US20230115366A1 - Compositions and methods for treating cancer - Google Patents
Compositions and methods for treating cancer Download PDFInfo
- Publication number
- US20230115366A1 US20230115366A1 US17/853,573 US202217853573A US2023115366A1 US 20230115366 A1 US20230115366 A1 US 20230115366A1 US 202217853573 A US202217853573 A US 202217853573A US 2023115366 A1 US2023115366 A1 US 2023115366A1
- Authority
- US
- United States
- Prior art keywords
- cancer
- compound
- pharmaceutically acceptable
- alkyl
- depicts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 110
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 77
- 201000011510 cancer Diseases 0.000 title claims description 42
- 239000000203 mixture Substances 0.000 title description 91
- 150000001875 compounds Chemical class 0.000 claims abstract description 191
- 208000005017 glioblastoma Diseases 0.000 claims abstract description 107
- 125000000217 alkyl group Chemical group 0.000 claims description 93
- 150000003839 salts Chemical class 0.000 claims description 57
- 239000001257 hydrogen Substances 0.000 claims description 42
- 229910052739 hydrogen Inorganic materials 0.000 claims description 42
- 125000000623 heterocyclic group Chemical group 0.000 claims description 37
- 125000003118 aryl group Chemical group 0.000 claims description 34
- 125000001072 heteroaryl group Chemical group 0.000 claims description 29
- 210000004556 brain Anatomy 0.000 claims description 27
- 239000008194 pharmaceutical composition Substances 0.000 claims description 20
- 239000002904 solvent Substances 0.000 claims description 20
- 125000003545 alkoxy group Chemical group 0.000 claims description 17
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 16
- 206010027476 Metastases Diseases 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 125000002252 acyl group Chemical group 0.000 claims description 14
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 14
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 13
- 201000005202 lung cancer Diseases 0.000 claims description 13
- 208000020816 lung neoplasm Diseases 0.000 claims description 13
- 210000003169 central nervous system Anatomy 0.000 claims description 12
- 206010003571 Astrocytoma Diseases 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 7
- 206010009944 Colon cancer Diseases 0.000 claims description 6
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 6
- 208000008732 thymoma Diseases 0.000 claims description 6
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 5
- 230000009702 cancer cell proliferation Effects 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 206010006187 Breast cancer Diseases 0.000 claims description 4
- 208000026310 Breast neoplasm Diseases 0.000 claims description 4
- 201000007455 central nervous system cancer Diseases 0.000 claims description 4
- 125000001188 haloalkyl group Chemical group 0.000 claims description 4
- 206010005003 Bladder cancer Diseases 0.000 claims description 3
- 206010005949 Bone cancer Diseases 0.000 claims description 3
- 208000018084 Bone neoplasm Diseases 0.000 claims description 3
- 201000009030 Carcinoma Diseases 0.000 claims description 3
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 3
- 208000021994 Diffuse astrocytoma Diseases 0.000 claims description 3
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 3
- 201000008808 Fibrosarcoma Diseases 0.000 claims description 3
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 claims description 3
- 208000007766 Kaposi sarcoma Diseases 0.000 claims description 3
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 3
- 206010025323 Lymphomas Diseases 0.000 claims description 3
- 208000032271 Malignant tumor of penis Diseases 0.000 claims description 3
- 208000034578 Multiple myelomas Diseases 0.000 claims description 3
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 3
- 206010033128 Ovarian cancer Diseases 0.000 claims description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 3
- 208000002471 Penile Neoplasms Diseases 0.000 claims description 3
- 206010034299 Penile cancer Diseases 0.000 claims description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 3
- 206010060862 Prostate cancer Diseases 0.000 claims description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 3
- 206010038389 Renal cancer Diseases 0.000 claims description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 3
- 201000000331 Testicular germ cell cancer Diseases 0.000 claims description 3
- 201000009365 Thymic carcinoma Diseases 0.000 claims description 3
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 3
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 3
- 201000010881 cervical cancer Diseases 0.000 claims description 3
- 208000029742 colonic neoplasm Diseases 0.000 claims description 3
- 201000004101 esophageal cancer Diseases 0.000 claims description 3
- 201000001169 fibrillary astrocytoma Diseases 0.000 claims description 3
- 206010017758 gastric cancer Diseases 0.000 claims description 3
- 208000024348 heart neoplasm Diseases 0.000 claims description 3
- 201000010982 kidney cancer Diseases 0.000 claims description 3
- 208000032839 leukemia Diseases 0.000 claims description 3
- 201000007270 liver cancer Diseases 0.000 claims description 3
- 208000014018 liver neoplasm Diseases 0.000 claims description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 3
- 208000026037 malignant tumor of neck Diseases 0.000 claims description 3
- 201000001441 melanoma Diseases 0.000 claims description 3
- 201000002528 pancreatic cancer Diseases 0.000 claims description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 3
- 210000000278 spinal cord Anatomy 0.000 claims description 3
- 208000014618 spinal cord cancer Diseases 0.000 claims description 3
- 201000011549 stomach cancer Diseases 0.000 claims description 3
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 3
- 206010014967 Ependymoma Diseases 0.000 claims description 2
- 201000004066 Ganglioglioma Diseases 0.000 claims description 2
- 201000010133 Oligodendroglioma Diseases 0.000 claims description 2
- 201000007288 Pleomorphic xanthoastrocytoma Diseases 0.000 claims description 2
- 206010002224 anaplastic astrocytoma Diseases 0.000 claims description 2
- 125000004963 sulfonylalkyl group Chemical group 0.000 claims description 2
- 230000009401 metastasis Effects 0.000 claims 13
- 125000006413 ring segment Chemical group 0.000 claims 4
- 150000002431 hydrogen Chemical class 0.000 claims 2
- 201000007286 Pilocytic astrocytoma Diseases 0.000 claims 1
- 125000001475 halogen functional group Chemical group 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 53
- 230000001086 cytosolic effect Effects 0.000 abstract description 49
- 230000004153 glucose metabolism Effects 0.000 abstract description 35
- 239000003112 inhibitor Substances 0.000 abstract description 24
- 230000001404 mediated effect Effects 0.000 abstract description 20
- 239000003381 stabilizer Substances 0.000 abstract description 19
- 230000008499 blood brain barrier function Effects 0.000 abstract description 4
- 210000001218 blood-brain barrier Anatomy 0.000 abstract description 4
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 abstract description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 abstract description 2
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 abstract 2
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 abstract 2
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 abstract 2
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 154
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 152
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 152
- 210000004027 cell Anatomy 0.000 description 143
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 138
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 138
- 229960001433 erlotinib Drugs 0.000 description 138
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 121
- 238000011282 treatment Methods 0.000 description 91
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 87
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 76
- 102000001301 EGF receptor Human genes 0.000 description 75
- 108060006698 EGF receptor Proteins 0.000 description 75
- 238000005160 1H NMR spectroscopy Methods 0.000 description 72
- 230000002503 metabolic effect Effects 0.000 description 68
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 65
- -1 alkynl Chemical group 0.000 description 63
- 229940121647 egfr inhibitor Drugs 0.000 description 61
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 60
- 235000019439 ethyl acetate Nutrition 0.000 description 60
- 239000000243 solution Substances 0.000 description 56
- 239000008103 glucose Substances 0.000 description 53
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 52
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 50
- 239000003814 drug Substances 0.000 description 49
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 46
- 229910001868 water Inorganic materials 0.000 description 46
- 229940079593 drug Drugs 0.000 description 42
- 230000005764 inhibitory process Effects 0.000 description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 40
- 238000002360 preparation method Methods 0.000 description 38
- 230000037452 priming Effects 0.000 description 38
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 37
- 239000003795 chemical substances by application Substances 0.000 description 36
- 238000002474 experimental method Methods 0.000 description 36
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 description 34
- 108090000623 proteins and genes Proteins 0.000 description 34
- 230000004190 glucose uptake Effects 0.000 description 33
- TVTXCJFHQKSQQM-LJQIRTBHSA-N 4-[[(2r,3s,4r,5s)-3-(3-chloro-2-fluorophenyl)-4-(4-chloro-2-fluorophenyl)-4-cyano-5-(2,2-dimethylpropyl)pyrrolidine-2-carbonyl]amino]-3-methoxybenzoic acid Chemical compound COC1=CC(C(O)=O)=CC=C1NC(=O)[C@H]1[C@H](C=2C(=C(Cl)C=CC=2)F)[C@@](C#N)(C=2C(=CC(Cl)=CC=2)F)[C@H](CC(C)(C)C)N1 TVTXCJFHQKSQQM-LJQIRTBHSA-N 0.000 description 32
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 30
- 238000000375 direct analysis in real time Methods 0.000 description 30
- 238000012063 dual-affinity re-targeting Methods 0.000 description 30
- 229950002843 idasanutlin Drugs 0.000 description 30
- 239000011541 reaction mixture Substances 0.000 description 30
- 239000007787 solid Substances 0.000 description 30
- 239000000523 sample Substances 0.000 description 28
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 27
- 241000699670 Mus sp. Species 0.000 description 26
- 230000001640 apoptogenic effect Effects 0.000 description 26
- 210000004369 blood Anatomy 0.000 description 26
- 239000008280 blood Substances 0.000 description 26
- 238000003818 flash chromatography Methods 0.000 description 26
- 239000010410 layer Substances 0.000 description 26
- 239000000126 substance Substances 0.000 description 26
- 230000006907 apoptotic process Effects 0.000 description 25
- 235000018102 proteins Nutrition 0.000 description 25
- 102000004169 proteins and genes Human genes 0.000 description 25
- 239000000741 silica gel Substances 0.000 description 25
- 229910002027 silica gel Inorganic materials 0.000 description 25
- 230000005754 cellular signaling Effects 0.000 description 24
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 24
- 239000003981 vehicle Substances 0.000 description 24
- VRYALKFFQXWPIH-PBXRRBTRSA-N (3r,4s,5r)-3,4,5,6-tetrahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC=O VRYALKFFQXWPIH-PBXRRBTRSA-N 0.000 description 23
- PMMURAAUARKVCB-UHFFFAOYSA-N alpha-D-ara-dHexp Natural products OCC1OC(O)CC(O)C1O PMMURAAUARKVCB-UHFFFAOYSA-N 0.000 description 23
- 230000008859 change Effects 0.000 description 23
- 238000003119 immunoblot Methods 0.000 description 23
- 230000002195 synergetic effect Effects 0.000 description 23
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 21
- 238000004440 column chromatography Methods 0.000 description 21
- 238000005259 measurement Methods 0.000 description 21
- 230000004083 survival effect Effects 0.000 description 21
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 20
- 125000001424 substituent group Chemical group 0.000 description 20
- 102100030497 Cytochrome c Human genes 0.000 description 19
- 108010075031 Cytochromes c Proteins 0.000 description 19
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 19
- 125000005843 halogen group Chemical group 0.000 description 19
- 108090000672 Annexin A5 Proteins 0.000 description 18
- 102000004121 Annexin A5 Human genes 0.000 description 18
- 230000030833 cell death Effects 0.000 description 18
- 230000002829 reductive effect Effects 0.000 description 18
- XBVZJHBFUVNLKS-UHFFFAOYSA-N 4-chloro-5-fluoro-7,8-dihydro-[1,4]dioxino[2,3-g]quinazoline Chemical compound FC1=C2C(Cl)=NC=NC2=CC2=C1OCCO2 XBVZJHBFUVNLKS-UHFFFAOYSA-N 0.000 description 17
- 238000001114 immunoprecipitation Methods 0.000 description 17
- 238000010186 staining Methods 0.000 description 17
- 238000003756 stirring Methods 0.000 description 17
- 230000001225 therapeutic effect Effects 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 16
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 16
- 230000008685 targeting Effects 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 15
- 125000001183 hydrocarbyl group Chemical group 0.000 description 15
- 229950004941 pictilisib Drugs 0.000 description 15
- LHNIIDJUOCFXAP-UHFFFAOYSA-N pictrelisib Chemical compound C1CN(S(=O)(=O)C)CCN1CC1=CC2=NC(C=3C=4C=NNC=4C=CC=3)=NC(N3CCOCC3)=C2S1 LHNIIDJUOCFXAP-UHFFFAOYSA-N 0.000 description 15
- 125000000753 cycloalkyl group Chemical group 0.000 description 14
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000012044 organic layer Substances 0.000 description 13
- 238000000746 purification Methods 0.000 description 13
- JKMWZKPAXZBYEH-JWHWKPFMSA-N 5-[3-[4-(aminomethyl)phenoxy]propyl]-2-[(8e)-8-(1,3-benzothiazol-2-ylhydrazinylidene)-6,7-dihydro-5h-naphthalen-2-yl]-1,3-thiazole-4-carboxylic acid Chemical compound C1=CC(CN)=CC=C1OCCCC1=C(C(O)=O)N=C(C=2C=C3C(=N/NC=4SC5=CC=CC=C5N=4)/CCCC3=CC=2)S1 JKMWZKPAXZBYEH-JWHWKPFMSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 12
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 12
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 12
- 241001465754 Metazoa Species 0.000 description 12
- 239000004480 active ingredient Substances 0.000 description 12
- 239000002775 capsule Substances 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 229960002584 gefitinib Drugs 0.000 description 12
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 12
- 230000034727 intrinsic apoptotic signaling pathway Effects 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- 239000007832 Na2SO4 Substances 0.000 description 11
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 11
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 11
- 230000001419 dependent effect Effects 0.000 description 11
- 238000009472 formulation Methods 0.000 description 11
- 125000005842 heteroatom Chemical group 0.000 description 11
- 229920006395 saturated elastomer Polymers 0.000 description 11
- 229910052938 sodium sulfate Inorganic materials 0.000 description 11
- 238000012762 unpaired Student’s t-test Methods 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 241000282414 Homo sapiens Species 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 10
- XNRVGTHNYCNCFF-UHFFFAOYSA-N Lapatinib ditosylate monohydrate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1.CC1=CC=C(S(O)(=O)=O)C=C1.O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 XNRVGTHNYCNCFF-UHFFFAOYSA-N 0.000 description 10
- 239000005089 Luciferase Substances 0.000 description 10
- MXDSJQHFFDGFDK-CYBMUJFWSA-N [4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl] (2r)-2,4-dimethylpiperazine-1-carboxylate Chemical compound C=12C=C(OC(=O)N3[C@@H](CN(C)CC3)C)C(OC)=CC2=NC=NC=1NC1=CC=CC(Cl)=C1F MXDSJQHFFDGFDK-CYBMUJFWSA-N 0.000 description 10
- 230000004913 activation Effects 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 238000010790 dilution Methods 0.000 description 10
- 239000012895 dilution Substances 0.000 description 10
- 239000003937 drug carrier Substances 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 10
- 229960004891 lapatinib Drugs 0.000 description 10
- 239000000651 prodrug Substances 0.000 description 10
- 229940002612 prodrug Drugs 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 10
- GVRRXASZZAKBMN-UHFFFAOYSA-N 4-chloroquinazoline Chemical compound C1=CC=C2C(Cl)=NC=NC2=C1 GVRRXASZZAKBMN-UHFFFAOYSA-N 0.000 description 9
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- 108010040168 Bcl-2-Like Protein 11 Proteins 0.000 description 9
- 206010018338 Glioma Diseases 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 125000000304 alkynyl group Chemical group 0.000 description 9
- 230000027455 binding Effects 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 108010087914 epidermal growth factor receptor VIII Proteins 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000007917 intracranial administration Methods 0.000 description 9
- OKKJLVBELUTLKV-VMNATFBRSA-N methanol-d1 Chemical compound [2H]OC OKKJLVBELUTLKV-VMNATFBRSA-N 0.000 description 9
- 229960003278 osimertinib Drugs 0.000 description 9
- DUYJMQONPNNFPI-UHFFFAOYSA-N osimertinib Chemical compound COC1=CC(N(C)CCN(C)C)=C(NC(=O)C=C)C=C1NC1=NC=CC(C=2C3=CC=CC=C3N(C)C=2)=N1 DUYJMQONPNNFPI-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 8
- 108091033409 CRISPR Proteins 0.000 description 8
- 241000963438 Gaussia <copepod> Species 0.000 description 8
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 8
- 108060001084 Luciferase Proteins 0.000 description 8
- 230000001154 acute effect Effects 0.000 description 8
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 239000002552 dosage form Substances 0.000 description 8
- 230000002068 genetic effect Effects 0.000 description 8
- 230000034659 glycolysis Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 231100000225 lethality Toxicity 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 8
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 8
- 238000004809 thin layer chromatography Methods 0.000 description 8
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 8
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 8
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 7
- XWBTZHDDWRNOQH-UHFFFAOYSA-N 3-chloro-2-fluoroaniline Chemical compound NC1=CC=CC(Cl)=C1F XWBTZHDDWRNOQH-UHFFFAOYSA-N 0.000 description 7
- OKJHERVJRNHBOA-UHFFFAOYSA-N 4-(3-bromo-2-fluoroanilino)quinazoline-6,7-diol Chemical compound OC(C=C1C(NC(C=CC=C2Br)=C2F)=NC=NC1=C1)=C1O OKJHERVJRNHBOA-UHFFFAOYSA-N 0.000 description 7
- 102000001765 Bcl-2-Like Protein 11 Human genes 0.000 description 7
- 229940122035 Bcl-XL inhibitor Drugs 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- UGQJXKGTSKOXEE-UHFFFAOYSA-N N-[2-fluoro-3-(2-triethylsilylethynyl)phenyl]-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound N(C1=C(F)C(C#C[Si](CC)(CC)CC)=CC=C1)C1=C2C(C=C3C(OCCO3)=C2)=NC=N1 UGQJXKGTSKOXEE-UHFFFAOYSA-N 0.000 description 7
- BFLVHKQZRWNVQW-UHFFFAOYSA-N [4-(3-bromo-2-fluoroanilino)-7-(2,2-dimethylpropanoyloxy)quinazolin-6-yl] 2,2-dimethylpropanoate Chemical compound CC(C(=O)OC=1C=C2C(=NC=NC2=CC=1OC(C(C)(C)C)=O)NC1=C(C(=CC=C1)Br)F)(C)C BFLVHKQZRWNVQW-UHFFFAOYSA-N 0.000 description 7
- 230000004075 alteration Effects 0.000 description 7
- 239000005557 antagonist Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000002238 attenuated effect Effects 0.000 description 7
- 239000012267 brine Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 229910052681 coesite Inorganic materials 0.000 description 7
- 229910052906 cristobalite Inorganic materials 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 7
- 239000000890 drug combination Substances 0.000 description 7
- 239000007903 gelatin capsule Substances 0.000 description 7
- 150000002303 glucose derivatives Chemical class 0.000 description 7
- 235000011187 glycerol Nutrition 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 7
- 239000006166 lysate Substances 0.000 description 7
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- 229910052682 stishovite Inorganic materials 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- 229910052905 tridymite Inorganic materials 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- QQHDDMWTVAEZNX-UHFFFAOYSA-N 4-chloro-8,9-dihydro-7h-[1,4]dioxepino[2,3-g]quinazoline Chemical compound O1CCCOC2=C1C=C1N=CN=C(Cl)C1=C2 QQHDDMWTVAEZNX-UHFFFAOYSA-N 0.000 description 6
- RZCJSVRGPHXBSM-UHFFFAOYSA-N 8-chloro-[1,3]dioxolo[4,5-g]quinazoline Chemical compound C1=C2C(Cl)=NC=NC2=CC2=C1OCO2 RZCJSVRGPHXBSM-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000012664 BCL-2-inhibitor Substances 0.000 description 6
- 229940123711 Bcl2 inhibitor Drugs 0.000 description 6
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 6
- 229940083338 MDM2 inhibitor Drugs 0.000 description 6
- 239000012819 MDM2-Inhibitor Substances 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- 108700020796 Oncogene Proteins 0.000 description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- 125000004423 acyloxy group Chemical group 0.000 description 6
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- 235000006708 antioxidants Nutrition 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 125000002837 carbocyclic group Chemical group 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- 230000029142 excretion Effects 0.000 description 6
- 125000001153 fluoro group Chemical group F* 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 239000012133 immunoprecipitate Substances 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- JLYAXFNOILIKPP-KXQOOQHDSA-N navitoclax Chemical compound C([C@@H](NC1=CC=C(C=C1S(=O)(=O)C(F)(F)F)S(=O)(=O)NC(=O)C1=CC=C(C=C1)N1CCN(CC1)CC1=C(CCC(C1)(C)C)C=1C=CC(Cl)=CC=1)CSC=1C=CC=CC=1)CN1CCOCC1 JLYAXFNOILIKPP-KXQOOQHDSA-N 0.000 description 6
- 235000019198 oils Nutrition 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 238000002600 positron emission tomography Methods 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 230000000861 pro-apoptotic effect Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- LQBVNQSMGBZMKD-UHFFFAOYSA-N venetoclax Chemical compound C=1C=C(Cl)C=CC=1C=1CC(C)(C)CCC=1CN(CC1)CCN1C(C=C1OC=2C=C3C=CNC3=NC=2)=CC=C1C(=O)NS(=O)(=O)C(C=C1[N+]([O-])=O)=CC=C1NCC1CCOCC1 LQBVNQSMGBZMKD-UHFFFAOYSA-N 0.000 description 6
- MNULEGDCPYONBU-WMBHJXFZSA-N (1r,4s,5e,5'r,6'r,7e,10s,11r,12s,14r,15s,16s,18r,19s,20r,21e,25s,26r,27s,29s)-4-ethyl-11,12,15,19-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',10,12,14,16,18,20,26,29-nonamethylspiro[24,28-dioxabicyclo[23.3.1]nonacosa-5,7,21-triene-27,2'-oxane]-13,17,23-trio Polymers O([C@@H]1CC[C@@H](/C=C/C=C/C[C@H](C)[C@@H](O)[C@](C)(O)C(=O)[C@H](C)[C@@H](O)[C@H](C)C(=O)[C@H](C)[C@@H](O)[C@H](C)/C=C/C(=O)O[C@H]([C@H]2C)[C@H]1C)CC)[C@]12CC[C@@H](C)[C@@H](C[C@H](C)O)O1 MNULEGDCPYONBU-WMBHJXFZSA-N 0.000 description 5
- MNULEGDCPYONBU-DJRUDOHVSA-N (1s,4r,5z,5'r,6'r,7e,10s,11r,12s,14r,15s,18r,19r,20s,21e,26r,27s)-4-ethyl-11,12,15,19-tetrahydroxy-6'-(2-hydroxypropyl)-5',10,12,14,16,18,20,26,29-nonamethylspiro[24,28-dioxabicyclo[23.3.1]nonacosa-5,7,21-triene-27,2'-oxane]-13,17,23-trione Polymers O([C@H]1CC[C@H](\C=C/C=C/C[C@H](C)[C@@H](O)[C@](C)(O)C(=O)[C@H](C)[C@@H](O)C(C)C(=O)[C@H](C)[C@H](O)[C@@H](C)/C=C/C(=O)OC([C@H]2C)C1C)CC)[C@]12CC[C@@H](C)[C@@H](CC(C)O)O1 MNULEGDCPYONBU-DJRUDOHVSA-N 0.000 description 5
- MNULEGDCPYONBU-YNZHUHFTSA-N (4Z,18Z,20Z)-22-ethyl-7,11,14,15-tetrahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,28,29-nonamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2'-oxane]-3,9,13-trione Polymers CC1C(C2C)OC(=O)\C=C/C(C)C(O)C(C)C(=O)C(C)C(O)C(C)C(=O)C(C)(O)C(O)C(C)C\C=C/C=C\C(CC)CCC2OC21CCC(C)C(CC(C)O)O2 MNULEGDCPYONBU-YNZHUHFTSA-N 0.000 description 5
- MNULEGDCPYONBU-VVXVDZGXSA-N (5e,5'r,7e,10s,11r,12s,14s,15r,16r,18r,19s,20r,21e,26r,29s)-4-ethyl-11,12,15,19-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',10,12,14,16,18,20,26,29-nonamethylspiro[24,28-dioxabicyclo[23.3.1]nonacosa-5,7,21-triene-27,2'-oxane]-13,17,23-trione Polymers C([C@H](C)[C@@H](O)[C@](C)(O)C(=O)[C@@H](C)[C@H](O)[C@@H](C)C(=O)[C@H](C)[C@@H](O)[C@H](C)/C=C/C(=O)OC([C@H]1C)[C@H]2C)\C=C\C=C\C(CC)CCC2OC21CC[C@@H](C)C(C[C@H](C)O)O2 MNULEGDCPYONBU-VVXVDZGXSA-N 0.000 description 5
- MNULEGDCPYONBU-UHFFFAOYSA-N 4-ethyl-11,12,15,19-tetrahydroxy-6'-(2-hydroxypropyl)-5',10,12,14,16,18,20,26,29-nonamethylspiro[24,28-dioxabicyclo[23.3.1]nonacosa-5,7,21-triene-27,2'-oxane]-13,17,23-trione Polymers CC1C(C2C)OC(=O)C=CC(C)C(O)C(C)C(=O)C(C)C(O)C(C)C(=O)C(C)(O)C(O)C(C)CC=CC=CC(CC)CCC2OC21CCC(C)C(CC(C)O)O2 MNULEGDCPYONBU-UHFFFAOYSA-N 0.000 description 5
- HPLNQCPCUACXLM-PGUFJCEWSA-N ABT-737 Chemical compound C([C@@H](CCN(C)C)NC=1C(=CC(=CC=1)S(=O)(=O)NC(=O)C=1C=CC(=CC=1)N1CCN(CC=2C(=CC=CC=2)C=2C=CC(Cl)=CC=2)CC1)[N+]([O-])=O)SC1=CC=CC=C1 HPLNQCPCUACXLM-PGUFJCEWSA-N 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 5
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 5
- 101000971209 Homo sapiens Bcl-2-binding component 3, isoforms 3/4 Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- ZONHKVYICBFJCL-UHFFFAOYSA-N [4-(3-bromo-2-fluoroanilino)-7-hydroxyquinazolin-6-yl] 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(OC(C=C1C(NC(C=CC=C2Br)=C2F)=NC=NC1=C1)=C1O)=O ZONHKVYICBFJCL-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 125000003710 aryl alkyl group Chemical group 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 238000002512 chemotherapy Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000010166 immunofluorescence Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000003211 malignant effect Effects 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 5
- 229930191479 oligomycin Natural products 0.000 description 5
- MNULEGDCPYONBU-AWJDAWNUSA-N oligomycin A Polymers O([C@H]1CC[C@H](/C=C/C=C/C[C@@H](C)[C@H](O)[C@@](C)(O)C(=O)[C@@H](C)[C@H](O)[C@@H](C)C(=O)[C@@H](C)[C@H](O)[C@@H](C)/C=C/C(=O)O[C@@H]([C@@H]2C)[C@@H]1C)CC)[C@@]12CC[C@H](C)[C@H](C[C@@H](C)O)O1 MNULEGDCPYONBU-AWJDAWNUSA-N 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 229940080817 rotenone Drugs 0.000 description 5
- JUVIOZPCNVVQFO-UHFFFAOYSA-N rotenone Natural products O1C2=C3CC(C(C)=C)OC3=CC=C2C(=O)C2C1COC1=C2C=C(OC)C(OC)=C1 JUVIOZPCNVVQFO-UHFFFAOYSA-N 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- QIOCQCYXBYUYLH-YACUFSJGSA-N 3-[1-[(3r)-3-[4-[[4-[4-[3-[2-(4-chlorophenyl)-5-methyl-4-methylsulfonyl-1-propan-2-ylpyrrol-3-yl]-5-fluorophenyl]piperazin-1-yl]phenyl]sulfamoyl]-2-(trifluoromethylsulfonyl)anilino]-4-phenylsulfanylbutyl]piperidine-4-carbonyl]oxypropylphosphonic acid Chemical compound CC(C)N1C(C)=C(S(C)(=O)=O)C(C=2C=C(C=C(F)C=2)N2CCN(CC2)C=2C=CC(NS(=O)(=O)C=3C=C(C(N[C@H](CCN4CCC(CC4)C(=O)OCCCP(O)(O)=O)CSC=4C=CC=CC=4)=CC=3)S(=O)(=O)C(F)(F)F)=CC=2)=C1C1=CC=C(Cl)C=C1 QIOCQCYXBYUYLH-YACUFSJGSA-N 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- RIVSCDAHAOCSFS-UHFFFAOYSA-N 5-fluoro-2,3-dihydro-1,4-benzodioxine-6-carboxylic acid Chemical compound O1CCOC2=C(F)C(C(=O)O)=CC=C21 RIVSCDAHAOCSFS-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 241000416162 Astragalus gummifer Species 0.000 description 4
- 238000010354 CRISPR gene editing Methods 0.000 description 4
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 4
- 238000000116 DAPI staining Methods 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- 108091052347 Glucose transporter family Proteins 0.000 description 4
- 101000652482 Homo sapiens TBC1 domain family member 8 Proteins 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 4
- 108020004459 Small interfering RNA Proteins 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 102100030302 TBC1 domain family member 8 Human genes 0.000 description 4
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical group O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- 229920001615 Tragacanth Polymers 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 125000002619 bicyclic group Chemical group 0.000 description 4
- 239000000090 biomarker Substances 0.000 description 4
- 210000005013 brain tissue Anatomy 0.000 description 4
- 125000001246 bromo group Chemical group Br* 0.000 description 4
- 229910000024 caesium carbonate Inorganic materials 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000006143 cell culture medium Substances 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 229940125782 compound 2 Drugs 0.000 description 4
- 239000006071 cream Substances 0.000 description 4
- 125000000392 cycloalkenyl group Chemical group 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- ZQZUQRJTQCAMNC-UHFFFAOYSA-N ethyl N-(5-fluoro-2,3-dihydro-1,4-benzodioxin-6-yl)carbamate Chemical compound CCOC(NC(C=CC1=C2OCCO1)=C2F)=O ZQZUQRJTQCAMNC-UHFFFAOYSA-N 0.000 description 4
- 230000006539 extracellular acidification Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 231100000118 genetic alteration Toxicity 0.000 description 4
- 230000004077 genetic alteration Effects 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000003364 immunohistochemistry Methods 0.000 description 4
- 238000007901 in situ hybridization Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000002438 mitochondrial effect Effects 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000002674 ointment Substances 0.000 description 4
- 239000004006 olive oil Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000006072 paste Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 238000012746 preparative thin layer chromatography Methods 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 4
- 238000002390 rotary evaporation Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 229960004964 temozolomide Drugs 0.000 description 4
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 235000010487 tragacanth Nutrition 0.000 description 4
- 239000000196 tragacanth Substances 0.000 description 4
- 229940116362 tragacanth Drugs 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 229960001183 venetoclax Drugs 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- AVDIQWVJFDMDBB-UHFFFAOYSA-N (2-chloroquinazolin-4-yl)-phenylmethanone Chemical compound C(C1=CC=CC=C1)(=O)C1=NC(=NC2=CC=CC=C12)Cl AVDIQWVJFDMDBB-UHFFFAOYSA-N 0.000 description 3
- QUTFFEUUGHUPQC-ILWYWAAHSA-N (2r,3r,4s,5r)-3,4,5,6-tetrahydroxy-2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]hexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)NC1=CC=C([N+]([O-])=O)C2=NON=C12 QUTFFEUUGHUPQC-ILWYWAAHSA-N 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- AASYSXRGODIQGY-UHFFFAOYSA-N 1-[1-(2,5-dioxopyrrol-1-yl)hexyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(CCCCC)N1C(=O)C=CC1=O AASYSXRGODIQGY-UHFFFAOYSA-N 0.000 description 3
- MDGXGHQGLAVKCJ-UHFFFAOYSA-N 10-fluoro-7,8-dihydro-3H-[1,4]dioxino[2,3-g]quinazolin-4-one Chemical compound O=C(C1=CC2=C3OCCO2)NC=NC1=C3F MDGXGHQGLAVKCJ-UHFFFAOYSA-N 0.000 description 3
- FXUZVLWEMQZMEP-UHFFFAOYSA-N 10-fluoro-7,8-dihydro-[1,4]dioxino[2,3-g]quinazoline Chemical compound FC1=C2N=CN=CC2=CC2=C1OCCO2 FXUZVLWEMQZMEP-UHFFFAOYSA-N 0.000 description 3
- ZCXUVYAZINUVJD-AHXZWLDOSA-N 2-deoxy-2-((18)F)fluoro-alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H]([18F])[C@@H](O)[C@@H]1O ZCXUVYAZINUVJD-AHXZWLDOSA-N 0.000 description 3
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 3
- BDUHCSBCVGXTJM-WUFINQPMSA-N 4-[[(4S,5R)-4,5-bis(4-chlorophenyl)-2-(4-methoxy-2-propan-2-yloxyphenyl)-4,5-dihydroimidazol-1-yl]-oxomethyl]-2-piperazinone Chemical group CC(C)OC1=CC(OC)=CC=C1C1=N[C@@H](C=2C=CC(Cl)=CC=2)[C@@H](C=2C=CC(Cl)=CC=2)N1C(=O)N1CC(=O)NCC1 BDUHCSBCVGXTJM-WUFINQPMSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 108010029240 Cell-Tak Proteins 0.000 description 3
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- 101100393884 Drosophila melanogaster Glut1 gene Proteins 0.000 description 3
- 101100230254 Drosophila melanogaster Glut3 gene Proteins 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- 108020005004 Guide RNA Proteins 0.000 description 3
- 241001559542 Hippocampus hippocampus Species 0.000 description 3
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 3
- 101150058068 SLC2A1 gene Proteins 0.000 description 3
- 101150052594 SLC2A3 gene Proteins 0.000 description 3
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 3
- QBGKPEROWUKSBK-QPPIDDCLSA-N [(4s,5r)-2-(4-tert-butyl-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dimethylimidazol-1-yl]-[4-(3-methylsulfonylpropyl)piperazin-1-yl]methanone Chemical group CCOC1=CC(C(C)(C)C)=CC=C1C(N([C@]1(C)C=2C=CC(Cl)=CC=2)C(=O)N2CCN(CCCS(C)(=O)=O)CC2)=N[C@@]1(C)C1=CC=C(Cl)C=C1 QBGKPEROWUKSBK-QPPIDDCLSA-N 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 125000005251 aryl acyl group Chemical group 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000002648 combination therapy Methods 0.000 description 3
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 3
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229960004679 doxorubicin Drugs 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000019261 negative regulation of glycolysis Effects 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 235000008390 olive oil Nutrition 0.000 description 3
- 231100000590 oncogenic Toxicity 0.000 description 3
- 230000002246 oncogenic effect Effects 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 239000012286 potassium permanganate Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- 230000009919 sequestration Effects 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000012453 solvate Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 238000002626 targeted therapy Methods 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- GEZHEQNLKAOMCA-RRZNCOCZSA-N (-)-gambogic acid Chemical compound C([C@@H]1[C@]2([C@@](C3=O)(C\C=C(\C)C(O)=O)OC1(C)C)O1)[C@H]3C=C2C(=O)C2=C1C(CC=C(C)C)=C1O[C@@](CCC=C(C)C)(C)C=CC1=C2O GEZHEQNLKAOMCA-RRZNCOCZSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- CVCLJVVBHYOXDC-IAZSKANUSA-N (2z)-2-[(5z)-5-[(3,5-dimethyl-1h-pyrrol-2-yl)methylidene]-4-methoxypyrrol-2-ylidene]indole Chemical compound COC1=C\C(=C/2N=C3C=CC=CC3=C\2)N\C1=C/C=1NC(C)=CC=1C CVCLJVVBHYOXDC-IAZSKANUSA-N 0.000 description 2
- RYAYYVTWKAOAJF-QISPRATLSA-N (3'r,4's,5'r)-n-[(3r,6s)-6-carbamoyltetrahydro-2h-pyran-3-yl]-6''-chloro-4'-(2-chloro-3-fluoropyridin-4-yl)-4,4-dimethyl-2''-oxo-1'',2''-dihydrodispiro[cyclohexane-1,2'-pyrrolidine-3',3''-indole]-5'-carboxamide Chemical compound C1CC(C)(C)CCC21[C@]1(C3=CC=C(Cl)C=C3NC1=O)[C@@H](C=1C(=C(Cl)N=CC=1)F)[C@H](C(=O)N[C@H]1CO[C@@H](CC1)C(N)=O)N2 RYAYYVTWKAOAJF-QISPRATLSA-N 0.000 description 2
- AZFFAPPXPDLYRU-UWVGGRQHSA-N (7S,8S)-N-(3-bromo-2-fluorophenyl)-7,8-dimethyl-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound C1(=C(Br)C=CC=C1NC1=C2C=C3O[C@H]([C@@H](OC3=CC2=NC=N1)C)C)F AZFFAPPXPDLYRU-UWVGGRQHSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- IBYHHJPAARCAIE-UHFFFAOYSA-N 1-bromo-2-chloroethane Chemical compound ClCCBr IBYHHJPAARCAIE-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- RAYNZUHYMMLQQA-ZEQRLZLVSA-N 2,3,5-trihydroxy-7-methyl-n-[(2r)-2-phenylpropyl]-6-[1,6,7-trihydroxy-3-methyl-5-[[(2r)-2-phenylpropyl]carbamoyl]naphthalen-2-yl]naphthalene-1-carboxamide Chemical compound C1([C@@H](C)CNC(=O)C=2C3=CC(C)=C(C(=C3C=C(O)C=2O)O)C=2C(O)=C3C=C(O)C(O)=C(C3=CC=2C)C(=O)NC[C@H](C)C=2C=CC=CC=2)=CC=CC=C1 RAYNZUHYMMLQQA-ZEQRLZLVSA-N 0.000 description 2
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- BGBNULCRKBVAKL-UHFFFAOYSA-N 2-(hydroxymethyl)-2-(methoxymethyl)-1-azabicyclo[2.2.2]octan-3-one Chemical compound C1CC2CCN1C(COC)(CO)C2=O BGBNULCRKBVAKL-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- DRLCSJFKKILATL-YWCVFVGNSA-N 2-[(3r,5r,6s)-5-(3-chlorophenyl)-6-(4-chlorophenyl)-3-methyl-1-[(2s)-3-methyl-1-propan-2-ylsulfonylbutan-2-yl]-2-oxopiperidin-3-yl]acetic acid Chemical compound C1([C@@H]2[C@H](N(C([C@@](C)(CC(O)=O)C2)=O)[C@H](CS(=O)(=O)C(C)C)C(C)C)C=2C=CC(Cl)=CC=2)=CC=CC(Cl)=C1 DRLCSJFKKILATL-YWCVFVGNSA-N 0.000 description 2
- WMPTYRGXBUYONY-UHFFFAOYSA-N 2-chloroquinazoline Chemical compound C1=CC=CC2=NC(Cl)=NC=C21 WMPTYRGXBUYONY-UHFFFAOYSA-N 0.000 description 2
- HYPQOSVTIONWSN-UHFFFAOYSA-N 3-bromo-2-fluoroaniline Chemical compound NC1=CC=CC(Br)=C1F HYPQOSVTIONWSN-UHFFFAOYSA-N 0.000 description 2
- NNKQLUVBPJEUOR-UHFFFAOYSA-N 3-ethynylaniline Chemical compound NC1=CC=CC(C#C)=C1 NNKQLUVBPJEUOR-UHFFFAOYSA-N 0.000 description 2
- QCXJEYYXVJIFCE-UHFFFAOYSA-N 4-acetamidobenzoic acid Chemical compound CC(=O)NC1=CC=C(C(O)=O)C=C1 QCXJEYYXVJIFCE-UHFFFAOYSA-N 0.000 description 2
- IGVFAMMNHSCEGK-UHFFFAOYSA-N 4-chloro-10-fluoro-7,8-dihydro-[1,4]dioxino[2,3-g]quinazoline Chemical compound FC(C1=C(C=C23)OCCO1)=C2N=CN=C3Cl IGVFAMMNHSCEGK-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- DRSLFPHWBGATPA-UHFFFAOYSA-N 5-fluoro-2,3-dihydro-1,4-benzodioxine Chemical compound O1CCOC2=C1C=CC=C2F DRSLFPHWBGATPA-UHFFFAOYSA-N 0.000 description 2
- QVXRMFAFQOJSKN-UHFFFAOYSA-N 5-fluoro-7-nitro-2,3-dihydro-1,4-benzodioxine-6-carboxylic acid Chemical compound [O-][N+](C(C(C(O)=O)=C1F)=CC2=C1OCCO2)=O QVXRMFAFQOJSKN-UHFFFAOYSA-N 0.000 description 2
- QJCKGBXJJJNLKE-UHFFFAOYSA-N 6-bromo-5-fluoro-2,3-dihydro-1,4-benzodioxine Chemical compound O1CCOC2=C1C=CC(Br)=C2F QJCKGBXJJJNLKE-UHFFFAOYSA-N 0.000 description 2
- 230000035502 ADME Effects 0.000 description 2
- 239000012114 Alexa Fluor 647 Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 108010079882 Bax protein (53-86) Proteins 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 230000003350 DNA copy number gain Effects 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- 102000018711 Facilitative Glucose Transport Proteins Human genes 0.000 description 2
- 102100027681 Fructose-2,6-bisphosphatase TIGAR Human genes 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 102000042092 Glucose transporter family Human genes 0.000 description 2
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 229940122084 Hexokinase inhibitor Drugs 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101001104225 Homo sapiens 39S ribosomal protein L41, mitochondrial Proteins 0.000 description 2
- 101000987827 Homo sapiens Activator of apoptosis harakiri Proteins 0.000 description 2
- 101000651314 Homo sapiens Fructose-2,6-bisphosphatase TIGAR Proteins 0.000 description 2
- 101000713813 Homo sapiens Quinone oxidoreductase PIG3 Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 108091092878 Microsatellite Proteins 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- IMDPIBRZMVVKHU-UHFFFAOYSA-N N-(3-bromo-2-fluorophenyl)-7-ethenyl-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound BrC=1C(=C(C=CC=1)NC1=NC=NC2=CC3=C(C=C12)OC(CO3)C=C)F IMDPIBRZMVVKHU-UHFFFAOYSA-N 0.000 description 2
- PQAPVTKIEGUPRN-UHFFFAOYSA-N N-[4-(2-tert-butylphenyl)sulfonylphenyl]-2,3,4-trihydroxy-5-[(2-propan-2-ylphenyl)methyl]benzamide Chemical compound CC(C)C1=CC=CC=C1CC1=CC(C(=O)NC=2C=CC(=CC=2)S(=O)(=O)C=2C(=CC=CC=2)C(C)(C)C)=C(O)C(O)=C1O PQAPVTKIEGUPRN-UHFFFAOYSA-N 0.000 description 2
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010090931 Proto-Oncogene Proteins c-bcl-2 Proteins 0.000 description 2
- 102000013535 Proto-Oncogene Proteins c-bcl-2 Human genes 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 102100036522 Quinone oxidoreductase PIG3 Human genes 0.000 description 2
- SLVBHRCBBSEUAB-UHFFFAOYSA-N S(C)(=O)(=O)OC1=NC2=CC=CC=C2C=N1 Chemical class S(C)(=O)(=O)OC1=NC2=CC=CC=C2C=N1 SLVBHRCBBSEUAB-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 108091061980 Spherical nucleic acid Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 102000004243 Tubulin Human genes 0.000 description 2
- 108090000704 Tubulin Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000006682 Warburg effect Effects 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 101150063416 add gene Proteins 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229960001686 afatinib Drugs 0.000 description 2
- ULXXDDBFHOBEHA-CWDCEQMOSA-N afatinib Chemical compound N1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC1=CC=C(F)C(Cl)=C1 ULXXDDBFHOBEHA-CWDCEQMOSA-N 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 125000005001 aminoaryl group Chemical group 0.000 description 2
- 125000005214 aminoheteroaryl group Chemical group 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000002424 anti-apoptotic effect Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 125000005884 carbocyclylalkyl group Chemical group 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000004637 cellular stress Effects 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- IDKAKZRYYDCJDU-HBMMIIHUSA-N chembl2381408 Chemical compound C1([C@H]2[C@@H](N[C@H]([C@]22C3=CC=C(Cl)C=C3NC2=O)CC(C)(C)C)C(=O)N[C@@H]2CC[C@@H](O)CC2)=CC=CC(Cl)=C1F IDKAKZRYYDCJDU-HBMMIIHUSA-N 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000007748 combinatorial effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 229940097362 cyclodextrins Drugs 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000005014 ectopic expression Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- GEZHEQNLKAOMCA-UHFFFAOYSA-N epiisogambogic acid Natural products O1C2(C(C3=O)(CC=C(C)C(O)=O)OC4(C)C)C4CC3C=C2C(=O)C2=C1C(CC=C(C)C)=C1OC(CCC=C(C)C)(C)C=CC1=C2O GEZHEQNLKAOMCA-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- GEZHEQNLKAOMCA-GXSDCXQCSA-N gambogic acid Natural products C([C@@H]1[C@]2([C@@](C3=O)(C\C=C(/C)C(O)=O)OC1(C)C)O1)[C@H]3C=C2C(=O)C2=C1C(CC=C(C)C)=C1O[C@@](CCC=C(C)C)(C)C=CC1=C2O GEZHEQNLKAOMCA-GXSDCXQCSA-N 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- QALPNMQDVCOSMJ-UHFFFAOYSA-N isogambogic acid Natural products CC(=CCc1c2OC(C)(CC=C(C)C)C=Cc2c(O)c3C(=O)C4=CC5CC6C(C)(C)OC(CC=C(C)/C(=O)O)(C5=O)C46Oc13)C QALPNMQDVCOSMJ-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 235000020887 ketogenic diet Nutrition 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 238000000622 liquid--liquid extraction Methods 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 229910052751 metal Chemical class 0.000 description 2
- 239000002184 metal Chemical class 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- BDUAKQOWNLXQGU-UHFFFAOYSA-N n-phenylquinazolin-4-amine;hydrochloride Chemical compound Cl.N=1C=NC2=CC=CC=C2C=1NC1=CC=CC=C1 BDUAKQOWNLXQGU-UHFFFAOYSA-N 0.000 description 2
- XTEGVFVZDVNBPF-UHFFFAOYSA-N naphthalene-1,5-disulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1S(O)(=O)=O XTEGVFVZDVNBPF-UHFFFAOYSA-N 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 210000001577 neostriatum Anatomy 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000012457 nonaqueous media Substances 0.000 description 2
- 229950006584 obatoclax Drugs 0.000 description 2
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 230000005959 oncogenic signaling Effects 0.000 description 2
- 238000003305 oral gavage Methods 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 150000002895 organic esters Chemical class 0.000 description 2
- 230000010627 oxidative phosphorylation Effects 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 125000003367 polycyclic group Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 239000000092 prognostic biomarker Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- VVWRJUBEIPHGQF-MDZDMXLPSA-N propan-2-yl (ne)-n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)\N=N\C(=O)OC(C)C VVWRJUBEIPHGQF-MDZDMXLPSA-N 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 230000026447 protein localization Effects 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000010242 retro-orbital bleeding Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000011301 standard therapy Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 150000007970 thio esters Chemical class 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 239000012130 whole-cell lysate Substances 0.000 description 2
- QSLPNSWXUQHVLP-UHFFFAOYSA-N $l^{1}-sulfanylmethane Chemical compound [S]C QSLPNSWXUQHVLP-UHFFFAOYSA-N 0.000 description 1
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- IDKAKZRYYDCJDU-AEPXTFJPSA-N (2'r,3r,3's,5's)-6-chloro-3'-(3-chloro-2-fluorophenyl)-5'-(2,2-dimethylpropyl)-n-(4-hydroxycyclohexyl)-2-oxospiro[1h-indole-3,4'-pyrrolidine]-2'-carboxamide Chemical compound C1([C@H]2[C@@H](N[C@H]([C@]22C3=CC=C(Cl)C=C3NC2=O)CC(C)(C)C)C(=O)NC2CCC(O)CC2)=CC=CC(Cl)=C1F IDKAKZRYYDCJDU-AEPXTFJPSA-N 0.000 description 1
- UNXQGBMZYKHQCO-NVHWNKAKSA-N (2'r,3s,3'r,5'r)-6-chloro-3'-(3-chlorophenyl)-n-[(3s)-3,4-dihydroxybutyl]-5'-(2,2-dimethylpropyl)-5-fluoro-2-oxospiro[1h-indole-3,4'-pyrrolidine]-2'-carboxamide Chemical compound C1([C@H]2[C@@H](N[C@@H]([C@@]22C3=CC(F)=C(Cl)C=C3NC2=O)CC(C)(C)C)C(=O)NCC[C@H](O)CO)=CC=CC(Cl)=C1 UNXQGBMZYKHQCO-NVHWNKAKSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- IJPVCOQVFLNLAP-SQOUGZDYSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoyl fluoride Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(F)=O IJPVCOQVFLNLAP-SQOUGZDYSA-N 0.000 description 1
- AZFFAPPXPDLYRU-VHSXEESVSA-N (7S,8R)-N-(3-bromo-2-fluorophenyl)-7,8-dimethyl-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound C1(=CC=CC(=C1F)Br)NC1=C2C(C=C3C(O[C@H]([C@H](O3)C)C)=C2)=NC=N1 AZFFAPPXPDLYRU-VHSXEESVSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- MYGCFWRBKKQKCG-GBWOLBBFSA-N (z,2r,3s,4r)-hex-5-ene-1,2,3,4,6-pentol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)\C=C/O MYGCFWRBKKQKCG-GBWOLBBFSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- VEFLKXRACNJHOV-UHFFFAOYSA-N 1,3-dibromopropane Chemical compound BrCCCBr VEFLKXRACNJHOV-UHFFFAOYSA-N 0.000 description 1
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 1
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- IBYHHJPAARCAIE-LNLMKGTHSA-N 1-bromo-2-chloro-1,1,2,2-tetradeuterioethane Chemical compound BrC(C(Cl)([2H])[2H])([2H])[2H] IBYHHJPAARCAIE-LNLMKGTHSA-N 0.000 description 1
- PCLLXGWUHOOILM-UHFFFAOYSA-N 1-chloro-2-[(3-fluorophenyl)methoxy]benzene Chemical compound FC1=CC=CC(COC=2C(=CC=CC=2)Cl)=C1 PCLLXGWUHOOILM-UHFFFAOYSA-N 0.000 description 1
- SJJCQDRGABAVBB-UHFFFAOYSA-N 1-hydroxy-2-naphthoic acid Chemical compound C1=CC=CC2=C(O)C(C(=O)O)=CC=C21 SJJCQDRGABAVBB-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- 102000010400 1-phosphatidylinositol-3-kinase activity proteins Human genes 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- MMQFYDQGJNKDBV-UHFFFAOYSA-N 1h-imidazole;1h-indole Chemical class C1=CNC=N1.C1=CC=C2NC=CC2=C1 MMQFYDQGJNKDBV-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- PGZVFRAEAAXREB-UHFFFAOYSA-N 2,2-dimethylpropanoyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC(=O)C(C)(C)C PGZVFRAEAAXREB-UHFFFAOYSA-N 0.000 description 1
- 125000004215 2,4-difluorophenyl group Chemical group [H]C1=C([H])C(*)=C(F)C([H])=C1F 0.000 description 1
- KKFDCBRMNNSAAW-UHFFFAOYSA-N 2-(morpholin-4-yl)ethanol Chemical compound OCCN1CCOCC1 KKFDCBRMNNSAAW-UHFFFAOYSA-N 0.000 description 1
- YUALYRLIFVPOHL-VPLUBSIMSA-N 2-[(3r,5r,6s)-5-(3-chlorophenyl)-6-(4-chlorophenyl)-1-[(2s,3s)-2-hydroxypentan-3-yl]-3-methyl-2-oxopiperidin-3-yl]acetic acid Chemical compound C1([C@@H]2[C@H](N(C([C@@](C)(CC(O)=O)C2)=O)[C@H]([C@H](C)O)CC)C=2C=CC(Cl)=CC=2)=CC=CC(Cl)=C1 YUALYRLIFVPOHL-VPLUBSIMSA-N 0.000 description 1
- WKAVKKUXZAWHDM-UHFFFAOYSA-N 2-acetamidopentanedioic acid;2-(dimethylamino)ethanol Chemical compound CN(C)CCO.CC(=O)NC(C(O)=O)CCC(O)=O WKAVKKUXZAWHDM-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- YKPDYPPZLUZONK-UHFFFAOYSA-N 2-fluoro-3-(trifluoromethyl)aniline Chemical compound NC1=CC=CC(C(F)(F)F)=C1F YKPDYPPZLUZONK-UHFFFAOYSA-N 0.000 description 1
- FTZQXOJYPFINKJ-UHFFFAOYSA-N 2-fluoroaniline Chemical compound NC1=CC=CC=C1F FTZQXOJYPFINKJ-UHFFFAOYSA-N 0.000 description 1
- 125000004198 2-fluorophenyl group Chemical group [H]C1=C([H])C(F)=C(*)C([H])=C1[H] 0.000 description 1
- JNODDICFTDYODH-UHFFFAOYSA-N 2-hydroxytetrahydrofuran Chemical compound OC1CCCO1 JNODDICFTDYODH-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- RZCJYMOBWVJQGV-UHFFFAOYSA-N 2-naphthyloxyacetic acid Chemical compound C1=CC=CC2=CC(OCC(=O)O)=CC=C21 RZCJYMOBWVJQGV-UHFFFAOYSA-N 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- ZZUZYEMRHCMVTB-UHFFFAOYSA-N 2-phenylethynesulfonamide Chemical compound NS(=O)(=O)C#CC1=CC=CC=C1 ZZUZYEMRHCMVTB-UHFFFAOYSA-N 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- VQMWCYHBHMGBDP-UHFFFAOYSA-N 2h-1,2-benzodiazepine-3,4-dione Chemical class N1C(=O)C(=O)C=C2C=CC=CC2=N1 VQMWCYHBHMGBDP-UHFFFAOYSA-N 0.000 description 1
- WQICYPQWAYIFTN-UHFFFAOYSA-N 3-(7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-ylamino)-2-fluorobenzonitrile Chemical compound N(C1=C(F)C(C#N)=CC=C1)C1=C2C(C=C3C(OCCO3)=C2)=NC=N1 WQICYPQWAYIFTN-UHFFFAOYSA-N 0.000 description 1
- FKLAEEXSKVRKRN-UHFFFAOYSA-N 3-(7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-ylamino)benzonitrile Chemical compound C1(=CC=CC(=C1)C#N)NC1=C2C=C3OCCOC3=CC2=NC=N1 FKLAEEXSKVRKRN-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- UOQHWNPVNXSDDO-UHFFFAOYSA-N 3-bromoimidazo[1,2-a]pyridine-6-carbonitrile Chemical compound C1=CC(C#N)=CN2C(Br)=CN=C21 UOQHWNPVNXSDDO-UHFFFAOYSA-N 0.000 description 1
- 125000006275 3-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C([H])C(*)=C1[H] 0.000 description 1
- QSVDFJNXDKTKTJ-UHFFFAOYSA-N 4,5,6,7-tetrahydro-1h-indene Chemical compound C1CCCC2=C1CC=C2 QSVDFJNXDKTKTJ-UHFFFAOYSA-N 0.000 description 1
- WMZCLEINYBXBBF-UHFFFAOYSA-N 4-(3-bromo-2-fluoroanilino)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-7-ol Chemical compound C1=C(NC2=C3C=C4OC(O)COC4=CC3=NC=N2)C(F)=C(Br)C=C1 WMZCLEINYBXBBF-UHFFFAOYSA-N 0.000 description 1
- XRYJULCDUUATMC-CYBMUJFWSA-N 4-[4-[[(1r)-1-phenylethyl]amino]-7h-pyrrolo[2,3-d]pyrimidin-6-yl]phenol Chemical compound N([C@H](C)C=1C=CC=CC=1)C(C=1C=2)=NC=NC=1NC=2C1=CC=C(O)C=C1 XRYJULCDUUATMC-CYBMUJFWSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 1
- KOSFQWDAKWKNJM-UHFFFAOYSA-N 4-chloro-7,8-dihydro-[1,4]dioxino[2,3-g]quinazoline Chemical compound O1CCOC2=C1C=C1N=CN=C(Cl)C1=C2 KOSFQWDAKWKNJM-UHFFFAOYSA-N 0.000 description 1
- UNQTWJOLTBKYPZ-UHFFFAOYSA-N 4-chloroquinazoline-6,7-diol Chemical compound Oc1cc2ncnc(Cl)c2cc1O UNQTWJOLTBKYPZ-UHFFFAOYSA-N 0.000 description 1
- COYSRBINMCJBAE-UHFFFAOYSA-N 5-fluoro-7,8-dihydro-3H-[1,4]dioxino[2,3-g]quinazolin-4-one Chemical compound O=C(C1=C2F)NC=NC1=CC1=C2OCCO1 COYSRBINMCJBAE-UHFFFAOYSA-N 0.000 description 1
- GARKBQKEAFGKNE-UHFFFAOYSA-N 7-amino-5-fluoro-2,3-dihydro-1,4-benzodioxine-6-carboxylic acid Chemical compound NC(C(C(O)=O)=C1F)=CC2=C1OCCO2 GARKBQKEAFGKNE-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 238000003727 ADP Glo Kinase Assay Methods 0.000 description 1
- 108010014778 ATSP-7041 Proteins 0.000 description 1
- 102100029592 Activator of apoptosis harakiri Human genes 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 1
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 102100022983 B-cell lymphoma/leukemia 11B Human genes 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100021572 Bcl-2-binding component 3, isoforms 1/2 Human genes 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 101001042041 Bos taurus Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial Proteins 0.000 description 1
- MZBOZBMARIQZGX-VVWWDXNASA-N C1([C@H]2[C@@H](N[C@H]([C@]22C3=CC=C(Cl)C=C3NC2=O)CC(C)(C)C)C(=O)NC2CC(C)(O)C2)=CC=CC(Cl)=C1F Chemical compound C1([C@H]2[C@@H](N[C@H]([C@]22C3=CC=C(Cl)C=C3NC2=O)CC(C)(C)C)C(=O)NC2CC(C)(O)C2)=CC=CC(Cl)=C1F MZBOZBMARIQZGX-VVWWDXNASA-N 0.000 description 1
- RTHYVCWSOUYVCJ-UHFFFAOYSA-N CS(OCC1OC(C=C2C(NC(C=CC=C3Br)=C3F)=NC=NC2=C2)=C2OC1)(=O)=O Chemical compound CS(OCC1OC(C=C2C(NC(C=CC=C3Br)=C3F)=NC=NC2=C2)=C2OC1)(=O)=O RTHYVCWSOUYVCJ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000005461 Canertinib Substances 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000003952 Caspase 3 Human genes 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 1
- 229940123150 Chelating agent Drugs 0.000 description 1
- VGCXGMAHQTYDJK-UHFFFAOYSA-N Chloroacetyl chloride Chemical compound ClCC(Cl)=O VGCXGMAHQTYDJK-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 102100021147 DNA mismatch repair protein Msh6 Human genes 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- QRLVDLBMBULFAL-UHFFFAOYSA-N Digitonin Natural products CC1CCC2(OC1)OC3C(O)C4C5CCC6CC(OC7OC(CO)C(OC8OC(CO)C(O)C(OC9OCC(O)C(O)C9OC%10OC(CO)C(O)C(OC%11OC(CO)C(O)C(O)C%11O)C%10O)C8O)C(O)C7O)C(O)CC6(C)C5CCC4(C)C3C2C QRLVDLBMBULFAL-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 101001003194 Eleusine coracana Alpha-amylase/trypsin inhibitor Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YPZRHBJKEMOYQH-UYBVJOGSSA-L FADH2(2-) Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP([O-])(=O)OP([O-])(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-L 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- DSLZVSRJTYRBFB-UHFFFAOYSA-N Galactaric acid Natural products OC(=O)C(O)C(O)C(O)C(O)C(O)=O DSLZVSRJTYRBFB-UHFFFAOYSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 101000903703 Homo sapiens B-cell lymphoma/leukemia 11A Proteins 0.000 description 1
- 101000903697 Homo sapiens B-cell lymphoma/leukemia 11B Proteins 0.000 description 1
- 101000971203 Homo sapiens Bcl-2-binding component 3, isoforms 1/2 Proteins 0.000 description 1
- 101000968658 Homo sapiens DNA mismatch repair protein Msh6 Proteins 0.000 description 1
- 101000960234 Homo sapiens Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 description 1
- 101000599886 Homo sapiens Isocitrate dehydrogenase [NADP], mitochondrial Proteins 0.000 description 1
- 101001120056 Homo sapiens Phosphatidylinositol 3-kinase regulatory subunit alpha Proteins 0.000 description 1
- 101000605639 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Proteins 0.000 description 1
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 1
- 101000777277 Homo sapiens Serine/threonine-protein kinase Chk2 Proteins 0.000 description 1
- 101000891649 Homo sapiens Transcription elongation factor A protein-like 1 Proteins 0.000 description 1
- 102100039905 Isocitrate dehydrogenase [NADP] cytoplasmic Human genes 0.000 description 1
- 102100037845 Isocitrate dehydrogenase [NADP], mitochondrial Human genes 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 239000002146 L01XE16 - Crizotinib Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 206010059282 Metastases to central nervous system Diseases 0.000 description 1
- 206010051696 Metastases to meninges Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- 102000017298 Monocarboxylate transporters Human genes 0.000 description 1
- 108050005244 Monocarboxylate transporters Proteins 0.000 description 1
- 101000596402 Mus musculus Neuronal vesicle trafficking-associated protein 1 Proteins 0.000 description 1
- 101000800539 Mus musculus Translationally-controlled tumor protein Proteins 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- LLDRXUAYTRRVDN-UHFFFAOYSA-N N-(2-fluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound FC1=C(NC2=C3C=C4OCCOC4=CC3=NC=N2)C=CC=C1 LLDRXUAYTRRVDN-UHFFFAOYSA-N 0.000 description 1
- DZTFOPHXVHJRBO-UHFFFAOYSA-N N-(3,4-dibromo-2-fluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound N(C1=C(F)C(Br)=C(Br)C=C1)C1=C2C=C3OCCOC3=CC2=NC=N1 DZTFOPHXVHJRBO-UHFFFAOYSA-N 0.000 description 1
- RAGDBHLFUMJKOB-UHFFFAOYSA-N N-(3,4-dichloro-2-fluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound N(C1=C(F)C(Cl)=C(Cl)C=C1)C1=C2C=C3OCCOC3=CC2=NC=N1 RAGDBHLFUMJKOB-UHFFFAOYSA-N 0.000 description 1
- LPANFYRBKIKTDZ-UHFFFAOYSA-N N-(3-bromo-2,4-difluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound C1(=CC=C(C(=C1F)Br)F)NC1=C2C=C3OCCOC3=CC2=NC=N1 LPANFYRBKIKTDZ-UHFFFAOYSA-N 0.000 description 1
- XGZNHPPBJUBKHU-UHFFFAOYSA-N N-(3-bromo-2,5-difluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound C1=C(C=C(C(=C1NC1=C2C=C3OCCOC3=CC2=NC=N1)F)Br)F XGZNHPPBJUBKHU-UHFFFAOYSA-N 0.000 description 1
- NVCSIFNUNPPUFH-UHFFFAOYSA-N N-(3-bromo-2,6-difluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound C1(F)=C(NC2=C3C=C4OCCOC4=CC3=NC=N2)C(F)=C(Br)C=C1 NVCSIFNUNPPUFH-UHFFFAOYSA-N 0.000 description 1
- MTLUFWWVOINWEL-UHFFFAOYSA-N N-(3-bromo-2-fluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound N(C1=C(F)C(Br)=CC=C1)C1=C2C=C3OCCOC3=CC2=NC=N1 MTLUFWWVOINWEL-UHFFFAOYSA-N 0.000 description 1
- YPKSXIZCNAQXIR-UHFFFAOYSA-N N-(3-bromo-4-chloro-2-fluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound BrC=1C(=C(C=CC=1Cl)NC1=NC=NC2=CC3=C(C=C12)OCCO3)F YPKSXIZCNAQXIR-UHFFFAOYSA-N 0.000 description 1
- MZAWKOMVQFIOTR-UHFFFAOYSA-N N-(3-bromo-5-chloro-2-fluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound BrC=1C(=C(C=C(C=1)Cl)NC1=NC=NC2=CC3=C(C=C12)OCCO3)F MZAWKOMVQFIOTR-UHFFFAOYSA-N 0.000 description 1
- IKWFJPVXDWAGMI-UHFFFAOYSA-N N-(3-chloro-2-fluorophenyl)-8,9-dihydro-7H-[1,4]dioxepino[2,3-g]quinazolin-4-amine Chemical compound ClC=1C(=C(C=CC=1)NC1=NC=NC2=CC3=C(C=C12)OCCCO3)F IKWFJPVXDWAGMI-UHFFFAOYSA-N 0.000 description 1
- DMHGPRJZXFRVSF-UHFFFAOYSA-N N-(3-chloro-2-fluorophenyl)-[1,3]dioxolo[4,5-g]quinazolin-8-amine Chemical compound N(C1=C(F)C(Cl)=CC=C1)C1=C2C=C3OCOC3=CC2=NC=N1 DMHGPRJZXFRVSF-UHFFFAOYSA-N 0.000 description 1
- XMEHBIOLAPILQC-UHFFFAOYSA-N N-(3-ethynyl-2-fluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound C(#C)C=1C(=C(C=CC=1)NC1=NC=NC2=CC3=C(C=C12)OCCO3)F XMEHBIOLAPILQC-UHFFFAOYSA-N 0.000 description 1
- LUDNOLWHKWSFBJ-UHFFFAOYSA-N N-(5-bromo-2-fluorophenyl)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound C1(F)=C(NC2=C3C=C4OCCOC4=CC3=NC=N2)C=C(Br)C=C1 LUDNOLWHKWSFBJ-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- CZFKRMGQEUSPRJ-UHFFFAOYSA-N N-[2-fluoro-3-(trifluoromethyl)phenyl]-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-amine Chemical compound C1(NC2=C3C=C4OCCOC4=CC3=NC=N2)=C(F)C(C(F)(F)F)=CC=C1 CZFKRMGQEUSPRJ-UHFFFAOYSA-N 0.000 description 1
- ZJITYUYLFDQEPQ-UHFFFAOYSA-N N-[4-[(3-hydroxy-5-oxo-1,2-diphenylpyrazol-4-yl)diazenyl]phenyl]sulfonyl-4-propan-2-yloxybenzamide Chemical compound CC(C)OC1=CC=C(C=C1)C(=O)NS(=O)(=O)C1=CC=C(C=C1)N=NC1=C(O)N(N(C1=O)C1=CC=CC=C1)C1=CC=CC=C1 ZJITYUYLFDQEPQ-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 1
- 102000007530 Neurofibromin 1 Human genes 0.000 description 1
- 108010085793 Neurofibromin 1 Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910004727 OSO3H Inorganic materials 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 1
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 241001302890 Parachondrostoma toxostoma Species 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 229940122907 Phosphatase inhibitor Drugs 0.000 description 1
- 102100026169 Phosphatidylinositol 3-kinase regulatory subunit alpha Human genes 0.000 description 1
- 102100038332 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102100035548 Protein Bop Human genes 0.000 description 1
- 108050008794 Protein Bop Proteins 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 1
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 101000781972 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Protein wos2 Proteins 0.000 description 1
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 1
- 102100031075 Serine/threonine-protein kinase Chk2 Human genes 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- SKCUFZLDTAYNBZ-UHFFFAOYSA-N Stictinsaeure Natural products O1C2=C(C(O)OC3=O)C3=C(O)C(C)=C2OC(=O)C2=C(C)C=C(OC)C(C=O)=C12 SKCUFZLDTAYNBZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 101001009610 Toxoplasma gondii Dense granule protein 5 Proteins 0.000 description 1
- 102100040250 Transcription elongation factor A protein-like 1 Human genes 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- OLTCCFZKLUWLOP-UHFFFAOYSA-N [3-chloro-N-(7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-yl)-2-fluoroanilino]methyl acetate Chemical compound N(C1=C(F)C(Cl)=CC=C1)(COC(=O)C)C1=C2C=C3OCCOC3=CC2=NC=N1 OLTCCFZKLUWLOP-UHFFFAOYSA-N 0.000 description 1
- QUIRFMHNJOBWDD-UHFFFAOYSA-N [4-(3-bromo-2-fluoroanilino)-7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-7-yl]methanol Chemical compound OCC1OC(C=C2C(NC(C=CC=C3Br)=C3F)=NC=NC2=C2)=C2OC1 QUIRFMHNJOBWDD-UHFFFAOYSA-N 0.000 description 1
- SIQKKDCMQBHICC-UHFFFAOYSA-N [4-(3-bromo-2-fluoroanilino)-7-(oxiran-2-ylmethoxy)quinazolin-6-yl] 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(OC(C=C1C(NC(C=CC=C2Br)=C2F)=NC=NC1=C1)=C1OCC1OC1)=O SIQKKDCMQBHICC-UHFFFAOYSA-N 0.000 description 1
- TWAHMAMOOYRZDY-UHFFFAOYSA-N [4-chloro-7-(2,2-dimethylpropanoyloxy)quinazolin-6-yl] 2,2-dimethylpropanoate Chemical compound C1=NC(Cl)=C2C=C(OC(=O)C(C)(C)C)C(OC(=O)C(C)(C)C)=CC2=N1 TWAHMAMOOYRZDY-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- KRHYYFGTRYWZRS-BJUDXGSMSA-N ac1l2y5h Chemical compound [18FH] KRHYYFGTRYWZRS-BJUDXGSMSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- RBYGDVHOECIAFC-UHFFFAOYSA-L acetonitrile;palladium(2+);dichloride Chemical compound [Cl-].[Cl-].[Pd+2].CC#N.CC#N RBYGDVHOECIAFC-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000005041 acyloxyalkyl group Chemical group 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000006536 aerobic glycolysis Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229960001611 alectinib Drugs 0.000 description 1
- KDGFLJKFZUIJMX-UHFFFAOYSA-N alectinib Chemical compound CCC1=CC=2C(=O)C(C3=CC=C(C=C3N3)C#N)=C3C(C)(C)C=2C=C1N(CC1)CCC1N1CCOCC1 KDGFLJKFZUIJMX-UHFFFAOYSA-N 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000005257 alkyl acyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 229960004909 aminosalicylic acid Drugs 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000003975 animal breeding Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 210000004082 barrier epithelial cell Anatomy 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 238000006480 benzoylation reaction Methods 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- JBFDZEJAJZJORO-UHFFFAOYSA-N bicyclo[4.1.0]hept-3-ene Chemical compound C1C=CCC2CC21 JBFDZEJAJZJORO-UHFFFAOYSA-N 0.000 description 1
- DCRRIOWFXXDTHV-UHFFFAOYSA-N bicyclo[4.2.0]oct-3-ene Chemical compound C1C=CCC2CCC21 DCRRIOWFXXDTHV-UHFFFAOYSA-N 0.000 description 1
- RPZUBXWEQBPUJR-UHFFFAOYSA-N bicyclo[4.2.0]octane Chemical compound C1CCCC2CCC21 RPZUBXWEQBPUJR-UHFFFAOYSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229940095643 calcium hydroxide Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- LSPHULWDVZXLIL-QUBYGPBYSA-N camphoric acid Chemical compound CC1(C)[C@H](C(O)=O)CC[C@]1(C)C(O)=O LSPHULWDVZXLIL-QUBYGPBYSA-N 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 239000003560 cancer drug Substances 0.000 description 1
- 230000005773 cancer-related death Effects 0.000 description 1
- 229950002826 canertinib Drugs 0.000 description 1
- OMZCMEYTWSXEPZ-UHFFFAOYSA-N canertinib Chemical compound C1=C(Cl)C(F)=CC=C1NC1=NC=NC2=CC(OCCCN3CCOCC3)=C(NC(=O)C=C)C=C12 OMZCMEYTWSXEPZ-UHFFFAOYSA-N 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 230000006721 cell death pathway Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000012054 celltiter-glo Methods 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 150000001789 chalcones Chemical class 0.000 description 1
- 235000005513 chalcones Nutrition 0.000 description 1
- 239000013000 chemical inhibitor Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- PJGJQVRXEUVAFT-UHFFFAOYSA-N chloroiodomethane Chemical compound ClCI PJGJQVRXEUVAFT-UHFFFAOYSA-N 0.000 description 1
- SMJYMSAPPGLBAR-UHFFFAOYSA-N chloromethyl acetate Chemical compound CC(=O)OCCl SMJYMSAPPGLBAR-UHFFFAOYSA-N 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000000749 co-immunoprecipitation Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- KTEIFNKAUNYNJU-GFCCVEGCSA-N crizotinib Chemical compound O([C@H](C)C=1C(=C(F)C=CC=1Cl)Cl)C(C(=NC=1)N)=CC=1C(=C1)C=NN1C1CCNCC1 KTEIFNKAUNYNJU-GFCCVEGCSA-N 0.000 description 1
- 229960005061 crizotinib Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 239000000625 cyclamic acid and its Na and Ca salt Substances 0.000 description 1
- 125000006448 cycloalkyl cycloalkyl group Chemical group 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- HABLENUWIZGESP-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O.CCCCCCCCCC(O)=O HABLENUWIZGESP-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- WQZGKKKJIJFFOK-UKLRSMCWSA-N dextrose-2-13c Chemical compound OC[C@H]1OC(O)[13C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-UKLRSMCWSA-N 0.000 description 1
- 125000005131 dialkylammonium group Chemical group 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- UVYVLBIGDKGWPX-KUAJCENISA-N digitonin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)C[C@@H](O)[C@H](O[C@H]5[C@@H]([C@@H](O)[C@@H](O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)CO7)O)[C@H](O)[C@@H](CO)O6)O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O7)O)[C@@H](O)[C@@H](CO)O6)O)[C@@H](CO)O5)O)C[C@@H]4CC[C@H]3[C@@H]2[C@@H]1O)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 UVYVLBIGDKGWPX-KUAJCENISA-N 0.000 description 1
- UVYVLBIGDKGWPX-UHFFFAOYSA-N digitonine Natural products CC1C(C2(CCC3C4(C)CC(O)C(OC5C(C(O)C(OC6C(C(OC7C(C(O)C(O)CO7)O)C(O)C(CO)O6)OC6C(C(OC7C(C(O)C(O)C(CO)O7)O)C(O)C(CO)O6)O)C(CO)O5)O)CC4CCC3C2C2O)C)C2OC11CCC(C)CO1 UVYVLBIGDKGWPX-UHFFFAOYSA-N 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000004890 epithelial barrier function Effects 0.000 description 1
- XBRDBODLCHKXHI-UHFFFAOYSA-N epolamine Chemical compound OCCN1CCCC1 XBRDBODLCHKXHI-UHFFFAOYSA-N 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- BFIOCXCNQFMWHQ-UHFFFAOYSA-N ethyl N-(3-chloro-2-fluorophenyl)-N-(7,8-dihydro-[1,4]dioxino[2,3-g]quinazolin-4-yl)carbamate Chemical compound C1(=CC=CC(=C1F)Cl)N(C(=O)OCC)C1=C2C=C3OCCOC3=CC2=NC=N1 BFIOCXCNQFMWHQ-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 210000001652 frontal lobe Anatomy 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- DSLZVSRJTYRBFB-DUHBMQHGSA-N galactaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O DSLZVSRJTYRBFB-DUHBMQHGSA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 229960005219 gentisic acid Drugs 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 230000006692 glycolytic flux Effects 0.000 description 1
- 208000026436 grade III glioma Diseases 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 125000004438 haloalkoxy group Chemical group 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 125000004475 heteroaralkyl group Chemical group 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 238000004896 high resolution mass spectrometry Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 229940099563 lactobionic acid Drugs 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- AWIJRPNMLHPLNC-UHFFFAOYSA-N methanethioic s-acid Chemical compound SC=O AWIJRPNMLHPLNC-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 231100000324 minimal toxicity Toxicity 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 238000011242 molecular targeted therapy Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- VSEAAEQOQBMPQF-UHFFFAOYSA-N morpholin-3-one Chemical compound O=C1COCCN1 VSEAAEQOQBMPQF-UHFFFAOYSA-N 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 238000011228 multimodal treatment Methods 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- XDHBUMNIQRLHGO-UKTHLTGXSA-N n-[(e)-1-pyridin-2-ylethylideneamino]azetidine-1-carbothioamide Chemical compound C=1C=CC=NC=1C(/C)=N/NC(=S)N1CCC1 XDHBUMNIQRLHGO-UKTHLTGXSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MTSNDBYBIZSILH-UHFFFAOYSA-N n-phenylquinazolin-4-amine Chemical class N=1C=NC2=CC=CC=C2C=1NC1=CC=CC=C1 MTSNDBYBIZSILH-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 229950004847 navitoclax Drugs 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 1
- 231100001143 noxa Toxicity 0.000 description 1
- 230000008689 nuclear function Effects 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000007339 nucleophilic aromatic substitution reaction Methods 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 108010007425 oligomycin sensitivity conferring protein Proteins 0.000 description 1
- 230000006712 oncogenic signaling pathway Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000004783 oxidative metabolism Effects 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- WVUNYSQLFKLYNI-AATRIKPKSA-N pelitinib Chemical compound C=12C=C(NC(=O)\C=C\CN(C)C)C(OCC)=CC2=NC=C(C#N)C=1NC1=CC=C(F)C(Cl)=C1 WVUNYSQLFKLYNI-AATRIKPKSA-N 0.000 description 1
- 229950006299 pelitinib Drugs 0.000 description 1
- 235000019371 penicillin G benzathine Nutrition 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003094 perturbing effect Effects 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000009038 pharmacological inhibition Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical class O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- GUUBJKMBDULZTE-UHFFFAOYSA-M potassium;2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid;hydroxide Chemical compound [OH-].[K+].OCCN1CCN(CCS(O)(=O)=O)CC1 GUUBJKMBDULZTE-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- DRYRBWIFRVMRPV-UHFFFAOYSA-N quinazolin-4-amine Chemical compound C1=CC=C2C(N)=NC=NC2=C1 DRYRBWIFRVMRPV-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003870 salicylic acids Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940100996 sodium bisulfate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- PHJADXZUQNOLEH-UZLBHIALSA-N stictic acid Natural products C[C@@H]1CCC(=C)C(C(O)=O)=CC=CC[C@@]1(C)CCC1=COC=C1 PHJADXZUQNOLEH-UZLBHIALSA-N 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- DUYAAUVXQSMXQP-UHFFFAOYSA-M thioacetate Chemical compound CC([S-])=O DUYAAUVXQSMXQP-UHFFFAOYSA-M 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- FWSPXZXVNVQHIF-UHFFFAOYSA-N triethyl(ethynyl)silane Chemical compound CC[Si](CC)(CC)C#C FWSPXZXVNVQHIF-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 239000000225 tumor suppressor protein Substances 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- 238000011870 unpaired t-test Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000007482 whole exome sequencing Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 150000007964 xanthones Chemical class 0.000 description 1
- UGOMMVLRQDMAQQ-UHFFFAOYSA-N xphos Chemical compound CC(C)C1=CC(C(C)C)=CC(C(C)C)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 UGOMMVLRQDMAQQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/056—Ortho-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/70—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
- C07D239/72—Quinazolines; Hydrogenated quinazolines
- C07D239/86—Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
- C07D239/94—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/70—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
- C07D239/72—Quinazolines; Hydrogenated quinazolines
- C07D239/95—Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
Definitions
- Glioblastoma (glioblastoma multiforme; GBM) accounts for the majority of primary malignant brain tumors in adults. Amplification and mutation of the epidermal growth factor receptor (EGFR) gene is a signature genetic abnormality encountered in GBM (Sugawa, et al. (1990) Proc. Natl. Acad. Sci. 87: 8602-8606; Ekstrand, et al. (1992) Proc. Natl. Acad. Sci. 89: 4309-4313).
- EGFR epidermal growth factor receptor
- tyrosine kinase inhibitors include tyrosine kinase inhibitors (TKIs), monoclonal antibodies, vaccines, and RNA-based agents.
- GBM glioblastoma
- An alternative therapeutic approach targets an oncogenic driver to modify an important functional property for tumor survival, rendering cells vulnerable to an orthogonal second hit 6 .
- This “synthetic lethal” strategy may be particularly attractive when the oncogene-regulated functional network(s) intersect with tumor cell death pathways.
- oncogenic signaling drives glucose metabolism to suppress intrinsic apoptosis and promote survival.
- Inhibition of oncogenic drivers with targeted therapies can trigger the intrinsic apoptotic machinery as a direct consequence of attenuated glucose consumption.
- the intertwined nature of these tumorigenic pathways may present therapeutic opportunities for rational combination treatments, however, this has yet to be investigated.
- the present disclosure provides compounds of Formula I or Formula I*:
- R 11 and R 12 taken together complete a carbocyclic or heterocyclic ring.
- the present disclosure provides methods of inhibiting EGFR or ⁇ EGFR, comprising administering to a subject an amount of a compound of the disclosure.
- the present disclosure provides methods of treating cancer comprising administering to a subject in need of a treatment for cancer an amount of a compound of the disclosure.
- the cancer is glioblastoma multiforme.
- the present disclosure provides methods of treating cancer comprising administering to a subject a glucose metabolism inhibitor and a cytoplasmic p53 stabilizer, wherein the glucose metabolism inhibitor is a compound of the disclosure.
- the cancer is glioblastoma multiforme.
- the present disclosure provides methods of making compounds of Formula I or Formula I*.
- FIG. 1 depicts the oral pharmacokinetics of JGK005 at 10 mg/kg and those of erlotinib at 25 mg/kg. JGK005 has good CNS penetration compared to erlotinib.
- FIG. 2 depicts the activity of erlotinib (left columns) and JGK005 (right columns) against EGFR mutant glioblastomas HK301 and GBM39, respectively.
- JGK005 has lower activity than erlotinib in both cases.
- FIG. 3 depicts the cell free EGFR kinase activities of erlotinib and JGK010. Both compounds have an IC 50 of approximately 8 nM.
- FIG. 4 depicts the potencies of erlotinib (left columns), JGK005 (center columns), and JGK010 (right columns) against HK301 and GBM39 cells.
- FIG. 5 shows the oral pharmacokinetics of JGK005 at 10 mg/kg and of JGK010 at 10 mg/kg.
- FIG. 6 depicts comparisons of EGFR inhibitors in multiple primary glioblastoma cell lines.
- FIG. 7 A depicts JGK010 activity in EGFR altered lung cancer.
- FIG. 7 B depicts JGK010 activity in EGFR Amp epidermoid carcinoma.
- FIG. 8 A depicts JGK010 oral pharmacokinetics at 6 mg/kg.
- FIG. 8 B depicts JGK010 oral pharmacokinetics at 10 mg/kg.
- FIG. 8 C depicts JGK010 IV pharmacokinetics at 6 mg/kg.
- FIG. 8 D depicts JGK010 IP pharmacokinetics at 6 mg/kg.
- FIG. 9 depicts the activities of erlotinib and exemplary compounds of the disclosure against EGFR Amp WT+vIII HK301.
- FIG. 10 depicts the activities of erlotinib and exemplary compounds of the disclosure against EGFR vIII Amp GBM 39.
- FIG. 11 depicts the activities of erlotinib and exemplary compounds of the disclosure against HK301 cells.
- FIG. 12 depicts the activities of erlotinib and exemplary compounds of the disclosure against GBM 39 cells.
- FIG. 13 A depicts the phosphor-EGFR vIII inhibition of erlotinib and exemplary compounds of the disclosure.
- FIG. 13 B depicts the phosphor-EGFR vIII inhibition of erlotinib and exemplary compounds of the disclosure.
- FIG. 14 A depicts the pharmacokinetics of JGK005.
- FIG. 14 B depicts the pharmacokinetics of JGK005.
- FIG. 15 A depicts the pharmacokinetics of JGK038.
- FIG. 15 B depicts the pharmacokinetics of JGK038.
- FIG. 16 A depicts the pharmacokinetics of JGK010.
- FIG. 16 B depicts the pharmacokinetics of JGK010.
- FIG. 17 A depicts the pharmacokinetics of JGK037.
- FIG. 17 B depicts the pharmacokinetics of JGK037.
- FIG. 18 A depicts a comparison of mouse brain/blood pharmacokinetics between Erlotinib and JGK037.
- FIG. 18 B depicts a comparison of mouse brain/blood pharmacokinetics between Erlotinib and JGK037.
- FIG. 19 depicts the brain penetration of erlotinib and exemplary compounds of the disclosure.
- FIG. 20 depicts the effect of treatment with either a vehicle or JGK037 on RLU change.
- FIGS. 21 A- 21 F depict the inhibition of EGFR-driven glucose metabolism induces minimal cell death but primes GBM cells for apoptosis.
- FIG. 21 A depicts percent change in 18 F-FDG uptake after 4 hours of erlotinib treatment relative to vehicle in 19 patient-derived GBM gliomaspheres. “Metabolic responders” (blue) are samples that show a significant decrease in 18 F-FDG uptake relative to vehicle, whereas “non-responders” (red) show no significant decrease.
- FIG. 21 B depicts percent change in glucose consumption and lactate production with 12 hours of erlotinib treatment relative to vehicle. Measurements are made using Nova Biomedical BioProfile Analyzer.
- FIG. 21 A depicts percent change in 18 F-FDG uptake after 4 hours of erlotinib treatment relative to vehicle in 19 patient-derived GBM gliomaspheres. “Metabolic responders” (blue) are samples that show a significant decrease in 18 F-FDG up
- FIG. 21 D depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to each BH3 peptide (BIM, BID, or PUMA) in metabolic responders or non-responders treated with erlotinib for 24 hours.
- FIG. 21 E depicts Left: Immunoblot of whole cell lysate of HK301 cells overexpressing GFP control or GLUT1 and GLUT3 (GLUT1/3).
- FIG. 21 F depicts using HK301-GFP or HK301-GLUT1/3 cells.
- Erlotinib concentration for all experiments was 1 ⁇ M. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001.
- FIGS. 22 A- 22 H depict Cytoplasmic p53 links EGFR to intrinsic apoptosis.
- FIG. 22 A depicts immunoblot of indicated proteins in two responders (HK301 and HK336) expressing CRISPR/CAS9 protein with control guide RNA (sgCtrl) or p53 guide RNA (p53KO).
- FIG. 22 B depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BIM peptide in sgCtrl and p53KO cells treated with erlotinib for 24 hours.
- FIG. 22 A depicts immunoblot of indicated proteins in two responders (HK301 and HK336) expressing CRISPR/CAS9 protein with control guide RNA (sgCtrl) or p53 guide RNA (p53KO).
- FIG. 22 B depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BIM peptide in s
- FIG. 22 C depicts immunoblot of indicated proteins in HK301 sgCtrl, p53KO, p53KO+p53 cyto , and p53KO+p53 wt .
- Gliomaspheres were first disassociated to single cell and adhered to the 96-well plates using Cell-Tak (Corning) according to manufacturer instructions. Adhered cells were then fixed with ice-cold methanol for 10 min then washed three times with PBS.
- FIG. 22 E depicts changes in indicated mRNA levels following 100 nM doxorubicin treatment for 24 hrs in HK301 sgCtrl, p53KO, p53KO+p53 cyto , and p53KO+p53 wt . Levels were normalized to respective DMSO treated cells.
- FIG. 22 F depicts similar data to 22 B but in HK301 sgCtrl, p53KO, p53KO+p53 cyto , and p53KO+p53 wt .
- FIG. 22 E depicts changes in indicated mRNA levels following 100 nM doxorubicin treatment for 24 hrs in HK301 sgCtrl, p53KO, p53KO+p53 cyto , and p53KO+p53 wt .
- 22 G depicts similar data to 22 E but in HK301 sgCtrl, p53KO, p53KO+p53 R175H , p53KO+p53 R273H , and p53KO+p53 NES .
- FIG. 22 H depicts similar data to 22 B and 22 F but in HK301 sgCtrl, p53KO, p53KO+p53 R175H , p53KO+p53 R273H , and p53KO+p53 NES .
- Erlotinib concentration for all experiments was 1 ⁇ M. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001.
- FIGS. 23 A- 23 F depict Bcl-xL prevents GBM cell death by binding to and sequestering cytoplasmic p53 in EGFRi-metabolic responders.
- FIG. 23 A depicts the immunoprecipitation of p53 in two metabolic responders (HK301 and GBM39) following 24 hours of erlotinib treatment. The immunoprecipitate was probed with the indicated antibodies. Below are respective pre-immunoprecipitation lysates (input).
- FIG. 23 B depicts data similar to 23 A but in two non-responders (HK393 and HK254).
- FIG. 23 C depicts data similar to 23 A and 23 B but in HK301-GFP and HK301-GLUT1/3.
- FIG. 23 D depicts HK301 was treated for 24 hours with erlotinib, WEHI-539, or both and immunoprecipitation and immunoblotting was performed as described previously.
- FIG. 23 E depicts annexin V staining of two responders (GBM39 and HK301) and a non-responder (HK393) following 72 hours of treatment with erlotinib, WEHI-539, or both.
- FIG. 23 F depicts annexin V staining of HK301-GFP and HK301-GLUT1/3 following 72 hours of treatment with erlotinib, wehi-539, or both.
- Erlotinib and WEHI-539 concentrations for all experiments were 1 ⁇ M and 5 ⁇ M, respectively. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01.
- FIGS. 24 A- 24 G depict the synergistic lethality of combined targeting of EGFR and p53.
- FIG. 24 A depicts a summary of alterations in EGFR and genes involved in p53 regulation across 273 GBM samples. Genetic alterations in EGFR (amp/mutation) are mutually exclusive to those in p53. As shown, EGFR alterations are on the left side of the table while most alterations in p53 are on the right.
- FIG. 24 B depicts a table indicating the significant associations between alterations in EGFR and genes involved in the p53 pathway.
- FIG. 24 A depicts a summary of alterations in EGFR and genes involved in p53 regulation across 273 GBM samples. Genetic alterations in EGFR (amp/mutation) are mutually exclusive to those in p53. As shown, EGFR alterations are on the left side of the table while most alterations in p53 are on the right.
- FIG. 24 B depicts a table indicating the significant associations between alterations in
- FIG. 24 C depicts Annexin V staining of a metabolic responder (left: HK301) and non-responder (right: GS017) treated with varying concentrations of erlotinib, nutlin, and in combination represented as a dose-titration matrix.
- FIG. 24 D depicts the dose-titration of erlotinib and nutlin as described in 24 C was conducted across 10 metabolic responders and 6 non-responders, and the synergy score was calculated (see Materials and Methods).
- FIG. 24 E depicts Annexin V staining of HK301-GFP and HK301 GLUT1/3 following 72 hours of treatment with erlotinib, nutlin, or both.
- 24 F depicts the same as 24 E but in HK301-sgCtrl and HK301-p53KO.
- FIGS. 25 A- 25 F depict the modulation of glucose metabolism primes EGFRi non-responders for p53-mediated cell death.
- FIG. 25 A depicts the percentage change in 18 F-FDG uptake after 4 hours of erlotinib, 2DG, or pictilisib treatment relative to vehicle in HK393 and HK254.
- FIG. 25 B depicts the percentage change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BIM peptide in HK393 and HK254 following erlotinib, 2DG, or pictilisib for 24 hours.
- FIG. 25 C depicts data similar to 25 B but in HK393 sgCtrl and p53KO.
- FIG. 25 A depicts the percentage change in 18 F-FDG uptake after 4 hours of erlotinib, 2DG, or pictilisib treatment relative to vehicle in HK393 and HK254.
- FIG. 25 B depicts the percentage
- FIG. 25 D depicts the immunoprecipitation of p53 in HK393 and HK254 following 24 hours of 2DG or pictilisib treatment. The immunoprecipitate was probed with the indicated antibodies. Below are respective pre-immunoprecipitation lysates (input).
- FIG. 25 E depicts the synergy score of various drugs (erlotinib, 2DG, and pictilisib) in combination with nutlin in HK393 and HK254.
- FIG. 25 F depicts Annexin V staining of HK393 sgCtrl and HK393 p53KO following 72 hours of treatment with 2DG, pictilisib, 2DG+nutlin, or pictilisib+nutlin.
- erlotinib, 2DG, pictilisib, and nutlin concentrations for all experiments were 1 ⁇ M, 1 mM, 1 ⁇ M and 2.5 ⁇ M, respectively. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001.
- FIGS. 26 A- 26 H depict the combined targeting of EGFR-driven glucose uptake and p53 suppresses tumor growth in vivo.
- FIG. 26 A depicts the 18 F-FDG PET/CT imaging of GBM39 intracranial xenografts before and after 15 hours erlotinib treatment (75 mg/kg).
- FIG. 26 A depicts the 18 F-FDG PET/CT imaging of GBM39 intracranial xenografts before and after 15 hours erlotinib treatment (75 mg/kg).
- FIG. 26 B depicts GBM39 intracranial xenografts
- 26 C depicts data similar to 26 A but in HK393 intracranial xenografts.
- FIG. 25 E depicts the percent survival of 26 B.
- FIG. 26 F depicts the percent survival of 26 C.
- Comparisons for 26 B and 26 D used data sets from the last measurements and were made using two-tailed unpaired t-test. Data represent means ⁇ s.e.m. values. **p ⁇ 0.01.
- FIGS. 27 A- 27 G depict the characterization of GBM cell lines following EGFR inhibition.
- FIG. 27 A depicts the percent change in 18 F-FDG uptake at indicated times of erlotinib treatment relative to vehicle in two metabolic responders (HK301 and GBM39).
- FIG. 27 B depicts an immunoblot of indicated proteins of a metabolic responder (HK301) and non-responder (HK217) following genetic knockdown of EGFR with siRNA.
- FIG. 27 C depicts the percent change in 18 F-FDG uptake in HK301 and HK217 following genetic knockdown of EGFR.
- FIG. 27 A depicts the percent change in 18 F-FDG uptake at indicated times of erlotinib treatment relative to vehicle in two metabolic responders (HK301 and GBM39).
- FIG. 27 B depicts an immunoblot of indicated proteins of a metabolic responder (HK301) and non-responder (HK217) following genetic knockdown of EGFR with siRNA.
- FIG. 27 C depicts the percent
- FIG. 27 D depicts the change in glucose consumption with 12 hours of erlotinib treatment in three metabolic responders (HK301, GBM39, HK390) and three non-responders (HK393, HK217, HK254). Measurements are made using Nova Biomedical BioProfile Analyzer.
- FIG. 27 E depicts the change in and lactate production with 12 hours of erlotinib treatment in three metabolic responders (HK301, GBM39, HK390) and three non-responders (HK393, HK217, HK254). Measurements are made using Nova Biomedical BioProfile Analyzer.
- FIG. 27 F depicts basal ECAR measurements of two responders (HK301 and GBM39, in blue) and two non-responders (HK217 and HK393, in red) following 12 hours of erlotinib treatment.
- FIG. 27 G depicts change in glutamine consumption following 12 hours of erlotinib treatment, as measured by Nova Biomedical BioProfile Analyzer. Erlotinib concentrations for all experiments were 1 ⁇ M. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001.
- FIGS. 28 A- 28 B depict alterations in downstream signaling following EGFR inhibition correlate with metabolic response.
- FIG. 28 A depicts an immunoblot of indicated proteins following 4 hours of erlotinib treatment in metabolic responders.
- FIG. 28 B depicts an immunoblot of indicated proteins following 4 hours of erlotinib treatment in metabolic non-responders.
- FIGS. 29 A- 29 B depicts the genetic characterization of patient-derived GBM cell lines.
- FIG. 29 A depicts the genetic background across a panel of GBM lines.
- FIG. 29 B depicts fluorescence in situ hybridization (FISH) of HK390, HK336, HK254, and HK393 showing polysomy of EGFR.
- Fluorescence in situ hybridization (FISH) was performed using commercially available fluorescently labeled dual-color EGFR (red)/CEP 7(green) probe (Abbott-Molecular). FISH hybridization and analyses were performed on cell lines, following the manufacturer's suggested protocols. The cells were counterstained with DAPI and the fluorescent probe signals were imaged under a Zeiss (Axiophot) Fluorescent Microscope equipped with dual- and triple-color filters.
- FIGS. 30 A- 30 B depict EGFR inhibition shifts the apoptotic balance in metabolic responders.
- FIG. 30 A depicts an immunoblot of indicated proteins following 24 hours of erlotinib treatment in metabolic responders (GBM39, HK301, and HK336) and non-responders (HK217, HK393, and HK254).
- FIG. 30 B depicts example of dynamic BH3 profiling analysis in a metabolic responder (HK301).
- Right The difference in cytochrome c release between vehicle treated cells and erlotinib treated cells is calculated to obtain the percent priming. Erlotinib concentrations for all experiments was 1 ⁇ M.
- FIGS. 31 A- 31 C depict GLUT1/3 overexpression rescues attenuated glucose metabolism caused by EGFR inhibition.
- FIG. 31 A depicts the change in glucose consumption and lactate production with 12 hours of erlotinib treatment in HK301-GFP and HK301 GLUT1/3. Measurements are made using Nova Biomedical BioProfile Analyzer.
- FIG. 31 B depicts Left: Immunoblot of whole cell lysate of GBM39 cells overexpressing GFP control or GLUT1 and GLUT3 (GLUT1/3). Right: Changes in glucose consumption or lactate production of GBM39-GFP or GBM39-GLUT1/3 after 12 hours of erlotinib treatment. Values are relative to vehicle control.
- FIG. 31 A depicts the change in glucose consumption and lactate production with 12 hours of erlotinib treatment in HK301-GFP and HK301 GLUT1/3. Measurements are made using Nova Biomedical BioProfile Analyzer.
- FIG. 31 B depicts Left
- 31 C depicts data similar to 35 A but in GBM39-GFP and GBM39-GLUT1/3. Erlotinib concentrations for all experiments was 1 ⁇ M. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001.
- FIGS. 32 A- 32 I depict cytoplasmic p53 is required for EGFRi-mediated apoptopic priming.
- FIG. 32 B depicts relative mRNA levels of p53-regulated genes following 24 hours 1 ⁇ M erlotinib treatment in or 100 nM doxorubicin treatment in HK301 (metabolic responder).
- FIG. 32 B depicts relative mRNA levels of p53-regulated genes following 24 hours 1 ⁇ M erlotinib treatment in or 100 nM
- FIG. 32 D depicts Immunoblot of indicated proteins in HK336 sgCtrl, p53KO, p53KO+p53 cyto , and p53KO+p53 wt .
- FIG. 32 D depicts Immunoblot of indicated proteins in HK336 sgCtrl, p53KO, p53KO+p53 cyto , and p53KO+p53 wt .
- FIG. 32 H depicts an immunoblot of indicated proteins in HK301 sgCtrl, p53KO, p53KO+p53 R175H , p53KO+p53 R273H , and p53KO+p53 NES .
- FIGS. 33 A- 33 D depict the inhibition of EGFR-driven glucose metabolism induces a Bcl-xL dependency through cytoplasmic p53 functions.
- FIG. 33 A depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BAD and HRK peptides in metabolic responders (HK301 and HK336) or non-responder (HK229) treated with erlotinib.
- FIG. 33 B depicts Left: Immunoprecipitation of p53 in GBM39-GFP and GBM39-GLUT1/3 following 24 hours of erlotinib treatment. The immunoprecipitate was probed with the indicated antibodies. Right: respective pre-immunoprecipitation lysates (input).
- FIG. 33 A depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BAD and HRK peptides in metabolic responders (HK301 and HK336) or non-responder (
- FIG. 33 C depicts Annexin V staining of HK301 (left) and HK336 (right) sgCtrl, p53KO, p53 KO+p53 cyto , and p53KO+p53 wt following 72 hours of treatment with erlotinib, WEHI-539, or combination.
- FIG. 33 D depicts data similar to 33 C but in GBM39-GFP and GBM39-GLUT1/3. Erlotinib and WEHI-539 concentrations for all experiments were 1 ⁇ M. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001.
- FIGS. 34 A- 34 H depict the inhibition of EGFR-regulated glucose metabolism and p53 activation promote intrinsic apoptosis in GBM.
- FIG. 34 A depicts the immunoblot of indicated proteins following 24 hours of erlotinib, nutlin or in combination in two metabolic responders (HK301 and GBM39).
- FIG. 34 B depicts Annexin V staining in HK301 and HK217 following genetic knockdown of EGFR and subsequent nutlin treatment for 72 hours.
- FIG. 34 C depicts the detection of BAX oligomerization in HK301-GFP and HK301-GLUT1/GLUT3.
- FIG. 34 D depicts the Top: Immunoblot of indicated proteins in HK301-GFP and HK301-HA-BclxL. Bottom: Annexin V staining in HK301-GFP and HK301-HA-BclxL following 72 hours of treatment with erlotinib, nutlin, or combination.
- FIG. 34 D depicts the Top: Immunoblot of indicated proteins in HK301-GFP and HK301-HA-BclxL. Bottom: Annexin V staining in HK301-GFP and HK301-HA-BclxL following 72 hours of treatment with erlotinib, nutlin, or combination.
- FIG. 34 E depicts Annexin V staining of HK301 following 72 hours of erlotinib, nutlin or the combination+/ ⁇ PFT ⁇ pretreatment (10 ⁇ M for 2 hours).
- FIG. 34 F depicts Annexin V staining of HK301 sgCtrl, p53KO, p53KO+p53 R175H , p53KO+p53 R273H , and p53KO+p53 NES following 72 hours of treatment with erlotinib, nutlin, or combination.
- FIG. 34 G depicts data similar to 34 F but in HK301 sgCtrl, p53KO, p53KO+p53 cyto , and p53KO+p53 wt .
- Drug concentrations for all experiments are as follows: erlotinib (1 ⁇ M), nutlin (2.5 ⁇ M). Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001.
- FIG. 34 H depicts data similar to 34 G but in HK336 sgCtrl, p53KO, p53KO+p53 cyto , and p53KO+p53 wt . Drug concentrations for all experiments are as follows: erlotinib (1 ⁇ M), nutlin (2.5 ⁇ M). Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001.
- FIGS. 35 A- 35 F depict the inhibition of glucose metabolism in metabolic responders and non-responders promotes intrinsic apoptosis.
- FIG. 35 A depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BIM peptides in metabolic responder HK301 following 24 hours of erlotinib or 2DG treatment.
- FIG. 35 B depicts Left: Immunoprecipitation of p53 in HK301 following 24 hours of 2DG treatment. The immunoprecipitate was probed with the indicated antibodies. Right: respective pre-immunoprecipitation lysates (input).
- FIG. 35 C depicts OCR and ECAR measurements of HK301 cells following exposure to oligomycin and rotenone.
- FIG. 35 A depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BIM peptides in metabolic responder HK301 following 24 hours of erlotinib or 2DG treatment.
- 35 D depicts Annexin V staining in HK301 following 72 hours of treatment with nutlin, erlotinib, 2DG, oligomycin, rotenone as individual agents or in combination with nutlin.
- FIG. 35 E depicts an immunoblot of indicated proteins following 4 hours of erlotinib or pictilisib treatment in two non-responders (HK254 and HK393).
- FIG. 35 F depicts the Immunoprecipitation of p53 in HK254 following 24 hours of pictilisib or 2DG treatment. The immunoprecipitate was probed with the indicated antibodies. Below are respective pre-immunoprecipitation lysates (input).
- Drug concentrations for all experiments are as follows: erlotinib (1 ⁇ M), nutlin (2.5 ⁇ M), 2DG (3 mM for HK301 and 1 mM for HK254), oligomycin (1 ⁇ M), rotenone (1 ⁇ M), and pictilisib (1 ⁇ M). Comparisons were made using two-tailed unpaired Student's t-test. Data represent means ⁇ s.e.m. values of three independent experiments. ****p ⁇ 0.0001.
- FIGS. 36 A- 36 D depict the In vivo efficacy of EGFR inhibition and p53 activation.
- FIG. 36 B depicts the immunohistochemistry (IHC) analysis of p53 expression in intracranial tumor-bearing xenografts following 36 hours Idasanutlin (50 mg/kg) treatment.
- 36 D depicts the change in mice body weight following daily treatment with erlotinib (75 mg/kg) or combined erlotinib (75 mg/kg) and Idasanutlin (50 mg/kg). All treatments were done orally. Data represent means ⁇ s.e.m. values of three independent experiments. *p ⁇ 0.05.
- FIG. 37 A depicts that direct inhibition of glycolysis with 2DG (hexokinase inhibitor) or cytochalasin B (a glucose transporter inhibitor) unexpectedly synergizes with p53 activation (with nutlin).
- FIG. 37 B depicts low glucose (0.25 mM) leads to synergistic cell kill with BCL-xL inhibition with navitoclax(ABT-263).
- FIG. 37 C depicts low glucose (0.25 mM) leads to synergistic cell kill with BCL-xL inhibition with nutlin.
- FIG. 38 depicts a comparison between metabolic responders to EGFRi inhibitor, erlotinib, and metabolic non-responders.
- the combination of erlotinib and nutlin leads to an unexpected synergistic synthetic lethality in metabolic responders but not in non-responders.
- FIG. 39 A shows the enantiomeric purity of synthetic intermediate 5 as determined by chiral SFC (Chiralpak AD-3 column, 40% MeOH).
- FIG. 39 B shows the enantiomeric purity of synthetic intermediate (S)-5 as determined by chiral SFC (Chiralpak AD-3 column, 40% MeOH).
- FIG. 39 C show the enantiomeric purity of synthetic intermediate (R)-5 as determined by chiral SFC (Chiralpak AD-3 column, 40% MeOH).
- FIG. 39 D show the enantiomeric purity of Mosher ester derivatives 5 as determined by chiral SFC (Chiralpak AD-3 column, 40% MeOH).
- FIG. 40 depicts the activities of erlotinib, lapatinib, gefitinib, and exemplary compounds of the disclosure against U87 EGFRwt.
- FIG. 41 depicts the activities of erlotinib, lapatinib, gefitinib, and exemplary compounds of the disclosure against U87 EGFRviii.
- FIG. 42 depicts the activities of erlotinib, lapatinib, gefitinib, and exemplary compounds of the disclosure against HK301, a patient derived, EGFRvIII mutant GBM gliomasphere.
- FIG. 43 depicts the activities of erlotinib, lapatinib, gefitinib, and exemplary compounds of the disclosure against GBM39, a patient derived, EGFRvIII mutant GBM gliomasphere.
- FIG. 44 depicts the activities of erlotinib, lapatinib, and exemplary compounds of the disclosure in a GBM39 EGFRvIII mutant mouse model.
- FIG. 45 A depicts the activities of erlotinib and exemplary compounds of the disclosure in a HCC827 lung cancer EGFR mutant cell line.
- FIG. 45 B depicts the activities of erlotinib and exemplary compounds of the disclosure in a PC9 lung cancer EGFR mutant cell line.
- FIG. 45 C depicts the activities of erlotinib and exemplary compounds of the disclosure in a H838 lung cancer mutant cell line.
- FIG. 46 depicts the activities of erlotinib and exemplary compounds of the disclosure in a PC9 lung cancer EGFR mutant mouse model.
- FIG. 47 depicts certain metabolites of exemplary compounds of the disclosure.
- FIG. 48 A depicts the activate of exemplary compounds of the disclosure against HK301.
- FIG. 48 B depicts the activate of exemplary compounds of the disclosure against GBM39.
- FIG. 48 C depicts the activate of exemplary compounds of the disclosure against NHA.
- FIG. 49 A depicts the ADME characteristics of an exemplary compound of the disclosure in rats following PO administration.
- FIG. 49 B depicts the ADME characteristics of an exemplary compound of the disclosure in rats following PO administration.
- FIG. 50 A depicts the activity of certain compounds of the disclosure as compared against the current standard of care (i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759) against HK301, a patient derived, EGFRvIII mutant GBM gliomasphere.
- the current standard of care i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759
- FIG. 50 B depicts the activity of certain compounds of the disclosure as compared against the current standard of care (i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759) against HK301, a patient derived, EGFRvIII mutant GBM gliomasphere.
- the current standard of care i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759
- FIG. 51 A depicts the activity of certain compounds of the disclosure as compared against the current standard of care (i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759) against GBM39, a patient derived, EGFRvIII mutant GBM gliomasphere.
- FIG. 51 B depicts the activity of certain compounds of the disclosure as compared against the current standard of care (i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759) against GBM39, a patient derived, EGFRvIII mutant GBM gliomasphere.
- FIG. 52 A depicts the activity of osimertinib and JGK068S against pEGFRwt.
- FIG. 52 B depicts the activity of osimertinib and JGK068S against pEGFRvIII.
- FIG. 53 A depicts the activity of osimertinib and JGK068S against HK301.
- FIG. 53 B depicts the activity of osimertinib and JGK068S against GBM39.
- FIG. 54 A depicts the activity of AZD3759, AZD9291, and JGK068S against certain EGFR mutants.
- FIG. 54 B depicts the activity of AZD3759, AZD9291, and JGK068S against pEGFR A263P.
- FIG. 54 C depicts the activity of AZD3759, AZD9291, and JGK068S against pEGFR A289V.
- FIG. 54 D depicts the activity of AZD3759, AZD9291, and JGK068S against pEGFR A289D.
- FIG. 54 E depicts the activity of AZD3759, AZD9291, and JGK068S against pEGFR G598V.
- GBM glioblastoma multiforme
- the World Health Organization defines GBM as a grade IV cancer characterized as malignant, mitotically active, and predisposed to necrosis.
- GBM has a very poor prognosis with a 5-year survival rate of 4-5% with the median survival rate of GBM being 12.6 months (McLendon et al. (2003) Cancer. 98:1745-1748.).
- TMZ temozolomide
- a or G purines
- TMZ use has drawbacks in that significant risk arises from DNA damage in healthy cells and that GBM cells can rapidly develop resistance towards the drug (Carlsson, et al. (2014) EMBO. Mol. Med. 6: 1359-1370). As such, additional chemotherapy options are urgently required.
- EGFR is a member of the HER superfamily of receptor tyrosine kinases together with ERBB2, ERBB3, and ERBB4.
- a common driver of GBM progression is EGFR amplification, which is found in nearly 40% of all GBM cases (Hynes et al. (2005) Nat. Rev. Cancer. 5: 341-354; Hatanpaa et al. (2010) Neoplasia. 12:675-684).
- EGFR amplification is associated with the presence of EGFR protein variants: in 68% of EGFR mutants; there is a deletion in the N-terminal ligand-binding region between amino acids 6 and 273. These deletions in the ligand-binding domains of EGFR can lead to ligand-independent activation of EGFR (Yamazaki et al. (1990) Jpn. J. Cancer Res. 81: 773-779.).
- TKIs Small molecule tyrosine kinase inhibitors
- reversible inhibitors and irreversible inhibitors include erlotinib, gefitinib, lapatinib, PKI166, canertinib and pelitinib (Mischel et al. (2003) Brain Pathol. 13: 52-61).
- TKIs compete with ATP for binding to the tyrosine kinase domain of EGFR, however, these EGFR-specific tyrosine kinase inhibitors have been relatively ineffective against gliomas, with response rates only reaching as high as 25% in the case of erlotinib (Mischel et al. (2003) Brain Pathol. 13: 52-61; Gan et al. (2009) J. Clin. Neurosci. 16: 748-54). Although TKIs are well tolerated and display some antitumor activity in GBM patients, the recurrent problem of resistance to receptor inhibition limits their efficacy (Learn et al. (2004) Clin. Cancer. Res.
- Pharmacological stabilization of p53 (such as for example, with the brain-penetrant small molecule, Idasanutlin) enables p53 to engage the intrinsic apoptotic machinery, promoting synergistic lethality with targeting EGFR-driven glucose uptake in GBM xenografts.
- the inventors also discovered that rapid changes in 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake using, for example, non-invasive positron emission tomography could predict sensitivity to the combination in vivo.
- the inventors inter alia, identify a critical link between oncogene signaling, glucose metabolism, and cytoplasmic p53, which could be exploited for combination therapy in GBM and other malignancies
- the present disclosure provides compounds of Formula I or Formula I*:
- R 11 and R 12 taken together complete a carbocyclic or heterocyclic ring.
- At least one of is R 2a and R 2b not H.
- R 2a is hydrogen
- R 2b is selected from alkyl, halo, CN, and NO 2 .
- R 2a is selected from alkyl, halo, CN, and NO 2 .
- the compound is a compound of Formula (IVa) or Formula (IVb):
- R 11 is hydrogen. In other preferred embodiments, R 11 is OR 7 .
- R 7 is hydrogen. In other embodiments, R 7 is alkyl. In yet other embodiments, R 7 is alkoxyalkyl. In yet other embodiments, R 7 is arylacyl.
- R 12 is heteroaryl, such as furanyl.
- the heteroaryl is substituted with alkyl, alkoxy, OH, CN, NO 2 , halo,
- R 12 is OR 8 .
- R 8 is hydrogen. In other embodiments, R 8 is alkyl. In yet other embodiments, R 8 is alkoxyalkyl. In certain embodiments, R 8 is alkyl substituted with
- R 11 and R 12 combine to form a carbocylic or heterocyclic ring, such as a 5-member, 6-member, or 7-member carbocyclic or heterocyclic ring.
- the carbocyclic or heterocyclic ring is substituted with hydroxyl, alkyl (e.g., methyl), or alkenyl (e.g., vinyl).
- the compound is a compound of of Formula Ia, Ib, Ic, or Id:
- R 2a or R 2b is selected from alkyl, halo, CN, and NO 2 .
- Z is phenyl.
- X is O.
- n is 1.
- the compound is a compound of Formula (IIa) or Formula (IIb):
- R 1 is represented by Formula A:
- R 1 is alkyl (e.g., methyl or ethyl).
- R 1 is substituted with heterocyclyl (e.g., morpholinyl, piperidinyl, pyrrolodinyl, or piperazinyl, such as N-methyl piperazinyl).
- R 1 is substituted with amino (e.g., dimethyl amino).
- R 1 is alkyl substituted with hydroxyl.
- R 1 is in the S configuration. In other embodiments, R 1 is in the R configuration.
- R 3 is hydrogen. In other embodiments, R 3 is acyl. In certain embodiments, R 3 is alkylacyl. In certain embodiments, R 3 is alkyloxyacyl. In certain embodiments, R 3 is acyloxyalkyl. In certain embodiments, R 3 is
- R 9 is alkyl
- Z is aryl or heteroaryl optionally substituted with one or more R 6 ; and each instance of R 6 is independently selected from alkyl, alkoxy, OH, CN, NO 2 , halo, alkenyl, alkynyl, aralkyloxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl.
- R 6 is phenyl substituted with 1, 2, 3, 4, or 5 R 6 .
- each R 6 is independently selected from halo, alkyl, alkynyl, or arylalkoxy.
- Z is 2-fluoro-3-chlorophenyl, 2-fluorophenyl, 2,3-difluorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 2,6-difluorophenyl, 2,4,6-trifluorophenyl, pentafluorophenyl, 2-fluoro-3-bromophenyl, 2-fluoro-3-ethynylphenyl, and 2-fluoro-3-(trifluoromethyl)phenyl. In other even more preferred embodiments, Z is 3-ethynylphenyl.
- Z is 3-chloro-4-((3-fluorobenzyl)oxy)benzene. In yet other even more preferred embodiments, Z is 3-chloro-2-(trifluoromethyl)phenyl. In yet other even more preferred embodiments, Z is 3-bromophenyl. In yet other even more preferred embodiments, Z is 2-fluoro,5-bromophenyl. In yet other even more preferred embodiments, Z is 2,6-difluoro,5-bromophenyl. In certain embodiments, Z is substituted with one R 6 selected from
- R 9 and R 10 are independently selected from alkyl.
- the compound is a compound of Formula (IIIa):
- each R 6 is independently selected from fluoro, chloro, or bromo.
- the compound is a compound of Formula (IIIb):
- each R 6 is independently selected from fluoro, chloro, or bromo.
- the compound is a compound of Formula (IIIc):
- each R 6 is independently selected from fluoro, chloro, or bromo.
- R 2a is halo (e.g., fluoro). In other preferred embodiments, R 2a is hydrogen.
- R 2b is halo (e.g., fluoro). In other preferred embodiments, R 2b is hydrogen.
- the compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- the present disclosure provides methods of inhibiting EGFR or ⁇ EGFR, comprising administering to a subject an amount of a compound of the disclosure.
- the present disclosure provides methods of treating cancer comprising of administering to a subject in need of a treatment for cancer an amount of a compound of the disclosure.
- the cancer is bladder cancer, bone cancer, brain cancer, breast cancer, cardiac cancer, cervical cancer, colon cancer, colorectal cancer, esophageal cancer, fibrosarcoma, gastric cancer, gastrointestinal cancer, head, spine and neck cancer, Kaposi's sarcoma, kidney cancer, leukemia, liver cancer, lymphoma, melanoma, multiple myeloma, pancreatic cancer, penile cancer, testicular germ cell cancer, thymoma carcinoma, thymic carcinoma, lung cancer, ovarian cancer, or prostate cancer.
- the cancer is glioma, astrocytoma or glioblastoma. In certain embodiments, the cancer is glioblastoma. In certain embodiments, the cancer is glioblastoma multiforme. In certain embodiments, the method reduces cancer cell proliferation.
- the present disclosure provides methods of treating cancer in a subject, the method comprising administering to the subject a glucose metabolism inhibitor and an additional agent, wherein the glucose metabolism is a compound of the disclosure or a pharmaceutically acceptable salt thereof and the additional agent is a cytoplasmic p53 stabilizer.
- the cancer is bladder cancer, bone cancer, brain cancer, breast cancer, cardiac cancer, cervical cancer, colon cancer, colorectal cancer, esophageal cancer, fibrosarcoma, gastric cancer, gastrointestinal cancer, head, spine and neck cancer, Kaposi's sarcoma, kidney cancer, leukemia, liver cancer, lymphoma, melanoma, multiple myeloma, pancreatic cancer, penile cancer, testicular germ cell cancer, thymoma carcinoma, thymic carcinoma, lung cancer, ovarian cancer, or prostate cancer.
- the cancer is glioma, astrocytoma or glioblastoma. In certain embodiments, the cancer is glioblastoma.
- the cancer is glioblastoma multiforme. In certain embodiments, the method reduces cancer cell proliferation. In certain embodiments, the cancer is relapsed or refractory. In other embodiments, the cancer is treatment na ⁇ ve.
- the subject has been determined to be susceptible to the glucose metabolism inhibitor by a method comprising:
- the reduction in the glucose level between the second blood sample and the control blood sample is about or greater than 0.15 mM. In certain embodiments, the reduction in the glucose level between the second blood sample and the control blood sample is about or greater than 0.20 mM. In certain embodiments, the reduction in the glucose level between the second blood sample and the control blood sample is in the range of 0.15 mM-2.0 mM. In certain embodiments, the reduction in the glucose level between the second blood sample and the control blood sample is in the range of 0.25 mM-1.0 mM.
- the cytoplasmic p53 stabilizer is an MDM2 inhibitor.
- the MDM2 inhibitor is a nutlin.
- the MDM2 inhibitor is nutlin-3 or idasanutlin.
- the subject is administered 50 mg to 1600 mg of idasanutlin.
- the subject is administered 100 mg of idasanutlin.
- the subject is administered 150 mg of idasanutlin.
- the subject is administered 300 mg of idasanutlin.
- the subject is administered 400 mg of idasanutlin.
- the subject is administered 600 mg of idasanutlin.
- the subject is administered 1600 mg of idasanutlin.
- the MDM2 inhibitor is RO5045337, RO5503781, RO6839921, SAR405838, DS-3032, DS-3032b, or AMG-232.
- the cytoplasmic p53 stabilizer is a BCL-2 inhibitor.
- the BCL-2 inhibitor is antisense oligodeoxynucleotide G3139, mRNA antagonist SPC2996, venetoclax (ABT-199), GDC-0199, obatoclax, paclitaxel, navitoclax (ABT-263), ABT-737, NU-0129, S 055746, or APG-1252.
- the cytoplasmic p53 stabilizer is a Bcl-xL inhibitor.
- the Bcl-xL inhibitor is WEHI 539, ABT-263, ABT-199, ABT-737, sabutoclax, AT101, TW-37, APG-1252, or gambogic acid.
- the glucose metabolism inhibitor and the cytoplasmic p53 stabilizer are administered in the same composition. In other embodiments, the glucose metabolism inhibitor and the cytoplasmic p53 stabilizer are administered in separate compositions.
- the method further comprises administration of an additional therapy.
- Primary malignant brain tumors are tumors that start in the brain or spine are known collectively as gliomas. Gliomas are not a specific type of cancer but are a term used to describe tumors that originate in glial cells. Examples of primary malignant brain tumors include astrocytomas, pilocytic astrocytomas, pleomorphic xanthoastrocytomas, diffuse astrocytomas, anaplastic astrocytomas, GBMs, gangliogliomas, oligodendrogliomas, ependymomas. According to the WHO classification of brain tumors, astrocytomas have been categorized into four grades, determined by the underlying pathology.
- gliomas The characteristics that are used to classify gliomas include mitoses, cellular or nuclear atypia, and vascular proliferation and necrosis with pseudopalisading features.
- Malignant (or high-grade) gliomas include anaplastic glioma (WHO grade III) as well as glioblastoma multiforme (GBM; WHO grade IV). These are the most aggressive brain tumors with the worst prognosis.
- GBMs is the most common, complex, treatment resistant, and deadliest type of brain cancer, accounting for 45% of all brain cancers, with nearly 11,000 men, women, and children diagnosed each year.
- GBM also known as grade-4 astrocytoma and glioblastoma multiforme
- GBM are the most common types of malignant (cancerous) primary brain tumors. They are extremely aggressive for a number of reasons. First, glioblastoma cells multiply quickly, as they secrete substances that stimulate a rich blood supply. They also have an ability to invade and infiltrate long distances into the normal brain by sending microscopic tendrils of tumor alongside normal cells. Two types of glioblastomas are known.
- Primary GBM are the most common form; they grow quickly and often cause symptoms early.
- Secondary glioblastomas are less common, accounting for about 10 percent of all GBMs. They progress from low-grade diffuse astrocytoma or anaplastic astrocytoma, and are more often found in younger patients. Secondary GBM are preferentially located in the frontal lobe and carry a better prognosis.
- GBM is usually treated by combined multi-modal treatment plan including surgical removal of the tumor, radiation and chemotherapy.
- the oral chemotherapy drug, temozolomide is most often used for six weeks, and then monthly thereafter.
- Another drug, bevacizumab (known as Avastin®), is also used during treatment. This drug attacks the tumor's ability to recruit blood supply, often slowing or even stopping tumor growth.
- Novel investigational treatments are also used and these may involve adding treatments to the standard therapy or replacing one part of the standard therapy with a different treatment that may work better.
- Some of these treatments include immunotherapy such as vaccine immunotherapies, or low-dose pulses of electricity to the area of the brain where the tumor exists and nano therapies involving spherical nucleic acids (SNAs) such as NU-0129.
- the methods of the current disclosure are used in combination with one or more of the aforementioned therapies.
- Embodiments of the methods and compositions discussed herein are also contemplated to be applicable to other types of cancers, including but not limited to lung cancer, non-CNS cancers, CNS cancers, and CNS metastases such as brain metastases, leptomeningeal metastases, choroidal metastases, spinal cord metastases, and others.
- the inventors have demonstrated that the pharmacological p53 stabilization, such as with a CNS-penetrant small molecule, for example, was synergistically lethal with the inhibition of EGFR-driven glucose uptake in patient-derived, primary GBM models.
- the inventors have demonstrated, for the first time, that the non-transcriptional functions of p53 can have a critical role in stimulating intrinsic apoptosis in metabolic responders.
- the methods of treatment described herein comprise the administration of cytoplasmic p53 stabilizer(s) in combination with glucose metabolism inhibitors. Cytoplasmic p53 stabilizer(s) and glucose metabolism inhibitors can be administered in the same or in different compositions, cocomitantly or sequentially.
- a single p53 stabilizer is used and in other embodiments more than on p53 stabilizer is used.
- the combination of nutlin with ABT 737 (which binds BCL-2 and BCL-XL) is reported to synergistically target the balance of pro-apoptotic and anti-apotptoic proteins at the mitochondrial level, thereby promoting cell death.
- a cytoplasmic p53 stabilizer is any small molecule, antibody, peptide, protein, nucleic acid or derivatives thereof that can pharmacologically stabilize or activate p53 directly or indirectly. The stabilization of cytoplasmic p53 leads to priming cells, such as cancer cells, for apoptosis.
- the cytoplasmic p53 stabilizer is an MDM2 antagonist/inhibitor.
- the MDM2 antagonist is a nutlin.
- the nutlin is nutlin-3 or idasanutlin.
- the MDM2 antagonist is RO5045337 (also known as RG7112), RO5503781, RO6839921, SAR405838 (also known as MI-773), DS-3032, DS-3032b, or AMG-232 or any other MDM2 inhibitor.
- MDM-2 Other compounds within the scope of the current methods known to bind MDM-2 include Ro-2443, MI-219, MI-713, MI-888, DS-3032b, benzodiazepinediones (for example, TDP521252), sulphonamides (for example, NSC279287), chromenotriazolopyrimidine, morpholinone and piperidinones (AM-8553), terphenyls, chalcones, pyrazoles, imidazoles, imidazole-indoles, isoindolinone, pyrrolidinone (for example, PXN822), priaxon, piperidines, naturally derived prenylated xanthones, SAH-8 (stapled peptides) sMTide-02, sMTide-02a (stapled peptides), ATSP-7041 (stapled peptide), spiroligomer ( ⁇ -helix mimic).
- PRIMA-1MET also known as APR-246
- Aprea 102-105 PK083, PK5174, PK5196, PK7088, benzothiazoles, stictic acid and NSC319726.
- the cytoplasmic p53 stabilizer is a BCL-2 inhibitor.
- the BCL-2 inhibitor is, for example, antisense oligodeoxynucleotide G3139, mRNA antagonist SPC2996, venetoclax (ABT-199), GDC-0199, obatoclax, paclitaxel, navitoclax (ABT-263), ABT-737, NU-0129, S 055746, APG-1252 or any other BCL-2 inhibitor.
- the cytoplasmic p53 stabilizer is a Bcl-xL inhibitor.
- the Bcl-xL inhibitor is, for example, WEHI 539, ABT-263, ABT-199, ABT-737, sabutoclax, AT101, TW-37, APG-1252, gambogic acid or any other Bcl-xL inhibitor.
- the subject with GBM or cancer is classified to be either a “metabolic responder” or a “metabolic non-responder” i.e. determined to be susceptible to glucose metabolism inhibitors.
- the classification of the subject is prior to administering to the subject a treatment comprising a glucose metabolism inhibitor and a cytoplasmic p53 stabilizer.
- the current disclosure provides for methods for assessing a cancer, classifying a subject, determining the susceptibility of a subject to treatments involve analysis of glucose metabolism, glycolysis or glucose uptake. Methods to classify a subject as metabolic responder is described in details in Example 1. Techniques to monitor glycolysis and glucose uptake is provided by T. TeSlaa and M. A. Teitell. 2014. Methods in Enzymology, Volume 542, pp. 92-114, incorporated herein by reference.
- Glycolysis is the intracellular biochemical conversion of one molecule of glucose into two molecules of pyruvate with the concurrent generation of two molecules of ATP.
- Pyruvate is a metabolic intermediate with several potential fates including entrance into the tricarboxylic acid (TCA) cycle within mitochondria to produce NADH and FADH 2 .
- TCA tricarboxylic acid
- pyruvate can be converted into lactate in the cytosol by lactate dehydrogenase with concurrent regeneration of NAD + from NADH.
- An increased flux through glycolysis supports the proliferation of cancer cells by providing, for example, additional energy in the form of ATP as well as glucose-derived metabolic intermediates for nucleotide, lipid, and protein biosynthesis. Warburg (Oncologia.
- Warburg effect occurs in rapidly proliferating cells including cancer cells, activated lymphocytes, and pluripotent stem cells.
- PET positron emission tomography
- glycolysis represent a target for therapeutic and diagnostic methods.
- the measurement of glucose uptake and lactate excretion by malignant cells may be useful to detect shifts in glucose catabolism and/or susceptibility to glucose metabolism inhibitors. Detecting such shifts is important for methods of treating GBM, methods of reducing the risk of ineffective therapy, methods for reducing the chances of tumor survival.
- 18 F-deoxyglucose PET serves in certain embodiments as a rapid non-invasive functional biomarker to predict sensitivity to p53 activation. This non-invasive analysis could be particularly valuable for malignant brain tumors where pharmacokinetic/pharmacodynamics assessment is extremely difficult and impractical.
- delayed imaging protocols (41) and parametric response maps (PRMs) with MRI fusion can be useful for quantifying the changes in tumour 18 F-FDG uptake (42).
- the methods can relate to measuring glucose uptake and lactate production.
- glycolytic flux can be quantified by measuring glucose uptake and lactate excretion.
- Glucose uptake into the cell is through glucose transporters (Glut1-Glut4), whereas lactate excretion is through monocarboxylate transporters (MCT1-MCT4) at the cell membrane.
- Methods to detect glucose uptake and lactate excretion include, for example, extracellular glucose or lactate kit, extracellular bioanalyzer, ECAR measurement, [3H]-2-DG or [14C]-2-DG uptake 18 FDG uptake or 2-NBDG uptake.
- Kit detection methods are usually colorimetric or fluorometric and are compatible with standard lab equipment such as spectrophotometers.
- BioProfile Analyzers such as Nova Biomedical
- Biochemistry Analyzers such as for example YSI Life Sciences
- GlucCell can measure only glucose levels in cell culture media. While each commercial method has a different detection protocol, the collection of culture media for analysis is the same.
- Glycolysis can also be determined through measurements of the extracellular acidification rate (ECAR) of the surrounding media, which is predominately from the excretion of lactic acid per unit time after its conversion from pyruvate.
- ECAR extracellular acidification rate
- the Seahorse extracellular flux (XF) analyzer (Seahorse Bioscience) is a tool for measuring glycolysis and oxidative phosphorylation (through oxygen consumption) simultaneously in the same cells.
- Certain embodiments of the methods of the current disclosure include the use of glucose analogs.
- a labeled isoform of glucose can be added to the cell culture media and then measured within cells after a given period of time.
- glucose analogs for these studies include but are not limited to radioactive glucose analogs, such as 2-deoxy-D-[1,2-3H]-glucose, 2-deoxy-D-[1-14C]-glucose, or 2-deoxy-2-( 18 F)-fluoro-D-glucose ( 18 FDG), or fluorescent glucose analogs, such as 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG).
- radioactive glucose analogs such as 2-deoxy-D-[1,2-3H]-glucose, 2-deoxy-D-[1-14C]-glucose, or 2-deoxy-2-( 18 F)-fluoro-D-glucose ( 18 FDG)
- fluorescent glucose analogs such as 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose
- the glucose uptake is measured by the uptake of radio-labelled glucose 2-deoxy-2-[fluorine-18]fluoro-D-glucose ( 18 F-FDG).
- detecting the 18 F-FDG is by positron emission tomography (PET).
- PET positron emission tomography
- the biopsy is taken from a GBM tumor. A detailed description of an example of measuring 18 F-FDG is provided in the examples below.
- the methods can relate to comparing glucose uptake of a biological sample such as a tumor sample with a control.
- Fold increases or decreases may be, be at least, or be at most 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, 100- or more, or any range derivable therein.
- differences in expression between a sample and a reference may be expressed as a percent decrease or increase, such as at least or at most 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000% difference, or any range derivable therein.
- the levels can be relative to a control.
- Algorithms such as the weighted voting programs, can be used to facilitate the evaluation of biomarker levels.
- other clinical evidence can be combined with the biomarker-based test to reduce the risk of false evaluations.
- Other cytogenetic evaluations may be considered in some embodiments.
- the present disclosure provides methods of making compounds of Formula I, I*, or a pharmaceutically acceptable salt thereof, according to Scheme 1 or Scheme 2:
- R 21 is sufonylalkyl (e.g., CH 3 S(O) 2 OCH 2 —).
- B is a nitrogenous base (e.g., triethylamine or diisopropylethylamine).
- Nu is a nitrogen-containing heterocycle having at least one N—H bond (e.g., morpholine, N-methylpiperazine, piperidine, or pyrrolidine). In other embodiments, Nu is aminoalkyl (e.g., dimethylamine).
- the solvent is an aprotic solvent (e.g., dimethylformamide).
- the method further comprises a step according to scheme 3 or 4:
- R 22 is hydroxyalkyl
- R 23a and R 23b are each methyl.
- R 24 is aminoaryl. In other embodiments, R 24 is aminoheteroaryl.
- Sv 2 is an alkylacid (e.g., acetic acid).
- the step in scheme 3 or 4 is performed at a temperature in the range 115-150° C. In certain embodiments, the step is performed at a temperature in the range 125-130° C. In certain embodiments, the step further comprises treatment with a base, such as ammonium hydroxide.
- the method further comprises a purification step.
- the purification step comprises column chromatography, preparative thin layer chromatography, or high performance liquid chromatography.
- agent is used herein to denote a chemical compound (such as an organic or inorganic compound, a mixture of chemical compounds), a biological macromolecule (such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues.
- Agents include, for example, agents whose structure is known, and those whose structure is not known. The ability of such agents to inhibit AR or promote AR degradation may render them suitable as “therapeutic agents” in the methods and compositions of this disclosure.
- a “patient,” “subject,” or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc.), companion animals (e.g., canines, felines, etc.) and rodents (e.g., mice and rats).
- Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results.
- treatment is an approach for obtaining beneficial or desired results, including clinical results.
- Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable.
- Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
- preventing is art-recognized, and when used in relation to a condition, such as a local recurrence (e.g., pain), a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition.
- a condition such as a local recurrence (e.g., pain)
- a disease such as cancer
- a syndrome complex such as heart failure or any other medical condition
- prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
- administering or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art.
- a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, subcutaneously, ocularly, sublingually, orally (by ingestion), intranasally (by inhalation), intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct).
- a compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent.
- Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
- a compound or an agent is administered orally, e.g., to a subject by ingestion.
- the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.
- the phrase “conjoint administration” refers to any form of administration of two or more different therapeutic agents such that the second agent is administered while the previously administered therapeutic agent is still effective in the body (e.g., the two agents are simultaneously effective in the patient, which may include synergistic effects of the two agents).
- the different therapeutic compounds can be administered either in the same formulation or in separate formulations, either concomitantly or sequentially.
- an individual who receives such treatment can benefit from a combined effect of different therapeutic agents.
- a “therapeutically effective amount” or a “therapeutically effective dose” of a drug or agent is an amount of a drug or an agent that, when administered to a subject will have the intended therapeutic effect.
- the full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses.
- a therapeutically effective amount may be administered in one or more administrations.
- the precise effective amount needed for a subject will depend upon, for example, the subject's size, health and age, and the nature and extent of the condition being treated, such as cancer or MDS. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.
- the terms “optional” or “optionally” mean that the subsequently described event or circumstance may occur or may not occur, and that the description includes instances where the event or circumstance occurs as well as instances in which it does not.
- “optionally substituted alkyl” refers to the alkyl may be substituted as well as where the alkyl is not substituted.
- substituents and substitution patterns on the compounds of the present invention can be selected by one of ordinary skilled person in the art to result chemically stable compounds which can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials. If a substituent is itself substituted with more than one group, it is understood that these multiple groups may be on the same carbon or on different carbons, so long as a stable structure results.
- the term “optionally substituted” refers to the replacement of one to six hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: hydroxyl, hydroxyalkyl, alkoxy, halogen, alkyl, nitro, silyl, acyl, acyloxy, aryl, cycloalkyl, heterocyclyl, amino, aminoalkyl, cyano, haloalkyl, haloalkoxy, —OCO—CH 2 —O-alkyl, —OP(O)(O-alkyl) 2 or —CH 2 —OP(O)(O-alkyl) 2 .
- “optionally substituted” refers to the replacement of one to four hydrogen radicals in a given structure with the substituents mentioned above. More preferably, one to three hydrogen radicals are replaced by the substituents as mentioned above. It is understood that the substituent can be further substituted.
- alkyl refers to saturated aliphatic groups, including but not limited to C 1 -C 10 straight-chain alkyl groups or C 1 -C 10 branched-chain alkyl groups.
- the “alkyl” group refers to C 1 -C 6 straight-chain alkyl groups or C 1 -C 6 branched-chain alkyl groups.
- the “alkyl” group refers to C 1 -C 4 straight-chain alkyl groups or C 1 -C 4 branched-chain alkyl groups.
- alkyl examples include, but are not limited to, methyl, ethyl, 1-propyl, 2-propyl, n-butyl, sec-butyl, tert-butyl, 1-pentyl, 2-pentyl, 3-pentyl, neo-pentyl, 1-hexyl, 2-hexyl, 3-hexyl, 1-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, 1-octyl, 2-octyl, 3-octyl or 4-octyl and the like.
- the “alkyl” group may be optionally substituted.
- acyl is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)—, preferably alkylC(O)—.
- acylamino is art-recognized and refers to an amino group substituted with an acyl group and may be represented, for example, by the formula hydrocarbylC(O)NH—.
- acyloxy is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)O—, preferably alkylC(O)O—.
- alkoxy refers to an alkyl group having an oxygen attached thereto.
- Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like.
- alkoxyalkyl refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.
- alkyl refers to saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups.
- a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C 1-30 for straight chains, C 3-30 for branched chains), and more preferably 20 or fewer.
- alkyl as used throughout the specification, examples, and claims is intended to include both unsubstituted and substituted alkyl groups, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone, including haloalkyl groups such as trifluoromethyl and 2,2,2-trifluoroethyl, etc.
- C x-y or “C x -C y ”, when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups that contain from x to y carbons in the chain.
- C 0 alkyl indicates a hydrogen where the group is in a terminal position, a bond if internal.
- a C 1-6 alkyl group for example, contains from one to six carbon atoms in the chain.
- alkylamino refers to an amino group substituted with at least one alkyl group.
- alkylthio refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkylS-.
- amide refers to a group
- R 9 and R 10 each independently represent a hydrogen or hydrocarbyl group, or R 9 and R 10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- amine and “amino” are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by
- R 9 , R 10 , and R 10′ each independently represent a hydrogen or a hydrocarbyl group, or R 9 and R 10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- aminoalkyl refers to an alkyl group substituted with an amino group.
- aralkyl refers to an alkyl group substituted with an aryl group.
- aryl as used herein include substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon.
- the ring is a 5- to 7-membered ring, more preferably a 6-membered ring.
- aryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, and the like.
- R 9 and R 10 independently represent hydrogen or a hydrocarbyl group.
- Carbocyclylalkyl refers to an alkyl group substituted with a carbocycle group.
- Carbocycle includes 5-7 membered monocyclic and 8-12 membered bicyclic rings. Each ring of a bicyclic carbocycle may be selected from saturated, unsaturated and aromatic rings. Carbocycle includes bicyclic molecules in which one, two or three or more atoms are shared between the two rings.
- fused carbocycle refers to a bicyclic carbocycle in which each of the rings shares two adjacent atoms with the other ring. Each ring of a fused carbocycle may be selected from saturated, unsaturated and aromatic rings.
- an aromatic ring e.g., phenyl
- a saturated or unsaturated ring e.g., cyclohexane, cyclopentane, or cyclohexene.
- Exemplary “carbocycles” include cyclopentane, cyclohexane, bicyclo[2.2.1]heptane, 1,5-cyclooctadiene, 1,2,3,4-tetrahydronaphthalene, bicyclo[4.2.0]oct-3-ene, naphthalene and adamantane.
- Exemplary fused carbocycles include decalin, naphthalene, 1,2,3,4-tetrahydronaphthalene, bicyclo[4.2.0]octane, 4,5,6,7-tetrahydro-1H-indene and bicyclo[4.1.0]hept-3-ene.
- “Carbocycles” may be substituted at any one or more positions capable of bearing a hydrogen atom.
- Carbocyclylalkyl refers to an alkyl group substituted with a carbocycle group.
- carbonate is art-recognized and refers to a group —OCO 2 —.
- esters refers to a group —C(O)OR 9 wherein R 9 represents a hydrocarbyl group.
- ether refers to a hydrocarbyl group linked through an oxygen to another hydrocarbyl group. Accordingly, an ether substituent of a hydrocarbyl group may be hydrocarbyl-O—. Ethers may be either symmetrical or unsymmetrical. Examples of ethers include, but are not limited to, heterocycle-O-heterocycle and aryl-O-heterocycle. Ethers include “alkoxyalkyl” groups, which may be represented by the general formula alkyl-O-alkyl.
- halo and “halogen” as used herein means halogen and includes chloro, fluoro, bromo, and iodo.
- heteroalkyl and “heteroaralkyl”, as used herein, refers to an alkyl group substituted with a hetaryl group.
- heteroaryl and “hetaryl” include substituted or unsubstituted aromatic single ring structures, preferably 5- to 7-membered rings, more preferably 5- to 6-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms.
- heteroaryl and “hetaryl” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
- heteroatom as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, and sulfur.
- heterocyclylalkyl refers to an alkyl group substituted with a heterocycle group.
- heterocyclyl refers to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms.
- heterocyclyl and “heterocyclic” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Heterocyclyl groups include, for example, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.
- hydrocarbyl refers to a group that is bonded through a carbon atom that does not have a ⁇ O or ⁇ S substituent, and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include heteroatoms.
- groups like methyl, ethoxyethyl, 2-pyridyl, and even trifluoromethyl are considered to be hydrocarbyl for the purposes of this application, but substituents such as acetyl (which has a ⁇ O substituent on the linking carbon) and ethoxy (which is linked through oxygen, not carbon) are not.
- Hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof.
- hydroxyalkyl refers to an alkyl group substituted with a hydroxy group.
- lower when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups where there are ten or fewer atoms in the substituent, preferably six or fewer.
- acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy substituents defined herein are respectively lower acyl, lower acyloxy, lower alkyl, lower alkenyl, lower alkynyl, or lower alkoxy, whether they appear alone or in combination with other substituents, such as in the recitations hydroxyalkyl and aralkyl (in which case, for example, the atoms within the aryl group are not counted when counting the carbon atoms in the alkyl substituent).
- polycyclyl refers to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more atoms are common to two adjoining rings, e.g., the rings are “fused rings”.
- Each of the rings of the polycycle can be substituted or unsubstituted.
- each ring of the polycycle contains from 3 to 10 atoms in the ring, preferably from 5 to 7.
- sulfate is art-recognized and refers to the group —OSO 3 H, or a pharmaceutically acceptable salt thereof.
- R 9 and R 10 independently represents hydrogen or hydrocarbyl.
- sulfoxide is art-recognized and refers to the group-S(O)—.
- sulfonate is art-recognized and refers to the group SO 3 H, or a pharmaceutically acceptable salt thereof.
- substituted refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that “substitution” or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds.
- the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds.
- the permissible substituents can be one or more and the same or different for appropriate organic compounds.
- the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms.
- Substituents can include any substituents described herein, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic mo
- thioalkyl refers to an alkyl group substituted with a thiol group.
- thioester refers to a group —C(O)SR 9 or —SC(O)R 9
- R 9 represents a hydrocarbyl
- thioether is equivalent to an ether, wherein the oxygen is replaced with a sulfur.
- urea is art-recognized and may be represented by the general formula
- R 9 and R 10 independently represent hydrogen or a hydrocarbyl.
- modulate includes the inhibition or suppression of a function or activity (such as cell proliferation) as well as the enhancement of a function or activity.
- compositions, excipients, adjuvants, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- “Pharmaceutically acceptable salt” or “salt” is used herein to refer to an acid addition salt or a basic addition salt which is suitable for or compatible with the treatment of patients.
- pharmaceutically acceptable acid addition salt means any non-toxic organic or inorganic salt of any base compounds represented by Formula I.
- Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acids, as well as metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate.
- Illustrative organic acids that form suitable salts include mono-, di-, and tricarboxylic acids such as glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, benzoic, phenylacetic, cinnamic and salicylic acids, as well as sulfonic acids such as p-toluene sulfonic and methanesulfonic acids. Either the mono or di-acid salts can be formed, and such salts may exist in either a hydrated, solvated or substantially anhydrous form.
- mono-, di-, and tricarboxylic acids such as glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, benzoic, phenylacetic, cinnamic and salicylic acids, as well as sul
- the acid addition salts of compounds of Formula I are more soluble in water and various hydrophilic organic solvents, and generally demonstrate higher melting points in comparison to their free base forms.
- the selection of the appropriate salt will be known to one skilled in the art.
- Other non-pharmaceutically acceptable salts e.g., oxalates, may be used, for example, in the isolation of compounds of Formula I for laboratory use, or for subsequent conversion to a pharmaceutically acceptable acid addition salt.
- pharmaceutically acceptable basic addition salt means any non-toxic organic or inorganic base addition salt of any acid compounds represented by Formula I or any of their intermediates.
- Illustrative inorganic bases which form suitable salts include lithium, sodium, potassium, calcium, magnesium, or barium hydroxide.
- Illustrative organic bases which form suitable salts include aliphatic, alicyclic, or aromatic organic amines such as methylamine, trimethylamine and picoline or ammonia. The selection of the appropriate salt will be known to a person skilled in the art.
- stereogenic center in their structure.
- This stereogenic center may be present in a R or a S configuration, said R and S notation is used in correspondence with the rules described in Pure Appl. Chem. (1976), 45, 11-30.
- the disclosure contemplates all stereoisomeric forms such as enantiomeric and diastereoisomeric forms of the compounds, salts, prodrugs or mixtures thereof (including all possible mixtures of stereoisomers). See, e.g., WO 01/062726.
- Prodrug or “pharmaceutically acceptable prodrug” refers to a compound that is metabolized, for example hydrolyzed or oxidized, in the host after administration to form the compound of the present disclosure (e.g., compounds of formula I).
- Typical examples of prodrugs include compounds that have biologically labile or cleavable (protecting) groups on a functional moiety of the active compound.
- Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, or dephosphorylated to produce the active compound.
- prodrugs using ester or phosphoramidate as biologically labile or cleavable (protecting) groups are disclosed in U.S. Pat. Nos. 6,875,751, 7,585,851, and 7,964,580, the disclosures of which are incorporated herein by reference.
- the prodrugs of this disclosure are metabolized to produce a compound of Formula I.
- the present disclosure includes within its scope, prodrugs of the compounds described herein. Conventional procedures for the selection and preparation of suitable prodrugs are described, for example, in “Design of Prodrugs” Ed. H. Bundgaard, Elsevier, 1985.
- pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material useful for formulating a drug for medicinal or therapeutic use.
- Log of solubility is used in the art to quantify the aqueous solubility of a compound.
- the aqueous solubility of a compound significantly affects its absorption and distribution characteristics. A low solubility often goes along with a poor absorption.
- Log S value is a unit stripped logarithm (base 10) of the solubility measured in mol/liter.
- compositions and methods of the present invention may be utilized to treat an individual in need thereof.
- the individual is a mammal such as a human, or a non-human mammal.
- the composition or the compound is preferably administered as a pharmaceutical composition comprising, for example, a compound of the invention and a pharmaceutically acceptable carrier.
- Pharmaceutically acceptable carriers are well known in the art and include, for example, aqueous solutions such as water or physiologically buffered saline or other solvents or vehicles such as glycols, glycerol, oils such as olive oil, or injectable organic esters.
- the aqueous solution is pyrogen-free, or substantially pyrogen-free.
- the excipients can be chosen, for example, to effect delayed release of an agent or to selectively target one or more cells, tissues or organs.
- the pharmaceutical composition can be in dosage unit form such as tablet, capsule (including sprinkle capsule and gelatin capsule), granule, lyophile for reconstitution, powder, solution, syrup, suppository, injection or the like.
- the composition can also be present in a transdermal delivery system, e.g., a skin patch.
- the composition can also be present in a solution suitable for topical administration, such as a lotion, cream, or ointment.
- a pharmaceutically acceptable carrier can contain physiologically acceptable agents that act, for example, to stabilize, increase solubility or to increase the absorption of a compound such as a compound of the invention.
- physiologically acceptable agents include, for example, carbohydrates, such as glucose, sucrose or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients.
- the choice of a pharmaceutically acceptable carrier, including a physiologically acceptable agent depends, for example, on the route of administration of the composition.
- the preparation or pharmaceutical composition can be a selfemulsifying drug delivery system or a selfmicroemulsifying drug delivery system.
- the pharmaceutical composition also can be a liposome or other polymer matrix, which can have incorporated therein, for example, a compound of the invention.
- Liposomes for example, which comprise phospholipids or other lipids, are nontoxic, physiologically acceptable and metabolizable carriers that are relatively simple to make and administer.
- phrases “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
- materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide;
- a pharmaceutical composition can be administered to a subject by any of a number of routes of administration including, for example, orally (for example, drenches as in aqueous or non-aqueous solutions or suspensions, tablets, capsules (including sprinkle capsules and gelatin capsules), boluses, powders, granules, pastes for application to the tongue); absorption through the oral mucosa (e.g., sublingually); subcutaneously; transdermally (for example as a patch applied to the skin); and topically (for example, as a cream, ointment or spray applied to the skin).
- the compound may also be formulated for inhalation.
- a compound may be simply dissolved or suspended in sterile water.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
- the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration.
- the amount of active ingredient that can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.
- Methods of preparing these formulations or compositions include the step of bringing into association an active compound, such as a compound of the invention, with the carrier and, optionally, one or more accessory ingredients.
- an active compound such as a compound of the invention
- the formulations are prepared by uniformly and intimately bringing into association a compound of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
- Formulations of the invention suitable for oral administration may be in the form of capsules (including sprinkle capsules and gelatin capsules), cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), lyophile, powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the present invention as an active ingredient.
- Compositions or compounds may also be administered as a bolus, electuary or paste.
- the active ingredient is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents,
- pharmaceutically acceptable carriers such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose
- compositions may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets, and other solid dosage forms of the pharmaceutical compositions may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres.
- compositions may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions that can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
- These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner.
- embedding compositions that can be used include polymeric substances and waxes.
- the active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
- Liquid dosage forms useful for oral administration include pharmaceutically acceptable emulsions, lyophiles for reconstitution, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, cyclodextrins and derivatives thereof, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art, such
- the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
- Suspensions in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- Dosage forms for the topical or transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
- the active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that may be required.
- the ointments, pastes, creams and gels may contain, in addition to an active compound, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to an active compound, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
- Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- Transdermal patches have the added advantage of providing controlled delivery of a compound of the present invention to the body.
- dosage forms can be made by dissolving or dispersing the active compound in the proper medium.
- Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the compound in a polymer matrix or gel.
- parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
- compositions suitable for parenteral administration comprise one or more active compounds in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
- polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
- vegetable oils such as olive oil
- injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.
- the absorption of the drug in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
- Injectable depot forms are made by forming microencapsulated matrices of the subject compounds in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissue.
- active compounds can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
- Methods of introduction may also be provided by rechargeable or biodegradable devices.
- Various slow release polymeric devices have been developed and tested in vivo in recent years for the controlled delivery of drugs, including proteinaceous biopharmaceuticals.
- a variety of biocompatible polymers including hydrogels, including both biodegradable and non-degradable polymers, can be used to form an implant for the sustained release of a compound at a particular target site.
- Actual dosage levels of the active ingredients in the pharmaceutical compositions may be varied so as to obtain an amount of the active ingredient that is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
- the selected dosage level will depend upon a variety of factors including the activity of the particular compound or combination of compounds employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound(s) being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound(s) employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
- a physician or veterinarian having ordinary skill in the art can readily determine and prescribe the therapeutically effective amount of the pharmaceutical composition required.
- the physician or veterinarian could start doses of the pharmaceutical composition or compound at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
- therapeutically effective amount is meant the concentration of a compound that is sufficient to elicit the desired therapeutic effect. It is generally understood that the effective amount of the compound will vary according to the weight, sex, age, and medical history of the subject. Other factors which influence the effective amount may include, but are not limited to, the severity of the patient's condition, the disorder being treated, the stability of the compound, and, if desired, another type of therapeutic agent being administered with the compound of the invention.
- a larger total dose can be delivered by multiple administrations of the agent.
- Methods to determine efficacy and dosage are known to those skilled in the art (Isselbacher et al. (1996) Harrison's Principles of Internal Medicine 13 ed., 1814-1882, herein incorporated by reference).
- a suitable daily dose of an active compound used in the compositions and methods of the invention will be that amount of the compound that is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above.
- the effective daily dose of the active compound may be administered as one, two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.
- the active compound may be administered two or three times daily. In preferred embodiments, the active compound will be administered once daily.
- the patient receiving this treatment is any animal in need, including primates, in particular humans; and other mammals such as equines, cattle, swine, sheep, cats, and dogs; poultry; and pets in general.
- compounds of the invention may be used alone or conjointly administered with another type of therapeutic agent.
- contemplated salts of the invention include, but are not limited to, alkyl, dialkyl, trialkyl or tetra-alkyl ammonium salts.
- contemplated salts of the invention include, but are not limited to, L-arginine, benenthamine, benzathine, betaine, calcium hydroxide, choline, deanol, diethanolamine, diethylamine, 2-(diethylamino)ethanol, ethanolamine, ethylenediamine, N-methylglucamine, hydrabamine, 1H-imidazole, lithium, L-lysine, magnesium, 4-(2-hydroxyethyl)morpholine, piperazine, potassium, 1-(2-hydroxyethyl)pyrrolidine, sodium, triethanolamine, tromethamine, and zinc salts.
- contemplated salts of the invention include, but are not limited to, Na, Ca, K, Mg, Zn or other metal salts.
- contemplated salts of the invention include, but are not limited to, 1-hydroxy-2-naphthoic acid, 2,2-dichloroacetic acid, 2-hydroxyethanesulfonic acid, 2-oxoglutaric acid, 4-acetamidobenzoic acid, 4-aminosalicylic acid, acetic acid, adipic acid, 1-ascorbic acid, 1-aspartic acid, benzenesulfonic acid, benzoic acid, (+)-camphoric acid, (+)-camphor-10-sulfonic acid, capric acid (decanoic acid), caproic acid (hexanoic acid), caprylic acid (octanoic acid), carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1
- the pharmaceutically acceptable acid addition salts can also exist as various solvates, such as with water, methanol, ethanol, dimethylformamide, and the like. Mixtures of such solvates can also be prepared.
- the source of such solvate can be from the solvent of crystallization, inherent in the solvent of preparation or crystallization, or adventitious to such solvent.
- wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
- antioxidants examples include: (1) water-soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal-chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
- water-soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
- oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), le
- JGK series may be prepared by the methods described below, or by any other suitable method.
- the JGK series compounds are sometimes referred to herein with a JCN prefix. All reactions were routinely carried out under an inert atmosphere of argon. Unless otherwise noted, materials were obtained from commercial suppliers and were used without purification. All solvents were purified and dried by standard techniques just before use. THF and Et 2 O were freshly distilled from sodium and benzophenone. Methylene chloride, toluene, and benzene were purified by refluxing with CaH 2 . Reactions were checked by thin layer chromatography (Kieselgel 60 F254, Merck).
- JGK029 was followed by General Procedure; JGK029 (52%); 1 H NMR (500 MHz, MeOD) ⁇ 8.60 (s, 1H), 7.98 (s, 1H), 7.29 (s, 1H), 7.07-7.13 (m, 2H), 4.50-4.53 (m, 2H), 4.44-4.48 (m, 2H); 13 C NMR (125 MHz, DMSO-d 6 ) ⁇ 161.7, 160.3, 158.6, 158.1, 153.2, 150.3, 144.4, 143.7, 117.2, 113.8, 113.0, 112.3, 109.5, 101.5, 65.3, 64.5; HRMS-ESI [M+H] + found 334.0794 [calcd for C 16 H 10 F 3 N 3 O 2 333.0719].
- JGK016 (Boc deprotection)
- a solution of JGK015 (121 mg, 0.251 mmol) in anhydrous CH 2 Cl 2 (5 mL, 0.05 M) was dropwise added trifluoroacetic acid (1.0 mL) at room temperature.
- the reaction mixture was quenched with saturated aqueous NaHCO 3 (20 mL), and diluted with CH 2 Cl 2 (20 mL).
- the layers were separated, and the aqueous layer was extracted with CH 2 Cl 2 (2 ⁇ 30 mL).
- the combined organic layers were washed successively with H 2 O and saturated brine, dried over anhydrous MgSO 4 , filtered, and concentrated in vacuo.
- JGK023 (Hydrolysis) To a cooled (0° C.) solution of JGK016 (42 mg, 0.1104 mmol) in THF/H 2 O (3:1, total 4.0 mL) was added in one portion lithium hydroxide (14 mg). After being stirred at the room temperature for 2 h, the reaction mixture was neutralized with 1N HCl and diluted with EtOAc (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (100 mL). The combined organic layers were washed successively with H 2 O and saturated brine, dried over anhydrous MgSO 4 , filtered, and concentrated in vacuo.
- Flash column chromatography was carried out on SiO 2 60 (particle size 0.040-0.063 mm, 230-400 mesh). Concentration under reduced pressure (in vacuo) was performed by rotary evaporation at 25-50° C. Purified compounds were further dried under high vacuum or in a desiccator. Yields correspond to purified compounds, and were not further optimized.
- Proton nuclear magnetic resonance ( 1 H NMR) spectra were recorded on Bruker spectrometers (operating at 300, 400, or 500 MHz).
- Carbon NMR ( 13 C NMR) spectra were recorded on Bruker spectrometers (either at 400 or 500 MHz). NMR chemical shifts (8 ppm) were referenced to the residual solvent signals.
- a mixture of the 4-chloroquinazoline (1 equiv) in iPrOH (0.1-0.3 M) was treated with the aniline (1 equiv), and the mixture was heated at 80° C. under microwave irradiation (60 W) for 15-20 min.
- the mixture was cooled to 23° C., treated with additional aniline (1 equiv), and again subjected to microwave irradiation (80° C., 60 W, 15-20 min).
- the mixture was either concentrated under reduced pressure, or the precipitated 4-anilinoquinazoline hydrochloride salt was isolated by filtration (washings with cold iPrOH). The residue was suspended in sat. aq. NaHCO 3 , and extracted with CH 2 Cl 2 (3 ⁇ ).
- JGK035 was prepared from 4-chloroquinazoline 1 (51 mg, 0.23 mmol) and 2-fluoroaniline (40 ⁇ L, 0.48 mmol) in iPrOH (1.5 mL).
- FC CH 2 Cl 2 /EtOAc 10:1 ⁇ 10:4 gave JGK035 (56 mg, 82%) as a white solid.
- JGK036 was prepared from 4-chloroquinazoline 3 (55 mg, 0.24 mmol) and 3-chloro-2-fluoroaniline (52 ⁇ L, 0.47 mmol) in iPrOH (1.2 mL). JGK036.HCl was isolated by filtration from the crude reaction mixture, and after basification and extraction gave pure JGK036 (67 mg, 82%) as a pale-yellow solid.
- compound JGK037 was prepared from 4-chloroquinazoline 1 (100 mg, 0.45 mmol) and 3-bromo-2-fluoroaniline (100 ⁇ L, 0.89 mmol) in iPrOH (1.5 mL).
- FC CH 2 Cl 2 /EtOAc 10:0 ⁇ 10:3 gave JGK037 (150 mg, 89%) as a pale-yellow solid.
- a 1 dram vial was charged with JGK010 (75 mg, 0.23 mmol), XPhos (19.7 mg, 0.041 mmol), Cs 2 CO 3 (195 mg, 0.60 mmol), [PdCl 2 (MeCN) 2 ] (3.6 mg, 0.014 mmol).
- the vial was evacuated and backfilled with argon (repeated at least twice). Dry acetonitrile (1 mL) was added, and the orange suspension was stirred at 23° C. for 25 min, then ethynyltriethylsilane (150 ⁇ L, 0.84 mmol) was injected. The tube was sealed, and the reaction mixture stirred at 95° C.
- Flash column chromatography was carried out on SiO 2 60 (particle size 0.040-0.063 mm, 230-400 mesh). Concentration under reduced pressure (in vacuo) was performed by rotary evaporation at 25-50° C. Purified compounds were further dried under high vacuum or in a desiccator. Yields correspond to purified compounds, and were not further optimized.
- Proton nuclear magnetic resonance ( 1 H NMR) spectra were recorded on Bruker spectrometers (operating at 300, 400, or 500 MHz).
- Carbon NMR ( 13 C NMR) spectra were recorded on Bruker spectrometers (either at 400 or 500 MHz). NMR chemical shifts ( ⁇ ppm) were referenced to the residual solvent signals.
- HRMS High resolution mass
- the Cell Free EGFR Kinase Assay was performed using the EGFR Kinase System (Promega #V3831). 13 concentrations at 2-fold dilutions from 250 nM to 0.03052 nM, a no drug control, and a no enzyme control were used in duplicates on 25 ng of EGFR enzyme per reaction.
- the ADP-Glo Kinase Assay (Promega #V6930) was used to measure EGFR activity in the presence of inhibitors.
- the GI50 Assays were performed using patient-derived glioblastoma cells. 13 concentrations at 2-fold dilutions from 40,000 nM to 9.77 nM (for GBM lines) or from 4,000 nM to 0.977 nM (for Lung Cancer lines (HK031)) were plated on 384-well plates in quadruplicates with 1500 cells per well. Cells were incubated for 3 days and then proliferation was assessed by Cell Titer Glo (Promega #G7570). As a reference, Erlotinib exhibited an GI 50 of 642 nM (HK301) and 2788 nM (GBM39).
- Example 6 Classification of EGFRi Metabolic Responders and Non-Responders
- Example 7 EGFRi Metabolic Responders are Primed for Apoptosis
- Perturbations in glucose metabolism can induce the expression of pro-apoptotic factors and stimulate intrinsic apoptosis, suggesting that reduced glucose uptake in response to EGFRi would stimulate the intrinsic apoptotic pathway.
- acute erlotinib treatment promoted the expression of the pro-apoptotic BH3-only proteins, BIM and PUMA, only in the metabolic responder cultures ( FIG. 30 A ).
- annexin V staining revealed that the metabolic responders had only modest ( ⁇ 17%), albeit significantly higher, apoptosis compared with non-responders ( ⁇ 3%), following 72 hours of erlotinib exposure ( FIG. 21 C ).
- BH3 peptides e.g., BIM, BID, and PUMA
- FIG. 21 D dark gray bars
- priming in the metabolic responders was significantly higher than priming in the non-responders ( FIG. 21 D —light gray bars), supporting the premise that attenuated glucose uptake with EGFRi triggers apoptotic priming in GBM.
- glucose transporters 1 GLUT1 and 3 (GLUT3) were ectopically expressed in two metabolic responders (HK301 and GBM39).
- Enforced expression of GLUT1 and GLUT3 rescued EGFRi-mediated attenuation of glucose uptake and lactate production in both cell lines ( FIG. 21 E and FIGS. 31 A-C ) and, importantly, markedly suppressed apoptotic priming in response to EGFRi ( FIG. 21 F ).
- GBMs become primed for apoptosis with EGFRi The mechanism by which GBMs become primed for apoptosis with EGFRi was investigated.
- the inhibition of oncogene-driven glucose metabolism renders GBM cells synergistically susceptible to cytoplasmic p53 dependent apoptosis.
- Attenuated glucose metabolic flux in GBM via targeting oncogenic signaling (e.g., EGFRi), results in cytoplasmic p53 engaging the intrinsic apoptotic pathway (“priming”).
- Bcl-xL blocks cytoplasmic p53-mediated cell death.
- Pharmacological p53 stabilization overcomes this apoptotic block, leading to synergistic lethality with combined targeting of oncogene-driven glucose metabolism in GBM.
- the anti-apoptotic Bcl-2 family proteins e.g. Bcl-2, Bcl-xL, Mel-1
- pro-apoptotic BH3 proteins e.g., BIM, BID, PUMA, BAD, NOXA, HRK
- p53 is known to upregulate pro-apoptotic proteins that subsequently need to be bound by anti-apoptotic Bcl-2 proteins to prevent cell death.
- p53KO CRISPR/CAS-9
- p53 transcriptional activity has been shown to be enhanced under glucose limitation, it we investigated to determine whether p53-mediated transcription was induced by EGFRi.
- erlotinib did not increase the expression of p53-regulated genes (e.g., p21, MDM2, PIG3, TIGAR) ( FIG. 32 B ), nor induce p53-luciferase reporter activity in HK301 metabolic responder cells ( FIG. 32 C ).
- p53 can localize in the cytoplasm where it can directly engage the intrinsic apoptotic pathway.
- p53 cyto a defective nuclear localization signal
- p53 cyto was expressed ( FIG. 22 C and FIG. 32 D ), restricted to the cytoplasm ( FIG. 22 D and FIG. 32 E ) and had no transcriptional activity ( FIG. 22 E and FIG. 32 F ).
- Example 9 Inhibition of EGFR-Driven Glucose Uptake Creates an Exploitable Bcl-xL Dependency
- Bcl-xL can sequester cytoplasmic p53 and prevent p53-mediated apoptosis; thus creating a primed apoptotic state and a dependency on Bcl-xL for survival.
- FIG. 23 D leading to synergistic lethality in HK301 and GBM39 cells (metabolic responders) ( FIG. 23 E ).
- cytoplasmic p53 was sufficient for the combinatorial effects in EGFRi metabolic responder cells ( FIG. 33 C ).
- WEHI-539 did not enhance apoptosis in a non-responder (HK393) treated with erlotinib, suggesting that attenuation of glucose uptake with EGFRi, and subsequent association between p53 and Bcl-xL, is necessary to generate a dependence on Bcl-xL for survival ( FIG. 33 E ).
- enforced expression of GLUT1/3 significantly mitigated cell death with the drug combination ( FIG. 23 F and FIG. 33 D ).
- Example 10 Combined Targeting of EGFR and p53 is Synergistic in EGFRi Metabolic Responders
- cytoplasmic p53 is desired to promote cell death with the drug combination, we observed in some instances that both the transcription-dependent and independent functions of p53 are needed for optimal execution of synergistic apoptosis with nutlin ( FIG. 34 F ). These results are consistent with reports that the transcription-independent functions of p53 can alone execute intrinsic apoptosis, whereas, in other contexts, may require its transcription-dependent functions to stimulate cytoplasmic p53 mediated cell kill. Collectively, the results described herein show that combined targeting of EGFR-driven glucose metabolism and p53 can induce marked synergistic cell death in primary GBM; which is dependent on the cytoplasmic functions of p53.
- Example 11 Modulation of Glucose Metabolism Primes EGFRi Non-Responders for p53-Mediated Cell Death
- the synergy lies between induction of cellular stress by EGFR inhibitors, reduction of glucose uptake and the priming of the cell for apoptosis and the stabilization of p53 by antagonists of BCL-2.
- EGFR inhibition can rapidly attenuate glycolysis in cellular stress.
- p53 such as, for example, through nutlin, analogues or others described herein
- BCL-2 by any of several agents as described herein such as for example, ABT-263 (Navitoclax).
- a logical prediction of this model is that direct inhibition of glucose metabolism should phenocopy the effects of EGFRi. Consistent with this, addition of the glucose metabolic inhibitor 2-deoxyglucose (2DG) stimulated apoptotic priming, binding of p53 to Bcl-xL, and synergy with nutlin in HK301 cells (an EGFRi metabolic responder) ( FIGS. 40 A, 40 B, and 40 D ). Interestingly, inhibition of oxidative phosphorylation with oligomycin (complex V/ATP synthase) or rotenone (complex I) did not synergize with nutlin treatment in HK301 gliomaspheres ( FIGS. 35 C and 35 D ). Thus, reduced glucose metabolic flux alone, but not oxidative metabolism, appears to be sufficient for synergistic sensitivity to p53 activation.
- 2-DG glucose metabolic inhibitor 2-deoxyglucose
- Example 12 Combinatorial Therapeutic Strategy and Non-Invasive Biomarker for Targeting GBM In Vivo
- mice In separate groups of mice, they tested the individual drugs and the combination of daily erlotinib (75 mg/kg) treatment and Idasanutlin (50 mg/kg). Relative to single agent controls, we observed synergistic growth inhibition—as determined by secreted gaussia luciferase—in GBM39 intracranial tumor-bearing mice, with minimal toxicity ( FIG. 26 B and FIG. 36 D ). In contrast, orthotopic xenografts of a non-metabolic responder (HK393) showed no changes in 18 F-FDG uptake with acute EGFRi ( FIG. 26 D and FIG. 36 C ), nor synergistic activity with the erlotinib and Idasanutlin combination ( FIG. 26 E ). Thus, non-invasive 18 F-FDG PET, used to measure rapid changes in glucose uptake with EGFRi, was effective in predicting subsequent synergistic sensitivity to combined erlotinib and Idasanutlin.
- Example 13 Direct Inhibition of Glycolysis with 2DG or Cytocahalsin B
- mice Female NOD scid gamma (NSG), 6-8 weeks of age, were purchased from the University of California Los Angeles (UCLA) medical center animal breeding facility. Male CD-1 mice, 6-8 weeks of age, were purchased from Charles River. All mice were kept under defined flora pathogen-free conditions at the AAALAC-approved animal facility of the Division of Laboratory Animals (DLAM) at UCLA. All animal experiments were performed with the approval of the UCLA Office of Animal Resource Oversight (OARO).
- UCLA University of California Los Angeles
- GBM cells All patient tissue to derive GBM cell cultures was obtained through explicit informed consent, using the UCLA Institutional Review Board (IRB) protocol: 10-00065.
- IRB Institutional Review Board
- primary GBM cells were established and maintained in gliomasphere conditions consisting of DMEM/F12 (Gibco), B27 (Invitrogen), Penicillin-Streptomycin (Invitrogen), and Glutamax (Invitrogen) supplemented with Heparin (5 ⁇ g/mL, Sigma), EGF (50 ng/mL, Sigma), and FGF (20 ng/mL, Sigma).
- Antibodies used for immunoblotting were obtained from the listed sources: R-actin (Cell signaling, 3700), tubulin (Cell signaling, 3873), p-EGFR Y1086 (Thermo Fischer Scientific, 36-9700), t-EGFR (Millipore, 06-847), t-AKT (Cell Signaling, 4685), p-AKT T308 (Cell Signaling, 13038), p-AKT S473 (Cell Signaling, 4060), t-ERK (Cell Signaling, 4695), p-ERK T202/Y204 (Cell Signaling, 4370), t-S6 (Cell Signaling, 2217), p-S6 S235/236 (Cell Signaling, 4858), t-4EBP1 (Cell Signaling, 9644), p-4EBP1 S65 (Cell Signaling 9451), Glut3 (Abcam, ab15311), Glut1 (Millipore, 07-1401), p53 (Sant
- Antibodies used for immunoprecipitation were obtained from the listed sources: p53 (Cell Signaling, 12450) and Bcl-xL (Cell Signaling, 2764). Secondary antibodies were obtained from the listed sources: Anti-rabbit IgG HRP-linked (Cell Signaling, 7074) and Anti-mouse IgG HRP-linked (Cell Signaling, 7076). All immunoblotting antibodies were used at a dilution of 1:1000, except 0-actin and tubulin, which were used at 1:10,000. Immunoprecipitation antibodies were diluted according to manufacturer's instructions (1:200 for p53 and 1:100 for Bcl-xL). Secondary antibodies were used at a dilution of 1:5000.
- Cells were plated at 5 ⁇ 10 4 cells/ml and treated with designated drugs for indicated time points. Following appropriate treatment, cells were collected and resuspended in glucose-free DMEM/F12 (USBiological) containing 18 F-FDG (radioactivity 1 ⁇ Ci/mL). Cells were incubated at 37° C. for 1 hr and then washed three times with ice cold PBS. Radioactivity of each sample was then measured using a gamma counter.
- glucose-free DMEM/F12 USBiological
- F-FDG radioactivity 1 ⁇ Ci/mL
- Cells were collected and analyzed for Annexin V and PI staining according to manufacturer's protocol (BD Biosciences). Briefly, cells were plated at 5 ⁇ 10 4 cells/ml and treated with appropriate drugs. Following indicated time points, cells were collected, trypsinized, washed with PBS, and stained with Annexin V and PI for 15 minutes. Samples were then analyzed using the BD LSRII flow cytometer.
- IP lysis buffer 25 mM Tris-HCL pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 5% Glycerol
- 300-500 ⁇ g of each sample was then pre-cleared in Protein A/G Plus Agarose Beads (Thermo Fischer Scientific) for one hour.
- samples were then incubated with antibody-bead conjugates overnight according to manufacturer's specifications and as mentioned previously. The samples were then centrifuged at 1000 g for 1 min, and the beads were washed with 500 ⁇ L of IP lysis buffer for five times.
- Proteins were eluted from the beads by boiling in 2 ⁇ LDS Sample Buffer (Invitrogen) at 95° C. for 5 min. Samples analyzed by immunoblotting as previously described. Immunoprecipitation antibodies were diluted according to manufacturer's instructions (1:200 for p53 and 1:100 for Bcl-xL).
- GBM gliomaspheres were first disassociated to single-cell suspensions with TrypLE (Gibco) and resuspended in MEB buffer (150 mM Mannitol 10 mM HEPES-KOH, 50 mM KCl, 0.02 mM EGTA, 0.02 mM EDTA, 0.1% BSA, 5 mM Succinate). 50 ⁇ l of cell suspension (3 ⁇ 10 4 cells/well) were plated in wells holding 50 ⁇ L MEB buffer containing 0.002% digitonin and indicated peptides in 96-well plates. Plates were then incubated at 25° C. for 50 min.
- cytochrome c release was quantified using BD LSRII flow cytometer. Measurements were normalized to appropriate controls that do not promote cytochrome c release (DMSO and inactive PUMA2A peptide). Delta priming refers to the difference in amount of cytochrome c release between vehicle treated cells and drug treated cells.
- 7.5 ⁇ 10 5 cells were treated with indicated drugs. Following 24 hr of treatment, cells were collected, washed once with ice cold PBS, and re-suspended in 1 mM bismaleimidohexane (BMH) in PBS for 30 min. Cells were then pelleted and lysed for immunoblotting, as described above.
- BMH bismaleimidohexane
- GBM39, HK336, HK393, and GS025 cells were injected (4 ⁇ 10 5 cells per injection) into the right striatum of the brain of female NSG mice (6-8 weeks old). Injection coordinates were 2 mm lateral and 1 mm posterior to bregma, at a depth of 2 mm. Tumor burden was monitored by secreted gaussia luciferase and following three consecutive growth measurements, mice were randomized into four treatment arms consisting of appropriate vehicles, 75 mg/kg erlotinib, 50 mg/kg Idasanutlin, or a combination of both drugs.
- Vehicle consisted of 0.5% methylcellulose in water, which is used to dissolve erlotinib, and a proprietary formulation obtained from Roche, which is used to dissolve Idasanutlin. Tumor burden was assessed twice per week by secreted gaussia luciferase. When possible, mice were treated for 25 days and taken off treatment and monitored for survival. Drugs were administered through oral gavage. Sample sizes were chosen based off estimates from pilot experiments and results from previous literature 12 . Investigators were not blinded to group allocation or assessment of outcome. All studies were in accordance with UCLA OARO protocol guidelines.
- mice were treated with indicated dose and time of erlotinib then pre-warmed, anesthetized with 2% isoflurane, and intravenously injected with 70 ⁇ Ci of 18 F-FDG. Following 1 hr unconscious uptake, mice were taken off anesthesia but kept warm for another 5 hr of uptake. 6 hr after the initial administration of 18 F-FDG, mice were imaged using G8 PET/CT scanner (Sofie Biosciences). Per above, quantification was performed by drawing 3D regions of interest (ROI) using the AMIDE software.
- ROI 3D regions of interest
- Immunohistochemistry was performed on 4 ⁇ m sections that were cut from FFPE (formalin-fixed, paraffin-embedded) blocks. Sections were then deparaffinised with xylene and rehydrated through graded ethanol. Antigen retrieval was achieved with a pH 9.5 Nuclear Decloaker (Biocare Medical) in a Decloaking pressure cooker at 95° C. for 40 min. Tissue sections were then treated with 3% hydrogen peroxide (LOT 161509; Fisher Chemical) and with Background Sniper (Biocare Medical, Concord, Calif., USA) to reduce nonspecific background staining.
- FFPE formalin-fixed, paraffin-embedded
- Primer sequences are as listed (5′ to 3′): P21 (forward GACTTTGTCACCGA GACACC (SEQ ID NO: 1), reverseGACAGGTCCACATGGTCTTC (SEQ ID NO: 2)), PUMA (forward ACGACCTCAACGCACAGTACG (SEQ ID NO: 3), reverse GTAAG GGCAGGAGTCCCATGATG (SEQ ID NO: 4)), GAPDH (forward TGCCATGTAGACC CCTTGAAG (SEQ ID NO: 5), reverse ATGGTACATGACAAGGTGCGG (SEQ ID NO: 6)), MDM2 (forward CTGTGTTCAGTGGCGATTGG (SEQ ID NO: 7), reverse AGGGT CTCTTGTTCCGAAGC (SEQ ID NO: 8)), TIGAR (forward GGAAGAGTGCCCTGTG TTTAC (SEQ ID NO: 9), reverse GACTCAAGACTTCGGGAAAGG (SEQ ID NO: 10)), PIG3 (forward GCAGCTGCTGGATTCAATTA (SEQ ID NO
- lentivirus used for genetic manipulation were produced by transfecting 293-FT cells (Thermo) using Lipofectamine 2000 (Invitrogen). Virus was collected 48 hours after transfection.
- the lentiviral sgp53 vector and sgControl vector contained the following guide RNA, respectively: CCGGTTCATGCCGCCCATGC (SEQ ID NO: 14) and GTAATCCTAGCACTTTTAGG (SEQ ID NO: 15). LentiCRISPR-v2 was used as the backbone.
- Glut1 and Glut3 cDNA was cloned from commercially available vectors and incorporated into pLenti-GLuc-IRES-EGFP lentiviral backbone containing a CMV promoter (Glut1 was a gift from Wolf Frommer (Addgene #18085 44 ), Glut3 was obtained from OriGene #SC115791, and the lentiviral backbone was obtained from Targeting Systems #GL-GFP).
- pMIG Bcl-xL was a gift from Stanley Korsmeyer (Addgene #87904 45 ) and cloned into the lentiviral backbone mentioned above (Targeting Systems).
- Cytoplasmic (K305A and R306A) and wild-type p53 constructs were a kind gift from R. Agami and G. Lahav.
- the genes of interest were cloned into a lentiviral vector containing a PGK promoter.
- Constructs for p53 DNA binding domain mutants (R175H) and (R273H) as well as the nuclear mutant (L348A and L350A) were generated using site-directed mutagenesis (New England Biolabs #E0554S) on the wild-type p53 construct.
- siRNA against EGFR was transfected into cells using DharmaFECT 4 (Dharmacon). Following 48 hours, cells were harvested and used for indicated experiments.
- gliomaspheres were first disassociated to single cell and adhered to the 96-well plates using Cell-Tak (Corning) according to manufacturer instructions. Adhered cells were then fixed with ice-cold methanol for 10 min then washed three times with PBS. Cells were then incubated with blocking solution containing 10% FBS and 3% BSA in PBS for 1 hr and subsequently incubated with p53 (Santa Cruz, SC-126, dilution of 1:50) antibody overnight at 4° C.
- p53 Santa Cruz, SC-126, dilution of 1:50
- cells were incubated with secondary antibody (Alexa Fluor 647, dilution 1:2000) for an hour and DAPI staining for 10 min, then imaged using a Nikon TI Eclipse microscope equipped with a Cascade II fluorescent camera (Roper Scientific). Cells were imaged with emissions at 461 nM and 647 nM and then processed using NIS-Elements AR analysis software.
- secondary antibody Alexa Fluor 647, dilution 1:2000
- OCR Oxygen Consumption Rate
- ECAR Extracellular Acidification Rate
- gliomaspheres treated with indicated drugs were first disassociated to single cell suspensions and adhered to XF24 plates (Seahorse Bioscience) using Cell-Tak (Corning) according to manufacturer instructions. Prior to the assay, cells were supplemented with unbuffered DMEM, and incubated at 37° C. for 30 min before starting OCR and ECAR measurements. Basal ECAR measurements between control and erlotinib treated cells are shown.
- mice Male CD-1 mice (6-8 weeks old) were treated with 50 mg/kg Idasanutlin in duplicate through oral gavage. At 0.5, 1, 2, 4, 6, 8, 12, and 24 hr after administration, mice were sacrificed, blood was harvested by retro-orbital bleeding, and brain tissue was collected. Whole blood from mice was centrifuged to isolate plasma. Idasanutlin was isolated by liquid-liquid extraction from plasma: 50 ⁇ L plasma was added to 2 ⁇ L internal standard and 100 ⁇ L acetonitrile. Mouse brain tissue was washed with 2 mL cold PBS and homogenized using a tissue homogenizer with fresh 2 mL cold PBS.
- Idasanutlin was then isolated and reconstituted in a similar manner by liquid-liquid extraction: 100 p L brain homogenate was added to 2 ⁇ L internal standard and 200 ⁇ L acetonitrile. After vortex mixing, the samples was centrifuged. The supernatant was removed and evaporated by a rotary evaporator and reconstituted in 100 ⁇ L 50:50 water: acetonitrile.
- Chromatographic separations were performed on a 100 ⁇ 2.1 mm Phenomenex Kinetex C18 column (Kinetex) using the 1290 Infinity LC system (Agilent).
- the mobile phase was composed of solvent A: 0.1% formic acid in Milli-Q water, and B: 0.1% formic acid in acetonitrile.
- Analytes were eluted with a gradient of 5% B (0-4 min), 5-99% B (4-32 min), 99% B (32-36 min), and then returned to 5% B for 12 min to re-equilibrate between injections. Injections of 20 p L into the chromatographic system were used with a solvent flow rate of 0.10 mL/min.
- Mass spectrometry was performed on the 6460 triple quadrupole LC/MS system (Agilent). Ionization was achieved by using electrospray in the positive mode and data acquisition was made in multiple reactions monitoring (MRM) mode.
- MRM transition used for Idasanutlin detection was m/z 616.2 ⁇ 421.2 with fragmentor voltage of 114V, and collision energy of 20 eV.
- Analyte signal was normalized to the internal standard and concentrations were determined by comparison to the calibration curve (0.5, 5, 50, 250, 500, 2000 nM). Idasanutlin brain concentrations were adjusted by 1.4% of the mouse brain weight for the residual blood in the brain vasculature.
- Targeted sequencing was performed for samples HK206, HK217, HK250, HK296 for the following genes BCL11A, BCL11B, BRAF, CDKN2A, CHEK2, EGFR, ERBB2, IDH1, IDH2, MSH6, NF1, PIK3CA, PIK3R1, PTEN, RBI, TP53 using Illumina Miseq. There were 1 to 2 million reads per sample with average coverage of 230 per gene. Copy number variants were determined for these samples using a whole genome SNP array. The genetic profile of GBM39 has been previously reported in the literature.
- FISH Fluorescence In situ Hybridization
- Fluorescence in situ hybridization was performed using commercially available fluorescently labeled dual-color EGFR (red)/CEP 7(green) probe (Abbott-Molecular). FISH hybridization and analyses were performed on cell lines, following the manufacturer's suggested protocols. The cells were counterstained with DAPI and the fluorescent probe signals were imaged under a Zeiss (Axiophot) Fluorescent Microscope equipped with dual- and triple-color filters.
- Exemplary compounds of the present disclosure were prepared according to the following methods.
- Flash column chromatography was carried out on SiO 2 60 (particle size 0.040-0.063 mm, 230-400 mesh).
- Preparative thin-layer chromatography was carried out with Merck 60 F 254 silica gel plates (20 ⁇ 20 cm, 210-270 mm) or Analtech Silica Gel GF TLC plates (20 ⁇ 20 cm, 1000 mm). Concentration under reduced pressure (in vacuo) was performed by rotary evaporation at 23-50° C. Purified compounds were further dried under high vacuum or in a desiccator. Yields correspond to purified compounds, and were not further optimized.
- HRMS High resolution mass
- GP-1 Nucleophilic Substitution of Quinazolinyl Mesylates with Secondary Amines.
- a mixture of quinazolinyl mesylate (1 equiv) in DMF (0.05 M) was treated with the secondary amine (5 equiv) and triethylamine (2 equiv), and the mixture was stirred at 85° C. for 24 h. The mixture was cooled to 23° C., and evaporated. The residue was dissolved in EtOAc (20 mL), washed with 10 mM NaOH (4 ⁇ 5 mL), brine (5 mL), dried (Na 2 SO 4 ), filtered, and evaporated. Purification by FC or PTLC afforded the desired products typically as off-white, friable foams.
- GP-2 Nucleophilic Aromatic Substitution of 4-Chloroquinazoline with Anilines.
- a mixture of 4-chloroquinazoline (1 equiv) in acetonitrile (0.1 M) was treated with aniline (2 equiv), and with a 4 M solution of HCl in dioxane (1 equiv).
- the mixture was heated at 80° C. under microwave irradiation for 30 min.
- the mixture was either concentrated under reduced pressure, or the precipitated 4-anilinoquinazoline hydrochloride salt was isolated by filtration (washings with Et 2 O).
- the residue was suspended in sat. aq. NaHCO 3 , and extracted with CH 2 Cl 2 (3 ⁇ ).
- compound ( ⁇ )-JGK068 was prepared from ( ⁇ )-6 (35 mg, 0.07 mmol) and 1-methylpiperazine (40 ⁇ L, 0.36 mmol) in DMF (1.45 mL).
- PTLC EtOAc/iPrOH 85:15, 1.5% aq. NH 4 OH afforded ( ⁇ )-JGK068 (29 mg, 82%) as an off-white, friable foam.
- compound ( ⁇ )-JGK070 was prepared from ( ⁇ )-10 (32 mg, 0.06 mmol) and 1-methylpiperazine (36 ⁇ L, 0.32 mmol) in DMF (1.3 mL).
- PTLC EtOAc/iPrOH 8:2, 1.5% aq. NH 4 OH afforded ( ⁇ )-JGK070 (21 mg, 65%) as an off-white friable foam.
- compound JGK071 was prepared from chloroquinazoline 17 (35 mg, 0.15 mmol) and 3-bromo-2-fluoroaniline. FC (DCM/EtOAc 1:0 ⁇ 8:2) afforded JGK071 (44 mg, 77%) as a white solid.
- compound JGK072 was prepared from chloroquinazoline 21 (35 mg, 0.15 mmol) and 3-bromo-2-fluoroaniline. FC (DCM/EtOAc 1:0 ⁇ 8:2) afforded JGK072 (47 mg, 82%) as a white solid.
- Example 17 Brain Penetration of Exemplary Compounds of the Disclosure
- Flash column chromatography was carried out on SiO 2 60 (particle size 0.040-0.063 mm, 230-400 mesh).
- Preparative thin-layer chromatography was carried out with Merck 60 F 254 silica gel plates (20 ⁇ 20 cm, 210-270 mm) or Analtech Silica Gel GF TLC plates (20 ⁇ 20 cm, 1000 mm). Concentration under reduced pressure (in vacuo) was performed by rotary evaporation at 23-50° C. Purified compounds were further dried under high vacuum or in a desiccator. Yields correspond to purified compounds, and were not further optimized.
- HRMS High resolution mass
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
The present disclosure relates to compounds that are capable of penetrating the blood brain barrier to modulate the activity of EGFR tyrosine kinase. The disclosure further relates to methods of treating glioblastoma and other EGFR-mediated cancers, such as those that have been determined to have altered glucose metabolism in the presence of inhibitors. The present disclosure also provides methods of administering to a subject a glucose metabolism inhibitor and a cytoplasmic p53 stabilizer.
Description
- This application is a continuation of PCT/US2020/022743, filed Mar. 13, 2020, which claims the benefit of U.S. Provisional Application Nos. 62/819,322, filed Mar. 15, 2019, and 62/904,241, filed Sep. 23, 2019, the contents of which are fully incorporated by reference herein.
- This invention was made with government support under Grant Numbers CA151819, CA211015, CA213133, awarded by the National Institutes of Health. The government has certain rights in the invention.
- The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Nov. 12, 2021, is named UCH-17701_SL.txt and is 3,782 bytes in size.
- Glioblastoma (glioblastoma multiforme; GBM) accounts for the majority of primary malignant brain tumors in adults. Amplification and mutation of the epidermal growth factor receptor (EGFR) gene is a signature genetic abnormality encountered in GBM (Sugawa, et al. (1990) Proc. Natl. Acad. Sci. 87: 8602-8606; Ekstrand, et al. (1992) Proc. Natl. Acad. Sci. 89: 4309-4313). A range of potential therapies that target EGFR or its mutant constitutively active form, ΔEGFR, including tyrosine kinase inhibitors (TKIs), monoclonal antibodies, vaccines, and RNA-based agents, are currently in development or in clinical trials for the treatment of GBM. However, to date their efficacy in the clinic has so far been limited by both upfront and acquired drug resistance (Taylor, et al. (2012) Curr. Cancer Drug Targets. 12:197-209). A major limitation is that current therapies such as erlotinib, lapatinib, gefitinib and afatinib are poorly brain penetrant (Razier, et al. (2010) Neuro-Oncology 12:95-103; Reardon, et al. (2015) Neuro-Oncology 17:430-439; Thiessen, et al. (2010) Cancer Chemother. Pharmacol. 65:353-361).
- Molecular targeted therapies have revolutionized cancer treatment and paved the path for modern precision medicine. However, despite well-defined actionable genetic alterations, targeted drugs have failed in glioblastoma (GBM) patients. This is in large part due to insufficient CNS penetration of most targeted agents to levels necessary for tumor kill; potentially evoking robust adaptive mechanisms to drive therapeutic resistance. While drug combinations that inhibit both the primary lesion and the compensatory signaling pathway(s) are appealing, these combination therapy strategies have been hampered by enhanced toxicities leading to subthreshold dosing of each drug.
- An alternative therapeutic approach targets an oncogenic driver to modify an important functional property for tumor survival, rendering cells vulnerable to an orthogonal second hit6. This “synthetic lethal” strategy may be particularly attractive when the oncogene-regulated functional network(s) intersect with tumor cell death pathways. In a certain example, oncogenic signaling drives glucose metabolism to suppress intrinsic apoptosis and promote survival. Inhibition of oncogenic drivers with targeted therapies can trigger the intrinsic apoptotic machinery as a direct consequence of attenuated glucose consumption. The intertwined nature of these tumorigenic pathways may present therapeutic opportunities for rational combination treatments, however, this has yet to be investigated.
- In view of the foregoing, there remains a clinical need for brain penetrant chemotherapeutics for the treatment of glioblastoma and other cancers.
- In one aspect, the present disclosure provides compounds of Formula I or Formula I*:
- or a pharmaceutically acceptable salt thereof, wherein:
- Z is aryl or heteroaryl;
- R2a and R2b are each independently selected from hydrogen, alkyl, halo, CN, and NO2;
- R3 is hydrogen, alkyl, or acyl;
- R4 is alkoxy;
- R5 is alkyl; R7 and R8 are, each independently, selected from hydrogen, alkyl, such as alkoxyalkyl, aralkyl, or arylacyl;
- R11 is hydrogen, alkyl, halo, CN, NO2, OR7, cycloalkyl, heterocyclyl, aryl or heteroaryl; and
- R12 is hydrogen, alkyl, halo, CN, NO2, OR8, cycloalkyl, heterocyclyl, aryl or heteroaryl; or
- R11 and R12 taken together complete a carbocyclic or heterocyclic ring.
- In certain aspects, the present disclosure provides methods of inhibiting EGFR or ΔEGFR, comprising administering to a subject an amount of a compound of the disclosure.
- In certain aspects, the present disclosure provides methods of treating cancer comprising administering to a subject in need of a treatment for cancer an amount of a compound of the disclosure. In some embodiments, the cancer is glioblastoma multiforme.
- In certain aspects, the present disclosure provides methods of treating cancer comprising administering to a subject a glucose metabolism inhibitor and a cytoplasmic p53 stabilizer, wherein the glucose metabolism inhibitor is a compound of the disclosure. In some embodiments, the cancer is glioblastoma multiforme.
- In certain aspects, the present disclosure provides methods of making compounds of Formula I or Formula I*.
-
FIG. 1 depicts the oral pharmacokinetics of JGK005 at 10 mg/kg and those of erlotinib at 25 mg/kg. JGK005 has good CNS penetration compared to erlotinib. -
FIG. 2 depicts the activity of erlotinib (left columns) and JGK005 (right columns) against EGFR mutant glioblastomas HK301 and GBM39, respectively. JGK005 has lower activity than erlotinib in both cases. -
FIG. 3 depicts the cell free EGFR kinase activities of erlotinib and JGK010. Both compounds have an IC50 of approximately 8 nM. -
FIG. 4 depicts the potencies of erlotinib (left columns), JGK005 (center columns), and JGK010 (right columns) against HK301 and GBM39 cells. -
FIG. 5 shows the oral pharmacokinetics of JGK005 at 10 mg/kg and of JGK010 at 10 mg/kg. -
FIG. 6 depicts comparisons of EGFR inhibitors in multiple primary glioblastoma cell lines. Columns 1-4: GBM39 (EGFRvIII), 5-8: GS100 (EGFRwt/EGFRvIII), 9-12: GS017 (A289T), 13-16: GS024 (EGFR polysomy). -
FIG. 7A depicts JGK010 activity in EGFR altered lung cancer.FIG. 7B depicts JGK010 activity in EGFR Amp epidermoid carcinoma. -
FIG. 8A depicts JGK010 oral pharmacokinetics at 6 mg/kg.FIG. 8B depicts JGK010 oral pharmacokinetics at 10 mg/kg.FIG. 8C depicts JGK010 IV pharmacokinetics at 6 mg/kg.FIG. 8D depicts JGK010 IP pharmacokinetics at 6 mg/kg. -
FIG. 9 depicts the activities of erlotinib and exemplary compounds of the disclosure against EGFR Amp WT+vIII HK301. -
FIG. 10 depicts the activities of erlotinib and exemplary compounds of the disclosure against EGFRvIII Amp GBM 39. -
FIG. 11 depicts the activities of erlotinib and exemplary compounds of the disclosure against HK301 cells. -
FIG. 12 depicts the activities of erlotinib and exemplary compounds of the disclosure againstGBM 39 cells. -
FIG. 13A depicts the phosphor-EGFR vIII inhibition of erlotinib and exemplary compounds of the disclosure.FIG. 13B depicts the phosphor-EGFR vIII inhibition of erlotinib and exemplary compounds of the disclosure. -
FIG. 14A depicts the pharmacokinetics of JGK005.FIG. 14B depicts the pharmacokinetics of JGK005. -
FIG. 15A depicts the pharmacokinetics of JGK038.FIG. 15B depicts the pharmacokinetics of JGK038. -
FIG. 16A depicts the pharmacokinetics of JGK010.FIG. 16B depicts the pharmacokinetics of JGK010. -
FIG. 17A depicts the pharmacokinetics of JGK037.FIG. 17B depicts the pharmacokinetics of JGK037. -
FIG. 18A depicts a comparison of mouse brain/blood pharmacokinetics between Erlotinib and JGK037.FIG. 18B depicts a comparison of mouse brain/blood pharmacokinetics between Erlotinib and JGK037. -
FIG. 19 depicts the brain penetration of erlotinib and exemplary compounds of the disclosure. -
FIG. 20 depicts the effect of treatment with either a vehicle or JGK037 on RLU change. -
FIGS. 21A-21F depict the inhibition of EGFR-driven glucose metabolism induces minimal cell death but primes GBM cells for apoptosis.FIG. 21A depicts percent change in 18F-FDG uptake after 4 hours of erlotinib treatment relative to vehicle in 19 patient-derived GBM gliomaspheres. “Metabolic responders” (blue) are samples that show a significant decrease in 18F-FDG uptake relative to vehicle, whereas “non-responders” (red) show no significant decrease.FIG. 21B depicts percent change in glucose consumption and lactate production with 12 hours of erlotinib treatment relative to vehicle. Measurements are made using Nova Biomedical BioProfile Analyzer.FIG. 21C depicts Annexin V staining of metabolic responders (blue, n=10) or non-responders (red, n=9) after treatment with erlotinib for 72 hours.FIG. 21D depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to each BH3 peptide (BIM, BID, or PUMA) in metabolic responders or non-responders treated with erlotinib for 24 hours.FIG. 21E depicts Left: Immunoblot of whole cell lysate of HK301 cells overexpressing GFP control or GLUT1 and GLUT3 (GLUT1/3). Right: Changes in glucose consumption or lactate production of HK301-GFP or HK301-GLUT1/3 after 12 hours of erlotinib treatment. Values are relative to vehicle control.FIG. 21F depicts using HK301-GFP or HK301-GLUT1/3 cells. Erlotinib concentration for all experiments was 1 μM. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. -
FIGS. 22A-22H depict Cytoplasmic p53 links EGFR to intrinsic apoptosis.FIG. 22A depicts immunoblot of indicated proteins in two responders (HK301 and HK336) expressing CRISPR/CAS9 protein with control guide RNA (sgCtrl) or p53 guide RNA (p53KO).FIG. 22B depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BIM peptide in sgCtrl and p53KO cells treated with erlotinib for 24 hours.FIG. 22C depicts immunoblot of indicated proteins in HK301 sgCtrl, p53KO, p53KO+p53cyto, and p53KO+p53wt.FIG. 22D depicts that immunofluorescence of p53 protein combined with DAPI staining to reveal protein localization in HK301 sgCtrl, p53KO+p53cyto, and p53KO+p53wt (scale bars=20 μm). Gliomaspheres were first disassociated to single cell and adhered to the 96-well plates using Cell-Tak (Corning) according to manufacturer instructions. Adhered cells were then fixed with ice-cold methanol for 10 min then washed three times with PBS. Cells were then incubated with blocking solution containing 10% FBS and 3% BSA in PBS for 1 hr and subsequently incubated with p53 (Santa Cruz, SC-126, dilution of 1:50) antibody overnight at 4° C. The following day, cells were incubated with secondary antibody (Alexa Fluor 647, dilution 1:2000) for an hour and DAPI staining for 10 min, then imaged using a Nikon TI Eclipse microscope equipped with a Cascade II fluorescent camera (Roper Scientific). Cells were imaged with emissions at 461 nM and 647 nM and then processed using NIS-Elements AR analysis software.FIG. 22E depicts changes in indicated mRNA levels following 100 nM doxorubicin treatment for 24 hrs in HK301 sgCtrl, p53KO, p53KO+p53cyto, and p53KO+p53wt. Levels were normalized to respective DMSO treated cells.FIG. 22F depicts similar data to 22B but in HK301 sgCtrl, p53KO, p53KO+p53cyto, and p53KO+p53wt.FIG. 22G depicts similar data to 22E but in HK301 sgCtrl, p53KO, p53KO+p53R175H, p53KO+p53R273H, and p53KO+p53NES.FIG. 22H depicts similar data to 22B and 22F but in HK301 sgCtrl, p53KO, p53KO+p53R175H, p53KO+p53R273H, and p53KO+p53NES. Erlotinib concentration for all experiments was 1 μM. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. -
FIGS. 23A-23F depict Bcl-xL prevents GBM cell death by binding to and sequestering cytoplasmic p53 in EGFRi-metabolic responders.FIG. 23A depicts the immunoprecipitation of p53 in two metabolic responders (HK301 and GBM39) following 24 hours of erlotinib treatment. The immunoprecipitate was probed with the indicated antibodies. Below are respective pre-immunoprecipitation lysates (input).FIG. 23B depicts data similar to 23A but in two non-responders (HK393 and HK254).FIG. 23C depicts data similar to 23A and 23B but in HK301-GFP and HK301-GLUT1/3. To the right are immunoblots for indicated inputs.FIG. 23D depicts HK301 was treated for 24 hours with erlotinib, WEHI-539, or both and immunoprecipitation and immunoblotting was performed as described previously.FIG. 23E depicts annexin V staining of two responders (GBM39 and HK301) and a non-responder (HK393) following 72 hours of treatment with erlotinib, WEHI-539, or both.FIG. 23F depicts annexin V staining of HK301-GFP and HK301-GLUT1/3 following 72 hours of treatment with erlotinib, wehi-539, or both. Erlotinib and WEHI-539 concentrations for all experiments were 1 μM and 5 μM, respectively. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01. -
FIGS. 24A-24G depict the synergistic lethality of combined targeting of EGFR and p53.FIG. 24A depicts a summary of alterations in EGFR and genes involved in p53 regulation across 273 GBM samples. Genetic alterations in EGFR (amp/mutation) are mutually exclusive to those in p53. As shown, EGFR alterations are on the left side of the table while most alterations in p53 are on the right.FIG. 24B depicts a table indicating the significant associations between alterations in EGFR and genes involved in the p53 pathway.FIG. 24C depicts Annexin V staining of a metabolic responder (left: HK301) and non-responder (right: GS017) treated with varying concentrations of erlotinib, nutlin, and in combination represented as a dose-titration matrix.FIG. 24D depicts the dose-titration of erlotinib and nutlin as described in 24C was conducted across 10 metabolic responders and 6 non-responders, and the synergy score was calculated (see Materials and Methods).FIG. 24E depicts Annexin V staining of HK301-GFP and HK301 GLUT1/3 following 72 hours of treatment with erlotinib, nutlin, or both.FIG. 24F depicts the same as 24E but in HK301-sgCtrl and HK301-p53KO.FIG. 24G depicts HK301 that was treated for 24 hours with erlotinib, nutlin, or in combination. Immunoprecipitation was performed with immunoglobulin G control antibody or anti-p53 antibody, and the immunoprecipitate was probed with the indicated antibodies. Below are respective pre-immunoprecipitation lysates (input). All data are representative of at least n=3 independent experiments, mean±SEM. Unless indicated, erlotinib and nutlin concentrations for all experiments were 1 μM and 2.5 μM, respectively. ** p<0.01, *** p<0.001, **** p<0.0001 -
FIGS. 25A-25F depict the modulation of glucose metabolism primes EGFRi non-responders for p53-mediated cell death.FIG. 25A depicts the percentage change in 18F-FDG uptake after 4 hours of erlotinib, 2DG, or pictilisib treatment relative to vehicle in HK393 and HK254.FIG. 25B depicts the percentage change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BIM peptide in HK393 and HK254 following erlotinib, 2DG, or pictilisib for 24 hours.FIG. 25C depicts data similar to 25B but in HK393 sgCtrl and p53KO.FIG. 25D depicts the immunoprecipitation of p53 in HK393 and HK254 following 24 hours of 2DG or pictilisib treatment. The immunoprecipitate was probed with the indicated antibodies. Below are respective pre-immunoprecipitation lysates (input).FIG. 25E depicts the synergy score of various drugs (erlotinib, 2DG, and pictilisib) in combination with nutlin in HK393 and HK254.FIG. 25F depicts Annexin V staining of HK393 sgCtrl and HK393 p53KO following 72 hours of treatment with 2DG, pictilisib, 2DG+nutlin, or pictilisib+nutlin. Unless indicated, erlotinib, 2DG, pictilisib, and nutlin concentrations for all experiments were 1 μM, 1 mM, 1 μM and 2.5 μM, respectively. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01, ***p<0.001. -
FIGS. 26A-26H depict the combined targeting of EGFR-driven glucose uptake and p53 suppresses tumor growth in vivo.FIG. 26A depicts the 18F-FDG PET/CT imaging of GBM39 intracranial xenografts before and after 15 hours erlotinib treatment (75 mg/kg).FIG. 26B depicts GBM39 intracranial xenografts that were treated with vehicle (n=5), 75 mg/kg erlotinib (n=7), 50 mg/kg Idasanutlin (n=5), or in combination daily (n=12), and tumor burden was assessed at indicated days using secreted gaussia luciferase (see Materials and Methods).FIG. 26C depicts data similar to 26A but in HK393 intracranial xenografts. FIG. 26D depicts data similar to 26B, but in HK393 intracranial xenografts (n=7 for all groups).FIG. 25E depicts the percent survival of 26B.FIG. 26F depicts the percent survival of 26C.FIG. 26G depicts the percent survival of metabolic responder HK336 following indicated treatments for 25 days and then released from drug (n=7 for all groups).FIG. 26H depicts the percent survival of non-responder GS025 following indicated treatments for 25 days and then released from drug (n=9 for all groups). Comparisons for 26B and 26D used data sets from the last measurements and were made using two-tailed unpaired t-test. Data represent means±s.e.m. values. **p<0.01. -
FIGS. 27A-27G depict the characterization of GBM cell lines following EGFR inhibition.FIG. 27A depicts the percent change in 18F-FDG uptake at indicated times of erlotinib treatment relative to vehicle in two metabolic responders (HK301 and GBM39).FIG. 27B depicts an immunoblot of indicated proteins of a metabolic responder (HK301) and non-responder (HK217) following genetic knockdown of EGFR with siRNA.FIG. 27C depicts the percent change in 18F-FDG uptake in HK301 and HK217 following genetic knockdown of EGFR.FIG. 27D depicts the change in glucose consumption with 12 hours of erlotinib treatment in three metabolic responders (HK301, GBM39, HK390) and three non-responders (HK393, HK217, HK254). Measurements are made using Nova Biomedical BioProfile Analyzer.FIG. 27E depicts the change in and lactate production with 12 hours of erlotinib treatment in three metabolic responders (HK301, GBM39, HK390) and three non-responders (HK393, HK217, HK254). Measurements are made using Nova Biomedical BioProfile Analyzer.FIG. 27F depicts basal ECAR measurements of two responders (HK301 and GBM39, in blue) and two non-responders (HK217 and HK393, in red) following 12 hours of erlotinib treatment.FIG. 27G depicts change in glutamine consumption following 12 hours of erlotinib treatment, as measured by Nova Biomedical BioProfile Analyzer. Erlotinib concentrations for all experiments were 1 μM. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. -
FIGS. 28A-28B depict alterations in downstream signaling following EGFR inhibition correlate with metabolic response.FIG. 28A depicts an immunoblot of indicated proteins following 4 hours of erlotinib treatment in metabolic responders.FIG. 28B depicts an immunoblot of indicated proteins following 4 hours of erlotinib treatment in metabolic non-responders. -
FIGS. 29A-29B depicts the genetic characterization of patient-derived GBM cell lines.FIG. 29A depicts the genetic background across a panel of GBM lines.FIG. 29B depicts fluorescence in situ hybridization (FISH) of HK390, HK336, HK254, and HK393 showing polysomy of EGFR. Fluorescence in situ hybridization (FISH) was performed using commercially available fluorescently labeled dual-color EGFR (red)/CEP 7(green) probe (Abbott-Molecular). FISH hybridization and analyses were performed on cell lines, following the manufacturer's suggested protocols. The cells were counterstained with DAPI and the fluorescent probe signals were imaged under a Zeiss (Axiophot) Fluorescent Microscope equipped with dual- and triple-color filters. -
FIGS. 30A-30B depict EGFR inhibition shifts the apoptotic balance in metabolic responders.FIG. 30A depicts an immunoblot of indicated proteins following 24 hours of erlotinib treatment in metabolic responders (GBM39, HK301, and HK336) and non-responders (HK217, HK393, and HK254).FIG. 30B depicts example of dynamic BH3 profiling analysis in a metabolic responder (HK301). Left: Percent cytochrome c release is measured following exposure to various peptides at indicated concentrations. Right: The difference in cytochrome c release between vehicle treated cells and erlotinib treated cells is calculated to obtain the percent priming. Erlotinib concentrations for all experiments was 1 μM. -
FIGS. 31A-31C depict GLUT1/3 overexpression rescues attenuated glucose metabolism caused by EGFR inhibition.FIG. 31A depicts the change in glucose consumption and lactate production with 12 hours of erlotinib treatment in HK301-GFP and HK301 GLUT1/3. Measurements are made using Nova Biomedical BioProfile Analyzer.FIG. 31B depicts Left: Immunoblot of whole cell lysate of GBM39 cells overexpressing GFP control or GLUT1 and GLUT3 (GLUT1/3). Right: Changes in glucose consumption or lactate production of GBM39-GFP or GBM39-GLUT1/3 after 12 hours of erlotinib treatment. Values are relative to vehicle control.FIG. 31C depicts data similar to 35A but in GBM39-GFP and GBM39-GLUT1/3. Erlotinib concentrations for all experiments was 1 μM. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. -
FIGS. 32A-32I depict cytoplasmic p53 is required for EGFRi-mediated apoptopic priming.FIG. 32A depicts the percent change in 18F-FDG uptake following 4 hours of erlotinib treatment in HK301 sgCtrl and p53 KO cells (mean±s.d., n=3).FIG. 32B depicts relative mRNA levels of p53-regulated genes following 24hours 1 μM erlotinib treatment in or 100 nM doxorubicin treatment in HK301 (metabolic responder).FIG. 32C depicts HK301 cells infected with a p53-luciferase reporter system and p53 activity was measured following 24 hours of 1 μM erlotinib treatment (mean±s.d., n=3). Results are representative of two independent experiments.FIG. 32D depicts Immunoblot of indicated proteins in HK336 sgCtrl, p53KO, p53KO+p53cyto, and p53KO+p53wt.FIG. 32E depicts the immunofluorescence of p53 protein combined with DAPI staining to reveal protein localization in HK336 sgCtrl, p53KO+p53cyto, and p53KO+p53wt (scale bars=20 μm). Immunofluorescence was performed as previously described.FIG. 32F depicts changes in indicated mRNA levels following 100 nM doxorubicin treatment for 24 hrs in HK336 sgCtrl, p53KO, p53KO+p53cyto, and p53KO+p53wt (mean±s.d., n=3). Levels were normalized to respective DMSO treated cells.FIG. 32G depicts the percent change, relative to vehicle control, in apoptotic priming—as determined by cytochrome c release following exposure to BIM peptide—in HK336 sgCtrl, p53KO, p53KO+p53cyto, and p53KO+p53wt cells treated with erlotinib for 24 hours. (mean±s.d., n=2). Results are representative of two independent experiments.FIG. 32H depicts an immunoblot of indicated proteins in HK301 sgCtrl, p53KO, p53KO+p53R175H, p53KO+p53R273H, and p53KO+p53NES.FIG. 32I depicts the percent change in priming in HK301 following 24 hours of erlotinib treatment with or without PFTμ pre-treatment (10 μM for 2 hours) (mean±s.d., n=2). Results are representative of two independent experiments. -
FIGS. 33A-33D depict the inhibition of EGFR-driven glucose metabolism induces a Bcl-xL dependency through cytoplasmic p53 functions.FIG. 33A depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BAD and HRK peptides in metabolic responders (HK301 and HK336) or non-responder (HK229) treated with erlotinib.FIG. 33B depicts Left: Immunoprecipitation of p53 in GBM39-GFP and GBM39-GLUT1/3 following 24 hours of erlotinib treatment. The immunoprecipitate was probed with the indicated antibodies. Right: respective pre-immunoprecipitation lysates (input).FIG. 33C depicts Annexin V staining of HK301 (left) and HK336 (right) sgCtrl, p53KO, p53 KO+p53cyto, and p53KO+p53wt following 72 hours of treatment with erlotinib, WEHI-539, or combination.FIG. 33D depicts data similar to 33C but in GBM39-GFP and GBM39-GLUT1/3. Erlotinib and WEHI-539 concentrations for all experiments were 1 μM. Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01, ***p<0.001. -
FIGS. 34A-34H depict the inhibition of EGFR-regulated glucose metabolism and p53 activation promote intrinsic apoptosis in GBM.FIG. 34A depicts the immunoblot of indicated proteins following 24 hours of erlotinib, nutlin or in combination in two metabolic responders (HK301 and GBM39).FIG. 34B depicts Annexin V staining in HK301 and HK217 following genetic knockdown of EGFR and subsequent nutlin treatment for 72 hours.FIG. 34C depicts the detection of BAX oligomerization in HK301-GFP and HK301-GLUT1/GLUT3. Following 24 hours of indicated treatment, cells were harvested and incubated in 1 mM BMH to promote protein cross-linking and immunoblotted with indicated antibodies. Below BAX is immunoblot for cytosolic cytochrome c following cellular fractionation.FIG. 34D depicts the Top: Immunoblot of indicated proteins in HK301-GFP and HK301-HA-BclxL. Bottom: Annexin V staining in HK301-GFP and HK301-HA-BclxL following 72 hours of treatment with erlotinib, nutlin, or combination.FIG. 34E depicts Annexin V staining of HK301 following 72 hours of erlotinib, nutlin or the combination+/−PFTμ pretreatment (10 μM for 2 hours).FIG. 34F depicts Annexin V staining of HK301 sgCtrl, p53KO, p53KO+p53R175H, p53KO+p53R273H, and p53KO+p53NES following 72 hours of treatment with erlotinib, nutlin, or combination.FIG. 34G depicts data similar to 34F but in HK301 sgCtrl, p53KO, p53KO+p53cyto, and p53KO+p53wt. Drug concentrations for all experiments are as follows: erlotinib (1 μM), nutlin (2.5 μM). Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.FIG. 34H depicts data similar to 34G but in HK336 sgCtrl, p53KO, p53KO+p53cyto, and p53KO+p53wt. Drug concentrations for all experiments are as follows: erlotinib (1 μM), nutlin (2.5 μM). Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. -
FIGS. 35A-35F depict the inhibition of glucose metabolism in metabolic responders and non-responders promotes intrinsic apoptosis.FIG. 35A depicts the percent change, relative to vehicle control, in priming as determined by cytochrome c release following exposure to BIM peptides in metabolic responder HK301 following 24 hours of erlotinib or 2DG treatment.FIG. 35B depicts Left: Immunoprecipitation of p53 in HK301 following 24 hours of 2DG treatment. The immunoprecipitate was probed with the indicated antibodies. Right: respective pre-immunoprecipitation lysates (input).FIG. 35C depicts OCR and ECAR measurements of HK301 cells following exposure to oligomycin and rotenone.FIG. 35D depicts Annexin V staining in HK301 following 72 hours of treatment with nutlin, erlotinib, 2DG, oligomycin, rotenone as individual agents or in combination with nutlin.FIG. 35E depicts an immunoblot of indicated proteins following 4 hours of erlotinib or pictilisib treatment in two non-responders (HK254 and HK393).FIG. 35F depicts the Immunoprecipitation of p53 in HK254 following 24 hours of pictilisib or 2DG treatment. The immunoprecipitate was probed with the indicated antibodies. Below are respective pre-immunoprecipitation lysates (input). Drug concentrations for all experiments are as follows: erlotinib (1 μM), nutlin (2.5 μM), 2DG (3 mM for HK301 and 1 mM for HK254), oligomycin (1 μM), rotenone (1 μM), and pictilisib (1 μM). Comparisons were made using two-tailed unpaired Student's t-test. Data represent means±s.e.m. values of three independent experiments. ****p<0.0001. -
FIGS. 36A-36D depict the In vivo efficacy of EGFR inhibition and p53 activation.FIG. 36A depicts the brain and plasma concentrations of Idasanutlin at indicated time points (n=2 mice/time point) in non-tumor bearing mice.FIG. 36B depicts the immunohistochemistry (IHC) analysis of p53 expression in intracranial tumor-bearing xenografts following 36 hours Idasanutlin (50 mg/kg) treatment.FIG. 36C depicts the percent change in 18F-FDG uptake following 15 hours of erlotinib treatment in GBM39 (n=3) and HK393 (n=5) intracranial xenografts.FIG. 36D depicts the change in mice body weight following daily treatment with erlotinib (75 mg/kg) or combined erlotinib (75 mg/kg) and Idasanutlin (50 mg/kg). All treatments were done orally. Data represent means±s.e.m. values of three independent experiments. *p<0.05. -
FIG. 37A depicts that direct inhibition of glycolysis with 2DG (hexokinase inhibitor) or cytochalasin B (a glucose transporter inhibitor) unexpectedly synergizes with p53 activation (with nutlin).FIG. 37B depicts low glucose (0.25 mM) leads to synergistic cell kill with BCL-xL inhibition with navitoclax(ABT-263).FIG. 37C depicts low glucose (0.25 mM) leads to synergistic cell kill with BCL-xL inhibition with nutlin. -
FIG. 38 depicts a comparison between metabolic responders to EGFRi inhibitor, erlotinib, and metabolic non-responders. The combination of erlotinib and nutlin leads to an unexpected synergistic synthetic lethality in metabolic responders but not in non-responders. -
FIG. 39A shows the enantiomeric purity of synthetic intermediate 5 as determined by chiral SFC (Chiralpak AD-3 column, 40% MeOH).FIG. 39B shows the enantiomeric purity of synthetic intermediate (S)-5 as determined by chiral SFC (Chiralpak AD-3 column, 40% MeOH).FIG. 39C show the enantiomeric purity of synthetic intermediate (R)-5 as determined by chiral SFC (Chiralpak AD-3 column, 40% MeOH).FIG. 39D show the enantiomeric purity ofMosher ester derivatives 5 as determined by chiral SFC (Chiralpak AD-3 column, 40% MeOH). -
FIG. 40 depicts the activities of erlotinib, lapatinib, gefitinib, and exemplary compounds of the disclosure against U87 EGFRwt. -
FIG. 41 depicts the activities of erlotinib, lapatinib, gefitinib, and exemplary compounds of the disclosure against U87 EGFRviii. -
FIG. 42 depicts the activities of erlotinib, lapatinib, gefitinib, and exemplary compounds of the disclosure against HK301, a patient derived, EGFRvIII mutant GBM gliomasphere. -
FIG. 43 depicts the activities of erlotinib, lapatinib, gefitinib, and exemplary compounds of the disclosure against GBM39, a patient derived, EGFRvIII mutant GBM gliomasphere. -
FIG. 44 depicts the activities of erlotinib, lapatinib, and exemplary compounds of the disclosure in a GBM39 EGFRvIII mutant mouse model. -
FIG. 45A depicts the activities of erlotinib and exemplary compounds of the disclosure in a HCC827 lung cancer EGFR mutant cell line.FIG. 45B depicts the activities of erlotinib and exemplary compounds of the disclosure in a PC9 lung cancer EGFR mutant cell line.FIG. 45C depicts the activities of erlotinib and exemplary compounds of the disclosure in a H838 lung cancer mutant cell line. -
FIG. 46 depicts the activities of erlotinib and exemplary compounds of the disclosure in a PC9 lung cancer EGFR mutant mouse model. -
FIG. 47 depicts certain metabolites of exemplary compounds of the disclosure. -
FIG. 48A depicts the activate of exemplary compounds of the disclosure against HK301. -
FIG. 48B depicts the activate of exemplary compounds of the disclosure against GBM39.FIG. 48C depicts the activate of exemplary compounds of the disclosure against NHA. -
FIG. 49A depicts the ADME characteristics of an exemplary compound of the disclosure in rats following PO administration. -
FIG. 49B depicts the ADME characteristics of an exemplary compound of the disclosure in rats following PO administration. -
FIG. 50A depicts the activity of certain compounds of the disclosure as compared against the current standard of care (i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759) against HK301, a patient derived, EGFRvIII mutant GBM gliomasphere. -
FIG. 50B depicts the activity of certain compounds of the disclosure as compared against the current standard of care (i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759) against HK301, a patient derived, EGFRvIII mutant GBM gliomasphere. -
FIG. 51A depicts the activity of certain compounds of the disclosure as compared against the current standard of care (i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759) against GBM39, a patient derived, EGFRvIII mutant GBM gliomasphere.FIG. 51B depicts the activity of certain compounds of the disclosure as compared against the current standard of care (i.e., Labpatinib, Erlotinib, Gefitinib, and AZD3759) against GBM39, a patient derived, EGFRvIII mutant GBM gliomasphere. -
FIG. 52A depicts the activity of osimertinib and JGK068S against pEGFRwt.FIG. 52B depicts the activity of osimertinib and JGK068S against pEGFRvIII. -
FIG. 53A depicts the activity of osimertinib and JGK068S against HK301.FIG. 53B depicts the activity of osimertinib and JGK068S against GBM39. -
FIG. 54A depicts the activity of AZD3759, AZD9291, and JGK068S against certain EGFR mutants.FIG. 54B depicts the activity of AZD3759, AZD9291, and JGK068S against pEGFR A263P.FIG. 54C depicts the activity of AZD3759, AZD9291, and JGK068S against pEGFR A289V.FIG. 54D depicts the activity of AZD3759, AZD9291, and JGK068S against pEGFR A289D.FIG. 54E depicts the activity of AZD3759, AZD9291, and JGK068S against pEGFR G598V. - Gliomas are the most commonly occurring form of brain tumor, with glioblastoma multiforme (GBM) being most malignant form, causing 3-4% of all cancer-related deaths (Louis et al. (2007) Acta. Neuropathol. 114: 97-109.). The World Health Organization defines GBM as a grade IV cancer characterized as malignant, mitotically active, and predisposed to necrosis. GBM has a very poor prognosis with a 5-year survival rate of 4-5% with the median survival rate of GBM being 12.6 months (McLendon et al. (2003) Cancer. 98:1745-1748.). This can attributed to unique treatment limitations such as a high average age of onset, tumor location, and poor current understandings of the tumor pathophysiology (Louis et al. (2007) Acta. Neuropathol. 114: 97-109). The standard current standard of care for GBM includes tumor resection with concurrent radiotherapy and chemotherapy and in recent years there have been few marked improvements that increase survival rates (Stewart, et al. (2002) Lancet. 359:1011-1018.).
- The standard for GBM chemotherapy is temozolomide (TMZ), which is a brain-penetrant alkylating agent that methylates purines (A or G) in DNA and induces apoptosis (Stupp, et al. (2005) N. Engl. J. Med. 352:987-996). However, TMZ use has drawbacks in that significant risk arises from DNA damage in healthy cells and that GBM cells can rapidly develop resistance towards the drug (Carlsson, et al. (2014) EMBO. Mol. Med. 6: 1359-1370). As such, additional chemotherapy options are urgently required.
- EGFR is a member of the HER superfamily of receptor tyrosine kinases together with ERBB2, ERBB3, and ERBB4. A common driver of GBM progression is EGFR amplification, which is found in nearly 40% of all GBM cases (Hynes et al. (2005) Nat. Rev. Cancer. 5: 341-354; Hatanpaa et al. (2010) Neoplasia. 12:675-684). Additionally, EGFR amplification is associated with the presence of EGFR protein variants: in 68% of EGFR mutants; there is a deletion in the N-terminal ligand-binding region between
amino acids - Small molecule tyrosine kinase inhibitors (TKIs) are the most clinically advanced of the EGFR-targeted therapies, and both reversible and irreversible inhibitors are in clinical trials. Examples of the reversible inhibitors and irreversible inhibitors include erlotinib, gefitinib, lapatinib, PKI166, canertinib and pelitinib (Mischel et al. (2003) Brain Pathol. 13: 52-61). Mechanistically, these TKIs compete with ATP for binding to the tyrosine kinase domain of EGFR, however, these EGFR-specific tyrosine kinase inhibitors have been relatively ineffective against gliomas, with response rates only reaching as high as 25% in the case of erlotinib (Mischel et al. (2003) Brain Pathol. 13: 52-61; Gan et al. (2009) J. Clin. Neurosci. 16: 748-54). Although TKIs are well tolerated and display some antitumor activity in GBM patients, the recurrent problem of resistance to receptor inhibition limits their efficacy (Learn et al. (2004) Clin. Cancer. Res. 10: 3216-3224; Rich et al. (2004) Nat. Rev. Drug Discov. 3: 430-446). Additionally, recent studies have shown that brain plasma concentrations of gefitinib and erlotinib following therapy were only 6-11% of the starting dose, suggesting that these compounds may be failing to cross the blood-brain barrier as illustrated in table 1 (Karpel-Massler et al. (2009) Mol. Cancer Res. 7:1000-1012). Thus, insufficient delivery to the target may be another cause of the disappointing clinical results.
-
TABLE 1 Brain Penetration Rates of the Current Standard of Care Drugs Brain Com- Daily Plasma CSF Penetration pound Primary Dose (ng/ml) (ng/ml) rate (%) Afatinib EGFR- 50 66.7 0.46 0.7 mutant NSCLC Alectinib ALK- 1200 1.5 (unbound 1.3 86.7 mutant conc.) NSCLC Crizotinib ALK- 500 237 0.616 0.26 mutant NSCLC Erlotinib EGFR- 150 1140 ± 937 28.7 ± 16.8 2.77 ± 0.45 mutant NSCLC EGFR- 1500 4445.9 51.1 1.2 mutant (weekly) NSCLC Gefitinib EGFR- 250 326 ± 116 3.7 ± 1.9 1.13 ± 0.36 mutant NSCLC EGFR- 750-1000 1345.9- 14.7-143.1 1.07-3.58 mutant 5094.4 NSCLC Lapatinib HER2 + 1250 1515, 3472 1.3, 4.5 0.09, 0.13 breast cancer - In light of this evidence, there remains an unmet clinical need for potent tyrosine kinase inhibitors that have the ability to cross the blood brain barrier and treat inhibit EGFR and its isoforms.
- Furthermore, cross-talk among oncogenic signaling and metabolic pathways is shown by the inventors to create opportunities for novel combination therapies in GBM. More specifically, the inventors have discovered that acute inhibition of EGFR-driven glucose uptake induces minimal cell death, yet lowers the apoptotic threshold in patient-derived GBM cells and “primes” cells for apoptosis. Unexpectedly, mechanistic studies, by the inventors, revealed that Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis, leading to tumor survival. Pharmacological stabilization of p53 (such as for example, with the brain-penetrant small molecule, Idasanutlin) enables p53 to engage the intrinsic apoptotic machinery, promoting synergistic lethality with targeting EGFR-driven glucose uptake in GBM xenografts. Notably, the inventors also discovered that rapid changes in 18F-fluorodeoxyglucose (18F-FDG) uptake using, for example, non-invasive positron emission tomography could predict sensitivity to the combination in vivo.
- The inventors, inter alia, identify a critical link between oncogene signaling, glucose metabolism, and cytoplasmic p53, which could be exploited for combination therapy in GBM and other malignancies
- In one aspect, the present disclosure provides compounds of Formula I or Formula I*:
- or a pharmaceutically acceptable salt thereof, wherein:
- Z is aryl or heteroaryl;
- R2a and R2b are each independently selected from hydrogen, alkyl, halo, CN, and NO2;
- R3 is hydrogen, alkyl, or acyl;
- R4 is alkoxy;
- R5 is alkyl; R7 and R8 are, each independently, selected from hydrogen, alkyl, such as alkoxyalkyl, aralkyl, or arylacyl;
- R11 is hydrogen, alkyl, halo, CN, NO2, OR7, cycloalkyl, heterocyclyl, aryl or heteroaryl; and
- R12 is hydrogen, alkyl, halo, CN, NO2, OR8, cycloalkyl, heterocyclyl, aryl or heteroaryl; or
- R11 and R12 taken together complete a carbocyclic or heterocyclic ring.
- In certain preferred embodiments of Formula I or Formula I*, at least one of is R2a and R2b not H. In certain such embodiments of Formula I or Formula I*, if R2a is hydrogen, then R2b is selected from alkyl, halo, CN, and NO2. In other such embodiments of Formula I or Formula I*, if R2b is hydrogen, then R2a is selected from alkyl, halo, CN, and NO2.
- In certain embodiments of Formula I or Formula I*, the compound is a compound of Formula (IVa) or Formula (IVb):
- or a pharmaceutically acceptable salt thereof, wherein
- each instance of R6 is independently selected from alkyl, alkoxy, OH, CN, NO2, halo, alkenyl, alkynyl, aralkyloxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl.
- In certain embodiments, of Formula I, I*, Iva, and IVb, R11 is hydrogen. In other preferred embodiments, R11 is OR7.
- In certain embodiments, of Formula I, I*, Iva, and IVb, R7 is hydrogen. In other embodiments, R7 is alkyl. In yet other embodiments, R7 is alkoxyalkyl. In yet other embodiments, R7 is arylacyl.
- In certain embodiments, of Formula I, I*, Iva, and IVb, R12 is heteroaryl, such as furanyl. In certain embodiments, the heteroaryl is substituted with alkyl, alkoxy, OH, CN, NO2, halo,
- In other preferred embodiments, R12 is OR8.
- In certain embodiments of Formula I, I*, Iva, and IVb, R8 is hydrogen. In other embodiments, R8 is alkyl. In yet other embodiments, R8 is alkoxyalkyl. In certain embodiments, R8 is alkyl substituted with
- In certain preferred embodiments, of Formula I, I*, Iva, and IVb, R11 and R12 combine to form a carbocylic or heterocyclic ring, such as a 5-member, 6-member, or 7-member carbocyclic or heterocyclic ring. In certain embodiments, the carbocyclic or heterocyclic ring is substituted with hydroxyl, alkyl (e.g., methyl), or alkenyl (e.g., vinyl).
- In certain embodiments, of Formula I, I*, Iva, and IVb, the compound is a compound of of Formula Ia, Ib, Ic, or Id:
- or a pharmaceutically acceptable salt thereof, wherein:
- X is O, S, or NH;
- Z is aryl or heteroaryl;
- R1 is hydrogen or alkyl;
- R2a and R2b are each independently selected from hydrogen, alkyl, halo, CN, and NO2;
- R3 is hydrogen, alkyl, or acyl;
- R4 is alkoxy;
- R5 is alkyl; and
- n is 0-3.
- In certain embodiments of Formula Ia, Ib, Ic, or Id, either R2a or R2b is selected from alkyl, halo, CN, and NO2. In certain preferred embodiments of Formula Ia, Ib, Ic, or Id, Z is phenyl. In certain preferred embodiments of Formula Ia, Ib, Ic, or Id, X is O. In certain preferred embodiments of Formula Ia, Ib, Ic, or Id, n is 1.
- In certain embodiments of Formula Ia, Ib, Ic, or Id, the compound is a compound of Formula (IIa) or Formula (IIb):
- or a pharmaceutically acceptable salt, wherein
- each instance of R6 is independently selected from alkyl, alkoxy, OH, CN, NO2, halo, alkenyl, alkynyl, aralkyloxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl.
- In certain embodiments, wherein R1 is represented by Formula A:
- wherein,
- R7a and R7b are each independently selected from alkyl, alkenyl, alkynl, cycloalkyl, heterocyclyl, aryl or heteroaryl; or R7a and R7b combine to form a heterocyclyl; and
- y is 0-3
- In certain embodiments of Formula IIa or IIb, R1 is alkyl (e.g., methyl or ethyl). In certain embodiments, R1 is substituted with heterocyclyl (e.g., morpholinyl, piperidinyl, pyrrolodinyl, or piperazinyl, such as N-methyl piperazinyl). In other embodiments, R1 is substituted with amino (e.g., dimethyl amino). In other embodiments, R1 is alkyl substituted with hydroxyl. In certain preferred embodiments, R1 is in the S configuration. In other embodiments, R1 is in the R configuration.
- In certain preferred embodiments of Formula IIa or IIb, R3 is hydrogen. In other embodiments, R3 is acyl. In certain embodiments, R3 is alkylacyl. In certain embodiments, R3 is alkyloxyacyl. In certain embodiments, R3 is acyloxyalkyl. In certain embodiments, R3 is
- and R9 is alkyl.
- In certain embodiments of Formula IIa or IIb, Z is aryl or heteroaryl optionally substituted with one or more R6; and each instance of R6 is independently selected from alkyl, alkoxy, OH, CN, NO2, halo, alkenyl, alkynyl, aralkyloxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl. In certain preferred embodiments, Z is phenyl substituted with 1, 2, 3, 4, or 5 R6. In certain embodiments, each R6 is independently selected from halo, alkyl, alkynyl, or arylalkoxy. In even more preferred embodiments, Z is 2-fluoro-3-chlorophenyl, 2-fluorophenyl, 2,3-difluorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 2,6-difluorophenyl, 2,4,6-trifluorophenyl, pentafluorophenyl, 2-fluoro-3-bromophenyl, 2-fluoro-3-ethynylphenyl, and 2-fluoro-3-(trifluoromethyl)phenyl. In other even more preferred embodiments, Z is 3-ethynylphenyl. In yet other even more preferred embodiments, Z is 3-chloro-4-((3-fluorobenzyl)oxy)benzene. In yet other even more preferred embodiments, Z is 3-chloro-2-(trifluoromethyl)phenyl. In yet other even more preferred embodiments, Z is 3-bromophenyl. In yet other even more preferred embodiments, Z is 2-fluoro,5-bromophenyl. In yet other even more preferred embodiments, Z is 2,6-difluoro,5-bromophenyl. In certain embodiments, Z is substituted with one R6 selected from
- and R9 and R10 are independently selected from alkyl.
- In certain embodiments of Formula IIIa or IIIb, the compound is a compound of Formula (IIIa):
- and each R6 is independently selected from fluoro, chloro, or bromo.
- In certain embodiments of Formula IIIa or IIIb, the compound is a compound of Formula (IIIb):
- and each R6 is independently selected from fluoro, chloro, or bromo.
- In certain embodiments of Formula IIIa or IIIb, the compound is a compound of Formula (IIIc):
- and each R6 is independently selected from fluoro, chloro, or bromo.
- In certain embodiments of Formula Ia, Ib, Ic, Id, IIa, IIb, IIIa, IIIb, or IIIc, R2a is halo (e.g., fluoro). In other preferred embodiments, R2a is hydrogen.
- In certain embodiments of Formula Ia, Ib, Ic, Id, IIa, IIb, IIIa, IIIb, or IIIc, R2b is halo (e.g., fluoro). In other preferred embodiments, R2b is hydrogen.
- In certain embodiments of Formula Ia, Ib, Ic, Id, IIa, IIb, IIIa, IIIb, or IIIc, the compound is
- or a pharmaceutically acceptable salt thereof.
- In certain embodiments of Formula Ia, Ib, Ic, Id, IIa, IIb, IIIa, IIIb, or IIIc, the compound is
- or a pharmaceutically acceptable salt thereof.
- In certain embodiments of Formula I, the compound is
- or a pharmaceutically acceptable salt thereof.
- In certain embodiments of Formula Ia, Ib, Ic, Id, IIa, IIb, IIIa, IIIb, or IIIc, the compound is
- or a pharmaceutically acceptable salt thereof.
- In certain aspects, the present disclosure provides methods of inhibiting EGFR or ΔEGFR, comprising administering to a subject an amount of a compound of the disclosure.
- In certain aspects, the present disclosure provides methods of treating cancer comprising of administering to a subject in need of a treatment for cancer an amount of a compound of the disclosure. In certain embodiments, the cancer is bladder cancer, bone cancer, brain cancer, breast cancer, cardiac cancer, cervical cancer, colon cancer, colorectal cancer, esophageal cancer, fibrosarcoma, gastric cancer, gastrointestinal cancer, head, spine and neck cancer, Kaposi's sarcoma, kidney cancer, leukemia, liver cancer, lymphoma, melanoma, multiple myeloma, pancreatic cancer, penile cancer, testicular germ cell cancer, thymoma carcinoma, thymic carcinoma, lung cancer, ovarian cancer, or prostate cancer. In certain embodiments, the cancer is glioma, astrocytoma or glioblastoma. In certain embodiments, the cancer is glioblastoma. In certain embodiments, the cancer is glioblastoma multiforme. In certain embodiments, the method reduces cancer cell proliferation.
- In certain aspects, the present disclosure provides methods of treating cancer in a subject, the method comprising administering to the subject a glucose metabolism inhibitor and an additional agent, wherein the glucose metabolism is a compound of the disclosure or a pharmaceutically acceptable salt thereof and the additional agent is a cytoplasmic p53 stabilizer. In certain embodiments, the cancer is bladder cancer, bone cancer, brain cancer, breast cancer, cardiac cancer, cervical cancer, colon cancer, colorectal cancer, esophageal cancer, fibrosarcoma, gastric cancer, gastrointestinal cancer, head, spine and neck cancer, Kaposi's sarcoma, kidney cancer, leukemia, liver cancer, lymphoma, melanoma, multiple myeloma, pancreatic cancer, penile cancer, testicular germ cell cancer, thymoma carcinoma, thymic carcinoma, lung cancer, ovarian cancer, or prostate cancer. In certain embodiments, the cancer is glioma, astrocytoma or glioblastoma. In certain embodiments, the cancer is glioblastoma. In certain embodiments, the cancer is glioblastoma multiforme. In certain embodiments, the method reduces cancer cell proliferation. In certain embodiments, the cancer is relapsed or refractory. In other embodiments, the cancer is treatment naïve.
- In certain embodiments, the subject has been determined to be susceptible to the glucose metabolism inhibitor by a method comprising:
- a. obtaining a first blood sample from the subject;
- b. placing the subject on a ketogenic diet;
- c. obtaining a second blood sample from the subject after being placed on a ketogenic diet for a period of time;
- d. measuring glucose level in the first and in the second blood sample;
- e. comparing the glucose level in the second blood sample with the glucose level in the first blood sample; and
- f. determining that the subject is susceptible if the glucose level in the second blood sample is reduced as compared to glucose levels in the first blood sample.
- In certain embodiments, the reduction in the glucose level between the second blood sample and the control blood sample is about or greater than 0.15 mM. In certain embodiments, the reduction in the glucose level between the second blood sample and the control blood sample is about or greater than 0.20 mM. In certain embodiments, the reduction in the glucose level between the second blood sample and the control blood sample is in the range of 0.15 mM-2.0 mM. In certain embodiments, the reduction in the glucose level between the second blood sample and the control blood sample is in the range of 0.25 mM-1.0 mM.
- In certain embodiments, the cytoplasmic p53 stabilizer is an MDM2 inhibitor. In certain embodiments, the MDM2 inhibitor is a nutlin. In certain embodiments, the MDM2 inhibitor is nutlin-3 or idasanutlin. In certain embodiments, the subject is administered 50 mg to 1600 mg of idasanutlin. In certain embodiments, the subject is administered 100 mg of idasanutlin. In certain embodiments, the subject is administered 150 mg of idasanutlin. In certain embodiments, the subject is administered 300 mg of idasanutlin. In certain embodiments, the subject is administered 400 mg of idasanutlin. In certain embodiments, the subject is administered 600 mg of idasanutlin. In certain embodiments, the subject is administered 1600 mg of idasanutlin. In other embodiments, the MDM2 inhibitor is RO5045337, RO5503781, RO6839921, SAR405838, DS-3032, DS-3032b, or AMG-232.
- In certain embodiments, the cytoplasmic p53 stabilizer is a BCL-2 inhibitor. In certain embodiments, the BCL-2 inhibitor is antisense oligodeoxynucleotide G3139, mRNA antagonist SPC2996, venetoclax (ABT-199), GDC-0199, obatoclax, paclitaxel, navitoclax (ABT-263), ABT-737, NU-0129, S 055746, or APG-1252.
- In certain embodiments, the cytoplasmic p53 stabilizer is a Bcl-xL inhibitor. In certain embodiments, the Bcl-xL inhibitor is
WEHI 539, ABT-263, ABT-199, ABT-737, sabutoclax, AT101, TW-37, APG-1252, or gambogic acid. - In certain embodiments, the glucose metabolism inhibitor and the cytoplasmic p53 stabilizer are administered in the same composition. In other embodiments, the glucose metabolism inhibitor and the cytoplasmic p53 stabilizer are administered in separate compositions.
- In certain embodiments, the method further comprises administration of an additional therapy.
- Primary malignant brain tumors are tumors that start in the brain or spine are known collectively as gliomas. Gliomas are not a specific type of cancer but are a term used to describe tumors that originate in glial cells. Examples of primary malignant brain tumors include astrocytomas, pilocytic astrocytomas, pleomorphic xanthoastrocytomas, diffuse astrocytomas, anaplastic astrocytomas, GBMs, gangliogliomas, oligodendrogliomas, ependymomas. According to the WHO classification of brain tumors, astrocytomas have been categorized into four grades, determined by the underlying pathology. The characteristics that are used to classify gliomas include mitoses, cellular or nuclear atypia, and vascular proliferation and necrosis with pseudopalisading features. Malignant (or high-grade) gliomas include anaplastic glioma (WHO grade III) as well as glioblastoma multiforme (GBM; WHO grade IV). These are the most aggressive brain tumors with the worst prognosis.
- GBMs is the most common, complex, treatment resistant, and deadliest type of brain cancer, accounting for 45% of all brain cancers, with nearly 11,000 men, women, and children diagnosed each year. GBM (also known as grade-4 astrocytoma and glioblastoma multiforme) are the most common types of malignant (cancerous) primary brain tumors. They are extremely aggressive for a number of reasons. First, glioblastoma cells multiply quickly, as they secrete substances that stimulate a rich blood supply. They also have an ability to invade and infiltrate long distances into the normal brain by sending microscopic tendrils of tumor alongside normal cells. Two types of glioblastomas are known. Primary GBM are the most common form; they grow quickly and often cause symptoms early. Secondary glioblastomas are less common, accounting for about 10 percent of all GBMs. They progress from low-grade diffuse astrocytoma or anaplastic astrocytoma, and are more often found in younger patients. Secondary GBM are preferentially located in the frontal lobe and carry a better prognosis.
- GBM is usually treated by combined multi-modal treatment plan including surgical removal of the tumor, radiation and chemotherapy. First, as much tumor as possible is removed during surgery. The tumor's location in the brain often determines how much of it can be safely removed. After surgery, radiation and chemotherapy slow the growth of remaining tumor cells. The oral chemotherapy drug, temozolomide, is most often used for six weeks, and then monthly thereafter. Another drug, bevacizumab (known as Avastin®), is also used during treatment. This drug attacks the tumor's ability to recruit blood supply, often slowing or even stopping tumor growth.
- Novel investigational treatments are also used and these may involve adding treatments to the standard therapy or replacing one part of the standard therapy with a different treatment that may work better. Some of these treatments include immunotherapy such as vaccine immunotherapies, or low-dose pulses of electricity to the area of the brain where the tumor exists and nano therapies involving spherical nucleic acids (SNAs) such as NU-0129. In some embodiments, the methods of the current disclosure are used in combination with one or more of the aforementioned therapies.
- Embodiments of the methods and compositions discussed herein are also contemplated to be applicable to other types of cancers, including but not limited to lung cancer, non-CNS cancers, CNS cancers, and CNS metastases such as brain metastases, leptomeningeal metastases, choroidal metastases, spinal cord metastases, and others.
- The inventors have demonstrated that the pharmacological p53 stabilization, such as with a CNS-penetrant small molecule, for example, was synergistically lethal with the inhibition of EGFR-driven glucose uptake in patient-derived, primary GBM models. The inventors have demonstrated, for the first time, that the non-transcriptional functions of p53 can have a critical role in stimulating intrinsic apoptosis in metabolic responders. Accordingly, the methods of treatment described herein comprise the administration of cytoplasmic p53 stabilizer(s) in combination with glucose metabolism inhibitors. Cytoplasmic p53 stabilizer(s) and glucose metabolism inhibitors can be administered in the same or in different compositions, cocomitantly or sequentially. It is contemplated that in some embodiments a single p53 stabilizer is used and in other embodiments more than on p53 stabilizer is used. For example, the combination of nutlin with ABT 737 (which binds BCL-2 and BCL-XL) is reported to synergistically target the balance of pro-apoptotic and anti-apotptoic proteins at the mitochondrial level, thereby promoting cell death. (Hoe et al. 2014. Nature Reviews. Vol. 13. pp. 217) As intended herein, a cytoplasmic p53 stabilizer is any small molecule, antibody, peptide, protein, nucleic acid or derivatives thereof that can pharmacologically stabilize or activate p53 directly or indirectly. The stabilization of cytoplasmic p53 leads to priming cells, such as cancer cells, for apoptosis.
- Protein levels of p53 within cells are tightly controlled and kept low by its negative regulator, the E3 ubiquitin protein ligase MDM2. In embodiments of the methods or composition of the current disclosure, the cytoplasmic p53 stabilizer is an MDM2 antagonist/inhibitor. In some embodiments, the MDM2 antagonist is a nutlin. In further embodiments, the nutlin is nutlin-3 or idasanutlin. In other embodiments, the MDM2 antagonist is RO5045337 (also known as RG7112), RO5503781, RO6839921, SAR405838 (also known as MI-773), DS-3032, DS-3032b, or AMG-232 or any other MDM2 inhibitor.
- Other compounds within the scope of the current methods known to bind MDM-2 include Ro-2443, MI-219, MI-713, MI-888, DS-3032b, benzodiazepinediones (for example, TDP521252), sulphonamides (for example, NSC279287), chromenotriazolopyrimidine, morpholinone and piperidinones (AM-8553), terphenyls, chalcones, pyrazoles, imidazoles, imidazole-indoles, isoindolinone, pyrrolidinone (for example, PXN822), priaxon, piperidines, naturally derived prenylated xanthones, SAH-8 (stapled peptides) sMTide-02, sMTide-02a (stapled peptides), ATSP-7041 (stapled peptide), spiroligomer (α-helix mimic). Other compounds that are known to cause protein folding of MDM2 include PRIMA-1MET (also known as APR-246) Aprea 102-105, PK083, PK5174, PK5196, PK7088, benzothiazoles, stictic acid and NSC319726.
- In further embodiments of the current methods or compositions, the cytoplasmic p53 stabilizer is a BCL-2 inhibitor. In some embodiments, the BCL-2 inhibitor is, for example, antisense oligodeoxynucleotide G3139, mRNA antagonist SPC2996, venetoclax (ABT-199), GDC-0199, obatoclax, paclitaxel, navitoclax (ABT-263), ABT-737, NU-0129, S 055746, APG-1252 or any other BCL-2 inhibitor.
- In yet further embodiments of the current methods or compositions, the cytoplasmic p53 stabilizer is a Bcl-xL inhibitor. In some embodiments, the Bcl-xL inhibitor is, for example,
WEHI 539, ABT-263, ABT-199, ABT-737, sabutoclax, AT101, TW-37, APG-1252, gambogic acid or any other Bcl-xL inhibitor. - In embodiments of the methods and compositions of the current disclosure, the subject with GBM or cancer is classified to be either a “metabolic responder” or a “metabolic non-responder” i.e. determined to be susceptible to glucose metabolism inhibitors. In certain embodiments, the classification of the subject is prior to administering to the subject a treatment comprising a glucose metabolism inhibitor and a cytoplasmic p53 stabilizer. Accordingly, the current disclosure provides for methods for assessing a cancer, classifying a subject, determining the susceptibility of a subject to treatments involve analysis of glucose metabolism, glycolysis or glucose uptake. Methods to classify a subject as metabolic responder is described in details in Example 1. Techniques to monitor glycolysis and glucose uptake is provided by T. TeSlaa and M. A. Teitell. 2014. Methods in Enzymology, Volume 542, pp. 92-114, incorporated herein by reference.
- Glycolysis is the intracellular biochemical conversion of one molecule of glucose into two molecules of pyruvate with the concurrent generation of two molecules of ATP. Pyruvate is a metabolic intermediate with several potential fates including entrance into the tricarboxylic acid (TCA) cycle within mitochondria to produce NADH and FADH2. Alternatively, pyruvate can be converted into lactate in the cytosol by lactate dehydrogenase with concurrent regeneration of NAD+ from NADH. An increased flux through glycolysis supports the proliferation of cancer cells by providing, for example, additional energy in the form of ATP as well as glucose-derived metabolic intermediates for nucleotide, lipid, and protein biosynthesis. Warburg (Oncologia. 1956; 9(2):75-83) first observed that proliferating tumor cells augment aerobic glycolysis, the conversion of glucose to lactate in the presence of oxygen, in contrast to nonmalignant cells that mainly respire when oxygen is available. This mitochondrial bypass, called the Warburg effect, occurs in rapidly proliferating cells including cancer cells, activated lymphocytes, and pluripotent stem cells. The Warburg effect has been exploited for clinical diagnostic tests that use positron emission tomography (PET) scanning to identify increased cellular uptake of fluorinated glucose analogs such as 18F-deoxyglucose.
- Thus, glycolysis represent a target for therapeutic and diagnostic methods. In the context of the current methods, the measurement of glucose uptake and lactate excretion by malignant cells may be useful to detect shifts in glucose catabolism and/or susceptibility to glucose metabolism inhibitors. Detecting such shifts is important for methods of treating GBM, methods of reducing the risk of ineffective therapy, methods for reducing the chances of tumor survival. For the purposes of this disclosure, 18F-deoxyglucose PET serves in certain embodiments as a rapid non-invasive functional biomarker to predict sensitivity to p53 activation. This non-invasive analysis could be particularly valuable for malignant brain tumors where pharmacokinetic/pharmacodynamics assessment is extremely difficult and impractical. In some cases, delayed imaging protocols (41) and parametric response maps (PRMs) with MRI fusion can be useful for quantifying the changes in tumour 18F-FDG uptake (42).
- In certain aspects, the methods can relate to measuring glucose uptake and lactate production. For cells in culture, glycolytic flux can be quantified by measuring glucose uptake and lactate excretion. Glucose uptake into the cell is through glucose transporters (Glut1-Glut4), whereas lactate excretion is through monocarboxylate transporters (MCT1-MCT4) at the cell membrane.
- Methods to detect glucose uptake and lactate excretion include, for example, extracellular glucose or lactate kit, extracellular bioanalyzer, ECAR measurement, [3H]-2-DG or [14C]-2-DG uptake 18FDG uptake or 2-NBDG uptake.
- Commercially available kits and instruments are available to quantify glucose and lactate levels within cell culture media. Kit detection methods are usually colorimetric or fluorometric and are compatible with standard lab equipment such as spectrophotometers. BioProfile Analyzers (such as Nova Biomedical) or Biochemistry Analyzers (such as for example YSI Life Sciences) can measure levels of both glucose and lactate in cell culture media. GlucCell (Cesco BioProducts) can measure only glucose levels in cell culture media. While each commercial method has a different detection protocol, the collection of culture media for analysis is the same.
- Glycolysis can also be determined through measurements of the extracellular acidification rate (ECAR) of the surrounding media, which is predominately from the excretion of lactic acid per unit time after its conversion from pyruvate. The Seahorse extracellular flux (XF) analyzer (Seahorse Bioscience) is a tool for measuring glycolysis and oxidative phosphorylation (through oxygen consumption) simultaneously in the same cells.
- Certain embodiments of the methods of the current disclosure include the use of glucose analogs. As would be familiar to a person skilled in the art, to determine the glucose uptake rate by cells, a labeled isoform of glucose can be added to the cell culture media and then measured within cells after a given period of time. Exemplary types of glucose analogs for these studies include but are not limited to radioactive glucose analogs, such as 2-deoxy-D-[1,2-3H]-glucose, 2-deoxy-D-[1-14C]-glucose, or 2-deoxy-2-(18F)-fluoro-D-glucose (18FDG), or fluorescent glucose analogs, such as 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Measurements of radioactive glucose analog uptake require a scintillation counter, whereas 2-NBDG uptake is usually measured by flow cytometry or fluorescent microscopy. In some embodiments, the glucose uptake is measured by the uptake of radio-labelled glucose 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG). In further embodiments, detecting the 18F-FDG is by positron emission tomography (PET). In some embodiments, the biopsy is taken from a GBM tumor. A detailed description of an example of measuring 18F-FDG is provided in the examples below.
- In certain aspects, the methods can relate to comparing glucose uptake of a biological sample such as a tumor sample with a control. Fold increases or decreases may be, be at least, or be at most 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, 100- or more, or any range derivable therein. Alternatively, differences in expression between a sample and a reference may be expressed as a percent decrease or increase, such as at least or at most 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000% difference, or any range derivable therein.
- Other ways to express relative expression levels are with normalized or relative numbers such as 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03. 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7. 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0, or any range derivable therein. In some embodiments, the levels can be relative to a control.
- Algorithms, such as the weighted voting programs, can be used to facilitate the evaluation of biomarker levels. In addition, other clinical evidence can be combined with the biomarker-based test to reduce the risk of false evaluations. Other cytogenetic evaluations may be considered in some embodiments.
- In another aspect, the present disclosure provides methods of making compounds of Formula I, I*, or a pharmaceutically acceptable salt thereof, according to Scheme 1 or Scheme 2:
- wherein:
- X is O, S, or NH;
- Z is aryl or heteroaryl;
- R1 is alkyl;
- R2a and R2b are each independently selected from hydrogen, alkyl, halo, CN, and NO2;
- R3 is hydrogen, alkyl, or acyl;
- R4 is alkoxy;
- R5 is alkyl;
- R21 is an alkyl substituted with a leaving group, e.g., a haloalkyl or sulfonylalkyl;
- B is a base;
- Nu is a nitrogen-containing heterocycle (e.g., having at least one N—H bond), aminoalkyl, or hydroxyalkyl;
- Sv1 is a solvent; and
- n is 0-3.
- In certain preferred embodiments, R21 is sufonylalkyl (e.g., CH3S(O)2OCH2—).
- In certain embodiments, B is a nitrogenous base (e.g., triethylamine or diisopropylethylamine).
- In certain embodiments, Nu is a nitrogen-containing heterocycle having at least one N—H bond (e.g., morpholine, N-methylpiperazine, piperidine, or pyrrolidine). In other embodiments, Nu is aminoalkyl (e.g., dimethylamine).
- In certain embodiments, the solvent is an aprotic solvent (e.g., dimethylformamide).
- In certain preferred embodiments, the method further comprises a step according to scheme 3 or 4:
- wherein:
- R22 is alkyl or hydroxyalkyl;
- R23a and R23b are each alkyl;
- R24 is aminoaryl or aminoheteroaryl; and
- Sv2 is an acid.
- In certain preferred embodiments, R22 is hydroxyalkyl.
- In certain embodiments, R23a and R23b are each methyl.
- In certain embodiments, R24 is aminoaryl. In other embodiments, R24 is aminoheteroaryl.
- In certain embodiments, Sv2 is an alkylacid (e.g., acetic acid).
- In certain preferred embodiments, the step in
scheme - In certain embodiments, the method further comprises a purification step. In certain embodiments, the purification step comprises column chromatography, preparative thin layer chromatography, or high performance liquid chromatography.
- Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclature used in connection with, and techniques of, chemistry, cell and tissue culture, molecular biology, cell and cancer biology, neurobiology, neurochemistry, virology, immunology, microbiology, pharmacology, genetics and protein and nucleic acid chemistry, described herein, are those well known and commonly used in the art.
- The methods and techniques of the present disclosure are generally performed, unless otherwise indicated, according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout this specification. See, e.g. “Principles of Neural Science”, McGraw-Hill Medical, New York, N.Y. (2000); Motulsky, “Intuitive Biostatistics”, Oxford University Press, Inc. (1995); Lodish et al., “Molecular Cell Biology, 4th ed.”, W. H. Freeman & Co., New York (2000); Griffiths et al., “Introduction to Genetic Analysis, 7th ed.”, W. H. Freeman & Co., N.Y. (1999); and Gilbert et al., “Developmental Biology, 6th ed.”, Sinauer Associates, Inc., Sunderland, Mass. (2000).
- Chemistry terms used herein, unless otherwise defined herein, are used according to conventional usage in the art, as exemplified by “The McGraw-Hill Dictionary of Chemical Terms”, Parker S., Ed., McGraw-Hill, San Francisco, Calif. (1985).
- All of the above, and any other publications, patents and published patent applications referred to in this application are specifically incorporated by reference herein. In case of conflict, the present specification, including its specific definitions, will control.
- The term “agent” is used herein to denote a chemical compound (such as an organic or inorganic compound, a mixture of chemical compounds), a biological macromolecule (such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues. Agents include, for example, agents whose structure is known, and those whose structure is not known. The ability of such agents to inhibit AR or promote AR degradation may render them suitable as “therapeutic agents” in the methods and compositions of this disclosure.
- A “patient,” “subject,” or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc.), companion animals (e.g., canines, felines, etc.) and rodents (e.g., mice and rats).
- “Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results. As used herein, and as well understood in the art, “treatment” is an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
- The term “preventing” is art-recognized, and when used in relation to a condition, such as a local recurrence (e.g., pain), a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition. Thus, prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
- “Administering” or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art. For example, a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, subcutaneously, ocularly, sublingually, orally (by ingestion), intranasally (by inhalation), intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct). A compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
- Appropriate methods of administering a substance, a compound or an agent to a subject will also depend, for example, on the age and/or the physical condition of the subject and the chemical and biological properties of the compound or agent (e.g., solubility, digestibility, bioavailability, stability and toxicity). In some embodiments, a compound or an agent is administered orally, e.g., to a subject by ingestion. In some embodiments, the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.
- As used herein, the phrase “conjoint administration” refers to any form of administration of two or more different therapeutic agents such that the second agent is administered while the previously administered therapeutic agent is still effective in the body (e.g., the two agents are simultaneously effective in the patient, which may include synergistic effects of the two agents). For example, the different therapeutic compounds can be administered either in the same formulation or in separate formulations, either concomitantly or sequentially. Thus, an individual who receives such treatment can benefit from a combined effect of different therapeutic agents.
- A “therapeutically effective amount” or a “therapeutically effective dose” of a drug or agent is an amount of a drug or an agent that, when administered to a subject will have the intended therapeutic effect. The full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically effective amount may be administered in one or more administrations. The precise effective amount needed for a subject will depend upon, for example, the subject's size, health and age, and the nature and extent of the condition being treated, such as cancer or MDS. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.
- As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may occur or may not occur, and that the description includes instances where the event or circumstance occurs as well as instances in which it does not. For example, “optionally substituted alkyl” refers to the alkyl may be substituted as well as where the alkyl is not substituted.
- It is understood that substituents and substitution patterns on the compounds of the present invention can be selected by one of ordinary skilled person in the art to result chemically stable compounds which can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials. If a substituent is itself substituted with more than one group, it is understood that these multiple groups may be on the same carbon or on different carbons, so long as a stable structure results.
- As used herein, the term “optionally substituted” refers to the replacement of one to six hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: hydroxyl, hydroxyalkyl, alkoxy, halogen, alkyl, nitro, silyl, acyl, acyloxy, aryl, cycloalkyl, heterocyclyl, amino, aminoalkyl, cyano, haloalkyl, haloalkoxy, —OCO—CH2—O-alkyl, —OP(O)(O-alkyl)2 or —CH2—OP(O)(O-alkyl)2. Preferably, “optionally substituted” refers to the replacement of one to four hydrogen radicals in a given structure with the substituents mentioned above. More preferably, one to three hydrogen radicals are replaced by the substituents as mentioned above. It is understood that the substituent can be further substituted.
- As used herein, the term “alkyl” refers to saturated aliphatic groups, including but not limited to C1-C10 straight-chain alkyl groups or C1-C10 branched-chain alkyl groups. Preferably, the “alkyl” group refers to C1-C6 straight-chain alkyl groups or C1-C6 branched-chain alkyl groups. Most preferably, the “alkyl” group refers to C1-C4 straight-chain alkyl groups or C1-C4 branched-chain alkyl groups. Examples of “alkyl” include, but are not limited to, methyl, ethyl, 1-propyl, 2-propyl, n-butyl, sec-butyl, tert-butyl, 1-pentyl, 2-pentyl, 3-pentyl, neo-pentyl, 1-hexyl, 2-hexyl, 3-hexyl, 1-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, 1-octyl, 2-octyl, 3-octyl or 4-octyl and the like. The “alkyl” group may be optionally substituted.
- The term “acyl” is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)—, preferably alkylC(O)—.
- The term “acylamino” is art-recognized and refers to an amino group substituted with an acyl group and may be represented, for example, by the formula hydrocarbylC(O)NH—.
- The term “acyloxy” is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)O—, preferably alkylC(O)O—.
- The term “alkoxy” refers to an alkyl group having an oxygen attached thereto. Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like.
- The term “alkoxyalkyl” refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.
- The term “alkyl” refers to saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups. In preferred embodiments, a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C1-30 for straight chains, C3-30 for branched chains), and more preferably 20 or fewer.
- Moreover, the term “alkyl” as used throughout the specification, examples, and claims is intended to include both unsubstituted and substituted alkyl groups, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone, including haloalkyl groups such as trifluoromethyl and 2,2,2-trifluoroethyl, etc.
- The term “Cx-y” or “Cx-Cy”, when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups that contain from x to y carbons in the chain. C0alkyl indicates a hydrogen where the group is in a terminal position, a bond if internal. A C1-6alkyl group, for example, contains from one to six carbon atoms in the chain.
- The term “alkylamino”, as used herein, refers to an amino group substituted with at least one alkyl group.
- The term “alkylthio”, as used herein, refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkylS-.
- The term “amide”, as used herein, refers to a group
- wherein R9 and R10 each independently represent a hydrogen or hydrocarbyl group, or R9 and R10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- The terms “amine” and “amino” are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by
- wherein R9, R10, and R10′ each independently represent a hydrogen or a hydrocarbyl group, or R9 and R10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- The term “aminoalkyl”, as used herein, refers to an alkyl group substituted with an amino group.
- The term “aralkyl”, as used herein, refers to an alkyl group substituted with an aryl group.
- The term “aryl” as used herein include substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon. Preferably the ring is a 5- to 7-membered ring, more preferably a 6-membered ring. The term “aryl” also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, and the like.
- The term “carbamate” is art-recognized and refers to a group
- wherein R9 and R10 independently represent hydrogen or a hydrocarbyl group.
- The term “carbocyclylalkyl”, as used herein, refers to an alkyl group substituted with a carbocycle group.
- The term “carbocycle” includes 5-7 membered monocyclic and 8-12 membered bicyclic rings. Each ring of a bicyclic carbocycle may be selected from saturated, unsaturated and aromatic rings. Carbocycle includes bicyclic molecules in which one, two or three or more atoms are shared between the two rings. The term “fused carbocycle” refers to a bicyclic carbocycle in which each of the rings shares two adjacent atoms with the other ring. Each ring of a fused carbocycle may be selected from saturated, unsaturated and aromatic rings. In an exemplary embodiment, an aromatic ring, e.g., phenyl, may be fused to a saturated or unsaturated ring, e.g., cyclohexane, cyclopentane, or cyclohexene. Any combination of saturated, unsaturated and aromatic bicyclic rings, as valence permits, is included in the definition of carbocyclic. Exemplary “carbocycles” include cyclopentane, cyclohexane, bicyclo[2.2.1]heptane, 1,5-cyclooctadiene, 1,2,3,4-tetrahydronaphthalene, bicyclo[4.2.0]oct-3-ene, naphthalene and adamantane. Exemplary fused carbocycles include decalin, naphthalene, 1,2,3,4-tetrahydronaphthalene, bicyclo[4.2.0]octane, 4,5,6,7-tetrahydro-1H-indene and bicyclo[4.1.0]hept-3-ene. “Carbocycles” may be substituted at any one or more positions capable of bearing a hydrogen atom.
- The term “carbocyclylalkyl”, as used herein, refers to an alkyl group substituted with a carbocycle group.
- The term “carbonate” is art-recognized and refers to a group —OCO2—.
- The term “carboxy”, as used herein, refers to a group represented by the formula —CO2H.
- The term “ester”, as used herein, refers to a group —C(O)OR9 wherein R9 represents a hydrocarbyl group.
- The term “ether”, as used herein, refers to a hydrocarbyl group linked through an oxygen to another hydrocarbyl group. Accordingly, an ether substituent of a hydrocarbyl group may be hydrocarbyl-O—. Ethers may be either symmetrical or unsymmetrical. Examples of ethers include, but are not limited to, heterocycle-O-heterocycle and aryl-O-heterocycle. Ethers include “alkoxyalkyl” groups, which may be represented by the general formula alkyl-O-alkyl.
- The terms “halo” and “halogen” as used herein means halogen and includes chloro, fluoro, bromo, and iodo.
- The terms “hetaralkyl” and “heteroaralkyl”, as used herein, refers to an alkyl group substituted with a hetaryl group.
- The terms “heteroaryl” and “hetaryl” include substituted or unsubstituted aromatic single ring structures, preferably 5- to 7-membered rings, more preferably 5- to 6-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The terms “heteroaryl” and “hetaryl” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
- The term “heteroatom” as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, and sulfur.
- The term “heterocyclylalkyl”, as used herein, refers to an alkyl group substituted with a heterocycle group.
- The terms “heterocyclyl”, “heterocycle”, and “heterocyclic” refer to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The terms “heterocyclyl” and “heterocyclic” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heterocyclyl groups include, for example, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.
- The term “hydrocarbyl”, as used herein, refers to a group that is bonded through a carbon atom that does not have a ═O or ═S substituent, and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include heteroatoms. Thus, groups like methyl, ethoxyethyl, 2-pyridyl, and even trifluoromethyl are considered to be hydrocarbyl for the purposes of this application, but substituents such as acetyl (which has a ═O substituent on the linking carbon) and ethoxy (which is linked through oxygen, not carbon) are not. Hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof.
- The term “hydroxyalkyl”, as used herein, refers to an alkyl group substituted with a hydroxy group.
- The term “lower” when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups where there are ten or fewer atoms in the substituent, preferably six or fewer. A “lower alkyl”, for example, refers to an alkyl group that contains ten or fewer carbon atoms, preferably six or fewer. In certain embodiments, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy substituents defined herein are respectively lower acyl, lower acyloxy, lower alkyl, lower alkenyl, lower alkynyl, or lower alkoxy, whether they appear alone or in combination with other substituents, such as in the recitations hydroxyalkyl and aralkyl (in which case, for example, the atoms within the aryl group are not counted when counting the carbon atoms in the alkyl substituent).
- The terms “polycyclyl”, “polycycle”, and “polycyclic” refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more atoms are common to two adjoining rings, e.g., the rings are “fused rings”. Each of the rings of the polycycle can be substituted or unsubstituted. In certain embodiments, each ring of the polycycle contains from 3 to 10 atoms in the ring, preferably from 5 to 7.
- The term “sulfate” is art-recognized and refers to the group —OSO3H, or a pharmaceutically acceptable salt thereof.
- The term “sulfonamide” is art-recognized and refers to the group represented by the general formulae
- wherein R9 and R10 independently represents hydrogen or hydrocarbyl.
- The term “sulfoxide” is art-recognized and refers to the group-S(O)—.
- The term “sulfonate” is art-recognized and refers to the group SO3H, or a pharmaceutically acceptable salt thereof.
- The term “sulfone” is art-recognized and refers to the group —S(O)2—.
- The term “substituted” refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that “substitution” or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. Substituents can include any substituents described herein, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate.
- The term “thioalkyl”, as used herein, refers to an alkyl group substituted with a thiol group.
- The term “thioester”, as used herein, refers to a group —C(O)SR9 or —SC(O)R9
- wherein R9 represents a hydrocarbyl.
- The term “thioether”, as used herein, is equivalent to an ether, wherein the oxygen is replaced with a sulfur.
- The term “urea” is art-recognized and may be represented by the general formula
- wherein R9 and R10 independently represent hydrogen or a hydrocarbyl.
- The term “modulate” as used herein includes the inhibition or suppression of a function or activity (such as cell proliferation) as well as the enhancement of a function or activity.
- The phrase “pharmaceutically acceptable” is art-recognized. In certain embodiments, the term includes compositions, excipients, adjuvants, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- “Pharmaceutically acceptable salt” or “salt” is used herein to refer to an acid addition salt or a basic addition salt which is suitable for or compatible with the treatment of patients.
- The term “pharmaceutically acceptable acid addition salt” as used herein means any non-toxic organic or inorganic salt of any base compounds represented by Formula I. Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acids, as well as metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate. Illustrative organic acids that form suitable salts include mono-, di-, and tricarboxylic acids such as glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, benzoic, phenylacetic, cinnamic and salicylic acids, as well as sulfonic acids such as p-toluene sulfonic and methanesulfonic acids. Either the mono or di-acid salts can be formed, and such salts may exist in either a hydrated, solvated or substantially anhydrous form. In general, the acid addition salts of compounds of Formula I are more soluble in water and various hydrophilic organic solvents, and generally demonstrate higher melting points in comparison to their free base forms. The selection of the appropriate salt will be known to one skilled in the art. Other non-pharmaceutically acceptable salts, e.g., oxalates, may be used, for example, in the isolation of compounds of Formula I for laboratory use, or for subsequent conversion to a pharmaceutically acceptable acid addition salt.
- The term “pharmaceutically acceptable basic addition salt” as used herein means any non-toxic organic or inorganic base addition salt of any acid compounds represented by Formula I or any of their intermediates. Illustrative inorganic bases which form suitable salts include lithium, sodium, potassium, calcium, magnesium, or barium hydroxide. Illustrative organic bases which form suitable salts include aliphatic, alicyclic, or aromatic organic amines such as methylamine, trimethylamine and picoline or ammonia. The selection of the appropriate salt will be known to a person skilled in the art.
- Many of the compounds useful in the methods and compositions of this disclosure have at least one stereogenic center in their structure. This stereogenic center may be present in a R or a S configuration, said R and S notation is used in correspondence with the rules described in Pure Appl. Chem. (1976), 45, 11-30. The disclosure contemplates all stereoisomeric forms such as enantiomeric and diastereoisomeric forms of the compounds, salts, prodrugs or mixtures thereof (including all possible mixtures of stereoisomers). See, e.g., WO 01/062726.
- Furthermore, certain compounds which contain alkenyl groups may exist as Z (zusammen) or E (entgegen) isomers. In each instance, the disclosure includes both mixture and separate individual isomers.
- Some of the compounds may also exist in tautomeric forms. Such forms, although not explicitly indicated in the formulae described herein, are intended to be included within the scope of the present disclosure.
- “Prodrug” or “pharmaceutically acceptable prodrug” refers to a compound that is metabolized, for example hydrolyzed or oxidized, in the host after administration to form the compound of the present disclosure (e.g., compounds of formula I). Typical examples of prodrugs include compounds that have biologically labile or cleavable (protecting) groups on a functional moiety of the active compound. Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, or dephosphorylated to produce the active compound. Examples of prodrugs using ester or phosphoramidate as biologically labile or cleavable (protecting) groups are disclosed in U.S. Pat. Nos. 6,875,751, 7,585,851, and 7,964,580, the disclosures of which are incorporated herein by reference. The prodrugs of this disclosure are metabolized to produce a compound of Formula I. The present disclosure includes within its scope, prodrugs of the compounds described herein. Conventional procedures for the selection and preparation of suitable prodrugs are described, for example, in “Design of Prodrugs” Ed. H. Bundgaard, Elsevier, 1985.
- The phrase “pharmaceutically acceptable carrier” as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material useful for formulating a drug for medicinal or therapeutic use.
- The term “Log of solubility”, “Log S” or “log S” as used herein is used in the art to quantify the aqueous solubility of a compound. The aqueous solubility of a compound significantly affects its absorption and distribution characteristics. A low solubility often goes along with a poor absorption. Log S value is a unit stripped logarithm (base 10) of the solubility measured in mol/liter.
- The compositions and methods of the present invention may be utilized to treat an individual in need thereof. In certain embodiments, the individual is a mammal such as a human, or a non-human mammal. When administered to an animal, such as a human, the composition or the compound is preferably administered as a pharmaceutical composition comprising, for example, a compound of the invention and a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known in the art and include, for example, aqueous solutions such as water or physiologically buffered saline or other solvents or vehicles such as glycols, glycerol, oils such as olive oil, or injectable organic esters. In preferred embodiments, when such pharmaceutical compositions are for human administration, particularly for invasive routes of administration (i.e., routes, such as injection or implantation, that circumvent transport or diffusion through an epithelial barrier), the aqueous solution is pyrogen-free, or substantially pyrogen-free. The excipients can be chosen, for example, to effect delayed release of an agent or to selectively target one or more cells, tissues or organs. The pharmaceutical composition can be in dosage unit form such as tablet, capsule (including sprinkle capsule and gelatin capsule), granule, lyophile for reconstitution, powder, solution, syrup, suppository, injection or the like. The composition can also be present in a transdermal delivery system, e.g., a skin patch. The composition can also be present in a solution suitable for topical administration, such as a lotion, cream, or ointment.
- A pharmaceutically acceptable carrier can contain physiologically acceptable agents that act, for example, to stabilize, increase solubility or to increase the absorption of a compound such as a compound of the invention. Such physiologically acceptable agents include, for example, carbohydrates, such as glucose, sucrose or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients. The choice of a pharmaceutically acceptable carrier, including a physiologically acceptable agent, depends, for example, on the route of administration of the composition. The preparation or pharmaceutical composition can be a selfemulsifying drug delivery system or a selfmicroemulsifying drug delivery system. The pharmaceutical composition (preparation) also can be a liposome or other polymer matrix, which can have incorporated therein, for example, a compound of the invention. Liposomes, for example, which comprise phospholipids or other lipids, are nontoxic, physiologically acceptable and metabolizable carriers that are relatively simple to make and administer.
- The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- The phrase “pharmaceutically acceptable carrier” as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
- A pharmaceutical composition (preparation) can be administered to a subject by any of a number of routes of administration including, for example, orally (for example, drenches as in aqueous or non-aqueous solutions or suspensions, tablets, capsules (including sprinkle capsules and gelatin capsules), boluses, powders, granules, pastes for application to the tongue); absorption through the oral mucosa (e.g., sublingually); subcutaneously; transdermally (for example as a patch applied to the skin); and topically (for example, as a cream, ointment or spray applied to the skin). The compound may also be formulated for inhalation. In certain embodiments, a compound may be simply dissolved or suspended in sterile water. Details of appropriate routes of administration and compositions suitable for same can be found in, for example, U.S. Pat. Nos. 6,110,973, 5,763,493, 5,731,000, 5,541,231, 5,427,798, 5,358,970 and 4,172,896, as well as in patents cited therein.
- The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient that can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.
- Methods of preparing these formulations or compositions include the step of bringing into association an active compound, such as a compound of the invention, with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a compound of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
- Formulations of the invention suitable for oral administration may be in the form of capsules (including sprinkle capsules and gelatin capsules), cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), lyophile, powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the present invention as an active ingredient. Compositions or compounds may also be administered as a bolus, electuary or paste.
- To prepare solid dosage forms for oral administration (capsules (including sprinkle capsules and gelatin capsules), tablets, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; (10) complexing agents, such as, modified and unmodified cyclodextrins; and (11) coloring agents. In the case of capsules (including sprinkle capsules and gelatin capsules), tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- The tablets, and other solid dosage forms of the pharmaceutical compositions, such as dragees, capsules (including sprinkle capsules and gelatin capsules), pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions that can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
- Liquid dosage forms useful for oral administration include pharmaceutically acceptable emulsions, lyophiles for reconstitution, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, cyclodextrins and derivatives thereof, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
- Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- Dosage forms for the topical or transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that may be required.
- The ointments, pastes, creams and gels may contain, in addition to an active compound, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to an active compound, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- Transdermal patches have the added advantage of providing controlled delivery of a compound of the present invention to the body. Such dosage forms can be made by dissolving or dispersing the active compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the compound in a polymer matrix or gel.
- The phrases “parenteral administration” and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion. Pharmaceutical compositions suitable for parenteral administration comprise one or more active compounds in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- Examples of suitable aqueous and nonaqueous carriers that may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.
- In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
- Injectable depot forms are made by forming microencapsulated matrices of the subject compounds in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissue.
- For use in the methods of this invention, active compounds can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
- Methods of introduction may also be provided by rechargeable or biodegradable devices. Various slow release polymeric devices have been developed and tested in vivo in recent years for the controlled delivery of drugs, including proteinaceous biopharmaceuticals. A variety of biocompatible polymers (including hydrogels), including both biodegradable and non-degradable polymers, can be used to form an implant for the sustained release of a compound at a particular target site.
- Actual dosage levels of the active ingredients in the pharmaceutical compositions may be varied so as to obtain an amount of the active ingredient that is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
- The selected dosage level will depend upon a variety of factors including the activity of the particular compound or combination of compounds employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound(s) being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound(s) employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
- A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the therapeutically effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the pharmaceutical composition or compound at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. By “therapeutically effective amount” is meant the concentration of a compound that is sufficient to elicit the desired therapeutic effect. It is generally understood that the effective amount of the compound will vary according to the weight, sex, age, and medical history of the subject. Other factors which influence the effective amount may include, but are not limited to, the severity of the patient's condition, the disorder being treated, the stability of the compound, and, if desired, another type of therapeutic agent being administered with the compound of the invention. A larger total dose can be delivered by multiple administrations of the agent. Methods to determine efficacy and dosage are known to those skilled in the art (Isselbacher et al. (1996) Harrison's Principles of Internal Medicine 13 ed., 1814-1882, herein incorporated by reference).
- In general, a suitable daily dose of an active compound used in the compositions and methods of the invention will be that amount of the compound that is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above.
- If desired, the effective daily dose of the active compound may be administered as one, two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. In certain embodiments of the present invention, the active compound may be administered two or three times daily. In preferred embodiments, the active compound will be administered once daily.
- The patient receiving this treatment is any animal in need, including primates, in particular humans; and other mammals such as equines, cattle, swine, sheep, cats, and dogs; poultry; and pets in general.
- In certain embodiments, compounds of the invention may be used alone or conjointly administered with another type of therapeutic agent.
- The present disclosure includes the use of pharmaceutically acceptable salts of compounds of the invention in the compositions and methods of the present invention. In certain embodiments, contemplated salts of the invention include, but are not limited to, alkyl, dialkyl, trialkyl or tetra-alkyl ammonium salts. In certain embodiments, contemplated salts of the invention include, but are not limited to, L-arginine, benenthamine, benzathine, betaine, calcium hydroxide, choline, deanol, diethanolamine, diethylamine, 2-(diethylamino)ethanol, ethanolamine, ethylenediamine, N-methylglucamine, hydrabamine, 1H-imidazole, lithium, L-lysine, magnesium, 4-(2-hydroxyethyl)morpholine, piperazine, potassium, 1-(2-hydroxyethyl)pyrrolidine, sodium, triethanolamine, tromethamine, and zinc salts. In certain embodiments, contemplated salts of the invention include, but are not limited to, Na, Ca, K, Mg, Zn or other metal salts. In certain embodiments, contemplated salts of the invention include, but are not limited to, 1-hydroxy-2-naphthoic acid, 2,2-dichloroacetic acid, 2-hydroxyethanesulfonic acid, 2-oxoglutaric acid, 4-acetamidobenzoic acid, 4-aminosalicylic acid, acetic acid, adipic acid, 1-ascorbic acid, 1-aspartic acid, benzenesulfonic acid, benzoic acid, (+)-camphoric acid, (+)-camphor-10-sulfonic acid, capric acid (decanoic acid), caproic acid (hexanoic acid), caprylic acid (octanoic acid), carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, d-glucoheptonic acid, d-gluconic acid, d-glucuronic acid, glutamic acid, glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, hydrobromic acid, hydrochloric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, 1-malic acid, malonic acid, mandelic acid, methanesulfonic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, nicotinic acid, nitric acid, oleic acid, oxalic acid, palmitic acid, pamoic acid, phosphoric acid, proprionic acid, 1-pyroglutamic acid, salicylic acid, sebacic acid, stearic acid, succinic acid, sulfuric acid, 1-tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, and undecylenic acid acid salts.
- The pharmaceutically acceptable acid addition salts can also exist as various solvates, such as with water, methanol, ethanol, dimethylformamide, and the like. Mixtures of such solvates can also be prepared. The source of such solvate can be from the solvent of crystallization, inherent in the solvent of preparation or crystallization, or adventitious to such solvent.
- Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
- Examples of pharmaceutically acceptable antioxidants include: (1) water-soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal-chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
- The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.
- General Procedures: Compounds of the JGK series may be prepared by the methods described below, or by any other suitable method. The JGK series compounds are sometimes referred to herein with a JCN prefix. All reactions were routinely carried out under an inert atmosphere of argon. Unless otherwise noted, materials were obtained from commercial suppliers and were used without purification. All solvents were purified and dried by standard techniques just before use. THF and Et2O were freshly distilled from sodium and benzophenone. Methylene chloride, toluene, and benzene were purified by refluxing with CaH2. Reactions were checked by thin layer chromatography (
Kieselgel 60 F254, Merck). Spots were detected by viewing under a UV light, and by colorizing with charring after dipping in a p-anisaldehyde solution or phosphomolybdic acid solution. In aqueous work-up, all organic solutions were dried over anhydrous magnesium sulfate and filtered prior to rotary evaporation at water pump pressure. The crude compounds were purified by column chromatography on a silica gel (SilicaFlash P60, 230-400 mesh, SiliCycle Inc). Proton (1H) and carbon (13C) NMR spectra were obtained on a Bruker AV 400 (400/100 MHz) or Bruker AV500 (500/125 MHz) spectrometer. Chemical shifts are reported in ppm units with Me4Si or CHCl3 as the internal standard. Splitting patterns are designated by: s, singlet; d, doublet; t, triplet; m, multiplet; b, broad. High resolution mass spectrometry data was obtained using a Thermo Fisher Scientific Exactive Plus with IonSense ID-CUBE DART source. -
- [JGK001] To a solution of Erlotinib (134 mg, 0.3406 mmol) in anhydrous methanol (5.0 mL) was added Di-tert-butyl dicarbonate (228 mg, 1.7029 mmol) in one portion at room temperature. After being stirred at the same temperature for 48 h and concentrated in vacuo. The reaction mixture was diluted with H2O (30 mL) and EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to give JGK001 (156 mg, 73%); 1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.43 (s, 1H), 7.20-7.23 (m, 2H), 7.16 (td, J=1.2, 7.6 Hz, 1H), 7.09 (d, J=8.0 Hz, 1H), 4.16-4.25 (m, 4H), 3.80 (t, J=5.2 Hz, 2H), 3.77 (t, J=5.2 Hz, 2H), 3.45 (s, 3H), 3.44 (s, 3H), 3.44 (s, 3H), 3.03 (s, 1H), 1.55 (s, 9H), 1.11 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 152.1, 151.5, 149.2, 148.8, 145.7, 142.7, 130.6, 128.9, 127.4, 125.3, 122.6, 121.5, 114.7, 111.4, 108.0, 90.7, 83.7, 83.3, 82.9, 76.8, 70.9, 70.7, 68.8, 68.7, 59.2, 59.1, 55.0, 28.2, 27.3; HRMS-ESI [M+H]+ found 626.3061 [calcd for C33H43N3O9 625.2993].
- [JGK003] To a solution of Erlotinib (101 mg, 0.2567 mmol) in anhydrous ethanol (2.6 mL) was added Di-tert-butyl dicarbonate (172 mg, 1.2836 mmol) in one portion at room temperature. After being stirred at the same temperature for 48 h and concentrated in vacuo. The reaction mixture was diluted with H2O (30 mL) and EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to give JGK003 (117 mg, 71%); 1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.43 (s, 1H), 7.34 (s, 1H), 7.21-7.24 (m, 2H), 7.16 (d, J=7.6 Hz, 1H), 7.10 (d, J=7.6 Hz, 1H), 4.17-4.25 (m, 4H), 3.61-3.82 (m, 6H), 3.46 (s, 3H), 3.45 (s, 3H), 3.02 (s, 1H), 1.55 (s, 9H), 1.23 (t, J=6.8 Hz, 3H), 1.12 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 152.0, 151.4, 149.2, 148.9, 145.5, 143.0, 130.8, 128.8, 127.3, 125.3, 122.5, 121.7, 114.7, 111.3, 107.9, 89.3, 83.7, 83.2, 82.8, 76.7, 70.9, 70.7, 68.8, 68.6, 63.0, 59.2, 59.1, 28.2, 27.4, 14.6; HRMS-ESI [M+H]+ found 640.3211 [calcd for C34H45N3O9 639.3150].
-
- To a solid of erlotinib (165 mg, 0.4194 mmol) was added acetic anhydride (5.0 mL). After being heated at 90° C. (bath temperature) with stirring for 3 d, the reaction mixture was cooled to room temperature and neutralized with saturated aqueous NaHCO3 (20 mL), and diluted with EtOAc (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 1/1 to 1/3) to give JGK002 (161 mg, 88% isolated yield); 1H NMR (400 MHz, CDCl3) δ 9.06 (s, 1H,), 7.45 (t, J=1.6 Hz, 1H,), 7.37-7.39 (m, 2H), 7.36 (s, 1H), 7.30-7.34 (m, 1H), 7.15 (s, 1H), 4.32 (t, J=4.8 Hz, 2H), 4.16 (t, J=4.8 Hz, 2H), 3.86 (t, J=4.8 Hz, 2H), 3.79 (t, J=4.8 Hz, 2H), 3.46 (s, 3H), 3.45 (s, 3H), 3.06 (s, 1H), 2.14 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.5, 158.8, 156.1, 153.5, 151.1, 150.8, 141.0, 130.9, 130.3, 129.3, 127.5, 123.4, 117.2, 107.9, 103.1, 82.4, 78.4, 70.6, 70.3, 68.9, 68.7, 59.3, 59.3, 23.7; HRMS-ESI [M+H]+ found 436.1811 [calcd for C24H25N3O5 435.1788].
-
- [Cyclization] To a solution of diol 2 (530 mg, 2.6959 mmol) in DMF (13.5 mL, 0.2 M) was added in one portion potassium carbonate (1490 mg), followed by successive dropwise addition of 1-bromo-2-chloroethane (1.3 mL) at room temperature under Ar. After being heated at 60° C. (bath temperature) with stirring for 24 h, the reaction mixture was cooled to room temperature, quenched with H2O (50 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 6/1 to 3/1) to give fused-chloroquinazoline 3 (404 mg, 67%); 1H NMR (400 MHz, CDCl3) δ 8.84 (s, 1H), 7.64 (s, 1H), 7.47 (s, 1H), 4.43-4.45 (m, 2H), 4.39-4.42 (m, 2H). [known compound; Chilin, A. et al. J. Med. Chem. 2010, 53, 1862-1866]
- [JGK010] To a solution of fused-chloroquinazoline 3 (114 mg, 0.5120 mmol) in DMF (2.6 mL) was dropwise added 3-chloro-2-fluoroaniline (0.10 mL) at room temperature. After being heated at 60° C. (bath temperature) with stirring for 24 h, the reaction mixture was cooled to room temperature and diluted with Et2O (30.0 mL) to give white suspension. The resulting white solid were washed successively with Et2O (2×50 mL) and collected to give JGK010 (140 mg, 82%); 1H NMR (400 MHz, CDCl3) δ 8.68 (s, 1H), 8.59 (ddd, J=3.2, 6.8, 6.8 Hz, 1H), 7.39 (s, 1H), 7.34 (s, 1H), 7.29 (s, 1H), 7.10-7.18 (m, 2H), 4.38-4.43 (m, 4H); 1H NMR (500 MHz, DMSO-d6) δ 11.78 (s, 1H), 8.79 (s, 1H), 8.45 (s, 1H), 7.62 (t, J=7.0 Hz, 1H), 7.50 (t, J=7.0 Hz, 1H), 7.43 (s, 1H), 7.34 (t, J=8.0 Hz, 1H), 4.46-4.53 (m, 2H), 4.40-4.52 (m, 2H); 13C NMR (125 MHz, DMSO-d6) δ 159.8, 154.0, 152.2, 149.9, 145.7, 135.2, 129.9, 128.1, 126.4, 125.8, 120.9, 111.3, 108.1, 105.8, 65.5, 64.6; HRMS-ESI [M+H]+ found 332.0551 [calcd for C16H11ClFN3O2 331.0518].
-
- To a solution of fused-chloroquinazoline 3 (14 mg, 0.0628 mmol) in CH3CN (2.0 mL) was dropwise added 3-ethynylaniline (0.05 mL) at room temperature. After being heated at 80° C. (bath temperature) with stirring for 12 h, the reaction mixture was cooled to room temperature, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to give JGK005 (10 mg, 52%); 1H NMR (400 MHz, DMSO-d6) δ 9.45 (s, 1H), 8.43 (s, 1H), 8.04-8.05 (m, 2H), 7.87-7.90 (m, 1H), 7.34 (t, J=7.9 Hz, 1H), 7.14-7.16 (m, 2H), 4.35-4.39 (m, 4H), 4.14 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ 156.8, 153.3, 149.5, 146.5, 144.1, 140.2, 129.3, 126.7, 124.9, 122.7, 122.1, 113.0, 110.4, 108.8, 84.0, 80.9, 64.9, 64.6; HRMS-ESI [M+H]+ found 304.1079 [calcd for C18H13N3O2 303.1002].
-
- Preparation of JGK025 was followed by General Procedure; JGK025 (25%); 1H NMR (400 MHz, DMSO-d6) δ 11.30 (s, 1H), 8.73 (s, 1H), 8.28 (s, 1H), 7.51-7.58 (m, 1H), 7.41-7.48 (m, 1H), 7.35 (s, 1H), 7.17-7.23 (m, 1H), 4.44-4.50 (m, 2H), 4.39-4.44 (m, 2H); 13C NMR (125 MHz, MeOD) δ 161.6 (J=245.9 Hz), 160.0, 157.6 (J=249.6 Hz), 152.1, 150.1, 145.6, 135.4, 130.4, 121.4, 112.4, 110.9, 108.1, 108.1, 105.4, 65.5, 64.6; HRMS-ESI [M+H]+ found 316.0890 [calcd for C16H11F2N3O2 315.0813].
-
- Preparation of JGK026 was followed by General Procedure; JGK026 (22%); 1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.74 (s, 1H), 8.18 (s, 1H), 7.39-7.51 (m, 2H), 7.30 (s, 1H), 7.23-7.29 (m, 1H), 4.45-4.49 (m, 2H), 4.40-4.44 (m, 2H); 13C NMR (125 MHz, MeOD) δ 159.8, 158.1 (J=239.6 Hz), 153.7 (J=243.2 Hz), 152.1, 150.1, 145.7, 135.7, 126.0, 117.9, 117.8, 116.0, 110.9, 108.2, 106.2, 65.5, 64.6; HRMS-ESI [M+H]+ found 316.0893 [calcd for C16H11F2N3O2 315.0813].
-
- Preparation of JGK027 was followed by General Procedure; JGK027 (6%); 1H NMR (400 MHz, DMSO-d6) δ 11.23 (bs, 1H), 8.75 (s, 1H), 8.29 (s, 1H), 7.91 (s, 1H), 7.46-7.55 (m, 1H), 7.29 (t, J=8.1 Hz, 2H), 4.46-4.50 (m, 2H), 4.40-4.46 (m, 2H); 13C NMR (125 MHz, MeOD) δ 163.6, 160.7, 160.4, 158.4, 152.5, 151.5, 146.2, 130.6, 115.6, 113.5, 113.4, 111.9, 109.3, 108.2, 66.2, 65.3; HRMS-ESI [M+H]+ found 316.0889 [calcd for C16H11F2N3O2 315.0813].
-
- Preparation of JGK028 was followed by General Procedure; JGK028 (41%); 1H NMR (500 MHz, MeOD) δ 8.64 (s, 1H), 8.03 (s, 1H), 7.31-7.38 (m, 2H), 7.24-7.31 (m, 2H), 4.50-4.55 (m, 2H), 4.44-4.50 (m, 2H); 13C NMR (125 MHz, MeOD) δ 160.1, 152.8, 150.9 (J=245.6 Hz), 149.0, 146.2, 145.9 (J=249.7 Hz), 134.6, 126.0, 124.0, 123.1, 116.2, 109.8, 107.8, 105.0, 65.2, 64.2; HRMS-ESI [M+H]+ found 316.0884 [calcd for C16H11F2N3O2 315.0813].
-
- Preparation of JGK029 was followed by General Procedure; JGK029 (52%); 1H NMR (500 MHz, MeOD) δ 8.60 (s, 1H), 7.98 (s, 1H), 7.29 (s, 1H), 7.07-7.13 (m, 2H), 4.50-4.53 (m, 2H), 4.44-4.48 (m, 2H); 13C NMR (125 MHz, DMSO-d6) δ 161.7, 160.3, 158.6, 158.1, 153.2, 150.3, 144.4, 143.7, 117.2, 113.8, 113.0, 112.3, 109.5, 101.5, 65.3, 64.5; HRMS-ESI [M+H]+ found 334.0794 [calcd for C16H10F3N3O2 333.0719].
-
- Preparation of JGK017 was followed by General Procedure; JGK017 (5%); 1H NMR (500 MHz, CDCl3) δ 8.59 (s, 1H), 8.15 (d, J=8.3 Hz, 1H), 7.49 (t, J=8.1 Hz, 1H), 7.38 (s, 1H), 7.34 (d, J=7.9 Hz, 1H), 7.21 (s, 1H), 4.41-4.42 (m, 2H), 4.38-4.40 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 156.4, 153.2, 149.7, 146.7, 144.5, 138.4, 133.5, 132.2, 128.2, 125.4, 119.9, 119.7, 114.3, 110.4, 105.7, 64.5, 64.3.
-
- [Benzoylation] To a cooled (0° C.) solution of diol 2 (205 mg, 1.0428 mmol) in anhydrous CH2Cl2 (5.2 mL, 0.2 M) was dropwise added successively pyridine (0.5 mL) and benzoyl chloride (0.7 mL) under Ar. After being stirred at the room temperature for 12 h, the reaction mixture was quenched with saturated aqueous NH4Cl (20 mL), and diluted with CH2Cl2 (20 mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 (2×50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to give benzoyl chloroquinazoline 2-(2) (220 mg, 52%); 1H NMR (400 MHz, CDCl3) δ 9.07 (s, 1H), 8.31 (s, 1H), 8.16 (s, 1H), 8.04-8.07 (m, 4H), 7.53-7.58 (m, 2H), 7.34-7.39 (m, 4H). [JGK004] To a solution of benzoyl chloroquinazoline 2-(2) (180 mg, 0.444 mmol) in CH3CN (3.0 mL) was dropwise added 3-chloro-2-fluoroaniline (0.06 mL, 0.533 mmol) at room temperature. After being heated at 80° C. (bath temperature) with stirring for 15 h, the reaction mixture was cooled to room temperature, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to give JGK004 (109 mg, 48%); 1H NMR (400 MHz, CDCl3) δ 8.85 (s, 1H), 8.48-8.53 (m, 1H), 8.08 (t, J=7.2 Hz, 4H), 7.99 (d, J=3.2 Hz, 2H), 7.51-7.59 (m, 3H), 7.39 (dd, J=8.4, 16.0 Hz, 4H), 7.16-7.21 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 164.2, 163.7, 156.6, 155.1, 150.6, 149.1, 148.6, 147.5, 142.1, 134.1, 134.1, 130.3, 130.2, 128.6, 128.6, 128.1, 128.0, 127.9, 127.8, 125.3, 124.6, 124.5, 122.9, 121.6, 121.0, 120.9, 114.4, 113.3; HRMS-ESI [M+H]+ found 514.0963 [calcd for C28H17ClFN3O4 513.0886].
-
- To a solution of benzoyl chloroquinazoline 2-(2) (100 mg, 0.247 mmol) in CH3CN (3.0 mL) was dropwise added 3-ethynylaniline (0.05 mL, 0.430 mmol) at room temperature. After being heated at 50° C. (bath temperature) with stirring for 24 h, the reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 4/1) to give JGK006 (48 mg, 40%); 1H NMR (400 MHz, CDCl3) δ 8.71 (s, 1H), 8.03 (d, J=8.0 Hz, 2H), 7.96 (s, 1H), 7.90-7.95 (m, 2H), 7.79 (s, 1H), 7.62-7.75 (m, 3H), 7.55 (t, J=7.3 Hz, 1H), 7.48 (t, J=7.5 Hz, 1H), 7.37 (t, J=7.4 Hz, 2H), 7.22-7.31 (m, 4H), 3.04 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 164.8, 163.9, 156.7, 155.3, 148.9, 146.9, 141.3, 138.1, 134.1, 134.0, 130.3, 130.1, 128.9, 128.6, 128.5, 128.1, 128.0, 127.9, 124.8, 122.7, 122.4, 122.1, 115.1, 113.1, 83.3; HRMS-ESI [M+H]+ found 486.1443 [calcd for C30H19N3O4 485.1370]
-
- 1.0 M hydrogen chloride solution was generated by addition of hydrogen chloride solution (0.1 mL, 4.0 M in dioxane, 0.4 mmol) to THF (0.3 mL) at room temperature. To a solution of JGK010 (6.1 mg, 0.01839 mmol) in MeOH was dropwise added the above-generated hydrogen chloride solution (0.030 mL, 0.030 mmol) at room temperature. After being stirred at the same temperature for 10 seconds, the reaction mixture was concentrated in vacuo to give JGK032 (6.7 mg, 99%); 1H NMR (500 MHz, DMSO-d6) δ 11.63 (s, 1H), 8.81 (s, 1H), 8.36 (s, 1H), 7.63 (ddd, J=1.6, 6.9, 8.3 Hz, 1H), 7.39 (s, 1H), 7.35 (ddd, J=1.1, 8.1, 16.2 Hz, 1H), 4.49-4.51 (m, 2H), 4.43-4.45 (m, 2H).
-
- To a solid of JGK010 (39 mg, 0.1176 mmol) was added acetic anhydride (5.0 mL). After being heated at 80° C. (bath temperature) with stirring for 12 h, the reaction mixture was cooled to room temperature and neutralized with saturated aqueous NaHCO3 (20 mL), and diluted with EtOAc (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1 to 1/1) to give JGK012 (37 mg, 84% isolated yield); 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H), 7.49 (s, 1H), 7.44 (s, 1H), 7.31-7.41 (m, 2H), 7.09 (t, J=8.0 Hz, 1H), 4.41-4.43 (m, 2H), 4.37-4.40 (m, 2H), 2.15 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 170.2, 159.2, 153.3, 151.3, 149.7, 145.8, 130.6, 129.8, 129.7, 124.7, 122.5, 122.4, 117.7, 113.6, 109.2, 64.5, 64.2, 22.9; HRMS-ESI [M+H]+ found 374.0701 [calcd for C18H13ClFN3O3 373.0623].
-
- To a solution of L-amino acid analogue A (227 mg, 0.7712 mmol) in DMF (3.0 mL) was added in one portion fused-chloroquinazoline 3 (117 mg, 0.5932 mmol) at room temperature. After being heated at 35° C. (bath temperature) with stirring for 12 h, the reaction mixture was cooled to room temperature and diluted with saturated brine (30.0 mL) and EtOAc (30.0 mL) to give yellow suspension. The layers were separated, and the aqueous layer was extracted with EtOAc (2×50 mL). The combined organic layers were concentrated in vacuo. The residue was purified by column chromatography (silica gel, CH2Cl2/MeOH, 40/1 to 10/1) to give JGK015 (261 mg, 92%); 1H NMR (500 MHz, CDCl3) δ 8.57 (s, 1H), 7.64 (s, 1H), 7.61 (d, J=8.0 Hz, 2H), 7.37 (s, 1H), 7.27 (s, 1H), 7.08 (d, J=8.5 Hz, 2H), 5.09 (d, J=7.5 Hz, 1H), 4.54 (dd, J=6.0, 13.5 Hz, 1H), 4.31-4.33 (m, 2H), 4.27-4.29 (m, 2H), 3.68 (s, 3H), 3.06 (dd, J=5.6, 14.0 Hz, 1H), 3.00 (dd, J=6.1, 13.8 Hz, 1H), 1.39 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 172.4, 156.5, 155.2, 153.6, 149.1, 146.3, 143.8, 137.6, 131.6, 129.7, 121.7, 113.8, 110.3, 106.6, 80.0, 64.4, 64.2, 54.4, 52.2, 37.6, 28.3; HRMS-ESI [M+H]+ found 481.2082 [calcd for C25H28N4O6 480.2003].
-
- [JGK016 (Boc deprotection)] To a solution of JGK015 (121 mg, 0.251 mmol) in anhydrous CH2Cl2 (5 mL, 0.05 M) was dropwise added trifluoroacetic acid (1.0 mL) at room temperature. After being stirred at the same temperature for 5 h, the reaction mixture was quenched with saturated aqueous NaHCO3 (20 mL), and diluted with CH2Cl2 (20 mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 (2×30 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, CH2Cl2/MeOH, 20/1) to give JGK016 (74 mg, 77%); 1H NMR (400 MHz, DMSO-d6) δ 10.5 (s, 1H), 8.68 (s, 1H), 8.43 (s, 2H), 8.20 (s, 1H), 7.68 (d, J=8.4 Hz, 2H), 7.26 (d, J=8.4 Hz, 2H), 7.23 (s, 1H), 4.44-4.46 (m, 2H), 4.39-4.41 (m, 2H), 3.68 (s, 3H), 3.03-3.13 (m, 2H); 1H NMR (400 MHz, CD3OD) δ 8.26 (s, 1H), 7.73 (s, 1H), 7.60 (d, J=8.4 Hz, 2H), 7.17 (d, J=8.4 Hz, 2H), 7.08 (s, 1H), 4.31-4.35 (m, 4H), 3.72 (t, J=6.6 Hz, 1H), 3.68 (s, 3H), 3.27-3.29 (m, 1H), 3.01 (dd, J=5.9, 13.6 Hz, 1H), 2.89 (dd, J=7.0, 13.5 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 174.4, 157.4, 152.6, 149.7, 145.0, 144.2, 137.5, 132.8, 129.2, 122.8, 122.3, 111.5, 110.1, 107.9, 64.5, 64.1, 55.2, 51.0, 39.5; HRMS-ESI [M+H]+ found 381.1553 [calcd for C20H20N4O4 380.1479].
- [JGK023 (Hydrolysis)] To a cooled (0° C.) solution of JGK016 (42 mg, 0.1104 mmol) in THF/H2O (3:1, total 4.0 mL) was added in one portion lithium hydroxide (14 mg). After being stirred at the room temperature for 2 h, the reaction mixture was neutralized with 1N HCl and diluted with EtOAc (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (100 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, CH2Cl2/MeOH, 30/1 to 15/1) to give JGK023 (25 mg, 62%); 1H NMR (400 MHz, CDCl3) δ 8.62 (s, 1H), 8.12 (s, 1H), 7.71 (d, J=8.4 Hz, 2H), 7.40 (d, J=8.4 Hz, 2H), 7.24 (s, 1H), 4.48-4.50 (m, 2H), 4.42-4.44 (m, 2H), 4.28 (t, J=6.8 Hz, 1H), 3.32-3.37 (m, 1H), 3.20 (dd, J=7.6, 14.8 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 169.7, 159.1, 152.4, 148.8, 146.0, 136.1, 134.1, 133.1, 129.7, 129.7, 124.8, 124.8, 110.0, 108.1, 104.9, 65.2, 64.2, 53.6, 35.4; HRMS-ESI [M+H]+ found 367.1334 [calcd for C19H18N4O4 366.1322].
-
- To a solution of chloroquinazoline 2 (104 mg, 0.5294 mmol) in isopropyl alcohol (5.3 mL) was dropwise added amino acid (187 mg) at room temperature. After being heated at 50° C. (bath temperature) with stirring for 12 h, the reaction mixture was cooled to room temperature and and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 5/1 to 3/1) to give JGK020 (128 mg, 53%); 1H NMR (400 MHz, DMSO-d6) δ 10.68 (s, 1H), 10.22 (br, 1H), 8.64 (s, 1H), 7.91 (s, 1H), 7.53 (d, J=8.4 Hz, 2H), 7.26-7.31 (m, 4H), 4.12-4.18 (m, 1H), 3.59 (s, 3H), 2.98 (dd, J=5.2, 14.0 Hz, 1H), 2.84 (dd, J=10.0, 13.2 Hz, 1H), 1.30 (s, 9H); 13C NMR (125 MHz, DMSO-d6) δ 173.0, 158.2, 155.9, 155.6, 148.7, 148.4, 136.1, 135.8, 129.7, 124.7, 107.6, 107.3, 103.3, 78.8, 55.7, 52.3, 36.3, 28.6; HRMS-ESI [M+H]+ found 455.1920 [calcd for C23H26N4O6 454.1846].
-
- JGK014 (26%); 1H NMR (400 MHz, CDCl3) δ 8.62 (s, 1H), 7.66 (d, J=8.4 Hz, 2H), 7.35 (s, 1H), 7.16 (d, J=8.4 Hz, 2H), 4.99 (d, J=7.6 Hz, 1H), 4.56-4.62 (m, 1H), 4.36-4.42 (m, 4H), 3.73 (s, 3H), 3.03-3.15 (m, 2H), 1.43 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 172.4, 156.5, 155.2, 153.6, 149.1, 146.3, 143.8, 137.6, 131.6, 129.7, 121.7, 113.8, 110.3, 106.6, 80.0, 64.4, 64.2, 54.4, 52.2, 37.6, 28.3; HRMS-ESI [M+H]+ found 481.2080 [calcd for C25H28N4O6 480.2003].
-
- Preparation of JGK021 was followed by synthetic procedure of JGK023; 1H NMR (400 MHz, CDCl3) δ 8.62 (s, 1H), 8.12 (s, 1H), 7.71 (d, J=8.4 Hz, 2H), 7.40 (d, J=8.4 Hz, 2H), 7.24 (s, 1H), 4.48-4.50 (m, 2H), 4.42-4.44 (m, 2H), 4.28 (t, J=6.8 Hz, 1H), 3.32-3.37 (m, 1H), 3.20 (dd, J=7.6, 14.8 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 169.7, 159.1, 152.4, 148.8, 146.0, 136.1, 134.1, 133.1, 129.7, 129.7, 124.8, 124.8, 110.0, 108.1, 104.9, 65.2, 64.2, 53.6, 35.4; HRMS-ESI [M+H]+ found 367.1347 [calcd for C19H18N4O4 366.1322].
-
- To a solution of diol X (121 mg, 0.6155 mmol) in DMF (3.0 mL) was dropwise added 3-chloro-2-fluoroaniline (0.14 mL) at room temperature. After being heated at 60° C. (bath temperature) with stirring for 3 d, the reaction mixture was cooled to room temperature and diluted with Et2O (30.0 mL) to give white suspension. The resulting white solid were washed successively with Et2O (3×50 mL) and CH2Cl2 (2×30 mL) and collected to give JGK022 (132 mg, 70%); 1H NMR (400 MHz, DMSO-d6) δ 11.16 (br, 1H), 10.43 (br, 1H), 8.68 (s, 1H), 7.91 (s, 1H), 7.58 (t, J=7.1 Hz, 1H), 7.48 (t, J=6.8 Hz, 1H), 7.40 (s, 1H), 7.30 (t, J=8.1 Hz, 1H); 13C NMR (125 MHz, DMSO-d6) δ 159.1, 156.4, 154.1, 152.1, 149.1, 148.3, 135.1, 129.7, 128.1, 126.8, 125.7, 120.8, 107.4, 106.9, 102.9; HRMS-ESI [M+H]+ found 306.0437 [calcd for C14H9ClFN3O2 305.0361].
-
- [Chlorination] To a solution of 11 (500 mg, 2.134 mmol) in thionyl chloride (7.5 mL, 0.28 M) was dropwise added dimethylformamide (0.15 mL). After being heated at 80° C. (bath temperature) with stirring for 2 h, the reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was washed successively with Et2O (200 mL), and immediately used to the next step.
- [Substitution] To a solution of above generated
chloroquinazoline 12 in anhydrous DMF (11 mL, 0.2 M) was dropwise added 3-chloro-2-fluoroaniline (0.50 mL, 4.548 mmol) at room temperature under Ar. After being stirred at the same temperature for 1 h, the reaction mixture was diluted with Et2O (100.0 mL) to give white suspension. The resulting white solid were washed successively with Et2O (2×50 mL) and collected to give JGK018 (525 mg, 68%); The spectroscopic data was matched with Zhang, X. et al J. Med. Chem. 2015, 58, 8200-8215. -
- [Acetyl Deprotection] To JGK018 (550 mg, 1.520 mmol) was dropwise added ammonia solution (8.0 mL, 7 N in methanol). After being heated at 50° C. (bath temperature) in sealed tube with stirring for 2 h, the reaction mixture was cooled to room temperature and concentrated in vacuo. The resulting white solid were washed successively with Et2O (2×50 mL) and collected to give 13 (394 mg, 81%); The resulting spectroscopic data was matched with that of Zhang, X. et al J. Med. Chem. 2015, 58, 8200-8215.
-
- To a cooled (0° C.) solution of 13 (113 mg, 0.353 mmol) in anhydrous DMF (2 mL) was dropwise added triethylamine (0.25 mL, 1.767 mmol) followed by dropwise addition of Di-tert-butyl dicarbonate (62 mg, 0.459 mmol) in anhydrous DMF (2 mL) under Ar. After being stirred at room temperature for 3 d, the reaction mixture was quenched with saturated aqueous H2O (10 mL), and diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 5/1 to 3/1) to give 14 (42 mg, 28% isolated yield); 1H NMR (400 MHz, CDCl3) δ 8.69 (s, 1H), 8.39-8.45 (m, 1H), 7.64 (s, 1H), 7.44 (s, 1H), 7.11-7.16 (m, 2H), 3.90 (s, 3H), 1.59 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 156.2 (J=39.5 Hz), 154.9, 151.3, 150.3, 149.5 (J=224.1 Hz), 140.4, 128.1 (J=9.6 Hz), 124.8, 124.4 (J=4.8 Hz), 121.5, 120.8 (J=51.2 Hz), 113.5, 109.0, 108.8, 84.6, 56.2, 27.6;
-
- To a solution of A1 (56 mg, 0.1904 mmol) in anhydrous CH2Cl2 (2 mL) was dropwise added triethylamine (0.08 mL, 0.5712 mmol) followed by addition of chloroacetyl chloride (0.05 mL, 0.6286 mmol) at room temperature under Ar. After being stirred at the same temperature for 1 h, the reaction mixture was quenched with saturated aqueous NH4Cl (20 mL), and diluted with CH2Cl2 (20 mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 (2×30 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The crude product was used for the next step without further purification.
-
- [Alkylation] To a cooled (0° C.) solution of 14 (44 mg, 0.1058 mmol) in DMF (2.0 mL) was added in one portion potassium carbonate (73 mg, 0.528 mmol) followed by dropwise addition of above generated C (0.1904 mmol) in DMF (2.0 mL) at room temperature. After being heated at 40° C. (bath temperature) with stirring for 3 d, the reaction mixture was quenched with H2O (10 mL), and diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 100/1 to 30/1) to give alkylated product 14-(2) (43 mg, 55% isolated yield); 1H NMR (400 MHz, CDCl3) δ 8.16 (s, 1H), 7.48 (d, J=8.4 Hz, 2H), 7.44 (s, 1H), 6.98-7.13 (m, 5H), 6.34 (m, 1H), 4.95 (d, J=7.4 Hz, 1H), 4.54 (d, J=6.5 Hz, 1H), 4.48 (s, 2H), 3.69 (s, 6H), 2.95-3.13 (m, 2H), 1.53 (s, 9H), 1.40 (s, 9H).
- [Deprotection] To a solution of alkylated product 14-(2) (26 mg, 0.0348 mmol) in anhydrous MeOH (5.0 mL) was dropwise added 0.5 N hydrochloride solution (0.5 mL). After being stirred at the same temperature for 24 h, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (reverse phase silica gel, MeOH or MeOH/H2O, 10/1) to give JGK031 (12 mg, 61%); 1H NMR (400 MHz, MeOD) δ 8.20 (s, 1H), 7.67 (s, 1H), 7.49 (t, J=7.9 Hz, 2H), 7.24-7.30 (m, 1H), 7.11-7.21 (m, 4H), 3.94 (s, 3H), 3.59 (s, 3H), 2.83-3.01 (m, 2H); HRMS-ESI [M+H]+ found 554.1631 [calcd for C27H25ClFN5O5 553.1522].
-
- To a solution of JGK031 (5 mg, 0.009026 mmol) in anhydrous THF (6 mL) and H2O (2 mL) was added lithium hydroxide. H2O (3 mg) in one portion. After being stirred at room temperature for 2 h, the reaction mixture was neutralized with 1N hydrochloride solution and concentrated in vacuo. The residue was purified by reverse column chromatography (reverse phase silica gel, MeOH/H2O, 5/1) to give JGK033 (4.4 mg, 90%); 1H NMR (400 MHz, MeOD) δ 7.16 (s, 1H), 6.32 (s, 1H), 6.03 (d, J=8.2 Hz, 2H), 5.89-5.98 (m, 2H), 5.59-5.79 (m, 4H), 4.00 (s, 2H), 2.51 (s, 3H), 2.46 (t, J=5.6 Hz, 1H); 13C NMR (125 MHz, MeOD) δ 163.9, 159.4, 157.2, 154.3, 152.1, 149.5, 137.1, 135.4, 129.7, 126.9, 124.6, 121.5, 120.3, 108.0, 106.9, 97.8, 56.6, 53.5, 35.6; HRMS-ESI [M+H]+ found 540.1435 [calcd for C26H23ClFN5O5 539.1366].
-
- To a solution of lapatinib (326 mg, 0.561 mmol) in anhydrous MeOH (5.6 mL) and CH2Cl2 (5.6 mL) was dropwise Di-tert-butyl dicarbonate (378 mg, 2.819 mmol) in one portion under Ar. After being stirred at room temperature for 2 d, the reaction mixture was quenched with saturated aqueous H2O (10 mL), and diluted with CH2Cl2 (10 mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 (5×50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1 to 1/1) to give JGK008 (119 mg, 31% isolated yield); 1H NMR (500 MHz, CDCl3) δ 8.71 (bs, 1H), 8.64 (s, 1H), 8.44 (s, 1H), 7.85-7.95 (m, 3H), 7.68 (d, J=7.8 Hz, 1H), 7.32-7.37 (m, 1H), 7.21 (dd, J=8.4, 10.8 Hz, 2H), 6.98-7.03 (m, 1H), 6.96 (d, J=8.9 Hz, 1H), 6.39 (d, J=47.1 Hz, 1H), 5.13 (s, 2H), 4.53 (d, J=32.2 Hz, 2H), 3.99 (t, J=7.3 Hz, 2H), 3.39 (d, J=66.1 Hz, 2H), 2.89 (s, 3H), 1.49 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 163.9, 162.0, 158.0, 154.2, 152.7, 151.7, 151.0, 139.1 (d, J=7.3 Hz), 132.4, 130.1 (d, J=8.1 Hz), 129.1, 128.6, 128.2, 125.1, 123.1, 122.4, 122.3, 115.4, 114.9 (d, J=21.0 Hz), 114.1 (d, J=13.9 Hz), 113.9, 111.5, 110.9, 107.7, 81.3, 70.9, 45.0, 43.6, 42.3, 41.4, 41.2, 28.4; HRMS-ESI [M+H]+ found 681.1946 [calcd for C34H34ClFN4O6S 680.1866].
-
- To a solid of lapatinib (68 mg, 0.353 mmol) was added acetic anhydride (5.0 mL) under Ar. After being stirred at room temperature for 2 d, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1 to 1/3) to give JGK002 (48 mg, 62% isolated yield); 1H NMR (500 MHz, CDCl3) δ 9.18 (s, 1H), 8.10-8.17 (m, 3H), 7.50 (d, J=2.5 Hz, 1H), 7.27-7.36 (m, 2H), 7.18 (dd, J=7.6, 13.8 Hz, 2H), 6.97-7.03 (m, 2H), 6.79 (d, J=3.3 Hz, 1H), 6.44 (d, J=3.3 Hz, 1H), 5.14 (s, 2H), 4.66 (s, 2H), 3.86 (t, J=6.6 Hz, 2H), 3.30 (t, J=6.6 Hz, 2H), 2.95 (s, 3H), 2.33 (s, 3H), 2.23 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.4, 171.2, 163.9, 162.2, 162.0, 154.0, 153.7, 152.5, 151.0, 138.5 (J=7.3 Hz), 134.2, 130.8, 130.3, 130.2, 129.9, 129.1, 127.4, 123.9, 122.4 (J=2.9 Hz), 121.8, 118.0, 115.1, 115.0, 114.0 (J=5.2 Hz), 113.8, 111.1, 108.9, 70.1 (J=1.7 Hz), 52.3, 47.0, 41.4, 40.7, 23.7, 21.8; HRMS-ESI [M+H]+ found 665.1628 [calcd for C33H30ClFN4O6S 664.1553].
- All chemicals, reagents, and solvents were purchased from commercial sources when available and were used as received. When necessary, reagents and solvents were purified and dried by standard methods. Air- and moisture-sensitive reactions were carried out under an inert atmosphere of argon in oven-dried glassware. Microwave-irradiated reactions were carried out in a single mode reactor CEM Discover microwave synthesizer. Room temperature reactions were carried out at ambient temperature (approximately 23° C.). All reactions were monitored by thin layer chromatography (TLC) on precoated Merck 60 F254 silica gel plates with spots visualized by UV light (λ=254, 365 nm) or by using an alkaline KMnO4 solution. Flash column chromatography (FC) was carried out on SiO2 60 (particle size 0.040-0.063 mm, 230-400 mesh). Concentration under reduced pressure (in vacuo) was performed by rotary evaporation at 25-50° C. Purified compounds were further dried under high vacuum or in a desiccator. Yields correspond to purified compounds, and were not further optimized. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker spectrometers (operating at 300, 400, or 500 MHz). Carbon NMR (13C NMR) spectra were recorded on Bruker spectrometers (either at 400 or 500 MHz). NMR chemical shifts (8 ppm) were referenced to the residual solvent signals. 1H NMR data are reported as follows: chemical shift in ppm; multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, quint=quintet, m=multiplet/complex pattern, td=triplet of doublets, ddd=doublet of doublet of doublets, br=broad signal); coupling constants (J) in Hz, integration. Data for 13C NMR spectra are reported in terms of chemical shift, and if applicable coupling constants. High resolution mass (HRMS) spectra were recorded on a Thermo Fisher Scientific Exactive Plus with IonSense ID-CUBE DART source mass spectrometer. Compounds 4-chloro-7,8-dihydro[1,4]dioxino[2,3-g]quinazoline (1), 4-chloroquinazoline-6,7-diol (2), and JGK010 were prepared as previously reported.
- A mixture of the 4-chloroquinazoline (1 equiv) in iPrOH (0.1-0.3 M) was treated with the aniline (1 equiv), and the mixture was heated at 80° C. under microwave irradiation (60 W) for 15-20 min. The mixture was cooled to 23° C., treated with additional aniline (1 equiv), and again subjected to microwave irradiation (80° C., 60 W, 15-20 min). The mixture was either concentrated under reduced pressure, or the precipitated 4-anilinoquinazoline hydrochloride salt was isolated by filtration (washings with cold iPrOH). The residue was suspended in sat. aq. NaHCO3, and extracted with CH2Cl2 (3×). The combined organic extracts were washed with water, brine, dried (Na2SO4), filtered, and concentrated. Purification by FC (elution with a gradient of CH2Cl2/EtOAc or hexanes/EtOAc) afforded the desired products typically as white to off-white, or pale-yellow solids.
-
- Following general procedure A, compound JGK035 was prepared from 4-chloroquinazoline 1 (51 mg, 0.23 mmol) and 2-fluoroaniline (40 μL, 0.48 mmol) in iPrOH (1.5 mL). FC (CH2Cl2/EtOAc 10:1→10:4) gave JGK035 (56 mg, 82%) as a white solid. 1H NMR (500 MHz, CDCl3): δ 8.68 (s, 1H), 8.64 (td, J=8.2, 1.7 Hz, 1H), 7.38 (s, 1H), 7.36 (br, 1H), 7.31 (s, 1H), 7.22 (t, J=7.5 Hz, 1H), 7.17 (ddd, J=11.2, 8.3, 1.5 Hz, 1H), 7.10-7.05 (m, 1H), 4.44-4.37 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ 156.08, 153.60, 153.50 (d, J=242.7 Hz), 149.52, 146.65, 144.34, 127.31 (d, J=9.5 Hz), 124.66 (d, J=3.7 Hz), 123.97 (d, J=7.8 Hz), 122.89, 115.06 (d, J=19.3 Hz), 114.46, 110.62, 106.10, 64.69, 64.51 ppm. HRMS (DART): m/z [M−H]− calcd for C16H11FN3O2 −, 296.0841; found, 296.0841.
-
- A solution of compound 2 (193 mg, 0.98 mmol) in dry DMF (4.8 mL) was treated with Cs2CO3 (788 mg, 2.42 mmol), stirred for 5 min, and treated dropwise with 1-bromo-2-chloro(2H4)ethane (270 μL, 3.16 mmol). The mixture was stirred at 23° C. for 1 h, and then at 70° C. for 18 h. After the mixture was cooled to 23° C., all volatiles were removed in vacuo. The residue was dissolved in CH2Cl2 (40 mL), washed with water (2×13 mL), brine (13 mL), dried (Na2SO4), filtered, and evaporated. Purification by FC (CH2Cl2/EtOAc 1:0→10:1.5) afforded the title compound 3 (109 mg, 49%) as a white fluffy solid. 1H NMR (400 MHz, CDCl3): δ 8.84 (s, 1H), 7.64 (s, 1H), 7.47 ppm (s, 1H). 13C NMR (101 MHz, CDCl3): δ 160.19, 152.52, 151.54, 147.93, 146.06, 120.10, 113.72, 110.83 ppm (two upfield carbons not observed). HRMS (DART): m/z [M+H]+ calcd for C10H4D4ClN2O2 +, 227.0520; found, 227.0516.
-
- Following general procedure A, compound JGK036 was prepared from 4-chloroquinazoline 3 (55 mg, 0.24 mmol) and 3-chloro-2-fluoroaniline (52 μL, 0.47 mmol) in iPrOH (1.2 mL). JGK036.HCl was isolated by filtration from the crude reaction mixture, and after basification and extraction gave pure JGK036 (67 mg, 82%) as a pale-yellow solid. 1H NMR (500 MHz, DMSO-d6): δ9.62 (s, 1H), 8.34 (s, 1H), 7.93 (s, 1H), 7.53-7.43 (m, 2H), 7.27 (td, J=8.1, 1.3 Hz, 1H), 7.19 ppm (s, 1H). 13C NMR (126 MHz, DMSO-d6): δ157.17, 153.10, 152.45 (d, J=249.2 Hz), 149.28, 146.04, 143.68, 128.21 (d, J=12.0 Hz), 127.27, 127.03, 124.87 (d, J=4.7 Hz), 120.11 (d, J=16.7 Hz), 112.48, 109.64, 108.35, 63.50 (m, 2C's). HRMS (DART): m/z [M+H]+ calcd for C16H8D4ClFN3O2 +, 336.0848; found, 336.0841.
-
- Following general procedure A, compound JGK037 was prepared from 4-chloroquinazoline 1 (100 mg, 0.45 mmol) and 3-bromo-2-fluoroaniline (100 μL, 0.89 mmol) in iPrOH (1.5 mL). FC (CH2Cl2/EtOAc 10:0→10:3) gave JGK037 (150 mg, 89%) as a pale-yellow solid. 1H NMR (500 MHz, CDCl3): δ 8.68 (s, 1H), 8.65 (ddd, J=8.3, 7.4, 1.5 Hz, 1H), 7.39 (s, 1H), 7.35 (br, 1H), 7.29 (s, 1H), 7.29-7.24 (m, 1H), 7.11 (td, J=8.2, 1.6 Hz, 1H), 4.44-4.38 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ 155.89, 153.37, 150.15 (d, J=242.2 Hz), 149.70, 146.75, 144.53, 128.65 (d, J=10.5 Hz), 127.24, 125.31 (d, J=4.7 Hz), 121.79, 114.53, 110.59, 108.59 (d, J=19.4 Hz), 105.93, 64.70, 64.51 ppm. HRMS (DART): m/z [M−H]− calcd for C16H10BrFN3O2 −, 373.9946; found, 373.9946.
-
- A 1 dram vial was charged with JGK010 (75 mg, 0.23 mmol), XPhos (19.7 mg, 0.041 mmol), Cs2CO3 (195 mg, 0.60 mmol), [PdCl2(MeCN)2] (3.6 mg, 0.014 mmol). The vial was evacuated and backfilled with argon (repeated at least twice). Dry acetonitrile (1 mL) was added, and the orange suspension was stirred at 23° C. for 25 min, then ethynyltriethylsilane (150 μL, 0.84 mmol) was injected. The tube was sealed, and the reaction mixture stirred at 95° C. in a preheated oil bath for 3.5 h. The suspension was allowed to reach 23° C., diluted with EtOAc, filtered through a plug of SiO2 (washings with EtOAc), and evaporated. Purification by FC (SiO2; hexanes/EtOAc 8:2→4:6) afforded the title compound 4 (48 mg, 49%) as a yellow foamy solid. 1H NMR (500 MHz, CDCl3): δ 8.681 (td, J=8.1, 1.9 Hz, 1H), 8.678 (s, 1H), 7.382 (s, 1H), 7.376 (br, 1H), 7.28 (s, 1H), 7.21-7.12 (m, 2H), 4.44-4.38 (m, 4H), 1.07 (t, J=7.9 Hz, 9H), 0.71 ppm (q, J=7.9 Hz, 6H). 13C NMR (126 MHz, CDCl3): δ 155.95, 153.81 (d, J=248.0 Hz), 153.44, 149.62, 146.66, 144.47, 127.68, 127.60, 124.15 (d, J=4.5 Hz), 122.79, 114.49, 111.77 (d, J=14.6 Hz), 110.61, 105.97, 98.65, 98.49 (d, J=3.7 Hz), 64.70, 64.51, 7.63, 4.50 ppm. HRMS (DART): m/z [M+H]+ calcd for C24H27N3O2Si+, 436.1851; found, 436.1831.
-
- A mixture of compound 4 (40 mg, 0.09 mmol) in wet THF (0.9 mL) was treated dropwise with a 1 M solution of TBAF in THF (450 μL, 0.45 mmol), and the mixture was stirred at 23° C. for 18 h. Water (10 mL) was added, and the mixture was extracted with EtOAc (3×15 mL). The combined organics were washed with brine (20 mL), dried (Na2SO4), filtered, and evaporated. Purification by FC (SiO2; hexanes/EtOAc 7:3→3:7), followed by a second FC (SiO2; CH2Cl2/EtOAc 1:0→6:4) afforded JGK038 (19 mg, 64%) as an off-white solid. 1H NMR (500 MHz, CDCl3): δ 8.69 (td, J=8.0, 1.8 Hz, 1H), 8.67 (s, 1H), 7.38 (s, 1H), 7.36 (br, 1H), 7.29 (s, 1H), 7.24-7.15 (m, 2H), 4.43-4.38 (m, 4H), 3.34 ppm (s, 1H). 13C NMR (126 MHz, CDCl3): δ 155.94, 154.04 (d, J=248.8 Hz), 153.39, 149.65, 146.70, 144.47, 127.81, 127.68 (d, J=9.1 Hz), 124.30 (d, J=4.7 Hz), 123.47, 114.49, 110.58, 110.50 (d, J=14.3 Hz), 105.99, 82.95 (d, J=3.5 Hz), 76.70 (d, J=1.6 Hz), 64.69, 64.50 ppm. HRMS (DART): m/z [M+H]+ calcd for C18H13FN3O2 +, 322.0986; found, 322.0981.
-
- Following general procedure A, compound JGK039 was prepared from 4-chloroquinazoline 1 (37 mg, 0.17 mmol) and 2-fluoro-3-(trifluoromethyl)aniline (42 μL, 0.33 mmol) in iPrOH (1.5 mL). FC (CH2Cl2/EtOAc 1:0→10:3) gave JGK039 (35 mg, 58%) as an off-white solid. 1H NMR (500 MHz, CDCl3): δ 9.00-8.92 (m, 1H), 8.70 (s, 1H), 7.42 (br, 1H), 7.40 (s, 1H), 7.35-7.28 (m, 2H), 7.30 (s, 1H), 4.46-4.38 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ 155.77, 153.24, 150.27 (d, J=252.0 Hz), 149.81, 146.80, 144.66, 128.62 (d, J=8.5 Hz), 126.34, 124.44, 124.40, 122.66 (q, J=272.4 Hz), 120.41 (q, J=4.6 Hz), 114.58, 110.55, 105.86, 64.70, 64.51 ppm. HRMS (DART): m/z [M−H]− calcd for C17H10F4N3O2 −, 364.0715; found, 364.0712.
-
- A solution of compound 2 (100 mg, 0.51 mmol) in dry DMF (10 mL) was treated with Cs2CO3 (460 mg, 1.41 mmol), stirred for 15 min, and treated dropwise with 1,3-dibromopropane (135 μL, 1.33 mmol). The mixture was stirred at 23° C. for 1 h, and then at 65° C. for 18 h. After cooling to 23° C., all volatiles were removed in vacuo. The residue was suspended in CH2Cl2 (20 mL), and washed with water (2×5 mL), dried (Na2SO4), filtered, and evaporated. Purification by FC (hexanes/CH2Cl2 1:10→0:1→CH2Cl2/EtOAc 10:1.5), followed by a second FC (hexanes/EtOAc 10:1→10:3) gave the title compound 5 (41 mg, 34%) as a white solid. 1H NMR (500 MHz, CDCl3): δ 8.87 (s, 1H), 7.75 (s, 1H), 7.55 (s, 1H), 4.46 (t, J=5.8 Hz, 2H), 4.40 (t, J=6.0 Hz, 2H), 2.34 ppm (quint, J=5.9 Hz, 2H). 13C NMR (126 MHz, CDCl3): δ 160.57, 158.86, 153.10, 153.03, 148.88, 120.83, 118.19, 115.64, 70.51, 70.33, 30.51 ppm. HRMS (DART): m/z [M+H]+ calcd for C11H10ClN2O2 +, 237.0425; found, 237.0416.
-
- Following general procedure A, compound JGK040 was prepared from 4-chloroquinazoline 5 (33 mg, 0.14 mmol) and 3-chloro-2-fluoroaniline (32 μL, 0.29 mmol) in iPrOH (1.5 mL). FC (CH2Cl2/EtOAc 1:0→10:3.5) gave JGK040 (34 mg, 70%) as a white solid. 1H NMR (500 MHz, DMSO-d6): δ9.72 (s, 1H), 8.39 (s, 1H), 8.08 (s, 1H), 7.53-7.45 (m, 2H), 7.29 (s, 1H), 7.27 (td, J=8.1, 1.3 Hz, 1H), 4.32 (t, J=5.5 Hz, 2H), 4.29 (t, J=5.6 Hz, 2H), 2.22 ppm (quint, J=5.6 Hz, 2H). 13C NMR (126 MHz, DMSO-d6): δ157.43, 156.67, 153.85, 152.48 (d, J=249.3 Hz), 150.74, 147.29, 128.05 (d, J=12.0 Hz), 127.41, 127.04, 124.91 (d, J=4.7 Hz), 120.13 (d, J=16.5 Hz), 117.52, 113.81, 110.77, 70.75, 70.62, 30.80 ppm. HRMS (DART): m/z [M+H]+ calcd for C17H14ClFN3O2 +, 346.0753; found, 346.0740.
-
- A solution of compound 2 (100 mg, 0.51 mmol) in dry DMF (3.4 mL) was treated with Cs2CO3 (335 mg, 1.03 mmol), and stirred at 23° C. for 15 min. The mixture was treated dropwise with chloroiodomethane (130 μL, 1.79 mmol), stirred for 1 h, and then at 70° C. for 17 h. After the mixture was cooled to 23° C., all volatiles were removed in vacuo. The residue was suspended in CH2Cl2 (30 mL), washed with water (2×7 mL), dried (Na2SO4), filtered, and evaporated. Purification by FC (hexanes/CH2Cl2 3:10→0:1→CH2Cl2/EtOAc 10:2) gave the title compound 6 (38 mg, 36%) as a white, fluffy solid. 1H NMR (400 MHz, CDCl3): δ 8.85 (s, 1H), 7.49 (s, 1H), 7.32 (s, 1H), 6.21 ppm (s, 2H). 13C NMR (126 MHz, CDCl3): δ 159.82, 154.89, 152.79, 150.94, 149.78, 121.23, 105.23, 102.89, 101.12 ppm. HRMS (DART): m/z [M+H]+ calcd for C9H6ClN2O2 +, 209.0112; found, 209.0104.
-
- Following general procedure A, compound JGK041 was prepared from 4-chloroquinazoline 6 (35 mg, 0.17 mmol) and 3-chloro-2-fluoroaniline (38 μL, 0.35 mmol) in iPrOH (1.5 mL). FC (CH2Cl2/EtOAc 1:0→1:1) gave JGK041 (35 mg, 66%) as a pale-yellow solid. 1H NMR (500 MHz, DMSO-d6): δ9.53 (s, 1H), 8.37 (s, 1H), 7.84 (s, 1H), 7.53-7.44 (m, 2H), 7.27 (td, J=8.1, 1.3 Hz, 1H), 7.20 (s, 1H), 6.25 ppm (s, 2H). 13C NMR (126 MHz, DMSO-d6): δ157.37, 153.10, 152.60, 152.43 (d, J=248.9 Hz), 148.56, 147.28, 128.30 (d, J=11.9 Hz), 127.17, 126.90, 124.88 (d, J=4.8 Hz), 120.12 (d, J=16.4 Hz), 109.82, 104.59, 102.38, 98.77 ppm. HRMS (DART): m/z [M+H]+ calcd for C15H10ClFN3O2 +, 318.0440; found, 318.0435.
-
- A mixture of JGK010 (50 mg, 0.15 mmol) in dry THF (0.5 mL) was treated dropwise with a 1 M solution of LiHMDS in THF (150 μL, 0.15 mmol) at 0° C. After stirring for 15 min at that temperature, the mixture was added dropwise to a solution of chloromethyl acetate (55 L, 0.57 mmol) in dry THF (0.5 mL). The flask which initially contained the solution of JGK010 was rinsed with 0.5 mL of dry THF and added to the reaction mixture. After stirring at 0° C. for 2 h, stirring was continued at 23° C. for 22 h. Sat. aq. NaHCO3 (10 mL) were added, and the mixture was extracted with EtOAc (3×10 mL). The combined organics were dried (Na2SO4), filtered, and evaporated in vacuo. Purification by FC (CH2Cl2/EtOAc 1:0→1:1) afforded the title compound JGK043 (30 mg, 49%) as a pale-yellow solid. 1H NMR (500 MHz, CDCl3): δ 7.93 (s, 1H), 7.88 (s, 1H), 7.08-6.97 (m, 2H), 6.94 (td, J=7.2, 2.1 Hz, 1H), 6.82 (s, 1H), 5.73 (s, 2H), 4.40-4.29 (m, 4H), 2.12 ppm (s, 3H). 13C NMR (126 MHz, CDCl3): δ 170.33, 152.96, 150.10 (d, J=245.6 Hz), 149.37, 148.05, 143.24, 140.17 (d, J=13.1 Hz), 131.89, 124.17, 124.12 (d, J=4.8 Hz), 122.59 (d, J=2.4 Hz), 121.33 (d, J=17.1 Hz), 115.41, 114.31, 102.24, 71.19, 65.07, 64.23, 20.85 ppm. HRMS (DART): m/z [M+H]+ calcd for C19H16ClFN3O4 +, 404.0808; found, 404.0792.
- General Procedures: All chemicals, reagents, and solvents were purchased from commercial sources when available and were used as received. When necessary, reagents and solvents were purified and dried by standard methods. Air- and moisture-sensitive reactions were carried out under an inert atmosphere of argon in oven-dried glassware. Microwave-irradiated reactions were carried out in a single mode reactor CEM Discover microwave synthesizer. Room temperature (RT) reactions were carried out at ambient temperature (approximately 23° C.). All reactions were monitored by thin layer chromatography (TLC) on precoated Merck 60 F254 silica gel plates with spots visualized by UV light (λ=254, 365 nm) or by using an alkaline KMnO4 solution. Flash column chromatography (FC) was carried out on SiO2 60 (particle size 0.040-0.063 mm, 230-400 mesh). Concentration under reduced pressure (in vacuo) was performed by rotary evaporation at 25-50° C. Purified compounds were further dried under high vacuum or in a desiccator. Yields correspond to purified compounds, and were not further optimized. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker spectrometers (operating at 300, 400, or 500 MHz). Carbon NMR (13C NMR) spectra were recorded on Bruker spectrometers (either at 400 or 500 MHz). NMR chemical shifts (δ ppm) were referenced to the residual solvent signals. 1H NMR data are reported as follows: chemical shift in ppm; multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, quint=quintet, m=multiplet/complex pattern, td=triplet of doublets, ddd=doublet of doublet of doublets, br=broad signal); coupling constants (J) in Hz, integration. Data for 13C NMR spectra are reported in terms of chemical shift, and if applicable coupling constants. High resolution mass (HRMS) spectra were recorded on a Thermo Fisher Scientific Exactive Plus with IonSense ID-CUBE DART source mass spectrometer, or on a Waters LCT Premier mass spectrometer with ACQUITY UPLC with autosampler.
-
- 1H NMR (500 MHz, CDCl3): δ=9.06-8.98 (m, 1H), 8.69 (s, 1H), 7.41 (s, 1H), 7.39 (br, 1H), 7.35-7.31 (m, 2H), 7.30 (s, 1H), 4.45-4.37 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=155.63, 153.63 (d, J=254.6 Hz), 153.04, 149.94, 146.80, 144.76, 128.60 (d, J=7.8 Hz), 127.48, 126.58, 125.31 (d, J=4.5 Hz), 114.56, 113.80, 110.45, 105.83, 101.30 (d, J=13.9 Hz), 64.70, 64.51 ppm. HRMS (ESI): m/z [M+H]+ calcd for C17H12FN4O2 +, 323.0939; found, 323.0927.
-
- 1H NMR (500 MHz, DMSO-d6): δ=9.68 (s, 1H), 8.52 (s, 1H), 8.46 (t, J=1.9 Hz, 1H), 8.18 (ddd, J=8.2, 2.3, 1.2 Hz, 1H), 8.08 (s, 1H), 7.58 (t, J=7.9 Hz, 1H), 7.53 (dt, J=7.6, 1.4 Hz, 1H), 7.22 (s, 1H), 4.49-4.36 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=156.24, 152.69, 149.31, 146.15, 143.80, 140.52, 129.87, 126.35, 125.96, 124.15, 118.93, 112.66, 111.23, 109.96, 108.30, 64.52, 64.19 ppm. HRMS (DART): m/z [M+H]+ calcd for C17H13N4O2 +, 305.1033; found, 305.1018.
-
- 1H NMR (500 MHz, CDCl3): δ=8.96 (s, 1H), 7.483 (s, 1H), 7.477 (s, 1H), 7.37 (dd, J=8.1, 6.7 Hz, 2H), 7.08 (td, J=8.1, 1.5 Hz, 1H), 4.45-4.38 (m, 4H), 4.27 (q, J=7.1 Hz, 2H), 1.22 ppm (t, J=7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3): 158.98, 154.43 (d, J=250.7 Hz), 153.90, 153.41, 151.17, 149.68, 145.61, 130.12, 129.85 (d, J=12.4 Hz), 128.20, 124.50 (d, J=5.1 Hz), 122.22 (d, J=16.8 Hz), 117.96, 113.51, 109.68 (d, J=2.0 Hz), 64.73, 64.36, 63.44, 14.43 ppm. HRMS (ESI): m/z [M+H]+ calcd for C19H16ClFN3O4 +, 404.0808; found, 404.0800.
-
- 1H NMR (500 MHz, DMSO-d6): δ=9.61 (s, 1H), 8.34 (s, 1H), 7.91 (s, 1H), 7.72 (d, J=5.4 Hz, 1H), 7.60 (t, J=7.1 Hz, 1H), 7.55 (t, J=7.5 Hz, 1H), 7.21 (t, J=8.2 Hz, 1H), 7.19 (s, 1H), 5.70-5.59 (m, 1H), 4.27 (d, J=11.0 Hz, 1H), 4.17 ppm (d, J=10.6 Hz, 1H). 13C NMR (126 MHz, DMSO-d6): δ=157.18, 153.38 (d, J=247.4 Hz), 153.13, 148.78, 146.14, 141.92, 130.12, 128.05 (d, J=13.8 Hz), 127.78, 125.45 (d, J=4.4 Hz), 111.95, 109.87, 108.71, 108.55 (d, J=20.3 Hz), 88.63, 67.23 ppm. HRMS (DART): m/z [M+H]+ calcd for C16H12BrFN3O3 +, 392.0041; found, 392.0030.
-
- 1H NMR (500 MHz, CDCl3; (±)-cis/trans 2:1): 6=8.68 (s, 1H), 8.68-8.63 (m, 1H), 7.37 (s, 1H), 7.35 (br, 1H), 7.28 (s, 1H), 7.28-7.24 (m, 1H), 7.10 (td, J=8.2, 1.6 Hz, 1H), 4.52-4.39 (m, 1.3H), 4.09-3.98 (m, 0.7H), 1.453 (d, J=6.1 Hz, 1.1H), 1.451 (d, J=6.1 Hz, 1.1H), 1.369 (d, J=6.6 Hz, 1.9H), 1.368 ppm (d, J=6.6 Hz, 1.9H). 13C NMR (126 MHz, CDCl3; (±)-cis/trans 2:1): 6=155.87, 155.84, 153.19, 150.12 (d, J=242.5 Hz), 150.09 (d, J=242.2 Hz), 149.87, 148.89, 146.77, 144.64, 143.63, 128.73 (d, J=10.0 Hz), 127.15, 127.12, 125.31 (d, J=4.7 Hz), 121.71, 121.70, 114.30, 113.93, 110.54, 110.47, 108.57 (d, J=19.4 Hz), 105.66, 105.28 ppm. HRMS (DART): m/z [M+H]+ calcd for C18H16BrFN3O2 +, 404.0404; found, 404.0393.
-
- 1H NMR (500 MHz, CDCl3): δ=8.68 (s, 1H), 8.66 (ddd, J=8.6, 7.4, 1.6 Hz, 1H), 7.38 (s, 1H), 7.35 (br, 1H), 7.28 (s, 1H), 7.30-7.23 (m, 1H), 7.10 (td, J=8.2, 1.5 Hz, 1H), 4.50-4.41 (m, 2H), 1.369 (d, J=6.6 Hz, 3H), 1.368 ppm (d, J=6.5 Hz, 3H). 13C NMR (126 MHz, CDCl3): δ=155.85, 153.19, 150.11 (d, J=242.1 Hz), 148.89, 146.77, 143.63, 128.73 (d, J=10.2 Hz), 127.14, 125.31 (d, J=4.7 Hz), 121.71, 114.30, 110.54, 108.57 (d, J=19.5 Hz), 105.65, 72.85, 72.58, 14.71, 14.55 ppm. HRMS (ESI): m/z [M+H]+ calcd for C18H16BrFN3O2 +, 404.0404; found, 404.0416.
-
- 1H NMR (500 MHz, DMSO-d6): δ=9.70 (s, 1H), 8.35 (s, 1H), 7.94 (s, 1H), 7.61 (dd, J=8.8, 7.7 Hz, 1H), 7.55 (dd, J=8.7, 1.5 Hz, 1H), 7.20 (s, 1H), 4.47-4.35 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=157.03, 154.14 (d, J=249.5 Hz), 153.01, 149.36, 146.08, 143.74, 130.75, 127.77 (d, J=2.9 Hz), 126.80 (d, J=13.4 Hz), 125.37 (d, J=3.8 Hz), 112.50, 110.15 (d, J=22.5 Hz), 109.66, 108.39, 64.51, 64.14 ppm. HRMS (DART): m/z [M+H]+ calcd for C16H11BrClFN3O2 +, 409.9702; found, 409.9697.
-
- 1H NMR (500 MHz, DMSO-d6): δ=9.65 (s, 1H), 8.34 (s, 1H), 7.92 (s, 1H), 7.67 (d, J=8.7 Hz, 1H), 7.55 (t, J=8.2 Hz, 1H), 7.20 (s, 1H), 4.45-4.35 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=156.95, 153.98 (d, J=249.1 Hz), 152.99, 149.35, 146.09, 143.74, 128.50 (d, J=3.7 Hz), 128.14, 127.21 (d, J=13.7 Hz), 120.96, 112.51, 112.33, 109.68, 108.36, 64.51, 64.14 ppm. HRMS (DART): m/z [M+H]+ calcd for C16H11Br2FN3O2 +, 453.9197; found, 453.9191.
-
- 1H NMR (500 MHz, CDCl3): δ=8.99 (dd, J=7.3, 2.5 Hz, 1H), 8.72 (s, 1H), 7.38 (s, 1H), 7.36 (br, 1H), 7.27 (s, 1H), 7.16 (ddd, J=8.7, 4.6, 2.5 Hz, 1H), 7.04 (dd, J=10.9, 8.7 Hz, 1H), 4.44-4.36 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=155.59, 153.35, 152.16 (d, J=243.1 Hz), 149.69, 146.67, 144.52, 128.75 (d, J=10.5 Hz), 126.16 (d, J=7.6 Hz), 125.06, 117.19 (d, J=3.4 Hz), 116.20 (d, J=20.9 Hz), 114.52, 110.48, 105.85, 64.68, 64.50 ppm. HRMS (DART): m/z [M+H]+ calcd for C16H12BrFN3O2 +, 376.0091; found, 376.0077.
-
- 1H NMR (500 MHz, DMSO-d6): δ=9.60 (s, 1H), 8.32 (s, 1H), 7.94 (s, 1H), 7.74 (td, J=8.1, 5.5 Hz, 1H), 7.28 (t, J=9.3 Hz, 1H), 7.21 (s, 1H), 4.44-4.38 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=157.78 (dd, J=248.8, 3.3 Hz), 157.37, 155.01 (dd, J=247.9, 4.9 Hz), 153.08, 149.47, 146.04, 143.86, 130.76 (d, J=9.3 Hz), 117.30 (t, J=17.5 Hz), 113.30 (dd, J=21.8, 3.0 Hz), 112.56, 109.45, 108.28, 103.55 (dd, J=20.4, 3.6 Hz), 64.52, 64.14 ppm. HRMS (ESI): m/z [M+H]+ calcd for C16H11BrF2N3O2 +, 393.9997; found, 394.0008.
-
- 1H NMR (500 MHz, CDCl3): δ=8.64 (s, 1H), 8.51 (td, J=9.0, 5.6 Hz, 1H), 7.38 (s, 1H), 7.29 (s, 1H), 7.23 (br, 1H), 7.04 (ddd, J=9.2, 7.8, 2.1 Hz, 1H), 4.45-4.37 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=156.10, 155.80 (dd, J=246.6, 3.5 Hz), 153.28, 151.25 (dd, J=245.1, 4.0 Hz), 149.74, 146.56, 144.53, 124.39 (dd, J=10.8, 3.4 Hz), 122.72 (dd, J=8.3, 1.8 Hz), 114.42, 111.49 (dd, J=22.5, 3.9 Hz), 110.34, 105.98, 97.86 (dd, J=25.7, 22.9 Hz), 64.69, 64.50 ppm. HRMS (ESI): m/z [M+H]+ calcd for C16H11BrF2N3O2 +, 393.9997; found, 394.0013.
-
- 1H NMR (500 MHz, CDCl3): δ=8.88 (dd, J=6.6, 2.6 Hz, 1H), 8.73 (s, 1H), 7.41 (s, 1H), 7.37 (br, 1H), 7.26 (s, 1H), 7.28-7.23 (m, 1H), 4.44-4.39 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=155.45, 153.13, 149.88, 148.60 (d, J=241.7 Hz), 146.76, 144.72, 130.30 (d, J=4.4 Hz), 129.26 (d, J=10.8 Hz), 126.08, 121.21, 114.60, 110.49, 108.68 (d, J=20.9 Hz), 105.71, 64.70, 64.52 ppm. HRMS (ESI): m/z [M+H]+ calcd for C16H11BrClFN3O2 +, 409.9702; found, 409.9713.
-
- 1H NMR (500 MHz, CDCl3): δ=8.68 (s, 1H), 8.66 (ddd, J=8.6, 7.3, 1.6 Hz, 1H), 7.376 (s, 1H), 7.375 (br, 1H), 7.28 (s, 1H), 7.28-7.24 (m, 1H), 7.10 (td, J=8.2, 1.6 Hz, 1H), 4.08-3.98 (m, 2H), 1.451 (d, J=6.1 Hz, 3H), 1.448 ppm (d, J=6.1 Hz, 3H). 13C NMR (126 MHz, CDCl3): δ=155.90, 153.12, 150.12 (d, J=242.5 Hz), 149.90, 146.59, 144.65, 128.70 (d, J=10.2 Hz), 127.18, 125.30 (d, J=4.5 Hz), 121.74, 113.84, 110.43, 108.57 (d, J=19.2 Hz), 105.31, 75.31, 75.05, 17.23, 17.20 ppm. HRMS (ESI): m/z [M+H]+ calcd for C18H16BrFN3O2 +, 404.0404; found, 404.0405.
-
- 1H NMR (500 MHz, CDCl3): δ=8.67 (s, 1H), 8.59 (t, J=8.6 Hz, 1H), 7.40 (s, 1H), 7.38 (br, 1H), 7.33 (dd, J=9.1, 2.1 Hz, 1H), 7.31 (s, 1H), 4.45-4.38 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=155.84, 153.08, 149.98 (d, J=246.3 Hz), 149.88, 146.42, 144.67, 127.55, 127.19 (d, J=10.0 Hz), 125.30 (d, J=4.1 Hz), 121.05, 120.47 (d, J=18.2 Hz), 114.36, 110.43, 105.97, 64.71, 64.51 ppm. HRMS (ESI): m/z [M+H]+ calcd for C16H11Cl2FN3O2 +, 366.0207; found, 366.0207.
-
- 1H NMR (500 MHz, DMSO-d6): δ=9.65 (s, 1H), 8.40 (s, 1H), 7.93 (s, 1H), 7.63-7.54 (m, 2H), 7.21 (s, 1H), 4.45-4.37 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=157.29 (d, J=243.5 Hz), 156.84, 152.93, 149.97 (d, J=242.9 Hz), 149.43, 146.16, 143.81, 129.22-128.44 (m), 116.30 (d, J=26.7 Hz), 113.99 (d, J=25.7 Hz), 112.53, 109.73, 108.76 (dd, J=22.5, 12.5 Hz), 108.33, 64.52, 64.15 ppm. HRMS (DART): m/z [M+H]+ calcd for C16H11BrF2N3O2 +, 393.9997; found, 393.9988.
-
- 1H NMR (500 MHz, CDCl3): δ=8.68 (s, 1H), 8.65 (ddd, J=8.2, 7.3, 1.5 Hz, 1H), 7.40 (s, 1H), 7.37 (br, 1H), 7.35 (s, 1H), 7.27 (ddd, J=8.0, 6.4, 1.5 Hz, 1H), 7.10 (td, J=8.2, 1.6 Hz, 1H), 5.95 (ddd, J=17.3, 10.7, 5.8 Hz, 1H), 5.60 (dt, J=17.3, 1.2 Hz, 1H), 5.48 (dt, J=10.7, 1.1 Hz, 1H), 4.82-4.74 (m, 1H), 4.42 (dd, J=11.5, 2.5 Hz, 1H), 4.09 ppm (dd, J=11.6, 8.1 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ=155.90, 153.38, 150.14 (d, J=242.4 Hz), 149.12, 146.70, 144.12, 131.48, 128.64 (d, J=10.3 Hz), 127.24, 125.30 (d, J=4.7 Hz), 121.76, 120.43, 114.29, 110.69, 108.58 (d, J=19.3 Hz), 106.06, 74.03, 67.84 ppm. HRMS (DART): m/z [M+H]+ calcd for C18H14BrFN3O2 +, 402.0248; found, 402.0233.
- The Cell Free EGFR Kinase Assay was performed using the EGFR Kinase System (Promega #V3831). 13 concentrations at 2-fold dilutions from 250 nM to 0.03052 nM, a no drug control, and a no enzyme control were used in duplicates on 25 ng of EGFR enzyme per reaction. The ADP-Glo Kinase Assay (Promega #V6930) was used to measure EGFR activity in the presence of inhibitors.
- The GI50 Assays were performed using patient-derived glioblastoma cells. 13 concentrations at 2-fold dilutions from 40,000 nM to 9.77 nM (for GBM lines) or from 4,000 nM to 0.977 nM (for Lung Cancer lines (HK031)) were plated on 384-well plates in quadruplicates with 1500 cells per well. Cells were incubated for 3 days and then proliferation was assessed by Cell Titer Glo (Promega #G7570). As a reference, Erlotinib exhibited an GI50 of 642 nM (HK301) and 2788 nM (GBM39).
- Pharmacokinetic studies were performed on male CD-1 mice aged 8-10 weeks. Mice were dosed as indicated in duplicates. At the time points, whole blood was obtained by retro-orbital bleeding and brain tissue was harvested. Blood samples were centrifuged to obtain plasma and brain tissue was washed and homogenized. Samples were extracted with acetonitrile and supernatant was dried using a speed-vac. Dried samples were solubilized in 50:50:0.1 acetonitrile:water:formic acid and quantified on an Agilent 6400 series Triple Quadrupole LC/MS.
-
TABLE 3 Activity of Exemplary Compounds HK301 GBM39 GI50 GI50 Number Structure (nM) (nM) JGK001 2214 19670 JGK002 5448 19820 JGK003 1127 23110 JGK004 23383 102690 JGK005 8824 20536 JGK006 11012 51380 JGK007 92147 — JGK008 81269 — JGK009 6096 14640 JGK010 780.5 2594 JGK011 9206 3252 JGK0012 5477 10820 JGK013 1551 219870 JGK014 11816 27914 JGK015 2154 11540 JGK016 4052 61593 JGK017 64235 97624 JGK018 1071 4543 JGK019 — — JGK020 29236 36179 JGK021 480850 555780 JGK022 31116 150164 JGK023 86230 96260 JGK024 156370 124940 JGK025 10659 27706 JGK026 6124 16525 JGK027 5807 11837 JGK028 1688 5572 JGK029 24395 33970 JGK030 558742 961204 JGK031 — — JGK032 780.5 2594 JGK033 — — JGK035 4040 10721 JGK036 1046 4507 JGK037 329.3 1116 JGK038 791.1 2946 JGK039 3614 7820 JGK040 1721 7115 JGK041 1658 6042 JGK042 2294 4521 JGK043 745 1778 JGK044 4522 5635 JGK045 3940 10939 JGK047 316000 — JGK050 1159 3568 JGK051 8253 24140 JGK052 3866 9219 JGK053 2778 5277 JGK054 5723 7697 JGK055 290.1 966.4 JGK056 418.7 1355.8 JGK057 1382.7 9361.5 JGK058 1852.7 12974 JGK059 8110 11218 JGK060 2947 3501 JGK061 1131 1727 JGK062 3784 5856 JGK063 816 3431 JGK064 1213 4005 JGK065 3432 7339 JGK066 734 2395 JGK067 898 2198 JGK068 577 1613 JGK068S 439.7 1212 JGK068R 1396 3384 JGK069 659 2165 JGK070 1405 3333 JGK071 5749 10256 JGK072 5017 12033 JGK073 2055 6073 JGK074 2276 6670 JGK075 1181 4005 JGK076 6161 16944 JGK077 6844 16733 JGK078 2034 5758 JGK079 7214 15709 JGK080 7374 14528 JGK081 — — JGK082S 1668 1892 JGK083S 529 841 JGK066S 301 2633 JGK084 1835 5638 JGK085 1015 2617 JGK086 2559 4453 JGK087 3741 5257 JGK088 2132 4061 JGK089 3162 5090 JGK090 2394 4330 indicates data missing or illegible when filed - Illustrated below in Table 4 is the protein binding of erlotinib and several exemplary compounds of the disclosure. Fu refers to “fraction unbound”. Kpuu refers to the “unbound partition coefficient of the brain and plasma, at equilibrium”.
-
TABLE 4 Protein Binding of Erlotinib and Exemplary Compounds of the Disclosure Fu (blood)/ Bound (blood)/ Kpuu Compound Fu (brain) (brain) (Avg) Erlotinib 4.88% 95.12% 0.0513 2.93% 97.07% AZD3759 5.20% 94.80% 0.802 1.44% 98.56% JGK005 1.35% 98.65% 0.491 1.02% 98.98% JGK038 1.30% 98.70% 0.575 0.89% 99.11% JGK028 1.44% 98.56% 1.037 1.41% 98.59% JGK010 1.12% 98.88% 1.045 1.10% 98.90% JGK037 1.70% 98.30% 1.301 1.04% 98.96% JGK042 1.85% 98.15% 1.033 1.14% 98.86% JGK063 8.04% 91.96% 0.341 3.78% 96.22% JGK066 7.04% 92.96% 1.175 3.02% 96.98% JGK068 6.31% 93.69% 1.184 2.11% 97.89% JGK068S 5.96% 94.04% 1.181 1.86% 98.14% JGK068R 5.33% 94.67% 1.046 1.57% 98.43% JGK083S 7.02% 92.98% 0.798 2.42% 97.58% - Changes in glucose consumption with acute EGFR inhibition across 19 patient-derived GBM cell lines was characterized. The cells were cultured in supplemented serum-free medium as gliomaspheres which, in contrast to serum-based culture conditions, preserve many of the molecular features of patient tumors. Treatment with the EGFR tyrosine kinase inhibitor (EGFRi) erlotinib identified a subset of GBMs whose radio-labeled glucose uptake (18F-FDG) was significantly attenuated with EGFR inhibition; hereafter termed “metabolic responders” (
FIG. 21A andFIG. 27A ). Silencing of EGFR using siRNA confirmed that the reduction in glucose uptake was not due to off target effects of erlotinib (FIG. 27B, 27C ). Reduced 18F-FDG uptake in EGFRi treated cells was associated with decreased lactate production, glucose consumption, and extracellular acidification rate (ECAR), yet glutamine levels remained unchanged (FIG. 21B andFIG. 27D-G ). Finally, decreased glucose utilization correlated with perturbations in RAS-MAPK and PI3K-AKT-mTOR signaling—each of which can regulate glucose metabolism in GBM and other cancers (FIG. 28A ). - In contrast, in all “non-responders” GBMs (i.e. no change in 18F-FDG uptake with EGFRi or siRNA) (
FIG. 21A andFIG. 27B, 27C ), no changes in glucose consumption, lactate production, and ECAR were observed despite robust inhibition of EGFR (FIG. 21B ,FIGS. 27D-G , andFIG. 28B ). Moreover, RAS-MAPK and PI3K-AKT-mTOR signaling were largely unaffected in these cells (FIG. 28B ). Notably, while all metabolic responders had alterations in EGFR (copy number gain, mutation), 6 GBM lines without a metabolic response also contained EGFR mutations and/or copy number gains (FIG. 29A, 29B ). Taken together, these data illustrate two key points. First, acute inhibition of EGFR rapidly attenuates glucose utilization in a subset of primary GBM cells, and second, genetic alterations in EGFR could not alone predict which GBMs have a metabolic response to EGFRi. - Perturbations in glucose metabolism can induce the expression of pro-apoptotic factors and stimulate intrinsic apoptosis, suggesting that reduced glucose uptake in response to EGFRi would stimulate the intrinsic apoptotic pathway. Indeed, acute erlotinib treatment promoted the expression of the pro-apoptotic BH3-only proteins, BIM and PUMA, only in the metabolic responder cultures (
FIG. 30A ). However, annexin V staining revealed that the metabolic responders had only modest (˜17%), albeit significantly higher, apoptosis compared with non-responders (˜3%), following 72 hours of erlotinib exposure (FIG. 21C ). - The low level of apoptosis, despite pronounced induction of pro-apoptotic factors, led the inventors to ask if perturbing glucose uptake with EGFRi “primes” GBM cells for apoptosis; thus increasing the propensity for apoptosis without inducing significant cell death. To test this, the inventors treated both metabolic responders and non-responders with erlotinib for 24 hours and performed dynamic BH3 profiling to quantify the changes in apoptotic priming (
FIG. 30B ). Using multiple BH3 peptides (e.g., BIM, BID, and PUMA), we observed a significant increase in apoptotic priming—as determined by the change in cytochrome c release relative to vehicle—in the metabolic responders with erlotinib treatment (FIG. 21D —dark gray bars). Importantly, priming in the metabolic responders was significantly higher than priming in the non-responders (FIG. 21D —light gray bars), supporting the premise that attenuated glucose uptake with EGFRi triggers apoptotic priming in GBM. - The inventors tested if reduced glucose uptake is required for apoptotic priming with EGFRi, by checking whether rescuing glucose consumption should mitigate these effects. To test this, glucose transporters 1 (GLUT1) and 3 (GLUT3) were ectopically expressed in two metabolic responders (HK301 and GBM39). Enforced expression of GLUT1 and GLUT3 (GLUT1/3) rescued EGFRi-mediated attenuation of glucose uptake and lactate production in both cell lines (
FIG. 21E andFIGS. 31A-C ) and, importantly, markedly suppressed apoptotic priming in response to EGFRi (FIG. 21F ). Collectively, these data demonstrate that EGFRi-mediated inhibition of glucose consumption, although insufficient to induce significant cell death, lowers the apoptotic threshold potentially rendering GBM cells vulnerable to agents that exploit this primed state. - The mechanism by which GBMs become primed for apoptosis with EGFRi was investigated. The inhibition of oncogene-driven glucose metabolism renders GBM cells synergistically susceptible to cytoplasmic p53 dependent apoptosis. Attenuated glucose metabolic flux in GBM, via targeting oncogenic signaling (e.g., EGFRi), results in cytoplasmic p53 engaging the intrinsic apoptotic pathway (“priming”). However, Bcl-xL blocks cytoplasmic p53-mediated cell death. Pharmacological p53 stabilization overcomes this apoptotic block, leading to synergistic lethality with combined targeting of oncogene-driven glucose metabolism in GBM.
- In cells that are in a primed state, the anti-apoptotic Bcl-2 family proteins (e.g. Bcl-2, Bcl-xL, Mel-1) are largely loaded with pro-apoptotic BH3 proteins (e.g., BIM, BID, PUMA, BAD, NOXA, HRK); consequently, cells are dependent on these interactions for survival. The tumor suppressor protein, p53, is known to upregulate pro-apoptotic proteins that subsequently need to be bound by anti-apoptotic Bcl-2 proteins to prevent cell death. To examine whether p53 is required for EGFRi-induced priming, we silenced p53 with CRISPR/CAS-9 (hereafter referred to as p53KO) in two metabolic responders (HK301 and HK336,
FIG. 22A ). While the change in glucose consumption with EGFRi was unaffected in p53KO cells (FIG. 32A ), BH3 profiling revealed p53KO nearly abolished erlotinib-induced apoptotic priming in both HK301 and HK336 cells (FIG. 22B ). - As p53 transcriptional activity has been shown to be enhanced under glucose limitation, it we investigated to determine whether p53-mediated transcription was induced by EGFRi. However, erlotinib did not increase the expression of p53-regulated genes (e.g., p21, MDM2, PIG3, TIGAR) (
FIG. 32B ), nor induce p53-luciferase reporter activity in HK301 metabolic responder cells (FIG. 32C ). These data indicate that while p53 is required for priming with EGFRi, its transcriptional activity may not be necessary. - In addition to p53's well-described nuclear functions, p53 can localize in the cytoplasm where it can directly engage the intrinsic apoptotic pathway. To evaluate whether cytoplasmic p53 is important for apoptotic priming with EGFRi, we stably introduced a p53 mutant with a defective nuclear localization signal (p53cyto) into HK301 and HK336 p53KO gliomaspheres. As expected, p53cyto was expressed (
FIG. 22C andFIG. 32D ), restricted to the cytoplasm (FIG. 22D andFIG. 32E ) and had no transcriptional activity (FIG. 22E andFIG. 32F ). Conversely, reconstitution of wild-type p53 (p53wt) in HK301 and HK336 p53KO cells displayed similar localization as parental cells and rescued transcription of p53-regulated genes (FIGS. 22C-E andFIGS. 32E-G ). Remarkably, stable introduction of p53cyto significantly restored priming with erlotinib in both HK301 and HK336 p53KO cells to levels comparable to p53wt (FIG. 22F andFIG. 32G ), indicating that the cytoplasmic function of p53 is required for EGFRi-mediated priming. In support of this, introduction of a transcriptionally active (FIG. 2622G ), yet nuclear-confined p53 mutant (p53NES) into HK301 p53KO cells failed to induce EGFRi-mediated apoptotic priming (FIG. 22G, 22H andFIG. 32H ). Finally, pharmacological inhibition of cytoplasmic p53 activity with pifithrin-μ (PFTμ) markedly reduced priming with erlotinib (FIG. 32I ). Collectively, these results show that cytoplasmic p53 engages the intrinsic apoptotic machinery following EGFRi in GBM. - Prior work demonstrated that human tumor-derived p53 mutants—specifically those in the DNA binding domain—have diminished cytoplasmic functions in addition to transactivation deficiencies. Thus, the inventors tested whether stable expression of two of these “hotspot” p53 mutants, R175H or R273H, in HK301 p53KO would have reduced EGFRi-mediated priming (
FIG. 32H ). As expected, both mutants lacked transcriptional capabilities (FIG. 22G ) and, consistent with reduced cytoplasmic activity, were incapable of apoptotic priming with EGFRi (FIG. 22H ). Therefore, in line with previous findings, oncogenic mutations in the DNA binding domain of p53 result in “dual hits”, whereby both transactivation and cytoplasmic functions are abrogated—the latter having implications for apoptotic priming with EGFRi. - Bcl-xL can sequester cytoplasmic p53 and prevent p53-mediated apoptosis; thus creating a primed apoptotic state and a dependency on Bcl-xL for survival. Indeed, BH3 profiling revealed a dependence on Bcl-xL for cell survival in EGFRi metabolic responders (
FIG. 33A ). Therefore, we hypothesized that attenuated glucose consumption with EGFRi may result in sequestration of cytoplasmic p53 by Bcl-xL. To investigate this, we performed co-immunoprecipitations to examine the dynamics of p53-Bcl-xL interactions in response to EGFRi in both responders (n=2) and non-responders (n=2). Importantly, we observed markedly heightened Bcl-xL and p53 interactions following erlotinib treatment in metabolic responders (FIG. 23A ) but not in non-responders (FIG. 23B ). This suggests that inhibition of EGFR-dependent glucose consumption results in sequestration of p53 by Bcl-xL. Consistent with this interpretation, ectopic expression of GLUT1/3, which rescues the EGFRi-mediated reduction in glucose uptake and apoptotic priming, prevented the association of p53 with Bcl-xL (FIG. 23C andFIG. 33B ). These findings strongly indicate that EGFRi-mediated inhibition of glucose uptake primes GBM cells for apoptosis by promoting an interaction between cytoplasmic p53 and Bcl-xL. - The liberation of p53 from Bcl-xL enables p53 to directly activate BAX, resulting in cytochrome c release and cell death. Once we recognized increased binding between Bcl-xL and p53 in metabolic responders in response to EGFRi, we asked whether displacement of p53 from Bcl-xL elicits apoptosis. To test this, we treated a metabolic responder (HK301) with erlotinib and the specific Bcl-xL inhibitor, WEHI-539. The addition of WEHI-539 disrupted the association of Bcl-xL with p53 under erlotinib treatment (
FIG. 23D ), leading to synergistic lethality in HK301 and GBM39 cells (metabolic responders) (FIG. 23E ). Notably, cytoplasmic p53 was sufficient for the combinatorial effects in EGFRi metabolic responder cells (FIG. 33C ). However, WEHI-539 did not enhance apoptosis in a non-responder (HK393) treated with erlotinib, suggesting that attenuation of glucose uptake with EGFRi, and subsequent association between p53 and Bcl-xL, is necessary to generate a dependence on Bcl-xL for survival (FIG. 33E ). In support of this, enforced expression of GLUT1/3 significantly mitigated cell death with the drug combination (FIG. 23F andFIG. 33D ). Together, these observations indicate that Bcl-xL attenuates GBM cell death in response to EGFRi-mediated inhibition of glucose uptake by sequestering cytoplasmic p53 (FIG. 32G ). - The mechanistic studies revealed a potential therapeutic opportunity in EGFR-driven GBMs that will be dependent on functional p53. While the p53 signaling axis is one of the three core pathways altered in GBM, analysis of the TCGA GBM dataset demonstrated that p53 mutations are mutually exclusive with alterations in EGFR (
FIGS. 28A and 28B ). Conversely, in patients with EGFR mutations or gains, the p53 pathway can be suppressed through amplification of MDM2 and/or deletions in the negative regulator of MDM2, p14 ARF, at the CDKN2A locus. Given these relationships, and the requirement of p53 for priming under EGFRi-attenuated glucose uptake, we hypothesized that stabilization of p53 via MDM2 inhibition may have similar therapeutic effects to Bcl-xL antagonism. Using nutlin—an extensively characterized inhibitor of MDM2—we found striking synergistic lethality when paired with erlotinib in a metabolic responder gliomasphere. Greater than 90% of HK301 cells underwent apoptosis with combined erlotinib and nutlin (FIG. 24C ). Notably, we observed no synergy between these drugs in a metabolic non-responder (GS017,FIG. 24C ). We then tested this combination across our panel of primary GBM cells (all p53 wild-type) and found synergistic lethality only in GBMs with a metabolic response to EGFRi (FIG. 24D andFIG. 34A ). Genetic knockdown of EGFR confirmed synergy only in the metabolic responders (FIG. 34B ). Importantly, enforced expression of GLUT1/3 significantly reduced BAX oligermization, cytochrome c release and apoptosis with combined erlotinib and nutlin (FIG. 24E andFIG. 34C ), supporting the concept that inhibition of glucose metabolism with EGFRi is required for the synergistic effects of the erlotinib and nutlin combination. - The role of p53 in eliciting cell death to combined erlotinib and nutlin was then investigated. As expected, CRISPR/CAS-9 targeting of p53 in two EGFRi metabolic responders (HK301 and HK336) completely mitigated sensitivity to the drug combination (
FIG. 24F ). Likewise, ectopic expression of Bcl-xL markedly suppressed cell death with combined treatment, consistent with a critical function for Bcl-xL in antagonizing p53-mediated apoptosis (FIG. 34D ). Moreover, similar to the results with Bcl-xL inhibition (e.g., WEHI-539), the addition of nutlin liberated p53 from Bcl-xL under erlotinib treatment (FIG. 24G ). These data are in agreement with prior observations that p53 stabilization can stimulate cytoplasmic p53-mediated apoptosis. In support of the suggestion that cytoplasmic p53 activity is required for EGFRi and nutlin induced apoptosis in metabolic responders, blocking cytoplasmic p53 activity with PFTμ significantly reduced the synergistic effects of the combination (FIG. 34E ), while, HK301 cells containing the nuclear-confined p53 mutant, p53NES, were incapable of enhanced apoptosis with erlotinib and nutlin (FIG. 34F ). Finally, the cancer “hotspot” mutants, R175H and R273H, which have both transactivation and cytoplasmic deficiencies, were completely insensitive to the drug combination (FIG. 34F ). - While cytoplasmic p53 is desired to promote cell death with the drug combination, we observed in some instances that both the transcription-dependent and independent functions of p53 are needed for optimal execution of synergistic apoptosis with nutlin (
FIG. 34F ). These results are consistent with reports that the transcription-independent functions of p53 can alone execute intrinsic apoptosis, whereas, in other contexts, may require its transcription-dependent functions to stimulate cytoplasmic p53 mediated cell kill. Collectively, the results described herein show that combined targeting of EGFR-driven glucose metabolism and p53 can induce marked synergistic cell death in primary GBM; which is dependent on the cytoplasmic functions of p53. - The aforementioned data led the inventors to propose a model where EGFRi-mediated attenuation of glucose metabolism primes the apoptotic machinery, resulting in synergy with pro-apoptotic stimuli such as p53 activation. The synergy lies between induction of cellular stress by EGFR inhibitors, reduction of glucose uptake and the priming of the cell for apoptosis and the stabilization of p53 by antagonists of BCL-2. EGFR inhibition can rapidly attenuate glycolysis in cellular stress. This creates a tumor-specific vulnerability in which intrinsic apoptosis can be significantly enhanced by: 1) activation of p53 (such as, for example, through nutlin, analogues or others described herein) and 2) inhibition of BCL-2 (by any of several agents as described herein such as for example, ABT-263 (Navitoclax).
- A logical prediction of this model is that direct inhibition of glucose metabolism should phenocopy the effects of EGFRi. Consistent with this, addition of the glucose metabolic inhibitor 2-deoxyglucose (2DG) stimulated apoptotic priming, binding of p53 to Bcl-xL, and synergy with nutlin in HK301 cells (an EGFRi metabolic responder) (
FIGS. 40A, 40B, and 40D ). Interestingly, inhibition of oxidative phosphorylation with oligomycin (complex V/ATP synthase) or rotenone (complex I) did not synergize with nutlin treatment in HK301 gliomaspheres (FIGS. 35C and 35D ). Thus, reduced glucose metabolic flux alone, but not oxidative metabolism, appears to be sufficient for synergistic sensitivity to p53 activation. - This prompted the inventors to consider whether modulating glucose consumption in EGFRi non-responders results in a similar p53-dependent vulnerability. To investigate this, they tested whether direct inhibition of glucose uptake, with 2DG, or through targeting PI3K—a well characterized driver of glucose metabolism—elicits apoptotic priming in two EGFRi metabolic non-responders (
FIG. 25A ). In contrast to erlotinib treatment, acute inhibition of PI3K with pictilisib abrogated PI3K-AKT-mTOR signaling (FIG. 35E ), and significantly reduced 18F-FDG uptake in HK393 and HK254 cells (FIG. 25B ). The decrease in glucose consumption with pictilisib was associated with significantly higher apoptotic priming and, as anticipated, 2DG completely mirrored these effects (FIGS. 25B and C). Therefore, EGFRi metabolic non-responders can be primed for apoptosis following inhibition of glucose uptake. Importantly, CRISPR/CAS-9 targeting of p53 in HK393 significantly suppressed priming mediated by 2DG or pictilisib. (FIG. 25D ). Moreover, p53-dependent priming was associated with heightened Bcl-xL and p53 binding, indicative of sequestration of p53 by Bcl-xL to block apoptosis (FIG. 25E andFIG. 35F ). Consistent with this interpretation, combining 2DG or pictilisib with nutlin caused significant, p53-dependent synergistic lethality in EGFRi non-responder cells (FIGS. 25F & 25G ). Taken together, these data demonstrate that acute inhibition of glucose metabolism, either directly or with targeted therapy, promotes p53-dependent apoptotic priming in GBM; which, creates a targetable vulnerability for enhanced cell kill. - The results obtained in cell culture show that combined targeting of oncogene-driven glucose metabolism and p53 has synergistic activity in primary GBM. This led the us to investigate whether this approach could be effective in orthotopic GBM xenograft models. For these studies, we employed a potent, MDM2 inhibitor, Idasanutlin, which is currently in clinical trials for many malignancies. Given the uncertainty of CNS penetration for Idasanutlin, we first demonstrated that Idasanutlin can accumulate in the brain of mice with an intact blood-brain-barrier (brain:plasma, 0.35) and stabilizes p53 in orthotopic tumor-bearing mice (
FIGS. 41A & 41B ). - Next, as perturbations in glucose metabolism with oncogene inhibition are required for synergistic sensitivity to p53 activation, we reasoned that rapid attenuation in glucose uptake in vivo following EGFRi administration—as measured by 18F-FDG PET—could serve as a non-invasive predictive biomarker for therapeutic efficacy of combined erlotinib+Idasanutlin treatment (
FIG. 26A ). We observed, in orthotopic xenografts of an EGFR-metabolic responder gliomasphere (GBM39), that acute erlotinib treatment (75 mg/kg) rapidly reduced 18F-FDG uptake (15 hours post erlotinib administration) (FIG. 26B andFIG. 36C ). In separate groups of mice, they tested the individual drugs and the combination of daily erlotinib (75 mg/kg) treatment and Idasanutlin (50 mg/kg). Relative to single agent controls, we observed synergistic growth inhibition—as determined by secreted gaussia luciferase—in GBM39 intracranial tumor-bearing mice, with minimal toxicity (FIG. 26B andFIG. 36D ). In contrast, orthotopic xenografts of a non-metabolic responder (HK393) showed no changes in 18F-FDG uptake with acute EGFRi (FIG. 26D andFIG. 36C ), nor synergistic activity with the erlotinib and Idasanutlin combination (FIG. 26E ). Thus, non-invasive 18F-FDG PET, used to measure rapid changes in glucose uptake with EGFRi, was effective in predicting subsequent synergistic sensitivity to combined erlotinib and Idasanutlin. - Finally, we evaluated the effects of the drug combination on overall survival in orthotopic xenografts of either two EGFRi metabolic responders (GBM39 and HK336) or two non-responders (HK393 and GS025). All tumors were p53 wild-type (
FIG. 29A ). Following evidence of tumor growth (as determined by gaussia luciferase), mice were treated with vehicle, erlotinib, Idasanutlin, or the combination for up to 25 days. The drug combination led to a pronounced increase in survival only in the EGFRi metabolic responder GBM tumors (FIGS. 30F-I ). Taken together, these data show that combined targeting of EGFR and p53 synergistically inhibits growth and prolongs survival in a subset of p53 wild-type GBM orthotopic xenografts. Importantly, 18F-FDG PET was valuable as a non-invasive predictive biomarker of sensitivity to this new combination therapeutic strategy. - We tested how direct inhibition of glycolysis with a hexokinase inhibitor (2DG) and a glucose transporter inhibitor (cytochalasin B) affect p53 activation by nutlin. The results shown in
FIG. 37 demonstrate that low glucose (0.25 mM) leads to synergistic cell kill with BCL-xL inhibition with navitoclax or nutlin. Cell death was measured using annexin V staining in gliomasphere samples treated for 72 hours with glycolytic inhibitors 2DG or cytochalasin B as single agents or in combination with p53 activator, nutlin. The same effects were recapitulated by culturing gliomaspheres in low glucose conditions (0.25 mM) and treating them with nutlin or navitoclax (ABT-263) for 72 hours. - Female NOD scid gamma (NSG), 6-8 weeks of age, were purchased from the University of California Los Angeles (UCLA) medical center animal breeding facility. Male CD-1 mice, 6-8 weeks of age, were purchased from Charles River. All mice were kept under defined flora pathogen-free conditions at the AAALAC-approved animal facility of the Division of Laboratory Animals (DLAM) at UCLA. All animal experiments were performed with the approval of the UCLA Office of Animal Resource Oversight (OARO).
- All patient tissue to derive GBM cell cultures was obtained through explicit informed consent, using the UCLA Institutional Review Board (IRB) protocol: 10-00065. As previously described12, primary GBM cells were established and maintained in gliomasphere conditions consisting of DMEM/F12 (Gibco), B27 (Invitrogen), Penicillin-Streptomycin (Invitrogen), and Glutamax (Invitrogen) supplemented with Heparin (5 μg/mL, Sigma), EGF (50 ng/mL, Sigma), and FGF (20 ng/mL, Sigma). All cells were grown at 37° C., 20% 02, and 5% CO2 and were routinely monitored and tested negative for the presence of mycoplasma using a commercially available kit (MycoAlert, Lonza). At the time of experiments, most HK lines used were between 20-30 passages (exceptions HK385 p8, HK336 p15), while GS and GBM39 lines were less than 10 passages. All cells were authenticated by short-tandem repeat (STR) analysis
- Chemical inhibitors from the following sources were dissolved in DMSO for in vitro studies: Erlotinib (Chemietek), Nutlin-3A (Selleck Chemicals), WEHI-539 (APExBIO), Pictilisib (Selleck Chemicals), Oligomycin (Sigma), Rotenone (Sigma). 2DG (Sigma) was dissolved freshly in media prior to usage. Antibodies used for immunoblotting were obtained from the listed sources: R-actin (Cell signaling, 3700), tubulin (Cell signaling, 3873), p-EGFR Y1086 (Thermo Fischer Scientific, 36-9700), t-EGFR (Millipore, 06-847), t-AKT (Cell Signaling, 4685), p-AKT T308 (Cell Signaling, 13038), p-AKT S473 (Cell Signaling, 4060), t-ERK (Cell Signaling, 4695), p-ERK T202/Y204 (Cell Signaling, 4370), t-S6 (Cell Signaling, 2217), p-S6 S235/236 (Cell Signaling, 4858), t-4EBP1 (Cell Signaling, 9644), p-4EBP1 S65 (Cell Signaling 9451), Glut3 (Abcam, ab15311), Glut1 (Millipore, 07-1401), p53 (Santa Cruz Biotechnology, SC-126), BAX (Cell Signaling, 5023), BIM (Cell Signaling, 2933), Bcl-2 (Cell Signaling, 2870), Bcl-xL (Cell Signaling, 2764), Mel-1 (Cell Signaling, 5453), Cytochrome c (Cell Signaling, 4272), and Cleaved Caspase-3 (Cell Signaling, 9661). Antibodies used for immunoprecipitation were obtained from the listed sources: p53 (Cell Signaling, 12450) and Bcl-xL (Cell Signaling, 2764). Secondary antibodies were obtained from the listed sources: Anti-rabbit IgG HRP-linked (Cell Signaling, 7074) and Anti-mouse IgG HRP-linked (Cell Signaling, 7076). All immunoblotting antibodies were used at a dilution of 1:1000, except 0-actin and tubulin, which were used at 1:10,000. Immunoprecipitation antibodies were diluted according to manufacturer's instructions (1:200 for p53 and 1:100 for Bcl-xL). Secondary antibodies were used at a dilution of 1:5000.
- Cells were plated at 5×104 cells/ml and treated with designated drugs for indicated time points. Following appropriate treatment, cells were collected and resuspended in glucose-free DMEM/F12 (USBiological) containing 18F-FDG (
radioactivity 1 μCi/mL). Cells were incubated at 37° C. for 1 hr and then washed three times with ice cold PBS. Radioactivity of each sample was then measured using a gamma counter. - Cellular glucose consumption and lactate production were measured using a Nova Biomedical BioProfile Basic Analyzer. Briefly, cells were plated in 1×105 cells/ml in 2 mL of gliomasphere conditions and appropriate drug conditions (n=5). 12 hrs following drug treatment, 1 ml of media was removed from each sample and analyzed in the Nova BioProfile analyzer. Measurements were normalized to cell number.
- Cells were collected and analyzed for Annexin V and PI staining according to manufacturer's protocol (BD Biosciences). Briefly, cells were plated at 5×104 cells/ml and treated with appropriate drugs. Following indicated time points, cells were collected, trypsinized, washed with PBS, and stained with Annexin V and PI for 15 minutes. Samples were then analyzed using the BD LSRII flow cytometer.
- Cells were collected and lysed in RIPA buffer (Boston BioProducts) containing Halt Protease and Phosphatase Inhibitor (Thermo Fischer Scientific). Lysates were centrifuged at 14,000×g for 15 min at 4° C. Protein samples were then boiled in NuPAGE LDS Sample Buffer (Invitrogen) and NuPAGE Sample Reducing Agent (Invitrogen) and separated using SDS-PAGE on 12% Bis-Tris gels (Invitrogen) and transferred to nitrocellulose membrane (GE Healthcare). Immunoblotting was performed per antibody's manufacturer's specifications and as mentioned previously. Membranes were developed using the SuperSignal system (Thermo Fischer Scientific).
- Cells were collected, washed once with PBS, and incubated in IP lysis buffer (25 mM Tris-HCL pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 5% Glycerol) at 4° C. for 15 minutes. 300-500 μg of each sample was then pre-cleared in Protein A/G Plus Agarose Beads (Thermo Fischer Scientific) for one hour. Following pre-clear, samples were then incubated with antibody-bead conjugates overnight according to manufacturer's specifications and as mentioned previously. The samples were then centrifuged at 1000 g for 1 min, and the beads were washed with 500 μL of IP lysis buffer for five times. Proteins were eluted from the beads by boiling in 2×LDS Sample Buffer (Invitrogen) at 95° C. for 5 min. Samples analyzed by immunoblotting as previously described. Immunoprecipitation antibodies were diluted according to manufacturer's instructions (1:200 for p53 and 1:100 for Bcl-xL).
- GBM gliomaspheres were first disassociated to single-cell suspensions with TrypLE (Gibco) and resuspended in MEB buffer (150
mM Mannitol 10 mM HEPES-KOH, 50 mM KCl, 0.02 mM EGTA, 0.02 mM EDTA, 0.1% BSA, 5 mM Succinate). 50 μl of cell suspension (3×104 cells/well) were plated in wells holding 50 μL MEB buffer containing 0.002% digitonin and indicated peptides in 96-well plates. Plates were then incubated at 25° C. for 50 min. Cells were then fixed with 4% paraformaldehyde for 10 min, followed by neutralization with N2 buffer (1.7M Tris, 1.25M Glycine pH 9.1) for 5 min. Samples were stained overnight with 20 μL of staining solution (10% BSA, 2% Tween 20 in PBS) containing DAPI and anti-cytochrome c (BioLegend). The following day, cytochrome c release was quantified using BD LSRII flow cytometer. Measurements were normalized to appropriate controls that do not promote cytochrome c release (DMSO and inactive PUMA2A peptide). Delta priming refers to the difference in amount of cytochrome c release between vehicle treated cells and drug treated cells. - 7.5×105 cells were treated with indicated drugs. Following 24 hr of treatment, cells were collected, washed once with ice cold PBS, and re-suspended in 1 mM bismaleimidohexane (BMH) in PBS for 30 min. Cells were then pelleted and lysed for immunoblotting, as described above.
- 5 million cells were plated at a concentration of 1×105 cells/mL and treated with indicated drugs. Following 24 hr of treatment, cells were collected, washed once with ice cold PBS. Subcellular fractionation was then performed using a mitochondrial isolation kit (Thermo Fischer Scientific, 89874). Both cytoplasmic and mitochondrial fractions were subjected to immunoblotting and cytochrome c was detected using cytochrome c antibody at a dilution of 1:1000 (Cell Signaling, 4272).
- For intracranial experiments, GBM39, HK336, HK393, and GS025 cells were injected (4×105 cells per injection) into the right striatum of the brain of female NSG mice (6-8 weeks old). Injection coordinates were 2 mm lateral and 1 mm posterior to bregma, at a depth of 2 mm. Tumor burden was monitored by secreted gaussia luciferase and following three consecutive growth measurements, mice were randomized into four treatment arms consisting of appropriate vehicles, 75 mg/kg erlotinib, 50 mg/kg Idasanutlin, or a combination of both drugs. Vehicle consisted of 0.5% methylcellulose in water, which is used to dissolve erlotinib, and a proprietary formulation obtained from Roche, which is used to dissolve Idasanutlin. Tumor burden was assessed twice per week by secreted gaussia luciferase. When possible, mice were treated for 25 days and taken off treatment and monitored for survival. Drugs were administered through oral gavage. Sample sizes were chosen based off estimates from pilot experiments and results from previous literature12. Investigators were not blinded to group allocation or assessment of outcome. All studies were in accordance with UCLA OARO protocol guidelines.
- Mice were treated with indicated dose and time of erlotinib then pre-warmed, anesthetized with 2% isoflurane, and intravenously injected with 70 μCi of 18F-FDG. Following 1 hr unconscious uptake, mice were taken off anesthesia but kept warm for another 5 hr of uptake. 6 hr after the initial administration of 18F-FDG, mice were imaged using G8 PET/CT scanner (Sofie Biosciences). Per above, quantification was performed by drawing 3D regions of interest (ROI) using the AMIDE software.
- Immunohistochemistry was performed on 4 μm sections that were cut from FFPE (formalin-fixed, paraffin-embedded) blocks. Sections were then deparaffinised with xylene and rehydrated through graded ethanol. Antigen retrieval was achieved with a pH 9.5 Nuclear Decloaker (Biocare Medical) in a Decloaking pressure cooker at 95° C. for 40 min. Tissue sections were then treated with 3% hydrogen peroxide (LOT 161509; Fisher Chemical) and with Background Sniper (Biocare Medical, Concord, Calif., USA) to reduce nonspecific background staining. Primary antibody for p53 (Cell Signaling, 2527) was applied in a 1:150 dilution for 80 min followed by detection with the
MACH 3 Rabbit HRP-Polymer Detection kit (Biocare Medical). Visualization was achieved using VECTOR NovaRED (SK-4800; Vector Laboratories, Inc.) as chromogen. Lastly, sections were counterstained with Tacha's Automated Hematoxylin (Biocare Medical). - RNA was extracted from all cells using Purelink RNA Kit (Invitrogen). cDNA was synthesized with iScript cDNA Synthesis Kit (Bio-Rad) as per manufacturer's instructions. Quantitative PCR (qPCR) was conducted on the Roche LightCycler 480 using SYBRGreen Master Mix (Kapa Biosciences). Relative expression values are normalized to control gene (GAPDH). Primer sequences are as listed (5′ to 3′): P21 (forward GACTTTGTCACCGA GACACC (SEQ ID NO: 1), reverseGACAGGTCCACATGGTCTTC (SEQ ID NO: 2)), PUMA (forward ACGACCTCAACGCACAGTACG (SEQ ID NO: 3), reverse GTAAG GGCAGGAGTCCCATGATG (SEQ ID NO: 4)), GAPDH (forward TGCCATGTAGACC CCTTGAAG (SEQ ID NO: 5), reverse ATGGTACATGACAAGGTGCGG (SEQ ID NO: 6)), MDM2 (forward CTGTGTTCAGTGGCGATTGG (SEQ ID NO: 7), reverse AGGGT CTCTTGTTCCGAAGC (SEQ ID NO: 8)), TIGAR (forward GGAAGAGTGCCCTGTG TTTAC (SEQ ID NO: 9), reverse GACTCAAGACTTCGGGAAAGG (SEQ ID NO: 10)), PIG3 (forward GCAGCTGCTGGATTCAATTA (SEQ ID NO: 11), reverse TCCCAGT AGGATCCGCCTAT (SEQ ID NO: 12)).
- Cells were first infected with lentivirus synthesized from a p53 reporter plasmid which codes for luciferase under the control of a p53 responsive element: TACAGAACATGTCTAAGCATGCTGTGCCTTGCCTGGACTTGCCTGGCCTTGCCTT GGG (SEQ ID NO: 13). Infected cells were then plated into a 96-well plate at 5,000 cells/50 p L and treated with indicated drugs for 24 hr and then incubated with 1 mM D-luciferin for two hours. Bioluminescence was measured using IVIS Lumina II (Perkin Elmer).
- In general, lentivirus used for genetic manipulation were produced by transfecting 293-FT cells (Thermo) using Lipofectamine 2000 (Invitrogen). Virus was collected 48 hours after transfection. The lentiviral sgp53 vector and sgControl vector contained the following guide RNA, respectively: CCGGTTCATGCCGCCCATGC (SEQ ID NO: 14) and GTAATCCTAGCACTTTTAGG (SEQ ID NO: 15). LentiCRISPR-v2 was used as the backbone. Glut1 and Glut3 cDNA was cloned from commercially available vectors and incorporated into pLenti-GLuc-IRES-EGFP lentiviral backbone containing a CMV promoter (Glut1 was a gift from Wolf Frommer (Addgene #1808544), Glut3 was obtained from OriGene #SC115791, and the lentiviral backbone was obtained from Targeting Systems #GL-GFP). pMIG Bcl-xL was a gift from Stanley Korsmeyer (Addgene #8790445) and cloned into the lentiviral backbone mentioned above (Targeting Systems). Cytoplasmic (K305A and R306A) and wild-type p53 constructs were a kind gift from R. Agami and G. Lahav. The genes of interest were cloned into a lentiviral vector containing a PGK promoter. Constructs for p53 DNA binding domain mutants (R175H) and (R273H) as well as the nuclear mutant (L348A and L350A) were generated using site-directed mutagenesis (New England Biolabs #E0554S) on the wild-type p53 construct.
- For EGFR knockdown experiments, siRNA against EGFR (Thermo Fischer Scientific, s563) was transfected into cells using DharmaFECT 4 (Dharmacon). Following 48 hours, cells were harvested and used for indicated experiments.
- For immunofluorescence, gliomaspheres were first disassociated to single cell and adhered to the 96-well plates using Cell-Tak (Corning) according to manufacturer instructions. Adhered cells were then fixed with ice-cold methanol for 10 min then washed three times with PBS. Cells were then incubated with blocking solution containing 10% FBS and 3% BSA in PBS for 1 hr and subsequently incubated with p53 (Santa Cruz, SC-126, dilution of 1:50) antibody overnight at 4° C. The following day, cells were incubated with secondary antibody (Alexa Fluor 647, dilution 1:2000) for an hour and DAPI staining for 10 min, then imaged using a Nikon TI Eclipse microscope equipped with a Cascade II fluorescent camera (Roper Scientific). Cells were imaged with emissions at 461 nM and 647 nM and then processed using NIS-Elements AR analysis software.
- For metabolic measurements involving OCR and ECAR, gliomaspheres treated with indicated drugs were first disassociated to single cell suspensions and adhered to XF24 plates (Seahorse Bioscience) using Cell-Tak (Corning) according to manufacturer instructions. Prior to the assay, cells were supplemented with unbuffered DMEM, and incubated at 37° C. for 30 min before starting OCR and ECAR measurements. Basal ECAR measurements between control and erlotinib treated cells are shown.
- Male CD-1 mice (6-8 weeks old) were treated with 50 mg/kg Idasanutlin in duplicate through oral gavage. At 0.5, 1, 2, 4, 6, 8, 12, and 24 hr after administration, mice were sacrificed, blood was harvested by retro-orbital bleeding, and brain tissue was collected. Whole blood from mice was centrifuged to isolate plasma. Idasanutlin was isolated by liquid-liquid extraction from plasma: 50 μL plasma was added to 2 μL internal standard and 100 μL acetonitrile. Mouse brain tissue was washed with 2 mL cold PBS and homogenized using a tissue homogenizer with fresh 2 mL cold PBS. Idasanutlin was then isolated and reconstituted in a similar manner by liquid-liquid extraction: 100 p L brain homogenate was added to 2 μL internal standard and 200 μL acetonitrile. After vortex mixing, the samples was centrifuged. The supernatant was removed and evaporated by a rotary evaporator and reconstituted in 100 μL 50:50 water: acetonitrile.
- Chromatographic separations were performed on a 100×2.1 mm Phenomenex Kinetex C18 column (Kinetex) using the 1290 Infinity LC system (Agilent). The mobile phase was composed of solvent A: 0.1% formic acid in Milli-Q water, and B: 0.1% formic acid in acetonitrile. Analytes were eluted with a gradient of 5% B (0-4 min), 5-99% B (4-32 min), 99% B (32-36 min), and then returned to 5% B for 12 min to re-equilibrate between injections. Injections of 20 p L into the chromatographic system were used with a solvent flow rate of 0.10 mL/min. Mass spectrometry was performed on the 6460 triple quadrupole LC/MS system (Agilent). Ionization was achieved by using electrospray in the positive mode and data acquisition was made in multiple reactions monitoring (MRM) mode. The MRM transition used for Idasanutlin detection was m/z 616.2→421.2 with fragmentor voltage of 114V, and collision energy of 20 eV. Analyte signal was normalized to the internal standard and concentrations were determined by comparison to the calibration curve (0.5, 5, 50, 250, 500, 2000 nM). Idasanutlin brain concentrations were adjusted by 1.4% of the mouse brain weight for the residual blood in the brain vasculature.
- Cells were infected with a lentiviral vector containing secreted gaussia luciferase (sGluc) reporter gene (Targeting Systems # GL-GFP) and intracranially implanted into the right striatum of mice (4×105 cells/mouse). To measure the levels of secreted Gaussia luciferase (sGluc), 6 μL of blood was collected from the tail vein of the mice and immediately mixed with 50 mM EDTA to prevent coagulation. Gluc activity was obtained by measuring chemiluminescence following injection of 100 μL of 100 μM coelentarazine (Nanolight) in a 96 well plate.
- 1.0×105 GBM cells were plated in triplicate and treated with erlotinib, nutlin, or combination at multiple concentrations using a matrix where each drug was added to the cells at six concentrations (0-10 μM). Annexin V staining was measured following 72 hrs of treatment. Using the Chalice software, the response of the combination was compared to its single agents. The combinatorial effects were calculated using the synergy score.
- Targeted sequencing was performed for samples HK206, HK217, HK250, HK296 for the following genes BCL11A, BCL11B, BRAF, CDKN2A, CHEK2, EGFR, ERBB2, IDH1, IDH2, MSH6, NF1, PIK3CA, PIK3R1, PTEN, RBI, TP53 using Illumina Miseq. There were 1 to 2 million reads per sample with average coverage of 230 per gene. Copy number variants were determined for these samples using a whole genome SNP array. The genetic profile of GBM39 has been previously reported in the literature.
- Whole exome sequencing was performed for samples HK157, HK229, HK248, HK250, HK254, HK296, HK301, HK336, HK350, HK390, HK393 and carried out at SeqWright. Samples were grouped into 2 pools with separate capture reactions. Nextera Rapid capture and library preparation were used and sequencing performed on a
HiSeq - 273 GBM samples from the TCGA were analyzed for genetic alterations in EGFR, p53 and p53-regulated pathways. Co-occurrences of mutations were examined and only significant interactions are displayed. Data was analyzed using cBioPortal as previously described.
- Fluorescence in situ hybridization (FISH) was performed using commercially available fluorescently labeled dual-color EGFR (red)/CEP 7(green) probe (Abbott-Molecular). FISH hybridization and analyses were performed on cell lines, following the manufacturer's suggested protocols. The cells were counterstained with DAPI and the fluorescent probe signals were imaged under a Zeiss (Axiophot) Fluorescent Microscope equipped with dual- and triple-color filters.
- Comparisons were made using two-tailed unpaired Student's t-tests and p values <0.05 were considered statistically significant. All data from multiple independent experiments were assumed to be of normal variance. Data represent means±s.e.m. values. All statistical analyses were calculated using Prism 6.0 (GraphPad). For all in vitro and in vivo experiments, no statistical method was used to predetermine sample size and no samples were excluded. For in vivo tumor measurements, the last data sets were used for comparisons between groups. As described above, all mice were randomized before studies.
- Certain Compounds of the present disclosure were designed according to
Scheme 1. - Exemplary compounds of the present disclosure were prepared according to the following methods.
- All chemicals, reagents, and solvents were purchased from commercial sources when available and were used as received. When necessary, reagents and solvents were purified and dried by standard methods. Air- and moisture-sensitive reactions were carried out under an inert atmosphere of argon in oven-dried glassware. Microwave-irradiated reactions were carried out in a single mode reactor CEM Discover microwave synthesizer. Room temperature (RT) reactions were carried out at ambient temperature (approximately 23° C.). All reactions were monitored by thin layer chromatography (TLC) on precoated Merck 60 F254 silica gel plates with spots visualized by UV light (λ=254, 365 nm) or by using an alkaline KMnO4 solution. Flash column chromatography (FC) was carried out on SiO2 60 (particle size 0.040-0.063 mm, 230-400 mesh). Preparative thin-layer chromatography (PTLC) was carried out with Merck 60 F254 silica gel plates (20×20 cm, 210-270 mm) or Analtech Silica Gel GF TLC plates (20×20 cm, 1000 mm). Concentration under reduced pressure (in vacuo) was performed by rotary evaporation at 23-50° C. Purified compounds were further dried under high vacuum or in a desiccator. Yields correspond to purified compounds, and were not further optimized. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker spectrometers (operating at 300, 400, or 500 MHz). Carbon NMR (13C NMR) spectra were recorded on Bruker spectrometers (either at 400 or 500 MHz). NMR chemical shifts (δ ppm) were referenced to the residual solvent signals. 1H NMR data are reported as follows: chemical shift in ppm; multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, quint=quintet, m=multiplet/complex pattern, td=triplet of doublets, ddd=doublet of doublet of doublets, br=broad signal); coupling constants (J) in Hz, integration. Data for 13C NMR spectra are reported in terms of chemical shift, and if applicable coupling constants. High resolution mass (HRMS) spectra were recorded on a Thermo Fisher Scientific Exactive Plus with IonSense ID-CUBE DART source mass spectrometer, or on a Waters LCT Premier mass spectrometer with ACQUITY UPLC with autosampler.
- General Procedures (GP). GP-1: Nucleophilic Substitution of Quinazolinyl Mesylates with Secondary Amines. A mixture of quinazolinyl mesylate (1 equiv) in DMF (0.05 M) was treated with the secondary amine (5 equiv) and triethylamine (2 equiv), and the mixture was stirred at 85° C. for 24 h. The mixture was cooled to 23° C., and evaporated. The residue was dissolved in EtOAc (20 mL), washed with 10 mM NaOH (4×5 mL), brine (5 mL), dried (Na2SO4), filtered, and evaporated. Purification by FC or PTLC afforded the desired products typically as off-white, friable foams.
- GP-2: Nucleophilic Aromatic Substitution of 4-Chloroquinazoline with Anilines. A mixture of 4-chloroquinazoline (1 equiv) in acetonitrile (0.1 M) was treated with aniline (2 equiv), and with a 4 M solution of HCl in dioxane (1 equiv). The mixture was heated at 80° C. under microwave irradiation for 30 min. The mixture was either concentrated under reduced pressure, or the precipitated 4-anilinoquinazoline hydrochloride salt was isolated by filtration (washings with Et2O). The residue was suspended in sat. aq. NaHCO3, and extracted with CH2Cl2 (3×). The combined organic extracts were washed with water, brine, dried (Na2SO4), filtered, and concentrated. Purification by FC (elution with a gradient of CH2Cl2/EtOAc or hexanes/EtOAc) afforded the desired products typically as white to off-white, or pale-yellow solids.
-
- A mixture of 4-chloroquinazoline-6,7-diyl bis(2,2-dimethylpropanoate)1 (41.08 g, 113 mmol) in iPrOH (450 mL) was treated with 3-bromo-2-fluoroaniline (17.05 mL, 152 mmol) and stirred at 80° C. for 3.5 h. The mixture was cooled to 23° C. and evaporated. The residue was several times resuspended in hexanes (50 mL) and concentrated, and then dried under HV. The residue was recrystallized from EtOH to give a yellow solid, which was suspended in sat. aq. NaHCO3 (1 L), and extracted with DCM (3×550 mL). The combined organics were washed with water (400 mL), brine (400 mL), dried (MgSO4), filtered, and evaporated to afford the title compound 1 (35.057 g, 60%) as a yellow friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.76 (s, 1H), 8.46 (t, J=7.5 Hz, 1H), 7.72 (s, 1H), 7.68 (s, 1H), 7.56 (br, 1H), 7.32 (ddd, J=8.0, 6.4, 1.5 Hz, 1H), 7.11 (td, J=8.2, 1.5 Hz, 1H), 1.40 (s, 9H), 1.39 ppm (s, 9H). 13C NMR (126 MHz, CDCl3): δ=176.13, 175.55, 156.71, 154.96, 150.69 (d, JCF=243.7 Hz), 148.75, 147.83, 142.45, 128.27, 127.86 (d, JCF=10.8 Hz), 125.29 (d, JCF=4.7 Hz), 122.70, 122.51, 114.43, 113.21, 108.84 (d, JCF=19.4 Hz), 39.54, 39.51, 27.40, 27.32 ppm. HRMS (DART): m/z [M+H]+ calcd for C24H26BrFN3O4 +, 518.1085; found, 518.1072.
-
- A stirred slurry of 1 (34.988 g, 67.5 mmol) was treated at 0° C. with 7 M solution of NH3 in MeOH (241 mL, 1.69 mol). The mixture was stirred at 0° C. for 15 min, and then at 23° C. for 4.5 h. The mixture was evaporated, and the residue suspended in water (400 mL), stirred overnight, and filtered. The residue was washed with water (500 mL), acetonitrile (100 mL), DCM (4×150 mL), Et2O (2×150 mL), and dried in a desiccator to afford the title compound 2 (23.68 g, quant.) as a pale-yellow powder.
- 1H NMR (500 MHz, DMSO-d6): δ=8.18 (s, 1H), 7.59-7.47 (m, 2H), 7.51 (s, 1H), 7.16 (t, J=8.0 Hz, 1H), 6.87 ppm (s, 1H). 13C NMR (126 MHz, DMSO-d6): δ=156.43, 156.12, 153.06 (d, JCF=246.7 Hz), 151.34, 148.39, 146.80, 129.23, 129.01, 127.12, 125.23 (d, JCF=4.3 Hz), 108.47, 108.32, 107.09, 103.04 ppm. HRMS (DART): m/z [M+H]+ calcd for C14H10BrFN3O2 +, 349.9935; found, 349.9923.
-
- A stirred suspension of 2 (3500 mg, 10.0 mmol) in DMF (52.6 mL) was treated with Et3N (5.57 mL, 40.0 mmol), cooled to −40° C., and treated dropwise with Piv2O (3.14 mL, 15.5 mmol). The mixture was stirred at −40° C. for 1 h, after which the cooling bath was removed, and stirring was continued for 2.5 h. The reaction mixture was diluted with DCM (500 mL), washed with 10% citric acid (2×50 mL), dried (Na2SO4), filtered, and evaporated. FC (DCM/EtOAc 1:1→0:1) afforded a solid, which was redissolved in EtOAc (750 mL), and washed with half-sat. aq. NH4Cl (4×75 mL), dried (Na2SO4), filtered, and evaporated to afford the title compound 3 (2.844 g, 66%) as a beige-yellow solid.
- 1H NMR (500 MHz, DMSO-d6): δ=11.00 (br, 1H), 9.70 (s, 1H), 8.39 (s, 1H), 8.14 (s, 1H), 7.59 (ddd, J=8.0, 6.2, 1.6 Hz, 1H), 7.53 (ddd, J=8.3, 7.1, 1.6 Hz, 1H), 7.21 (td, J=8.1, 1.2 Hz, 1H), 7.17 (s, 1H), 1.36 ppm (s, 9H). 13C NMR (126 MHz, DMSO-d6): δ=175.93, 157.68, 154.61, 154.53, 153.34 (d, JCF=247.3 Hz), 149.80, 139.65, 130.14, 127.92 (d, JCF=12.9 Hz), 127.62, 125.47 (d, JCF=4.4 Hz), 116.36, 111.00, 108.55 (d, J=20.0 Hz), 107.77, 38.64, 26.93 ppm. HRMS (DART): m/z [M+H]+ calcd for C19H18BrFN3O3 +, 434.0510; found, 434.0489.
-
- A mixture of 3 (1350 mg, 3.11 mmol) and PPh3 (2038 mg, 7.77 mmol) in THF (21 mL) was treated with glycidol (495 μL, 7.46 mmol), cooled to 0° C., and treated with DIAD (1.47 mL, 7.46 mmol) during 10 min. The mixture was stirred at 23° C. for 2.5 h, and concentrated. FC (DCM/EtOAc 9:1→4:6) afforded the title compound (±)-4 (848 mg, 56%) as an off-white solid.
- 1H NMR (500 MHz, CDCl3): δ=8.73 (s, 1H), 8.54 (ddd, J=8.6, 7.3, 1.6 Hz, 1H), 7.54 (s, 1H), 7.45 (br, 1H), 7.30 (ddd, J=8.2, 6.4, 1.5 Hz, 1H), 7.28 (s, 1H), 7.11 (td, J=8.2, 1.6 Hz, 1H), 4.34 (dd, J=10.8, 3.0 Hz, 1H), 3.99 (dd, J=10.8, 6.2 Hz, 1H), 3.35 (ddt, J=6.2, 4.1, 2.8 Hz, 1H), 2.92 (dd, J=4.8, 4.1 Hz, 1H), 2.74 (dd, J=4.8, 2.6 Hz, 1H), 1.45 ppm (s, 9H). 13C NMR (126 MHz, CDCl3): δ=176.87, 156.46, 155.10, 154.93, 150.41 (d, JCF=243.3 Hz), 150.27, 140.99, 128.25 (d, JCF=10.5 Hz), 127.75, 125.28 (d, JCF=4.7 Hz), 122.22, 114.02, 109.72, 109.49, 108.74 (d, JCF=19.1 Hz), 70.05, 49.55, 44.56, 39.45, 27.38 ppm. HRMS (DART): m/z [M+H]+ calcd for C22H22BrFN3O4 +, 490.0772; found, 490.0764.
-
- A solution of PPh3 (832 mg, 3.17 mmol) and DIAD (624 μL, 3.17 mmol) in THF (23 mL) was stirred at 0° C. for 15 min, and then added dropwise to a solution of (±)-8 (1149 mg, 2.73 mmol) in THF (27 mL) during 10 min at 0° C. The mixture was stirred at 0° for 2 h, and evaporated. FC (hexanes/EtOAc 9:1→4:6) followed by another FC (DCM/EtOAc 1:0→6:4) afforded the title compound (±)-JGK062 (1115 mg, quant.) as an off-white friable foam. 1H NMR (500 MHz, CDCl3): δ=8.68 (s, 1H), 8.65 (ddd, J=8.2, 7.3, 1.5 Hz, 1H), 7.40 (s, 1H), 7.37 (br, 1H), 7.35 (s, 1H), 7.27 (ddd, J=8.0, 6.4, 1.5 Hz, 1H), 7.10 (td, J=8.2, 1.6 Hz, 1H), 5.95 (ddd, J=17.3, 10.7, 5.8 Hz, 1H), 5.60 (dt, J=17.3, 1.2 Hz, 1H), 5.48 (dt, J=10.7, 1.1 Hz, 1H), 4.82-4.74 (m, 1H), 4.42 (dd, J=11.5, 2.5 Hz, 1H), 4.09 ppm (dd, J=11.6, 8.1 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ=155.90, 153.38, 150.14 (d, J=242.4 Hz), 149.12, 146.70, 144.12, 131.48, 128.64 (d, J=10.3 Hz), 127.24, 125.30 (d, J=4.7 Hz), 121.76, 120.43, 114.29, 110.69, 108.58 (d, J=19.3 Hz), 106.06, 74.03, 67.84 ppm. HRMS (DART): m/z [M+H]+ calcd for C18H14BrFN3O2 +, 402.0248; found, 402.0233.
-
- A mixture of (±)-4 (842 mg, 1.72 mmol) in MeOH (31 mL) was treated with K2CO3 (482 mg, 3.49 mmol), stirred at 23° C. for 10.5 h, and concentrated. The residue was suspended in half-sat. aq. NH4Cl (130 mL), and extracted with EtOAc (3×20 mL). The combined organics were washed with water (20 mL), brine (20 mL), dried (Na2SO4), filtered, and concentrated to afford the title compound (±)-5 (720 mg, quant.) as a yellow solid.
- 1H NMR (500 MHz, DMSO-d6): δ=9.59 (s, 1H), 8.34 (s, 1H), 7.95 (s, 1H), 7.59 (ddd, J=8.0, 6.2, 1.6 Hz, 1H), 7.55 (ddd, J=8.4, 7.0, 1.6 Hz, 1H), 7.24-7.18 (m, 1H), 7.21 (s, 1H), 5.16 (t, J=5.6 Hz, 1H), 4.49 (dd, J=11.5, 2.4 Hz, 1H), 4.34 (dtd, J=7.6, 5.2, 2.3 Hz, 1H), 4.21 (dd, J=11.5, 7.4 Hz, 1H), 3.76-3.64 ppm (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ=157.20, 153.35 (d, JCF=247.5 Hz), 153.10, 148.88, 145.95, 143.39, 130.11, 128.05 (d, JCF=13.0 Hz), 127.73, 125.44 (d, JCF=4.4 Hz), 112.33, 109.79, 108.56 (d, JCF=20.0 Hz), 108.37, 73.78, 65.50, 59.78 ppm. HRMS (DART): m/z [M+H]+ calcd for C17H14BrFN3O3 +, 406.0197; found, 406.0185.
-
- A solution of (±)-5 (688 mg, 1.69 mmol) in THF (14 mL) was treated with Et3N (357 p L, 2.56 mmol), cooled to 0° C., and treated dropwise with MsCl (174 μL, 2.24 mmol). The mixture was stirred at 23° C. for 16 h, cooled to 0° C., treated with sat. aq. NaHCO3 (120 mL), and extracted with DCM (3×120 mL). The combined organics were washed with water (100 mL), brine (100 mL), dried (Na2SO4), filtered and evaporated. FC (DCM/EtOAc 8:2→3:7) afforded the title compound (±)-6 (496 mg, 61%) as an off-white solid.
- 1H NMR (500 MHz, CDCl3): δ=8.69 (s, 1H), 8.60 (ddd, J=8.5, 7.2, 1.4 Hz, 1H), 7.43 (s, 1H), 7.39 (br, 1H), 7.37 (s, 1H), 7.29 (ddd, J=8.1, 6.5, 1.5 Hz, 1H), 7.11 (td, J=8.2, 1.5 Hz, 1H), 4.63 (dtd, J=7.2, 4.9, 2.5 Hz, 1H), 4.52 (dd, J=4.9, 0.9 Hz, 2H), 4.49 (dd, J=11.8, 2.5 Hz, 1H), 4.29 (dd, J=11.8, 7.1 Hz, 1H), 3.13 ppm (s, 3H). 13C NMR (126 MHz, CDCl3): δ=156.02, 153.66, 150.28 (d, JCF=242.9 Hz), 148.65, 146.80, 143.09, 128.43 (d, JCF=10.4 Hz), 127.54, 125.32 (d, JCF=4.7 Hz), 122.01, 114.77, 110.90, 108.66 (d, JCF=19.4 Hz), 106.44, 71.10, 66.46, 64.77, 38.02 ppm. HRMS (DART): m/z [M+H]+ calcd for C18H15BrFN3O5S+, 483.9973; found, 483.9950.
-
- A mixture of 3 (2639 mg, 6.08 mmol) and PPh3 (3986 mg, 15.2 mmol) in THF (41 mL) was treated with racemic 1-hydroxybut-3-en-2-yl acetate2 (1.7 mL, 13.7 mmol), cooled to 0° C., and treated dropwise with DIAD (2.7 mL, 13.7 mmol). The mixture was stirred at 23° C. for 3 h, and concentrated. FC (DCM/EtOAc 1:0→6:4) afforded the crude (±)-7 (5.508 g, estimated yield 60%) as an off-white solid, which was contaminated with remaining Ph3PO. The material was used in the next step without any further purification.
- 1H NMR (400 MHz, CDCl3): δ=8.74 (s, 1H), 8.53 (t, J=7.9 Hz, 1H), 7.53 (s, 1H), 7.45 (br, 1H), 7.33 (s, 1H), 7.30 (t, J=7.7 Hz, 1H), 7.11 (t, J=8.0 Hz, 1H), 5.90 (ddd, J=17.0, 10.6, 6.2 Hz, 1H), 5.65 (q, J=6.0 Hz, 1H), 5.49-5.29 (m, 2H), 4.31-4.08 (m, 2H), 2.11 (s, 3H), 1.41 ppm (s, 9H). 13C NMR (126 MHz, CDCl3): δ=176.51, 170.08, 156.49, 155.24, 154.88, 150.46 (d, JCF=243.2 Hz), 150.17, 140.90, 132.16, 128.18 (d, JCF=11.0 Hz), 127.86, 125.31 (d, JCF=4.8 Hz), 122.27, 119.64, 114.00, 109.56, 109.39, 108.76 (d, JCF=19.4 Hz), 72.18, 69.81, 39.34, 27.33, 21.19 ppm. HRMS (DART): m/z [M+H]+ calcd for C25H26BrFN3O5 +, 546.1034; found, 546.1018.
-
- A mixture of crude (±)-7 (5508 mg, contaminated with remaining Ph3PO from the last step) in MeOH (61 mL) was treated with K2CO3 (4198 mg, 30.4 mmol), stirred at 23° C. for 1 h, and concentrated. The residue was suspended in half-sat. aq. NH4Cl (1 L), and extracted with EtOAc (3×600 mL). The combined organics were dried (Na2SO4), filtered, and evaporated. FC (DCM/EtOAc 1:1→0:1) afforded the title compound (±)-8 (1154 mg, 45% over two steps) as an off-white solid.
- 1H NMR (500 MHz, DMSO-d6): δ=9.46 (s, 1H), 9.40 (br, 1H), 8.33 (s, 1H), 7.71 (s, 1H), 7.59-7.52 (m, 2H), 7.203 (s), 7.197 (td, J=8.1, 1.1 Hz, 1H), 6.01 (ddd, J=17.4, 10.7, 4.9 Hz, 1H), 5.42 (dt, J=17.3, 1.9 Hz, 1H), 5.36 (br, 1H), 5.20 (dt, J=10.6, 1.8 Hz, 1H), 4.49 (br, 1H), 4.20 (dd, J=9.8, 3.8 Hz, 1H), 3.95 ppm (dd, J=9.8, 7.5 Hz, 1H). 13C NMR (126 MHz, DMSO-d6): δ=156.77, 153.30 (d, JCF=244.9 Hz), 152.77, 152.31, 146.66, 146.11, 137.61, 129.75, 128.46 (d, JCF=13.0 Hz), 127.49, 125.38 (d, JCF=4.3 Hz), 115.58, 109.42, 108.50 (d, JCF=19.8 Hz), 107.68, 105.14, 72.56, 69.26 ppm. HRMS (DART): m/z [M+H]+ calcd for C18H16BrFN3O3 +, 420.0354; found, 420.0340.
-
- A mixture of (±)-JGK062 (480 mg, 1.19 mmol) in THF (4.8 mL) was treated with a 0.5 M solution of 9-BBN in THF (4.8 mL, 2.39 mmol), and the mixture was stirred at 68° C. for 16 h. The mixture was cooled to 0° C., diluted with THF (2.4 mL), and treated with 3 N NaOH (3 mL, 8.95 mmol), and 30% H2O2 (474 μL, 8.95 mmol), and stirred at 23° C. for 6 h. The mixture was concentrated to about half of the original volume of THF, diluted with water (100 mL) and brine (40 mL), and extracted with EtOAc (3×100 mL). The combined organics were washed with water (70 mL), brine (70 mL), dried (Na2SO4), filtered, and evaporated to afford the title compound (±)-9 (912 mg) as a yellow foam, which was directly used in the next step without further purification.
- 1H NMR (500 MHz, CDCl3): δ=8.66 (s, 1H), 8.62 (ddd, J=8.8, 7.4, 1.6 Hz, 1H), 7.35 (s, 1H), 7.33 (br, 1H), 7.2 (ddd, J=8.0, 6.5, 1.6 Hz, 1H), 7.16 (s, 1H), 7.09 (td, J=8.2, 1.6 Hz, 1H), 4.50 (dtd, J=8.4, 6.4, 2.3 Hz, 1H), 4.43 (dd, J=11.5, 2.3 Hz, 1H), 4.09 (dd, J=11.5, 8.2 Hz, 1H), 4.01-3.91 (m, 2H), 1.95 ppm (td, J=6.5, 5.3 Hz, 2H). 13C NMR (126 MHz, CDCl3): δ=155.84, 153.28, 150.08 (d, JCF=242.6 Hz), 149.42, 146.47, 144.20, 128.51 (d, JCF=10.2 Hz), 127.31, 125.30 (d, JCF=4.7 Hz), 121.69, 113.95, 110.50, 108.58 (d, JCF=19.2 Hz), 105.83, 71.33, 68.49, 58.23, 33.61 ppm. HRMS (ESI): m/z [M+H]+ calcd for C18H16BrFN3O3 +, 420.0354; found, 420.0370.
-
- A solution of crude (±)-9 (912 mg) in THF (11.9 mL) was treated with Et3N (931 mL, 6.68 mmol), cooled to 0° C., and treated dropwise with MsCl (462 μL, 5.97 mmol). The mixture was stirred at 0° C. for 15 min, and then at 23° C. for 21 h. The mixture was cooled to 0° C., treated dropwise with sat. aq. NaHCO3 (120 mL), and extracted with DCM (3×120 mL). The combined organics were washed with water (100 mL), brine (100 mL), dried (Na2SO4), filtered, and evaporated. FC (DCM/EtOAc 9:1→4:6) afforded the title compound (±)-10 (112 mg, 19% over two steps) as an off-white, friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.68 (s, 1H), 8.60 (ddd, J=8.6, 7.3, 1.5 Hz, 1H), 7.44 (br, 1H), 7.42 (s, 1H), 7.35 (s, 1H), 7.29 (ddd, J=8.1, 6.5, 1.6 Hz, 1H), 7.11 (td, J=8.2, 1.5 Hz, 1H), 4.60-4.48 (m, 3H), 4.44 (dd, J=11.6, 2.4 Hz, 1H), 4.12 (dd, J=11.6, 7.6 Hz, 1H), 3.08 (s, 3H), 2.24-2.10 ppm (m, 2H). 13C NMR (126 MHz, CDCl3): δ=156.03, 153.39, 150.31 (d, JCF=242.9 Hz), 149.11, 146.54, 143.60, 128.47 (d, JCF=10.5 Hz), 127.52, 125.32 (d, JCF=4.6 Hz), 122.02, 114.30, 110.68, 108.66 (d, JCF=19.2 Hz), 106.32, 69.78, 67.82, 65.05, 37.75, 30.90 ppm. HRMS (ESI): m/z [M+H]+ calcd for C19H18BrFN3O5S+, 498.0129; found, 498.0144.
-
- Following general procedure GP-1, compound (±)-JGK063 was prepared from (±)-6 (20 mg, 0.04 mmol) and morpholine (18 μL, 0.21 mmol) in DMF (826 μL). PTLC (DCM/EtOAc 1:9) afforded (±)-JGK063 (15 mg, 76%) as an off-white, friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.67 (s, 1H), 8.63 (ddd, J=8.6, 7.3, 1.5 Hz, 1H), 7.38 (s, 1H), 7.37 (br, 1H), 7.31 (s, 1H), 7.27 (ddd, J=8.0, 6.3, 1.5 Hz, 1H), 7.10 (td, J=8.2, 1.5 Hz, 1H), 4.50-4.41 (m, 2H), 4.21-4.12 (m, 1H), 3.75 (t, J=4.7 Hz, 4H), 2.77 (dd, J=13.4, 5.9 Hz, 1H), 2.69-2.54 ppm (m, 5H). 13C NMR (126 MHz, CDCl3): δ=155.89, 153.36, 150.15 (d, JCF=242.5 Hz), 149.35, 146.66, 144.02, 128.60 (d, JCF=10.4 Hz), 127.27, 125.30 (d, JCF=4.6 Hz), 121.80, 114.29, 110.63, 108.58 (d, JCF=19.5 Hz), 106.06, 71.61, 67.18, 67.01, 58.94, 54.56 ppm. HRMS (ESI): m/z [M−H]− calcd for C21H19BrFN4O3 −, 473.0630; found, 473.0630.
-
- Following general procedure GP-1, compound (±)-JGK064 was prepared from (±)-10 (35 mg, 0.07 mmol) and morpholine (31 μL, 0.35 mmol) in DMF (1.4 mL). PTLC (EtOAc, 0.5% acetonitrile, 1.5% aq. NH4OH) followed by another PTLC (EtOAc) afforded (±)-JGK064 (25 mg, 73%) as an off-white, friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.68 (s, 1H), 8.65 (ddd, J=8.3, 7.4, 1.5 Hz, 1H), 7.39 (s, 1H), 7.36 (br, 1H), 7.28 (s, 1H), 7.30-7.25 (m, 1H), 7.11 (td, J=8.2, 1.5 Hz, 1H), 4.44 (dd, J=11.3, 2.3 Hz, 1H), 4.43-4.37 (m, 1H), 4.10 (dd, J=11.3, 7.7 Hz, 1H), 3.73 (t, J=4.7 Hz, 4H), 2.62 (ddt, J=12.5, 8.4, 3.9 Hz, 2H), 2.57-2.42 (m, 4H), 2.00-1.82 ppm (m, 2H). 13C NMR (126 MHz, CDCl3): (=155.86, 153.31, 150.13 (d, JCF=242.3 Hz), 149.40, 146.67, 144.33, 128.66 (d, JCF=10.4 Hz), 127.22, 125.33 (d, JCF=4.6 Hz), 121.75, 114.21, 110.63, 108.58 (d, JCF=19.2 Hz), 105.87, 72.20, 68.33, 67.06, 54.23, 53.86, 28.15 ppm. HRMS (ESI): m/z [M+H]+ calcd for C22H23BrFN4O3 +, 489.0932; found, 489.0935.
-
- Following general procedure GP-1, compound (±)-JGK065 was prepared from (±)-6 (40 mg, 0.08 mmol) and piperidine (41 μL, 0.41 mmol) in DMF (1.65 mL). PTLC (EtOAc) afforded (±)-JGK065 (24 mg, 61%) as an off-white, friable foam.
- 1H NMR (500 MHz, CDCl3): (=8.66 (s, 1H), 8.63 (ddd, J=8.7, 7.3, 1.5 Hz, 1H), 7.369 (s, 1H), 7.368 (br, 1H), 7.30 (s, 1H), 7.26 (ddd, J=8.1, 6.5, 1.5 Hz, 1H), 7.09 (td, J=8.2, 1.5 Hz, 1H), 4.46 (dd, J=11.3, 2.3 Hz, 1H), 4.43 (ddd, J=8.3, 5.8, 2.0 Hz, 1H), 4.12 (dd, J=11.2, 7.5 Hz, 1H), 2.71 (dd, J=13.3, 5.9 Hz, 1H), 2.58 (dd, J=13.4, 6.2 Hz, 1H), 2.59-2.42 (m, 4H), 1.65-1.57 (m, 4H), 1.49-1.41 ppm (m, 2H). 13C NMR (126 MHz, CDCl3): δ=155.86, 153.26, 150.12 (d, JCF=242.6 Hz), 149.49, 146.62, 144.23, 128.65 (d, JCF=10.3 Hz), 127.18, 125.27 (d, JCF=4.5 Hz), 121.76, 114.16, 110.57, 108.56 (d, JCF=19.4 Hz), 106.00, 71.87, 67.46, 59.34, 55.59, 26.07, 24.20 ppm. HRMS (ESI): m/z [M+H]+ calcd for C22H23BrFN4O2 +, 473.0983; found, 473.0991.
-
- Following general procedure GP-1, compound (±)-JGK066 was prepared from (±)-6 (45 mg, 0.09 mmol) and a 2 M solution of Me2NH in THF (232 μL, 0.46 mmol) in DMF (1.85 mL). PTLC (EtOAc, 0.5% acetonitrile, 1.5% aq. NH4OH) afforded (±)-JGK066 (39 mg, 97%) as an off-white, friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.680 (s, 1H), 8.675 (ddd, J=8.2, 7.5, 1.5 Hz, 1H), 7.39 (s, 1H), 7.38 (s, 1H), 7.37 (br, 1H), 7.27 (ddd, J=8.0, 6.4, 1.5 Hz, 1H), 7.10 (d, J=1.6 Hz, 1H), 4.46-4.41 (m, 1H), 4.45 (dd, J=11.8, 2.3 Hz, 1H), 4.12 (dd, J=11.9, 8.1 Hz, 1H), 2.73 (dd, J=13.2, 7.1 Hz, 1H), 2.55 (dd, J=13.1, 5.0 Hz, 1H), 2.38 ppm (s, 6H). 13C NMR (126 MHz, CDCl3): δ=155.89, 153.34, 150.07 (d, JCF=242.3 Hz), 149.38, 146.67, 144.06, 128.70 (d, JCF=10.4 Hz), 127.16, 125.29 (d, JCF=4.7 Hz), 121.65, 114.27, 110.67, 108.56 (d, JCF=19.4 Hz), 106.15, 71.70, 67.20, 59.78, 46.41 ppm. HRMS (ESI): m/z [M+H]+ calcd for C19H19BrFN4O2 +, 433.0670; found, 433.0677.
-
- Following general procedure GP-1, compound (±)-JGK067 was prepared from (±)-6 (35 mg, 0.07 mmol) and pyrrolidine (30 μL, 0.36 mmol) in DMF (1.45 mL). PTLC (EtOAc, 1.5% iPrOH, 1.5% aq. NH4OH) afforded (±)-JGK067 (31 mg, 93%) as an off-white, friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.68 (s, 1H), 8.67 (ddd, J=8.7, 7.5, 1.6 Hz, 2H), 7.39 (s, 1H), 7.36 (br, 1H), 7.35 (s, 1H), 7.27 (ddd, J=8.0, 6.4, 1.5 Hz, 2H), 7.10 (td, J=8.2, 1.5 Hz, 1H), 4.49-4.42 (m, 1H), 4.48 (dd, J=11.6, 2.0 Hz, 1H), 4.15 (dd, J=11.7, 8.0 Hz, 1H), 2.88 (dd, J=12.9, 6.5 Hz, 1H), 2.80 (dd, J=12.6, 5.5 Hz, 1H), 2.72-2.60 (m, 4H), 1.90-1.79 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=155.87, 153.32, 150.09 (d, JCF=242.6 Hz), 149.45, 146.68, 144.18, 128.71 (d, JCF=10.3 Hz), 127.15, 125.30 (d, JCF=4.7 Hz), 121.67, 114.26, 110.65, 108.56 (d, JCF=19.4 Hz), 106.06, 72.73, 67.35, 56.57, 55.15, 23.75 ppm. HRMS (ESI): m/z [M+H]+ calcd for C21H21BrFN4O2 +, 459.0826; found, 459.0845.
-
- Following general procedure GP-1, compound (±)-JGK068 was prepared from (±)-6 (35 mg, 0.07 mmol) and 1-methylpiperazine (40 μL, 0.36 mmol) in DMF (1.45 mL). PTLC (EtOAc/iPrOH 85:15, 1.5% aq. NH4OH) afforded (±)-JGK068 (29 mg, 82%) as an off-white, friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.68 (s, 1H), 8.64 (ddd, J=8.3, 7.3, 1.5 Hz, 1H), 7.39 (s, 1H), 7.36 (br d, J=3.8 Hz, 1H), 7.32 (s, 1H), 7.27 (ddd, J=8.0, 6.5, 1.6 Hz, 1H), 7.10 (td, J=8.2, 1.5 Hz, 1H), 4.48-4.41 (m, 2H), 4.15 (dd, J=11.5, 8.6 Hz, 1H), 2.78 (dd, J=13.4, 6.0 Hz, 1H), 2.661 (dd, J=13.4, 5.8 Hz, 1H), 2.656 (br, 4H), 2.51 (br, 4H), 2.32 ppm (s, 3H). 13C NMR (126 MHz, CDCl3): δ=155.89, 153.35, 150.15 (d, JCF=242.6 Hz), 149.40, 146.69, 144.11, 128.64 (d, JCF=10.3 Hz), 127.24, 125.30 (d, JCF=4.7 Hz), 121.78, 114.27, 110.63, 108.59 (d, JCF=19.2 Hz), 106.07, 71.80, 67.27, 58.43, 55.10, 53.96, 46.06 ppm. HRMS (ESI): m/z [M+H]+ calcd for C22H24BrFN5O2 +, 488.1092; found, 488.1109.
-
- Following general procedure GP-1, compound (±)-JGK069 was prepared from (±)-10 (32 mg, 0.06 mmol) and a 2 M solution of Me2NH in THF (161 μL, 0.32 mmol) in DMF (1.3 mL). PTLC (EtOAc, 5% iPrOH, 1.5% aq. NH4OH) afforded (±)-JGK069 (19 mg, 66%) as an off-white friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.67 (s, 1H), 8.63 (ddd, J=8.7, 7.4, 1.6 Hz, 1H), 7.373 (br, 1H), 7.371 (s, 1H), 7.28 (s, 1H), 7.28-7.24 (m, 1H), 7.10 (td, J=8.2, 1.5 Hz, 1H), 4.42 (dd, J=11.4, 2.3 Hz, 1H), 4.38 (tdd, J=7.7, 5.1, 2.3 Hz, 1H), 4.08 (dd, J=11.3, 7.8 Hz, 1H), 2.56 (t, J=7.2 Hz, 2H), 2.29 (s, 6H), 1.93 (dq, J=14.2, 7.4 Hz, 1H), 1.84 ppm (dtd, J=14.2, 7.5, 5.1 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ=155.86, 153.26, 150.14 (d, JCF=242.4 Hz), 149.42, 146.65, 144.36, 128.67 (d, JCF=10.5 Hz), 127.18, 125.30 (d, JCF=4.7 Hz), 121.77, 114.14, 110.60, 108.56 (d, JCF=19.2 Hz), 105.88, 72.19, 68.34, 55.06, 45.58, 29.16 ppm. HRMS (ESI): m/z [M+H]+ calcd for C20H21BrFN4O2 +, 447.0826; found, 447.0820.
-
- Following general procedure GP-1, compound (±)-JGK070 was prepared from (±)-10 (32 mg, 0.06 mmol) and 1-methylpiperazine (36 μL, 0.32 mmol) in DMF (1.3 mL). PTLC (EtOAc/iPrOH 8:2, 1.5% aq. NH4OH) afforded (±)-JGK070 (21 mg, 65%) as an off-white friable foam.
- 1H NMR (500 MHz, CDCl3): δ=8.66 (s, 1H), 8.62 (ddd, J=8.5, 7.3, 1.5 Hz, 1H), 7.373 (br, 1H), 7.367 (s, 1H), 7.29-7.24 (m, 1H), 7.28 (s, 1H), 7.09 (td, J=8.2, 1.5 Hz, 1H), 4.43 (dd, J=11.4, 2.3 Hz, 1H), 4.37 (tdd, J=7.7, 5.4, 2.3 Hz, 1H), 4.08 (dd, J=11.4, 7.9 Hz, 1H), 2.68-2.54 (m, 2H), 2.50 (br, 8H), 2.30 (s, 3H), 1.94 (dtd, J=13.6, 7.5, 6.0 Hz, 1H), 1.86 ppm (dtd, J=14.2, 7.3, 5.3 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ=155.86, 153.27, 150.16 (d, JCF=242.5 Hz), 149.41, 146.64, 144.37, 128.64 (d, JCF=10.3 Hz), 127.22, 125.28 (d, JCF=4.6 Hz), 121.81, 114.13, 110.60, 108.57 (d, JCF=19.4 Hz), 105.88, 72.38, 68.36, 55.20, 53.77, 53.25, 46.11, 28.50 ppm. HRMS (ESI): m/z [M+H]+ calcd for C23H26BrFN5O2 +, 502.1248; found, 502.1261.
-
- A mixture of 3-fluorobenzene-1,2-diol (7233 mg, 56.5 mmol) in DMF (113 mL) was treated with K2CO3 (19514 mg, 141 mmol), stirred for 10 min at 23° C., and treated with 1-bromo-2-chloroethane (9.4 mL, 113 mmol). The mixture was stirred at 23° C. for 1 h, and then at 95° C. for 16 h. The mixture was cooled to 23° C., diluted with water (150 mL), and extracted with EtOAc (3×150 mL). The combined organics were washed with water (90 mL), brine (90 mL), dried (Na2SO4), filtered, and evaporated. FC (hexanes/EtOAc 30:1→10:1) afforded the title compound 11 (7973 mg, 92%) as a clear, colorless oil.
- 1H NMR (400 MHz, CDCl3): δ=6.78-6.63 (m, 3H), 4.34-4.26 ppm (m, 4H). 13C NMR (101 MHz, CDCl3): δ=152.05 (d, JCF=244.3 Hz), 145.27 (d, JCF=3.8 Hz), 132.78 (d, JCF=13.9 Hz), 120.02 (d, JCF=8.9 Hz), 112.74 (d, JCF=3.1 Hz), 108.52 (d, JCF=18.1 Hz), 64.50, 64.45 ppm. HRMS (DART): m/z [M].+ calcd for C8H7FO2 .+, 154.0425; found, 154.0420.
-
- A solution of 11 (7812 mg, 50.7 mmol) in MeOH (101 mL) was treated with NBS (9022 mg, 50.7 mmol), and heated at 70° C. for 30 min. The mixture was cooled to 23° C., and concentrated. The residue was dissolved in DCM (700 mL), washed with water (300 mL), dried (MgSO4), filtered, and evaporated. FC (hexanes/EtOAc 30:1→20:1) followed by drying under HV at 100° C. to remove any remaining starting material, afforded the title compound 12 (8807 mg, 75%, containing about 15% of the regioisomer) as a clear, colorless oil, which solidified in the freezer to give an off-white solid.
- 1H NMR (400 MHz, CDCl3): δ=6.96 (dd, J=9.0, 7.0 Hz, 1H), 6.59 (dd, J=9.0, 2.0 Hz, 1H), 4.35-4.24 ppm (m, 4H). 13C NMR (101 MHz, CDCl3): δ=148.87 (d, JCF=245.1 Hz), 144.53 (d, JCF=3.5 Hz), 133.81 (d, JCF=14.6 Hz), 123.31, 113.39 (d, JCF=3.6 Hz), 109.17 (d, JCF=19.3 Hz), 64.51, 64.34 ppm. HRMS (DART): m/z [M].+ calcd for C8H6BrFO2.+, 231.9530; found, 231.9525.
-
- A mixture of 12 (7.0 g, 30.0 mmol) in THF (108 mL) was cooled to −78° C., and treated dropwise with a 2.5 M solution of nBuLi in hexanes (12.02 mL, 30.0 mmol) during 10 min. The mixture was stirred at −78° C. for 30 min, and then transferred via cannula onto crushed dry ice (rinsed the cannula with 10 mL of THF). The mixture was allowed to warm to 23° C., and concentrated. Water (200 mL) and 1 M NaOH (50 mL) were added to the residue, and the aq. phase was extracted with Et2O (3×60 mL). The aq. phase was acidified with 6 M HCl (15 mL), and extracted with DCM (3×150 mL). The combined organics were washed with brine (150 mL), dried (MgSO4), filtered, and evaporated. FC (hexanes/EtOAc 7:3→3:7) afforded the title compound 13 (3591 mg, 60%) as a white solid.
- 1H NMR (400 MHz, DMSO-d6): δ=12.90 (br, 1H), 7.33 (dd, J=8.9, 7.7 Hz, 1H), 6.78 (dd, J=8.9, 1.7 Hz, 1H), 4.39-4.29 ppm (m, 4H). 13C NMR (101 MHz, DMSO-d6): δ=164.65 (d, JCF=3.0 Hz), 151.21 (d, JCF=257.5 Hz), 148.50 (d, JCF=4.4 Hz), 132.68 (d, JCF=13.6 Hz), 122.44 (d, JCF=1.4 Hz), 112.12 (d, JCF=3.4 Hz), 111.97 (d, JCF=7.3 Hz), 64.42, 63.91 ppm. HRMS (DART): m/z [M−H]− calcd for C9H6FO4 −, 197.0256; found, 197.0250.
-
- A mixture of 13 (650 mg, 3.28 mmol) in toluene (13.1 mL) was treated with Et3N (1.4 mL, 9.84 mmol), and at 10° C. with DPPA (780 μL, 3.62 mmol). The mixture was stirred at 23° C. for 30 min, then at 85° C. for 1.5 h. The mixture was cooled to 23° C., treated with EtOH (5 mL), stirred for 1.5 h at 23° C., and concentrated. The residue was dissolved in Et2O (150 mL), washed with sat. aq. NaHCO3 (40 mL), water (40 mL), brine (40 mL), dried (MgSO4), filtered, and evaporated. FC (hexanes/DCM 7:3→1:9) afforded the title compound 14 (512 mg, 65%) as a white solid.
- 1H NMR (500 MHz, CDCl3): δ=7.42 (br, 1H), 6.64 (dd, J=9.2, 2.2 Hz, 1H), 6.56 (br, 1H), 4.32-4.24 (m, 4H), 4.22 (q, J=7.1 Hz, 2H), 1.31 ppm (t, J=7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3): δ=153.80, 142.61 (d, JCF=246.0 Hz), 140.82, 132.66 (d, JCF=12.4 Hz), 120.36 (d, JCF=6.9 Hz), 112.36, 111.81 (d, JCF=3.7 Hz), 64.72, 64.29, 61.61, 14.66 ppm. HRMS (DART): m/z [M+H]+ calcd for C11H13FNO4 +, 242.0823; found, 242.0816.
-
- A mixture of 14 (450 mg, 1.87 mmol) and HMTA (263 mg, 1.87 mmol) in TFA (5.7 mL) was irradiated in the microwave at 110° C. for 10 min. The mixture was cooled to 23° C., diluted with water (60 mL), treated with 6 M NaOH (12 mL), and extracted with DCM (3×60 mL). The combined organics were washed with water (50 mL), brine (50 mL), dried (Na2SO4), filtered, and evaporated to give a foamy, yellow oil.
- A mixture of the oil in 10% KOH in dioxane/water 1:1 (15.5 mL) was treated with [K3Fe(CN)6] (614 mg, 1.87 mmol), and irradiated in the microwave at 100° C. for 10 min. This procedure was repeated a total of four times (4 cycles of addition of 1 equiv of potassium ferricyanide followed by microwave irradiation). The resulting mixture was diluted with water (160 mL), and extracted with DCM (3×120 mL). The combined organics were washed with water (100 mL), brine (100 mL), dried (Na2SO4), filtered, and evaporated to afford the title compound 15 (330 mg, 86%) as a yellow solid, which was used in the next step without any further purification.
- 1H NMR (500 MHz, CDCl3): δ=9.21 (br, 1H), 9.19 (s, 1H), 7.18 (d, J=2.0 Hz, 1H), 4.53-4.41 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=158.06 (d, JCF=2.9 Hz), 153.81 (d, JCF=1.8 Hz), 145.76 (d, JCF=2.9 Hz), 144.40 (d, JCF=256.1 Hz), 138.56 (d, JCF=11.0 Hz), 136.73 (d, JCF=10.1 Hz), 119.81 (d, JCF=2.7 Hz), 106.55 (d, JCF=4.3 Hz), 64.78, 64.34 ppm. HRMS (DART): m/z [M+H]+ calcd for C10H8FN2O2 +, 207.0564; found, 207.0563.
-
- A solution of 15 (306 mg, 1.48 mmol) in AcOH (1 mL) was treated dropwise with a 0.833 M solution of CAN in water (7.12 mL, 5.94 mmol), and stirred at 23° C. for 15 min. The white precipitate was collected by filtration, and washed with water (2×2 mL), acetonitrile (2×2 mL), DCM (2 mL), and Et2O (2 mL) to afford a first batch of the title compound. The aq. filtrate was neutralized to pH ˜7 with 1 M NaOH, and the white precipitate was collected as before by filtration, followed by washings to afford a second batch of the title compound 16 (81 mg, 25%) as a white solid.
- 1H NMR (500 MHz, DMSO-d6): δ=12.19 (br, 1H), 7.98 (d, J=3.3 Hz, 1H), 7.32 (s, 1H), 4.52-4.28 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=159.31, 144.58 (d, JCF=251.8 Hz), 144.28, 143.80 (d, JCF=3.4 Hz), 137.86 (d, JCF=11.1 Hz), 132.94 (d, JCF=8.9 Hz), 115.75, 106.62 (d, JCF=3.7 Hz), 64.57, 64.02 ppm. HRMS (DART): m/z [M+H]+ calcd for C10H8FN2O3 +, 223.0513; found, 223.0503.
-
- A stirred suspension of 16 (92 mg, 0.41 mmol) in toluene (1.2 mL) was treated with DIPEA (220 μL, 1.26 mmol), followed by dropwise addition of POCl3 (103 μL, 1.12 mmol) at 10° C. The mixture was stirred at 23° C. for 1 h, then at 90° C. for 5 h, and concentrated. The residue was treated with sat. aq. NaHCO3 (10 mL) at 0° C. for 5 min, diluted with water (5 mL), and extracted with DCM (3×7 mL). The combined organics were washed with half-sat. aq. NaHCO3 (7 mL), brine (7 mL), dried (Na2SO4), filtered, and evaporated to afford the title compound 17 (51 mg, 51%) as a light-brown solid, which was used in the next step without any further purification.
- 1H NMR (500 MHz, CDCl3): δ=8.90 (s, 1H), 7.51 (d, J=2.0 Hz, 1H), 4.55-4.43 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=160.48 (d, JCF=4.3 Hz), 152.31, 146.29 (d, JCF=3.3 Hz), 144.63 (d, JCF=256.2 Hz), 138.95 (d, JCF=11.3 Hz), 137.68 (d, JCF=10.2 Hz), 118.56 (d, JCF=2.4 Hz), 105.82 (d, JCF=4.2 Hz), 64.81, 64.41 ppm. HRMS (DART): m/z [M+H]+ calcd for C10H7ClFN2O2 +, 241.0175; found, 241.0174.
-
- A mixture of 13 (1500 mg, 7.57 mmol) in AcOH (7.5 mL) was treated dropwise with H2SO4 (2.02 mL) at 10° C. The vigorously stirred mixture was treated dropwise with 65% HNO3 (2.6 mL) at 0° C. during 10 min. The resulting mixture was stirred at 0° C. for 30 min, and then at 23° C. for 16 h. The mixture was poured into ice-water (40 mL), and the white precipitate was collected by filtration (washings with cold water, 40 mL), and dried in a desiccator to afford the title compound 18 (1280 mg, 70%) as a white solid.
- 1H NMR (500 MHz, DMSO-d6): δ=14.09 (br, 1H), 7.62 (d, J=1.7 Hz, 1H), 4.52-4.40 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=162.71, 147.16 (d, JCF=248.7 Hz), 144.72 (d, JCF=5.1 Hz), 138.15 (d, JCF=13.7 Hz), 137.10 (d, JCF=6.6 Hz), 113.44 (d, JCF=20.3 Hz), 109.52 (d, JCF=2.3 Hz), 64.97, 64.48 ppm. HRMS (DART): m/z [M−H]− calcd for C9H5FNO6 −, 242.0106; found, 242.0124.
-
- A mixture of 18 (500 mg, 2.06 mmol) and 5% Pd/C (223 mg, 0.10 mmol) in MeOH (21 mL) was stirred under an atmosphere of H2 at 23° C. for 13.5 h. The mixture was filtered through Celite (washings with EtOH), and evaporated to give the title compound 19 (418 mg, 95%) as a grey solid, which did not seem to be very stable.
- 1H NMR (500 MHz, DMSO-d6): δ=8.35 (br, 2H), 6.04 (d, J=1.9 Hz, 1H), 4.29-4.24 (m, 2H), 4.19-4.14 ppm (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ=167.36 (d, JCF=2.9 Hz), 151.36 (d, JCF=252.0 Hz), 148.86 (d, JCF=7.0 Hz), 145.81 (d, JCF=5.7 Hz), 122.88 (d, JCF=15.4 Hz), 97.19 (d, JCF=2.9 Hz), 95.37 (d, JCF=10.9 Hz), 64.95, 63.58 ppm. HRMS (DART): m/z [M+H]+ calcd for C9H9FNO4 +, 214.0510; found, 214.0508.
-
- A mixture of 19 (417 mg, 1.96 mmol) in formamide (2.3 mL, 58.7 mmol) was stirred at 120-125° C. for 16 h. The mixture was cooled to 0° C., and treated with water (4 mL), stirred for 30 min, diluted with water (4 mL), and filtered. The residue was washed with cold water (3×5 mL), and dried over Drierite under HV to afford the title compound 20 (249 mg, 57%) as an off-white solid.
- 1H NMR (400 MHz, DMSO-d6): δ=12.00 (br, 1H), 7.90 (d, J=3.6 Hz, 1H), 6.93 (d, J=1.9 Hz, 1H), 4.45-4.35 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=157.64 (d, JCF=3.0 Hz), 149.70 (d, JCF=6.0 Hz), 148.45 (d, JCF=261.3 Hz), 144.60, 142.99, 131.47 (d, JCF=12.7 Hz), 108.76 (d, JCF=3.5 Hz), 106.38 (d, JCF=3.8 Hz), 64.69, 63.98 ppm. HRMS (DART): m/z [M+H]+ calcd for C10H8FN2O3 +, 223.0513; found, 223.0510.
-
- A stirred suspension of 20 (90 mg, 0.41 mmol) intoluene (1.2 mL) was treated with DIPEA (215 μL, 1.24 mmol), followed by dropwise addition of POCl3 (100 μL, 1.09 mmol) at 10° C. The mixture was stirred at 23° C. for 1 h, then at 88° C. for 5 h, and concentrated. The residue was treated with sat. aq. NaHCO3 (10 mL) at 0° C., diluted with water (5 mL), and extracted with DCM (3×7 mL). The combined organics were washed with half-sat. aq. NaHCO3 (7 mL), brine (7 mL), dried (Na2SO4), filtered, and evaporated to afford the title compound 21 (96 mg, 99%) as a light-orange solid, which was used in the next step without any further purification.
- 1H NMR (500 MHz, CDCl3): δ=8.83 (s, 1H), 7.35 (d, J=2.0 Hz, 1H), 4.51-4.45 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=156.76 (d, JCF=4.5 Hz), 152.70 (d, JCF=2.3 Hz), 151.66 (d, JCF=4.9 Hz), 146.08, 144.51 (d, JCF=261.8 Hz), 134.04 (d, JCF=14.0 Hz), 110.85 (d, JCF=7.7 Hz), 109.43 (d, JCF=4.0 Hz), 64.89, 64.37 ppm. HRMS (DART): m/z [M+H]+ calcd for C10H7ClFN2O2 +, 241.0175; found, 241.0176.
-
- Following general procedure GP-2, compound JGK071 was prepared from chloroquinazoline 17 (35 mg, 0.15 mmol) and 3-bromo-2-fluoroaniline. FC (DCM/EtOAc 1:0→8:2) afforded JGK071 (44 mg, 77%) as a white solid.
- 1H NMR (500 MHz, DMSO-d6): δ=9.76 (s, 1H), 8.38 (s, 1H), 7.80 (d, J=1.8 Hz, 1H), 7.62 (ddd, J=8.0, 6.3, 1.6 Hz, 1H), 7.54 (ddd, J=8.5, 7.1, 1.6 Hz, 1H), 7.22 (td, J=8.0, 1.2 Hz, 1H), 4.53-4.40 ppm (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ=156.93 (d, JCF=3.7 Hz), 153.44 (d, JCF=247.5 Hz), 153.12, 144.04 (d, JCF=250.0 Hz), 143.97 (d, JCF=3.2 Hz), 137.04 (d, JCF=10.9 Hz), 135.62 (d, JCF=9.9 Hz), 130.48, 127.89, 127.62 (d, JCF=13.1 Hz), 125.51 (d, JCF=4.5 Hz), 108.58 (d, JCF=23.4 Hz), 108.51, 103.25 (d, JCF=3.9 Hz), 64.63, 64.21 ppm. HRMS (DART): m/z [M+H]+ calcd for C16H11BrF2N3O2 +, 393.9997; found, 393.9999.
-
- Following general procedure GP-2, compound JGK072 was prepared from chloroquinazoline 21 (35 mg, 0.15 mmol) and 3-bromo-2-fluoroaniline. FC (DCM/EtOAc 1:0→8:2) afforded JGK072 (47 mg, 82%) as a white solid.
- 1H NMR (500 MHz, CDCl3): δ=8.67 (ddd, J=8.6, 7.2, 1.5 Hz, 1H), 8.62 (s, 1H), 8.52 (dd, J=19.6, 2.2 Hz, 1H), 7.29 (ddd, J=8.1, 6.4, 1.5 Hz, 1H), 7.23 (d, J=2.0 Hz, 1H), 7.10 (td, J=8.2, 1.6 Hz, 1H), 4.48-4.42 ppm (m, 4H). 13C NMR (126 MHz, CDCl3): δ=155.27 (d, JCF=5.2 Hz), 153.90, 150.34 (d, JCF=243.9 Hz), 149.93 (d, JCF=6.2 Hz), 145.75 (d, JCF=250.3 Hz), 144.78, 131.96 (d, JCF=15.6 Hz), 128.43 (d, JCF=10.4 Hz), 127.71, 125.20 (d, JCF=4.7 Hz), 122.48, 109.69 (d, JCF=3.3 Hz), 108.63 (d, JCF=19.2 Hz), 101.42 (d, JCF=7.2 Hz), 64.84, 64.48 ppm. HRMS (DART): m/z [M+H]+ calcd for C16H1BrF2N3O2 +, 393.9997; found, 393.9996.
- Disclosed in table 5 Brain to plasma percentages and unbound ratios of drugs in brain to plasma of indicated drugs in non-tumor bearing mice
-
TABLE 5 Brain Penetration of Exemplary Compounds of the Disclsoure Brain Penetration Compound (% of plasma) Kpuu (Avg) Erlotinib 8.50 0.051 JGK005 64.8 0.491 JGK038 84.3 0.575 JGK028 106.2 1.037 JGK010 106.4 1.045 JGK037 212.1 1.301 JGK042 167.6 1.033 JGK063 72.5 0.341 JGK066 274.3 1.175 JGK068 354.5 1.184 JGK068S 378.3 1.181 JGK074 166.2 n.d. JGK083S 231.3 0.798 -
- All chemicals, reagents, and solvents were purchased from commercial sources when available and were used as received. When necessary, reagents and solvents were purified and dried by standard methods. Air- and moisture-sensitive reactions were carried out under an inert atmosphere of argon in oven-dried glassware. Microwave-irradiated reactions were carried out in a single mode reactor CEM Discover microwave synthesizer. Room temperature (RT) reactions were carried out at ambient temperature (approximately 23° C.). All reactions were monitored by thin layer chromatography (TLC) on precoated Merck 60 F254 silica gel plates with spots visualized by UV light (λ=254, 365 nm) or by using an alkaline KMnO4 solution. Flash column chromatography (FC) was carried out on SiO2 60 (particle size 0.040-0.063 mm, 230-400 mesh). Preparative thin-layer chromatography (PTLC) was carried out with Merck 60 F254 silica gel plates (20×20 cm, 210-270 mm) or Analtech Silica Gel GF TLC plates (20×20 cm, 1000 mm). Concentration under reduced pressure (in vacuo) was performed by rotary evaporation at 23-50° C. Purified compounds were further dried under high vacuum or in a desiccator. Yields correspond to purified compounds, and were not further optimized. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker spectrometers (operating at 300, 400, or 500 MHz). Carbon NMR (13C NMR) spectra were recorded on Bruker spectrometers (either at 400 or 500 MHz). NMR chemical shifts (δ ppm) were referenced to the residual solvent signals. 1H NMR data are reported as follows: chemical shift in ppm; multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, quint=quintet, m=multiplet/complex pattern, td=triplet of doublets, ddd=doublet of doublet of doublets, br=broad signal); coupling constants (J) in Hz, integration. Data for 13C NMR spectra are reported in terms of chemical shift, and if applicable coupling constants. High resolution mass (HRMS) spectra were recorded on a Thermo Fisher Scientific Exactive Plus with IonSense ID-CUBE DART source mass spectrometer, or on a Waters LCT Premier mass spectrometer with ACQUITY UPLC with autosampler.
-
- A mixture of 3,4-dihydroxybenzaldehyde (100 g, 0.724 mol) in THF (965 mL) was cooled to 0° C., and treated with 10% aq. NaOH (724 mL, 1.81 mol) over 4-5 min. After the reaction mixture was stirred at 0° C. for 15 min, acetic anhydride (Ac2O, 82.1 mL, 0.869 mol) was added dropwise over 20 min. The mixture was stirred for 30 min at the same temperature, and then poured into a mixture of EtOAc (1.25 L) and 2 M HCl (1.13 L) at 0° C. The phases were separated, and the aq. phase was extracted with EtOAc (4×250 mL). The combined organics were washed with water (2×500 mL), brine (500 mL), dried (Na2SO4), filtered, and evaporated. The residue was treated with a small amount of n-heptane and evaporated (3×). Recrystallization from EtOAc (275 mL; crystals washed with Et2O) gave a first crop of the title compound 1 (66.96 g, 51%) as light-brown crystals. Recrystallization of the mother liquor from EtOAc gave a second crop of the title compound 1 (29.436 g, 23%) as a light-brown solid. 1H NMR (500 MHz, CDCl3): δ 9.85 (s, 1H), 7.73-7.65 (m, 2H), 7.11 (d, J=8.8 Hz, 1H), 6.34 (br, 1H), 2.39 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 190.40, 168.99, 152.96, 138.81, 130.24, 129.72, 124.13, 117.87, 21.09. HRMS (DART): m/z [M+H]+ calcd for C9H9O4 +, 181.0495; found, 181.0488.
-
- A mixture of 1 (32.5 g, 0.18 mol) and triphenylphosphine (PPh3, 70.976 g, 0.27 mol) in THF (905 mL) was treated with (S)-glycidol (17.95 mL, 0.27 mol), cooled to 0° C., and treated dropwise with diisopropyl azodicarboxylate (DIAD, 56.8 mL, 0.289 mmol) over 30 min. The mixture was stirred for an additional 10 min at 0° C., after which the cooling bath was removed, and stirring was continued at 23° C. for 15.5 h. All volatiles were evaporated, and crude (R)-2, obtained as a brown oil, was used without any further purification in the next step.
-
- A mixture of crude (R)-2 in MeOH (1.564 L) was treated with K2CO3 (49.87 g, 0.36 mol) and stirred at 23° C. for 18.5 h, and then the solvent was evaporated. The residue was suspended in half-sat. NH4Cl (750 mL), and extracted with EtOAc (3×500 mL). The combined organics were washed with water (250 mL), brine (250 mL), dried (Na2SO4), filtered, and evaporated. The crude material was purified by several rounds of flash chromatography (hexanes/EtOAc 9:1→1:1) as well as by precipitation from hexanes/Et2O 1:1 (to remove triphenylphospine oxide Ph3PO), to afford the title compound (S)-3 (17.322 g, 49% over two steps) as a white solid. 1H NMR (500 MHz, CDCl3): δ 9.81 (s, 1H), 7.43 (d, J=1.8 Hz, 1H), 7.41 (dd, J=8.1, 1.9 Hz, 1H), 7.00 (d, J=8.2 Hz, 1H), 4.39 (dd, J=11.4, 2.3 Hz, 1H), 4.31-4.25 (m, 1H), 4.20 (dd, J=11.3, 7.9 Hz, 1H), 3.95 (dd, J=12.1, 4.3 Hz, 1H), 3.87 (dd, J=12.1, 4.9 Hz, 1H), 2.18 (br, 1H). 13C NMR (126 MHz, CDCl3): δ 190.79, 148.76, 143.46, 130.79, 124.46, 118.33, 117.70, 73.31, 65.61, 61.54. HRMS (DART): m/z [M+H]+ calcd for C10H11O4 +, 195.0652; found, 195.0650.
-
- A mixture of (S)-3 (17.322 g, 0.089 mol) in AcOH (189 mL) was treated with KOAc (22.944 g, 0.234 mol), stirred at 23° C. for 10 min, and then treated with NH2OH.HCl (16.233 g, 0.234 mol). The resulting mixture was stirred at 120-125° C. for 18.5 h. The mixture was cooled to 23° C., poured into water (1 L), and extracted with EtOAc (4×250 mL). The combined organics were treated with 3.5 M NaOH (400 mL) and sat. aq. NaHCO3 (100 mL) to obtain a final pH of ˜8, and the emulsion was stirred at 23° C. for 1 h. The organic layer was separated, and washed with sat. aq. NaHCO3 (300 mL), water (300 mL), brine (300 mL), dried (Na2SO4), filtered, and evaporated. Purification by flash chromatography (hexanes/EtOAc 10:1→6:4) afforded the title compound (R)-4 (13.513 g, 65%) as a clear, colorless oil. 1H NMR (500 MHz, CDCl3): δ 7.20 (d, J=2.0 Hz, 1H), 7.16 (dd, J=8.4, 2.0 Hz, 1H), 6.94 (d, J=8.4 Hz, 1H), 4.43-4.38 (m, 1H), 4.36 (dd, J=11.6, 2.4 Hz, 1H), 4.34 (dd, J=11.1, 4.5 Hz, 1H), 4.30 (dd, J=11.6, 4.6 Hz, 1H), 4.11 (dd, J=11.5, 7.2 Hz, 1H), 2.12 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 170.64, 147.13, 143.11, 126.28, 121.56, 118.85, 118.32, 105.13, 71.11, 65.45, 62.24, 20.83. HRMS (DART): m/z [M+H]+ calcd for C12H12NO4 +, 234.0761; found, 234.0759.
-
- A mixture of (R)-4 (13.345 g, 57.2 mmol) in Ac2O (74.3 mL) was treated with H2SO4 (3.05 mL, 57.2 mmol), cooled to 0° C., and treated dropwise with 70% HNO3 (19.63 mL, 286 mmol) at 0° C. over 35 min. The mixture was stirred for another 2 h at 0° C., and then at 23° C. for 3.5 h. The mixture was poured into ice-water (850 mL), and the pH was adjusted to ˜7 with 6 M NaOH (320 mL). Sat. aq. NaHCO3 (200 mL) was added, and the mixture was extracted with CH2Cl2 (3×500 mL). The combined organics were washed with sat. aq. NaHCO3 (400 mL), water (400 mL), brine (400 mL), dried (Na2SO4), filtered, and evaporated to afford the title compound (R)-5 (15.696 g, 99%) as a yellow oil, which was used in the next step without any further purification. 1H NMR (500 MHz, DMSO-d6): δ 7.96 (s, 1H), 7.80 (s, 1H), 4.73-4.67 (m, 1H), 4.58 (dd, J=11.8, 2.6 Hz, 1H), 4.36 (dd, J=12.5, 3.7 Hz, 1H), 4.31 (dd, J=12.5, 5.7 Hz, 1H), 4.27 (dd, J=11.8, 7.0 Hz, 1H), 2.05 (s, 3H). 13C NMR (126 MHz, DMSO-d): δ 170.11, 147.75, 146.26, 142.23, 123.77, 115.21, 115.17, 100.06, 72.00, 64.98, 61.72, 20.52. HRMS (DART): m/z [M+H]+ calcd for C12H11N2O6 +, 279.0612; found, 279.0601.
-
- A suspension of (R)-5 (15.591 g, 56 mmol) in water/ethanol 1:1 (250 mL) was treated with Na2S2O4 (39.266 g, 185 mmol), and the mixture was stirred at 50° C. for 105 min, and then heated to 70° C. for 2 h while treated portionwise with conc. HCl (73.6 mL, 0.897 mol) during that time. The mixture was cooled to 23° C., poured on ice, and the pH was adjusted to ˜10 with 6 M NaOH (200 mL) and half-sat. NaHCO3 (500 mL). The mixture was extracted with EtOAc (3×500 mL). The combined organics were washed with water (500 mL), brine (500 mL), dried (Na2SO4), filtered, and evaporated to afford crude (S)-6 (9.483 g, 82%) as an orange-yellow solid, which was used in the next step without any further purification. 1H NMR (500 MHz, DMSO-d6): δ 6.92 (s, 1H), 6.29 (s, 1H), 5.50 (br, 2H), 5.04 (t, J=5.7 Hz, 1H), 4.32 (dd, J=10.7, 1.6 Hz, 1H), 4.07-3.99 (m, 1H), 4.00 (dd, J=11.2, 8.3 Hz, 1H), 3.64-3.51 (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ 148.50, 147.29, 134.39, 119.04, 118.04, 102.45, 86.72, 73.25, 65.92, 59.77. HRMS (DART): m/z [M+H]+ calcd for C10H10N2O3 +, 206.0686; found, 206.0685.
-
- A mixture of (S)-6 (9.38 g, 45.5 mmol) in toluene (117 mL) was treated with AcOH (143 μL, 2.5 mmol) and DMF-DMA (13.1 mL, 98.9 mmol), and the mixture was stirred at 105° C. for 3 h. The evaporated MeOH (˜4-5 mL) was collected in a Dean-Stark trap to monitor the progress of the reaction. The mixture was cooled to 23° C. and evaporated to obtain crude (S)-7 (14.243 g, quant.) as a viscous, brown oil, which was used in the next step without any further purification. 1H NMR (500 MHz, CDCl3): δ 7.51 (s, 1H), 7.05 (s, 1H), 6.48 (s, 1H), 4.33 (dd, J=11.2, 2.0 Hz, 1H), 4.23-4.17 (m, 1H), 4.13 (dd, J=11.2, 8.1 Hz, 1H), 3.90 (dd, J=12.1, 4.2 Hz, 1H), 3.83 (dd, J=12.1, 4.8 Hz, 1H), 3.07 (s, 3H), 3.05 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 160.40, 153.78, 147.68, 138.63, 121.08, 118.64, 108.16, 99.31, 73.34, 65.83, 61.67, 40.51, 34.82. HRMS (DART): m/z [M+H]+ calcd for C13H16N3O3 +, 262.1186; found, 262.1183.
-
- A mixture of (S)-7 in AcOH (152 mL) was treated with 3-bromo-2-fluoroaniline (6.63 mL, 59.1 mmol), and the mixture was stirred at 125-130° C. for 3 h. The mixture was cooled to 23° C., poured into ice-water (500 mL), and the pH was adjusted to ˜9 with sat. aq. NH4OH (185 mL) and half-sat. aq. NaHCO3 (200 mL). The mixture was extracted with EtOAc (3×400 mL), and the combined organics were washed with half-sat. aq. NaHCO3 (400 mL), water (400 mL), brine (400 mL), dried (Na2SO4), filtered, and evaporated. The residue was dissolved in MeOH (272 mL), and treated with K2CO3 (12.579 g, 91 mmol), stirred at 23° C. for 1 h, and evaporated. The residue was suspended in half-sat. aq. NH4Cl (700 mL), and extracted with EtOAc (3×400 mL). The combined organics were washed with water (400 mL), brine (400 mL), dried (Na2SO4), filtered, and evaporated. The orange-yellow residue was suspended in EtOAc, warmed to 65° C., and then let slowly cool down to 23° C. overnight. Filtration, and washing of the residue with cold hexanes (2×15 mL) and Et2O (2×15 mL), and drying under high vacuum afforded the title compound (S)-8 (9.407 g, 50.9% over two steps) as a fine, yellow powder. 1H NMR (500 MHz, DMSO-d6): δ 9.69 (s, 1H), 8.33 (s, 1H), 7.99 (s, 1H), 7.59 (ddd, J=8.0, 6.2, 1.6 Hz, 1H), 7.54 (ddd, J=8.4, 7.0, 1.6 Hz, 1H), 7.24-7.17 (m, 1H), 7.20 (s, 1H), 5.20 (t, J=5.6 Hz, 1H), 4.49 (dd, J=11.5, 2.4 Hz, 1H), 4.37-4.29 (m, 1H), 4.21 (dd, J=11.6, 7.4 Hz, 1H), 3.76-3.64 (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ 157.22, 153.38 (d, JCF=247.0 Hz), 153.09, 148.87, 145.94, 143.37, 130.08, 128.09 (d, JCF=12.9 Hz), 127.75, 125.43 (d, JCF=4.5 Hz), 112.29, 109.81, 108.54 (d, JCF=20.0 Hz), 108.49, 73.77, 65.52, 59.76. HRMS (DART): m/z [M+H]+ calcd for C17H14BrFN3O3 +, 406.0197; found, 406.0185.
-
- A mixture of (S)-8 (9.01 g, 22.2 mmol) and Me3N.HCl (234 mg, 2.45 mmol) in acetonitrile (148 mL) was treated with Et3N (6.18 mL, 44.4 mmol), cooled to 0-5° C., and treated dropwise with a solution of MsCl (2.57 mL, 33.2 mmol) in acetonitrile (17 mL; rinsed with 3 mL) over 10 min. The mixture was stirred at 0° C. for 1 h. Water (100 mL) was added, and most of the acetonitrile was evaporated in vacuo. Additional water (700 mL) was added, and the mixture was extracted with EtOAc (3×400 mL). The combined organics were washed with water (400 mL), brine (400 mL), dried (Na2SO4), filtered, and evaporated to afford the title compound (R)-9 (10.33 g, 96%) as a yellow, friable foam, which was used in the next step without any further purification. 1H NMR (500 MHz, CDCl3): δ 8.70 (s, 1H), 8.62 (ddd, J=8.7, 7.3, 1.6 Hz, 1H), 7.44 (s, 1H), 7.362 (s, 1H), 7.360 (br, 1H), 7.29 (ddd, J=8.1, 6.5, 1.5 Hz, 1H), 7.11 (td, J=8.2, 1.6 Hz, 1H), 4.67-4.61 (m, 1H), 4.54-4.51 (m, 2H), 4.50 (dd, J=11.7, 2.4 Hz, 1H), 4.29 (dd, J=11.8, 7.1 Hz, 1H), 3.13 (s, 3H).
-
- A mixture of (R)-9 in DMF (427 mL) was treated with 1-methylpiperazine (11.83 mL, 107 mmol) and Et3N (5.95 mL, 42.7 mmol), and the mixture was stirred at 85° C. for 24 h. The mixture was cooled to 23° C., and evaporated. The residue was dissolved in EtOAc (1.2 L), and washed with 0.5 M NaOH (4×250 mL), brine (250 mL), dried (Na2SO4), filtered, and evaporated. Purification by flash chromatography (CH2Cl2/MeOH 1:0→8:2) afforded the title compound JGK068S (6.013 g, 58% over two steps) as an off-white, friable foam. 1H NMR (500 MHz, CDCl3): δ 8.67 (s, 1H), 8.63 (ddd, J=8.7, 7.3, 1.6 Hz, 1H), 7.374 (s, 1H), 7.372 (br, 1H), 7.32 (s, 1H), 7.26 (ddd, J=8.1, 6.5, 1.5 Hz, 1H), 7.09 (td, J=8.2, 1.6 Hz, 1H), 4.48-4.40 (m, 2H), 4.14 (dd, J=11.8, 8.0 Hz, 1H), 2.77 (dd, J=13.4, 6.0 Hz, 1H), 2.653 (dd, J=13.4, 5.8 Hz, 1H), 2.648 (br, 4H), 2.51 (br, 4H), 2.32 (s, 3H).
-
- Following general procedure GP-1 of Example 16, compound (S)-10 was prepared from R-9 (91 mg, 0.188 mmol) and tert-butyl piperazine-1-carboxylate (175 mg, 0.94 mmol) in DMF (3.8 mL), and stirred at 85° C. for 15 h. PTLC (CH2Cl2/EtOAc 4:6) afforded (S)-10 (50 mg, 46%) as an off-white, friable foam. 1H NMR (500 MHz, CDCl3): δ 8.68 (s, 1H), 8.65 (ddd, J=8.3, 7.4, 1.5 Hz, 1H), 7.39 (s, 1H), 7.36 (br, 1H), 7.31 (s, 1H), 7.27 (ddd, J=8.0, 6.5, 1.5 Hz, 1H), 7.11 (td, J=8.2, 1.5 Hz, 1H), 4.50-4.42 (m, 2H), 4.17 (dd, J=12.1, 8.2 Hz, 1H), 3.47 (t, J=5.1 Hz, 4H), 2.78 (dd, J=13.4, 5.9 Hz, 1H), 2.67 (dd, J=13.5, 5.9 Hz, 1H), 2.62-2.47 (m, 4H), 1.47 (s, 9H). 13C NMR (126 MHz, CDCl3): δ 155.89, 154.83, 153.39, 150.15 (d, JCF=242.4 Hz), 149.36, 146.72, 144.02, 128.63 (d, JCF=10.3 Hz), 127.27, 125.34, 121.78, 114.34, 110.66, 108.60 (d, JCF=19.5 Hz), 106.06, 79.97, 71.76, 67.18, 58.56, 53.96, 28.57, one carbon signal missing (probably due to overlapping peaks). HRMS (DART): m/z [M+H]+ calcd for C26H30BrFN5O4 +, 574.1460; found, 574.1432.
-
- A mixture of (S)-10 (42 mg, 0.073 mmol) in CH2Cl2 (500 μL) and TFA (250 μL) was stirred at 23° C. for 12 h. The mixture was diluted with 1 M HCl (20 mL), and washed with CH2Cl2 (3×7 mL). The aqueous phase was diluted with 6 M NaOH (4 mL) to pH >12, and extracted with EtOAc (3×8 mL). The combined organics were washed with brine (8 mL), dried (Na2SO4), filtered, and evaporated. Purification by PTLC (CH2CL2/MeOH 8:2) afforded the title compound JGK083S (18 mg, 52%) as a white, friable foam. 1H NMR (500 MHz, CDCl3): δ 8.68 (s, 1H), 8.66 (ddd, J=8.2, 7.3, 1.6 Hz, 1H), 7.39 (s, 1H), 7.35 (br d, J=4.0 Hz, 1H), 7.32 (s, 1H), 7.27 (ddd, J=8.1, 6.5, 1.6 Hz, 1H), 7.11 (td, J=8.2, 1.5 Hz, 1H), 4.50-4.42 (m, 2H), 4.19-4.13 (m, 1H), 2.93 (t, J=4.9 Hz, 4H), 2.76 (dd, J=13.4, 5.9 Hz, 1H), 2.63 (dd, J=13.4, 6.0 Hz, 1H), 2.63-2.50 (m, 4H). 13C NMR (126 MHz, CDCl3): δ 155.88, 153.35, 150.12 (d, JCF=242.3 Hz), 149.45, 146.71, 144.17, 128.67 (d, JCF=10.4 Hz), 127.21, 125.32 (d, JCF=4.7 Hz), 121.74, 114.30, 110.64, 108.58 (d, JCF=19.3 Hz), 106.02, 71.70, 67.32, 59.19, 55.54, 46.23. HRMS (DART): m/z [M−H]− calcd for C21H20BrFN5O2 −, 472.0790; found, 472.0773.
-
- A mixture of 1 (150 mg, 0.833 mmol) and (2R)-glycidyl tosylate (203 mg, 0.891 mmol) in DMF (2 mL) was treated with K2CO3 (181 mg, 1.31 mmol), and the mixture was stirred at 60° C. for 15 h. The mixture was cooled to 23° C., water (30 mL) was added, and the mixture was extracted with EtOAc (3×15 mL). The combined organics were washed with water (15 mL), brine (15 mL), dried (Na2SO4), filtered, and evaporated. Purification by preparative thin layer chromatography (hexanes/EtOAc 7:3) afforded the title compound (R)-10 (111 mg, 56%) as a clear, colorless oil. 1H NMR (400 MHz, CDCl3): δ=9.82 (s, 1H), 7.44 (d, J=1.8 Hz, 1H), 7.42 (dd, J=8.2, 1.9 Hz, 1H), 7.00 (d, J=8.1 Hz, 1H), 4.46-4.39 (m, 1H), 4.37 (dd, J=11.5, 2.4 Hz, 1H), 4.35 (dd, J=11.7, 4.9 Hz, 1H), 4.31 (dd, J=11.9, 5.1 Hz, 1H), 4.13 (dd, J=11.5, 7.1 Hz, 1H), 2.11 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 190.72, 170.67, 148.57, 143.22, 131.15, 124.38, 118.76, 117.85, 70.94, 65.54, 62.36, 20.83. HRMS (DART): m/z [M+H]+ calcd for C12H13O5 +, 237.0757; found, 237.0745.
-
- 1H NMR (500 MHz, CDCl3): δ 8.68 (s, 1H), 8.61 (td, J=7.3, 2.2 Hz, 1H), 7.39 (s, 1H), 7.35 (br d, J=3.4 Hz, 1H), 7.32 (s, 1H), 7.16 (td, J=8.1, 1.2 Hz, 1H), 7.13 (td, J=8.2, 1.9 Hz, 1H), 4.49-4.41 (m, 2H), 4.15 (dd, J=11.8, 8.1 Hz, 1H), 2.78 (dd, J=13.4, 5.9 Hz, 1H), 2.66 (dd, J=13.4, 5.9 Hz, 1H), 2.64 (br, 4H), 2.48 (br, 4H), 2.31 (s, 3H). 13C NMR (126 MHz, CDCl3): (155.89, 153.35, 149.44, 149.30 (d, JCF=244.2 Hz), 146.72, 144.15, 128.76 (d, JCF=9.3 Hz), 124.71 (d, JCF=4.7 Hz), 124.45, 121.01, 120.85 (d, JCF=16.1 Hz), 114.30, 110.63, 106.05, 71.81, 67.31, 58.50, 55.17, 54.15, 46.19. HRMS (DART): m/z [M+H]+ calcd for C22H24ClFN5O2 +, 444.1597; found, 444.1582.
-
- 1H NMR (500 MHz, DMSO-d6): (9.62 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.59 (ddd, J=8.0, 6.2, 1.6 Hz, 1H), 7.54 (ddd, J=8.5, 7.1, 1.6 Hz, 1H), 7.21 (td, J=8.1, 1.2 Hz, 1H), 7.19 (s, 1H), 4.63-4.56 (m, 1H), 4.46 (dd, J=11.6, 2.5 Hz, 1H), 4.17 (dd, J=11.6, 7.1 Hz, 1H), 3.59 (t, J=4.6 Hz, 4H), 2.71-2.59 (m, 2H), 2.57-2.44 (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ 157.22, 153.37 (d, JCF=247.3 Hz), 153.13, 148.75, 146.16, 143.28, 130.14, 128.02 (d, JCF=13.0 Hz), 127.74, 125.45 (d, JCF=4.7 Hz), 112.57, 109.61, 108.55 (d, JCF=19.9 Hz), 108.23, 71.41, 66.29, 66.18, 57.97, 53.89. HRMS (DART): m/z [M−H]− calcd for C21H19BrFN4O3 −, 473.0630; found, 473.0608.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.62 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.59 (ddd, J=8.0, 6.2, 1.6 Hz, 1H), 7.54 (ddd, J=8.5, 7.1, 1.6 Hz, 1H), 7.21 (td, J=8.1, 1.2 Hz, 1H), 7.17 (s, 1H), 4.57-4.51 (m, 1H), 4.44 (dd, J=11.6, 2.5 Hz, 1H), 4.14 (dd, J=11.7, 7.1 Hz, 1H), 2.58 (s, 1H), 2.57 (s, 1H), 2.25 (s, 6H). 13C NMR (126 MHz, DMSO-d6): δ 157.22, 153.38 (d, JCF=247.4 Hz), 153.12, 148.78, 146.16, 143.29, 130.14, 128.02 (d, JCF=13.1 Hz), 127.75, 125.45 (d, JCF=4.4 Hz), 112.54, 109.59, 108.55 (d, JCF=19.8 Hz), 108.20, 71.76, 66.31, 58.73, 45.92. HRMS (DART): m/z [M−H]− calcd for C19H17BrFN4O2 −, 431.0524; found, 431.0503.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.61 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.59 (ddd, J=8.0, 6.2, 1.6 Hz, 1H), 7.54 (ddd, J=8.5, 7.1, 1.6 Hz, 1H), 7.21 (td, J=8.1, 1.2 Hz, 1H), 7.19 (s, 1H), 4.60-4.53 (m, 1H), 4.44 (dd, J=11.6, 2.5 Hz, 1H), 4.14 (dd, J=11.7, 7.1 Hz, 1H), 2.68-2.59 (m, 2H), 2.53 (br, 4H), 2.34 (br, 4H), 2.16 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ 157.22, 153.38 (d, JCF=247.4 Hz), 153.12, 148.78, 146.15, 143.29, 130.13, 128.02 (d, JCF=13.1 Hz), 127.74, 125.45 (d, JCF=4.5 Hz), 112.55, 109.60, 108.55 (d, JCF=19.8 Hz), 108.22, 71.57, 66.34, 57.52, 54.68, 53.29, 45.72. HRMS (DART): m/z [M−H]− calcd for C22H22BrFN5O2 −, 486.0946; found, 486.0928.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.61 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.59 (ddd, J=8.0, 6.3, 1.6 Hz, 1H), 7.54 (ddd, J=8.5, 7.1, 1.6 Hz, 1H), 7.21 (td, J=8.0, 1.2 Hz, 1H), 7.19 (s, 1H), 4.57-4.49 (m, 1H), 4.46 (dd, J=11.6, 2.5 Hz, 1H), 4.16 (dd, J=11.6, 7.1 Hz, 1H), 2.80 (dd, J=12.8, 6.0 Hz, 1H), 2.73 (dd, J=12.8, 6.2 Hz, 1H), 2.62-2.48 (m, 4H), 1.74-1.66 (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ 157.22, 153.37 (d, JCF=247.5 Hz), 153.12, 148.79, 146.17, 143.29, 130.13, 128.02 (d, JCF=12.9 Hz), 127.74, 125.45 (d, JCF=4.5 Hz), 112.54, 109.58, 108.55 (d, JCF=20.0 Hz), 108.19, 72.65, 66.32, 55.42, 54.31, 23.23. HRMS (DART): m/z [M−H]− calcd for C21H19BrFN4O2 −, 457.0681; found, 457.0660.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.61 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.59 (ddd, J=8.0, 6.3, 1.6 Hz, 1H), 7.54 (ddd, J=8.4, 7.0, 1.6 Hz, 1H), 7.21 (td, J=8.1, 1.2 Hz, 1H), 7.18 (s, 1H), 4.59-4.52 (m, 1H), 4.44 (dd, J=11.6, 2.5 Hz, 1H), 4.14 (dd, J=11.7, 7.1 Hz, 1H), 2.65-2.54 (m, 2H), 2.53-2.37 (m, 4H), 1.55-1.47 (m, 4H), 1.43-1.34 (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ 157.21, 153.37 (d, JCF=247.1 Hz), 153.11, 148.83, 146.15, 143.32, 130.12, 128.03 (d, JCF=13.1 Hz), 127.73, 125.45 (d, JCF=4.5 Hz), 112.53, 109.57, 108.55 (d, JCF=19.8 Hz), 108.19, 71.63, 66.42, 58.35, 54.74, 25.61, 23.83. HRMS (DART): m/z [M−H]− calcd for C22H21BrFN4O2 −, 471.0837; found, 471.0814.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.61 (s, 1H), 8.33 (s, 1H), 7.93 (s, 1H), 7.59 (ddd, J=7.9, 6.3, 1.6 Hz, 1H), 7.54 (ddd, J=8.4, 7.1, 1.6 Hz, 1H), 7.21 (td, J=8.1, 1.2 Hz, 1H), 7.19 (s, 1H). 13C NMR (126 MHz, DMSO-d6): δ 157.19, 153.37 (d, JCF=247.2 Hz), 153.10, 149.27, 146.03, 143.67, 130.12, 128.03 (d, JCF=13.0 Hz), 127.74, 125.44 (d, JCF=4.2 Hz), 112.47, 109.63, 108.55 (d, JCF=19.9 Hz), 108.35. HRMS (DART): m/z [M+H]+ calcd for C16H8D4BrFN3O2 +, 380.0342; found, 380.0327.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.60 (s, 1H), 8.33 (s, 1H), 7.95 (s, 1H), 7.58 (ddd, J=8.0, 6.2, 1.6 Hz, 1H), 7.53 (ddd, J=8.4, 7.0, 1.6 Hz, 1H), 7.21 (td, J=8.1, 1.1 Hz, 2H), 7.20 (s, 1H), 4.50 (dd, J=11.5, 2.3 Hz, 1H), 4.42-4.36 (m, 1H), 4.12 (dd, J=11.5, 7.7 Hz, 1H), 2.70-2.56 (m, 2H), 2.49-2.40 (m, 4H), 1.89-1.78 (m, 2H), 1.73-1.64 (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ 157.21, 153.33 (d, JCF=247.5 Hz), 153.13, 148.95, 146.02, 143.37, 130.08, 128.07 (d, JCF=13.1 Hz), 127.64, 125.48 (d, JCF=4.6 Hz), 112.26, 109.78, 108.58 (d, JCF=19.8 Hz), 108.44, 71.76, 67.78, 53.63, 51.03, 29.53, 23.16. HRMS (DART): m/z [M+H]+ calcd for C22H23BrFN4O2 +, 473.0983; found, 473.0976.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.60 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.58 (ddd, J=8.0, 6.2, 1.6 Hz, 1H), 7.53 (ddd, J=8.4, 7.1, 1.6 Hz, 1H), 7.204 (td, J=8.2, 1.3 Hz, 1H), 7.198 (s, 1H), 4.51 (dd, J=11.5, 2.4 Hz, 1H), 4.39-4.33 (m, 1H), 4.11 (dd, J=11.6, 7.8 Hz, 1H), 2.50-2.44 (m, 2H), 2.42-2.27 (m, 4H), 1.90-1.76 (m, 2H), 1.55-1.45 (m, 4H), 1.42-1.34 (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ 157.20, 153.33 (d, JCF=247.4 Hz), 153.12, 148.95, 146.02, 143.39, 130.08, 128.07 (d, JCF=13.1 Hz), 127.64, 125.48 (d, JCF=4.5 Hz), 112.25, 109.77, 108.58 (d, JCF=20.0 Hz), 108.43, 71.97, 67.80, 54.08, 53.96, 27.69, 25.61, 24.12. HRMS (DART): m/z [M+H]+ calcd for C23H25BrFN4O2 +, 487.1139; found, 487.1137.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.63 (s, 1H), 8.32 (s, 1H), 7.93 (s, 1H), 7.58 (ddd, J=8.0, 6.3, 1.5 Hz, 1H), 7.53 (t, J=7.0 Hz, 1H), 7.21 (td, J=8.1, 1.2 Hz, 1H), 4.50 (dd, J=11.5, 2.4 Hz, 1H), 4.47-4.40 (m, 1H), 4.10 (dd, J=11.6, 7.4 Hz, 1H), 3.58 (t, J=4.7 Hz, 4H), 2.55-2.46 (m, 2H), 2.45-2.33 (m, 4H), 1.92-1.79 (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ 157.20, 153.33 (d, JCF=248.3 Hz), 153.06, 148.94, 146.06, 143.26, 130.03, 128.12 (d, JCF=9.8 Hz), 127.69, 125.44 (d, JCF=4.4 Hz), 112.47, 109.64, 108.55 (d, JCF=19.9 Hz), 108.18, 72.30, 67.35, 66.22, 53.53, 53.28, 27.25. HRMS (DART): m/z [M+H]+ calcd for C22H23BrFN4O3 +, 489.0932; found, 489.0926.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.61 (s, 1H), 8.33 (s, 1H), 7.93 (s, 1H), 7.59 (t, J=6.9 Hz, 1H), 7.54 (t, J=7.5 Hz, 1H), 7.21 (t, J=8.1 Hz, 1H), 7.18 (s, 1H), 4.49 (dd, J=11.6, 2.3 Hz, 1H), 4.45-4.38 (m, 1H), 4.09 (dd, J=11.6, 7.5 Hz, 1H), 2.47-2.38 (m, 2H), 2.17 (s, 6H), 1.86-1.78 (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ 157.20, 153.37 (d, JCF=247.6 Hz), 153.08, 148.99, 146.14, 143.29, 130.10, 128.07 (d, JCF=15.6 Hz), 127.72, 125.44 (d, JCF=4.4 Hz), 112.50, 109.58, 108.54 (d, JCF=19.7 Hz), 108.13, 72.30, 67.36, 54.43, 45.17, 28.27. HRMS (DART): m/z [M+H]+ calcd for C20H21BrFN4O2 +, 447.0826; found, 447.0818.
-
- 1H NMR (500 MHz, DMSO-d6): (9.62 (s, 1H), 8.33 (s, 1H), 7.93 (s, 1H), 7.59 (t, J=7.1 Hz, 1H), 7.54 (t, J=7.5 Hz, 1H), 7.21 (t, J=8.0 Hz, 1H), 7.17 (s, 1H), 4.49 (dd, J=11.5, 2.4 Hz, 1H), 4.45-4.38 (m, 1H), 4.10 (dd, J=11.6, 7.4 Hz, 1H), 2.48-2.21 (m, 10H), 2.14 (s, 3H), 1.91-1.76 (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ 157.20, 153.36 (d, JCF=246.9 Hz), 153.08, 148.98, 146.13, 143.28, 130.09, 128.05 (d, JCF=11.7 Hz), 127.72, 125.44 (d, JCF=4.3 Hz), 112.50, 109.58, 108.55 (d, JCF=19.8 Hz), 108.13, 72.40, 67.37, 54.78, 53.11, 52.65, 45.76, 27.61. HRMS (DART): m/z [M+H]+ calcd for C23H26BrFN5O2 +, 502.1248; found, 502.1240.
-
- 1H NMR (500 MHz, DMSO-d6): δ 9.62 (s, 1H), 8.33 (s, 1H), 7.93 (s, 1H), 7.59 (t, J=7.2 Hz, 1H), 7.53 (t, J=7.5 Hz, 1H), 7.21 (t, J=8.0 Hz, 1H), 7.17 (s, 1H), 4.49 (dd, J=11.5, 2.4 Hz, 1H), 4.47-4.41 (m, 1H), 4.10 (dd, J=11.5, 7.4 Hz, 1H), 2.68-2.53 (m, 2H), 2.50-2.40 (m, 4H), 1.89-1.81 (m, 2H), 1.73-1.65 (m, 4H). 13C NMR (126 MHz, DMSO-d6): δ 157.20, 153.36 (d, JCF=246.9 Hz), 153.07, 148.98, 146.13, 143.28, 130.07, 128.10, 127.71, 125.44 (d, JCF=4.6 Hz), 112.48, 109.60, 108.55 (d, JCF=19.8 Hz), 108.15, 72.31, 67.37, 53.57, 50.97, 29.58, 23.14. HRMS (DART): m/z [M+H]+ calcd for C22H23BrFN4O2 +, 473.0983; found, 473.0976.
-
- 1H NMR (500 MHz, DMSO-d6): (9.62 (s, 1H), 8.32 (s, 1H), 7.93 (s, 1H), 7.59 (t, J=7.1 Hz, 1H), 7.53 (t, J=7.5 Hz, 1H), 7.21 (td, J=8.0, 1.2 Hz, 1H), 7.17 (s, 1H), 4.49 (dd, J=11.5, 2.4 Hz, 1H), 4.44-4.37 (m, 1H), 4.10 (dd, J=11.6, 7.4 Hz, 1H), 2.48-2.43 (m, 2H), 2.41-2.27 (m, 4H), 1.90-1.77 (m, 2H), 1.54-1.45 (m, 4H), 1.42-1.34 (m, 2H). 13C NMR (126 MHz, DMSO-d6): δ 157.19, 153.34 (d, JCF=246.7 Hz), 153.07, 149.00, 146.11, 143.29, 130.07, 128.10, 127.71, 125.44 (d, JCF=4.3 Hz), 112.48, 109.60, 108.55 (d, JCF=19.9 Hz), 108.14, 72.50, 67.40, 54.02, 53.87, 27.70, 25.63, 24.13. HRMS (DART): m/z [M+H]+ calcd for C23H25BrFN4O2 +, 487.1139; found, 487.1133.
-
- 1H NMR (500 MHz, CDCl3): δ 8.71 (s, 1H), 8.65 (ddd, J=8.3, 7.3, 1.5 Hz, 1H), 7.48 (s, 1H), 7.43 (s, 1H), 7.39 (br, 1H), 7.28 (ddd, J=8.1, 6.5, 1.5 Hz, 1H), 7.11 (td, J=8.2, 1.6 Hz, 1H), 4.41 (t, J=5.7 Hz, 1H), 4.38 (t, J=5.8 Hz, 1H), 2.32 (p, J=5.8 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ 157.06, 156.08, 153.93, 151.62, 150.19 (d, JCF=242.7 Hz), 147.83, 128.53 (d, JCF=10.4 Hz), 127.39, 125.32 (d, JCF=4.7 Hz), 121.84, 119.15, 111.47, 110.85, 108.62 (d, JCF=19.3 Hz), 70.86, 70.51, 31.03. HRMS (DART): m/z [M+H]+ calcd for C17H14BrFN3O2 +, 390.0248; found, 390.0236.
-
- 1H NMR (500 MHz, CDCl3): δ 8.69 (s, 1H), 8.58 (ddd, J=8.3, 7.3, 1.5 Hz, 1H), 7.28 (ddd, J=8.1, 6.5, 1.6 Hz, 1H), 7.25 (br, 1H), 7.14 (s, 1H), 7.11 (td, J=8.2, 1.6 Hz, 1H), 6.17 (s, 2H), signal of one proton missing (probably hidden by the chloroform signal). 13C NMR (126 MHz, CDCl3): δ 156.10, 153.37, 153.22, 150.22 (d, JCF=242.3 Hz), 149.37, 148.43, 128.67 (d, JCF=10.4 Hz), 127.28, 125.30 (d, JCF=4.7 Hz), 121.84, 110.75, 108.64 (d, JCF=19.4 Hz), 106.29, 102.48, 96.49. HRMS (DART): m/z [M+H]+ calcd for C15H10BrFN3O2 +, 361.9935; found, 361.9925.
- Exemplary compounds (10 mM) were incubated in human, dog, mouse, or rat liver microsomes (1 mg/mL) for up to 90 minutes at 37° C. Reactions were stopped by the addition of acetonitrile. Controls (compound free) microsome studies were run in parallel. LCMS Studies were performed on a Waters Xevo G2 QT of equipped with a Luna Omega Polar C18, 1.6 m, 2.1×30 mm column. Structures of exemplary metabolites are depicted in
FIG. 47 , -
Modification Human (%) Dog (%) Mouse (%) Rat (%) 1. Parent 67.0 3.5 59.9 70.2 2. Hydroxylation 6.0 0.0 0.0 4.8 3. N-demethylation 13.7 0.9 5.4 8.2 4. Hydroxylation 4.2 61.9 22.0 21.9 5. Hydroxylation 0.7 0.0 0.0 0.6 6. N-dealkylation 6.5 0.0 1.3 2.7 - All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.
- While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
Claims (27)
1-115. (canceled)
116. A method of treating central nervous system (CNS) cancer, comprising administering a therapeutically effective amount of a compound of Formula A or pharmaceutically acceptable salt thereof:
118. The method of claim 116 , wherein the compound or pharmaceutically acceptable salt thereof is formulated as a pharmaceutical composition comprising a compound of claim 116 and a pharmaceutically acceptable excipient.
119. The method of claim 116 , wherein the CNS cancer comprises a primary malignant brain tumor.
120. The method claim 119 , wherein the primary malignant brain tumor comprises an astrocytoma, a pilocytic astrocytoma, a pleomorphic xanthoastrocytoma, a diffuse astrocytoma, an anaplastic astrocytoma, a glioblastoma, a ganglioglioma, an oligodendroglioma, or an ependymoma.
121. The method of claim 120 , wherein the primary malignant brain tumor is a glioblastoma.
122. The method of claim 116 , wherein the CNS cancer comprises a CNS metastasis.
123. The method of claim 122 , wherein the CNS metastasis comprises a brain metastasis, a leptomeningeal metastasis, a choroidal metastasis, or a spinal cord metastasis.
124. The method of claim 116 , wherein the method reduces cancer cell proliferation.
125. A method of treating a central nervous system (CNS) metastasis from a primary cancer comprising administering a therapeutically effective amount of a compound of Formula A, or pharmaceutically acceptable salt thereof:
127. The method of claim 125 , wherein the method reduces cancer cell proliferation.
128. The method of claim 125 , wherein the compound or pharmaceutically acceptable salt thereof is formulated as a pharmaceutical composition comprising a compound of claim 125 and a pharmaceutically acceptable excipient.
129. The method of claim 125 , wherein the CNS metastasis comprises a brain metastasis, a leptomeningeal metastasis, a choroidal metastasis, or a spinal cord metastasis.
130. The method of claim 125 , wherein the primary cancer comprises a bladder cancer, bone cancer, breast cancer, cardiac cancer, cervical cancer, colon cancer, colorectal cancer, esophageal cancer, fibrosarcoma, gastric cancer, gastrointestinal cancer, head, spine and neck cancer, Kaposi's sarcoma, kidney cancer, leukemia, liver cancer, lymphoma, melanoma, multiple myeloma, pancreatic cancer, penile cancer, testicular germ cell cancer, thymoma carcinoma, thymic carcinoma, lung cancer, ovarian cancer, or prostate cancer.
131. The method of claim 125 , wherein the primary cancer is lung cancer.
132. A method of treating lung cancer, comprising administering a therapeutically effective amount of a compound of Formula A or pharmaceutically acceptable salt thereof:
134. The method of claim 132 , wherein the compound or pharmaceutically acceptable salt thereof is formulated as a pharmaceutical composition comprising a compound of claim 132 and a pharmaceutically acceptable excipient.
135. The method of claim 132 , wherein the lung cancer comprises a CNS metastasis.
136. A method of reducing cancer cell proliferation comprising administering a therapeutically effective amount of a compound of Formula A or pharmaceutically acceptable salt thereof:
138. The method of claim 136 , wherein the compound or pharmaceutically acceptable salt thereof is formulated as a pharmaceutical composition comprising a compound of claim 136 and a pharmaceutically acceptable excipient.
140. The method of claim 139 , wherein the compound is provided as a pharmaceutically acceptable salt.
141. A method of making a compound or a pharmaceutically acceptable salt thereof, according to Scheme 1 or Scheme 2:
wherein:
X is Q, S, or NH;
Z is aryl or heteroaryl;
R1 is alkyl;
R2a and R2b are each independently selected from hydrogen, alkyl, halo, CN, and NO2;
R3 is hydrogen, alkyl, or acyl;
R4 is alkoxy;
R3 is alkyl;
R21 is an alkyl substituted with a leaving group, e.g., a haloalkyl or sulfonylalkyl;
B is a base;
Nu is a nitrogen-containing heterocycle (e.g., having at least one N—H bond), aminoalkyl, or hydroxyalkyl;
Sv1 is a solvent; and
n is 0-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/853,573 US20230115366A1 (en) | 2019-03-15 | 2022-06-29 | Compositions and methods for treating cancer |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962819322P | 2019-03-15 | 2019-03-15 | |
US201962904241P | 2019-09-23 | 2019-09-23 | |
PCT/US2020/022743 WO2020190765A2 (en) | 2019-03-15 | 2020-03-13 | Compositions and methods for treating cancer |
US17/475,144 US11377451B2 (en) | 2019-03-15 | 2021-09-14 | Compositions and methods for treating cancer |
US17/853,573 US20230115366A1 (en) | 2019-03-15 | 2022-06-29 | Compositions and methods for treating cancer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/475,144 Continuation US11377451B2 (en) | 2019-03-15 | 2021-09-14 | Compositions and methods for treating cancer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230115366A1 true US20230115366A1 (en) | 2023-04-13 |
Family
ID=72521289
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/475,144 Active US11377451B2 (en) | 2019-03-15 | 2021-09-14 | Compositions and methods for treating cancer |
US17/853,573 Abandoned US20230115366A1 (en) | 2019-03-15 | 2022-06-29 | Compositions and methods for treating cancer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/475,144 Active US11377451B2 (en) | 2019-03-15 | 2021-09-14 | Compositions and methods for treating cancer |
Country Status (16)
Country | Link |
---|---|
US (2) | US11377451B2 (en) |
EP (1) | EP3938354A4 (en) |
JP (2) | JP7474269B2 (en) |
KR (1) | KR20210151820A (en) |
CN (2) | CN115215808A (en) |
AU (1) | AU2020241703A1 (en) |
BR (1) | BR112021018295A2 (en) |
CA (1) | CA3133688A1 (en) |
CL (1) | CL2021002409A1 (en) |
CO (1) | CO2021013496A2 (en) |
CR (1) | CR20210498A (en) |
IL (1) | IL286350A (en) |
MX (1) | MX2021011272A (en) |
SA (1) | SA521430328B1 (en) |
SG (1) | SG11202109662YA (en) |
WO (1) | WO2020190765A2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240017986A (en) * | 2017-09-26 | 2024-02-08 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | Compositions and methods for treating cancer |
CN115215808A (en) | 2019-03-15 | 2022-10-21 | 加利福尼亚大学董事会 | Compositions and methods for treating cancer |
US20230364091A1 (en) * | 2020-09-21 | 2023-11-16 | The Regents Of The University Of California | Compositions and methods for treating cancer |
WO2022061202A1 (en) * | 2020-09-21 | 2022-03-24 | The Regents Of The University Of California | Compositions and methods for treating cancer |
US20230358726A1 (en) * | 2020-09-21 | 2023-11-09 | The Regents Of The University Of California | Non-invasive functional companion assays for oncogene targeted therapy for brain cancer |
WO2022155311A1 (en) * | 2021-01-14 | 2022-07-21 | The Regents Of The University Of California | Methods and systems for analysis of drug target engagement and treatment of cancer |
IL306100A (en) | 2021-04-13 | 2023-11-01 | Nuvalent Inc | Amino-substituted heterocycles for treating cancers with egfr mutations |
WO2022240583A1 (en) * | 2021-05-12 | 2022-11-17 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
CN113307799B (en) * | 2021-05-21 | 2022-07-19 | 大连医科大学 | Fluorescent probe for detecting glucuronyltransferase 1A1 and application thereof |
IL311616A (en) * | 2021-09-23 | 2024-05-01 | Blatter Fritz | Egfr inhibitor polymorph forms |
WO2023244639A1 (en) * | 2022-06-14 | 2023-12-21 | The Regents Of The University Of California | Methods of predicting cns cancer response to treatment with egfr inhibitors |
WO2024081447A1 (en) * | 2022-10-14 | 2024-04-18 | The Regents Of The University Of California | Egfr inhibitors for treating lung cancer |
WO2024102177A1 (en) * | 2022-11-08 | 2024-05-16 | The Regents Of The University Of California | Combination therapies for the treatment of brain cancer |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5538325A (en) * | 1978-09-11 | 1980-03-17 | Sankyo Co Ltd | 4-anilinoquinazoline derivative and its preparation |
US5747498A (en) | 1996-05-28 | 1998-05-05 | Pfizer Inc. | Alkynyl and azido-substituted 4-anilinoquinazolines |
US6706721B1 (en) | 1998-04-29 | 2004-03-16 | Osi Pharmaceuticals, Inc. | N-(3-ethynylphenylamino)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine mesylate anhydrate and monohydrate |
KR100397792B1 (en) * | 2001-06-28 | 2003-09-13 | 한국과학기술연구원 | 4-(phenylamino)-[1,4]dioxano[2,3-g]quinazoline Derivatives and Process for Preparing the Same |
CN1854130B (en) | 2005-04-15 | 2011-04-20 | 中国医学科学院药物研究所 | Chinazoline derivative, its production, medicinal composition and use |
WO2008046242A1 (en) | 2006-10-16 | 2008-04-24 | Institute Of Mataria Medica, Chinese Academy Of Medical Sciences | The novel quinazoline derivatives,preparation methods and uses thereof |
WO2011035540A1 (en) | 2009-09-28 | 2011-03-31 | 齐鲁制药有限公司 | 4-(substituted anilino)quinazoline derivatives as tyrosine kinase inhibitors |
ITPD20110091A1 (en) | 2011-03-24 | 2012-09-25 | Univ Padova | USEFUL INHIBITORS FOR RELATED PATHOLOGIES: PHARMACOFORIC MODELS, IDENTIFIED COMPOUNDS BY THESE MODELS, METHODS FOR THEIR PREPARATION, THEIR FORMULATION AND THEIR THERAPEUTIC USE. |
AU2015362670B2 (en) * | 2014-12-15 | 2019-01-24 | The Regents Of The University Of Michigan | Small molecule inhibitors of EGFR and PI3K |
CN105017163A (en) | 2015-08-25 | 2015-11-04 | 佛山市赛维斯医药科技有限公司 | Bis(ethoxy) benzo quinazoline tyrosine kinase inhibitor as well as preparation method and application thereof |
US10473255B2 (en) | 2015-12-29 | 2019-11-12 | Ge-Hitachi Nuclear Energy Americas Llc | Reactor pressure vessel including pipe restraint device, and/or a pipe restraint device |
CA3008312A1 (en) | 2016-01-06 | 2017-07-13 | Trillium Therapeutics Inc. | Novel fluorinated quinazoline derivatives as egfr inhibitors |
CN106432202B (en) | 2016-09-22 | 2019-04-02 | 郑州大学第一附属医院 | Quinazoline derivative and its application |
KR20240017986A (en) | 2017-09-26 | 2024-02-08 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | Compositions and methods for treating cancer |
CN115215808A (en) | 2019-03-15 | 2022-10-21 | 加利福尼亚大学董事会 | Compositions and methods for treating cancer |
WO2022061202A1 (en) | 2020-09-21 | 2022-03-24 | The Regents Of The University Of California | Compositions and methods for treating cancer |
US20230358726A1 (en) | 2020-09-21 | 2023-11-09 | The Regents Of The University Of California | Non-invasive functional companion assays for oncogene targeted therapy for brain cancer |
US20230364091A1 (en) | 2020-09-21 | 2023-11-16 | The Regents Of The University Of California | Compositions and methods for treating cancer |
IL311616A (en) | 2021-09-23 | 2024-05-01 | Blatter Fritz | Egfr inhibitor polymorph forms |
WO2023244639A1 (en) | 2022-06-14 | 2023-12-21 | The Regents Of The University Of California | Methods of predicting cns cancer response to treatment with egfr inhibitors |
-
2020
- 2020-03-13 CN CN202210268803.XA patent/CN115215808A/en active Pending
- 2020-03-13 CA CA3133688A patent/CA3133688A1/en active Pending
- 2020-03-13 CR CR20210498A patent/CR20210498A/en unknown
- 2020-03-13 MX MX2021011272A patent/MX2021011272A/en unknown
- 2020-03-13 JP JP2021555445A patent/JP7474269B2/en active Active
- 2020-03-13 EP EP20773177.9A patent/EP3938354A4/en active Pending
- 2020-03-13 BR BR112021018295A patent/BR112021018295A2/en unknown
- 2020-03-13 KR KR1020217032873A patent/KR20210151820A/en unknown
- 2020-03-13 SG SG11202109662Y patent/SG11202109662YA/en unknown
- 2020-03-13 WO PCT/US2020/022743 patent/WO2020190765A2/en active Application Filing
- 2020-03-13 AU AU2020241703A patent/AU2020241703A1/en active Pending
- 2020-03-13 CN CN202080034742.XA patent/CN113811528A/en active Pending
-
2021
- 2021-09-13 IL IL286350A patent/IL286350A/en unknown
- 2021-09-14 US US17/475,144 patent/US11377451B2/en active Active
- 2021-09-15 CL CL2021002409A patent/CL2021002409A1/en unknown
- 2021-09-15 SA SA521430328A patent/SA521430328B1/en unknown
- 2021-10-11 CO CONC2021/0013496A patent/CO2021013496A2/en unknown
-
2022
- 2022-06-29 US US17/853,573 patent/US20230115366A1/en not_active Abandoned
-
2024
- 2024-04-12 JP JP2024064400A patent/JP2024102094A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
MX2021011272A (en) | 2021-10-01 |
CA3133688A1 (en) | 2020-09-24 |
US20220064177A1 (en) | 2022-03-03 |
SA521430328B1 (en) | 2024-03-28 |
CL2021002409A1 (en) | 2022-06-17 |
CO2021013496A2 (en) | 2022-01-17 |
CR20210498A (en) | 2022-01-11 |
IL286350A (en) | 2021-10-31 |
AU2020241703A1 (en) | 2021-10-14 |
WO2020190765A2 (en) | 2020-09-24 |
JP2024102094A (en) | 2024-07-30 |
BR112021018295A2 (en) | 2021-11-23 |
EP3938354A4 (en) | 2022-12-28 |
WO2020190765A3 (en) | 2020-11-26 |
JP2022526266A (en) | 2022-05-24 |
EP3938354A2 (en) | 2022-01-19 |
KR20210151820A (en) | 2021-12-14 |
CN113811528A (en) | 2021-12-17 |
JP7474269B2 (en) | 2024-04-24 |
CN115215808A (en) | 2022-10-21 |
SG11202109662YA (en) | 2021-10-28 |
US11377451B2 (en) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230115366A1 (en) | Compositions and methods for treating cancer | |
US20240043390A1 (en) | Compositions and methods for treating cancer | |
US9073916B2 (en) | Prodrug forms of kinase inhibitors and their use in therapy | |
US9321737B2 (en) | CDK8-CDK19 selective inhibitors and their use in anti-metastatic and chemopreventative methods for cancer | |
ES2598118T3 (en) | Oxazolidin-2-one compounds and their uses as inhibitors of PI3Ks | |
US20240058340A1 (en) | Compositions and methods for treating cancer | |
US20190084977A1 (en) | Tricyclic kinase inhibitors of melk ands methods of use | |
ES2762641T3 (en) | Pyridine-substituted 2-aminopyridine protein kinase inhibitors | |
CN112585136B (en) | Urea compounds and compositions as SMARCA2/BRM atpase inhibitors | |
US20230364091A1 (en) | Compositions and methods for treating cancer | |
EA044668B1 (en) | COMPOSITIONS AND METHODS FOR TREATING CANCER | |
US20230000876A1 (en) | Treating cancers with a cyclin-dependent kinase inhibitor | |
JP7541512B2 (en) | Prodrugs and their medical uses | |
Goerguen et al. | MLN-8237 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NATHANSON, DAVID A.;JUNG, MICHAEL E.;TSANG, JONATHAN;AND OTHERS;SIGNING DATES FROM 20200406 TO 20200603;REEL/FRAME:061326/0897 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |