US20230060847A1 - Anti-bcma heavy chain-only antibodies - Google Patents
Anti-bcma heavy chain-only antibodies Download PDFInfo
- Publication number
- US20230060847A1 US20230060847A1 US17/898,208 US202217898208A US2023060847A1 US 20230060847 A1 US20230060847 A1 US 20230060847A1 US 202217898208 A US202217898208 A US 202217898208A US 2023060847 A1 US2023060847 A1 US 2023060847A1
- Authority
- US
- United States
- Prior art keywords
- heavy chain
- antibody
- bcma
- sequence
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 claims abstract description 77
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000014509 gene expression Effects 0.000 claims abstract description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 16
- 208000037914 B-cell disorder Diseases 0.000 claims abstract description 10
- 230000027455 binding Effects 0.000 claims description 101
- 210000004027 cell Anatomy 0.000 claims description 62
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 claims description 46
- 239000000427 antigen Substances 0.000 claims description 45
- 102000036639 antigens Human genes 0.000 claims description 45
- 108091007433 antigens Proteins 0.000 claims description 45
- 108090000623 proteins and genes Proteins 0.000 claims description 43
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 claims description 36
- 102100035361 Cerebellar degeneration-related protein 2 Human genes 0.000 claims description 36
- 101000737793 Homo sapiens Cerebellar degeneration-related antigen 1 Proteins 0.000 claims description 36
- 101000737796 Homo sapiens Cerebellar degeneration-related protein 2 Proteins 0.000 claims description 36
- 102000004169 proteins and genes Human genes 0.000 claims description 31
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 26
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 23
- 101000801255 Homo sapiens Tumor necrosis factor receptor superfamily member 17 Proteins 0.000 claims description 19
- 102000046935 human TNFRSF17 Human genes 0.000 claims description 18
- 238000011282 treatment Methods 0.000 claims description 18
- 241001465754 Metazoa Species 0.000 claims description 13
- 239000012636 effector Substances 0.000 claims description 11
- 208000034578 Multiple myelomas Diseases 0.000 claims description 10
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 9
- 230000003053 immunization Effects 0.000 claims description 9
- 208000035475 disorder Diseases 0.000 claims description 7
- 201000000596 systemic lupus erythematosus Diseases 0.000 claims description 7
- 108091033319 polynucleotide Proteins 0.000 claims description 6
- 102000040430 polynucleotide Human genes 0.000 claims description 6
- 239000002157 polynucleotide Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000013598 vector Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 28
- BGFTWECWAICPDG-UHFFFAOYSA-N 2-[bis(4-chlorophenyl)methyl]-4-n-[3-[bis(4-chlorophenyl)methyl]-4-(dimethylamino)phenyl]-1-n,1-n-dimethylbenzene-1,4-diamine Chemical compound C1=C(C(C=2C=CC(Cl)=CC=2)C=2C=CC(Cl)=CC=2)C(N(C)C)=CC=C1NC(C=1)=CC=C(N(C)C)C=1C(C=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 BGFTWECWAICPDG-UHFFFAOYSA-N 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 28
- 125000003275 alpha amino acid group Chemical group 0.000 description 19
- 108090000765 processed proteins & peptides Proteins 0.000 description 18
- 241000700159 Rattus Species 0.000 description 16
- 201000010099 disease Diseases 0.000 description 16
- 238000009472 formulation Methods 0.000 description 16
- 201000000050 myeloid neoplasm Diseases 0.000 description 16
- 229920001184 polypeptide Polymers 0.000 description 16
- 102000004196 processed proteins & peptides Human genes 0.000 description 16
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 12
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 11
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 11
- 238000002965 ELISA Methods 0.000 description 11
- 108060003951 Immunoglobulin Proteins 0.000 description 11
- 206010028980 Neoplasm Diseases 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 11
- 102000018358 immunoglobulin Human genes 0.000 description 11
- 210000002966 serum Anatomy 0.000 description 11
- 230000001225 therapeutic effect Effects 0.000 description 11
- 210000003719 b-lymphocyte Anatomy 0.000 description 10
- 210000004180 plasmocyte Anatomy 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 238000003556 assay Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 9
- 230000009261 transgenic effect Effects 0.000 description 9
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 8
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 8
- 102100021651 SUN domain-containing ossification factor Human genes 0.000 description 8
- 241000124008 Mammalia Species 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000002649 immunization Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 229940024606 amino acid Drugs 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 5
- 102100036922 Tumor necrosis factor ligand superfamily member 13B Human genes 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 108010087819 Fc receptors Proteins 0.000 description 4
- 102000009109 Fc receptors Human genes 0.000 description 4
- 208000017604 Hodgkin disease Diseases 0.000 description 4
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 4
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 238000011194 good manufacturing practice Methods 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 241000701447 unidentified baculovirus Species 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- 102100033400 4F2 cell-surface antigen heavy chain Human genes 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 101000800023 Homo sapiens 4F2 cell-surface antigen heavy chain Proteins 0.000 description 3
- 102000009490 IgG Receptors Human genes 0.000 description 3
- 108010073807 IgG Receptors Proteins 0.000 description 3
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 108010065323 Tumor Necrosis Factor Ligand Superfamily Member 13 Proteins 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000012575 bio-layer interferometry Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- -1 framework 2 Proteins 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000005180 public health Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 102000003390 tumor necrosis factor Human genes 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 2
- 206010002412 Angiocentric lymphomas Diseases 0.000 description 2
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 108010028006 B-Cell Activating Factor Proteins 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 241000282832 Camelidae Species 0.000 description 2
- 241000282836 Camelus dromedarius Species 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000830600 Homo sapiens Tumor necrosis factor ligand superfamily member 13 Proteins 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- 241000282838 Lama Species 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 241000282567 Macaca fascicularis Species 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 208000021161 Plasma cell disease Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 2
- 102000013081 Tumor Necrosis Factor Ligand Superfamily Member 13 Human genes 0.000 description 2
- 102100024585 Tumor necrosis factor ligand superfamily member 13 Human genes 0.000 description 2
- 101710181056 Tumor necrosis factor ligand superfamily member 13B Proteins 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000024203 complement activation Effects 0.000 description 2
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 2
- 230000006240 deamidation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 201000005787 hematologic cancer Diseases 0.000 description 2
- 239000000710 homodimer Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 208000024191 minimally invasive lung adenocarcinoma Diseases 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 206010001935 American trypanosomiasis Diseases 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 230000003844 B-cell-activation Effects 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282828 Camelus bactrianus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000024699 Chagas disease Diseases 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 244000153389 Diospyros oleifera Species 0.000 description 1
- 235000002256 Diospyros oleifera Nutrition 0.000 description 1
- 235000017274 Diospyros sandwicensis Nutrition 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 208000024869 Goodpasture syndrome Diseases 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101000946860 Homo sapiens T-cell surface glycoprotein CD3 epsilon chain Proteins 0.000 description 1
- 101000851434 Homo sapiens Tumor necrosis factor ligand superfamily member 13B Proteins 0.000 description 1
- 101000795167 Homo sapiens Tumor necrosis factor receptor superfamily member 13B Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010053574 Immunoblastic lymphoma Diseases 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 208000011200 Kawasaki disease Diseases 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 241000282842 Lama glama Species 0.000 description 1
- 241000282852 Lama guanicoe Species 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- 206010060880 Monoclonal gammopathy Diseases 0.000 description 1
- 101100058506 Mus musculus Bloc1s5 gene Proteins 0.000 description 1
- 206010029461 Nodal marginal zone B-cell lymphomas Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000002774 Paraproteinemias Diseases 0.000 description 1
- 201000011152 Pemphigus Diseases 0.000 description 1
- 241000577979 Peromyscus spicilegus Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102100035794 T-cell surface glycoprotein CD3 epsilon chain Human genes 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 102100029675 Tumor necrosis factor receptor superfamily member 13B Human genes 0.000 description 1
- 206010054094 Tumour necrosis Diseases 0.000 description 1
- 241000282830 Tylopoda Species 0.000 description 1
- 206010053614 Type III immune complex mediated reaction Diseases 0.000 description 1
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 1
- 241001416177 Vicugna pacos Species 0.000 description 1
- 241000282840 Vicugna vicugna Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003314 affinity selection Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 1
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N butyl alcohol Substances CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 238000000533 capillary isoelectric focusing Methods 0.000 description 1
- 238000005515 capillary zone electrophoresis Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 208000025750 heavy chain disease Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 208000006116 lymphomatoid granulomatosis Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 description 1
- 208000021937 marginal zone lymphoma Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000002625 monoclonal antibody therapy Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N p-hydroxybenzoic acid methyl ester Natural products COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 201000001976 pemphigus vulgaris Diseases 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000003720 plasmablast Anatomy 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 201000006292 polyarteritis nodosa Diseases 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 208000017805 post-transplant lymphoproliferative disease Diseases 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 201000006037 primary mediastinal B-cell lymphoma Diseases 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 201000008158 rapidly progressive glomerulonephritis Diseases 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 201000006845 reticulosarcoma Diseases 0.000 description 1
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 208000025883 type III hypersensitivity disease Diseases 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/522—CH1 domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/569—Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention concerns anti-BCMA heavy chain-only antibodies (UniAb).
- UniAb anti-BCMA heavy chain-only antibodies
- the invention further concerns methods of making such antibodies, compositions, including pharmaceutical compositions, comprising such antibodies, and their use to treat a B-cell disorder characterized by the expression of BCMA.
- BCMA B-Cell Maturation Antigen
- BCMA also known as tumor necrosis factor superfamily member 17 (TNFRSF17) (UniProt Q02223), is a cell surface receptor exclusively expressed on plasma cells and plasmablasts.
- BCMA is a receptor for two ligands in the tumor necrosis factor (TNF) superfamily: APRIL (a proliferation-inducing ligand, also known as TNFSF13; TALL-2 and TRDL-1; the high affinity ligand for BCMA) and B cell activation factor (BAFF) (also known as BLyS; TALL-1; THANK; zTNF4; TNFSF20; and D8Ertd387e; the low affinity ligand for BCMA).
- APRIL and BAFF are growth factors that bind BCMA and promote survival of plasma cells.
- BCMA is also highly expressed on malignant plasma cells in human multiple myeloma (MM).
- Antibodies binding to BCMA are described, for example, in Gras et al., 1995, Int. Immunol. 7:1093-1106, WO200124811 and WO200124812.
- Anti-BCMA antibodies that cross-react with TACI are described in WO2002/066516.
- Bispecific antibodies against BCMA and CD3 are described, for example, in US 2013/0156769 A1 and US 2015/0376287 A1.
- An anti-BCMA antibody-MMAE or -MMAF conjugate has been reported to selectively induce killing of multiple myeloma cells (Tai et al., Blood 2014, 123(20): 3128-38).
- the association of the heavy chain and light chain is due in part to a hydrophobic interaction between the light chain constant region and the CH1 constant domain of the heavy chain.
- UniAbs lack the first domain of the constant region (CH1) which is present in the genome, but is spliced out during mRNA processing.
- CH1 domain explains the absence of the light chain in the UniAbs, since this domain is the anchoring place for the constant domain of the light chain.
- Such UniAbs naturally evolved to confer antigen-binding specificity and high affinity by three CDRs from conventional antibodies or fragments thereof (Muyldermans, 2001; J Biotechnol 74:277-302; Revets et al., 2005; Expert Opin Biol Ther 5:111-124).
- IgNAR immunoglobulin
- IgNAR molecules can be manipulated by molecular engineering to produce the variable domain of a single heavy chain polypeptide (vNARs) (Nuttall et al. Eur. J. Biochem. 270, 3543-3554 (2003); Nuttall et al. Function and Bioinformatics 55, 187-197 (2004); Dooley et al., Molecular Immunology 40, 25-33 (2003)).
- vNARs single heavy chain polypeptide
- Heavy chain-only antibodies devoid of light chain to bind antigen was established in the 1960s (Jaton et al. (1968) Biochemistry, 7, 4185-4195). Heavy chain immunoglobulin physically separated from light chain retained 80% of antigen-binding activity relative to the tetrameric antibody. Sitia et al. (1990) Cell, 60, 781-790 demonstrated that removal of the CH1 domain from a rearranged mouse ⁇ gene results in the production of a heavy chain-only antibody, devoid of light chain, in mammalian cell culture. The antibodies produced retained VH binding specificity and effector functions.
- Heavy chain antibodies with a high specificity and affinity can be generated against a variety of antigens through immunization (van der Linden, R. H., et al. Biochim. Biophys. Acta. 1431, 37-46 (1999)) and the VHH portion can be readily cloned and expressed in yeast (Frenken, L. G. J., et al. J. Biotechnol. 78, 11-21 (2000)). Their levels of expression, solubility and stability are significantly higher than those of classical F(ab) or Fv fragments (Ghahroudi, M. A. et al. FEBS Lett. 414, 521-526 (1997)).
- mice in which the (lambda) light (L) chain locus and/or the ⁇ and ⁇ (kappa) L chain loci have been functionally silenced and antibodies produced by such mice are described in U.S. Pat. Nos. 7,541,513 and 8,367,888. Recombinant production of heavy chain-only antibodies in mice and rats has been reported, for example, in WO2006008548; U.S. Application Publication No. 20100122358; Nguyen et al., 2003, Immunology; 109(1), 93-101; Brüggemann et al., Crit. Rev.
- CAR-T structures comprising single-domain antibodies as binding (targeting) domains are described, for example, in Iri-Sofla et al., 2011, Experimental Cell Research 317:2630-2641 and Jamnani et al., 2014, Biochim Biophys Acta, 1840:378-386.
- the present invention concerns heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA).
- BCMA B-Cell Maturation Antigen
- the invention concerns a heavy chain-only antibody anti-BCMA antibody comprising a heavy chain variable region comprising:
- the CDR1, CDR2, and CDR3 sequences are present in a human framework.
- the heavy chain-only antibody further comprises a heavy chain constant region sequence in the absence of a CH1 sequence.
- the heavy chain-only antibody comprises:
- the heavy chain-only antibody comprises:
- the heavy chain only antibody comprises:
- the heavy chain-only antibody comprises a heavy chain variable region having at least 95% sequence identity to any of the sequences of SEQ ID NOs: 16 to 50.
- the heavy chain-only antibody of comprises a heavy chain variable region sequence selected from the group consisting of SEQ ID NOs: 16 to 50.
- the heavy chain-only antibody comprises a heavy chain variable region sequence selected from the group consisting of SEQ ID NOs: 16, 17, 18, 30, 34, and 38.
- the invention further concerns a heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA) comprising a heavy chain variable region comprising a heavy chain variable comprising
- X6 is R or S
- X7 is S or D
- X8 is D, G, or S
- X9 is G or D
- X10 is S, T or N
- X9 is G or E
- X10 is Y or H.
- the invention further concerns a heavy chain-only anti-BCMA antibody comprising a heavy chain variable region comprising CDR1, CDR2 and CDR3 sequences in a human VH framework wherein the CDR sequences comprise two or fewer substitutions in a CDR sequence selected from the group consisting of SEQ ID NOs: 1-15.
- the heavy chain-only antibody comprises a heavy chain variable region comprising CDR1, CDR2 and CDR3 sequences in a human VH framework wherein the CDR sequences are selected from the group consisting of SEQ ID NOs: 1-15.
- the heavy chain-only antibody binding to human B-Cell Maturation Antigen comprises a heavy chain variable region comprising
- the heavy chain-only antibody may be multi-specific, such as bispecific.
- the bispecific heavy chain-only anti-BCMA antibody has binding affinity to two different BCMA proteins, or to two different epitopes on the same BCMA protein.
- the bispecific heavy chain-only anti-BCMA antibody has binding affinity to an effector cell, such as a T-cell antigen.
- the bispecific heavy chain-only anti-BCMA antibody has binding affinity to CD3.
- the multi- or bispecific anti-BCMA antibody can be in a CAR-T format.
- the invention concerns a pharmaceutical composition
- a pharmaceutical composition comprising a heavy chain-only antibody as hereinabove described.
- the invention concerns a method for the treatment of a B-cell disorder characterized by the expression of BCMA, the method comprising administering to a subject with such disorder an antibody or a pharmaceutical composition as hereinabove described.
- the B-cell disorder may, for example, be multiple myeloma or systemic lupus erythematosus.
- the invention concerns a polynucleotide encoding an anti-BCMA antibody as described herein.
- the invention concerns a vector comprising a polynucleotide encoding an anti-BCMA antibody as described herein.
- the invention further concerns a cell comprising a vector comprising a polynucleotide encoding an anti-BCMA antibody as described herein.
- the invention also concerns a method of producing an antibody as described herein, the method comprising growing a cell (e.g., a host cell) comprising a polynucleotide encoding an anti-BCMA antibody as described herein under conditions permissive for expression of the protein, and isolating the antibody from the cells and/or the cell culture medium.
- the method comprises immunizing a UniRat animal with BCMA and identifying BCMA-binding heavy chain antibody sequences.
- FIG. 1 shows the CDR1, CDR2 and CDR3 amino acid sequences of 35 heavy chain-only anti-BCMA antibodies of the invention.
- FIG. 2 shows the heavy chain variable region sequences of 35 heavy chain-only anti-BCMA antibodies of the invention.
- FIG. 3 shows binding of BCMA protein and BCMA-expressing cell lines.
- Column 1 indicates the clone ID of the heavy chain-only antibody (UniAb) tested.
- Column 2 indicates the concentration of UniAb expressed in the supernatant.
- Column 3 indicates the ELISA fold over background signal of human BCMA protein binding.
- Column 4 indicates the ELISA fold over background signal of human IgG1 ⁇ protein binding.
- Column 5 indicates the ELISA fold over background signal of human lambda protein binding.
- Column 6 indicates the ELISA fold over background signal of human serum albumin protein binding.
- Column 7 indicates the ELISA fold over background signal of baculovirus protein binding.
- Column 8 indicates the percent blocking of the April ligand protein to BCMA protein.
- Column 9 indicates the mean fluorescent intensity of cell binding to RPMI-8226 cells that express BCMA on the cell surface.
- Column 10 indicates the mean fluorescent intensity of cell binding to NCI-H929 cells that express BCMA on the cell surface.
- Column 11 indicates the mean fluorescent intensity of cell binding to HDLM2 cells that do not express BCMA on the cell surface.
- FIG. 4 shows the binding affinity of anti-BCMA heavy chain-only antibody 308902 in monovalent and bivalent forms, as measured by BioLayer Interferometry, using an Octet QK384 instrument (Fortebio Inc., Menlo Park, Calif.) in kinetics mode.
- the binding affinity (Kd) of the monovalent form was 779 pM and the Kd of the bivalent form was 53 pM.
- FIG. 5 is a graphic illustration of an scFv CAR-T construct, a monospecific human VH CAR-T construct, and a bispecific human VH CAR-T construct.
- antibody residues herein are numbered according to the Kabat numbering system (e.g., Kabat et al., Sequences of Immunological Interest. 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
- composition/method/kit By “comprising” it is meant that the recited elements are required in the composition/method/kit, but other elements may be included to form the composition/method/kit etc. within the scope of the claim.
- monoclonal antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
- heavy chain-only antibody “heavy-chain antibody” and “UniAb” are used interchangeably, and refer, in the broadest sense, to antibodies lacking the light chain of a conventional antibody. Since the homodimeric UniAbs lack a light chain and thus a VL domain, the antigen is recognized by one single domain, i.e., the variable domain of the heavy chain of a heavy-chain antibody (VH).
- VH heavy-chain antibody
- the term specifically includes, without limitation, homodimeric antibodies comprising the VH antigen-binding domain and the CH2 and CH3 constant domains, in the absence of the CH1 domain; functional (antigen-binding) variants of such antibodies, soluble VH variants, Ig-NAR comprising a homodimer of one variable domain (V-NAR) and five C-like constant domains (C-NAR) and functional fragments thereof; and soluble single domain antibodies (sUniDabs).
- the heavy chain-only antibody is composed of the variable region antigen-binding domain composed of framework 1, CDR1, framework 2, CDR2, framework 3, CDR3, and framework 4.
- the heavy chain-only antibody is composed of an antigen-binding domain, at least part of a hinge region and CH2 and CH3 domains. In another embodiment, the heavy chain-only antibody is composed of an antigen-binding domain, at least part of a hinge region and a CH2 domain. In a further embodiment, the heavy chain-only antibody is composed of an antigen-binding domain, at least part of a hinge region and a CH3 domain. Heavy chain-only antibodies in which the CH2 and/or CH3 domain is truncated are also included herein. In a further embodiment the heavy chain is composed of an antigen binding domain, and at least one CH (CH1, CH2, CH3, or CH4) domain but no hinge region.
- the heavy chain-only antibody can be in the form of a dimer, in which two heavy chains are disulfide bonded other otherwise, covalently or non-covalently attached with each other.
- the heavy chain-only antibody may belong to the IgG subclass, but antibodies belonging to other subclasses, such as IgM, IgA, IgD and IgE subclass, are also included herein.
- the heavy chain antibody is of the IgG1, IgG2, IgG3, or IgG4 subtype, in particular IgG1 subtype.
- the heavy chain-only antibodies herein are used as a binding (targeting) domain of a chimeric antigen receptor (CAR).
- CAR chimeric antigen receptor
- BCMA human B cell maturation antigen
- CD269 CD269
- TNFRSF17 TNFRSF17
- the extracellular domain of human BCMA consists, according to UniProt of amino acids 1-54 (or 5-51).
- anti-BCMA heavy chain-only antibody and “BCMA heavy chain-only antibody” are used herein to refer to a heavy chain-only antibody as hereinabove defined, immunospecifically binding to BCMA.
- variable refers to the fact that certain portions of the antibody variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FRs).
- the variable domains of native heavy and light chains each comprise four FRs, largely adopting a ⁇ -sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
- the hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
- the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
- hypervariable region when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding.
- the hypervariable region generally comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g. residues 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.
- “Framework Region” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
- CDR designations are shown herein, however one of skill in the art will understand that a number of definitions of the CDRs are commonly in use, including the Kabat definition (see “Zhao et al. A germline knowledge based computational approach for determining antibody complementarity determining regions.” Mol Immunol. 2010; 47:694-700), which is based on sequence variability and is the most commonly used.
- the Chothia definition is based on the location of the structural loop regions (Chothia et al. “Conformations of immunoglobulin hypervariable regions.” Nature. 1989; 342:877-883).
- CDR definitions of interest include, without limitation, those disclosed by Honegger, “Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool.” J Mol Biol. 2001; 309:657-670; Ofran et al. “Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes.” J Immunol. 2008; 181:6230-6235; Almagro “Identification of differences in the specificity-determining residues of antibodies that recognize antigens of different size: implications for the rational design of antibody repertoires.” J Mol Recognit. 2004; 17:132-143; and Padlan et al. “Identification of specificity-determining residues in antibodies.” Faseb J. 1995; 9:133-139., each of which is herein specifically incorporated by reference.
- substitutions in an amino acid sequence is used herein to mean 2 (two), 1 (one) or 0 (zero) substitutions in the reference amino acid sequence.
- Percent (%) amino acid sequence identity with respect to a reference polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the reference polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2.
- an “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
- the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain.
- Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
- Antibodies of the invention include multi-specific antibodies.
- Multi-specific antibodies have more than one binding specificity.
- the term “multi-specific” specifically includes “bispecific” and “trispecific,” as well as higher-order independent specific binding affinities, such as higher-order polyepitopic specificity, as well as tetravalent antibodies and antibody fragments.
- “Multi-specific” antibodies specifically include antibodies comprising a combination of different binding entities as well as antibodies comprising more than one of the same binding entity.
- the terms “multi-specific antibody,” multi-specific single chain-only antibody” and “multi-specific UniAb” are used herein in the broadest sense and cover all antibodies with more than one binding specificity.
- valent refers to a specified number of binding sites in an antibody molecule.
- a “multi-valent” antibody has two or more binding sites.
- the terms “bivalent”, “trivalent”, and “tetravalent” refer to the presence of two binding sites, three binding sites, and four binding sites, respectively.
- a bispecific antibody according to the invention is at least bivalent and may be trivalent, tetravalent, or otherwise multi-valent.
- BsMAB bispecific monoclonal antibodies
- tri-specific antibodies tri-specific antibodies
- bispecific three-chain antibody like molecule or “TCA” is used herein to refer to antibody-like molecules comprising, consisting essentially of, or consisting of three polypeptide subunits, two of which comprise, consist essentially of, or consist of one heavy and one light chain of a monoclonal antibody, or functional antigen-binding fragments of such antibody chains, comprising an antigen-binding region and at least one CH domain.
- This heavy chain/light chain pair has binding specificity for a first antigen.
- the third polypeptide subunit comprises, consists essentially of, or consists of a heavy chain only antibody comprising an Fc portion comprising CH2 and/or CH3 and/or CH4 domains, in the absence of a CH1 domain, and an antigen binding domain that binds an epitope of a second antigen or a different epitope of the first antigen, where such binding domain is derived from or has sequence identity with the variable region of an antibody heavy or light chain.
- Parts of such variable region may be encoded by VH and/or VL gene segments, D and JH gene segments, or JL gene segments.
- the variable region may be encoded by rearranged VHDJH, VLDJH, VHJL, or VLJL gene segments.
- a TCA protein makes use of a heavy chain-only antibody as hereinabove defined.
- chimeric antigen receptor or “CAR” is used herein in the broadest sense to refer to an engineered receptor, which grafts a desired binding specificity (e.g. the antigen-binding region of a monoclonal antibody or other ligand) to membrane-spanning and intracellular-signaling domains.
- a desired binding specificity e.g. the antigen-binding region of a monoclonal antibody or other ligand
- the receptor is used to graft the specificity of a monoclonal antibody onto a T cell to create a chimeric antigen receptors (CAR).
- human idiotype is meant a polypeptide sequence epitope present on a human antibody in the immunoglobulin heavy and/or light chain variable region.
- human idiotype as used herein includes both naturally occurring sequences of a human antibody, as well as synthetic sequences substantially identical to the polypeptide found in naturally occurring human antibodies.
- substantially is meant that the degree of amino acid sequence identity is at least about 85%-95%. Preferably, the degree of amino acid sequence identity is greater than 90%, more preferably greater than 95%.
- a “chimeric antibody” or a “chimeric immunoglobulin” is meant an immunoglobulin molecule comprising amino acid sequences from at least two different Ig loci, e.g., a transgenic antibody comprising a portion encoded by a human Ig locus and a portion encoded by a rat Ig locus.
- Chimeric antibodies include transgenic antibodies with non-human Fc-regions or artificial Fc-regions, and human idiotypes.
- Such immunoglobulins can be isolated from animals of the invention that have been engineered to produce such chimeric antibodies.
- Antibody effector functions refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody.
- Examples of antibody effector functions include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc.
- Antibody-dependent cell-mediated cytotoxicity and “ADCC” refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express Fc receptors (FcRs) (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell.
- FcRs Fc receptors
- FcR expression on hematopoietic cells in summarized is Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991).
- ADCC activity of a molecule of interest may be assessed in vitro, such as that described in U.S. Pat. No. 5,500,362 or 5,821,337.
- useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
- PBMC peripheral blood mononuclear cells
- NK Natural Killer
- ADCC activity of the molecule of interest may be assessed in vivo, e.g., in an animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).
- Human effector cells are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least Fc ⁇ RIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred.
- PBMC peripheral blood mononuclear cells
- NK natural killer cells
- monocytes cytotoxic T cells and neutrophils
- the effector cells may be isolated from a native source thereof, e.g., from blood or PBMCs as described herein.
- “Complement dependent cytotoxicity” or “CDC” refers to the ability of a molecule to lyse a target in the presence of complement.
- the complement activation pathway is initiated by the binding of the first component of the complement system (Clq) to a molecule (e.g. an antibody) complexed with a cognate antigen.
- a CDC assay e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.
- Binding affinity refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity which reflects a 1:1 interaction between members of a binding pair (e.g., antibody and antigen).
- the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd) Affinity can be measured by common methods known in the art. Low-affinity antibodies generally bind antigen slowly and tend to dissociate readily, whereas high-affinity antibodies generally bind antigen faster and tend to remain bound.
- the “Kd” or “Kd value” refers to a dissociation constant determined by BioLayer Interferometry, using an Octet QK384 instrument (Fortebio Inc., Menlo Park, Calif.) in kinetics mode.
- anti-mouse Fc sensors are loaded with mouse-Fc fused antigen and then dipped into antibody-containing wells to measure concentration dependent association rates (kon).
- Antibody dissociation rates (koff) are measured in the final step, where the sensors are dipped into wells containing buffer only.
- the Kd is the ratio of koff/kon.
- epitope is the site on the surface of an antigen molecule to which a single antibody molecule binds.
- an antigen has several or many different epitopes and reacts with many different antibodies.
- the term specifically includes linear epitopes and conformational epitopes.
- Epitope mapping is the process of identifying the binding sites, or epitopes, of antibodies on their target antigens.
- Antibody epitopes may be linear epitopes or conformational epitopes. Linear epitopes are formed by a continuous sequence of amino acids in a protein. Conformational epitopes are formed of amino acids that are discontinuous in the protein sequence, but which are brought together upon folding of the protein into its three-dimensional structure.
- Polyepitopic specificity refers to the ability to specifically bind to two or more different epitopes on the same or different target(s).
- An antibody binds “essentially the same epitope” as a reference antibody, when the two antibodies recognize identical or sterically overlapping epitopes.
- the most widely used and rapid methods for determining whether two epitopes bind to identical or sterically overlapping epitopes are competition assays, which can be configured in all number of different formats, using either labeled antigen or labeled antibody.
- the antigen is immobilized on a 96-well plate, and the ability of unlabeled antibodies to block the binding of labeled antibodies is measured using radioactive or enzyme labels.
- treatment covers any treatment of a disease in a mammal, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease.
- the therapeutic agent may be administered before, during or after the onset of disease or injury.
- the treatment of ongoing disease, where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, is of particular interest. Such treatment is desirably performed prior to complete loss of function in the affected tissues.
- the subject therapy may be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
- a “therapeutically effective amount” is intended for an amount of active agent which is necessary to impart therapeutic benefit to a subject.
- a “therapeutically effective amount” is an amount which induces, ameliorates or otherwise causes an improvement in the pathological symptoms, disease progression or physiological conditions associated with a disease or which improves resistance to a disorder.
- subject refers to a mammal being assessed for treatment and/or being treated.
- the mammal is a human.
- subject encompass, without limitation, individuals having cancer, individuals with autoimmune diseases, with pathogen infections, and the like.
- Subjects may be human, but also include other mammals, particularly those mammals useful as laboratory models for human disease, e.g. mouse, rat, etc.
- CD3 refers to the human CD3 protein multi-subunit complex.
- the CD3 protein multi-subunit complex is composed to 6 distinctive polypeptide chains. These include a CD3 ⁇ chain (SwissProt P09693), a CD3 ⁇ chain (SwissProtP04234), two CD3 ⁇ chains (SwissProt P07766), and one CD3 ⁇ chain homodimer (SwissProt 20963), and which is associated with the T cell receptor ⁇ and ⁇ chain.
- CD3 includes any CD3 variant, isoform and species homolog which is naturally expressed by cells (including T cells) or can be expressed on cells transfected with genes or cDNA encoding those polypeptides, unless noted.
- a “BCMA ⁇ CD3 antibody” is a multispecific heavy chain-only antibody, such as a bispecific heavy chain-only antibody, which comprises two different antigen-binding regions, one of which binds specifically to the antigen BCMA and one of which binds specifically to CD3.
- pharmaceutical formulation refers to a preparation which is in such form as to permit the biological activity of the active ingredient to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered. Such formulations are sterile. “Pharmaceutically acceptable” excipients (vehicles, additives) are those which can reasonably be administered to a subject mammal to provide an effective dose of the active ingredient employed.
- a “sterile” formulation is aseptic or free or essentially free from all living microorganisms and their spores.
- a “frozen” formulation is one at a temperature below 0° C.
- a “stable” formulation is one in which the protein therein essentially retains its physical stability and/or chemical stability and/or biological activity upon storage. Preferably, the formulation essentially retains its physical and chemical stability, as well as its biological activity upon storage. The storage period is generally selected based on the intended shelf-life of the formulation.
- Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301. Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones. A. Adv. Drug Delivery Rev. 10: 29-90) (1993), for example. Stability can be measured at a selected temperature for a selected time period.
- Stability can be evaluated qualitatively and/or quantitatively in a variety of different ways, including evaluation of aggregate formation (for example using size exclusion chromatography, by measuring turbidity, and/or by visual inspection); by assessing charge heterogeneity using cation exchange chromatography, image capillary isoelectric focusing (icIEF) or capillary zone electrophoresis; amino-terminal or carboxy-terminal sequence analysis; mass spectrometric analysis; SDS-PAGE analysis to compare reduced and intact antibody; peptide map (for example tryptic or LYS-C) analysis; evaluating biological activity or antigen binding function of the antibody; etc.
- aggregate formation for example using size exclusion chromatography, by measuring turbidity, and/or by visual inspection
- icIEF image capillary isoelectric focusing
- capillary zone electrophoresis amino-terminal or carboxy-terminal sequence analysis
- mass spectrometric analysis SDS-PAGE analysis to compare reduced and intact antibody
- peptide map for example tryp
- Instability may involve any one or more of: aggregation, deamidation (e.g., Asn deamidation), oxidation (e.g., Met oxidation), isomerization (e.g., Asp isomeriation), clipping/hydrolysis/fragmentation (e.g., hinge region fragmentation), succinimide formation, unpaired cysteine(s), N-terminal extension, C-terminal processing, glycosylation differences, etc.
- deamidation e.g., Asn deamidation
- oxidation e.g., Met oxidation
- isomerization e.g., Asp isomeriation
- clipping/hydrolysis/fragmentation e.g., hinge region fragmentation
- succinimide formation unpaired cysteine(s)
- N-terminal extension e.g., N-terminal extension, C-terminal processing, glycosylation differences, etc.
- the present invention provides a family of closely related heavy chain-only antibodies that bind to human BCMA.
- the antibodies of this family comprise a set of CDR sequences as defined herein and shown in FIG. 1 , and are exemplified by the provided heavy chain variable region (VH) sequences of SEQ ID NOs 16 to 50 set forth in FIG. 2 .
- the families of antibodies provide a number of benefits that contribute to utility as clinically therapeutic agent(s).
- the antibodies include members with a range of binding affinities, allowing the selection of a specific sequence with a desired binding affinity.
- a suitable antibody may be selected from those provided herein for development and therapeutic or other use, including, without limitation, use as a bispecific or tri-specific antibody, or part of a CAR-T structure, e.g., as shown in FIG. 5 .
- Determination of affinity for a candidate protein can be performed using methods known in the art, such as Biacore measurements.
- Members of the antibody family may have an affinity for BCMA with a K a of from about 10 ⁇ 6 to around about 10 ⁇ 11 , including without limitation: from about 10 ⁇ 6 to around about 10 ⁇ 10 ; from about 10 ⁇ 6 to around about 10 ⁇ 9 ; from about 10 ⁇ 6 to around about 10′; from about 10 ⁇ 6 to around about 10 ⁇ 11 ; from about 10 ⁇ 6 to around about 10 ⁇ 10 ; from about 10 ⁇ 6 to around about 10 ⁇ 9 ; from about 10 ⁇ 9 to around about 10 ⁇ 11 ; from about 10 ⁇ 9 to around about 10 ⁇ 10 ; or any value within these ranges.
- the affinity selection may be confirmed with a biological assessment for modulating, e.g., blocking, a BCMA biological activity, including in vitro assays, pre-clinical models, and clinical trials, as well as assessment of potential toxicity.
- the family of BCMA specific antibodies herein comprises a VH domain, comprising CDR1, CDR2 and CDR3 sequences in a human VH framework.
- the CDR sequences may be situated, as an example, in the region of around amino acid residues 26-35; 53-59; and 98-117 for CDR1, CDR2 and CDR3, respectively, of the provided exemplary variable region sequences set forth in SEQ ID NOs: 16 to 50. It will be understood by one of skill in the art that the CDR sequences may be in different position if a different framework sequence is selected, although generally the order of the sequences will remain the same.
- the CDR1, CDR2, and CDR3 sequences of the anti-BCMA antibodies of the present invention may be encompassed by the following structural formulas, where an X indicates a variable amino acid, which may be specific amino acids as indicated below.
- CDR1 is selected from the sequence of SEQ ID NOs: 1-6.
- CDR1 comprises the sequence of SEQ ID NOs 1 or 2.
- CDR1 comprises the sequence GFTVSSYG (SEQ ID NO: 1).
- X6 is R or S
- X7 is S or D
- X8 is D, G, or S
- X9 is G or D
- X10 is S, T or N.
- X6 is D and X7 is G.
- X8 is S.
- X9 is G and X10 is T.
- X9 is G and X10 is S.
- X9 is G and X10 is T.
- CDR2 is selected from the sequence of SEQ ID NOs: 8-11.
- CDR2 comprises the sequence of SEQ ID NO: 8 or 9.
- CDR2 comprises the sequence IRGSDGST (SEQ ID NO: 8).
- X9 is G or E
- X10 is Y or H.
- X9 is G and X10 is Y. In another embodiment, X9 is G and X10 is H. In another embodiment, X9 is E and X10 is H. In a further embodiment, X9 is E and X10 is Y. In a still further embodiment, CDR3 is selected from the sequence of SEQ ID NOs: 12-15. In another embodiment, CDR3 comprises the sequence of SEQ ID NO: 12, 14 or 15. In yet another embodiment, CDR3 comprises the sequence AKQGENDGPFDH (SEQ ID NO: 14).
- FIG. 1 Representative CDR1, CDR2, and CDR3 sequences are shown in FIG. 1 .
- the anti-BCMA heavy chain-only antibody of the present invention comprises the CDR1 sequence of SEQ ID NO: 1; the CDR2 sequence of SEQ ID NO: 8 and a CDR3 sequence of SEQ ID NO: 12 or 14.
- the anti-BCMA heavy chain-only antibody of the present invention comprises the CDR1 sequence of SEQ ID NO: 2; a CDR2 sequence of SEQ ID NO: 8 or 9; and a CDR3 sequence of SEQ ID NO: 12, 13, 14 or 15.
- the anti-BCMA heavy chain-only antibody of the present invention comprises the CDR1 sequence of SEQ ID NO:1; the CDR2 sequence of SEQ ID NO: 8; and the CDR3 sequence of SEQ ID NO: 14.
- the anti-BCMA antibody of the present invention comprises any of the heavy chain variable region amino acid sequences of SEQ ID NOs: 16 to 50 ( FIG. 2 ).
- the anti-BCMA heavy chain-only antibody of the present invention comprises the heavy chain variable region sequence of SEQ ID NO: 34 (antibody 308902).
- a CDR sequence in the anti-BMA antibodies of the present invention comprises one or two amino acid substitutions relative to a CDR1, CDR2 and/or CDR3 sequence or set of CDR1, CDR2 and CDR3 sequences in any one of SEQ ID NOs:1 to 15 ( FIG. 1 ).
- said amino acid substitution(s) are one or two of amino acid positions 4-6 of CDR1, and/or one or two of the amino acid positions of 2, 4-7 of CDR2, and/or one or two of the amino acid positions 5 and 12 of CDR3, relative to the formulas provided above.
- the single chain-only anti-BCMA antibodies herein will comprise a heavy chain variable region sequence with at least 85% identity, at least 90% identity, at least 95% identity, at least 98% identify, or at least 99% identity to any of the heavy chain variable region sequences shown in FIG. 2 .
- bispecific or multispecific antibodies are provided, which may have any of the configurations discussed herein, including, without limitation, a three chain bispecific antibody.
- Bispecific antibodies comprise at least the heavy chain variable region of an antibody specific for a protein other than BCMA.
- a protein of the invention is a bispecific antibody
- one binding moiety is specific for human BCMA while the other arm may be specific for target cells, tumor associated antigens, targeting antigens, e.g., integrins, etc., pathogen antigens, checkpoint proteins, and the like.
- Target cells specifically include cancer cells, such as hematologic tumors, e.g., B-cell tumors, as discussed below.
- bispecific antibodies are within the ambit of the invention, including, without limitation, single chain polypeptides, two chain polypeptides, three chain polypeptides, four chain polypeptides, and multiples thereof.
- the bispecific antibodies herein specifically include T-cell bispecific antibodies binding to BCMA, which is selectively expressed on plasma cells (PCs) and multiple myeloma (MM), and CD3 (anti-BCMA ⁇ anti-CD3 antibodies).
- BCMA plasma cells
- MM multiple myeloma
- CD3 anti-BCMA ⁇ anti-CD3 antibodies
- Such antibodies induce potent T-cell mediated killing of cells carrying BCMA, and can be used to treat tumors, in particular hematologic tumors, such as B-cell tumors, as discussed below.
- Bispecific antibodies against CD3 and BCMA are described, for example, in WO2007117600, WO2009132058, WO2012066058, WO2012143498, WO2013072406, WO2013072415, and WO2014122144, and in US 20170051068.
- compositions comprising one or more antibodies of the present invention in admixture with a suitable pharmaceutically acceptable carrier.
- Pharmaceutically acceptable carriers as used herein are exemplified, but not limited to, adjuvants, solid carriers, water, buffers, or other carriers used in the art to hold therapeutic components, or combinations thereof.
- compositions of the antibodies used in accordance with the present invention are prepared for storage by mixing proteins having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (see, e.g., Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), such as in the form of lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine,
- compositions for parenteral administration are preferably sterile and substantially isotonic and manufactured under Good Manufacturing Practice (GMP) conditions.
- Pharmaceutical compositions can be provided in unit dosage form (i.e., the dosage for a single administration). The formulation depends on the route of administration chosen.
- the antibodies herein can be administered by intravenous injection or infusion or subcutaneously.
- the antibodies herein can be formulated in aqueous solutions, preferably in physiologically-compatible buffers to reduce discomfort at the site of injection.
- the solution can contain carriers, excipients, or stabilizers as discussed above.
- antibodies can be in lyophilized form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- Anti-BCMA antibody formulations are disclosed, for example, in U.S. Pat. No. 9,034,324. Similar formulations can be used for the proteins of the present invention. Subcutaneous antibody formulations are described, for example, in US 20160355591 and US 20160166689.
- compositions herein can be used for the treatment of B-cell related disorders, including B-cell and plasma cell malignancies and autoimmune disorders characterized by the expression or overexpression of BCMA.
- B-cell related disorders include B-cell and plasma cell malignancies and autoimmune disorders, including, without limitation, plasmacytoma, Hodgkins' lymphoma, follicular lymphomas, small non-cleaved cell lymphomas, endemic Burkitt's lymphoma, sporadic Burkitt's lymphoma, marginal zone lymphoma, extranodal mucosa-associated lymphoid tissue lymphoma, nodal monocytoid B cell lymphoma, splenic lymphoma, mantle cell lymphoma, large cell lymphoma, diffuse mixed cell lymphoma, immunoblastic lymphoma, primary mediastinal B cell lymphoma, pulmonary B cell angiocentric lymphoma, small lymphocytic lymphoma, B cell proliferations of uncertain malignant potential, lymphomatoid granulomatosis, post-transplant lymphoproliferative disorder, an immunoregulatory disorder, rheumatoid arthritis
- MM Multiple Myeloma
- Current therapies for MM often cause remissions, but nearly all patients eventually relapse and die.
- myeloma cells in the setting of allogeneic hematopoietic stem cell transplantation; however, the toxicity of this approach is high, and few patients are cured.
- monoclonal antibodies have shown promise for treating MM in preclinical studies and early clinical trials, consistent clinical efficacy of any monoclonal antibody therapy for MM has not been conclusively demonstrated. There is therefore a great need for new therapies, including immunotherapies for MM (see, e.g., Carpenter et al., Clin Cancer Res 2013, 19(8):2048-2060).
- BCMA Overexpression or activation of BCMA by its proliferation-inducing ligand, APRIL it known to promote human Multiple Myeloma (MM) progression in vivo. BCMA has also been shown to promote in vivo growth of xenografted MM cells harboring p53 mutation in mice. Since activity of the APRIL/BCMA pathway plays a central role in MM pathogenesis and drug resistance via bidirectional interactions between tumor cells and their supporting bone marrow microenvironment, BCMA has been identified as a target for the treatment of MM. For further details see, e.g., Yu-Tsu Tai et al., Blood 2016; 127(25):3225-3236.
- SLE systemic lupus erythematosus
- SLE is a systemic, autoimmune disease that can affect any part of the body and is represented with the immune system attacking the body's own cells and tissue, resulting in chronic inflammation and tissue damage. It is a Type III hypersensitivity reaction in which antibody-immune complexes precipitate and cause a further immune response (Inaki & Lee, Nat Rev Rheumatol 2010; 6: 326-337).
- the anti-BCMA heavy chain-only antibodies (UniAb) of the present invention can be used to develop therapeutic agents for the treatment of MM, SLE, and other B-cell disorders or plasma cell disorders characterized by the expression of BCMA, such as those listed above.
- the anti-BCMA heavy chain-only antibodies (UniAb) of the present invention are candidates for the treatment of MM, alone or in combination with other MM treatments.
- the antibodies herein can be in the form of heavy chain-only anti-BCMA antibody-CAR structures, i.e., heavy chain-only anti-BCMA antibody-CAR-transduced T cell structures.
- Effective doses of the compositions of the present invention for the treatment of disease vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic.
- the patient is a human, but non-human mammals may also be treated, e.g., companion animals such as dogs, cats, horses, etc., laboratory mammals such as rabbits, mice, rats, etc., and the like.
- Treatment dosages can be titrated to optimize safety and efficacy.
- Dosage levels can be readily determined by the ordinarily skilled clinician, and can be modified as required, e.g., as required to modify a subject's response to therapy.
- the amount of active ingredient that can be combined with the carrier materials to produce a single dosage form varies depending upon the host treated and the particular mode of administration.
- Dosage unit forms generally contain between from about 1 mg to about 500 mg of an active ingredient.
- the therapeutic dosage of the agent may range from about 0.0001 to 100 mg/kg, and more usually 0.01 to 5 mg/kg, of the host body weight.
- dosages can be 1 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg.
- An exemplary treatment regimen entails administration once every two weeks or once a month or once every 3 to 6 months.
- Therapeutic entities of the present invention are usually administered on multiple occasions. Intervals between single dosages can be weekly, monthly or yearly. Intervals can also be irregular as indicated by measuring blood levels of the therapeutic entity in the patient.
- therapeutic entities of the present invention can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the polypeptide in the patient.
- compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared.
- the pharmaceutical compositions herein are suitable for intravenous or subcutaneous administration, directly or after reconstitution of solid (e.g., lyophilized) compositions.
- the preparation also can be emulsified or encapsulated in liposomes or micro particles such as polylactide, polyglycolide, or copolymer for enhanced adjuvant effect, as discussed above. Langer, Science 249: 1527, 1990 and Hanes, Advanced Drug Delivery Reviews 28: 97-119, 1997.
- the agents of this invention can be administered in the form of a depot injection or implant preparation which can be formulated in such a manner as to permit a sustained or pulsatile release of the active ingredient.
- the pharmaceutical compositions are generally formulated as sterile, substantially isotonic and in full compliance with all Good Manufacturing Practice (GMP) regulations of the U.S. Food and Drug Administration.
- GMP Good Manufacturing Practice
- Toxicity of the antibodies and antibody structures described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD50 (the dose lethal to 50% of the population) or the LD100 (the dose lethal to 100% of the population). The dose ratio between toxic and therapeutic effect is the therapeutic index.
- the data obtained from these cell culture assays and animal studies can be used in formulating a dosage range that is not toxic for use in humans.
- the dosage of the antibodies described herein lies preferably within a range of circulating concentrations that include the effective dose with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition.
- compositions for administration will commonly comprise an antibody or other ablative agent dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier.
- a pharmaceutically acceptable carrier preferably an aqueous carrier.
- aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter.
- These compositions may be sterilized by conventional, well known sterilization techniques.
- the compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
- concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Goodman & Gillman, The Pharmacological Basis of Therapeutics (Hardman et al., eds., 1996)).
- kits comprising the active agents, and formulations thereof, of the invention, and instructions for use.
- the kits can further contain at least one additional reagent, e.g., a chemotherapeutic drug, etc.
- Kits typically include a label indicating the intended use of the contents of the kit.
- the term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit.
- a ‘human—rat’ IgH locus was constructed and assembled in several parts. This involved the modification and joining of rat C region genes downstream of human JHs and subsequently, the upstream addition of the human VH6—D-segment region.
- Two BACs with separate clusters of human VH genes [BAC6 and BAC3] were then co-injected with the BAC termed Georg, encoding the assembled and modified region comprising human VH6, all Ds, all JHs, and modified rat C ⁇ 2a/1/2b ( ⁇ CH1).
- Transgenic rats carrying artificial heavy chain immunoglobulin loci in unrearranged configuration were generated.
- the IgG2a( ⁇ C H 1)., IgG1( ⁇ C H 1), IgG2b( ⁇ C H 1) genes lacked the C H 1 segment.
- the constant region genes IgE, IgA and 3′ enhancer were included in Georg BAC.
- RT-PCR and serum analysis (ELISA) of transgenic rats revealed productive rearrangement of transgenic immunoglobulin loci and expression of heavy chain only antibodies of various isotypes in serum.
- Transgenic rats were cross-bred with rats with mutated endogenous heavy chain and light chain loci previously described in US patent publication 2009/0098134 A1.
- Binding activity for a single 1:500 serum titer dilution is tested by ELISA against a huBCMA+Fc protein and a cynoBCMA+Fc protein produced in eukaryotic cells and two human BCMA proteins from E. coli and wheat germ, respectively.
- serum samples are tested against two off-target proteins, HSA and human IgG1.
- serum from all animals is assayed for binding to NCI-H929 cells (BCMA+, lambda ⁇ ).
- cDNAs encoding heavy chain only antibodies highly expressed in lymph node cells were selected for gene assembly and cloned into an expression vector. Subsequently, these heavy chain sequences were expressed in HEK cells as UniAb heavy chain only antibodies (CH1 deleted, no light chain).
- BVP Baculo Virus Protein Extract
- the samples were measured by flow cytometry using a Guava easyCyte 8HT instrument from EMD Millipore and analyzed using guavaSoft. Bound antibodies were detected with goat anti-human IgG F(ab′)2 conjugated to PE (Southern Biotech 2042-09). All antibodies were diluted in PBS with 1% BSA. Positive staining was determined by comparison to staining with a human IgG1 isotype control.
- the NCI-H929 and RPMI-8226 cell lines are human multiple myeloma lines expressing human BCMA, which were obtained from the American Type Culture Collection (ATCC) and cultured according to ATCC recommendations.
- column 8 indicates the percent blocking of the April ligand protein to BCMA protein.
- Column 9 indicates the mean fluorescent intensity of cell binding to RPMI-8226 cells that express BCMA on the cell surface.
- Column 10 indicates the mean fluorescent intensity of cell binding to NCI-H929 cells that express BCMA on the cell surface.
- Column 11 indicates the mean fluorescent intensity of cell binding to HDLM2 cells that do not express BCMA on the cell surface.
- FIG. 4 shows the binding affinity of anti-BCMA heavy chain-only antibody 308902 in monovalent and bivalent forms, as measured by BioLayer Interferometry, using an Octet QK384 instrument (Fortebio Inc., Menlo Park, Calif.) in kinetics mode, essentially as described in Concepcion, J, et al., Comb Chem High Throughput Screen, 12(8), 791-800, 2009.
- the binding affinity (Kd) of the monovalent form was 779 pM and the Kd of the bivalent form was 53 pM.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Life Sciences & Earth Sciences (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Anti-BCMA heavy chain-only antibodies (UniAb) and disclosed, along with methods of making such antibodies, compositions, including pharmaceutical compositions, comprising such antibodies, and their use to treat B-cell disorders characterized by the expression of BCMA.
Description
- This application is a continuation application of U.S. application Ser. No. 16/622,768, filed Dec. 13, 2019, now U.S. Pat. No. 11,427,642, which is a US National Stage entry under 35 USC 371 of PCT Application No. PCT/US2018/038506, filed Jun. 20, 2018, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/522,295, filed on Jun. 20, 2017, each of which are herein incorporated by reference in their entirety.
- This application contains a computer readable Sequence Listing which has been submitted in XML file format via Patent Center, the entire content of which is incorporated by reference herein in its entirety. The Sequence Listing XML file submitted via Patent Center is entitled “13371-263-999_seqlist.xml”, was created on Aug. 11, 2022 and is 67,391 bytes in size.
- The present invention concerns anti-BCMA heavy chain-only antibodies (UniAb). The invention further concerns methods of making such antibodies, compositions, including pharmaceutical compositions, comprising such antibodies, and their use to treat a B-cell disorder characterized by the expression of BCMA.
- B-Cell Maturation Antigen (BCMA)
- BCMA, also known as tumor necrosis factor superfamily member 17 (TNFRSF17) (UniProt Q02223), is a cell surface receptor exclusively expressed on plasma cells and plasmablasts. BCMA is a receptor for two ligands in the tumor necrosis factor (TNF) superfamily: APRIL (a proliferation-inducing ligand, also known as TNFSF13; TALL-2 and TRDL-1; the high affinity ligand for BCMA) and B cell activation factor (BAFF) (also known as BLyS; TALL-1; THANK; zTNF4; TNFSF20; and D8Ertd387e; the low affinity ligand for BCMA). APRIL and BAFF are growth factors that bind BCMA and promote survival of plasma cells. BCMA is also highly expressed on malignant plasma cells in human multiple myeloma (MM). Antibodies binding to BCMA are described, for example, in Gras et al., 1995, Int. Immunol. 7:1093-1106, WO200124811 and WO200124812. Anti-BCMA antibodies that cross-react with TACI are described in WO2002/066516. Bispecific antibodies against BCMA and CD3 are described, for example, in US 2013/0156769 A1 and US 2015/0376287 A1. An anti-BCMA antibody-MMAE or -MMAF conjugate has been reported to selectively induce killing of multiple myeloma cells (Tai et al., Blood 2014, 123(20): 3128-38). Ali et al., Blood 2016, 128(13):1688-700, have reported that in a clinical trial (#NCT02215967) chimeric antigen receptor (CAR) T cells targeting BCMA resulted in remission of multiple myeloma in human patients.
- Heavy Chain-Only Antibodies
- In a conventional IgG antibody, the association of the heavy chain and light chain is due in part to a hydrophobic interaction between the light chain constant region and the CH1 constant domain of the heavy chain. There are additional residues in the heavy chain framework 2 (FR2) and framework 4 (FR4) regions that also contribute to this hydrophobic interaction between the heavy and light chains.
- It is known, however, that sera of camelids (sub-order Tylopoda which includes camels, dromedaries and llamas) contain a major type of antibodies composed solely of paired H-chains (heavy-chain only antibodies or UniAbs). The UniAbs of Camelidae (Camelus dromedarius, Camelus bactrianus, Lama glama, Lama guanaco, Lama alpaca and Lama vicugna) have a unique structure consisting of a single variable domain (VHH), a hinge region and two constant domains (CH2 and CH3), which are highly homologous to the CH2 and CH3 domains of classical antibodies. These UniAbs lack the first domain of the constant region (CH1) which is present in the genome, but is spliced out during mRNA processing. The absence of the CH1 domain explains the absence of the light chain in the UniAbs, since this domain is the anchoring place for the constant domain of the light chain. Such UniAbs naturally evolved to confer antigen-binding specificity and high affinity by three CDRs from conventional antibodies or fragments thereof (Muyldermans, 2001; J Biotechnol 74:277-302; Revets et al., 2005; Expert Opin Biol Ther 5:111-124). Cartilaginous fish, such as sharks, have also evolved a distinctive type of immunoglobulin, designated as IgNAR, which lacks the light polypeptide chains and is composed entirely by heavy chains. IgNAR molecules can be manipulated by molecular engineering to produce the variable domain of a single heavy chain polypeptide (vNARs) (Nuttall et al. Eur. J. Biochem. 270, 3543-3554 (2003); Nuttall et al. Function and Bioinformatics 55, 187-197 (2004); Dooley et al., Molecular Immunology 40, 25-33 (2003)).
- The ability of heavy chain-only antibodies devoid of light chain to bind antigen was established in the 1960s (Jaton et al. (1968) Biochemistry, 7, 4185-4195). Heavy chain immunoglobulin physically separated from light chain retained 80% of antigen-binding activity relative to the tetrameric antibody. Sitia et al. (1990) Cell, 60, 781-790 demonstrated that removal of the CH1 domain from a rearranged mouse μ gene results in the production of a heavy chain-only antibody, devoid of light chain, in mammalian cell culture. The antibodies produced retained VH binding specificity and effector functions.
- Heavy chain antibodies with a high specificity and affinity can be generated against a variety of antigens through immunization (van der Linden, R. H., et al. Biochim. Biophys. Acta. 1431, 37-46 (1999)) and the VHH portion can be readily cloned and expressed in yeast (Frenken, L. G. J., et al. J. Biotechnol. 78, 11-21 (2000)). Their levels of expression, solubility and stability are significantly higher than those of classical F(ab) or Fv fragments (Ghahroudi, M. A. et al. FEBS Lett. 414, 521-526 (1997)).
- Mice in which the (lambda) light (L) chain locus and/or the λ and κ (kappa) L chain loci have been functionally silenced and antibodies produced by such mice are described in U.S. Pat. Nos. 7,541,513 and 8,367,888. Recombinant production of heavy chain-only antibodies in mice and rats has been reported, for example, in WO2006008548; U.S. Application Publication No. 20100122358; Nguyen et al., 2003, Immunology; 109(1), 93-101; Brüggemann et al., Crit. Rev. Immunol.; 2006, 26(5):377-90; and Zou et al., 2007, J Exp Med; 204(13): 3271-3283. The production of knockout rats via embryo microinjections of zinc-finger nucleases is described in Geurts et al., 2009, Science, 325(5939):433. Soluble heavy chain-only antibodies and transgenic rodents comprising a heterologous heavy chain locus producing such antibodies are described in U.S. Pat. Nos. 8,883,150 and 9,365,655. CAR-T structures comprising single-domain antibodies as binding (targeting) domains are described, for example, in Iri-Sofla et al., 2011, Experimental Cell Research 317:2630-2641 and Jamnani et al., 2014, Biochim Biophys Acta, 1840:378-386.
- The present invention concerns heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA).
- In one aspect, the invention concerns a heavy chain-only antibody anti-BCMA antibody comprising a heavy chain variable region comprising:
- (a) a CDR1 having two or fewer substitutions in any of the amino acid sequences of SEQ ID NOs: 1 to 7; and/or
- (b) a CDR2 having two or fewer substitutions in any of the amino acid sequences of SEQ ID NOs: 8 to 11; and/or
- (c) a CDR3 having two or fewer substitutions in any of the amino acid sequences of SEQ ID NOs: 12 to 15.
- In one embodiment, the CDR1, CDR2, and CDR3 sequences are present in a human framework.
- In another embodiment, the heavy chain-only antibody further comprises a heavy chain constant region sequence in the absence of a CH1 sequence.
- In yet another embodiment, the heavy chain-only antibody comprises:
- (a) a CDR1 sequence selected from the group consisting of SEQ ID NOs: 1 to 7; and/or
- (b) a CDR2 sequence selected from the group consisting of SEQ ID NOs: 8 to 11; and/or
- (c) a CDR3 sequence selected from the group consisting of SEQ ID NOs: 12 to 15.
- In a further embodiment, the heavy chain-only antibody comprises:
- (a) a CDR1 sequence selected from the group consisting of SEQ ID NOs: 1 to 7; and
- (b) a CDR2 sequence selected from the group consisting of SEQ ID NOs: 8 to 11; and
- (c) a CDR3 sequence selected from the group consisting of SEQ ID NOs: 12 to 15.
- In a still further embodiment, the heavy chain only antibody comprises:
- (i) a CDR1 sequence of SEQ ID NO: 1, a CDR2 sequence of SEQ ID NO: 8, and a CDR3 sequence of SEQ ID NO: 12; or
- (ii) a CDR1 sequence of SEQ ID NO: 1, a CDR2 sequence of SEQ ID NO: 8, and a CDR3 sequence of SEQ ID NO: 14; or
- (iii) a CDR1 sequence of SEQ ID NO: 2, a CDR2 sequence of SEQ ID NO: 9, and a CDR3 sequence of SEQ ID NO: 13; or
- (iv) a CDR1 sequence of SEQ ID NO: 1, a CDR2 sequence of SEQ ID NO: 8, and a CDR3 sequence of SEQ ID NO: 15.
- In a different embodiment, the heavy chain-only antibody comprises a heavy chain variable region having at least 95% sequence identity to any of the sequences of SEQ ID NOs: 16 to 50.
- In another embodiment, the heavy chain-only antibody of comprises a heavy chain variable region sequence selected from the group consisting of SEQ ID NOs: 16 to 50.
- In a further embodiment, the heavy chain-only antibody comprises a heavy chain variable region sequence selected from the group consisting of SEQ ID NOs: 16, 17, 18, 30, 34, and 38.
- The invention further concerns a heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA) comprising a heavy chain variable region comprising a heavy chain variable comprising
-
- (a) a CDR1 sequence of the formula
-
G F T X1 X2 X3 X4 X5 - where
-
- X1 is V, I, or F;
- X2 is S or T;
- X3 is S or N;
- X4 is Y or S;
- X5 is G or A;
- (b) a CDR2 sequence of the formula
-
I X6 G X7 X8 X9 X10 T - where
- X6 is R or S;
- X7 is S or D;
- X8 is D, G, or S;
- X9 is G or D;
- X10 is S, T or N; and
- (c) a CDR3 sequence of the formula
-
A K Q G X11 N D G P F D X12 - where
- X9 is G or E;
- X10 is Y or H.
- The invention further concerns a heavy chain-only anti-BCMA antibody comprising a heavy chain variable region comprising CDR1, CDR2 and CDR3 sequences in a human VH framework wherein the CDR sequences comprise two or fewer substitutions in a CDR sequence selected from the group consisting of SEQ ID NOs: 1-15.
- In one embodiment, the heavy chain-only antibody comprises a heavy chain variable region comprising CDR1, CDR2 and CDR3 sequences in a human VH framework wherein the CDR sequences are selected from the group consisting of SEQ ID NOs: 1-15.
- In another embodiment, the heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA) comprises a heavy chain variable region comprising
-
- (i) a CDR1 sequence of SEQ ID NO: 1, a CDR2 sequence of SEQ ID NO: 8, and a CDR3 sequence of SEQ ID NO: 12; or
- (ii) a CDR1 sequence of SEQ ID NO: 1, a CDR2 sequence of SEQ ID NO: 8, and a CDR3 sequence of SEQ ID NO: 14; or
- (iii) a CDR1 sequence of SEQ ID NO: 2, a CDR2 sequence of SEQ ID NO: 9, and a CDR3 sequence of SEQ ID NO: 13; or
- (iv) a CDR1 sequence of SEQ ID NO: 1, a CDR2 sequence of SEQ ID NO: 8, and a CDR3 sequence of SEQ ID NO: 15,
- in a human VH framework.
- In all embodiments, the heavy chain-only antibody may be multi-specific, such as bispecific.
- In certain embodiments, the bispecific heavy chain-only anti-BCMA antibody has binding affinity to two different BCMA proteins, or to two different epitopes on the same BCMA protein.
- In other embodiments, the bispecific heavy chain-only anti-BCMA antibody has binding affinity to an effector cell, such as a T-cell antigen.
- In further embodiments, the bispecific heavy chain-only anti-BCMA antibody has binding affinity to CD3.
- In various embodiments, the multi- or bispecific anti-BCMA antibody can be in a CAR-T format.
- In another aspect the invention concerns a pharmaceutical composition comprising a heavy chain-only antibody as hereinabove described.
- In yet another aspect, the invention concerns a method for the treatment of a B-cell disorder characterized by the expression of BCMA, the method comprising administering to a subject with such disorder an antibody or a pharmaceutical composition as hereinabove described.
- In some embodiments, the B-cell disorder may, for example, be multiple myeloma or systemic lupus erythematosus.
- In a further aspect, the invention concerns a polynucleotide encoding an anti-BCMA antibody as described herein.
- In a still further aspect, the invention concerns a vector comprising a polynucleotide encoding an anti-BCMA antibody as described herein.
- The invention further concerns a cell comprising a vector comprising a polynucleotide encoding an anti-BCMA antibody as described herein.
- The invention also concerns a method of producing an antibody as described herein, the method comprising growing a cell (e.g., a host cell) comprising a polynucleotide encoding an anti-BCMA antibody as described herein under conditions permissive for expression of the protein, and isolating the antibody from the cells and/or the cell culture medium. In one embodiment, the method comprises immunizing a UniRat animal with BCMA and identifying BCMA-binding heavy chain antibody sequences.
- These and further aspects will be further explained in the rest of the disclosure, including the Examples.
-
FIG. 1 shows the CDR1, CDR2 and CDR3 amino acid sequences of 35 heavy chain-only anti-BCMA antibodies of the invention. -
FIG. 2 shows the heavy chain variable region sequences of 35 heavy chain-only anti-BCMA antibodies of the invention. -
FIG. 3 shows binding of BCMA protein and BCMA-expressing cell lines.Column 1 indicates the clone ID of the heavy chain-only antibody (UniAb) tested.Column 2 indicates the concentration of UniAb expressed in the supernatant.Column 3 indicates the ELISA fold over background signal of human BCMA protein binding.Column 4 indicates the ELISA fold over background signal of human IgG1κ protein binding.Column 5 indicates the ELISA fold over background signal of human lambda protein binding.Column 6 indicates the ELISA fold over background signal of human serum albumin protein binding.Column 7 indicates the ELISA fold over background signal of baculovirus protein binding.Column 8 indicates the percent blocking of the April ligand protein to BCMA protein.Column 9 indicates the mean fluorescent intensity of cell binding to RPMI-8226 cells that express BCMA on the cell surface.Column 10 indicates the mean fluorescent intensity of cell binding to NCI-H929 cells that express BCMA on the cell surface.Column 11 indicates the mean fluorescent intensity of cell binding to HDLM2 cells that do not express BCMA on the cell surface. -
FIG. 4 shows the binding affinity of anti-BCMA heavy chain-onlyantibody 308902 in monovalent and bivalent forms, as measured by BioLayer Interferometry, using an Octet QK384 instrument (Fortebio Inc., Menlo Park, Calif.) in kinetics mode. The binding affinity (Kd) of the monovalent form was 779 pM and the Kd of the bivalent form was 53 pM. -
FIG. 5 is a graphic illustration of an scFv CAR-T construct, a monospecific human VH CAR-T construct, and a bispecific human VH CAR-T construct. - The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, second edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987, and periodic updates); “PCR: The Polymerase Chain Reaction”, (Mullis et al., ed., 1994); “A Practical Guide to Molecular Cloning” (Perbal Bernard V., 1988); “Phage Display: A Laboratory Manual” (Barbas et al., 2001); Harlow, Lane and Harlow, Using Antibodies: A Laboratory Manual: Portable Protocol No. I, Cold Spring Harbor Laboratory (1998); and Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory; (1988).
- Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
- Unless indicated otherwise, antibody residues herein are numbered according to the Kabat numbering system (e.g., Kabat et al., Sequences of Immunological Interest. 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
- In the following description, numerous specific details are set forth to provide a more thorough understanding of the present invention. However, it will be apparent to one of skill in the art that the present invention may be practiced without one or more of these specific details. In other instances, well-known features and procedures well known to those skilled in the art have not been described in order to avoid obscuring the invention.
- All references cited throughout the disclosure, including patent applications and publications, are incorporated by reference herein in their entirety.
- By “comprising” it is meant that the recited elements are required in the composition/method/kit, but other elements may be included to form the composition/method/kit etc. within the scope of the claim.
- By “consisting essentially of”, it is meant a limitation of the scope of composition or method described to the specified materials or steps that do not materially affect the basic and novel characteristic(s) of the subject invention.
- By “consisting of”, it is meant the exclusion from the composition, method, or kit of any element, step, or ingredient not specified in the claim.
- The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
- The terms “heavy chain-only antibody,” “heavy-chain antibody” and “UniAb” are used interchangeably, and refer, in the broadest sense, to antibodies lacking the light chain of a conventional antibody. Since the homodimeric UniAbs lack a light chain and thus a VL domain, the antigen is recognized by one single domain, i.e., the variable domain of the heavy chain of a heavy-chain antibody (VH). The term specifically includes, without limitation, homodimeric antibodies comprising the VH antigen-binding domain and the CH2 and CH3 constant domains, in the absence of the CH1 domain; functional (antigen-binding) variants of such antibodies, soluble VH variants, Ig-NAR comprising a homodimer of one variable domain (V-NAR) and five C-like constant domains (C-NAR) and functional fragments thereof; and soluble single domain antibodies (sUniDabs). In one embodiment, the heavy chain-only antibody is composed of the variable region antigen-binding domain composed of
framework 1, CDR1,framework 2, CDR2,framework 3, CDR3, andframework 4. In one embodiment, the heavy chain-only antibody is composed of an antigen-binding domain, at least part of a hinge region and CH2 and CH3 domains. In another embodiment, the heavy chain-only antibody is composed of an antigen-binding domain, at least part of a hinge region and a CH2 domain. In a further embodiment, the heavy chain-only antibody is composed of an antigen-binding domain, at least part of a hinge region and a CH3 domain. Heavy chain-only antibodies in which the CH2 and/or CH3 domain is truncated are also included herein. In a further embodiment the heavy chain is composed of an antigen binding domain, and at least one CH (CH1, CH2, CH3, or CH4) domain but no hinge region. The heavy chain-only antibody can be in the form of a dimer, in which two heavy chains are disulfide bonded other otherwise, covalently or non-covalently attached with each other. The heavy chain-only antibody may belong to the IgG subclass, but antibodies belonging to other subclasses, such as IgM, IgA, IgD and IgE subclass, are also included herein. In a particular embodiment, the heavy chain antibody is of the IgG1, IgG2, IgG3, or IgG4 subtype, in particular IgG1 subtype. In one embodiment, the heavy chain-only antibodies herein are used as a binding (targeting) domain of a chimeric antigen receptor (CAR). - The term “BCMA” as used herein relates to human B cell maturation antigen, also known as BCMA, CD269, and TNFRSF17 (UniProt Q02223), which is a member of the tumor necrosis receptor superfamily that is preferentially expressed in differentiated plasma cells. The extracellular domain of human BCMA consists, according to UniProt of amino acids 1-54 (or 5-51).
- The term “anti-BCMA heavy chain-only antibody,” and “BCMA heavy chain-only antibody” are used herein to refer to a heavy chain-only antibody as hereinabove defined, immunospecifically binding to BCMA.
- The term “variable”, as used in connection with antibodies, refers to the fact that certain portions of the antibody variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FRs). The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
- The term “hypervariable region” when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g. residues 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” residues 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). “Framework Region” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
- Exemplary CDR designations are shown herein, however one of skill in the art will understand that a number of definitions of the CDRs are commonly in use, including the Kabat definition (see “Zhao et al. A germline knowledge based computational approach for determining antibody complementarity determining regions.” Mol Immunol. 2010; 47:694-700), which is based on sequence variability and is the most commonly used. The Chothia definition is based on the location of the structural loop regions (Chothia et al. “Conformations of immunoglobulin hypervariable regions.” Nature. 1989; 342:877-883). Alternative CDR definitions of interest include, without limitation, those disclosed by Honegger, “Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool.” J Mol Biol. 2001; 309:657-670; Ofran et al. “Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes.” J Immunol. 2008; 181:6230-6235; Almagro “Identification of differences in the specificity-determining residues of antibodies that recognize antigens of different size: implications for the rational design of antibody repertoires.” J Mol Recognit. 2004; 17:132-143; and Padlan et al. “Identification of specificity-determining residues in antibodies.” Faseb J. 1995; 9:133-139., each of which is herein specifically incorporated by reference.
- The term “2 (two) or fewer substitutions” in an amino acid sequence is used herein to mean 2 (two), 1 (one) or 0 (zero) substitutions in the reference amino acid sequence.
- “Percent (%) amino acid sequence identity” with respect to a reference polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the reference polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2.
- An “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
- Antibodies of the invention include multi-specific antibodies. Multi-specific antibodies have more than one binding specificity. The term “multi-specific” specifically includes “bispecific” and “trispecific,” as well as higher-order independent specific binding affinities, such as higher-order polyepitopic specificity, as well as tetravalent antibodies and antibody fragments. “Multi-specific” antibodies specifically include antibodies comprising a combination of different binding entities as well as antibodies comprising more than one of the same binding entity. The terms “multi-specific antibody,” multi-specific single chain-only antibody” and “multi-specific UniAb” are used herein in the broadest sense and cover all antibodies with more than one binding specificity.
- The term “valent” as used herein refers to a specified number of binding sites in an antibody molecule.
- A “multi-valent” antibody has two or more binding sites. Thus, the terms “bivalent”, “trivalent”, and “tetravalent” refer to the presence of two binding sites, three binding sites, and four binding sites, respectively. Thus, a bispecific antibody according to the invention is at least bivalent and may be trivalent, tetravalent, or otherwise multi-valent.
- A large variety of methods and protein configurations are known and used for the preparation of bispecific monoclonal antibodies (BsMAB), tri-specific antibodies, and the like.
- The term “bispecific three-chain antibody like molecule” or “TCA” is used herein to refer to antibody-like molecules comprising, consisting essentially of, or consisting of three polypeptide subunits, two of which comprise, consist essentially of, or consist of one heavy and one light chain of a monoclonal antibody, or functional antigen-binding fragments of such antibody chains, comprising an antigen-binding region and at least one CH domain. This heavy chain/light chain pair has binding specificity for a first antigen. The third polypeptide subunit comprises, consists essentially of, or consists of a heavy chain only antibody comprising an Fc portion comprising CH2 and/or CH3 and/or CH4 domains, in the absence of a CH1 domain, and an antigen binding domain that binds an epitope of a second antigen or a different epitope of the first antigen, where such binding domain is derived from or has sequence identity with the variable region of an antibody heavy or light chain. Parts of such variable region may be encoded by VH and/or VL gene segments, D and JH gene segments, or JL gene segments. The variable region may be encoded by rearranged VHDJH, VLDJH, VHJL, or VLJL gene segments. A TCA protein makes use of a heavy chain-only antibody as hereinabove defined.
- The term “chimeric antigen receptor” or “CAR” is used herein in the broadest sense to refer to an engineered receptor, which grafts a desired binding specificity (e.g. the antigen-binding region of a monoclonal antibody or other ligand) to membrane-spanning and intracellular-signaling domains. Typically, the receptor is used to graft the specificity of a monoclonal antibody onto a T cell to create a chimeric antigen receptors (CAR). (J Natl Cancer Inst, 2015; 108(7):dvj439; and Jackson et al., Nature Reviews Clinical Oncology, 2016; 13:370-383.) Representative monospecific and bispecific CAR-T constructs comprising a human VH extracellular binding domain are shown in
FIG. 5 , in comparison to an scFv CAR-T construct. - By “human idiotype” is meant a polypeptide sequence epitope present on a human antibody in the immunoglobulin heavy and/or light chain variable region. The term “human idiotype” as used herein includes both naturally occurring sequences of a human antibody, as well as synthetic sequences substantially identical to the polypeptide found in naturally occurring human antibodies. By “substantially” is meant that the degree of amino acid sequence identity is at least about 85%-95%. Preferably, the degree of amino acid sequence identity is greater than 90%, more preferably greater than 95%.
- By a “chimeric antibody” or a “chimeric immunoglobulin” is meant an immunoglobulin molecule comprising amino acid sequences from at least two different Ig loci, e.g., a transgenic antibody comprising a portion encoded by a human Ig locus and a portion encoded by a rat Ig locus. Chimeric antibodies include transgenic antibodies with non-human Fc-regions or artificial Fc-regions, and human idiotypes. Such immunoglobulins can be isolated from animals of the invention that have been engineered to produce such chimeric antibodies.
- Antibody “effector functions” refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody. Examples of antibody effector functions include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc.
- “Antibody-dependent cell-mediated cytotoxicity” and “ADCC” refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express Fc receptors (FcRs) (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells in summarized is Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in U.S. Pat. No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in an animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).
- “Human effector cells” are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source thereof, e.g., from blood or PBMCs as described herein.
- “Complement dependent cytotoxicity” or “CDC” refers to the ability of a molecule to lyse a target in the presence of complement. The complement activation pathway is initiated by the binding of the first component of the complement system (Clq) to a molecule (e.g. an antibody) complexed with a cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.
- “Binding affinity” refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity which reflects a 1:1 interaction between members of a binding pair (e.g., antibody and antigen). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd) Affinity can be measured by common methods known in the art. Low-affinity antibodies generally bind antigen slowly and tend to dissociate readily, whereas high-affinity antibodies generally bind antigen faster and tend to remain bound.
- As used herein, the “Kd” or “Kd value” refers to a dissociation constant determined by BioLayer Interferometry, using an Octet QK384 instrument (Fortebio Inc., Menlo Park, Calif.) in kinetics mode. For example, anti-mouse Fc sensors are loaded with mouse-Fc fused antigen and then dipped into antibody-containing wells to measure concentration dependent association rates (kon). Antibody dissociation rates (koff) are measured in the final step, where the sensors are dipped into wells containing buffer only. The Kd is the ratio of koff/kon. (For further details see, Concepcion, J, et al., Comb Chem High Throughput Screen, 12(8), 791-800, 2009).
- An “epitope” is the site on the surface of an antigen molecule to which a single antibody molecule binds. Generally an antigen has several or many different epitopes and reacts with many different antibodies. The term specifically includes linear epitopes and conformational epitopes.
- “Epitope mapping” is the process of identifying the binding sites, or epitopes, of antibodies on their target antigens. Antibody epitopes may be linear epitopes or conformational epitopes. Linear epitopes are formed by a continuous sequence of amino acids in a protein. Conformational epitopes are formed of amino acids that are discontinuous in the protein sequence, but which are brought together upon folding of the protein into its three-dimensional structure.
- “Polyepitopic specificity” refers to the ability to specifically bind to two or more different epitopes on the same or different target(s).
- An antibody binds “essentially the same epitope” as a reference antibody, when the two antibodies recognize identical or sterically overlapping epitopes. The most widely used and rapid methods for determining whether two epitopes bind to identical or sterically overlapping epitopes are competition assays, which can be configured in all number of different formats, using either labeled antigen or labeled antibody. Usually, the antigen is immobilized on a 96-well plate, and the ability of unlabeled antibodies to block the binding of labeled antibodies is measured using radioactive or enzyme labels.
- The terms “treatment”, “treating” and the like are used herein to generally mean obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. “Treatment” as used herein covers any treatment of a disease in a mammal, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease. The therapeutic agent may be administered before, during or after the onset of disease or injury. The treatment of ongoing disease, where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, is of particular interest. Such treatment is desirably performed prior to complete loss of function in the affected tissues. The subject therapy may be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
- A “therapeutically effective amount” is intended for an amount of active agent which is necessary to impart therapeutic benefit to a subject. For example, a “therapeutically effective amount” is an amount which induces, ameliorates or otherwise causes an improvement in the pathological symptoms, disease progression or physiological conditions associated with a disease or which improves resistance to a disorder.
- The terms “subject,” “individual,” and “patient” are used interchangeably herein to refer to a mammal being assessed for treatment and/or being treated. In an embodiment, the mammal is a human. The terms “subject,” “individual,” and “patient” encompass, without limitation, individuals having cancer, individuals with autoimmune diseases, with pathogen infections, and the like. Subjects may be human, but also include other mammals, particularly those mammals useful as laboratory models for human disease, e.g. mouse, rat, etc.
- The term “CD3” refers to the human CD3 protein multi-subunit complex. The CD3 protein multi-subunit complex is composed to 6 distinctive polypeptide chains. These include a CD3γ chain (SwissProt P09693), a CD3δ chain (SwissProtP04234), two CD3ε chains (SwissProt P07766), and one CD3ζ chain homodimer (SwissProt 20963), and which is associated with the T cell receptor α and β chain. The term “CD3” includes any CD3 variant, isoform and species homolog which is naturally expressed by cells (including T cells) or can be expressed on cells transfected with genes or cDNA encoding those polypeptides, unless noted.
- A “BCMA×CD3 antibody” is a multispecific heavy chain-only antibody, such as a bispecific heavy chain-only antibody, which comprises two different antigen-binding regions, one of which binds specifically to the antigen BCMA and one of which binds specifically to CD3.
- The term “pharmaceutical formulation” refers to a preparation which is in such form as to permit the biological activity of the active ingredient to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered. Such formulations are sterile. “Pharmaceutically acceptable” excipients (vehicles, additives) are those which can reasonably be administered to a subject mammal to provide an effective dose of the active ingredient employed.
- A “sterile” formulation is aseptic or free or essentially free from all living microorganisms and their spores. A “frozen” formulation is one at a temperature below 0° C.
- A “stable” formulation is one in which the protein therein essentially retains its physical stability and/or chemical stability and/or biological activity upon storage. Preferably, the formulation essentially retains its physical and chemical stability, as well as its biological activity upon storage. The storage period is generally selected based on the intended shelf-life of the formulation. Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301. Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones. A. Adv. Drug Delivery Rev. 10: 29-90) (1993), for example. Stability can be measured at a selected temperature for a selected time period. Stability can be evaluated qualitatively and/or quantitatively in a variety of different ways, including evaluation of aggregate formation (for example using size exclusion chromatography, by measuring turbidity, and/or by visual inspection); by assessing charge heterogeneity using cation exchange chromatography, image capillary isoelectric focusing (icIEF) or capillary zone electrophoresis; amino-terminal or carboxy-terminal sequence analysis; mass spectrometric analysis; SDS-PAGE analysis to compare reduced and intact antibody; peptide map (for example tryptic or LYS-C) analysis; evaluating biological activity or antigen binding function of the antibody; etc. Instability may involve any one or more of: aggregation, deamidation (e.g., Asn deamidation), oxidation (e.g., Met oxidation), isomerization (e.g., Asp isomeriation), clipping/hydrolysis/fragmentation (e.g., hinge region fragmentation), succinimide formation, unpaired cysteine(s), N-terminal extension, C-terminal processing, glycosylation differences, etc.
- Anti-BCMA Antibodies
- The present invention provides a family of closely related heavy chain-only antibodies that bind to human BCMA. The antibodies of this family comprise a set of CDR sequences as defined herein and shown in
FIG. 1 , and are exemplified by the provided heavy chain variable region (VH) sequences ofSEQ ID NOs 16 to 50 set forth inFIG. 2 . The families of antibodies provide a number of benefits that contribute to utility as clinically therapeutic agent(s). The antibodies include members with a range of binding affinities, allowing the selection of a specific sequence with a desired binding affinity. - A suitable antibody may be selected from those provided herein for development and therapeutic or other use, including, without limitation, use as a bispecific or tri-specific antibody, or part of a CAR-T structure, e.g., as shown in
FIG. 5 . - Determination of affinity for a candidate protein can be performed using methods known in the art, such as Biacore measurements. Members of the antibody family may have an affinity for BCMA with a Ka of from about 10−6 to around about 10−11, including without limitation: from about 10−6 to around about 10−10; from about 10−6 to around about 10−9; from about 10−6 to around about 10′; from about 10−6 to around about 10−11; from about 10−6 to around about 10−10; from about 10−6 to around about 10−9; from about 10−9 to around about 10−11; from about 10−9 to around about 10−10; or any value within these ranges. The affinity selection may be confirmed with a biological assessment for modulating, e.g., blocking, a BCMA biological activity, including in vitro assays, pre-clinical models, and clinical trials, as well as assessment of potential toxicity.
- Members of the antibody family herein are not cross-reactive with the BCMA protein of Cynomolgus macaque but can be engineered to provide cross-reactivity with the BCMA protein of Cynomolgus macaque, or with the BCMA of any other animal species, if desired.
- The family of BCMA specific antibodies herein comprises a VH domain, comprising CDR1, CDR2 and CDR3 sequences in a human VH framework. The CDR sequences may be situated, as an example, in the region of around amino acid residues 26-35; 53-59; and 98-117 for CDR1, CDR2 and CDR3, respectively, of the provided exemplary variable region sequences set forth in SEQ ID NOs: 16 to 50. It will be understood by one of skill in the art that the CDR sequences may be in different position if a different framework sequence is selected, although generally the order of the sequences will remain the same.
- The CDR1, CDR2, and CDR3 sequences of the anti-BCMA antibodies of the present invention may be encompassed by the following structural formulas, where an X indicates a variable amino acid, which may be specific amino acids as indicated below.
-
-
G F T X1 X2 X3 X4 X5 - where
-
- X1 is V, I, or F;
- X2 is S or T;
- X3 is S or N;
- X4 is Y or S;
- X5 is G or A.
- In one embodiment, X1 is V or I; X2 is S; X3 is S; X4 is Y; and X5 is G. In another embodiment, CDR1 is selected from the sequence of SEQ ID NOs: 1-6. In yet another embodiment, CDR1 comprises the sequence of
SEQ ID NOs -
-
I X6 G X7 X8 X9 X10 T - where
- X6 is R or S;
- X7 is S or D;
- X8 is D, G, or S;
- X9 is G or D;
- X10 is S, T or N.
- In one embodiment, X6 is D and X7 is G. In another embodiment, X8 is S. In yet another embodiment, X9 is G and X10 is T. In a further embodiment, X9 is G and X10 is S. In a still further embodiment, X9 is G and X10 is T. In another embodiment, CDR2 is selected from the sequence of SEQ ID NOs: 8-11. In yet another embodiment, CDR2 comprises the sequence of SEQ ID NO: 8 or 9. In a particular embodiment, CDR2 comprises the sequence IRGSDGST (SEQ ID NO: 8).
-
-
A K Q G X11 N D G P F D X12 - where
- X9 is G or E;
- X10 is Y or H.
- In one embodiment, X9 is G and X10 is Y. In another embodiment, X9 is G and X10 is H. In another embodiment, X9 is E and X10 is H. In a further embodiment, X9 is E and X10 is Y. In a still further embodiment, CDR3 is selected from the sequence of SEQ ID NOs: 12-15. In another embodiment, CDR3 comprises the sequence of SEQ ID NO: 12, 14 or 15. In yet another embodiment, CDR3 comprises the sequence AKQGENDGPFDH (SEQ ID NO: 14).
- Representative CDR1, CDR2, and CDR3 sequences are shown in
FIG. 1 . - In one embodiment, the anti-BCMA heavy chain-only antibody of the present invention comprises the CDR1 sequence of SEQ ID NO: 1; the CDR2 sequence of SEQ ID NO: 8 and a CDR3 sequence of SEQ ID NO: 12 or 14.
- In another embodiment, the anti-BCMA heavy chain-only antibody of the present invention comprises the CDR1 sequence of SEQ ID NO: 2; a CDR2 sequence of SEQ ID NO: 8 or 9; and a CDR3 sequence of SEQ ID NO: 12, 13, 14 or 15.
- In a further embodiment, the anti-BCMA heavy chain-only antibody of the present invention comprises the CDR1 sequence of SEQ ID NO:1; the CDR2 sequence of SEQ ID NO: 8; and the CDR3 sequence of SEQ ID NO: 14.
- In further embodiments, the anti-BCMA antibody of the present invention comprises any of the heavy chain variable region amino acid sequences of SEQ ID NOs: 16 to 50 (
FIG. 2 ). - In a still further embodiment, the anti-BCMA heavy chain-only antibody of the present invention comprises the heavy chain variable region sequence of SEQ ID NO: 34 (antibody 308902).
- In some embodiments, a CDR sequence in the anti-BMA antibodies of the present invention comprises one or two amino acid substitutions relative to a CDR1, CDR2 and/or CDR3 sequence or set of CDR1, CDR2 and CDR3 sequences in any one of SEQ ID NOs:1 to 15 (
FIG. 1 ). In some embodiments said amino acid substitution(s) are one or two of amino acid positions 4-6 of CDR1, and/or one or two of the amino acid positions of 2, 4-7 of CDR2, and/or one or two of theamino acid positions FIG. 2 . - In some embodiments, bispecific or multispecific antibodies are provided, which may have any of the configurations discussed herein, including, without limitation, a three chain bispecific antibody. Bispecific antibodies comprise at least the heavy chain variable region of an antibody specific for a protein other than BCMA.
- Where a protein of the invention is a bispecific antibody, one binding moiety is specific for human BCMA while the other arm may be specific for target cells, tumor associated antigens, targeting antigens, e.g., integrins, etc., pathogen antigens, checkpoint proteins, and the like. Target cells specifically include cancer cells, such as hematologic tumors, e.g., B-cell tumors, as discussed below.
- Various formats of bispecific antibodies are within the ambit of the invention, including, without limitation, single chain polypeptides, two chain polypeptides, three chain polypeptides, four chain polypeptides, and multiples thereof. The bispecific antibodies herein specifically include T-cell bispecific antibodies binding to BCMA, which is selectively expressed on plasma cells (PCs) and multiple myeloma (MM), and CD3 (anti-BCMA×anti-CD3 antibodies). Such antibodies induce potent T-cell mediated killing of cells carrying BCMA, and can be used to treat tumors, in particular hematologic tumors, such as B-cell tumors, as discussed below.
- Bispecific antibodies against CD3 and BCMA are described, for example, in WO2007117600, WO2009132058, WO2012066058, WO2012143498, WO2013072406, WO2013072415, and WO2014122144, and in US 20170051068.
- Pharmaceutical Compositions
- It is another aspect of the present invention to provide pharmaceutical compositions comprising one or more antibodies of the present invention in admixture with a suitable pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers as used herein are exemplified, but not limited to, adjuvants, solid carriers, water, buffers, or other carriers used in the art to hold therapeutic components, or combinations thereof.
- Pharmaceutical compositions of the antibodies used in accordance with the present invention are prepared for storage by mixing proteins having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (see, e.g., Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), such as in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).
- Pharmaceutical compositions for parenteral administration are preferably sterile and substantially isotonic and manufactured under Good Manufacturing Practice (GMP) conditions. Pharmaceutical compositions can be provided in unit dosage form (i.e., the dosage for a single administration). The formulation depends on the route of administration chosen. The antibodies herein can be administered by intravenous injection or infusion or subcutaneously. For injection administration, the antibodies herein can be formulated in aqueous solutions, preferably in physiologically-compatible buffers to reduce discomfort at the site of injection. The solution can contain carriers, excipients, or stabilizers as discussed above. Alternatively, antibodies can be in lyophilized form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- Anti-BCMA antibody formulations are disclosed, for example, in U.S. Pat. No. 9,034,324. Similar formulations can be used for the proteins of the present invention. Subcutaneous antibody formulations are described, for example, in US 20160355591 and US 20160166689.
- Methods of Use
- The pharmaceutical compositions herein can be used for the treatment of B-cell related disorders, including B-cell and plasma cell malignancies and autoimmune disorders characterized by the expression or overexpression of BCMA.
- Such B-cell related disorders include B-cell and plasma cell malignancies and autoimmune disorders, including, without limitation, plasmacytoma, Hodgkins' lymphoma, follicular lymphomas, small non-cleaved cell lymphomas, endemic Burkitt's lymphoma, sporadic Burkitt's lymphoma, marginal zone lymphoma, extranodal mucosa-associated lymphoid tissue lymphoma, nodal monocytoid B cell lymphoma, splenic lymphoma, mantle cell lymphoma, large cell lymphoma, diffuse mixed cell lymphoma, immunoblastic lymphoma, primary mediastinal B cell lymphoma, pulmonary B cell angiocentric lymphoma, small lymphocytic lymphoma, B cell proliferations of uncertain malignant potential, lymphomatoid granulomatosis, post-transplant lymphoproliferative disorder, an immunoregulatory disorder, rheumatoid arthritis, myasthenia gravis, idiopathic thrombocytopenia purpura, anti-phospholipid syndrome, Chagas' disease, Grave's disease, Wegener's granulomatosis, poly-arteritis nodosa, Sjogren's syndrome, pemphigus vulgaris, scleroderma, multiple sclerosis, anti-phospholipid syndrome, ANCA associated vasculitis, Goodpasture's disease, Kawasaki disease, autoimmune hemolytic anemia, and rapidly progressive glomerulonephritis, heavy-chain disease, primary or immunocyte-associated amyloidosis, or monoclonal gammopathy.
- The plasma cell disorders characterized by the expression of BCMA include Multiple Myeloma (MM). MM is a B-cell malignancy characterized by a monoclonal expansion and accumulation of abnormal plasma cells in the bone marrow compartment. Current therapies for MM often cause remissions, but nearly all patients eventually relapse and die. There is substantial evidence of an immune-mediated elimination of myeloma cells in the setting of allogeneic hematopoietic stem cell transplantation; however, the toxicity of this approach is high, and few patients are cured. Although some monoclonal antibodies have shown promise for treating MM in preclinical studies and early clinical trials, consistent clinical efficacy of any monoclonal antibody therapy for MM has not been conclusively demonstrated. There is therefore a great need for new therapies, including immunotherapies for MM (see, e.g., Carpenter et al., Clin Cancer Res 2013, 19(8):2048-2060).
- Overexpression or activation of BCMA by its proliferation-inducing ligand, APRIL it known to promote human Multiple Myeloma (MM) progression in vivo. BCMA has also been shown to promote in vivo growth of xenografted MM cells harboring p53 mutation in mice. Since activity of the APRIL/BCMA pathway plays a central role in MM pathogenesis and drug resistance via bidirectional interactions between tumor cells and their supporting bone marrow microenvironment, BCMA has been identified as a target for the treatment of MM. For further details see, e.g., Yu-Tsu Tai et al., Blood 2016; 127(25):3225-3236.
- Another B-cell disorder involving plasma cells i.e. expressing BCMA is systemic lupus erythematosus (SLE), also known as lupus. SLE is a systemic, autoimmune disease that can affect any part of the body and is represented with the immune system attacking the body's own cells and tissue, resulting in chronic inflammation and tissue damage. It is a Type III hypersensitivity reaction in which antibody-immune complexes precipitate and cause a further immune response (Inaki & Lee, Nat Rev Rheumatol 2010; 6: 326-337).
- The anti-BCMA heavy chain-only antibodies (UniAb) of the present invention can be used to develop therapeutic agents for the treatment of MM, SLE, and other B-cell disorders or plasma cell disorders characterized by the expression of BCMA, such as those listed above. In particular, the anti-BCMA heavy chain-only antibodies (UniAb) of the present invention are candidates for the treatment of MM, alone or in combination with other MM treatments.
- In one embodiment, the antibodies herein can be in the form of heavy chain-only anti-BCMA antibody-CAR structures, i.e., heavy chain-only anti-BCMA antibody-CAR-transduced T cell structures.
- Effective doses of the compositions of the present invention for the treatment of disease vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic. Usually, the patient is a human, but non-human mammals may also be treated, e.g., companion animals such as dogs, cats, horses, etc., laboratory mammals such as rabbits, mice, rats, etc., and the like. Treatment dosages can be titrated to optimize safety and efficacy.
- Dosage levels can be readily determined by the ordinarily skilled clinician, and can be modified as required, e.g., as required to modify a subject's response to therapy. The amount of active ingredient that can be combined with the carrier materials to produce a single dosage form varies depending upon the host treated and the particular mode of administration. Dosage unit forms generally contain between from about 1 mg to about 500 mg of an active ingredient.
- In some embodiments, the therapeutic dosage of the agent may range from about 0.0001 to 100 mg/kg, and more usually 0.01 to 5 mg/kg, of the host body weight. For example, dosages can be 1 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg. An exemplary treatment regimen entails administration once every two weeks or once a month or once every 3 to 6 months. Therapeutic entities of the present invention are usually administered on multiple occasions. Intervals between single dosages can be weekly, monthly or yearly. Intervals can also be irregular as indicated by measuring blood levels of the therapeutic entity in the patient. Alternatively, therapeutic entities of the present invention can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the polypeptide in the patient.
- Typically, compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared. The pharmaceutical compositions herein are suitable for intravenous or subcutaneous administration, directly or after reconstitution of solid (e.g., lyophilized) compositions. The preparation also can be emulsified or encapsulated in liposomes or micro particles such as polylactide, polyglycolide, or copolymer for enhanced adjuvant effect, as discussed above. Langer, Science 249: 1527, 1990 and Hanes, Advanced Drug Delivery Reviews 28: 97-119, 1997. The agents of this invention can be administered in the form of a depot injection or implant preparation which can be formulated in such a manner as to permit a sustained or pulsatile release of the active ingredient. The pharmaceutical compositions are generally formulated as sterile, substantially isotonic and in full compliance with all Good Manufacturing Practice (GMP) regulations of the U.S. Food and Drug Administration.
- Toxicity of the antibodies and antibody structures described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD50 (the dose lethal to 50% of the population) or the LD100 (the dose lethal to 100% of the population). The dose ratio between toxic and therapeutic effect is the therapeutic index. The data obtained from these cell culture assays and animal studies can be used in formulating a dosage range that is not toxic for use in humans. The dosage of the antibodies described herein lies preferably within a range of circulating concentrations that include the effective dose with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition.
- The compositions for administration will commonly comprise an antibody or other ablative agent dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Goodman & Gillman, The Pharmacological Basis of Therapeutics (Hardman et al., eds., 1996)).
- Also within the scope of the invention are kits comprising the active agents, and formulations thereof, of the invention, and instructions for use. The kits can further contain at least one additional reagent, e.g., a chemotherapeutic drug, etc. Kits typically include a label indicating the intended use of the contents of the kit. The term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit.
- The invention now being fully described, it will be apparent to one of ordinary skill in the art that various changes and modifications can be made without departing from the spirit or scope of the invention.
- Genetically Engineered Rats Expressing Heavy Chain-Only Antibodies
- A ‘human—rat’ IgH locus was constructed and assembled in several parts. This involved the modification and joining of rat C region genes downstream of human JHs and subsequently, the upstream addition of the human VH6—D-segment region. Two BACs with separate clusters of human VH genes [BAC6 and BAC3] were then co-injected with the BAC termed Georg, encoding the assembled and modified region comprising human VH6, all Ds, all JHs, and modified rat Cγ2a/1/2b (ΔCH1).
- Transgenic rats carrying artificial heavy chain immunoglobulin loci in unrearranged configuration were generated. The IgG2a(
ΔC H1)., IgG1(ΔCH1), IgG2b(ΔCH1) genes lacked theC H1 segment. The constant region genes IgE, IgA and 3′ enhancer were included in Georg BAC. RT-PCR and serum analysis (ELISA) of transgenic rats revealed productive rearrangement of transgenic immunoglobulin loci and expression of heavy chain only antibodies of various isotypes in serum. Transgenic rats were cross-bred with rats with mutated endogenous heavy chain and light chain loci previously described in US patent publication 2009/0098134 A1. Analysis of such animals demonstrated inactivation of rat immunoglobulin heavy and light chain expression and high level expression of heavy chain antibodies with variable regions encoded by human V, D, and J genes. Immunization of transgenic rats resulted in production of high titer serum responses of antigen-specific heavy chain antibodies. These transgenic rats expressing heavy chain antibodies with a human VDJ region were called UniRats. - Immunization
- Immunization with Recombinant Extracellular Domain of BCMA.
- Twelve UniRat animals (6 HC27, 6 HC28) were immunized with recombinant human BCMA protein. The animals were immunized according to standard protocol using a Titermax/Alhydrogel adjuvant. Recombinant extracellular domain of BCMA was purchased from R&D Systems and was diluted with sterile saline and combined with adjuvant. The immunogen was combined with Titermax and Alhydrogel adjuvants. The first immunization (priming) with immunogen in Titermax was administered in the left and right legs. Subsequent boosting immunizations were done in the presence of Alhydrogel and three days before harvest boosts were performed with immunogens in PBS. Serum was collected from rats at the final bleed to determine serum titers.
- Serum Titer Results
- Binding activity for a single 1:500 serum titer dilution is tested by ELISA against a huBCMA+Fc protein and a cynoBCMA+Fc protein produced in eukaryotic cells and two human BCMA proteins from E. coli and wheat germ, respectively. In addition, serum samples are tested against two off-target proteins, HSA and human IgG1. In addition, serum from all animals is assayed for binding to NCI-H929 cells (BCMA+, lambda−).
- Since usually a significant spread of results is observed in serum reactivity levels to NCI-H929 cells (BCMA+, lambda−), the relevance of these results is confirmed by the ELISA binding data generated for a subset of the animals. Positive signal for binding to the cynoBCMA+Fc protein may reflect binding to either the ECD or the Fc portion of the molecule that is also included on the human immunogen. In both assay types, analysis of serum taken from these animals prior to immunization showed no reactivity to the immunogen or off target protein.
- Gene Assembly, Expression and Binding Assays
- cDNAs encoding heavy chain only antibodies highly expressed in lymph node cells were selected for gene assembly and cloned into an expression vector. Subsequently, these heavy chain sequences were expressed in HEK cells as UniAb heavy chain only antibodies (CH1 deleted, no light chain).
- The results of assays testing the binding of the anti-BCMA heavy chain-only antibodies of the invention are shown in
FIG. 3 . - Supernatants of 6 antibodies were tested for binding in a standard ELISA assay to a human BCMA. Binding to recombinant BCMA protein was determined by ELISA using human BCMA ECD obtained from Abcam (ab50089). The BCMA ECD protein was used at a concentration of 2 μg/mL to capture UniAbs at 50 ng/mL. Binding of UniAbs was detected with a goat anti-human IgG HRP conjugated antibody (ThermoFisher 31413). All antibodies were diluted in 1×TBS with 0.05% Tween-20 and 1% dry milk powder.
- Off-target binding to Baculo Virus Protein Extract (BVP) was conducted by ELISA as above, with the modification of using 1×PBS and 1% dry milk powder for the diluent. BVP extract was obtained from INSERM (Nantes, France). Binding to baculovirus particles (>5× over background in our assay) is thought to indicate low-affinity interactions with human tissues which correlates with reduced half-lives of antibodies in humans and monkeys (Hotzel et al., mAbs 4:6, p 753-760, 2012).
- Off-target binding of human IgG1 was assessed by ELISA using the UniAbs to capture human IgG1 kappa followed by detection of the kappa chain with a goat anti-human kappa HRP conjugated antibody (Southern Biotech 2060-05).
- Supernatants of the 6 test anti-BCMA antibodies were also tested by flow cytometry for binding to RPMI-8226 cells (BCMA+, lambda+) and supernatants of all 35 anti-BCMA antibodies were and also tested for binding to H929 cells (BCMA+, lambda−). The last column in
FIG. 3 shows binding to T-cell-derived Hodgkin's lymphoma (HDLM2) cells, which do not express BCMA on the cell surface. - The samples were measured by flow cytometry using a Guava easyCyte 8HT instrument from EMD Millipore and analyzed using guavaSoft. Bound antibodies were detected with goat anti-human IgG F(ab′)2 conjugated to PE (Southern Biotech 2042-09). All antibodies were diluted in PBS with 1% BSA. Positive staining was determined by comparison to staining with a human IgG1 isotype control. The NCI-H929 and RPMI-8226 cell lines are human multiple myeloma lines expressing human BCMA, which were obtained from the American Type Culture Collection (ATCC) and cultured according to ATCC recommendations.
- Six UniAbs were also evaluated for the ability to block APRIL (ligand)/BCMA (receptor) binding in a recombinant protein ELISA-style assay. To evaluate blocking of the receptor/ligand interaction between BCMA and APRIL, recombinant human BCMA (Sino Biological 10620-H03H) was directly coated on plates followed by incubation with a dilution series of each UniAb. HA-tagged recombinant APRIL protein (RnD Systems 5860-AP-010) was then incubated with the BCMA/antibody complexes and binding of APRIL to BCMA was detected using a chicken anti-HA antibody conjugated to HRP (Abcam ab1190). An RnD systems anti-BCMA antibody (AF193) was used as a positive control for BCMA/APRIL blocking.
- In
FIG. 3 column 8 indicates the percent blocking of the April ligand protein to BCMA protein.Column 9 indicates the mean fluorescent intensity of cell binding to RPMI-8226 cells that express BCMA on the cell surface.Column 10 indicates the mean fluorescent intensity of cell binding to NCI-H929 cells that express BCMA on the cell surface.Column 11 indicates the mean fluorescent intensity of cell binding to HDLM2 cells that do not express BCMA on the cell surface. - An additional off-target binding assay was run on intact baculovirus particles (BVPs) though none of the tested UniAbs showed positive binding.
-
FIG. 4 shows the binding affinity of anti-BCMA heavy chain-onlyantibody 308902 in monovalent and bivalent forms, as measured by BioLayer Interferometry, using an Octet QK384 instrument (Fortebio Inc., Menlo Park, Calif.) in kinetics mode, essentially as described in Concepcion, J, et al., Comb Chem High Throughput Screen, 12(8), 791-800, 2009. The binding affinity (Kd) of the monovalent form was 779 pM and the Kd of the bivalent form was 53 pM. - While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Claims (25)
1. A heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA) comprising a heavy chain variable region comprising:
(a) a CDR1 sequence of SEQ ID NO:1;
(b) a CDR2 sequence of SEQ ID NO:8; and
(c) a CDR3 sequence of SEQ ID NO:14.
2. The heavy chain-only antibody of claim 1 , wherein said CDR1, CDR2, and CDR3 sequences are present in a human framework.
3. The heavy chain-only antibody of claim 1 further comprising a heavy chain constant region sequence in the absence of a CH1 sequence.
4.-6. (canceled)
7. The heavy chain-only antibody of claim 1 , comprising a heavy chain variable region having at least 95% sequence identity to SEQ ID NO:34.
8. The heavy chain-only antibody of claim 7 comprising a heavy chain variable region sequence comprising SEQ ID NO:34.
9.-12. (canceled)
13. A heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA) comprising a heavy chain variable region comprising a heavy chain variable region comprising a CDR1 sequence of SEQ ID NO:1, a CDR2 sequence of SEQ ID NO:8, and a CDR3 sequence of SEQ ID NO:14
in a human VH framework.
14.-21. (canceled)
22. A pharmaceutical composition comprising a heavy chain-only antibody of claim 13 .
23. A method for the treatment of a B-cell disorder characterized by the expression of BCMA comprising administering to a subject with said disorder an antibody of claim 13 , optionally wherein the B-cell disorder is multiple myeloma or systemic lupus erythematosus.
24.-25. (canceled)
26. A polynucleotide encoding an antibody of claim 13 .
27. A vector comprising the polynucleotide of claim 13 .
28. A cell comprising the vector of claim 27 .
29. A method of producing a heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA) comprising a heavy chain variable region comprising a heavy chain variable region comprising a CDR1 sequence of SEQ ID NO:1, a CDR2 sequence of SEQ ID NO:8, and a CDR3 sequence of SEQ ID NO:14 in a human VH framework, wherein the method comprises growing a cell according to claim 28 under conditions permissive for expression of the protein, and isolating the antibody from the cells.
30. A method of making the antibody of claim 13 comprising immunizing a UniRat animal with BCMA and identifying BCMA-binding heavy chain sequences.
31. A heavy chain-only antibody binding to human B-Cell Maturation Antigen (BCMA) comprising:
(a) a heavy chain variable region comprising a heavy chain variable region comprising a CDR1 sequence of SEQ ID NO:1, a CDR2 sequence of SEQ ID NO:8, and a CDR3 sequence of SEQ ID NO:14 in a human VH framework, and
(b) a heavy chain constant region sequence in the absence of a CH1 sequence.
32. The heavy chain-only antibody of claim 31 , which is multi-specific.
33. The heavy chain-only antibody of claim 32 , which is bispecific.
34. The heavy chain-only antibody of claim 32 , having binding affinity to an effector cell.
35. The heavy chain-only antibody of claim 32 , having binding affinity to a T-cell antigen.
36. The heavy chain-only antibody of claim 35 , having binding affinity to CD3.
37. A pharmaceutical composition comprising a heavy chain-only antibody of claim 31 .
38. A method for the treatment of a B-cell disorder characterized by the expression of BCMA comprising administering to a subject with said disorder a pharmaceutical composition of claim 22 , optionally wherein the B-cell disorder is multiple myeloma or systemic lupus erythematosus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/898,208 US20230060847A1 (en) | 2017-06-20 | 2022-08-29 | Anti-bcma heavy chain-only antibodies |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762522295P | 2017-06-20 | 2017-06-20 | |
PCT/US2018/038506 WO2018237006A1 (en) | 2017-06-20 | 2018-06-20 | Anti-bcma heavy chain-only antibodies |
US201916622768A | 2019-12-13 | 2019-12-13 | |
US17/898,208 US20230060847A1 (en) | 2017-06-20 | 2022-08-29 | Anti-bcma heavy chain-only antibodies |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/622,768 Continuation US11427642B2 (en) | 2017-06-20 | 2018-06-20 | Anti-BCMA heavy chain-only antibodies |
PCT/US2018/038506 Continuation WO2018237006A1 (en) | 2017-06-20 | 2018-06-20 | Anti-bcma heavy chain-only antibodies |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230060847A1 true US20230060847A1 (en) | 2023-03-02 |
Family
ID=62875335
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/622,768 Active 2038-10-08 US11427642B2 (en) | 2017-06-20 | 2018-06-20 | Anti-BCMA heavy chain-only antibodies |
US17/898,208 Pending US20230060847A1 (en) | 2017-06-20 | 2022-08-29 | Anti-bcma heavy chain-only antibodies |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/622,768 Active 2038-10-08 US11427642B2 (en) | 2017-06-20 | 2018-06-20 | Anti-BCMA heavy chain-only antibodies |
Country Status (9)
Country | Link |
---|---|
US (2) | US11427642B2 (en) |
EP (1) | EP3642236A1 (en) |
JP (3) | JP7240335B2 (en) |
CN (3) | CN117567624A (en) |
AU (1) | AU2018288803A1 (en) |
BR (1) | BR112019026803A2 (en) |
CA (1) | CA3065951A1 (en) |
MX (1) | MX2019015563A (en) |
WO (1) | WO2018237006A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017223111A1 (en) | 2016-06-21 | 2017-12-28 | Teneobio, Inc. | Cd3 binding antibodies |
IL290517B1 (en) | 2016-09-14 | 2024-08-01 | Teneobio Inc | Cd3 binding antibodies |
EP3559035A1 (en) | 2016-12-21 | 2019-10-30 | TeneoBio, Inc. | Anti-bcma heavy chain-only antibodies |
SG11201912774RA (en) | 2017-06-20 | 2020-01-30 | Teneobio Inc | Anti-bcma heavy chain-only antibodies |
WO2018237006A1 (en) | 2017-06-20 | 2018-12-27 | Teneoone, Inc. | Anti-bcma heavy chain-only antibodies |
JP7486421B2 (en) | 2017-12-22 | 2024-05-17 | テネオバイオ, インコーポレイテッド | Heavy chain antibody that binds to CD22 |
CA3098420A1 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
CR20210622A (en) | 2019-06-14 | 2022-06-27 | Teneobio Inc | Multispecific heavy chain antibodies binding to cd22 and cd3 |
CN112574308A (en) * | 2019-09-30 | 2021-03-30 | 和铂医药(苏州)有限公司 | Antibodies targeting BCMA, bispecific antibodies and uses thereof |
TWI838621B (en) | 2020-04-29 | 2024-04-11 | 美商泰尼歐萬公司 | Multispecific heavy chain antibodies with modified heavy chain constant regions |
CN115715220A (en) | 2020-04-29 | 2023-02-24 | 特尼奥生物股份有限公司 | Multispecific heavy chain antibodies with modified heavy chain constant regions |
IL299027A (en) * | 2020-06-30 | 2023-02-01 | Teneobio Inc | Multi-specific antibodies binding to bcma |
TW202330612A (en) * | 2021-10-20 | 2023-08-01 | 日商武田藥品工業股份有限公司 | Compositions targeting bcma and methods of use thereof |
Family Cites Families (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
CA1288073C (en) | 1985-03-07 | 1991-08-27 | Paul G. Ahlquist | Rna transformation vector |
IL85035A0 (en) | 1987-01-08 | 1988-06-30 | Int Genetic Eng | Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same |
GB8928874D0 (en) | 1989-12-21 | 1990-02-28 | Celltech Ltd | Humanised antibodies |
US6750325B1 (en) | 1989-12-21 | 2004-06-15 | Celltech R&D Limited | CD3 specific recombinant antibody |
US5968509A (en) | 1990-10-05 | 1999-10-19 | Btp International Limited | Antibodies with binding affinity for the CD3 antigen |
DE122004000008I1 (en) | 1991-06-14 | 2005-06-09 | Genentech Inc | Humanized heregulin antibody. |
GB9206422D0 (en) | 1992-03-24 | 1992-05-06 | Bolt Sarah L | Antibody preparation |
US7381803B1 (en) | 1992-03-27 | 2008-06-03 | Pdl Biopharma, Inc. | Humanized antibodies against CD3 |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
US6096871A (en) | 1995-04-14 | 2000-08-01 | Genentech, Inc. | Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life |
AU728657B2 (en) | 1996-03-18 | 2001-01-18 | Board Of Regents, The University Of Texas System | Immunoglobulin-like domains with increased half-lives |
JP4213224B2 (en) | 1997-05-02 | 2009-01-21 | ジェネンテック,インコーポレーテッド | Method for producing multispecific antibody having heteromultimer and common component |
JP4253826B2 (en) | 1999-09-07 | 2009-04-15 | カシオ計算機株式会社 | Image reading device |
AU6232899A (en) | 1999-10-06 | 2001-05-10 | Campina Melkunie B.V. | Use of transforming growth factor beta and growth factors in the treatment and prevention of diseases of the intestinal mucosa |
UA74798C2 (en) | 1999-10-06 | 2006-02-15 | Байоджен Айдек Ма Інк. | Method for treating cancer in mammals using polypeptide interfering with interaction between april and its receptors |
EP2301971A1 (en) | 2001-02-20 | 2011-03-30 | ZymoGenetics, L.L.C. | Antibodies that bind both BCMA and TACI |
CN1195779C (en) | 2001-05-24 | 2005-04-06 | 中国科学院遗传与发育生物学研究所 | Double-specificity antibody resisting human ovary cancer and human CD3 |
GB0115256D0 (en) | 2001-06-21 | 2001-08-15 | Babraham Inst | Mouse light chain locus |
EP1578447A4 (en) | 2002-10-31 | 2009-06-03 | Genentech Inc | Methods and compositions for increasing antibody production |
CA2513113A1 (en) | 2003-01-23 | 2004-08-05 | Genentech, Inc. | Methods for producing humanized antibodies and improving yield of antibodies or antigen binding fragments in cell culture |
EP1629012B1 (en) | 2003-05-31 | 2018-11-28 | Amgen Research (Munich) GmbH | Pharmaceutical compositions comprising bispecific anti-cd3, anti-cd19 antibody constructs for the treatment of b-cell related disorders |
BRPI0511782B8 (en) | 2004-06-03 | 2021-05-25 | Novimmune Sa | anti-cd3 antibodies, use and method of production thereof, pharmaceutical composition, isolated nucleic acid molecule and vector |
PL2311874T3 (en) | 2004-07-22 | 2017-10-31 | Univ Erasmus Med Ct Rotterdam | Binding molecules |
EP1848745B1 (en) | 2005-02-18 | 2014-07-09 | Medarex, L.L.C. | Monoclonal antibodies against cd30 lacking in fucosyl residues |
US20160355591A1 (en) | 2011-05-02 | 2016-12-08 | Immunomedics, Inc. | Subcutaneous anti-hla-dr monoclonal antibody for treatment of hematologic malignancies |
US7612181B2 (en) | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
BRPI0615745A2 (en) | 2005-09-12 | 2011-05-24 | Novimmune Sa | anti-cd3 antibody formulation |
JP5686953B2 (en) | 2005-10-11 | 2015-03-18 | アムゲン リサーチ (ミュンヘン) ゲーエムベーハー | Compositions comprising cross-species-specific antibodies and uses of the compositions |
KR20080090414A (en) | 2005-12-06 | 2008-10-08 | 도만티스 리미티드 | Bispecific ligands with binding specificity to cell surface targets and methods of use therefor |
WO2007117600A2 (en) | 2006-04-07 | 2007-10-18 | Macrogenics, Inc. | Combination therapy for treating autoimmune diseases |
US7862813B2 (en) | 2006-07-29 | 2011-01-04 | Bjork Jr Robert Lamar | Bi-specific monoclonal antibody (specific for both CD3 and CD11b) therapeutic drug |
CN101687915B8 (en) | 2007-04-03 | 2018-08-03 | 安进研发(慕尼黑)股份有限公司 | Cross-species-specific cd 3-epsilon binding domain |
US8703485B2 (en) | 2007-06-01 | 2014-04-22 | Omt, Inc. | Germ cells having inactivated endogenous immunoglobulin genes, and transgenic animals derived therefrom |
WO2009030285A1 (en) * | 2007-09-07 | 2009-03-12 | Ablynx N.V. | Binding molecules with multiple binding sites, compositions comprising the same and uses thereof |
AU2009239437B2 (en) | 2008-04-25 | 2014-11-13 | University Of Washington | Levels of BCMA protein expression on B cells and use in diagnostic methods |
US20100122358A1 (en) | 2008-06-06 | 2010-05-13 | Crescendo Biologics Limited | H-Chain-only antibodies |
EP4180458A1 (en) | 2008-10-01 | 2023-05-17 | Amgen Research (Munich) GmbH | Cross-species-specific psma x cd3 bispecific single chain antibody |
PL2406284T3 (en) | 2009-03-10 | 2017-09-29 | Biogen Ma Inc. | Anti-bcma antibodies |
GB0905023D0 (en) | 2009-03-24 | 2009-05-06 | Univ Erasmus Medical Ct | Binding molecules |
US9345661B2 (en) | 2009-07-31 | 2016-05-24 | Genentech, Inc. | Subcutaneous anti-HER2 antibody formulations and uses thereof |
NZ631363A (en) | 2010-02-08 | 2016-05-27 | Regeneron Pharma | Common light chain mouse |
TWI653333B (en) | 2010-04-01 | 2019-03-11 | 安進研究(慕尼黑)有限責任公司 | Cross-species specific PSMAxCD3 bispecific single chain antibody |
US20130273055A1 (en) | 2010-11-16 | 2013-10-17 | Eric Borges | Agents and methods for treating diseases that correlate with bcma expression |
WO2012122512A1 (en) | 2011-03-10 | 2012-09-13 | Hco Antibody, Inc. | Recombinant production of mixtures of single chain antibodies |
US20130101599A1 (en) | 2011-04-21 | 2013-04-25 | Boehringer Ingelheim International Gmbh | Bcma-based stratification and therapy for multiple myeloma patients |
MY177970A (en) * | 2011-05-27 | 2020-09-28 | Glaxo Group Ltd | Bcma (cd269/tnfrsf17) -binding proteins |
TWI679212B (en) | 2011-11-15 | 2019-12-11 | 美商安進股份有限公司 | Binding molecules for e3 of bcma and cd3 |
CA2870545A1 (en) | 2012-04-20 | 2013-10-24 | Emergent Product Development Seattle, Llc | Cd3 binding polypeptides |
WO2014022540A1 (en) | 2012-08-02 | 2014-02-06 | Regeneron Pharmaceuticals, Inc. | Multivalent antigen-binding proteins |
JOP20200236A1 (en) | 2012-09-21 | 2017-06-16 | Regeneron Pharma | Anti-cd3 antibodies, bispecific antigen-binding molecules that bind cd3 and cd20, and uses thereof |
EP2914628A1 (en) * | 2012-11-01 | 2015-09-09 | Max-Delbrück-Centrum für Molekulare Medizin | An antibody that binds cd269 (bcma) suitable for use in the treatment of plasma cell diseases such as multiple myeloma and autoimmune diseases |
TW201425336A (en) * | 2012-12-07 | 2014-07-01 | Amgen Inc | BCMA antigen binding proteins |
EP3653049B1 (en) | 2012-12-14 | 2023-09-13 | OmniAb, Inc. | Polynucleotides encoding rodent antibodies with human idiotypes and animals comprising same |
ES2829499T3 (en) | 2013-02-05 | 2021-06-01 | Engmab Sarl | Method for the selection of antibodies against BCMA |
CA2927099A1 (en) | 2013-10-31 | 2015-05-07 | Sanofi | Specific anti-cd38 antibodies for treating human cancers |
CN105873953A (en) | 2013-11-04 | 2016-08-17 | 格兰马克药品股份有限公司 | Production of T cell retargeting hetero-dimeric immunoglobulins |
WO2015095412A1 (en) | 2013-12-19 | 2015-06-25 | Zhong Wang | Bispecific antibody with two single-domain antigen-binding fragments |
EP3105252B1 (en) | 2014-02-12 | 2019-07-24 | Michael Uhlin | Bispecific antibodies for use in stem cell transplantation |
TWI754319B (en) | 2014-03-19 | 2022-02-01 | 美商再生元醫藥公司 | Methods and antibody compositions for tumor treatment |
CN106471009B (en) | 2014-03-28 | 2020-01-03 | Xencor公司 | Bispecific antibodies that bind to CD38 and CD3 |
SG11201700476VA (en) | 2014-07-21 | 2017-02-27 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
BR112017001579A2 (en) | 2014-07-25 | 2017-11-21 | Cytomx Therapeutics Inc | anti-cd3 antibodies, activatable anti-cd3 antibodies, multispecific anti-cd3 antibodies, multispecific activatable cd3 antibodies and methods of use |
CN114774466A (en) | 2014-10-22 | 2022-07-22 | 克雷森多生物制剂有限公司 | Transgenic mice |
EP3023437A1 (en) | 2014-11-20 | 2016-05-25 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
DK3221357T3 (en) | 2014-11-20 | 2020-08-10 | Hoffmann La Roche | Common light chains and methods of use |
JP6671370B2 (en) | 2014-12-12 | 2020-03-25 | ブルーバード バイオ, インコーポレイテッド | BCMA chimeric antigen receptor |
GB201500461D0 (en) | 2015-01-12 | 2015-02-25 | Cresendo Biolog Ltd | Therapeutic molecules |
AU2016264725B2 (en) | 2015-05-20 | 2021-05-27 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of light chain amyloidosis and other CD38-positive hematological malignancies |
CN105384825B (en) | 2015-08-11 | 2018-06-01 | 南京传奇生物科技有限公司 | A kind of bispecific chimeric antigen receptor and its application based on single domain antibody |
SI3337824T1 (en) * | 2015-08-17 | 2020-10-30 | Janssen Pharmaceutica Nv | Anti-bcma antibodies, bispecific antigen binding molecules that bind bcma and cd3, and uses thereof |
AU2016352676A1 (en) | 2015-11-10 | 2018-05-31 | University Medical Center Hamburg - Eppendorf | ANTIGEN-binding polypeptides directed against CD38 |
WO2017223111A1 (en) | 2016-06-21 | 2017-12-28 | Teneobio, Inc. | Cd3 binding antibodies |
JP7229153B2 (en) | 2016-08-24 | 2023-02-27 | テネオバイオ, インコーポレイテッド | Transgenic non-human animals that produce modified heavy chain-only antibodies |
IL290517B1 (en) * | 2016-09-14 | 2024-08-01 | Teneobio Inc | Cd3 binding antibodies |
US11124577B2 (en) | 2016-11-02 | 2021-09-21 | Engmab Sàrl | Bispecific antibody against BCMA and CD3 and an immunological drug for combined use in treating multiple myeloma |
EP3559035A1 (en) | 2016-12-21 | 2019-10-30 | TeneoBio, Inc. | Anti-bcma heavy chain-only antibodies |
WO2018237006A1 (en) | 2017-06-20 | 2018-12-27 | Teneoone, Inc. | Anti-bcma heavy chain-only antibodies |
SG11201912774RA (en) | 2017-06-20 | 2020-01-30 | Teneobio Inc | Anti-bcma heavy chain-only antibodies |
WO2019000223A1 (en) | 2017-06-27 | 2019-01-03 | Nanjing Legend Biotech Co., Ltd. | Chimeric antibody immune effctor cell engagers and methods of use thereof |
US20200138865A1 (en) | 2017-06-30 | 2020-05-07 | The United States Of America,As Represented By The Secretary,Department Of Health And Human Services | Anti-b-cell maturation antigen chimeric antigen receptors with human domains |
JP7486421B2 (en) | 2017-12-22 | 2024-05-17 | テネオバイオ, インコーポレイテッド | Heavy chain antibody that binds to CD22 |
CN111886250A (en) | 2017-12-27 | 2020-11-03 | 特尼奥生物股份有限公司 | CD 3-/heterodimer-specific antibody |
BR112020023975A2 (en) | 2018-05-24 | 2021-02-23 | Ayala Pharmaceuticals Inc. | compositions comprising bisfluoroalkyl-1,4-benzodiazepinone and immunotherapeutic compounds and methods of using them |
CN112351997B (en) | 2018-07-20 | 2023-05-26 | 坦尼奥第二公司 | Heavy chain antibodies that bind CD19 |
JP2022501357A (en) | 2018-09-21 | 2022-01-06 | テネオバイオ, インコーポレイテッド | Methods for Purifying Heterodimer Multispecific Antibodies |
WO2020087065A1 (en) | 2018-10-26 | 2020-04-30 | Teneobio, Inc. | Heavy chain antibodies binding to cd38 |
BR112021019334A2 (en) | 2019-04-05 | 2021-12-07 | Teneobio Inc | Heavy chain antibodies that bind to psma |
CR20210622A (en) | 2019-06-14 | 2022-06-27 | Teneobio Inc | Multispecific heavy chain antibodies binding to cd22 and cd3 |
US20220372162A1 (en) | 2019-12-18 | 2022-11-24 | TeneoFour, Inc. | Pct/us2020/066088 |
WO2021222616A1 (en) | 2020-04-29 | 2021-11-04 | Teneobio, Inc. | Methods of treating multiple myeloma |
CN115715220A (en) | 2020-04-29 | 2023-02-24 | 特尼奥生物股份有限公司 | Multispecific heavy chain antibodies with modified heavy chain constant regions |
TWI838621B (en) | 2020-04-29 | 2024-04-11 | 美商泰尼歐萬公司 | Multispecific heavy chain antibodies with modified heavy chain constant regions |
IL299027A (en) | 2020-06-30 | 2023-02-01 | Teneobio Inc | Multi-specific antibodies binding to bcma |
-
2018
- 2018-06-20 WO PCT/US2018/038506 patent/WO2018237006A1/en unknown
- 2018-06-20 US US16/622,768 patent/US11427642B2/en active Active
- 2018-06-20 CA CA3065951A patent/CA3065951A1/en active Pending
- 2018-06-20 EP EP18740037.9A patent/EP3642236A1/en active Pending
- 2018-06-20 CN CN202311558572.7A patent/CN117567624A/en active Pending
- 2018-06-20 AU AU2018288803A patent/AU2018288803A1/en active Pending
- 2018-06-20 CN CN202410219072.9A patent/CN118146370A/en active Pending
- 2018-06-20 MX MX2019015563A patent/MX2019015563A/en unknown
- 2018-06-20 JP JP2019571347A patent/JP7240335B2/en active Active
- 2018-06-20 CN CN201880038588.6A patent/CN110945026B/en active Active
- 2018-06-20 BR BR112019026803-0A patent/BR112019026803A2/en unknown
-
2022
- 2022-08-29 US US17/898,208 patent/US20230060847A1/en active Pending
-
2023
- 2023-03-03 JP JP2023032495A patent/JP7465382B2/en active Active
-
2024
- 2024-03-29 JP JP2024058155A patent/JP2024084776A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN118146370A (en) | 2024-06-07 |
CN117567624A (en) | 2024-02-20 |
CN110945026A (en) | 2020-03-31 |
CA3065951A1 (en) | 2018-12-27 |
JP2024084776A (en) | 2024-06-25 |
US11427642B2 (en) | 2022-08-30 |
US20200157232A1 (en) | 2020-05-21 |
JP7465382B2 (en) | 2024-04-10 |
AU2018288803A1 (en) | 2020-02-06 |
JP7240335B2 (en) | 2023-03-15 |
MX2019015563A (en) | 2020-07-28 |
JP2023071876A (en) | 2023-05-23 |
EP3642236A1 (en) | 2020-04-29 |
WO2018237006A1 (en) | 2018-12-27 |
CN110945026B (en) | 2024-03-19 |
BR112019026803A2 (en) | 2020-06-30 |
JP2020524000A (en) | 2020-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240124599A1 (en) | Anti-bcma heavy chain-only antibodies | |
US20230060847A1 (en) | Anti-bcma heavy chain-only antibodies | |
US20230045100A1 (en) | Anti-bcma heavy chain-only antibodies | |
RU2816994C2 (en) | Bcma heavy chain antibodies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: TENEOONE, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TENEOBIO, INC.;REEL/FRAME:063607/0355 Effective date: 20211206 Owner name: TENEOBIO, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRINKLEIN, NATHAN;FORCE ALDRED, SHELLEY;CLARKE, STARLYNN;AND OTHERS;SIGNING DATES FROM 20211202 TO 20211206;REEL/FRAME:063607/0328 |