US20230107398A1 - IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS - Google Patents
IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS Download PDFInfo
- Publication number
- US20230107398A1 US20230107398A1 US18/077,096 US202218077096A US2023107398A1 US 20230107398 A1 US20230107398 A1 US 20230107398A1 US 202218077096 A US202218077096 A US 202218077096A US 2023107398 A1 US2023107398 A1 US 2023107398A1
- Authority
- US
- United States
- Prior art keywords
- chosen
- group
- lsd
- starch
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012729 immediate-release (IR) formulation Substances 0.000 title claims abstract description 26
- 239000000203 mixture Substances 0.000 title claims description 71
- 229950002454 lysergide Drugs 0.000 title description 57
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 title description 56
- 230000001225 therapeutic effect Effects 0.000 title description 3
- 239000007787 solid Substances 0.000 claims abstract description 33
- 238000002156 mixing Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000005469 granulation Methods 0.000 claims abstract description 19
- 230000003179 granulation Effects 0.000 claims abstract description 19
- 239000003826 tablet Substances 0.000 claims abstract description 16
- 238000009480 moisture-activated dry granulation Methods 0.000 claims abstract description 15
- 150000003839 salts Chemical group 0.000 claims abstract description 14
- 239000002552 dosage form Substances 0.000 claims abstract description 10
- 239000006191 orally-disintegrating tablet Substances 0.000 claims abstract description 10
- 239000002775 capsule Substances 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 239000012458 free base Substances 0.000 claims abstract description 7
- 229920002472 Starch Polymers 0.000 claims description 25
- 239000008107 starch Substances 0.000 claims description 25
- 229940032147 starch Drugs 0.000 claims description 25
- 235000019698 starch Nutrition 0.000 claims description 25
- 239000007884 disintegrant Substances 0.000 claims description 23
- 239000000945 filler Substances 0.000 claims description 22
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 21
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 21
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 21
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 21
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 21
- 239000002250 absorbent Substances 0.000 claims description 19
- 230000002745 absorbent Effects 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 18
- 239000000314 lubricant Substances 0.000 claims description 18
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 18
- -1 polyoxyethylene stearates Polymers 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 11
- 229930195725 Mannitol Natural products 0.000 claims description 11
- 239000000594 mannitol Substances 0.000 claims description 11
- 235000010355 mannitol Nutrition 0.000 claims description 11
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 10
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 9
- 239000008101 lactose Substances 0.000 claims description 9
- 235000019359 magnesium stearate Nutrition 0.000 claims description 9
- 229920002785 Croscarmellose sodium Polymers 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 8
- 229960001681 croscarmellose sodium Drugs 0.000 claims description 8
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 8
- 239000004322 Butylated hydroxytoluene Substances 0.000 claims description 7
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 claims description 7
- 235000010354 butylated hydroxytoluene Nutrition 0.000 claims description 7
- 229940095259 butylated hydroxytoluene Drugs 0.000 claims description 7
- 229920003109 sodium starch glycolate Polymers 0.000 claims description 7
- 229940079832 sodium starch glycolate Drugs 0.000 claims description 7
- 239000008109 sodium starch glycolate Substances 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 6
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 239000003963 antioxidant agent Substances 0.000 claims description 6
- 235000006708 antioxidants Nutrition 0.000 claims description 6
- 235000010980 cellulose Nutrition 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000001913 cellulose Substances 0.000 claims description 6
- 239000002706 dry binder Substances 0.000 claims description 6
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 claims description 6
- 229960001855 mannitol Drugs 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 229940045902 sodium stearyl fumarate Drugs 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- 239000005995 Aluminium silicate Substances 0.000 claims description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 5
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 5
- 235000019739 Dicalciumphosphate Nutrition 0.000 claims description 5
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 5
- 229930006000 Sucrose Natural products 0.000 claims description 5
- 235000012211 aluminium silicate Nutrition 0.000 claims description 5
- 235000010323 ascorbic acid Nutrition 0.000 claims description 5
- 239000011668 ascorbic acid Substances 0.000 claims description 5
- 239000001506 calcium phosphate Substances 0.000 claims description 5
- 229940095672 calcium sulfate Drugs 0.000 claims description 5
- 235000011132 calcium sulphate Nutrition 0.000 claims description 5
- 229940075614 colloidal silicon dioxide Drugs 0.000 claims description 5
- 229960000913 crospovidone Drugs 0.000 claims description 5
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 claims description 5
- 229940038472 dicalcium phosphate Drugs 0.000 claims description 5
- 229910000390 dicalcium phosphate Inorganic materials 0.000 claims description 5
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 5
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 5
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 5
- 229960001375 lactose Drugs 0.000 claims description 5
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 5
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 claims description 5
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 239000000600 sorbitol Substances 0.000 claims description 5
- 235000010356 sorbitol Nutrition 0.000 claims description 5
- 239000005720 sucrose Substances 0.000 claims description 5
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 4
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 claims description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 4
- 235000021355 Stearic acid Nutrition 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 4
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 4
- 229960005070 ascorbic acid Drugs 0.000 claims description 4
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 4
- 235000013539 calcium stearate Nutrition 0.000 claims description 4
- 239000008116 calcium stearate Substances 0.000 claims description 4
- 229940078456 calcium stearate Drugs 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 4
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical class CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 claims description 4
- 239000000796 flavoring agent Substances 0.000 claims description 4
- 235000013355 food flavoring agent Nutrition 0.000 claims description 4
- 229940049654 glyceryl behenate Drugs 0.000 claims description 4
- FETSQPAGYOVAQU-UHFFFAOYSA-N glyceryl palmitostearate Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O FETSQPAGYOVAQU-UHFFFAOYSA-N 0.000 claims description 4
- 229940046813 glyceryl palmitostearate Drugs 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims description 4
- 239000008172 hydrogenated vegetable oil Substances 0.000 claims description 4
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000008117 stearic acid Substances 0.000 claims description 4
- 239000000454 talc Substances 0.000 claims description 4
- 229910052623 talc Inorganic materials 0.000 claims description 4
- 229940033134 talc Drugs 0.000 claims description 4
- 229940095064 tartrate Drugs 0.000 claims description 4
- 241000416162 Astragalus gummifer Species 0.000 claims description 3
- 229920000084 Gum arabic Polymers 0.000 claims description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 3
- 229920001615 Tragacanth Polymers 0.000 claims description 3
- 239000000205 acacia gum Substances 0.000 claims description 3
- 235000010489 acacia gum Nutrition 0.000 claims description 3
- 235000019282 butylated hydroxyanisole Nutrition 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 235000003599 food sweetener Nutrition 0.000 claims description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 3
- 230000000176 photostabilization Effects 0.000 claims description 3
- 239000003765 sweetening agent Substances 0.000 claims description 3
- 239000000196 tragacanth Substances 0.000 claims description 3
- 235000010487 tragacanth Nutrition 0.000 claims description 3
- 229940116362 tragacanth Drugs 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 150000002334 glycols Chemical class 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 150000004040 pyrrolidinones Chemical class 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 150000003505 terpenes Chemical class 0.000 claims description 2
- 235000007586 terpenes Nutrition 0.000 claims description 2
- 235000002639 sodium chloride Nutrition 0.000 claims 4
- 229960004274 stearic acid Drugs 0.000 claims 3
- 230000003078 antioxidant effect Effects 0.000 claims 1
- 239000003961 penetration enhancing agent Substances 0.000 claims 1
- 238000009736 wetting Methods 0.000 claims 1
- 238000009472 formulation Methods 0.000 description 47
- 239000003814 drug Substances 0.000 description 24
- 229940079593 drug Drugs 0.000 description 23
- FEWJPZIEWOKRBE-LWMBPPNESA-L D-tartrate(2-) Chemical compound [O-]C(=O)[C@@H](O)[C@H](O)C([O-])=O FEWJPZIEWOKRBE-LWMBPPNESA-L 0.000 description 15
- 239000000126 substance Substances 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 7
- 239000000825 pharmaceutical preparation Substances 0.000 description 7
- 229920003133 pregelled starch Polymers 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 229940126534 drug product Drugs 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 208000019901 Anxiety disease Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000007963 capsule composition Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000007907 direct compression Methods 0.000 description 3
- 229940088679 drug related substance Drugs 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229940100688 oral solution Drugs 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 238000005550 wet granulation Methods 0.000 description 3
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- 208000006561 Cluster Headache Diseases 0.000 description 2
- 206010012335 Dependence Diseases 0.000 description 2
- 208000030814 Eating disease Diseases 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 208000019454 Feeding and Eating disease Diseases 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- DMULVCHRPCFFGV-UHFFFAOYSA-N N,N-dimethyltryptamine Chemical compound C1=CC=C2C(CCN(C)C)=CNC2=C1 DMULVCHRPCFFGV-UHFFFAOYSA-N 0.000 description 2
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229940087168 alpha tocopherol Drugs 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004067 bulking agent Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 208000018912 cluster headache syndrome Diseases 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 235000014632 disordered eating Nutrition 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 238000009478 high shear granulation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 229940100691 oral capsule Drugs 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 208000022821 personality disease Diseases 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 238000007539 photo-oxidation reaction Methods 0.000 description 2
- 238000001782 photodegradation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 2
- 229960000984 tocofersolan Drugs 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000002076 α-tocopherol Substances 0.000 description 2
- 235000004835 α-tocopherol Nutrition 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- AXTGDCSMTYGJND-UHFFFAOYSA-N 1-dodecylazepan-2-one Chemical compound CCCCCCCCCCCCN1CCCCCC1=O AXTGDCSMTYGJND-UHFFFAOYSA-N 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000022497 Cocaine-Related disease Diseases 0.000 description 1
- 208000027691 Conduct disease Diseases 0.000 description 1
- VAYOSLLFUXYJDT-UHFFFAOYSA-N D-Lysergic acid N,N-diethylamide Chemical compound C1=CC(C=2C(N(C)CC(C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-UHFFFAOYSA-N 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- 208000001613 Gambling Diseases 0.000 description 1
- 208000011688 Generalised anxiety disease Diseases 0.000 description 1
- 208000027109 Headache disease Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- FEWJPZIEWOKRBE-XIXRPRMCSA-N Mesotartaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-XIXRPRMCSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 208000006550 Mydriasis Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 206010057852 Nicotine dependence Diseases 0.000 description 1
- 208000026251 Opioid-Related disease Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 201000009916 Postpartum depression Diseases 0.000 description 1
- SPCIYGNTAMCTRO-UHFFFAOYSA-N Psilocine Natural products C1=CC(O)=C2C(CCN(C)C)=CNC2=C1 SPCIYGNTAMCTRO-UHFFFAOYSA-N 0.000 description 1
- QVDSEJDULKLHCG-UHFFFAOYSA-N Psilocybine Natural products C1=CC(OP(O)(O)=O)=C2C(CCN(C)C)=CNC2=C1 QVDSEJDULKLHCG-UHFFFAOYSA-N 0.000 description 1
- 208000013200 Stress disease Diseases 0.000 description 1
- 208000025569 Tobacco Use disease Diseases 0.000 description 1
- 208000028552 Treatment-Resistant Depressive disease Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 208000012826 adjustment disease Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 208000029650 alcohol withdrawal Diseases 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 208000029560 autism spectrum disease Diseases 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N benzopyrrole Natural products C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 208000022266 body dysmorphic disease Diseases 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 201000006145 cocaine dependence Diseases 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 206010013663 drug dependence Diseases 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012395 formulation development Methods 0.000 description 1
- 208000029364 generalized anxiety disease Diseases 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229960003943 hypromellose Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 229960003639 laurocapram Drugs 0.000 description 1
- 235000015073 liquid stocks Nutrition 0.000 description 1
- 208000024714 major depressive disease Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960001252 methamphetamine Drugs 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 201000005040 opiate dependence Diseases 0.000 description 1
- 238000013386 optimize process Methods 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 239000007935 oral tablet Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 208000017983 photosensitivity disease Diseases 0.000 description 1
- 231100000434 photosensitization Toxicity 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 208000028173 post-traumatic stress disease Diseases 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- ZBWSBXGHYDWMAK-UHFFFAOYSA-N psilocin Chemical compound C1=CC=C(O)[C]2C(CCN(C)C)=CN=C21 ZBWSBXGHYDWMAK-UHFFFAOYSA-N 0.000 description 1
- QKTAAWLCLHMUTJ-UHFFFAOYSA-N psilocybin Chemical compound C1C=CC(OP(O)(O)=O)=C2C(CCN(C)C)=CN=C21 QKTAAWLCLHMUTJ-UHFFFAOYSA-N 0.000 description 1
- 238000001671 psychotherapy Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229940080313 sodium starch Drugs 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229940065278 sulfur compound Drugs 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229950000339 xinafoate Drugs 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/48—Ergoline derivatives, e.g. lysergic acid, ergotamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0056—Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
- A61K9/2018—Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
- A61K9/2054—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2063—Proteins, e.g. gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2095—Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
Definitions
- the present invention relates to the formulation of drugs. More specifically, the present invention relates to an immediate release formulation for a pharmaceutical formulation of d-lysergic acid diethylamide (LSD).
- LSD d-lysergic acid diethylamide
- Oral solution formulations are convenient for studies in a small number of sites and with a limited number of patients, mainly early phase development studies, but may not be suitable for later phase development studies run in many centers and across wide geographies nor for commercialization due to challenges in product stability and supply chain, such as the potential requirement for cold chain storage.
- Solid oral formulations as tablets or capsules are more common in later phase clinical development and commercially due to advantages in production, supply chain, and patient convenience.
- Solid oral formulations can be immediate release, dissolving instantaneously in the mouth or stomach, or extended release in which the drug release is prolonged over time.
- Orally disintegrating tablets are another solid dosage form which is formulated with the aim of increasing the dissolution rate of a pharmaceutical product and promoting pre-gastric absorption.
- the ODT formulation In order to achieve rapid disintegration rates, the ODT formulation must provide high porosity, low density, and a low hardness (Berthoumieu et al., 2010; Bandari et al., 2008).
- This dosage form can be chosen to modify absorption or for patient populations that have difficulty in swallowing (Lindgren et al., 1993), and is also suitable for use in geriatric and pediatric patients, or for those who suffer from conditions such as dysphagia (Sastry et al., 2000).
- LSD is derived from its German name LysergSaureDiethylamid (Lysergic acid diethylamide). Lysergide belongs to a family of indole alkylamines that includes numerous substituted tryptamines such as psilocin (the active moiety of psilocybin) and N,N-dimethyltryptamine (DMT). The IUPAC name for LSD is 9,10-didehydro-N,N-diethyl-6-methylergoline-8 ⁇ -carboxamide.
- LSD can be used to assist psychotherapy for many indications including anxiety, depression, addiction, personality disorder, and others and can also be used to treat other disorders such as cluster headache, migraine, and others (Passie et al., 2008; Hintzen et al., 2010; Nichols, 2016; Liechti, 2017). Effects of LSD can include altered thoughts, feelings, awareness of surroundings, dilated pupils, increased blood pressure, and increased body temperature. Therapeutic use of LSD is showing promising results for treating various neurological and behavioral disorders. However, due to its potency there can be challenges in developing and manufacturing solid oral formulations of LSD that meet pharmaceutically acceptable limits for content uniformity and chemical stability.
- LSD d-Lysergic Acid Diethylamide
- the final drug product should be in a form that is easily administered to a broad range of patient populations, including, but not limited to the elderly, pediatrics, and patients with a condition that may limit their ability to swallow.
- the present invention provides a solid oral immediate release formulation of LSD, including LSD formulations intended for a capsule, tablet, or orally disintegrating tablet dosage form.
- the present invention further provides a method of making a solid oral immediate release formulation of LSD using processes such as granulation and blending that are uniform, chemically stable, and dissolve rapidly.
- the present invention also provides for a method of treating an individual by administering a solid oral immediate release formulation of LSD.
- FIG. 1 is a representation of D-LSD D-tartrate salt
- FIG. 2 is a graph of LSD content uniformity from a solid oral capsule formulation made by granulation
- FIG. 3 is a graph showing the immediate release of LSD from a solid oral capsule formulation made by granulation.
- FIG. 4 is a graph showing chemical stability of LSD when blended as a solid drug crystal with lactose, microcrystalline cellulose, or mannitol.
- the present invention provides for a solid oral formulation of LSD in a quick or immediate release dosage form such as a capsule, tablet, or orally disintegrating tablet.
- the term “quick release tablet” is a mechanism that (similar to immediate-release dosage) delivers a drug immediately in contrast with a delay after its administration (delayed-release dosage) or for a prolonged period of time (extended-release (ER, XR, XL) dosage) or to a specific target in the body (targeted-release dosage). Preferably, it refers to minimal time dependent release in oral dose formulations.
- the present invention provides a composition, preferably including LSD as its active, or one of its active ingredients, that dissolves relatively quickly once orally ingested. This provides an easy to administer yet anticipated to be effective and efficacious therapeutic effect.
- the LSD can be in a free base form or a salt form as a crystalline or non-crystalline solid.
- the salt can be, but is not limited to, hydrochloride, hydrobromide, maleate, tartrate (including D-tartrate and meso-tartrate), citrate, phosphate, fumarate, sulfate, mesylate, acetate, oxalate, benzoate, benzensulfonate, xinafoate, 1,5-Napthalene disulfonate, ascorbate, and naphthalene-2-sulfonate.
- the dose of LSD can preferably be 0.01-1 mg (10-1000 ⁇ g). However, dosing can be adjusted depending on indication, age, weight, and other factors affecting the pharmacology, physiology, and drug/drug interactions in a given patient.
- Solid oral formulations typically contain secondary ingredient components known as excipients which can include but are not limited to fillers/bulking agents, binders, absorbents, disintegrants, glidants, lubricants, pH modifiers/buffers, preservatives, antioxidants, permeation enhancers, coloring agents, and sweeteners/flavoring agents. Examples of each are listed below and some common excipients serve more than one function.
- fillers used in solid oral formulations include lactose (including anhydrous), mannitol, dicalcium phosphate, calcium sulfate, starch (starch as used herein can include dry or pre-gelled), cellulose (including microcrystalline cellulose), kaolin, sodium chloride, sorbitol, trehalose, sucrose, etc.
- Binders which are polymeric, natural, or synthetic materials that impart cohesive qualities to powdered materials, can also be included. Binders must be non-toxic and must have a good compatibility profile. Materials commonly used as binders include acacia gum, methylcellulose, hydroxypropyl methylcellulose, hydroxypropyl cellulose, tragacanth, polyvinyl pyrrolidone (PVP), starch, etc. Microcrystalline cellulose is also considered a dry binder.
- Excipients such as starch, colloidal or mesoporous silicon dioxide (i.e. silica), sodium starch glycolate, and microcrystalline cellulose can act as solvent absorbents or disintegrants by absorbing solvents such as water while increasing the formulation wettability. Some of these excipients can be preferred for either absorbent of disintegrant properties but can also include the other property.
- partially pre-gelled starch e.g., Starch 1500
- Starch 1500 is often used as a disintegrant, but is also used as an absorbent to scavenge moisture to ‘hide’ the moisture from drugs that are sensitive to it.
- Starch 1500 When Starch 1500 is used as an absorbent in moisture activated dry granulation (MADG) it loses some of its disintegrant capability, but if it is added after the absorbent stage it can function as a disintegrant.
- Colloidal (or mesoporous) silicon dioxide can be an excellent absorbent but can be a weak disintegrant.
- Sodium starch glycolate can be an excellent disintegrant.
- Microcrystalline cellulose is an excellent absorbent and can have disintegrant properties. Croscarmellose sodium, crospovidone, sodium starch glycolate (which are disintegrants) and starch swell in the presence of aqueous fluids, thereby facilitating tablet disintegration due to the increase in the internal pressure within the tablet matrix.
- Glidants enhance the flowability of a formulation.
- Typical glidants include magnesium stearate, colloidal silicon dioxide, etc.
- the hydrophobic stearic acid and stearic acid salts e.g., magnesium stearate and sodium stearyl fumarate, are the most widely used lubricants in oral drug formulations. They are typically added at concentrations less than 2% w/w in order to minimize any deleterious effect on formulation matrix disintegration or dissolution.
- Other examples of lubricants used include polyethylene glycol (PEG), polyoxyethylene stearates, lauryl sulphate salts, talc, glyceryl behenate, glyceryl palmitostearate, calcium stearate, hydrogenated vegetable oils etc.
- Buffer is added to target the formulation to a specific pH.
- three buffers, citrate, phosphate, and acetate make up the majority of buffers used in pharmaceuticals approved by the FDA, but less precedented excipients are certainly available to use in commercial dosage forms.
- the pH of a formulation alternatively can be adjusted with unbuffered acid (i.e. hydrochloric acid) or unbuffered base (i.e. sodium hydroxide).
- Antioxidants can be added to the formulation in order to minimize degradation due to oxidative stress.
- the term oxidation can be defined as the incorporation of oxygen into the structure of a drug, or as the process of converting one chemical substance into another derivative bearing a smaller number of electrons.
- antioxidants are ascorbic acid, citric acid, butylatedhydroxy anisole (BHA), and butylated hydroxytoluene (BHT).
- the photostability of a drug substance can be defined as the response of the drug or drug product to the exposure to solar, UV, and visible light in the solid, semisolid, or liquid state that leads to a physical or chemical change. Undue light exposure can result in potency loss, altered efficacy, and adverse biological effects.
- Various additives or encapsulation methods and compositions can be used to protect the active product from light in order to minimize any degradation due to light exposure (i.e. photostabilization agents).
- liposomes are microscopic and submicroscopic phospholipid vesicles with a bilayered membrane structure. Photostabilization of the drug substance by entrapment into liposomes is one such way to improve their photostability.
- Photo degradation can also occur in combination with oxygen exposure, resulting in photo-oxidation degradation.
- Some of the commonly used antioxidants to protect against photo-oxidation are ascorbic acid, ⁇ -tocopherol, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), L-histidine, propyl gallate, and sulfur compounds.
- Ascorbic acid, ⁇ -tocopherol, ⁇ -carotene, and BHT act as free radical scavengers and singlet oxygen quenchers and thus inhibit the photosensitization reactions. If a drug substance acts as a photosensitizer and initiates a chain reaction in the drug product, some of the excipients can be oxidized, while the drug can be protected from photodegradation.
- the formulation can also contain permeability enhancers to increase the extent and/or rate of absorption.
- enhancers are sulphoxides (such as dimethyl sulphoxide, DMSO), azones (e.g. laurocapram), pyrrolidones (for example 2-pyrrolidone, 2P), alcohols and alkanols (ethanol, or decanol), glycols (for example propylene glycol, PG, a common excipient in topically applied dosage forms), surfactants (also common in dosage forms) and terpenes.
- sulphoxides such as dimethyl sulphoxide, DMSO
- azones e.g. laurocapram
- pyrrolidones for example 2-pyrrolidone, 2P
- alcohols and alkanols ethanol, or decanol
- glycols for example propylene glycol, PG, a common excipient in topically applied dosage forms
- Coloring agents can also be added to solid oral formulations in order to improve patient recognition and acceptability.
- Immediate release formulations produced by granulation can contain but are not limited to the solid oral formulation fillers/bulking agents, binders, absorbents, disintegrants, glidants, and lubricants as described above as well as buffers, antioxidants, absorption enhancers, and coloring and flavoring agents.
- One such granulation process is high shear granulation whereby powders (active, dry binders, fillers, etc. such as LSD, binders, and fillers) are charged to a closed container which contains mixing/blending components such as an impeller and chopper.
- wet granulation In high shear wet granulation, hereafter referred to as wet granulation, the powders are wetted with a binder solution/suspension while mixing allowing for particle cohesion and granule growth. Additional excipients (filler, glidants, disintegrants, lubricants, etc.) can be added and mixed with the granules after the binder solution/suspension addition. Depending on the concentration of the active, it is typically added either as a dry ingredient (higher concentrations of active ingredient typically greater than 1-10% by weight) prior to the binder solution/suspension addition or contained within the binder solution/suspension (lower concentrations of active ingredient typically less than 1-10% by weight) to ensure uniformity.
- concentration of the active it is typically added either as a dry ingredient (higher concentrations of active ingredient typically greater than 1-10% by weight) prior to the binder solution/suspension addition or contained within the binder solution/suspension (lower concentration
- Dry blending of crystalline API is an alternative solid oral formulation approach to granulation, further described in EXAMPLE 2. Dry blending can employ similar mixing/blending equipment as granulation or with lower shear mixing and can use similar excipient classes, minimally with a filler. Dry blending formulations can be further processed into tablets including orally disintegrating tablets through direct compression or encapsulated. When forming for direct compression, the composition can also include any of the binders, disintegrants, glidants, and lubricants described above as needed for processing.
- the compound of the present invention is administered and dosed considering the clinical condition of the individual patient, the site and method of administration, scheduling of administration, patient age, sex, body weight and other factors known to medical practitioners.
- the pharmaceutically “effective amount” for purposes herein is thus determined by such considerations as are known in the art. The amount must be effective to achieve improvement including but not limited to improved survival rate or more rapid recovery, or improvement or elimination of symptoms and other indicators as are selected as appropriate measures by those skilled in the art.
- the compound of the present invention can be administered in various ways. It should be noted that it can be administered as the compound and can be administered alone or as an active ingredient in combination with pharmaceutically acceptable carriers, diluents, adjuvants, and vehicles.
- the patient being treated is a warm-blooded animal and, in particular, mammals including humans.
- the pharmaceutically acceptable carriers, diluents, adjuvants, and vehicles generally refer to inert, non-toxic solid or liquid fillers, diluents or encapsulating material not reacting with the active ingredients of the invention.
- the doses can be single doses or multiple doses over a period of several days.
- the treatment generally has a length proportional to the length of the disease process and drug effectiveness and the patient species being treated.
- Drug absorption is determined by the drug's physicochemical properties, formulation, and route of administration.
- Dosage forms e.g., tablets, capsules, solutions
- drugs are formulated to be given by various routes (e.g., oral, buccal, sublingual, rectal, parenteral, topical, inhalational).
- routes e.g., oral, buccal, sublingual, rectal, parenteral, topical, inhalational.
- drugs must be in solution to be absorbed.
- solid forms e.g., tablets, capsules
- Solid oral tablets and capsule formulations typically have gastric absorption, whereas an ODT formulation can be formulated to target pre-gastric or buccal absorption which can further enhance bioavailability.
- the present invention provides for a method of making a solid oral immediate release formulation of LSD, as a free base or in a salt form, by a step chosen from 1) granulating with excipients such as fillers, absorbents, binders, disintegrants, glidants, and/or lubricants to encapsulate or form a tablet; or 2) blending with excipients such as fillers, disintegrants, dry binders, glidants, and/or lubricants for direct compression into tablets, including ODTs, or encapsulation.
- excipients such as fillers, absorbents, binders, disintegrants, glidants, and/or lubricants
- the present invention provides for a method of treating an individual, by administering a solid oral immediate release formulation of LSD and treating the individual.
- the condition or disease being treated can include, but is not limited to, anxiety disorders (including anxiety in advanced stage illness e.g. cancer, as well as generalized anxiety disorder), depression (including postpartum depression, major depressive disorder and treatment-resistant depression), headache disorder (including cluster headaches and migraine headache), obsessive compulsive disorder (OCD), personality disorders (including conduct disorder), stress disorders (including adjustment disorders and post-traumatic stress disorder), drug disorders (including alcohol dependence or withdrawal, nicotine dependence or withdrawal, opioid dependence or withdrawal, cocaine dependence or withdrawal, methamphetamine dependence or withdrawal), other addictions (including gambling disorder, eating disorder, and body dysmorphic disorder), pain, neurodegenerative disorders (such as dementia, Alzheimer's Disease, Parkinson's Disease), autism spectrum disorder, eating disorders, or neurological disorders (such as stroke).
- anxiety disorders including anxiety in advanced stage illness e.g. cancer, as well as generalized anxiety disorder
- depression including postpartum depression, major depressive disorder and treatment-resistant depression
- headache disorder including cluster headaches and migraine headache
- a single pot granulation process called moisture activated dry granulation (MADG) was used for formulating low dose LSD in order to achieve suitable content uniformity and avoid a separate active drying step that would typically be performed with wet granulation.
- MADG moisture activated dry granulation
- the method of making LSD formulations includes: 1) Creating a granulation liquid stock solution of LSD, water (or other suitable solvent), and solubility aids if needed; 2) Blending a filler (i.e. mannitol) and binder (i.e. hydroxypropyl methylcellulose); 3) Spraying the granulation liquid onto the dry mixture and blending to form an agglomeration; 4) Adding a moisture absorbent (i.e.
- the final granulation powder can be encapsulated or formed into tablets.
- TABLE 1 shows 25 ⁇ g LSD (equivalent to 36.6 ⁇ g of d-LSD D-tartrate) formulations developed with microcrystalline cellulose and starch as absorbents in the MADG process. These formulations were encapsulated, placed on stability at 25° C., and tested for total impurities.
- TABLE 2 shows total impurity results for the microcrystalline cellulose formulation and TABLE 3 shows total impurity results for the starch formulation.
- FIG. 3 shows the dissolution profile for the starch containing formulation, which demonstrates immediate release of LSD or complete dissolution within 15 minutes.
- TABLE 2 shows total impurities data of d-LSD D-tartrate using a MADG formulation with microcrystalline cellulose as the adsorbent.
- TABLE 3 shows stability data of d-LSD D-tartrate using a MADG formulation with pregelled starch as the absorbent and FIG. 3 shows dissolution data.
- FIG. 2 shows content uniformity of the pregelled starch formulation without a lubricant.
- the process capability based on these results indicates that less than 0.5 parts-per-million (ppm) capsules would be outside the 85%-115% label claim range.
- the data provides evidence that the uniformity of the final blend was satisfactory.
- TABLE 4 shows the chemical stability data for the pregelled starch formulation without a lubricant at 25° C.
- EXAMPLE 2 Dry Blending d-LSD D-Tartrate Drug Crystals with Excipients
- the method for making dry blend formulations of LSD in a single pot includes adding a minimum filler/carrier excipients, such as mannitol, lactose, and microcrystalline cellulose and d-LSD D-tartrate to a mixing vessel and blending until the drug is uniformly dispersed.
- a minimum filler/carrier excipients such as mannitol, lactose, and microcrystalline cellulose and d-LSD D-tartrate
- FIG. 4 shows the % iso-LSD, a known LSD degradation product, versus condition and excipient.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Inorganic Chemistry (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Zoology (AREA)
- Ceramic Engineering (AREA)
- Biochemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- The present invention relates to the formulation of drugs. More specifically, the present invention relates to an immediate release formulation for a pharmaceutical formulation of d-lysergic acid diethylamide (LSD).
- Oral solution formulations are convenient for studies in a small number of sites and with a limited number of patients, mainly early phase development studies, but may not be suitable for later phase development studies run in many centers and across wide geographies nor for commercialization due to challenges in product stability and supply chain, such as the potential requirement for cold chain storage.
- Solid oral formulations as tablets or capsules are more common in later phase clinical development and commercially due to advantages in production, supply chain, and patient convenience. Solid oral formulations can be immediate release, dissolving instantaneously in the mouth or stomach, or extended release in which the drug release is prolonged over time.
- Orally disintegrating tablets (ODTs) are another solid dosage form which is formulated with the aim of increasing the dissolution rate of a pharmaceutical product and promoting pre-gastric absorption. In order to achieve rapid disintegration rates, the ODT formulation must provide high porosity, low density, and a low hardness (Berthoumieu et al., 2010; Bandari et al., 2008). This dosage form can be chosen to modify absorption or for patient populations that have difficulty in swallowing (Lindgren et al., 1993), and is also suitable for use in geriatric and pediatric patients, or for those who suffer from conditions such as dysphagia (Sastry et al., 2000).
- LSD is derived from its German name LysergSaureDiethylamid (Lysergic acid diethylamide). Lysergide belongs to a family of indole alkylamines that includes numerous substituted tryptamines such as psilocin (the active moiety of psilocybin) and N,N-dimethyltryptamine (DMT). The IUPAC name for LSD is 9,10-didehydro-N,N-diethyl-6-methylergoline-8β-carboxamide.
- LSD can be used to assist psychotherapy for many indications including anxiety, depression, addiction, personality disorder, and others and can also be used to treat other disorders such as cluster headache, migraine, and others (Passie et al., 2008; Hintzen et al., 2010; Nichols, 2016; Liechti, 2017). Effects of LSD can include altered thoughts, feelings, awareness of surroundings, dilated pupils, increased blood pressure, and increased body temperature. Therapeutic use of LSD is showing promising results for treating various neurological and behavioral disorders. However, due to its potency there can be challenges in developing and manufacturing solid oral formulations of LSD that meet pharmaceutically acceptable limits for content uniformity and chemical stability.
- Clinical studies with LSD have focused on oral solution drug product forms. There has been little to no formulation development work with LSD. Oral solutions were used historically and almost all the old studies and anecdotal data are with oral solutions or impregnated papers/cartons.
- There is a need for an LSD dosage form and drug product that is both commercially attractive to a broad patient population and meets regulatory/quality expectations for suitability and robustness. A commercially viable solid oral, immediate release pharmaceutical formulation of d-Lysergic Acid Diethylamide (LSD), as a free base or in a salt form, does not currently exist as a marketed product or reported in literature. With the expected therapeutic dose of LSD to be in the 10's to 100's of micrograms, challenges exist for achieving acceptable drug content uniformity and chemical stability. Furthermore, previous studies have shown LSD in oral solution is not stable at room temperature (Holze et al 2019).
- In addition to achieving a uniform and stable immediate release drug product formulation, the final drug product should be in a form that is easily administered to a broad range of patient populations, including, but not limited to the elderly, pediatrics, and patients with a condition that may limit their ability to swallow.
- The present invention provides a solid oral immediate release formulation of LSD, including LSD formulations intended for a capsule, tablet, or orally disintegrating tablet dosage form.
- The present invention further provides a method of making a solid oral immediate release formulation of LSD using processes such as granulation and blending that are uniform, chemically stable, and dissolve rapidly.
- The present invention also provides for a method of treating an individual by administering a solid oral immediate release formulation of LSD.
- Other advantages of the present invention are readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
-
FIG. 1 is a representation of D-LSD D-tartrate salt; -
FIG. 2 is a graph of LSD content uniformity from a solid oral capsule formulation made by granulation; -
FIG. 3 is a graph showing the immediate release of LSD from a solid oral capsule formulation made by granulation; and -
FIG. 4 is a graph showing chemical stability of LSD when blended as a solid drug crystal with lactose, microcrystalline cellulose, or mannitol. - The present invention provides for a solid oral formulation of LSD in a quick or immediate release dosage form such as a capsule, tablet, or orally disintegrating tablet. The term “quick release tablet” is a mechanism that (similar to immediate-release dosage) delivers a drug immediately in contrast with a delay after its administration (delayed-release dosage) or for a prolonged period of time (extended-release (ER, XR, XL) dosage) or to a specific target in the body (targeted-release dosage). Preferably, it refers to minimal time dependent release in oral dose formulations. The present invention provides a composition, preferably including LSD as its active, or one of its active ingredients, that dissolves relatively quickly once orally ingested. This provides an easy to administer yet anticipated to be effective and efficacious therapeutic effect.
- The LSD can be in a free base form or a salt form as a crystalline or non-crystalline solid. The salt can be, but is not limited to, hydrochloride, hydrobromide, maleate, tartrate (including D-tartrate and meso-tartrate), citrate, phosphate, fumarate, sulfate, mesylate, acetate, oxalate, benzoate, benzensulfonate, xinafoate, 1,5-Napthalene disulfonate, ascorbate, and naphthalene-2-sulfonate. The dose of LSD can preferably be 0.01-1 mg (10-1000 μg). However, dosing can be adjusted depending on indication, age, weight, and other factors affecting the pharmacology, physiology, and drug/drug interactions in a given patient.
- Solid oral formulations typically contain secondary ingredient components known as excipients which can include but are not limited to fillers/bulking agents, binders, absorbents, disintegrants, glidants, lubricants, pH modifiers/buffers, preservatives, antioxidants, permeation enhancers, coloring agents, and sweeteners/flavoring agents. Examples of each are listed below and some common excipients serve more than one function.
- Examples of fillers used in solid oral formulations include lactose (including anhydrous), mannitol, dicalcium phosphate, calcium sulfate, starch (starch as used herein can include dry or pre-gelled), cellulose (including microcrystalline cellulose), kaolin, sodium chloride, sorbitol, trehalose, sucrose, etc.
- Binders, which are polymeric, natural, or synthetic materials that impart cohesive qualities to powdered materials, can also be included. Binders must be non-toxic and must have a good compatibility profile. Materials commonly used as binders include acacia gum, methylcellulose, hydroxypropyl methylcellulose, hydroxypropyl cellulose, tragacanth, polyvinyl pyrrolidone (PVP), starch, etc. Microcrystalline cellulose is also considered a dry binder.
- Excipients such as starch, colloidal or mesoporous silicon dioxide (i.e. silica), sodium starch glycolate, and microcrystalline cellulose can act as solvent absorbents or disintegrants by absorbing solvents such as water while increasing the formulation wettability. Some of these excipients can be preferred for either absorbent of disintegrant properties but can also include the other property. For example partially pre-gelled starch (e.g., Starch 1500) is often used as a disintegrant, but is also used as an absorbent to scavenge moisture to ‘hide’ the moisture from drugs that are sensitive to it. When Starch 1500 is used as an absorbent in moisture activated dry granulation (MADG) it loses some of its disintegrant capability, but if it is added after the absorbent stage it can function as a disintegrant. Colloidal (or mesoporous) silicon dioxide can be an excellent absorbent but can be a weak disintegrant. Sodium starch glycolate can be an excellent disintegrant. Microcrystalline cellulose is an excellent absorbent and can have disintegrant properties. Croscarmellose sodium, crospovidone, sodium starch glycolate (which are disintegrants) and starch swell in the presence of aqueous fluids, thereby facilitating tablet disintegration due to the increase in the internal pressure within the tablet matrix.
- Glidants enhance the flowability of a formulation. Typical glidants include magnesium stearate, colloidal silicon dioxide, etc.
- The hydrophobic stearic acid and stearic acid salts e.g., magnesium stearate and sodium stearyl fumarate, are the most widely used lubricants in oral drug formulations. They are typically added at concentrations less than 2% w/w in order to minimize any deleterious effect on formulation matrix disintegration or dissolution. Other examples of lubricants used include polyethylene glycol (PEG), polyoxyethylene stearates, lauryl sulphate salts, talc, glyceryl behenate, glyceryl palmitostearate, calcium stearate, hydrogenated vegetable oils etc.
- Buffer is added to target the formulation to a specific pH. Currently, three buffers, citrate, phosphate, and acetate, make up the majority of buffers used in pharmaceuticals approved by the FDA, but less precedented excipients are certainly available to use in commercial dosage forms. The pH of a formulation alternatively can be adjusted with unbuffered acid (i.e. hydrochloric acid) or unbuffered base (i.e. sodium hydroxide).
- Antioxidants can be added to the formulation in order to minimize degradation due to oxidative stress. The term oxidation can be defined as the incorporation of oxygen into the structure of a drug, or as the process of converting one chemical substance into another derivative bearing a smaller number of electrons. Examples of such antioxidants are ascorbic acid, citric acid, butylatedhydroxy anisole (BHA), and butylated hydroxytoluene (BHT).
- Many drugs are sensitive to light and therefore their formulated products can degrade during manufacturing, storage, and administration. The photostability of a drug substance can be defined as the response of the drug or drug product to the exposure to solar, UV, and visible light in the solid, semisolid, or liquid state that leads to a physical or chemical change. Undue light exposure can result in potency loss, altered efficacy, and adverse biological effects. Various additives or encapsulation methods and compositions can be used to protect the active product from light in order to minimize any degradation due to light exposure (i.e. photostabilization agents). For example, liposomes are microscopic and submicroscopic phospholipid vesicles with a bilayered membrane structure. Photostabilization of the drug substance by entrapment into liposomes is one such way to improve their photostability.
- Photo degradation can also occur in combination with oxygen exposure, resulting in photo-oxidation degradation. Some of the commonly used antioxidants to protect against photo-oxidation are ascorbic acid, α-tocopherol, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), L-histidine, propyl gallate, and sulfur compounds. Ascorbic acid, α-tocopherol, β-carotene, and BHT act as free radical scavengers and singlet oxygen quenchers and thus inhibit the photosensitization reactions. If a drug substance acts as a photosensitizer and initiates a chain reaction in the drug product, some of the excipients can be oxidized, while the drug can be protected from photodegradation.
- The formulation can also contain permeability enhancers to increase the extent and/or rate of absorption. Examples of such enhancers are sulphoxides (such as dimethyl sulphoxide, DMSO), azones (e.g. laurocapram), pyrrolidones (for example 2-pyrrolidone, 2P), alcohols and alkanols (ethanol, or decanol), glycols (for example propylene glycol, PG, a common excipient in topically applied dosage forms), surfactants (also common in dosage forms) and terpenes.
- Coloring agents, sweeteners, and flavoring agents can also be added to solid oral formulations in order to improve patient recognition and acceptability.
- Immediate release formulations produced by granulation can contain but are not limited to the solid oral formulation fillers/bulking agents, binders, absorbents, disintegrants, glidants, and lubricants as described above as well as buffers, antioxidants, absorption enhancers, and coloring and flavoring agents. One such granulation process is high shear granulation whereby powders (active, dry binders, fillers, etc. such as LSD, binders, and fillers) are charged to a closed container which contains mixing/blending components such as an impeller and chopper. In high shear wet granulation, hereafter referred to as wet granulation, the powders are wetted with a binder solution/suspension while mixing allowing for particle cohesion and granule growth. Additional excipients (filler, glidants, disintegrants, lubricants, etc.) can be added and mixed with the granules after the binder solution/suspension addition. Depending on the concentration of the active, it is typically added either as a dry ingredient (higher concentrations of active ingredient typically greater than 1-10% by weight) prior to the binder solution/suspension addition or contained within the binder solution/suspension (lower concentrations of active ingredient typically less than 1-10% by weight) to ensure uniformity. In wet granulation when active is added in solution or suspension the liquid solvent is removed by active drying. Alternatively, with a process called moisture activated dry granulation (MADG) in EXAMPLE 1, the liquid (typically water) content is reduced and taken up by absorbents added to the formulation rather than introducing an active drying step.
- Dry blending of crystalline API, either micronized or not micronized, is an alternative solid oral formulation approach to granulation, further described in EXAMPLE 2. Dry blending can employ similar mixing/blending equipment as granulation or with lower shear mixing and can use similar excipient classes, minimally with a filler. Dry blending formulations can be further processed into tablets including orally disintegrating tablets through direct compression or encapsulated. When forming for direct compression, the composition can also include any of the binders, disintegrants, glidants, and lubricants described above as needed for processing.
- The compound of the present invention is administered and dosed considering the clinical condition of the individual patient, the site and method of administration, scheduling of administration, patient age, sex, body weight and other factors known to medical practitioners. The pharmaceutically “effective amount” for purposes herein is thus determined by such considerations as are known in the art. The amount must be effective to achieve improvement including but not limited to improved survival rate or more rapid recovery, or improvement or elimination of symptoms and other indicators as are selected as appropriate measures by those skilled in the art.
- In the method of the present invention, the compound of the present invention can be administered in various ways. It should be noted that it can be administered as the compound and can be administered alone or as an active ingredient in combination with pharmaceutically acceptable carriers, diluents, adjuvants, and vehicles. The patient being treated is a warm-blooded animal and, in particular, mammals including humans. The pharmaceutically acceptable carriers, diluents, adjuvants, and vehicles generally refer to inert, non-toxic solid or liquid fillers, diluents or encapsulating material not reacting with the active ingredients of the invention.
- The doses can be single doses or multiple doses over a period of several days. The treatment generally has a length proportional to the length of the disease process and drug effectiveness and the patient species being treated.
- Absorption of the active drug can be targeted. Drug absorption is determined by the drug's physicochemical properties, formulation, and route of administration. Dosage forms (e.g., tablets, capsules, solutions), consisting of the drug plus other ingredients, are formulated to be given by various routes (e.g., oral, buccal, sublingual, rectal, parenteral, topical, inhalational). Regardless of the route of administration, drugs must be in solution to be absorbed. Thus, solid forms (e.g., tablets, capsules) must be able to disintegrate and deaggregate. Solid oral tablets and capsule formulations typically have gastric absorption, whereas an ODT formulation can be formulated to target pre-gastric or buccal absorption which can further enhance bioavailability.
- The present invention provides for a method of making a solid oral immediate release formulation of LSD, as a free base or in a salt form, by a step chosen from 1) granulating with excipients such as fillers, absorbents, binders, disintegrants, glidants, and/or lubricants to encapsulate or form a tablet; or 2) blending with excipients such as fillers, disintegrants, dry binders, glidants, and/or lubricants for direct compression into tablets, including ODTs, or encapsulation. Each approach considers the challenges associated with formulating a low dose product while maintaining content uniformity and chemical integrity of LSD.
- The present invention provides for a method of treating an individual, by administering a solid oral immediate release formulation of LSD and treating the individual.
- The condition or disease being treated can include, but is not limited to, anxiety disorders (including anxiety in advanced stage illness e.g. cancer, as well as generalized anxiety disorder), depression (including postpartum depression, major depressive disorder and treatment-resistant depression), headache disorder (including cluster headaches and migraine headache), obsessive compulsive disorder (OCD), personality disorders (including conduct disorder), stress disorders (including adjustment disorders and post-traumatic stress disorder), drug disorders (including alcohol dependence or withdrawal, nicotine dependence or withdrawal, opioid dependence or withdrawal, cocaine dependence or withdrawal, methamphetamine dependence or withdrawal), other addictions (including gambling disorder, eating disorder, and body dysmorphic disorder), pain, neurodegenerative disorders (such as dementia, Alzheimer's Disease, Parkinson's Disease), autism spectrum disorder, eating disorders, or neurological disorders (such as stroke).
- The invention is further described in detail by reference to the following experimental examples. These examples are provided for the purpose of illustration only and are not intended to be limiting unless otherwise specified. Thus, the invention should in no way be construed as being limited to the following examples, but rather, should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.
- A single pot granulation process called moisture activated dry granulation (MADG) was used for formulating low dose LSD in order to achieve suitable content uniformity and avoid a separate active drying step that would typically be performed with wet granulation. For MADG, the method of making LSD formulations includes: 1) Creating a granulation liquid stock solution of LSD, water (or other suitable solvent), and solubility aids if needed; 2) Blending a filler (i.e. mannitol) and binder (i.e. hydroxypropyl methylcellulose); 3) Spraying the granulation liquid onto the dry mixture and blending to form an agglomeration; 4) Adding a moisture absorbent (i.e. starch) and blending; and finally 5) Adding additional functional excipients such as disintegrants, glidants, and lubricants and blending to form the final granulation powder. In an optimized process there are no lumps in the final granule, so sieving is not required. The final granulation can be encapsulated or formed into tablets.
- TABLE 1 shows 25 μg LSD (equivalent to 36.6 μg of d-LSD D-tartrate) formulations developed with microcrystalline cellulose and starch as absorbents in the MADG process. These formulations were encapsulated, placed on stability at 25° C., and tested for total impurities. TABLE 2 shows total impurity results for the microcrystalline cellulose formulation and TABLE 3 shows total impurity results for the starch formulation. In addition,
FIG. 3 shows the dissolution profile for the starch containing formulation, which demonstrates immediate release of LSD or complete dissolution within 15 minutes. -
TABLE 1 Granulation Formulations of d-LSD D-tartrate using a moisture-activated dry granulation process Weight % per Capsule Microcrystalline Cellulose Starch Formulation Formulation Agglomeration d-LSD D-tartrate <1% <1% Mannitol 10-90% 10-90% Hypromellose 1-5% 1-5% Purified Water 1-5% 1-5% Absorption and final blend Partially pregelled starch 25-50% Microcrystalline cellulose 20-90% Mesoporous Silica <2% <2% Sodium starch glycollate 1-10% Croscarmellose Sodium 1-25% Sodium Stearyl Fumarate <2% <2% - TABLE 2 shows total impurities data of d-LSD D-tartrate using a MADG formulation with microcrystalline cellulose as the adsorbent.
-
TABLE 2 Chemical stability of d-LSD D-tartrate using a MADG formulation with microcrystalline cellulose as the adsorbent Sample Total Impurity (% Area) Initial 1.7 1 Month @ 25° C. 1.5 2 Month @ 25° C. 2.1 - TABLE 3 shows stability data of d-LSD D-tartrate using a MADG formulation with pregelled starch as the absorbent and
FIG. 3 shows dissolution data. -
TABLE 3 Chemical stability of d-LSD D-tartrate using a MADG formulation with pregelled starch as the absorbent Time Point Total Impurity (% Area) Initial 1.8 1 Month @ 25° C. 1.6 3 Month @ 25° C. 1.8 6 Month @ 25° C. 1.7 - Additional granulation formulations of d-LSD D-tartrate using moisture-activated dry granulation and pregelled starch as the absorbent were made but excluding a lubricant. The composition is comparable to the Starch Formulation in TABLE 1 without sodium stearyl fumarate.
-
FIG. 2 shows content uniformity of the pregelled starch formulation without a lubricant. The process capability based on these results indicates that less than 0.5 parts-per-million (ppm) capsules would be outside the 85%-115% label claim range. The data provides evidence that the uniformity of the final blend was satisfactory. - TABLE 4 shows the chemical stability data for the pregelled starch formulation without a lubricant at 25° C.
-
TABLE 4 Total Impurity Time Point (% Area) Initial. 0.2 1 Month @ 25° C. 0.3 3 Month @ 25° C. 0.5 - Together these data show that moisture-activated dry granulation can produce a pharmaceutically acceptable uniform, stable, and immediate release formulation of LSD.
- The method for making dry blend formulations of LSD in a single pot includes adding a minimum filler/carrier excipients, such as mannitol, lactose, and microcrystalline cellulose and d-LSD D-tartrate to a mixing vessel and blending until the drug is uniformly dispersed. The order of addition for the components, or parts of the components, can be adjusted as needed.
- The chemical purity of d-LSD D-tartrate salt (
FIG. 4 ) when blended as a solid drug crystal with solid excipient in an approximate ratio of 1:100 was assessed over a prolonged period (3 and 6 weeks) at 40° C. from the bulk formulation. TABLE 5 shows chromatographic purity results of the three dry blend d-LSD D-tartrate formulations at 40° C. demonstrating minimal change in chemical purity for each of the filler/carrier excipients. -
TABLE 5 Chromatographic Purity results for d-LSD D-tartrate drug crystals blended with various filler excipients, stored at 40° C., and analyzed for chemical stability at T = 0, T = 3 weeks and T = 6 weeks T = 3 weeks T = 6 weeks Excipient T = 0 40° C. 40° C. MCC (microcrystalline 99.8 99.2 99.2 cellulose) Mannitol 99.8 99.9 99.9 Lactose 99.8 99.8 99.7 - The results show that d-LSD D-tartrate drug crystals blended with lactose, mannitol, and microcrystalline cellulose are stable.
FIG. 4 shows the % iso-LSD, a known LSD degradation product, versus condition and excipient. - Throughout this application, various publications, including United States patents, are referenced by author and year and patents by number. Full citations for the publications are listed below. The disclosures of these publications and patents in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
- The invention has been described in an illustrative manner, and it is to be understood that the terminology used is intended to be in the nature of words of description rather than of limitation.
- Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention can be practiced otherwise than as specifically described.
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/077,096 US20230107398A1 (en) | 2021-08-19 | 2022-12-07 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
US18/199,244 US20230285386A1 (en) | 2021-08-19 | 2023-05-18 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163234773P | 2021-08-19 | 2021-08-19 | |
US17/890,198 US20230064429A1 (en) | 2021-08-19 | 2022-08-17 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
US18/077,096 US20230107398A1 (en) | 2021-08-19 | 2022-12-07 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/890,198 Continuation US20230064429A1 (en) | 2021-08-19 | 2022-08-17 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/199,244 Division US20230285386A1 (en) | 2021-08-19 | 2023-05-18 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230107398A1 true US20230107398A1 (en) | 2023-04-06 |
Family
ID=85239753
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/890,198 Pending US20230064429A1 (en) | 2021-08-19 | 2022-08-17 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
US17/890,133 Pending US20230075847A1 (en) | 2021-08-19 | 2022-08-17 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
US18/077,096 Pending US20230107398A1 (en) | 2021-08-19 | 2022-12-07 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
US18/077,085 Pending US20230122949A1 (en) | 2021-08-19 | 2022-12-07 | LYOPHILIZED ORALLY DISINTEGRATING TABLET FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
US18/194,761 Active US12036220B2 (en) | 2021-08-19 | 2023-04-03 | Lyophilized orally disintegrating tablet formulations of d-lysergic acid diethylamide for therapeutic applications |
US18/199,244 Pending US20230285386A1 (en) | 2021-08-19 | 2023-05-18 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/890,198 Pending US20230064429A1 (en) | 2021-08-19 | 2022-08-17 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
US17/890,133 Pending US20230075847A1 (en) | 2021-08-19 | 2022-08-17 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/077,085 Pending US20230122949A1 (en) | 2021-08-19 | 2022-12-07 | LYOPHILIZED ORALLY DISINTEGRATING TABLET FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
US18/194,761 Active US12036220B2 (en) | 2021-08-19 | 2023-04-03 | Lyophilized orally disintegrating tablet formulations of d-lysergic acid diethylamide for therapeutic applications |
US18/199,244 Pending US20230285386A1 (en) | 2021-08-19 | 2023-05-18 | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS |
Country Status (8)
Country | Link |
---|---|
US (6) | US20230064429A1 (en) |
EP (2) | EP4387624A1 (en) |
JP (2) | JP2024529727A (en) |
AU (2) | AU2022331317A1 (en) |
CA (2) | CA3229017A1 (en) |
IL (2) | IL310569A (en) |
TW (2) | TWI838826B (en) |
WO (2) | WO2023023192A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2438259A (en) * | 1948-03-23 | D-lysergic acid diethyl amide | ||
WO2016145193A1 (en) * | 2015-03-10 | 2016-09-15 | Eleusis Benefit Corporation, Pbc | Lsd for the treatment of alzheimer's disease |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020028942A1 (en) * | 1997-01-15 | 2002-03-07 | Jacewicz Victor Witold | Novel process and compound |
GB9908014D0 (en) * | 1999-04-08 | 1999-06-02 | Scherer Corp R P | Pharmaceutical compositions |
RU2003129506A (en) * | 2001-03-06 | 2005-03-10 | Киова Хакко Когио Ко., Лтд. (Jp) | QUICKLY DISSOLVING TO MOUTH TABLET |
GB0210397D0 (en) * | 2002-05-07 | 2002-06-12 | Ferring Bv | Pharmaceutical formulations |
US8012505B2 (en) * | 2003-02-28 | 2011-09-06 | Alk-Abello A/S | Dosage form having a saccharide matrix |
EP1758464A4 (en) * | 2004-05-24 | 2012-10-24 | Nutrinia Ltd | Nutritional food and feed, composition, processing and method of use |
CN101686942B (en) * | 2007-06-27 | 2012-09-26 | 韩美药品株式会社 | Method for preparing rapidly disintegrating formulation for oral administration and apparatus for preparing and packing the same |
EP2393487B1 (en) * | 2009-02-06 | 2016-11-02 | Egalet Ltd. | Pharmaceutical compositions resistant to abuse |
US10548839B2 (en) * | 2010-03-16 | 2020-02-04 | Wei Tian | Process of manufacturing a lyophilized fast dissolving, multi-phasic dosage form |
EP2990029A1 (en) * | 2014-08-29 | 2016-03-02 | Sandoz Ag | Pharmaceutical compositions comprising Canagliflozin |
WO2017066488A1 (en) | 2015-10-13 | 2017-04-20 | Charleston Laboratories, Inc. | Treating pain using a composition comprising an opioid and an antiemetic |
CA3057994A1 (en) | 2017-03-30 | 2018-10-04 | Ojai Energetics Pbc | Methods and compositions for enhancing health |
US20210015738A1 (en) * | 2019-07-17 | 2021-01-21 | Concept Matrix Solutions | Oral dissolvable film containing psychedelic compound |
US11246860B2 (en) | 2019-11-07 | 2022-02-15 | Lophora ApS | 5-HT2A agonists for use in treatment of depression |
BR112023024688A2 (en) * | 2021-05-26 | 2024-02-15 | Mindset Pharma Inc | HALUCINOGEN-FATTY ACID COMBINATION |
-
2022
- 2022-08-17 IL IL310569A patent/IL310569A/en unknown
- 2022-08-17 AU AU2022331317A patent/AU2022331317A1/en active Pending
- 2022-08-17 US US17/890,198 patent/US20230064429A1/en active Pending
- 2022-08-17 JP JP2024509301A patent/JP2024529727A/en active Pending
- 2022-08-17 WO PCT/US2022/040653 patent/WO2023023192A1/en active Application Filing
- 2022-08-17 EP EP22859135.0A patent/EP4387624A1/en active Pending
- 2022-08-17 AU AU2022331315A patent/AU2022331315A1/en active Pending
- 2022-08-17 CA CA3229017A patent/CA3229017A1/en active Pending
- 2022-08-17 IL IL310591A patent/IL310591A/en unknown
- 2022-08-17 WO PCT/US2022/040636 patent/WO2023023182A1/en active Application Filing
- 2022-08-17 US US17/890,133 patent/US20230075847A1/en active Pending
- 2022-08-17 JP JP2024509302A patent/JP2024529728A/en active Pending
- 2022-08-17 CA CA3228975A patent/CA3228975A1/en active Pending
- 2022-08-17 EP EP22859127.7A patent/EP4387623A1/en active Pending
- 2022-08-19 TW TW111131360A patent/TWI838826B/en active
- 2022-08-19 TW TW111131359A patent/TW202315627A/en unknown
- 2022-12-07 US US18/077,096 patent/US20230107398A1/en active Pending
- 2022-12-07 US US18/077,085 patent/US20230122949A1/en active Pending
-
2023
- 2023-04-03 US US18/194,761 patent/US12036220B2/en active Active
- 2023-05-18 US US18/199,244 patent/US20230285386A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2438259A (en) * | 1948-03-23 | D-lysergic acid diethyl amide | ||
WO2016145193A1 (en) * | 2015-03-10 | 2016-09-15 | Eleusis Benefit Corporation, Pbc | Lsd for the treatment of alzheimer's disease |
Non-Patent Citations (9)
Title |
---|
am Ende et al. "Improving the Content Uniformity of a Low-Dose Tablet Formulation Through Roller Compaction Optimization," Pharmaceutical Development and Technology, 12:391–404, 2007 (Year: 2007) * |
Bhaskar et al. "A REVIEW ON FORMULATION APPROACHES IN IMMEDIATE RELEASE TABLET," Journal of Drug Delivery & Therapeutics. 2018; 8(3): 153-161. (Year: 2018) * |
Celestino et al. "Rational use of antioxidants in solid oral pharmaceutical preparations," Brazilian Journal of Pharmaceutical Sciences vol. 48, n. 3, jul./sep., 2012. (Year: 2012) * |
Janga et al. "Photostability Issues in Pharmaceutical Dosage Forms and Photostabilization," AAPS PharmSciTech, Vol. 19, No. 1, January 2018. (Year: 2018) * |
Moravkar et al. "Application of moisture activated dry granulation (MADG) process to develop high dose immediate release (IR) formulations," Advanced Powder Technology 28 (2017) 1270–1280. (Year: 2017) * |
Psychedelic Experience web page retrieved from The Wayback Machine on 4/23/3021 (Year: 2021) * |
Sharma et al. "Review on Moisture activated Dry Granulation Process," PharmaTutor; 2017; 5(12); 58-67; (Year: 2017) * |
Takasaki et al. "Importance of excipient wettability on tablet characteristics preparedby moisture activated dry granulation (MADG)," International Journal of Pharmaceutics 456 (2013) 58– 64; (Year: 2013) * |
Ullah et al. "Moisture-Activated Dry Granulation-Part I: A Guide to Excipient and Equipment Selection and Formulation Development," Pharmaceutical Technology-11-02-2009, Volume 33, Issue 11 (Year: 2009) * |
Also Published As
Publication number | Publication date |
---|---|
CA3229017A1 (en) | 2023-02-23 |
IL310569A (en) | 2024-03-01 |
WO2023023192A1 (en) | 2023-02-23 |
TWI838826B (en) | 2024-04-11 |
US20230122949A1 (en) | 2023-04-20 |
EP4387623A1 (en) | 2024-06-26 |
WO2023023182A1 (en) | 2023-02-23 |
EP4387624A1 (en) | 2024-06-26 |
US20230064429A1 (en) | 2023-03-02 |
AU2022331317A1 (en) | 2024-02-29 |
JP2024529728A (en) | 2024-08-08 |
AU2022331315A1 (en) | 2024-02-22 |
IL310591A (en) | 2024-04-01 |
CA3228975A1 (en) | 2023-02-23 |
TW202315627A (en) | 2023-04-16 |
US20230075847A1 (en) | 2023-03-09 |
JP2024529727A (en) | 2024-08-08 |
US20230285386A1 (en) | 2023-09-14 |
US20230218532A1 (en) | 2023-07-13 |
TW202317116A (en) | 2023-05-01 |
US12036220B2 (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5421775B2 (en) | Oxycodone-containing granules and orally disintegrating tablets | |
CA3097053C (en) | Edaravone pharmaceutical composition | |
EP3843738A1 (en) | Novel methods | |
JP2015527321A (en) | Laquinimod formulation without alkalizing agent | |
US20160000720A1 (en) | Pharmaceutical compositions comprising Tadalafil | |
WO2011074660A1 (en) | Elution-stabilized preparation | |
KR20060065628A (en) | Pharmaceutical formulation comprising levothyroxine sodium | |
US20070281960A1 (en) | Anti-Histaminic Composition | |
US20230107398A1 (en) | IMMEDIATE RELEASE FORMULATIONS OF d-LYSERGIC ACID DIETHYLAMIDE FOR THERAPEUTIC APPLICATIONS | |
EP3413876B1 (en) | Stable solid pharmaceutical formulations containing 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione | |
JPWO2007049626A1 (en) | Cabergoline-containing oral solid preparation | |
HU225779B1 (en) | Pharmaceutical composition containing paracetamol and drotaverine and process for producing it | |
GB2573784A (en) | A stable aqueous hydroxycarbamide solution | |
CN110582278B (en) | Pharmaceutical composition and use thereof | |
TW202434244A (en) | Composition of a solid oral immediate release formulation of lsd and method of making a solid oral immediate release formulation of lsd | |
JP2023166957A (en) | Crystal form of compound and fumaric acid, pharmaceutical composition and method for treating coronavirus-induced diseases | |
WO2024164066A1 (en) | Crystalline forms of acalabrutinib maleate | |
GB2629127A (en) | An orodispersible tablet of fexofenadine and its process of preparation | |
CN111683659A (en) | Composition of aminopyrane derivatives | |
JP2006265183A (en) | Method for producing pergolide tablet | |
JP2004091373A (en) | Mesylic acid pergolide-containing preparation having excellent stability to decomposition and content uniformity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MIND MEDICINE, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MACK, PETER;MELTON, DUSTIN;DOTY, BETHANY AMBER;AND OTHERS;SIGNING DATES FROM 20221027 TO 20221113;REEL/FRAME:062421/0750 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING RESPONSE FOR INFORMALITY, FEE DEFICIENCY OR CRF ACTION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |