features may have heights that may fall within any range bound by any of these values, for example 100 nm-1000 nm. The raised or lowered features may have heights that fall within any range defined by any of the values serving as endpoints of the range. The individual raised or lowered features may be separated from a neighboring raised or lowered feature by a distance of at least or at least about 5 nanometers (nm), 10 nm, 11 nm, 12 nm, 20 nm, 30 nm, 100 nm, 500 nm, 1000 nm, 10000 nm, 100000 nm, 1000000 nm, or more. The individual raised or lowered features may be separated from a neighboring raised or lowered feature by a distance of at most or about at most 1000000 nanometers (nm), 100000 nm, 10000 nm, 1000 nm, 500 nm, 100 nm, 30 nm, 20 nm, 12 nm, 11 nm, 10 nm, 5 nm, or less. The raised or lowered features may have heights that fall between 5-1000000 nm, 10-100000 nm, 11-10000 nm, 12-1000 nm, 20-500 nm, 30-100 nm. Those of skill in the art appreciate that the individual raised or lowered features may be separated from a neighboring raised or lowered feature by a distance that may fall within any range bound by any of these values, for example 100-1000 nm. The individual raised or lowered features may be separated from a neighboring raised or lowered feature by a distance that falls within any range defined by any of the values serving as endpoints of the range. In some embodiments, the distance between two raised or lowered features is at least or about at least 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0 times, or more, the cross-section (width) or average cross-section of the raised or lowered features. The distance between the two raised or lowered features is at most or about at most 10.0, 5.0, 3.0, 2.0, 1.0, 0.5, 0.2, 0.1 times, or less, the cross-section (width) or average cross-section of the raised or lowered features. The distance between the two raised or lowered features may be between 0.1-10, 0.2-5.0, 1.0-3.0 times, the cross-section (width) or average cross-section of the raised or lowered features. Those of skill in the art appreciate that the distance between the two raised or lowered features may be between any times the cross-section (width) or average cross-section of the raised or lower features within any range bound by any of these values, for example 5-10 times. The distance between the two raised or lowered features may be within any range defined by any of the values serving as endpoints of the range.
  • In some embodiments, groups of raised or lowered features are separated from each other. Perimeters of groups of raised or lowered features may be marked by a different type of structural feature or by differential functionalization. A group of raised or lowered features may be dedicated to the synthesis of a single oligonucleotide. A group of raised of lowered features may span an area that is at least or about at least 10 μm, 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 20 μm, 50 μm, 70 μm, 90 μm, 100 μm, 150 μm, 200 μm, or wider in cross section. A group of raised of lowered features may span an area that is at most or about at most 200 μm, 150 μm, 100 μm, 90 μm, 70 μm, 50 μm, 20 μm, 15 μm, 14 μm, 13 μm, 12 μm, 11 μm, 10 μm, or narrower in cross section. A group of raised of lowered features may span an area that is between 10-200 μm, 11-150 μm, 12-100 μm, 13-90 μm, 14-70 μm, 15-50 μm, 13-20 μm, wide in cross-section. Those of skill in art appreciate that a group of raised of lowered features may span an area that falls within any range bound by any of these values, for example 12-200 μm. A group of raised of lowered features may span an area that fall within any range defined by any of the values serving as endpoints of the range.
  • In various embodiments, the raised or lowered features on a substrate increase the total available area for oligonucleotide synthesis by at least or at least about 1.1, 1.2, 1.3, 1.4, 2, 5, 10, 50, 100, 200, 500, 1000 fold, or more. The raised or lowered features on a substrate increase the total available area for oligonucleotide synthesis between 1.1-1000, 1.2-500, 1.3-200, 1.4-100, 2-50, 5-10, fold. Those of skill in art appreciate that the raised or lowered features on a substrate may increase the total available area for oligonucleotide synthesis between any fold bound by any of these values, for example 20-80 fold. The raised or lowered features on a substrate increase the total available area for oligonucleotide synthesis by a factor that may fall within any range defined by any of the values serving as endpoints of the range.
  • The methods and systems of the invention using large oligonucleotide synthesis surfaces allow for the parallel synthesis of a number of oligonucleotides with nucleotide addition cycles times of at most or about at most 20 min, 15 min, 14 min, 13 min, 12 min, 11 min, 10 min, 1 min, 40 sec, 30 sec, or less. The methods and systems of the invention using large oligonucleotide synthesis surfaces allow for the parallel synthesis of a number of oligonucleotides with nucleotide addition cycles times between 30 sec-20 min, 40 sec-10 min, 1 min-10 min. Those of skill in art appreciate that the methods and systems of the invention using large oligonucleotide synthesis surfaces allow for the parallel synthesis of a number of oligonucleotides with nucleotide addition cycles times between any of these values, for example 30 sec-10 min. The methods and systems of the invention using large oligonucleotide synthesis surfaces allow for the parallel synthesis of a number of oligonucleotides with nucleotide addition cycles times that may be fall between any range defined by any of the values serving as endpoints of the range.
  • The overall error rate or error rates for individual types of errors such as deletions, insertions, or substitutions for each oligonucleotide synthesized on the substrate, for at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleotides synthesized on the substrate, or for the substrate average may be at most or at most about 1:100, 1:500, 1:1000, 1:10000, 1:20000, 1:30000, 1:40000, 1:50000, 1:60000, 1:70000, 1:80000, 1:90000, 1:1000000, or less. The overall error rate or error rates for individual types of errors such as deletions, insertions, or substitutions for each oligonucleotide synthesized on the substrate, for at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleotides synthesized on the substrate, or the substrate average may fall between 1:100 and 1:10000, 1:500 and 1:30000. Those of skill in art, appreciate that the overall error rate or error rates for individual types of errors such as deletions, insertions, or substitutions for each oligonucleotide synthesized on the substrate, for at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleotides synthesized on the substrate, or the substrate average may fall between any of these values, for example 1:500 and 1:10000. The overall error rate or error rates for individual types of errors such as deletions, insertions, or substitutions for each oligonucleotide synthesized on the substrate, for at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleotides synthesized on the substrate, or the substrate average may fall between any range defined by any of the values serving as endpoints of the range.
  • Standard silicon wafer processes can be employed to create a substrate that will have a high surface area as described above and a managed flow, allowing rapid exchange of chemical exposure. The oligonucleotide synthesis substrate can be created with a series of structures with sufficient separation to allow oligomer chains greater than at least or about at least 20 mer, 25 mer, 30 mer, 50 mer, 100 mer, 200 mer, 250 mer, 300 mer, 400 mer, 500 mer, or more to be synthesized without substantial influence on the overall channel or pore dimension, for example due to excluded volume effects, as the oligonucleotide grows. The oligonucleotide synthesis substrate can be created with a series of structures with sufficient separation to allow oligomer chains greater than at most or about at most 500 mer, 200 mer, 100 mer, 50 mer, 30 mer, 25 mer, 20 mer, or less to be synthesized without substantial influence on the overall channel or pore dimension, for example due to excluded volume effects, as the oligonucleotide grows. The oligonucleotide synthesis substrate can be created with a series of structures with sufficient separation to allow oligomer chains that are at least or at least about 20 mer, 50 mer, 75 mer, 100 mer, 125 mer, 150 mer, 175 mer, 200 mer, 250 mer, 300 mer, 350 mer, 400 mer, 500 mer, or more to be synthesized without substantial influence on the overall channel or pore dimension, for example due to excluded volume effects, as the oligonucleotide grows. Those of skill in the art appreciate that the oligonucleotide synthesis substrate can be created with a series of structures with sufficient separation to allow oligomer chains greater than between any of these values, for example, 20-300 mer200 mer to be synthesized without substantial influence on the overall channel or pore dimension, for example due to excluded volume effects, as the oligonucleotide grows.
  • FIG. 62 shows an exemplary substrate according to the embodiments of the invention with an array of structures. The distance between the features may be greater than at least or about at least 5 nm, 10 nm, 20 nm, 100 nm, 1000 nm, 10000 nm, 100000 nm, 1000000 nm, or more. The distance between the features may be greater than at most or about at most 1000000 nm, 100000 nm, 10000 nm, 1000 nm, 100 nm, 20 nm, 10 nm, 5 nm, or less. The distance between the features may fall between 5-1000000 nm, 10-100000 nm, 20-10000 nm, 100-1000 nm. Those of skill in the art appreciate that the distance between the features may fall between any of these values, for example, 20-1000 nm. The distance between the features may fall between any range defined by any of the values serving as endpoints of the range. In one embodiment, the distance between the features is greater than 200 nm. The features may be created by any suitable MEMS processes described elsewhere herein or otherwise known in the art, such as a process employing a timed reactive ion etch process. Such semiconductor manufacturing processes can typically create feature sizes smaller than 200 nm, 100 nm, 50 nm, 40 nm, 30 nm, 25 nm, 20 nm, 10 nm, 5 nm, or less. Those of skill in the art appreciate that the feature size smaller than 200 nm can be between any of these values, for example, 20-100 nm. The feature size can fall within any range defined by any of these values serving as endpoints of the range. In one embodiment, an array of 40 um wide posts are etched with 30 um depth, which about doubles the surface area available for synthesis.
  • The arrays of raised or lowered features may be segregated allowing material deposition of a phosphoramidite chemistry for highly complex and dense library generation. The segration may be achieved by larger structures or by differential functionalization of the surface generating active and passive regions for oligonucleotide synthesis. Alternatively, the locations for the synthesis of individual oligonucleotides may be separated from each other by creating regions of cleavable and non-cleavable oligonucleotide attachments to the surface under a certain condition. A device, such as an inkjet printer, may be used to deposit reagents to the individual oligonucleotide synthesis locations. Differential functionalization can also achieve alternating the hydrophobicity across the substrate surface, thereby creating water contact angle effects that may cause beading or wetting of the deposited reagents. Employing larger structures can decrease splashing and cross-contamination of individual oligonucleotide synthesis locations with reagents of the neighboring spots.
  • Reactors
  • In another aspect, an array of enclosures is described herein. The array of enclosures can comprise a plurality of resolved reactors comprising a first substrate and a second substrate comprising reactor caps. In some cases, at least two resolved loci are contained in each reactor. The resolved reactors may be separated with a releasable seal. The reactors caps may retain the contents of the reactors upon release of the second substrate from the first substrate. The plurality of resolved reactors can be any suitable density at a density of at least 1 per mm2. The plurality of reactor caps can be coated with a moiety. The moiety can be a chemically inert or chemically active moiety. The moiety that is coated onto the reactor caps can be a moiety that can minimize the attachment of the oligonucleotides. The types of chemical moieties are described in further detail elsewhere herein.
  • In some embodiments, the reactor caps described herein may relate to enclosures with an open top on the surface of a capping element substrate. For example, the reactor caps may resemble cylinders sticking out on top of the substrate surface. The inner diameter of the reactor caps can be about, at least about, or less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 115, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475 or 500 μm. The outer diameter of the reactor caps can be about, at least about, or less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 115, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, or 600 μm. The rim of the cylinder can have a width of about, at least about, or less than about 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, or 400 μm. The height of the reactor cap measured inside can be about, at least about, or less than about 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 50, 60, 70, 80, 90 or 100 μm. FIG. 7 illustrates an exemplary embodiment of reactor caps on a capping element.
  • All or part of the reactor cap surfaces, such as the rim surface, may be modified using suitable surface modification methods described in further detail elsewhere herein and otherwise known in the art. In some cases, surface irregularities are engineered. Chemical surface modifications and irregularities may serve to adjust the water contact angle of the rim. Similar surface treatments may also be applied on the surface of a substrate that is brought in close proximity to the reactor caps forming a seal, e.g. a reversible seal. A capillary burst valve may be utilized between the two surfaces as described in further detail elsewhere herein. The surface treatments can be useful in precise control of such seals comprising capillary burst valves.
  • The reactor caps comprised in a substrate may be in any shape or design that is known in the art. The reactor cap may contain a volume of cavity that is capable of enclosing the contents of the reactors. The contents of the reactors may stem from a plurality of resolved loci on an adjacent substrate. The reactor cap can be in circular, elliptical, rectangular or irregular shapes. The reactor cap may have sharp corners. In some cases, the reactor cap may have round corners to minimize retaining any air bubble and to facilitate better mixing of the contents of the reactors. The reactor cap can be fabricated in any shape, organization or design that allows controlled transfer or mixing of the contents of the reactors. The reactor cap can be in similar design as the resolved loci on the substrate as described in the instant application. In some embodiments, the reactor caps can be in a shape that allows liquid to easily flow in without creating air bubbles. In some embodiments, the reactor caps can have a circular shape, with a diameter that can be about, at least about, or less than about 1 micrometers (μm), 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 110 μm, 120 μm, 130 μm, 140 μm, 150 μm, 160 μm, 170 μm, 180 μm, 190 μm, 200 μm, 250 μm, 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 650 μm, 700 μm or 750 μm. The reactor caps may have a monodisperse size distribution, i.e. all of the microstructures may have approximately the same width, height, and/or length. Alternatively, the reactor caps of may have a limited number of shapes and/or sizes, for example the reactor caps may be represented in 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or more distinct shapes, each having a monodisperse size. In some embodiments, the same shape can be repeated in multiple monodisperse size distributions, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or more monodisperse size distributions. A monodisperse distribution may be reflected in a unimodular distribution with a standard deviation of less than 25%, 20%, 15%, 10%, 5%, 3%, 2%, 1%, 0.1%, 0.05%, 0.01%, 0.001% of the mode or smaller.
  • Each of the reactor caps can have any suitable area for carrying out the reactions according to various embodiments of the invention described herein. In some cases, the plurality of reactor caps can occupy any suitable percentage of the total surface area of the substrate. In some embodiments, the plurality of the reactor caps can occupy about, at least about, or less than about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 6%, 70%, 75%, 80%, 85%, 90%, or 95% of the surface of the substrate. In some embodiments, the reactor caps can occupy about, at least about, or less than about 0.1 mm2, 0.15 mm2, 0.2 mm2, 0.25 mm2, 0.3 mm2, 0.35 mm2, 0.4 mm2, 0.45 mm2, 0.5 mm2, 0.55 mm2, 0.6 mm2, 0.65 mm2, 0.7 mm2, 0.75 mm2, 0.8 mm2, 0.85 mm2, 0.9 mm2, 0.95 mm2, 1 mm2, 2 mm2, 3 mm2, 4 mm2, 5 mm2, 6 mm2, 7 mm2, 8 mm2, 9 mm2, 10 mm2, 11 mm2, 12 mm2, 13 mm2, 14 mm2, 15 mm2, 16 mm2, 17 mm2, 18 mm2, 19 mm2, 20 mm2, 25 mm2, 30 mm2, 35 mm2, 40 mm2, 50 mm2, 75 mm2, 100 mm2, 200 mm2, 300 mm 2 400 mm2, 500 mm2, 600 mm2, 700 mm2, 800 mm2, 900 mm2, 1000 mm2, 1500 mm2, 2000 mm2, 3000 mm2, 4000 mm2, 5000 mm2, 7500 mm2, 10000 mm2, 15000 mm2, 20000 mm2, 25000 mm2 30000 mm2, 35000 mm2, 40000 mm2, 50000 mm2, 60000 mm2, 70000 mm2, 80000 mm2, 90000 mm2, 100000 mm2, 200000 mm2, 300000 mm2 of total area, or more. The resolved reactors, the resolved loci and the reactor caps can be in any density. In some embodiments, the surface can have a density of resolved reactors, resolved loci or reactor caps of about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 sites per 1 mm2. In some embodiments, the surface has a density of resolved reactors, resolved loci or reactor caps of at least about 50, at least 75, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 1500, at least about 2000, at least about 3000, at least about 4000, at least about 5000, at least about 6000, at least about 7000, at least about 8000, at least about 9000, at least about 10000, at least about 20000, at least about 40000, at least about 60000, at least about 80000, at least about 100000, or at least about 500000 sites per 1 mm2.
  • Taken in account the density of the resolved loci on an adjacent substrate surface, the density, distribution, and shape of the reactor caps can be designed accordingly to be configured to align with a preferred number of resolved loci in each reactor. Each of the plurality of resolved reactors can comprise a number of resolved loci. For example, without limitation, each reactor can comprise about, at least about, less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 resolved loci. In some cases, each reactor can comprise at least 100 resolved loci.
  • Comprised within the array of the plurality of enclosures, the resolved loci or reactor caps can reside on microstructures that are fabricated into a support surface. The microstructures can be fabricated by any known methods in the art, as described in other paragraphs herein. The microstructures can be microchannels or microwells that have any shape and design in 2D or 3D. The microstructures (e.g., microchannels or microwells) may comprise at least two channels in fluidic communication with each other. For example, the microchannels can be interconnected, allowing fluid to perfuse through with given condition, such as vacuum suction. Individual microstructures may be individually addressable and resolved, such that the contents of two resolved loci are kept unmixed. The microchannels can comprise at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 channels in fluidic communications in any combinations, allowing controlled mixing, communicating or distributing of the fluid. The connectivity of microchannels can be controlled by valve systems that are known in the art of microfluidic design. For example, a fluid control layer of substrate can be fabricated directly on top of the fluidic communicating layer of the substrate. Different microfluidic valves systems are described in Marc A. Unger et al, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, vol. 288, no. 7, pp. 113-116, April 2000, and David C. Duffy et al., “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Analytical Chemistry, vol. 70, no. 23, pp. 4974-4984, December 1998.
  • Comprised within the array of the plurality of enclosures, the resolved loci or reactor caps can reside on microstructures such as microchannels or channels. The dimensions and designs of the microchannels of the resolved loci on the adjacent substrate surface are described elsewhere herein. The microstructures may comprise at least two channels that are in fluidic communications, wherein the at least two channels can comprise at least two channels with different width. In some cases, the at least two channels can have the same width, or a combination of the same or different width. For example, without limitation, the width of the channels or microchannels can be about, at least about, or less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 μm. The channels or microchannels can have any length that allows fluidic communications of the resolved loci. At least one channel can comprise a ratio of surface area to length, or a perimeter, of about, at least about, less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 μm. At least one channel can have a cross-sectional area that is in a circular shape and can comprise a radius of the cross-sectional area of about, at least about, less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 μm.
  • As described herein, an array of enclosures can comprise a plurality of resolved reactors comprising a first substrate and a second substrate comprising reactor caps. The resolved reactors can be formed by combining or capping the second substrate onto the first substrate, and sealed together. The seal can be reversible or irreversible. In preferred embodiments, the seal is reversible or releasable. Upon sealing the resolved reactors, the content of reactors such as oligonucleotides or reagents needed for amplification or other downstream reactions can be released and mixed within the resolved reactors. The resolved reactors can be separated with a releasable seal and wherein the reactors caps can retain all or a portion of the contents of the reactors upon release of the second substrate from the first substrate. Depending on the materials of the first substrate and the second substrate, the seal can be designed differently to allow reversible seal in between the first substrate and the second substrate, and forming the resolved reactors. The first substrate and the second substrate can come in direct physical contact when forming the seal. In some cases, the first substrate and the second substrate can come in close proximity without their respective surfaces immediately around a nanoreactor or between two nanoreactors making a direct physical contact. The seal can comprise a capillary burst valve. The distance in between the first substrate and the second substrate when forming the seal can be about, at least about, less than about 0.1 μm, 0.2 μm, 0.3 μm, 0.4 μm, 0.5 μm, 0.6 μm, 0.7 μm, 0.8 μm, 0.9 μm, 1 μm, 1.1 μm, 1.2 μm, 1.3 μm, 1.4 μm, 1.5 μm, 1.6 μm, 1.7 μm, 1.8 μm, 1.9 μm, 2 μm, 2.5 μm, 3 μm, 3.5 μm, 4 μm, 4.5 μm, 5 μm, 5.5 μm, 6 μm, 6.5 μm, 7 μm, 7.5 μm, 8 μm, 8.5 μm, 9 μm, 9.5 μm or 10 μm. The seal can comprise a capillary burst valve.
  • In some cases, the resolved enclosures may comprise pressure release holes. The pressure release holes may allow separation of the first substrate and the second substrate. Design of microfluidic systems with pressure release system are described in European Patent No. EP 1987275 A1, which is herein incorporated by reference in its entirety.
  • The plurality of resolved reactor caps on a substrate can be manufactured by any method that is described herein or otherwise known in the art (e.g., microfabrication processes). Microfabrication processes that may be used in making the substrate with the plurality of reactor caps or reactors disclosed herein include without limitation lithography; etching techniques such as wet chemical, dry, and photoresist removal; microelectromechanical (MEMS) techniques including microfluidics/lab-on-a-chip, optical MEMS (also called MOEMS), RF MEMS, PowerMEMS, and BioMEMS techniques and deep reactive ion etching (DRIE); nanoelectromechanical (NEMS) techniques; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition such as evaporation (filament, electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (CVD), epitaxy (vapor phase, liquid phase, and molecular beam), electroplating, screen printing, and lamination. See generally Jaeger, Introduction to Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading Mass. 1988); Runyan, et al., Semiconductor Integrated Circuit Processing Technology (Addison-Wesley Publishing Co., Reading Mass. 1990); Proceedings of the IEEE Micro Electro Mechanical Systems Conference 1987-1998; Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997).
  • In an aspect, a substrate having a plurality of resolved reactor caps can be manufactured using any method known in the art. In some embodiments, the material of the substrate having a plurality of reactor caps can be a semiconductor substrate such as silicon dioxide. The materials of the substrate can also be other compound III-V or II-VI materials, such as (GaAs), a semiconductor produced via the Czochralski process (Grovenor, C. (1989). Microelectronic Materials. CRC Press. pp. 113-123). The material can present a hard, planar surface that exhibits a uniform covering of reactive oxide (—OH) groups to a solution in contact with its surface. These oxide groups can be the attachment points for subsequent silanization processes. Alternatively, a lipophillic and hydrophobic surface material can be deposited that mimics the etching characteristics of silicon oxide. Silicon nitride and silicon carbide surfaces may also be utilized for the manufacturing of suitable substrates according to the various embodiments of the invention.
  • In some embodiments, a passivation layer can be deposited on the substrate, which may or may not have reactive oxide groups. The passivation layer can comprise silicon nitride (Si3N4) or polymide. In some instances, a photolithographic step can be used to define regions where the resolved loci form on the passivation layer.
  • The method for producing a substrate having a plurality of reactor caps can start with a substrate. The substrate (e.g., silicon) can have any number of layers disposed upon it, including but not limited to a conducting layer such as a metal. The conducting layer can be aluminum in some instances. In some cases, the substrate can have a protective layer (e.g., titanium nitride). In some cases, the substrate can have a chemical layer with a high surface energy. The layers can be deposited with the aid of various deposition techniques, such as, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma enhanced CVD (PECVD), plasma enhanced ALD (PEALD), metal organic CVD (MOCVD), hot wire CVD (HWCVD), initiated CVD (iCVD), modified CVD (MCVD), vapor axial deposition (VAD), outside vapor deposition (OVD) and physical vapor deposition (e.g., sputter deposition, evaporative deposition).
  • In some cases, an oxide layer is deposited on the substrate. In some instances, the oxide layer can comprise silicon dioxide. The silicon dioxide can be deposited using tetraethyl orthosilicate (TEOS), high density plasma (HDP), or any combination thereof.
  • In some instances, the silicon dioxide can be deposited using a low temperature technique. In some cases, the process is low-temperature chemical vapor deposition of silicon oxide. The temperature is generally sufficiently low such that pre-existing metal on the chip is not damaged. The deposition temperature can be about 50° C., about 100° C., about 150° C., about 200° C., about 250° C., about 300° C., about 350° C., and the like. In some embodiments, the deposition temperature is below about 50° C., below about 100° C., below about 150° C., below about 200° C., below about 250° C., below about 300° C., below about 350° C., and the like. The deposition can be performed at any suitable pressure. In some instances, the deposition process uses RF plasma energy.
  • In some cases, the oxide is deposited by a dry thermally grown oxide procedure (e.g., those that may use temperatures near or exceeding 1,000° C.). In some cases, the silicon oxide is produced by a wet steam process.
  • The silicon dioxide can be deposited to a thickness suitable for the formation of reactor caps that can form a plurality of resolved reactors comprising a volume for reagents to be deposited and mixed that can be suitable for amplifying any desired amount of oligonucleotide or other downstream reactions as described in other paragraphs of the current invention.
  • The silicon dioxide can be deposited to any suitable thickness. In some embodiments, the silicon dioxide is about, at least about or less than about 1 nanoometer (nm), about 2 nm, about 3 nm, about 4 nm, about 5 nm, about 6 nm, about 7 nm, about 8 nm, about 9 nm, about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, about 100 nm, about 125 nm, about 150 nm, about 175 nm, about 200 nm, about 300 nm, about 400 nm or about 500 nm thick.
  • The reactor caps can be created in a silicon dioxide substrate using various manufacturing techniques that are known in the art. Such techniques may include semiconductor fabrication techniques. In some cases, the reactor caps are created using photolithographic techniques such as those used in the semiconductor industry. For example, a photo-resist (e.g., a material that changes properties when exposed to electromagnetic radiation) can be coated onto the silicon dioxide (e.g., by spin coating of a wafer) to any suitable thickness. The substrate including the photo-resist can be exposed to an electromagnetic radiation source. A mask can be used to shield radiation from portions of the photo-resist in order to define the area of the resolved loci. The photo-resist can be a negative resist or a positive resist (e.g., the area of the reactor caps can be exposed to electromagnetic radiation or the areas other than the reactor caps can be exposed to electromagnetic radiation as defined by the mask). The area overlying the location in which the reactor caps are to be created is exposed to electromagnetic radiation to define a pattern that corresponds to the location and distribution of the reactor caps in the silicon dioxide layer. The photoresist can be exposed to electromagnetic radiation through a mask defining a pattern that corresponds to the reactor caps. Next, the exposed portion of the photoresist can be removed, such as, e.g., with the aid of a washing operation (e.g., deionized water). The removed portion of the mask can then be exposed to a chemical etchant to etch the substrate and transfer the pattern of reactor caps into the silicon dioxide layer. The etchant can include an acid, such as, for example, sulfuric acid (H2SO4). The silicon dioxide layer can be etched in an anisotropic fashion. Using the methods described herein, high anisotropy manufacturing methods, such as DRIE can be applied to fabricate microstructures, such as reactor caps, on or within a substrate with side walls that deviate less than about ±3, 2° 1° 0.5°, 0.1°, or less from the vertical with respect to the surface of the substrate. Undercut values of less than about 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.1 μm or less can be achieved resulting in highly uniform microstructures.
  • Various etching procedures can be used to etch the silicon dioxide in the area where the reactor caps are to be formed. The etch can be an isotropic etch (i.e., the etch rate alone one direction is equal to the etch rate along an orthogonal direction), or an anisotropic etch (i.e., the etch rate along one direction is less than the etch rate alone an orthogonal direction), or variants thereof. The etching techniques can be both wet silicon etches such as KOH, TMAH, EDP and the like, and dry plasma etches (for example DRIE). Both may be used to etch micro structures wafer through interconnections.
  • In some cases, an anisotropic etch removes the majority of the volume of the reactor caps. Any suitable percentage of the volume of the reactor caps can be removed including about 60%, about 70%, about 80%, about 90%, or about 95%. In some cases, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% of the material is removed in an anisotropic etch. In some cases, at most about 60%, at most about 70%, at most about 80%, at most about 90%, or at most about 95% of the material is removed in an anisotropic etch. In some embodiments, the anisotropic etch does not remove silicon dioxide material all of the way through the substrate. An isotropic etch removes the silicon dioxide material all of the way through the substrate creating a hole in some instances.
  • In some cases, the reactor caps are etched using a photo-lithographic step to define the reactor caps followed by a hybrid dry-wet etch. The photo-lithographic step can comprise coating the silicon dioxide with a photo-resist and exposing the photo-resist to electromagnetic radiation through a mask (or reticle) having a pattern that defines the reactor caps. In some instances, the hybrid dry-wet etch comprises: (a) dry etching to remove the bulk of the silicon dioxide in the regions of the reactor caps defined in the photoresist by the photo-lithographic step; (b) cleaning the substrate; and (c) wet etching to remove the remaining silicon dioxide from the substrate in the regions of the reactor caps.
  • The substrate can be cleaned with the aid of a plasma etching chemistry, or exposure to an oxidizing agent, such as, for example, H2O2, O2, O3, H2SO4, or a combination thereof, such as a combination of H2O2 and H2SO4. The cleaning can comprise removing residual polymer, removing material that can block the wet etch, or a combination thereof. In some instances, the cleaning is plasma cleaning. The cleaning step can proceed for any suitable period of time (e.g., 15 to 20 seconds). In an example, the cleaning can be performed for 20 seconds with an Applied Materials eMAx-CT machine with settings of 100 mT, 200 W, 20 G, 20 O2.
  • The dry etch can be an anisotropic etch that etches substantially vertically (e.g., toward the substrate) but not laterally or substantially laterally (e.g., parallel to the substrate). In some instances, the dry etch comprises etching with a fluorine based etchant such as CF4, CHF3, C2F6, C3F6, or any combination thereof. In one instance, the etching is performed for 400 seconds with an Applied Materials eMax-CT machine having settings of 100 mT, 1000 W, 20 G, and 50 CF4. The substrates described herein can be etched by deep reactive-ion etching (DRIE). DRIE is a highly anisotropic etching process used to create deep penetration, steep-sided holes and trenches in wafers/substrates, typically with high aspect ratios. The substrates can be etched using two main technologies for high-rate DRIE: cryogenic and Bosch. Methods of applying DRIE are described in the U.S. Pat. No. 5,501,893, which is herein incorporated by reference in its entirety.
  • The wet etch can be an isotropic etch that removes material in all directions. In some instances, the wet etch undercuts the photo-resist. Undercutting the photo-resist can make the photo-resist easier to remove in a later step (e.g., photo-resist “lift off”). In an embodiment, the wet etch is buffered oxide etch (BOE). In some cases, the wet oxide etches are performed at room temperature with a hydrofluoric acid base that can be buffered (e.g., with ammonium fluoride) to slow down the etch rate. Etch rate can be dependent on the film being etched and specific concentrations of HF and/or NH4F. The etch time needed to completely remove an oxide layer is typically determined empirically. In one example, the etch is performed at 22° C. with 15:1 BOE (buffered oxide etch).
  • The silicon dioxide layer can be etched up to an underlying material layer. For example, the silicon dioxide layer can be etched until a titanium nitride layer.
  • In an aspect, a method for preparing a substrate having a plurality of reactor caps comprises etching the cavity of the reactor caps into a substrate, such as a silicon substrate comprising a silicon dioxide layer coated thereon using (a) a photo-lithographic step to define the resolved loci; (b) a dry etch to remove the bulk of the silicon dioxide in the regions of the reactor caps defined by the photo-lithographic step; and (c) a wet etch to remove the remaining silicon dioxide from the substrate in the regions of the reactor caps. In some cases, the method further comprises removing residual polymer, removing material that can block the wet etch, or a combination thereof. The method can include a plasma cleaning step.
  • In some embodiments, the photo-resist is not removed from the silicon dioxide following the photo-lithographic step or the hybrid wet-dry etch in some cases. Leaving the photo-resist can be used to direct metal selectively into the reactor caps and not onto the upper surface of the silicon dioxide layer in later steps. In some cases, the substrate is coated with a metal (e.g., aluminum) and the wet etch does not remove certain components on the metal, e.g. those that protect the metal from corrosion (e.g., titanium nitride (TiN)). In some cases, however, the photoresist layer can be removed, such as with the aid of chemical mechanical planarization (CMP).
  • An exemplary nanoreactor is shown in various views in FIGS. 26A-D. This nanoreactor comprises 108 wells which are individually raised from a base of the nanoreactor. A cross-section of the nanoreactor is shown in FIG. 26A. A device view of the nanoreactor is shown in FIGS. 26B and 26C. A handle view of the nanoreactor is shown in FIG. 26D. A nanoreactor can be configured to receive and hold liquids in a plurality of features. The nanoreactor of FIGS. 26A-D is designed to hold liquids in any number of the 108 wells. A nanoreactor may be contacted and/or aligned with a substrate, such as that exemplified in FIG. 25 . The wells of a nanoreactor are not limited to the configuration shown in FIG. 26A-D, as any number of wells in any configuration may be arranged within a nanoreactor. In some embodiments, the nanoreactor wells are arranged in a configuration which aligns with a substrate configuration. As represented by 2701, the height of a nanoreactor may be about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm, or 10 mm. In some embodiments, the height of a nanoreactor may be about or at most about 10 mm, 9.5 mm, 9 mm, 8.5 mm, 8 mm, 7.5 mm, 7 mm, 6.5 mm, 6 mm, 5.5 mm, 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.5 mm, 2 mm, 1.5 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm or less. In some embodiments, the height of a nanoreactor may range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.6-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.2 mm-0.8 mm. As represented by 2702, the height of a well of a nanoreactor may be about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm, or 10 mm. In some embodiments, the height of a well of a nanoreactor may be about or at most about 10 mm, 9.5 mm, 9 mm, 8.5 mm, 8 mm, 7.5 mm, 7 mm, 6.5 mm, 6 mm, 5.5 mm, 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.5 mm, 2 mm, 1.5 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm or less. In some embodiments, the height of a well of a nanoreactor may range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.6-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-0.6 mm.
  • FIG. 26B includes an origin of reference indicated by a 0,0 (X,Y) axis, wherein the top left corner of an exemplary nanoreactor is diagramed. In some embodiments, the width of the nanoreactor, represented as 2703, is from about 5 mm to about 150 mm along one dimension, as measured from the origin. In some embodiments, the width of a nanoreactor, represented as 2704, is from about 5 mm to about 150 mm along another dimension, as measured from the origin. In some embodiments, the width of a nanoreactor in any dimension is from about 5 mm to about 125 mm, from about 5 mm to about 100 mm, from about 5 mm to about 75 mm, from about 5 mm to about 50 mm, from about 5 mm to about 25 mm, from about 25 mm to about 150 mm, from about 50 mm to about 150 mm, from about 75 mm to about 150 mm, from about 100 mm to about 150 mm, or from about 125 mm to about 150 mm. Those of skill in the art appreciate that the width may fall within any range bound by any of these values, for example 5-25 mm. In some embodiments, the width of a nanoreactor in any dimension is about or at least about 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 150 mm. In some embodiments, the width of a nanoreactor in any dimension is about or at most about 150 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, or 5 mm or less.
  • The nanoreactor shown in FIG. 26B comprises 108 wells. The wells may be arranged in any configuration. In FIG. 26B, the wells are arranged in rows forming a square shape. Regardless of arrangement, the wells may start at a distance of about 0.1 mm to about 149 mm from the origin, as measured on the X- or Y-axis and end at a distance of about 1 mm to about 150 mm from the origin. Lengths 2706 and 2705 represent the furthest distances of the center of a well on the X- and Y-axis from the origin, respectively. Lengths 2710 and 2709 represent the closest distances of the center of a well on the X- and Y-axis from the origin, respectively. In some embodiments, the furthest distance of the center of a well in any dimension from the origin is about or at least about 1 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 150 mm. In some embodiments, the furthest distance of the center of a well in any dimension is about or at most about 150 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, 1 mm or less. In some embodiments, the furthest distance of the center of a well in any dimension is from about 5 mm to about 125 mm, from about 5 mm to about 100 mm, from about 5 mm to about 75 mm, from about 5 mm to about 50 mm, from about 5 mm to about 25 mm, from about 25 mm to about 150 mm, from about 50 mm to about 150 mm, from about 75 mm to about 150 mm, from about 100 mm to about 150 mm, or from about 125 mm to about 150 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 5-25 mm. In some embodiments, the closest distance of the center of a well in any dimension from the origin is about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 149 mm. In some embodiments, the closest distance of the center of a well in any dimension is about or at most about 149 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm or less. In some embodiments, the closest distance of the center of a well in any dimension is from about 0.1 mm to about 125 mm, from about 0.5 mm to about 100 mm, from about 0.5 mm to about 75 mm, from about 0.5 mm to about 50 mm, from about 0.5 mm to about 25 mm, from about 1 mm to about 50 mm, from about 1 mm to about 40 mm, from about 1 mm to about 30 mm, from about 1 mm to about 20 mm, or from about 1 mm to about 5 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1-5 mm.
  • The wells of a nanoreactor may be located at any distance from the edge of a nanoreactor. Exemplary distances between a well and an edge of a nanoreactor are shown by 2707 and 2708. In some embodiments, the distance between the center of a well and an edge of a nanoreactor in any dimension is about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 149 mm. In some embodiments, the distance between the center of well and an edge of a nanoreactor in any dimension is about or at most about 149 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm or less. In some embodiments, the distance between the center of well and an edge of a nanoreactor in any dimension is from about 0.1 mm to about 125 mm, from about 0.5 mm to about 100 mm, from about 0.5 mm to about 75 mm, from about 0.5 mm to about 50 mm, from about 0.5 mm to about 25 mm, from about 1 mm to about 50 mm, from about 1 mm to about 40 mm, from about 1 mm to about 30 mm, from about 1 mm to about 20 mm, or from about 1 mm to about 5 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1-5 mm.
  • In some embodiments, the wells are arranged so that there exists a repeated distance between two wells. As shown by 2711 and 2712, the distance between two wells may be from about 0.3 mm to about 9 mm apart. In some embodiments, the distance between two wells is about or at least about 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, or 9 mm. In some embodiments, the distance between two wells is about or at most about 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, or 0.3 mm. The distance between two wells may range between 0.3-9 mm, 0.4-8 mm, 0.5-7 mm, 0.6-6 mm, 0.7-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.8 mm-2 mm.
  • In some embodiments, the cross-section of the inside of a well, as shown by 2721, is about or at least about 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, or 9 mm. In some embodiments, the cross-section of the inside of a well is about or at most about 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, or 0.3 mm. The cross-section of the inside of a well may range between 0.3-9 mm, 0.4-8 mm, 0.5-7 mm, 0.6-6 mm, 0.7-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the cross-section may fall within any range bound by any of these values, for example 0.8 mm-2 mm. In some embodiments, the cross-section of a well, including the rim of the well, as shown by 2720, is about or at least about 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, or 9 mm. In some embodiments, the cross-section of a well, including the rim of the well, is about or at most about 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, or 0.3 mm. The cross-section of a well, including the rim of the well, may range between 0.3-9 mm, 0.4-8 mm, 0.5-7 mm, 0.6-6 mm, 0.7-5 mm, 0.7-4 mm, 0.8-3 mm, or 0.9-2 mm. Those of skill in the art appreciate that the cross-section may fall within any range bound by any of these values, for example 0.8 mm-2 mm.
  • A nanoreactor may comprise any number of wells, including but not limited to, any number between about 2 and about 250. In some embodiments, the number of wells includes from about 2 to about 225 wells, from about 2 to about 200 wells, from about 2 to about 175 wells, from about 2 to about 150 wells, from about 2 to about 125 wells, from about 2 to about 100 wells, from about 2 to about 75 wells, from about 2 to about 50 wells, from about 2 to about 25 wells, from about 25 to about 250 wells, from about 50 to about 250 wells, from about 75 to about 250 wells, from about 100 to about 250 wells, from about 125 to about 250 wells, from about 150 to about 250 wells, from about 175 to about 250 wells, from about 200 to about 250 wells, or from about 225 to about 250 wells. Those of skill in the art appreciate that the well number may fall within any range bound by any of these values, for example 25-125.
  • Fiducial marks may be placed on a nanoreactor described herein to facilitate alignment of the nanoreactor with other components of a system, for example a microfluidic device or a component of a microfluidic device. Nanoreactors of the invention may have one or more fiducial marks, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, or more fiducial marks. The device view of the nanoreactor shown in FIG. 25B comprises three fiducial marks useful for aligning the device with other components of a system. A fiducial mark may be located at any position within the nanoreactor. As shown by 2716 and 2717, a fiducial mark may be located near the origin, where the fiducial mark is closer to the origin than any one well. In some embodiments, a fiducial mark is located near an edge of the nanoreactor, as shown by 2713, where the distance from the edge is exemplified by 2714 and 2715. The fiducial mark may be located from about 0.1 mm to about 10 mm from the edge of the nanoreactor. In some embodiments, the fiducial mark is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, 9 mm, or 10 mm from the edge of the nanoreactor. In some embodiments, the fiducial mark is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm from the edge of the nanoreactor. The fiducial mark may be located between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.1-6 mm, 0.2-5 mm, 0.3-4 mm, 0.4-3 mm, or 0.5-2 mm from the edge of the nanoreactor. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-5 mm. The fiducial mark may be located close in distance to a well, where exemplary X- and Y-axis distances are indicated by 2719 and 2718, respectively. In some embodiments, a distance between a well and a fiducial mark is about or at least about 0.001 mm, 0.005 mm, 0.01 mm, 0.02 mm, 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.09 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.2 mm, 1.5 mm, 1.7 mm, 2 mm, 2.2 mm, 2.5 mm, 2.7 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, or 8 mm. In some embodiments, a distance between a well and a fiducial mark is about or at most about 8 mm, 6.5 mm, 6 mm, 5.5 mm, 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.7 mm, 2.5 mm, 2.2 mm, 2 mm, 1.7 mm, 1.5 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.09 mm, 0.08 mm, 0.07 mm, 0.06 mm, 0.05 mm, 0.04 mm, 0.03 mm, 0.02 mm, 0.01 mm, 0.005 mm, or 0.001 mm. The distance between a well and a fiducial mark may be in a range between 0.001-8 mm, 0.01-7 mm, 0.05-6 mm, 0.1-5 mm, 0.5-4 mm, 0.6-3 mm, 0.7-2 mm, or 0.8-1.7 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.5-2 mm.
  • The handle view of the nanoreactor shown in FIG. 26D comprises four fiducial marks useful for aligning the device with other components of a system. A fiducial mark may be located at any position within the nanoreactor. As shown by 2722 and 2723 on the detailed view of the fiducial mark H, a fiducial mark may be located near a corner of a nanoreactor on the handle side. The fiducial mark may be located from about 0.1 mm to about 10 mm from the corner of the nanoreactor. In some embodiments, the fiducial mark is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, 9 mm, or 10 mm from the corner of the nanoreactor. In some embodiments, the fiducial mark is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm from the corner of the nanoreactor. The fiducial mark may be located between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.1-6 mm, 0.2-5 mm, 0.3-4 mm, 0.4-3 mm, or 0.5-2 mm from the corner of the nanoreactor. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.1 mm-5 mm. The fiducial mark may have any width suitable for function. In some embodiments, as exemplified by 2724 and 2725, the width of a fiducial mark is about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, 9 mm, or 10 mm. In some embodiments, the width of a fiducial mark is about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm. The fiducial mark width may range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.1-6 mm, 0.2-5 mm, 0.3-4 mm, 0.4-3 mm, or 0.5-2 mm long. Those of skill in the art appreciate that the width may fall within any range bound by any of these values, for example 0.1 mm-5 mm. A cross-section of a fiducial mark may be of any suitable size, as shown in by 2726. In some embodiments, the cross-section of a fiducial mark is about or at least about 0.001 mm, 0.002 mm, 0.004 mm, 0.006 mm, 0.008 mm, 0.01 mm, 0.012 mm, 0.014 mm, 0.016 mm, 0.018 mm, 0.02 mm, 0.025 mm, 0.03 mm, 0.035 mm, 0.04 mm, 0.045 mm, 0.05 mm, 0.055 mm, 0.06 mm, 0.065 mm, 0.07 mm, 0.075 mm, 0.08 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, or 0.5 mm. In some embodiments, the cross-section of a fiducial mark is about or at most about 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.08 mm, 0.075 mm, 0.07 mm, 0.065 mm, 0.06 mm, 0.055 mm, 0.05 mm, 0.045 mm, 0.04 mm, 0.035 mm, 0.03 mm, 0.025 mm, 0.02 mm, 0.018 mm, 0.016 mm, 0.014 mm, 0.012 mm, 0.01 mm, 0.008 mm, 0.006 mm, 0.004 mm, 0.002 mm, 0.001 mm or less. The cross-section of a fiducial mark may range between 0.001-0.5 mm, 0.004-0.4 mm, 0.008-0.3 mm, 0.01-0.2 mm, 0.015-0.1 mm, 0.018-0.1 mm, or 0.02-0.05 mm. Those of skill in the art appreciate that the cross-section may fall within any range bound by any of these values, for example 0.02 mm-0.1 mm.
  • In some embodiments, the nanoreactor may have a location for a label or a serial label, as exemplified in FIG. 26E depicting an exemplary layout of wells in a nanoreactor. In some embodiments, the label is a serial number. The label may be located near an edge of the nanoreactor, as exemplified by the distances 2728 and 2727. In some embodiments, any portion of the label is located from about 0.1 mm to about 10 mm from the edge of the nanoreactor. In some embodiments, any portion of the label is located about or at least about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm. 0.9 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, 9 mm, or 10 mm from the edge of a nanoreactor. In some embodiments, the any portion of the label is located about or at most about 10 mm, 9 mm, 8.8 mm, 8.6 mm, 8.4 mm, 8.2 mm, 8 mm, 7.8 mm, 7.6 mm, 7.4 mm, 7.2 mm, 7 mm, 6.8 mm, 6.6 mm, 6.4 mm, 6.2 mm, 6 mm, 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, 5 mm, 4.8 mm, 4.6 mm, 4.4 mm, 4.2 mm, 4 mm, 3.8 mm, 3.6 mm, 3.4 mm, 3.2 mm, 3 mm, 2.8 mm, 2.6 mm, 2.4 mm, 2.2 mm, 2 mm, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, 1 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm from the edge of a nanoreactor. The distance may be in a range between 0.1-10 mm, 0.2-9 mm, 0.3-8 mm, 0.4-7 mm, 0.5-6 mm, 0.6-5 mm, 0.7-4 mm, 0.8-3 mm, 0.9-2 mm or 1.5 mm. Those of skill in the art appreciate that the distance may fall within any range bound by any of these values, for example 0.5-2 mm. The label may have any length, including from about 1 mm to about 25 mm as exemplified by 2726. In some embodiments, the length of a label is about or at least about 1 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, or 150 mm. In some embodiments, the length of a label is about or at most about 150 mm, 140 mm, 130 mm, 120 mm, 110 mm, 100 mm, 90 mm, 80 mm, 70 mm, 60 mm, 50 mm, 50 mm, 40 mm, 30 mm, 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, 1 mm or less. In some embodiments, the length of a label is from about 5 mm to about 125 mm, from about 5 mm to about 100 mm, from about 5 mm to about 75 mm, from about 5 mm to about 50 mm, from about 5 mm to about 25 mm, from about 25 mm to about 150 mm, from about 50 mm to about 150 mm, from about 75 mm to about 150 mm, from about 100 mm to about 150 mm, or from about 125 mm to about 150 mm. Those of skill in the art appreciate that the length may fall within any range bound by any of these values, for example 5-25 mm.
  • Materials
  • The substrates, the solid support or the microstructures or reactors therein may be fabricated from a variety of materials, suitable for the methods and compositions of the invention described herein. In certain embodiments, the materials from which the substrates/solid supports of the comprising the invention are fabricated exhibit a low level of oligonucleotide binding. In some situations, material that are transparent to visible and/or UV light can be employed. Materials that are sufficiently conductive, e.g. those that can form uniform electric fields across all or a portion of the substrates/solids support described herein, can be utilized. In some embodiments, such materials may be connected to an electric ground. In some cases, the substrate or solid support can be heat conductive or insulated. The materials can be chemical resistant and heat resistant to support chemical or biochemical reactions such as a series of oligonucleotide synthesis reaction. For flexible materials, materials of interest can include: nylon, both modified and unmodified, nitrocellulose, polypropylene, and the like. For rigid materials, specific materials of interest include: glass; fuse silica; silicon, plastics (for example polytetraflouroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like); metals (for example, gold, platinum, and the like). The substrate, solid support or reactors can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass. The substrates/solid supports or the microstructures, reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.
  • Surface Modifications
  • In various embodiments, surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of a substrate surface. For example, surface modification may involve (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.
  • The substrate surface, or the resolved loci, onto which the oligonucleotides or other moieties are deposited may be smooth or substantially planar, or have irregularities, such as depressions or elevations. The surface may be modified with one or more different layers of compounds that serve to modify the properties of the surface in a desirable manner. Such modification layers of interest include: inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules and the like. Polymeric layers of interest include layers of: peptides, proteins, nucleic acids or mimetics thereof (for example, peptide nucleic acids and the like); polysaccharides, phospholipids, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyetheyleneamines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, and the like, or any other suitable compounds described herein or otherwise known in the art, where the polymers may be hetero- or homopolymeric, and may or may not have separate functional moieties attached thereto (for example, conjugated). Other materials and methods for surface modification of the substrate or coating of the solid support are described in U.S. Pat. No. 6,773,888 and U.S. Pub. No. 2007/0054127, which are herein incorporated by reference in their entirety.
  • The resolved loci can be functionalized with a moiety that can increase or decrease the surface energy of the solid support. The moiety can be chemically inert or alternatively, be a moiety that is suited to support a desired chemical reaction. The surface energy, or hydrophobicity, of a surface can determine the affinity of an oligonucleotide to attach onto the surface. A method for preparing a substrate can comprise: (a) providing a substrate having a surface that comprises silicon dioxide; and (b) silanizing the surface using, a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule. In some cases, the organofunctional alkoxysilane molecule can be dimethylchloro-octodecyl-silane, methyldichloro-octodecyl-silane, trichloro-octodecyl-silane, trimethyl-octodecyl-silane, triethyl-octodecyl-silane or any combination thereof.
  • The surface of the substrate can also be prepared to have a low surface energy using any method that is known in the art. Lowering the surface energy can facilitate oligonucleotides to attach to the surface. The surface can be functionalized to enable covalent binding of molecular moieties that can lower the surface energy so that wettability can be reduced. In some embodiments, the functionalization of surfaces enables an increase in surface energy and wettability.
  • In some embodiments, the surface of the substrate is contacted with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the substrate surface, typically via reactive hydrophilic moieties present on the substrate surface. Silanization generally can be used to cover a surface through self-assembly with organofunctional alkoxysilane molecules. A variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g. for lowering or increasing surface energy. The organofunctional alkoxysilanes are classified according to their organic functions. Non-limiting examples of siloxane functionalizing reagents include hydroxyalkyl siloxanes (silylate surface, functionalizing with diborane and oxidizing the alcohol by hydrogen peroxide), diol (dihydroxyalkyl) siloxanes (silylate surface, and hydrolyzing to diol), aminoalkyl siloxanes (amines require no intermediate functionalizing step), glycidoxysilanes (3-glycidoxypropyl-dimethyl-ethoxysilane, glycidoxy-trimethoxysilane), mercaptosilanes (3-mercaptopropyl-trimethoxysilane, 3-4 epoxycyclohexyl-ethyltrimethoxysilane or 3-mercaptopropyl-methyl-dimethoxysilane), bicyclohepthenyl-trichlorosilane, butyl-aldehydr-trimethoxysilane, or dimeric secondary aminoalkyl siloxanes. The hydroxyalkyl siloxanes can include allyl trichlorochlorosilane turning into 3-hydroxypropyl, or 7-oct-1-enyl trichlorochlorosilane turning into 8-hydroxyoctyl. The diol (dihydroxyalkyl) siloxanes include glycidyl trimethoxysilane-derived (2,3-dihydroxypropyloxy)propyl. The aminoalkyl siloxanes include 3-aminopropyl trimethoxysilane turning into 3-aminopropyl (3-aminopropyl-triethoxysilane, 3-aminopropyl-diethoxy-methylsilane, 3-aminopropyl-dimethyl-ethoxysilane, or 3-aminopropyl-trimethoxysilane). The dimeric secondary aminoalkyl siloxanes can be bis (3-trimethoxysilylpropyl) amine turning into bis(silyloxylpropyl)amine. In addition, a number of alternative functionalized surfaces can be used in the present invention. Non-limiting examples include the following: 1. polyethylene/polypropylene (functionalized by gamma irradiation or chromic acid oxidation, and reduction to hydroxyalkyl surface); 2. highly crosslinked polystyrene-divinylbenzene (derivatized by chloromethylation, and aminated to benzylamine functional surface); 3. nylon (the terminal aminohexyl groups are directly reactive); or 4. etched, reduced polytetrafluoroethylene. Other methods and functionalizing agents are described in U.S. Pat. No. 5,474,796, which is herein incorporated by reference in its entirety. The mixture of functionalization groups, e.g. silanes, can be in any different ratios. For example, without limitation, the mixture can comprise at least two different types of functionalization agents, e.g. silanes. The ratio of the at least two types of surface functionalization agents, e.g. silanes, in a mixture can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 2:3, 2:5, 2:7, 2:9, 2:11, 2:13, 2:15, 2:17, 2:19, 3:5, 3:7, 3:8, 3:10, 3:11, 3:13, 3:14, 3:16, 3:17, 3:19, 4:5, 4:7, 4:9, 4:11, 4:13, 4:15, 4:17, 4:19, 5:6, 5:8, 5:9, 5:11, 5:12, 5:13, 5:14, 5:16, 5:17, 5:18, 5:19, 6:7, 6:11, 6:13, 6:17, 6:19, 7:8, 7:9, 7:10, 7:11, 7:12, 7:13, 7:15, 7:16, 7:18, 7:19, 8:9, 8:11, 8:13, 8:15, 8:17, 8:19, 9:10, 9:11, 9:13, 9:14, 9:16, 9:17, 9:19, 10:11, 10:13, 10:17, 10:19, 11:12, 11:13, 11:14, 11:15, 11:16, 11:17, 11:18, 11:19, 11:20, 12:13, 12:17, 12:19, 13:14, 13:15, 13:16, 13:17, 13:18, 13:19, 13:20, 14:15, 14:17, 14:19, 15:16, 15:17, 15:19, 16:17, 16:19, 17:18, 17:19, 17:20, 18:19, 19:20, or any other ratio to achieve a desired surface representation of two groups. Without being bound by theory, it is understood that surface representation will be highly proportional to the ration of two groups in a mixture. Desired surface tensions, wettabilities, water contact angles, or contact angles for other suitable solvents according to the methods and compositions of the invention can be achieved by providing a ratio of functionalization agents. Further, the agents in the mixture may be chosen from suitable reactive and inert moieties for downstream reactions, diluting the surface density of reactive groups to a desired level according to the methods and compositions of the invention. In some embodiments, the density of the fraction of a surface functional group that reacts to form a growing oligonucleotide in an oligonucleotide synthesis reaction is about, less than about, or greater than about 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 7.0, 10.0, 15.0, 20.0, 50.0, 75.0, 100.0 μMol/m2.
  • In various embodiments, the surface is modified to have a higher surface energy, or become more hydrophilic with a coating of reactive hydrophilic moieties. By altering the surface energy of different parts of the substrate surface, the spreading of the deposited reagent liquid can be adjusted, in some cases facilitated. For example, FIG. 5A-C illustrates a case when a droplet of reagent is deposited into a microwell by an inkjet printer. The liquid droplet can spread over and fill the smaller microwells because the surface of the microwells has higher surface energy compared to the other surface nearby in this case. The reactive hydrophilic moieties on the substrate surface can be hydroxyl groups, carboxyl groups, thiol groups, and/or substituted or unsubstituted amino groups. Suitable materials include, but are not limited to, supports that can be used for solid phase chemical synthesis, e.g., cross-linked polymeric materials (e.g., divinylbenzene styrene-based polymers), agarose (e.g., Sepharose®), dextran (e.g., Sephadex®), cellulosic polymers, polyacrylamides, silica, glass (particularly controlled pore glass, or “CPG”), ceramics, and the like. The supports may be obtained commercially and used as is, or they may be treated or coated prior to functionalization.
  • Hydrophilic and Hydrophobic Surfaces
  • The surface energy, or hydrophobicity of a surface, can be evaluated or measured by measuring a water contact angle. Water contact angle is the angle between the drop surface and a solid surface where a water droplet meets the solid surface. The solid surface can be a smooth, flat or planar surface. It can quantify the wetting of a solid surface by a liquid (e.g., water) via the Young equation. In some cases, water contact angle hysteresis can be observed, ranging from the so-called advancing (maximal) water contact angle to the receding (minimal) water contact angle. The equilibrium water contact can be found within those values, and can be calculated from them. Hydrophobicity and hydrophilicity can be expressed in relative quantitative terms using water contact angle. A surface with a water contact angle of smaller than 90°, the solid surface can be considered hydrophilic or polar. A surface with a water contact angle of greater than 90°, the solid surface can be considered hydrophobic or apolar. Highly hydrophobic surfaces with low surface energy can have water contact angle that is greater than 120°.
  • Surface characteristics of coated surfaces can be adjusted in various ways suitable for oligonucleotide synthesis. The surface can be selected to be inert to the conditions of ordinary oligonucleotide synthesis; e.g. the solid surface may be devoid of free hydroxy, amino, or carboxyl groups to the bulk solvent interface during monomer addition, depending on the selected chemistry. Alternatively, the surface may comprise reactive moieties prior to the start of the first cycle, or first few cycles of the oligonucleotide synthesis and these reactive moieties can be quickly depleted to unmeasurable densities after one, two, three, four, five, or more cycles of the oligonucleotide synthesis reaction. The surface can further be optimized for well or poor wetting, e.g. by common organic solvents such as acetonitrile and the glycol ethers or aqueous solvents, relative to surrounding surfaces.
  • Without being bound by theory, the wetting phenomenon is understood to be a measure of the surface tension or attractive forces between molecules at a solid-liquid interface, and is expressed in dynes/cm2. For example, fluorocarbons have very low surface tension, which is typically attributed to the unique polarity (electronegativity) of the carbon-flourine bond. In tightly structured Langmuir-Blodgett type films, surface tension of a layer can be primarily determined by the percent of fluorine in the terminus of the alkyl chains. For tightly ordered films, a single terminal trifluoromethyl group can render a surface nearly as lipophobic as a perfluoroalkyl layer. When fluorocarbons are covalently attached to an underlying derivatized solid (e.g. a highly crosslinked polymeric) support, the density of reactive sites can be lower than Langmuir-Blodgett and group density. For example, surface tension of a methyltrimethoxysilane surface can be about 22.5 mN/m and aminopropyltriethoxysilane surface can be about 35 mN/m. Other examples of silane surfaces are described in Arkles B et al., “The role of polarity in the structure of silanes employed in surface modification”, Silanes and Other Coupling Agents, Vol. 5, which is herein incorporated by reference in its entirety. Briefly, hydrophilic behavior of surfaces is generally considered to occur when critical surface tensions are greater than 45 mN/m. As the critical surface tension increases, the expected decrease in contact angle is accompanied with stronger adsorptive behavior. Hydrophobic behavior of surfaces is generally considered to occur when critical surface tensions are less than 35 mN/m. At first, the decrease in critical surface tension is associated with oleophilic behavior, i.e. the wetting of the surfaces by hydrocarbon oils. As the critical surface tensions decrease below 20 mN/m, the surfaces resist wetting by hydrocarbon oils and are considered both oleophobic as well as hydrophobic. For example, silane surface modification can be used to generate a broad range of critical surface tensions. Accordingly, the methods and compositions of the invention may use surface coatings, e.g. those involving silanes, to achieve surface tensions of less than 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 115, 120 mN/m, or higher. Further, the methods and compositions of the invention may use surface coatings, e.g. those involving silanes, to achieve surface tensions of more than 115, 110, 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20, 15, 12, 10, 9, 8, 7, 6 mN/m or less. The water contact angle and the surface tension of non-limiting examples of surface coatings, e.g., those involving silanes, are described in Table 1 and Table 2 of Arkles et al. (Silanes and Other Coupling Agents, Vol. 5v: The Role of Polarity in the Structure of Silanes Employed in Surface Modification. 2009), which is incorporated herein by reference in its entirety. The tables are replicated below.
  • TABLE 1
    Contact angles of water (degrees) on smooth surfaces
    Heptadecafluorodecyltrimethoxysilane 113-115
    Poly(tetrafluoroethylene) 108-112
    Polypropylene 108
    Octadecyldimethylchlorosilane 110
    Octadecyltrichlorosilane 102-109
    Tris(trimethylsiloxy)silylethyldimethylchlorosilane 103-104
    Octyldimethylchlorosilane 104
    Butyldimethylchlorosilane 100
    Trimethylchlorosilane 90-100
    Polyethylene 88-103
    Polystyrene 94
    Poly(chlorotrifluoroethylene) 90
    Human skin 75-90
    Diamond 87
    Graphite 86
    Silicon (etched) 86-88
    Talc 82-90
    Chitosan 80-81
    Steel 70-75
    Methoxyethoxyundecyltrichlorosilane 73-74
    Methacryloxypropyltrimethoxysilane 70
    Gold, typical (see gold, clean) 66
    Intestinal mucosa 50-60
    Kaolin 42-46
    Platinum 40
    Silicon nitride 28-30
    Silver iodide 17
    [Methoxy(polyethyleneoxy)propyl]trimethoxysilane 15-16
    Sodalime glass <15
    Gold, clean <10
    Trimethoxysilylpropyl substituted poly(ethyleneimine), <10
    hydrochloride
    Note:
    In Table 1, contact angles for silanes refer to hydrolytic deposition of the silane onto smooth surfaces. The data here are drawn from various literature sources and from the authors' work. Exact comparisons between substrates do not take into account differences in test methods or whether advancing, receding or equilibrium contact angles were reported.
  • TABLE 2
    Critical surface tensions (mN/m)
    Heptadecafluorodecyltrichlorosilane 12
    Poly(tetrafluoroethylene) 18.5
    Octadecyltrichlorosilane 20-24
    Methyltrimethoxysilane 22.5
    Nonafluorohexyltrimethoxysilane 23
    Vinyltriethoxysilane 25
    Paraffin wax 25.5
    Ethyltrimethoxysilane 27.0
    Propyltrimethoxysilane 28.5
    Glass, sodalime (wet) 30.0
    Poly(chlorotrifluoroethylene) 31.0
    Polypropylene 31.0
    Poly(propylene oxide) 32
    Polyethylene 33.0
    Trifluoropropyltrimethoxysilane 33.5
    3-(2-Aminoethyl)aminopropyltrimethoxysilane 33.5
    Polystyrene 34
    p-Tolyltrimethoxysilane 34
    Cyanoethyltrimethoxysilane 34
    Aminopropyltriethoxysilane 35
    Acetoxypropyltrimethoxysilane 37.5
    Poly(methyl methacrylate) 39
    Poly(vinyl chloride) 39
    Phenyltrimethoxysilane 40.0
    Chloropropyltrimethoxysilane 40.5
    Mercaptopropyltrimethoxysilane 41
    Glycidoxypropyltrimethoxysilane 42.5
    Poly(ethylene terephthalate) 43
    Copper (dry) 44
    Poly(ethylene oxide) 43-45
    Aluminum (dry) 45
    Nylon 6/6 45-46
    Iron (dry) 46
    Glass, sodalime (dry) 47
    Titanium oxide (anatase) 91
    Ferric oxide 107
    Tin oxide 111
  • Methods to measure water contact angle can use any method that is known in the art, including the static sessile drop method, the dynamic sessile drop method, dynamic Wilhelmy method, single-fiber Wilhelmy method, powder contact angle method, and the like. In some cases, the surface of the substrate, or a portion of the surface of the substrate as described herein in the current invention can be functionalized or modified to be hydrophobic, to have a low surface energy, or to have a water contact angle that would be measured to be greater than about 90°, 95°, 100°, 105°, 110°, 115°, 120°, 125°, 130°, 135°, 140°, 1450 or 1500 on an uncurved, smooth, or planar equivalent of the relevant functionalized surface of the substrate, as described herein. The water contact angle of a functionalized surface described herein can refer to the contact angle of a water droplet on the functionalized surface in an uncurved, smooth, flat and planar geometry. In some cases, the surface of the substrate, or a portion of the surface of the substrate as described herein in the current invention can be functionalized or modified to be hydrophilic, to have a high surface energy, or to have a water contact angle that would be measured to be less than about 900, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° on an uncurved, smooth or planar equivalent of the relevant functionalized surface of the substrate, as described herein. The surface of the substrate or a portion of the surface of the substrate can be functionalized or modified to be more hydrophilic or hydrophobic as compared to the surface or the portion of the surface prior to the functionalization or modification.
  • In some cases, one or more surfaces can be modified to have a difference in water contact angle of greater than 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° as measured on one or more uncurved, smooth or planar equivalent surfaces. In some cases, the surface of the microstructures, channels, resolved loci, resolved reactor caps or other parts of the substrate may be modified to have a differential hydrophobicity corresponding to a difference in water contact angle that is greater than 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° as measured on uncurved, smooth or planar equivalent surfaces of such structures. Unless otherwise stated, water contact angles mentioned herein correspond to measurements that would be taken on uncurved, smooth or planar equivalents of the surfaces in question.
  • Other methods for functionalizing the surface are described in U.S. Pat. No. 6,028,189, which is herein incorporated by reference in its entirety. For example, hydrophilic resolved loci can be generated by first applying a protectant, or resist, over each loci within the substrate. The unprotected area can be then coated with a hydrophobic agent to yield an unreactive surface. For example, a hydrophobic coating can be created by chemical vapor deposition of (tridecafluorotetrahydrooctyl)-triethoxysilane onto the exposed oxide surrounding the protected circles. Finally, the protectant, or resist, can be removed exposing the loci regions of the substrate for further modification and oligonucleotide synthesis. In some embodiments, the initial modification of such unprotected regions may resist further modification and retain their surface functionalization, while newly unprotected areas can be subjected to subsequent modification steps.
  • Multiple Parallel Microfluidic Reactions
  • In another aspect, systems and methods for conducting a set of parallel reactions are described herein. The system may comprise two or more substrates that can be sealed, e.g. releasably sealed, with each other, forming a plurality of individually addressable reaction volumes or reactors upon sealing. New sets of reactors may be formed by releasing a first substrate from a second substrate and aligning it with a third substrate. Each substrate can carry reagents, e.g. oligonucleotides, enzymes, buffers, or solvents, for desired reactions. In some embodiments, the system comprises a first surface with a plurality of resolved loci at a first suitable density and a capping element with a plurality of resolved reactor caps at a second suitable density. The system can align the plurality of resolved reactor caps with the plurality of resolved loci on the first surface forming a temporary seal between the first surface and the capping element. The temporary seal between the aligned substrates may physically divide the loci on the first surface into groups of about at least about, or less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200 loci, or more. A set of parallel reactions described herein can be conducted according to the methods and compositions of the invention. A first surface with a plurality of resolved loci at a first density and a capping element with a plurality of resolved reactor caps at a second density can be aligned, such that the plurality of resolved reactor caps with the plurality of resolved loci on the first surface form a temporary seal between the first surface and the capping element and thereby physically divide the loci on the first surface into groups of about at least about, or less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200 loci, or more. A first reaction can be performed, forming a first set of reagents. The capping element may be released from the first surface. Upon release, the reactor caps may each retain at least a portion of the first set of reagents in the previously sealed reaction volumes. The plurality of resolved loci can be at a density of about, at least about or less than about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 per 1 mm2. In some embodiments, the plurality of resolved loci can be at a density of about, at least about, less than about 100 per mm2. The plurality of resolved reactor caps can be at a density of about, at least about, less than about 1 per mm2. In some embodiments, the plurality of resolved reactor caps can be at a density of about, at least about or less than about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 per 1 mm2. The methods described herein can further comprise providing a second surface with a plurality of resolved loci at a third density and aligning the plurality of resolved reactor caps with the plurality of resolved loci on the second surface. and forming a seal, typically a temporary or releasable seal, between the second surface and the capping element. The newly formed sealed may physically divide the loci on the second surface into groups of about at least about, or less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200 loci, or more. A second reaction may be performed, optionally using a portion of the first set of reagents, thereby forming a second set of reagents. The capping element may be released from the second surface. Upon release, the reactor caps may each retain at least a portion of the second set of reagents in the previously sealed second reaction volumes. In some cases, the second surface with a plurality of resolved loci can have a locus density of at least about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 per 1 mm2. Various aspects of the embodiments of the systems, methods and instrumentations are described herein.
  • The system assembly can comprise any number of static wafers and any number of dynamic wafers. For example, the system can comprise three substrates in a column and four substrates in a row. The transport system can comprise three static wafers (or substrates) and one dynamic wafer (or substrate). The dynamic wafers can move or transport in between a plurality of static wafers. A dynamic wafer can be transported between three statically mounted wafers. In some embodiments, the dynamic wafer can have a diameter that is about 50, 100, 150, 200 or 250 mm or 2, 4, 6, or 8 in or higher. The dynamic wafers can be mounted in a temperature controlled vacuum chuck. The systems of the invention allow for configurations, wherein the dynamic wafers can move in Z direction, which may be the direction that is perpendicular to the surface of a wafer that is to face a surface of a second wafer, with about or less than about 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5 or 3 μm control of z-position, and can align theta_z of wafers, the angle between the normals of the surfaces of two wafers that are to face each other, e.g. by matching a pattern on the dynamic wafer with another pattern on the static wafer within a range of tolerance. The wafer positioning tolerances can be about or less than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300 350, 400, 450 or 500 micro radians in difference in angle of rotation in x-y plane. In some embodiments, the wafer positioning tolerances can be about or less than about 50 micro radians in difference in angle of rotation in x-y plane. The wafer positioning tolerances can be about or less than about 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 μm of distance in x-direction. The wafer positioning tolerances can be about or less than about 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 μm of distance in y-direction. The wafer positioning tolerances can be about or less than about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 micro radians in rotations of x-y plane in z-direction. In some embodiments, the wafer positioning tolerances can be about or less than about 5 micro radians in rotations of x-y plane in z-direction. In some embodiments, the wafer positioning tolerances can be about or less than about 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 or 5 μm of distance in z-direction. In some embodiments, the wafer positioning tolerances can be about or less than about 0.5 μm of distance in z-direction.
  • In some cases, the systems and methods for conducting a set of parallel reactions can further comprise a third, a four, a fifth, a sixth, a seventh, a eighth, a ninth or a tenth surface with a plurality of resolved loci and/or a capping element with a plurality of resolved reactor caps. The third, the four, the fifth, the sixth, the seventh, the eighth, the ninth or the tenth surfaces can be aligned and can form a temporary seal between the two surfaces and the corresponding capping element, thereby physically dividing the loci and/or reactor caps on the surfaces. A third, a four, a fifth, a sixth, a seventh, a eighth, a ninth or a tenth reaction can be performed using a portion of the reagents that is retained from the previous reaction, namely, the second, a third, a four, a fifth, a sixth, a seventh, a eighth or a ninth set of reagents, thereby forming the third, the four, the fifth, the sixth, the seventh, the eighth, the ninth or the tenth set of reagents. Each of the capping elements described herein can be released from its corresponding surface, wherein the reactor caps can retain at least a portion of the previous set of reagents of another reaction volume. In some cases, the second surface with a plurality of resolved loci can be at a density of at least 2/mm2. In some embodiments, the second surface with a plurality of resolved loci can have a locus density of at least about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10000, about 20000, about 40000, about 60000, about 80000, about 100000, or about 500000 per 1 mm2. The portion of the reagents retained each time can be different and controlled to be at a desirable portion depending on the reactions to be performed.
  • The invention, in various embodiments, contemplates a system for conducting a set of parallel reactions comprising a first surface with a plurality of resolved loci and a capping element with a plurality of resolved reactor caps. The plurality of resolved loci and the capping element with a plurality of resolved reactor caps can be combined to form a plurality of resolved reactors, as described in further detail elsewhere herein. In some cases, the resolved loci of the first surface of the first substrate can comprise a coating of reagents. The resolved loci of the second surface of the second substrate can comprise a coating of reagents. In some embodiments, the coating of reagents can be covalently linked to the first or second surface. In the cases when there is a third, a four, a fifth, a sixth, a seventh, a eighth, a ninth or a tenth surface, each surface may comprise a coating of reagents.
  • The coating of reagents on the first surface or the second surface may comprise oligonucleotides. The oligonucleotides can be any length as further described elsewhere herein, for example at least 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300 bp, or longer. Upon sealing the resolved loci with the resolved reactor caps, the oligonucleotides that are comprised within the coating of reagents may be released. A variety of reactions can be conducted, for example, the oligonucleotide amplification reaction, PCA, generation of sequencing libraries, or error correction, inside of the plurality of resolved reactors.
  • The oligonucleotides can be released from the coated surface by a variety of suitable methods as described in further details elsewhere herein and known in the art, for example by enzymatic cleavage, as is well known in that art. Examples of such enzymatic cleavage include, but are not limited to, the use of restriction enzymes such as MIyI, or other enzymes or combinations of enzymes capable of cleaving single or double-stranded DNA such as, but not limited to, Uracil DNA glycosylase (UDG) and DNA Endonuclease IV. Other methods of cleavage known in the art may also be advantageously employed in the present invention, including, but not limited to, chemical (base labile) cleavage of DNA molecules or optical (photolabile) cleavage from the surface. PCR or other amplification reactions can also be employed to generate building material for gene synthesis by copying the oligonucleotides while they are still anchored to the substrate. Methods of releasing oligonucleotides are described in P.C.T. Patent Publication No. WO2007137242, and U.S. Pat. No. 5,750,672 which is herein incorporated by reference in its entirety.
  • In some cases, the releasing in the releasing the capping element from the first surface, and the releasing the capping element from the second surface can be performed at a different velocity. The amount of the portion of reagents that is retained upon releasing the capping element from the corresponding surface can be controlled by the velocity or the surface energy of the capping element and the corresponding surface. In some cases, the first or second surface comprises a different surface tension, surface energy, or hydrophobicity with a given liquid, such as water. In some cases, the resolved loci of the first surface can comprise a high surface energy, surface tension or hydrophobicity. The difference in the surface energy, or hydrophobicity, of the capping element and the corresponding surface can be a parameter to control the portion of the reagents that is retained upon release. The volume of the first and the second reactions can be different.
  • In some cases, the air pressure outside of the resolved reactors may be greater than the pressure inside the resolved reactors. In other cases, the air pressure outside of the resolved reactors may be less than the pressure inside of the resolved reactors. The difference in the air pressure outside of the resolved reactors and the inside of the resolved reactors (or the differential pressure) can affect the sealing of the resolved reactors. By modifying the surface energy or hydrophobicity of the first surface and the second surface, the differential pressure may result in a curve or straight air/liquid interface within a gap between the first surface and the reactor cap of the second surface. Furthermore, the force needed to release the capping element from the surface can be controlled by the differential pressure, and the differential surface energy. In some cases, the surface can be modified to have a differential surface energy and differential pressure such that the capping element is capable of being released from the surface easily.
  • The first or second reaction, or any reaction after the second reaction may comprise various molecular or biochemical assays as described herein or any suitable reaction known in the art. In some cases, the first or second reaction can comprise polymerase cycling assembly. In some cases, the first or second reaction can comprise enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, solid-phase assembly, Sloning building block technology, or RNA ligation mediated gene synthesis. The reactions or the method for conducting a set of parallel reactions may further comprise cooling the capping element, or cooling the first surface (second surface).
  • The general process work flow of the methods and compositions of the present invention using the systems described herein is illustrated in FIG. 8 .
  • Auxiliary Instrumentation
  • In one aspect, the current invention concerns systems and methods for oligonucleotide synthesis. The system for oligonucleotide synthesis may comprise a scanning deposition system. The systems for oligonucleotide synthesis can comprise a first substrate (e.g. oligonucleotide synthesis wafer) having a functionalized surface and a plurality of resolved loci and a inkjet printer, typically comprising a plurality of printheads. Each printhead is typically configured to deposit one of a variety of building blocks for reactions that are performed in the resolved loci of a first substrate, e.g. nucleotide building blocks for phosphoramidite synthesis. The resolved loci of the oligonucleotide synthesis wafer may reside in microchannels as described in further detail elsewhere herein. The substrate may be sealed within a flow cell, e.g. by providing continuous flow of liquids such as those containing necessary reagents for the reactions within the resolved loci (e.g. oxidizer in toluene) or solvents (e.g. acetonitrile) allowing precise control of dosage and concentration of reagents at the sites of synthesis, e.g. the resolved loci of an oligonucleotide synthesis wafer. Flow of an inert gas, such as nitrogen, may be used to dry the substrate, typically through enhanced evaporation of a volatile substrate. A variety of means, for example a vacuum source/a depressurizing pump or a vacuum tank, can be used to create reduced relative pressure (negative pressure) or vacuum to improve drying and reduce residual moisture amounts and any liquid droplets on the surface. Accordingly, the pressure immediately surrounding the substrates or the resolved loci thereof may measure to be about or less than about 100, 75, 50, 40, 30, 20, 15, 10, 5, 4, 3, 2, 1, 0.5, 0.1, 0.05, 0.01 mTorr, or less.
  • FIG. 3 illustrates an example of a system for oligonucleotide synthesis. Accordingly, an oligonucleotide synthesis wafer is configured to provide the resolved loci for oligonucleotide synthesis with necessary bulk reagents through an inlet manifold and, optionally an outlet manifold. for the bulk reagents can include any suitable reagents, carriers, solvents, buffers, or gasses for oligonucleotide synthesis that is commonly needed among a plurality of resolved loci in various embodiments, such as oxidizer, de-block, acetonitrile or nitrogen gas. The inkjet printer printheads can move in X-Y direction to the addressable locations of the first substrate. A second substrate, such as a capping element, as described in further detail elsewhere herein, can move in the Z direction, and if needed, in the X and Y directions, to seal with the first substrate, forming a plurality of resolved reactors. Alternatively, the second substrate may be stationary. In such cases, the synthesis substrate may move in the Z direction, and if necessary in X and Y directions, to align and seal with the second substrate. The synthesized oligonucleotides can be delivered from the first substrate to the second substrate. Suitable amounts of fluids may be passed through an inlet manifold and the resolved loci of a first substrate, into a second substrate to facilitate the delivery of reagents from the first substrate/the resolved loci thereof into the second substrate. In another aspect, current invention relates to a system for oligonucleotide assembly comprising wafer handling.
  • In various embodiments, the present invention makes use of systems for scanning deposition. The scanning deposition systems can comprise an inkjet that can be used to deposit reagents to the resolved loci or microwells etched into a substrate. In some embodiments, the scanning deposition system can use organic solvents or inks. In some cases, the scanning deposition system can comprise a plurality of wafers, such as silicon wafers, typically about 200 mm in diameter. In some cases, the entire system can be place and function in an atmospherically controlled enclosure. The scanning deposition system can comprise a work envelope, a printhead assembly, a flowcell assembly, and/or a service envelope. In some cases, the printhead assembly can move while the flowcell assembly remains stationary. The scanning deposition system can comprise one or more flowcells, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, or more flowcells servicing one or more substrates/wafers, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, or more substrates/wafers. Wafers can stay fixed within the flowcells. In some cases, the system can facilitate alignment of substrates through theta_z automation. The work envelope can include area comprising scanning direction travel, e.g. about (n−1) Printhead Pitch+Wafer Diameter=9*20 mm+200 mm=380 mm, in one particular embodiment. Suitable working envelopes can be envisioned with equivalent setups. The service envelope may comprise printheads that are parked for servicing. In some cases, the service envelope can be environmentally isolated from a larger box. In various embodiments, the systems for the methods and compositions described herein comprise scanning deposition systems for oligonucleotide synthesis, oligonucleotide assembly, or more generally for the manufacturing of reagents.
  • The plurality of resolved loci and the plurality of resolved reactor caps may be located on microstructures that have interconnectivity or fluidic communications. Such fluidic communications allow washing and perfusing new reagents as droplets or using continuous flow, for different steps of reactions. The fluid communication microchannels may contain inlets and outlets to and/or from the plurality of resolved loci and the plurality of resolved reactors. The inlets and/or outlets can be made with any known methods in the art. For example, the inlets and/or outlets can be provided on a front side and the back side of the substrate. Methods of creating the inlets and/or outlets are described in U.S. Patent Publication No. US 20080308884 A1, which is herein incorporated by reference in its entirety, an may comprise making suitable microstructural components by lithographic and etching processes on a front side; drilling holes from the back side of said substrate in precise alignment with the microstructures on the front side, to provide inlets and/or outlets to and/or from said micromechanical structure. The inlets and/or outlets may be Hele-Shaw type flowcells, with fluid flowing in a thin gap fed by a manifold. As illustrated in FIG. 9 part A, the substrates described herein, may form part of a flowcell. The flowcell can be closed by sliding a lid over the top of the substrate (i.e. wafer) and can be clamped into place forming a pressure tight seal around the edge of the substrate. In some embodiments, the seal may be adequate to seal against vacuum or about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 atmospheres of pressure. Reagents can be introduced into a thin gap underneath the substrate (i.e. wafer) and flow up through the substrate. Reagents can then be collected in the tapered waste collector as illustrated in FIG. 9 part B. After a final solvent wash step, in some embodiments, the wafer can be drained out, e.g. through the bottom of the assembly and then purged with nitrogen. The chamber can be then pulled down to a vacuum to dry out the remaining solvent in any microstructures reducing the residual liquids or moisture to less than 50%, 30%, 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.1%, 0.01%, 0.001%, 0.0001%, 0.00001%, or less by volume. The chamber can be then pulled down to a vacuum to reduce the pressure surrounding the substrate to be less than 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100, 200, 300, 400, 500 or 1000 mTorr. In some cases, the chamber can be filled with nitrogen subsequent to the vacuum step and the roof can be slid open again to allow access by auxiliary parts of the system, for example a printer. In some cases, the flowcell can be opened. The substrate/wafer can be mounted with the waste manifold displaced sideways, as illustrated in FIG. 9 part B. This set-up can allow easier inkjet access to the wafer. At this point the reagents can be deposited into the microwells. In some embodiments, the lids of the resolved enclosures (i.e. flowcells) can serve as a waste collector, and the liquid of reagents may flow thereto. The arrows in FIG. 9 parts B and C represent an exemplary flow direction for the reagents. In some cases, reagents can enter through the thin gap on the bottom, passing through the holes in the substrate (e.g. a silicon wafer), and being collected in the waste collector as illustrated in FIG. 9 part C. In some cases, gas may be purged through an upper or bottom manifold to drive liquid out, e.g. through the bottom or top of the flowcell. An exit or inlet port can be connected to vacuum to complete drying. The vacuum port can be connected to the waste side or the inlet side, as illustrated in FIG. 10 parts A-C. In some embodiments, there can be a plurality of pressure release holes that pass through the substrate (i.e. wafer). The plurality of holes can be more than a about 1000, 5000, 10,000, 50,000, 100,000, 500,000, 1,000,000 or 2,000,000. In some cases, the plurality of holes can be more than 5 millions. In some cases, the microstructures for synthesis as described in further detail elsewhere herein serve as pressure release holes. These holes can allow gas to pass through from one side of the wafer as the resolved enclosures are evacuated to dry down the substrate. In some cases, for example if the air is driven out of the waste collector side, the air pressure of the waste collector side, Pwaste, may be maintained at substantially the same level as the air pressure of the inlet side, Piniet. In some embodiments, a port that connects the inlet manifold to the waste collector can be used. Thus, a plurality of the steps described herein, such as scanning, depositing, flooding, washing, purging, and/or drying, can be performed without transporting the wafer substrates.
  • The resolved reactors formed by sealing the first substrate and the second substrate may be enclosed in chambers with controlled humidity, air content, vapor pressure, and/or pressure forming an assembly with a controlled environment. In some embodiments, the humidity of the chambers can be saturated or about 100% to prevent liquid evaporation from the resolved reactors during the reactions. For example, the humidity can be controlled to about, less than about, or more than about 100%, 99.5%, 99%, 98.5%, 98%, 97.5%, 97%, 96.5%, 96%, 95.5%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30% or 25%.
  • Systems described herein, such as those with controlled environment assemblies described above may include a vacuum device/chuck and/or a temperature control system operatively connected with the plurality of resolved reactors. The substrates may be positioned on a vacuum chuck. The vacuum chuck may include surface irregularities positioned directly underneath the substrate. In various embodiments, the surface irregularities may comprise channels or recesses. The vacuum chuck may be in fluid communication with the substrate for drawing gas out of the spaces defined by the channels. Methods of maintaining the substrate on vacuum device are described in further detail in U.S. Pat. No. 8,247,221, which is herein incorporated by reference in its entirety.
  • In various embodiments, the substrate (e.g. a silicon wafer) may be positioned onto a chuck, such as the vacuum chuck described above. FIG. 10 parts A-C exemplifies a system assembly of a single groove vacuum chuck and a sintered metal piece in between the substrate and the temperature control device. The vacuum chuck can comprise a single groove with suitable dimensions to hold a substrate. In some embodiments, the vacuum chuck is designed such that a substrate can be held in place during one or more of the methods described herein. The vacuum chuck, illustrated in FIG. 10 part A as an example, comprises a single 1-5 mm groove with approximately 198 mm in diameter. In some cases, single groove vacuum chuck designs can be used to provide improved heat transfer to the substrate. FIG. 10 part B illustrates a sintered metal insert that is situated in between the substrate (e.g. silicon wafer) and the vacuum chuck, being fixed in place with adhesives. In some embodiments, the chuck can be an electrostatic chuck, as further described in U.S. Pat. No. 5,530,516, which is herein incorporated by reference in its entirety.
  • The plurality of resolved reactor caps can be aligned with the plurality of resolved loci on the first surface forming a temporary seal between the first surface and the capping element using any methods that are known in the art, as described in the U.S. Pat. No. 8,367,016 and European Patent No. EP 0126621 B1, both of which are herein incorporated by reference in their entirety. For example, for a substrate with a plurality of resolved loci having x, y, and z dimensions and a locus depth center point located along the z dimension, the locus depth center point can be located a known z dimension distance from a fiducial marking embedded within the substrate. The substrate can be placed within an imaging system that can include an optical device capable of detecting the fiducial marking. The optical device can define an optical path axially aligned with the z dimension and can have a focal plane perpendicular to the optical path. When the focal plane is moved along the optical path, the fiducial marking can be maximally detected when the focal plane is at the z depth in comparison to when the focal plane is not substantially in-plane with the z depth. Fiducial markings can be selectively placed in a suitable spatial arrangement on a first substrate, for example a synthesis wafer comprising a plurality of resolved loci, and/or the second substrate, for example a reactor element comprising a plurality of capping elements. In some embodiments, the global alignment fiducial marking can be formed close to a resolved locus. Depending upon the application, there may be variations, alternatives, and modifications. For example, two of the fiducial markings may be within a vicinity of the resolve loci and the third fiducial marking may be at the edge of the substrate. For another example, the pattern of the microstructures in substrates described herein may itself be selected in a recognizable fashion suitable for alignment, for example in an asymmetric pattern, and can be used for alignment. In some cases, the fiducial marking serves as an alignment point to correct for depth of field or other optical characteristics. U.S. Pat. No. 4,123,661, which is herein incorporated by reference in its entirety discloses electronic beam alignment make on a substrate, the marks being adjacent each other but separated by a distance so that the rising and falling slopes of the marks can be detected by a video signal, hence allowing alignments.
  • The system may comprise a heating component, a cooling component, or a temperature controlled element (e.g., a thermal cycling device). In various embodiments, a thermal cycling device for use with a plurality of resolved reactors may be configured to perform nucleic acid amplification or assembly, such as PCR or PCA or any other suitable nucleic acid reaction described herein or known in the art. The temperature can be controlled such that the temperatures within the reactors can be uniform and heat can be conducted quickly. In various embodiments, the systems described herein may have detection components for end-point or real-time detection from the reactors or the individual microstructures within substrates, for example during oligonucleotide synthesis, gene assembly or nucleic acid amplification.
  • Any of the systems described herein, may be operably linked to a computer and may be automated through a computer either locally or remotely. Computers and computer systems for the control of the system components described herein are further described elsewhere herein.
  • Primary Compositions—Oligonucleotides
  • As used herein, the terms “preselected sequence”, “predefined sequence” or “predetermined sequence” are used interchangeably. The terms mean that the sequence of the polymer is known and chosen before synthesis or assembly of the polymer. In particular, various aspects of the invention are described herein primarily with regard to the preparation of nucleic acids molecules, the sequence of the oligonucleotide or polynucleotide being known and chosen before the synthesis or assembly of the nucleic acid molecules. In one embodiment, oligonucleotides are short nucleic acid molecules. For example, oligonucleotides may be from about 10 to about 300 nucleotides, from about 20 to about 400 nucleotides, from about 30 to about 500 nucleotides, from about 40 to about 600 nucleotides, or more than about 600 nucleotides long. Those of skill in the art appreciate that the oligonucleotide lengths may fall within any range bounded by any of these values (e.g., from about 10 to about 400 nucleotides or from about 300 to about 400 nucleotides etc.). Suitably short or long oligonucleotides may be used as necessitated by the specific application. Individual oligonucleotides may be designed to have a different length from another in a library. Oligonucleotides can be relatively short, e.g. shorter than 200, 100, 80, 60, 50, 40, 30, 25, 20, 15, 12, 10, 9, 8, 7, 6, 5, or 4 nucleotides, more particularly. Relatively longer oligonucleotides are also contemplated; in some embodiments, oligonucleotides are longer than or equal to 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 500, 600 nucleotides, or longer. Typically, oligonucleotides are single-stranded DNA or RNA molecules.
  • In one aspect of the invention, a device for synthesizing a plurality of nucleic acids having a predetermined sequence is provided. The device can include a support having a plurality of features, each feature having a plurality of oligonucleotides. In some embodiments, the plurality oligonucleotides having a predefined sequence are immobilized at different discrete features of a solid support. In some embodiments, the oligonucleotides are single-stranded. In some embodiments, the plurality of oligonucleotide sequences may comprise degenerate sequences. In some embodiments, the oligonucleotides are support-bound. In some embodiments, the device comprises a solid support having a plurality of spots or features, and each of the plurality of spots includes a plurality of support-bound oligonucleotides. In some embodiments, the oligonucleotides are covalently linked through their 3′ end to the solid support. Yet, in other embodiments the oligonucleotides are covalently linked through their 5′ end to the solid support.
  • In some embodiments, the surface or support-bound oligonucleotides are immobilized through their 3′ end. It should be appreciated that by 3′ end, it is meant the sequence downstream to the 5′ end, for example 2, 3, 4, 5, 6, 7, 10, 15, 20 nucleotides or more downstream from the 5′ end, for another example on the 3′ half, third, or quarter of the sequence, for yet another example, less than 2, 3, 4, 5, 6, 7, 10, 15, or 20 nucleotides away from the absolute 3′ end and by 5′ end it is meant the sequence upstream to the 3′ end, for example 2, 3, 4, 5, 6, 7, 10, 15, 20 nucleotides or more upstream from the 3′ end, for another example on the 5′ half, third, or quarter of the sequence, for yet another example, less than 2, 3, 4, 5, 6, 7, 10, 15, or 20 nucleotides away from the absolute 5′ end. For example, an oligonucleotide may be immobilized on the support via a nucleotide sequence (e.g., a degenerate binding sequence), a linker or spacer (e.g., a moiety that is not involved in hybridization). In some embodiments, the oligonucleotide comprises a spacer or linker to separate the oligonucleotide sequence from the support. Useful spacers or linkers include photocleavable linkers, or other traditional chemical linkers. In one embodiment, oligonucleotides may be attached to a solid support through a cleavable linkage moiety. For example, the solid support may be functionalized to provide cleavable linkers for covalent attachment to the oligonucleotides. The linker moiety may be of six or more atoms in length. Alternatively, the cleavable moiety may be within an oligonucleotide and may be introduced during in situ synthesis. A broad variety of cleavable moieties are available in the art of solid phase and microarray oligonucleotide synthesis (see e.g., Pon, R., Methods Mol. Biol. 20:465-496 (1993); Verma et al, Annu. Rev. Biochem. 67:99-134 (1998); U.S. Pat. Nos. 5,739,386, 5,700,642 and 5,830,655; and U.S. Patent Publication Nos. 2003/0186226 and 2004/0106728). A suitable cleavable moiety may be selected to be compatible with the nature of the protecting group of the nucleoside bases, the choice of solid support, and/or the mode of reagent delivery, among others. In an exemplary embodiment, the oligonucleotides cleaved from the solid support contain a free 3′-OH end. Alternatively, the free 3′-OH end may also be obtained by chemical or enzymatic treatment, following the cleavage of oligonucleotides. In various embodiments, the invention relates to methods and compositions for release of support or surface bound oligonucleotides into solution. The cleavable moiety may be removed under conditions which do not degrade the oligonucleotides. Preferably the linker may be cleaved using two approaches, either simultaneously under the same conditions as the deprotection step or subsequently utilizing a different condition or reagent for linker cleavage after the completion of the deprotection step.
  • In other embodiments, the oligonucleotides are in solution. For example, oligonucleotides may be provided within a discrete volume such as a droplet or microdroplet at different discrete features. In some embodiments, discrete microvolumes of between about 0.5 pL and about 100 nL may be used. However, smaller or larger volumes may be used. In some embodiments, a suitable dispenser or continuous flow, such as flow through microstructures that is actuated by a pump, may be used for transferring volumes of less than 100 nL, less than 10 nL, less than 5 nL, less than 100 pL, less than 10 pL, or less than 0.5 pL to and between microstructures of substrates described herein. For example, small volumes from one or more microstructures of an oligonucleotide synthesis wafer may be dispensed into a reactor cap of a capping element by pushing a fluid through the oligonucleotide synthesis wafer.
  • In some embodiments, a plurality of nucleotide acid constructs are provided at different features of the support. In some embodiments, the nucleic acid constructs, including short oligonucleotides and longer/assembled polynucleotides, are partially double-stranded or duplex oligonucleotides. As used herein, the term “duplex” refers to a nucleic acid molecule that is at least partially double-stranded. The terms “nucleoside” or “nucleotide” are intended to include those moieties which contain not only the known purine and pyrimidine bases, but also other heterocyclic bases that have been modified. Such modifications include methylated purines or pyrimidines, acylated purines or pyrimidines, alkylated riboses or other heterocycles or any other suitable modifications described herein or otherwise known in the art. In addition, the terms “nucleoside” and “nucleotide” include those moieties that contain not only conventional ribose and deoxyribose sugars, but other sugars as well. Modified nucleosides or nucleotides also include modifications on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like.
  • It will be appreciated that, as used herein, the terms “nucleoside” and “nucleotide” refer to nucleosides and nucleotides containing not only the conventional purine and pyrimidine bases, i.e., adenine (A), thymine (T), cytosine (C), guanine (G) and uracil (U), but also protected forms thereof, e.g., wherein the base is protected with a protecting group such as acetyl, difluoroacetyl, trifluoroacetyl, isobutyryl or benzoyl, and purine and pyrimidine analogs. Suitable analogs will be known to those skilled in the art and are described in the pertinent texts and literature. Common analogs include, but are not limited to, 1-methyladenine, 2-methyladenine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentyladenine, N,N-dimethyladenine, 8-bromoadenine, 2-thiocytosine, 3-methylcytosine, 5-methylcytosine, 5-ethylcytosine, 4-acetylcytosine, 1-methylguanine, 2-methylguanine, 7-methylguanine, 2,2-dimethylguanine, 8-bromoguanine, 8-chloroguanine, 8-aminoguanine, 8-methylguanine, 8-thioguanine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, 5-ethyluracil, 5-propyluracil, 5-methoxyuracil, 5-hydroxymethyluracil, 5-(carboxyhydroxymethyl)uracil, 5-(methylanminomethyl)uracil, 5-(carboxymethylaminomethyl)-uracil, 2-thiouracil, 5-methyl-2-thiouracil, 5-(2-bromovinyl)uracil, uracil-5-oxy acetic acid, uracil-5-oxyacetic acid methyl ester, pseudouracil, 1-methylpseudouracil, queosine, inosine, 1-methylinosine, hypoxanthine, xanthine, 2-aminopurine, 6-hydroxyaminopurine, 6-thiopurine and 2,6-diaminopurine. In addition, the terms “nucleoside” and “nucleotide” include those moieties that contain not only conventional ribose and deoxyribose sugars, but other sugars as well. Modified nucleosides or nucleotides also include modifications on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like.
  • As used herein, the term “oligonucleotide” shall be generic to polydeoxynucleotides (containing 2-deoxy-D-ribose), to polyribonucleotides (containing D-ribose), to any other type of polynucleotide that is an N-glycoside of a purine or pyrimidine base, and to other polymers containing nonnucleotidic backbones (for example PNAs), providing that the polymers contain nucleobases in a configuration that allows for base pairing and base stacking, such as is found in DNA and RNA. Thus, these terms include known types of oligonucleotide modifications, for example, substitution of one or more of the naturally occurring nucleotides with an analog, inter-nucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), with negatively charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), and with positively charged linkages (e.g., aminoalkylphosphoramidates, aminoalkylphosphotriesters), those containing pendant moieties, such as, for example, proteins (including nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.). There is no intended distinction in length between the term “polynucleotide” and “oligonucleotide,” and these terms will be used interchangeably.
  • The term “attached,” as in, for example, a substrate surface having a moiety “attached” thereto, includes covalent binding, adsorption, and physical immobilization. The terms “binding” and “bound” are identical in meaning to the term “attached.”
  • In various embodiments, the invention relates to the synthesis, such as chemical synthesis, of molecules other than nucleic acids. The terms “peptide,” “peptidyl” and “peptidic” as used throughout the specification and claims are intended to include any structure comprised of two or more amino acids. For the most part, the peptides in the present arrays comprise about 5 to 10,000 amino acids, preferably about 5 to 1000 amino acids. The amino acids forming all or a part of a peptide may be any of the twenty conventional, naturally occurring amino acids, i.e., alanine (A), cysteine (C), aspartic acid (D), glutamic acid (E), phenylalanine (F), glycine (G), histidine (H), isoleucine (I), lysine (K), leucine (L), methionine (M), asparagine (N), proline (P), glutamine (Q), arginine (R), serine (S), threonine (T), valine (V), tryptophan (W), and tyrosine (Y). Any of the amino acids in the peptidic molecules forming the present arrays may be replaced by a non-conventional amino acid. In general, conservative replacements are preferred. Conservative replacements substitute the original amino acid with a non-conventional amino acid that resembles the original in one or more of its characteristic properties (e.g., charge, hydrophobicity, stearic bulk; for example, one may replace Val with Nval). The term “non-conventional amino acid” refers to amino acids other than conventional amino acids, and include, for example, isomers and modifications of the conventional amino acids (e.g., D-amino acids), non-protein amino acids, post-translationally modified amino acids, enzymatically modified amino acids, constructs or structures designed to mimic amino acids (e.g., α,α-disubstituted amino acids, N-alkyl amino acids, lactic acid, β-alanine, naphthylalanine, 3-pyridylalanine, 4-hydroxyproline, 0-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, and nor-leucine), and peptides having the naturally occurring amide —CONH— linkage replaced at one or more sites within the peptide backbone with a non-conventional linkage such as N-substituted amide, ester, thioamide, retropeptide (—NHCO—), retrothioamide (—NHCS—), sulfonamido (—SO2NH—), and/or peptoid (N-substituted glycine) linkages. Accordingly, the peptidic molecules of the array include pseudopeptides and peptidomimetics. The peptides of this invention can be (a) naturally occurring, (b) produced by chemical synthesis, (c) produced by recombinant DNA technology, (d) produced by biochemical or enzymatic fragmentation of larger molecules, (e) produced by methods resulting from a combination of methods (a) through (d) listed above, or (f) produced by any other means for producing peptides.
  • The term “oligomer” is meant to encompass any polynucleotide or polypeptide or other chemical compound with repeating moieties such as nucleotides, amino acids, carbohydrates and the like.
  • In some examples, the device has at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 20, 25, 30, 40, 50, 100, 1,000, 4,000, 10,000, 100,000, 1,000,000, or more different features (or “regions” or “spots”) at a particular location (i.e., an “address”). It should be appreciated that a device may comprise one or more solid supports. Each addressable location of a device may hold a different composition, such as a different oligonucleotide. Alternatively, groups of addressable location of a device may hold wholly or substantially similar compositions, e.g. oligonucleotides, that are different from those held in other groups of microstructures of a device.
  • The number of each oligonucleotide, which may be prepared by methods of the invention in individually addressable locations and/or in mixed populations can range from five to 500,000, from 500 to 500,000, from 1,000 to 500,000, from 5,000 to 500,000, from 10,000 to 500,000, from 20,000 to 500,000, from 30,000 to 500,000, from 5,000 to 250,000, from 5,000 to 100,000, from five to 5,000, from five to 50,000, from 5,000 to 800,000, from 5,000 to 1,000,000, from 5,000 to 2,000,000, from 10,000 to 2,000,000, from 20,000 to 1,000,000, from 30,000 to 2,000,000, etc. In various embodiments, about or more than about 5, 10, 20, 50, 100, 500, 1000, 10000, 100000, 1000000, 10000000, 100000000, or more copies of each oligonucleotide can be synthesized. In some cases, less than 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, or fewer copies of an oligonucleotide may be synthesized.
  • Oligonucleotide phosphorothioates (OPS) are modified oligonucleotides where one of the oxygen atoms in the phosphate moiety is replaced by sulfur. Phosphorothioates having sulfur at a non-bridging position are widely used. OPS are substantially more stable towards hydrolysis by nucleases. This property renders OPS to be an advantageous candidate to be used as antisense oligonucleotides in in vitro and in vivo applications comprising extensive exposure to nucleases. Similarly, to improve the stability of siRNA, at least one phosphorothioate linkage is often introduced at the 3′-terminus of sense and/or antisense strands. In some embodiments, methods and compositions of the invention relate to the de novo/chemical synthesis of OPSs. The synthesis of a large number of OPSs may be carried out in parallel using the methods and compositions described herein.
  • Amplification of Single Stranded Nucleic Acids
  • In various embodiments, the methods and systems relate to amplification of single stranded nucleic acids. Accordingly, single stranded nucleic acids, e.g. single stranded DNA (ssDNA), can be amplified in an isolated sample, in a plurality of samples in parallel or in a multiplexed format having a plurality of different single stranded nucleic acids within the same sample. The plurality of samples that can be amplified in parallel format may be at least or about at least 1, 2, 3, 4, 5, 10, 20, 25, 50, 55, 100, 150, 200, 250, 300, 350, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, or more. The plurality of samples that can be amplified in parallel format may be between 1-1000, 2-950, 3-900, 4-850, 5-800, 10-800, 20-750, 25-700, 30-650, 35-600, 40-550, 45-500, 50-450, 55-400, 60-350, 65-250, 70-200, 75-150, 80-100. Those of skill in the art will appreciate that the plurality of samples that can be amplified in parallel format may fall between any ranges, bound by any of these values, for example 3-800. The number of multiplexed amplification reactions may be at least or about at least 1, 2, 3, 4, 5, 10, 20, 25, 50, 100, or more. The number of multiplexed amplification reactions may be between 1-100, 2-50, 3-25, 4-20, 5-10. Those of skill in the art will appreciate that the number of multiplexed amplification reactions may fall within any range bound by any of these values, for example 3-100.
  • The number of different single stranded nucleic acids within the same sample can be at least or about at least 1, 2, 3, 10, 50, 100, 150, 200, 1000, 10000, 100000, or more. The number of different single stranded nucleic acid within the same sample can be at most or about at most 10000, 10000, 1000, 200, 150, 100, 50, 10,3, 2, 1, or less. The number of different single stranded nucleic acids within the same sample can be between 1-100000, 2-10000, 3-1000, 10-200, 50-100. Those of skill in the art appreciate that the number of different single stranded nucleic acid within the same sample can be between any of these ranges, bound by any of these values, for example 3-100.
  • The single stranded target nucleic acids may be at least or about at least 10, 20, 50, 100, 200, 500, 1000, 3000, or more nucleotides long. The single stranded target nucleic acids may be at most or about at most 3000, 1000, 500, 200, 100, 50, 20, 10, or less, nucleotides long. The single stranded target nucleic acids may be between 50-500, 75-450, or 100-400 nucleotides long. Those of skill in the art appreciate that length of the single stranded target nucleic acids may fall within any range bound by any of these values, for example between 50-1000.
  • Referring now to FIG. 64 , a single stranded target nucleic acid may be flanked with one or more adaptor hybridization sequences. These adaptor hybridization sequences sequences may be at least or about at least 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nucleotides long. These adaptor hybridization sequences sequences may be at least or about at least 20, 19, 18, 17, 16, 15, 14, 13, 12, or fewer nucleotides long. The adaptor hybridization sequences may be between 15-20, 16-19, 17-18 nucleotides long. Those of skill in the art appreciate that length the adaptor hybridization sequences may fall between a range bound by any of these values, for example between 15-17, 12-20, or 13, 25. The adaptor hybridization sequences may be shared by a plurality of nucleic acids within a sample, wherein such plurality of single stranded nucleic acids have varying single stranded target nucleic acid regions. Multiple groups of single stranded nucleic acids, each group having different adaptor hybridization sequences, may coexist within a sample and be subjected to the amplification methods described herein. The different adaptor hybridization sequences may differ from each other by at least or at least about 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more, nucleotides. The different adaptor hybridization sequences may differ from each other by at most or at most about 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 2, 1, or fewer nucleotides. The different adaptor hybridization sequences may differ from each other by a number of nucleotides between 1-50, 2-45, 5-40, 10-35, 15-25, or 20-30. Those of skill in the art appreciate that, the different adaptor hybridization sequences may differ from each other by a number of nucleotides that falls in any ranges bound by any of these values, for example between 2-50. Thus, a single universal adaptor may be used for a number of single stranded nucleic acids sharing end sequences such that the universal adaptor is hybridizable to all of them. A plurality of adaptors may be used in a sample with a plurality of groups of single stranded nucleic acids, wherein each of the adaptors is hybridizable to the end sequences in one or more of the groups. At least or at least about 1, 2, 3, 4, 5, 10, 20, 25, 30, 50, 100, or more adaptors may be used in a multiplexed fashion. At most or about at most 100, 50, 30, 25, 20, 10, 5, 4, 3, 21, 1 or fewer adaptors may be used in a multiplexed fashion. Between 1-100, 2-50, 3-30, 4-25, 5-20, adaptors may be used in a multiplexed fashion. Those of skill in the art appreciate that the number of adaptors that may be used in a multiplexed fashion may fall within any ranges, bound by any of these values, for example between 2-30. A first sequence on an adaptor may hybridize to the 5′ end of a single stranded nucleic acid and a second sequence on the adaptor may hybridize to the 3′ end of the same single stranded nucleic acid, facilitating the circularization of the single stranded nucleic acid.
  • The single stranded nucleic acids may be circularized upon hybridization with an adaptor. The circularized single stranded nucleic acid may be joined at its 5′ and 3′ ends, forming a contiguous circle. Various ligation methods and enzymes are suitable for the reaction as described elsewhere herein and otherwise known in the art.
  • The adaptor can be extended using the circularized single stranded nucleic acid as a template. Alternatively, one or more different primers may be used to anneal elsewhere on the circle in addition or instead of the adaptor and can be extended with a polymerase enzyme. The extension reaction, such as rolling circle amplification, multi-primer rolling circle amplification or any other suitable extension reaction, can facilitate the creation of one long and linear single stranded amplicon nucleic acids comprising alternating replicas of the single stranded template nucleic acid and the adaptor hybridization sequences. In some embodiments, the combined replicas of the adaptor hybridization sequences are copies of the adaptor sequence, or differ by less than 8, 7, 6, 5, 4, 3, or 2 nucleotides. These sequences will together be referred to as “adaptor copies” for ease, but it is understood that they may refer to a number of different types of sequences generated from the extension reaction using the circle as a template.
  • One or more auxiliary oligonucleotides may be provided to anneal to the single stranded amplicon nucleic acids. The auxiliary oligonucleotides may be partially or completely complementary to the adaptor copies. The hybridization of the auxiliary oligonucleotide to the single stranded amplicon nucleic acid can form alternating single and double stranded regions. The single stranded regions may correspond to replicas of the single stranded template nucleic acid sequence. The hybridization of the auxiliary oligonucleotide to the single stranded amplicon nucleic acid, e.g. at adaptor copies, can generate recognition sites for a cleaving agent, such as a restriction endonucleases, e.g. a Type IIS restriction endonucleases. The sequences can be designed in such a way that the cutting site for the cleaving agent falls at or near the juncture of the single and double stranded regions. In some cases, upon cleavage with one or more cleaving agents, a plurality of single stranded replicas of the single stranded target nucleic acids will be formed, wherein the single stranded target nucleic acids do not contain any portions from the adaptor copies, or contain less than 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 nucleotides from the adaptor copies.
  • The auxiliary oligonucleotides may have an affinity tag, such as biotin or a biotin derivative. The affinity tag may be at the 5′ end, 3′ end, or in the middle of the oligonucleotide. Purification of the auxiliary oligonucleotides from the sample may be facilitated using an affinity binding partner on a purification medium, such as streptavidin coated beads surfaces, or any other suitable affinity purification method. Cleaved adaptor copies or portion thereof may also be purified along with the auxiliary oligonucleotides, facilitated by their hybridization with the auxiliary oligonucleotides. In multiplexed reactions using a plurality of adaptors, a plurality of auxiliary oligonucleotides may be used, each hybridizing to a different group of single stranded amplicon nucleic acids, for example at the locations of the adaptor copies. Alternative purification methods, such as HPLC or PAGE purification, may be used with or without affinity tagged oligonucleotides.
  • Referring now to FIG. 65 parts A-F, single stranded nucleic acids may also be amplified in a similar way to the method described for FIG. 64 parts A-F, with the exception that the sequences and the cleaving agent is selected such that the cutting site falls within the adaptor copies such that single stranded replicas of the single stranded target nucleic acid sequence are formed with flanking regions. Such flanking regions may be reverse complements of the flanking regions of the original single stranded target nucleic acid sequence. Alternatively, depending on the exact location of the cutting site, they may “shift” nucleotides from one flanking region to the other. In such cases, a reverse complementary oligonucleotide to the adaptor nucleotide can still effectively hybridize to the both ends facilitating another round of circularization. Thus, the method illustrated in FIG. 65 parts A-F can be repeated a plurality of times, such as at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more times, alone or as a precursor reaction to the method illustrated in FIG. 64 parts A-F, to amplify the single stranded target nucleic acid. The method illustrated in FIG. 64 parts A-F can be used as a last round to get rid of the flanking regions, leaving behind amplified single stranded copies or replicas of the single stranded target nucleic acids.
  • The extension reaction product, such as a rolling cycle amplification product, comprising single-stranded repeating units of amplified desired oligonucleotides and adaptor oligonucleotides, may be cleaved within or near the adaptor oligonucleotides to generate released desired oligonucleotides, wherein the released desired oligonucleotides may or may not comprise adaptor nucleotides at the 5′ or 3′ ends of the desired oligonucleotide. In some embodiments, the cleaving is accomplished at the very juncture of the single-stranded repeating units of amplified desired oligonucleotides and adaptor sequences. In some embodiments, one or more regions of an adaptor sequence comprise a molecular barcode, protein binding site, restriction endonuclease site, or any combination thereof. In some embodiments, the amplification product is cleaved with one or more restriction endonucleases at or near a restriction endonuclease recognition site, wherein the recognition site is located within an adaptor oligonucleotide sequence. Prior to cleavage with an endonuclease, the amplification product can be hybridized with an auxiliary oligonucleotide comprising a sequence complementary to the adaptor oligonucleotide sequence comprising the restriction endonuclease recognition site.
  • The amplification product may be cleaved at the 5′ end of a recognition site by Type II endonucleases. The cutting site may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 nucleotides or more upstream from the first nucleotide of the recognition site. The 5′ or 3′ end of a recognition site may form a 0, 1, 2, 3, 4, or 5 nucleotide overhang. Blunt Type II endonucleases which cleave with a 0 nucleotide overhang include MlyI and SchI. Exemplary Type IIS endonucleases which generate 5′ overhangs (e.g., 1, 2, 3, 4, 5 nucleotides overhangs) include, but are not limited to, AlwI, BccI, BceAI, BsmAI, BsmFI, FokI, HgaI, PleI, SfaNI, BfuAI, BsaI, BspMI, BtgZI, Earl, BspQI, SapI, SgeI, BceFI, BslFI, BsoMAI, Bst71I, FaqI, AceIII, BbvII, BveI, and LguI. Nicking endonucleases which remove the recognition site and cleave on the 5′ site of the recognition site include, but are not limited to Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, and UbaPI.
  • The amplification product may be cleaved by non-Type IIS endonucleases which cleave at the 5′ end of the recognition site on both strands to generate a blunt end. The amplification product may be cleaved by non-Type IIS endonucleases which cleave at the 5′ end of the recognition site on one strand and in the middle of the recognition site on the other strand, generating a 5′ overhang. Examples of endonucleases which generate a 5′ overhang include, but are not limited to, BfuCI, DpnII, FatI, MboI, MluCI, Sau3AI, Tsp509I, BssKI, PspGI, StyD4I, Tsp45I, AoxI, BscFI, Bsp143I, BssMI, BseENII, BstMBI, Kzo9I, NedII, Sse9I, TasI, TspEI, AjnI, BstSCI, EcoRII, MaeIII, NmuCI, and Psp6I.
  • The amplification product may be cleaved by nicking endonucleases which cleave at the 5′ end of a recognition site to produce a nick. The nicking site may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 nucleotides or more upstream from the first nucleotide of the recognition site. Exemplary nicking endonucleases include, but are not limited to, Nb.BsrDI, Nb.BtsI, AspCNI, BscGI, BspNCI, EcoHI, FinI, TsuI, UbaF11I, UnbI, Vpak11AI, BspGI, DrdII, Pfl1108I, and UbaPI.
  • The amplification product may be cleaved at the 3′ end of a recognition site by Type IIS endonucleases. The 5′ or 3′ end of a recognition site may form a 0, 1, 2, 3, 4, or 5 nucleotide overhang. The cutting site may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 nucleotides or more downstream from the last nucleotide of the recognition site. Type IIS endonucleases which cleave at 0 nucleotides downstream of the last nucleotide of the recognition site include MlyI and SchI. Exemplary Type IIS endonucleases which generate 3′ overhangs (e.g., 1, 2, 3, 4, 5 nucleotide overhangs) include, but are not limited to, MnlI, BspCNI, BsrI, BtsCI, HphI, HpyAV, MboII, AcuI, BeiVI, BmrI, BpmI, BpuEI, BseRI, BsgI, BsmI, BsrDI, BtsI, EciI, MmeI, NmeAIII, Hin4II, TscAI, Bce83I, BmuI, BsbI, and BscCI. Non-Type II endonucleases which remove the recognition site on one strand and generate a 3′ overhang or blunt end on the other strand include, but are not limited to NlaIII, Hpy99I, TspRI, FaeI, Hin1II, Hsp92II, SetI, TaiI, TscI, TscAI, and TseFI. Nicking endonucleases which remove the recognition site and cut on the 3′ end of the recognition site include Nt.AlwI, Nt.BsmAI, Nt.BstNBI, and Nt.BspQI.
  • The distance between the recognition site and the cleavage site may depend on the restriction endonuclease used for cleavage. For example, restriction endonucleases with cutting sites located 1 base pair downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, ApaI, AscI, BmtI, BsaI, BsmBI, BsrGI, DdeI, DraIII, HpaI, MseI, PacI, PciI, PmeI, PvuI, SacII, SapI, Sau3AI, ScaI, Sfil, SmaI, SphI, StuI, and XmaI. Restriction endonucleases with cutting sites located 2 base pairs downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, Alul, ApaI, AscI, BglII, BmtI, BsaI, BsiWI, BsmBI, BsrGI, BssHII, DdeI, DralII, EagI, HpaI, KpnI, MseI, NlaIII, Pacd, PciI, PmeI, PstI, PvuI, RsaI, SacII, SapI, Sau3AI, Sbfl, ScaI, Sfil, SmaI, SphI, SspI, StuI, Sty1, and XmaI. Restriction endonucleases with cutting sites located 3 base pairs downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, Alul, ApaI, AscI, AvrII, Bam-JI, BglII, BmtI, BsaI, BsiWI, BsmBI, BsrGI, BssHII, DdeI, DralII, EagI, FseI, HindIII, HpaI, KpnI, MfeI, MluI, MseI, NcoI, NdeI, NheI, NlaIII, NsiI, PacI, PciI, PmeI, PstI, RsaI, SacI, SacII, SalI, SapI, Sau3AI, Sbfl, ScaI, Sfil, SmaI, SphI, SspI, StuI, Sty1, and XmaI. Restriction endonucleases with cutting sites located 4 base pairs downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, Alul, ApaI, AscI, AvrII, Bam-JI, BglII, BmtI, BsaI, BsiWI, BsmBI, BsrGI, BssHII, ClaI, DdeI, DrallI, EagI, EcoRI, FseI, HindIII, HpaI, KpnI, MfeI, MluI, MseI, NcoI, NdeI, NheI, NlaIII, NsiI, Pacd, PciI, PmeI, PstI, PvuI, PvuII, RsaI, Sacd, SacII, SalI, SapI, Sau3AI, Sbfl, ScaI, Sfil, SmaI, SphI, SspI, StuI, Sty1, XhoI, and XmaI. Restriction endonucleases with cutting sites located 5 base pairs downstream or upstream from a recognition site which may efficiently cleave under optimal reaction conditions include, but are not limited to, AgeI, Alul, ApaI, AscI, AvrII, Bam-JI, BglII, BmtI, BsaI, BsiWI, BsmBI, BsrGI, BssHII, ClaI, DdeI, DrallI, EagI, EcoRI, EcoRV, FseI, HindIII, HpaI, KpnI, MfeI, MluI, MseI, NcoI, NdeI, NheI, NlaIII, NsiI, NspI, Pacd, PciI, PmeI, PstI, PvuI, PvuII, RsaI, Sacd, SacII, SaIl, SapI, Sau3AI, Sbfl, ScaI, Sfil, SmaI, SphI, SspI, StuI, Sty1, XhoI, and XmaI.
  • The adaptor sequence may comprise one or more restriction recognition sites. In some embodiments, the recognition site is at least 4, 5, or 6 base pairs long. In some embodiments, the recognition site is non-palindromic. In some embodiments, the adaptor oligonucleotide comprises two or more recognition sites. Two or more recognition sites may be cleaved with one or more restriction enzymes. It will be known to one of skill in the art that the cleavage of two or more recognition sites with two or more restriction enzymes may be achieved and/or perfected by buffer and reaction temperature optimization. Exemplary pairs of recognition sites in an adaptor sequence include, but are not limited to, MlyI-MlyI, MlyI-Nt.AlwI, BsaI-MlyI, MlyI-BciVI, and BfuCI-MlyI.
  • Genes
  • The methods and compositions of the invention in various embodiments allow for the construction of gene libraries comprising a collection of individually accessible polynucleotides of interest. The polynucleotides can be linear, can be maintained in vectors (e. g., plasmid or phage), cells (e. g., bacterial cells), as purified DNA, or in other suitable forms known in the art. Library members (variously referred to as clones, constructs, polynucleotides, etc.) can be stored in a variety of ways for retrieval and use, including for example, in multiwell culture or microtiter plates, in vials, in a suitable cellular environment (e.g., E. coli cells), as purified DNA compositions on suitable storage media (e.g., the Storage IsoCodeD IDTM DNA library card; Schleicher & Schuell BioScience), or a variety of other suitable library forms known in the art. A gene library may comprise at least about 10, 100, 200, 300, 400, 500, 600, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7500, 10000, 15000, 20000, 30000, 40000, 50000, 60000, 75000, 100000 members, or more. Nucleic acid molecules described herein may be produced in microscale quantities (e.g., femtomoles to nanomoles quantities, such as from about 0.001 femtomole to about 1.0 nanomole, from about 0.01 femtomole to about 1.0 nanomole, from about 0.1 femtomole to about 1.0 nanomole, from about 0.001 femtomole to about 0.1 nanomole, from about 0.001 femtomole to about 0.01 nanomole, from about 0.001 femtomole to about 0.001 nanomole, from about 1.0 femtomole to about 1.0 nanomole, from about 1.0 femtomole to about 0.1 nanomole, from about 1.0 femtomole to about 0.01 nanomole, from about 1.0 femtomole to about 0.001 nanomole, from about 10 femtomoles to about 1.0 nanomole, from about 10 femtomoles to about 0.001 nanomole, from about 20 femtomoles to about 1.0 nanomole, from about 100 femtomoles to about 1.0 nanomole, from about 500 femtomoles to about 1.0 nanomole, from about 1 nanomole to about 800 nanomoles, from about 40 nanomoles to about 800 nanomoles, from about 100 nanomoles to about 800 nanomoles, from about 200 nanomoles to about 800 nanomoles, from about 500 nanomoles to about 800 nanomoles, from about 100 nanomoles to about 1,000 nanomoles, etc.). Those of skill in the art appreciate that the nucleic acid quantity may fall within any range bounded by any of these values (e.g., from about 0.001 femtomole to about 1000 nanomoles or from about 0.001 femtomole to about 0.01 femtomole). In general, nucleic acid molecules may be produced at quantities of about or more than about 0.001, 0.01, 0.1, 1, 10, 100, femtomoles, 1, 10, 100 picomoles, 1, 10, 100 nanomoles, 1 micromole, or more. In some embodiments, nucleic acid molecules may be produced at quantities of less than about 1 micromole, 100, 10, 1 nanomoles, 100, 10, 1 picomoles, 100, 10, 1, 0.1, 0.001, 0.001 femtomoles or less. In some embodiments, nucleic acid molecules may be produced at concentrations of about or more than about 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 500, 750, 1000 nM. In some embodiments, the gene library is synthesized/assembled and/or held in a space that is less than 1000, 100, 10, 1 m3, 100, 10, 1 dm3, 100, 10, 1 cm3, or less.
  • The location of individually accessible members can be available or easily determined. Individually accessible members may be easily retrieved from the library.
  • In various embodiments, the methods and compositions of the invention allow for production of synthetic (i.e. de novo synthesized) genes. Libraries comprising synthetic genes may be constructed by a variety of methods described in further detail elsewhere herein, such as PCA, non-PCA gene assembly methods or hierarchical gene assembly, combining (“stitching”) two or more double-stranded polynucleotides (referred to here as “synthons”) to produce larger DNA units (i.e., multisynthons or chassis). Libraries of large constructs may involve polynucleotides that are at least 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 400, 500 kb long or longer. The large constructs can be bounded by an independently selected upper limit of about 5000, 10000, 20000 or 50000 base pairs. The synthesis of any number of polypeptide-segment encoding nucleotide sequences, including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest. The term “gene” as used herein refers broadly to any type of coding or non-coding, long polynucleotide or polynucleotide analog.
  • In various embodiments, the methods and compositions of the invention relate to a library of genes. The gene library may comprise a plurality of subsegments. In one or more subsegments, the genes of the library may be covalently linked together. In one or more subsegments, the genes of the library may encode for components of a first metabolic pathway with one or more metabolic end products. In one or more subsegments, genes of the library may be selected based on the manufacturing process of one or more targeted metabolic end products. The one or more metabolic end products comprise a biofuel. In one or more subsegments, the genes of the library may encode for components of a second metabolic pathway with one or more metabolic end products. The one or more end products of the first and second metabolic pathways may comprise one or more shared end products. In some cases, the first metabolic pathway comprises an end product that is manipulated in the second metabolic pathway.
  • In some embodiments, a subsegment of the library may comprise, consists of, or consists essentially of genes encoding for a part or all of the genome of a synthetic organism, e.g. a virus or a bacterium. Thus, the terms “gene”, “polynucleotide”, “nucleotide”, “nucleotide sequence”, “nucleic acid” and “oligonucleotide” are used interchangeably and refer to a nucleotide polymer. Unless otherwise limited, the same include known analogs of natural nucleotides that can function in a similar manner (e.g., hybridize) to naturally occurring nucleotides. They can be of polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown. The following are non limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. Polynucleotide sequences, when provided, are listed in the 5′ to 3′ direction, unless stated otherwise.
  • The term nucleic acid encompasses double- or triple-stranded nucleic acids, as well as single-stranded molecules. In double- or triple-stranded nucleic acids, the nucleic acid strands need not be coextensive (i.e., a double-stranded nucleic acid need not be double-stranded along the entire length of both strands).
  • The term nucleic acid also encompasses any chemical modification thereof, such as by methylation and/or by capping. Nucleic acid modifications can include addition of chemical groups that incorporate additional charge, polarizability, hydrogen bonding, electrostatic interaction, and functionality to the individual nucleic acid bases or to the nucleic acid as a whole. Such modifications may include base modifications such as 2′-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at cytosine exocyclic amines, substitutions of 5-bromo-uracil, backbone modifications, unusual base pairing combinations such as the isobases isocytidine and isoguanidine, and the like.
  • More particularly, in certain embodiments, nucleic acids, can include polydeoxyribonucleotides (containing 2-deoxy-D-ribose), polyribonucleotides (containing D-ribose), and any other type of nucleic acid that is an N- or C-glycoside of a purine or pyrimidine base, as well as other polymers containing nonnucleotidic backbones, for example, polyamide (e.g., peptide nucleic acids (PNAs)) and polymorpholino (commercially available from the Anti-Virals, Inc., Corvallis, Oreg., as Neugene) polymers, and other synthetic sequence-specific nucleic acid polymers providing that the polymers contain nucleobases in a configuration which allows for base pairing and base stacking, such as is found in DNA and RNA. The term nucleic acid also encompasses linked nucleic acids (LNAs), which are described in U.S. Pat. Nos. 6,794,499, 6,670,461, 6,262,490, and 6,770,748, which are incorporated herein by reference in their entirety for their disclosure of LNAs.
  • As used herein, the term “complementary” refers to the capacity for precise pairing between two nucleotides. If a nucleotide at a given position of a nucleic acid is capable of hydrogen bonding with a nucleotide of another nucleic acid, then the two nucleic acids are considered to be complementary to one another at that position. Complementarity between two single-stranded nucleic acid molecules may be “partial”, in which only some of the nucleotides bind, or it may be complete when total complementarity exists between the single-stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands.
  • “Hybridization” and “annealing” refer to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self hybridizing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PCR or other amplification reactions, or the enzymatic cleavage of a polynucleotide by a ribozyme. A first sequence that can be stabilized via hydrogen bonding with the bases of the nucleotide residues of a second sequence is said to be “hybridizable” to said second sequence. In such a case, the second sequence can also be said to be hybridizable to the first sequence.
  • The term “hybridized” as applied to a polynucleotide refers to a polynucleotide in a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self hybridizing strand, or any combination of these. The hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PCR reaction, or the enzymatic cleavage of a polynucleotide by a ribozyme. A sequence hybridized with a given sequence is referred to as the “complement” of the given sequence.
  • “Specific hybridization” refers to the binding of a nucleic acid to a target nucleotide sequence in the absence of substantial binding to other nucleotide sequences present in the hybridization mixture under defined stringency conditions. Those of skill in the art recognize that relaxing the stringency of the hybridization conditions allows sequence mismatches to be tolerated.
  • In general, a “complement” of a given sequence is a sequence that is fully or substantially complementary to and hybridizable to the given sequence. In general, a first sequence that is hybridizable to a second sequence or set of second sequences is specifically or selectively hybridizable to the second sequence or set of second sequences, such that hybridization to the second sequence or set of second sequences is preferred (e.g. thermodynamically more stable under a given set of conditions, such as stringent conditions commonly used in the art) to hybridization with non-target sequences during a hybridization reaction. Typically, hybridizable sequences share a degree of sequence complementarity over all or a portion of their respective lengths, such as between 25%-100% complementarity, including at least about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and 100% sequence complementarity.
  • The term “primer” refers to an oligonucleotide that is capable of hybridizing (also termed “annealing”) with a nucleic acid and serving as an initiation site for nucleotide (RNA or DNA) polymerization under appropriate conditions (i.e., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. The appropriate length of a primer depends on the intended use of the primer, but primers are typically at least 7 nucleotides long and, more typically range from 10 to 30 nucleotides, or even more typically from 15 to 30 nucleotides, in length. Other primers can be somewhat longer, e.g., 30 to 50 or 40-70 nucleotides long. Those of skill in the art appreciate that the primer length may fall within any range bounded by any of these values (e.g., from 7 to 70 or from 50 to 70). Oligonucleotides of various lengths as further described herein can be used as primers or building blocks for amplification and/or gene assembly reactions. In this context, “primer length” refers to the portion of an oligonucleotide or nucleic acid that hybridizes to a complementary “target” sequence and primes nucleotide synthesis. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template but must be sufficiently complementary to hybridize with a template. The term “primer site” or “primer binding site” refers to the segment of the target nucleic acid to which a primer hybridizes. A construct presenting a primer binding site is often referred to as a “priming ready construct” or “amplification ready construct”.
  • A primer is said to anneal to another nucleic acid if the primer, or a portion thereof, hybridizes to a nucleotide sequence within the nucleic acid. The statement that a primer hybridizes to a particular nucleotide sequence is not intended to imply that the primer hybridizes either completely or exclusively to that nucleotide sequence.
  • Oligonucleotide Synthesis
  • Oligonucleotides synthesized on the substrates described herein may comprise greater than about 100, preferably greater than about 1000, more preferably greater than about 16,000, and most preferably greater than 50,000 or 250,000 or even greater than about 1,000.000 different oligonucleotide probes, preferably in less than 20, 10, 5, 1, 0.1 cm2, or smaller surface area.
  • A method of quickly synthesizing n-mer, such as about or at least about 100-, 150-, 200, 250-, 300, 350-, or longer nucleotide, oligonucleotides on a substrate is further described herein in various embodiments. The method can use a substrate with resolved loci that are functionalized with a chemical moiety suitable for nucleotide coupling. Standard phosphoramidite chemistry can be used in some cases. Accordingly, at least two building blocks are coupled to a plurality of growing oligonucleotide chains each residing on one of the resolved loci at a fast rate, such as a rate of at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more. In some embodiments, adenine, guanine, thymine, cytosine, or uridine building blocks, or analogs/modified versions thereof are used as described in further detail elsewhere herein. In some cases, the added building blocks comprise dinucleotides, trinucleotides, or longer nucleotide based building blocks, such as building blocks containing about or at least about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more nucleotides. In some embodiments, large libraries of n-mer oligonucleotides are synthesized in parallel on substrate, e.g. a substrate with about or at least about 100, 1000, 10000, 100000, 1000000, 2000000, 3000000, 4000000, 5000000 resolved loci hosting oligonucleotide synthesis. Individual loci may host synthesis of olignucleotides that are different from each other. In some embodiments, during the flow of phosphoramidite chemistry, e.g. a process with coupling, capping, oxidation, and deblocking steps, reagent dosage can be accurately controlled through cycles of continuous/displacing flow of liquids and vacuum drying steps, such as a vacuum drying step prior to coupling of new building blocks. The substrate may comprise vias, such as at least about 100, 1000, 10000, 100000, 1000000, or more vias providing fluid communication between a first surface of the substrate and a second surface of the substrate. Substrates may be kept in place during one or all of the steps within a phosphoramidite chemistry cycle and flow reagents may be passed through the substrate.
  • A common method for the preparation of synthetic nucleic acids is based on the fundamental work of Caruthers and is known as the phosphoramidite method (M. H. Caruthers, Methods in Enzymology 154, 287-313, 1987; incorporated herein by reference in its entirety). The sequence of the resultant molecules can be controlled by the order of synthesis. Other methods, such as the H-phosphonate method, serve the same purpose of successive synthesis of a polymer from its subunits.
  • Typically, the synthesis of DNA oligomers by the methods of the invention may be achieved through traditional phosphoramidite chemistry. Phosphoramidite based chemical synthesis of nucleic acids is well known to those of skill in the art, being reviewed in Streyer, Biochemistry (1988) pp 123-124 and U.S. Pat. No. 4,415,732, herein incorporated by reference. Phosporamidite reagents, including B-cyanoethyl (CE) phosphoramidite monomers and CPG (controlled porous glass) reagents usable with the invention may be purchased from numerous commercial sources, including American International Chemical (Natick Mass.), BD Biosciences (Palo Alto Calif.), and others.
  • In various embodiments, the chemical synthesis of nucleic acids is overwhelmingly performed using variations of the phosphoramidite chemistry on solid surfaces (Beaucage S L, Caruthers M H. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 1981; 22:1859-1862; Caruthers M H. Gene synthesis machines—DNA chemistry and its uses. Science. 1985; 230:281-285), both of which are incorporated herein by reference in their entirety.
  • For instance, phosphoramidite based methods can be used to synthesize abundant base, backbone and sugar modifications of deoxyribo- and ribonucleic acids, as well as nucleic acid analogs (Beaucage S L, Iyer R P. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron. 1992; 48:2223-2311; Beigelman L, Matulic-Adamic J, Karpeisky A, Haeberli P, Sweedler D. Base-modified phosphoramidite analogs of pyrimidine ribonucleosides for RNA structure-activity studies. Methods Enzymol. 2000; 317:39-65; Chen X, Dudgeon N, Shen L, Wang J H. Chemical modification of gene silencing oligonucleotides for drug discovery and development. Drug Discov. Today. 2005; 10:587-593; Pankiewicz K W. Fluorinated nucleosides. Carbohydrate Res. 2000; 327:87-105; Lesnikowski Z J, Shi J, Schinazi R F. Nucleic acids and nucleosides containing carboranes. J. Organometallic Chem. 1999; 581:156-169; Foldesi A, Trifonova A, Kundu M K, Chattopadhyaya J. The synthesis of deuterionucleosides. Nucleosides Nucleotides Nucleic Acids. 2000; 19:1615-1656; Leumann C J. DNA Analogues: from supramolecular principles to biological properties. Bioorg. Med. Chem. 2002; 10:841-854; Petersen M, Wengel J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. 2003; 21:74-81; De Mesmaeker A, Altmann K-H, Waldner A, Wendebom S. Backbone modifications in oligonucleotides and peptide nucleic acid systems. Curr. Opin. Struct. Biol. 1995; 5:343-355), all of which are incorporated herein by reference in their entirety.
  • The phosphoramidite chemistry has been adapted for in situ synthesis of DNA on solid substrates, e.g. microarrays. Such synthesis is typically achieved by spatial control of one step of the synthesis cycle, which results in thousands to hundreds of thousands of unique oligonucleotides distributed in a small area, e.g. an area of a few square centimeters. The areas and substrates architectures for the synthesis of oligonucleotides are further described elsewhere herein in greater detail. Suitable methods used to achieve spatial control can include (i) control of the coupling step by inkjet printing (Agilent, Protogene; Hughes T R, Mao M, Jones A R, Burchard J, Marton M J, Shannon K W, Lefkowitz S M, Ziman M, Schelter J M, Meyer M R, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 2001; 19:342-347; Butler J H, Cronin M, Anderson K M, Biddison G M, Chatelain F, Cummer M, Davi D J, Fisher L, Frauendorf A W, Frueh F W, et al. In situ synthesis of oligonucleotide arrays by using surface tension. J. Am. Chem. Soc. 2001; 123:8887-8894) or physical masks (Southern E M, Maskos U, Elder J K. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics. 1992; 13:1008-1017), (ii) control of the 5′-hydroxyl deblock step by classical (Affymetrix; Pease A C, Solas D, Sullivan E J, Cronin M T, Holmes C P, Fodor S P A. Light-generated oligonucleotide arrays for rapid dna-sequence analysis. Proc. Natl Acad. Sci. USA. 1994; 91:5022-5026) and maskless (Nimblegen; Singh-Gasson S, Green R D, Yue Y J, Nelson C, Blattner F, Sussman M R, Cerrina F. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 1999; 17:974-978) photolithographic deprotection of photolabile monomers or (iii) digital activation of photogenerated acids to carry out standard detritylation (Xeotron/Atactic; Gao X L, LeProust E, Zhang H, Srivannavit O, Gulari E, Yu P L, Nishiguchi C, Xiang Q, Zhou X C. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. 2001; 29:4744-4750), all of which are herein incorporated by reference in their entirety.
  • Oligonucleotides made on substrates can be cleaved from their solid surface and optionally pooled to enable new applications such as, gene assembly, nucleic acid amplification, sequencing libraries, shRNA libraries etc. (Cleary M A, Kilian K, Wang Y Q, Bradshaw J, Cavet G, Ge W, Kulkarni A, Paddison P J, Chang K, Sheth N, et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nature Methods. 2004; 1:241-248), gene synthesis (Richmond K E, Li M H, Rodesch M J, Patel M, Lowe A M, Kim C, Chu L L, Venkataramaian N, Flickinger S F, Kaysen J, et al. Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res. 2004; 32:5011-5018; Tian J D, Gong H, Sheng N J, Zhou X C, Gulari E, Gao X L, Church G. Accurate multiplex gene synthesis from programmable DNA microchips. Nature. 2004; 432:1050-1054) and site-directed mutagenesis (Saboulard D, Dugas V, Jaber M, Broutin J, Souteyrand E, Sylvestre J, Delcourt M. High-throughput site-directed mutagenesis using oligonucleotides synthesized on DNA chips. BioTechniques. 2005; 39:363-368), all of which are herein incorporated by reference in their entirety.
  • Successful synthesis of long high-quality oligonucleotides is strongly supported by high stepwise coupling yields, for example stepwise coupling yields that are at least about 99.5%. In various embodiments, the methods and compositions of the invention contemplate a coupling yield of more than 98%, 98.5%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, 99.95%, 99.96%, 99.97%, 99.98%, 99.99% or higher. Without being bound by theory, if the coupling efficiency is lower, e.g. below 99%, the impact on sequence integrity typically follows one of two scenarios. If capping is used, the low coupling efficiency will be evidenced by short, truncated sequences. If capping is not used, or if capping is unsuccessful, single base deletions will occur in the oligonucleotide and as a consequence, a large number of failure sequences lacking one or two nucleotides will be formed. Efficient removal of the 5′-hydroxyl protecting group further supports the synthesis of long, high-quality oligonucleotides at desirably high yields, such as at very high efficiencies approaching 100% within each cycle, e.g. greater than or equal to 98%, 98.5%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, 99.95%, 99.96%, 99.97%, 99.98%, 99.99% or higher. This step can be optimized with precise control of the dosage of reagents as well as other environmental parameters, using the methods and compositions described herein, avoiding final product mixtures comprising a family of oligomers with single base deletions in addition to the desired product.
  • Further, for synthesis of long oligonucleotides, it is important to minimize the most prevalent side reaction—depurination (Carr P A, Park J S, Lee Y J, Yu T, Zhang S G, Jacobson J M. Protein-mediated error correction for de novo dna synthesis. Nucleic Acids Res. 2004; 32:e162). Depurination results in the formation of an abasic site that typically does not interfere with chain extension. Critical DNA damage occurs during the final nucleobase deprotection under basic conditions, which also cleaves oligonucleotide chains at abasic sites. Without being bound by theory, depurination may affect sequence integrity by generating short, truncated sequences that can typically be mapped to purine nucleobases. Thus, high yield, high quality synthesis of oligonucleotides is supported by control of depurination combined with highly efficient coupling and 5′-hydroxyl deprotection reactions. With high coupling yields and low depurination, long, high quality oligonucleotides can be synthesized without the need for extensive purification and/or PCR amplification to compensate for the low yield. The methods and compositions of the invention in various embodiments provide conditions to achieve such high coupling yields, low depurination, and effective removal of protecting groups.
  • In various embodiments, the methods and compositions of the invention described herein rely on standard phosphoramidite chemistry on a functionalized substrate, e.g. a silylated wafer optionally using suitable modifications, known in the art, Typically, after the deposition of a monomer, e.g. a mononucleotide, a dinucleotide, or a longer oligonucleotide with suitable modifications for phosphoramidite chemistry one or more of the following steps may be performed at least once to achieve the step-wise synthesis of high-quality polymers in situ: 1) Coupling, 2) Capping, 3) Oxidation, 4) Sulfurization, 5) Deblocking (detritylation), and 6) Washing. Typically, either oxidation or sulfurization will be used as one of the steps, but not both. FIG. 11 exemplifies a four-step phosphoramidite synthesis method comprising coupling, capping, oxidation and deblocking steps.
  • Elongation of a growing oligodeoxynucleotide may be achieved through subsequent additions of phosphoramidite building blocks typically via the formation of a phosphate triester internucleotide bond. During the coupling step, a solution of phosphoramidite building blocks, e.g. nucleoside phosphoramidite (or a mixture of several phosphoramidites), typically at 0.02-0.2 M concentration, in acetonitrile may be activated, e.g. by a solution of an acidic azole catalyst, 1H-tetrazole, 2-ethylthiotetrazole (Sproat et al., 1995, “An efficient method for the isolation and purification of oligoribonucleotides”. Nucleosides & Nucleotides 14 (1&2): 255-273), 2-benzylthiotetrazole (Stutz et al., 2000, “Novel fluoride-labile nucleobase-protecting groups for the synthesis of 3′(2′)-O-amino-acylated RNA sequences”, Helv. Chim. Acta 83 (9): 2477-2503; Welz et al., 2002, “5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis”, Tetrahedron Lett., 43 (5): 795-797), 4,5-dicyanoimidazole (Vargeese et al., 1998, “Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis”, Nucl. Acids Res., 26 (4): 1046-1050) or a number of similar compounds, typically at 0.2-0.7 M concentration. The mixing may be achieved in fluid lines of an inkjet while the components are being delivered to selected spots of a suitable substrate described in further detail elsewhere herein. The phosphoramidite building blocks, such as those activated as described above, are typically provided in 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound material is then brought in contact with the starting solid support (first coupling) or a support-bound oligonucleotide precursor (following couplings). In 3′ to 5′ synthesis, 5′-hydroxy group of the precursor may be set to react with the activated phosphoramidite moiety of the incoming nucleoside phosphoramidite to form a phosphite triester linkage. The reaction is also highly sensitive to the presence of water, particularly when dilute solutions of phosphoramidites are used, and is typically carried out in anhydrous acetonitrile. Upon the completion of the coupling, any unbound reagents and by-products may be removed by a wash step.
  • The product of the coupling reaction may be treated with a capping agent that can e.g. esterify failure sequences and/or cleave phosphate reaction products on the heterocyclic bases. The capping step may be performed by treating the solid support-bound material with a mixture of acetic anhydride and 1-methylimidazole or DMAP as catalysts and may serve two purposes: After the completion of the coupling reaction, a fraction of the solid support-bound 5′—OH groups (e.g. 0.1 to 1%) may remain unreacted. These unreacted groups can be permanently blocked from further chain elongation to prevent the formation of oligonucleotides with an internal base deletion commonly referred to as (n−1) shortmers. The unreacted 5′-hydroxy groups can be acetylated by the capping mixture. Further, phosphoramidites activated with 1H-tetrazole are understood to react, to a small extent, with the 06 position of guanosine. Without being bound by theory, upon oxidation with I2/water, this side product, possibly via O6-N7 migration, may undergo depurination. The apurinic sites may end up being cleaved in the course of the final deprotection of the oligonucleotide thus reducing the yield of the full-length product. The 06 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water.
  • The synthesis of oligonucleotide phosphorothioates (OPS; described in further detail elsewhere herein) typically does not involve the oxidation with I2/water, and, to that extent, does not suffer from the side reaction described above. On the other hand, the capping mixture may interfere with the sulfur transfer reaction. Without being bound by theory, the capping mixture my cause extensive formation of the phosphate triester internucleosidic linkages in place of the desired PS triesters. Therefore, for the synthesis of OPS, the sulfurization step may be performed prior to any capping steps.
  • The support-bound material may be treated with iodine and water, typically in the presence of a weak base (e.g. pyridine, lutidine, or collidine) to affect oxidization of the phosphite triester into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester intemucleosidic linkage. Oxidation may be carried out under anhydrous conditions using, e.g. tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). The step of oxidation may be substituted with a sulfurization step to obtain oligonucleotide phosphorothioates.
  • Synthesis of oligonucleotide phosphorothioates (OPS) can be achieved similar to that of natural oligonucleotides using the methods and compositions of the invention in various embodiments. Briefly, the oxidation step can be replaced by the sulfur transfer reaction (sulfurization) and any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).
  • A deblocking (or detrytilation) step may serve to remove blocking groups, such as the DMT group, e.g. with a solution of an acid, such as 2% trichloroacetic acid (TCA) or 3% dichloroacetic acid (DCA), in an inert solvent (dichloromethane or toluene). A washing step may be performed. The solid support-bound oligonucleotide precursor is affected to bear a free 5′-terminal hydroxyl group. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound oligonucleotide and thus reduces the yield of the desired full-length product. Methods and compositions of the invention described herein provide for controlled deblocking conditions limiting undesired depurination reactions.
  • In some embodiments, an oxidation solution comprising about 0.02 M 12 in THF/pyridine/H2O or any suitable variations obvious to one skilled in the art may be used. The detritylation solution may be 3% dichloroacetic acid (DCA) or 2% tricholoroacetic acid (TCA) in toluene or dichloromethane or any other suitable inert solvent. Suitable variations of the detrytilation solution are understood to be obvious to one skilled in the art. The methods and compositions of the invention allow for the displacement of the detrytilation solution without allowing for significant evaporation of the solvent, preventing concentrated spots of the depurinating components, e.g. DCA or TCA. For example, a chasing solution may be run after the detrytilation solution. The density of the chasing solution may be adjusted to achieve a first in first out process. A slightly denser chasing solution may be used to achieve this outcome. For example, the detrytilation solution may be chased with the oxidation solution. The chasing solution may comprise a quenching agent, such as pyridine. In some embodiments, continuous liquid conditions are used until the deblocking solution is substantially removed from the oligonucleotide synthesis loci on a substrate. The concentration of the depurinating components may be tightly controlled, e.g. limiting their values on oligonucleotide synthesis loci of a substrate to be less than 3-, 2.5-, 2-, 1.5-, 1.4-, 1.3-, 1.25-, 1.2-, 1.15-, 1.1-, 1.05-, 1.04-, 1.03-, 1.02-, 1.01-, 1.005-fold or less of the original concentration.
  • The displacement process can be optimized to adequately control the chemical dosage on the oligonucleotide synthesis loci within a useful range. The dosage may collectively refer to the summed kinetic effects of time, concentration and temperature on both the completion of the intended reaction (detritylation) and the extent of the side reaction (depurination).
  • Further, detrytilation, by virtue of being reversible, may result in the synthesis of a series of oligomers lacking one or more of the correct nucleotides. A two-step chemistry proposed by Sierzchala et al. (Solid-phase oligodeoxynucleotide synthesis: A two-step cycle using peroxy anion deprotection. J. Am. Chem. Soc. 2003; 125:13427-13441) can address the issue of depurination by eliminating the use of acid deprotection of the 5′ or 3′ ends of the growing chain. The two-step synthesis cycle makes use of aqueous peroxy anions buffered under mildly basic conditions, e.g. about pH 9.6, to remove an aryloxycarbonyl group, which substitutes the DMT group commonly used in the four-step phosphormidite synthesis. Accordingly, the peroxy anion solution, or any suitable variation with strong nucleophylic and mildly oxidizing properties permits consolidating deblocking and oxidization steps into one. Further, high cyclical yields allows for the elimination of capping steps.
  • Deprotection and cleavage of the DNA from the substrate may be performed as described by Cleary et al. (Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nature Methods. 2004; 1:241-248), for example by treatment with NH4OH, by applying ultraviolet light to a photocleavable linker, by targeting, e.g. heat treating, apurinic sites, such as those generated by uracil-DNA glycosylase treatment of incorporated dU-residues, or any suitable cleavage method known in the art. Oligonucleotides may be recovered after cleavage by lyophylization.
  • In order to host phosphoramidite chemistry, the surface of the oligonucleotide synthesis loci of a substrate can be chemically modified to provide a proper site for the linkage of the growing nucleotide chain to the surface. Various types of surface modification chemistry exist which allow a nucleotide to attached to the substrate surface. Surface modifications may vary in their implementation depending on whether the oligonucleotide chain is to be cleaved from the surface concomitant with deprotection of the nucleic acid bases, or left attached to the surface after deprotection. Various types of suitable surface modification chemistries are known in the art and are described at www.glenresearch.com, which is incorporated herein by reference in its entirety. One surface modification technique that allows for the exocyclic N atoms of the A, G and C bases to be deprotected while having the oligonucleotide chain remain attached to the substrate.
  • Another scheme comprises reacting a trialkoxysilyl amine (e.g. (CH3CH2O)3Si—(CH2)2-NH2) with the glass or silica surface SiOH groups, followed by reaction with succinic anhydride with the amine to create and amide linkage and a free OH on which the nucleotide chain growth could commence.
  • A third type of linker group may be based on photocleavable primers. This type of linker allows for oligonucleotide to be removed from the substrate (by irradiation with light, e.g. ˜350 nm light) without cleaving the protecting groups on the nitrogenous functionalities on each base. The typical ammonia or NH3 treatment deprotects everything when used as the reagent to cleave the oligomers from the substrate. The use of photocleavable linkers of this sort is described at www.glenresearch.com. Various other suitable cleavable linker groups are known in the art and may alternatively be used.
  • Time frames for oxidation and detritylation may typically be about 30 s and 60 s, respectively. The reagents may be drained, followed by washes of acetonitrile (ACN). In the depurination controlled detritylation processes, the detritylation solution may be driven out using a continuous inflow of oxidation solution without a drain step in between.
  • Precise control of the flow of reagents during the in situ synthesis steps allows for improved yield, uniformity and quality of the products. For example, the acid concentration and detritylation times can be precisely controlled. A water contact angle for the substrate, in particular, for regions of in situ synthesis and/or surrounding areas, may be chosen in order to reduce depurination and/or speed of synthesis. Proper desired values of water contact angle are described elsewhere herein. In some embodiments, lower amount of depurination may be achieved on surfaces of higher surface energy, i.e. lower contact angle.
  • The methods and compositions of the invention allow for a reduced rate of depurination during oligonucleotide synthesis, e.g. at a rate of less than 0.1%, 0.09%%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001%, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002%, 0.0001% per cycle or less. Further, methods and compositions of the invention described herein allow for the reduction or elimination of a depurination gradient across the surface of a substrate supporting in situ synthesis of oligonucleotides. Thus, highly uniform, high quality, and high-yield oligonucleotide synthesis can be achieved on substrates that can host a high density of resolved oligonucleotide loci.
  • In situ synthesis of oligonucleotides typically starts with the solid support being relatively hydrophobic, and subsequently growing increasingly more hyrdrophylic with the synthesis of oligonucleotide features affecting its surface energy. Oligonucleotide features can gain substantial surface energy with increasing oligonucleotide length. Generally, these sites or features consisting of protected oligonucleotide acquire enough surface energy to become spontaneously wetting to high surface tension organic solvents commonly used in phosphoramidite synthesis, such as acetonitrile or propylene carbonate, after about 10-20 synthesis cycles. The methods and compositions of the invention allow for varying parameters, such as time, flow rate, temperature, volume, viscosity, or reagent concentration, during the synthesis of a growing oligonucleotide as a function of length to account for the changing surface properties on loci of oligonucleotide synthesis. Such a variation may be applied by continuously changing parameters in constant or varying increments at repeating cycles of the synthesis. Alternatively, parameters may be changed at only selected cycles of the synthesis and can optionally follow a pattern, such as every other cycle, every third, fourth, fifth, sixth, seventh, eighth, ninth, tenth cycle etc.
  • In various embodiments, the methods and compositions of the invention contemplate a library of oligonucleotides synthesized on a substrate, wherein the library comprises oligonucleotides of varying sizes, as described in further detail elsewhere herein. Further, the methods and compositions of the invention allow for the synthesis of substantially similar amounts of oligonucleotides, or in some cases varying preselected amounts of oligonucleotides, of varying size, sequence or nucleotide composition on a substrate. The variation in amounts may be limited to less than 50%, 40%, 30%, 25%, 20%, 5%1, 10%, 5%, 3%, 2%, 1%, 0.5%, 0.1% or less between any two synthesized oligonucleotides, or alternatively, as relative error or percent deviation across the library. The methods and compositions of the invention described herein contemplate synthesized oligonucleotides on a substrate at desired amounts as described in further detail elsewhere herein.
  • In some embodiments, the methods and compositions of the invention permit the synthesis of libraries of oligonucleotides on substrates, in which the stoichiometry of each oligonucleotide is tightly controlled and tunable by varying the relative number of features synthesized. Suitable surface functionalizations and coatings to finetune the density of growing oligonucleotides on resolved loci of substrates are described in further detail elsewhere herein and can be uniformly applied to all microstructures of a substrate, or alternatively, can be applied at selected amounts and ratios to individual microstructures.
  • The in situ synthesis methods include those described in U.S. Pat. No. 5,449,754 for synthesizing peptide arrays, as well as WO 98/41531 and the references cited therein for synthesizing polynucleotides (specifically, DNA) using phosphoramidite or other chemistry. Additional patents describing in situ nucleic acid array synthesis protocols and devices include U.S. Pub. No. 2013/0130321 and U.S. Pub. No. 2013/0017977, and the references cited therein, incorporated herein by reference in their entirety.
  • Such in situ synthesis methods can be basically regarded as iterating the sequence of depositing droplets of: a protected monomer onto predetermined locations on a substrate to link with either a suitably activated substrate surface (or with previously deposited deprotected monomer); deprotecting the deposited monomer so that it can react with a subsequently deposited protected monomer; and depositing another protected monomer for linking. Different monomers may be deposited at different regions on the substrate during any one cycle so that the different regions of the completed array will carry the different biopolymer sequences as desired in the completed array. One or more intermediate further steps may be required in each iteration, such as oxidation, sulfurization, and/or washing steps.
  • Various methods which can be used to generate an array of oligonucleotides on a single substrate are described in U.S. Pat. Nos. 5,677,195, 5,384,261, and in PCT Publication No. WO 93/09668. In the methods disclosed in these applications, reagents are delivered to the substrate by either (1) flowing within a channel defined on predefined regions or (2)“spotting” on predefined regions, or (3) through the use of photoresist. However, other approaches, as well as combinations of spotting and flowing, can be employed. In each instance, certain activated regions of the substrate are mechanically separated from other regions when the monomer solutions are delivered to the various reaction sites. Thus, in situ synthesis of oligonucleotides can be achieved applying various suitable methods of synthesis known in the art to the methods and compositions described herein. One such method is based on a photolithographic technique which involves direct in situ synthesis of oligonucleotides at resolved pre-determined sites on the solid or polymeric surface, using photolabile protecting groups (Kumar et al., 2003). The hydroxyl groups can be generated on the surface and blocked by photolabile-protecting groups. When the surface is exposed to ˜UV light, e.g. through a photolithographic mask, a pattern of free hydroxyl groups on the surface may be generated. These hydroxyl groups can react with photoprotected nucleosidephosphoramidites, according to phosphoramidite chemistry. A second photolithographic mask can be applied and the surface can be exposed to UV light to generate second pattern of hydroxyl groups, followed by coupling with 5′-photoprotected nucleosidephosphoramidite. Likewise, patterns can be generated and oligomer chains can be extended. Several photolabile-protecting groups, which can be removed cleanly and rapidly from the 5′-hydroxyl functionalities are known in the art. Without being bound by theory, the lability of a photocleavable group depends on the wavelength and polarity of a solvent employed and the rate of photocleavage may be affected by the duration of exposure and the intensity of light. This method can leverage a number of factors, e.g. accuracy in alignment of the masks, efficiency of removal of photo-protecting groups, and the yields of the phosphoramidite coupling step. Further, unintended leakage of light into neighboring sites can be minimized. The density of synthesized oligomer per spot can be monitored by adjusting loading of the leader nucleoside on the surface of synthesis.
  • It is understood that the methods and compositions of the invention can make use of a number of suitable techniques of construction that are well known in the art e.g., maskless array synthesizers, light directed methods utilizing masks, flow channel methods, spotting methods etc. In some embodiments, construction and/or selection oligonucleotides may be synthesized on a solid support using maskless array synthesizer (MAS). Maskless array synthesizers are described, for example, in PCT application No. WO 99/42813 and in corresponding U.S. Pat. No. 6,375,903. Other examples are known of maskless instruments which can fabricate a custom DNA microarray in which each of the features in the array has a single-stranded DNA molecule of desired sequence. Other methods for synthesizing construction and/or selection oligonucleotides include, for example, light-directed methods utilizing masks, flow channel methods, spotting methods, pin-based methods, and methods utilizing multiple supports. Light directed methods utilizing masks (e.g., VLSIPS™ methods) for the synthesis of oligonucleotides is described, for example, in U.S. Pat. Nos. 5,143,854, 5,510,270 and 5,527,681. These methods involve activating predefined regions of a solid support and then contacting the support with a preselected monomer solution. Selected regions can be activated by irradiation with a light source through a mask much in the manner of photolithography techniques used in integrated circuit fabrication. Other regions of the support remain inactive because illumination is blocked by the mask and they remain chemically protected. Thus, a light pattern defines which regions of the support react with a given monomer. By repeatedly activating different sets of predefined regions and contacting different monomer solutions with the support, a diverse array of polymers is produced on the support. Other steps, such as washing unreacted monomer solution from the support, can be optionally used. Other applicable methods include mechanical techniques such as those described in U.S. Pat. No. 5,384,261. Additional methods applicable to synthesis of construction and/or selection oligonucleotides on a single support are described, for example, in U.S. Pat. No. 5,384,261. For example, reagents may be delivered to the support by flowing within a channel defined on predefined regions or “spotting” on predefined regions. Other approaches, as well as combinations of spotting and flowing, may be employed as well. In each instance, certain activated regions of the support are mechanically separated from other regions when the monomer solutions are delivered to the various reaction sites. Flow channel methods involve, for example, microfluidic systems to control synthesis of oligonucleotides on a solid support. For example, diverse polymer sequences may be synthesized at selected regions of a solid support by forming flow channels on or in a surface of the support through which appropriate reagents flow or in which appropriate reagents are placed. Spotting methods for preparation of oligonucleotides on a solid support involve delivering reactants in relatively small quantities by directly depositing them in selected regions or structures fluidically connected to the same. In some steps, the entire support surface can be sprayed or otherwise coated with a solution. Precisely measured aliquots of monomer solutions may be deposited dropwise by a dispenser that moves from region to region. Pin-based methods for synthesis of oligonucleotides on a solid support are described, for example, in U.S. Pat. No. 5,288,514. Pin-based methods utilize a support having a plurality of pins or other extensions. The pins are each inserted simultaneously into individual reagent containers in a tray.
  • In an alternative approach, light directed synthesis of high density microarrays can be achieved in 5′-3′ direction (Albert et al., 2003). This approach allows for downstream reactions, such as parallel genotyping or sequencing, to be done on the synthesis surface, because 3′-end is available for enzymatic reactions, such as sequence specific primer extension and ligation reactions. Complete or substantially complete deprotection of photoprotected 5′—OH groups, base-assisted photo-deprotection of NPPOC (2-(2-nitrophenyl) propoxy carbonyl) can be used (Beier et al., 2002).
  • The methods and compositions described herein may facilitate the production of synthetic nucleic acids using in situ synthesis on substrates of various geometries, including planar or irregular surfaces. Various materials suitable for these substrates, e.g. silicon, are described herein are otherwise known in the art. A substrate may be loaded with a multiplicity of different sequences during the synthesis. In situ synthesis methods on substrates allows for the preparation of a multiplicity of oligomers of different and defined sequences at addressable locations on a common support. The methods and compositions described herein allow for the in situ synthesis of oligonucleotides that are longer and higher quality as further described elsewhere herein. The synthesis steps can incorporate various sets of feed materials, in the case of oligonucleotide synthesis, as a rule the 4 bases A, G, T and C, as well as suitable modified bases known in the art some of which are described herein, may be used building up desired sequences of nucleic acid polymers in a resolved manner on a support or substrate.
  • The fabrication and application of high density oligonucleotides on solid support, e.g. arrays, have been further disclosed previously in, for example, PCT Publication No's WO 97/10365, WO 92/10588, U.S. Pat. No. 6,309,822 filed Dec. 23, 1996; U.S. Pat. No. 6,040,138 filed on Sep. 15, 1995; Ser. No. 08/168,904 filed Dec. 15, 1993; Ser. No. 07/624,114 filed on Dec. 6, 1990, Ser. No. 07/362,901 filed Jun. 7, 1990, and in U.S. Pat. No. 5,677,195, all incorporated herein for all purposes by reference. In some embodiments using high density arrays, high density oligonucleotide arrays are synthesized using methods such as the Very Large Scale Immobilized Polymer Synthesis (VLSIPS) disclosed in U.S. Pat. Nos. 5,445,934 and 6,566,495, both incorporated herein for all purposes by reference. Each oligonucleotide occupies a known location on a substrate.
  • Various other suitable methods of forming high density arrays of oligonucleotides, peptides and other polymer sequences with a minimal number of synthetic steps are known in the art. The oligonucleotide analogue array can be synthesized on a solid substrate by a variety of methods, including, but not limited to, light-directed chemical coupling and mechanically directed coupling. See Pirrung et al., U.S. Pat. No. 5,143,854 (see also PCT Application No. WO 90/15070) and Fodor et al., PCT Publication Nos. WO 92/10092 and WO 93/09668 and U.S. Ser. No. 07/980,523, which disclose methods of forming vast arrays of peptides, oligonucleotides and other molecules using, for example, light-directed synthesis techniques. See also, Fodor et al., Science, 251, 767-77 (1991). These procedures for synthesis of polymer arrays are now referred to as VLSIPS procedures. Using the VLSIPS approach, one heterogeneous array of polymers is converted, through simultaneous coupling at a number of reaction sites, into a different heterogeneous array. See, U.S. application Ser. Nos. 07/796,243 and 07/980,523.
  • In the event that an oligonucleotide analogue with a polyamide backbone is used in the VLSIPS procedure, it is often unsuitable to use phosphoramidite chemistry to perform the synthetic steps, since the monomers do not attach to one another via a phosphate linkage. Instead, peptide synthetic methods can be substituted e. g., as described by Pirrung et al. in U.S. Pat. No. 5,143,854, which is herein incorporated by reference in its entirety.
  • The individual molecular species can be demarcated by separate fluidic compartments for addition of the synthesis feed materials, as is the case e.g. in the so-called in situ spotting method or piezoelectric techniques, based on inkjet printing technology (A. Blanchard, in Genetic Engineering, Principles and Methods, Vol. 20, Ed. J. Sedlow, 111-124, Plenum Press; A. P. Blanchard, R. J. Kaiser, L. E. Hood, High-Density Oligonucleotide Arrays, Biosens. & Bioelectronics 11, 687, 1996). Resolved in situ synthesis of oligonucleotides can further be achieved by the spatially-resolved activation of synthesis sites, which is possible through selective illumination, through selective or spatially-resolved generation of activation reagents (deprotection reagents) or through selective addition of activation reagents (deprotection reagents).
  • Examples of the methods known to date for the in situ synthesis of arrays are photolithographic light-based synthesis (McGall, G. et al.; J. Amer. Chem. Soc. 119; 5081-5090; 1997), projector-based light-based synthesis (PCT/EP99/06317), fluidic synthesis by means of physical separation of the reaction spaces (known by a person skilled in the art from the work of Prof E. Southern, Oxford, UK, and of the company Oxford Gene Technologies, Oxford, UK), indirect projector-based light-controlled synthesis by light-activated photo-acids and suitable reaction chambers or physically separated reaction spaces in a reaction support, electronically induced synthesis by spatially-resolved deprotection on individual electrodes on the support using proton production induced by the electrodes, and fluidic synthesis by spatially-resolved deposition of the activated synthesis monomers (known from A. Blanchard, in Genetic Engineering, Principles and Methods, Vol. 20, Ed. J. Sedlow, 111-124, Plenum Press; A. P. Blanchard, R. J. Kaiser, L. E. Hood, High-Density Oligonucleotide Arrays, Biosens. & Bioelectronics 11, 687, 1996).
  • Methods of preparation of synthetic nucleic acids, in particular nucleic acid double strands on a common solid support, are also known from PCT Publications WO 00/49142 and WO 2005/051970, both of which are herein incorporated by reference in their entirety.
  • In situ preparation of nucleic acid arrays, can be achieved, 3′ to 5′, as well as the more traditional 5′ to 3′ direction. Addition of reagents may be achieved by pulse-jet depositing, e.g. an appropriate nucleotide phosphoramidite and an activator to each resolved locus on or in a substrate surface, e.g., a coated silicon wafer surface. The resolved loci of the substrate may further be subjected to additional reagents of the other phosphoramidite cycle steps (deprotection of the 5′-hydroxyl group, oxidation, sulfurization and/or sulfurization), which may be performed in parallel. The deposition and common phosphoramidite cycle steps may be performed without moving the oligonucleotide synthesis wafer. For example, the reagents may be passed over resolved loci within a substrate, by flowing them through the substrate from one surface to the opposite surface of the substrate. Alternatively, the substrate may be moved, e.g. to a flow cell, for some of the phosphoramidite cycle steps. The substrate can then be repositioned, re-registered, and/or re-aligned before printing a next layer of monomers.
  • Substrates with oligonucleotides can be fabricated using drop deposition from pulsejets of either polynucleotide precursor units (such as monomers) in the case of in situ fabrication, or a previously synthesized polynucleotide. Such methods are described in detail in, for example, the U.S. Pub. No. 2013/0130321 and U.S. Pub. No. 2013/0017977, and the references cited therein, incorporated herein by reference in their entirety. These references are incorporated herein by reference. Other drop deposition methods can be used for fabrication, as described elsewhere herein. Also, instead of drop deposition methods, light directed fabrication methods may be used, as are known in the art. Interfeature areas need not be present particularly when the arrays are made by light directed synthesis protocols.
  • A variety of known in situ fabrication devices can be adapted, where representative pulse-jet devices include, but are not limited to, those described in U.S. Pub. No. US2010/0256017, U.S. Pat. Pub. No. US20120050411, and U.S. Pat. No. 6,446,682, the disclosures of which patents are herein incorporated by reference in their entirety.
  • In various embodiments, biopolymer arrays on or inside substrates can be fabricated using either deposition of the previously obtained biopolymers or in situ synthesis methods. The deposition methods typically involve depositing biopolymers at predetermined locations on or in a substrate which are suitably activated such that the biopolymers can link thereto. Biopolymers of different sequences may be deposited at different regions on or in a substrate. Typical procedures known in the art for deposition of previously obtained polynucleotides, particularly DNA, such as whole oligomers or cDNA, includes, but is not limited to loading the polynucleotide into a drop dispenser in the form of a pulse jet head and fired onto the substrate. Such a technique has been described in WO 95/25116 and WO 98/41531, both of which are herein incorporated by reference in their entirety. Various suitable forms of inkjets for drop depositions to resolved sites of a substrate are known in the art.
  • In some embodiments, the invention may rely on the use of pre-synthesized oligonucleotides within an entire oligonucleotide library or parts thereof, for example, an oligonucleotide library immobilized on a surface. Substrates supporting a high density of nucleic acid arrays can be fabricated by depositing presynthesized or natural nucleic acids in predetermined positions on, in, or through a substrate. Synthesized or natural nucleic acids may be deposited on specific locations of a substrate by light directed targeting, oligonucleotide directed targeting, or any other suitable method known in the art. Nucleic acids can also be directed to specific locations. A dispenser that moves from region to region to deposit nucleic acids in specific spots can be used. The dispenser may deposit the nucleic acid through microchannels leading to selected regions. Typical dispensers include a micropipette or capillary pin to deliver nucleic acid to the substrate and a robotic system to control the position of the micropipette with respect to the substrate. In other embodiments, the dispenser includes a series of tubes, a manifold, an array of pipettes or capillary pins, or the like so that various reagents can be delivered to the reaction regions simultaneously.
  • Attachment of pre-synthesized oligonucleotide and/or polynucleotide sequences to a support and in situ synthesis of the same using light-directed methods, flow channel and spotting methods, inkjet methods, pin-based methods and bead-based methods are further set forth in the following references: McGall et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93: 13555; Synthetic DNA Arrays In Genetic Engineering, Vol. 20: 111, Plenum Press (1998); Duggan et al. (1999) Nat. Genet. S21: 10; Microarrays: Making Them and Using Them In Microarray Bioinformatics, Cambridge University Press, 2003; U.S. Patent Application Publication Nos. 2003/0068633 and 2002/0081582; U.S. Pat. Nos. 6,833,450, 6,830,890, 6,824,866, 6,800,439, 6,375,903 and 5,700,637; and PCT Publication Nos. WO 04/031399, WO 04/031351, WO 04/029586, WO 03/100012, WO 03/066212, WO 03/065038, WO 03/064699, WO 03/064027, WO 03/064026, WO 03/046223, WO 03/040410 and WO 02/24597; the disclosures of which are incorporated herein by reference in their entirety for all purposes. In some embodiments, pre-synthesized oligonucleotides are attached to a support or are synthesized using a spotting methodology wherein monomers solutions are deposited dropwise by a dispenser that moves from region to region (e.g., inkjet). In some embodiments, oligonucleotides are spotted on a support using, for example, a mechanical wave actuated dispenser.
  • The systems described herein can further include a member for providing a droplet to a first spot (or feature) having a plurality of support-bound oligonucleotides. In some embodiments, the droplet can include one or more compositions comprising nucleotides or oligonucleotides (also referred herein as nucleotide addition constructs) having a specific or predetermined nucleotide to be added and/or reagents that allow one or more of hybridizing, denaturing, chain extension reaction, ligation, and digestion. In some embodiments, different compositions or different nucleotide addition constructs may be deposited at different addresses on the support during any one iteration so as to generate an array of predetermined oligonucleotide sequences (the different features of the support having different predetermined oligonucleotide sequences). One particularly useful way of depositing the compositions is by depositing one or more droplet, each droplet containing the desired reagent (e.g. nucleotide addition construct) from a pulsejet device spaced apart from the support surface, onto the support surface or features built into the support surface.
  • To make it possible to automate the chemical method of polymer synthesis from subunits, solid phases are often employed, on which the growing molecular chain is anchored. On completion of synthesis it may be split off, which may be achieved by breaking a suitable linker between the actual polymer and the solid phase. For automation, the method may employ a substrate surface directly or the method may employ a substrate surface of solid phases in the form of activated particles, which are packed in a column or microchannel in a substrate, e.g. controlled pore glass (CPG). The substrate surface at times can carry one specifically removable type of oligo with a predetermined sequence. The individual synthesis reagents can be then added in a controllable manner. The quantity of molecules synthesized can be controlled by various factors, including but not limited to the size of the dedicated substrate surface, amount of support material, the size of the reaction batches, available functionalized substrate area for synthesis, the degree of functionalization, or the duration of the synthesis reaction.
  • Thus, various embodiments of the invention relate to the manufacturing and use of substrates holding a library of compositions, typically oligonucleotides. A substrate with resolved features is “addressable” when it has multiple regions of different moieties (e.g., different polynucleotide sequences) such that a region (i.e., a “feature” or “spot” of the substrate) at a particular predetermined location (i.e., an “address”) on the substrate will detect a particular target or class of targets (although a feature may incidentally detect non-targets of that location). Substrate features are typically, but need not be, separated by intervening spaces. In some cases, features may be built into a substrate and may create one-, two-, or three-dimensional microfluidic geometries. A “substrate layout” refers to one or more characteristics of the features, such as feature positioning on the substrate, one or more feature dimensions, and an indication of a moiety at a given location.
  • Synthesis of Other Molecules
  • The subject methods and compositions can be used to synthesize other types of molecules of interest. The synthesis of peptides at selected grid regions is one such case. Various suitable chemistries used in stepwise growth of peptides on an array surface are known in the art. The peptide synthesis techniques described in U.S. Pat. No. 5,449,754, incorporated herein by reference in its entirety, may be used with the present invention. The methods and compositions of the invention described herein also find uses in chemical synthesis of drugs, protein inhibitors or any chemical synthesis in which the rapid synthesis of a plurality of compounds is desired.
  • Gene Assembly
  • In various embodiments, the present invention relates to the preparation of a polynucleotide sequence (also called “gene”) using assembly of overlapping shorter oligonucleotides synthesized or spotted on substrate surfaces or alternatively, substrates housing suitable surfaces for the synthesis or spotting of oligonucleotides, e.g. beads. The shorter oligonucleotides may be patchworked together on the same strand using annealing oligonucleotides with complementary regions to consecutive assembled oligonucleotides, e.g. using a polymerase lacking strand displacement activity, a ligase, Click chemistry, or any other suitable assembly method known in the art. In this fashion, the sequence of the annealing nucleotide may be replicated between the consecutive oligonucleotides of the opposing strand. In some cases, consecutive oligonucleotides of the same strand may be stitched together without the introduction of sequence elements from the annealing oligonucleotide, for example using a ligase, Click chemistry, or any other suitable assembly chemistry known in the art. In some cases, longer polynucleotides can be synthesized hierarchically through rounds of assembly involving shorter polynucleotides/oligonucleotides.
  • Genes or genomes can be synthesized de novo from oligonucleotides by assembling large polynucleotides as described in the synthesis of a viral genome (7.5 kb; Cello et al, Science, 2002, 297, 1016), bacteriophage genome (5.4 kb; Smith et al, Proc. Natl. Acad. Sci. USA, 2003, 100, 15440), and a gene cluster as large as 32 kb (Kodumal et al, Proc. Natl. Acad. Sci. USA, 2004, 101, 15573), all of which are herein incorporated by reference in their entirety. Libraries of long synthetic DNA sequence can be manufactured, following the methods described in the 582 kb the genome assembly of a bacterium (Mycoplasma genitalium) by Venter and co-workers (Gibson et al, Science, 2008, 319, 1215), which is incorporated herein by reference in its entirety. Furthermore, large DNA biomolecules can be constructed with oligonucleotides, as described for the case of a 15 kb nucleic acid (Tian et al, Nature, 2004, 432, 1050; incorporated herein by reference in its entirety). The methods and compositions of the invention contemplate large libraries of de novo synthesized polynucleotide sequences using gene assembly methods described herein or known in the art. The synthesis of such sequences are typically performed in parallel in high densities on suitable regions of substrates that are described in further detail elsewhere herein. Further, these large libraries may be synthesized with very low error rates, described in further detail elsewhere herein.
  • Genes may be assembled from large numbers of synthesized oligonucleotides that are pooled. For example, gene synthesis using a pool of 600 distinct oligonucleotides can be applied as described by Tian et al. (Tian et al. Nature, 432:1050, 2004). The length of the assembled genes can be further extended by using longer oligonucleotides. For even larger genes and DNA fragments, for example larger than about 0.5, 1, 1.5, 2, 3, 4, 5 kb, or more, more than one rounds of synthesis may be applied, typically within a hierarchical gene assembly process. PCR assembly and synthesis from oligonucleotides as disclosed herein may be adapted for use in series, as described below.
  • A variety of gene assembly methods can be used according to the methods and compositions of the invention, ranging from methods such as ligase-chain reaction (LCR) (Chalmers and Curnow, Biotechniques, 30(2), 249-52, 2001; Wosnick et al, Gene, 60(1), 115-27, 1987) to suites of PCR strategies (Stemmer et al, 164, Gene, 49-53, 1995; Prodromou and L. H. Pearl, 5(8), Protein Engineering, 827-9, 1992; Sandhu et al, 12(1), BioTechniques, 14-6, 1992; Young and Dong, Nucleic Acids Research, 32(7), e59, 2004; Gao et al, Nucleic Acids Res., 31, e143, 2003; Xiong et al, Nucleic Acids Research, 32(12), e98, 2004) (FIG. 11 ). While most assembly protocols start with pools of overlapping synthesized oligos and end with PCR amplification of the assembled gene, the pathway between those two points can be quite different. In the case of LCR, the initial oligo population has phosphorylated 5′ ends that allow a ligase, e.g. Pfu DNA ligase, to covalently connect these “building blocks” together to form the initial template. PCR assembly, however, typically makes use of unphosphorylated oligos, which undergo repetitive PCR cycling to extend and create a full length template. Additionally, the LCR processes may require oligo concentrations in the μM range, whereas both single stranded and double stranded PCR options have concentration requirements that are much lower (e.g. nM range).
  • Published synthesis attempts have used oligos ranging in size from 20-70 bp, assembling through hybridization of overlaps (6-40 bp). Since many factors are determined by the length and composition of oligos (Tm, secondary structure, etc.), the size and heterogeneity of this population could have a large effect on the efficiency of assembly and quality of assembled genes. The percentage of correct final DNA product relies on the quality and number of “building block” oligos. Shorter oligos have lower mutated rate compared with that of longer oligos, but more oligos are required to build the DNA product. In addition, the reduced overlaps of shorter oligos results in lower Tm of the annealing reaction, which promotes non-specific annealing, and reduce the efficiency of the assembly process. Methods and compositions of the invention address this problem by delivering long oligonucleotides with low error rates.
  • A time varying thermal field refers to the time regulated heating of the microfluidic device to allow PCR amplification or PCA reactions to occur. The time varying thermal field may be applied externally, for example by placing a device substrate with reactors, e.g. nanoreactors on top of a thermal heating block, or integrated within a microfluidic device, for example as a thin film heater located immediately below the PCA and PCR chambers. A temperature controller can vary the temperature of the heating element in conjunction with a temperature sensor linked to a heater element, or integrated into the reaction chamber. A timer can vary the duration of heat applied to the reaction chambers.
  • The temperature of the thermal field may vary according to the denaturation, annealing and extension steps of PCR or PCA reactions. Typically, nucleic acids are denatured at about 95° C. for 2 min, followed by 30 or more cycles of denaturation at 95° C. for 30 sec, annealing at 40-60° C. for 30 sec and extension at about 72° C. for 30 sec, and a last extension of 72° C. for 10 min. The duration and temperatures used may vary depending on the composition of the oligonucleotides, PCR primers, amplified product size, template, and the reagents used, for example the polymerase.
  • Polymerases are enzymes that incorporate nucleoside triphosphates, or deoxynucleoside triphosphates, to extend a 3′ hydroxyl terminus of a PCR primer, an oligonucleotide or a DNA fragment. For a general discussion concerning polymerases, see Watson, J. D. et al, (1987) Molecular Biology of the Gene, 4th Ed., W. A. Benjamin, Inc., Menlo Park, Calif. Suitable polymerases include, but are not limited to, KOD polymerase; Pfu polymerase; Taq-polymerase; E. coli DNA polymerase I, “Klenow” fragment, T7 polymerase, T4 polymerase, T5 polymerase and reverse transcriptase, all of which are known in the art. A polymerase having proof-reading capability, such as Pfu and Pyrobest may be used to replicate DNA with high fidelity. Pfu DNA polymerase possesses 3′ to 5′ exonuclease proof-reading activity, thus it may correct nucleotide misincorporation errors. In various embodiments of the invention, the nucleic acid fragments are joined together preferably by a specific hybridization reaction between overlapping regions of mutually complementary segments of the nucleic acid fragments, thereby obtaining longer synthetic double-stranded nucleic acids. The individual sequence segments used for building up longer nucleic acids can have a length of, e.g. 20-200, 50-300, 75-350 or 100-400 nucleotide building blocks. Those of skill in the art appreciate that the sequence segment length may fall within any range bounded by any of these values (e.g., 20-350 or 200-350).
  • The sequence segments are preferably selected in such a way that they at least partially overlap a sequence segment of the antisense strand of the complementary nucleic acid that is to be synthesized, so that the nucleic acid strand to be synthesized can be built up by hybridization of individual sequence segments. In an alternative embodiment, the sequence segments are preferably selected so that the sequence segments on both strands of the nucleic acid to be synthesized completely overlap, and accordingly preparation of a more or less complete double strand now only requires covalent linkage of the phosphodiester backbone. The length of the complementary regions or overlaps between individual fragments can be e.g. 10-50, 10-100, 12-25, 20-80, 15-20, or 15-25 nucleotide building blocks. Those of skill in the art appreciate that the sequence segment length may fall within any range bounded by any of these values (e.g., 25-100 or 10-25). If the overlapping or complementarity region between two nucleic acid fragments has a high AT content, e.g. an AT content of greater than 50%, 60%, 65%, or higher the binding constant is lower in comparison with GC-richer sequences. Accordingly, for thermodynamic reasons, hybridization between these fragments may be of comparatively low efficiency. This can have an influence on the assembly of 2 or more fragments. A possible sequence-dependent consequence is a reduced yield of nucleic acid double strands with the correct target sequence. Accordingly, sequence segments to assemble genes can be designed with desired levels of GC content in overlapping regions, for example GC content of more than 35, 40, 45, 50, 55, 60, 65%, or higher. A more detailed discussion of exemplary gene assembly methods can be found in U.S. Pat. No. 8,367,335, which is herein incorporated by reference in its entirety.
  • In various embodiments, polymerase chain reaction (PCR)-based and non-polymerase-cycling-assembly (PCA)-based strategies can be used for chemical gene synthesis. In addition, non-PCA-based chemical gene synthesis using different strategies and methods, including enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, Blue Heron solid support technology, Sloning building block technology, RNA-mediated gene assembly, the PCR-based thermodynamically balanced inside-out (TBIO) (Gao et al., 2003), two-step total gene synthesis method that combines dual asymmetrical PCR (DA-PCR) (Sandhu et al., 1992), overlap extension PCR (Young and Dong, 2004), PCR-based two-step DNA synthesis (PTDS) (Xiong et al., 2004b), successive PCR method (Xiong et al., 2005, 2006a), or any other suitable method known in the art can be used in connection with the methods and compositions described herein, for the assembly of longer polynucleotides from shorter oligonucleotides.
  • The DNA sequences that have been chemically synthesized using the methods and compositions of the invention may extend to long polynucleotide sequences, for example, polynucleotide sequences of more than 500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 4000, 5000, 6000, 7500, 10000, 20000, 30000, 40000, 50000, 75000, 100000 base pairs or longer. The methods and compositions of the invention also allow for chemically synthesized polynucleotide sequences with very low error rates, as further described elsewhere herein.
  • In various embodiments, variations of the polymerase-mediated assembly techniques, collectively termed polymerase construction and amplification, are used for chemical synthesis of polynucleotides. Some of the commonly used technologies known in the art for custom gene synthesis are based on polymerase cycling assembly and may achieve de novo synthesis of longer polynucleotides through the assembly of a pool of oligonucleotides. The pool of oligonucleotides may be synthesized as building blocks for use in various gene synthesis techniques. The sequence, length and precise distribution of the oligonucleotides, as well as any sequence overlaps within the pool, may be designed according to the desired polynucleotide sequence and the assembly method used. The desired full-length DNA may be obtained, for example, by a few steps of PCR with necessary temperature conditions for denaturing, annealing, and elongating overlapping oligonucleotides.
  • PCR Assembly (PCA)
  • PCR assembly uses polymerase-mediated chain extension in combination with at least two oligonucleotides having complementary ends which can anneal such that at least one of the polynucleotides has a free 3′-hydroxyl capable of polynucleotide chain elongation by a polymerase (e.g., a thermostable polymerase such as Taq polymerase, VENT™ polymerase (New England Biolabs), KOD (Novagen) and the like). Overlapping oligonucleotides may be mixed in a standard PCR reaction containing dNTPs, a polymerase, and buffer. The overlapping ends of the oligonucleotides, upon annealing, create regions of double-stranded nucleic acid sequences that serve as primers for the elongation by polymerase in a PCR reaction. Products of the elongation reaction serve as substrates for formation of a longer double-strand nucleic acid sequences, eventually resulting in the synthesis of full-length target sequence. The PCR conditions may be optimized to increase the yield of the target long DNA sequence.
  • Various PCR based methods can be used to synthesize genes from oligonucleotides. These methods include, but are not limited to, the thermodynamically balanced inside-out (TBIO) method (Gao et al, Nucleic Acids Research, 31:e143, 2003), successive PCR (Xiong et al, Nucleic Acids Research, 32:e98, 2004), dual asymmetrical PCR (DA-PCR) (Sandhu et al, Biotechniques, 12:14, 1992), overlap extension PCR (OE-PCR) (Young and Dong, Nucleic Acids Research, 32:e59, 2004; Prodromou and Pearl, Protein Eng., 5:827, 1992) and PCR-based two step DNA synthesis (PTDS) (Xiong et al, Nucleic Acids Research, 32:e98, 2004), all of which are incorporated by reference herein in their entirety and can be adapted to assemble a PCR template in a microfluidic device.
  • DA-PCR is a one-step process for constructing synthetic genes. In one example, four adjacent oligonucleotides of, e.g. 17-100 bases in length with overlaps of, e.g. 15-17 bases are used as primers in a PCR reaction. Other suitable oligonucleotide and overlap sizes are within the bounds of the invention as further described herein. The quantity of the two internal primers is highly limited, and the resultant reaction causes an asymmetric single-stranded amplification of the two halves of the total sequence due to an excess of the two flanking primers. In subsequent PCR cycles, these dual asymmetrically amplified fragments, which overlap each other, yield a double-stranded, full-length product.
  • TBIO synthesis requires only sense-strand primers for the amino-terminal half and only antisense-strand primers for the carboxy-terminal half of a gene sequence. In addition, the TBIO primers may contain identical regions of temperature-optimized primer overlaps. The TBIO method involves complementation between the next pair of outside primers with the termini of a fully synthesized inside fragment. TBIO bidirectional elongation is completed for a given outside primer pair before the next round of bidirectional elongation takes place.
  • Successive PCR is a single step PCR approach in which half the sense primers correspond to one half of the template to be assembled, and the antisense primers correspond to the second half of the template to be assembled. With this approach, bidirectional amplification with an outer primer pair will not occur until amplification using an inner primer pair is complete.
  • PDTS typically involves two steps. First individual fragments of the DNA of interest are synthesized: In some embodiments of the invention, 10-12 oligonucleotides, such as oligonucleotides of length of about 60, 80, 100, 125, 150, 175, 200, 250, 300, 350, or more nucleotides, with about 20 bp overlap are mixed and a PCR reaction is carried out with a polymerase, such as pfu DNA, to produce longer DNA fragments. And second, the entire sequence of the DNA of interest is synthesized: 5-10 PCR products from the first step are combined and used as the template for a second PCR reaction with a polymerase, such as pyrobest DNA polymerase with two outermost oligonucleotides as primers.
  • Although PCR assembly using short oligonucleotides work well for relatively shorter nucleic acids, there may be a limit to the maximum number of oligonucleotides that can be assembled within a single reaction. This may impose a size limit on the double stranded DNA product. A solution to this problem is to make the DNA in series. In this scheme, multiple smaller DNA segments are synthesized in parallel in separate chambers, in multiple chips, or in series and then introduced together as precursors for the PCA reaction for assembly into a “larger” DNA fragment for subsequent PCR amplification. In other words, PCR assembly using oligonucleotides would result in a template (a first-run template) for PCR amplification. A number of first-run templates so produced may serve as precursors for PCA assembly of DNA fragments larger than the first-run templates, thus producing second-run templates. In turn, the second-run templates may serve as the precursors for the assembly of a third-run template, and so on. The approach may be repeated until the desired DNA is obtained.
  • The oligonucleotides used in the synthesis reactions are typically single stranded molecules for assembling nucleic acids that are longer than the oligonucleotide itself. An oligonucleotide may be e.g. 20-200, 50-300, 75-350 or 100-400 nucleotide building blocks. Those of skill in the art appreciate that the sequence segment length may fall within any range bounded by any of these values (e.g., 20-350 or 200-350). A PCA chamber containing a plurality of oligonucleotides refers to the pool of oligonucleotides necessary to produce a template corresponding to a gene or to a DNA fragment. When the synthesis reactions and devices are used in series, the PCA chamber in the subsequent series of reactions would contain a pool of DNA fragments instead of the starting oligonucleotides for assembly into templates for PCR. FIG. 12 demonstrates the polymerase cycling assembly of longer constructs from a pool of overlapping oligonucleotides into gradually longer constructs through multiple cycles of the reaction.
  • It is understood that longer oligonucleotides as described herein can be used advantageously in a variety of gene assembly methods to avoid assembly errors and increase the quality of synthesized genes (FIG. 13 ). Homologous repeats or high GC regions in a sequence to be assembled may introduce errors associated with the correct order and hybridization of smaller oligonucleotides. Longer oligonucleotides can circumvent these problems by reducing the number of oligonucleotides to be ordered and aligned, by avoiding problematic sequences, such as homology repeats or high GC regions from sites of alignment, and/or by reducing the number of assembly cycles required to assemble the desired gene.
  • Larger genes may be synthesized combining gene assembly methods hierarchically as exemplified in FIG. 14 . Accordingly, a number of genes of intermediary length, for example about 2 kb, can be assembled using a first gene assembly method, such as PCA. A second gene assembly method, e.g. Gibson Assembly (Gibson et al, Science, 2008, 319, 1215) may be utilized to combine the genes of intermediary length into larger genes, e.g. about 5 or 10 kb. Hierarchical assembly can be applied in stages. In vitro recombination techniques may be used to assemble cassettes of gene of intermediary length into increasingly longer sequences, e.g. more than 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000 kb or longer.
  • Oligonucleotides useful for the assembly of genes de novo may be synthesized on one or more solid supports. Exemplary solid supports include, for example, slides, beads, chips, particles, strands, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, polymers, or a microfluidic device. Further, the solid supports may be biological, nonbiological, organic, inorganic, or combinations thereof. On supports that are substantially planar, the support may be physically separated into regions, for example, with trenches, grooves, wells, or chemical barriers (e.g., hydrophobic coatings, etc.). Supports may also comprise physically separated regions built into a surface, optionally spanning the entire width of the surface. Suitable supports for improved oligonucleotide synthesis are further described herein.
  • In one aspect, the oligonucleotides may be provided on a solid support for use in a microfluidic device, for example, as part of the PCA reaction chamber. Alternatively, oligonucleotides may be synthesized and subsequently introduced into a microfluidic device.
  • Generally, the complete gene sequence is broken down into variable or fixed length (N) oligonucleotides as appropriate. A suitable oligonucleotide length can be chosen, e.g. 20-200, 50-300, 75-350 or 100-400 nucleotide building blocks. Those of skill in the art appreciate that the sequence segment length may fall within any range bounded by any of these values (e.g., 20-350 or 200-350). The length of the overlap between sub-sequences is about or less than about N/2, but may be chosen as the needs of the assembly reaction dictates, e.g. 6-40 bp, 10-20 bp and 20-30 bp of overlap. Those of skill in the art appreciate that the sequence segment length may fall within any range bounded by any of these values (e.g., 20-40 or 6-30). The amount of partial base complementarity may vary depending on the assembly method used. For various overlapping gene assembly methods, the PCA oligonucleotides may overlap at both the 5′ and 3′ ends, except those forming the ends of the resulting PCR template. Base pair mismatches between oligonucleotides may affect hybridization depending on the nature of the mismatch. Mismatches at or near the 3′ end of the oligonucleotide may inhibit extension. However, a G/C rich region of overlap may overcome mismatches thus resulting in templates containing errors. Accordingly, consideration of the overlap sequence, melting temperature, potential for cross-hybridization and secondary structure in oligonucleotide design can be taken into consideration.
  • Nucleic acid sequences resulting from a PCR assembly reaction may be referred as templates and serve as the target nucleic acid for the reproduction of a complementary strand by PCR. Typically, following an assembly reaction, the PCR assembly products may be double stranded DNA of variable sizes due perhaps to incomplete assembly and/or concatamers. In some embodiments, a first-run template is assembled from oligo-nucleotides. In other embodiments, a second-run template is assembled from DNA fragments comprising at least two first-run templates, the two templates being the PCR reaction products, optionally purified and/or error-filtered, obtained from the first two runs. A third-run template is assembled from DNA fragments comprising at least two second-run templates, which may be similarly error-filtered and so on.
  • Non-polymerase-cycling-assembly-based strategies, such as annealing and ligation reaction (Climie and Santi, 1990; Smith et al., 1990; Kalman et al., 1990), insertion gene synthesis (IGS) (Ciccarelli et al., 1990), gene synthesis via one strand (Chen et al., 1990), template-directed ligation (TDL) (Strizhov et al., 1996), ligase chain reaction (Au et al., 1998), or any suitable assembly method known in the art may also be used for chemical synthesis of polynucleotides. Other non-polymerase-cycling-assembly-based gene synthesis strategies include, but are not limited to microarray-based gene synthesis technology (Zhou et al., 2004), Blue Heron solid support technology, Sloning building block technology (Ball, 2004; Schmidt, 2006; Bugl et al., 2007), and RNA-mediated gene assembly from DNA arrays (Wu et al., 2012).
  • Enzymatic Gene Synthesis
  • Enzymes that repair single-stranded breaks in double-stranded DNA, first discovered in the 1960s in E. coli and in T4 bacteriophage infected E. coli cells (Meselson, 1964; Weiss and Richardson, 1967; Zimmerman et al., 1967), can be used to join chemically synthesized oligonucleotides, such as deoxyribopolynucleotides, to form continuous bihelical structures (Gupta et al., 1968a). In another example, DNA polymerase I (Klenow) can be used to join oligonucleotides to longer polynucleotides. Oligonucleotides can further be joined together via ligation, for example using a ligase, such as using phage T4 polynucletide ligase. In some cases, oligonucleotides can be ligated hierarchically, forming longer and longer polynucleotides in each step.
  • Annealing and Ligation Reaction
  • Another approach for the facile synthesis of genes comprises assembly of a polynucleotide from many oligonucleotides through annealing and ligation reaction (Climie and Santi, 1990; Smith et al., 1990; Kalman et al., 1990). In the first, both strands of the desired sequences can be divided with short cohesive ends so that adjacent pairs of complementary oligonucleotides can anneal. The synthesized oligonucleotides can be phosphorylated, for example using a kinase, and annealed before ligation into a duplex.
  • Shotgun Ligation and Co-Ligation
  • The shotgun ligation approach comprises the assembly of a full gene from several synthesized blocks (Eren and Swenson, 1989). Accordingly, a gene may be sub-assembled in several sections, each constructed by the enzymatic ligation of several complementary pairs of chemically synthesized oligonucleotides with short single strands complementary to that of an adjacent pair. Co-ligation of the sections can achieve the synthesis of the final polynucleotide.
  • Insertion Gene Synthesis
  • Insertion gene synthesis (IGS) (Ciccarelli et al., 1990) can be used to assemble a DNA sequence in a stepwise manner within a plasmid containing a single-stranded DNA phage origin of replication. The IGS method is based upon consecutive targeted insertions of long DNA oligonucleotides within a plasmid by oligonucleotide-directed mutagenesis.
  • Gene Synthesis Via One Strand
  • Gene synthesis via one strand refers to a method to synthesize a gene via one stand (Chen et al.; 1990). A plus-stranded DNA of the target gene can be assembled by a stepwise or single-step T4 DNA ligase reaction with several, for example six, oligonucleotides in the presence of multiple, for example two, terminal complementary oligonucleotides and multiple, for example three, short interfragment complementary oligonucleotides. The use of fewer synthesized bases, in comparison to the double-strand or overlap methods can reduce costs.
  • Template-Directed Ligation
  • Template-directed ligation refers to a method to construct large synthetic genes by ligation of oligonucleotide modules, by partial annealing with a single-stranded DNA template derived from a wild-type gene (Strizhov et al.; 1996). Oligonucleotides comprising only one strand can be synthesized, in contrast to other technologies that require synthesis of two strands. A ligase, such as the Pfu DNA ligase, can be used to perform thermal cycling for assembly, selection and ligation of full-length oligonucleotides as well as for linear amplification of the template-directed ligation (TDL) product. Due to its reliance on a homologous template, this method is suitable to the synthesis of only a limited number of sequences with similarity to an existing polynucleotide molecule.
  • Ligase Chain Reaction
  • A ligase chain reaction (LCR) can be used method for synthesis of polynucleotides (Au et al.; 1998). Fragments can be assembled from several oligonucleotides via ligation, using a ligase, for example Pfu DNA ligase. After LCR, the full-length gene can be amplified with the mixture of fragments which shared an overlap by denaturation and extension using the outer two oligonucleotides.
  • Microarray-Mediated Gene Synthesis
  • Microarray-mediated gene synthesis, as a general concept, is based on the capacity to immobilize tens of thousands of specific probes on a small solid surface (Lockhart and Barlow, 2001). For the production of arrays, DNA can either be synthesized directly on the solid support (Lipshutz et al., 1999; Hughes et al., 2001) or can be deposited in a pre-synthesized form onto the surface, for example with pins or ink-jet printers (Goldmann and Gonzalez, 2000). The oligonucleotides obtained can be used in ligation under thermal cycling conditions to generate DNA constructs of several hundreds of base-pairs. Another microchip-based technology for accurate multiplex gene synthesis, the modified array-mediated gene synthesis technology (Tian et al., 2004), is similar to amplification and assembly of chip-eluted DNA AACED), a method developed for high-throughput gene synthesis (Richmond et al., 2004). Pools of thousands of ‘construction’ oligonucleotides and tagged complementary ‘selection’ oligonucleotides can be synthesized on photo-programmable microfluidic chips, released, ligation amplified, and selected by hybridization to reduce synthesis errors (Tian et al., 2004).
  • Blue Heron Technology
  • The Blue Heron technology, developed by Blue Heron Biotechnology, is based on a solid-phase support strategy based on the GeneMaker platform and enables automation (Parker and Mulligan, 2003; Mulligan and Tabone, 2003; Mulligan et al., 2007). The GeneMaker protocol may generally comprise a user sequence data entry, an algorithm designing suitable oligonucleotides for the assembly of entered sequence, oligonucleotides synthesis and hybridization into duplexes, automated ligation based solid-phase assembly through automated sequential additions inside a column on a solid support matrix, and/or cloning and sequence verification. The Blue Heron technology relies on the sequential addition of building blocks to lower errors that occur with other gene assembly methods based on non-serial pools of building blocks, such as PCR methods.
  • Various embodiments of the invention make use of serial and hierarchical assembly methods as exemplified in the implementation of the Blue Heron technology.
  • Sloning Building Block Technology
  • Sloning building block technology (Slonomics™; Sloning Biotechnology GmbH, Puchheim, Germany) is another method using a ligation-based strategy for chemical gene synthesis (Adis International, 2006). The Sloning synthesis method consists of a series of parallel iterative and standardized reaction steps (pipetting, mixing, incubation, washing) (Schatz and O'Connell, 2003; Schatz et al., 2004; Schatz, 2006). In contrast to ligating oligonucleotides specifically designed and synthesized for a given gene construct, Sloning technology uses a library of standardized building blocks that can be combined to form any desired sequence with a series of standardized, fully automated, cost-effective reaction steps (Schatz and O'Connell, 2003; Schatz, 2006).
  • Golden Gate Assembly
  • The Golden-gate method (see, e.g., Engler et al. (2008) PLoS ONE, 3(11): e3647; Engler et al. (2009) PLoS ONE 4(5): e5553) offers standardized, multi-part DNA assembly. The Golden-gate method can use Type IIs endonucleases, whose recognition sites are distal from their cutting sites. There are several different Type IIs endonucleases to choose from, for example BsaI. The Golden-gate method can be advantageous by the use of a single Type IIs endonuclease. The Golden-gate method is further described in U.S. Patent Pub. 2012/0258487, which is incorporated herein by reference in its entirety.
  • In some cases, the methods and compositions for gene assembly may involve a combination of specifically synthesized building blocks and presynthesized building blocks. Libraries of presynthesized oligonucleotides may be stored and assembly processes for desired target nucleic acids may be optimized for maximum use of presynthesized oligonucleotides, minimizing the need for new synthesis. Specifically synthesized oligonucleotides may fill in parts of a target nucleic acid, for which there is no coverage in libraries of presynthesized oligonucleotides.
  • RNA-Mediated Gene Assembly
  • In various embodiments, RNA-mediated gene assembly is used to assemble RNA transcripts from DNA elements, optionally immobilized to a surface forming an immobilized DNA array. DNA elements are designed to include an RNA polymerase (RNAP) promoter sequence, such as a T& RNA polymerase promoter sequence, toward the 5′ end. Hybridization of an oligonucleotide encoding the promoter sequence, such as the T7 RNAP promoter sequence, to a DNA element can yield a double-stranded promoter. Addition of RNAP may affect the transcription from these optionally surface-bound promoters yielding many RNA copies. These amplified RNA molecules can be designed to allow self-assembly to yield a longer RNA. Briefly, the DNA elements can be designed to encode “segment sequences”, which are the sections of the desired full-length RNA transcript, and “splint sequences”, which are complementary RNAs that serve as templates to direct the correct assembly of the RNA segments. The DNA elements encoding RNA segments or splints may be chosen to optimize one or more reactions during the synthesis of assembled polynucleotides. For example, the DNA elements may be constructed such that that the 5′ end of each RNA transcript corresponds to a GG dinucleotide, which is believed to affect higher efficiency of transcription exhibited by T7 RNA polymerase (T7 RNAP). GGG trinucleotide sequences at the 5′ terminus may in turn be avoided, to avoid giving rise to a ladder of poly G transcripts in which the number of G residues can range from 1-3, attributed to “slippage” of the enzyme during coupling of GTP. Assembly can be affected via RNA:RNA hybridization of the segments to the splints. Nicks can be sealed chemically or enzymatically, using a suitable enzyme known in the art. In one example, the assembly of the RNA segment sequences into the full-length RNA transcript includes ligation with T4 RNA ligase 2. Triphosphorylated transcripts, such as those generated by T7 RNA polymerase can be “trimmed” to their monophosphorylated analogues before ligation. Trimming can be accomplished by treatment of the transcript pool with RNA 5′ pyrophosphohydrolase removing a pyrophosphate group from the 5′ end of each RNA. The transcript, once synthesized, can be copied by reverse transcription polymerase chain reaction (RT-PCR) to yield the corresponding gene. The assembled RNA sequence or its DNA equivalent may be amplified using a suitable nucleic acid amplification method, including those described elsewhere herein. The method is further described in Wu et al. (Cheng-Hsien Wu, Matthew R. Lockett, and Lloyd M. Smith, RNA-Mediated Gene Assembly from DNA Arrays, 2012, Angew. Chem. Int. Ed. 51, 4628-4632), which is herein incorporated by reference in its entirety.
  • Nonenzymatic Chemical Ligation of DNA
  • Other approaches include, nonenzymatic chemical ligation of DNA, for example with cyanogen bromide as a condensing agent, as described for the synthesis of a 183 bp biologically active mini-gene (Shabarova et al., 1991).
  • In some embodiments, assembly of oligonucleotides comprises the use of CLICK chemistry. Suitable methods to link various molecules using CLICK chemistry are known in the art (for CLICK chemistry linkage of oligonucleotides, see, e.g. El-Sagheer et al. (PNAS, 108:28, 11338-11343, 2011). Click chemistry may be performed in the presence of Cul.
  • Error Rates and Corrections
  • A critical limitation of current gene synthesis technology is the low sequence fidelity of the process: gene clones created from chemically synthesized DNA often contain sequence errors. These errors can be introduced at many stages of the process: during chemical synthesis of the component oligonucleotides, during assembly of the double-stranded oligonucleotides, and by chemical damage occurring during the manipulation and isolation of the DNA or during the cloning process.
  • Known methods generating chemically-synthesized DNA fragments have very high sequence error rates, e.g. every 200 to 500 bp on average. The methods described herein allow for the initial de novo synthesis of oligonucleotides and longer polynucleotide with very low error rates. Common mutations in oligonucleotides comprise deletions that can come from capping, oxidation and/or deblocking failure. Other prominent side reactions include modification of guanosine (G) by ammonia to give 2,6-diaminopurine, which codes as an adenosine (A). Deamination is also possible with cytidine (C) forming uridine (U) and adenosine forming inosine (I).
  • Without being bound by theory, non limiting examples of base modifications typically produced during the synthesis of an oligonucleotide using the phosphoramidite method include transamination of the O6-oxygen of deoxyguanosine to form a 2,6-diaminopurine residue, deamination of the N4-amine of deoxycytidine to form a uridine residue (Eadie, J. S. and Davidson, D. S., Nucleic Acids Res. 15:8333, 1987), depurination of N6-benzoyldeoxyadenosine yielding an apurinic site (Shaller, H. and Khorana, H. G., J. Am. Chem. Soc. 85:3828, 1963; Matteucci, M. D. and Caruthers, M. H., J. Am. Chem. Soc. 103:3185, 1981), and incomplete removal of the N2-isobutyrlamide protecting group on deoxyguanosine. Each of these side products (byproducts) can contribute to sequence errors in cloned synthetic polynucleotides.
  • In addition, common methods of oligonucleotide synthesis are prone to the formation of truncated products that are less than the full length of the desired oligonucleotide. The solid phase approach to oligonucleotide synthesis involves building an oligomer chain that is anchored to a solid support typically through its 3′-hydroxyl group, and is elongated by coupling of building blocks to its 5′ end. The yield of each coupling step in a given chain-elongation cycle will generally be <100%. For an oligonucleotide of length n, there are n−1 linkages and the maximum yield estimation will typically be governed by [coupling efficiency]n−1. For a 25-mer, assuming a coupling efficiency of 98%, the calculated maximum yield of full-length product will be around 61%. The final product therefore would contain decreasing amounts of n−1, n−2, n−3 etc. failure sequences.
  • Another class of synthetic failures is the formation of “n+” products that are longer than the full length of the desired oligonucleotide. Without being bound by theory, these products may originate from the branching of the growing oligonucleotide, in which a phosphoramidite monomer reacts through the bases, especially the N-6 of adenosine and the 0-6 of guanosine. Another source of n+ products is the initiation and propagation from unwanted reactive sites on the solid support. The n+ products may also form if the 5′-trityl protecting group is inadvertently deprotected during the coupling step. This premature exposure of the 5′-hydroxyl allows for a double addition of a phosphoramidite. This type of synthetic failure of the oligonucleotide synthesis process can also contribute to sequence errors in synthetic genes. Methods and compositions of the invention, in various embodiments, allow for reducing errors during de novo synthesis of oligonucleotides through precise control of reaction parameters as described in further detail elsewhere herein.
  • Other types of errors may be introduced during the assembly of oligonucleotides into longer constructs during PCR-based as well as non-PCR-based assembly methods. For example, ligation of synthetic double-stranded oligonucleotides to other synthetic double-stranded oligonucleotides to form larger synthetic double-stranded oligonucleotides may be prone to errors. For example, T4 DNA ligase exhibits poor fidelity, sealing nicks with 3′ and 5′ A/A or T/T mismatches (Wu, D. Y., and Wallace, R. B., Gene 76:245-54, 1989), 5′ G/T mismatches (Harada, K. and Orgel, L. Nucleic Acids Res. 21:2287-91, 1993) or 3′ C/A, C/T, T/G, T/T, T/C, A/C, G/G or G/T mismatches (Landegren, U., Kaiser, R., Sanders, J., and Hood, L., Science 241:1077-80, 1988).
  • The error rate also limits the value of gene synthesis for the production of libraries of gene variants. With an error rate of 1/300, about 0.7% of the clones in a 1500 base pair gene will be correct. As most of the errors from oligonucleotide synthesis result in frame-shift mutations, over 99% of the clones in such a library will not produce a full-length protein. Reducing the error rate by 75% would increase the fraction of clones that are correct by a factor of 40. The methods and compositions of the invention allow for fast de novo synthesis of large oligonucleotide and gene libraries with error rates that are lower than commonly observed gene synthesis methods both due to the improved quality of synthesis and the applicability of error correction methods that are enabled in a massively parallel and time-efficient manner. Accordingly, libraries may be synthesized with base insertion, deletion, substitution, or total error rates that are under 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1250, 1/1500, 1/2000, 1/2500, 1/3000, 1/4000, 1/5000, 1/6000, 1/7000, 1/8000, 1/9000, 1/10000, 1/12000, 1/15000, 1/20000, 1/25000, 1/30000, 1/40000, 1/50000, 1/60000, 1/70000, 1/80000, 1/90000, 1/100000, 1/125000, 1/150000, 1/200000, 1/300000, 1/400000, 1/500000, 1/600000, 1/700000, 1/800000, 1/900000, 1/1000000, or less, across the library, or across more than 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the library. The methods and compositions of the invention further relate to large synthetic oligonucleotide and gene libraries with low error rates associated with at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the oligonucleotides or genes in at least a subset of the library to relate to error free sequences in comparison to a predetermined/preselected sequence. In some embodiments, at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the oligonucleotides or genes in an isolated volume within the library have the same sequence. In some embodiments, at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of any oligonucleotides or genes related with more than 95%, 96%, 97%. 98%, 99%, 99.5%, 99.6%, 96%, 97%, 99.8%, 99.9% or more similarity or identity have the same sequence. In some embodiments, the error rate related to a specified locus on an oligonucleotide or gene is optimized. Thus, a given locus or a plurality of selected loci of one or more oligonucleotides or genes as part of a large library may each have an error rate that is less than 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1250, 1/1500, 1/2000, 1/2500, 1/3000, 1/4000, 1/5000, 1/6000, 1/7000, 1/8000, 1/9000, 1/10000, 1/12000, 1/15000, 1/20000, 1/25000, 1/30000, 1/40000, 1/50000, 1/60000, 1/70000, 1/80000, 1/90000, 1/100000, 1/125000, 1/150000, 1/200000, 1/300000, 1/400000, 1/500000, 1/600000, 1/700000, 1/800000, 1/900000, 1/1000000, or less. In various embodiments, such error optimized loci may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 100000, 500000, 1000000, 2000000, 3000000 or more loci. The error optimized loci may be distributed to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 100000, 500000, 1000000, 2000000, 3000000 or more oligonucleotides or genes.
  • The error rates can be achieved with or without error correction. The error rates can be achieved across the library, or across more than 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the library.
  • The library may comprise more than 100, 200, 300, 400, 500, 600, 750, 1000, 15000, 20000, 30000, 40000, 50000, 60000, 75000, 100000, 200000, 300000, 400000, 500000, 600000, 750000, 1000000, 2000000, 3000000, 4000000, 5000000, or more different oligonucleotides or genes. The different oligonucleotides or genes may be related to predetermined/preselected sequences. The library may comprise oligonucleotides or genes that are over 500 bp, 600 bp, 700 bp, 800 bp, 900 bp, 1000 bp, 1250 bp, 1500 bp, 1750 bp, 2000 bp, 2500 bp, 3000 bp, 4000 bp, 5000 bp, 6000 bp, 7000 bp, 8000 bp, 9000 bp, 10 kb, 20 kb, 30 kb, 40 kb, 50 kb, 60 kb, 80 kb, 90 kb, 100 kb long, or longer. It is understood that the library may comprise of a plurality of different subsections, such as 2, 3, 4, 5, 6, 7, 8, 9, 10 subsections or more, that are governed by different error rates and/or construct sizes. Compositions and methods of the invention further allow construction of the above mentioned large synthetic libraries of oligonucleotides or genes with low error rates described above in short time frames, such us in less than three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days or less. Genes of the above mentioned libraries may be synthesized by assembling de novo synthesized olignucleotides by suitable gene assembly methods further described in detail elsewhere herein or otherwise known in the art.
  • Several methods are known in the art for removal of error-containing sequences in a synthesized gene. A DNA mismatch-binding protein, MutS (from Thermus aquaticus), can be employed to remove failure products from synthetic genes using different strategies (Schofield and Hsieh, 2003; Carr et al., 2004; Binkowski et al., 2005). Some other strategies (Pogulis et al., 1996; Ling and Robinson, 1997; An et al., 2005; Peng et al., 2006b) use site-directed mutagenesis by overlap extension PCR to correct mistakes, and can be coupled with two or more rounds of cloning and sequencing, as well as additional synthesis of oligonucleotides. Functional selection and identification after gene synthesis is another approach (Xiong et al., 2004b; Smith et al., 2003). Another approach to error correction uses SURVEYOR endonuclease (Transgenomic), a mismatch-specific DNA endonuclease to scan for known and unknown mutations and polymorphisms in heteroduplex DNA. SURVEYOR technology is based on a mismatch-specific DNA endonuclease from celery, Surveyor nuclease, which is a member of the CEL nuclease family of plant DNA endonucleases (Qiu et al., 2004). Surveyor nuclease cleaves with high specificity at the 3′ side of any base-substitution mismatch and other distortion site in both DNA strands, including all base substitutions and insertion/deletions up to at least 12 nucleotides. Insertion/deletion mismatches and all base-substitution mismatches can be recognized, with varying efficiency of cleavage based on the mismatch sequence. In one example, Surveyor nuclease technology can be used for mismatch detection in a method involving four steps: (i) optional polynucleotide amplification, e.g. PCR, of desired polynucleotide targets with both mutant/variant and wild-type/desired sequences; (ii) hybridization resulting heteroduplexes comprising mismatches; (iii) treatment of heteroduplexes with Surveyor nuclease to cleave at mismatch sites; and (iv) optional analysis of digested polynucleotide products using the detection/separation platform of choice (FIGS. 15-16 ). The cleavage products resulting from the treatment of heteroduplexes may be subjected to PCA after the error at the cleavage site is chewed out, e.g. by an exonuclease, to generate error depleted products (FIG. 15 ). The mismatch bases can be substantially or in some cases completely removed to produce error-free strands. In some embodiments, the cleaved strands can be reannealed to targets in a pool of polynucleotides and extended. As the frequency of error containing polynucleotides is very low after the initial annealing and cleavage of heteroduplexes removing mismatches, most cleaved strands will anneal to targets with sequences free of error at the site of the initial mismatch. Through extension along the targets, polynucleotides can be resynthesized free of the initial mismatch. Various examples of gene assembly incorporate error correction. For example, the PCR-based accurate synthesis (PAS) protocol can incorporate: design of the gene and oligonucleotides, purification of the oligonucleotides, a first PCR to synthesize segments, a second PCR to assemble the full-length gene, and sequencing and error correction (Xiong et al., 2006). Alternatively, the sample by be subjected to PCR, wherein the cleaved products are not able to participate, thereby diluting the abundance of the error in the sample (FIG. 16 ).
  • In certain embodiments, the present invention provides methods that selectively remove double-stranded oligonucleotides, such as DNA molecules, with mismatches, bulges and small loops, chemically altered bases and other heteroduplexes arising during the process of chemical synthesis of DNA, from solutions containing perfectly matched synthetic DNA fragments. The methods separate specific protein-DNA complexes formed directly on heteroduplex DNA or through an affinity system comprising an incorporated nucleotide analog, e.g. one that is based on avidin-biotin-DNA complexes formed following the introduction of a biotin molecule or a biotin analog, into heteroduplex containing DNA and subsequent binding by any member of the avidin family of proteins, including streptavidin. The avidin may be immobilized on a solid support.
  • Central to the method are enzymes that recognize and bind specifically to mismatched, or unpaired bases within a double-stranded oligonucleotide (e.g., DNA) molecule and remain associated at or near to the site of the heteroduplex, create a single or double strand break or are able to initiate a strand transfer transposition event at or near to the heteroduplex site. The removal of mismatched, mispaired and chemically altered heteroduplex DNA molecules from a synthetic solution of DNA molecules results in a reduced concentration of DNA molecules that differ from the expected synthesized DNA sequence.
  • The mismatch recognition proteins typically bind on or within the vicinity of a mismatch. Reagents for mismatch recognition protein based error correction may comprise proteins that are endonucleases, restriction enzymes, ribonucleases, mismatch repair enzymes, resolvases, helicases, ligases, antibodies specific for mismatches, and their variants. The enzymes can be selected, for example, from T4 endonuclease 7, T7 endonuclease 1, S1, mung bean endonuclease, MutY, MutS, MutH, MutL, cleavase, and HINF1. In certain embodiments of the invention, a mismatch recognition protein cleaves at least one strand of the mismatched DNA in the vicinity of the mismatch site.
  • In the case of proteins that recognize and cleave heteroduplex DNA forming a single strand nick, for example the CELI endonuclease enzyme, the resultant nick can be used as substrate for DNA polymerase to incorporate modified nucleotides suitable for affinity partnerships, e.g. ones containing a biotin moiety or an analog thereof. There are many examples of proteins that recognize mismatched DNA and produce a single strand nick, including resolvase endonucleases, glycosylases and specialized MutS-like proteins that possess endonuclease activity. In some cases the nick is created in a heteroduplex DNA molecule after further processing, for example thymine DNA glycosylases can be used to recognize mismatched DNA and hydrolyze the bond between deoxyribose and one of the bases in DNA, generating an abasic site without necessarily cleaving the sugar phosphate backbone of DNA. The abasic site can be converted by an AP endonuclease to a nicked substrate suitable for DNA polymerase extension. Protein-heteroduplex DNA complexes can thus be formed directly, in the example of MutS proteins, or indirectly, following incorporation of nucleotide analogs, e.g. biotin or analogs thereof, into the heteroduplex containing strand and subsequent binding of biotin or biotin analogs with streptavidin or avidin proteins.
  • Other error correction methods may rely on transposase enzymes, such as the MuA transposase, preferentially inserting labeled DNA, e.g. biotin or biotin-analog labeled DNA, containing a precleaved version of the transposase DNA binding site into or near to the site of mismatched DNA in vitro via a strand transfer reaction. The in vitro MuA transposase directed strand transfer is known by those skilled in the art and familiar with transposase activity to be specific for mismatched DNA. In this method, the precleaved MuA binding site DNA may be biotinylated at the 5′ end of the molecule enabling the formation of a protein-biotin-DNA complex with streptavidin or avidin protein following strand transfer into heteroduplex containing DNA.
  • Separation of protein-DNA complexes in vitro can be achieved by incubation of the solution containing protein-DNA complexes with a solid matrix that possesses high affinity and capacity for binding of protein and low affinity for binding of DNA. In some cases, such matrices can be embedded within microfluidic devices in connection with the various embodiments of the invention described herein.
  • Several large classes of enzymes preferentially digest heteroduplex polynucleotides, such as DNA substrates, containing mismatches, deletions or damaged bases. Typically, these enzymes act to convert their damaged or mismatched substrates into nicks or single base pair gaps (in some cases with the help of an AP endonuclease that converts abasic sites into nicks). DNA glycosylases, mismatch endonucleases, and the MutSLH mismatch repair proteins are especially useful for their utility in modifying synthetic fragments which contain errors. Methods and compositions of the present invention may rely on these nicks or small gaps to identify the error-containing DNA molecules and remove them from the cloning process.
  • A combination of techniques can be used for removing the treated polynucleotides containing errors. DNA glycosylases are a class of enzymes that remove mismatched bases and, in some cases, cleave at the resulting apurinic/apyrimidimic (AP) site. Thymine DNA glycosylases (TDGs) can be used to enrich mismatch-containing or perfectly-matched DNA populations from complex mixtures (X. Pan and S. Weissman, “An approach for global scanning of single nucleotide variations” 2002 PNAS 99:9346-9351). DNA glycosylases can be used to hydrolyze the bond between deoxyribose and one of the bases in DNA, generating an abasic site without necessarily cleaving the sugar phosphate backbone of DNA. All four groups of single base mismatches and some other mismatches could be hydrolyzed by a mixture of two TDGs. In addition, the enzymes' high affinity for abasic sites in the absence of magnesium can be utilized to separate DNA molecules into populations enriched or depleted for heteroduplexes. A very large number of DNA glycosylases have been identified, and non-limiting examples can be found in US Pat. Pub. 2006/0134638, which is incorporated herein by reference in its entirety. DNA glycosylases typically act on a subset of unnatural, damaged or mismatched bases, removing the base and leaving a substrate for subsequent repair. As a class, the DNA glycosylases have broad, distinct and overlapping specificities for the chemical substrates that they will remove from DNA. Glycosylase treatment may be especially useful in reducing the error rates of base substitutions to low levels. Glycosylases that leave AP sites are combined with an AP endonuclease such as E. coli Endonuclease IV or Exo III to generate a nick in the DNA.
  • Non-limiting examples of mismatch endonuclease enzymes for nicking DNA in the region of mismatches or damaged DNA include T7 Endonuclease I, E. coli Endonuclease V, T4 Endonuclease VII, mung bean nuclease, Cell, E. coli Endonuclease IV, and UVDE.
  • The use of the MutSLH complex to remove the majority of errors from PCR fragments is described by Smith et al. (J. Smith and P. Modrich, “Removal of polymerase-produced mutant sequences from PCR products.” 1997, PNAS 94:6847-6850), incorporated herein by reference in its entirety. In the absence of DAM methylation, the MutSLH complex can be used to catalyze double-stranded cleavage at (GATC) sites. PCR products can be treated with MutSLH in the presence of ATP.
  • A more detailed disclosure regarding error correction in synthetic polynucleotides can be found in US. Pat. Pub. 2006/0134638 and U.S. Pat. No. 6,664,112, both of which are herein incorporated in their entirety.
  • Enzymes, binding partners and other reagents used in error correction of synthesized polynucleotides according to the methods and compositions of the invention may be immobilized on surfaces, such as coated or functionalized surfaces, on supports and substrates described herein. Reactions can be carried out in situ with one or more components immobilized. Purification schemes enriching polynucleotides with fewer or no errors utilizing such components on appropriate surfaces are understood to be within the bounds of the invention.
  • Ultimately, strategies for gene assembly rely on high-quality oligonucleotides to achieve the de novo synthesis of polynucleotides with low error rates. Methods and compositions described herein allow for the synthesis of such high-quality oligonucleotides in various embodiments.
  • Amplification of Nucleic Acids
  • In some embodiments, the nucleic acids described herein are amplified. Amplification can be performed by any means known in the art. In some cases, the nucleic acids are amplified by polymerase chain reaction (PCR). Various PCR methods are known in the art, as described in, for example, U.S. Pat. Nos. 5,928,907 and 6,015,674, the complete disclosures of which are hereby incorporated by reference for any purpose. Other methods of nucleic acid amplification include, for example, ligase chain reaction, oligonucleotide ligations assay, and hybridization assay. These and other methods are described in greater detail in U.S. Pat. Nos. 5,928,907 and 6,015,674. Real-time optical detection systems are known in the art, as also described in greater detail in, for example, U.S. Pat. Nos. 5,928,907 and 6,015,674, incorporated herein above. Other amplification methods that can be used herein include those described in U.S. Pat. Nos. 5,242,794; 5,494,810; 4,988,617; and 6,582,938, all of which are incorporated herein in their entirety.
  • In some aspects of the invention, exponential amplification of nucleic acids or polynucleotides is used. These methods often depend on the product catalyzed formation of multiple copies of a nucleic acid or polynucleotide molecule or its complement. The amplification products are sometimes referred to as “amplicons.” One such method for the enzymatic amplification of specific double stranded sequences of DNA is polymerase chain reaction (PCR). This in vitro amplification procedure is based on repeated cycles of denaturation, oligonucleotide primer annealing, and primer extension by thermophilic template dependent polynucleotide polymerase, resulting in the exponential increase in copies of the desired sequence of the polynucleotide analyte flanked by the primers. The two different PCR primers, which anneal to opposite strands of the DNA, are positioned so that the polymerase catalyzed extension product of one primer can serve as a template strand for the other, leading to the accumulation of a discrete double stranded fragment whose length is defined by the distance between the 5′ ends of the oligonucleotide primers. Other amplification techniques that can be used in the methods of the provided invention include, e.g., AFLP (amplified fragment length polymorphism) PCR (see e.g.: Vos et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-14), allele-specific PCR (see e.g., Saiki R K, Bugawan T L, Horn G T, Mullis K B, Erlich H A (1986). Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes Nature 324: 163-166), Alu PCR, assembly PCR (see e.g., Stemmer W P, Crameri A, Ha K D, Brennan T M, Heyneker H L (1995). Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides Gene 164: 49-53), assymetric PCR (see e.g., Saiki R K supra), colony PCR, helicase dependent PCR (see e.g., Myriam Vincent, Yan Xu and Huimin Kong (2004). Helicase-dependent isothermal DNA amplification EMBO reports 5 (8): 795-800), hot start PCR, inverse PCR (see e.g., Ochman H, Gerber A S, Hartl D L. Genetics. 1988 November; 120(3):621-3), in situ PCR, intersequence-specific PCR or IS SR PCR, digital PCR, linear-after-the-exponential-PCR or Late PCR (see e.g., Pierce K E and Wangh L T (2007). Linear-after-the-exponential polymerase chain reaction and allied technologies Real-time detection strategies for rapid, reliable diagnosis from single cells Methods Mol. Med. 132: 65-85), long PCR, nested PCR, real-time PCR, duplex PCR, multiplex PCR, quantitative PCR, quantitative fluorescent PCR (QF-PCR), multiplex fluorescent PCR (MF-PCR), restriction fragment length polymorphism PCR (PCR-RFLP), PCK-RFLPIRT-PCR-IRFLP, polonony PCR, in situ rolling circle amplification (RCA), bridge PCR, picotiter PCR and emulsion PCR, or single cell PCR. Other suitable amplification methods include, transcription amplification, self-sustained sequence replication, selective amplification of target polynucleotide sequences, consensus sequence primed polymerase chain reaction (CP-PCR), arbitrarily primed polymerase chain reaction (AP-PCR), and degenerate oligonucleotide-primed PCR (DOP-PCR). Another method for amplification involves amplification of a single stranded polynucleotide using a single oligonucleotide primer. The single stranded polynucleotide that is to be amplified contains two non-contiguous sequences that are substantially or completely complementary to one another and, thus, are capable of hybridizing together to form a stem-loop structure. This single stranded polynucleotide already may be part of a polynucleotide analyte or may be created as the result of the presence of a polynucleotide analyte.
  • Another method for achieving the result of an amplification of nucleic acids is known as the ligase chain reaction (LCR). This method uses a ligase enzyme to join pairs of preformed nucleic acid probes. The probes hybridize with each complementary strand of the nucleic acid analyte, if present, and ligase is employed to bind each pair of probes together resulting in two templates that can serve in the next cycle to reiterate the particular nucleic acid sequence.
  • Another method for achieving nucleic acid amplification is the nucleic acid sequence based amplification (NASBA). This method is a promoter-directed, enzymatic process that induces in vitro continuous, homogeneous and isothermal amplification of a specific nucleic acid to provide RNA copies of the nucleic acid. The reagents for conducting NASBA include a first DNA primer with a 5′-tail comprising a promoter, a second DNA primer, reverse transcriptase, RNase-H, T7 RNA polymerase, NTPs and dNTPs.
  • Another method for amplifying a specific group of nucleic acids is the Q-beta-replicase method, which relies on the ability of Q-beta-replicase to amplify its RNA substrate exponentially. The reagents for conducting such an amplification include “midi-variant RNA” (amplifiable hybridization probe), NTP's, and Q-beta-replicase.
  • Another method for amplifying nucleic acids is known as 3SR and is similar to NASBA except that the RNase-H activity is present in the reverse transcriptase. Amplification by 3SR is an RNA specific target method whereby RNA is amplified in an isothermal process combining promoter directed RNA polymerase, reverse transcriptase and RNase H with target RNA. See for example Fahy et al. PCR Methods Appl. 1:25-33 (1991).
  • Another method for amplifying nucleic acids is the Transcription Mediated Amplification (TMA) used by Gen-Probe. The method is similar to NASBA in utilizing two enzymes in a self-sustained sequence replication. See U.S. Pat. No. 5,299,491 herein incorporated by reference.
  • Another method for amplification of nucleic acids is Strand Displacement Amplification (SDA) (Westin et al 2000, Nature Biotechnology, 18, 199-202; Walker et al 1992, Nucleic Acids Research, 20, 7, 1691-1696), which is an isothermal amplification technique based upon the ability of a restriction endonuclease such as HincII or BsoBI to nick the unmodified strand of a hemiphosphorothioate form of its recognition site, and the ability of an exonuclease deficient DNA polymerase such as Klenow exo minus polymerase, or Bst polymerase, to extend the 3′-end at the nick and displace the downstream DNA strand. Exponential amplification results from coupling sense and antisense reactions in which strands displaced from a sense reaction serve as targets for an antisense reaction and vice versa.
  • Another method for amplification of nucleic acids is Rolling Circle Amplification (RCA) (Lizardi et al. 1998, Nature Genetics, 19:225-232). RCA can be used to amplify single stranded molecules in the form of circles of nucleic acids. In its simplest form, RCA involves the hybridization of a single primer to a circular nucleic acid. Extension of the primer by a DNA polymerase with strand displacement activity results in the production of multiple copies of the circular nucleic acid concatenated into a single DNA strand.
  • In some embodiments of the invention, RCA is coupled with ligation. For example, a single oligonucleotide can be used both for ligation and as the circular template for RCA. This type of polynucleotide can be referred to as a “padlock probe” or a “RCA probe.” For a padlock probe, both termini of the oligonucleotide contain sequences complementary to a domain within a nucleic acid sequence of interest. The first end of the padlock probe is substantially complementary to a first domain on the nucleic acid sequence of interest, and the second end of the padlock probe is substantially complementary to a second domain, adjacent to the first domain near the first domain. Hybridization of the oligonucleotide to the target nucleic acid results in the formation of a hybridization complex. Ligation of the ends of the padlock probe results in the formation of a modified hybridization complex containing a circular polynucleotide. In some cases, prior to ligation, a polymerase can fill in the gap by extending one end of the padlock probe. The circular polynucleotide thus formed can serve as a template for RCA that, with the addition of a polymerase, results in the formation of an amplified product nucleic acid. The methods of the invention described herein can produce amplified products with defined sequences on both the 5′- and 3′-ends. Such amplified products can be used as padlock probes.
  • Some aspects of the invention utilize the linear amplification of nucleic acids or polynucleotides. Linear amplification generally refers to a method that involves the formation of one or more copies of the complement of only one strand of a nucleic acid or polynucleotide molecule, usually a nucleic acid or polynucleotide analyte. Thus, the primary difference between linear amplification and exponential amplification is that in the latter process, the product serves as substrate for the formation of more product, whereas in the former process the starting sequence is the substrate for the formation of product but the product of the reaction, i.e. the replication of the starting template, is not a substrate for generation of products. In linear amplification the amount of product formed increases as a linear function of time as opposed to exponential amplification where the amount of product formed is an exponential function of time.
  • In some embodiments, amplification methods can be solid-phase amplification, polony amplification, colony amplification, emulsion PCR, bead RCA, surface RCA, surface SDA, etc., as will be recognized by one of skill in the art. In some embodiments, amplification methods that results in amplification of free DNA molecules in solution or tethered to a suitable matrix by only one end of the DNA molecule can be used. Methods that rely on bridge PCR, where both PCR primers are attached to a surface (see, e.g., WO 2000/018957 and Adessi et al., Nucleic Acids Research (2000): 28(20): E87) can be used. In some cases the methods of the invention can create a “polymerase colony technology,” or “polony.” referring to a multiplex amplification that maintains spatial clustering of identical amplicons (see Harvard Molecular Technology Group and Lipper Center for Computational Genetics website). These include, for example, in situ polonies (Mitra and Church, Nucleic Acid Research 27, e34, Dec. 15, 1999), in situ rolling circle amplification (RCA) (Lizardi et al., Nature Genetics 19, 225, July 1998), bridge PCR (U.S. Pat. No. 5,641,658), picotiter PCR (Leamon et al., Electrophoresis 24, 3769, November 2003), and emulsion PCR (Dressman et al., PNAS 100, 8817, Jul. 22, 2003). The methods of the invention provide new methods for generating and using polonies.
  • Amplification may be achieved through any process by which the copy number of a target sequence is increased, e.g. PCR. Conditions favorable to the amplification of target sequences by PCR are known in the art, can be optimized at a variety of steps in the process, and depend on characteristics of elements in the reaction, such as target type, target concentration, sequence length to be amplified, sequence of the target and/or one or more primers, primer length, primer concentration, polymerase used, reaction volume, ratio of one or more elements to one or more other elements, and others, some or all of which can be altered. In general, PCR involves the steps of denaturation of the target to be amplified (if double stranded), hybridization of one or more primers to the target, and extension of the primers by a DNA polymerase, with the steps repeated (or “cycled”) in order to amplify the target sequence. Steps in this process can be optimized for various outcomes, such as to enhance yield, decrease the formation of spurious products, and/or increase or decrease specificity of primer annealing. Methods of optimization are well known in the art and include adjustments to the type or amount of elements in the amplification reaction and/or to the conditions of a given step in the process, such as temperature at a particular step, duration of a particular step, and/or number of cycles. In some embodiments, an amplification reaction comprises at least 5, 10, 15, 20, 25, 30, 35, 50, or more cycles. In some embodiments, an amplification reaction comprises no more than 5, 10, 15, 20, 25, 35, 50, or more cycles. Cycles can contain any number of steps, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more steps. Steps can comprise any temperature or gradient of temperatures, suitable for achieving the purpose of the given step, including but not limited to, 3′ end extension (e.g. adaptor fill-in), primer annealing, primer extension, and strand denaturation. Steps can be of any duration, including but not limited to about, less than about, or more than about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 180, 240, 300, 360, 420, 480, 540, 600, or more seconds, including indefinitely until manually interrupted. Cycles of any number comprising different steps can be combined in any order. In some embodiments, different cycles comprising different steps are combined such that the total number of cycles in the combination is about, less that about, or more than about 5, 10, 15, 20, 25, 30, 35, 50, or more cycles. Amplification can be performed at any point during a multi reaction procedure using the methods and compositions of the invention, e.g. before or after pooling of sequencing libraries from independent reaction volumes and may be used to amplify any suitable target molecule described herein.
  • Ligation Reactions
  • In some embodiments, the oligonucleotides can be ligated or linked to adaptors or barcodes. The linking agent can be a ligase. In some embodiments the ligase is T4 DNA ligase, using well known procedures (Maniatis, T. in Molecular Cloning, Cold Spring Harbor Laboratory (1982)). Other DNA ligases may also be used. With regard to ligation, other ligases, such as those derived from thermophilic organisms may be used thus permitting ligation at higher temperatures allowing the use of longer oligonucleotides (with increased specificity) which could be annealed and ligated simultaneously under the higher temperatures normally permissible for annealing such oligonucleotides.
  • The terms “joining” and “ligation” as used herein, with respect to two polynucleotides, refers to the covalent attachment of two separate polynucleotides to produce a single larger polynucleotide with a contiguous backbone. Methods for joining two polynucleotides are known in the art, and include without limitation, enzymatic and non-enzymatic (e.g. chemical) methods. Examples of ligation reactions that are non-enzymatic include the non-enzymatic ligation techniques described in U.S. Pat. Nos. 5,780,613 and 5,476,930, which are herein incorporated by reference. In some embodiments, an adaptor oligonucleotide is joined to a target polynucleotide by a ligase, for example a DNA ligase or RNA ligase. Multiple ligases, each having characterized reaction conditions, are known in the art, and include, without limitation NAD*-dependent ligases including tRNA ligase, Taq DNA ligase, Thermus filiformis DNA ligase, Escherichia coli DNA ligase, Tth DNA ligase, Thermus scotoductus DNA ligase (I and II), thermostable ligase, Ampligase thermostable DNA ligase, VanC-type ligase, 9° N DNA Ligase, Tsp DNA ligase, and novel ligases discovered by bioprospecting; ATP-dependent ligases including T4 RNA ligase, T4 DNA ligase, T3 DNA ligase, T7 DNA ligase, Pfu DNA ligase, DNA ligase 1, DNA ligase III, DNA ligase IV, and novel ligases discovered by bioprospecting; and wild-type, mutant isoforms, and genetically engineered variants thereof. Ligation can be between polynucleotides having hybridizable sequences, such as complementary overhangs. Ligation can also be between two blunt ends. Generally, a 5′ phosphate is utilized in a ligation reaction. The 5′ phosphate can be provided by the target polynucleotide, the adaptor oligonucleotide, or both. 5′ phosphates can be added to or removed from polynucleotides to be joined, as needed. Methods for the addition or removal of 5′ phosphates are known in the art, and include without limitation enzymatic and chemical processes. Enzymes useful in the addition and/or removal of 5′ phosphates include kinases, phosphatases, and polymerases. In some embodiments, both of the two ends joined in a ligation reaction (e.g. an adaptor end and a target polynucleotide end) provide a 5′ phosphate, such that two covalent linkages are made in joining the two ends. In some embodiments, only one of the two ends joined in a ligation reaction (e.g. only one of an adaptor end and a target polynucleotide end) provides a 5′ phosphate, such that only one covalent linkage is made in joining the two ends. In some embodiments, only one strand at one or both ends of a target polynucleotide is joined to an adaptor oligonucleotide. In some embodiments, both strands at one or both ends of a target polynucleotide are joined to an adaptor oligonucleotide. In some embodiments, 3′ phosphates are removed prior to ligation. In some embodiments, an adaptor oligonucleotide is added to both ends of a target polynucleotide, wherein one or both strands at each end are joined to one or more adaptor oligonucleotides. When both strands at both ends are joined to an adaptor oligonucleotide, joining can be followed by a cleavage reaction that leaves a 5′ overhang that can serve as a template for the extension of the corresponding 3′ end, which 3′ end may or may not include one or more nucleotides derived from the adaptor oligonucleotide. In some embodiments, a target polynucleotide is joined to a first adaptor oligonucleotide on one end and a second adaptor oligonucleotide on the other end. In some embodiments, the target polynucleotide and the adaptor to which it is joined comprise blunt ends. In some embodiments, separate ligation reactions are carried out for each sample, using a different first adaptor oligonucleotide comprising at least one barcode sequence for each sample, such that no barcode sequence is joined to the target polynucleotides of more than one sample. A target polynucleotide that has an adaptor/primer oligonucleotide joined to it is considered “tagged” by the joined adaptor.
  • In some embodiments, nucleic acids described herein are linked making use of CLICK chemistry. Suitable methods to link various molecules using CLICK chemistry are known in the art (for CLICK chemistry linkage of oligonucleotides, see, e.g. El-Sagheer et al. (PNAS, 108:28, 11338-11343, 2011). Click chemistry may be performed in the presence of Cul.
  • Barcodes
  • Barcodes are typically known nucleic acid sequences that allow some feature of a polynucleotide with which the barcode is associated to be identified. In some embodiments, a barcode comprises a nucleic acid sequence that when joined to a target polynucleotide serves as an identifier of the sample from which the target polynucleotide was derived.
  • Barcodes can be designed at suitable lengths to allow sufficient degree of identification, e.g. at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, or more nucleotides in length. Multiple barcodes, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more barcodes, may be used on the same molecule, optionally separated by non-barcode sequences. In some embodiments, barcodes are shorter than 10, 9, 8, 7, 6, 5, or 4 nucleotides in length. In some embodiments, barcodes associated with some polynucleotides are of different length than barcodes associated with other polynucleotides. In general, barcodes are of sufficient length and comprise sequences that are sufficiently different to allow the identification of samples based on barcodes with which they are associated. In some embodiments, a barcode, and the sample source with which it is associated, can be identified accurately after the mutation, insertion, or deletion of one or more nucleotides in the barcode sequence, such as the mutation, insertion, or deletion of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more nucleotides. In some embodiments, each barcode in a plurality of barcodes differ from every other barcode in the plurality at at least three nucleotide positions, such as at least 3, 4, 5, 6, 7, 8, 9, 10, or more positions.
  • Sequencing
  • De novo synthesized oligonucleotide and longer polynucleotide products described herein may be subject to quality control prior to proceeding with subsequent steps of a procedure, such as a multireaction procedure. Quality control may be applied while keeping individual products in separate volumes, such as on resolved features of a substrate as described herein. A fraction may be aliquoted for quality control, while the rest of the volumes compartmentalizing each product remain individually accessible.
  • FIG. 17 illustrates an example quality control procedure comprising next generation sequencing. Gene specific padlock probes targeting a specific product are designed to cover overlapping sequence segments of the product that is being tested. The ends of the individual padlock probes specific for a gene product may be designed to be hybridizable to regions scattered along the gene product for proper coverage during sequencing. All probes specific for the same gene product may comprise a barcode sequence associated with that gene product. A suitable polymerase and/or ligase may be used to fill between the ends of the padlock probes along the gene product target. In some cases, the padlock probes will form circular single stranded DNA. The typically linear gene product may be digested, for example after aliquoting a fraction of the gene product volume. Alternatively, a fraction of the gene product volume may be aliquoted prior to the addition of padlock probes. The padlock probes carrying segments of the gene product may be amplified, e.g. using PCR. Universal or specific primer binding regions on the padlock probes may be targeted during amplification. Sequencing primer binding regions may be originally present in the padlock probes or may be added during subsequent steps, e.g. by utilizing sequencing adaptors prior to, during, or after amplification.
  • In various embodiments, the gene product specific padlock probes will be pooled after the initial sequencing library steps. In those cases, the gene product specific barcodes may be utilized to track sequence information back to the individual gene products. The sequencing information obtained by any suitable means described herein or otherwise known in the art may be deconvoluted, e.g. by binning into individual sequence pool based on the barcode information. Suitable alignment and sequence confirmation algorithms known in the art can be utilized to finalize quality control. Error rates and locations can be analyzed by sequence locus, by gene product, by library, or by library subsegment. The error analysis may inform acceptance or rejection of products for subsequent steps or for delivery to a requester.
  • In any of the embodiments, the detection or quantification analysis of the oligonucleotides can be accomplished by sequencing. The subunits or entire synthesized oligonucleotides can be detected via full sequencing of all oligonucleotides by any suitable methods known in the art, e.g., Illumina HiSeq 2500, including the sequencing methods described herein.
  • Sequencing can be accomplished through classic Sanger sequencing methods which are well known in the art. Sequencing can also be accomplished using high-throughput systems some of which allow detection of a sequenced nucleotide immediately after or upon its incorporation into a growing strand, i.e., detection of sequence in red time or substantially real time. In some cases, high throughput sequencing generates at least 1,000, at least 5,000, at least 10,000, at least 20,000, at least 30,000, at least 40,000, at least 50,000, at least 100,000 or at least 500,000 sequence reads per hour; with each read being at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 120 or at least 150 bases per read.
  • In some embodiments, high-throughput sequencing involves the use of technology available by Illumina's Genome Analyzer IIX, MiSeq personal sequencer, or HiSeq systems, such as those using HiSeq 2500, HiSeq 1500, HiSeq 2000, or HiSeq 1000. These machines use reversible terminator-based sequencing by synthesis chemistry. These machines can do 200 billion DNA or more reads in eight days. Smaller systems may be utilized for runs within 3, 2, 1 days or less time. Short synthesis cycles may be used to minimize the time it takes to obtain sequencing results.
  • In some embodiments, high-throughput sequencing involves the use of technology available by ABI Solid System. This genetic analysis platform that enables massively parallel sequencing of clonally-amplified DNA fragments linked to beads. The sequencing methodology is based on sequential ligation with dye-labeled oligonucleotides.
  • The next generation sequencing can comprise ion semiconductor sequencing (e.g., using technology from Life Technologies (Ion Torrent)). Ion semiconductor sequencing can take advantage of the fact that when a nucleotide is incorporated into a strand of DNA, an ion can be released. To perform ion semiconductor sequencing, a high density array of micromachined wells can be formed. Each well can hold a single DNA template. Beneath the well can be an ion sensitive layer, and beneath the ion sensitive layer can be an ion sensor. When a nucleotide is added to a DNA, H+ can be released, which can be measured as a change in pH. The H+ ion can be converted to voltage and recorded by the semiconductor sensor. An array chip can be sequentially flooded with one nucleotide after another. No scanning, light, or cameras can be required. In some cases, an IONPROTON™ Sequencer is used to sequence nucleic acid. In some cases, an IONPGM™ Sequencer is used. The Ion Torrent Personal Genome Machine (PGM) can do 10 million reads in two hours.
  • In some embodiments, high-throughput sequencing involves the use of technology available by Helicos BioSciences Corporation (Cambridge, Mass.) such as the Single Molecule Sequencing by Synthesis (SMSS) method. SMSS is unique because it allows for sequencing the entire human genome in up to 24 hours. Finally, SMSS is powerful because, like the MIP technology, it does not require a pre amplification step prior to hybridization. In fact, SMSS does not require any amplification. SMSS is described in part in US Publication Application Nos. 2006002471 I; 20060024678; 20060012793; 20060012784; and 20050100932.
  • In some embodiments, high-throughput sequencing involves the use of technology available by 454 Lifesciences, Inc. (Branford, Conn.) such as the Pico Titer Plate device which includes a fiber optic plate that transmits chemiluninescent signal generated by the sequencing reaction to be recorded by a CCD camera in the instrument. This use of fiber optics allows for the detection of a minimum of 20 million base pairs in 4.5 hours.
  • Methods for using bead amplification followed by fiber optics detection are described in Marguiles, M., et al. “Genome sequencing in microfabricated high-density picolitre reactors”, Nature, doi: 10.1038/nature03959; and well as in US Publication Application Nos. 20020012930; 20030058629; 20030100102; 20030148344; 20040248161; 20050079510, 20050124022; and 20060078909.
  • In some embodiments, high-throughput sequencing is performed using Clonal Single Molecule Array (Solexa, Inc.) or sequencing-by-synthesis (SBS) utilizing reversible terminator chemistry. These technologies are described in part in U.S. Pat. Nos. 6,969,488; 6,897,023; 6,833,246; 6,787,308; and US Publication Application Nos. 20040106130; 20030064398; 20030022207; and Constans, A., The Scientist 2003, 17(13):36. High-throughput sequencing of oligonucleotides can be achieved using any suitable sequencing method known in the art, such as those commercialized by Pacific Biosciences, Complete Genomics, Genia Technologies, Halcyon Molecular, Oxford Nanopore Technologies and the like. Other high-throughput sequencing systems include those disclosed in Venter, J., et al. Science 16 Feb. 2001; Adams, M. et al, Science 24 Mar. 2000; and M. J, Levene, et al. Science 299:682-686, January 2003; as well as US Publication Application No. 20030044781 and 2006/0078937. Overall such systems involve sequencing a target oligonucleotide molecule having a plurality of bases by the temporal addition of bases via a polymerization reaction that is measured on a molecule of oligonucleotide, i e., the activity of a nucleic acid polymerizing enzyme on the template oligonucleotide molecule to be sequenced is followed in real time. Sequence can then be deduced by identifying which base is being incorporated into the growing complementary strand of the target oligonucleotide by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target oligonucleotide molecule complex is provided in a position suitable to move along the target oligonucleotide molecule and extend the oligonucleotide primer at an active site. A plurality of labeled types of nucleotide analogs are provided proximate to the active site, with each distinguishably type of nucleotide analog being complementary to a different nucleotide in the target oligonucleotide sequence. The growing oligonucleotide strand is extended by using the polymerase to add a nucleotide analog to the oligonucleotide strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target oligonucleotide at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labeled nucleotide analogs, polymerizing the growing oligonucleotide strand, and identifying the added nucleotide analog are repeated so that the oligonucleotide strand is further extended and the sequence of the target oligonucleotide is determined.
  • The next generation sequencing technique can comprises real-time (SMRT™) technology by Pacific Biosciences. In SMRT, each of four DNA bases can be attached to one of four different fluorescent dyes. These dyes can be phospho linked. A single DNA polymerase can be immobilized with a single molecule of template single stranded DNA at the bottom of a zero-mode waveguide (ZMW). A ZMW can be a confinement structure which enables observation of incorporation of a single nucleotide by DNA polymerase against the background of fluorescent nucleotides that can rapidly diffuse in an out of the ZMW (in microseconds). It can take several milliseconds to incorporate a nucleotide into a growing strand. During this time, the fluorescent label can be excited and produce a fluorescent signal, and the fluorescent tag can be cleaved off. The ZMW can be illuminated from below. Attenuated light from an excitation beam can penetrate the lower 20-30 nm of each ZMW. A microscope with a detection limit of 20 zepto liters (10″ liters) can be created. The tiny detection volume can provide 1000-fold improvement in the reduction of background noise. Detection of the corresponding fluorescence of the dye can indicate which base was incorporated. The process can be repeated.
  • In some cases, the next generation sequencing is nanopore sequencing {See e.g., Soni G V and Meller A. (2007) Clin Chem 53: 1996-2001). A nanopore can be a small hole, of the order of about one nanometer in diameter. Immersion of a nanopore in a conducting fluid and application of a potential across it can result in a slight electrical current due to conduction of ions through the nanopore. The amount of current which flows can be sensitive to the size of the nanopore. As a DNA molecule passes through a nanopore, each nucleotide on the DNA molecule can obstruct the nanopore to a different degree. Thus, the change in the current passing through the nanopore as the DNA molecule passes through the nanopore can represent a reading of the DNA sequence. The nanopore sequencing technology can be from Oxford Nanopore Technologies; e.g., a GridlON system. A single nanopore can be inserted in a polymer membrane across the top of a microwell. Each microwell can have an electrode for individual sensing. The microwells can be fabricated into an array chip, with 100,000 or more microwells (e.g., more than 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000, or 1,000,000) per chip. An instrument (or node) can be used to analyze the chip. Data can be analyzed in real-time. One or more instruments can be operated at a time. The nanopore can be a protein nanopore, e.g., the protein alpha-hemolysin, a heptameric protein pore. The nanopore can be a solid-state nanopore made, e.g., a nanometer sized hole formed in a synthetic membrane (e.g., SiNx, or SiO2). The nanopore can be a hybrid pore (e.g., an integration of a protein pore into a solid-state membrane). The nanopore can be a nanopore with an integrated sensors (e.g., tunneling electrode detectors, capacitive detectors, or graphene based nano-gap or edge state detectors (see e.g., Garaj et al. (2010) Nature vol. 67, doi: 10.1038/nature09379)). A nanopore can be functionalized for analyzing a specific type of molecule (e.g., DNA, RNA, or protein). Nanopore sequencing can comprise “strand sequencing” in which intact DNA polymers can be passed through a protein nanopore with sequencing in real time as the DNA translocates the pore. An enzyme can separate strands of a double stranded DNA and feed a strand through a nanopore. The DNA can have a hairpin at one end, and the system can read both strands. In some cases, nanopore sequencing is “exonuclease sequencing” in which individual nucleotides can be cleaved from a DNA strand by a processive exonuclease, and the nucleotides can be passed through a protein nanopore. The nucleotides can transiently bind to a molecule in the pore (e.g., cyclodextran). A characteristic disruption in current can be used to identify bases.
  • Nanopore sequencing technology from GENIA can be used. An engineered protein pore can be embedded in a lipid bilayer membrane. “Active Control” technology can be used to enable efficient nanopore-membrane assembly and control of DNA movement through the channel. In some cases, the nanopore sequencing technology is from NABsys. Genomic DNA can be fragmented into strands of average length of about 100 kb. The 100 kb fragments can be made single stranded and subsequently hybridized with a 6-mer probe. The genomic fragments with probes can be driven through a nanopore, which can create a current-versus-time tracing. The current tracing can provide the positions of the probes on each genomic fragment. The genomic fragments can be lined up to create a probe map for the genome. The process can be done in parallel for a library of probes. A genome-length probe map for each probe can be generated. Errors can be fixed with a process termed “moving window Sequencing By Hybridization (mwSBH).” In some cases, the nanopore sequencing technology is from IBM/Roche. An electron beam can be used to make a nanopore sized opening in a microchip. An electrical field can be used to pull or thread DNA through the nanopore. A DNA transistor device in the nanopore can comprise alternating nanometer sized layers of metal and dielectric. Discrete charges in the DNA backbone can get trapped by electrical fields inside the DNA nanopore. Turning off and on gate voltages can allow the DNA sequence to be read.
  • The next generation sequencing can comprise DNA nanoball sequencing (as performed, e.g., by Complete Genomics; see e.g., Drmanac et al. (2010) Science 327: 78-81). DNA can be isolated, fragmented, and size selected. For example, DNA can be fragmented (e.g., by sonication) to a mean length of about 500 bp. Adaptors (Adl) can be attached to the ends of the fragments. The adaptors can be used to hybridize to anchors for sequencing reactions. DNA with adaptors bound to each end can be PCR amplified. The adaptor sequences can be modified so that complementary single strand ends bind to each other forming circular DNA. The DNA can be methylated to protect it from cleavage by a type IIS restriction enzyme used in a subsequent step. An adaptor (e.g., the right adaptor) can have a restriction recognition site, and the restriction recognition site can remain non-methylated. The non-methylated restriction recognition site in the adaptor can be recognized by a restriction enzyme (e.g., Acul), and the DNA can be cleaved by Acul 13 bp to the right of the right adaptor to form linear double stranded DNA. A second round of right and left adaptors (Ad2) can be ligated onto either end of the linear DNA, and all DNA with both adapters bound can be PCR amplified (e.g., by PCR). Ad2 sequences can be modified to allow them to bind each other and form circular DNA. The DNA can be methylated, but a restriction enzyme recognition site can remain non-methylated on the left Adl adapter. A restriction enzyme (e.g., Acul) can be applied, and the DNA can be cleaved 13 bp to the left of the Adl to form a linear DNA fragment. A third round of right and left adaptor (Ad3) can be ligated to the right and left flank of the linear DNA, and the resulting fragment can be PCR amplified. The adaptors can be modified so that they can bind to each other and form circular DNA. A type III restriction enzyme (e.g., EcoP15) can be added; EcoP15 can cleave the DNA 26 bp to the left of Ad3 and 26 bp to the right of Ad2. This cleavage can remove a large segment of DNA and linearize the DNA once again. A fourth round of right and left adaptors (Ad4) can be ligated to the DNA, the DNA can be amplified (e.g., by PCR), and modified so that they bind each other and form the completed circular DNA template.
  • Rolling circle replication (e.g., using Phi 29 DNA polymerase) can be used to amplify small fragments of DNA. The four adaptor sequences can contain palindromic sequences that can hybridize and a single strand can fold onto itself to form a DNA nanoball (DNB™) which can be approximately 200-300 nanometers in diameter on average. A DNA nanoball can be attached (e.g., by adsorption) to a microarray (sequencing flowcell). The flow cell can be a silicon wafer coated with silicon dioxide, titanium and hexamehtyldisilazane (HMDS) and a photoresist material. Sequencing can be performed by unchained sequencing by ligating fluorescent probes to the DNA. The color of the fluorescence of an interrogated position can be visualized by a high resolution camera. The identity of nucleotide sequences between adaptor sequences can be determined.
  • Inkjet Deposits
  • The methods and compositions of the invention, in some embodiments, make use of depositing, positioning, or placing a composition at a specific location on or in the surface of a support. Depositing may comprise contacting one composition with another. Depositing may be manual or automatic, e.g., depositing may be accomplished by automated robotic devices. Pulse jets or inkjets may be used to dispense drops of a fluid composition onto a support. Pulse jets typically operate by delivering a pulse of pressure (such as by a piezoelectric or thermoelectric element) to liquid adjacent to an outlet or orifice such that a drop can be dispensed therefrom.
  • Liquids of reagents can be deposited to resolved loci of a substrate described in further detail elsewhere herein using various methods or systems known in the art. Microdroplets of fluid can be delivered to a surface or resolved loci on or within a substrate described in the current invention at submicron precision. Commercially available dispensing equipments using inkjet technology as the microdispensing method for fluid volume below can be employed. The droplets produced using ink-jet technology are highly reproducible and can be controlled so that a droplet may be placed on a specific location at a specific time according to digitally stored image data. Typical droplet diameters for demand mode ink-jet devices can be 30-100 μm, which translates to droplet volumes of 14-520 μl. Droplet creation rates for demand mode ink-jet devices can be 2000-5000 droplets per second. Demand mode ink-jet microdispensing can be utilized at suitable resolutions and throughputs to service substrates with high densities of resolved loci described in further detail elsewhere herein. Methods and systems for depositing or delivering reagents are described in further detail in U.S. Pat. Nos. 5,843,767 and 6,893,816, both of which are incorporated by reference in their entirety.
  • The systems for depositing or delivering the reagents to resolved loci can comprise one or more subsystems including but not limited to: a microjet dispense head, a fluid delivery system or an inkjet pump, a X-Y positioning system, a vision system, or a system controller. The microjet dispense head can be an assembly of a plurality of MicroJet devices (e.g., 8 MicroJet devices) and the required drive electronics. The system complexity can be minimized by using a single channel of drive electronics to multiplex the 8 or 10 dispensing devices. Drive waveform requirements for each individual device can be downloaded from the system controller. The drive electronics can be constructed using conventional methods that are known in the art. The fluid delivery system, or the inkjet pump, can be a Beckman Biomec that is modified to act as the multiple reagent input system. Between it and the MicroJet dispense head can be a system of solenoid valves, controlled by the system controller. They provide pressurized flushing fluid and air to purge reagent from the system and vacuum to load reagent into the system. The X-Y positioning system can be any commercially available precision X-Y positioning system with a controller. The positioning system can be sized to accommodate a plurality of sensors. The vision system can be used to calibrate the “landing zone” of each MicroJet device relative to the positioning system. Calibration may occur after each reagent loading cycle. Also, the vision system can locate each dispensing site on each sensor when the sensor tray is first loaded via fiducial marks on the sensors. A software based system or a hardware based vision system can be used. The system controller can be a standard computer system that is used as the overall system controller. The vision system image capture and processing also reside on the system controller. Systems for depositing or delivering the reagents to resolved loci are described in further detail in PCT Pub. No. WO2000039344, which is incorporated herein by reference in its entirety.
  • FIG. 18 illustrates an example of an inkjet assembly. In some embodiments, the inkjet assembly can comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 45, 48, 50, 56, 60, 64, 72, 75, 80, 85, 90, 95, 100 or more inkjet heads. The inkjets heads may each deposit a different codon (trinucleotide) building blocks. In an exemplary embodiment, inkjet heads can have Silicon orifice plates with 256 nozzles on 254 μm centers and 100 μm fly height. Each head can have access to each well that traverses. The inkjet assembly can have a scan speed about 100 mm/s with precision in the traveling (x,y) plane that is about 2 μm. In some cases, the scan height over wafer of the inkjet assembly can be about 100 μm with a flatness runout of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 μm. In some cases, the inkjet assembly can comprise a vision system to align inkjet with substrates, e.g. silicon wafers, chucked on a vacuum chuck, in some cases as part of a flowcell assembly.
  • In some cases, methods and systems of depositing reagents to a plurality of resolved loci described herein can comprise applying through an inkjet pump at least one microdrop of a first reagent to a first locus of the plurality of loci and applying through an inkjet pump at least one microdrop of a second reagent to a second locus of the plurality of resolved loci. In some embodiments, the second locus can be adjacent to the first locus, and the first and second reagents can be different. The first and second loci can reside on microstructures fabricated into a support surface and the microstructures can comprise at least one channel. In some cases, the at least one channel is more than 100 μm deep. In some embodiments, the first and the second reagents can be the same. In some cases, the microstructures comprise a large microchannel and one or more microchannels that are fluidically connected to the first microchannel. The large initial microchannel initially receives a deposited liquid, typically reducing any cross contamination of reagents to and from adjacent microstructures. The contents of the droplet can subsequently flow into the one or more smaller microchannels, which may host suitable surfaces for the reactions described herein, such as oligonucleotide synthesis.
  • The at least one channel can have a depth that can be about, at least about, or less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 μm. In some embodiments, the at least one channel can have a depth that can be between about 50-100, 50-150, 50-200, 100-200, 100-300, 20-300 or 20-100 μm. In some embodiments, the at least one channel can be more than 100 μm deep.
  • Each of the droplets of reagents can have a suitable volume that can traverse through the depth of the microchannel without losing momentum. The suitable volume can comprise a desired amount of reagents for oligonucleotide synthesis. For example, without limitation, each of the droplets comprising reagents can have a volume that is about or at least about 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 400, 500 μl, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 75, 100, 200, 500 nl, or more. In various embodiments, the system is adjusted such that any satellite droplets trailing a deposited droplet is small enough to minimize cross-contamination. In the case of an inkjet, the printheads can be brought sufficiently close to a substrate e.g. within 100 μm, such that a deposited droplet and its satellite drops are substantially within a channel of the substrate before aerosol movement. The satellite droplets may have a diameter of less than 0.5, 1, 1.5 or 2 μm. In various embodiments, the by volume fraction of satellite droplets that engage in aerosol movement is less than 5, 4, 3, 2, 1, 0.5, 0.1, 0.05, 0.01% of a deposited droplet, or less.
  • As described elsewhere herein, the microstructures can comprise multiple channels in fluidic communication with each other. In some cases, the microstructures can comprise at least three, four, five, six, seven, eight, nine or ten channels in fluid communications. The channels can have different dimensions, e.g. widths or lengths, as described in further detail elsewhere herein. In some embodiments, the fluidically connected channels of the microstructures can comprise two or more channels with the same width, length, and/or other dimensions.
  • The microdroplets of fluid can be delivered to a surface or resolved loci within a substrate as described elsewhere herein at a high precision with minimal cross-contamination. In some cases, the first locus can receive less than 0.1% of a second reagent that is intended to be deposited to a second locus and similarly the second locus can receive less than 0.1% of the first reagent. In some cases, the first locus can receive less than about 0.5%, 0.45%, 0.4%, 0.35%, 0.3%, 0.25%, 0.2%, 0.15%, 0.1%, 0.05%, 0.04%, 0.03%, 0.02% or 0.01% of the second reagent. The second locus can receive less than about 0.5%, 0.45%, 0.4%, 0.35%, 0.3%, 0.25%, 0.2%, 0.15%, 0.1%, 0.05%, 0.04%, 0.03%, 0.02% or 0.01% of the first reagent.
  • In some cases, the reagents can be delivered in droplets that have a diameter of about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or 200 μm. The droplets of reagent can have a diameter that is at least about 2 μm. The reagents can be delivered in droplets that have a diameter of less than about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or 200 μm. The reagents can be delivered in droplets that have a diameter of between 2-10, 2-5, 10-200, 10-150, 10-100, 10-500, 20-200, 20-150, 20-100, 30-100, 30-200, 30-150, 40-100, 40-80 or 50-60 μm.
  • The droplets of reagents can be deposited in a rate of about or at least about 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 or 5000 droplets per second.
  • Soft Landing
  • Systems and methods for depositing droplets to a plurality of microwells are also described herein. In one aspect, droplets can be deposited into a microwell of a microfluidic system comprising a first surface with a plurality of microwells. The droplet can have a suitable Reynolds number, such as about 1-1000, 1-2000, 1-3000, 0.5-1000, 0.5-2000, 0.5-3000, 0.5-4000, 0.5-5000, 1-500, 2-500, 1-100, 2-100, 5-100, 1-50, 2-50, 5-50 or 10-50, such that bouncing of liquids is minimized upon reaching the bottom of the microwell. Those of skill in the art appreciate that the Reynolds number may fall within any range bounded by any of these values (e.g., about 0.5 to about 500). Suitable methods for accurate estimation of Reynolds numbers in fluid systems are described in Clift et al. (Clift, Roland, John R. Grace, and Martin E. Weber, Bubbles, Drops and Particles, 2005. Dover Publications) and Happel et al. (Happel, John and Howard Brenner, 1965. Prentice-Hall), both of which are herein incorporated by reference in their entirety.
  • The density of the plurality of microwells can be more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 1000 or more per mm2. Following the methods described herein, the droplet of the liquid can flow through the microwell smoothly and land on the bottom of the microwell softly.
  • The liquid droplets can be deposited using any methods and systems known in the art. In some embodiments, the microfluidic system can further comprise an inkjet pump. The inkjet pump can be used to deposit the liquid droplet to one of the plurality of microwells. Various embodiments of the liquid deposit systems are described elsewhere in the specification.
  • In some cases, the microwells can be in different width, the same width, or a combination of the same or different width within subregions of a substrate. The microwells can have any different width. For example, without limitation, the width of the microwells can be about, wider than about, or narrower than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 μm.
  • The microwells can have any different length. For example, without limitation, the length of the microwells can be about, longer than about, or shorter than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900 or 1000 μm.
  • The microwells can be fluidically connected to at least one microchannel. The microwells can comprise a ratio of surface area to length, or a perimeter, of about, at least about, or less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 μm.
  • The droplets of the liquid can have a volume that is suitable for the methods described herein. In some embodiments, the droplet can have a volume that is less than about 0.5 microliters (μl), less than about 1 μl, less than about 1.5 μl, less than about 2 μl, less than about 2.5 μl, less than about 3 μl, less than about 3.5 μl, less than about 4 μl, less than about 4.5 μl, less than about 5 μl, less than about 5.5 μl, less than about 6 μl, less than about 6.5 μl, less than about 7 μl, less than about 7.5 μl, less than about 8 μl, less than about 8.5 μl, less than about 9 μl, less than about 9.5 μl, less than about 10 μl, less than about 11 μl, less than about 12 μl, less than about 13 μl, less than about 14 μl, less than about 15 μl, less than about 16 μl, less than about 17 μl, less than about 18 μl, less than about 19 μl, less than about 20 μl, less than about 25 μl, less than about 30 μl, less than about 35 μl, less than about 40 μl, less than about 45 μl, less than about 50 μl, less than about 55 μl, less than about 60 μl, less than about 65 μl, less than about 70 μl, less than about 75 μl, less than about 80 μl, less than about 85 μl, less than about 90 μl, less than about 95 μl or less than about 100 μl. In some embodiments, the droplet can have a volume that is about 0.5 microliters (μl), about 1 μl, about 1.5 μl, about 2 μl, about 2.5 μl, about 3 μl, about 3.5 μl, about 4 μl, about 4.5 μl, about 5 μl, about 5.5 μl, about 6 μl, about 6.5 μl, about 7 μl, about 7.5 μl, about 8 μl, about 8.5 μl, about 9 μl, about 9.5 μl, about 10 μl, about 11 μl, about 12 μl, about 13 μl, about 14 μl, about 15 μl, about 16 μl, about 17 μl, about 18 μl, about 19 μl, about 20 μl, about 25 μl, about 30 μl, about 35 μl, about 40 μl, about 45 μl, about 50 μl, about 55 μl, about 60 μl, about 65 μl, about 70 μl, about 75 μl, about 80 μl, about 85 μl, about 90 μl, about 95 μl or about 100 μl.
  • In some cases, the microchannels can be coated with a moiety, such as a chemically inert moiety, that increases surface energy. The types of suitable chemically inert or reactive moieties are described elsewhere in the current specification.
  • The Reynolds number of the droplet can be at a range of Reynolds number that allows the liquid to flow smoothly through microwells and/or microchannels as described herein. In some embodiments, the Reynolds number of the droplet can be less than about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000. In some embodiments, the Reynolds number of the droplet can be more than about 0.1, 0.5, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000. In some cases, the droplets can flow through the microwells in a laminar flow or near-laminar flow.
  • The droplet can be applied or deposited at a velocity of at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 m/sec or higher.
  • Programmable Split
  • The system as described herein can comprise a plurality of resolved loci and a plurality of resolved reactor caps that can be sealed together to form a plurality of resolved reactors. The plurality of resolved reactors can contain reagents. The sealing may be reversible or loose, and the plurality of resolved reactor caps can be released from the plurality of resolved loci. Upon release from the first surface comprising the plurality of resolved loci, the reactor caps can retain at least a portion of the reagents. By controlling the release of the reactor caps from the plurality of resolved loci, the partitioning of the liquid or the reagents can be controlled. In one aspect of the instant invention, a method of partitioning is described herein. The method may comprise contacting a first surface comprising a liquid at a first plurality of resolved loci with a second surface comprising a second plurality of resolved loci, such as reactor caps, wherein the first surface can comprise a first surface tension with the liquid, the second surface can comprise a second surface tension with the liquid and determining a velocity of release such that a desired fraction of the liquid can be transferred from the first plurality of resolved loci to the second plurality of resolved loci Upon detaching the second surface from the first surface at this calculated velocity, a desired fraction of the contents of the reactors may be retained in reactors. The first surface comprising the first plurality of resolved loci may comprise the plurality of resolved loci that are coated with oligonucleotides. The second surface comprising the second plurality of resolved loci may be a capping element comprising a plurality of reactor caps. In some cases, the method can further comprise contacting a third surface with a third plurality of resolved loci. Various aspects or embodiments are described herein.
  • The liquid that is retained in the second surface may be held by any methods known in the art. In some cases, the first or the second surface can comprise microchannels holding at least a portion of the liquid. In some cases, the first or the second surface can comprise nanoreactors holding at least a portion of the liquid. In some cases, the liquid can be retained due to the surface tension differences between the first and the second surface. Without being bound by theory, for water based liquids, a higher portion of the liquid may be retained on the surface having higher surface energy, or less hydrophobic.
  • The liquid may be partitioned such that a desired fraction of the reagents can be retained onto the first or the second surface upon releasing. For example, without limitation, the desired fraction may be about, at least about, or more than about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%.
  • Parallel Microfluidic Mixing Methods
  • In another aspect of the current invention, methods of mixing liquid are described herein. The methods can comprise providing a first substrate comprising a plurality of microstructures fabricated thereto; providing a second substrate comprising a plurality of resolved reactor caps; aligning the first and second substrates such that a first reactor cap of the plurality is configured to receive liquid from n microstructures in the first substrate; and delivering liquid from the n microstructures into the first reactor cap, thereby mixing liquid from the n microstructures forming a mixture. Various embodiments and variations are described herein.
  • The density of the resolved reactor caps can be any suitable density that allows desired alignment of the microstructures of a first substrate and the reactor caps of a second substrate. In some cases, the density of the resolved reactor caps can be at least 1/mm2. In some cases, the density of the resolved reactors can be about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, or about 2000 sites per 1 mm2. In some embodiments, the density of the resolved reactors can be at least about 1, at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 20, at least about 30, at least about 40, at least about 50, at least about 75, at least about 100, at least about 200, at least about 300, at least about 400, at least about 500, at least about 600, at least about 700, at least about 800, at least about 900, at least about 1000, at least about 1500, at least about 2000, or at least about 3000 sites per 1 mm2.
  • The microstructures can be at any density practicable according to the methods and compositions of the invention. In some cases, the microstructures can be at a density of about, at least about, or less than about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 50, about 75, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1500, about 2000, or about 3000 sites per 1 mm2. In some embodiments, the microstructures can be at a density of at least 100 per 1 mm2. In some cases, the microstructures can have a surface density that is about the same as the density of the resolved reactors.
  • In some cases, there can be a gap, e.g. a gap of less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 μm between the first and the second substrates after aligning the first and the second substrates such that a first reactor cap of the plurality is configured to receive liquid from n microstructures in the first substrate.
  • In some cases, the mixture or the liquid can partially spread into the gap between the first and the second substrates after aligning the first and the second substrates such that a first reactor cap of the plurality is configured to receive liquid from n microstructures in the first substrate. The liquid or mixture that partially spreads into the gap may form a capillary burst valve. The methods of mixing can further comprise sealing the gap by bringing the first and the second substrate closer together. In some cases, the first and the second substrate can be in direct physical contact.
  • The plurality of microstructures and reactor caps can have any suitable design or dimensions as described in further detail elsewhere herein. At least one channel can have a cross-sectional area that is in a circular shape and can comprise a radius of the cross-sectional area of about, at least about, less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 μm.
  • In some cases, the channels may be coated with a moiety, such as a chemically inert moiety, that increases surface energy corresponding to a water contact angle of less than 90°. The surface energy, or hydrophobicity of a surface, can be evaluated or measured by measuring a water contact angle. A water contact angle of smaller than 90° may functionalize the solid surface in a relatively hydrophilic manner. A water contact angle of greater than 90° may functionalize the solid surface in a relatively hydrophobic manner. Highly hydrophobic surfaces with low surface energy can have water contact angles that are greater than 120°. In some cases, the surface of the channels, or one of the two channels as described herein can be functionalized or modified to be hydrophobic, to have a low surface energy, or to have a water contact angle that can be greater than about 90°, 95°, 100°, 105°, 110°, 115°, 120°, 125°, 130°, 135°, 140°, 145° or 150° as measured on an uncurved surface. In some cases, the surface of the channels, or one of the two channels as described herein in the current invention can be functionalized or modified to be hydrophilic, to have a high surface energy, or to have a water contact angle that can be less than about 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° as measured on an uncurved surface. The surface of the channels or one of the two channels can be functionalized or modified to be more hydrophilic or hydrophobic. In some cases, the surfaces of the first and the second substrate can comprise a different surface energy with a given liquid, such as water. In some cases, the surfaces of the first and the second substrates can comprise a differential water contact angle of between about 5°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°. Other methods for functionalizing the surface are described in U.S. Pat. No. 6,028,189, which is herein incorporated by reference in its entirety.
  • In some embodiments, the delivering can be performed by pressure. The delivering liquid from the n microstructures into the first reactor cap can result in mixing liquid from the n microstructures and forming a mixture.
  • In some cases, the volume of the total mixture liquid can be greater than the volume of the reactor cap. All or part of the reactor cap surfaces, such as the rim surface, may be modified using suitable surface modification methods described in further detail elsewhere herein and otherwise known in the art. In some cases, surface irregularities are engineered. Chemical surface modifications and irregularities may serve to adjust the water contact angle of the rim. Similar surface treatments may also be applied on the surface of a substrate that is brought in close proximity to the reactor caps forming a seal, e.g. a reversible seal. A capillary burst valve may be utilized between the two surfaces as described in further detail elsewhere herein. The surface treatments can be useful in precise control of such seals comprising capillary burst valves.
  • In some cases, the releasing of the capping element from the first surface, and the releasing of the capping element from the second surface can be performed at a different velocity. The amount of the portion of reagents that is retained upon releasing the capping element from the corresponding surface can be controlled by the velocity or the surface energy of the capping element and the corresponding surface. The difference in the surface energy, or hydrophobicity, of the capping element and the corresponding surface can be a parameter to control the portion of the reagents that is retained upon release. The volume of the first and the second reactions can be different.
  • Downstream Applications
  • The methods and compositions of the invention may be used for nucleic acid hybridization studies such as gene expression analysis, genotyping, heteroduplex analysis, nucleic acid sequencing determinations based on hybridization, synthesis of DNA, RNA, peptides, proteins or other oligomeric or non-oligomeric molecules, combinatorial libraries for evaluation of candidate drugs.
  • DNA and RNA synthesized in accordance with the invention may be used in any application including, by way of example, probes for hybridization methods such as gene expression analysis, genotyping by hybridization (competitive hybridization and heteroduplex analysis), sequencing by hybridization, probes for Southern blot analysis (labeled primers), probes for array (either microarray or filter array) hybridization, “padlock” probes usable with energy transfer dyes to detect hybridization in genotyping or expression assays, and other types of probes. The DNA and RNA prepared in accordance with the invention may also be used in enzyme-based reactions such as polymerase chain reaction (PCR), as primers for PCR, templates for PCR, allele-specific PCR (genotyping/haplotyping) techniques, real-time PCR, quantitative PCR, reverse transcriptase PCR, and other PCR techniques. The DNA and RNA may be used for various ligation techniques, including ligation-based genotyping, oligo ligation assays (OLA), ligation-based amplification, ligation of adapter sequences for cloning experiments, Sanger dideoxy sequencing (primers, labeled primers), high throughput sequencing (using electrophoretic separation or other separation method), primer extensions, mini-sequencings, and single base extensions (SBE). The DNA and RNA produced in accordance with the invention may be used in mutagenesis studies, (introducing a mutation into a known sequence with an oligo), reverse transcription (making a cDNA copy of an RNA transcript), gene synthesis, introduction of restriction sites (a form of mutagenesis), protein-DNA binding studies, and like experiments. Various other uses of DNA and RNA produced by the subject methods will suggest themselves to those skilled in the art, and such uses are also considered to be within the scope of this disclosure.
  • Computer Systems
  • In various embodiments, the methods and systems of the invention may further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the printhead movement, dispense action and vacuum actuation are within the bounds of the invention. The computer systems may be programmed to interface between the user specified base sequence and the position of a dispenser head to deliver the correct reagents to specified regions of the substrate.
  • The computer system 1900 illustrated in FIG. 19 may be understood as a logical apparatus that can read instructions from media 1911 and/or a network port 1905, which can optionally be connected to server 1909 having fixed media 1912. The system, such as shown in FIG. 19 can include a CPU 1901, disk drives 1903, optional input devices such as keyboard 1915 and/or mouse 1916 and optional monitor 1907. Data communication can be achieved through the indicated communication medium to a server at a local or a remote location. The communication medium can include any means of transmitting and/or receiving data. For example, the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 1922 as illustrated in FIG. 19 .
  • FIG. 20 is a block diagram illustrating a first example architecture of a computer system 2000 that can be used in connection with example embodiments of the present invention. As depicted in FIG. 20 , the example computer system can include a processor 2002 for processing instructions. Non-limiting examples of processors include: Intel Xeon™ processor, AMD Opteron™ processor, Samsung 32-bit RISC ARM 1176JZ(F)-S v1.0™ processor, ARM Cortex-A8 Samsung S5PC100™ processor, ARM Cortex-A8 Apple A4™ processor, Marvell PXA 930™ processor, or a functionally-equivalent processor. Multiple threads of execution can be used for parallel processing. In some embodiments, multiple processors or processors with multiple cores can also be used, whether in a single computer system, in a cluster, or distributed across systems over a network comprising a plurality of computers, cell phones, and/or personal data assistant devices.
  • As illustrated in FIG. 20 , a high speed cache 2004 can be connected to, or incorporated in, the processor 2002 to provide a high speed memory for instructions or data that have been recently, or are frequently, used by processor 2002. The processor 2002 is connected to a north bridge 2006 by a processor bus 2008. The north bridge 2006 is connected to random access memory (RAM) 2010 by a memory bus 2012 and manages access to the RAM 2010 by the processor 2002. The north bridge 2006 is also connected to a south bridge 2014 by a chipset bus 2016. The south bridge 2014 is, in turn, connected to a peripheral bus 2018. The peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus. The north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 2018. In some alternative architectures, the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip.
  • In some embodiments, system 2000 can include an accelerator card 2022 attached to the peripheral bus 2018. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.
  • Software and data are stored in external storage 2024 and can be loaded into RAM 2010 and/or cache 2004 for use by the processor. The system 2000 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example embodiments of the present invention.
  • In this example, system 2000 also includes network interface cards (NICs) 2020 and 2021 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.
  • FIG. 21 is a diagram showing a network 2100 with a plurality of computer systems 2102 a, and 2102 b, a plurality of cell phones and personal data assistants 2102 c, and Network Attached Storage (NAS) 2104 a, and 2104 b. In example embodiments, systems 2102 a, 2102 b, and 2102 c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 2104 a and 2104 b. A mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 2102 a, and 2102 b, and cell phone and personal data assistant systems 2102 c. Computer systems 2102 a, and 2102 b, and cell phone and personal data assistant systems 2102 c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 2104 a and 2104 b. FIG. 21 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various embodiments of the present invention. For example, a blade server can be used to provide parallel processing. Processor blades can be connected through a back plane to provide parallel processing. Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface.
  • In some example embodiments, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other embodiments, some or all of the processors can use a shared virtual address memory space.
  • FIG. 22 is a block diagram of a multiprocessor computer system 2200 using a shared virtual address memory space in accordance with an example embodiment. The system includes a plurality of processors 2202 a-f that can access a shared memory subsystem 2204. The system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 2206 a-f in the memory subsystem 2204. Each MAP 2206 a-f can comprise a memory 2208 a-f and one or more field programmable gate arrays (FPGAs) 2210 a-f. The MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 2210 a-f for processing in close coordination with a respective processor. For example, the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example embodiments. In this example, each MAP is globally accessible by all of the processors for these purposes. In one configuration, each MAP can use Direct Memory Access (DMA) to access an associated memory 2208 a-f, allowing it to execute tasks independently of, and asynchronously from, the respective microprocessor 2202 a-f. In this configuration, a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.
  • The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example embodiments, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some embodiments, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example embodiments, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.
  • In example embodiments, the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems. In other embodiments, the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in FIG. 22 , system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic elements. For example, the Set Processor and Optimizer can be implemented with hardware acceleration through the use of a hardware accelerator card, such as accelerator card 122 illustrated in FIG. 20 .
  • Example 1: Front-End Processing of a Silicon Wafer to Create a Microwell
  • Silicon wafers are etched to create an exemplary substrate comprising a plurality of microwells using a front-end processing method as illustrated in FIG. 23 . Starting with a SOI substrate with a layer of oxide on both surfaces of the substrate, a layer of photo-resist is coated using photolithography method on the handle-side of the substrate at preferred locations. Following the coating of the photo-resist, DRIE is performed on the handle side until reaching to the layer of oxide in the middle of the wafer. Then, the coating of the photo-resist is stripped away exposing the layer of oxide underneath. Similarly, a second layer of photo-resist is coated using photolithography method on the device-side of the substrate at preferred locations, with suitable diameters. Following the coating of the second layer of photo-resist, DRIE is performed again on the device-side of the silicon wafer until reaching the layer of oxide in the middle of the silicon wafer. Then, the photo-resist and the layer of oxide in the middle of the wafer is stripped away. Lastly, oxide is coated on all surface of the wafer, creating a silicon wafer with a plurality of microstructures, each comprising a larger microwell and one or more microchannels fluidically connected to the microwell.
  • Example 2: Back-End Processing of a Silicon Wafer to Functionalize Selected Surface of the Microwell
  • The silicon wafer with etched microwells is further processed to functionalize selected portions of the microwells using a back-end processing method as illustrated in FIG. 24 . To coat only the surface of a smaller microwell within a microwell with an active functionalization agent that increases surface energy, the product from Example 1 is used as the starting material. A droplet of photo-resist is deposited into the microchannel using an inkjet printer as described herein. The droplet of photo-resist is spread into the microchannel in fluidic connection to the microwell. Following the photoresist deposition, oxygen plasma etch is performed to etch back excess photoresist, leaving a smoother surface of photo-resist as illustrated in FIG. 24 . A layer of a chemically inert moiety is coated onto all exposed surfaces of the silicon wafer to create a passive functionalization layer with low surface energy. Afterwards, the photo-resist is stripped away, exposing the surface of the smaller microchannel in fluidic communication with the microwell. Upon removal of the photo-resist, a layer of active functionalization agent is coated onto the surface of the smaller microchannel to increase the surface energy of the surface of the microwell and/or to provide surface chemistries for oligonucleotide growth. The previously functionalized surfaces remain substantially unaffected by the second application of surface functionalization. As a result, a plurality of microwell with a first surface functionalization each in fluidic communication with one or more microchannels with a second surface functionalization is manufactured on a solid substrate.
  • Example 3: Microfluidic Device
  • A microfluidic device comprising a substantially planar substrate portion was manufactured according to the methods and compositions of the invention as shown in FIG. 25D. A cross-section of the substrate is shown in FIG. 25E. The substrate comprises 108 clusters, wherein each cluster comprises 109 groupings of fluidic connections. Each grouping comprises 5 second channels extending from a first channel. FIG. 25A is a device view of each cluster comprising the 109 groupings. FIG. 25C is a handle view of the cluster of FIG. 25 part 25A. FIG. 25B is a section view of FIG. 25A showing a row of 11 groupings. FIG. 25F is another view of the substrate shown in FIG. 25D, wherein the position of a label is visualized. FIG. 25G is an expanded view of FIG. 25A, indicating the 109 groupings of the cluster.
  • As shown in FIGS. 25A and 25C, the 109 groupings are arranged in offset rows to form a cluster in a circle-like pattern, where the individual regions are non-overlapping with each other. The individual groupings form a circle. As represented by 2503, the distance between three rows of these groupings is 0.254 mm. As shown by 2506, the distance between two groupings in a row of groupings is 0.0978 mm. The cross-section of the first channel in a grouping, as shown by 2504, is 0.075 mm. The cross-section of each second channel in a grouping, as shown by 2505, is 0.020 mm. The length of the first channel in a grouping, as shown by 2502, is 0.400 mm. The length of each second channel in a grouping, as shown by 2501, is 0.030 mm.
  • The cluster of 109 groupings shown in FIGS. 25A and 25C are arranged in a conformation suitable for placement in a single reaction well that may be placed adjacent to the cluster in FIGS. 25A and 25C. The remainder of the clusters in FIG. 25 D are similarly arranged in a way that facilitates delivery into a number of reaction wells, such as the nanoreactor plate described in FIG. 26A-26E and Example 4. The substrate comprises 108 reaction wells, providing 11,772 groupings.
  • The width of the substrate along one dimension, as indicated by 2508, is 32.000 mm. The width of the substrate along another dimension, as indicated by 2519, is 32.000 mm.
  • The substantially planar substrate portion, as shown in FIG. 25D, comprises 108 clusters of groupings. The clusters are arranged in rows forming a square shape. The furthest distance from the center of a cluster to the origin in one dimension, as indicated by 2518, is 24.467 mm. The furthest distance from the center of a cluster to the origin in another dimension, as indicated by 2509, is 23.620 mm. The closest distance from the center of a cluster to the origin in one dimension, as shown by 2517, is 7.533. The closest distance from the center of a cluster to the origin in another dimension, as shown by 2512, is 8.380. The distance between the centers of two clusters in the same row, as shown by 2507 and 2522 is 1.69334 mm.
  • The substrate comprises 3 fiducial marks to facilitate alignment of the microfluidic device with other components of a system. A first fiducial mark is located near the origin, where the fiducial mark is closer to the origin than any one cluster. The first fiducial mark is located 5.840 mm from the origin in one dimension (2516) and 6.687 mm from the origin in another dimension (2513). The first fiducial mark is located 1.69334 mm from a cluster in one dimension (2515) and 1.69344 mm from the same cluster in another dimension (2514). Two other fiducial marks are each located 0.500 mm from an edge of the substrate (2510 and 2520) and 16.000 mm (2511 and 2521) from the origin.
  • A cross section of the substrate is shown in FIG. 25E, where the total length of a grouping as indicated by 2523, is 0.430 mm.
  • Another view of the substrate is shown is shown in FIG. 25F, showing the arrangement of the 108 clusters and the position of a label. The label is located 1.5 mm (2603) from an edge of the substrate. The label is located at a distance between 4.0 mm (2602) to 9.0 mm (2601), as measured from the origin.
  • Example 4: Nanoreactor
  • An nanoreactor was manufactured according to the methods and compositions of the invention as shown in FIGS. 26B and 26C. A cross-section of the nanoreactor is shown in FIG. 26A. The nanoreactor comprises 108 wells. FIG. 26D is a handle view of a nanoreactor. FIG. 26E is another view of the nanoreactor shown in FIG. 26B, wherein the position of a label is visualized.
  • As shown in FIG. 26B, the 108 wells are arranged in rows to form a square pattern, where the individual wells are raised on the nanoreactor base. As shown by 2711, the distance between the centers of two wells in a row of wells is 1.69334 mm. The cross-section of the inside of a well, as shown by 2721, is 1.15 mm. The cross-section of a well, including the rim of the well, as shown by 2720, is 1.450 mm. The height of a well in a nanoreactor, as shown by 2702, is 0.450 mm. The total height of a nanoreactor, as shown by 2701, is 0.725 mm.
  • The wells in FIG. 26B are arranged in a way that facilitates delivery from a microfluidic device having 108 wells, as exemplified by FIG. 26 , into the 108 reaction wells of the nanoreactor.
  • The width of the nanoreactor along one dimension, as indicated by 2703, is 24.000 mm. The width of the nanoreactor along another dimension, as indicated by 2704, is 24.000 mm.
  • The nanoreactor, as shown in FIG. 26B, comprises 108 wells. The wells are arranged in rows forming a square shape. The furthest distance from the center of a well to the origin in one dimension, as indicated by 2706, is 20.467 mm. The furthest distance from the center of a well to the origin in another dimension, as indicated by 2705, is 19.620 mm. The closest distance from the center of a well to the origin in one dimension, as shown by 2710, is 3.533 mm. The closest distance from the center of a well to the origin in another dimension, as shown by 2709, is 4.380 mm. The distance between the centers of two wells in the same row, as shown by 2711 and 2712 is 1.69334 mm. The distance from the center of a well to the edge of a nanoreactor in one dimension, as shown by 2707, is 3.387 mm. The distance from the center of a well to the edge of a nanoreactor in another dimension, as shown by 2708, is 2.540 mm.
  • The nanoreactor comprises 3 fiducial marks on the device face to facilitate alignment of the nanoreactor with other components of a system, for example, a microfluidic device as described in Example 3. A first fiducial mark is located near the origin, where the fiducial mark is closer to the origin than any one well. The first fiducial mark is located 1.840 mm from the origin in one dimension (2717) and 2.687 mm from the origin in another dimension (2716). The first fiducial mark is located 1.6933 mm from a well in one dimension (2719) and 1.6934 mm from the same well in another dimension (2718). Two other fiducial marks are each located 0.500 mm from an edge of the nanoreactor (2714 and 2715) and 12.000 mm (2713) from the origin.
  • The nanoreactor comprises 4 fiducial marks on the handle face as shown in FIG. 26D. The distance from the center or a fiducial mark and a nearest corner of the nanoreactor in one dimension is 1.000 mm (2722 and 2723). The length of a fiducial mark in one dimension is 1.000 mm (2724 and 2725). The width of a fiducial mark, as shown by 2726, is 0.050 mm.
  • Another view of the nanoreactor is shown is shown in FIG. 26E, showing the arrangement of the 108 wells and the position of a label. The label is located 1.5 mm (2728) from an edge of the nanoreactor. The label is located 1.0 mm (2727) from a corner of the nanoreactor. The label is 9.0 mm (2726), in length.
  • Example 5: Manufacturing of an Oligonucleotide Synthesis Device
  • A silicon on insulator (SOI) wafer with an about 30 um thick device layer and an about 400 um thick handle layer sandwiching an electrical insulator layer of silicon dioxide was etched to create the exemplary substrate described in Example 3 comprising a plurality of features having three-dimensional microfluidic connections, using a front-end processing method as illustrated in FIG. 28 . FIG. 27 illustrates in detail the design features of the device. The SOI wafer was oxidized to cover it with thermal oxide on both surfaces (FIG. 28 part A). Photolitography was applied to the device side to create a mask of photoresist (red) as shown in FIG. 28 part B. A deep reactive-ion etching (DRIE) step was used to etch vertical side-walls to a depth of about 30 um up until the SOI oxide layer (FIG. 28 part C) at locations devoid of the photoresist. The photoresist was stripped using standard resist stripping process known in the art.
  • The photolithography, DRIE, and stripping of photoresist was repeated on the handle side (FIG. 28 part E to part G) to generate the desired pattern according to the device described in Example 3. The buried oxide (BOX) was removed using a wet etch process (FIG. 28 part G). Contaminating fluoropolymers that may have been deposited on the side walls of the microfluidic features were removed by thermal oxidation. The thermal oxidation was stripped using a wet etching process.
  • The etched SOI wafers were subjected to processing steps as described in FIG. 29 parts A-F.
  • First, the wafer was cleaned by a wet cleaning step using piranha solution followed by a dry O2 plasma exposure. The device layer (on top in FIG. 29 part B) of the chip was coated with photoresist in a process governed by wicking into the device layer channels that are about 20 um wide. The photoresist was patterned using photolithography to expose the areas that are desired to be passive (no future oligonucleotide synthesis). This process works by exposing the resist to light through a binary mask that has the pattern of interest. After exposure, the resist in the exposed regions was removed in developer solution. (FIG. 29 part C).
  • The surfaces without photoresist were exposed to a fluorosilane gas by chemical vapor deposition (CVD). This results in the deposition of a fluorocarbon on the surfaces without photoresist. In alternative applications, a hydrocarbon silane is used for this step. The silanized surfaces are unresponsive to additional layers of silane creating a monolayer on the surface. The photoresist was then dissolved in organic solvent, leaving fluorination on the surface and exposing silicon/silicon dioxide that was underneath the photoresist. A final step of active functionalization was performed to prepare the surface for oligonucleotide growth (FIG. 29 part F).
  • A controlled surface density of hydroxyl groups (FIG. 30 ) was achieved on the surface by a wet process using a 1% solution of N-(3-TRIETHOXYSILYLPROPYL-4HYDROXYBUTYRAMIDE in ethanol and acetic acid for 4 hours, followed by putting the chips on a hot plate at 150 C for 14 hours. In alternative applications, a CVD process is performed by delivering silane to the surface in gaseous state and applying a controlled deposition pressure of about 200 mTor and a controlled temperature of about 15° C. The CVD process allows for in-situ plasma cleaning and is well suited for producing highly ordered self-assembled monolayers (SAMs).
  • FIGS. 31A-31B shows an image of a device manufactured according to the methods above.
  • Example 6. Manufacturing of a Nanoreactor Device
  • A nanoreactor chip with nanowells as described in FIG. 32 was manufactured. A suitable sized silicon wafer was oxidized to cover it with thermal oxide on both surfaces (FIG. 33 part A).
  • Photolitography was applied to the back side to create a mask of photoresist (red) as shown in FIG. 33 part B. The back side was etched at locations devoid of the photoresist, beyond the thermal oxide layer, creating shallow wells (FIG. 33 part C). The photoresist was stripped using standard resist stripping process known in the art (FIG. 33 part D).
  • The photolithography step was repeated on the front side according to the pattern in FIG. 33 part E. A deep reactive-ion etching (DRIE) step was used to etch vertical side-walls to a depth of about 450 um using a timed etch. In other cases, a SOI wafer is used and the handle layer is etched down to the BOX, wherein the BOX can serve as an etch stop. (FIG. 33 part F). The photoresist on the front side was stripped (FIG. 33 part G), generating the desired pattern according to the device described in FIG. 32 . Contaminating fluoropolymers that may have been deposited on the side walls of the microfluidic features were removed by thermal oxidation and the thermal oxidation was stripped using a wet etching process (FIG. 33 part H).
  • Next, the wafer was cleaned by a wet cleaning step using piranha solution followed by a dry O2 plasma exposure (FIG. 34 part A). Resist was then deposited into individual wells using a microdrop deposition system (top, in FIG. 34 part B). The surfaces without resist were exposed to a fluorosilane gas by chemical vapor deposition (CVD; FIG. 34 part C). This results in the deposition of a fluorocarbon on the surfaces without the resist. In alternative applications, a hydrocarbon silane or other types of silanes are used for this step. The silanized surfaces are unresponsive to additional layers of silane creating a monolayer on the surface. The resist was then dissolved in organic solvent, leaving fluorination on the surface and exposing the silicon surface that was underneath the resist.
  • FIG. 35 parts A-B illustrate the nanowells in a nanoreactor device manufactured as described.
  • Example 7—Synthesis of a 50-Mer Sequence on a 2D Oligonucleotide Synthesis Device
  • A two dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to an flowcell (Applied Biosystems (AB1394 DNA Synthesizer”). The two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest, shop.gelest.com/Product.aspx?catnum=SIT8189.5&Index=0&TotalCount=1) was used to synthesize an exemplary oligonucleotide of 50 bp (“50-mer oligonucleotide”) using oligonucleotide synthesis methods described herein.
  • The sequence of the 50-mer was as described in SEQ ID NO.: 1.
  • 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCA T##TTTTTTTTTT3′ (SEQ ID NO.: 1), where #denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of oligos from the surface during deprotection.
  • The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 3 and an ABI synthesizer.
  • TABLE 3
    General DNA Synthesis
    Process Name Process Step Time (sec)
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) Acetonitrile to Flowcell 23
    N2 System Flush 4
    Acetonitrile System Flush 4
    DNA BASE ADDITION Activator Manifold Flush 2
    (Phosphoramidite + Activator to Flowcell 6
    Activator Flow) Activator + 6
    Phosphoramidite to
    Flowcell
    Activator to Flowcell 0.5
    Activator + 5
    Phosphoramidite to
    Flowcell
    Activator to Flowcell 0.5
    Activator + 5
    Phosphoramidite to
    Flowcell
    Activator to Flowcell 0.5
    Activator + 5
    Phosphoramidite to
    Flowcell
    Incubate for 25 sec 25
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) Acetonitrile to Flowcell 15
    N2 System Flush 4
    Acetonitrile System Flush 4
    DNA BASE ADDITION Activator Manifold Flush 2
    (Phosphoramidite + Activator to Flowcell 5
    Activator Flow) Activator + 18
    Phosphoramidite to
    Flowcell
    Incubate for 25 sec 25
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) Acetonitrile to Flowcell 15
    N2 System Flush 4
    Acetonitrile System Flush 4
    CAPPING (CapA + B, 1:1, CapA + B to Flowcell 15
    Flow)
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) Acetonitrile to Flowcell 15
    Acetonitrile System Flush 4
    OXIDATION (Oxidizer Oxidizer to Flowcell 18
    Flow)
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) N2 System Flush 4
    Acetonitrile System Flush 4
    Acetonitrile to Flowcell 15
    Acetonitrile System Flush 4
    Acetonitrile to Flowcell 15
    N2 System Flush 4
    Acetonitrile System Flush 4
    Acetonitrile to Flowcell 23
    N2 System Flush 4
    Acetonitrile System Flush 4
    DEBLOCKING (Deblock Deblock to Flowcell 36
    Flow)
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) N2 System Flush 4
    Acetonitrile System Flush 4
    Acetonitrile to Flowcell 18
    N2 System Flush 4.13
    Acetonitrile System Flush 4.13
    Acetonitrile to Flowcell 15
  • The phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.
  • The flow restrictor was removed from the ABI 394 synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M 12 in 20% pyridine, 10% water, and 70% THF) were roughly ˜100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ˜200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ˜300 uL/sec (compared to ˜50 uL/sec for all reagents with flow restrictor).
  • The time to completely push out Oxidizer was observed, the timing for chemical flow times was adjusted accordingly and an extra ACN wash was introduced between different chemicals.
  • After oligonucleotide synthesis, the chip was deprotected in gaseous ammonia overnight at 75 psi. Five drops of water were applied to the surface to recover oligos (FIG. 45 part A). The recovered oligos were then analyzed on a BioAnalyzer small RNA chip (FIG. 45 part B).
  • Example 8: Synthesis of a 100-Mer Sequence on a 2D Oligonucleotide Synthesis Device
  • The same process as described in Example 7 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer oligonucleotide (“100-mer oligonucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCAT GCTAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT##TTTTTTTTTT3′, where #denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes); SEQ ID NO.: 2) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the oligos extracted from the surface were analyzed on a BioAnalyzer instrument (FIG. 46 ).
  • All ten samples from the two chips were further PCR amplified using a forward (5′ATGCGGGGTTCTCATCATC3′; SEQ ID NO.: 3) and a reverse (5′CGGGATCCTTATCGTCATCG3′; SEQ ID NO.: 4) primer in a 50 uL PCR mix (25 uL NEB Q5 mastermix, 2.5 uL 10 uM Forward primer, 2.5 uL 10 uM Reverse primer, 1 uL oligo extracted from the surface, and water up to 50 uL) using the following thermalcycling program:
  • 98 C, 30 sec
  • 98 C, 10 sec; 63 C, 10 sec; 72 C, 10 sec; repeat 12 cycles
  • 72 C, 2 min
  • The PCR products were also run on a BioAnalyzer (FIG. 47 ), demonstrating sharp peaks at the 100-mer position.
  • Next, the PCR amplified samples were cloned, and Sanger sequenced. Table 4 summarizes the results from the Sanger sequencing for samples taken from spots 1-5 from chip 1 and for samples taken from spots 6-10 from chip 2.
  • TABLE 4
    Spot Error rate Cycle efficiency
     1 1/763 bp 99.87%
     2 1/824 bp 99.88%
     3 1/780 bp 99.87%
     4 1/429 bp 99.77%
     5 1/1525 bp 99.93%
     6 1/1615 bp 99.94%
     7 1/531 bp 99.81%
     8 1/1769 bp 99.94%
     9 1/854 bp 99.88%
    10 1/1451 bp 99.93%
  • Thus, the high quality and uniformity of the synthesized oligonucleotides were repeated on two chips with different surface chemistries. Overall, 89%, corresponding to 233 out of 262 of the 100-mers that were sequenced were perfect sequences with no errors.
  • FIGS. 48 and 49 show alignment maps for samples taken from spots 8 and 7, respectively, where “x” denotes a single base deletion, “star” denotes single base mutation, and “+” denotes low quality spots in Sanger sequencing. The aligned sequences in FIG. 48 together represent an error rate of about 97%, where 28 out of 29 reads correspond to perfect sequences. The aligned sequences in FIG. 49 together represent an error rate of about 81%, where 22 out of 27 reads correspond to perfect sequences.
  • Finally, Table 5 summarizes key error characteristics for the sequences obtained from the oligonucleotides samples from spots 1-10.
  • TABLE 5
    Sample ID/ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_
    Spot no. 0046/1 0047/2 0048/3 0049/4 0050/5 0051/6 0052/7 0053/8 0054/9 0055/10
    Total Sequences 32 32 32 32 32 32 32 32 32 32
    Sequencing 25 of 28 27 of 27 26 of 30 21 of 23 25 of 26 29 of 30 27 of 31 29 of 31 28 of 29 25 of 28
    Quality
    Oligo Quality 23 of 25 25 of 27 22 of 26 18 of 21 24 of 25 25 of 29 22 of 27 28 of 29 26 of 28 20 of 25
    ROI Match 2500 2698 2561 2122 2499 2666 2625 2899 2798 2348
    Count
    ROI Mutation 2 2 1 3 1 0 2 1 2 1
    ROI Multi Base 0 0 0 0 0 0 0 0 0 0
    Deletion
    ROI Small 1 0 0 0 0 0 0 0 0 0
    Insertion
    ROI Single Base 0 0 0 0 0 0 0 0 0 0
    Deletion
    Large Deletion 0 0 1 0 0 1 1 0 0 0
    Count
    Mutation: G > A 2 2 1 2 1 0 2 1 2 1
    Mutation: T > C 0 0 0 1 0 0 0 0 0 0
    ROI Error Count 3 2 2 3 1 1 3 1 2 1
    ROI Error Rate Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1
    in 834 in 1350 in 1282 in 708 in 2500 in 2667 in 876 in 2900 in 1400 in 2349
    ROI Minus MP MP MP MP MP MP MP MP MP MP
    Primer Error Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1
    Rate in 763 in 824 in 780 in 429 in 1525 in 1615 in 531 in 1769 in 854 in 1451
  • Example 9: Synthesis of a 100-Mer Sequence on a 3D Oligonucleotide Synthesis Device
  • A three dimensional oligonucleotide synthesis device as described in Example 3 that was differentially functionalized with a 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane on active areas for synthesis was assembled into a flowcell to synthesize the 100-mer oligonucleotide of Example 8 using oligonucleotide synthesis methods described herein. The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) as described in Example 7, according to the protocol in Table 3. The chip was deprotected in gaseous ammonia, at 75 psi, overnight and the oligos were eluted in 500 uL water. After evaporation, all oligos were re-suspended in 20 uL water for downstream analysis. The re-suspended sample was analyzed on a BioAnalzyer instrument (FIG. 50 part A).
  • The re-suspended sample was also PCR amplified using forward (5′ATGCGGGGTTCTCATCATC3′; SEQ ID NO.: 5) and reverse (5′CGGGATCCTTATCGTCATCG3′; SEQ ID NO.: 6) primers in a 50 uL PCR mix including 25 uL NEB Q5 mastermix, 2.5 uL 10 uM forward primer, 2.5 uL 10 uM reverse primer, 1 uL oligo extracted from the surface, and water up to 50 uL, according to the following thermalcycling program:
  • 1 cycle: 98 C, 30 sec
  • 12 cycles: 98 C, 10 sec; 63 C, 10 sec; 72 C, 10 sec
  • 1 cycle: 72 C, 2 min
  • The PCR product was also run on the BioAnalyzer (FIG. 50 part B) showing a sharp peak at the 100-mer position.
  • The sequencing result of the PCR products showed that 23 out of 29 sequences were perfect and error rate was ˜1 in 600 bp as illustrated by the alignment maps in FIG. 51 , where “x” denotes a single base deletion, “star” denotes single base mutation, and “+” denotes low quality spots in Sanger sequencing.
  • Example 10: Parallel Oligonucleotide Synthesis on a Three Dimensional Microfluidic Oligonucleotide Synthesis Device
  • The synthesis protocol of EXAMPLE 7 is modified using a house set-up to perform parallel oligonucleotide synthesis on the three dimensional microfluidic device of EXAMPLE 9.
  • Table 6 illustrates a side by side comparison of the two protocols.
  • TABLE 6
    Twist In-House Synthesizer
    General DNA EXAMPLE 7 Protocol Protocol
    Synthesis Process Time Time
    Name EXAMPLE 7 Process Step (sec) Twist Process Step (sec)
    WASH (Acetonitrile Acetonitrile System Flush 4 NA
    Wash Flow) Acetonitrile to Flowcell 23
    N2 System Flush 4
    Acetonitrile System Flush 4
    DNA BASE Activator Manifold Flush 2 Print heads print 1:1 of 120
    ADDITION Activator to Flowcell 6 Activator +
    (Phosphoramidite + Activator + Phosphoramidite 6 Phosphoramidite directly
    Activator Flow) to Flowcell on chip active sites
    Activator to Flowcell 0.5
    Activator + Phosphoramidite 5
    to Flowcell
    Activator to Flowcell 0.5
    Activator + Phosphoramidite 5
    to Flowcell
    Activator to Flowcell 0.5
    Activator + Phosphoramidite 5
    to Flowcell
    Incubate for 25 sec 25
    WASH (Acetonitrile Acetonitrile System Flush 4
    Wash Flow) Acetonitrile to Flowcell 15
    N2 System Flush 4
    Acetonitrile System Flush 4
    DNA BASE Activator Manifold Flush 2
    ADDITION Activator to Flowcell 5
    (Phosphoramidite + Activator + Phosphoramidite 18
    Activator Flow) to Flowcell
    Incubate for 25 sec 25
    WASH (Acetonitrile Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Wash Flow) Acetonitrile to Flowcell 15 Acetonitrile to Flowcell 15
    N2 System Flush 4 N2 System Flush 4
    Acetonitrile System Flush 4 Acetonitrile System Flush 4
    CAPPING (CapA + B, CapA + B to Flowcell 15 CapA + B to Flowcell 15
    1:1, Flow)
    WASH (Acetonitrile Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Wash Flow) Acetonitrile to Flowcell 15 Acetonitrile to Flowcell 15
    Acetonitrile System Flush 4 Acetonitrile System Flush 4
    OXIDATION Oxidizer to Flowcell 18 Oxidizer to Flowcell 18
    (Oxidizer Flow)
    WASH (Acetonitrile Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Wash Flow) N2 System Flush 4 N2 System Flush 4
    Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Acetonitrile to Flowcell 15 Acetonitrile to Flowcell 15
    Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Acetonitrile to Flowcell 15 Acetonitrile to Flowcell 15
    N2 System Flush 4 N2 System Flush 4
    Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Acetonitrile to Flowcell 23 Acetonitrile to Flowcell 23
    N2 System Flush 4 N2 System Flush 4
    Acetonitrile System Flush 4 Acetonitrile System Flush 4
    DEBLOCKING Deblock to Flowcell 36 Deblock to Flowcell 36
    (Deblock Flow)
    WASH (Acetonitrile Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Wash Flow) N2 System Flush 4 N2 System Flush 4
    Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Acetonitrile to Flowcell 18 Acetonitrile to Flowcell 18
    N2 System Flush 4 N2 System Flush 4
    Acetonitrile System Flush 4 Acetonitrile System Flush 4
    Acetonitrile to Flowcell 15 Acetonitrile to Flowcell 15
    FLOWCELL DRY NA N2 System Flush 4
    (Specific to Twist N2 to Flowcell 19.5
    synthesizer) N2 System Flush 4
    Vacuum Dry Pull on 10
    Flowcell
    N2 System Flush 4
    N2 to Flowcell 19.5
  • Acetonitrile (ACN) is passed through an in-line degasser (Model No. 403-0202-1; Random Technologies), passing the liquid along side a very hydrophobic membrane, which was previously shown to function at flow rates ranging from 50-400 uL/sec and to eliminate gas bubbles that form on a flow cell, without being bound by theory, likely by dissolving them in the undersaturated solvent.
  • Reagents are exchanged in the flowcell with different reagents as follows:
      • 1) Start reagent flow to the flowcell.
      • 2) Prime by setting the valves to “push” the previous reagent out of the delivery line with the new reagent. This valve state is kept on for 3.75 sec.
      • 3) 2D Valve State: Set the valves to replace the previous reagent resident on the surface of the flowcell with the new reagent. This occurs whilst step 2 has been active for 3.75 sec. Step 2 and 3 are simultaneously active for 0.25 sec, after which the priming valve state turns off.
      • 4) 3D Valve State: The valves switch to allow for reagents to flow through the three-dimensional microfluidic features of the silicon in the flowcell, which starts after 0.75 sec of the 2D Valve State in step 3 has flowed.
      • 5) The flow of reagent: 2D valve state and 3D valve states remain open for a designated time to allow for adequate dosage of reagent to the silicon surface in the chip.
        Accordingly, during a 5 second cycle of reagent exchange, the fluid delivery is performed by priming during the initial period spanning 0-4 seconds, by turning on the 2D Valve State during the period spanning the 3.75-5 seconds and by turning on the 3D Valve State during the period spanning 4.5-5 seconds.
  • The phosphoramidite/activator combination is delivered using an ink jet printing step. The delivery can be a 1:1, drop-on-drop deposition onto the silicon surface. The droplet size may be about 10 μL. In some embodiments, the droplet size is at least or at least about 0.1, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500 picoliters, or more. In some embodiments, the droplet size is at most or at most about 500, 400, 300, 250, 200, 150, 100, 75, 50, 25, 20, 15, 10, 5, 4, 3, 2, 1, 0.1 picoliters, or less. The droplet size may be between 0.1-50, 1-150, or 5-75 picolitters. The droplet size may fall within a range that is bound by any of these values, e.g. 2-50 picoliters. The droplets may be deposited with an initial velocity of 1-100 m/sec. In some cases, the droplets may be deposited with an initial velocity of at least or at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 40, 35, 40, 45, 50, 75, 100 m/sec, or higher. In some cases, the droplets may be deposited with an initial velocity of at most or at most about 100, 75, 50, 45, 40, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, m/sec or lower. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 40, 35, 40, 45, 50, 75, 100, or higher. The droplets may be deposited with an initial velocity that falls between about 1-50 m/sec., 5-15 m/sec, 5-30 m/sec, or 1-30 m/sec. Those having skill in the art will understand that the droplets may be deposited with an initial velocity that falls under a range bound by any of these values.
  • A drying step prepares the silicon surface for the printing steps after the bulk reagent sequences. To achieve dry conditions which facilitate printed reagents to react, the flowcell is flushed with N2 gas at about 5 PSI for about 19.5 seconds, a small vacuum is pulled on the flowcell chamber for 10 seconds, and the flowcell is flushed again with N2 gas for another 19.5 seconds. All reagents are flown at about 200-400 uL/sec
  • Flow rates can be controlled in the in-house system using varying pressures. Flow rate is one of the limiting aspects of commercially available synthesizers. In the in-house machine set-up, flow rates can either be matched to their values in Example 7 or to increased or decreased flowrates, as appropriate, to improve the synthesis process. Generally, flowing faster presents advantages as it allows to displace bubbles much more effectively and allows for more exchange of fresh reagents to the surface during a given time interval when compared with the slower flow rates.
  • Example 11: Blotting Based Oligonucleotide Transfer from an Oligonucleotide Synthesis Device to a Nanoreactor Device
  • 50-mer oligonucleotides were synthesized on a 3-D oligonucleotide synthesis device as described in Example 9. No active functionalization was applied. FIG. 53 parts A-B illustrates the oligonucleotide synthesis channel distribution in a cluster on the device side of the oligonucleotide synthesis device and FIG. 53 part C illustrates the surface functionalization. The oligonucleotides were released from the surface by treatment in a gaseous ammonia chamber at 75 psi for 14 hours.
  • Wells of a nanoreactor device that was manufactured according to Example 4 with hydrophilic inner walls and hydrophobic top lips (FIG. 54 ) were first filled with a PCA suitable buffer as a negative control (5X Q5 buffer; New England Biolabs). 200-300 nL aliquots were hand-pipetted to feed into a BioAnalyzer to show the absence of any contaminating nucleic acids in the individual nanoreactors (FIG. 55 ).
  • The nanoreactors were next filled with about 650 nL of PCA buffer forming a meniscus that slightly bulged out (FIG. 53 ). The nanoreactor device was mated with the oligonucleotide device to submerge the oligonucleotide synthesis channels (“revolver”) with the PCA buffer at a rate of about 5 mm/sec. In other cases, the mantling velocity for mating the two devices may be varied as described herein, to achieve, among other things, more or less efficient liquid transfer between the devices giving rise to controlled aliquoting of desired volumes of liquid or to control evaporation. The oligonucleotide device and the nanoreactor were kept mated with a gap of about 50 um between the two devices, for about 10 minutes, allowing the oligonucleotides to diffuse into the solution (FIG. 57 ). In some cases, the assembly or the oligonucleotide synthesis device alone can be vibrated or oscillated to facilitate faster diffusion. Diffusion times longer than 10 min, such as at least or at least about 11, 12, 13, 14, 15, 20, 25 min, or longer may also be used to facilitate higher yield. The nanoreactor device was released from the oligonucleotide device at a rate of about 5 mm/sec, capturing the released oligonucleotides in the individual nanoreactors. In other cases, the dismantling velocity for mating the two devices may be varied as described herein, to achieve, among other things, more or less efficient liquid transfer between the devices giving rise to controlled aliquoting of desired volumes of liquid. A tiny amount of liquid was observed to be left over on the oligonucleotide device.
  • Samples of about 300 nL were pipetted out from several individual nanoreactors in the nanoreactor device and diluted into a volume of 1 uL, establishing a 4.3×dilution. The diluted samples were individually run in a BioAnalyzer establishing the release of the oligonucleotides into the nanoreactors (FIG. 55 ).
  • Additional samples were taken as a positive control using a manual syringe. Tygon tubing was used to create a face seal with the oligonucleotide synthesis device. The syringe, filled with 500 ul of water, was used to flush down liquid through one entire cluster as well as parts of neighboring clusters from the handle side. The flushed liquid was collected in a 1.5 ml Eppendorf tube on the device side. The sample was dried down in vacuum and then re-suspended in 10 uL water. The sample was then similarly analyzed in a BioAnalyzer. When accounting for the dilution rates, a comparable concentration of oligonucleotides were released using the positive control method and the nanoreactor blot method.
  • Example 12: Injection Based Oligonucleotide Transfer from an Oligonucleotide Synthesis Device to a Nanoreactor
  • 50-mer oligonucleotides are synthesized on a 3-D oligonucleotide synthesis device as described in Example 9. The oligonucleotides are released from the surface by treatment in an ammonia chamber at about 75 psi for about 14 hours. Alternatively, pressures from 20-120 psi can be used for 1-48 hours or longer for the release of the oligonucleotides. The temperature is room temperature. In some cases, the deprotection rate may be increased by increasing the temperature, for example to at least or at least about 25 C, 30 C, 35 C, 40 C, 45 C, 50 C, 55 C, 60 C, 65 C or higher. Gaseous methylamine may also be used for deprotection at room temperature or at an elevated temperature of at least or at least about 25 C, 30 C, 35 C, 40 C, 45 C, 50 C, 55 C, 60 C, 65 C or higher. The deprotection in methylamine typically proceeds faster than in gaseous ammonia.
  • The oligonucleotide synthesis device is assembled into a Hele Shaw flow cell with a single inlet and a single outlet. Flow is generated using a syringe that is connected to the flow cell via tygon tubing and is manually controlled (FIG. 57 ). FIG. 56 illustrates a schematic of the fluidics in the flow cell. The fluidic circuit is used to flow fluid from the handle side into the first channels (or vias) and the fluid is further drawn into the second channels, e.g. those forming a revolver pattern comprising oligonucleotide synthesis sites. The fluid is delivered from a single point inlet and collected from a single point outlet (FIG. 56 part B. In other cases, a line source and a line sink can be used to pass fluids (FIG. 56 part A). Without being bound by theory, point source/sink combinations are expected to form a uniform air front, which can be more efficient to push all of the liquid out from the Hele-Shaw flow cell. Upon clearing of liquid from the flow cell, liquid is contained only in the vias on the handle side and the second channels or oligonucleotide synthesis channels, e.g. in a revolver pattern on the device side. This volume is estimated to be 300 nL per cluster of vias (or first channels). Such containment of fluid can facilitate the formation of uniform sessile droplets on the device layer surface of the oligonucleotide synthesis device.
  • For this step, a suitable release buffer, such as a PCA compatible buffer, is selected to dissolve the released oligonucleotides into solution. Upon filling the vias and the second channels, the liquid is flushed out from the Hele-shaw flow cell on the handle surface of the oligonucleotide synthesis chip using about 500-1000 Pa, leaving liquid only in the stagnant zone (handle and revolver) of the device, which is estimated to be 300 nL per assembly cluster (FIG. 56 part C). The single point outlet is blocked and pressurized air is flown on the handle layer surface at about 3000-5000 Pa to eject droplets onto the device layer surface (FIG. 56 part D). Sufficient release buffer is pushed through the flow cell to form sessile drops emerging from the second channels (or oligonucleotide synthesis channels) onto the device side surface of the oligonucleotide synthesis device. The sessile drop size can be about 300-400 nL, but can be varied to a suitable size according to the particular dimensions of the oligonucleotide synthesis clusters and/or the nanoreactors as well as according to the desired concentration of the oligonucleotides. For example, sessile drop sizes of about 500 nL can be formed. The sessile drop formation is optionally monitored with a microscope to make sure that the drop formation is complete across the oligonucleotide synthesis device. In some cases, the liquid forming the sessile drops may be prepared from a mixture of components so that a desired contact angle is achieved on the device layer. Accordingly, the solution may be supplemented with a component, such as a detergent, e.g. polysorbate 20 (Polyoxyethylene (20) sorbitan monolaurate, aka Tween-20).
  • Alternatively, a suitable amount of release buffer is deposited into the individual wells/first channels from the handle side and pushed through the oligonucleotide synthesis channel, for example by applying pressure from the handle side by forming a Hele-shaw flow cell on the handle side. A nanoreactor device is mantled against the device side of the oligonucleotide synthesis device at a suitable rate, e.g. about 1-10 mm/s and distance, e.g. about 50 um. The mantling can be performed quickly after drop formation to avoid evaporation. Evaporation is also minimal once the two devices (nanoreactor and oligo synthesis reactor) are mantled.
  • Example 13: Gene Assembly in Nanoreactors Using PCA from Reaction Mixtures Transferred from the Device Side of an Oligonucleotide Synthesis
  • A PCA reaction mixture was prepared as described in Table 7 using the SEQ ID NOs: 7-66 from Table 8, to assemble the 3075 bp LacZ gene (SEQ ID NO.: 67; Table 8).
  • TABLE 7
    PCA 1 (×100 ul) final conc.
    H2O 62.00
    5× Q5 buffer 20.00
    10 mM dNTP 1.00 100 uM
    BSA
    20 mg/ml 5.00 1 mg/m 1
    Oligo mix 50 nM each 10.00 5 nM
    Q5 pol 2 U/ul 2.00 2 u/50 ul
  • TABLE 8
    Sequence Name Sequence
    Oligo_1, SEQ ID NO.: 7 5′ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAAC
    GTCGTGACTGGGAAAACCCTGG3′
    Oligo_2, SEQ ID NO.: 8 5′GCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAA
    GTTGGGTAACGCCAGGGTTTTCCCAGTCACGAC3′
    Oligo_3, SEQ ID NO.: 9 5′CCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGC
    ACCGATCGCCCTTCCCAACAGTTGCGCAGCC3′
    Oligo_4, SEQ ID NO.: 10 5′CGGCACCGCTTCTGGTGCCGGAAACCAGGCAAAGCGCCA
    TTCGCCATTCAGGCTGCGCAACTGTTGGGA3′
    Oligo_5, SEQ ID NO.: 11 5′CACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGAT
    CTTCCTGAGGCCGATACTGTCGTCGTCCCCTC3′
    Oligo_6, SEQ ID NO.: 12 5′GATAGGTCACGTTGGTGTAGATGGGCGCATCGTAACCGTG
    CATCTGCCAGTTTGAGGGGACGACGACAGTATCGG3′
    Oligo_7, SEQ ID NO.: 13 5′CCCATCTACACCAACGTGACCTATCCCATTACGGTCAATC
    CGCCGTTTGTTCCCACGGAGAATCCGACGGGTTG3′
    Oligo_8, SEQ ID NO.: 14 5′GTCTGGCCTTCCTGTAGCCAGCTTTCATCAACATTAAATG
    TGAGCGAGTAACAACCCGTCGGATTCTCCGTG3′
    Oligo_9, SEQ ID NO.: 15 5′GCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATG
    GCGTTAACTCGGCGTTTCATCTGTGGTGCAACGG3′
    Oligo_10, SEQ ID NO.: 16 5′CAGGTCAAATTCAGACGGCAAACGACTGTCCTGGCCGTA
    ACCGACCCAGCGCCCGTTGCACCACAGATGAAACG3′
    Oligo_11, SEQ ID NO.: 17 5′CGTTTGCCGTCTGAATTTGACCTGAGCGCATTTTTACGCG
    CCGGAGAAAACCGCCTCGCGGTGATGGTGCTG3′
    Oligo_12, SEQ ID NO.: 18 5′GCCGCTCATCCGCCACATATCCTGATCTTCCAGATAACTG
    CCGTCACTCCAGCGCAGCACCATCACCGCGAG3′
    Oligo_13, SEQ ID NO.: 19 5′AGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGTCTC
    GTTGCTGCATAAACCGACTACACAAATCAGCGATTTC3′
    Oligo_14, SEQ ID NO.: 20 5′CTCCAGTACAGCGCGGCTGAAATCATCATTAAAGCGAGT
    GGCAACATGGAAATCGCTGATTTGTGTAGTCGGTTTATG3′
    Oligo_15, SEQ ID NO.: 21 5′ATTTCAGCCGCGCTGTACTGGAGGCTGAAGTTCAGATGT
    GCGGCGAGTTGCGTGACTACCTACGGGTAACAGTTT3′
    Oligo_16, SEQ ID NO.: 22 5′AAAGGCGCGGTGCCGCTGGCGACCTGCGTTTCACCCTGC
    CATAAAGAAACTGTTACCCGTAGGTAGTCACG3′
    Oligo_17, SEQ ID NO.: 23 5′GCGGCACCGCGCCTTTCGGCGGTGAAATTATCGATGAGC
    GTGGTGGTTATGCCGATCGCGTCACACTACG3′
    Oligo_18, SEQ ID NO.: 24 5′GATAGAGATTCGGGATTTCGGCGCTCCACAGTTTCGGGTT
    TTCGACGTTCAGACGTAGTGTGACGCGATCGGCA3′
    Oligo_19, SEQ ID NO.: 25 5′GAGCGCCGAAATCCCGAATCTCTATCGTGCGGTGGTTGA
    ACTGCACACCGCCGACGGCACGCTGATTGAAGCAG3′
    Oligo_20, SEQ ID NO.: 26 5′CAGCAGCAGACCATTTTCAATCCGCACCTCGCGGAAACC
    GACATCGCAGGCTTCTGCTTCAATCAGCGTGCCG3′
    Oligo_21, SEQ ID NO.: 27 5′CGGATTGAAAATGGTCTGCTGCTGCTGAACGGCAAGCCG
    TTGCTGATTCGAGGCGTTAACCGTCACGAGCATCA3′
    Oligo_22, SEQ ID NO.: 28 5′GCAGGATATCCTGCACCATCGTCTGCTCATCCATGACCTG
    ACCATGCAGAGGATGATGCTCGTGACGGTTAACGC3′
    Oligo_23, SEQ ID NO.: 29 5′CAGACGATGGTGCAGGATATCCTGCTGATGAAGCAGAAC
    AACTTTAACGCCGTGCGCTGTTCGCATTATCCGAAC3′
    Oligo_24, SEQ ID NO.: 30 5′TCCACCACATACAGGCCGTAGCGGTCGCACAGCGTGTAC
    CACAGCGGATGGTTCGGATAATGCGAACAGCGCAC3′
    Oligo_25, SEQ ID NO.: 31 5′GCTACGGCCTGTATGTGGTGGATGAAGCCAATATTGAAAC
    CCACGGCATGGTGCCAATGAATCGTCTGACCGATG3′
    Oligo_26, SEQ ID NO.: 32 5′GCACCATTCGCGTTACGCGTTCGCTCATCGCCGGTAGCCA
    GCGCGGATCATCGGTCAGACGATTCATTGGCAC3′
    Oligo_27, SEQ ID NO.: 33 5′CGCGTAACGCGAATGGTGCAGCGCGATCGTAATCACCCG
    AGTGTGATCATCTGGTCGCTGGGGAATGAATCAG3′
    Oligo_28, SEQ ID NO.: 34 5′GGATCGACAGATTTGATCCAGCGATACAGCGCGTCGTGAT
    TAGCGCCGTGGCCTGATTCATTCCCCAGCGACCAGATG3′
    Oligo_29, SEQ ID NO.: 35 5′GTATCGCTGGATCAAATCTGTCGATCCTTCCCGCCCGGTG
    CAGTATGAAGGCGGCGGAGCCGACACCACGGC3′
    Oligo_30, SEQ ID NO.: 36 5′CGGGAAGGGCTGGTCTTCATCCACGCGCGCGTACATCGG
    GCAAATAATATCGGTGGCCGTGGTGTCGGCTC3′
    Oligo_31, SEQ ID NO.: 37 5′TGGATGAAGACCAGCCCTTCCCGGCTGTGCCGAAATGGT
    CCATCAAAAAATGGCTTTCGCTACCTGGAGAGAC3′
    Oligo_32, SEQ ID NO.: 38 5′CCAAGACTGTTACCCATCGCGTGGGCGTATTCGCAAAGG
    ATCAGCGGGCGCGTCTCTCCAGGTAGCGAAAGCC3′
    Oligo_33, SEQ ID NO.: 39 5′CGCGATGGGTAACAGTCTTGGCGGTTTCGCTAAATACTGG
    CAGGCGTTTCGTCAGTATCCCCGTTTACAGGGC3′
    Oligo_34, SEQ ID NO.: 40 5′GCCGTTTTCATCATATTTAATCAGCGACTGATCCACCCAGT
    CCCAGACGAAGCCGCCCTGTAAACGGGGATACTGACG3′
    Oligo_35, SEQ ID NO.: 41 5′CAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTGGT
    CGGCTTACGGCGGTGATTTTGGCGATACGCCGAACG3′
    Oligo_36, SEQ ID NO.: 42 5′GCGGCGTGCGGTCGGCAAAGACCAGACCGTTCATACAGA
    ACTGGCGATCGTTCGGCGTATCGCCAAA3′
    Oligo_37, SEQ ID NO.: 43 5′CGACCGCACGCCGCATCCAGCGCTGACGGAAGCAAAAC
    ACCAGCAGCAGTTTTTCCAGTTCCGTTTATCCG3′
    Oligo_38, SEQ ID NO.: 44 5′CTCGTTATCGCTATGACGGAACAGGTATTCGCTGGTCACT
    TCGATGGTTTGCCCGGATAAACGGAACTGGAAAAACTGC3′
    Oligo_39, SEQ ID NO.: 45 5′AATACCTGTTCCGTCATAGCGATAACGAGCTCCTGCACTG
    GATGGTGGCGCTGGATGGTAAGCCGCTGGCAAGCG3′
    Oligo_40, SEQ ID NO.: 46 5′GTTCAGGCAGTTCAATCAACTGTTTACCTTGTGGAGCGA
    CATCCAGAGGCACTTCACCGCTTGCCAGCGGCTTACC3′
    Oligo_41, SEQ ID NO.: 47 5′CAAGGTAAACAGTTGATTGAACTGCCTGAACTACCGCAG
    CCGGAGAGCGCCGGGCAACTCTGGCTCACAGTACGCGTA3′
    Oligo_42, SEQ ID NO.: 48 5′GCGCTGATGTGCCCGGCTTCTGACCATGCGGTCGCGTTCG
    GTTGCACTACGCGTACTGTGAGCCAGAGTTG3′
    Oligo_43, SEQ ID NO.: 49 5′CCGGGCACATCAGCGCCTGGCAGCAGTGGCGTCTGGCGG
    AAAACCTCAGTGTGACGCTCCCCGCCGC3′
    Oligo_44, SEQ ID NO.: 50 5′CCAGCTCGATGCAAAAATCCATTTCGCTGGTGGTCAGATG
    CGGGATGGCGTGGGACGCGGCGGGGAGCGTC3′
    Oligo_45, SEQ ID NO.: 51 5′CGAAATGGATTTTTGCATCGAGCTGGGTAATAAGCGTTGG
    CAATTTAACCGCCAGTCAGGCTTTCTTTCACAGATGTG3′
    Oligo_46, SEQ ID NO.: 52 5′TGAACTGATCGCGCAGCGGCGTCAGCAGTTGTTTTTTATC
    GCCAATCCACATCTGTGAAAGAAAGCCTGACTGG3′
    Oligo_47, SEQ ID NO.: 53 5′GCCGCTGCGCGATCAGTTCACCCGTGCACCGCTGGATAA
    CGACATTGGCGTAAGTGAAGCGACCCGCATTGAC3′
    Oligo_48, SEQ ID NO.: 54 5′GGCCTGGTAATGGCCCGCCGCCTTCCAGCGTTCGACCCA
    GGCGTTAGGGTCAATGCGGGTCGCTTCACTTA3′
    Oligo_49, SEQ ID NO.: 55 5′CGGGCCATTACCAGGCCGAAGCAGCGTTGTTGCAGTGCA
    CGGCAGATACACTTGCTGATGCGGTGCTGAT3′
    Oligo_50, SEQ ID NO.: 56 5′TCCGGCTGATAAATAAGGTTTTCCCCTGATGCTGCCACGC
    GTGAGCGGTCGTAATCAGCACCGCATCAGCAAGTG3′
    Oligo_51, SEQ ID NO.: 57 5′GGGGAAAACCTTATTTATCAGCCGGAAAACCTACCGGATT
    GATGGTAGTGGTCAAATGGCGATTACCGTTGATGTTGA3′
    Oligo_52, SEQ ID NO.: 58 5′GGCAGTTCAGGCCAATCCGCGCCGGATGCGGTGTATCGC
    TCGCCACTTCAACATCAACGGTAATCGCCATTTGAC3′
    Oligo_53, SEQ ID NO.: 59 5′GCGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGA
    GCGGGTAAACTGGCTCGGATTAGGGCCGCAAG3′
    Oligo_54, SEQ ID NO.: 60 5′GGCAGATCCCAGCGGTCAAAACAGGCGGCAGTAAGGCG
    GTCGGGATAGTTTTCTTGCGGCCCTAATCCGAGC3′
    Oligo_55, SEQ ID NO.: 61 5′GTTTTGACCGCTGGGATCTGCCATTGTCAGACATGTATAC
    CCCGTACGTCTTCCCGAGCGAAAACGGTCTGC3′
    Oligo_56, SEQ ID NO.: 62 5′GTCGCCGCGCCACTGGTGTGGGCCATAATTCAATTCGCGC
    GTCCCGCAGCGCAGACCGTTTTCGCTCGG3′
    Oligo_57, SEQ ID NO.: 63 5′ACCAGTGGCGCGGCGACTTCCAGTTCAACATCAGCCGCT
    ACAGTCAACAGCAACTGATGGAAACCAGCCATC3′
    Oligo_58, SEQ ID NO.: 64 5′GAAACCGTCGATATTCAGCCATGTGCCTTCTTCCGCGTGC
    AGCAGATGGCGATGGCTGGTTTCCATCAGTTGCTG3′
    Oligo_59, SEQ ID NO.: 65 5′CATGGCTGAATATCGACGGTTTCCATATGGGGATTGGTGG
    CGACGACTCCTGGAGCCCGTCAGTATCGGCG3′
    Oligo_60, SEQ ID NO.: 66 5′TTATTTTTGACACCAGACCAACTGGTAATGGTAGCGACCG
    GCGCTCAGCTGGAATTCCGCCGATACTGACGGGC3′
    LacZ gene-SEQ ID NO: 67 5′ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAA
    CGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATC
    GCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAG
    CGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGC
    AGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCAC
    CAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTC
    CTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGAT
    GCACGGTTACGATGCGCCCATCTACACCAACGTGACCTAT
    CCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATC
    CGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAG
    CTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGC
    GTTAACTCGGCGTTTCATCTGTGGTGCAACGGGCGCTGGG
    TCGGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGA
    CCTGAGCGCATTTTTACGCGCCGGAGAAAACCGCCTCGCG
    GTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGGAAG
    ATCAGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGT
    CTCGTTGCTGCATAAACCGACTACACAAATCAGCGATTTC
    CATGTTGCCACTCGCTTTAATGATGATTTCAGCCGCGCTGT
    ACTGGAGGCTGAAGTTCAGATGTGCGGCGAGTTGCGTGAC
    TACCTACGGGTAACAGTTTCTTTATGGCAGGGTGAAACGC
    AGGTCGCCAGCGGCACCGCGCCTTTCGGCGGTGAAATTAT
    CGATGAGCGTGGTGGTTATGCCGATCGCGTCACACTACGT
    CTGAACGTCGAAAACCCGAAACTGTGGAGCGCCGAAATC
    CCGAATCTCTATCGTGCGGTGGTTGAACTGCACACCGCCG
    ACGGCACGCTGATTGAAGCAGAAGCCTGCGATGTCGGTTT
    CCGCGAGGTGCGGATTGAAAATGGTCTGCTGCTGCTGAAC
    GGCAAGCCGTTGCTGATTCGAGGCGTTAACCGTCACGAGC
    ATCATCCTCTGCATGGTCAGGTCATGGATGAGCAGACGAT
    GGTGCAGGATATCCTGCTGATGAAGCAGAACAACTTTAAC
    GCCGTGCGCTGTTCGCATTATCCGAACCATCCGCTGTGGT
    ACACGCTGTGCGACCGCTACGGCCTGTATGTGGTGGATGA
    AGCCAATATTGAAACCCACGGCATGGTGCCAATGAATCGT
    CTGACCGATGATCCGCGCTGGCTACCGGCGATGAGCGAAC
    GCGTAACGCGAATGGTGCAGCGCGATCGTAATCACCCGA
    GTGTGATCATCTGGTCGCTGGGGAATGAATCAGGCCACGG
    CGCTAATCACGACGCGCTGTATCGCTGGATCAAATCTGTC
    GATCCTTCCCGCCCGGTGCAGTATGAAGGCGGCGGAGCCG
    ACACCACGGCCACCGATATTATTTGCCCGATGTACGCGCG
    CGTGGATGAAGACCAGCCCTTCCCGGCTGTGCCGAAATGG
    TCCATCAAAAAATGGCTTTCGCTACCTGGAGAGACGCGCC
    CGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAG
    TCTTGGCGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAG
    TATCCCCGTTTACAGGGCGGCTTCGTCTGGGACTGGGTGG
    ATCAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTG
    GTCGGCTTACGGCGGTGATTTTGGCGATACGCCGAACGAT
    CGCCAGTTCTGTATGAACGGTCTGGTCTTTGCCGACCGCA
    CGCCGCATCCAGCGCTGACGGAAGCAAAACACCAGCAGC
    AGTTTTTCCAGTTCCGTTTATCCGGGCAAACCATCGAAGT
    GACCAGCGAATACCTGTTCCGTCATAGCGATAACGAGCTC
    CTGCACTGGATGGTGGCGCTGGATGGTAAGCCGCTGGCAA
    GCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGGTAAACA
    GTTGATTGAACTGCCTGAACTACCGCAGCCGGAGAGCGCC
    GGGCAACTCTGGCTCACAGTACGCGTAGTGCAACCGAAC
    GCGACCGCATGGTCAGAAGCCGGGCACATCAGCGCCTGG
    CAGCAGTGGCGTCTGGCGGAAAACCTCAGTGTGACGCTCC
    CCGCCGCGTCCCACGCCATCCCGCATCTGACCACCAGCGA
    AATGGATTTTTGCATCGAGCTGGGTAATAAGCGTTGGCAA
    TTTAACCGCCAGTCAGGCTTTCTTTCACAGATGTGGATTG
    GCGATAAAAAACAACTGCTGACGCCGCTGCGCGATCAGTT
    CACCCGTGCACCGCTGGATAACGACATTGGCGTAAGTGAA
    GCGACCCGCATTGACCCTAACGCCTGGGTCGAACGCTGGA
    AGGCGGCGGGCCATTACCAGGCCGAAGCAGCGTTGTTGC
    AGTGCACGGCAGATACACTTGCTGATGCGGTGCTGATTAC
    GACCGCTCACGCGTGGCAGCATCAGGGGAAAACCTTATTT
    ATCAGCCGGAAAACCTACCGGATTGATGGTAGTGGTCAA
    ATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGATACAC
    CGCATCCGGCGCGGATTGGCCTGAACTGCCAGCTGGCGCA
    GGTAGCAGAGCGGGTAAACTGGCTCGGATTAGGGCCGCA
    AGAAAACTATCCCGACCGCCTTACTGCCGCCTGTTTTGAC
    CGCTGGGATCTGCCATTGTCAGACATGTATACCCCGTACG
    TCTTCCCGAGCGAAAACGGTCTGCGCTGCGGGACGCGCGA
    ATTGAATTATGGCCCACACCAGTGGCGCGGCGACTTCCAG
    TTCAACATCAGCCGCTACAGTCAACAGCAACTGATGGAAA
    CCAGCCATCGCCATCTGCTGCACGCGGAAGAAGGCACAT
    GGCTGAATATCGACGGTTTCCATATGGGGATTGGTGGCGA
    CGACTCCTGGAGCCCGTCAGTATCGGCGGAATTCCAGCTG
    AGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAA
    AATAA3′
  • Drops of about 400 nL were dispensed using a Mantis dispenser (Formulatrix, MA) on top of the revolvers (oligonucleotide synthesis channels) on the device side of an oligonucleotide synthesis device. A nanoreactor chip was manually mated with the oligonucleotide device to pick up the droplets having the PCA reaction mixture. The droplets were picked up into the individual nanoreactors in the nanoreactor chip by releasing the nanoreactor from the oligonucleotide synthesis device immediately after pick-up (FIG. 59 ).
  • The nanoreactors were sealed with a Heat Sealing Film/Tape cover (Eppendorf, eshop.eppendorfna.com/products/Eppendorf Heat Sealing PCR Film and Foil) and placed in a suitably configured thermocycler that was constructed using a thermocycler kit (OpenPCR).
  • The following temperature protocol was used on the thermocycler:
  • 1 cycle: 98 C, 45 seconds
  • 40 cycles: 98 C, 15 seconds; 63 C, 45 seconds; 72 C, 60 seconds;
  • 1 cycle: 72 C, 5 minutes
  • 1 cycle: 4 C, hold
  • An aliquot of 0.50 ul was collected from individual wells 1-10 as shown in FIG. 60 and the aliquots were amplified in plastic tubes, in a PCR reaction mixture (Table 9) and according to the following thermocycler program, using a forward (F-primer; 5′ATGACCATGATTACGGATTCACTGGCC3′; SEQ ID NO: 68) and a reverse (R-primer; 5′TTATTTTTGACACCAGACCAACTGGTAATGG3′; SEQ ID NO: 69) primer:
  • Thermocycler:
  • 1 cycle: 98 C, 30 seconds
  • 30 cycles: 98 C, 7 seconds; 63 C, 30 seconds; 72 C, 90 seconds
  • 1 cycle: 72 C, 5 minutes
  • 1 cycle: 4 C, hold
  • TABLE 9
    PCR 1 (×25 ul) final conc.
    H2O 17.50
    5× Q5 buffer 5.00
    10 mM dNTP 0.50  200 uM
    F-primer 20 uM 0.63  0.5 uM
    R-primer 20 uM 0.63  0.5 uM
    BSA
    20 mg/ml 0.00
    Q5 pol 2 U/ul 0.25 l u/50 ul
    template (PCA assembly) 0.50 l ul/50 ul rxn
  • The resulting amplification products were run on a BioAnalyzer instrument (FIG. 60 part B, panels 1-10) as well as on a gel (FIG. 60 part C), showing a product that is slightly larger than 3000 bp. An 11th PCR reaction was run using a PCA reaction performed in a plastic tube as a positive control (FIG. 60 part B, panel 11 and FIG. 60 part C). A 12th PCR reaction was run without the PCA template as a negative control showing no product (FIG. 60 part B, panel 12 and FIG. 60 part C).
  • Example 14: Error Correction of Assembled Nucleic Acids
  • TABLE 10
    Nucleic Acid Sequence
    Assembled 5′ATGACCATGATTACGGATTCACTGGCCGTCGTTTACAACGTCGT
    Gene, SEQ ID GACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCAC
    NO.: 70 ATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGA
    TCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTT
    GCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGT
    GCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCA
    GATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCC
    ATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGFT
    GTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGG
    CCAGACGCGAATTATTTTTGATGGCGTTAACTCGGCGTTTCATCTGT
    GGTGCAACGGGCGCTGGGTCGGTTACGGCCAGGACAGTCGTTTGCC
    GTCTGAATTTGACCTGAGCGCATTTTTACGCGCCGGAGAAAACCGC
    CTCGCGGTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGGAAG
    ATCAGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGTCTCGTT
    GCTGCATAAACCGACTACACAAATCAGCGATTTCCATGTTGCCACT
    CGCTTTAATGATGATTTCAGCCGCGCTGTACTGGAGGCTGAAGTTC
    AGATGTGCGGCGAGTTGCGTGACTACCTACGGGTAACAGTTTCTTT
    ATGGCAGGGTGAAACGCAGGTCGCCAGCGGCACCGCGCCTTTCGG
    CGGTGAAATTATCGATGAGCGTGGTGGTTATGCCGATCGCGTCACA
    CTACGTCTGAACGTCGAAAACCCGAAACTGTGGAGCGCCGAAATCC
    CGAATCTCTATC3′
    Assembly
    5′ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGT
    Oligonucleotide GACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCAC
    1, SEQ ID NO.: ATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGA
    71 TCGCCCTTCCCAACAGTTGCGCAGCC3′
    Assembly 5′GATAGGTCACGTTGGTGTAGATGGGCGCATCGTAACCGTGCATCT
    Oligonucleotide GCCAGTTTGAGGGGACGACGACAGTATCGGCCTCAGGAAGATCGC
    2, SEQ ID NO.: ACTCCAGCCAGCTTTCCGGCACCGCTTCTGGTGCCGGAAACCAGGC
    72 AAAGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGA3′
    Assembly 5′CCCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCG
    Oligonucleotide TTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAA
    3, SEQ ID NO.: TGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTT
    73 GATGGCGTTAACTCGGCGTTTCATCTGTGGTGCAACGG3′
    Assembly 5′GCCGCTCATCCGCCACATATCCTGATCTTCCAGATAACTGCCGTC
    Oligonucleotide ACTCCAGCGCAGCACCATCACCGCGAGGCGGTTTTCTCCGGCGCGT
    4, SEQ ID NO.: AAAAATGCGCTCAGGTCAAATTCAGACGGCAAACGACTGTCCTGGC
    74 CGTAACCGACCCAGCGCCCGTTGCACCACAGATGAAACG3′
    Assembly 5′AGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGTCTCGTTGC
    Oligonucleotide TGCATAAACCGACTACACAAATCAGCGATTTCCATGTTGCCACTCG
    5, SEQ ID NO.: CTTTAATGATGATTTCAGCCGCGCTGTACTGGAGGCTGAAGTTCAG
    75 ATGTGCGGCGAGTTGCGTGACTACCTACGGGTAACAGTTT3′
    Assembly 5′GATAGAGATTCGGGATTTCGGCGCTCCACAGTTTCGGGTTTTCGA
    Oligonucleotide CGTTCAGACGTAGTGTGACGCGATCGGCATAACCACCACGCTCATC
    6, SEQ ID NO.: GATAATTTCACCGCCGAAAGGCGCGGTGCCGCTGGCGACCTGCGTT
    76 TCACCCTGCCATAAAGAAACTGTTACCCGTAGGTAGTCACG3′
  • An gene of about 1 kb (SEQ ID NO.: 70; Table 10) was assembled using 6 purchased oligonucleotides (5 nM each during PCA) (Ultramer; SEQ ID NO.: 71-76; Table 10) and assembled in a PCA reaction using a 1×NEB Q5 buffer with 0.02 U/uL Q5 hot-start high-fidelity polymerase and 100 uM dNTP as follows:
  • 1 cycle: 98 C, 30 sec
  • 15 cycles: 98 C, 7 sec; 62 C 30 sec; 72 C, 30 sec
  • 1 cycle: 72 C, 5 min
  • Ultramer oligonucleotides are expected to have error rates of at least 1 in 500 nucleotides, more likely at least 1 in 200 nucleotides or more.
  • The assembled gene was amplified in a PCR reaction using a forward primer (5′ ATGACCATGATTACGGATTCACTGGCC3′ SEQ ID NO.: 77) and a reverse primer (5′GATAGAGATTCGGGATTTCGGCGCTCC
  • 3′ SEQ ID NO.: 78), using 1×NEB Q5 buffer with 0.02 U/uL Q5 hot-start high-fidelity polymerase, 200 uM dNTP, and 0.5 uM primers as follows:
  • 1 cycle: 98 C, 30 sec
  • 30 cycles: 98 C, 7 sec; 65 C 30 sec; 72 C, 45 sec
  • 1 cycle: 72 C, 5 min
  • The amplified assembled gene was analyzed in a BioAnalyzer (FIG. 52 part A) and cloned. Mini-preps from ˜24 colonies were Sanger sequenced. The BioAnalyzer analysis provided a broad peak and a tail for the uncorrected gene, indicated a high error rate. The sequencing indicated an error rate of 1/789 (data not shown). Two rounds of error correction were followed using CorrectASE (Life Technologies, www.lifetechnologies.com/order/catalog/product/A14972) according to the manufacturer's instructions. The resulting gene samples were similarly analyzed in the BioAnalyzer after round one (FIG. 60 part B) and round two (FIG. 60 part C) and cloned. 24 colonies were picked for sequencing. The sequencing results indicated an error rate of 1/5190 bp and 1/6315 bp after the first and second rounds of error correction, respectively.
  • Example 15: Generation of a Large Quantity of Primer-Free Single-Stranded Oligonucleotides
  • Reagents. All enzymes and buffers except phi29 DNA polymerase were purchased from NEB unless stated otherwise. Phi29 DNA polymerase was purchased from Enzymatics.
  • Generation of oligonucleotides. A padlock oligonucleotide (OS_1518) having a reverse complement sequence to a desired oligonucleotide was synthesized by IDT (Table 1). Additional padlock oligonucleotides OS_1515, OS_1516, OS_1517, OS_1519 were also synthesized to work with adaptor/auxiliary oligonucleotide combinations that work with different restriction enzyme sets. The padlock oligonucleotide was phosphorylated by mixing 5 μL padlock (200 nM) with 5 μL T4 PNK buffer, 0.5 μL ATP (100 mM), 2 μL T4 PNK (10 U/μL), 1 μL BSA (100 μg/μL), 2 μL DTT (100 mM), and 32.5 μL water, and incubating the mixture for 60 min at 37° C., followed by incubation for 20 min at 65° C. An adaptor oligonucleotide having a complement sequence to the padlock oligonucleotide was synthesized by IDT (Table 11). An auxiliary oligonucleotide having a complementary sequence to the adaptor oligonucleotide was synthesized by IDT and biotinylated.
  • TABLE 11
    Oligonucleotide sequences.
    Padlock, SEQ 5’ATCTTTGAGTCTTCTGCTTGGTCAGACGAGTGCATGTGCGTGACAA
    ID NO.: 79 ATTGGCGCGAGGAGCTCGTGTCATTCACAACTGCTCTTAGGCTACTC
    AGGCATGGTGAGATGCTACGGTGGTTGATGGATACCTAGAT3’
    Adaptor, SEQ ID NO.: 80
    Figure US20230211308A1-20230706-C00001
    Auxiliary, SEQ /5Biosg/GTTGATGGATACCTAGATATCTTTGAGTCTTCTG3’
    ID NO.: 81
    Underline = complementarity to adaptor oligonucleotide
    Figure US20230211308A1-20230706-C00002
    /5Biosg/ = biotinylation site
  • Hybridization and ligation. 48 μL of the padlock phosphorylation reaction mixture was combined with 1.5 μL adaptor oligonucleotide (2 μM) and 0.5 μL T4 ligase. The reaction was incubated for 60 min at 37° C., followed by 20 min at 65° C. A 5 μL sample of the reaction was mixed with 5 μL 2×loading buffer and analyzed on a 15% TBE-urea gel (180 V, 75 min).
  • An optional exonuclease treatment was performed as follows. A 10 μL ligation product was treated with 0.15 μL ExoI and ExoIII (NEB or Enzymatics) at 37° C. for 60 min, followed by 95° C. for 20 min. Following incubation, 0.3 μL adaptor oligonucleotide (2 μM) was added to each 10 μL solution, heated to 95° C. for 5 min, and slowly cooled. A 5 μL sample of the reaction was mixed with 5 μL 2×loading buffer and analyzed on a 15% TBE-urea gel (180 V, 75 min).
  • Rolling circle amplification. A 10 μL 2×RCA master mix was prepared by combining 0.6 μL phi29 DNA polymerase (low concentration, Enzymatics), 0.5 μL 10 mM dNTP, 1 μL T4 PNK buffer, 0.2 μL 100×BSA, 0.5 μL 100 mM DTT, and 7.2 μL water on ice. In some instances, PCR additives, such as betaine, for example 5M betaine, may be used to reduce amplification bias. The 10 μL of RCA mastermix was combined with 10 μL ligation product (with or without exonuclease treatment) and incubated at 40° C. for 90 min or 4 hr. The reaction was then incubated at 70° C. for 10 min to de-activate the phi29 DNA polymerase. A 0.1 μL sample of the reaction was mixed with 4.9 μL water and 5 μL 2×loading buffer, and the mixture analyzed on a 15% TBE-urea gel (180 V, 75 min).
  • Restriction endonuclease digestion. A 2 μL sample of the RCA product was mixed with 2 μL 10×CutSmart, 2 μL biotinylated auxiliary oligonucleotide (20 μM), and 12 μL water. The mixture was heated to 98° C. and slowly cooled to room temperature. 1 μL each of BciVI and MlyI were added to the mixture, followed by an incubation for 1 hr at 37° C., then 20 min at 80° C. A 1 μL sample of the reaction was mixed with 4 μL water and 5 μL 2×loading buffer, and the mixture analyzed on a 15% TBE-urea gel (180 V, 75 min).
  • An optional purification step was performed as follows. 1 μL of the restriction endonuclease digestion sample is retained as a pre-purification sample. NanoLink beads (Solulink) are resuspended by vortexing vigorously. A 5 μL aliquot of beads were added to a 1.5 mL tube. Nucleic Acid Binding and Wash Buffer or NABWB (50 mM Tris-HCl, 150 mM NaCl, 0.05% Tween 20, pH 8.0) was added to the tube to a final volume of 250 μL, and the tube was mixed to resuspend. The tube was placed on a magnetic stand for 2 min, followed by removal of the supernatant. The tube was removed from the magnet and the beads resuspended with 180 μL NABWB. 180 μL of the resuspended beads were added to 20 μL of the restriction endonuclease digestion reaction, and the mixture vortexed. The mixture was incubated for 60 min at 40° C. on a platform shaker, so that the beads do not settle. The tube was then placed on a magnet for 2 min and the supernatant comprising purified product was transferred to a new tube. A 10 μL sample of the purified product was mixed with 5 μL 2×loading buffer and analyzed on a 15% TBE-urea gel (180 V, 75 min). The concentration of the purified RCA product was measured using Qubit ssDNA kit.
  • Alternative purification. In some workflows, the digested oligonucleotides can be purified using (high-performance liquid chromatography) HPLC.
  • FIG. 63 depicts the separation of restriction enzyme cleaved amplification products, where each single stranded amplification product has been hybridized with an auxiliary oligonucleotide complementary to the amplification product at adaptor copy sites, prior to cleavage. Data relating to the amplification of single stranded nucleic acids using padlock probes OS_1515, OS_1516, OS_1517, OS_1518, OS_1519, with different sets of restriction enzymes are also shown.
  • While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (21)

1-20. (canceled)
21. A system for constructing a nucleic acid molecule comprising an identifier, the system comprising:
(a) a first printhead configured to deposit a first component of the nucleic acid molecule comprising an identifier on a specified site on a substrate;
(b) a second printhead configured to deposit a second component of the nucleic acid molecule comprising an identifier on the specified site on the substrate; and
(c) a dispenser configured to deposit a reaction mix onto the specified site on the substrate to link the first component and the second component to construct the nucleic acid molecule,
wherein the nucleic acid molecule comprising the identifier represents sequence information.
22. The system of claim 21, wherein the dispenser comprises a third printhead configured to deposit the reaction mixture on the specified site on the substrate.
23. The system of claim 21, wherein the first printhead, the second printhead, the dispenser, or a combination thereof comprise a plurality of nozzles.
24. The system of claim 21, wherein the nucleic acid molecule comprises a dye-labeled nucleic acid molecule.
25. The system of claim 21, wherein the first printhead, the second printhead, or the dispenser comprises a piezoelectric element or a thermoelectric element.
26. The system of claim 21, wherein the reaction mixture comprises a ligase.
27. The system of claim 21, wherein the substrate is configured for movement in the x-y plane, z-direction, or both.
28. The system of claim 21, further comprising a vision system for aligning the first printhead, the second printhead, the dispenser, or any combination thereof with the substrate.
29. The system of claim 21, further comprising a temperature control system, a vacuum device, or both.
30. The system of claim 29, wherein the temperature control system comprises a thermal cycling device for performing nucleic acid amplification or assembly.
31. The system of claim 21, wherein the first component, the second component, or both are building blocks, wherein the building blocks comprises about 1 to 50 nucleotides.
32. The system of claim 21, wherein the substrate comprises a functionalization pattern.
33. The system of claim 21, further comprising an alignment unit for aligning the substrate relative to the first printhead, the second printhead, or the dispenser.
34. A method for constructing a nucleic acid molecule comprising an identifier, the method comprising:
(a) depositing a first droplet comprising a first component of the nucleic acid molecule comprising an identifier on a specified site on a substrate using a first printhead;
(b) depositing a second droplet comprising a second component of the nucleic acid molecule comprising an identifier on the specified site on a substrate using a second printhead; and
(c) linking the first component and the second component to construct the nucleic acid molecule using a dispenser, wherein the linking is performed by dispending a reaction mix onto the specified site on the substrate, providing a condition necessary to link the first component and the second component, or both,
wherein the nucleic acid molecule comprising the identifier represents sequence information.
35. The method of claim 34, wherein linking the first component and the second component comprises using a ligase or click chemistry.
36. The method of claim 34, further comprising incubating the specified site of the substrate.
37. The method of claim 34, further comprising subjecting the specified site of the substrate to a given temperature, humidity, pressure, or gas content.
38. The method of claim 34, further comprising capturing the nucleic acid molecule comprising the identifier.
39. The method of claim 34, further comprising performing quality control of the nucleic acid molecule comprising the identifier.
40. The method of claim 34, further comprising pooling the nucleic acid molecule with an identifier and at least one additional nucleic acid molecule.
US18/067,652 2013-08-05 2022-12-16 De novo synthesized gene libraries Pending US20230211308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/067,652 US20230211308A1 (en) 2013-08-05 2022-12-16 De novo synthesized gene libraries

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361862445P 2013-08-05 2013-08-05
US201361862457P 2013-08-05 2013-08-05
US14/452,429 US9409139B2 (en) 2013-08-05 2014-08-05 De novo synthesized gene libraries
US15/187,714 US10632445B2 (en) 2013-08-05 2016-06-20 De novo synthesized gene libraries
US15/233,835 US9839894B2 (en) 2013-08-05 2016-08-10 De novo synthesized gene libraries
US15/729,564 US10639609B2 (en) 2013-08-05 2017-10-10 De novo synthesized gene libraries
US16/039,256 US11559778B2 (en) 2013-08-05 2018-07-18 De novo synthesized gene libraries
US18/067,652 US20230211308A1 (en) 2013-08-05 2022-12-16 De novo synthesized gene libraries

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/039,256 Continuation US11559778B2 (en) 2013-08-05 2018-07-18 De novo synthesized gene libraries

Publications (1)

Publication Number Publication Date
US20230211308A1 true US20230211308A1 (en) 2023-07-06

Family

ID=52428204

Family Applications (20)

Application Number Title Priority Date Filing Date
US14/452,429 Active US9409139B2 (en) 2013-08-05 2014-08-05 De novo synthesized gene libraries
US14/885,962 Active US9833761B2 (en) 2013-08-05 2015-10-16 De novo synthesized gene libraries
US14/885,963 Active US9403141B2 (en) 2013-08-05 2015-10-16 De novo synthesized gene libraries
US14/885,965 Active US10272410B2 (en) 2013-08-05 2015-10-16 De novo synthesized gene libraries
US15/187,714 Active 2036-04-10 US10632445B2 (en) 2013-08-05 2016-06-20 De novo synthesized gene libraries
US15/187,721 Active US9555388B2 (en) 2013-08-05 2016-06-20 De novo synthesized gene libraries
US15/233,835 Active US9839894B2 (en) 2013-08-05 2016-08-10 De novo synthesized gene libraries
US15/245,054 Active US9889423B2 (en) 2013-08-05 2016-08-23 De novo synthesized gene libraries
US15/377,547 Active US10384188B2 (en) 2013-08-05 2016-12-13 De novo synthesized gene libraries
US15/602,991 Active US10618024B2 (en) 2013-08-05 2017-05-23 De novo synthesized gene libraries
US15/603,013 Abandoned US20170362589A1 (en) 2013-08-05 2017-05-23 De novo synthesized gene libraries
US15/729,564 Active US10639609B2 (en) 2013-08-05 2017-10-10 De novo synthesized gene libraries
US15/991,992 Abandoned US20180264428A1 (en) 2013-08-05 2018-05-29 De novo synthesized gene libraries
US16/039,256 Active 2035-05-26 US11559778B2 (en) 2013-08-05 2018-07-18 De novo synthesized gene libraries
US16/409,608 Active US10583415B2 (en) 2013-08-05 2019-05-10 De novo synthesized gene libraries
US16/535,779 Active US10773232B2 (en) 2013-08-05 2019-08-08 De novo synthesized gene libraries
US16/535,777 Active US11185837B2 (en) 2013-08-05 2019-08-08 De novo synthesized gene libraries
US16/737,401 Active 2035-01-09 US11452980B2 (en) 2013-08-05 2020-01-08 De novo synthesized gene libraries
US17/818,656 Pending US20230086062A1 (en) 2013-08-05 2022-08-09 De novo synthesized gene libraries
US18/067,652 Pending US20230211308A1 (en) 2013-08-05 2022-12-16 De novo synthesized gene libraries

Family Applications Before (19)

Application Number Title Priority Date Filing Date
US14/452,429 Active US9409139B2 (en) 2013-08-05 2014-08-05 De novo synthesized gene libraries
US14/885,962 Active US9833761B2 (en) 2013-08-05 2015-10-16 De novo synthesized gene libraries
US14/885,963 Active US9403141B2 (en) 2013-08-05 2015-10-16 De novo synthesized gene libraries
US14/885,965 Active US10272410B2 (en) 2013-08-05 2015-10-16 De novo synthesized gene libraries
US15/187,714 Active 2036-04-10 US10632445B2 (en) 2013-08-05 2016-06-20 De novo synthesized gene libraries
US15/187,721 Active US9555388B2 (en) 2013-08-05 2016-06-20 De novo synthesized gene libraries
US15/233,835 Active US9839894B2 (en) 2013-08-05 2016-08-10 De novo synthesized gene libraries
US15/245,054 Active US9889423B2 (en) 2013-08-05 2016-08-23 De novo synthesized gene libraries
US15/377,547 Active US10384188B2 (en) 2013-08-05 2016-12-13 De novo synthesized gene libraries
US15/602,991 Active US10618024B2 (en) 2013-08-05 2017-05-23 De novo synthesized gene libraries
US15/603,013 Abandoned US20170362589A1 (en) 2013-08-05 2017-05-23 De novo synthesized gene libraries
US15/729,564 Active US10639609B2 (en) 2013-08-05 2017-10-10 De novo synthesized gene libraries
US15/991,992 Abandoned US20180264428A1 (en) 2013-08-05 2018-05-29 De novo synthesized gene libraries
US16/039,256 Active 2035-05-26 US11559778B2 (en) 2013-08-05 2018-07-18 De novo synthesized gene libraries
US16/409,608 Active US10583415B2 (en) 2013-08-05 2019-05-10 De novo synthesized gene libraries
US16/535,779 Active US10773232B2 (en) 2013-08-05 2019-08-08 De novo synthesized gene libraries
US16/535,777 Active US11185837B2 (en) 2013-08-05 2019-08-08 De novo synthesized gene libraries
US16/737,401 Active 2035-01-09 US11452980B2 (en) 2013-08-05 2020-01-08 De novo synthesized gene libraries
US17/818,656 Pending US20230086062A1 (en) 2013-08-05 2022-08-09 De novo synthesized gene libraries

Country Status (15)

Country Link
US (20) US9409139B2 (en)
EP (3) EP3030682B1 (en)
JP (4) JP6656733B2 (en)
KR (6) KR102207770B1 (en)
CN (2) CN105637097A (en)
CA (1) CA2918258A1 (en)
DK (1) DK3030682T3 (en)
EA (1) EA034459B1 (en)
ES (2) ES2815099T3 (en)
GB (1) GB2533173A (en)
HK (1) HK1225761A1 (en)
PL (1) PL3030682T3 (en)
SG (1) SG11201600853UA (en)
TW (5) TWI707038B (en)
WO (1) WO2015021080A2 (en)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190002733A (en) 2010-12-30 2019-01-08 파운데이션 메디신 인코포레이티드 Optimization of multigene analysis of tumor samples
US9409139B2 (en) 2013-08-05 2016-08-09 Twist Bioscience Corporation De novo synthesized gene libraries
BR112016003480B1 (en) 2013-08-19 2022-08-16 Singular Bio, Inc ASSAYS FOR SINGLE MOLECULE DETECTION AND ITS USE
SG10201911069WA (en) * 2014-09-15 2020-01-30 Abvitro Llc High-throughput nucleotide library sequencing
US10040048B1 (en) 2014-09-25 2018-08-07 Synthego Corporation Automated modular system and method for production of biopolymers
JP6905934B2 (en) 2014-12-05 2021-07-21 ファウンデーション・メディシン・インコーポレイテッド Multiple gene analysis of tumor samples
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
WO2016126987A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
CN113637729B (en) * 2015-02-18 2024-02-23 因威塔公司 Assay for single molecule detection and uses thereof
WO2016172377A1 (en) 2015-04-21 2016-10-27 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
KR20190057445A (en) * 2015-09-14 2019-05-28 에센릭스 코프. Device and system for analyzing a sample, particularly blood, as well as methods of using the same
JP6982362B2 (en) * 2015-09-18 2021-12-17 ツイスト バイオサイエンス コーポレーション Oligonucleic acid mutant library and its synthesis
CN108698012A (en) * 2015-09-22 2018-10-23 特韦斯特生物科学公司 Flexible substrates for nucleic acid synthesis
EP3365273A4 (en) * 2015-10-21 2019-04-24 H. Hoffnabb-La Roche Ag Use of fluoropolymers as a hydrophobic layer to support lipid bilayer formation for nanopore
CA3006867A1 (en) 2015-12-01 2017-06-08 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
CA3006781A1 (en) 2015-12-07 2017-06-15 Arc Bio, Llc Methods and compositions for the making and using of guide nucleic acids
EP3436825A4 (en) * 2016-04-01 2020-03-18 Healthtell Inc. Array-based peptide libraries for therapeutic antibody characterization
JP2019523940A (en) * 2016-06-10 2019-08-29 ツイスト バイオサイエンス コーポレーション Systems and methods for automated annotation and screening of biological sequences
WO2017218293A1 (en) 2016-06-16 2017-12-21 Richard Edward Watts Oligonucleotide directed and recorded combinatorial synthesis of encoded probe molecules
CN110088281A (en) * 2016-08-03 2019-08-02 特韦斯特生物科学公司 Texturizing surfaces for polynucleotides synthesis
CA3034769A1 (en) 2016-08-22 2018-03-01 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
JP6871364B2 (en) 2016-09-21 2021-05-12 ツイスト バイオサイエンス コーポレーション Nucleic acid-based data storage
KR20190082275A (en) 2016-11-09 2019-07-09 헬스텔 인크. Coatings with adjustable amine density
US12037311B2 (en) 2016-11-09 2024-07-16 Cowper Sciences Inc. Pre-assembled, protected, chemically stable, chemoselective linkers
US20180142289A1 (en) 2016-11-18 2018-05-24 Twist Bioscience Corporation Polynucleotide libraries having controlled stoichiometry and synthesis thereof
KR102514213B1 (en) 2016-12-16 2023-03-27 트위스트 바이오사이언스 코포레이션 Immune synaptic variant library and its synthesis
WO2018119101A1 (en) 2016-12-22 2018-06-28 Illumina, Inc. Flow cell package and method for making the same
KR102723464B1 (en) 2017-02-22 2024-10-28 트위스트 바이오사이언스 코포레이션 Nucleic acid-based data storage
EP3595674A4 (en) 2017-03-15 2020-12-16 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
CA3056386A1 (en) * 2017-03-15 2018-09-20 Twist Bioscience Corporation De novo synthesized combinatorial nucleic acid libraries
WO2018204420A1 (en) 2017-05-02 2018-11-08 Haystack Sciences Corporation Molecules for verifying oligonucleotide directed combinatorial synthesis and methods of making and using the same
US10538808B2 (en) * 2017-05-26 2020-01-21 Vibrant Holdings, Llc Photoactive compounds and methods for biomolecule detection and sequencing
WO2018227025A1 (en) * 2017-06-07 2018-12-13 Arc Bio, Llc Creation and use of guide nucleic acids
CN111566209B (en) 2017-06-12 2024-08-30 特韦斯特生物科学公司 Seamless nucleic acid assembly method
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
GB2582865B (en) * 2017-09-11 2022-05-04 Synthego Corp Biopolymer synthesis system and method
CN111566125A (en) 2017-09-11 2020-08-21 特韦斯特生物科学公司 GPCR binding proteins and synthesis thereof
CA3076747A1 (en) * 2017-09-25 2019-03-28 Plexium, Inc. Oligonucleotide encoded chemical libraries
WO2019060856A1 (en) * 2017-09-25 2019-03-28 Haystack Sciences Corporation Multinomial encoding for oligonucleotide-directed combinatorial chemistry
US11402400B2 (en) 2017-10-13 2022-08-02 Hewlett-Packard Development Company, L.P. Partition liquid into samples
JP7066840B2 (en) * 2017-10-20 2022-05-13 ツイスト バイオサイエンス コーポレーション Heated nanowells for polynucleotide synthesis
IL312616A (en) 2018-01-04 2024-07-01 Twist Bioscience Corp Dna-based digital information storage
EP3775893A1 (en) * 2018-04-13 2021-02-17 F. Hoffmann-La Roche AG Methods and compositions for detection and analysis of analytes
US11995558B2 (en) * 2018-05-17 2024-05-28 The Charles Stark Draper Laboratory, Inc. Apparatus for high density information storage in molecular chains
US20210229059A1 (en) * 2018-05-17 2021-07-29 Georgia Tech Research Corporation Devices, Systems, and Methods of Electronic Modulation of Polymerase for DNA Synthesis
SG11202011467RA (en) 2018-05-18 2020-12-30 Twist Bioscience Corp Polynucleotides, reagents, and methods for nucleic acid hybridization
US11854669B1 (en) 2018-07-30 2023-12-26 National Technology & Engineering Solutions Of Sandia, Llc Synthetic nucleic acids for information storage and transmission
CN109136331A (en) * 2018-08-22 2019-01-04 中山大学 A kind of design method of high sensitivity high specific mismatch DNA sequence
GB201817321D0 (en) 2018-10-24 2018-12-05 Nanna Therapeutics Ltd Microbeads for tagless encoded chemical library screening
WO2020102583A1 (en) * 2018-11-14 2020-05-22 Synthomics, Inc. Methods, devices, and systems for biopolymer synthesis
US20220010306A1 (en) * 2018-11-30 2022-01-13 Geneinfosec, Inc. A method for generating random oligonucleotides and determining their sequence
US20220049294A1 (en) * 2018-12-10 2022-02-17 10X Genomics, Inc. Imaging system hardware
CN113692409A (en) * 2018-12-26 2021-11-23 特韦斯特生物科学公司 Highly accurate de novo polynucleotide synthesis
TWI845600B (en) 2019-01-24 2024-06-21 美商普羅米修斯生物科學股份有限公司 Gpr35 modulators
AU2019426202B2 (en) * 2019-01-28 2023-03-02 Bgi Shenzhen Sequencing chip and manufacturing method therefor
MX2020013413A (en) * 2019-01-29 2021-04-28 Illumina Inc Flow cells.
MX2020014063A (en) 2019-01-29 2021-05-27 Illumina Inc Sequencing kits.
KR20210144698A (en) 2019-02-26 2021-11-30 트위스트 바이오사이언스 코포레이션 Variant Nucleic Acid Libraries for Antibody Optimization
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
KR102187795B1 (en) * 2019-04-30 2020-12-08 (주)디엑솜 Preparing method of library for next generation sequencing using deoxyuridine
CN112673251A (en) 2019-05-31 2021-04-16 伊鲁米那股份有限公司 Flow cell for selective deposition or activation of nucleotides
EP3987019A4 (en) 2019-06-21 2023-04-19 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
CN110349628B (en) * 2019-06-27 2021-06-15 广东药科大学 Protein phosphorylation site recognition method, system, device and storage medium
CN114555822A (en) * 2019-08-22 2022-05-27 新英格兰生物实验室公司 Cleavage of Single-stranded DNA with modified nucleotide
CN110531099B (en) * 2019-08-23 2024-04-12 湖南莱博赛医用机器人有限公司 Split type glass slide box and cell analysis equipment
EP4034566A4 (en) 2019-09-23 2024-01-24 Twist Bioscience Corporation Variant nucleic acid libraries for crth2
CZ308630B6 (en) * 2019-11-23 2021-01-13 Grade Medical s.r.o. Equipment for preparing functionalized substrates
CN111072729B (en) * 2019-12-13 2023-06-13 天津大学 Solid phase carrier device for oligonucleotide synthesis and selective modification method thereof
WO2021137844A1 (en) * 2019-12-30 2021-07-08 Dna Syn Tech Inc. Apparatus and method for preparing nucleic acid sequences using enzyme
WO2021142133A1 (en) * 2020-01-07 2021-07-15 Elegen Corporation Dna assembly in microfluidics device having integrated solid-phase columns
WO2021222316A2 (en) 2020-04-27 2021-11-04 Twist Bioscience Corporation Variant nucleic acid libraries for coronavirus
US12110516B2 (en) 2020-05-12 2024-10-08 Illumina, Inc. Thermostable terminal deoxynucleotidyl transferase
AU2021313713A1 (en) 2020-07-21 2023-01-05 Illumina Singapore Pte Ltd Base-modified nucleotides as substrates for tdt-based enzymatic nucleic acid
EP3958450A1 (en) * 2020-08-21 2022-02-23 Schneider Electric Industries SAS Linear motor system and operating method for same
WO2022046797A1 (en) * 2020-08-25 2022-03-03 Twist Bioscience Corporation Compositions and methods for library sequencing
KR20230074151A (en) 2020-08-26 2023-05-26 트위스트 바이오사이언스 코포레이션 Methods and compositions for GLP1R variants
WO2022086866A1 (en) 2020-10-19 2022-04-28 Twist Bioscience Corporation Methods of synthesizing oligonucleotides using tethered nucleotides
US20220298568A1 (en) * 2021-01-13 2022-09-22 Pacific Biosciences Of California, Inc. Surface structuring with colloidal assembly
US20240226895A9 (en) * 2021-02-18 2024-07-11 Battelle Memorial Institute Nanowell array device for high throughput sample analysis
WO2022177273A1 (en) * 2021-02-18 2022-08-25 서울대학교산학협력단 Method for purifying nucleic acid library
US20240209018A1 (en) * 2021-03-22 2024-06-27 Genscript Usa Inc. Universal linker reagents for dna synthesis
CN113262730B (en) * 2021-03-29 2022-11-22 上海迪赢生物科技有限公司 High-throughput automatic gene synthesis device based on cluster array
WO2022217004A1 (en) * 2021-04-09 2022-10-13 Twist Bioscience Corporation Libraries for mutational analysis
WO2022221853A1 (en) 2021-04-13 2022-10-20 Elegen Corp. Methods and compositions for cell-free cloning
US20220356468A1 (en) * 2021-05-03 2022-11-10 Twist Bioscience Corporation Variant nucleic acid libraries for ion channels
IL311304A (en) 2021-09-13 2024-05-01 Oncodna Method to generate personalized neoantigens of a tumor of a patient
EP4147712A1 (en) 2021-09-13 2023-03-15 OncoDNA Method to generate a double-stranded dna pool encoding neoantigens of a tumor of a patient
CN114100714B (en) * 2021-11-22 2023-01-17 上海睿度光电科技有限公司 Nucleic acid or polypeptide high-throughput synthesis chip and application thereof
WO2023132885A1 (en) * 2022-01-04 2023-07-13 Modernatx, Inc. Methods of purifying dna for gene synthesis
GB202205696D0 (en) * 2022-04-19 2022-06-01 Moligo Tech Ab Method for producing double stranded DNA
GB2621159A (en) * 2022-08-04 2024-02-07 Wobble Genomics Ltd Methods of preparing processed nucleic acid samples and detecting nucleic acids and devices therefor
WO2024047178A1 (en) 2022-09-02 2024-03-07 Eleven Therapeutics Ltd A method for simultaneous synthesis of a plurality of oligonucleotides
WO2024073136A1 (en) * 2022-09-30 2024-04-04 Mary Hitchcock Memorial Hospital, For Itself And On Behalf Of Dartmouth-Hitchcock Clinic Rapid reconstruction of large nucleic acids
EP4364752A1 (en) 2022-11-07 2024-05-08 OncoDNA Improved vaccine
WO2024112803A2 (en) * 2022-11-22 2024-05-30 Yale University Methods and kits for microscopic imaging
WO2024137514A1 (en) * 2022-12-22 2024-06-27 Synthego Corporation Systems and method for automated oligonucleotide synthesis
WO2024141629A1 (en) * 2022-12-31 2024-07-04 Dna Script Heat treatment means for printing device of an enzymatic synthesis apparatus
WO2024216064A1 (en) 2023-04-14 2024-10-17 Twist Bioscience Corporation Compositions and methods related to dkk1 binders

Family Cites Families (934)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1005368A (en) 1909-10-29 1911-10-10 John M Travis Faucet.
US1027241A (en) 1911-07-03 1912-05-21 James Mccutcheon Coleman Dump-car construction.
US3549368A (en) 1968-07-02 1970-12-22 Ibm Process for improving photoresist adhesion
US3920714A (en) 1972-11-16 1975-11-18 Weber Heinrich Process for the production of polymeric hydrocarbons with reactive silyl side groups
GB1550867A (en) 1975-08-04 1979-08-22 Hughes Aircraft Co Positioning method and apparatus for fabricating microcircuit devices
US4415732A (en) 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
EP0090789A1 (en) 1982-03-26 1983-10-05 Monsanto Company Chemical DNA synthesis
US4994373A (en) 1983-01-27 1991-02-19 Enzo Biochem, Inc. Method and structures employing chemically-labelled polynucleotide probes
JPS59224123A (en) 1983-05-20 1984-12-17 Oki Electric Ind Co Ltd Alignment mark for wafer
US5118605A (en) 1984-10-16 1992-06-02 Chiron Corporation Polynucleotide determination with selectable cleavage sites
JPS61141761A (en) 1984-12-12 1986-06-28 Kanegafuchi Chem Ind Co Ltd Curable composition
US5242794A (en) 1984-12-13 1993-09-07 Applied Biosystems, Inc. Detection of specific sequences in nucleic acids
US6492107B1 (en) 1986-11-20 2002-12-10 Stuart Kauffman Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique
US4613398A (en) 1985-06-06 1986-09-23 International Business Machines Corporation Formation of etch-resistant resists through preferential permeation
US4981797A (en) 1985-08-08 1991-01-01 Life Technologies, Inc. Process of producing highly transformable cells and cells produced thereby
US4726877A (en) 1986-01-22 1988-02-23 E. I. Du Pont De Nemours And Company Methods of using photosensitive compositions containing microgels
US4808511A (en) 1987-05-19 1989-02-28 International Business Machines Corporation Vapor phase photoresist silylation process
JPH07113774B2 (en) 1987-05-29 1995-12-06 株式会社日立製作所 Pattern formation method
US4988617A (en) 1988-03-25 1991-01-29 California Institute Of Technology Method of detecting a nucleotide change in nucleic acids
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
ATE143696T1 (en) 1989-02-28 1996-10-15 Canon Kk PARTIALLY DOUBLE STRANDED OLIGONUCLEOTIDE AND METHOD FOR FORMING IT
US5556750A (en) 1989-05-12 1996-09-17 Duke University Methods and kits for fractionating a population of DNA molecules based on the presence or absence of a base-pair mismatch utilizing mismatch repair systems
US5459039A (en) 1989-05-12 1995-10-17 Duke University Methods for mapping genetic mutations
US6008031A (en) 1989-05-12 1999-12-28 Duke University Method of analysis and manipulation of DNA utilizing mismatch repair systems
US5102797A (en) 1989-05-26 1992-04-07 Dna Plant Technology Corporation Introduction of heterologous genes into bacteria using transposon flanked expression cassette and a binary vector system
US6309822B1 (en) 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
US6040138A (en) 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5527681A (en) 1989-06-07 1996-06-18 Affymax Technologies N.V. Immobilized molecular synthesis of systematically substituted compounds
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5242974A (en) 1991-11-22 1993-09-07 Affymax Technologies N.V. Polymer reversal on solid surfaces
CA2036946C (en) 1990-04-06 2001-10-16 Kenneth V. Deugau Indexing linkers
US5494810A (en) 1990-05-03 1996-02-27 Cornell Research Foundation, Inc. Thermostable ligase-mediated DNA amplifications system for the detection of genetic disease
US6087482A (en) 1990-07-27 2000-07-11 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
FI87886C (en) 1990-09-06 1993-03-10 Instrumentarium Oy Fasteners
WO1992006189A1 (en) 1990-09-27 1992-04-16 Invitrogen Corporation Direct cloning of pcr amplified nucleic acids
GB9025236D0 (en) 1990-11-20 1991-01-02 Secr Defence Silicon-on porous-silicon;method of production
US6582908B2 (en) 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
AU1248292A (en) 1990-12-06 1992-07-08 Affymax Technologies N.V. Sequencing by hybridization of a target nucleic acid to a matrix of defined oligonucleotides
ES2155822T3 (en) 1990-12-06 2001-06-01 Affymetrix Inc COMPOUNDS AND ITS USE IN A BINARY SYNTHESIS STRATEGY.
US5455166A (en) 1991-01-31 1995-10-03 Becton, Dickinson And Company Strand displacement amplification
US5137814A (en) 1991-06-14 1992-08-11 Life Technologies, Inc. Use of exo-sample nucleotides in gene cloning
US5449754A (en) 1991-08-07 1995-09-12 H & N Instruments, Inc. Generation of combinatorial libraries
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US7045289B2 (en) 1991-09-09 2006-05-16 Third Wave Technologies, Inc. Detection of RNA Sequences
US6759226B1 (en) 2000-05-24 2004-07-06 Third Wave Technologies, Inc. Enzymes for the detection of specific nucleic acid sequences
US7150982B2 (en) 1991-09-09 2006-12-19 Third Wave Technologies, Inc. RNA detection assays
US5846717A (en) 1996-01-24 1998-12-08 Third Wave Technologies, Inc. Detection of nucleic acid sequences by invader-directed cleavage
US5994069A (en) 1996-01-24 1999-11-30 Third Wave Technologies, Inc. Detection of nucleic acids by multiple sequential invasive cleavages
US5384261A (en) 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
CA2124087C (en) 1991-11-22 2002-10-01 James L. Winkler Combinatorial strategies for polymer synthesis
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
EP0636186B1 (en) 1992-04-03 1998-11-25 The Perkin-Elmer Corporation Probe composition and method
JP2553322Y2 (en) 1992-05-11 1997-11-05 サンデン株式会社 Filter feed mechanism of beverage brewing device
WO1994003637A1 (en) 1992-07-31 1994-02-17 Syntex (Usa) Inc. Method for introducing defined sequences at the 3' end of polynucleotides
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
JP3176444B2 (en) 1992-10-01 2001-06-18 株式会社リコー Aqueous ink and recording method using the same
DE4241045C1 (en) 1992-12-05 1994-05-26 Bosch Gmbh Robert Process for anisotropic etching of silicon
US5368823A (en) 1993-02-11 1994-11-29 University Of Georgia Research Foundation, Inc. Automated synthesis of oligonucleotides
US5395753A (en) 1993-02-19 1995-03-07 Theratech, Inc. Method for diagnosing rheumatoid arthritis
ATE246702T1 (en) 1993-04-12 2003-08-15 Univ Northwestern METHOD FOR PREPARING OLIGONUCLEOTIDES
US7135312B2 (en) * 1993-04-15 2006-11-14 University Of Rochester Circular DNA vectors for synthesis of RNA and DNA
US5455239A (en) 1993-08-05 1995-10-03 Merck & Co. Inc. 3-aryl of heteroaryl-7-heteroaralkylamido cephalosporin compounds, compositions and methods of use
US5482845A (en) 1993-09-24 1996-01-09 The Trustees Of Columbia University In The City Of New York Method for construction of normalized cDNA libraries
CN1039623C (en) 1993-10-22 1998-09-02 中国人民解放军军事医学科学院毒物药物研究所 Pharmaceutical composition for preventing and treating motion sickness syndrome and preparation method thereof
US6893816B1 (en) 1993-10-28 2005-05-17 Houston Advanced Research Center Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
DE69430207T2 (en) 1993-10-28 2002-09-19 Houston Advanced Research Center, Woodlands MICROFABRICATED POROUS FLOW UNIT
US6027877A (en) 1993-11-04 2000-02-22 Gene Check, Inc. Use of immobilized mismatch binding protein for detection of mutations and polymorphisms, purification of amplified DNA samples and allele identification
US5834252A (en) 1995-04-18 1998-11-10 Glaxo Group Limited End-complementary polymerase reaction
US6015880A (en) 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
KR970702363A (en) 1994-03-29 1997-05-13 안네 제케르 Alkaline Bacillus Amylase
US5514789A (en) 1994-04-21 1996-05-07 Barrskogen, Inc. Recovery of oligonucleotides by gas phase cleavage
SE512382C2 (en) 1994-04-26 2000-03-06 Ericsson Telefon Ab L M Device and method for placing elongate elements against or adjacent to a surface
DE69519783T2 (en) 1994-04-29 2001-06-07 Perkin-Elmer Corp., Foster City METHOD AND DEVICE FOR REAL-TIME DETECTION OF PRODUCTS OF NUCLEIC ACID AMPLIFICATION
US6287850B1 (en) 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
WO1996000378A1 (en) 1994-06-23 1996-01-04 Affymax Technologies N.V. Photolabile compounds and methods for their use
US5641658A (en) 1994-08-03 1997-06-24 Mosaic Technologies, Inc. Method for performing amplification of nucleic acid with two primers bound to a single solid support
US5530516A (en) 1994-10-04 1996-06-25 Tamarack Scientific Co., Inc. Large-area projection exposure system
US6613560B1 (en) 1994-10-19 2003-09-02 Agilent Technologies, Inc. PCR microreactor for amplifying DNA using microquantities of sample fluid
US6635226B1 (en) 1994-10-19 2003-10-21 Agilent Technologies, Inc. Microanalytical device and use thereof for conducting chemical processes
US5556752A (en) 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
AU4283196A (en) 1994-11-22 1996-06-17 Complex Fluid Systems, Inc. Non-aminic photoresist adhesion promoters for microelectronic applications
US5688642A (en) 1994-12-01 1997-11-18 The United States Of America As Represented By The Secretary Of The Navy Selective attachment of nucleic acid molecules to patterned self-assembled surfaces
US6017434A (en) 1995-05-09 2000-01-25 Curagen Corporation Apparatus and method for the generation, separation, detection, and recognition of biopolymer fragments
US5830655A (en) 1995-05-22 1998-11-03 Sri International Oligonucleotide sizing using cleavable primers
US5700642A (en) 1995-05-22 1997-12-23 Sri International Oligonucleotide sizing using immobilized cleavable primers
US5877280A (en) 1995-06-06 1999-03-02 The Mount Sinai School Of Medicine Of The City University Of New York Thermostable muts proteins
US6446682B1 (en) 1995-06-06 2002-09-10 James P. Viken Auto-loading fluid exchanger and method of use
US5707806A (en) 1995-06-07 1998-01-13 Genzyme Corporation Direct sequence identification of mutations by cleavage- and ligation-associated mutation-specific sequencing
US5712126A (en) 1995-08-01 1998-01-27 Yale University Analysis of gene expression by display of 3-end restriction fragments of CDNA
US5780613A (en) 1995-08-01 1998-07-14 Northwestern University Covalent lock for self-assembled oligonucleotide constructs
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
US6352842B1 (en) 1995-12-07 2002-03-05 Diversa Corporation Exonucease-mediated gene assembly in directed evolution
US6537776B1 (en) 1999-06-14 2003-03-25 Diversa Corporation Synthetic ligation reassembly in directed evolution
JP2000501615A (en) 1995-12-15 2000-02-15 アマーシャム・ライフ・サイエンス・インコーポレーテッド Method using a mismatch repair system for detection and removal of mutant sequences generated during enzyme amplification
US5962271A (en) 1996-01-03 1999-10-05 Cloutech Laboratories, Inc. Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end
US5976846A (en) 1996-01-13 1999-11-02 Passmore; Steven E. Method for multifragment in vivo cloning and mutation mapping
US6090606A (en) 1996-01-24 2000-07-18 Third Wave Technologies, Inc. Cleavage agents
US7122364B1 (en) 1998-03-24 2006-10-17 Third Wave Technologies, Inc. FEN endonucleases
US6706471B1 (en) 1996-01-24 2004-03-16 Third Wave Technologies, Inc. Detection of nucleic acid sequences by invader-directed cleavage
US5985557A (en) 1996-01-24 1999-11-16 Third Wave Technologies, Inc. Invasive cleavage of nucleic acids
US7432048B2 (en) 1996-11-29 2008-10-07 Third Wave Technologies, Inc. Reactions on a solid surface
US7527928B2 (en) 1996-11-29 2009-05-05 Third Wave Technologies, Inc. Reactions on a solid surface
US6274369B1 (en) 1996-02-02 2001-08-14 Invitrogen Corporation Method capable of increasing competency of bacterial cell transformation
US6013440A (en) * 1996-03-11 2000-01-11 Affymetrix, Inc. Nucleic acid affinity columns
US6020481A (en) 1996-04-01 2000-02-01 The Perkin-Elmer Corporation Asymmetric benzoxanthene dyes
US6706875B1 (en) 1996-04-17 2004-03-16 Affyemtrix, Inc. Substrate preparation process
US5869245A (en) 1996-06-05 1999-02-09 Fox Chase Cancer Center Mismatch endonuclease and its use in identifying mutations in targeted polynucleotide strands
US5863801A (en) 1996-06-14 1999-01-26 Sarnoff Corporation Automated nucleic acid isolation
US6780982B2 (en) 1996-07-12 2004-08-24 Third Wave Technologies, Inc. Charge tags and the separation of nucleic acid molecules
US5853993A (en) 1996-10-21 1998-12-29 Hewlett-Packard Company Signal enhancement method and kit
WO1998022541A2 (en) 1996-11-08 1998-05-28 Ikonos Corporation Method for coating substrates
US5750672A (en) 1996-11-22 1998-05-12 Barrskogen, Inc. Anhydrous amine cleavage of oligonucleotides
DK0966542T3 (en) 1996-11-29 2009-03-23 Third Wave Tech Inc FEN-1 endonucleases, mixtures and cleavage methods
EP2295988A2 (en) * 1996-12-31 2011-03-16 High Throughput Genomics, Inc. Multiplexed molecular analysis apparatus and its fabrication method
ES2241120T3 (en) 1997-02-12 2005-10-16 Invitrogen Corporation METHODS FOR LIOFILIZING COMPETENT CELLS.
US5882496A (en) 1997-02-27 1999-03-16 The Regents Of The University Of California Porous silicon structures with high surface area/specific pore size
US6770748B2 (en) 1997-03-07 2004-08-03 Takeshi Imanishi Bicyclonucleoside and oligonucleotide analogue
US6028189A (en) 1997-03-20 2000-02-22 University Of Washington Solvent for oligonucleotide synthesis and methods of use
US6419883B1 (en) 1998-01-16 2002-07-16 University Of Washington Chemical synthesis using solvent microdroplets
AU751956B2 (en) 1997-03-20 2002-09-05 University Of Washington Solvent for biopolymer synthesis, solvent microdroplets and methods of use
CA2283635A1 (en) 1997-03-21 1998-10-01 Stratagene Polymerase enhancing factor (pef) extracts, pef protein complexes, isolated pef protein, and methods for purifying and identifying
US5922593A (en) 1997-05-23 1999-07-13 Becton, Dickinson And Company Microbiological test panel and method therefor
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
EP0991930B1 (en) 1997-06-26 2004-06-16 Perseptive Biosystems, Inc. High density sample holder for analysis of biological samples
GB9714716D0 (en) 1997-07-11 1997-09-17 Brax Genomics Ltd Characterising nucleic acids
US5989872A (en) 1997-08-12 1999-11-23 Clontech Laboratories, Inc. Methods and compositions for transferring DNA sequence information among vectors
US6027898A (en) 1997-08-18 2000-02-22 Transgenomic, Inc. Chromatographic method for mutation detection using mutation site specifically acting enzymes and chemicals
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
US6136568A (en) 1997-09-15 2000-10-24 Hiatt; Andrew C. De novo polynucleotide synthesis using rolling templates
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
DK1538206T3 (en) 1997-09-16 2010-07-12 Centocor Ortho Biotech Inc Method for complete chemical synthesis and assembly of genes and genomes
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
US5976842A (en) 1997-10-30 1999-11-02 Clontech Laboratories, Inc. Methods and compositions for use in high fidelity polymerase chain reaction
US8182991B1 (en) 1997-11-26 2012-05-22 Third Wave Technologies, Inc. FEN-1 endonucleases, mixtures and cleavage methods
US6408308B1 (en) 1998-01-29 2002-06-18 Incyte Pharmaceuticals, Inc. System and method for generating, analyzing and storing normalized expression datasets from raw expression datasets derived from microarray includes nucleic acid probe sequences
US6287776B1 (en) 1998-02-02 2001-09-11 Signature Bioscience, Inc. Method for detecting and classifying nucleic acid hybridization
US6251588B1 (en) 1998-02-10 2001-06-26 Agilent Technologies, Inc. Method for evaluating oligonucleotide probe sequences
EP1054726B1 (en) 1998-02-11 2003-07-30 University of Houston, Office of Technology Transfer Apparatus for chemical and biochemical reactions using photo-generated reagents
US20040035690A1 (en) * 1998-02-11 2004-02-26 The Regents Of The University Of Michigan Method and apparatus for chemical and biochemical reactions using photo-generated reagents
EP1066506B1 (en) 1998-02-23 2010-04-21 Wisconsin Alumni Research Foundation Method and apparatus for synthesis of arrays of dna probes
JP4493844B2 (en) 1998-03-25 2010-06-30 ランデグレン、ウルフ Rolling circle replication of padlock probe
US6284497B1 (en) 1998-04-09 2001-09-04 Trustees Of Boston University Nucleic acid arrays and methods of synthesis
CA2325013A1 (en) 1998-04-13 1999-10-21 Isis Pharmaceuticals Inc. Identification of genetic targets for modulation by oligonucleotides and generation of oligonucleotides for gene modulation
US7321828B2 (en) 1998-04-13 2008-01-22 Isis Pharmaceuticals, Inc. System of components for preparing oligonucleotides
US6376285B1 (en) 1998-05-28 2002-04-23 Texas Instruments Incorporated Annealed porous silicon with epitaxial layer for SOI
US6274725B1 (en) 1998-06-02 2001-08-14 Isis Pharmaceuticals, Inc. Activators for oligonucleotide synthesis
US6130045A (en) 1998-06-11 2000-10-10 Clontech Laboratories, Inc. Thermostable polymerase
US6251595B1 (en) 1998-06-18 2001-06-26 Agilent Technologies, Inc. Methods and devices for carrying out chemical reactions
DE69928995T2 (en) 1998-06-22 2006-09-07 Affymetrix, Inc., Santa Clara Reagent and method for solid phase synthesis
US6218118B1 (en) 1998-07-09 2001-04-17 Agilent Technologies, Inc. Method and mixture reagents for analyzing the nucleotide sequence of nucleic acids by mass spectrometry
US7399844B2 (en) 1998-07-09 2008-07-15 Agilent Technologies, Inc. Method and reagents for analyzing the nucleotide sequence of nucleic acids
US6787308B2 (en) 1998-07-30 2004-09-07 Solexa Ltd. Arrayed biomolecules and their use in sequencing
US20030022207A1 (en) 1998-10-16 2003-01-30 Solexa, Ltd. Arrayed polynucleotides and their use in genome analysis
US6222030B1 (en) 1998-08-03 2001-04-24 Agilent Technologies, Inc. Solid phase synthesis of oligonucleotides using carbonate protecting groups and alpha-effect nucleophile deprotection
US6991922B2 (en) 1998-08-12 2006-01-31 Proteus S.A. Process for in vitro creation of recombinant polynucleotide sequences by oriented ligation
US6951719B1 (en) 1999-08-11 2005-10-04 Proteus S.A. Process for obtaining recombined nucleotide sequences in vitro, libraries of sequences and sequences thus obtained
US6107038A (en) 1998-08-14 2000-08-22 Agilent Technologies Inc. Method of binding a plurality of chemicals on a substrate by electrophoretic self-assembly
CA2341896A1 (en) 1998-08-28 2000-03-09 Febit Ferrarius Biotechnology Gmbh Support for a method for determining an analyte and a method for producing the support
US6258454B1 (en) 1998-09-01 2001-07-10 Agilent Technologies Inc. Functionalization of substrate surfaces with silane mixtures
US6461812B2 (en) 1998-09-09 2002-10-08 Agilent Technologies, Inc. Method and multiple reservoir apparatus for fabrication of biomolecular arrays
US6458583B1 (en) 1998-09-09 2002-10-01 Agilent Technologies, Inc. Method and apparatus for making nucleic acid arrays
WO2000015779A2 (en) 1998-09-15 2000-03-23 Yale University Molecular cloning using rolling circle amplification
AR021833A1 (en) 1998-09-30 2002-08-07 Applied Research Systems METHODS OF AMPLIFICATION AND SEQUENCING OF NUCLEIC ACID
US6399516B1 (en) 1998-10-30 2002-06-04 Massachusetts Institute Of Technology Plasma etch techniques for fabricating silicon structures from a substrate
US6309828B1 (en) 1998-11-18 2001-10-30 Agilent Technologies, Inc. Method and apparatus for fabricating replicate arrays of nucleic acid molecules
EP1141413A2 (en) 1998-12-31 2001-10-10 Gene Logic Inc. Assay device comprising mixed probes
GB9900298D0 (en) 1999-01-07 1999-02-24 Medical Res Council Optical sorting method
US6376246B1 (en) 1999-02-05 2002-04-23 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
AU2415200A (en) 1999-01-18 2000-08-01 Maxygen, Inc. Methods of populating data structures for use in evolutionary simulations
EP1108783A3 (en) 1999-01-19 2001-09-05 Maxygen, Inc. Oligonucleotide-mediated nucleic acid recombination
US20070065838A1 (en) 1999-01-19 2007-03-22 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
US6251685B1 (en) 1999-02-18 2001-06-26 Agilent Technologies, Inc. Readout method for molecular biological electronically addressable arrays
AU767606B2 (en) 1999-02-19 2003-11-20 Synthetic Genomics, Inc. Method for producing polymers
EP2177627B1 (en) 1999-02-23 2012-05-02 Caliper Life Sciences, Inc. Manipulation of microparticles in microfluidic systems
US20030186226A1 (en) 1999-03-08 2003-10-02 Brennan Thomas M. Methods and compositions for economically synthesizing and assembling long DNA sequences
US6824866B1 (en) 1999-04-08 2004-11-30 Affymetrix, Inc. Porous silica substrates for polymer synthesis and assays
US6284465B1 (en) 1999-04-15 2001-09-04 Agilent Technologies, Inc. Apparatus, systems and method for locating nucleic acids bound to surfaces
US6469156B1 (en) 1999-04-20 2002-10-22 The United States Of America As Represented By The Department Of Health And Human Services Rapid and sensitive method for detecting histoplasma capsulatum
US6221653B1 (en) 1999-04-27 2001-04-24 Agilent Technologies, Inc. Method of performing array-based hybridization assays using thermal inkjet deposition of sample fluids
US6773676B2 (en) 1999-04-27 2004-08-10 Agilent Technologies, Inc. Devices for performing array hybridization assays and methods of using the same
US6518056B2 (en) 1999-04-27 2003-02-11 Agilent Technologies Inc. Apparatus, systems and method for assaying biological materials using an annular format
US6300137B1 (en) 1999-04-28 2001-10-09 Agilent Technologies Inc. Method for synthesizing a specific, surface-bound polymer uniformly over an element of a molecular array
US7276336B1 (en) 1999-07-22 2007-10-02 Agilent Technologies, Inc. Methods of fabricating an addressable array of biopolymer probes
US6242266B1 (en) 1999-04-30 2001-06-05 Agilent Technologies Inc. Preparation of biopolymer arrays
US6323043B1 (en) 1999-04-30 2001-11-27 Agilent Technologies, Inc. Fabricating biopolymer arrays
WO2000066190A1 (en) 1999-05-01 2000-11-09 Qinetiq Limited Derivatized porous silicon
WO2000066259A1 (en) * 1999-05-05 2000-11-09 Ut-Battelle, Llc Method and apparatus for combinatorial chemistry
CA2395874C (en) 1999-05-06 2011-09-20 Frank Carter Bancroft Dna-based steganography
US7056661B2 (en) 1999-05-19 2006-06-06 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
WO2000071559A1 (en) 1999-05-24 2000-11-30 Invitrogen Corporation Method for deblocking of labeled oligonucleotides
US6472147B1 (en) 1999-05-25 2002-10-29 The Scripps Research Institute Methods for display of heterodimeric proteins on filamentous phage using pVII and pIX, compositions, vectors and combinatorial libraries
US6132997A (en) 1999-05-28 2000-10-17 Agilent Technologies Method for linear mRNA amplification
US6815218B1 (en) 1999-06-09 2004-11-09 Massachusetts Institute Of Technology Methods for manufacturing bioelectronic devices
DE19928410C2 (en) 1999-06-22 2002-11-28 Agilent Technologies Inc Device housing with a device for operating a laboratory microchip
US6709852B1 (en) 1999-06-22 2004-03-23 Invitrogen Corporation Rapid growing microorganisms for biotechnology applications
AU5882000A (en) 1999-06-22 2001-01-09 Invitrogen Corporation Improved primers and methods for the detection and discrimination of nucleic acids
US6399394B1 (en) 1999-06-30 2002-06-04 Agilent Technologies, Inc. Testing multiple fluid samples with multiple biopolymer arrays
US6465183B2 (en) 1999-07-01 2002-10-15 Agilent Technologies, Inc. Multidentate arrays
US6461816B1 (en) 1999-07-09 2002-10-08 Agilent Technologies, Inc. Methods for controlling cross-hybridization in analysis of nucleic acid sequences
US7504213B2 (en) 1999-07-09 2009-03-17 Agilent Technologies, Inc. Methods and apparatus for preparing arrays comprising features having degenerate biopolymers
US6306599B1 (en) 1999-07-16 2001-10-23 Agilent Technologies Inc. Biopolymer arrays and their fabrication
US6346423B1 (en) 1999-07-16 2002-02-12 Agilent Technologies, Inc. Methods and compositions for producing biopolymeric arrays
US6180351B1 (en) 1999-07-22 2001-01-30 Agilent Technologies Inc. Chemical array fabrication with identifier
US6201112B1 (en) 1999-07-22 2001-03-13 Agilent Technologies Inc. Method for 3′ end-labeling ribonucleic acids
WO2001012862A2 (en) 1999-08-18 2001-02-22 Illumina, Inc. Compositions and methods for preparing oligonucleotide solutions
US6262490B1 (en) 1999-11-05 2001-07-17 Advanced Semiconductor Engineering, Inc. Substrate strip for use in packaging semiconductor chips
US6743585B2 (en) 1999-09-16 2004-06-01 Agilent Technologies, Inc. Methods for preparing conjugates
US7211390B2 (en) 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6319674B1 (en) 1999-09-16 2001-11-20 Agilent Technologies, Inc. Methods for attaching substances to surfaces
US7078167B2 (en) 1999-09-17 2006-07-18 Agilent Technologies, Inc. Arrays having background features and methods for using the same
US7122303B2 (en) 1999-09-17 2006-10-17 Agilent Technologies, Inc. Arrays comprising background features that provide for a measure of a non-specific binding and methods for using the same
AU7537200A (en) 1999-09-29 2001-04-30 Solexa Ltd. Polynucleotide sequencing
DE19947495C2 (en) 1999-10-01 2003-05-28 Agilent Technologies Inc Microfluidic microchip
EP1235932A2 (en) 1999-10-08 2002-09-04 Protogene Laboratories, Inc. Method and apparatus for performing large numbers of reactions using array assembly
US6232072B1 (en) 1999-10-15 2001-05-15 Agilent Technologies, Inc. Biopolymer array inspection
US6451998B1 (en) 1999-10-18 2002-09-17 Agilent Technologies, Inc. Capping and de-capping during oligonucleotide synthesis
US6171797B1 (en) 1999-10-20 2001-01-09 Agilent Technologies Inc. Methods of making polymeric arrays
US6387636B1 (en) 1999-10-22 2002-05-14 Agilent Technologies, Inc. Method of shielding biosynthesis reactions from the ambient environment on an array
US7115423B1 (en) 1999-10-22 2006-10-03 Agilent Technologies, Inc. Fluidic structures within an array package
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6406849B1 (en) 1999-10-29 2002-06-18 Agilent Technologies, Inc. Interrogating multi-featured arrays
US6689319B1 (en) 1999-10-29 2004-02-10 Agilent Technologies, Ind. Apparatus for deposition and inspection of chemical and biological fluids
US8268605B2 (en) 1999-10-29 2012-09-18 Agilent Technologies, Inc. Compositions and methods utilizing DNA polymerases
US20010055761A1 (en) 1999-10-29 2001-12-27 Agilent Technologies Small scale dna synthesis using polymeric solid support with functionalized regions
US6329210B1 (en) 1999-10-29 2001-12-11 Agilent Technologies, Inc. Method and apparatus for high volume polymer synthesis
US6428957B1 (en) 1999-11-08 2002-08-06 Agilent Technologies, Inc. Systems tools and methods of assaying biological materials using spatially-addressable arrays
US6440669B1 (en) 1999-11-10 2002-08-27 Agilent Technologies, Inc. Methods for applying small volumes of reagents
US7041445B2 (en) 1999-11-15 2006-05-09 Clontech Laboratories, Inc. Long oligonucleotide arrays
US6446642B1 (en) 1999-11-22 2002-09-10 Agilent Technologies, Inc. Method and apparatus to clean an inkjet reagent deposition device
US6582938B1 (en) 2001-05-11 2003-06-24 Affymetrix, Inc. Amplification of nucleic acids
US6800439B1 (en) 2000-01-06 2004-10-05 Affymetrix, Inc. Methods for improved array preparation
AU2788101A (en) 2000-01-11 2001-07-24 Maxygen, Inc. Integrated systems and methods for diversity generation and screening
EP1118661A1 (en) 2000-01-13 2001-07-25 Het Nederlands Kanker Instituut T cell receptor libraries
EP1252513A4 (en) 2000-01-25 2007-07-18 Affymetrix Inc Method, system and computer software for providing a genomic web portal
US6587579B1 (en) 2000-01-26 2003-07-01 Agilent Technologies Inc. Feature quality in array fabrication
US7198939B2 (en) 2000-01-28 2007-04-03 Agilent Technologies, Inc. Apparatus for interrogating an addressable array
US6406851B1 (en) 2000-01-28 2002-06-18 Agilent Technologies, Inc. Method for coating a substrate quickly and uniformly with a small volume of fluid
US6458526B1 (en) 2000-01-28 2002-10-01 Agilent Technologies, Inc. Method and apparatus to inhibit bubble formation in a fluid
US6235483B1 (en) 2000-01-31 2001-05-22 Agilent Technologies, Inc. Methods and kits for indirect labeling of nucleic acids
GB0002389D0 (en) 2000-02-02 2000-03-22 Solexa Ltd Molecular arrays
US6403314B1 (en) 2000-02-04 2002-06-11 Agilent Technologies, Inc. Computational method and system for predicting fragmented hybridization and for identifying potential cross-hybridization
US6833450B1 (en) 2000-03-17 2004-12-21 Affymetrix, Inc. Phosphite ester oxidation in nucleic acid array preparation
US6365355B1 (en) 2000-03-28 2002-04-02 The Regents Of The University Of California Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches
US20020025561A1 (en) 2000-04-17 2002-02-28 Hodgson Clague Pitman Vectors for gene-self-assembly
US7776021B2 (en) 2000-04-28 2010-08-17 The Charles Stark Draper Laboratory Micromachined bilayer unit for filtration of small molecules
US6716634B1 (en) 2000-05-31 2004-04-06 Agilent Technologies, Inc. Increasing ionization efficiency in mass spectrometry
US7163660B2 (en) 2000-05-31 2007-01-16 Infineon Technologies Ag Arrangement for taking up liquid analytes
EP1287010A1 (en) 2000-06-02 2003-03-05 Blue Heron Biotechnology, Inc. Methods for improving the sequence fidelity of synthetic double-stranded oligonucleotides
US7399599B2 (en) 2000-07-10 2008-07-15 Vertex Pharmaceuticals (San Diego) Llc Ion channel assay methods
CA2416952A1 (en) 2000-07-27 2002-02-07 The Australian National University Combinatorial probes and uses therefor
US7135565B2 (en) 2000-07-28 2006-11-14 Agilent Technologies, Inc. Synthesis of polynucleotides using combined oxidation/deprotection chemistry
US6890760B1 (en) 2000-07-31 2005-05-10 Agilent Technologies, Inc. Array fabrication
US6613893B1 (en) 2000-07-31 2003-09-02 Agilent Technologies Inc. Array fabrication
US6599693B1 (en) 2000-07-31 2003-07-29 Agilent Technologies Inc. Array fabrication
US7205400B2 (en) 2000-07-31 2007-04-17 Agilent Technologies, Inc. Array fabrication
EP1180548B1 (en) 2000-07-31 2005-11-02 Agilent Technologies, Inc. (a Delaware corporation) Array based methods for synthesizing nucleic acid mixtures
GB0018876D0 (en) 2000-08-01 2000-09-20 Applied Research Systems Method of producing polypeptides
CN1468313A (en) 2000-08-24 2004-01-14 �����ɷ� Novel constructs and their use in metabolic pathway engineering
AU2001291540A1 (en) 2000-09-08 2002-03-22 University Technologies International, Inc. Linker phosphoramidites for oligonucleotide synthesis
US6966945B1 (en) 2000-09-20 2005-11-22 Goodrich Corporation Inorganic matrix compositions, composites and process of making the same
US6897023B2 (en) 2000-09-27 2005-05-24 The Molecular Sciences Institute, Inc. Method for determining relative abundance of nucleic acid sequences
NO20004869D0 (en) 2000-09-28 2000-09-28 Torbjoern Rognes Method for fast optimal local sequence alignment using parallel processing
US7097809B2 (en) 2000-10-03 2006-08-29 California Institute Of Technology Combinatorial synthesis system
JP4361271B2 (en) 2000-10-10 2009-11-11 バイオトローブ・インコーポレイテツド Instruments for assay, synthesis, and storage, and methods of making, using, and operating the same
DE10051396A1 (en) 2000-10-17 2002-04-18 Febit Ferrarius Biotech Gmbh An integrated synthesis and identification of an analyte, comprises particles immobilized at a carrier to be coupled to receptors in a structured pattern to give receptor arrays for biochemical reactions
US6693187B1 (en) 2000-10-17 2004-02-17 Lievre Cornu Llc Phosphinoamidite carboxlates and analogs thereof in the synthesis of oligonucleotides having reduced internucleotide charge
AU7680200A (en) 2000-10-18 2002-04-29 Ultra Proizv Elektronskih Napr System for payment data exchange and payment terminal device used therein
DE60125312T2 (en) 2000-10-26 2007-06-06 Agilent Technologies, Inc. (n.d. Ges. d. Staates Delaware), Santa Clara microarray
US6905816B2 (en) 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US20020155439A1 (en) 2000-12-04 2002-10-24 Ana Rodriguez Method for generating a library of mutant oligonucleotides using the linear cyclic amplification reaction
US6768005B2 (en) 2000-12-20 2004-07-27 Avecia Limited Process
DE10060433B4 (en) 2000-12-05 2006-05-11 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Method for producing a fluid component, fluid component and analysis device
US20040253242A1 (en) 2000-12-05 2004-12-16 Bowdish Katherine S. Rationally designed antibodies
CA2437040C (en) 2000-12-05 2011-01-25 Avecia Limited Process for the preparation of phosphorothioate oligonucleotides
US6660475B2 (en) 2000-12-15 2003-12-09 New England Biolabs, Inc. Use of site-specific nicking endonucleases to create single-stranded regions and applications thereof
AUPR259301A0 (en) 2001-01-18 2001-02-15 Polymerat Pty Ltd Polymers having co-continuous architecture
DK1385950T3 (en) 2001-01-19 2008-11-03 Centocor Inc Computer controlled assembly of a polynucleotide encoding a target polypeptide
US6958217B2 (en) 2001-01-24 2005-10-25 Genomic Expression Aps Single-stranded polynucleotide tags
US7166258B2 (en) 2001-01-31 2007-01-23 Agilent Technologies, Inc. Automation-optimized microarray package
US7027930B2 (en) 2001-01-31 2006-04-11 Agilent Technologies, Inc. Reading chemical arrays
US6879915B2 (en) 2001-01-31 2005-04-12 Agilent Technologies, Inc. Chemical array fabrication and use
US20020164824A1 (en) 2001-02-16 2002-11-07 Jianming Xiao Method and apparatus based on bundled capillaries for high throughput screening
WO2002072864A2 (en) 2001-03-08 2002-09-19 Applera Corporation Reagents for oligonucleotide cleavage and deprotection
US6660338B1 (en) 2001-03-08 2003-12-09 Agilent Technologies, Inc. Functionalization of substrate surfaces with silane mixtures
US7211654B2 (en) * 2001-03-14 2007-05-01 Regents Of The University Of Michigan Linkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports
ATE549415T1 (en) 2001-03-16 2012-03-15 Kalim Mir ARRAYS AND METHODS OF USE THEREOF
US6610978B2 (en) 2001-03-27 2003-08-26 Agilent Technologies, Inc. Integrated sample preparation, separation and introduction microdevice for inductively coupled plasma mass spectrometry
EP1392504A4 (en) 2001-04-02 2008-03-05 Agilent Technologies Inc Sensor surfaces for detecting analytes
US20030022240A1 (en) 2001-04-17 2003-01-30 Peizhi Luo Generation and affinity maturation of antibody library in silico
US6943036B2 (en) 2001-04-30 2005-09-13 Agilent Technologies, Inc. Error detection in chemical array fabrication
AU2002340641A1 (en) 2001-05-03 2002-11-18 Sigma-Genosys, Ltd. Methods for assembling protein microarrays
WO2002095073A1 (en) 2001-05-18 2002-11-28 Wisconsin Alumni Research Foundation Method for the synthesis of dna sequences
US20040175710A1 (en) 2001-05-22 2004-09-09 Haushalter Robert C. Method for in situ, on-chip chemical synthesis
US6880576B2 (en) 2001-06-07 2005-04-19 Nanostream, Inc. Microfluidic devices for methods development
US6649348B2 (en) 2001-06-29 2003-11-18 Agilent Technologies Inc. Methods for manufacturing arrays
US6613523B2 (en) 2001-06-29 2003-09-02 Agilent Technologies, Inc. Method of DNA sequencing using cleavable tags
US20040161741A1 (en) 2001-06-30 2004-08-19 Elazar Rabani Novel compositions and processes for analyte detection, quantification and amplification
US6989267B2 (en) 2001-07-02 2006-01-24 Agilent Technologies, Inc. Methods of making microarrays with substrate surfaces having covalently bound polyelectrolyte films
US6753145B2 (en) 2001-07-05 2004-06-22 Agilent Technologies, Inc. Buffer composition and method for hybridization of microarrays on adsorbed polymer siliceous surfaces
US7314599B2 (en) 2001-07-17 2008-01-01 Agilent Technologies, Inc. Paek embossing and adhesion for microfluidic devices
US6702256B2 (en) 2001-07-17 2004-03-09 Agilent Technologies, Inc. Flow-switching microdevice
US7128876B2 (en) 2001-07-17 2006-10-31 Agilent Technologies, Inc. Microdevice and method for component separation in a fluid
US20030108903A1 (en) 2001-07-19 2003-06-12 Liman Wang Multiple word DNA computing on surfaces
WO2003025118A2 (en) 2001-07-26 2003-03-27 Stratagene Multi-site mutagenesis
US20030130827A1 (en) 2001-08-10 2003-07-10 Joerg Bentzien Protein design automation for protein libraries
US6682702B2 (en) 2001-08-24 2004-01-27 Agilent Technologies, Inc. Apparatus and method for simultaneously conducting multiple chemical reactions
US7371580B2 (en) 2001-08-24 2008-05-13 Agilent Technologies, Inc. Use of unstructured nucleic acids in assaying nucleic acid molecules
JP2003101204A (en) 2001-09-25 2003-04-04 Nec Kansai Ltd Wiring substrate, method of manufacturing the same, and electronic component
US6902921B2 (en) 2001-10-30 2005-06-07 454 Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US20050124022A1 (en) 2001-10-30 2005-06-09 Maithreyan Srinivasan Novel sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US6852850B2 (en) 2001-10-31 2005-02-08 Agilent Technologies, Inc. Use of ionic liquids for fabrication of polynucleotide arrays
US6858720B2 (en) 2001-10-31 2005-02-22 Agilent Technologies, Inc. Method of synthesizing polynucleotides using ionic liquids
US7524950B2 (en) 2001-10-31 2009-04-28 Agilent Technologies, Inc. Uses of cationic salts for polynucleotide synthesis
US20030087298A1 (en) 2001-11-02 2003-05-08 Roland Green Detection of hybridization on oligonucleotide microarray through covalently labeling microarray probe
US7195872B2 (en) 2001-11-09 2007-03-27 3D Biosurfaces, Inc. High surface area substrates for microarrays and methods to make same
US7482118B2 (en) 2001-11-15 2009-01-27 Third Wave Technologies, Inc. Endonuclease-substrate complexes
DE50114507D1 (en) 2001-11-22 2009-01-02 Sloning Biotechnology Gmbh Nucleic acid linkers and their use in gene synthesis
US20030099952A1 (en) 2001-11-26 2003-05-29 Roland Green Microarrays with visible pattern detection
US6927029B2 (en) 2001-12-03 2005-08-09 Agilent Technologies, Inc. Surface with tethered polymeric species for binding biomolecules
US20030143605A1 (en) 2001-12-03 2003-07-31 Si Lok Methods for the selection and cloning of nucleic acid molecules free of unwanted nucleotide sequence alterations
AU2002357249A1 (en) 2001-12-13 2003-07-09 Blue Heron Biotechnology, Inc. Methods for removal of double-stranded oligonucleotides containing sequence errors using mismatch recognition proteins
US6838888B2 (en) 2001-12-13 2005-01-04 Agilent Technologies, Inc. Flow cell humidity sensor system
US7932070B2 (en) 2001-12-21 2011-04-26 Agilent Technologies, Inc. High fidelity DNA polymerase compositions and uses therefor
US6790620B2 (en) 2001-12-24 2004-09-14 Agilent Technologies, Inc. Small volume chambers
US6846454B2 (en) 2001-12-24 2005-01-25 Agilent Technologies, Inc. Fluid exit in reaction chambers
US7282183B2 (en) 2001-12-24 2007-10-16 Agilent Technologies, Inc. Atmospheric control in reaction chambers
US7025324B1 (en) 2002-01-04 2006-04-11 Massachusetts Institute Of Technology Gating apparatus and method of manufacture
AU2003207448A1 (en) * 2002-01-04 2003-07-24 Board Of Regents, The University Of Texas System Proofreading, error deletion, and ligation method for synthesis of high-fidelity polynucleotide sequences
US20040009498A1 (en) 2002-01-14 2004-01-15 Diversa Corporation Chimeric antigen binding molecules and methods for making and using them
CA2473434A1 (en) 2002-01-14 2003-07-24 Diversa Corporation Methods for making polynucleotides and purifying double-stranded polynucleotides
US6673552B2 (en) 2002-01-14 2004-01-06 Diversa Corporation Methods for purifying annealed double-stranded oligonucleotides lacking base pair mismatches or nucleotide gaps
US7141368B2 (en) 2002-01-30 2006-11-28 Agilent Technologies, Inc. Multi-directional deposition in array fabrication
US7037659B2 (en) 2002-01-31 2006-05-02 Nimblegen Systems Inc. Apparatus for constructing DNA probes having a prismatic and kaleidoscopic light homogenizer
US7157229B2 (en) 2002-01-31 2007-01-02 Nimblegen Systems, Inc. Prepatterned substrate for optical synthesis of DNA probes
US7422851B2 (en) 2002-01-31 2008-09-09 Nimblegen Systems, Inc. Correction for illumination non-uniformity during the synthesis of arrays of oligomers
US20040126757A1 (en) 2002-01-31 2004-07-01 Francesco Cerrina Method and apparatus for synthesis of arrays of DNA probes
US7083975B2 (en) 2002-02-01 2006-08-01 Roland Green Microarray synthesis instrument and method
US20030148291A1 (en) 2002-02-05 2003-08-07 Karla Robotti Method of immobilizing biologically active molecules for assay purposes in a microfluidic format
US6728129B2 (en) 2002-02-19 2004-04-27 The Regents Of The University Of California Multistate triple-decker dyads in three distinct architectures for information storage applications
US6958119B2 (en) 2002-02-26 2005-10-25 Agilent Technologies, Inc. Mobile phase gradient generation microfluidic device
US6770892B2 (en) 2002-02-28 2004-08-03 Agilent Technologies, Inc. Method and system for automated focus-distance determination for molecular array scanners
US6929951B2 (en) 2002-02-28 2005-08-16 Agilent Technologies, Inc. Method and system for molecular array scanner calibration
US6914229B2 (en) 2002-02-28 2005-07-05 Agilent Technologies, Inc. Signal offset for prevention of data clipping in a molecular array scanner
US20050084907A1 (en) 2002-03-01 2005-04-21 Maxygen, Inc. Methods, systems, and software for identifying functional biomolecules
US6919181B2 (en) 2002-03-25 2005-07-19 Agilent Technologies, Inc. Methods for generating ligand arrays
JP2005521419A (en) 2002-04-01 2005-07-21 ブルー ヘロン バイオテクノロジー インコーポレイテッド Solid phase method for polynucleotide production
EP1350853A1 (en) 2002-04-05 2003-10-08 ID-Lelystad, Instituut voor Dierhouderij en Diergezondheid B.V. Detection of polymorphisms
US6773888B2 (en) 2002-04-08 2004-08-10 Affymetrix, Inc. Photoactivatable silane compounds and methods for their synthesis and use
ATE401422T1 (en) 2002-04-22 2008-08-15 Genencor Int METHOD FOR GENERATING A LIBRARY OF BACTERIAL CLONES WITH DIFFERENT GENE EXPRESSION LEVELS
GB0209539D0 (en) 2002-04-26 2002-06-05 Avecia Ltd Monomer Polymer and process
US7125523B2 (en) 2002-04-29 2006-10-24 Agilent Technologies, Inc. Holders for arrays
US6946285B2 (en) 2002-04-29 2005-09-20 Agilent Technologies, Inc. Arrays with elongated features
US7094537B2 (en) 2002-04-30 2006-08-22 Agilent Technologies, Inc. Micro arrays with structured and unstructured probes
US6621076B1 (en) 2002-04-30 2003-09-16 Agilent Technologies, Inc. Flexible assembly for transporting sample fluids into a mass spectrometer
WO2003093504A1 (en) 2002-05-06 2003-11-13 Noxxon Pharma Ag Method for amplifying nucleic acids
US20030211478A1 (en) 2002-05-08 2003-11-13 Gentel Corporation Transcription factor profiling on a solid surface
US7221785B2 (en) 2002-05-21 2007-05-22 Agilent Technologies, Inc. Method and system for measuring a molecular array background signal from a continuous background region of specified size
US7273730B2 (en) 2002-05-24 2007-09-25 Invitrogen Corporation Nested PCR employing degradable primers
EP1546378B1 (en) 2002-05-24 2011-06-22 Roche NimbleGen, Inc. Microarrays and method for running hybridization reaction for multiple samples on a single microarray
US7537936B2 (en) 2002-05-31 2009-05-26 Agilent Technologies, Inc. Method of testing multiple fluid samples with multiple biopolymer arrays
US6789965B2 (en) 2002-05-31 2004-09-14 Agilent Technologies, Inc. Dot printer with off-axis loading
US7078505B2 (en) 2002-06-06 2006-07-18 Agilent Technologies, Inc. Manufacture of arrays with varying deposition parameters
US6939673B2 (en) 2002-06-14 2005-09-06 Agilent Technologies, Inc. Manufacture of arrays with reduced error impact
US7919308B2 (en) 2002-06-14 2011-04-05 Agilent Technologies, Inc. Form in place gaskets for assays
US7371348B2 (en) 2002-06-14 2008-05-13 Agilent Technologies Multiple array format
US7351379B2 (en) 2002-06-14 2008-04-01 Agilent Technologies, Inc. Fluid containment structure
US20070275411A1 (en) * 2006-05-25 2007-11-29 Mcgall Glenn H Silane mixtures
US7220573B2 (en) 2002-06-21 2007-05-22 Agilent Technologies, Inc. Array assay devices and methods of using the same
US6713262B2 (en) 2002-06-25 2004-03-30 Agilent Technologies, Inc. Methods and compositions for high throughput identification of protein/nucleic acid binding pairs
US7894998B2 (en) 2002-06-26 2011-02-22 Agilent Technologies, Inc. Method for identifying suitable nucleic acid probe sequences for use in nucleic acid arrays
US7202358B2 (en) 2002-07-25 2007-04-10 Agilent Technologies, Inc. Methods for producing ligand arrays
US7452712B2 (en) 2002-07-30 2008-11-18 Applied Biosystems Inc. Sample block apparatus and method of maintaining a microcard on a sample block
US7101508B2 (en) 2002-07-31 2006-09-05 Agilent Technologies, Inc. Chemical array fabrication errors
US6835938B2 (en) 2002-07-31 2004-12-28 Agilent Technologies, Inc. Biopolymer array substrate thickness dependent automated focus-distance determination method for biopolymer array scanners
US7153689B2 (en) 2002-08-01 2006-12-26 Agilent Technologies, Inc. Apparatus and methods for cleaning and priming droplet dispensing devices
US8946387B2 (en) 2002-08-14 2015-02-03 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US7205128B2 (en) 2002-08-16 2007-04-17 Agilent Technologies, Inc. Method for synthesis of the second strand of cDNA
US7563600B2 (en) 2002-09-12 2009-07-21 Combimatrix Corporation Microarray synthesis and assembly of gene-length polynucleotides
US20040166567A1 (en) 2002-09-26 2004-08-26 Santi Daniel V Synthetic genes
WO2004029586A1 (en) 2002-09-27 2004-04-08 Nimblegen Systems, Inc. Microarray with hydrophobic barriers
AU2003282885A1 (en) 2002-09-30 2004-04-23 Nimblegen Systems, Inc. Parallel loading of arrays
GB2409454B (en) 2002-10-01 2007-05-23 Nimblegen Systems Inc Microarrays having multiple oligonucleotides in single array features
US7129075B2 (en) 2002-10-18 2006-10-31 Transgenomic, Inc. Isolated CEL II endonuclease
US8283148B2 (en) 2002-10-25 2012-10-09 Agilent Technologies, Inc. DNA polymerase compositions for quantitative PCR and methods thereof
JP2006503586A (en) * 2002-10-28 2006-02-02 ゼオトロン コーポレイション Array oligomer synthesis and use
US7422911B2 (en) 2002-10-31 2008-09-09 Agilent Technologies, Inc. Composite flexible array substrate having flexible support
US7629120B2 (en) 2002-10-31 2009-12-08 Rice University Method for assembling PCR fragments of DNA
US7364896B2 (en) 2002-10-31 2008-04-29 Agilent Technologies, Inc. Test strips including flexible array substrates and method of hybridization
US6976384B2 (en) 2002-10-31 2005-12-20 Nanostream, Inc. Parallel detection chromatography systems
US7402279B2 (en) 2002-10-31 2008-07-22 Agilent Technologies, Inc. Device with integrated microfluidic and electronic components
US7390457B2 (en) 2002-10-31 2008-06-24 Agilent Technologies, Inc. Integrated microfluidic array device
US20040086892A1 (en) 2002-11-06 2004-05-06 Crothers Donald M. Universal tag assay
US7029854B2 (en) 2002-11-22 2006-04-18 Agilent Technologies, Inc. Methods designing multiple mRNA transcript nucleic acid probe sequences for use in nucleic acid arrays
US7062385B2 (en) 2002-11-25 2006-06-13 Tufts University Intelligent electro-optical nucleic acid-based sensor array and method for detecting volatile compounds in ambient air
RU2377253C2 (en) 2002-12-02 2009-12-27 Амген Фремонт,Инк. Antibodies specific to tumour necrosis factor, and application thereof
US20040110133A1 (en) 2002-12-06 2004-06-10 Affymetrix, Inc. Functionated photoacid generator for biological microarray synthesis
US7932025B2 (en) 2002-12-10 2011-04-26 Massachusetts Institute Of Technology Methods for high fidelity production of long nucleic acid molecules with error control
US7879580B2 (en) 2002-12-10 2011-02-01 Massachusetts Institute Of Technology Methods for high fidelity production of long nucleic acid molecules
US20060076482A1 (en) 2002-12-13 2006-04-13 Hobbs Steven E High throughput systems and methods for parallel sample analysis
US6987263B2 (en) 2002-12-13 2006-01-17 Nanostream, Inc. High throughput systems and methods for parallel sample analysis
US7247337B1 (en) 2002-12-16 2007-07-24 Agilent Technologies, Inc. Method and apparatus for microarray fabrication
US20040191810A1 (en) 2002-12-17 2004-09-30 Affymetrix, Inc. Immersed microarrays in conical wells
GB0229443D0 (en) 2002-12-18 2003-01-22 Avecia Ltd Process
US7960157B2 (en) 2002-12-20 2011-06-14 Agilent Technologies, Inc. DNA polymerase blends and uses thereof
WO2004058391A2 (en) 2002-12-23 2004-07-15 Febit Biotech Gmbh Photoactivatable two-stage protective groups for the synthesis of biopolymers
DE10260805A1 (en) 2002-12-23 2004-07-22 Geneart Gmbh Method and device for optimizing a nucleotide sequence for expression of a protein
ES2246748T1 (en) * 2002-12-23 2006-03-01 Agilent Technologies, Inc. COMPARATIVE GENOMIC HYBRIDIZATION TESTS THAT USE IMMOBILIZED OLIGONUCLEOTIDIC CHARACTERISTICS AND COMPOSITIONS TO PUT THEM IN PRACTICE.
CA2508660C (en) 2002-12-23 2013-08-20 Wyeth Antibodies against pd-1 and uses therefor
US7372982B2 (en) 2003-01-14 2008-05-13 Agilent Technologies, Inc. User interface for molecular array feature analysis
US6809277B2 (en) 2003-01-22 2004-10-26 Agilent Technologies, Inc. Method for registering a deposited material with channel plate channels, and switch produced using same
ES2330339T3 (en) 2003-01-29 2009-12-09 454 Life Sciences Corporation PROCEDURES FOR AMPLIFYING AND SEQUENCING NUCLEIC ACIDS.
US8073626B2 (en) 2003-01-31 2011-12-06 Agilent Technologies, Inc. Biopolymer array reading
US7202264B2 (en) 2003-01-31 2007-04-10 Isis Pharmaceuticals, Inc. Supports for oligomer synthesis
US6950756B2 (en) 2003-02-05 2005-09-27 Agilent Technologies, Inc. Rearrangement of microarray scan images to form virtual arrays
GB2398383B (en) 2003-02-12 2005-03-09 Global Genomics Ab Method and means for nucleic acid sequencing
US7413709B2 (en) 2003-02-12 2008-08-19 Agilent Technologies, Inc. PAEK-based microfluidic device with integrated electrospray emitter
US7244513B2 (en) 2003-02-21 2007-07-17 Nano-Proprietary, Inc. Stain-etched silicon powder
US7252938B2 (en) 2003-02-25 2007-08-07 Agilent Technologies, Inc. Methods and devices for producing a polymer at a location of a substrate
US7070932B2 (en) 2003-02-25 2006-07-04 Agilent Technologies, Inc. Methods and devices for detecting printhead misalignment of an in situ polymeric array synthesis device
US6977223B2 (en) 2003-03-07 2005-12-20 Massachusetts Institute Of Technology Three dimensional microfabrication
US20050053968A1 (en) 2003-03-31 2005-03-10 Council Of Scientific And Industrial Research Method for storing information in DNA
WO2004090170A1 (en) 2003-04-02 2004-10-21 Blue Heron Biotechnology, Inc. Error reduction in automated gene synthesis
US7534561B2 (en) 2003-04-02 2009-05-19 Agilent Technologies, Inc. Nucleic acid array in situ fabrication methods and arrays produced using the same
US20040219663A1 (en) 2003-04-30 2004-11-04 Page Robert D. Biopolymer array fabrication using different drop deposition heads
US7206439B2 (en) 2003-04-30 2007-04-17 Agilent Technologies, Inc. Feature locations in array reading
US7269518B2 (en) 2003-04-30 2007-09-11 Agilent Technologies, Inc. Chemical array reading
US6916113B2 (en) 2003-05-16 2005-07-12 Agilent Technologies, Inc. Devices and methods for fluid mixing
US7695683B2 (en) 2003-05-20 2010-04-13 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
CA2531197A1 (en) 2003-05-30 2005-01-06 The Board Of Trustees Of The University Of Illinois Gene expression profiles that identify genetically elite ungulate mammals
CA2540692C (en) 2003-06-02 2013-05-28 Isis Pharmaceuticals, Inc. Oligonucleotide synthesis with alternative solvents
US8133670B2 (en) 2003-06-13 2012-03-13 Cold Spring Harbor Laboratory Method for making populations of defined nucleic acid molecules
US6938476B2 (en) 2003-06-25 2005-09-06 Agilent Technologies, Inc. Apparatus and methods for sensing fluid levels
US7534563B2 (en) 2003-06-30 2009-05-19 Agilent Technologies, Inc. Methods for producing ligand arrays
US20050016851A1 (en) 2003-07-24 2005-01-27 Jensen Klavs F. Microchemical method and apparatus for synthesis and coating of colloidal nanoparticles
US6843281B1 (en) 2003-07-30 2005-01-18 Agilent Techinologies, Inc. Methods and apparatus for introducing liquids into microfluidic chambers
US7353116B2 (en) 2003-07-31 2008-04-01 Agilent Technologies, Inc. Chemical array with test dependent signal reading or processing
US7939310B2 (en) 2003-08-06 2011-05-10 University Of Massachusetts Systems and methods for analyzing nucleic acid sequences
US7028536B2 (en) 2004-06-29 2006-04-18 Nanostream, Inc. Sealing interface for microfluidic device
US7348144B2 (en) 2003-08-13 2008-03-25 Agilent Technologies, Inc. Methods and system for multi-drug treatment discovery
US7229497B2 (en) 2003-08-26 2007-06-12 Massachusetts Institute Of Technology Method of preparing nanocrystals
US7417139B2 (en) 2003-08-30 2008-08-26 Agilent Technologies, Inc. Method for polynucleotide synthesis
US7193077B2 (en) 2003-08-30 2007-03-20 Agilent Technologies, Inc. Exocyclic amine triaryl methyl protecting groups in two-step polynucleotide synthesis
US7427679B2 (en) 2003-08-30 2008-09-23 Agilent Technologies, Inc. Precursors for two-step polynucleotide synthesis
US7385050B2 (en) 2003-08-30 2008-06-10 Agilent Technologies, Inc. Cleavable linker for polynucleotide synthesis
US7585970B2 (en) 2003-08-30 2009-09-08 Agilent Technologies, Inc. Method of polynucleotide synthesis using modified support
US20050049796A1 (en) 2003-09-03 2005-03-03 Webb Peter G. Methods for encoding non-biological information on microarrays
EP1661062A4 (en) 2003-09-05 2009-04-08 Gannon Technologies Group Systems and methods for biometric identification using handwriting recognition
EP2824190A1 (en) 2003-09-09 2015-01-14 Integrigen, Inc. Methods and compositions for generation of germline human antibody genes
JP2007506429A (en) 2003-09-23 2007-03-22 アトム・サイエンシズ・インコーポレーテッド Polymeric nucleic acid hybridization probe
US7488607B2 (en) 2003-09-30 2009-02-10 Agilent Technologies, Inc. Electronically readable microarray with electronic addressing function
US7147362B2 (en) 2003-10-15 2006-12-12 Agilent Technologies, Inc. Method of mixing by intermittent centrifugal force
US7075161B2 (en) 2003-10-23 2006-07-11 Agilent Technologies, Inc. Apparatus and method for making a low capacitance artificial nanopore
WO2005043154A2 (en) 2003-10-27 2005-05-12 Massachusetts Institute Of Technology High density reaction chambers and methods of use
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US7276338B2 (en) 2003-11-17 2007-10-02 Jacobson Joseph M Nucleotide sequencing via repetitive single molecule hybridization
DE10353887A1 (en) 2003-11-18 2005-06-16 Febit Ag Highly parallel matrix-based DNA synthesizer
US7851192B2 (en) 2004-11-22 2010-12-14 New England Biolabs, Inc. Modified DNA cleavage enzymes and methods for use
US7282705B2 (en) 2003-12-19 2007-10-16 Agilent Technologies, Inc. Microdevice having an annular lining for producing an electrospray emitter
US20110059865A1 (en) 2004-01-07 2011-03-10 Mark Edward Brennan Smith Modified Molecular Arrays
CA2553833C (en) 2004-01-28 2012-10-02 454 Corporation Nucleic acid amplification with continuous flow emulsion
US7084180B2 (en) 2004-01-28 2006-08-01 Velocys, Inc. Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US7125488B2 (en) 2004-02-12 2006-10-24 Varian, Inc. Polar-modified bonded phase materials for chromatographic separations
JP2007521833A (en) 2004-02-12 2007-08-09 コンパス ジェネティクス エルエルシー Genetic analysis by sequence-specific classification
AU2005222788A1 (en) 2004-02-27 2005-09-29 President And Fellows Of Harvard College Polynucleotide synthesis
WO2005093092A2 (en) 2004-03-26 2005-10-06 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with g-protein coupled receptor 44 (gpr44)
US7875463B2 (en) 2004-03-26 2011-01-25 Agilent Technologies, Inc. Generalized pulse jet ejection head control model
US20050214778A1 (en) 2004-03-29 2005-09-29 Peck Bill J Methods for in situ generation of nucleic acid arrays
US20050214779A1 (en) 2004-03-29 2005-09-29 Peck Bill J Methods for in situ generation of nucleic acid arrays
US8825411B2 (en) 2004-05-04 2014-09-02 Dna Twopointo, Inc. Design, synthesis and assembly of synthetic nucleic acids
AU2005243187A1 (en) 2004-05-11 2005-11-24 Wyeth Oligonucleotide arrays to monitor gene expression and methods for making and using same
ES2459367T3 (en) 2004-05-19 2014-05-09 Massachusetts Institute Of Technology Three-dimensional models of perfused cell / tissue diseases
US7302348B2 (en) 2004-06-02 2007-11-27 Agilent Technologies, Inc. Method and system for quantifying and removing spatial-intensity trends in microarray data
US20060024711A1 (en) 2004-07-02 2006-02-02 Helicos Biosciences Corporation Methods for nucleic acid amplification and sequence determination
BRPI0513155B1 (en) 2004-07-06 2021-07-20 Bioren, Inc. METHOD OF DISTINGUISHING ONE OR MORE FUNCTIONAL AMINO ACID RESIDUES FROM NON-FUNCTIONAL AMINO ACID RESIDUES IN A DEFINED REGION WITHIN A POLYPEPTID
WO2006014533A2 (en) 2004-07-07 2006-02-09 Home Guardian Llc Instrumented mobility assistance device
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US20060012793A1 (en) 2004-07-19 2006-01-19 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US7276720B2 (en) 2004-07-19 2007-10-02 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US20060019084A1 (en) 2004-07-23 2006-01-26 Pearson Laurence T Monolithic composition and method
US20060024678A1 (en) 2004-07-28 2006-02-02 Helicos Biosciences Corporation Use of single-stranded nucleic acid binding proteins in sequencing
MX2007001292A (en) 2004-08-03 2007-07-04 Geneart Ag Method for modulating gene expression by modifying the cpg content.
WO2006073504A2 (en) 2004-08-04 2006-07-13 President And Fellows Of Harvard College Wobble sequencing
WO2006018044A1 (en) 2004-08-18 2006-02-23 Agilent Technologies, Inc. Microfluidic assembly with coupled microfluidic devices
US7034290B2 (en) 2004-09-24 2006-04-25 Agilent Technologies, Inc. Target support with pattern recognition sites
US7943046B2 (en) 2004-10-01 2011-05-17 Agilent Technologies, Inc Methods and systems for on-column protein delipidation
US20070122817A1 (en) 2005-02-28 2007-05-31 George Church Methods for assembly of high fidelity synthetic polynucleotides
CA2584984A1 (en) 2004-10-18 2006-04-27 Codon Devices, Inc. Methods for assembly of high fidelity synthetic polynucleotides
US7141807B2 (en) 2004-10-22 2006-11-28 Agilent Technologies, Inc. Nanowire capillaries for mass spectrometry
US20060110744A1 (en) 2004-11-23 2006-05-25 Sampas Nicolas M Probe design methods and microarrays for comparative genomic hybridization and location analysis
US8380441B2 (en) 2004-11-30 2013-02-19 Agilent Technologies, Inc. Systems for producing chemical array layouts
US7977119B2 (en) 2004-12-08 2011-07-12 Agilent Technologies, Inc. Chemical arrays and methods of using the same
US11268149B2 (en) 2004-12-08 2022-03-08 Cedars-Sinai Medical Center Diagnosis and treatment of inflammatory bowel disease
US7439272B2 (en) 2004-12-20 2008-10-21 Varian, Inc. Ultraporous sol gel monoliths
EP1841788A4 (en) 2004-12-22 2009-01-21 Univ Singapore Novel snake toxin
EP1959012A3 (en) 2004-12-29 2009-12-30 Exiqon A/S Novel oligonucleotide compositions and probe sequences useful for detection and analysis of microRNAs and their target mRNAs
CA2594832A1 (en) 2005-01-13 2006-07-20 Codon Devices, Inc. Compositions and methods for protein design
US20060171855A1 (en) 2005-02-03 2006-08-03 Hongfeng Yin Devices,systems and methods for multi-dimensional separation
WO2006086391A2 (en) 2005-02-07 2006-08-17 Massachusetts Institute Of Technology Electrochemically-degradable layer-by-layer thin films
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
JP4641199B2 (en) 2005-02-28 2011-03-02 国立感染症研究所長 Apparatus for designing RNA interference polynucleotide mixture, method for producing RNA interference polynucleotide mixture, and program for designing RNA interference polynucleotide mixture
US20060203236A1 (en) 2005-03-08 2006-09-14 Zhenghua Ji Sample cell
EP1623763A1 (en) 2005-03-11 2006-02-08 Agilent Technologies, Inc. Chip with cleaning cavity
US7618777B2 (en) 2005-03-16 2009-11-17 Agilent Technologies, Inc. Composition and method for array hybridization
US20060219637A1 (en) 2005-03-29 2006-10-05 Killeen Kevin P Devices, systems and methods for liquid chromatography
WO2006116476A1 (en) 2005-04-27 2006-11-02 Sigma-Aldrich Co. Activators for oligonucleotide and phosphoramidite synthesis
US7572907B2 (en) 2005-04-29 2009-08-11 Agilent Technologies, Inc. Methods and compounds for polynucleotide synthesis
DE602006015633D1 (en) 2005-04-29 2010-09-02 Synthetic Genomics Inc AMPLIFICATION AND CLONING OF INDIVIDUAL DNA MOLECULES BY ROLLING CIRCLE AMPLIFICATION
EP1879967B1 (en) 2005-05-12 2009-11-11 Hempel A/S Method for the establishment of a crack resistant epoxy paint coat and paint compositions suitable for said method
US7396676B2 (en) 2005-05-31 2008-07-08 Agilent Technologies, Inc. Evanescent wave sensor with attached ligand
EP1907583B2 (en) 2005-06-15 2019-10-23 Complete Genomics Inc. Single molecule arrays for genetic and chemical analysis
US7919239B2 (en) 2005-07-01 2011-04-05 Agilent Technologies, Inc. Increasing hybridization efficiencies
US7718365B2 (en) 2005-07-09 2010-05-18 Agilent Technologies, Inc. Microarray analysis of RNA
US8076064B2 (en) 2005-07-09 2011-12-13 Agilent Technologies, Inc. Method of treatment of RNA sample
EP1924704B1 (en) 2005-08-02 2011-05-25 Rubicon Genomics, Inc. Compositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction
DE102005037351B3 (en) 2005-08-08 2007-01-11 Geneart Ag In vitro method for directed evolution of proteins, useful e.g. in pharmaceutical development, uses expression system for performing translation, transcription and reverse transcription
CA2618665C (en) 2005-08-11 2012-11-13 J. Craig Venter Institute Method for in vitro recombination
US9404882B2 (en) 2005-08-11 2016-08-02 New Mexico Tech Research Foundation Method of producing a multi-microchannel, flow-through element and device using same
US7723077B2 (en) 2005-08-11 2010-05-25 Synthetic Genomics, Inc. In vitro recombination method
US7749701B2 (en) 2005-08-11 2010-07-06 Agilent Technologies, Inc. Controlling use of oligonucleotide sequences released from arrays
US7805252B2 (en) 2005-08-16 2010-09-28 Dna Twopointo, Inc. Systems and methods for designing and ordering polynucleotides
US20070054127A1 (en) 2005-08-26 2007-03-08 Hergenrother Robert W Silane coating compositions, coating systems, and methods
US20070196834A1 (en) 2005-09-09 2007-08-23 Francesco Cerrina Method and system for the generation of large double stranded DNA fragments
EP1937400A4 (en) * 2005-09-14 2011-02-23 Illumina Inc Continuous polymer synthesizer
US20100233429A1 (en) 2005-09-16 2010-09-16 Yamatake Corporation Substrate for Biochip, Biochip, Method for Manufacturing Substrate for Biochip and Method for Manufacturing Biochip
US20080308884A1 (en) 2005-10-13 2008-12-18 Silex Microsystems Ab Fabrication of Inlet and Outlet Connections for Microfluidic Chips
US7368550B2 (en) 2005-10-31 2008-05-06 Agilent Technologies, Inc. Phosphorus protecting groups
US7759471B2 (en) 2005-10-31 2010-07-20 Agilent Technologies, Inc. Monomer compositions for the synthesis of RNA, methods of synthesis, and methods of deprotection
US8552174B2 (en) 2005-10-31 2013-10-08 Agilent Technologies, Inc. Solutions, methods, and processes for deprotection of polynucleotides
US8202985B2 (en) 2005-10-31 2012-06-19 Agilent Technologies, Inc. Monomer compositions for the synthesis of polynucleotides, methods of synthesis, and methods of deprotection
GB0522310D0 (en) 2005-11-01 2005-12-07 Solexa Ltd Methods of preparing libraries of template polynucleotides
US7291471B2 (en) 2005-11-21 2007-11-06 Agilent Technologies, Inc. Cleavable oligonucleotide arrays
GB0524069D0 (en) 2005-11-25 2006-01-04 Solexa Ltd Preparation of templates for solid phase amplification
US8137936B2 (en) 2005-11-29 2012-03-20 Macevicz Stephen C Selected amplification of polynucleotides
JP5198284B2 (en) 2005-12-22 2013-05-15 キージーン ナムローゼ フェンノートシャップ An improved strategy for transcript characterization using high-throughput sequencing techniques
JP5106416B2 (en) 2006-01-06 2012-12-26 アジレント・テクノロジーズ・インク Reaction buffer composition for nucleic acid replication comprising packed DNA polymerase
EP2363205A3 (en) 2006-01-11 2014-06-04 Raindance Technologies, Inc. Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
EP1987162A4 (en) 2006-01-23 2009-11-25 Population Genetics Technologi Nucleic acid analysis using sequence tokens
WO2007087377A2 (en) 2006-01-25 2007-08-02 Massachusetts Institute Of Technology Photoelectrochemical synthesis of high density combinatorial polymer arrays
WO2008057127A2 (en) 2006-02-06 2008-05-15 Massachusetts Institute Of Technology Self-assembly of macromolecules on multilayered polymer surfaces
WO2007093939A1 (en) 2006-02-13 2007-08-23 Koninklijke Philips Electronics N.V. Microfluidic device for molecular diagnostic applications
US8809876B2 (en) 2006-02-14 2014-08-19 Massachusetts Institute Of Technology Absorbing film
US7807356B2 (en) 2006-03-09 2010-10-05 Agilent Technologies, Inc. Labeled nucleotide composition
TW200806317A (en) 2006-03-20 2008-02-01 Wyeth Corp Methods for reducing protein aggregation
US7855281B2 (en) 2006-03-23 2010-12-21 Agilent Technologies, Inc. Cleavable thiocarbonate linkers for polynucleotide synthesis
US7572908B2 (en) 2006-03-23 2009-08-11 Agilent Technologies, Inc. Cleavable linkers for polynucleotides
US20070231800A1 (en) 2006-03-28 2007-10-04 Agilent Technologies, Inc. Determination of methylated DNA
EP3722409A1 (en) 2006-03-31 2020-10-14 Illumina, Inc. Systems and devices for sequence by synthesis analysis
KR20090029184A (en) 2006-04-07 2009-03-20 더 가브먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 Antibody compositions and methods for treatment of neoplastic disease
US20070238108A1 (en) 2006-04-07 2007-10-11 Agilent Technologies, Inc. Validation of comparative genomic hybridization
US20070238106A1 (en) 2006-04-07 2007-10-11 Agilent Technologies, Inc. Systems and methods of determining alleles and/or copy numbers
US20070238104A1 (en) 2006-04-07 2007-10-11 Agilent Technologies, Inc. Competitive oligonucleotides
US8058055B2 (en) 2006-04-07 2011-11-15 Agilent Technologies, Inc. High resolution chromosomal mapping
WO2007120627A2 (en) 2006-04-11 2007-10-25 New England Biolabs, Inc. Repair of nucleic acids for improved amplification
US20090062129A1 (en) * 2006-04-19 2009-03-05 Agencourt Personal Genomics, Inc. Reagents, methods, and libraries for gel-free bead-based sequencing
US8383338B2 (en) 2006-04-24 2013-02-26 Roche Nimblegen, Inc. Methods and systems for uniform enrichment of genomic regions
US20070259345A1 (en) 2006-05-03 2007-11-08 Agilent Technologies, Inc. Target determination using compound probes
US20070259346A1 (en) 2006-05-03 2007-11-08 Agilent Technologies, Inc. Analysis of arrays
US20070259344A1 (en) 2006-05-03 2007-11-08 Agilent Technologies, Inc. Compound probes and methods of increasing the effective probe densities of arrays
US20070259347A1 (en) 2006-05-03 2007-11-08 Agilent Technologies, Inc. Methods of increasing the effective probe densities of arrays
WO2007136834A2 (en) 2006-05-19 2007-11-29 Codon Devices, Inc. Combined extension and ligation for nucleic acid assembly
WO2007137242A2 (en) 2006-05-19 2007-11-29 Massachusetts Institute Of Technology Microfluidic-based gene synthesis
WO2008054543A2 (en) * 2006-05-20 2008-05-08 Codon Devices, Inc. Oligonucleotides for multiplex nucleic acid assembly
US7624114B2 (en) 2006-06-05 2009-11-24 Microsoft Corporation Automatically generating web forms from database schema
WO2007148337A2 (en) 2006-06-19 2007-12-27 Yeda Research And Development Co. Ltd. Programmable iterated elongation: a method for manufacturing synthetic genes and combinatorial dna and protein libraries
AT503861B1 (en) 2006-07-05 2008-06-15 F Star Biotech Forsch & Entw METHOD FOR MANIPULATING T-CELL RECEPTORS
AT503902B1 (en) 2006-07-05 2008-06-15 F Star Biotech Forsch & Entw METHOD FOR MANIPULATING IMMUNE LOBULINS
US20080193772A1 (en) 2006-07-07 2008-08-14 Bio-Rad Laboratories, Inc Mass spectrometry probes having hydrophobic coatiings
US7572585B2 (en) 2006-07-31 2009-08-11 Agilent Technologies, Inc. Enzymatic labeling of RNA
US7524942B2 (en) 2006-07-31 2009-04-28 Agilent Technologies, Inc. Labeled nucleotide composition
EP2049682A2 (en) 2006-07-31 2009-04-22 Illumina Cambridge Limited Method of library preparation avoiding the formation of adaptor dimers
AU2007283022B2 (en) 2006-08-08 2011-07-28 Rheinische Friedrich-Wilhelms-Universitat Bonn Structure and use of 5' phosphate oligonucleotides
DE102006039479A1 (en) 2006-08-23 2008-03-06 Febit Biotech Gmbh Programmable oligonucleotide synthesis
WO2008023179A2 (en) 2006-08-24 2008-02-28 Solexa Limited Method for retaining even coverage of short insert libraries
US8415138B2 (en) 2006-08-31 2013-04-09 Agilent Technologies, Inc. Apparatuses and methods for oligonucleotide preparation
US8053191B2 (en) 2006-08-31 2011-11-08 Westend Asset Clearinghouse Company, Llc Iterative nucleic acid assembly using activation of vector-encoded traits
US8097711B2 (en) 2006-09-02 2012-01-17 Agilent Technologies, Inc. Thioether substituted aryl carbonate protecting groups
US20080311628A1 (en) 2006-10-03 2008-12-18 Ghc Technologies, Inc. Methods and compositions for rapid amplification and capture of nucleic acid sequences
US20080287320A1 (en) 2006-10-04 2008-11-20 Codon Devices Libraries and their design and assembly
US20080085511A1 (en) * 2006-10-05 2008-04-10 Peck Bill J Preparation of biopolymer arrays
US20080085514A1 (en) 2006-10-10 2008-04-10 Peck Bill J Methods and devices for array synthesis
JP2008097189A (en) 2006-10-10 2008-04-24 National Institute Of Advanced Industrial & Technology Method for judging transfer object specificity or gene specificity of base sequence fragment
US7867782B2 (en) 2006-10-19 2011-01-11 Agilent Technologies, Inc. Nanoscale moiety placement methods
US7999087B2 (en) 2006-11-15 2011-08-16 Agilent Technologies, Inc. 2′-silyl containing thiocarbonate protecting groups for RNA synthesis
WO2008063135A1 (en) 2006-11-24 2008-05-29 Agency For Science, Technology And Research Apparatus for processing a sample in a liquid droplet and method of using the same
WO2008063134A1 (en) 2006-11-24 2008-05-29 Agency For Science, Technology And Research Method of producing a pattern of discriminative wettability
US8242258B2 (en) 2006-12-03 2012-08-14 Agilent Technologies, Inc. Protecting groups for RNA synthesis
WO2008068280A1 (en) 2006-12-05 2008-06-12 Ablynx N.V. Peptides capable of binding to serum proteins
US7989396B2 (en) 2006-12-05 2011-08-02 The Board Of Trustees Of The Leland Stanford Junior University Biomolecule immobilization on biosensors
US7862999B2 (en) 2007-01-17 2011-01-04 Affymetrix, Inc. Multiplex targeted amplification using flap nuclease
US8314220B2 (en) 2007-01-26 2012-11-20 Agilent Technologies, Inc. Methods compositions, and kits for detection of microRNA
US20080182296A1 (en) 2007-01-31 2008-07-31 Chanda Pranab K Pcr-directed gene synthesis from large number of overlapping oligodeoxyribonucleotides
KR100827449B1 (en) 2007-02-07 2008-05-07 삼성전자주식회사 Photolabile compound, oligomer probe array and substrate for oligomer probe array with the same and the method of fabricating the same
WO2008115632A2 (en) 2007-02-09 2008-09-25 The Regents Of The University Of California Method for recombining dna sequences and compositions related thereto
WO2008103474A1 (en) 2007-02-20 2008-08-28 Anaptysbio, Inc. Methods of generating libraries and uses thereof
JP2008218579A (en) 2007-03-01 2008-09-18 Denki Kagaku Kogyo Kk Metal base circuit board
WO2008109176A2 (en) 2007-03-07 2008-09-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US7651762B2 (en) 2007-03-13 2010-01-26 Varian, Inc. Methods and devices using a shrinkable support for porous monolithic materials
CN101680873B (en) 2007-04-04 2015-11-25 加利福尼亚大学董事会 Use composition, equipment, the system and method for nano-pore
EP2160396B1 (en) 2007-05-10 2018-11-21 Agilent Technologies, Inc. Thiocarbon-protecting groups for rna synthesis
EP2160472A1 (en) 2007-06-04 2010-03-10 IN Situ RCP A/S Enzyme activity assay using rolling circle amplification
US20090023190A1 (en) 2007-06-20 2009-01-22 Kai Qin Lao Sequence amplification with loopable primers
US20080318334A1 (en) 2007-06-20 2008-12-25 Robotti Karla M Microfluidic devices comprising fluid flow paths having a monolithic chromatographic material
US8194244B2 (en) 2007-06-29 2012-06-05 Intel Corporation Solution sample plate with wells designed for improved Raman scattering signal detection efficiency
US7659069B2 (en) 2007-08-31 2010-02-09 Agilent Technologies, Inc. Binary signaling assay using a split-polymerase
US7979215B2 (en) 2007-07-30 2011-07-12 Agilent Technologies, Inc. Methods and systems for evaluating CGH candidate probe nucleic acid sequences
US8685642B2 (en) 2007-07-30 2014-04-01 Agilent Technologies, Inc. Allele-specific copy number measurement using single nucleotide polymorphism and DNA arrays
US20090036664A1 (en) 2007-07-31 2009-02-05 Brian Jon Peter Complex oligonucleotide primer mix
WO2009020435A1 (en) 2007-08-07 2009-02-12 Agency For Science, Technology And Research Integrated microfluidic device for gene synthesis
CA2696372C (en) 2007-08-14 2016-09-13 Arcxis Biotechnologies, Inc. Polymer microfluidic biochip fabrication
WO2009023257A1 (en) 2007-08-15 2009-02-19 Massachusetts Institute Of Technology Microstructures for fluidic ballasting and flow control
US20090053704A1 (en) 2007-08-24 2009-02-26 Natalia Novoradovskaya Stabilization of nucleic acids on solid supports
US9598737B2 (en) 2012-05-09 2017-03-21 Longhorn Vaccines And Diagnostics, Llc Next generation genomic sequencing methods
US8877688B2 (en) 2007-09-14 2014-11-04 Adimab, Llc Rationally designed, synthetic antibody libraries and uses therefor
US20100256017A1 (en) 2007-09-17 2010-10-07 Harry Benjamin Larman Supramolecular nanostamping printing device
US7790387B2 (en) 2007-09-24 2010-09-07 Agilent Technologies, Inc. Thiocarbonate linkers for polynucleotides
US8003330B2 (en) 2007-09-28 2011-08-23 Pacific Biosciences Of California, Inc. Error-free amplification of DNA for clonal sequencing
EP2053132A1 (en) 2007-10-23 2009-04-29 Roche Diagnostics GmbH Enrichment and sequence analysis of geomic regions
US8617811B2 (en) 2008-01-28 2013-12-31 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
WO2009070665A1 (en) 2007-11-27 2009-06-04 Massachusetts Institute Of Technology Near field detector for integrated surface plasmon resonance biosensor applications
WO2009076580A2 (en) 2007-12-12 2009-06-18 Thomas Jefferson University Compositions and methods for the treatment and prevention of cardiovascular diseases
EP2247708A4 (en) 2007-12-17 2013-02-27 Yeda Res & Dev System and method for editing and manipulating dna
WO2012044847A1 (en) 2010-10-01 2012-04-05 Life Technologies Corporation Nucleic acid adaptors and uses thereof
WO2009089384A1 (en) 2008-01-09 2009-07-16 Life Technologies Method of making a paired tag library for nucleic acid sequencing
US7682809B2 (en) 2008-01-11 2010-03-23 Agilent Technologies, Inc. Direct ATP release sequencing
WO2009092564A2 (en) 2008-01-23 2009-07-30 Roche Diagnostics Gmbh Integrated instrument performing synthesis and amplification
US8304273B2 (en) 2008-01-24 2012-11-06 Massachusetts Institute Of Technology Insulated nanogap devices and methods of use thereof
US20090194483A1 (en) 2008-01-31 2009-08-06 Robotti Karla M Microfluidic device having monolithic separation medium and method of use
CN107384910A (en) 2008-02-15 2017-11-24 合成基因组公司 The method of Ligation in vitro and combination assembling nucleic acid molecules
WO2009113709A1 (en) 2008-03-11 2009-09-17 国立大学法人東京大学 Method of preparing dna fragment having sticky end
US20090230044A1 (en) 2008-03-13 2009-09-17 Agilent Technologies, Inc. Microfluid Chip Cleaning
US20090238722A1 (en) 2008-03-18 2009-09-24 Agilent Technologies, Inc. Pressure-Reinforced Fluidic Chip
WO2009145818A1 (en) 2008-03-31 2009-12-03 Pacific Biosciences Of California, Inc Single molecule loading methods and compositions
US20090246788A1 (en) 2008-04-01 2009-10-01 Roche Nimblegen, Inc. Methods and Assays for Capture of Nucleic Acids
US8911948B2 (en) 2008-04-30 2014-12-16 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
EP2113255A1 (en) 2008-05-02 2009-11-04 f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. Cytotoxic immunoglobulin
JP4582224B2 (en) * 2008-05-02 2010-11-17 ソニー株式会社 Microbead manufacturing method and microbead
CN102084004B (en) 2008-05-27 2016-01-20 丹麦达科有限公司 Cross combination thing and method
KR20110025859A (en) 2008-06-30 2011-03-11 모르포테크, 인크. Anti-gd2 antibodies and methods and uses related thereto
GB2461546B (en) 2008-07-02 2010-07-07 Argen X Bv Antigen binding polypeptides
JP4667490B2 (en) 2008-07-09 2011-04-13 三菱電機株式会社 Cooker
WO2010014903A1 (en) 2008-07-31 2010-02-04 Massachusetts Institute Of Technology Multiplexed olfactory receptor-based microsurface plasmon polariton detector
US20100069250A1 (en) 2008-08-16 2010-03-18 The Board Of Trustees Of The Leland Stanford Junior University Digital PCR Calibration for High Throughput Sequencing
EP2313515B1 (en) 2008-08-22 2015-03-04 Sangamo BioSciences, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
US8808986B2 (en) * 2008-08-27 2014-08-19 Gen9, Inc. Methods and devices for high fidelity polynucleotide synthesis
US8034917B2 (en) 2008-08-28 2011-10-11 Agilent Technologies, Inc. Primer-directed chromosome painting
JP2012501658A (en) 2008-09-05 2012-01-26 ライフ テクノロジーズ コーポレーション Methods and systems for nucleic acid sequencing validation, calibration, and standardization
US8586310B2 (en) 2008-09-05 2013-11-19 Washington University Method for multiplexed nucleic acid patch polymerase chain reaction
CA2772434C (en) 2008-09-05 2017-11-21 Masad Damha Rna monomers containing o-acetal levulinyl ester groups and their use in rna microarrays
KR101718406B1 (en) 2008-09-06 2017-03-21 켐진스 코포레이션 - 3- rna synthesis phosphoramidites for synthetic rna in the reverse direction and application in convenient introduction of ligands chromophores and modifications of synthetic rna at the 3-end
US8541569B2 (en) 2008-09-06 2013-09-24 Chemgenes Corporation Phosphoramidites for synthetic RNA in the reverse direction, efficient RNA synthesis and convenient introduction of 3'-end ligands, chromophores and modifications of synthetic RNA
US20100062495A1 (en) 2008-09-10 2010-03-11 Genscript Corporation Homologous recombination-based DNA cloning methods and compositions
US20100076183A1 (en) 2008-09-22 2010-03-25 Dellinger Douglas J Protected monomer and method of final deprotection for rna synthesis
US8213015B2 (en) 2008-09-25 2012-07-03 Agilent Technologies, Inc. Integrated flow cell with semiconductor oxide tubing
US8404445B2 (en) 2008-09-30 2013-03-26 Abbvie Inc. Antibody libraries
US20100090341A1 (en) 2008-10-14 2010-04-15 Molecular Imprints, Inc. Nano-patterned active layers formed by nano-imprint lithography
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US9080211B2 (en) 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
EP2344687A4 (en) * 2008-11-06 2013-11-13 Agency Science Tech & Res Apparatus for biopolymer synthesis
US8357489B2 (en) 2008-11-13 2013-01-22 The Board Of Trustees Of The Leland Stanford Junior University Methods for detecting hepatocellular carcinoma
US20110229471A1 (en) 2008-11-26 2011-09-22 Cedars-Sinai Medical Center Methods of determining responsiveness to anti-tnf alpha therapy in inflammatory bowel disease
EP2370451B1 (en) 2008-12-02 2016-11-16 Wave Life Sciences Japan, Inc. Method for the synthesis of phosphorus atom modified nucleic acids
US8963262B2 (en) 2009-08-07 2015-02-24 Massachusettes Institute Of Technology Method and apparatus for forming MEMS device
JO3382B1 (en) 2008-12-23 2019-03-13 Amgen Inc Human cgrp receptor binding antibodies
TW201104253A (en) 2008-12-31 2011-02-01 Nat Health Research Institutes Microarray chip and method of fabricating for the same
EP2393833A1 (en) 2009-02-09 2011-12-14 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Repertoire of allo-restricted peptide-specific t cell receptor sequences and use thereof
WO2010094772A1 (en) 2009-02-20 2010-08-26 Febit Holding Gmbh Synthesis of sequence-verified nucleic acids
US8569046B2 (en) 2009-02-20 2013-10-29 Massachusetts Institute Of Technology Microarray with microchannels
AU2010222818B2 (en) 2009-03-09 2015-05-14 Bioatla, Llc Mirac proteins
WO2010115122A2 (en) * 2009-04-03 2010-10-07 Illumina, Inc. Generation of uniform fragments of nucleic acids using patterned substrates
US7862716B2 (en) 2009-04-13 2011-01-04 Sielc Technologies Corporation HPLC schematic with integrated sample cleaning system
CN102802798B (en) 2009-04-29 2015-04-08 锡克拜控股有限公司 Method and apparatus for depositing a biological fluid onto a substrate
WO2010127186A1 (en) 2009-04-30 2010-11-04 Prognosys Biosciences, Inc. Nucleic acid constructs and methods of use
EP2248914A1 (en) 2009-05-05 2010-11-10 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. The use of class IIB restriction endonucleases in 2nd generation sequencing applications
US9309557B2 (en) 2010-12-17 2016-04-12 Life Technologies Corporation Nucleic acid amplification
US20100292102A1 (en) 2009-05-14 2010-11-18 Ali Nouri System and Method For Preventing Synthesis of Dangerous Biological Sequences
US20100300882A1 (en) 2009-05-26 2010-12-02 General Electric Company Devices and methods for in-line sample preparation of materials
WO2010141249A2 (en) 2009-06-02 2010-12-09 Merck Sharp & Dohme Corp. Generation, characterization and uses thereof of anti-notch3 antibodies
US9493846B2 (en) 2009-06-02 2016-11-15 The Regents Of The University Of California Virus discovery by sequencing and assembly of virus-derived siRNAS, miRNAs, piRNAs
TWM370169U (en) 2009-06-10 2009-12-01 Wistron Corp Push button component with illumination structure and electronic device
US8309710B2 (en) 2009-06-29 2012-11-13 Agilent Technologies, Inc. Use of N-alkyl imidazole for sulfurization of oligonucleotides with an acetyl disulfide
US8642755B2 (en) 2009-06-30 2014-02-04 Agilent Technologies, Inc. Use of thioacetic acid derivatives in the sulfurization of oligonucleotides with phenylacetyl disulfide
GB0912909D0 (en) 2009-07-23 2009-08-26 Olink Genomics Ab Probes for specific analysis of nucleic acids
US8329208B2 (en) 2009-07-28 2012-12-11 Methylation Sciences International Srl Pharmacokinetics of S-adenosylmethionine formulations
JP6013912B2 (en) 2009-07-30 2016-10-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Oligonucleotide probe sets and related methods and uses
EA032728B1 (en) 2009-08-19 2019-07-31 Мерк Патент Гмбх Antibodies for the detection of integrin complexes in ffpe material
WO2011021102A2 (en) 2009-08-20 2011-02-24 Population Genetics Technologies Ltd Compositions and methods for intramolecular nucleic acid rearrangement
US8476598B1 (en) 2009-08-31 2013-07-02 Sionyx, Inc. Electromagnetic radiation imaging devices and associated methods
US20110082055A1 (en) 2009-09-18 2011-04-07 Codexis, Inc. Reduced codon mutagenesis
US20120184724A1 (en) 2009-09-22 2012-07-19 Agilent Technologies, Inc. Protected monomers and methods of deprotection for rna synthesis
US20130053252A1 (en) 2009-09-25 2013-02-28 President & Fellows Of Harvard College Nucleic acid amplification and sequencing by synthesis with fluorogenic nucleotides
US8975019B2 (en) 2009-10-19 2015-03-10 University Of Massachusetts Deducing exon connectivity by RNA-templated DNA ligation/sequencing
JP5774595B2 (en) 2009-10-28 2015-09-09 ヤンセン バイオテツク,インコーポレーテツド Anti-GLP-1R antibodies and their use
WO2011053957A2 (en) 2009-11-02 2011-05-05 Gen9, Inc. Compositions and methods for the regulation of multiple genes of interest in a cell
WO2011056872A2 (en) 2009-11-03 2011-05-12 Gen9, Inc. Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly
US20110114549A1 (en) 2009-11-13 2011-05-19 Agilent Technolgies, Inc. Microfluidic device comprising separation columns
EP3597771A1 (en) 2009-11-25 2020-01-22 Gen9, Inc. Methods and apparatuses for chip-based dna error reduction
WO2011066185A1 (en) 2009-11-25 2011-06-03 Gen9, Inc. Microfluidic devices and methods for gene synthesis
US8500979B2 (en) 2009-12-31 2013-08-06 Intel Corporation Nanogap chemical and biochemical sensors
WO2011085075A2 (en) 2010-01-07 2011-07-14 Gen9, Inc. Assembly of high fidelity polynucleotides
US9758817B2 (en) 2010-01-13 2017-09-12 Agilent Technologies, Inc. Method for identifying a nucleic acid in a sample
KR101230350B1 (en) 2010-01-27 2013-02-06 주식회사 엘지화학 Battery Pack of Excellent Structural Stability
GB201003036D0 (en) 2010-02-23 2010-04-07 Fermentas Uab Restriction endonucleases and their applications
US20120027786A1 (en) 2010-02-23 2012-02-02 Massachusetts Institute Of Technology Genetically programmable pathogen sense and destroy
US8716467B2 (en) 2010-03-03 2014-05-06 Gen9, Inc. Methods and devices for nucleic acid synthesis
JP2013520989A (en) * 2010-03-05 2013-06-10 シンセティック ジェノミクス インコーポレーテッド Methods for genome cloning and manipulation
CA2792676A1 (en) 2010-03-09 2011-09-15 Toxcure, Inc. Microneedle nasal delivery device
EP2542681B1 (en) 2010-04-09 2019-02-27 The Catholic University Of America Protein and nucleic acid delivery vehicles, components and mechanisms thereof
WO2011130223A1 (en) 2010-04-12 2011-10-20 Mayo Foundation For Medical Education And Research System and method for alleviating freezing gait and gait hypokinesia in users with extrapyramidal disorders
US10240194B2 (en) 2010-05-13 2019-03-26 Gen9, Inc. Methods for nucleotide sequencing and high fidelity polynucleotide synthesis
US9187777B2 (en) 2010-05-28 2015-11-17 Gen9, Inc. Methods and devices for in situ nucleic acid synthesis
GB2481425A (en) 2010-06-23 2011-12-28 Iti Scotland Ltd Method and device for assembling polynucleic acid sequences
DE102010027122A1 (en) * 2010-07-14 2012-01-19 Airbus Operations Gmbh Stay module with separate private area
EP2598528A1 (en) 2010-07-28 2013-06-05 Immunocore Ltd. T cell receptors
CN103154273A (en) 2010-09-21 2013-06-12 群体遗传学科技有限公司 Increasing confidence of allele calls with molecular counting
US8715933B2 (en) 2010-09-27 2014-05-06 Nabsys, Inc. Assay methods using nicking endonucleases
WO2012045001A2 (en) 2010-09-30 2012-04-05 Vanderbilt University Influenza virus antibodies and immunogens and uses therefor
WO2012051327A2 (en) 2010-10-12 2012-04-19 Cornell University Method of dual-adapter recombination for efficient concatenation of multiple dna fragments in shuffled or specified arrangements
US20140045728A1 (en) * 2010-10-22 2014-02-13 President And Fellows Of Harvard College Orthogonal Amplification and Assembly of Nucleic Acid Sequences
CA2821299C (en) 2010-11-05 2019-02-12 Frank J. Steemers Linking sequence reads using paired code tags
WO2012078312A2 (en) 2010-11-12 2012-06-14 Gen9, Inc. Methods and devices for nucleic acids synthesis
WO2012064975A1 (en) 2010-11-12 2012-05-18 Gen9, Inc. Protein arrays and methods of using and making the same
CN118086471A (en) 2010-12-17 2024-05-28 生命技术公司 Methods, compositions, systems, instruments and kits for nucleic acid amplification
US9487807B2 (en) * 2010-12-27 2016-11-08 Ibis Biosciences, Inc. Compositions and methods for producing single-stranded circular DNA
US20120164633A1 (en) 2010-12-27 2012-06-28 Ibis Biosciences, Inc. Digital droplet sequencing
CA2823044C (en) 2010-12-31 2022-08-16 Jay M. Short Express humanization of antibodies
CN104673670A (en) 2011-03-30 2015-06-03 独立行政法人国立长寿医疗研究中心 Membrane-separation-type Culture Device, Membrane-separation-type Culture Kit, Stem Cell Separation Method Using Same, And Separation Membrane
US10131903B2 (en) 2011-04-01 2018-11-20 The Regents Of The University Of California Microfluidic platform for synthetic biology applications
US9384920B1 (en) 2011-04-04 2016-07-05 Eric J. Bakulich Locking knob
US20140357497A1 (en) 2011-04-27 2014-12-04 Kun Zhang Designing padlock probes for targeted genomic sequencing
US8722585B2 (en) 2011-05-08 2014-05-13 Yan Wang Methods of making di-tagged DNA libraries from DNA or RNA using double-tagged oligonucleotides
US9074204B2 (en) 2011-05-20 2015-07-07 Fluidigm Corporation Nucleic acid encoding reactions
WO2012167328A1 (en) 2011-06-10 2012-12-13 Bright Devices Group Pty Ltd Freezing of gait cue apparatus
US9752176B2 (en) 2011-06-15 2017-09-05 Ginkgo Bioworks, Inc. Methods for preparative in vitro cloning
JP6164535B2 (en) 2011-06-21 2017-07-19 フエー・イー・ベー・フエー・ゼツト・ウエー GPCR: Binding domain generated for G protein complex and uses derived therefrom
US9487824B2 (en) 2011-06-28 2016-11-08 Igor Kutyavin Methods and compositions for enrichment of nucleic acids in mixtures of highly homologous sequences
US20130045483A1 (en) 2011-07-01 2013-02-21 Whitehead Institute For Biomedical Research Yeast cells expressing amyloid beta and uses therefor
US9139874B2 (en) 2011-07-07 2015-09-22 Life Technologies Corporation Bi-directional sequencing compositions and methods
US20130017978A1 (en) 2011-07-11 2013-01-17 Finnzymes Oy Methods and transposon nucleic acids for generating a dna library
WO2013010062A2 (en) 2011-07-14 2013-01-17 Life Technologies Corporation Nucleic acid complexity reduction
IL280334B2 (en) 2011-08-26 2023-09-01 Gen9 Inc Compositions and methods for high fidelity assembly of nucleic acids
US20150203839A1 (en) 2011-08-26 2015-07-23 Gen9, Inc. Compositions and Methods for High Fidelity Assembly of Nucleic Acids
EP2751729B1 (en) 2011-09-01 2020-10-21 Genome Compiler Corporation System for polynucleotide construct design, visualization and transactions to manufacture the same
WO2013036668A1 (en) 2011-09-06 2013-03-14 Gen-Probe Incorporated Circularized templates for sequencing
US8840981B2 (en) * 2011-09-09 2014-09-23 Eastman Kodak Company Microfluidic device with multilayer coating
US20130109596A1 (en) 2011-09-26 2013-05-02 Life Technologies Corporation High efficiency, small volume nucleic acid synthesis
EP2766838A2 (en) 2011-10-11 2014-08-20 Life Technologies Corporation Systems and methods for analysis and interpretation of nucleic acid sequence data
CA2852949A1 (en) 2011-10-19 2013-04-25 Nugen Technologies, Inc. Compositions and methods for directional nucleic acid amplification and sequencing
US8987174B2 (en) 2011-10-28 2015-03-24 Prognosys Biosciences, Inc. Methods for manufacturing molecular arrays
US8815782B2 (en) 2011-11-11 2014-08-26 Agilent Technologies, Inc. Use of DNAzymes for analysis of an RNA sample
US8450107B1 (en) 2011-11-30 2013-05-28 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer TAL effectors
US20130137173A1 (en) 2011-11-30 2013-05-30 Feng Zhang Nucleotide-specific recognition sequences for designer tal effectors
EP2599785A1 (en) 2011-11-30 2013-06-05 Agilent Technologies, Inc. Novel methods for the synthesis and purification of oligomers
US9279154B2 (en) 2011-12-21 2016-03-08 Illumina, Inc. Apparatus and methods for kinetic analysis and determination of nucleic acid sequences
WO2013093693A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Staphylococcus aureus specific antibodies and uses thereof
US9593375B2 (en) 2011-12-30 2017-03-14 Quest Diagnostics Investments Incorporated Nucleic acid analysis using emulsion PCR
SG10201606285YA (en) 2012-02-01 2016-09-29 Synthetic Genomics Inc Materials and methods for the synthesis of error-minimized nucleic acid molecules
ES2776673T3 (en) 2012-02-27 2020-07-31 Univ North Carolina Chapel Hill Methods and uses for molecular tags
ES2741099T3 (en) 2012-02-28 2020-02-10 Agilent Technologies Inc Method of fixing a counting sequence for a nucleic acid sample
CA2867235C (en) 2012-03-14 2021-11-09 Innovative Targeting Solutions Inc. Generating targeted sequence diversity in fusion proteins
US9150853B2 (en) 2012-03-21 2015-10-06 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
WO2013149078A1 (en) 2012-03-28 2013-10-03 Kci Licensing, Inc. Reduced-pressure systems, dressings, and methods facilitating separation of electronic and clinical component parts
US9732384B2 (en) 2012-04-02 2017-08-15 Lux Bio Group, Inc. Apparatus and method for molecular separation, purification, and sensing
CA2868928A1 (en) 2012-04-10 2013-10-17 The Trustees Of Princeton University Ultra-sensitive sensor
US20150353921A9 (en) 2012-04-16 2015-12-10 Jingdong Tian Method of on-chip nucleic acid molecule synthesis
CA2871505C (en) 2012-04-24 2021-10-12 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US20130281308A1 (en) 2012-04-24 2013-10-24 Gen9, Inc. Methods for sorting nucleic acids and preparative in vitro cloning
JP6267689B2 (en) 2012-05-10 2018-01-24 バイオアトラ、エルエルシー Multispecific monoclonal antibody
EP3514243B1 (en) 2012-05-21 2022-08-17 The Scripps Research Institute Methods of sample preparation
US10308979B2 (en) 2012-06-01 2019-06-04 Agilent Technologies, Inc. Target enrichment and labeling for multi-kilobase DNA
CN107055468A (en) 2012-06-01 2017-08-18 欧洲分子生物学实验室 The high-capacity storage of digital information in DNA
WO2013188037A2 (en) 2012-06-11 2013-12-19 Agilent Technologies, Inc Method of adaptor-dimer subtraction using a crispr cas6 protein
WO2014004393A1 (en) 2012-06-25 2014-01-03 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
SG10201610861XA (en) 2012-07-03 2017-02-27 Integrated Dna Tech Inc Tm-enhanced blocking oligonucleotides and baits for improved target enrichment and reduced off-target selection
US9255245B2 (en) 2012-07-03 2016-02-09 Agilent Technologies, Inc. Sample probes and methods for sampling intracellular material
WO2014011800A1 (en) 2012-07-10 2014-01-16 Pivot Bio, Inc. Methods for multipart, modular and scarless assembly of dna molecules
WO2014012071A1 (en) 2012-07-12 2014-01-16 Massachusetts Institute Of Technology Methods and apparatus for assembly
JP6239813B2 (en) 2012-07-18 2017-11-29 株式会社Screenセミコンダクターソリューションズ Substrate processing apparatus and substrate processing method
US9384320B2 (en) 2012-07-19 2016-07-05 President And Fellows Of Harvard College Methods of storing information using nucleic acids
RU2015106749A (en) 2012-07-27 2016-09-20 Дзе Борд Оф Трастиз Оф Дзе Юниверсити Оф Иллинойс CONSTRUCTION OF T-CELL RECEPTORS
WO2014021938A1 (en) 2012-08-02 2014-02-06 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus for nucleic acid synthesis using oligo-templated polymerization
EP4219706A1 (en) 2012-08-16 2023-08-02 Synthetic Genomics, Inc. Automated dsdna synthesis using a digital to biological converter
AU2013309272B2 (en) 2012-08-31 2017-03-09 Richard A. Lerner Methods and compositions related to modulators of eukaryotic cells
WO2014039587A1 (en) 2012-09-05 2014-03-13 Bio-Rad Laboratories, Inc. Systems and methods for stabilizing droplets
CN107541546B (en) 2012-10-15 2021-06-15 生命技术公司 Compositions, methods, systems, and kits for target nucleic acid enrichment
KR20140048733A (en) * 2012-10-16 2014-04-24 삼성전자주식회사 Multiwell plate and method for analyzing target material using the same
US9410173B2 (en) 2012-10-24 2016-08-09 Clontech Laboratories, Inc. Template switch-based methods for producing a product nucleic acid
US11439594B2 (en) 2012-12-04 2022-09-13 Phosphorex, Inc. Microparticles and nanoparticles having negative surface charges
EP2929027B1 (en) 2012-12-06 2018-02-21 Agilent Technologies, Inc. Molecular fabrication
CN104854246B (en) 2012-12-06 2018-05-01 安捷伦科技有限公司 The target enrichment of unrestricted enzyme
US9976162B2 (en) 2012-12-10 2018-05-22 Agilent Technologies, Inc. Pairing code directed assembly
SG10201704633UA (en) 2012-12-10 2017-07-28 Resolution Bioscience Inc Methods for targeted genomic analysis
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
EP2962110A4 (en) 2013-02-28 2016-11-02 Univ Nanyang Tech Method of manufacturing a device for supporting biological material growth and device therefrom
US9580746B2 (en) 2013-03-05 2017-02-28 Agilent Technologies, Inc. Synthesis of long fish probes
EP2964778B1 (en) 2013-03-05 2019-10-09 Agilent Technologies, Inc. Detection of genomic rearrangements by sequence capture
WO2014160004A1 (en) 2013-03-13 2014-10-02 Gen9, Inc. Compositions, methods and apparatus for oligonucleotides synthesis
WO2014160059A1 (en) 2013-03-13 2014-10-02 Gen9, Inc. Compositions and methods for synthesis of high fidelity oligonucleotides
US20140274741A1 (en) 2013-03-15 2014-09-18 The Translational Genomics Research Institute Methods to capture and sequence large fragments of dna and diagnostic methods for neuromuscular disease
US20140274729A1 (en) 2013-03-15 2014-09-18 Nugen Technologies, Inc. Methods, compositions and kits for generation of stranded rna or dna libraries
KR20150131177A (en) 2013-03-15 2015-11-24 제넨테크, 인크. Anti-crth2 antibodies and their use
WO2014151117A1 (en) 2013-03-15 2014-09-25 The Board Of Trustees Of The Leland Stanford Junior University Identification and use of circulating nucleic acid tumor markers
AU2014237003B2 (en) 2013-03-15 2018-11-15 Gen9, Inc. Compositions and methods for multiplex nucleic acids synthesis
US9771613B2 (en) 2013-04-02 2017-09-26 Molecular Assemblies, Inc. Methods and apparatus for synthesizing nucleic acid
US9279149B2 (en) 2013-04-02 2016-03-08 Molecular Assemblies, Inc. Methods and apparatus for synthesizing nucleic acids
US10683536B2 (en) 2013-04-02 2020-06-16 Molecular Assemblies, Inc. Reusable initiators for synthesizing nucleic acids
US20150293102A1 (en) 2013-04-13 2015-10-15 Jung-Uk Shim Detecting low-abundant analyte in microfluidic droplets
ITRM20130278A1 (en) 2013-05-10 2014-11-11 Consiglio Nazionale Ricerche PROCESS OF MANUFACTURE OF SELF-ASSEMBLED FILMS OF BLOCKED COPOLYMERS
CA2916960C (en) 2013-06-26 2022-12-06 Guangzhou Xiangxue Pharmaceutical Co. Ltd High-stability t-cell receptor and preparation method and application thereof
US20150010953A1 (en) 2013-07-03 2015-01-08 Agilent Technologies, Inc. Method for producing a population of oligonucleotides that has reduced synthesis errors
KR20150005062A (en) 2013-07-04 2015-01-14 삼성전자주식회사 Processor using mini-cores
US10421957B2 (en) 2013-07-29 2019-09-24 Agilent Technologies, Inc. DNA assembly using an RNA-programmable nickase
US20160168564A1 (en) 2013-07-30 2016-06-16 Gen9, Inc. Methods for the Production of Long Length Clonal Sequence Verified Nucleic Acid Constructs
US9409139B2 (en) 2013-08-05 2016-08-09 Twist Bioscience Corporation De novo synthesized gene libraries
US9595180B2 (en) 2013-08-07 2017-03-14 Nike, Inc. Activity recognition with activity reminders
CN104371019B (en) 2013-08-13 2019-09-10 鸿运华宁(杭州)生物医药有限公司 It is a kind of can with GLP-1R specifically bind antibody and its with the fused protein of GLP-1
GB201314721D0 (en) 2013-08-16 2013-10-02 Almagen Ltd A method of selectively masking one or more sites on a surface and a method of synthesising an array of molecules
KR102319582B1 (en) * 2013-08-16 2021-11-04 메모리얼 슬로안 케터링 캔서 센터 Selective grp94 inhibitors and uses thereof
EP3039161B1 (en) 2013-08-30 2021-10-06 Personalis, Inc. Methods and systems for genomic analysis
JP6571663B2 (en) 2013-09-14 2019-09-04 ケムジーンズ コーポレーション Very efficient synthesis of long RNAs using a reverse approach
WO2015040075A1 (en) 2013-09-18 2015-03-26 Genome Research Limited Genomic screening methods using rna-guided endonucleases
US9311311B2 (en) 2013-09-27 2016-04-12 International Business Machines Corporation Archival management of database logs
US9422325B2 (en) 2013-10-04 2016-08-23 Trustees Of Tufts College Glycosylation reactions using phenyl(trifluoroethyl)iodonium salts
US9582877B2 (en) 2013-10-07 2017-02-28 Cellular Research, Inc. Methods and systems for digitally counting features on arrays
CA2963072A1 (en) 2013-10-29 2015-05-07 Milbat - Giving Quality To Life Walker-assist device
CA2929108A1 (en) 2013-10-29 2015-05-07 Longhorn Vaccines And Diagnostics, Llc Next generation genomic sequencing methods
EP3073967A1 (en) 2013-11-26 2016-10-05 Xenco Medical, LLC Lock and release implant delivery system
EP3074554B1 (en) 2013-11-27 2021-05-19 Gen9, Inc. Libraries of nucleic acids and methods for making the same
CN105980557B (en) 2013-12-04 2020-04-07 中外制药株式会社 Antigen binding molecules with variable antigen binding capacity depending on concentration of compound and libraries thereof
EP3077419B1 (en) 2013-12-04 2019-08-14 Innovative Targeting Solutions Inc. Peptide-grafted antibodies
WO2015089053A1 (en) 2013-12-09 2015-06-18 Integrated Dna Technologies, Inc. Long nucleic acid sequences containing variable regions
MX2016007887A (en) 2013-12-17 2016-10-28 Genentech Inc Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies.
GB2521387B (en) 2013-12-18 2020-05-27 Ge Healthcare Uk Ltd Oligonucleotide data storage on solid supports
WO2015103225A1 (en) 2013-12-31 2015-07-09 Illumina, Inc. Addressable flow cell using patterned electrodes
US9587268B2 (en) 2014-01-29 2017-03-07 Agilent Technologies Inc. Fast hybridization for next generation sequencing target enrichment
US10287627B2 (en) 2014-02-08 2019-05-14 The Regents Of The University Of Colorado, A Body Corporate Multiplexed linking PCR
US10208338B2 (en) 2014-03-03 2019-02-19 Swift Biosciences, Inc. Enhanced adaptor ligation
EP3116901B1 (en) 2014-03-14 2019-06-12 Immunocore Limited Tcr libraries
US10675618B2 (en) 2014-03-27 2020-06-09 University Of Maryland, College Park Integration of ex situ fabricated porous polymer monoliths into fluidic chips
US10190161B2 (en) 2014-04-03 2019-01-29 Stmicroelectronics S.R.L. Apparatus and method for nucleic acid sequencing based on nanowire detectors
US20170037790A1 (en) 2014-04-15 2017-02-09 Volvo Construction Equipment Ab Device for controlling engine and hydraulic pump of construction equipment and control method therefor
GB201407852D0 (en) 2014-05-02 2014-06-18 Iontas Ltd Preparation of libraries od protein variants expressed in eukaryotic cells and use for selecting binding molecules
CN106536734B (en) 2014-05-16 2020-12-22 Illumina公司 Nucleic acid synthesis technology
US20150361422A1 (en) 2014-06-16 2015-12-17 Agilent Technologies, Inc. High throughput gene assembly in droplets
US20150361423A1 (en) 2014-06-16 2015-12-17 Agilent Technologies, Inc. High throughput gene assembly in droplets
US10870845B2 (en) 2014-07-01 2020-12-22 Global Life Sciences Solutions Operations UK Ltd Methods for capturing nucleic acids
US10472620B2 (en) 2014-07-01 2019-11-12 General Electric Company Method, substrate and device for separating nucleic acids
US20170198268A1 (en) 2014-07-09 2017-07-13 Gen9, Inc. Compositions and Methods for Site-Directed DNA Nicking and Cleaving
US11254933B2 (en) 2014-07-14 2022-02-22 The Regents Of The University Of California CRISPR/Cas transcriptional modulation
US20160017394A1 (en) 2014-07-15 2016-01-21 Life Technologies Corporation Compositions and methods for nucleic acid assembly
WO2016022557A1 (en) 2014-08-05 2016-02-11 Twist Bioscience Corporation Cell free cloning of nucleic acids
EP3191604B1 (en) 2014-09-09 2021-04-14 Igenomx International Genomics Corporation Methods and compositions for rapid nucleic acid library preparation
CN107278234A (en) 2014-10-03 2017-10-20 生命科技公司 Gene order verification composition, method and kit
WO2016057951A2 (en) 2014-10-09 2016-04-14 Life Technologies Corporation Crispr oligonucleotides and gene editing
US10648103B2 (en) 2014-10-10 2020-05-12 Invitae Corporation Universal blocking oligo system and improved hybridization capture methods for multiplexed capture reactions
US20170249345A1 (en) 2014-10-18 2017-08-31 Girik Malik A biomolecule based data storage system
WO2016065056A1 (en) 2014-10-22 2016-04-28 The Regents Of The University Of California High definition microdroplet printer
US9890417B2 (en) 2014-11-03 2018-02-13 Agilent Technologies, Inc. Signal amplification of fluorescence in situ hybridization
US10233490B2 (en) 2014-11-21 2019-03-19 Metabiotech Corporation Methods for assembling and reading nucleic acid sequences from mixed populations
CN104562213A (en) 2014-12-26 2015-04-29 北京诺禾致源生物信息科技有限公司 Amplification sublibrary and construction method thereof
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
WO2016126987A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US9834774B2 (en) 2015-02-11 2017-12-05 Agilent Technologies, Inc. Methods and compositions for rapid seamless DNA assembly
WO2016130868A2 (en) 2015-02-13 2016-08-18 Vaccine Research Institute Of San Diego Materials and methods to analyze rna isoforms in transcriptomes
CN104734848A (en) 2015-03-02 2015-06-24 郑州轻工业学院 Recombinant DNA technology based information encrypting and hiding method and application
JP2018511329A (en) 2015-04-01 2018-04-26 ザ スクリプス リサーチ インスティテュート Methods and compositions related to GPCR agonist polypeptides
WO2016162127A1 (en) 2015-04-08 2016-10-13 Polyphor Ag Backbone-cyclized peptidomimetics
US11164661B2 (en) 2015-04-10 2021-11-02 University Of Washington Integrated system for nucleic acid-based storage and retrieval of digital data using keys
WO2016168755A1 (en) 2015-04-17 2016-10-20 Distributed Bio, Inc. Method for mass humanization of non-human antibodies
WO2016172377A1 (en) 2015-04-21 2016-10-27 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
CA2988001C (en) 2015-04-30 2023-09-26 Abcheck S.R.O. Method for mass humanization of rabbit antibodies
US20160333340A1 (en) 2015-05-11 2016-11-17 Twist Bioscience Corporation Compositions and methods for nucleic acid amplification
WO2017011492A1 (en) 2015-07-13 2017-01-19 President And Fellows Of Harvard College Methods for retrievable information storage using nucleic acids
GB201513113D0 (en) 2015-07-24 2015-09-09 Genome Res Ltd Nasal sampling methods
JP6982362B2 (en) 2015-09-18 2021-12-17 ツイスト バイオサイエンス コーポレーション Oligonucleic acid mutant library and its synthesis
CN108698012A (en) 2015-09-22 2018-10-23 特韦斯特生物科学公司 Flexible substrates for nucleic acid synthesis
US20180320166A1 (en) 2015-10-01 2018-11-08 University Of Washington Multiplex pairwise assembly of dna oligonucleotides
US20170141793A1 (en) 2015-11-13 2017-05-18 Microsoft Technology Licensing, Llc Error correction for nucleotide data stores
CA3006867A1 (en) 2015-12-01 2017-06-08 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
CA3006792A1 (en) 2015-12-08 2017-06-15 Twinstrand Biosciences, Inc. Improved adapters, methods, and compositions for duplex sequencing
CN108473987B (en) 2016-01-08 2024-01-02 马可讯治疗有限公司 Binding members with altered diverse scaffold domains
GB201604492D0 (en) 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Transfected t-cells and t-cell receptors for use in immunotherapy against cancers
WO2017214557A1 (en) 2016-06-10 2017-12-14 Counsyl, Inc. Nucleic acid sequencing adapters and uses thereof
JP2019523940A (en) 2016-06-10 2019-08-29 ツイスト バイオサイエンス コーポレーション Systems and methods for automated annotation and screening of biological sequences
CN110088281A (en) 2016-08-03 2019-08-02 特韦斯特生物科学公司 Texturizing surfaces for polynucleotides synthesis
CA3034769A1 (en) 2016-08-22 2018-03-01 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
ES2981703T3 (en) 2016-09-02 2024-10-10 Lentigen Tech Inc Compositions and methods for treating cancer with DuoCars
JP6871364B2 (en) 2016-09-21 2021-05-12 ツイスト バイオサイエンス コーポレーション Nucleic acid-based data storage
US20180142289A1 (en) 2016-11-18 2018-05-24 Twist Bioscience Corporation Polynucleotide libraries having controlled stoichiometry and synthesis thereof
KR102514213B1 (en) 2016-12-16 2023-03-27 트위스트 바이오사이언스 코포레이션 Immune synaptic variant library and its synthesis
EA201991514A1 (en) 2016-12-21 2019-12-30 Сефалон, Инк. ANTIBODIES THAT SPECIALLY CONTACT THE IL-15 AND THEIR APPLICATION
KR102723464B1 (en) 2017-02-22 2024-10-28 트위스트 바이오사이언스 코포레이션 Nucleic acid-based data storage
CA3056386A1 (en) 2017-03-15 2018-09-20 Twist Bioscience Corporation De novo synthesized combinatorial nucleic acid libraries
EP3595674A4 (en) 2017-03-15 2020-12-16 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
DK3600281T3 (en) 2017-03-23 2023-08-14 QBiotics Pty Ltd COMBINATION THERAPY FOR THE TREATMENT OR PREVENTION OF TUMORS
WO2018183918A1 (en) 2017-03-30 2018-10-04 Grail, Inc. Enhanced ligation in sequencing library preparation
DK3615690T3 (en) 2017-04-23 2021-11-15 Illumina Cambridge Ltd COMPOSITIONS AND METHODS FOR IMPROVING SAMPLE IDENTIFICATION IN INDEXED NUCLEIC ACID LIBRARIES
EP3622089B1 (en) 2017-05-08 2024-07-17 Illumina, Inc. Method for sequencing using universal short adapters for indexing of polynucleotide samples
CN111566209B (en) 2017-06-12 2024-08-30 特韦斯特生物科学公司 Seamless nucleic acid assembly method
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US11666863B2 (en) 2017-07-18 2023-06-06 Investigaciones Forestales Bioforest S.A. Method and device for asymmetric polarity inversion in electromembrane processes
CN111566125A (en) 2017-09-11 2020-08-21 特韦斯特生物科学公司 GPCR binding proteins and synthesis thereof
JP7066840B2 (en) 2017-10-20 2022-05-13 ツイスト バイオサイエンス コーポレーション Heated nanowells for polynucleotide synthesis
WO2019084500A1 (en) 2017-10-27 2019-05-02 Twist Bioscience Corporation Systems and methods for polynucleotide scoring
US11427867B2 (en) 2017-11-29 2022-08-30 Xgenomes Corp. Sequencing by emergence
IL312616A (en) 2018-01-04 2024-07-01 Twist Bioscience Corp Dna-based digital information storage
US10722916B2 (en) 2018-01-19 2020-07-28 Caulk Garbage Can LLC Caulk gun attachment for wiping excess caulk
SG11202011467RA (en) 2018-05-18 2020-12-30 Twist Bioscience Corp Polynucleotides, reagents, and methods for nucleic acid hybridization
EP3814494B1 (en) 2018-06-29 2023-11-01 Thermo Fisher Scientific GENEART GmbH High throughput assembly of nucleic acid molecules
US10963953B2 (en) 2018-10-10 2021-03-30 Alliance Inspection Management, LLC Reserve management for continuous bidding portal
CN113692409A (en) 2018-12-26 2021-11-23 特韦斯特生物科学公司 Highly accurate de novo polynucleotide synthesis
JP2022521766A (en) 2019-02-25 2022-04-12 ツイスト バイオサイエンス コーポレーション Compositions and Methods for Next Generation Sequencing
KR20210144698A (en) 2019-02-26 2021-11-30 트위스트 바이오사이언스 코포레이션 Variant Nucleic Acid Libraries for Antibody Optimization
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
US20220243195A1 (en) 2019-06-21 2022-08-04 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
EP3987019A4 (en) 2019-06-21 2023-04-19 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
AU2020315955A1 (en) 2019-07-22 2022-03-03 Igenomx International Genomics Corporation Methods and compositions for high throughput sample preparation using double unique dual indexing
EP4028586A4 (en) 2019-09-13 2023-10-04 University Health Network Detection of circulating tumor dna using double stranded hybrid capture
CA3155630A1 (en) 2019-09-23 2021-04-01 Twist Bioscience Corporation Variant nucleic acid libraries for single domain antibodies
EP4034566A4 (en) 2019-09-23 2024-01-24 Twist Bioscience Corporation Variant nucleic acid libraries for crth2
CA3164146A1 (en) 2019-12-09 2021-06-17 Twist Bioscience Corporation Variant nucleic acid libraries for adenosine receptors
WO2021222316A2 (en) 2020-04-27 2021-11-04 Twist Bioscience Corporation Variant nucleic acid libraries for coronavirus
EP4179001A4 (en) 2020-07-07 2024-07-10 Twist Bioscience Corp Devices and methods for light-directed polymer synthesis
WO2022046797A1 (en) 2020-08-25 2022-03-03 Twist Bioscience Corporation Compositions and methods for library sequencing
KR20230074151A (en) 2020-08-26 2023-05-26 트위스트 바이오사이언스 코포레이션 Methods and compositions for GLP1R variants
CA3190917A1 (en) 2020-08-28 2022-03-03 Andres Fernandez Devices and methods for synthesis
EP4225912A1 (en) 2020-10-05 2023-08-16 Twist Bioscience Corporation Hybridization methods and reagents
WO2022086866A1 (en) 2020-10-19 2022-04-28 Twist Bioscience Corporation Methods of synthesizing oligonucleotides using tethered nucleotides
WO2022087293A1 (en) 2020-10-22 2022-04-28 Twist Bioscience Corporation Methods and systems for detecting coronavirus
US20220135965A1 (en) 2020-10-26 2022-05-05 Twist Bioscience Corporation Libraries for next generation sequencing
WO2022098662A2 (en) 2020-11-03 2022-05-12 Twist Bioscience Corporation Methods and compositions relating to chemokine receptor variants
US20220259319A1 (en) 2021-01-21 2022-08-18 Twist Bioscience Corporation Methods and compositions relating to adenosine receptors
WO2022178137A1 (en) 2021-02-19 2022-08-25 Twist Bioscience Corporation Libraries for identification of genomic variants

Also Published As

Publication number Publication date
US20200156037A1 (en) 2020-05-21
US9409139B2 (en) 2016-08-09
KR102423377B1 (en) 2022-07-25
US11559778B2 (en) 2023-01-24
PL3030682T3 (en) 2020-11-16
KR20200030130A (en) 2020-03-19
JP2021118690A (en) 2021-08-12
US20170095785A1 (en) 2017-04-06
KR20160041046A (en) 2016-04-15
US20190366293A1 (en) 2019-12-05
US10384188B2 (en) 2019-08-20
US20180326388A1 (en) 2018-11-15
SG11201600853UA (en) 2016-03-30
US20160354752A1 (en) 2016-12-08
TW201843302A (en) 2018-12-16
CN111593414A (en) 2020-08-28
US20160303535A1 (en) 2016-10-20
US11452980B2 (en) 2022-09-27
US9833761B2 (en) 2017-12-05
JP6656733B2 (en) 2020-03-04
KR102291045B1 (en) 2021-08-19
EP4242321A2 (en) 2023-09-13
EA034459B1 (en) 2020-02-11
TW202030326A (en) 2020-08-16
TWI707038B (en) 2020-10-11
KR20210102999A (en) 2021-08-20
US9403141B2 (en) 2016-08-02
US10618024B2 (en) 2020-04-14
US20180029001A1 (en) 2018-02-01
US10272410B2 (en) 2019-04-30
US11185837B2 (en) 2021-11-30
US20190314783A1 (en) 2019-10-17
KR102207770B1 (en) 2021-01-26
DK3030682T3 (en) 2020-09-14
EP3722442A1 (en) 2020-10-14
US20160089651A1 (en) 2016-03-31
EP3722442B1 (en) 2023-04-05
US10773232B2 (en) 2020-09-15
US9555388B2 (en) 2017-01-31
KR102160389B1 (en) 2020-09-28
US10639609B2 (en) 2020-05-05
KR20200111278A (en) 2020-09-28
US20160090592A1 (en) 2016-03-31
US10632445B2 (en) 2020-04-28
KR102122632B1 (en) 2020-06-16
GB2533173A (en) 2016-06-15
US20150038373A1 (en) 2015-02-05
CN105637097A (en) 2016-06-01
EP4242321A3 (en) 2023-09-27
JP2016527313A (en) 2016-09-08
TW201606149A (en) 2016-02-16
TWI646230B (en) 2019-01-01
US20160096160A1 (en) 2016-04-07
JP2020022453A (en) 2020-02-13
WO2015021080A3 (en) 2015-05-28
KR20210008925A (en) 2021-01-25
US20160340672A1 (en) 2016-11-24
TWI805996B (en) 2023-06-21
TWI695067B (en) 2020-06-01
US20170327819A1 (en) 2017-11-16
US9839894B2 (en) 2017-12-12
GB201502580D0 (en) 2015-04-01
EA201690081A1 (en) 2016-10-31
US20230086062A1 (en) 2023-03-23
TWI721929B (en) 2021-03-11
TW202118874A (en) 2021-05-16
US20160339409A1 (en) 2016-11-24
JP2023093506A (en) 2023-07-04
EP3030682A4 (en) 2017-05-31
US20170362589A1 (en) 2017-12-21
CA2918258A1 (en) 2015-02-12
EP3030682B1 (en) 2020-06-03
ES2815099T3 (en) 2021-03-29
US20180264428A1 (en) 2018-09-20
US10583415B2 (en) 2020-03-10
KR102351838B1 (en) 2022-01-18
HK1225761A1 (en) 2017-09-15
KR20220012401A (en) 2022-02-03
WO2015021080A2 (en) 2015-02-12
US20190366294A1 (en) 2019-12-05
US9889423B2 (en) 2018-02-13
TW202102674A (en) 2021-01-16
EP3030682A2 (en) 2016-06-15
ES2943498T3 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US20230211308A1 (en) De novo synthesized gene libraries

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION