US20230201299A1 - Methods for the prevention and treatment of burn injuries and secondary complications - Google Patents
Methods for the prevention and treatment of burn injuries and secondary complications Download PDFInfo
- Publication number
- US20230201299A1 US20230201299A1 US17/879,143 US202217879143A US2023201299A1 US 20230201299 A1 US20230201299 A1 US 20230201299A1 US 202217879143 A US202217879143 A US 202217879143A US 2023201299 A1 US2023201299 A1 US 2023201299A1
- Authority
- US
- United States
- Prior art keywords
- burn
- arg
- peptide
- lys
- phe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006378 damage Effects 0.000 title claims abstract description 154
- 238000000034 method Methods 0.000 title claims abstract description 84
- 238000011282 treatment Methods 0.000 title description 51
- 230000002265 prevention Effects 0.000 title description 14
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 189
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 170
- 208000014674 injury Diseases 0.000 claims abstract description 142
- 206010020674 Hypermetabolism Diseases 0.000 claims abstract description 33
- 230000008816 organ damage Effects 0.000 claims abstract description 10
- 230000004768 organ dysfunction Effects 0.000 claims description 25
- 230000009885 systemic effect Effects 0.000 claims description 21
- 208000024891 symptom Diseases 0.000 claims description 19
- 230000002829 reductive effect Effects 0.000 claims description 8
- 206010053159 Organ failure Diseases 0.000 claims description 6
- 210000003734 kidney Anatomy 0.000 claims description 6
- 206010067125 Liver injury Diseases 0.000 claims description 4
- 231100000234 hepatic damage Toxicity 0.000 claims description 4
- 230000008818 liver damage Effects 0.000 claims description 4
- 230000002107 myocardial effect Effects 0.000 claims description 2
- 238000011321 prophylaxis Methods 0.000 claims description 2
- 208000014540 Functional gastrointestinal disease Diseases 0.000 claims 1
- 206010019663 Hepatic failure Diseases 0.000 claims 1
- 208000001647 Renal Insufficiency Diseases 0.000 claims 1
- 206010062237 Renal impairment Diseases 0.000 claims 1
- 201000007637 bowel dysfunction Diseases 0.000 claims 1
- 230000005977 kidney dysfunction Effects 0.000 claims 1
- 201000006370 kidney failure Diseases 0.000 claims 1
- 208000019423 liver disease Diseases 0.000 claims 1
- 230000005976 liver dysfunction Effects 0.000 claims 1
- 208000007903 liver failure Diseases 0.000 claims 1
- 231100000835 liver failure Toxicity 0.000 claims 1
- 231100000516 lung damage Toxicity 0.000 claims 1
- 230000005980 lung dysfunction Effects 0.000 claims 1
- 210000002027 skeletal muscle Anatomy 0.000 abstract description 26
- 230000004064 dysfunction Effects 0.000 abstract description 18
- 230000001991 pathophysiological effect Effects 0.000 abstract description 5
- ODKSFYDXXFIFQN-SCSAIBSYSA-N D-arginine Chemical compound OC(=O)[C@H](N)CCCNC(N)=N ODKSFYDXXFIFQN-SCSAIBSYSA-N 0.000 description 102
- 235000001014 amino acid Nutrition 0.000 description 87
- 229940024606 amino acid Drugs 0.000 description 85
- 102000004196 processed proteins & peptides Human genes 0.000 description 81
- 150000001413 amino acids Chemical class 0.000 description 77
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 54
- 206010052428 Wound Diseases 0.000 description 34
- 230000000694 effects Effects 0.000 description 34
- SFVLTCAESLKEHH-WKAQUBQDSA-N (2s)-6-amino-2-[[(2s)-2-[[(2r)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-3-(4-hydroxy-2,6-dimethylphenyl)propanoyl]amino]-n-[(2s)-1-amino-1-oxo-3-phenylpropan-2-yl]hexanamide Chemical group CC1=CC(O)=CC(C)=C1C[C@H](NC(=O)[C@H](N)CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N)=O)CC1=CC=CC=C1 SFVLTCAESLKEHH-WKAQUBQDSA-N 0.000 description 33
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 31
- 210000001519 tissue Anatomy 0.000 description 31
- 241001465754 Metazoa Species 0.000 description 30
- 230000002407 ATP formation Effects 0.000 description 29
- 108010033284 arginyl-2,'6'-dimethyltyrosyl-lysyl-phenylalaninamide Proteins 0.000 description 29
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 28
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 26
- 241000699670 Mus sp. Species 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 23
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 22
- 239000011780 sodium chloride Substances 0.000 description 22
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 21
- 210000003491 skin Anatomy 0.000 description 20
- 239000000203 mixture Substances 0.000 description 18
- 230000009467 reduction Effects 0.000 description 17
- 230000001225 therapeutic effect Effects 0.000 description 17
- -1 methylamino, dimethylamino Chemical group 0.000 description 16
- 108010018625 phenylalanylarginine Proteins 0.000 description 16
- 239000003642 reactive oxygen metabolite Substances 0.000 description 16
- 150000003839 salts Chemical class 0.000 description 16
- 125000003118 aryl group Chemical group 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- 230000002438 mitochondrial effect Effects 0.000 description 14
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 13
- 210000000056 organ Anatomy 0.000 description 13
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 12
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 12
- DRBBFCLWYRJSJZ-UHFFFAOYSA-N N-phosphocreatine Chemical compound OC(=O)CN(C)C(=N)NP(O)(O)=O DRBBFCLWYRJSJZ-UHFFFAOYSA-N 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 230000010388 wound contraction Effects 0.000 description 12
- OZILORBBPKKGRI-RYUDHWBXSA-N Phe-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 OZILORBBPKKGRI-RYUDHWBXSA-N 0.000 description 11
- 235000018102 proteins Nutrition 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 102000003952 Caspase 3 Human genes 0.000 description 10
- 108090000397 Caspase 3 Proteins 0.000 description 10
- 241000124008 Mammalia Species 0.000 description 10
- 102000035195 Peptidases Human genes 0.000 description 10
- 108091005804 Peptidases Proteins 0.000 description 10
- 239000004365 Protease Substances 0.000 description 10
- 125000000539 amino acid group Chemical group 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- AHLPHDHHMVZTML-SCSAIBSYSA-N D-Ornithine Chemical compound NCCC[C@@H](N)C(O)=O AHLPHDHHMVZTML-SCSAIBSYSA-N 0.000 description 9
- 238000004435 EPR spectroscopy Methods 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 230000037396 body weight Effects 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 208000035475 disorder Diseases 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 102100040958 Aconitate hydratase, mitochondrial Human genes 0.000 description 8
- 101000965314 Homo sapiens Aconitate hydratase, mitochondrial Proteins 0.000 description 8
- 241000700159 Rattus Species 0.000 description 8
- 206010042496 Sunburn Diseases 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000000069 prophylactic effect Effects 0.000 description 8
- 230000029663 wound healing Effects 0.000 description 8
- PECYZEOJVXMISF-UWTATZPHSA-N 3-amino-D-alanine Chemical compound NC[C@@H](N)C(O)=O PECYZEOJVXMISF-UWTATZPHSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- 102000015494 Mitochondrial Uncoupling Proteins Human genes 0.000 description 7
- 108010050258 Mitochondrial Uncoupling Proteins Proteins 0.000 description 7
- 230000006907 apoptotic process Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 238000004679 31P NMR spectroscopy Methods 0.000 description 6
- 239000004475 Arginine Substances 0.000 description 6
- 102000011727 Caspases Human genes 0.000 description 6
- 108010076667 Caspases Proteins 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 6
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 6
- 239000004472 Lysine Substances 0.000 description 6
- 108020005196 Mitochondrial DNA Proteins 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 206010040047 Sepsis Diseases 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 6
- 235000009697 arginine Nutrition 0.000 description 6
- 229960003121 arginine Drugs 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- 230000035876 healing Effects 0.000 description 6
- 235000018977 lysine Nutrition 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000010627 oxidative phosphorylation Effects 0.000 description 6
- 229950007002 phosphocreatine Drugs 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 235000002374 tyrosine Nutrition 0.000 description 6
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- FADYJNXDPBKVCA-STQMWFEESA-N Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 FADYJNXDPBKVCA-STQMWFEESA-N 0.000 description 5
- 210000003486 adipose tissue brown Anatomy 0.000 description 5
- 125000003282 alkyl amino group Chemical group 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 229960002885 histidine Drugs 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 210000003141 lower extremity Anatomy 0.000 description 5
- 238000004020 luminiscence type Methods 0.000 description 5
- 108010038320 lysylphenylalanine Proteins 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000003470 mitochondria Anatomy 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000011552 rat model Methods 0.000 description 5
- 230000037390 scarring Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 108010051110 tyrosyl-lysine Proteins 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 229960005261 aspartic acid Drugs 0.000 description 4
- 235000003704 aspartic acid Nutrition 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 4
- 125000001246 bromo group Chemical group Br* 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 238000007707 calorimetry Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 238000001212 derivatisation Methods 0.000 description 4
- 125000004663 dialkyl amino group Chemical group 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 235000014304 histidine Nutrition 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 125000002346 iodo group Chemical group I* 0.000 description 4
- 210000005228 liver tissue Anatomy 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 230000004065 mitochondrial dysfunction Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 230000036542 oxidative stress Effects 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- 150000003335 secondary amines Chemical class 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000012453 sprague-dawley rat model Methods 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 206010006802 Burns second degree Diseases 0.000 description 3
- 206010006803 Burns third degree Diseases 0.000 description 3
- 206010006895 Cachexia Diseases 0.000 description 3
- 150000008574 D-amino acids Chemical class 0.000 description 3
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- 208000034486 Multi-organ failure Diseases 0.000 description 3
- 208000010718 Multiple Organ Failure Diseases 0.000 description 3
- 206010028289 Muscle atrophy Diseases 0.000 description 3
- 108010016731 PPAR gamma Proteins 0.000 description 3
- 102000012132 Peroxisome proliferator-activated receptor gamma Human genes 0.000 description 3
- 206010039509 Scab Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 3
- 206010053615 Thermal burn Diseases 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 125000003636 chemical group Chemical group 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 210000004207 dermis Anatomy 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000003166 hypermetabolic effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000003908 liver function Effects 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 3
- 201000000585 muscular atrophy Diseases 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 231100001160 nonlethal Toxicity 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000037309 reepithelialization Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 230000000451 tissue damage Effects 0.000 description 3
- 231100000827 tissue damage Toxicity 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- OZSNQMIQTHGXPJ-QMMMGPOBSA-N (2s)-2-amino-3-[(2-aminobenzoyl)amino]propanoic acid Chemical compound OC(=O)[C@@H](N)CNC(=O)C1=CC=CC=C1N OZSNQMIQTHGXPJ-QMMMGPOBSA-N 0.000 description 2
- LSNDLIKCFHLFKO-JTQLQIEISA-N (2s)-2-azaniumyl-3-(4-hydroxy-2,6-dimethylphenyl)propanoate Chemical compound CC1=CC(O)=CC(C)=C1C[C@H](N)C(O)=O LSNDLIKCFHLFKO-JTQLQIEISA-N 0.000 description 2
- SJJCQDRGABAVBB-UHFFFAOYSA-N 1-hydroxy-2-naphthoic acid Chemical compound C1=CC=CC2=C(O)C(C(=O)O)=CC=C21 SJJCQDRGABAVBB-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-aminobutanoic acid Chemical compound CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- JJMDCOVWQOJGCB-UHFFFAOYSA-N 5-aminopentanoic acid Chemical compound [NH3+]CCCCC([O-])=O JJMDCOVWQOJGCB-UHFFFAOYSA-N 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 2
- 108010082126 Alanine transaminase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 244000105975 Antidesma platyphyllum Species 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 206010015548 Euthanasia Diseases 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- QCZYYEFXOBKCNQ-STQMWFEESA-N Lys-Phe Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QCZYYEFXOBKCNQ-STQMWFEESA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 206010062575 Muscle contracture Diseases 0.000 description 2
- 229940121954 Opioid receptor agonist Drugs 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- QGMRQYFBGABWDR-UHFFFAOYSA-M Pentobarbital sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)[N-]C1=O QGMRQYFBGABWDR-UHFFFAOYSA-M 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- JXNRXNCCROJZFB-RYUDHWBXSA-N Tyr-Arg Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 JXNRXNCCROJZFB-RYUDHWBXSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 210000001142 back Anatomy 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000009534 blood test Methods 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 230000004856 capillary permeability Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 208000006111 contracture Diseases 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002637 fluid replacement therapy Methods 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000002695 general anesthesia Methods 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 235000009424 haa Nutrition 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229960002591 hydroxyproline Drugs 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 210000004731 jugular vein Anatomy 0.000 description 2
- 108010053037 kyotorphin Proteins 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229930182817 methionine Chemical group 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000008965 mitochondrial swelling Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000003402 opiate agonist Substances 0.000 description 2
- 210000004789 organ system Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000007310 pathophysiology Effects 0.000 description 2
- 229960002275 pentobarbital sodium Drugs 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 150000002994 phenylalanines Chemical class 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000006318 protein oxidation Effects 0.000 description 2
- 239000007845 reactive nitrogen species Substances 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- 231100001274 therapeutic index Toxicity 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 238000011277 treatment modality Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 2
- 150000003668 tyrosines Chemical class 0.000 description 2
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- BVAUMRCGVHUWOZ-ZETCQYMHSA-N (2s)-2-(cyclohexylazaniumyl)propanoate Chemical compound OC(=O)[C@H](C)NC1CCCCC1 BVAUMRCGVHUWOZ-ZETCQYMHSA-N 0.000 description 1
- WJJGAKCAAJOICV-JTQLQIEISA-N (2s)-2-(dimethylamino)-3-(4-hydroxyphenyl)propanoic acid Chemical group CN(C)[C@H](C(O)=O)CC1=CC=C(O)C=C1 WJJGAKCAAJOICV-JTQLQIEISA-N 0.000 description 1
- LCKZFWNZLABYEW-XQUALCHDSA-N (2s)-5-amino-2-[[(2s)-2-[[(2r)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-phenylpropanoyl]amino]pentanamide Chemical compound C([C@@H](C(=O)N[C@@H](CCCN)C(N)=O)NC(=O)[C@@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 LCKZFWNZLABYEW-XQUALCHDSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- DCYGAPKNVCQNOE-UHFFFAOYSA-N 2,2,2-triphenylacetic acid Chemical class C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)O)C1=CC=CC=C1 DCYGAPKNVCQNOE-UHFFFAOYSA-N 0.000 description 1
- CSEWAUGPAQPMDC-UHFFFAOYSA-N 2-(4-aminophenyl)acetic acid Chemical compound NC1=CC=C(CC(O)=O)C=C1 CSEWAUGPAQPMDC-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N 2-Aminobutanoic acid Natural products CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- RDFMDVXONNIGBC-UHFFFAOYSA-N 2-aminoheptanoic acid Chemical compound CCCCCC(N)C(O)=O RDFMDVXONNIGBC-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- ALKYHXVLJMQRLQ-UHFFFAOYSA-N 3-Hydroxy-2-naphthoate Chemical class C1=CC=C2C=C(O)C(C(=O)O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-N 0.000 description 1
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 1
- XFDUHJPVQKIXHO-UHFFFAOYSA-N 3-aminobenzoic acid Chemical compound NC1=CC=CC(C(O)=O)=C1 XFDUHJPVQKIXHO-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108010064733 Angiotensins Proteins 0.000 description 1
- 102000015427 Angiotensins Human genes 0.000 description 1
- 101800000068 Antioxidant peptide Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- 206010006797 Burns first degree Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-GSVOUGTGSA-N D-alpha-aminobutyric acid Chemical compound CC[C@@H](N)C(O)=O QWCKQJZIFLGMSD-GSVOUGTGSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- OFVBLKINTLPEGH-UHFFFAOYSA-N DL-beta-Homophenylalanine Chemical compound OC(=O)CC(N)CC1=CC=CC=C1 OFVBLKINTLPEGH-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 206010069808 Electrical burn Diseases 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- RVKIPWVMZANZLI-UHFFFAOYSA-N H-Lys-Trp-OH Natural products C1=CC=C2C(CC(NC(=O)C(N)CCCCN)C(O)=O)=CNC2=C1 RVKIPWVMZANZLI-UHFFFAOYSA-N 0.000 description 1
- CZVQSYNVUHAILZ-UWVGGRQHSA-N His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 CZVQSYNVUHAILZ-UWVGGRQHSA-N 0.000 description 1
- 206010021138 Hypovolaemic shock Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical group OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical group C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Chemical group CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDBDVESGGJYVEH-PMVMPFDFSA-N Lys-Trp-Phe Chemical compound C([C@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](N)CCCCN)C(O)=O)C1=CC=CC=C1 KDBDVESGGJYVEH-PMVMPFDFSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 108010087066 N2-tryptophyllysine Proteins 0.000 description 1
- 238000012565 NMR experiment Methods 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 206010063562 Radiation skin injury Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000031074 Reinjury Diseases 0.000 description 1
- 102000002278 Ribosomal Proteins Human genes 0.000 description 1
- 108010000605 Ribosomal Proteins Proteins 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 238000012288 TUNEL assay Methods 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical class OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- GRSCONMARGNYHA-PMVMPFDFSA-N Trp-Lys-Phe Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O GRSCONMARGNYHA-PMVMPFDFSA-N 0.000 description 1
- JZSLIZLZGWOJBJ-PMVMPFDFSA-N Trp-Phe-Lys Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N JZSLIZLZGWOJBJ-PMVMPFDFSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004103 aerobic respiration Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000004947 alkyl aryl amino group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 150000001510 aspartic acids Chemical class 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008952 bacterial invasion Effects 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000007885 bronchoconstriction Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 229940066758 endopeptidases Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002238 fumaric acids Chemical class 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000024924 glomerular filtration Effects 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 150000002307 glutamic acids Chemical class 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 244000144993 groups of animals Species 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000002075 inversion recovery Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 238000011862 kidney biopsy Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012317 liver biopsy Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Natural products OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O methylsulfide anion Chemical compound [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 239000006218 nasal suppository Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000002913 oxalic acids Chemical class 0.000 description 1
- 125000005489 p-toluenesulfonic acid group Chemical class 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000009290 primary effect Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000003161 proteinsynthetic effect Effects 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000001732 sebaceous gland Anatomy 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 206010040560 shock Diseases 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 231100000401 skin blanching Toxicity 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid group Chemical group S(N)(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000008718 systemic inflammatory response Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229960004906 thiomersal Drugs 0.000 description 1
- DSNBHJFQCNUKMA-SCKDECHMSA-N thromboxane A2 Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@@H](O)CCCCC)O[C@@H]2O[C@H]1C2 DSNBHJFQCNUKMA-SCKDECHMSA-N 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000013042 tunel staining Methods 0.000 description 1
- 150000003667 tyrosine derivatives Chemical class 0.000 description 1
- 238000012762 unpaired Student’s t-test Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/07—Tetrapeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/16—Emollients or protectives, e.g. against radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present technology relates generally to methods of preventing or treating burn injuries and associated complications by administration of an aromatic-cationic peptide.
- Burn trauma causes approximately two million injuries, 100.000 hospital admissions, and 10,000 deaths every year in the United States. In the past, many victims did not survive the initial resuscitation period. Current survival rates and clinical outcomes have progressively improved with the advent of aggressive burn wound excision techniques, graft therapy, and superior intensive care facilities, along with a better understanding of post-burn physiological factors and fluid requirements.
- ROS Reactive Oxygen Species
- RNS Reactive Nitrogen Species
- the present disclosure provides methods for treating a subject suffering from a burn injury.
- the methods include administering to the subject an effective amount of an aromatic-cationic peptide.
- the aromatic-cationic peptide may have (a) at least one net positive charge; (b) a minimum of three amino acids; (c) a maximum of about twenty amino acids; (d) a relationship between the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) wherein 3p m is the largest number that is less than or equal to r+1; and (e) a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (p t ) wherein 3a is the largest number that is less than or equal to p t +1, except that when a is 1, p t may also be 1.
- the peptide is D-Arg-Dmt-Lys-Phe-NH 2 (SS-31).
- the present disclosure provides a method of protecting a subject against the secondary effects of a burn injury.
- peptide is administered to a subject following a burn injury to treat or ameliorate the incidence of hypermetabolism.
- peptide is administered to a subject following burn injury to treat or ameliorate damage to the liver, which occurs secondary to the burn injury.
- the present disclosure provides a method for protecting a subject against the primary effects of a burn by administering an effective amount of an aromatic-cationic peptide prior to exposure of the subject to an agent capable of causing a burn, e.g., sunlight (UV), thermal radiation, or radiation associated with radiotherapy.
- an agent capable of causing a burn e.g., sunlight (UV), thermal radiation, or radiation associated with radiotherapy.
- the peptide may be administered topically to a subject at risk for receiving a burn.
- the systemic injury is organ dysfunction or failure, such as organ dysfunction or failure that affects one or more of the lung, liver, kidneys, or bowel.
- the peptide is administered following a burn injury but prior to the onset of symptoms of organ dysfunction or failure. In another embodiment, the peptide is administered following the onset of symptoms of organ dysfunction or failure.
- the systemic injury is hypermetabolism.
- the peptide is administered following a burn injury, but prior to the onset of symptoms of hypermetabolism. In another embodiment, the peptide is administered following the onset of symptoms hypermetabolism.
- the systemic injury is skeletal muscle dysfunction, such as skeletal muscle wasting and cachexia.
- the peptide is administered following a burn injury, but prior to the onset of symptoms of skeletal muscle dysfunction. In another embodiment, the peptide is administered following the onset of symptoms skeletal muscle dysfunction.
- the present disclosure provides methods for increasing ATP synthesis rate in a mammalian tissue, the method comprising administering to a subject an effective amount of an aromatic-cationic peptide.
- the aromatic-cationic peptide is a peptide having the formula D-Arg-2′6′-dimethyltyrosine-Lys-Phe-NH 2 .
- the ATP synthesis rate in the mammalian tissue is increased compared to a control tissue.
- the control tissue is tissue from a mammalian subject not administered the peptide.
- increasing the ATP synthesis rate is by recovery of the mitochondrial redox status.
- increasing the ATP synthesis rate is by increasing the expression or activity of the peroxisome proliferator activated receptor-gamma coactivator-1 ⁇ (PGC-1 ⁇ ) protein.
- the present disclosure provides methods for treating a disease or condition characterized by a reduced ATP synthesis rate, the method comprising administering to a mammal in need thereof an effective amount of an aromatic-cationic peptide.
- the aromatic-cationic peptide is a peptide having the formula D-Arg-2′6′-dimethyltyrosine-Lys-Phe-NH 2 .
- the disease or condition is a burn injury.
- the peptide is defined by formula I:
- R 1 and R 2 are each independently selected from
- R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently selected from
- halogen encompasses chloro, fluoro, bromo, and iodo; and n is an integer from 1 to 5.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 are all hydrogen; and n is 4.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 are all hydrogen; R 8 and R 12 are methyl; R 10 is hydroxyl; and n is 4.
- the peptide is defined by formula II:
- R 1 and R 2 are each independently selected from
- R 3 and R 4 are each independently selected from
- halogen encompasses chloro, fluoro, bromo, and iodo
- R 5 , R 6 , R 7 , R 8 , and R 9 are each independently selected from
- halogen encompasses chloro, fluoro, bromo, and iodo
- n is an integer from 1 to 5.
- R 1 and R 2 are hydrogen; R 3 and R 4 are methyl; R 5 , R 6 , R 7 , R 8 , and R 9 are all hydrogen; and n is 4.
- FIG. 1 is a flow chart showing the protocol and dosing schedule for the study presented in Example 1.
- FIG. 2 is a graph showing the VCO 2 concentration over time of an exemplary rat that has been burned and administered the SS-31 peptide.
- FIG. 3 is a flow chart showing the protocol and dosing schedule for the study presented in Example 2.
- FIG. 4 is a series of micrographs showing sections of liver tissue from the various treatment groups of Example 2.
- FIG. 5 is photograph of a western blot analysis of caspase-3 cleavage from the various treatment groups of Example 2.
- FIG. 6 is a graph showing caspase-3 activity from the various treatment groups of Example 2.
- FIG. 7 is a photograph of a western blot analysis showing protein oxidation from the various treatment groups of Example 2.
- FIG. 8 is a chart showing the wound size comparison between untreated and SS-31 peptide treated groups.
- FIG. 9 is a graph showing the reduction of the nitroxide in the gastrocnemius muscle before and after a burn injury.
- FIG. 10 is a graph showing the reduction in nitroxide in the gastrocnemius at 0 h after a burn injury in subjects administered saline or SS-31 peptide.
- FIG. 11 is a graph showing the reduction in nitroxide in the gastrocnemius at 3 h after a burn injury in subjects administered saline or SS-31 peptide.
- FIG. 12 is a graph showing the reduction in nitroxide in the gastrocnemius at 6 h after a burn injury in subjects administered saline or SS-31 peptide.
- FIG. 13 is a graph showing the reduction in nitroxide in the gastrocnemius at 24 h after a burn injury in subjects administered saline or SS-31 peptide.
- FIG. 14 is a graph showing the reduction in nitroxide in the gastrocnemius at 48 h after a burn injury in subjects administered saline or SS-31 peptide.
- FIG. 15 is a graph of ATP synthesis rate ( ⁇ mol ⁇ /g/s) in control (C), control+SS-31 peptide (C+P), burned (B), and burned+peptide SS-31 (B+P) as measured by 31 P NMR at 6 hours after burn.
- FIG. 16 is a graph of mitochondrial aconitase activity in control, burn, and peptide-treated subjects.
- the present disclosure is based on the surprising discovery by the inventors that certain aromatic-cationic peptides can treat or ameliorate the local and distant pathophysiological effects of burn injury, including, but not limited to, hypermetabolism and organ damage. It is to be appreciated that certain aspects, modes, embodiments, variations, and features of the invention are described below in various levels of detail in order to provide a substantial understanding of the present invention.
- the “administration” of an agent, drug, or peptide to a subject includes any route of introducing or delivering to a subject a compound to perform its intended function. Administration can be carried out by any suitable route, including orally, intranasally, parenterally (intravenously, intramuscularly, intraperitoneally, or subcutaneously), rectally, or topically. Administration includes self-administration and the administration by another.
- amino acid includes naturally-occurring amino acids and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally-occurring amino acids.
- Naturally-occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
- Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally-occurring amino acid, i.e., an ⁇ -carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium.
- Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally-occurring amino acid.
- Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally-occurring amino acid. Amino acids can be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.
- burn or “burn conditions” are intended to encompass the full range of such conditions, including those resulting from: excessive exposure to radiation, e.g., solar radiation resulting in sunburn, thermal radiation, welding flash, fires, electrical discharge, contact with chemicals, friction, contact with very hot objects such as cooking apparatus elements or hot fluids such as scalding water, hot oil, etc.
- radiation e.g., solar radiation resulting in sunburn, thermal radiation, welding flash, fires, electrical discharge, contact with chemicals, friction, contact with very hot objects such as cooking apparatus elements or hot fluids such as scalding water, hot oil, etc.
- the term “effective amount” refers to a quantity sufficient to achieve a desired therapeutic and/or prophylactic effect, e.g., an amount which results in the prevention of, or a decrease in, a burn injury or one or more conditions associated with a burn injury.
- the amount of a composition administered to the subject will depend on the type and severity of the disease and on the characteristics of the individual, such as general health, age, sex, body weight and tolerance to drugs. It will also depend on the degree, severity and type of the injury. The skilled artisan will be able to determine appropriate dosages depending on these and other factors.
- the compositions can also be administered in combination with one or more additional therapeutic compounds.
- an “isolated” or “purified” polypeptide or peptide is substantially free of cellular material or other contaminating polypeptides from the cell or tissue source from which the agent is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.
- an isolated aromatic-cationic peptide would be free of materials that would interfere with therapeutic uses of the agent.
- Such interfering materials may include enzymes, hormones and other proteinaceous and nonproteinaceous solutes.
- medical condition includes, but is not limited to, any condition or disease manifested as one or more physical and/or psychological symptoms for which treatment and/or prevention is desirable, and includes previously and newly identified diseases and other disorders.
- a medical condition may be a burn injury or any associated conditions or complications.
- organ refers to a part or structure of the body which is adapted for a special function or functions, and includes, but is not limited to, the lungs, the liver, the kidneys, and the bowel, including the stomach and intestines. In particular, it is contemplated that organs which are particularly susceptible to dysfunction and failure arising from a burn to another part of the body are encompassed by this term.
- organ dysfunction refers to a continuum of indications ranging from a minor perturbation in the normal function(s) of an organ to “organ failure,” i.e., the cessation of sufficient organ output to sustain life.
- organ failure i.e., the cessation of sufficient organ output to sustain life.
- Various diagnostic and clinical markers known in the art can be used to assess the function of organs.
- polypeptide As used herein, the terms “polypeptide,” “peptide,” and “protein” are used interchangeably herein to mean a polymer comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres.
- Polypeptide refers to both short chains, commonly referred to as peptides, glycopeptides or oligomers, and to longer chains, generally referred to as proteins.
- Polypeptides may contain amino acids other than the 20 gene-encoded amino acids.
- Polypeptides include amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques that are well known in the art. Such modifications are well described in basic texts, as well as in a voluminous research literature.
- prevention or “preventing” of a disorder or condition refers to a compound that, in a statistical sample, reduces the occurrence of the disorder or condition in the treated sample relative to an untreated control sample, or delays the onset or reduces the severity of one or more symptoms of the disorder or condition relative to the untreated control sample.
- the words “protect” or “protecting” refer to decreasing the likelihood and/or risk that the subject treated with a peptide of the invention will develop a given disease or disorder, e.g., a burn injury or associated conditions or complications.
- the likelihood of developing the disease or disorder is considered to be reduced if the likelihood is decreased by at least about 10%, preferably at least about 25%, more preferably at least about 50%, even more preferably at least about 75%, and most preferably at least about 90%, in comparison to the likelihood and/or risk that the same subject untreated with a peptide of the invention will develop an injury.
- the peptides protect a subject against distant pathophysiological effects of burn injury when the peptides are administered after a subject receives a burn injury, but before the onset of symptoms of systemic injury.
- the peptides will protect a subject from the primary burn injury when administered topically or systemically prior to the subject's exposure to an agent capable of causing a burn, e.g., sunlight or radiation.
- subject refers to a member of any vertebrate species.
- the methods of the presently disclosed subject matter are particularly useful for warm-blooded vertebrates.
- the treatment of mammals such as humans, as well as those mammals of importance due to being endangered, of economic importance (animals raised on farms for consumption by humans) and/or social importance (animals kept as pets or in zoos) to humans.
- the subject is a human.
- the terms “treating,” “treatment,” or “alleviation” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder.
- a subject is successfully “treated” for a disease or condition if, after receiving a therapeutic amount of the aromatic-cationic peptides according to the methods described herein, the subject shows observable and/or measurable reduction in or absence of one or more signs and symptoms of a particular disease or condition.
- treatment or prevention may include a reduction in the size or severity of the burn wound; a reduction in hypermetabolism, liver damage or function; and improved effects on other organ systems.
- the various modes of treatment or prevention of medical conditions as described are intended to mean “substantial”, which includes total but also less than total treatment or prevention, and wherein some biologically or medically relevant result is achieved.
- the aromatic-cationic peptides useful in the present methods are water-soluble and highly polar. Despite these properties, the peptides can readily penetrate cell membranes.
- the aromatic-cationic peptides useful in the present methods include a minimum of three amino acids, and preferably include a minimum of four amino acids, covalently joined by peptide bonds.
- the maximum number of amino acids present in the aromatic-cationic peptides of the present methods is about twenty amino acids covalently joined by peptide bonds.
- the maximum number of amino acids is about twelve, more preferably about nine, and most preferably about six.
- the number of amino acids present in the peptides is four.
- the amino acids of the aromatic-cationic peptides can be any amino acid.
- the amino acids may be naturally occurring.
- Naturally occurring amino acids include, for example, the twenty most common levorotatory (L) amino acids normally found in mammalian proteins, i.e., alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Glu), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Heu), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, (Trp), tyrosine (Tyr), and valine (Val).
- Other naturally occurring amino acids include, for example, amino acids that are synthesized in metabolic processes not associated with protein synthesis. For example
- the peptides can optionally contain one or more non-naturally occurring amino acids.
- the non-naturally occurring amino acids may be L-, dextrorotatory (D), or mixtures thereof.
- the peptide may have no amino acids that are naturally occurring.
- Non-naturally occurring amino acids are those amino acids that typically are not synthesized in normal metabolic processes in living organisms, and do not naturally occur in proteins. In addition, the non-naturally occurring amino acids are not recognized by common proteases.
- the non-naturally occurring amino acid can be present at any position in the peptide.
- the non-naturally occurring amino acid can be at the N-terminus, the C-terminus, or at any position between the N-terminus and the C-terminus.
- the non-natural amino acids may, for example, comprise alkyl, aryl, or alkylaryl groups.
- alkyl amino acids include ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -aminovaleric acid, and ⁇ -aminocaproic acid.
- aryl amino acids include ortho-, meta, and para-aminobenzoic acid.
- alkylaryl amino acids include ortho-, meta-, and para-aminophenylacetic acid, and ⁇ -phenyl- ⁇ -aminobutyric acid.
- Non-naturally occurring amino acids also include derivatives of naturally occurring amino acids.
- the derivatives of naturally occurring amino acids may, for example, include the addition of one or more chemical groups to the naturally occurring amino acid.
- one or more chemical groups can be added to one or more of the 2′, 3′, 4′, 5′, or 6′ position of the aromatic ring of a phenylalanine or tyrosine residue, or the 4′, 5′, 6′, or 7′ position of the benzo ring of a tryptophan residue.
- the group can be any chemical group that can be added to an aromatic ring.
- Some examples of such groups include branched or unbranched C 1 -C 4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl, C 1 -C 4 alkyloxy (i.e., alkoxy), amino, C 1 -C 4 alkylamino and C 1 -C 4 dialkylamino (e.g., methylamino, dimethylamino), nitro, hydroxyl, halo (i.e., fluoro, chloro, bromo, or iodo).
- Some specific examples of non-naturally occurring derivatives of naturally occurring amino acids include norvaline (Nva), norleucine (Nle), and hydroxyproline (Hyp).
- Another example of a modification of an amino acid is the derivatization of a carboxyl group of an aspartic acid or a glutamic acid residue of the peptide.
- derivatization is amidation with ammonia or with a primary or secondary amine, e.g., methylamine, ethylamine, dimethylamine or diethylamine.
- Another example of derivatization includes esterification with, for example, methyl or ethyl alcohol.
- Another such modification includes derivatization of an amino group of a lysine, arginine, or histidine residue.
- amino groups can be acylated.
- Some suitable acyl groups include, for example, a benzoyl group or an alkanoyl group comprising any of the C 1 -C 4 alkyl groups mentioned above, such as an acetyl or propionyl group.
- the non-naturally occurring amino acids are suitably resistant, and more preferably insensitive, to common proteases.
- non-naturally occurring amino acids that are resistant or insensitive to proteases include the dextrorotatory (D-) form of any of the above-mentioned naturally occurring L-amino acids, as well as L- and/or D-non-naturally occurring amino acids.
- the D-amino acids do not normally occur in proteins, although they are found in certain peptide antibiotics that are synthesized by means other than the normal ribosomal protein synthetic machinery of the cell. As used herein, the D-amino acids are considered to be non-naturally occurring amino acids.
- the peptides should have less than five, less than four, less than three, less than two contiguous L-amino acids recognized by common proteases, irrespective of whether the amino acids are naturally or non-naturally occurring. If the peptide contains protease sensitive sequences of amino acids, at least one of the amino acids may be a non-naturally-occurring D-amino acid, thereby conferring protease resistance.
- An example of a protease sensitive sequence includes two or more contiguous basic amino acids that are readily cleaved by common proteases, such as endopeptidases and trypsin. Examples of basic amino acids include arginine, lysine and histidine.
- the aromatic-cationic peptides have a minimum number of net positive charges at physiological pH in comparison to the total number of amino acid residues in the peptide.
- the minimum number of net positive charges at physiological pH will be referred to below as (p m ).
- the total number of amino acid residues in the peptide will be referred to below as (r).
- the minimum number of net positive charges discussed below are all at physiological pH.
- physiological pH refers to the normal pH in the cells of the tissues and organs of the mammalian body. For instance, the physiological pH of a human is normally approximately 7.4, but normal physiological pH in mammals may be any pH from about 7.0 to about 7.8.
- Net charge refers to the balance of the number of positive charges and the number of negative charges carried by the amino acids present in the peptide. In this specification, it is understood that net charges are measured at physiological pH.
- the naturally occurring amino acids that are positively charged at physiological pH include L-lysine, L-arginine, and L-histidine.
- the naturally occurring amino acids that are negatively charged at physiological pH include L-aspartic acid and L-glutamic acid.
- a peptide has a positively charged N-terminal amino group and a negatively charged C-terminal carboxyl group. The charges cancel each other out at physiological pH.
- the aromatic-cationic peptides have a relationship between the minimum number of net positive charges at physiological pH (p m ) and the total number of amino acid residues (r) wherein 3p m is the largest number that is less than or equal to r+1.
- the relationship between the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) is as follows:
- the aromatic-cationic peptides have a relationship between the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) wherein 2p m is the largest number that is less than or equal to r+1.
- the relationship between the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) is as follows:
- the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) are equal.
- the peptides have three or four amino acid residues and a minimum of one net positive charge, preferably, a minimum of two net positive charges and more preferably a minimum of three net positive charges.
- the aromatic-cationic peptides have a minimum number of aromatic groups in comparison to the total number of net positive charges (p t ). The minimum number of aromatic groups will be referred to below as (a).
- Naturally occurring amino acids that have an aromatic group include the amino acids histidine, tryptophan, tyrosine, and phenylalanine.
- the hexapeptide Lys-Gln-Tyr-D-Arg-Phe-Trp has a net positive charge of two (contributed by the lysine and arginine residues) and three aromatic groups (contributed by tyrosine, phenylalanine and tryptophan residues).
- the aromatic-cationic peptides have a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges at physiological pH (p t ) wherein 3a is the largest number that is less than or equal to p t +1, except that when p 1 is 1, a may also be 1.
- the relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (p t ) is as follows:
- the aromatic-cationic peptides have a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (p t ) wherein 2a is the largest number that is less than or equal to p t +1.
- the relationship between the minimum number of aromatic amino acid residues (a) and the total number of net positive charges (p t ) is as follows:
- the number of aromatic groups (a) and the total number of net positive charges (p t ) are equal.
- Carboxyl groups especially the terminal carboxyl group of a C-terminal amino acid, may be amidated with, for example, ammonia to form the C-terminal amide.
- the terminal carboxyl group of the C-terminal amino acid may be amidated with any primary or secondary amine.
- the primary or secondary amine may, for example, be an alkyl, especially a branched or unbranched C 1 -C 4 alkyl, or an aryl amine.
- amino acid at the C-terminus of the peptide may be converted to an amido, N-methylamido, N-ethylamido, N,N-dimethylamido, N,N-diethylamido, N-methyl-N-ethylamido, N-phenylamido or N-phenyl-N-ethylamido group.
- the free carboxylate groups of the asparagine, glutamine, aspartic acid, and glutamic acid residues not occurring at the C-terminus of the aromatic-cationic peptides of the present invention may also be amidated wherever they occur within the peptide.
- the amidation at these internal positions may be with ammonia or any of the primary or secondary amines described above.
- the aromatic-cationic peptide is a tripeptide having two net positive charges and at least one aromatic amino acid. In a particular embodiment, the aromatic-cationic peptide is a tripeptide having two net positive charges and two aromatic amino acids.
- Aromatic-cationic peptides include, but are not limited to, the following exemplary peptides:
- peptides are those peptides which have a tyrosine residue or a tyrosine derivative.
- Suitable derivatives of tyrosine include 2′-methyltyrosine (Mint); 2′, 6′-dimethyltyrosine (2′6′Dmt); 3′, 5′-dimethyltyrosine (3′5′Dint); N,2′,6′-trimethyltyrosine (Tmt); and 2′-hydroxy-6′-methyltryosine (Hmt).
- the peptide has the formula Tyr-D-Arg-Phe-Lys-NH 2 (referred to herein as SS-01).
- SS-01 has a net positive charge of three, contributed by the amino acids tyrosine, arginine, and lysine and has two aromatic groups contributed by the amino acids phenylalanine and tyrosine.
- the tyrosine of SS-01 can be a modified derivative of tyrosine such as in 2′,6′-dimethyltyrosine to produce the compound having the formula 2′,6′-Dmt-D-Arg-Phe-Lys-NH 2 (referred to herein as SS-02).
- the amino acid residue at the N-terminus is arginine.
- An example of such a peptide is D-Arg-2′6′Dmt-Lys-Phe-NH 2 (referred to herein as SS-31).
- the amino acid at the N-terminus is phenylalanine or its derivative. Derivatives of phenylalanine include 2′-methylphenylalanine (Mmp), 2′,6′-dimethylphenylalanine (Dmp), N,2′,6′-trimethylphenylalanine (Tmp), and 2′-hydroxy-6′-methylphenylalanine (Hmp).
- SS-20 Phe-D-Arg-Phe-Lys-NH 2
- SS-31 Phe-D-Arg-Phe-Lys-NH 2
- the aromatic-cationic peptide has the formula Phe-D-Arg-Dmt-Lys-NH 2 (referred to herein as SS-30).
- the N-terminal phenylalanine can be a derivative of phenylalanine such as 2′,6′-dimethylphenylalanine (2′6′Dmp), SS-01 containing 2′,6′-dimethylphenylalanine at amino acid position one has the formula 2′,6′-Dmp-D-Arg-Dmt-Lys-NH 2 .
- Suitable substitution variants of the peptides include conservative amino acid substitutions.
- Amino acids may be grouped according to their physicochemical characteristics as follows:
- Non-polar amino acids Ala(A) Ser(S) Thr(T) Pro(P) Gly(G) Cys (C);
- Aromatic amino acids Phe(F) Tyr(Y) Trp(W) His (H).
- substitutions of an amino acid in a peptide by another amino acid in the same group is referred to as a conservative substitution and may preserve the physicochemical characteristics of the original peptide.
- substitutions of an amino acid in a peptide by another amino acid in a different group are generally more likely to alter the characteristics of the original peptide.
- Examples of peptides include, but are not limited to, the aromatic-cationic peptides shown in Table 5.
- mu-opioid analogs include, but are not limited to, the aromatic-cationic peptides shown in Table 6.
- amino acids of the peptides shown in Tables 5 and 6 may be in either the L- or the D-configuration.
- peptides useful in the methods of the present invention may be chemically synthesized by any of the methods well known in the art. Suitable methods for synthesizing the protein include, for example those described by Stuart and Young in “Solid Phase Peptide Synthesis,” Second Edition, Pierce Chemical Company (1984), and in “Solid Phase Peptide Synthesis,” Methods Enzymol., 289, Academic Press, Inc, New York (1997).
- the aromatic-cationic peptides described herein are useful in treating or preventing burn injuries and systemic conditions associated with a burn injury.
- the aromatic-cationic peptides may be administered to a subject following a burn and after the onset of detectable symptoms of systemic injury.
- treatment is used herein in its broadest sense and refers to use of an aromatic-cationic peptide for a partial or complete cure of the burn and/or secondary complications, such as organ dysfunction and hypermetabolism.
- the aromatic-cationic peptides of the invention may be administered to a subject following a burn, but before the onset of detectable symptoms of systemic injury in order to protect against or provide prophylaxis for the systemic injury, such as organ damage or hypermetabolism.
- prevention is used herein in its broadest sense and refers to a prophylactic use which completely or partially prevents local injury to the skin or systemic injury, such as organ dysfunction or hypermetabolism following burns. It is also contemplated that the compounds may be administered to a subject at risk of receiving burns.
- Burns are generally classified accordingly to their seriousness and extent.
- First degree burns are the mildest and normally only affect the epidermis.
- the burn site is red, painful, dry, no blisters, very sensitive to touch and the damaged skin may be slightly moist from the leakage of fluid in the deeper layers of the skin.
- the sensory nerve ends are also exposed and create pain. Mild sunburn is typical of a first degree burn.
- Second degree burns is where both the epidermis and dermis are affected. The damage is deeper and blisters usually appear on the skin. The skin is still painful and sensitive, as the nerves have been affected as well as the sebaceous glands in the area.
- Third degree burns are the most serious, as the tissues in all layers of the skin are dead. Normally the damaged area goes down into the subcutaneous tissue.
- the burnt surface can have several types of appearance, from white to black (charred) or bright red from blood in the bottom of the wound. In most cases, it can penetrate down through the superficial fascia, and into the muscle layers where various arteries and veins may be affected. Because the skin nerves are damaged the burn can be quite painless and on touching the skin sometimes it has no sensation whatsoever. The lack of sensation or blanching of the skin blood vessels on pressure indicates damaged skin.
- the invention is applicable to the treatment of burns from any cause, including dry heat or cold burns, scalds, sunburn, electrical burns, chemical agents such as acids and alkalis, including hydrofluoric acid, formic acid, anhydrous ammonia, cement, and phenol, or radiation burns. Burns resulting from exposure to either high or low temperature are within the scope of the invention. The severity and extent of the burn may vary, but secondary organ damage or hypermetabolism will usually arise when the burns are very extensive or very severe (second or third degree burns). The development of secondary organ dysfunction or failure is dependent on the extent of the burn, the response of the patient's immune system and other factors, such as infection and sepsis.
- the aromatic-cationic peptides are used to treat or prevent organ dysfunction secondary to a burn.
- the chain of physiological processes which lead to organ dysfunction following burns is complex.
- release of catecholamines, vasopressin, and angiotensin causes peripheral and splanchnic bed vasoconstriction that can compromise perfusion of organs remote to the injury.
- Myocardial contractility also may be reduced by the release of TNF- ⁇ .
- Activated neutrophils are sequestered in dermal and distant organs such as the lung within hours following a burn injury, resulting in the release of toxic reactive oxygen species and proteases and producing vascular endothelial cell damage.
- pulmonary capillary and alveolar epithelia When the integrity of pulmonary capillary and alveolar epithelia is compromised, plasma and blood leak into the interstitial and intra-alveolar spaces, resulting in pulmonary edema. A decrease in pulmonary function can occur in severely burned patients, as a result of bronchoconstriction caused by humoral factors, such as histamine, serotonin, and thromboxane A2.
- Severe burn injury also causes a coagulation necrosis of tissue. This initiates a physiological response in every organ system, the severity of which is related to the extent of the burn. Tissue destruction also results in increased capillary permeability, with profound egress of fluid from the intravascular space to the tissues adjacent to the burn wound. Inordinate amounts of fluid are lost by evaporation from the damaged surface, which is no longer able to retain water. This increase in capillary permeability, coupled with evaporative water loss, causes a hypovolemic shock, which may also in turn contribute to remote organ dysfunction or failure.
- Subjects suffering from a burn injury are also at risk for skeletal muscle dysfunction. While not wishing to be limited by theory, a major cause of the mitochondrial skeletal muscle dysfunction in burns may result from defects in oxidative phosphorylation (OXPHOS) via stimulation of mitochondrial production of reactive oxygen species (ROS) and the resulting damage to the mitochondrial DNA (mtDNA).
- OXPHOS oxidative phosphorylation
- ROS reactive oxygen species
- mtDNA mitochondrial DNA
- the aromatic-cationic peptides induce ATP synthesis via a recovery of the mitochondrial redox status or via the peroxisome proliferator activated receptor-gamma coactivator-10 which is downregulated as early as 6 hours after burn.
- the mitochondrial dysfunction caused by burn injury recovers with the administration of the aromatic-cationic peptide.
- the methods relate to treating a wound resulting from a burn injury by administering to a subject an effective amount of the aromatic-cationic peptides.
- the peptides may be administered systemically or topically to the wound. Burn wounds are typically uneven in depth and severity. There are significant areas around the coagulated tissue where injury may be reversible and damage mediated by the inflammatory and immune cells to the microvasculature of the skin could be prevented.
- the administration of the peptides will slow or ameliorate the effects of wound contraction. Wound contraction is the process which diminishes the size of a full-thickness open wound, especially a full-thickness burn.
- the tensions developed during contracture and the formation of subcutaneous fibrous tissue can result in deformity, and in particular to fixed flexure or fixed extension of a joint where the wound involves an area over the joint. Such complications are especially relevant in burn healing. No wound contraction will occur when there is no injury to the tissue; maximum contraction will occur when the burn is full-thickness and no viable tissue remains in the wound.
- the administration of the peptides prevent progression of a burn injury from a second degree burn to a third degree burn.
- the method for the treatment of burn injury may also be effective for decreasing scarring or the formation of scar tissue attendant the healing process at a burn site.
- Scarring is the formation of fibrous tissue at sites where normal tissue has been destroyed.
- the present disclosure thus also includes a method for decreasing scarring specifically at skin tissue areas of second or third degree burn. This method comprises treating an animal with a second or third degree burn with an effective amount of an aromatic cationic peptide.
- the aromatic-cationic peptides are administered a subject suffering from a burn in order to treat or prevent damage to distant organs or tissues.
- dysfunction or failure of the lung, liver, kidneys, and/or bowel following burns to the skin or other sites of the body has a significant impact on morbidity and mortality.
- systemic inflammatory responses arise in subjects following burn injury, and that it is this generalized inflammation which leads to remote tissue injury which is expressed as the dysfunction and failure of organs remote from the injury site.
- Systemic injury including organ dysfunction and hypermetabolism, is typically associated with second and third degree burns.
- a characteristic of the systemic injury, i.e., organ dysfunction or hypermetabolism is that the burn which provokes the subsequent injury or condition does not directly affect the organ in question. i.e., the injury is secondary to the burn.
- the aromatic-cationic peptides are administered to treat or protect damage to liver tissues secondary to a burn.
- Methods for assessing liver function are well known in the art and include, but are not limited to, using blood tests for serum alanine aminotransferase (ALT) levels, alkaline phosphatase (AP), or bilirubin levels.
- Methods for assessing deterioration of liver structure are also well known. Such methods include liver imaging (e.g., MRI, ultrasound), or histological evaluation of liver biopsy.
- the aromatic-cationic peptides are administered to treat or protect damage to liver tissues secondary to a burn.
- Methods for assessing liver function are well known in the art and include, but are not limited to, using blood tests for serum creatinine, or glomerular filtration rate.
- Methods for assessing deterioration of kidney structure are also well known. Such methods include kidney imaging (e.g., MRI, ultrasound), or histological evaluation of kidney biopsy.
- the aromatic-cationic peptides are administered to prevent or treat hypermetabolism associated with a burn injury.
- a hypermetabolic state may be associated with hyperglycemia, protein losses, and a significant reduction of lean body mass. Reversal of the hypermetabolic response may be accomplished by administering the aromatic-cationic peptides and by manipulating the subject's physiologic and biochemical environment through the administration of specific nutrients, growth factors, or other agents.
- the aromatic-cationic peptides of the invention may be administered to a subject suffering from a burn in order to treat or prevent hypermetabolism.
- the disclosure provides a method for preventing in a subject, a burn injury or a condition associated with a burn injury, by administering to the subject an aromatic-cationic peptide. It is contemplated that the aromatic-cationic peptides may be administered to a subject at risk of receiving burns. In prophylactic applications, pharmaceutical compositions or medicaments of aromatic-cationic peptides are administered to a subject susceptible to, or otherwise at risk of a burn injury to eliminate or reduce the risk, lessen the severity, or delay the outset of the burn injury and its complications.
- compositions or medicaments are administered to a subject already suffering from a burn injury in an amount sufficient to cure, or at least partially arrest, the symptoms of the injury, including its complications and intermediate pathological phenotypes in development of the disease.
- the aromatic-cationic peptides may be administered to a subject following a burn, but before the development of detectable symptoms of a systemic injury, such as organ dysfunction or failure, and thus the term “treatment” as used herein in its broadest sense and refers to a prophylactic use which completely or partially prevents systemic injury, such as organ dysfunction or failure or hypermetabolism following burns.
- the disclosure provides methods of treating an individual afflicted with a burn injury.
- any method known to those in the art for contacting a cell, organ or tissue with a peptide may be employed. Suitable methods include in vitro, ex vivo, or in vivo methods. In vivo methods typically include the administration of an aromatic-cationic peptide, such as those described above, to a mammal, preferably a human. When used in vivo for therapy, the aromatic-cationic peptides of the present invention are administered to the subject in effective amounts (i.e., amounts that have desired therapeutic effect). They will normally be administered parenterally, topically, or orally. The dose and dosage regimen will depend upon the degree of burn injury or secondary complications, the characteristics of the particular aromatic-cationic peptide used, e.g., its therapeutic index, the subject, and the subject's history.
- the effective amount may be determined during pre-clinical trials and clinical trials by methods familiar to physicians and clinicians.
- An effective amount of a peptide, preferably in a pharmaceutical composition, may be administered to a mammal in need thereof by any of a number of well-known methods for administering pharmaceutical compounds.
- the peptide may be administered systemically or locally.
- the peptide may be formulated as a pharmaceutically acceptable salt.
- pharmaceutically acceptable salt means a salt prepared from a base or an acid which is acceptable for administration to a patient, such as a mammal (e.g., salts having acceptable mammalian safety for a given dosage regime). However, it is understood that the salts are not required to be pharmaceutically acceptable salts, such as salts of intermediate compounds that are not intended for administration to a patient.
- Pharmaceutically acceptable salts can be derived from pharmaceutically acceptable inorganic or organic bases and from pharmaceutically acceptable inorganic or organic acids.
- salts derived from pharmaceutically acceptable inorganic bases include ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium, and zinc salts, and the like.
- Salts derived from pharmaceutically acceptable organic bases include salts of primary, secondary and tertiary amines, including substituted amines, cyclic amines, naturally-occurring amines and the like, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperadine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like.
- arginine betaine
- caffeine choline
- Salts derived from pharmaceutically acceptable inorganic acids include salts of boric, carbonic, hydrohalic (hydrobromic, hydrochloric, hydrofluoric or hydroiodic), nitric, phosphoric, sulfamic and sulfuric acids.
- Salts derived from pharmaceutically acceptable organic acids include salts of aliphatic hydroxyl acids (e.g., citric, gluconic, glycolic, lactic, lactobionic, malic, and tartaric acids), aliphatic monocarboxylic acids (e.g., acetic, butyric, formic, propionic and trifluoroacetic acids), amino acids (e.g., aspartic and glutamic acids), aromatic carboxylic acids (e.g., benzoic, p-chlorobenzoic, diphenylacetic, gentisic, hippuric, and triphenylacetic acids), aromatic hydroxyl acids (e.g., o-hydroxybenzoic, p-hydroxybenzoic, 1-hydroxynaphthalene-2-carboxylic and 3-hydroxynaphthalene-2-carboxylic acids), ascorbic, dicarboxylic acids (e.g., fumaric, maleic, oxalic and succinic acids), glucoronic
- compositions for administration, singly or in combination, to a subject for the treatment or prevention of a disorder described herein.
- Such compositions typically include the active agent and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier includes saline, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration.
- Supplementary active compounds can also be incorporated into the compositions.
- compositions are typically formulated to be compatible with its intended route of administration.
- routes of administration include parenteral (e.g., intravenous, intradermal, intraperitoneal or subcutaneous), oral, inhalation, transdermal (topical), transmucosal, and rectal administration.
- Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions suitable for injectable use can include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
- a composition for parenteral administration must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the aromatic-cationic peptide compositions can include a carrier, which can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- a carrier which can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thiomersal, and the like.
- isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.
- Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the active compound into a sterile vehicle, which contains a basic dispersion medium and the required other ingredients from those enumerated above.
- typical methods of preparation include vacuum drying and freeze drying, which can yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier.
- the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules.
- Oral compositions can also be prepared using a fluid carrier for use as a mouthwash.
- Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- Systemic administration of a therapeutic compound as described herein can also be by transmucosal or transdermal means.
- penetrants appropriate to the barrier to be permeated are used in the formulation.
- penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
- the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. In one embodiment, transdermal administration may be performed my iontophoresis.
- Dosage, toxicity and therapeutic efficacy of the therapeutic agents can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
- Compounds which exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to other cells and, thereby, reduce side effects.
- the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the therapeutically effective dose can be estimated initially from cell culture assays.
- a dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture.
- IC50 i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms
- levels in plasma may be measured, for example, by high performance liquid chromatography.
- an effective amount of the aromatic-cationic peptides ranges from about 0.000001 mg per kilogram body weight per day to about 10,000 mg per kilogram body weight per day.
- the dosage ranges are from about 0.0001 mg per kilogram body weight per day to about 100 mg per kilogram body weight per day.
- dosages can be 1 mg/kg body weight or 10 mg/kg body weight every day, every two days or every three days or within the range of 1-10 mg/kg every week, every two weeks or every three weeks.
- a single dosage of peptide ranges from 0.1-10,000 micrograms per kg body weight.
- aromatic-cationic peptide concentrations in a carrier range from 0.2 to 2000 micrograms per delivered milliliter.
- An exemplary treatment regime entails administration once per day or once a week. Thereafter, the patient can be administered a prophylactic regime.
- a therapeutically effective amount of an aromatic-cationic peptide may be defined as a concentration of peptide at the target tissue of 10 ⁇ 11 to 10 ⁇ 6 molar, e.g., approximately 10 ⁇ 7 molar. This concentration may be delivered by systemic doses of 0.01 to 100 mg/kg or equivalent dose by body surface area. The schedule of doses would be optimized to maintain the therapeutic concentration at the target tissue, most preferably by single daily or weekly administration, but also including continuous administration (e.g., parenteral infusion or transdermal application).
- the dosage of the aromatic-cationic peptide is provided at a “low,” “mid,” or “high” dose level.
- the low dose is provided from about 0.001 to about 0.5 mg/kg/h, suitably from about 0.01 to about 0.1 mg/kg/h.
- the mid-dose is provided from about 0.1 to about 1.0 mg/kg/h, suitably from about 0.1 to about 0.5 mg/kg/h.
- the high dose is provided from about 0.5 to about 10 mg/kg/h, suitably from about 0.5 to about 2 mg/kg/h.
- treatment of a subject with a therapeutically effective amount of the therapeutic compositions described herein can include a single treatment or a series of treatments.
- the mammal treated in accordance with the invention can be any mammal, including, for example, farm animals, such as sheep, pigs, cows, and horses; pet animals, such as dogs and cats; laboratory animals, such as rats, mice and rabbits.
- the mammal is a human.
- Example 1 Attenuates the Hypermetabolism after Burn Injury in a Rat Model
- Hypermetabolism is a hallmark feature of metabolic disturbance after burn injury.
- the increased energy expenditure (EE) is associated with accelerated substrate oxidations and shifts of fuel utilization with increased contribution of lipid oxidation to total energy production.
- Mitochondria are the organelle where the substrate oxidations take place. Mitochondrial dysfunction occurs after burn. It is closely related to the development of HYPM and the altered substrate oxidations.
- SS-31 D-Arg-2′,6′-dimethyltyrosine-Lys-Phe-NH 2
- This Example tested the SS-31 peptide's potential function on total EE and subsequently, the substrate oxidation after burn injury.
- Sprague Dawley rats were randomized into three groups; sham-burn (SB), burn with saline treatment (B) and burn with peptide treatment (BP).
- Catheters were surgically placed into jugular vein and carotid artery.
- B and BP animals received 30% total body surface area full thickness burns by immersing the dorsal part into 100° C. water for 12 seconds with immediate fluid resuscitation.
- BP animals received IV injection of SS-31 (2 mg/kg every 12 h) for three days ( FIG. 1 ).
- the EE of the animals were constantly monitored for 12 hours in a TSE Indirect Calorimetry System (TSE Co. Germany).
- Burn injury increased the rate of apoptosis in the liver on all days examined, but the most dramatic increase occurred on day 7 post-burn injury.
- treatment with SS-31 peptide minimized the number of cells undergoing apoptosis with its effects most obvious on day 7 of post-burn ( FIG. 4 ).
- Western blot analysis revealed a progressive increase in the protein levels of activated form of caspase-3 with time following burn injury compared to sham control group ( FIG. 5 ).
- the SS-31 peptide reversed the increase in the activated form of caspase-3 protein levels on day 3 and 7 post-burn to the levels similar to those of sham control animals.
- the aromatic-cationic peptides of the invention are useful in methods to prevent or treat systemic organ damage, such as liver damage, secondary to a burn.
- Burn wounds are typically uneven in depth and severity. There are significant areas around the coagulated tissue where injury may be reversible and damage mediated by the inflammatory and immune cells to the microvasculature of the skin could be prevented.
- Wound contraction is the process which diminishes the size of a full-thickness open wound, especially a full-thickness burn.
- the tensions developed during contracture and the formation of subcutaneous fibrous tissue can result in deformity, and in particular to fixed flexure or fixed extension of a joint where the wound involves an area over the joint. Such complications are especially relevant in burn healing. No wound contraction will occur when there is no injury to the tissue; maximum contraction will occur when the burn is full-thickness and no viable tissue remains in the wound.
- This Example demonstrates the ability of the aromatic-cationic peptides of the invention to reduce or prevent wound contraction.
- Sprague-Dawley rats male, 300-350 g were pre-treated with 1 mg SS-31 peptide administered IP (this corresponds to about 3 mg/kg) one hour prior to burn (65° C. water for 25 see on the lower back), followed by topical treatment (1 mg on top of the wound), and 1 mg SS-31 peptide administered IP every 12 h for 72 h. Wounds were observed up to ⁇ 3 weeks post-burn. In general, the wounds took the appearance of a hard scab, and for the purpose of this experiment, the area of the scab was quantified as a measure of wound size.
- the aromatic-cationic peptides of the invention were tested on a murine model of mammalian burn injury.
- a major cause of the mitochondrial skeletal muscle dysfunction in burns may result from defects in oxidative phosphorylation (OXPHOS) via stimulation of mitochondrial production of reactive oxygen species (ROS) and the resulting damage to the mitochondrial DNA (mtDNA).
- ROS reactive oxygen species
- mtDNA mitochondrial DNA
- a clinically relevant murine nonlethal local burn injury model was used to address whether aromatic-cationic peptides can prevent/attenuate the adverse effects of burn injury on mitochondrial dysfunction and ER stress.
- Example 5 Treats Burn Wounds and Attenuates Progression of Tissue Damage Following a Burn (Prophetic)
- the aromatic-cationic peptides of the invention are tested on a rat model of mammalian burn injuries.
- the purpose of these experiments is to determine whether the mitochondrial-directed anti-oxidant peptide SS-31 improves wound healing (i.e., accelerates healing or leads to less scarring) in a partial thickness burn wound.
- the hypothesis is that SS-31 prevents apoptosis and other deleterious processes, such as oxidative stress, microvascular damage, etc. that lead to expansion of the burn wound (both in depth and area) in the timeframe of 0 to 48 h after the initial injury.
- oxidative stress oxidative stress
- microvascular damage etc.
- Example 3 The results shown in Example 3 are consistent with a protective effect of SS-31 in wound healing and suggest that SS-31 can reduce wound contraction in a rat partial thickness burn model. Additional experiments will test whether SS-31 treatment leads to faster healing of burn wounds in a rat model.
- SS-31 will accelerate wound healing in a rat model of burn injury.
- Sprague Dawley rats will be randomized into three groups; sham-burn (SB), burn with saline treatment (B) and burn with peptide treatment (BP).
- SB sham-burn
- B burn with saline treatment
- BP peptide treatment
- B and BP animals will receive a 30% total body surface area full thickness burns by immersing the dorsal part into 100° C. water for 12 seconds with immediate fluid resuscitation.
- BP animals will receive IV injection of SS-31 (2 mg/kg every 12 h) for three days. Wound reepithelialization, contraction, and depth are judged via gross morphology and histologically over a period of 21 days.
- wounds will be harvested from the animals. Since the conversion from a second to a third degree wound is expected to occur primarily in the first 48 hours, samples are harvested at 12, 24, and 48 hours. In addition, to monitor the long-term impact on the wound healing process, samples are harvested at 2, 7, 14, and 21 d. The tissues will be fixed and embedded, and sections across the center of the wounds generated for histology and staining with H&E as well as trichrome staining. Slides will be visualized microscopically.
- TUNEL staining and caspase-3 assays are carried out to see if apoptosis occurs in the hair follicles of the skin. Skin samples obtained from time points between 0 and 48 h are used for this purpose. Normal skin is used as a “blank” sample. TUNEL assays are performed using commercial kits according to the manufacturer's procedures. Active caspase-3 is detected on the slides by immunofluorescence using a rabbit anti-active caspase-3 antibody. Quantification of TUNEL and caspase-3 positivity is done on digitally acquired images at high power. The number of positive cells per high power field is determined, and compared among the groups.
- luminescence mapping is performed using Doppler imaging to assess wound blood flow. Two hours after burn, the dorsum of the animal is imaged on a scanning laser Doppler apparatus to quantify the superficial blood flow distribution in the skin within and outside of the burn area.
- 100 male Sprague-Dawley rats are used. Eighty animals receive a large (covering 30% of the total body surface area) full-thickness burn injury on the dorsum. This is a well-established model. They are divided into 2 groups, one treated with SS-31 and the other with placebo (saline) treatment. Each group is further divided into 4 subgroups consisting of 4 time points where animals will be sacrificed for further analysis.
- luminescence imaging is carried out, followed by euthanasia and skin tissue sampling for subsequent histology.
- the remaining 20 animals will receive a “sham burn” and will be treated with SS-31 or saline.
- Euthanasia is performed on two animals in each of the corresponding 4 time points. On average, each animal will be housed for 10 days (including the pre-burn days in the animal farm) in separate cages.
- SS-31 administration will accelerate wound healing and attenuate the progression of burn injuries that normally develops in the rat model. Measured outcomes include wound contraction, reepithelialization distance, as well as any other features that may be of interest in the dermis, such as cellularity and collagen organization. Ki67 proliferation antigen will be assessed, as well as TUNEL and caspase-3 positivity. Blood flow (as measured by luminescence mapping) will also be measured. A comparison is made between control rats and burned rats administered SS-31. Successful treatment of burn injuries by the aromatic-cationic peptides of the invention is indicated by a reduction in one or more of the markers associated with burn injury progression enumerated above.
- SS-31 administration will accelerate wound healing and attenuate the progression of sunburn injuries that normally develops in the model. Measured outcomes include wound contraction, reepithelialization distance, as well as any other features that may be of interest in the dermis, such as cellularity and collagen organization. Ki67 proliferation antigen will be assessed, as well as TUNEL and caspase-3 positivity. Blood flow (as measured by luminescence mapping) will also be measured. A comparison is made between control rats and burned rats administered SS-31. Controls include sham-burn (SB) and burn with saline treatment (B). Successful prevention or amelioration of sunburn injuries by the aromatic-cationic peptides of the invention is indicated by a reduction in one or more of the markers associated with burn injury progression enumerated above.
- Example 7 Attenuates the Burn Induced Hypermetabolism by the Down Regulation of UCP-1 Expression in Brown Adipose Tissue
- Hypermetabolism is the hallmark feature of metabolic disturbance after burn injury. Mitochondria dysfunction occurs after burns, and is closely related to the development of hypermetabolism (and altered substrate oxidation). It was shown that mitochondria targeted small peptide, SS-31, which penetrates into mitochondria, inhibits mitochondrial swelling, and reduces oxidative cell death, attenuates the hypermetabolism after burn injury. Uncoupling protein 1 (UCP-1) is specifically expressed in the brown adipose tissue, and plays a key role in producing heat. The purpose of this example is to elucidate that the down-regulation of UCP-1 is the key mechanism to attenuate the hypermetabolism in burns treated with SS-31.
- UCP-1 Uncoupling protein 1
- Sprague Dawley rats were randomly divided into 5 groups; sham (S), sham with saline treatment (SSal), sham with SS-31 treatment (SPep), burn with saline treatment (BSal) and burn with SS-31 treatment (BPep).
- S sham
- SSal sham with saline treatment
- SPep sham with SS-31 treatment
- BSal sham with SS-31 treatment
- BPep burn with saline treatment
- Both groups of animals received 40 m/kg intraperitoneal saline injection for the resuscitation following the injury.
- a venous catheter was placed surgically into the right jugular vein subsequent to sham or burn injury.
- SS-31 (2 mg/kg) or saline was injected as priming, and infused for 7 days (4 mg/kg/day) using osmotic pump (Durect, CA).
- S group meant the control group, which did not receive any general anesthesia, sham or burn injury and catheter placement.
- the indirect calorimetry was performed for 24 hours at 6 days after burn injury in a TSE Indirect Calorimetry System (TSE Co. Germany), and VO 2 , VCO 2 and energy expenditure were recorded every six minutes. Interscapullar brown adipose tissue was collected after the indirect calorimetry, and UCP-1 expression in the brown adipose tissue was evaluated by Western blot.
- the aromatic-cationic peptides of the invention were tested on a murine model of mammalian burn injury.
- a major cause of the mitochondrial skeletal muscle dysfunction in burns may result from defects in oxidative phosphorylation (OXPHOS) via stimulation of mitochondrial production of reactive oxygen species (ROS) and the resulting damage to the mitochondrial DNA (mtDNA).
- ROS reactive oxygen species
- mtDNA mitochondrial DNA
- This example evaluated the effects of an aromatic cationic peptide SS-31 in a clinically relevant burn trauma model using 31 P NMR and electron paramagnetic resonance (EPR) in vivo.
- the results showed that SS-31 peptide induces ATP synthesis rate by causing recovery of the mitochondrial redox status at 6 hours after burn.
- mice Male 6-week-old CD1 mice weighing 20-25 g were anesthetized by intraperitoneal (i.p.) injection of 40 mg/kg pentobarbital sodium. The left hind limb of all mice in all groups was shaved. Each burned mouse was subjected to a nonlethal scald injury of 3-5% total body surface area (TBSA) by immersing its left hind limb in 90° C. water for 3 sec.
- TBSA total body surface area
- mice were randomized into burn, burn+SS-31 peptide, control, and control+peptide groups.
- the SS-31 peptide (3 mg/kg) was injected intraperitoneally at 30 min prior to burn and a second injection immediately after the burn.
- NMR experiments were performed in a horizontal bore magnet (proton frequency 400 MHz, 21 cm diameter, Magnex Scientific) using a Bruker Avance console.
- a 90° pulse was optimized for detection of phosphorus spectra (repetition time 2 s, 400 averages, 4K data points).
- mice were randomized into burn, burn+SS-31 peptide and control groups.
- the SS-31 peptide (3 mg/kg) was injected intraperitoneally at 0, 3, 6, 24, and 48 hours post-burn.
- EPR measurements were carried out with a 1.2-GHz EPR spectrometer equipped with a microwave bridge and external loop resonator specially designed for in vivo experiments.
- the optimal spectrometer parameters were: incident microwave power, 10 mW; magnetic field center, 400 gauss; modulation frequency, 27 kHz.
- the decay kinetics of intravenously-injected nitroxide (150 mg/kg) were measured at the various time points, which indicated the mitochondrial redox status of the muscle.
- FIG. 9 is a graph showing the reduction of the nitroxide in the gastrocnemius muscle before and after a burn injury. These results show that subjects experience a significantly elevated redox status at 6 h after a burn injury.
- FIGS. 10 - 14 show the reduction in nitroxide in the gastrocnemius muscle before and after a burn injury in control, burn and burn+peptide groups at 0, 3, 6, 24, and 48 h after a burn injury, respectively.
- Burn injury caused significant reduction of ATP synthesis rate at 6 hours ( FIG. 11 , Table 1).
- the peptide SS-31 induced a significant increase in the ATP synthesis rate in burned mice and a non-statistically significant increase in controls.
- ATP synthesis rate (Pi ⁇ ATP) at 6 hours after burn was significantly reduced in burned (B) mice, and SS-31 treatment resulted in significantly increased ATP synthesis rate in both control (C+P) and burned (B+P) mice.
- SS-31 induces ATP synthesis rate possibly via a recovery of the mitochondrial redox status or via the peroxisome proliferator activated receptor-gamma coactivator-1 ⁇ (PGC-1 ⁇ ) which is downregulated as early as 6 hours after burn.
- POC-1 ⁇ peroxisome proliferator activated receptor-gamma coactivator-1 ⁇
- the mitochondrial dysfunction caused by burn injury recovers with the administration of the SS-31 peptide.
- Administration of the SS-31 peptide increased ATP synthesis rate substantially even in control healthy mice.
- Mitochondrial aconitase is part of the TCA cycle and its activity has been directly correlated with the TCA flux. Moreover, its activity is inhibited by ROS and thus it is considered as an index of oxidative stress.
- ROS ROS-induced oxidative stress
- Example 10 a Single Dose of SS-31 Induces ATP Synthesis Rate Following a Burn in a Mouse Burn Model
- This example evaluated the effects of an aromatic cationic peptide SS-31 in a clinically relevant burn trauma model using 31 P NMR in vivo.
- the results showed that SS-31 peptide induces ATP synthesis rate by causing recovery of the mitochondrial redox status after burn.
- mice Male 6-week-old CDI mice (20-25 g) were anesthetized by intraperitoneal injection of 40 mg/kg pentobarbital sodium and the left hind limb of all mice was shaved. Burn injury was inflicted by a nonlethal scald injury of 3-5% total body surface area by immersing the left hind limb in 90° C. water for 3 sec. Mice were randomized into burn (B), burn+SS-31 (B+P), control (C) and control+SS-31 (C+P) groups. SS-31 (3 mg/kg) was injected intraperitoneally at 30 min before burn and immediately after burn. A separate group of burned animals received only one dose of the SS-31 peptide immediately after burn.
- a range includes each individual member.
- a group having 1-3 cells refers to groups having 1, 2, or 3 cells.
- a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Toxicology (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Urology & Nephrology (AREA)
- Pulmonology (AREA)
- Obesity (AREA)
- Diabetes (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application No. 61/259,349, filed Nov. 9, 2009, U.S. Provisional Application No. 61/258,533, filed Nov. 5, 2009, U.S. Provisional Application No. 61/249,658, filed Oct. 8, 2009, and U.S. Provisional Application No. 61/162,060, filed Mar. 20, 2009, the entire contents of which are hereby incorporated by reference in their entirety.
- The present technology relates generally to methods of preventing or treating burn injuries and associated complications by administration of an aromatic-cationic peptide.
- The following description is provided to assist the understanding of the reader. None of the information provided or the references cited are admitted to be prior art to the present invention.
- Burn trauma causes approximately two million injuries, 100.000 hospital admissions, and 10,000 deaths every year in the United States. In the past, many victims did not survive the initial resuscitation period. Current survival rates and clinical outcomes have progressively improved with the advent of aggressive burn wound excision techniques, graft therapy, and superior intensive care facilities, along with a better understanding of post-burn physiological factors and fluid requirements.
- Systemic injury, such as the dysfunction or failure of an organ secondary to a severe burn injury and which is not attributable to the burn injury, remains a continuing source of morbidity and mortality. A severe burn is associated with release of inflammatory mediators which ultimately cause local and distant pathophysiological effects. Mediators including Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are increased in affected tissue, which are implicated in pathophysiological events observed in burn patients. Free radicals have been found to have beneficial effects on antimicrobial action and wound healing. However, following a burn, there is an enormous production of ROS which is harmful and implicated in inflammation, systemic inflammatory response syndrome, immunosuppression, infection and sepsis, tissue damage and multiple organ failure. Thus, clinical response to burn is dependent on the balance between production of free radicals and its detoxification.
- In one aspect, the present disclosure provides methods for treating a subject suffering from a burn injury. The methods include administering to the subject an effective amount of an aromatic-cationic peptide. The aromatic-cationic peptide may have (a) at least one net positive charge; (b) a minimum of three amino acids; (c) a maximum of about twenty amino acids; (d) a relationship between the minimum number of net positive charges (pm) and the total number of amino acid residues (r) wherein 3pm is the largest number that is less than or equal to r+1; and (e) a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (pt) wherein 3a is the largest number that is less than or equal to pt+1, except that when a is 1, pt may also be 1. In one embodiment, the peptide is D-Arg-Dmt-Lys-Phe-NH2 (SS-31).
- In another aspect, the present disclosure provides a method of protecting a subject against the secondary effects of a burn injury. In one embodiment, peptide is administered to a subject following a burn injury to treat or ameliorate the incidence of hypermetabolism. In one embodiment, peptide is administered to a subject following burn injury to treat or ameliorate damage to the liver, which occurs secondary to the burn injury.
- In another aspect, the present disclosure provides a method for protecting a subject against the primary effects of a burn by administering an effective amount of an aromatic-cationic peptide prior to exposure of the subject to an agent capable of causing a burn, e.g., sunlight (UV), thermal radiation, or radiation associated with radiotherapy. For example, the peptide may be administered topically to a subject at risk for receiving a burn.
- In one embodiment, the systemic injury is organ dysfunction or failure, such as organ dysfunction or failure that affects one or more of the lung, liver, kidneys, or bowel. In one embodiment, the peptide is administered following a burn injury but prior to the onset of symptoms of organ dysfunction or failure. In another embodiment, the peptide is administered following the onset of symptoms of organ dysfunction or failure.
- In one embodiment, the systemic injury is hypermetabolism. In one embodiment, the peptide is administered following a burn injury, but prior to the onset of symptoms of hypermetabolism. In another embodiment, the peptide is administered following the onset of symptoms hypermetabolism.
- In one embodiment, the systemic injury is skeletal muscle dysfunction, such as skeletal muscle wasting and cachexia. In one embodiment, the peptide is administered following a burn injury, but prior to the onset of symptoms of skeletal muscle dysfunction. In another embodiment, the peptide is administered following the onset of symptoms skeletal muscle dysfunction.
- In one aspect, the present disclosure provides methods for increasing ATP synthesis rate in a mammalian tissue, the method comprising administering to a subject an effective amount of an aromatic-cationic peptide. In one embodiment, the aromatic-cationic peptide is a peptide having the formula D-Arg-2′6′-dimethyltyrosine-Lys-Phe-NH2.
- In one embodiment, following administration of the peptide, the ATP synthesis rate in the mammalian tissue is increased compared to a control tissue. In one embodiment, the control tissue is tissue from a mammalian subject not administered the peptide. In one embodiment, increasing the ATP synthesis rate is by recovery of the mitochondrial redox status. In one embodiment, increasing the ATP synthesis rate is by increasing the expression or activity of the peroxisome proliferator activated receptor-gamma coactivator-1β (PGC-1β) protein.
- In one aspect, the present disclosure provides methods for treating a disease or condition characterized by a reduced ATP synthesis rate, the method comprising administering to a mammal in need thereof an effective amount of an aromatic-cationic peptide. In one embodiment, the aromatic-cationic peptide is a peptide having the formula D-Arg-2′6′-dimethyltyrosine-Lys-Phe-NH2. In one embodiment, the disease or condition is a burn injury.
- In one embodiment, the peptide is defined by formula I:
- wherein R1 and R2 are each independently selected from
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- (iii)
- where m=1-3;
- (iv)
- (v)
- R3, R4, R5, R6, R7, R8, R9, R10, R11 and R12 are each independently selected from
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- (iii) C1-C6 alkoxy;
- (iv) amino;
- (v) C1-C4 alkylamino;
- (vi) C1-C4 dialkylamino;
- (vii) nitro;
- (viii) hydroxyl;
- (ix) halogen, where “halogen” encompasses chloro, fluoro, bromo, and iodo; and n is an integer from 1 to 5.
- In a particular embodiment, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, and R12 are all hydrogen; and n is 4. In another embodiment, R1, R2, R3, R4, R5, R6, R7, R8, R9, and R11 are all hydrogen; R8 and R12 are methyl; R10 is hydroxyl; and n is 4.
- In one embodiment, the peptide is defined by formula II:
- wherein R1 and R2 are each independently selected from
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- (iii)
- (iv)
- (v)
- R3 and R4 are each independently selected from
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- (iii) C1-C6 alkoxy;
- (iv) amino;
- (v) C1-C4 alkylamino;
- (vi) C1-C4 dialkylamino;
- (vii) nitro;
- (viii) hydroxyl;
- (ix) halogen, where “halogen” encompasses chloro, fluoro, bromo, and iodo;
- R5, R6, R7, R8, and R9 are each independently selected from
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- (iii) C1-C6 alkoxy;
- (iv) amino;
- (v) C1-C4 alkylamino;
- (vi) C1-C4 dialkylamino;
- (vii) nitro;
- (viii) hydroxyl;
- (ix) halogen, where “halogen” encompasses chloro, fluoro, bromo, and iodo; and
- n is an integer from 1 to 5.
- In a particular embodiment, R1 and R2 are hydrogen; R3 and R4 are methyl; R5, R6, R7, R8, and R9 are all hydrogen; and n is 4.
-
FIG. 1 is a flow chart showing the protocol and dosing schedule for the study presented in Example 1. -
FIG. 2 is a graph showing the VCO2 concentration over time of an exemplary rat that has been burned and administered the SS-31 peptide. -
FIG. 3 is a flow chart showing the protocol and dosing schedule for the study presented in Example 2. -
FIG. 4 is a series of micrographs showing sections of liver tissue from the various treatment groups of Example 2. -
FIG. 5 is photograph of a western blot analysis of caspase-3 cleavage from the various treatment groups of Example 2. -
FIG. 6 is a graph showing caspase-3 activity from the various treatment groups of Example 2. -
FIG. 7 is a photograph of a western blot analysis showing protein oxidation from the various treatment groups of Example 2. -
FIG. 8 is a chart showing the wound size comparison between untreated and SS-31 peptide treated groups. -
FIG. 9 is a graph showing the reduction of the nitroxide in the gastrocnemius muscle before and after a burn injury. -
FIG. 10 is a graph showing the reduction in nitroxide in the gastrocnemius at 0 h after a burn injury in subjects administered saline or SS-31 peptide. -
FIG. 11 is a graph showing the reduction in nitroxide in the gastrocnemius at 3 h after a burn injury in subjects administered saline or SS-31 peptide. -
FIG. 12 is a graph showing the reduction in nitroxide in the gastrocnemius at 6 h after a burn injury in subjects administered saline or SS-31 peptide. -
FIG. 13 is a graph showing the reduction in nitroxide in the gastrocnemius at 24 h after a burn injury in subjects administered saline or SS-31 peptide. -
FIG. 14 is a graph showing the reduction in nitroxide in the gastrocnemius at 48 h after a burn injury in subjects administered saline or SS-31 peptide. -
FIG. 15 is a graph of ATP synthesis rate (μmol×/g/s) in control (C), control+SS-31 peptide (C+P), burned (B), and burned+peptide SS-31 (B+P) as measured by 31P NMR at 6 hours after burn. -
FIG. 16 is a graph of mitochondrial aconitase activity in control, burn, and peptide-treated subjects. - The present disclosure is based on the surprising discovery by the inventors that certain aromatic-cationic peptides can treat or ameliorate the local and distant pathophysiological effects of burn injury, including, but not limited to, hypermetabolism and organ damage. It is to be appreciated that certain aspects, modes, embodiments, variations, and features of the invention are described below in various levels of detail in order to provide a substantial understanding of the present invention.
- In practicing the present invention, many conventional techniques in molecular biology, protein biochemistry, cell biology, immunology, microbiology and recombinant DNA are used. These techniques are well-known and are explained in, e.g., Current Protocols in Molecular Biology, Vols. I-III, Ausubel, Ed. (1997); Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989); DNA Cloning: A Practical Approach, Vols. I and II, Glover, Ed. (1985); Oligonucleotide Synthesis, Gait, Ed. (1984); Nucleic Acid Hybridization, Hames & Higgins, Eds. (1985); Transcription and Translation, Hames & Higgins, Eds. (1984); Animal Cell Culture, Freshney, Ed. (1986); Immobilized Cells and Enzymes (IRL Press, 1986); Perbal, A Practical Guide to Molecular Cloning; the series, Meth. Enzymol., (Academic Press, Inc., 1984); Gene Transfer Vectors for Mammalian Cells, Miller & Calos, Eds. (Cold Spring Harbor Laboratory, N Y, 1987); and Meth. Enzymol., Vols. 154 and 155, Wu & Grossman, and Wu, Eds., respectively.
- The definitions of certain terms as used in this specification are provided below. Unless defined otherwise, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
- As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. For example, reference to “a cell” includes a combination of two or more cells, and the like.
- As used herein, “about” will be understood by persons of ordinary skill in the art and will vary to some extent depending upon the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art, given the context in which it is used, “about” will mean up to plus or minus 10% of the enumerated value.
- As used herein, the “administration” of an agent, drug, or peptide to a subject includes any route of introducing or delivering to a subject a compound to perform its intended function. Administration can be carried out by any suitable route, including orally, intranasally, parenterally (intravenously, intramuscularly, intraperitoneally, or subcutaneously), rectally, or topically. Administration includes self-administration and the administration by another.
- As used herein, the term “amino acid” includes naturally-occurring amino acids and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally-occurring amino acids. Naturally-occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally-occurring amino acid, i.e., an α-carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally-occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally-occurring amino acid. Amino acids can be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.
- As used herein, the terms “burn” or “burn conditions” are intended to encompass the full range of such conditions, including those resulting from: excessive exposure to radiation, e.g., solar radiation resulting in sunburn, thermal radiation, welding flash, fires, electrical discharge, contact with chemicals, friction, contact with very hot objects such as cooking apparatus elements or hot fluids such as scalding water, hot oil, etc.
- As used herein, the term “effective amount” refers to a quantity sufficient to achieve a desired therapeutic and/or prophylactic effect, e.g., an amount which results in the prevention of, or a decrease in, a burn injury or one or more conditions associated with a burn injury. In the context of therapeutic or prophylactic applications, the amount of a composition administered to the subject will depend on the type and severity of the disease and on the characteristics of the individual, such as general health, age, sex, body weight and tolerance to drugs. It will also depend on the degree, severity and type of the injury. The skilled artisan will be able to determine appropriate dosages depending on these and other factors. The compositions can also be administered in combination with one or more additional therapeutic compounds.
- An “isolated” or “purified” polypeptide or peptide is substantially free of cellular material or other contaminating polypeptides from the cell or tissue source from which the agent is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. For example, an isolated aromatic-cationic peptide would be free of materials that would interfere with therapeutic uses of the agent. Such interfering materials may include enzymes, hormones and other proteinaceous and nonproteinaceous solutes.
- As used herein, the term “medical condition” includes, but is not limited to, any condition or disease manifested as one or more physical and/or psychological symptoms for which treatment and/or prevention is desirable, and includes previously and newly identified diseases and other disorders. For example, a medical condition may be a burn injury or any associated conditions or complications.
- The term “organ” as used herein refers to a part or structure of the body which is adapted for a special function or functions, and includes, but is not limited to, the lungs, the liver, the kidneys, and the bowel, including the stomach and intestines. In particular, it is contemplated that organs which are particularly susceptible to dysfunction and failure arising from a burn to another part of the body are encompassed by this term.
- The term “organ dysfunction” as used herein refers to a continuum of indications ranging from a minor perturbation in the normal function(s) of an organ to “organ failure,” i.e., the cessation of sufficient organ output to sustain life. Various diagnostic and clinical markers known in the art can be used to assess the function of organs.
- As used herein, the terms “polypeptide,” “peptide,” and “protein” are used interchangeably herein to mean a polymer comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. Polypeptide refers to both short chains, commonly referred to as peptides, glycopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. Polypeptides include amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques that are well known in the art. Such modifications are well described in basic texts, as well as in a voluminous research literature.
- As used herein, “prevention” or “preventing” of a disorder or condition refers to a compound that, in a statistical sample, reduces the occurrence of the disorder or condition in the treated sample relative to an untreated control sample, or delays the onset or reduces the severity of one or more symptoms of the disorder or condition relative to the untreated control sample.
- As used herein, the words “protect” or “protecting” refer to decreasing the likelihood and/or risk that the subject treated with a peptide of the invention will develop a given disease or disorder, e.g., a burn injury or associated conditions or complications. Typically, the likelihood of developing the disease or disorder is considered to be reduced if the likelihood is decreased by at least about 10%, preferably at least about 25%, more preferably at least about 50%, even more preferably at least about 75%, and most preferably at least about 90%, in comparison to the likelihood and/or risk that the same subject untreated with a peptide of the invention will develop an injury. In particular embodiments, the peptides protect a subject against distant pathophysiological effects of burn injury when the peptides are administered after a subject receives a burn injury, but before the onset of symptoms of systemic injury. In one embodiment, the peptides will protect a subject from the primary burn injury when administered topically or systemically prior to the subject's exposure to an agent capable of causing a burn, e.g., sunlight or radiation.
- The term “subject” as used herein refers to a member of any vertebrate species. The methods of the presently disclosed subject matter are particularly useful for warm-blooded vertebrates. Provided herein is the treatment of mammals such as humans, as well as those mammals of importance due to being endangered, of economic importance (animals raised on farms for consumption by humans) and/or social importance (animals kept as pets or in zoos) to humans. In particular embodiments, the subject is a human.
- As used herein, the terms “treating,” “treatment,” or “alleviation” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. A subject is successfully “treated” for a disease or condition if, after receiving a therapeutic amount of the aromatic-cationic peptides according to the methods described herein, the subject shows observable and/or measurable reduction in or absence of one or more signs and symptoms of a particular disease or condition. For example, for a burn injury, treatment or prevention may include a reduction in the size or severity of the burn wound; a reduction in hypermetabolism, liver damage or function; and improved effects on other organ systems. It is also to be appreciated that the various modes of treatment or prevention of medical conditions as described are intended to mean “substantial”, which includes total but also less than total treatment or prevention, and wherein some biologically or medically relevant result is achieved.
- The aromatic-cationic peptides useful in the present methods are water-soluble and highly polar. Despite these properties, the peptides can readily penetrate cell membranes. The aromatic-cationic peptides useful in the present methods include a minimum of three amino acids, and preferably include a minimum of four amino acids, covalently joined by peptide bonds. The maximum number of amino acids present in the aromatic-cationic peptides of the present methods is about twenty amino acids covalently joined by peptide bonds. Preferably, the maximum number of amino acids is about twelve, more preferably about nine, and most preferably about six. Optimally, the number of amino acids present in the peptides is four.
- The amino acids of the aromatic-cationic peptides can be any amino acid. The amino acids may be naturally occurring. Naturally occurring amino acids include, for example, the twenty most common levorotatory (L) amino acids normally found in mammalian proteins, i.e., alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Glu), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Heu), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, (Trp), tyrosine (Tyr), and valine (Val). Other naturally occurring amino acids include, for example, amino acids that are synthesized in metabolic processes not associated with protein synthesis. For example, the amino acids ornithine and citrulline are synthesized in mammalian metabolism during the production of urea.
- The peptides can optionally contain one or more non-naturally occurring amino acids. The non-naturally occurring amino acids may be L-, dextrorotatory (D), or mixtures thereof. The peptide may have no amino acids that are naturally occurring. Non-naturally occurring amino acids are those amino acids that typically are not synthesized in normal metabolic processes in living organisms, and do not naturally occur in proteins. In addition, the non-naturally occurring amino acids are not recognized by common proteases.
- The non-naturally occurring amino acid can be present at any position in the peptide. For example, the non-naturally occurring amino acid can be at the N-terminus, the C-terminus, or at any position between the N-terminus and the C-terminus. The non-natural amino acids may, for example, comprise alkyl, aryl, or alkylaryl groups. Some examples of alkyl amino acids include α-aminobutyric acid, β-aminobutyric acid, γ-aminobutyric acid, δ-aminovaleric acid, and ε-aminocaproic acid. Some examples of aryl amino acids include ortho-, meta, and para-aminobenzoic acid. Some examples of alkylaryl amino acids include ortho-, meta-, and para-aminophenylacetic acid, and γ-phenyl-β-aminobutyric acid. Non-naturally occurring amino acids also include derivatives of naturally occurring amino acids. The derivatives of naturally occurring amino acids may, for example, include the addition of one or more chemical groups to the naturally occurring amino acid.
- For example, one or more chemical groups can be added to one or more of the 2′, 3′, 4′, 5′, or 6′ position of the aromatic ring of a phenylalanine or tyrosine residue, or the 4′, 5′, 6′, or 7′ position of the benzo ring of a tryptophan residue. The group can be any chemical group that can be added to an aromatic ring. Some examples of such groups include branched or unbranched C1-C4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl, C1-C4 alkyloxy (i.e., alkoxy), amino, C1-C4 alkylamino and C1-C4 dialkylamino (e.g., methylamino, dimethylamino), nitro, hydroxyl, halo (i.e., fluoro, chloro, bromo, or iodo). Some specific examples of non-naturally occurring derivatives of naturally occurring amino acids include norvaline (Nva), norleucine (Nle), and hydroxyproline (Hyp).
- Another example of a modification of an amino acid is the derivatization of a carboxyl group of an aspartic acid or a glutamic acid residue of the peptide. One example of derivatization is amidation with ammonia or with a primary or secondary amine, e.g., methylamine, ethylamine, dimethylamine or diethylamine. Another example of derivatization includes esterification with, for example, methyl or ethyl alcohol. Another such modification includes derivatization of an amino group of a lysine, arginine, or histidine residue. For example, such amino groups can be acylated. Some suitable acyl groups include, for example, a benzoyl group or an alkanoyl group comprising any of the C1-C4 alkyl groups mentioned above, such as an acetyl or propionyl group.
- The non-naturally occurring amino acids are suitably resistant, and more preferably insensitive, to common proteases. Examples of non-naturally occurring amino acids that are resistant or insensitive to proteases include the dextrorotatory (D-) form of any of the above-mentioned naturally occurring L-amino acids, as well as L- and/or D-non-naturally occurring amino acids. The D-amino acids do not normally occur in proteins, although they are found in certain peptide antibiotics that are synthesized by means other than the normal ribosomal protein synthetic machinery of the cell. As used herein, the D-amino acids are considered to be non-naturally occurring amino acids.
- In order to minimize protease sensitivity, the peptides should have less than five, less than four, less than three, less than two contiguous L-amino acids recognized by common proteases, irrespective of whether the amino acids are naturally or non-naturally occurring. If the peptide contains protease sensitive sequences of amino acids, at least one of the amino acids may be a non-naturally-occurring D-amino acid, thereby conferring protease resistance. An example of a protease sensitive sequence includes two or more contiguous basic amino acids that are readily cleaved by common proteases, such as endopeptidases and trypsin. Examples of basic amino acids include arginine, lysine and histidine.
- In suitable embodiments, the aromatic-cationic peptides have a minimum number of net positive charges at physiological pH in comparison to the total number of amino acid residues in the peptide. The minimum number of net positive charges at physiological pH will be referred to below as (pm). The total number of amino acid residues in the peptide will be referred to below as (r). The minimum number of net positive charges discussed below are all at physiological pH. The term “physiological pH” as used herein refers to the normal pH in the cells of the tissues and organs of the mammalian body. For instance, the physiological pH of a human is normally approximately 7.4, but normal physiological pH in mammals may be any pH from about 7.0 to about 7.8.
- “Net charge” as used herein refers to the balance of the number of positive charges and the number of negative charges carried by the amino acids present in the peptide. In this specification, it is understood that net charges are measured at physiological pH. The naturally occurring amino acids that are positively charged at physiological pH include L-lysine, L-arginine, and L-histidine. The naturally occurring amino acids that are negatively charged at physiological pH include L-aspartic acid and L-glutamic acid. Typically, a peptide has a positively charged N-terminal amino group and a negatively charged C-terminal carboxyl group. The charges cancel each other out at physiological pH.
- In one embodiment, the aromatic-cationic peptides have a relationship between the minimum number of net positive charges at physiological pH (pm) and the total number of amino acid residues (r) wherein 3pm is the largest number that is less than or equal to r+1. In this embodiment, the relationship between the minimum number of net positive charges (pm) and the total number of amino acid residues (r) is as follows:
-
TABLE 1 Amino acid number and net positive charges (3pm ≤ p + 1) (r) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (pm) 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 - In another embodiment, the aromatic-cationic peptides have a relationship between the minimum number of net positive charges (pm) and the total number of amino acid residues (r) wherein 2pm is the largest number that is less than or equal to r+1. In this embodiment, the relationship between the minimum number of net positive charges (pm) and the total number of amino acid residues (r) is as follows:
-
TABLE 2 Amino acid number and net positive charges (2pm ≤ p + 1) (r) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (pm) 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 - In one embodiment, the minimum number of net positive charges (pm) and the total number of amino acid residues (r) are equal. In another embodiment, the peptides have three or four amino acid residues and a minimum of one net positive charge, preferably, a minimum of two net positive charges and more preferably a minimum of three net positive charges. In suitable embodiments, the aromatic-cationic peptides have a minimum number of aromatic groups in comparison to the total number of net positive charges (pt). The minimum number of aromatic groups will be referred to below as (a).
- Naturally occurring amino acids that have an aromatic group include the amino acids histidine, tryptophan, tyrosine, and phenylalanine. For example, the hexapeptide Lys-Gln-Tyr-D-Arg-Phe-Trp has a net positive charge of two (contributed by the lysine and arginine residues) and three aromatic groups (contributed by tyrosine, phenylalanine and tryptophan residues).
- In one embodiment, the aromatic-cationic peptides have a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges at physiological pH (pt) wherein 3a is the largest number that is less than or equal to pt+1, except that when p1 is 1, a may also be 1. In this embodiment, the relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (pt) is as follows:
-
TABLE 3 Aromatic groups and net positive charges (3a ≤ pt + 1 or a = pt = 1) (pt) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (a) 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 - In another embodiment, the aromatic-cationic peptides have a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (pt) wherein 2a is the largest number that is less than or equal to pt+1. In this embodiment, the relationship between the minimum number of aromatic amino acid residues (a) and the total number of net positive charges (pt) is as follows:
-
TABLE 4 Aromatic groups and net positive charges (2a ≤ pt + 1 or a = pt = 1) (pt) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (a) 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 - In another embodiment, the number of aromatic groups (a) and the total number of net positive charges (pt) are equal.
- Carboxyl groups, especially the terminal carboxyl group of a C-terminal amino acid, may be amidated with, for example, ammonia to form the C-terminal amide. Alternatively, the terminal carboxyl group of the C-terminal amino acid may be amidated with any primary or secondary amine. The primary or secondary amine may, for example, be an alkyl, especially a branched or unbranched C1-C4 alkyl, or an aryl amine. Accordingly, the amino acid at the C-terminus of the peptide may be converted to an amido, N-methylamido, N-ethylamido, N,N-dimethylamido, N,N-diethylamido, N-methyl-N-ethylamido, N-phenylamido or N-phenyl-N-ethylamido group.
- The free carboxylate groups of the asparagine, glutamine, aspartic acid, and glutamic acid residues not occurring at the C-terminus of the aromatic-cationic peptides of the present invention may also be amidated wherever they occur within the peptide. The amidation at these internal positions may be with ammonia or any of the primary or secondary amines described above.
- In one embodiment, the aromatic-cationic peptide is a tripeptide having two net positive charges and at least one aromatic amino acid. In a particular embodiment, the aromatic-cationic peptide is a tripeptide having two net positive charges and two aromatic amino acids.
- Aromatic-cationic peptides include, but are not limited to, the following exemplary peptides:
-
Lys-D-Arg-Tyr-NH2 Phe-D-Arg-His D-Tyr-Trp-Lys-NH2 Trp-D-Lys-Tyr-Arg-NH2 Tyr-His-D-Gly-Met Phe-Arg-D-His-Asp Tyr-D-Arg-Phe-Lys-Glu-NH2 Met-Tyr-D-Lys-Phe-Arg D-His-Glu-Lys-Tyr-D-Phe-Arg Lys-D-Gln-Tyr-Arg-D-Phe-Trp-NH2 Phe-D-Arg-Lys-Trp-Tyr-D-Arg-His Gly-D-Phe-Lys-Tyr-His-D-Arg-Tyr-NH2 Val-D-Lys-His-Tyr-D-Phe-Ser-Tyr-Arg-NH2 Trp-Lys-Phe-D-Asp-Arg-Tyr-D-His-Lys Lys-Trp-D-Tyr-Arg-Asn-Phe-Tyr-D-His-NH2 Thr-Gly-Tyr-Arg-D-His-Phe-Trp-D-His-Lys Asp-D-Trp-Lys-Tyr-D-His-Phe-Arg-D-Gly-Lys-NH2 D-His-Lys-Tyr-D-Phe-Glu-D-Asp-D-His-D-Lys-Arg-Trp- NH2 Ala-D-Phe-D-Arg-Tyr-Lys-D-Trp-His-D-Tyr-Gly-Phe Tyr-D-His-Phe-D-Arg-Asp-Lys-D-Arg-His-Trp-D-His- Phe Phe-Phe-D-Tyr-Arg-Glu-Asp-D-Lys-Arg-D-Arg-His-Phe- NH2 Phe-Try-Lys-D-Arg-Trp-His-D-Lys-D-Lys-Glu-Arg-D- Tyr-Thr Tyr-Asp-D-Lys-Tyr-Phe-D-Lys-D-Arg-Phe-Pro-D-Tyr- His-Lys Glu-Arg-D-Lys-Tyr-D-Val-Phe-D-His-Trp-Arg-D-Gly- Tyr-Arg-D-Met-NH2 Arg-D-Leu-D-Tyr-Phe-Lys-Glu-D-Lys-Arg-D-Trp-Lys-D- Phe-Tyr-D-Arg-Gly D-Glu-Asp-Lys-D-Arg-D-His-Phe-Phe-D-Val-Tyr-Arg- Tyr-D-Tyr-Arg-His-Phe-NH2 Asp-Arg-D-Phe-Cys-Phe-D-Arg-D-Lys-Tyr-Arg-D-Tyr- Trp-D-His-Tyr-D-Phe-Lys-Phe His-Tyr-D-Arg-Trp-Lys-Phe-D-Asp-Ala-Arg-Cys-D-Tyr- His-Phe-D-Lys-Tyr-His-Ser-NH2 Gly-Ala-Lys-Phe-D-Lys-Glu-Arg-Tyr-His-D-Arg-D-Arg- Asp-Tyr-Trp-D-His-Trp-His-D-Lys-Asp Thr-Tyr-Arg-D-Lys-Trp-Tyr-Glu-Asp-D-Lys-D-Arg-His- Phe-D-Tyr-Gly-Val-Ile-D-His-Arg-Tyr-Lys-NH2 - In some embodiments, peptides are those peptides which have a tyrosine residue or a tyrosine derivative. Suitable derivatives of tyrosine include 2′-methyltyrosine (Mint); 2′, 6′-dimethyltyrosine (2′6′Dmt); 3′, 5′-dimethyltyrosine (3′5′Dint); N,2′,6′-trimethyltyrosine (Tmt); and 2′-hydroxy-6′-methyltryosine (Hmt).
- In one embodiment, the peptide has the formula Tyr-D-Arg-Phe-Lys-NH2 (referred to herein as SS-01). SS-01 has a net positive charge of three, contributed by the amino acids tyrosine, arginine, and lysine and has two aromatic groups contributed by the amino acids phenylalanine and tyrosine. The tyrosine of SS-01 can be a modified derivative of tyrosine such as in 2′,6′-dimethyltyrosine to produce the compound having the
formula 2′,6′-Dmt-D-Arg-Phe-Lys-NH2 (referred to herein as SS-02). - In a suitable embodiment, the amino acid residue at the N-terminus is arginine. An example of such a peptide is D-Arg-2′6′Dmt-Lys-Phe-NH2 (referred to herein as SS-31). In another embodiment, the amino acid at the N-terminus is phenylalanine or its derivative. Derivatives of phenylalanine include 2′-methylphenylalanine (Mmp), 2′,6′-dimethylphenylalanine (Dmp), N,2′,6′-trimethylphenylalanine (Tmp), and 2′-hydroxy-6′-methylphenylalanine (Hmp). An example of such a peptide is Phe-D-Arg-Phe-Lys-NH2 (referred to herein as SS-20). In one embodiment, the amino acid sequence of SS-02 is rearranged such that Dmt is not at the N-terminus. An example of such an aromatic-cationic peptide has the formula D-Arg-2′6′Dmt-Lys-Phe-NH2 (SS-31).
- In yet another embodiment, the aromatic-cationic peptide has the formula Phe-D-Arg-Dmt-Lys-NH2 (referred to herein as SS-30). Alternatively, the N-terminal phenylalanine can be a derivative of phenylalanine such as 2′,6′-dimethylphenylalanine (2′6′Dmp), SS-01 containing 2′,6′-dimethylphenylalanine at amino acid position one has the
formula 2′,6′-Dmp-D-Arg-Dmt-Lys-NH2. - Suitable substitution variants of the peptides include conservative amino acid substitutions. Amino acids may be grouped according to their physicochemical characteristics as follows:
- (a) Non-polar amino acids: Ala(A) Ser(S) Thr(T) Pro(P) Gly(G) Cys (C);
- (b) Acidic amino acids: Asn(N) Asp(D) Glu(E) Gln(Q);
- (c) Basic amino acids: His(H) Arg(R) Lys(K);
- (d) Hydrophobic amino acids: Met(M) Leu(L) Ile(I) Val(V); and
- (e) Aromatic amino acids: Phe(F) Tyr(Y) Trp(W) His (H).
- Substitutions of an amino acid in a peptide by another amino acid in the same group is referred to as a conservative substitution and may preserve the physicochemical characteristics of the original peptide. In contrast, substitutions of an amino acid in a peptide by another amino acid in a different group are generally more likely to alter the characteristics of the original peptide. Examples of peptides include, but are not limited to, the aromatic-cationic peptides shown in Table 5.
-
TABLE 5 Examples of Aromatic-Cationic Peptides Amino Amino Amino Amino Acid Acid Acid Acid C-Terminal Position 1 Position 2 Position 3 Position 4 Modification D-Arg Dmt Lys Phe NH2 D-Arg Dmt Phe Lys NH2 D-Arg Phe Lys Dmt NH2 D-Arg Phe Dmt Lys NH2 D-Arg Lys Dmt Phe NH2 D-Arg Lys Phe Dmt NH2 D-Arg Dmt Lys Phe NH2 D-Arg Dmt Lys Phe NH2 D-Arg Dmt Lys Phe NH2 D-Arg Dmt Lys Phe NH2 Phe Lys Dmt D-Arg NH2 Phe Lys D-Arg Dmt NH2 Phe D-Arg Phe Lys NH2 Phe D-Arg Phe Lys NH2 Phe D-Arg Phe Lys NH2 Phe D-Arg Phe Lys NH2 Phe D-Arg Phe Lys NH2 Phe D-Arg Dmt Lys NH2 Phe D-Arg Dmt Lys NH2 Phe D-Arg Dmt Lys NH2 Phe D-Arg Dmt Lys NH2 Phe D-Arg Dmt Lys NH2 Phe D-Arg Lys Dmt NH2 Phe Dmt D-Arg Lys NH2 Phe Dmt Lys D-Arg NH2 Lys Phe D-Arg Dmt NH2 Lys Phe Dmt D-Arg NH2 Lys Dmt D-Arg Phe NH2 Lys Dmt Phe D-Arg NH2 Lys D-Arg Phe Dmt NH2 Lys D-Arg Dmt Phe NH2 D-Arg Dmt D-Arg Phe NH2 D-Arg Dmt D-Arg Dmt NH2 D-Arg Dmt D-Arg Tyr NH2 D-Arg Dmt D-Arg Trp NH2 Trp D-Arg Phe Lys NH2 Trp D-Arg Tyr Lys NH2 Trp D-Arg Trp Lys NH2 Trp D-Arg Dmt Lys NH2 D-Arg Trp Lys Phe NH2 D-Arg Trp Phe Lys NH2 D-Arg Trp Lys Dmt NH2 D-Arg Trp Dmt Lys NH2 D-Arg Lys Trp Phe NH2 D-Arg Lys Trp Dmt NH2 Cha D-Arg Phe Lys NH2 Ala D-Arg Phe Lys NH2 Cha = cyclohexylalanine - Under certain circumstances, it may be advantageous to use a peptide that also has opioid receptor agonist activity. Examples of mu-opioid analogs include, but are not limited to, the aromatic-cationic peptides shown in Table 6.
-
TABLE 6 Aromatic-Cationic Peptides with Opioid Receptor Agonist Activity Amino Amino Amino Amino Acid Acid Acid Acid C-Terminal Position 1 Position 2 Position 3 Position 4 Modification Tyr D-Arg Phe Lys NH2 Tyr D-Arg Phe Orn NH2 Tyr D-Arg Phe Dab NH2 Tyr D-Arg Phe Dap NH2 Tyr D-Arg Phe Lys NH2 2′6′Dmt D-Arg Phe Lys NH2 2′6′Dmt D-Arg Phe Lys NH2 2′6′Dmt D-Arg Phe Lys—NH(CH2)2—NH-dns NH2 2′6′Dmt D-Arg Phe Lys—NH(CH2)2—NH-atn NH2 2′6′Dmt D-Arg Phe dnsLys NH2 2′6′Dmt D-Cit Phe Lys NH2 2′6′Dmt D-Cit Phe Lys NH2 2′6′Dmt D-Cit Phe Ahp NH2 2′6′Dmt D-Arg Phe Orn NH2 2′6′Dmt D-Arg Phe Dab NH2 2′6′Dmt D-Arg Phe Dap NH2 2′6′Dmt D-Arg Phe Ahp(2- NH2 aminoheptanoic acid) Bio-2′6′Dmt D-Arg Phe Lys NH2 3′5′Dmt D-Arg Phe Lys NH2 3′5′Dmt D-Arg Phe Orn NH2 3′5′Dmt D-Arg Phe Dab NH2 3′5′Dmt D-Arg Phe Dap NH2 Tyr D-Arg Tyr Lys NH2 Tyr D-Arg Tyr Orn NH2 Tyr D-Arg Tyr Dab NH2 Tyr D-Arg Tyr Dap NH2 2′6′Dmt D-Arg Tyr Lys NH2 2′6′Dmt D-Arg Tyr Orn NH2 2′6′Dmt D-Arg Tyr Dab NH2 2′6′Dmt D-Arg Tyr Dap NH2 2′6′Dmt D-Arg 2′6′Dmt Lys NH2 2′6′Dmt D-Arg 2′6′Dmt Orn NH2 2′6′Dmt D-Arg 2′6′Dmt Dab NH2 2′6′Dmt D-Arg 2′6′Dmt Dap NH2 3′5′Dmt D-Arg 3′5′Dmt Arg NH2 3′5′Dmt D-Arg 3′5′Dmt Lys NH2 3′5′Dmt D-Arg 3′5′Dmt Orn NH2 3′5′Dmt D-Arg 3′5′Dmt Dab NH2 2′6′Dmt D-Arg 2′6′Dmt Lys NH2 Tyr D-Lys Phe Dap NH2 Tyr D-Lys Phe Arg NH2 Tyr D-Lys Phe Arg NH2 Tyr D-Lys Phe Lys NH2 Tyr D-Lys Phe Orn NH2 2′6′Dmt D-Lys Phe Dab NH2 2′6′Dmt D-Lys Phe Dap NH2 2′6′Dmt D-Lys Phe Arg NH2 2′6′Dmt D-Lys Phe Lys NH2 3′5′Dmt D-Lys Phe Orn NH2 3′5′Dmt D-Lys Phe Dab NH2 3′5′Dmt D-Lys Phe Dap NH2 3′5′Dmt D-Lys Phe Arg NH2 3′5′Dmt D-Lys Phe Arg NH2 Tyr D-Lys Tyr Lys NH2 Tyr D-Lys Tyr Orn NH2 Tyr D-Lys Tyr Dab NH2 Tyr D-Lys Tyr Dap NH2 2′6′Dmt D-Lys Tyr Lys NH2 2′6′Dmt D-Lys Tyr Orn NH2 2′6′Dmt D-Lys Tyr Dab NH2 2′6′Dmt D-Lys Tyr Dap NH2 2′6′Dmt D-Lys 2′6′Dmt Lys NH2 2′6′Dmt D-Lys 2′6′Dmt Orn NH2 2′6′Dmt D-Lys 2′6′Dmt Dab NH2 2′6′Dmt D-Lys 2′6′Dmt Dap NH2 2′6′Dmt D-Arg Phe dnsDap NH2 2′6′Dmt D-Arg Phe atnDap NH2 3′5′Dmt D-Lys 3′5′Dmt Lys NH2 3′5′Dmt D-Lys 3′5′Dmt Orn NH2 3′5′Dmt D-Lys 3′5′Dmt Dab NH2 3′5′Dmt D-Lys 3′5′Dmt Dap NH2 Tyr D-Lys Phe Arg NH2 Tyr D-Orn Phe Arg NH2 Tyr D-Dab Phe Arg NH2 Tyr D-Dap Phe Arg NH2 2′6′Dmt D-Arg Phe Arg NH2 2′6′Dmt D-Lys Phe Arg NH2 2′6′Dmt D-Orn Phe Arg NH2 2′6′Dmt D-Dab Phe Arg NH2 3′5′Dmt D-Dap Phe Arg NH2 3′5′Dmt D-Arg Phe Arg NH2 3′5′Dmt D-Lys Phe Arg NH2 3′5′Dmt D-Orn Phe Arg NH2 Tyr D-Lys Tyr Arg NH2 Tyr D-Orn Tyr Arg NH2 Tyr D-Dab Tyr Arg NH2 Tyr D-Dap Tyr Arg NH2 2′6′Dmt D-Arg 2′6′Dmt Arg NH2 2′6′Dmt D-Lys 2′6′Dmt Arg NH2 2′6′Dmt D-Orn 2′6′Dmt Arg NH2 2′6′Dmt D-Dab 2′6′Dmt Arg NH2 3′5′Dmt D-Dap 3′5′Dmt Arg NH2 3′5′Dmt D-Arg 3′5′Dmt Arg NH2 3′5′Dmt D-Lys 3′5′Dmt Arg NH2 3′5′Dmt D-Orn 3′5′Dmt Arg NH2 Mmt D-Arg Phe Lys NH2 Mmt D-Arg Phe Orn NH2 Mmt D-Arg Phe Dab NH2 Mmt D-Arg Phe Dap NH2 Tmt D-Arg Phe Lys NH2 Tmt D-Arg Phe Orn NH2 Tmt D-Arg Phe Dab NH2 Tmt D-Arg Phe Dap NH2 Hmt D-Arg Phe Lys NH2 Hmt D-Arg Phe Orn NH2 Hmt D-Arg Phe Dab NH2 Hmt D-Arg Phe Dap NH2 Mmt D-Lys Phe Lys NH2 Mmt D-Lys Phe Orn NH2 Mmt D-Lys Phe Dab NH2 Mmt D-Lys Phe Dap NH2 Mmt D-Lys Phe Arg NH2 Tmt D-Lys Phe Lys NH2 Tmt D-Lys Phe Orn NH2 Tmt D-Lys Phe Dab NH2 Tmt D-Lys Phe Dap NH2 Tmt D-Lys Phe Arg NH2 Hmt D-Lys Phe Lys NH2 Hmt D-Lys Phe Orn NH2 Hmt D-Lys Phe Dab NH2 Hmt D-Lys Phe Dap NH2 Hmt D-Lys Phe Arg NH2 Mmt D-Lys Phe Arg NH2 Mmt D-Orn Phe Arg NH2 Mmt D-Dab Phe Arg NH2 Mmt D-Dap Phe Arg NH2 Mmt D-Arg Phe Arg NH2 Tmt D-Lys Phe Arg NH2 Tmt D-Orn Phe Arg NH2 Tmt D-Dab Phe Arg NH2 Tmt D-Dap Phe Arg NH2 Tmt D-Arg Phe Arg NH2 Hmt D-Lys Phe Arg NH2 Hmt D-Orn Phe Arg NH2 Hmt D-Dab Phe Arg NH2 Hmt D-Dap Phe Arg NH2 Hmt D-Arg Phe Arg NH2 Dab = diaminobutyric Dap = diaminopropionic acid Dmt = dimethyltyrosine Mmt = 2′-methyltyrosine Tmt = N,2′,6′-trimethyltyrosine Hmt = 2′-hydroxy,6′-methyltyrosine dnsDap = β-dansyl-L-α,β-diaminopropionic acid atnDap = β-anthraniloyl-L-α,β-diaminopropionic acid Bio = biotin - The amino acids of the peptides shown in Tables 5 and 6 may be in either the L- or the D-configuration.
- The peptides useful in the methods of the present invention may be chemically synthesized by any of the methods well known in the art. Suitable methods for synthesizing the protein include, for example those described by Stuart and Young in “Solid Phase Peptide Synthesis,” Second Edition, Pierce Chemical Company (1984), and in “Solid Phase Peptide Synthesis,” Methods Enzymol., 289, Academic Press, Inc, New York (1997).
- The aromatic-cationic peptides described herein are useful in treating or preventing burn injuries and systemic conditions associated with a burn injury. In some embodiments, the aromatic-cationic peptides may be administered to a subject following a burn and after the onset of detectable symptoms of systemic injury. Thus, the term “treatment” is used herein in its broadest sense and refers to use of an aromatic-cationic peptide for a partial or complete cure of the burn and/or secondary complications, such as organ dysfunction and hypermetabolism.
- In other embodiments, the aromatic-cationic peptides of the invention may be administered to a subject following a burn, but before the onset of detectable symptoms of systemic injury in order to protect against or provide prophylaxis for the systemic injury, such as organ damage or hypermetabolism. Thus the term “prevention” is used herein in its broadest sense and refers to a prophylactic use which completely or partially prevents local injury to the skin or systemic injury, such as organ dysfunction or hypermetabolism following burns. It is also contemplated that the compounds may be administered to a subject at risk of receiving burns.
- Burns are generally classified accordingly to their seriousness and extent. First degree burns are the mildest and normally only affect the epidermis. The burn site is red, painful, dry, no blisters, very sensitive to touch and the damaged skin may be slightly moist from the leakage of fluid in the deeper layers of the skin. The sensory nerve ends are also exposed and create pain. Mild sunburn is typical of a first degree burn. Second degree burns is where both the epidermis and dermis are affected. The damage is deeper and blisters usually appear on the skin. The skin is still painful and sensitive, as the nerves have been affected as well as the sebaceous glands in the area. Third degree burns are the most serious, as the tissues in all layers of the skin are dead. Normally the damaged area goes down into the subcutaneous tissue. Usually there are no blisters, but the burnt surface can have several types of appearance, from white to black (charred) or bright red from blood in the bottom of the wound. In most cases, it can penetrate down through the superficial fascia, and into the muscle layers where various arteries and veins may be affected. Because the skin nerves are damaged the burn can be quite painless and on touching the skin sometimes it has no sensation whatsoever. The lack of sensation or blanching of the skin blood vessels on pressure indicates damaged skin.
- It is contemplated that the invention is applicable to the treatment of burns from any cause, including dry heat or cold burns, scalds, sunburn, electrical burns, chemical agents such as acids and alkalis, including hydrofluoric acid, formic acid, anhydrous ammonia, cement, and phenol, or radiation burns. Burns resulting from exposure to either high or low temperature are within the scope of the invention. The severity and extent of the burn may vary, but secondary organ damage or hypermetabolism will usually arise when the burns are very extensive or very severe (second or third degree burns). The development of secondary organ dysfunction or failure is dependent on the extent of the burn, the response of the patient's immune system and other factors, such as infection and sepsis.
- In some embodiments, the aromatic-cationic peptides are used to treat or prevent organ dysfunction secondary to a burn. The chain of physiological processes which lead to organ dysfunction following burns is complex. In subjects with serious burns, release of catecholamines, vasopressin, and angiotensin causes peripheral and splanchnic bed vasoconstriction that can compromise perfusion of organs remote to the injury. Myocardial contractility also may be reduced by the release of TNF-α. Activated neutrophils are sequestered in dermal and distant organs such as the lung within hours following a burn injury, resulting in the release of toxic reactive oxygen species and proteases and producing vascular endothelial cell damage. When the integrity of pulmonary capillary and alveolar epithelia is compromised, plasma and blood leak into the interstitial and intra-alveolar spaces, resulting in pulmonary edema. A decrease in pulmonary function can occur in severely burned patients, as a result of bronchoconstriction caused by humoral factors, such as histamine, serotonin, and thromboxane A2.
- Severe burn injury also causes a coagulation necrosis of tissue. This initiates a physiological response in every organ system, the severity of which is related to the extent of the burn. Tissue destruction also results in increased capillary permeability, with profound egress of fluid from the intravascular space to the tissues adjacent to the burn wound. Inordinate amounts of fluid are lost by evaporation from the damaged surface, which is no longer able to retain water. This increase in capillary permeability, coupled with evaporative water loss, causes a hypovolemic shock, which may also in turn contribute to remote organ dysfunction or failure.
- Subjects suffering from severe burns are also at great risk of sepsis. Bacterial invasion occurs in a burn patient because the skin no longer acts as a barrier to the entrance of microorganisms. Because of their reduced ability to mount an effective systemic immune response, severely burned patients are susceptible to the development of sepsis and life-threatening septic shock. Sepsis is, however, a separate complication from the organ dysfunction or failure which occurs secondary to burns. Organ dysfunction or failure secondary to burns may occur in the absence of sepsis.
- Subjects suffering from a burn injury are also at risk for skeletal muscle dysfunction. While not wishing to be limited by theory, a major cause of the mitochondrial skeletal muscle dysfunction in burns may result from defects in oxidative phosphorylation (OXPHOS) via stimulation of mitochondrial production of reactive oxygen species (ROS) and the resulting damage to the mitochondrial DNA (mtDNA). In some embodiments, the aromatic-cationic peptides induce ATP synthesis via a recovery of the mitochondrial redox status or via the peroxisome proliferator activated receptor-gamma coactivator-10 which is downregulated as early as 6 hours after burn. Thus, the mitochondrial dysfunction caused by burn injury recovers with the administration of the aromatic-cationic peptide.
- In one aspect, the methods relate to treating a wound resulting from a burn injury by administering to a subject an effective amount of the aromatic-cationic peptides. The peptides may be administered systemically or topically to the wound. Burn wounds are typically uneven in depth and severity. There are significant areas around the coagulated tissue where injury may be reversible and damage mediated by the inflammatory and immune cells to the microvasculature of the skin could be prevented. In one embodiment, the administration of the peptides will slow or ameliorate the effects of wound contraction. Wound contraction is the process which diminishes the size of a full-thickness open wound, especially a full-thickness burn. The tensions developed during contracture and the formation of subcutaneous fibrous tissue can result in deformity, and in particular to fixed flexure or fixed extension of a joint where the wound involves an area over the joint. Such complications are especially relevant in burn healing. No wound contraction will occur when there is no injury to the tissue; maximum contraction will occur when the burn is full-thickness and no viable tissue remains in the wound. In another embodiment, the administration of the peptides prevent progression of a burn injury from a second degree burn to a third degree burn.
- The method for the treatment of burn injury may also be effective for decreasing scarring or the formation of scar tissue attendant the healing process at a burn site. Scarring is the formation of fibrous tissue at sites where normal tissue has been destroyed. The present disclosure thus also includes a method for decreasing scarring specifically at skin tissue areas of second or third degree burn. This method comprises treating an animal with a second or third degree burn with an effective amount of an aromatic cationic peptide.
- In a particular embodiment, the aromatic-cationic peptides are administered a subject suffering from a burn in order to treat or prevent damage to distant organs or tissues. In particular, dysfunction or failure of the lung, liver, kidneys, and/or bowel following burns to the skin or other sites of the body has a significant impact on morbidity and mortality. While not wishing to be limited by theory, it is believed that systemic inflammatory responses arise in subjects following burn injury, and that it is this generalized inflammation which leads to remote tissue injury which is expressed as the dysfunction and failure of organs remote from the injury site. Systemic injury, including organ dysfunction and hypermetabolism, is typically associated with second and third degree burns. A characteristic of the systemic injury, i.e., organ dysfunction or hypermetabolism, is that the burn which provokes the subsequent injury or condition does not directly affect the organ in question. i.e., the injury is secondary to the burn.
- In one embodiment, the aromatic-cationic peptides are administered to treat or protect damage to liver tissues secondary to a burn. Methods for assessing liver function are well known in the art and include, but are not limited to, using blood tests for serum alanine aminotransferase (ALT) levels, alkaline phosphatase (AP), or bilirubin levels. Methods for assessing deterioration of liver structure are also well known. Such methods include liver imaging (e.g., MRI, ultrasound), or histological evaluation of liver biopsy.
- In one embodiment, the aromatic-cationic peptides are administered to treat or protect damage to liver tissues secondary to a burn. Methods for assessing liver function are well known in the art and include, but are not limited to, using blood tests for serum creatinine, or glomerular filtration rate. Methods for assessing deterioration of kidney structure are also well known. Such methods include kidney imaging (e.g., MRI, ultrasound), or histological evaluation of kidney biopsy.
- In one embodiment, the aromatic-cationic peptides are administered to prevent or treat hypermetabolism associated with a burn injury. A hypermetabolic state may be associated with hyperglycemia, protein losses, and a significant reduction of lean body mass. Reversal of the hypermetabolic response may be accomplished by administering the aromatic-cationic peptides and by manipulating the subject's physiologic and biochemical environment through the administration of specific nutrients, growth factors, or other agents. As demonstrated in the examples, the present inventors discovered that the aromatic-cationic peptides of the invention may be administered to a subject suffering from a burn in order to treat or prevent hypermetabolism.
- In one aspect, the disclosure provides a method for preventing in a subject, a burn injury or a condition associated with a burn injury, by administering to the subject an aromatic-cationic peptide. It is contemplated that the aromatic-cationic peptides may be administered to a subject at risk of receiving burns. In prophylactic applications, pharmaceutical compositions or medicaments of aromatic-cationic peptides are administered to a subject susceptible to, or otherwise at risk of a burn injury to eliminate or reduce the risk, lessen the severity, or delay the outset of the burn injury and its complications.
- Another aspect of the disclosure includes methods of treating burn injuries and associated complications in a subject for therapeutic purposes. In therapeutic applications, compositions or medicaments are administered to a subject already suffering from a burn injury in an amount sufficient to cure, or at least partially arrest, the symptoms of the injury, including its complications and intermediate pathological phenotypes in development of the disease. It is contemplated that the aromatic-cationic peptides may be administered to a subject following a burn, but before the development of detectable symptoms of a systemic injury, such as organ dysfunction or failure, and thus the term “treatment” as used herein in its broadest sense and refers to a prophylactic use which completely or partially prevents systemic injury, such as organ dysfunction or failure or hypermetabolism following burns. As such, the disclosure provides methods of treating an individual afflicted with a burn injury.
- Any method known to those in the art for contacting a cell, organ or tissue with a peptide may be employed. Suitable methods include in vitro, ex vivo, or in vivo methods. In vivo methods typically include the administration of an aromatic-cationic peptide, such as those described above, to a mammal, preferably a human. When used in vivo for therapy, the aromatic-cationic peptides of the present invention are administered to the subject in effective amounts (i.e., amounts that have desired therapeutic effect). They will normally be administered parenterally, topically, or orally. The dose and dosage regimen will depend upon the degree of burn injury or secondary complications, the characteristics of the particular aromatic-cationic peptide used, e.g., its therapeutic index, the subject, and the subject's history.
- The effective amount may be determined during pre-clinical trials and clinical trials by methods familiar to physicians and clinicians. An effective amount of a peptide, preferably in a pharmaceutical composition, may be administered to a mammal in need thereof by any of a number of well-known methods for administering pharmaceutical compounds. The peptide may be administered systemically or locally.
- The peptide may be formulated as a pharmaceutically acceptable salt. The term “pharmaceutically acceptable salt” means a salt prepared from a base or an acid which is acceptable for administration to a patient, such as a mammal (e.g., salts having acceptable mammalian safety for a given dosage regime). However, it is understood that the salts are not required to be pharmaceutically acceptable salts, such as salts of intermediate compounds that are not intended for administration to a patient. Pharmaceutically acceptable salts can be derived from pharmaceutically acceptable inorganic or organic bases and from pharmaceutically acceptable inorganic or organic acids. In addition, when a peptide contains both a basic moiety, such as an amine, pyridine or imidazole, and an acidic moiety such as a carboxylic acid or tetrazole, zwitterions may be formed and are included within the term “salt” as used herein. Salts derived from pharmaceutically acceptable inorganic bases include ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium, and zinc salts, and the like. Salts derived from pharmaceutically acceptable organic bases include salts of primary, secondary and tertiary amines, including substituted amines, cyclic amines, naturally-occurring amines and the like, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperadine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like. Salts derived from pharmaceutically acceptable inorganic acids include salts of boric, carbonic, hydrohalic (hydrobromic, hydrochloric, hydrofluoric or hydroiodic), nitric, phosphoric, sulfamic and sulfuric acids. Salts derived from pharmaceutically acceptable organic acids include salts of aliphatic hydroxyl acids (e.g., citric, gluconic, glycolic, lactic, lactobionic, malic, and tartaric acids), aliphatic monocarboxylic acids (e.g., acetic, butyric, formic, propionic and trifluoroacetic acids), amino acids (e.g., aspartic and glutamic acids), aromatic carboxylic acids (e.g., benzoic, p-chlorobenzoic, diphenylacetic, gentisic, hippuric, and triphenylacetic acids), aromatic hydroxyl acids (e.g., o-hydroxybenzoic, p-hydroxybenzoic, 1-hydroxynaphthalene-2-carboxylic and 3-hydroxynaphthalene-2-carboxylic acids), ascorbic, dicarboxylic acids (e.g., fumaric, maleic, oxalic and succinic acids), glucoronic, mandelic, mucic, nicotinic, orotic, pamoic, pantothenic, sulfonic acids (e.g., benzenesulfonic, camphosulfonic, edisylic, ethanesulfonic, isethionic, methanesulfonic, naphthalenesulfonic, naphthalene-1,5-disulfonic, naphthalene-2,6-disulfonic and p-toluenesulfonic acids), xinafoic acid, and the like.
- The aromatic-cationic peptides described herein can be incorporated into pharmaceutical compositions for administration, singly or in combination, to a subject for the treatment or prevention of a disorder described herein. Such compositions typically include the active agent and a pharmaceutically acceptable carrier. As used herein the term “pharmaceutically acceptable carrier” includes saline, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.
- Pharmaceutical compositions are typically formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral (e.g., intravenous, intradermal, intraperitoneal or subcutaneous), oral, inhalation, transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- Pharmaceutical compositions suitable for injectable use can include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, a composition for parenteral administration must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- The aromatic-cationic peptide compositions can include a carrier, which can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thiomersal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.
- Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle, which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, typical methods of preparation include vacuum drying and freeze drying, which can yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- Systemic administration of a therapeutic compound as described herein can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. In one embodiment, transdermal administration may be performed my iontophoresis.
- Dosage, toxicity and therapeutic efficacy of the therapeutic agents can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to other cells and, thereby, reduce side effects.
- The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.
- Typically, an effective amount of the aromatic-cationic peptides, sufficient for achieving a therapeutic or prophylactic effect, range from about 0.000001 mg per kilogram body weight per day to about 10,000 mg per kilogram body weight per day. Preferably, the dosage ranges are from about 0.0001 mg per kilogram body weight per day to about 100 mg per kilogram body weight per day. For example, dosages can be 1 mg/kg body weight or 10 mg/kg body weight every day, every two days or every three days or within the range of 1-10 mg/kg every week, every two weeks or every three weeks. In one embodiment, a single dosage of peptide ranges from 0.1-10,000 micrograms per kg body weight. In one embodiment, aromatic-cationic peptide concentrations in a carrier range from 0.2 to 2000 micrograms per delivered milliliter. An exemplary treatment regime entails administration once per day or once a week. Thereafter, the patient can be administered a prophylactic regime.
- In some embodiments, a therapeutically effective amount of an aromatic-cationic peptide may be defined as a concentration of peptide at the target tissue of 10−11 to 10−6 molar, e.g., approximately 10−7 molar. This concentration may be delivered by systemic doses of 0.01 to 100 mg/kg or equivalent dose by body surface area. The schedule of doses would be optimized to maintain the therapeutic concentration at the target tissue, most preferably by single daily or weekly administration, but also including continuous administration (e.g., parenteral infusion or transdermal application).
- In some embodiments, the dosage of the aromatic-cationic peptide is provided at a “low,” “mid,” or “high” dose level. In one embodiment, the low dose is provided from about 0.001 to about 0.5 mg/kg/h, suitably from about 0.01 to about 0.1 mg/kg/h. In one embodiment, the mid-dose is provided from about 0.1 to about 1.0 mg/kg/h, suitably from about 0.1 to about 0.5 mg/kg/h. In one embodiment, the high dose is provided from about 0.5 to about 10 mg/kg/h, suitably from about 0.5 to about 2 mg/kg/h.
- The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to, the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of the therapeutic compositions described herein can include a single treatment or a series of treatments.
- The mammal treated in accordance with the invention can be any mammal, including, for example, farm animals, such as sheep, pigs, cows, and horses; pet animals, such as dogs and cats; laboratory animals, such as rats, mice and rabbits. In a preferred embodiment, the mammal is a human.
- The present invention is further illustrated by the following examples, which should not be construed as limiting in any way.
- Hypermetabolism (HYPM) is a hallmark feature of metabolic disturbance after burn injury. The increased energy expenditure (EE) is associated with accelerated substrate oxidations and shifts of fuel utilization with increased contribution of lipid oxidation to total energy production. Mitochondria are the organelle where the substrate oxidations take place. Mitochondrial dysfunction occurs after burn. It is closely related to the development of HYPM and the altered substrate oxidations. SS-31 (D-Arg-2′,6′-dimethyltyrosine-Lys-Phe-NH2) is a tetrapeptide which penetrates into mitochondria, inhibits mitochondrial swelling, and reduces oxidative cell death. This Example tested the SS-31 peptide's potential function on total EE and subsequently, the substrate oxidation after burn injury.
- Sprague Dawley rats were randomized into three groups; sham-burn (SB), burn with saline treatment (B) and burn with peptide treatment (BP). Catheters were surgically placed into jugular vein and carotid artery. B and BP animals received 30% total body surface area full thickness burns by immersing the dorsal part into 100° C. water for 12 seconds with immediate fluid resuscitation. BP animals received IV injection of SS-31 (2 mg/kg every 12 h) for three days (
FIG. 1 ). The EE of the animals were constantly monitored for 12 hours in a TSE Indirect Calorimetry System (TSE Co. Germany). - The results of the experiment are shown in Table 7 and
FIG. 2 . Three days after burn injury, animals in the B group showed significant increases in VO2, VCO2 and FE compared to animals in the SB group. SS-31 treatment significantly reduced V02, VCO2 and EE (BP versus B P<0.05). -
TABLE 7 Burn-SS-31 P Sham Burn-saline (2 mg/kg q12 h) (between burn-saline (n = 12) (n = 3) (n = 3) and burn-SS-31) VO2 615 ± 7 864 ± 22 765 ± 17 0.02 (ml/kg/h) VCO2 408 ± 6 585 ± 15 515 ± 16 0.03 (ml/kg/h) Energy 3.457 ± 0.062 4.927 ± 0.216 4.165 ± 0.093 0.03 expenditure (kcal/kg/h) RER 0.652 ± 0.006 0.672 ± 0.002 0.669 ± 0.005 0.65 - The results indicate that treatment with SS-31 in rats with a burn injury can attenuate burn-induced HYPM. As such, the aromatic-cationic peptides of the invention are useful in methods of treating burn injuries and secondary complications in subjects in need thereof.
- Systemic inflammatory response syndrome (SIRS) and multiple organ failure (MOF) are leading causes of morbidity and mortality in severe burn patients. In this Example, the effects of the aromatic-cationic peptides of the invention on liver damage in a mouse model of burn injury were examined. Six to eight week old male C57BL mice were subjected to 30% total body surface area (TBSA) burn injury and subsequently injected daily with saline or SS-31 peptide (5 mg/kg body weight). A weight- and time-matched sham-burn group subjected to lukewarm (˜37° C.) water but otherwise treated exactly the same served as controls (
FIG. 3 ). The liver tissues were collected 1, 3, and 7 days after burn injury treatment and used to examine apoptosis by TUNEL method, activated caspase protein levels by Western blots, and caspase activity by an enzymatic reaction assay. - Burn injury increased the rate of apoptosis in the liver on all days examined, but the most dramatic increase occurred on
day 7 post-burn injury. However, treatment with SS-31 peptide minimized the number of cells undergoing apoptosis with its effects most obvious onday 7 of post-burn (FIG. 4 ). Western blot analysis revealed a progressive increase in the protein levels of activated form of caspase-3 with time following burn injury compared to sham control group (FIG. 5 ). The SS-31 peptide reversed the increase in the activated form of caspase-3 protein levels onday post-burn day 7, but the treatment with SS-31 peptide reduced the caspase activity to a level that was statistically not different from that of sham control group (FIG. 6 ). There was a trend for the increased caspase activity following burn injury to reverse with the SS-31 peptide treatment on day 3 (FIG. 6 ). There was also decreased protein oxidation following burn injury in mice treated with the SS-31 peptide (FIG. 7 ). - Thus, this study provides evidence that the SS-31 peptide can reduce burn-induced activation of caspase signaling pathways and subsequently attenuate apoptosis in the liver of mice. As such, the aromatic-cationic peptides of the invention are useful in methods to prevent or treat systemic organ damage, such as liver damage, secondary to a burn.
- Burn wounds are typically uneven in depth and severity. There are significant areas around the coagulated tissue where injury may be reversible and damage mediated by the inflammatory and immune cells to the microvasculature of the skin could be prevented. Wound contraction is the process which diminishes the size of a full-thickness open wound, especially a full-thickness burn. The tensions developed during contracture and the formation of subcutaneous fibrous tissue can result in deformity, and in particular to fixed flexure or fixed extension of a joint where the wound involves an area over the joint. Such complications are especially relevant in burn healing. No wound contraction will occur when there is no injury to the tissue; maximum contraction will occur when the burn is full-thickness and no viable tissue remains in the wound. This Example demonstrates the ability of the aromatic-cationic peptides of the invention to reduce or prevent wound contraction.
- Sprague-Dawley rats (male, 300-350 g) were pre-treated with 1 mg SS-31 peptide administered IP (this corresponds to about 3 mg/kg) one hour prior to burn (65° C. water for 25 see on the lower back), followed by topical treatment (1 mg on top of the wound), and 1 mg SS-31 peptide administered IP every 12 h for 72 h. Wounds were observed up to ˜3 weeks post-burn. In general, the wounds took the appearance of a hard scab, and for the purpose of this experiment, the area of the scab was quantified as a measure of wound size. A slower rate of wound contraction was observed in the peptide-treated group at time points ≥8 days post-burn (p=0.06 by ANOVA) (
FIG. 8 ). Treatment with SS-31 slowed the wound contraction, which indicates the burn injury was less severe compared to burns in animals without the peptide treatment. As such, the aromatic-cationic peptides of the invention are useful in methods of treating wounds associated with a burn injury. - To demonstrate the treatment and prevention of post-burn complications, the aromatic-cationic peptides of the invention were tested on a murine model of mammalian burn injury. A major cause of the mitochondrial skeletal muscle dysfunction in burns may result from defects in oxidative phosphorylation (OXPHOS) via stimulation of mitochondrial production of reactive oxygen species (ROS) and the resulting damage to the mitochondrial DNA (mtDNA). This hypothesis is supported by data indicating that the ATP synthesis rate significantly decreases and ROS production increases in skeletal muscle in response to burn injury. This progression underlies the burn pathophysiology, which includes skeletal muscle wasting and cachexia. Thus, this study investigated the potential of aromatic-cationic peptides as a treatment modality to alleviate skeletal muscle dysfunction after burns.
- A clinically relevant murine nonlethal local burn injury model was used to address whether aromatic-cationic peptides can prevent/attenuate the adverse effects of burn injury on mitochondrial dysfunction and ER stress. The redox state of the gastrocnemius muscle immediately below a local cutaneous burn (90° C. for 3 sec) was evaluated by nitroxide EPR. It was found that the redox state in the muscle of burned mice was compromised, with the most dramatic effect at 6 h postburn (P<0.05 compared to
day 0 control, n=4), as evidenced by the low rate of nitroxide reduction (FIG. 8 ). - Next, the effect of SS-31 peptide treatment administered
IP 30 min before burn, and immediately after burn (3 mg/kg each dose) was tested. At the 6 h timepoint, peptide treatment significantly increased the rate of nitroxide reduction (lowering the curve of intensity vs. time,FIG. 9 ). The effect was statistically significant, suggesting that peptide treatment does decrease oxidative stress in muscle underneath the burn. These data indicate that the aromatic-cationic peptides of the invention are useful in methods of preventing or treating secondary complications of a burn injury, such as skeletal muscle dysfunction. - To demonstrate the treatment burn injuries, the aromatic-cationic peptides of the invention are tested on a rat model of mammalian burn injuries. The purpose of these experiments is to determine whether the mitochondrial-directed anti-oxidant peptide SS-31 improves wound healing (i.e., accelerates healing or leads to less scarring) in a partial thickness burn wound. The hypothesis is that SS-31 prevents apoptosis and other deleterious processes, such as oxidative stress, microvascular damage, etc. that lead to expansion of the burn wound (both in depth and area) in the timeframe of 0 to 48 h after the initial injury. Thus, by preventing expansion of the burn wound, it is expected that wound healing will be faster, lead to less scarring, and better appearance after healing. The results shown in Example 3 are consistent with a protective effect of SS-31 in wound healing and suggest that SS-31 can reduce wound contraction in a rat partial thickness burn model. Additional experiments will test whether SS-31 treatment leads to faster healing of burn wounds in a rat model.
- First, it is expected that SS-31 will accelerate wound healing in a rat model of burn injury. Sprague Dawley rats will be randomized into three groups; sham-burn (SB), burn with saline treatment (B) and burn with peptide treatment (BP). B and BP animals will receive a 30% total body surface area full thickness burns by immersing the dorsal part into 100° C. water for 12 seconds with immediate fluid resuscitation. BP animals will receive IV injection of SS-31 (2 mg/kg every 12 h) for three days. Wound reepithelialization, contraction, and depth are judged via gross morphology and histologically over a period of 21 days. For this purpose, immediately after wounding, dark marks are applied onto the skin of the animals at the wound edges as well as 1 cm away from the edges. Wounds are digitally photographed over 21 days, and image analysis software used to measure the area of the wound (defined as the scab). In addition, the distances of the marks away from the wound site are used to assess contraction.
- At selected time points, wounds will be harvested from the animals. Since the conversion from a second to a third degree wound is expected to occur primarily in the first 48 hours, samples are harvested at 12, 24, and 48 hours. In addition, to monitor the long-term impact on the wound healing process, samples are harvested at 2, 7, 14, and 21 d. The tissues will be fixed and embedded, and sections across the center of the wounds generated for histology and staining with H&E as well as trichrome staining. Slides will be visualized microscopically.
- Second, analyses will determine whether or not SS-31 prevents conversion of a partial thickness burn to a full-thickness burn. For this purpose, TUNEL staining and caspase-3 assays are carried out to see if apoptosis occurs in the hair follicles of the skin. Skin samples obtained from time points between 0 and 48 h are used for this purpose. Normal skin is used as a “blank” sample. TUNEL assays are performed using commercial kits according to the manufacturer's procedures. Active caspase-3 is detected on the slides by immunofluorescence using a rabbit anti-active caspase-3 antibody. Quantification of TUNEL and caspase-3 positivity is done on digitally acquired images at high power. The number of positive cells per high power field is determined, and compared among the groups.
- Third, luminescence mapping is performed using Doppler imaging to assess wound blood flow. Two hours after burn, the dorsum of the animal is imaged on a scanning laser Doppler apparatus to quantify the superficial blood flow distribution in the skin within and outside of the burn area. For luminescence mapping, 100 male Sprague-Dawley rats are used. Eighty animals receive a large (covering 30% of the total body surface area) full-thickness burn injury on the dorsum. This is a well-established model. They are divided into 2 groups, one treated with SS-31 and the other with placebo (saline) treatment. Each group is further divided into 4 subgroups consisting of 4 time points where animals will be sacrificed for further analysis. Prior to sacrifice, luminescence imaging is carried out, followed by euthanasia and skin tissue sampling for subsequent histology. The remaining 20 animals will receive a “sham burn” and will be treated with SS-31 or saline. Euthanasia is performed on two animals in each of the corresponding 4 time points. On average, each animal will be housed for 10 days (including the pre-burn days in the animal farm) in separate cages.
- It is predicted that SS-31 administration will accelerate wound healing and attenuate the progression of burn injuries that normally develops in the rat model. Measured outcomes include wound contraction, reepithelialization distance, as well as any other features that may be of interest in the dermis, such as cellularity and collagen organization. Ki67 proliferation antigen will be assessed, as well as TUNEL and caspase-3 positivity. Blood flow (as measured by luminescence mapping) will also be measured. A comparison is made between control rats and burned rats administered SS-31. Successful treatment of burn injuries by the aromatic-cationic peptides of the invention is indicated by a reduction in one or more of the markers associated with burn injury progression enumerated above.
- In this Example, the effects of aromatic-cationic peptides to protect against sunburn injury in a mammalian model are examined. Hairless mice, with skin characteristics similar to humans, are exposed to excessive UV radiation over the course of a week. Subjects are randomly divided into three groups: (i) burn-saline, (ii) burn-SS-31 (4 mg·kg−1·day−1; low dose group), (ii) burn-SS-31 (40 mg·kg−1·day−1; high dose group). Peptide dissolved in 1 ml/kg saline will be administered intravenously twice a day for seven days.
- It is predicted that SS-31 administration will accelerate wound healing and attenuate the progression of sunburn injuries that normally develops in the model. Measured outcomes include wound contraction, reepithelialization distance, as well as any other features that may be of interest in the dermis, such as cellularity and collagen organization. Ki67 proliferation antigen will be assessed, as well as TUNEL and caspase-3 positivity. Blood flow (as measured by luminescence mapping) will also be measured. A comparison is made between control rats and burned rats administered SS-31. Controls include sham-burn (SB) and burn with saline treatment (B). Successful prevention or amelioration of sunburn injuries by the aromatic-cationic peptides of the invention is indicated by a reduction in one or more of the markers associated with burn injury progression enumerated above.
- Hypermetabolism is the hallmark feature of metabolic disturbance after burn injury. Mitochondria dysfunction occurs after burns, and is closely related to the development of hypermetabolism (and altered substrate oxidation). It was shown that mitochondria targeted small peptide, SS-31, which penetrates into mitochondria, inhibits mitochondrial swelling, and reduces oxidative cell death, attenuates the hypermetabolism after burn injury. Uncoupling protein 1 (UCP-1) is specifically expressed in the brown adipose tissue, and plays a key role in producing heat. The purpose of this example is to elucidate that the down-regulation of UCP-1 is the key mechanism to attenuate the hypermetabolism in burns treated with SS-31.
- Methods. Sprague Dawley rats were randomly divided into 5 groups; sham (S), sham with saline treatment (SSal), sham with SS-31 treatment (SPep), burn with saline treatment (BSal) and burn with SS-31 treatment (BPep). In burn group, the back of animal was immersed into 100° C. water for 12 seconds to produce
III degree 30% TBSA burns under general anesthesia. Sham burn was produced by immersing the lukewarm water in the same manner. Both groups of animals received 40 m/kg intraperitoneal saline injection for the resuscitation following the injury. A venous catheter was placed surgically into the right jugular vein subsequent to sham or burn injury. SS-31 (2 mg/kg) or saline was injected as priming, and infused for 7 days (4 mg/kg/day) using osmotic pump (Durect, CA). S group meant the control group, which did not receive any general anesthesia, sham or burn injury and catheter placement. The indirect calorimetry was performed for 24 hours at 6 days after burn injury in a TSE Indirect Calorimetry System (TSE Co. Germany), and VO2, VCO2 and energy expenditure were recorded every six minutes. Interscapullar brown adipose tissue was collected after the indirect calorimetry, and UCP-1 expression in the brown adipose tissue was evaluated by Western blot. - Results. VO2, VCO2 and energy expenditure were significantly increased in BSal group compared to SSal group (p=0.000, p=0.000 and p=0.000, respectively). Those in BPep group were significantly attenuated compared to BSal group (p<0.01, p<0.05 and p<0.05, respectively). UCP-1 expression in BSal group was 1.5 times higher than in SSal group (p<0.05). Meanwhile, that in BPep group was 32% decreased compared to BSal group (p=0.057).
- These results show that SS-31 attenuates the burn induced hypermetabolism by the down regulation of UCP-1 expression in brown adipose tissue. As such, the aromatic cationic peptides described herein are useful in methods for treating a subject suffering from a burn injury.
- To demonstrate the treatment and prevention of post-burn complications, the aromatic-cationic peptides of the invention were tested on a murine model of mammalian burn injury. A major cause of the mitochondrial skeletal muscle dysfunction in burns may result from defects in oxidative phosphorylation (OXPHOS) via stimulation of mitochondrial production of reactive oxygen species (ROS) and the resulting damage to the mitochondrial DNA (mtDNA). This hypothesis is supported by data indicating that the ATP synthesis rate significantly decreases and ROS production increases in skeletal muscle in response to burn injury. This progression underlies the burn pathophysiology, which includes skeletal muscle wasting and cachexia. Thus, this study investigated the potential of aromatic-cationic peptides as a treatment modality to alleviate skeletal muscle dysfunction after burns.
- This example evaluated the effects of an aromatic cationic peptide SS-31 in a clinically relevant burn trauma model using 31P NMR and electron paramagnetic resonance (EPR) in vivo. The results showed that SS-31 peptide induces ATP synthesis rate by causing recovery of the mitochondrial redox status at 6 hours after burn.
- Materials and Methods. Male 6-week-old CD1 mice weighing 20-25 g were anesthetized by intraperitoneal (i.p.) injection of 40 mg/kg pentobarbital sodium. The left hind limb of all mice in all groups was shaved. Each burned mouse was subjected to a nonlethal scald injury of 3-5% total body surface area (TBSA) by immersing its left hind limb in 90° C. water for 3 sec.
- NMR spectroscopy is described in detail in Padfield, et al., Proc Nat Acad Sci USA 102: 5368-5373 (2005). Briefly, mice were randomized into burn, burn+SS-31 peptide, control, and control+peptide groups. The SS-31 peptide (3 mg/kg) was injected intraperitoneally at 30 min prior to burn and a second injection immediately after the burn. NMR experiments were performed in a horizontal bore magnet (
proton frequency 400 MHz, 21 cm diameter, Magnex Scientific) using a Bruker Avance console. A 90° pulse was optimized for detection of phosphorus spectra (repetition time 2 s, 400 averages, 4K data points). Saturation 90°-selective pulse trains (duration 36.534 ms, bandwidth 75 Hz) followed by crushing gradients were used to saturate the γ-ATP peak. The same saturation pulse train was also applied downfield of the inorganic phosphate (Pi) resonance, symmetrically to the γ-ATP resonance. T1 relaxation times of Pi and phosphocreatine (PCr) were measured using an inversion recovery pulse sequence in the presence of γ-ATP saturation. An adiabatic pulse (400 scans, sweep with 10 KHz, 4K data) was used to invert Pi and PCr, with an inversion time between 152 ms and 7651 ms. - EPR spectroscopy is described in detail in Khan et al., “Burn Trauma in skeletal muscle results in oxidative stress as assessed by in vivo electron paramagnetic resonance.” Mol Med Reports 1: 813-819 (2008). Briefly, mice were randomized into burn, burn+SS-31 peptide and control groups. The SS-31 peptide (3 mg/kg) was injected intraperitoneally at 0, 3, 6, 24, and 48 hours post-burn. EPR measurements were carried out with a 1.2-GHz EPR spectrometer equipped with a microwave bridge and external loop resonator specially designed for in vivo experiments. The optimal spectrometer parameters were: incident microwave power, 10 mW; magnetic field center, 400 gauss; modulation frequency, 27 kHz. The decay kinetics of intravenously-injected nitroxide (150 mg/kg) were measured at the various time points, which indicated the mitochondrial redox status of the muscle.
- Results. EPR was used to measure the redox status of burn and burn+peptide groups at various times after the burn.
FIG. 9 is a graph showing the reduction of the nitroxide in the gastrocnemius muscle before and after a burn injury. These results show that subjects experience a significantly elevated redox status at 6 h after a burn injury.FIGS. 10-14 show the reduction in nitroxide in the gastrocnemius muscle before and after a burn injury in control, burn and burn+peptide groups at 0, 3, 6, 24, and 48 h after a burn injury, respectively. According to EPR, a significant decrease in redox status of burn and burn+peptide groups as compared to control was detected (p<0.05) at 6 h after burn; also, significant increase (recovery) in redox status of burn+peptide group as compared to burn was detected (p<0.05) (FIG. 15 ). - Burn injury caused significant reduction of ATP synthesis rate at 6 hours (
FIG. 11 , Table 1). The peptide SS-31 induced a significant increase in the ATP synthesis rate in burned mice and a non-statistically significant increase in controls. -
TABLE 8 Results of in vivo 31P-NMR saturation transfer experiments. Healthy Controls Controls + Peptide Burn Burn + Peptide (n = 5) (n = 5) (n = 8) (n = 8) ΔM/M0 0.24 ± 0.05 0.185 ± 0.02 0.23 ± 0.05 0.31 ± 0.06 (P = 0.097) (P = 0.902) (P = 0.488) T1obs (s) 1.16 ± 0.14 1.16 ± 0.14 1.33 ± 0.27 1.33 ± 0.27 Pi (μmol/g) 1.01 ± 0.28 5.49 ± 0.28 0.34 ± 0.25 2.93 ± 0.56 (P = 0.0008) (P = 0.006) (P = 0.035) ATP synthesis 0.25 ± 0.09 0.74 ± 0.09 0.06 ± 0.02 0.63 ± 0.11 rate (μmol/g/s) (P = 0.008) (P = 0.026) (P = 0.046) - As shown in Table 8 and illustrated in
FIG. 15 : ATP synthesis rate (Pi→γATP) at 6 hours after burn was significantly reduced in burned (B) mice, and SS-31 treatment resulted in significantly increased ATP synthesis rate in both control (C+P) and burned (B+P) mice. Importantly, ATP synthesis rate was significantly increased in burned mice injected with the SS-31 (B+P), as compared to burned alone mice (B3) (P=0.0001). Moreover, when the ATP synthesis rate (reaction PCr→γATP) was compared in burned mice and mice injected with SS-31 the increase was statistically significant (P=0.006) (Table 9). According to EPR a significant decrease in the redox status of burn and burn+SS-31 groups as compared to control was detected (p<0.05); also, a significant increase (recovery) in the redox status of burn+peptide group as compared to burn alone was observed (p<0.05), (FIG. 12 ). -
TABLE 9 Results of in vivo 31P-NMR saturation transfer experiments performed on the hindlimb skeletal muscle of mice ATP synthesis rate (reaction PCr → γATP) Healthy Controls Controls + Peptide Burn Burn + Peptide (n = 5) (n = 5) (n = 8) (n = 8) ΔM/M0 0.24 ± 0.05 0.15 ± 0.02 0.23 ± 0.05 0.31 ± 0.06 (P = 0.097) (P = 0.902) (P = 0.488) T1obs (s) 1.16 ± 0.14 1.16 ± 0.14 1.33 ± 0.27 1.33 ± 0.27 κf (s−1) 0.21 ± 0.04 0.14 ± 0.02 0.17 ± 0.04 0.24 ± 0.05 (P = 0.096) (P = 0.605) (P = 0.771) PCr (μmol/g) 2.28 ± 0.23 3.76 ± 0.51 1.16 ± 0.23 3.25 ± 0.29 (P = 0.047) (P = 0.01) (P = 0.054) ATP synthesis 0.50 ± 0.12 0.50 ± 0.06 0.24 ± 0.01 0.72 ± 0.11 rate (μmol/g/s) (P = 0.96) (P = 0.007) (P = 0.119) - In summary, the results show that SS-31 induces ATP synthesis rate possibly via a recovery of the mitochondrial redox status or via the peroxisome proliferator activated receptor-gamma coactivator-1β (PGC-1β) which is downregulated as early as 6 hours after burn. See Tzika et al., Int J Mol Med 21: 201-208, 2008. Thus, the mitochondrial dysfunction caused by burn injury recovers with the administration of the SS-31 peptide. Administration of the SS-31 peptide increased ATP synthesis rate substantially even in control healthy mice. These data indicate that the aromatic-cationic peptides of the invention are useful in methods of preventing or treating secondary complications of a burn injury, such as skeletal muscle dysfunction.
- Mitochondrial aconitase is part of the TCA cycle and its activity has been directly correlated with the TCA flux. Moreover, its activity is inhibited by ROS and thus it is considered as an index of oxidative stress. Here we present the local and systematic effects of burn on the mitochondrial aconitasc activity using a 5% TBSA mice burn model. The effects of a mitochondrial peptide (SS-31) had been also examined.
- Although in burn, we would expect decreased levels of mitochondrial aconitase activity due to the increased ROS production, in our study we observed increased mitochondrial aconitase activity both in burned (local burn effect) and contralateral to burned leg (systemic burn effect), most probably due to the hypermetabolism that burn injury induces (
FIG. 16 ). Thus, the increased ROS production known to occur in burn injury and could inhibit this mitochondrial aconitase activity cannot overcome the also existing hypermetabolism in burn, in terms of mitochondrial aconitase activity and thus TCA flux. A similar observation has been also shown in the case of exercise/repeated contractions in intact human and isolated mouse skeletal muscle although an increase in ROS is also observed in this situation. Given the decreased ATP synthesis rate, we also observed in skeletal muscle from the same burn model, this result could account as an indirect evident that in this particular hypermetabolic syndrome TCA is futile. - These results show that SS-31 administration in burned animals decreased mitochondrial aconitase activity up to the control levels, indicating thus that SS-31 recovers the TCA flux, may be in response to a more effective aerobic respiration as this is suggested by the increased ATP synthesis rate compared with untreated burned animals.
- This example evaluated the effects of an aromatic cationic peptide SS-31 in a clinically relevant burn trauma model using 31P NMR in vivo. The results showed that SS-31 peptide induces ATP synthesis rate by causing recovery of the mitochondrial redox status after burn.
- Male 6-week-old CDI mice (20-25 g) were anesthetized by intraperitoneal injection of 40 mg/kg pentobarbital sodium and the left hind limb of all mice was shaved. Burn injury was inflicted by a nonlethal scald injury of 3-5% total body surface area by immersing the left hind limb in 90° C. water for 3 sec. Mice were randomized into burn (B), burn+SS-31 (B+P), control (C) and control+SS-31 (C+P) groups. SS-31 (3 mg/kg) was injected intraperitoneally at 30 min before burn and immediately after burn. A separate group of burned animals received only one dose of the SS-31 peptide immediately after burn.
-
TABLE 10 Results of in vivo 31P-NMR saturation transfer experiments. Healthy Controls + Burn + Burn + Controls Peptide Burn Peptide Peptide* (n = 5) (n = 5) (n = 8) (n = 8) (n = 8) ΔM/M0 0.24 ± 0.05 0.15 ± 0.02 0.23 ± 0.05 0.31 ± 0.06 0.39 ± 0.07 (P = 0.097) (P = 0.902) (P = 0.488) (P = 0.072) T1obs (s) 1.16 ± 0.14 1.16 ± 0.14 1.33 ± 0.27 1.33 ± 0.27 1.33 ± 0.27 Pi (μmol/g) 1.01 ± 0.28 5.49 ± 0.28 0.34 ± 0.25 2.93 ± 0.56 1.41 ± 0.26 (P = 0.0008) (P = 0.006) (P = 0.035) (P = 0.166) ATP synthesis 0.25 ± 0.09 0.74 ± 0.09 0.06 ± 0.02 0.63 ± 0.11 0.36 ± 0.08 rate (μmol/g/s) (P = 0.008) (P = 0.026) (P = 0.046) (P = 0.211) - The results are shown in Table 10. Values are means±SE; ΔM/M0 is the fractional change in Pi magnetization as a result of saturation transfer; T1obs is the observed spin lattice relaxation time of Pi during γATP saturation in seconds; ATP synthesis is calculated as [Pi]×k; [Pi] is the concentration of Pi extrapolated from the baseline NMR spectrum, comparing Pi and γATP peaks and ATP concentration measured with bioluminescence assay; k is calculated as (1/T1obs)×(ΔM/M0); P-values (unpaired Student's t-test) are for comparisons between experimental and control groups; * indicates only one dose of SS-31 peptide (3 mg/kg) was injected to animals immediately after burn. Thus, the last column of the table shows that SS-31 normalizes ATP synthesis rate even at a single dose after burn. These data indicate that the aromatic-cationic peptides of the invention are useful in methods of preventing or treating secondary complications of a burn injury.
- The present invention is not to be limited in terms of the particular embodiments described in this application, which are intended as single illustrations of individual aspects of the invention. Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and compositions within the scope of the invention, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present invention is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this invention is not limited to particular methods, reagents, compounds compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
- In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
- As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as “up to,” “at least,” “greater than,” “less than,” and the like, include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
- All references cited herein are incorporated herein by reference in their entireties and for all purposes to the same extent as if each individual publication, patent, or patent application was specifically and individually incorporated by reference in its entirety for all purposes.
- Other embodiments are set forth within the following claims.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/879,143 US20230201299A1 (en) | 2009-03-20 | 2022-08-02 | Methods for the prevention and treatment of burn injuries and secondary complications |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16206009P | 2009-03-20 | 2009-03-20 | |
US24965809P | 2009-10-08 | 2009-10-08 | |
US25853309P | 2009-11-05 | 2009-11-05 | |
US25934909P | 2009-11-09 | 2009-11-09 | |
US12/727,647 US20100331265A1 (en) | 2009-03-20 | 2010-03-19 | Methods for the prevention and treatment of burn injuries and secondary complications |
US14/061,370 US9457057B2 (en) | 2009-03-20 | 2013-10-23 | Methods for the prevention and treatment of burn injuries and secondary complications |
US15/266,522 US20170216394A1 (en) | 2009-03-20 | 2016-09-15 | Methods for the prevention and treatment of burn injuries and secondary complications |
US16/841,183 US20200323945A1 (en) | 2009-03-20 | 2020-04-06 | Methods for the prevention and treatment of burn injuries and secondary complications |
US17/879,143 US20230201299A1 (en) | 2009-03-20 | 2022-08-02 | Methods for the prevention and treatment of burn injuries and secondary complications |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/841,183 Continuation US20200323945A1 (en) | 2009-03-20 | 2020-04-06 | Methods for the prevention and treatment of burn injuries and secondary complications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230201299A1 true US20230201299A1 (en) | 2023-06-29 |
Family
ID=42983062
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/727,647 Abandoned US20100331265A1 (en) | 2009-03-20 | 2010-03-19 | Methods for the prevention and treatment of burn injuries and secondary complications |
US14/061,370 Active US9457057B2 (en) | 2009-03-20 | 2013-10-23 | Methods for the prevention and treatment of burn injuries and secondary complications |
US15/266,522 Abandoned US20170216394A1 (en) | 2009-03-20 | 2016-09-15 | Methods for the prevention and treatment of burn injuries and secondary complications |
US16/841,183 Abandoned US20200323945A1 (en) | 2009-03-20 | 2020-04-06 | Methods for the prevention and treatment of burn injuries and secondary complications |
US17/879,143 Pending US20230201299A1 (en) | 2009-03-20 | 2022-08-02 | Methods for the prevention and treatment of burn injuries and secondary complications |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/727,647 Abandoned US20100331265A1 (en) | 2009-03-20 | 2010-03-19 | Methods for the prevention and treatment of burn injuries and secondary complications |
US14/061,370 Active US9457057B2 (en) | 2009-03-20 | 2013-10-23 | Methods for the prevention and treatment of burn injuries and secondary complications |
US15/266,522 Abandoned US20170216394A1 (en) | 2009-03-20 | 2016-09-15 | Methods for the prevention and treatment of burn injuries and secondary complications |
US16/841,183 Abandoned US20200323945A1 (en) | 2009-03-20 | 2020-04-06 | Methods for the prevention and treatment of burn injuries and secondary complications |
Country Status (5)
Country | Link |
---|---|
US (5) | US20100331265A1 (en) |
EP (4) | EP2408463B1 (en) |
JP (5) | JP2012521355A (en) |
CN (2) | CN102573881A (en) |
WO (1) | WO2010120431A2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102573881A (en) * | 2009-03-20 | 2012-07-11 | 通用医疗公司以马萨诸塞州通用医疗公司名义经营 | Methods for the prevention and treatment of burn injuries and secondary complications |
EP4302829A3 (en) | 2009-08-24 | 2024-03-27 | Stealth BioTherapeutics Inc. | Peptide for use in preventing or treating macular degeneration |
JP2013506696A (en) | 2009-10-05 | 2013-02-28 | コーネル ユニヴァーシティー | Methods for preventing or treating heart failure |
EP3167896A1 (en) * | 2010-02-26 | 2017-05-17 | University of Florida Research Foundation, Inc. | Mitochondrial-targeted antioxidants protect against mechanical ventilation-induced diaphragm dysfunction and skeletal muscle atrophy |
EP2566880A4 (en) * | 2010-05-03 | 2014-10-08 | Stealth Peptides Int Inc | Aromatic-cationic peptides and uses of same |
CN106913860A (en) | 2011-09-29 | 2017-07-04 | 梅约医学教育与研究基金会 | Aromatic-cationic peptide and use their method |
JP6317324B2 (en) * | 2012-03-30 | 2018-04-25 | ステルス ペプチドズ インターナショナル インコーポレイテッド | Methods and compositions for preventing and treating neurological disorders |
CN116474071A (en) * | 2013-03-01 | 2023-07-25 | 康德生物医疗有限公司 | Methods of treating mitochondrial disorders |
CA2916880C (en) | 2013-03-01 | 2021-02-09 | Stealth Biotherapeutics Corp | Methods and compositions for the prevention or treatment of barth syndrome |
CA2916977A1 (en) | 2013-06-26 | 2014-12-31 | Stealth Biotherapeutics Corp | Methods and compositions for detecting and diagnosing diseases and conditions |
EP3399990A4 (en) | 2015-12-31 | 2019-08-14 | Scott Duncan | Therapeutic compositions including peptides and uses thereof |
CN109563131A (en) | 2016-04-11 | 2019-04-02 | 卡诺有限责任公司 | Chiral peptide |
KR20210049101A (en) | 2018-08-23 | 2021-05-04 | 세키스이가가쿠 고교가부시키가이샤 | Interlayer film for laminated glass, laminated glass, and glass construction |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040248808A1 (en) * | 2003-02-04 | 2004-12-09 | Szeto Hazel H. | Methods for preventing mitochondrial permeability transition |
US9457057B2 (en) * | 2009-03-20 | 2016-10-04 | The General Hospital Corporation | Methods for the prevention and treatment of burn injuries and secondary complications |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522811A (en) * | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
US5602100A (en) * | 1988-06-30 | 1997-02-11 | Astra Ab | Dermorphin analogs having pharmacological activity |
US5312899A (en) * | 1988-06-30 | 1994-05-17 | Biochem Pharma, Inc. | Dermorphin analogs |
US5652122A (en) * | 1989-12-21 | 1997-07-29 | Frankel; Alan | Nucleic acids encoding and methods of making tat-derived transport polypeptides |
US5858784A (en) * | 1991-12-17 | 1999-01-12 | The Regents Of The University Of California | Expression of cloned genes in the lung by aerosol- and liposome-based delivery |
US5674534A (en) * | 1992-06-11 | 1997-10-07 | Alkermes, Inc. | Composition for sustained release of non-aggregated erythropoietin |
US5716644A (en) * | 1992-06-11 | 1998-02-10 | Alkermes, Inc. | Composition for sustained release of non-aggregated erythropoietin |
EP0747092B1 (en) * | 1995-06-09 | 2003-12-03 | Hisamitsu Pharmaceutical Co., Inc. | Matrix for iontophoresis |
US5849761A (en) * | 1995-09-12 | 1998-12-15 | Regents Of The University Of California | Peripherally active anti-hyperalgesic opiates |
US5885958A (en) * | 1997-03-25 | 1999-03-23 | Administrators Of The Tulane Educational Fund | Mu-opiate receptor peptides |
US5989463A (en) | 1997-09-24 | 1999-11-23 | Alkermes Controlled Therapeutics, Inc. | Methods for fabricating polymer-based controlled release devices |
CA2314267A1 (en) * | 1997-12-10 | 1999-06-17 | Washington University | Anti-pathogen system and methods of use thereof |
JP2002512954A (en) * | 1998-04-24 | 2002-05-08 | マイトコー | Compounds and methods for treating mitochondrial-related diseases |
US6245740B1 (en) | 1998-12-23 | 2001-06-12 | Amgen Inc. | Polyol:oil suspensions for the sustained release of proteins |
SE9900961D0 (en) * | 1999-03-16 | 1999-03-16 | Astra Ab | Novel compounds |
AU7880700A (en) * | 1999-08-16 | 2001-03-13 | Dung Phan | Compositions and methods of treatment for skin conditions using extracts of turmeric |
DE60042338D1 (en) * | 1999-10-04 | 2009-07-16 | Univ New Jersey Med | TAR RNA binding peptides |
US6759520B1 (en) * | 1999-10-28 | 2004-07-06 | The New England Medical Center Hospitals, Inc. | Chimeric analgesic peptides |
US20050192215A1 (en) * | 2000-01-21 | 2005-09-01 | Malabika Ghosh | Methods and materials relating to novel polypeptides and polynucleotides |
ATE496533T1 (en) * | 2000-07-18 | 2011-02-15 | Cornell Res Foundation Inc | MEDICAL USE OF MU-OPIOID RECEPTOR AGONISTS |
US6900178B2 (en) * | 2000-09-12 | 2005-05-31 | University Of Kentucky Research Foundation | Protection against ischemia and reperfusion injury |
US20070015146A1 (en) | 2001-05-22 | 2007-01-18 | Gene Logic, Inc. | Molecular nephrotoxicology modeling |
WO2004043485A1 (en) * | 2002-11-10 | 2004-05-27 | Institute Of Cell Biophysics Russian Academy Of Sciences | Antioxidant pharmaceutical compound, method for producing polypeptide and method of cure |
BRPI0409911A (en) * | 2003-05-01 | 2006-04-25 | Cornell Res Foundation Inc | method to release a molecule into a cell, and carrier complex |
EP1667684A1 (en) * | 2003-09-17 | 2006-06-14 | ICOS Corporation | Use of chk1 inhibitors to control cell proliferation |
US7232824B2 (en) * | 2003-09-30 | 2007-06-19 | Scios, Inc. | Quinazoline derivatives as medicaments |
CA2554166C (en) * | 2004-01-23 | 2014-07-29 | Cornell Research Foundation, Inc. | Methods for reducing oxidative damage |
US20050272101A1 (en) * | 2004-06-07 | 2005-12-08 | Prasad Devarajan | Method for the early detection of renal injury |
CN101018747B (en) * | 2004-09-15 | 2010-12-22 | 皇家飞利浦电子股份有限公司 | Light-transmitting substrate provided with a light-absorbing coating, light absorbing coating as well as method of preparing a light-absorbing coating. |
DK1931369T3 (en) * | 2005-09-16 | 2016-12-12 | Cornell Res Foundation Inc | Aromatic cationic peptide for use in a method for reducing CD36 expression |
US20070259377A1 (en) * | 2005-10-11 | 2007-11-08 | Mickey Urdea | Diabetes-associated markers and methods of use thereof |
US20080027082A1 (en) * | 2006-06-19 | 2008-01-31 | Berthold Hocher | Use of adenosine a1 antagonists in radiocontrast media induced nephropathy |
JP2010510222A (en) * | 2006-11-17 | 2010-04-02 | シェーリング コーポレイション | Combination therapy for proliferative disorders |
ES2458870T3 (en) * | 2008-02-07 | 2014-05-07 | Cornell University | Procedures to prevent or treat insulin resistance |
CN101951936A (en) * | 2008-02-26 | 2011-01-19 | 康奈尔大学 | Methods for prevention and treatment of acute renal injury |
US8559758B2 (en) * | 2008-08-28 | 2013-10-15 | Koninklijke Philips N.V. | Apparatus for determining a modification of a size of an object |
-
2010
- 2010-03-19 CN CN2010800217691A patent/CN102573881A/en active Pending
- 2010-03-19 CN CN201310740133.8A patent/CN103933542A/en active Pending
- 2010-03-19 EP EP10764805.7A patent/EP2408463B1/en active Active
- 2010-03-19 WO PCT/US2010/027953 patent/WO2010120431A2/en active Application Filing
- 2010-03-19 JP JP2012500991A patent/JP2012521355A/en active Pending
- 2010-03-19 EP EP19160530.2A patent/EP3563862B1/en active Active
- 2010-03-19 US US12/727,647 patent/US20100331265A1/en not_active Abandoned
- 2010-03-19 EP EP16188118.0A patent/EP3199173B1/en active Active
- 2010-03-19 EP EP21158725.8A patent/EP3906933A1/en active Pending
-
2013
- 2013-10-23 US US14/061,370 patent/US9457057B2/en active Active
-
2014
- 2014-10-16 JP JP2014211820A patent/JP6005707B2/en active Active
-
2016
- 2016-09-07 JP JP2016174286A patent/JP2016210801A/en active Pending
- 2016-09-15 US US15/266,522 patent/US20170216394A1/en not_active Abandoned
-
2018
- 2018-08-17 JP JP2018153359A patent/JP2018172442A/en active Pending
-
2020
- 2020-04-06 US US16/841,183 patent/US20200323945A1/en not_active Abandoned
- 2020-09-09 JP JP2020150963A patent/JP2020196762A/en active Pending
-
2022
- 2022-08-02 US US17/879,143 patent/US20230201299A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040248808A1 (en) * | 2003-02-04 | 2004-12-09 | Szeto Hazel H. | Methods for preventing mitochondrial permeability transition |
US9457057B2 (en) * | 2009-03-20 | 2016-10-04 | The General Hospital Corporation | Methods for the prevention and treatment of burn injuries and secondary complications |
Non-Patent Citations (3)
Title |
---|
Horton (Toxicology 189 (2003) 75-88) (Year: 2003) * |
Thomas et al. (J Am Soc Nephrol 18: 213–222, 2007) (Year: 2007) * |
Vincent (Yearbook of Intensive Care and Emergency Medicine, 2007) (Year: 2007) * |
Also Published As
Publication number | Publication date |
---|---|
US20200323945A1 (en) | 2020-10-15 |
JP2012521355A (en) | 2012-09-13 |
WO2010120431A3 (en) | 2011-01-13 |
WO2010120431A2 (en) | 2010-10-21 |
JP2020196762A (en) | 2020-12-10 |
EP3563862B1 (en) | 2021-05-05 |
EP2408463B1 (en) | 2016-10-19 |
CN102573881A (en) | 2012-07-11 |
EP3199173B1 (en) | 2019-04-24 |
EP3906933A1 (en) | 2021-11-10 |
US20140288012A1 (en) | 2014-09-25 |
JP2015078190A (en) | 2015-04-23 |
JP2016210801A (en) | 2016-12-15 |
US20170216394A1 (en) | 2017-08-03 |
EP3563862A1 (en) | 2019-11-06 |
EP2408463A2 (en) | 2012-01-25 |
CN103933542A (en) | 2014-07-23 |
EP3199173A1 (en) | 2017-08-02 |
US20100331265A1 (en) | 2010-12-30 |
EP2408463A4 (en) | 2012-12-12 |
JP2018172442A (en) | 2018-11-08 |
JP6005707B2 (en) | 2016-10-12 |
US9457057B2 (en) | 2016-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230201299A1 (en) | Methods for the prevention and treatment of burn injuries and secondary complications | |
US20230076067A1 (en) | Mitochondrial-targeted antioxidants protect against mechanical ventilation-induced diaphragm dysfunction and skeletal muscle atrophy | |
US11998585B2 (en) | Methods and compositions for increasing the dose of a chemotherapeutic agent | |
US20190022167A1 (en) | Methods and compositions for the prevention and treatment of duchenne muscular dystrophy | |
CA2916497C (en) | Methods for the regulation of matrix metalloproteinase expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE GENERAL HOSPITAL CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOMPKINS, RONALD G.;TZIKA, A. ARIA;YU, YONG-MING;AND OTHERS;SIGNING DATES FROM 20100615 TO 20100913;REEL/FRAME:062974/0761 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |