US20230408500A1 - Devices and methods of cell capture and analysis - Google Patents
Devices and methods of cell capture and analysis Download PDFInfo
- Publication number
- US20230408500A1 US20230408500A1 US18/334,185 US202318334185A US2023408500A1 US 20230408500 A1 US20230408500 A1 US 20230408500A1 US 202318334185 A US202318334185 A US 202318334185A US 2023408500 A1 US2023408500 A1 US 2023408500A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- target
- cancer cell
- cell
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 238000004458 analytical method Methods 0.000 title description 25
- 230000027455 binding Effects 0.000 claims abstract description 196
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 77
- 201000011510 cancer Diseases 0.000 claims abstract description 62
- 239000012472 biological sample Substances 0.000 claims abstract description 31
- 210000004027 cell Anatomy 0.000 claims description 489
- 239000000427 antigen Substances 0.000 claims description 134
- 102000036639 antigens Human genes 0.000 claims description 132
- 108091007433 antigens Proteins 0.000 claims description 132
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 claims description 79
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 claims description 77
- 239000000523 sample Substances 0.000 claims description 50
- 210000004881 tumor cell Anatomy 0.000 claims description 40
- 210000004369 blood Anatomy 0.000 claims description 32
- 239000008280 blood Substances 0.000 claims description 32
- 102100035350 CUB domain-containing protein 1 Human genes 0.000 claims description 29
- 101000737742 Homo sapiens CUB domain-containing protein 1 Proteins 0.000 claims description 29
- 230000014509 gene expression Effects 0.000 claims description 29
- 108010090804 Streptavidin Proteins 0.000 claims description 28
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 25
- 102000000905 Cadherin Human genes 0.000 claims description 23
- 108050007957 Cadherin Proteins 0.000 claims description 23
- 102100034256 Mucin-1 Human genes 0.000 claims description 23
- 108010008707 Mucin-1 Proteins 0.000 claims description 23
- 108050000637 N-cadherin Proteins 0.000 claims description 23
- 102100027212 Tumor-associated calcium signal transducer 2 Human genes 0.000 claims description 22
- 108090001008 Avidin Proteins 0.000 claims description 20
- -1 TAG-12 Proteins 0.000 claims description 20
- 206010006187 Breast cancer Diseases 0.000 claims description 18
- 208000026310 Breast neoplasm Diseases 0.000 claims description 18
- 101001015006 Homo sapiens Integrin beta-4 Proteins 0.000 claims description 18
- 102100033000 Integrin beta-4 Human genes 0.000 claims description 18
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 claims description 15
- 206010005003 Bladder cancer Diseases 0.000 claims description 14
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 14
- 235000020958 biotin Nutrition 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 14
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 14
- 229960002685 biotin Drugs 0.000 claims description 13
- 239000011616 biotin Substances 0.000 claims description 13
- 210000000130 stem cell Anatomy 0.000 claims description 12
- 210000001519 tissue Anatomy 0.000 claims description 12
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 claims description 11
- 102000005962 receptors Human genes 0.000 claims description 10
- 108020003175 receptors Proteins 0.000 claims description 10
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 9
- 101150029707 ERBB2 gene Proteins 0.000 claims description 9
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 9
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 9
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 9
- 208000020816 lung neoplasm Diseases 0.000 claims description 9
- 201000001441 melanoma Diseases 0.000 claims description 9
- 108091008605 VEGF receptors Proteins 0.000 claims description 8
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 claims description 8
- 229940014144 folate Drugs 0.000 claims description 8
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 claims description 8
- 235000019152 folic acid Nutrition 0.000 claims description 8
- 239000011724 folic acid Substances 0.000 claims description 8
- 206010009944 Colon cancer Diseases 0.000 claims description 7
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 claims description 7
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 claims description 7
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 7
- 206010033128 Ovarian cancer Diseases 0.000 claims description 7
- 206010060862 Prostate cancer Diseases 0.000 claims description 7
- 201000005202 lung cancer Diseases 0.000 claims description 7
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 7
- 201000002528 pancreatic cancer Diseases 0.000 claims description 7
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 7
- 238000001574 biopsy Methods 0.000 claims description 6
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 claims description 5
- 101710182386 Fibroblast growth factor receptor 1 Proteins 0.000 claims description 5
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 5
- 206010038389 Renal cancer Diseases 0.000 claims description 5
- 210000004381 amniotic fluid Anatomy 0.000 claims description 5
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 5
- 210000003756 cervix mucus Anatomy 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 5
- 201000010982 kidney cancer Diseases 0.000 claims description 5
- 210000004072 lung Anatomy 0.000 claims description 5
- 210000002381 plasma Anatomy 0.000 claims description 5
- 210000000582 semen Anatomy 0.000 claims description 5
- 210000002966 serum Anatomy 0.000 claims description 5
- 210000001179 synovial fluid Anatomy 0.000 claims description 5
- 210000002700 urine Anatomy 0.000 claims description 5
- 206010005949 Bone cancer Diseases 0.000 claims description 4
- 208000018084 Bone neoplasm Diseases 0.000 claims description 4
- 102100023126 Cell surface glycoprotein MUC18 Human genes 0.000 claims description 4
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 4
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 claims description 4
- 102100027844 Fibroblast growth factor receptor 4 Human genes 0.000 claims description 4
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 claims description 4
- 101000623903 Homo sapiens Cell surface glycoprotein MUC18 Proteins 0.000 claims description 4
- 101000917134 Homo sapiens Fibroblast growth factor receptor 4 Proteins 0.000 claims description 4
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 claims description 4
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 claims description 4
- 102100032700 Keratin, type I cytoskeletal 20 Human genes 0.000 claims description 4
- 206010025323 Lymphomas Diseases 0.000 claims description 4
- 102100036735 Prostate stem cell antigen Human genes 0.000 claims description 4
- 108010072866 Prostate-Specific Antigen Proteins 0.000 claims description 4
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 4
- 230000033115 angiogenesis Effects 0.000 claims description 4
- 210000001185 bone marrow Anatomy 0.000 claims description 4
- 201000010881 cervical cancer Diseases 0.000 claims description 4
- 230000004069 differentiation Effects 0.000 claims description 4
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 claims description 4
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 claims description 4
- 201000007270 liver cancer Diseases 0.000 claims description 4
- 208000014018 liver neoplasm Diseases 0.000 claims description 4
- 210000002752 melanocyte Anatomy 0.000 claims description 4
- 210000003296 saliva Anatomy 0.000 claims description 4
- 201000002510 thyroid cancer Diseases 0.000 claims description 4
- 102100025473 Carcinoembryonic antigen-related cell adhesion molecule 6 Human genes 0.000 claims description 3
- 102100037241 Endoglin Human genes 0.000 claims description 3
- 206010014733 Endometrial cancer Diseases 0.000 claims description 3
- 206010014759 Endometrial neoplasm Diseases 0.000 claims description 3
- 101000914326 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 6 Proteins 0.000 claims description 3
- 101000881679 Homo sapiens Endoglin Proteins 0.000 claims description 3
- 101000998011 Homo sapiens Keratin, type I cytoskeletal 19 Proteins 0.000 claims description 3
- 101000994460 Homo sapiens Keratin, type I cytoskeletal 20 Proteins 0.000 claims description 3
- 101000622137 Homo sapiens P-selectin Proteins 0.000 claims description 3
- 101000622304 Homo sapiens Vascular cell adhesion protein 1 Proteins 0.000 claims description 3
- 102100033420 Keratin, type I cytoskeletal 19 Human genes 0.000 claims description 3
- 102100023472 P-selectin Human genes 0.000 claims description 3
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 claims description 3
- 229940079593 drug Drugs 0.000 claims description 3
- 230000003511 endothelial effect Effects 0.000 claims description 3
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 claims 14
- 108700012457 TACSTD2 Proteins 0.000 claims 14
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims 10
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims 10
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims 10
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 claims 8
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 claims 8
- 208000027866 inflammatory disease Diseases 0.000 claims 7
- ZEOWTGPWHLSLOG-UHFFFAOYSA-N Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F Chemical compound Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F ZEOWTGPWHLSLOG-UHFFFAOYSA-N 0.000 claims 2
- 101001034652 Homo sapiens Insulin-like growth factor 1 receptor Proteins 0.000 claims 2
- 101000958041 Homo sapiens Musculin Proteins 0.000 claims 2
- 101001136592 Homo sapiens Prostate stem cell antigen Proteins 0.000 claims 2
- 102100038169 Musculin Human genes 0.000 claims 2
- 102100021768 Phosphoserine aminotransferase Human genes 0.000 claims 2
- 239000013060 biological fluid Substances 0.000 claims 2
- 239000000090 biomarker Substances 0.000 claims 2
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 claims 2
- 238000002560 therapeutic procedure Methods 0.000 claims 2
- 208000007660 Residual Neoplasm Diseases 0.000 claims 1
- 230000005750 disease progression Effects 0.000 claims 1
- 230000004807 localization Effects 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 125000006853 reporter group Chemical group 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 55
- 238000011068 loading method Methods 0.000 abstract description 19
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 66
- 208000030454 monosomy Diseases 0.000 description 65
- 102000011782 Keratins Human genes 0.000 description 34
- 108010076876 Keratins Proteins 0.000 description 34
- 208000036878 aneuploidy Diseases 0.000 description 26
- 108090000623 proteins and genes Proteins 0.000 description 26
- 102000004169 proteins and genes Human genes 0.000 description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 239000003431 cross linking reagent Substances 0.000 description 20
- 239000000758 substrate Substances 0.000 description 19
- 231100001075 aneuploidy Toxicity 0.000 description 18
- 239000007788 liquid Substances 0.000 description 17
- 238000010186 staining Methods 0.000 description 17
- 102000001301 EGF receptor Human genes 0.000 description 15
- 108060006698 EGF receptor Proteins 0.000 description 15
- 239000006285 cell suspension Substances 0.000 description 14
- 239000004971 Cross linker Substances 0.000 description 13
- 101150084967 EPCAM gene Proteins 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 210000003040 circulating cell Anatomy 0.000 description 12
- 238000001514 detection method Methods 0.000 description 12
- 210000002919 epithelial cell Anatomy 0.000 description 12
- 210000000349 chromosome Anatomy 0.000 description 11
- 238000011084 recovery Methods 0.000 description 11
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 10
- 208000037280 Trisomy Diseases 0.000 description 10
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 10
- 230000001413 cellular effect Effects 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 238000002372 labelling Methods 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 8
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 230000036210 malignancy Effects 0.000 description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 206010044412 transitional cell carcinoma Diseases 0.000 description 6
- 208000023747 urothelial carcinoma Diseases 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 206010053925 Trisomy 17 Diseases 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 230000003322 aneuploid effect Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000007705 epithelial mesenchymal transition Effects 0.000 description 5
- 108010087904 neutravidin Proteins 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 4
- 208000005623 Carcinogenesis Diseases 0.000 description 4
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 4
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 4
- 101100346932 Mus musculus Muc1 gene Proteins 0.000 description 4
- 102100035071 Vimentin Human genes 0.000 description 4
- 108010065472 Vimentin Proteins 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000036952 cancer formation Effects 0.000 description 4
- 231100000504 carcinogenesis Toxicity 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000004087 circulation Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 210000005048 vimentin Anatomy 0.000 description 4
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 3
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 3
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 3
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 3
- 208000035199 Tetraploidy Diseases 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 238000001212 derivatisation Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 230000003292 diminished effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 230000001605 fetal effect Effects 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000009871 nonspecific binding Effects 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 108091023037 Aptamer Proteins 0.000 description 2
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 206010064571 Gene mutation Diseases 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 101710184277 Insulin-like growth factor 1 receptor Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 101710120463 Prostate stem cell antigen Proteins 0.000 description 2
- 102000007066 Prostate-Specific Antigen Human genes 0.000 description 2
- 208000006265 Renal cell carcinoma Diseases 0.000 description 2
- 229920001486 SU-8 photoresist Polymers 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 206010044685 Trisomy 11 Diseases 0.000 description 2
- 206010053871 Trisomy 8 Diseases 0.000 description 2
- 208000002495 Uterine Neoplasms Diseases 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 210000003443 bladder cell Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 229940125532 enzyme inhibitor Drugs 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 238000001215 fluorescent labelling Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000007479 molecular analysis Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002704 polyhistidine Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 201000008261 skin carcinoma Diseases 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 208000034298 trisomy chromosome 8 Diseases 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 206010046766 uterine cancer Diseases 0.000 description 2
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 1
- 102000039506 BAGE family Human genes 0.000 description 1
- 108091067183 BAGE family Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108010059480 Chondroitin Sulfate Proteoglycans Proteins 0.000 description 1
- 102000005598 Chondroitin Sulfate Proteoglycans Human genes 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 102000040452 GAGE family Human genes 0.000 description 1
- 108091072337 GAGE family Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000920667 Homo sapiens Epithelial cell adhesion molecule Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108010066370 Keratin-20 Proteins 0.000 description 1
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 1
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 1
- 102000051089 Melanotransferrin Human genes 0.000 description 1
- 108700038051 Melanotransferrin Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 102100034640 PWWP domain-containing DNA repair factor 3A Human genes 0.000 description 1
- 108050007154 PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101710173694 Short transient receptor potential channel 2 Proteins 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 101000980463 Treponema pallidum (strain Nichols) Chaperonin GroEL Proteins 0.000 description 1
- 208000026487 Triploidy Diseases 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 101150117115 V gene Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 150000001615 biotins Chemical class 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000012757 fluorescence staining Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 230000004545 gene duplication Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 238000010249 in-situ analysis Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 238000004802 monitoring treatment efficacy Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000012758 nuclear staining Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 210000005267 prostate cell Anatomy 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 239000012070 reactive reagent Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004621 scanning probe microscopy Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- ATGUDZODTABURZ-UHFFFAOYSA-N thiolan-2-ylideneazanium;chloride Chemical compound Cl.N=C1CCCS1 ATGUDZODTABURZ-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/536—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
- G01N33/56972—White blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
Definitions
- the present invention relates to micro-channel devices for capturing targets, such as cells and molecules of interest from solutions, as well as to post-capture analysis of circulating cells.
- the present invention relates to methods and devices for capturing target cells (e.g. circulating tumor cells) from physiological fluids, and analyses thereof.
- Isolation of target cells or molecules from heterogeneous samples remains a prominent interest for research applications as well as medical applications, such as diagnostics and therapeutics.
- separation of rare cell types from physiological tissues and bodily fluids obviates the need to obtain large tissue samples and avoids the risks associated with the procedures required to obtain such samples.
- isolation of fetal cells from maternal blood samples for genetic testing avoids the risks associated with aminocentesis or chronic villus sampling.
- Isolation of circulating tumor cells from a patient would allow the clinician to evaluate the cancer and monitor pathological changes in the patient's tumor, as well as evaluate the efficacy of any on-going drug treatments without conducting invasive biopsy procedures.
- washing steps is required to remove other molecules and/or cells that are bound to the solid support or binding partner.
- subsequent in situ analysis of cells on the channel by staining and hybridization procedures may subject the cells to harsh and denaturing conditions. These washing and analysis procedures can compromise the initial capture of the desired molecule or cell by subjecting the binding partner to conditions that may cause the binding partner to degrade, lose some of its conformational structure, or become detached from the solid support.
- the present invention provides devices and methods for capturing and/or analyzing biological targets from fluid samples.
- the invention provides methods for capturing circulating tumor cells from biological samples, for the evaluation of a cancer patient's disease.
- the invention provides methods for identifying and/or evaluating circulating cells for malignancy without or independent of CK status.
- the invention provides a method for capturing biological targets from solution.
- the present invention is based, in part, on the discovery that pre-labeling or pre-mixing a sample containing a target (e.g., a cell) of interest with a binding partner that specifically binds to the cell enhances the capture of such targets in a micro-channel device.
- a target e.g., a cell
- the device comprises a micro-channel and a loading mixture.
- the micro-channel may comprise a population of posts distributed on the surface of the micro-channel in random pattern.
- the loading mixture may comprise a biological sample suspected of containing a target, such as a target cell, and also comprises a first binding entity.
- the first binding entity specifically binds to the target (e.g., a target entity on a target cell).
- the surface of the micro-channel is coated with a second binding entity that specifically binds, directly or indirectly, to the first binding entity.
- the loading mixture further comprises a third binding entity conjugated to a detectable or capturable entity.
- the first binding entity may be a primary antibody
- the third binding entity may be a secondary antibody that specifically binds to the primary antibody
- the second binding entity specifically binds directly or indirectly to the secondary antibody.
- the third binding entity is a biotinylated secondary antibody that specifically binds to the first binding entity and the second binding entity is avidin.
- the secondary antibody may be intact antibody or any antibody fragment such as Fab′2, Fab′ or Fab. In addition this may include any of the genetically engineered or expressed forms of antibody fragment such as single chain Fab fragment or single chain variable fragment.
- the present invention provides a method for capturing and/or detecting a target cell in a biological sample, including rare cell populations as described herein.
- the method comprises contacting a biological sample with a first binding entity to form a pre-loading mixture, wherein the first binding entity specifically binds to a target entity on the surface of the target cell; passing the pre-loading mixture through a micro-channel, wherein the surface of the micro-channel is coated with a second binding entity capable of specifically binding to the first binding entity; and detecting the presence of the target cell on the surface of the micro-channel.
- the biological sample can be a physiological or bodily fluid or tissue, such as blood, plasma, serum, bone marrow, semen, vaginal secretions, urine, amniotic fluid, cerebral spinal fluid, synovial fluid, fine needle aspirates (FNAs) or biopsy tissue sample.
- the target cell is rare and present at a low ratio in the biological sample.
- target cells that are rare in the biological samples include circulating tumor cells (CTCs), cells that are in early stages of a disease state such as Stage 1 of tumorigenesis, as well as viral-, bacterial-, or fungal-infected cells.
- the target cell is a cancer cell (e.g., a circulating tumor cell), such as a breast cancer cell, a prostate cancer cell, a colorectal cancer cell, a lung cancer cell, a pancreatic cancer cell, an ovarian cancer cell, a bladder cancer cell, an endometrine or uterine cancer cell, a cervical cancer cell, a liver cancer cell, a renal cancer cell, a thyroid cancer cell, a bone cancer cell, a lymphoma cell, a melanoma cell and a non-melanoma skin cancer cell.
- the tumor may be an epithelial tumor.
- the first binding entity can be an antibody that specifically binds to circulating epithelial cells.
- the first binding entity is an epithelial cell adhesion molecule antibody (e.g., EpCAM).
- EpCAM epithelial cell adhesion molecule antibody
- the first binding entity is a biotinylated-antibody and the second binding entity is avidin.
- the invention involves antibody cocktails as the first binding entity, so as to capture circulating tumor cells exhibiting a range of epithelial, mesenchymal, stem or progenitor cell characteristics.
- the pre-loading mixture further comprises a third binding entity.
- the first binding entity may be a primary antibody
- the third binding entity may be a secondary antibody conjugated to a detectable or capturable entity and the secondary antibody specifically binds to the first binding entity.
- a second binding entity specifically binds to the third binding entity via the capturable moiety.
- the third binding entity is a biotinylated secondary antibody that specifically binds to the first binding entity, and the second binding entity is avidin.
- the method further comprises, after cell capture, cross-linking the target cell bound to the surface of the micro-channel.
- Cross-linking reagents include protein cross-linking reagents, such as a hydrophilic homobifunctional NHS crosslinking reagent.
- the captured cells can be subjected to further analysis in the micro-channel or outside the channel post capture.
- the invention provides a method for post-capture analysis of circulating cells, and in particular, to examine or evaluate the circulating cells for malignancy.
- the invention in this aspect involves evaluating captured cells for aneuploidy, optionally with evaluation of other markers of malignancy, including mutations.
- the method generally does not involve determining, or is independent of, cytokeratin expression.
- FIG. 1 is a perspective view of one embodiment of a micro-channel device comprising a post-containing collection region in the micro-channel.
- FIG. 2 is a schematic depicting capture of a circulating tumor cell (CTC) in a micro-channel device that has been coated with an antibody specific to an antigen on the CTC.
- B designates biotin.
- FIG. 3 is a schematic depicting capture of a circulating tumor cell (CTC) in a micro-channel device where the CTC has been pre-labeled with an antibody specific to a CTC antigen and the micro-channel device has been coated with a protein capable of binding the cell-specific antibody.
- B designated biotin.
- FIG. 4 is a graph showing percentage of T24 EpCAM positive cells captured on either a micro-channel coated with EpCAM antibodies (EpCAM channel) or a micro-channel coated with streptavidin (Strep channel) at different flow rates.
- EpCAM channel EpCAM antibodies
- streptavidin streptavidin
- FIG. 5 is a graph showing the percentage of T24 cells pre-labeled with biotinylated EpCAM that were captured on a micro-channel coated with stretpavidin in the presence of different concentrations of excess biotinylated EpCAM antibody. A sample of 250 ⁇ L containing approximately 200 cells was applied to the channel.
- FIG. 6 is a graph showing the percentage of T24 cells pre-labeled with biotinylated EpCAM that were captured on a micro-channel coated with stretpavidin in the presence of different concentrations of excess biotinylated EpCAM antibody. A sample of 2 mL containing approximately 200 cells was applied to the channel.
- FIG. 7 is a graph showing the dilution of the EpCAM capture antibody that is coated onto the micro-channel compared to the capture of T24 cells as a function of the same dilution mixture used to pre-label cells prior to application onto the micro-channel.
- FIG. 8 is a graph depicting the percentage of T24 or SKOV cells captured on a streptavidin-coated micro-channel when pre-labeled with either biotinylated Trop-1 antibody alone or in combination with biotinylated Trop-2 antibody.
- FIG. 9 is a graph depicting the capture of MDA-ND-231 cells on a streptavidin-coated micro-channel when pre-labeled with either biotinylated anti-EpCAM antibody alone or in combination with a mixture of biotinylated capture antibodies.
- FIG. 10 is a graph depicting the percentage of captured SKOV cells on a streptavidin-coated micro-channel when pre-labeled with biotinylated primary antibody or a combination of non-biotinylated primary antibody and biotinylated secondary antibody.
- FIG. 11 shows a series of photomicrographs of cells captured in a coated micro-channel that were subsequently subjected to washes with a viscous solution at different flow rates (20, 50, and 100 ⁇ L/min).
- FIG. 12 shows a series of photomicrographs of cells captured in a coated micro-channel.
- the cells were exposed to a homobifunctional NHS protein cross-linking reagent prior to being subjected to washes with a viscous solution at different flow rates (20, 50, and 100 ⁇ L/min).
- FIG. 13 is a graph showing the percentage of captured cells on a coated micro-channel in the absence or presence of a NHS protein cross-linking reagent.
- FIG. 14 is a graph showing the percentage of captured bladder cancer cells on a coated micro-channel when using EpCAM only as the capture antibody compared to using a mixture of antibodies. The graph also shows the staining of the cell types with anti-cytokeratin and anti-vimentin antibodies.
- FIG. 15 A is a graph showing the capture of SKOV cells by EpCAM antibody compared to capture by an antibody mixture.
- FIG. 15 B shows the staining of SKOV cells after incubation with EpCAM antibody or antibody mixture and detected with fluorescently labeled secondary anti-mouse antibody. FACS analysis of the same cells shows the number of surface antigens labeled with labeled secondary anti-mouse antibody.
- FIG. 16 is an image of SKOV cells spiked into blood and captured on a microchannel using a primary antibody mixture and biotinylated secondary anti-mouse antibody. Cells were stained on the channel with fluorescently labeled neutravidin which tightly binds biotin. Image shows SKOV cell stained green with NeutrAvidin and nearby white blood cells that did not stain with neutravidin but stained only with DAPI to detect the nucleus.
- FIG. 17 shows the recovery of SKBr3 in a blood sample spiked with varying numbers of SKBr3 cells. The results show that the percent capture is independent of the cell input.
- the present invention provides devices and methods for capturing and/or analyzing biological targets from fluid samples.
- the invention provides methods for capturing circulating tumor cells from biological samples, for the evaluation of a cancer patient's disease.
- the invention provides methods for identifying and/or evaluating circulating cells for malignancy without or independent of cytokeratin expression.
- the invention is based, in part, on the discovery that pre-labeling or pre-mixing a sample containing a target of interest with a binding partner that specifically binds to the target allows, e.g., enhances the capture of such targets in a micro-channel device, such as a microchannel device described herein.
- a micro-channel device such as a microchannel device described herein.
- This approach also provides flexibility in the type and nature of primary antibodies that may be used to label cellular antigens.
- the present invention provides a novel device and method for separating biomolecules or cells of interest from samples, particularly biological samples.
- the device comprises a micro-channel and a loading mixture.
- the micro-channel may comprise a population of posts distributed on the surface of the micro-channel in random pattern.
- the loading mixture may comprise a biological sample suspected of containing a target cell and a first binding entity, wherein the first binding entity specifically binds to a target entity on the target cell.
- the surface of the micro-channel is coated with a second binding entity that specifically binds to the first binding entity, either directly or indirectly.
- the micro-channel device comprises a plurality of pre-determined flow paths.
- the micro-channel device comprises posts or obstacles arranged in a random pattern or a regular or repeat pattern.
- the micro-channel device comprises regions providing streamlined flow or random non-streamlined flow for any fluid passing through.
- the micro-channel device may be a random-flow device for separating biomolecules or cells as described in detail in U.S. Published Application No. 2006/0160243, which is hereby incorporated by reference in its entirety. Such devices can be modified as described herein for use in connection with the invention.
- the random-flow micro-channel device includes a substrate or support that has a flow path defined therein that includes at least one micro-channel having a collection region, which flow path is linked to a sample inlet and a liquid outlet.
- the flow path may include several micro-channels, arranged in series, each of which has one such collection region.
- a random flow micro-channel may have more than one collection region, arranged in series, and there may also have more than one inlet and more than one outlet.
- Example 1 and illustrated in FIG. 1 .
- the collection region of the random flow micro-channel can contain a plurality of upstanding posts that are aligned transverse to the liquid flow path and arranged in an irregular, random pattern across the entire width of the collection region portion of the flow channel.
- the pattern of the posts is such that there can be no straight-line flow through the collection region and/or that streamlined flow streams are disrupted, assuring there is good contact between the liquid being caused to flow along the flow path and the surfaces of the posts.
- the posts in general are integral with the flat base of the collection region and extend perpendicular thereto, presenting surfaces that are vertical relative to a horizontal path of liquid being caused to flow through the flow channel of the substrate or support.
- the placement and shape of the posts in the patterned post collection region can be engineered for optimal fluid dynamics and enhancement of capture of target cells through their specific surface characteristics.
- the preferred shape of the horizontal cross-section of the transverse fixed posts avoids sharp angles which might promote nonspecific binding to the transverse surfaces of the posts.
- the posts have rectilinear exterior surfaces and preferably have either a generally circular cross sectional shape or regular polygonal of 6 or more sides.
- Alternative shapes that might be used are a tear-drop shape where the tip is at the downstream end and shallowly curved, or oval shape; however, should more impact be desired, a square shape could be used.
- the pattern of the posts should create a flow pattern in the liquid stream which enhances the capture of target cells by the second binding entity attached to the surfaces of the posts, the base and the facing surface.
- the posts e.g., should be of different sizes and be arranged in a set random pattern.
- the cross sectional area of the posts which all have sidewalls formed by parallel lines which are perpendicular to the base, is such that they occupy between about 10 to 40% or about 15 to 25% of the volume of the collection region.
- the post pattern will be such that they occupy about 20% of the volume of the collection region, leaving a void volume for liquid flow of about 80%.
- the posts are substantially spaced apart from one another, e.g. by at least about 60 microns, and posts of different sizes are preferably located upstream and downstream of one another. Smaller posts may create eddy regions downstream of larger posts, and as a result of the flow pattern that is generated, the surfaces in the vicinity may show particular effectiveness in capturing target cells.
- the substrate component of the micro-channel device can be made from any suitable laboratory-acceptable material, such as silicon, fused silica, glass and polymeric materials. It may be desirable to use a material that is optically transparent, particularly when a diagnosis function is desired to be optionally employed.
- the substrate carrying the fabricated micro-channel is sealed with a plate having a flat surface that will abut the facing surface of the substrate. Such plate may be fabricated from the same material or may simply be a cover plate made of glass.
- Suitable plastics which may be used include polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polycarbonate, polystyrene, polyethylene teraphthalate, as well as other polymeric resins well known for acceptable laboratory material usage.
- patterned substrates may be fabricated using any convenient method such as those selected from among conventional molding and casting techniques.
- Substrates may be conveniently fabricated from polymeric materials using a master or negative mold structure, which can be created in a thick negative photoresist, using optical lithography, as well known in this art.
- the construction layer can be formed from a mixture of commercially available, standard grade epoxy resin (EPON SU-8) photoresist and hardener (SU-82025), which may be spun onto silicon wafer substrates at 2000 rpm to provide, for example, a 40 or 50 ⁇ m thick film of such photoresist. The thickness determines the height of the flow path in the collection region.
- the film is subjected to pre-exposure baking for 3 minutes at 60° C. and then 7 minutes at 95° C.
- a Karl Suss Contact Mask Aligner is used to expose a film with the desired pattern for the flow path in the ultimate device. The film is then post-baked at 65° C. for 2 minutes and then at 95° C. for 5 minutes before it is developed in a commercial SU-8 developer for 5 minutes, with light stirring being applied during developing. This creates a negative pattern mold in the epoxy resin photoresist that is then used as a molding master for replication of patterned post substrates in PDMS or other suitable polymeric resin.
- the layout and the dimensions of the micro-channel and of patterned posts in the collection region are determined by the mask used in exposure step of the fabrication of the master mold.
- the depth of the micro-channel is controlled by the thickness of the SU-8 layer of the master mold, which is determined by spin-coating conditions.
- the invention further involves a loading mixture that comprises a biological sample suspected of containing a target (e.g., a target cell), and also comprises a first binding entity.
- the biological sample can include, but is not limited to, a physiological or bodily fluid or tissue or a cell mixture isolated from a biological sample.
- the biological sample can include, without limitation, blood, plasma, serum, semen, vaginal secretions, urine, saliva, amniotic fluid, cerebral spinal fluid, synovial fluid, a fine needle aspirate (FNA), and a biopsy tissue sample.
- a target cell can be any cell comprising a detectable surface antigen, such as a cancer cell, stem cell, fetal cell, a viral-, a bacterial- or a fungal-infected cell.
- the target cell is a cancer cell.
- the target cell is rare and is present at a low ratio in the biological sample, or expresses a very low level of a particular antigen of interest.
- target cells that are rare in the biological samples include circulating tumor cells (CTCs), cells that are in early stages of a disease state such as cells at Stage 1 of tumorigenesis, early viral-, bacterial, or fungal-infections.
- the first binding entity specifically binds to a target entity on the target cell.
- the first binding entity can include, but is not limited to, an antibody, an antigen, an aptamer, a nucleic acid (e.g. DNA and RNA), a protein (e.g. receptor, enzyme, enzyme inhibitor, enzyme substrate, ligand), a peptide, a lectin, a fatty acid or lipid and a polysaccharide.
- the first binding entity is an antibody.
- the first binding entity comprises a binding entity mixture having at least a first antibody and a second antibody, and wherein the first antibody specifically binds to a first epitope of the target entity and the second antibody specifically binds to a second epitope of the target entity.
- the first binding entity can comprise a mixture of antibodies or binding entities directed to the one or more target antigens on the cell, or one or more epitopes of the target antigen, or a combination thereof.
- epitope can refer to a binding region on a singular antigen or a binding region on a second antigen.
- the first antibody binds to a first epitope on a first antigen and the second antibody binds to a second epitope on the first antigen.
- the first antibody binds to a first epitope on a first antigen and the second antibody binds to a second epitope on a second antigen.
- the antibodies may be conjugated to a tag molecule including, but not limited to biotin, digoxigenin, FLAG epitope, or polyhistidine.
- the loading mixture further comprises a third binding entity conjugated to a detectable or capturable entity.
- the first binding entity may be a primary antibody or ligand
- the third binding entity is a secondary antibody or ligand that specifically binds to the first binding entity
- the second binding entity specifically binds to the third binding entity.
- a primary antibody can include a monoclonal antibody, a polyclonal antibody, or partially purified antibodies.
- the secondary antibody can be an antibody that binds to the constant region of the primary antibody.
- the primary antibody is a mouse antibody
- the secondary antibody may be an anti-mouse antibody.
- the detectable or capturable entity conjugated to the secondary antibody can be a tag including, but not limited to, biotin, digoxigenin, FLAG epitope, or polyhistidine.
- the loading mixture further comprises a third binding entity, wherein the first binding entity is a primary antibody, the third binding entity is a biotinylated secondary antibody that specifically binds to the first binding entity and the second binding entity is avidin.
- avidin includes any expressed or engineered form of the avidin biotin-binding molecule, such as streptavidin, neutravidin and the like.
- the surface of the micro-channel of the device is coated with a second binding entity that specifically binds to the first binding entity.
- the second binding entity can be an antibody, an antigen, an aptamer, a nucleic acid (e.g. DNA and RNA), a protein (e.g. receptor, enzyme, enzyme inhibitor, enzyme substrate, ligand), a peptide, a lectin, a fatty acid or a lipid, and/or a polysaccharide.
- the second binding entity may be the same type of molecule as the first binding entity (e.g. antibody-antibody or nucleic acid-nucleic acid) or it may be a different type of molecule than the first binding entity (e.g. nucleic acid-protein).
- the second binding entity can directly bind to the first binding entity or it can indirectly bind to the first binding entity through a tag molecule.
- the first binding entity is a biotinylated primary antibody
- the second binding entity can be avidin.
- the second binding entity is avidin.
- the loading mixture can comprise both a first binding entity and a third binding entity, wherein the first binding entity binds to a target entity (e.g., on the target cell) and the third binding entity specifically binds to the first binding entity.
- the second binding entity specifically binds to the third binding entity either directly or indirectly through a detectable entity.
- the first binding entity is a mouse primary antibody and the third binding entity is an anti-mouse antibody conjugated to digoxigenin
- the second binding entity can be an anti-digoxigenin antibody.
- the polymeric surface of the micro-channel and/or the patterned post or obstacle region comprised therein can be derivatized in various ways to enable the attachment of the second binding entity onto all the surfaces.
- a 1 to 50 volume % solution of an aminofunctional silane e.g. a 3% solution of Dow Corning Z-6020
- a thio-functional silane in ethanol may be injected into the micro-channel to fill the collection region between the sample inlet and sample outlet regions, and the flooded micro-channel can then be left to incubate for 30 minutes at room temperature.
- Derivitization can be performed on a non-fully cured polymer, such as PDMS, before the closure of the micro-channel region with a plate.
- a non-fully cured polymer such as PDMS
- an alternative is to slightly undercure the PDMS substrate and then complete the curing after affixing the seal plate and treating with the substituted silane or other functionalizing reagent.
- a final heating step of about 90 minutes at about 50 to 90° C. might be used to complete the curing after treating with the Z-6020.
- one or two days at room temperature would also complete the curing.
- Such derivatization treatment can also be performed before the closure of the micro-channel region because derivatization of the facing flat surface is of no real consequence.
- the flow path is then purged with ethanol, and the micro-channel is ready for attachment of the second binding entity.
- Second binding entities can be directly or indirectly immobilized upon the surfaces of the posts, obstacles, and/or the micro-channel, and the surfaces can be pre-treated and/or coated to facilitate attachment.
- indirect immobilization is preferred and contemplates the employment of an intermediate agent or substance that is first linked to the post or surface. It may be desired to use coupling pairs to link to the intermediate agent.
- avidin, or an antibody directed against another species antibody might be attached to the intermediate agent, such as a NHS/maleimide heterobifunctional linker, which would thereafter couple to a biotinylated antibody or to an antibody of such other species.
- Flow through the devices of the invention can be achieved by any suitable means, with or without exterior force.
- flow through the devices of the invention is achieved by pumping, e.g. using a syringe pump or the like, or by vacuum that would draw liquid through from a reservoir at an inlet well provided by a large diameter inlet hole.
- a well is included which has a capacity to hold about 50 ⁇ l to about 500 ⁇ l of liquid sample.
- the design of the flow channel is such that, at flow rates through the device within a reasonable range (e.g.
- a syringe pump or equivalent device such as a Biocept syringe pump, or a standard Harvard Apparatus infusion syringe pump or other commercially available syringe pump
- a syringe pump or equivalent device such as a Biocept syringe pump, or a standard Harvard Apparatus infusion syringe pump or other commercially available syringe pump
- a preferred liquid flow rate of between about 0.3 to 10 mm/sec, and more preferably the flow rate is maintained between about 0.5 and 5 mm/sec and is achieved by suction from an inlet well of defined size.
- the present invention also provides a method for detecting a target cell in a biological sample using the devices described herein.
- the method may comprise contacting a biological sample with a first binding entity to form a pre-loading mixture, wherein the first binding entity specifically binds to a target entity on the surface of the target cell, passing the pre-loading mixture through a micro-channel, wherein the surface of the micro-channel is coated with a second binding entity capable of specifically binding to the first binding entity, and detecting the presence of the target cell on the surface of the micro-channel.
- the micro-channel comprises a population of posts distributed on the surface of the micro-channel in random pattern.
- the biological sample is a blood sample from a patient.
- the target cell can be present in the biological sample in the ratio of 1 out of 10 10 cells, 1 out of 5 ⁇ 10 7 , or 1 out of 10 4 cells.
- a target cell can be any cell comprising a detectable surface antigen, such as a cancer cell, stem cell, fetal cell, a viral-, a bacterial-, or a fungal-infected cell.
- the target cell is a cancer cell.
- the cancer cell can be a cell from any type of cancer, such as an epithelial cancer, including, but not limited to, breast cancer cells, prostate cancer cells, colorectal cancer cells, lung cancer cells, pancreatic cancer cells, ovarian cancer cells, bladder cancer cells endometrial or uterine cancer cells, cervical cancer cells, liver cancer cells, renal or kidney cancer cells, thyroid cancer, bone cancer cells, lymphoma cells (e.g. Hodgkin's lymphoma, non-Hodgkin's lymphoma), melanoma cells, and non-melanoma skin cancer cells.
- lymphoma cells e.g. Hodgkin's lymphoma, non-Hodgkin's lymphoma
- melanoma cells e.g. Hodgkin's lymphoma, non-Hodgkin's lymphoma
- non-melanoma skin cancer cells e.g. Hodgkin's lympho
- the first binding entity can be any of the molecules as described herein.
- the first binding entity is an antibody.
- the first binding entity may be a biotinylated-antibody and the second binding entity may be avidin.
- the first binding entity can be an antibody that specifically binds to circulating epithelial cells.
- the antibody can be an epithelial cell adhesion molecule (EpCAM) antibody, such as an antibody that specifically binds to an epithelial cell surface adhesion protein.
- EpCAM epithelial cell adhesion molecule
- the first binding entity may be a cocktail of two, three, four, five, or more antibodies, for example, as described herein for capture of target cancer cells.
- the antibody cocktail may comprise at least antibody against an epithelial cell surface antigen, and at least one antibody against an antigen that is indicative of a mesenchymal phenotype, to thereby isolate cells having a range of epithelial and/or mesenchymal characteristics from the sample.
- the first binding entity may be an antibody that specifically binds to EpCAM (epithelial cell adhesion molecule), Her2/neu (Human Epidermal growth factor Receptor 2), MUC-1, EGFR (epidermal growth factor receptor), TAG-12 (tumor associated glycoprotein 12), IGF1R (insulin-like growth factor 1 receptor), TACSTD2 (tumor associated calcium signal transducer 2), CD318, CD340, CD104, N-cadherin or a combination (e.g., cocktail) of two or more thereof.
- EpCAM epidermal growth factor Receptor 2
- Her2/neu Human Epidermal growth factor Receptor 2
- MUC-1 epidermal growth factor receptor
- TAG-12 tumor associated glycoprotein 12
- IGF1R insulin-like growth factor 1 receptor
- TACSTD2 tumor associated calcium signal transducer 2
- the target cell is a prostate cancer cell and the first binding entity is an antibody that specifically binds to EpCAM, MUC-1, EGFR, PSMA (prostate specific membrane antigen), PSA (prostate specific antigen), TACSTD2, PSCA (prostate stem cell antigen), PCSA (prostate cell surface antigen), CD318, CD104, N-cadherin or a combination thereof.
- the target cell is a colorectal cancer cell and the first binding entity is an antibody that specifically binds to EpCAM, CD66c, CD66e, CEA (carcinoembryonic antigen), TACSTD2, CK20 (cytokeratin 20), CD104, MUC-1, CD318, N-cadherin or a combination thereof.
- the target cell is a lung cancer cell and the first binding entity is an antibody that specifically binds to CK18, CK19, CEA, EGFR, TACSTD2, CD318, CD104, or EpCAM or a combination thereof.
- the target cell is a pancreatic cancer cell and the first binding entity is an antibody that specifically binds to MUC-1, TACSTD2, CEA, CD104, CD318, N-cadherin, EpCAM or a combination thereof.
- the target cell is an ovarian cancer cell and the first binding entity is an antibody that specifically binds to MUC-1, TACSTD2, CD318, CD104, N-cadherin, EpCAM or a combination thereof.
- the target cell is an endothelial bladder cancer cell and the first binding entity is an antibody that specifically binds to CD34, CD146, CD62, CD105, CD106, VEGF receptor (vascular endothelial growth factor receptor), MUC-1 or a combination thereof.
- the target cell is an epithelial bladder cancer cell and the first binding entity is an antibody that specifically binds to TACSTD2, EpCAM, CD318, EGFR, 6B5 or Folate binding receptor.
- the target cell may be a cancer stem cell
- the first binding entity may be an antibody that specifically binds to CD133, CD135, CD117, CD34 or a combination thereof.
- the target cell is a circulating cancer cell that expresses mesenchymal antigens and the first binding entity is an antibody (or antibody cocktail) that specifically binds to FGFR1, FGFR4, EGFR, N-cadherin, folate binding receptor, and MSC or a combination thereof.
- the first binding entity is an antibody (or antibody cocktail) that specifically binds to FGFR1, FGFR4, EGFR, N-cadherin, folate binding receptor, and MSC or a combination thereof.
- the target cell is a circulating cancer cell that expresses angiogenesis surface antigens and the first binding entity includes an antibody that specifically binds to a VEGF receptor.
- the target cell is a melanoma cancer cell and the first binding entity is an antibody that specifically binds to one or more of the melanocyte differentiation antigens, oncofetal antigens, tumor specific antigens, SEREX antigens or a combination thereof.
- melanocyte differentiation antigens include but are not limited to tyrosinase, gp75, gp100, Melan A/MART 1 or TRP-2.
- oncofetal antigens include antigens in the MAGE family (MAGE-A1, MAGE-A4), BAGE family, GAGE family or NY-ESO1.
- tumor-specific antigens include CDK4 and ⁇ -catenin.
- SEREX antigens include D-1 and SSX-2.
- the first binding entity is an antibody directed to mutated peptides that are activated as a result of cellular transformation.
- mutated peptides include but are not limited to mutated introns, N-acetylglucosaminyltranferase, V gene product, MUM-1 and p15.
- the first binding entity is an antibody that recognizes the ganglioside, GM2, GD2, GM3 and/or GD3; high molecular weight chondroitin sulfate proteoglycan, CD146, or p97 melanotransferrin.
- the target cell is a circulating tumor cell (CTC).
- CTC in the blood sample is a tumor cell is often defined by staining positive for CK and DAPI and is staining negative for CD45 (CK + , CD45 ⁇ , DAPI + ), whereas lymphocytes are CD45 + .
- CK + , CD45 ⁇ , DAPI + circulating tumor cell
- lymphocytes are CD45 + .
- Detection of the CTCs in the blood circulation can aid disease management, including the ability to monitor treatment efficacy or failure.
- CTCs due to the limited number of available CTC-specific antibodies, CTCs have failed to be captured in about 40%-60% of patient blood samples. Accordingly, the present invention in some aspects provides a method for capturing and detecting these rare CTCs.
- the first binding entity is a mixture (e.g., cocktail) of at least a first antibody and a second antibody, wherein the first antibody specifically binds to a first epitope of the target entity and the second antibody specifically binds to a second epitope of the target entity.
- the first and second epitopes can be present on the same antigen (molecule) or the first and second epitopes can be present on different antigens (molecules).
- the first binding entity can be a mixture of a first antibody and a second antibody, wherein the first antibody specifically binds to a stem cell antigen and the second antibody specifically binds to a cancer cell antigen.
- Stem cell antigens can be present on cancer stem cells, and antibodies directed to these stem cell antigens can be added as general capture antibodies to one or more antibodies directed to cancer antigens, such as those described herein.
- the first antibody specifically binds to CD133, CD135, CD117, CD34 or combinations thereof, and the second antibody specifically binds to a cancer antigen.
- the first binding entity can be a mixture of a first antibody and a second antibody, wherein the first antibody specifically binds to a mesenchymal marker and the second antibody specifically binds to a cancer cell antigen.
- Circulating tumor cells can downregulate epithelial markers and upregulate mesenchymal markers, and thus can be captured by antibodies that specifically bind to such mesenchymal markers.
- the first antibody specifically binds to FGFR1 (fibroblast growth factor receptor 1), FGFR4, MSC (mesenchymal stem cell antigen), EGFR, N-cadherin, folate binding receptor or combinations thereof, and the second antibody specifically binds to a cancer antigen.
- the first binding entity can be a mixture of a first antibody and a second antibody, wherein the first antibody specifically binds to an angiogenesis marker and the second antibody specifically binds to a cancer cell antigen.
- the first antibody specifically binds to a VEGF receptor, and the second antibody specifically binds to a cancer antigen.
- the method further comprises contacting the pre-loading mixture with a third binding entity.
- the first binding entity may be a primary antibody
- the third binding entity may be a secondary antibody conjugated to a detectable or capturable entity, and the secondary antibody specifically binds to the first binding entity.
- the second binding entity specifically binds to the third binding entity (e.g., via the capturable entity).
- the method further comprises contacting the pre-loading mixture with a third binding entity, wherein the first binding entity is a primary antibody, the third binding entity is a biotinylated secondary antibody that specifically binds to the first binding entity, and wherein the second binding entity is an avidin molecule.
- the secondary antibody may be a whole or an intact antibody, or fragment thereof, such as Fab′2, Fab′ or Fab, or any antibody derivatives.
- a derivatized antibody can be a fragment of the antibody, an antibody that has been conjugated to a fatty acid, carbohydrate, peptide, a chemical entity such as a fluorescein, streptavidin etc.
- a derivatized antibody can be an antibody where the amino acids have been modified to increase the avidity or affinity of the antibody to the target protein.
- the method further comprises cross-linking the target cell bound to the surface of the micro-channel.
- cross-linking agents can be employed to cross-link the bound target cells to the micro-channel, for example via, amino groups (amide, amine etc.), carbonyl groups, acyl groups, alkyl groups, aryl groups, sulfhydryl groups, and others that are well known to one skilled in the art.
- cross-linking agents include, but are not limited to, hydrophilic homobifunctional NHS crosslinking reagents (e.g.
- Bis(NHS)PEO-5 bis N-succinimidyl-[pentaethylene glycol] ester
- crosslink primary amines homobifuctional isothiocyanate derivatives of PEG or dextran polymers, glutaraldehyde, heterobifunctional crosslinkers containing NHS on one end and maleimide on the other end of the polymer; peroxide treated carbohydrate polymers to form reactive aldehyde polymers, and EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride) to crosslink carboxyl groups to primary amines.
- the length of the cross-linkers may be varied by adding one or more polymeric units between the two reactive groups on either end of the linker.
- Suitable polymeric units include, but are not limited to polymeric ethylene glycol, carbon chains, polynucleotides, polypeptides, and polysaccharides.
- the cross-linking reagent can be applied to the micro-channel following capture of the target cells.
- a second cross-linking treatment is employed following labeling (e.g. fluorescent labeling) of the captured cells to cross-link the label to the captured cells.
- concentration of the cross-linking agent and duration of treatment will depend on the type and reactivity of cross-linking reagent, type of target cell, binding entities employed to capture the cells, and expression level of surface antigen to which a binding entity binds. Suitable concentrations can be from about 0.01 mM to about 10 mM, more preferably from about 0.5 mM to about 5 mM, or most preferably about 1 mM.
- Duration of treatment with the cross-linking reagent can be from about 5 min to about 120 min, about 15 min to about 90 min, or about 30 min to about 60 min. Optimization of the concentration of cross-linking reagent and duration of treatment is within the skill of the ordinary artisan.
- captured cells can be visualized by photomicroscopy.
- captured cells may be labeled with a fluorescent molecule or stained and visualized by fluorescent microscopy or by measuring a fluorescent signal.
- captured cells may be stained with the nuclear dye DAPI and subsequently visualized by fluorescence microscopy.
- detecting the presence of the target cell is carried out by detecting the presence of the first binding entity. Detection of the first binding entity can include exposing the captured cells to a tagged molecule that recognizes and binds the first binding entity.
- the tagged molecule may be an antibody labeled with a fluorescent tag or colored latex particle that binds to the first binding entity.
- the first binding entity is a biotinylated antibody and the tagged molecule is fluorescently labeled avidin.
- the tagged molecule may be the same type of molecule as the second binding entity.
- the detection of the captured cells can comprise detecting the presence of the third binding entity.
- the tagged molecule recognizes and binds to the third binding entity.
- the first binding entity can be a mouse antibody
- the third binding entity can be a biotinylated secondary antibody that binds to mouse antibodies (e.g.
- the tagged molecule can be either a fluorescently labeled avidin or a fluorescently labeled antibody that binds to the third binding entity (e.g. a rabbit derived anti-goat antibody).
- captured cells can be released from the micro-channel and collected for further analysis.
- methods for releasing the captured cells are known in the art and can include mechanical means (e.g. high fluid flow), chemical means (e.g. change in pH), or use of enzymatic cleavage agents.
- a reagent may be applied to the micro-channel to cleave the second binding entity or to cleave the bond between the second binding entity and the cells in order to release the target cells from the micro-channel.
- trypsin, proteinase K, collegenase, or a specifically focused enzyme may be used to degrade the second binding entity (e.g.
- a gene mutation can be a substitution, addition, deletion of one or more nucleotides in a gene sequence.
- the nucleic acid, such as DNA or RNA, obtained from the released cells can be subjected to fluorescent in-situ hybridization (FISH), PCR analysis, RFLP (restriction fragment length polymorphism) analysis, DNA sequencing, etc.
- FISH fluorescent in-situ hybridization
- proteins or glycoproteins, including peptides and amino acids obtained from the released cells can be subjected to, for example but not limited to, amino acid or peptide analysis or sequencing, GC-MS and other techniques known to those skilled in the art of protein analyses.
- the captured cell released from the micro-channel device can be analyzed morphologically by light microscopy, electron microscopy, scanning microscopy, immunocytochemistry staining (ICC) for internal cellular structures or surface proteins expression, etc.
- ICC immunocytochemistry staining
- the captured cells may be further analyzed in situ.
- the cells may be counted while attached, labeled with fluorescent markers, subject to in situ hybridization analysis, such as FISH. Because antibody-antigen bonds are not covalent, they can be dissociated under some circumstances. Therefore, in some embodiments, it is highly desirable to further stabilize the cells on the micro-channel by crosslinking the cells to the channel so that cells are not dislodged and lost during the various in situ labeling, heating, denaturing and washing steps.
- Cross-linking can be a particularly important consideration with cells that express a low level of the surface antigens targeted by the first binding entity since these cells can be more weakly attached to the second binding entity. Covalent crosslinking of the cells to the channel surface matrix can stabilize captured cells during post-capture analysis.
- the invention provides a method of post-capture analysis of circulating cells.
- the circulating cells may be captured as described herein, including by the methods or devices of the invention.
- the circulating cells are captured and evaluated without one or more enrichment and/or cell replicating or duplicating processes, e.g., via cell culture, etc.
- circulating cells are evaluated for malignancy independent of CK status or expression, e.g., without CK staining and/or any other evaluating assay.
- captured cells are evaluated (as described herein) for aneuploidy.
- the aneuploidy may be with respect to, for example, chromosomes 1, 3, 4, 7, 8, 11, and/or 17.
- the invention involves evaluating circulating cells for monosomy or trisomy 8, 11, and/or 17. In certain embodiments, the invention involves evaluating circulating cells for monosomy 8, 11, and/or 17. Aneuploidy may be detected using any know method, such as FISH. Additionally markers of cancer or malignancy may be used (except cytokeratin expression), such as those described herein, including Her2 expression.
- FIG. 1 One embodiment of a micro-channel device for separating biomolecules or cells is shown in FIG. 1 .
- the device comprises a substrate or support 11 which is formed with a flow path that includes a micro-channel 13 to which sample liquid is to be supplied through an opening or well 15 that serves as an entrance or inlet at a first end of the device and an opening 19 that serves as an outlet at the second end of the device.
- the cross-section of the collection region 17 is greater than that of an inlet section 18 that leads there into from the inlet opening 15 .
- the inlet section contains one or more pairs of axially aligned divider/supports 21 just upstream of where it widens at the end of the region 18 to enter the collection region 17 .
- the collection region contains a plurality of upstanding posts 23 that are aligned transverse to the liquid flow path and arranged in an irregular, generally random pattern across the entire width of the collection region portion of the flow channel.
- the pattern of the posts is such that there can be no straight-line flow through the collection region and that streamlined flow streams are disrupted, assuring there is good contact between the liquid being caused to flow along the flow path and the surfaces of the posts.
- the posts are integral with the flat base of the collection region 17 and extend perpendicular from the base, presenting surfaces that are vertical relative to a horizontal path of the liquid being caused to flow through the flow channel of the substrate 11 .
- Another flow divider/support 21 a is located at the exit from the collection region.
- the substrate is formed from PDMS and is bonded to a flat glass plate to close the flow channel.
- the interior surfaces throughout the collection region are derivatized with amine groups (Inventors: Is the amine group specific to PDMS or can there be other active groups, e.g. SH— that can be derivatized. I seem to remember one can coat supports with polylysine to attach cells or positively charged proteins) by incubating for 30 minutes at room temperature with a 3% solution of 3-aminopropyltriethoxysilance. After washing with ethanol the amine groups on the channel are derivatized for 30 minutes with bifunctional PEG linker molecule containing an NHS ester on one end and a maleimide group on the other end.
- amine groups Inventors: Is the amine group specific to PDMS or can there be other active groups, e.g. SH— that can be derivatized. I seem to remember one can coat supports with polylysine to attach cells or positively charged proteins
- the NHS group reacts with the amine groups on the channel.
- a solution of 0.5 mg/mL thiolated streptavidin is added which will react with the maleimide groups on the other end of PEG linkers attached to the channel.
- Thiolated streptavidin is prepared by treatment of streptavidin with Traut's reagent as is commonly known in the art. After incubation for 60 min, the excess thiolated streptavidin is washed from the micro-channel with PBS/1% BSA and stored for future use.
- the buffy coat is isolated by density gradient sedimentation as is commonly known in the art.
- the buffy coat contains the nucleated white blood cell fraction of the blood and also contains epithelial or other nucleated cells present in the blood.
- the buffy coat contained in a volume of approximately 0.5 mL in a centrifuge tube is incubated with the first binding entity of the present invention for 30 min, and then the tube is filled with approximately 30-fold excess of PBS/BSA and centrifuged to pellet the buffy coat cells.
- the sample is resuspended in approximately 200 ⁇ L and passed through the avidin-coated micro-channel by hooking the micro-channel device up to outlet tubing from a syringe pump which is filled with about 50 ⁇ L of the cell suspension.
- the syringe pump is operated to produce a slow continuous flow of the sample liquid through the micro-channel device at room temperature and a rate of about 10 ⁇ L/min.
- the avidin attached to the surfaces in the collection region where the random pattern of transverse posts are located captures the target cells of interest in the sample.
- a slow flushing is carried out with a PBS/1% BSA aqueous buffer.
- Captured cells may be treated further with additional antibodies and fluorescent probes and analyzed by fluorescence microscopy.
- CTC circulating tumor cell
- the devices of the present invention comprise a micro-channel derivatized with a general antibody or protein that can bind to cell-specific antibodies as described in Example 1.
- the cell-specific antibody is added to the sample containing the cells of interest prior to passing the sample through the micro-channel, thus pre-labeling the cells.
- the cells of interest are then captured when the general antibody or other protein coating the channel binds to the cell-specific antibody bound to the cells of interest ( FIG. 3 ).
- the following set of experiments were conducted to determine whether pre-labeling a sample containing CTCs with antigen-specific antibodies result in a better capture rate on micro-channel devices as compared to micro-channel devices coated with the antigen-specific antibody.
- a common antigen used to capture CTCs is EpCAM, an epithelial cell surface adhesion molecule.
- the bladder cell line, T24 was used, which is known to express low levels of EpCAM.
- the micro-channel was derivatized with streptavidin and then biotinylated antibody for EpCAM was pre-loaded onto the channel (EpCAM channel).
- the EpCAM antibody was able to bind the EpCAM antigen on the surface of the T24 cells, thus capturing the cells in the micro-channel.
- the micro-channel was derivatized with streptavidin (Strep channel) and the biotinylated antibody for EpCAM was incubated with the sample of T24 cells at approximately 1 ⁇ g/mL for 30-60 mins. prior to passage of the cells over the streptavidin-coated channel.
- the streptavidin binds to the biotinylated EpCAM antibody bound to the surface of T24 cells, thus capturing the cells in the micro-channel.
- the reagent components of the two devices are identical except that they are applied to the devices in a different order.
- the volume of the initial cell suspension applied to the channel was increased from 250 ⁇ l to 2 mL. Since the ⁇ g per mL of the added extra antibody remained the same as in FIG. 5 , the total ⁇ g of absolute antibody in the sample with approximately 200 cells was nearly 10 times higher than in FIG. 5 . As shown in FIG. 6 , the added extra antibody shows a similar increase in cell recovery relative to the concentration of the antibody that was observed in the results depicted in FIG. 5 . This result indicates that the observation of higher recovery is related to the concentration of excess antibody in the cell suspension and not the absolute ⁇ g of total antibody in the cell suspension.
- results of this series of experiments show unexpected advantages in collecting cells of interest in a micro-channel flow device when the cells are pre-labeled with antibody.
- pre-incubating the cells with antigen-specific antibody significantly improves capture in the micro-channel device as compared to capture in micro-channels coated with the antigen-specific antibody.
- the presence of excess antibody in the cell sample during the run does not limit this methodology but can in fact mediate increased binding of the cellular antigens to the streptavidin matrix on the channel, thereby enhancing capture.
- An advantage of using a micro-channel coated with a general binding partner (e.g. antibody or protein) of an antigen-specific antibody is that multiple antibodies can be added to a cell suspension to pre-label cells without lessening the availability of any single antibody. Because multiple antigen sites on a cell are not mutually exclusive, when adding multiple antibodies to the cell suspension the capture efficiency on the channel is not diminished for any single antibody. By way of example, if the channel could accommodate 100 antibody sites and a mixture of 5 different antibodies were added to coat the channel, then each antibody would occupy ⁇ 20% of the channel space.
- the potential binding efficiency for each individual antibody is only 20% of what it would be if it covered the entire channel. Regardless of the number of antigens on the cell, the channel is inherently less efficient at capturing those cells with only 20% of that individual antibody.
- the efficacy in capturing these low antigen expressing cells can be amplified by the addition of the antibodies specific for other target antigen in the cell suspension prior to binding to the substrate or support of the micro-channel device. For example, if the same 5 antibodies are added to the cell suspension, then each antibody can maximally bind to all cognate cell surface antigens independently, without interference or reduction due to the presence of other antibodies bound to different epitopes on the cell.
- a channel coated with a binding partner for the capture tag e.g. streptavidin
- a binding partner for the capture tag e.g. streptavidin
- FIG. 7 shows a reduction in the capture of T24 cells when the ratio of EpCAM antibody to murine IgG on the channel is lowered when the antibodies are first coated on the substrate/support of the micro-channel device.
- the biotinylated EpCAM antibody was diluted with irrelevant biotinylated mouse IgG and the resulting mixture was used, either to coat the channel with antibody or added to the cell suspension prior to passage over the channel.
- FIG. 7 shows that the percentage of T24 cell-capture is about twice as high when the cells were pre-labeled with biotinylated EpCAM antibody only. This observation is consistent with the results seen in FIG. 4 .
- the channel recovery drops from 24% to 7%, while the recovery of pre-labeled cells is unaffected ( FIG. 7 , sample B).
- the EpCAM was diluted in a 1:4, the recovery drops to 1% when the antibody mixture was first coated on the channel while the recovery is unchanged when the cells were pre-labeled with the antibody mixture prior to binding to the substrate or support of the microchannel device ( FIG. 7 , sample C).
- the antibody in a mixture that might be directed towards the highest level antigen on the CTC will be diminished by the addition of antibodies to the lesser antigen levels on the CTC. If only one antibody in a mixture recognizes a dominant epitope on a particular CTC, then diluting with several other antibodies on the channel will adversely affect capture instead of enhancing it. By contrast, mixtures of soluble antibodies added to cells prior to passage over the channel are additive.
- Trop-1 and Trop-2 were added to cell suspensions of either T24 bladder cells or SKOV ovarian cells.
- Each of the antibodies was biotinylated and cells were captured using a micro-channel device coated with streptavidin.
- Trop-1 antibody was used to pre-load T24 cells, 29% of the cells are captured ( FIG. 8 ).
- Trop-2 antibody which binds to a different antigen than Trop-1 antibody, was added in combination with the Trop-1 antibody, 94% of the cells are captured.
- a similar result is obtained with SKOV cells. A capture of 74% of the cells is observed with pre-labeling with Trop-1 antibody alone.
- FIG. 9 the same additive effect is observed using a different cell line and with a different antibody mixture.
- MDA-MB-231 which has a low EpCAM expression was tested.
- the % capture with EpCAM antibody alone is low, but adding a mixture of 6 antibodies specific for the antigens: EpCAM, Trop-2, EGFR, MUC-1, CD318 and HER-2 improves capture to essentially 100%.
- FACS analysis of the MDA-MB-231 showed that this cell line has very low antigen expression of EpCAM, Trop-2, Her-2, and MUC-1 but higher expression of EGFR and CD318. Therefore, the antibodies to the higher expressing antigens were diluted 3-fold with antibodies to low expressing antigen. The diluted antibodies are still highly effective in capturing this low EpCAM-expressing cell line. This result is consistent with the results shown in FIG. 7 where antibodies were used to pre-label the cells.
- a non-derivatized primary antibody may more efficiently bind to the antigen of interest or may be easier to employ. With some antibodies their activities are adversely affected by derivatization procedures which modify their surface amino acids.
- a derivatized secondary antibody may be added to the cell suspension to form a complex with the primary antibody which is bound to the cellular target antigen.
- primary antibody mixtures, semi-purified or non-clonal hybridoma supernates can be added to the cell suspension and any antibodies that attach to antigens on the cell can be labeled by the addition of a derivatized (e.g. biotinylated) secondary antibody. Antibodies that do not bind to the cell are simply washed away.
- the cultured ovarian SKOV cell line was pre-labeled with either biotinylated Trop-1 antibody (Sample A in FIG. 10 ) or non-biotinylated Trop-1 plus a 3-fold molar excess of biotinylated anti-mouse secondary antibody.
- the primary antibody (Trop-1) concentration was 1 ⁇ g/mL and the cells were incubated for 30 mins. either with or without 3 ⁇ g/mL secondary antibody before cell capture and purification on a micro-channel device.
- the difference between samples B and D was that a longer biotin linker on the secondary antibody was used in sample D.
- sample C the cells were washed with PBS/BSA to remove excess primary and secondary antibody before applying the cells to the channel. In all samples, approximately 200 cells were suspended in 250 ⁇ L of PBS/BSA for application to the channel.
- biotinylated secondary antibody can be used in combination with unlabeled primary antibody to pre-labeled cells for effective capture in a micro-channel device.
- the presence of some excess biotinylated secondary antibody did not adversely affect the capture percentage compared to direct pre-labeling with 1 ⁇ g of biotinylated Trop-1.
- Secondary antibodies may include intact IgG antibody, or antibody fragments such as Fab′2, Fab′, Fab or engineered antibody fragments such as single chain Fab or single chain variable fragment.
- the process of capturing cells on a micro-channel device involves flow of cells suspended in a liquid. Therefore, the cells are subjected to sheer forces from the liquid flow that can also dislodge the cells from the channel after they are captured. This effect is more pronounced with cells that have lower surface antigen levels because there are relatively fewer attachment points between the cell and the specific cell surface antigens bound to the channel surface by the antibody. Therefore, it is advantageous to provide an additional external attachment of the cell to the channel surface by means of cross-linking reagents to better stabilize the attachment of the cell to the channel. Since the channel is typically coated with a binding protein (e.g. streptavidin or an antibody), a facile means of further anchoring the cell to the channel is through protein cross-linking reagents.
- a binding protein e.g. streptavidin or an antibody
- Reagents known in the art for this purpose can be homo-bifunctional NHS esters to crosslink amino groups on proteins.
- Another way of cross-linking is through the thiol or disulfide groups on the proteins with thiol reactive reagents, such as heterobifunctional molecules with a maleimide and an NHS ester.
- reagents such as EDC can be used to cross-link carboxyl and amino groups.
- the length of these cross-linkers can be varied by the use of polymeric regions between the two reactive groups, which typically take the form of chemical linkers such as polymeric ethylene glycol or simple carbon chains, but can also include sugars, amino acids or peptides, or oligonucleotides.
- Polymer chain lengths of from 5 to 50 nm are typical for this purpose but can be shorter or longer as needed.
- the common property of all of these protein cross-linking reagents is to covalently bind cellular proteins so as to anchor the cell to the surface of the channel by multiple covalent attachment points.
- the exact number of cells applied to the channel was determined microscopically by counting the cells in duplicate aliquots. After the cell suspension was passed through the channel, the channel containing bound cells was washed once with PBS/BSA and then a solution of homobifunctional NHS ester (bis N-succinimidyl-[pentaethylene glycol] ester) at 2 mM was passed over the channel and allowed to incubate for 20 mins. The control channel without NHS ester received only PBS/BSA solution. The cells were then washed with a 5% PEG solution in PBS for 2 mins. at various flow rates. The 5% PEG/PBS solution increases the solution viscosity and along with higher flow, provides more sheer force on the cells for purposes of this comparison. The cells captured in the channel were then stained with the nuclear staining dye, DAPI and counted.
- DAPI nuclear staining dye
- FIG. 11 shows photomicrographs of captured cells subjected to different flow rates in the absence of protein cross-linker. Almost 50% of the cells are lost at a flow rate of 20 ⁇ L/min and all of the cells are lost at a flow rate of 100 ⁇ L/min.
- FIG. 12 shows photomicrographs of captured cells subjected to different flow rates after exposure to a NHS protein cross-linker. All cells are retained on the channel at flow rates of up to 50 ⁇ L/min and only one cell was lost at a flow rate of 100 ⁇ L/min.
- FIG. 13 A quantitative comparison of capture with and without cellular stabilization by protein cross-linking is shown in FIG. 13 .
- approximately 200 T24 cells were applied to the micro-channel and after capture, the cells were washed with 5% PEG in PBS.
- FIG. 13 shows that less than 50% of the cells which not treated with crosslinking reagent are recovered compared to the percentage of cells recovered in channels treated with a crosslinker.
- the addition of protein cross-linking reagents significantly stabilizes cell attachment to the micro-channel. It should be noted that this result is independent of how the cells were captured on the micro-channel, whether by pre-loading antibody on the cells or on the channel, since the crosslinking agent stabilizes the cell on the micro-channel after the cells have been captured.
- a second experiment similar to the above was employed to test for cell stability on the channel. After treatment of the cells with the protein crosslinker as above, the SKOV cells on the channel were subsequently stained with anti-cytokeratin (to visualize epithelial cells) and DAPI (to visualize cells with a nucleus). The difference in this experiment was that the tubing connected to the outlet was disconnected, a process that can cause transient but abrupt pressure pulses that can sheer and dislodge cells from the micro channel.
- Table 1 shows the increasing numbers of cells lost when cells were not crosslinked to the channel were subjected to exogenous mechanical forces as a result of removing the outlet tubing. If cells were fixed to the channel with methanol treatment prior to removal of the tubing connections, there is no significant difference in cell recovery regardless of whether crosslinker was used (data not shown). However, methanol fixation (or any alcohol or acetone fixation) has several undesirable side-effects for the purposes of some subsequent cell analyses. Cells fixed with methanol are permeabilized due to disruption of the cell membrane and therefore cell surface studies cannot be distinguished from internal cell reactions. In addition, cells fixed with methanol become fused to the channel matrix making cell removal difficult and inefficient.
- Such cells can be subjected to extensive proteolysis to aid in cell removal, but cellular digestion has several undesirable side-effects for some types of subsequent cellular analysis.
- the procedure of crosslinking cells to the channel allows stabilized cells on the channel to be retained without alcohol fixation during normal channel operations and manipulations including higher flow rates, higher viscosity buffers and removal of channel connections.
- Urothelial carcinoma (UC) cell lines have lower expression of EpCAM in more invasive tumor models. Such cells in circulation would be expected to limit the utility of EpCAM-based CTC capture.
- a cohort of 5 UC cell lines (UMUC3, UMUC5, UMUC9, T24, and KU7) were selected based on gene expression heat map analysis as being either more epithelial or more mesenchymal-like. In the latter case, these cells have undergone the epithelial to mesenchymal transition (EMT) which results in epithelial cells with mesenchymal expression and morphological characteristics. This EMT has been proposed as a mechanism by which epithelial cells can dissociate from the tumor and become more migratory and invasive in circulation.
- EMT epithelial to mesenchymal transition
- EMT cells were further tested by FACS for a variety of cell surface antigens. After identifying expression differences in these cell lines, an antibody mixture of EpCAM and 5 additional antibodies was selected to improve cell capture of all UC cell types. We subsequently compared cell capture rates using microfluidic channels with the antibody mixture compared to EpCAM alone. Cells were also immunostained with cytokeratin and vimentin antibodies to help further distinguish cells having epithelial or mesenchymal-like expression characteristics, respectively.
- FIG. 14 shows the staining of the 5 UC cells lines with vimentin and cytokeration.
- 2 (UC3 and KU7) stained with vimentin and had minimal to no expression of EpCAM. While these cells lines retained some degree of cytokeratin staining, one cell line stained only with vimentin ( FIG. 14 ).
- the remaining 3 lines (UCS, UC9 and T24) stained only for cytokeratin and had significant EpCAM expression.
- Those cell lines with no EpCAM expression (UC3 and KU7) had no cell recovery when EpCAM alone was utilized as the capture antibody.
- Example 7 Capture of Low-Antigen Expressing Cells on a Micro-Channel Device Increases with Antibody Mixture or Cocktails
- the benefit of using cocktails of biotin-conjugated antibodies is the additive effect in increasing surface biotins on target cells, which is useful for increasing the capture of low antigen-expressing cells or cells expressing variable levels of one or more antigens in a heterogenous cell population, such as those found in tumor patients. See FIGS. 8 , 9 , and 13 .
- the unexpected additional advantage of using multiple antibodies in a cocktail is that this provides a common detection method for a heterogenous population of cells that have variable level of antigen expression. An example of this is shown in FIGS. 15 A- 15 B .
- FIG. 15 A shows the percentage capture of SKOV cells, which is known to express a high level of EpCam antigen (approximately 40-70,000 EpCam antigens per cell (apc)), with EpCam alone or with a mixture of antibodies specific for other surface antigens expressed by the cells, including EpCAM, Trop-2, EGFR, MUC-1, CD318 and HER-2.
- EpCam antigen approximately 40-70,000 EpCam antigens per cell (apc)
- FIG. 15 B shows the fluorescence staining intensity of the same SKOV cells by FACS and on slides. These cells stain with very different intensities depending on whether they have been pre-mixed with EpCam alone (66,000 surface antigens) or with an antibody mixture which are directed against Her-2, CD24, CD44, combined surface antigen level of ⁇ 600,000 antigens as determined by the FACS analysis. Fluorescently labeled anti-mouse antibody was used to label the primary antibodies. While there was minimal increase in the capture of these antibody cocktail-incubated SKOV cells using biotinylated secondary antibody as shown in FIG. 15 A , using fluorescently labeled secondary antibody in FIG. 15 B shows that the staining intensity is significantly higher when using the antibody mixture.
- antibody cocktails has the unique advantage in allowing detection of cells for which there may not be a known specific marker for detection such as cytokeratin in epithelial cells, or where the cytokeratin has been lost as shown in FIG. 14 .
- the multiple antibodies used in a mixture for better capture of cells with variable expression of surface markers can still be targeted for fluorescence labeling based solely on their increased levels of bound antibodies from the antibody cocktail.
- FIG. 16 shows the additive effect of multiple antibodies in a cocktail, which contain antibodies specific for the SKOV target cells and which are shown to associate minimally to the non-specific cells present in a blood sample, when the blood sample was spiked with SKOV target cells.
- the antibody cocktail contained antibodies directed against CD340, EGFR, CD318, Muc-1, Trop-2, EpCam, Mov-18, MSC, c-met and N-Cadherin. Although some of the non-specific cells in the sample may have adsorbed some of the biotinylated antibodies (either primary or secondary) added to the samples, the level of antibodies adsorbed is far too low to be visualized using fluorescently-labeled neutravidin.
- FIGS. 15 A- 15 B and 16 demonstrate that addition of multiple antibodies in a cocktail provides a common and universal method of detecting rare cell types that express low levels of antigens on the microchannel.
- Example 8 The Micro-Channel Device is Superior at Capturing Cells from Biological Samples that are Present in Low Cell Numbers
- FIG. 17 blood samples were spiked with a variable number of SKBr3 cells, a cell line expressing high levels of EpCAM, ranging from about 10-250 cells per 10 mL blood sample.
- EpCAM antibodies were added to the spiked blood sample and the EpCAM Ab-bound cells were captured on a micro-channel device using the method described in Example 1.
- FIG. 17 shows that approximately a 100% of the SKBr3 cells were recovered from the spiked samples.
- the data shows that the percent capture of cells by the micro-channel device is independent of the cell input.
- Example 9 Antibody Cocktail is Superior at Capturing Circulating Tumor Cell (CTC) from Patient Blood Samples Using Micro-Channel Device
- Table 2 shows the results of circulating tumor cells (CTCs) captured on a micro-channel device from 10 mL blood samples from patients diagnosed with prostate, lung, pancreatic, renal cell, colorectal, breast and ovarian cancers.
- the blood samples were pre-labeled with a cocktail of soluble antibodies containing antibodies directed against CD340, EGFR, CD318, Muc-1, Trop-2, EpCam, Mov-18, and MSC, or a anti-EpCAM only. Cells were identified by staining with fluorescently labeled anti-cytokeratin.
- TABLE 2 shows that the blood samples pre-labeled with a soluble antibody cocktail is superior at capturing CTCs compared to samples pre-labeled with a single type of antibody alone.
- Blood samples were pre-incubated with anti-EpCAM antibody for capture on a micro-channel device or pre-incubated with antibodies that are joined to microscopic iron particles (immunoferromagnetic Abs) and captured using CELLSEARCH® (VERIDEX, LLC).
- the captured cells were stained for CK, CD45 markers and DAPI, a nuclei stain.
- the cells that were stained in-situ with CK + /CD45 ⁇ /DAPI + were counted.
- TABLE 3 shows that the total number of CTCs captured on the micro-channel device that are CK + /CD45 ⁇ /DAPI + are consistently more than the CTCs captured by the VERIDEX systems, indicating that the invention provides for superior capturing of CTCs.
- Example 11 Post-Capture Molecular Analysis of Captured Cells Increases Identification of CTC as Cancer Cells in Stage III and IV Breast Cancer Patients
- Circulating tumor cells were captured from blood samples of Stage IV (TABLE 4) and III (TABLE 5) breast cancer patients.
- the CTCs were pre-labeled with an antibody cocktail, containing antibodies to CD340, EGFR, CD318, Muc-1, Trop-2, EpCam, Mov-18, and MSC, and were released from the micro-channel device.
- the captured cells were analyzed by fluorescent in-situ hybridization (FISH) for aneuploidy in chromosome 8 and 17, and amplification of the breast cancer marker, Her2 (TABLE 4) These cells were never released from the microchannel and all FISH is performed in the channel with cells relocated following enumeration for FISH analysis.
- the total number of CTCs found positive for aneuploidy were compared to the total number of cells stained positive for CK marker.
- TABLE 4 shows that post-capture molecular analyses of CTCs from stage IV breast cancer patients for aneuploidy and Her2 amplification status are superior in detecting breast cancer cells from the captured CTCs compared to CK staining.
- Example 12 Post-Capture Molecular Analysis of Captured Cells Increases Identification of CTC as Cancer Cells in Bladder Cancer Patients
- Circulating tumor cells were captured from blood samples of bladder cancer patients.
- the CTCs were pre-labeled with an antibody cocktail, containing antibodies to CD340, EGFR, CD318, Muc-1, Trop-2, EpCam, Mov-18, MSC, c-met and N-Cadherin.
- Captured cells were analyzed directly within the micro-channel device by fluorescent in-situ hybridization for aneuploidy in chromosome 3, 7 and 17, and compared to staining for CK marker on the captured CTCs.
- Table 6 shows that the many of the captured cells from samples obtained from patients with bladder cancer which are stained negative for CK (2nd column) are aneuploid cells (monosomy, trisomy and/or tetraploid at chromosome 3, 7 and 17). The results in Table 6 show that the method is capable of identifying CTCs from blood obtained from different cancer types.
- results from these experiments show that the ability to identify aneuploidy and expression of specific markers in CTCs captured on a micro-channel device provide a means for predicting and managing diseases, such as cancer during the early stages of tumorigenesis or late stages of tumorigenesis where tumor cells have metatasized and escaped into the circulation.
- the method described is also applicable for monitoring treatment efficacy or failure.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hospice & Palliative Care (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The present invention provides a device for isolating target biomolecules or cells from samples, particularly biological samples. In particular, the device comprises a loading mixture, which contains the biological sample and a first binding entity that specifically binds to the target biomolecule or target cell; and a micro-channel coated with a second binding entity that binds directly or indirectly to the first binding entity. Methods of capturing, detecting, and/or evaluating target biomolecules or target cells (e.g. cancer cells) in biological samples are also disclosed.
Description
- This application is a continuation of U.S. patent application Ser. No. 16/695,976, filed on Nov. 26, 2019, which is a continuation of U.S. patent application Ser. No. 14/812,498, filed on Jul. 29, 2015 (now U.S. Pat. No. 10,527,611, issued on Jan. 7, 2020), which is a divisional of U.S. patent application Ser. No. 12/730,738, filed on Mar. 24, 2010 (now U.S. Pat. No. 9,128,082, issued on Sep. 8, 2015), which claims the benefit of priority to U.S. Provisional Patent Application No. 61/298,871, filed on Jan. 27, 2010, U.S. Provisional Patent Application No. 61/235,615, filed on Aug. 20, 2009 and U.S. Provisional Patent Application No. 61/163,009, filed on Mar. 24, 2009, each of which are hereby incorporated by reference in their entireties.
- The present invention relates to micro-channel devices for capturing targets, such as cells and molecules of interest from solutions, as well as to post-capture analysis of circulating cells. In certain embodiments, the present invention relates to methods and devices for capturing target cells (e.g. circulating tumor cells) from physiological fluids, and analyses thereof.
- Isolation of target cells or molecules from heterogeneous samples remains a prominent interest for research applications as well as medical applications, such as diagnostics and therapeutics. In particular, separation of rare cell types from physiological tissues and bodily fluids obviates the need to obtain large tissue samples and avoids the risks associated with the procedures required to obtain such samples. For example, isolation of fetal cells from maternal blood samples for genetic testing avoids the risks associated with aminocentesis or chronic villus sampling. Isolation of circulating tumor cells from a patient would allow the clinician to evaluate the cancer and monitor pathological changes in the patient's tumor, as well as evaluate the efficacy of any on-going drug treatments without conducting invasive biopsy procedures.
- Current methods for separating biological molecules and/or cells from heterogeneous samples typically entail the use of a high affinity binding partner (e.g. an antibody or antigen) coupled to a solid support. The heterogeneous sample is passed over the solid support and the target biological molecules or cells of interest are bound by the binding partner and retained on the solid support. The bound molecules or cells of interest can be subsequently analyzed for the presence of molecular genomic and proteomic information.
- These current approaches suffer from several technical difficulties, one of which is the problem of non-specific binding. To minimize non-specific binding, one or more washing steps is required to remove other molecules and/or cells that are bound to the solid support or binding partner. In addition, the subsequent in situ analysis of cells on the channel by staining and hybridization procedures may subject the cells to harsh and denaturing conditions. These washing and analysis procedures can compromise the initial capture of the desired molecule or cell by subjecting the binding partner to conditions that may cause the binding partner to degrade, lose some of its conformational structure, or become detached from the solid support.
- Further still, existing methods for analyzing circulating cells (e.g., as captured from a patient sample) for malignancy, such as staining cells for cytokeratin (CK), have limitations as markers for identifying and/or evaluating circulating tumor cells.
- Thus, there is a need in the art for additional methods and devices for isolating biological molecules and/or cells of interest from samples, as well as methods for subsequent analysis of captured targets, such as analysis of captured, circulating tumor cells.
- The present invention provides devices and methods for capturing and/or analyzing biological targets from fluid samples. In various embodiments, the invention provides methods for capturing circulating tumor cells from biological samples, for the evaluation of a cancer patient's disease. In these and other embodiments, the invention provides methods for identifying and/or evaluating circulating cells for malignancy without or independent of CK status.
- In one aspect, the invention provides a method for capturing biological targets from solution. In this aspect, the present invention is based, in part, on the discovery that pre-labeling or pre-mixing a sample containing a target (e.g., a cell) of interest with a binding partner that specifically binds to the cell enhances the capture of such targets in a micro-channel device.
- In certain embodiments, the device comprises a micro-channel and a loading mixture. The micro-channel may comprise a population of posts distributed on the surface of the micro-channel in random pattern. The loading mixture may comprise a biological sample suspected of containing a target, such as a target cell, and also comprises a first binding entity. The first binding entity specifically binds to the target (e.g., a target entity on a target cell). The surface of the micro-channel is coated with a second binding entity that specifically binds, directly or indirectly, to the first binding entity. In some embodiments, the loading mixture further comprises a third binding entity conjugated to a detectable or capturable entity. For example, the first binding entity may be a primary antibody, the third binding entity may be a secondary antibody that specifically binds to the primary antibody, and the second binding entity specifically binds directly or indirectly to the secondary antibody. In one embodiment, the third binding entity is a biotinylated secondary antibody that specifically binds to the first binding entity and the second binding entity is avidin. The secondary antibody may be intact antibody or any antibody fragment such as
Fab′ 2, Fab′ or Fab. In addition this may include any of the genetically engineered or expressed forms of antibody fragment such as single chain Fab fragment or single chain variable fragment. - In another aspect, the present invention provides a method for capturing and/or detecting a target cell in a biological sample, including rare cell populations as described herein. In one embodiment, the method comprises contacting a biological sample with a first binding entity to form a pre-loading mixture, wherein the first binding entity specifically binds to a target entity on the surface of the target cell; passing the pre-loading mixture through a micro-channel, wherein the surface of the micro-channel is coated with a second binding entity capable of specifically binding to the first binding entity; and detecting the presence of the target cell on the surface of the micro-channel. The biological sample can be a physiological or bodily fluid or tissue, such as blood, plasma, serum, bone marrow, semen, vaginal secretions, urine, amniotic fluid, cerebral spinal fluid, synovial fluid, fine needle aspirates (FNAs) or biopsy tissue sample. In certain embodiments, the target cell is rare and present at a low ratio in the biological sample. Examples of target cells that are rare in the biological samples (e.g., blood) include circulating tumor cells (CTCs), cells that are in early stages of a disease state such as
Stage 1 of tumorigenesis, as well as viral-, bacterial-, or fungal-infected cells. - In certain embodiments, the target cell is a cancer cell (e.g., a circulating tumor cell), such as a breast cancer cell, a prostate cancer cell, a colorectal cancer cell, a lung cancer cell, a pancreatic cancer cell, an ovarian cancer cell, a bladder cancer cell, an endometrine or uterine cancer cell, a cervical cancer cell, a liver cancer cell, a renal cancer cell, a thyroid cancer cell, a bone cancer cell, a lymphoma cell, a melanoma cell and a non-melanoma skin cancer cell. The tumor may be an epithelial tumor. In such embodiments, the first binding entity can be an antibody that specifically binds to circulating epithelial cells. In one embodiment, the first binding entity is an epithelial cell adhesion molecule antibody (e.g., EpCAM). In these and other embodiments, the first binding entity is a biotinylated-antibody and the second binding entity is avidin. In various embodiments, the invention involves antibody cocktails as the first binding entity, so as to capture circulating tumor cells exhibiting a range of epithelial, mesenchymal, stem or progenitor cell characteristics.
- In another embodiment of the invention, the pre-loading mixture further comprises a third binding entity. In such embodiments, the first binding entity may be a primary antibody, the third binding entity may be a secondary antibody conjugated to a detectable or capturable entity and the secondary antibody specifically binds to the first binding entity. A second binding entity specifically binds to the third binding entity via the capturable moiety. In certain embodiments, the third binding entity is a biotinylated secondary antibody that specifically binds to the first binding entity, and the second binding entity is avidin.
- In some embodiments, the method further comprises, after cell capture, cross-linking the target cell bound to the surface of the micro-channel. Cross-linking reagents include protein cross-linking reagents, such as a hydrophilic homobifunctional NHS crosslinking reagent. In certain embodiments, the captured cells can be subjected to further analysis in the micro-channel or outside the channel post capture.
- In another aspect, the invention provides a method for post-capture analysis of circulating cells, and in particular, to examine or evaluate the circulating cells for malignancy. Generally, the invention in this aspect involves evaluating captured cells for aneuploidy, optionally with evaluation of other markers of malignancy, including mutations. The method generally does not involve determining, or is independent of, cytokeratin expression.
-
FIG. 1 is a perspective view of one embodiment of a micro-channel device comprising a post-containing collection region in the micro-channel. -
FIG. 2 is a schematic depicting capture of a circulating tumor cell (CTC) in a micro-channel device that has been coated with an antibody specific to an antigen on the CTC. B designates biotin. -
FIG. 3 is a schematic depicting capture of a circulating tumor cell (CTC) in a micro-channel device where the CTC has been pre-labeled with an antibody specific to a CTC antigen and the micro-channel device has been coated with a protein capable of binding the cell-specific antibody. B designated biotin. -
FIG. 4 is a graph showing percentage of T24 EpCAM positive cells captured on either a micro-channel coated with EpCAM antibodies (EpCAM channel) or a micro-channel coated with streptavidin (Strep channel) at different flow rates. In the case of the Strep channel, the T24 cells were pre-labeled with a biotinylated EpCAM antibody prior to passage over the Strep channel. -
FIG. 5 is a graph showing the percentage of T24 cells pre-labeled with biotinylated EpCAM that were captured on a micro-channel coated with stretpavidin in the presence of different concentrations of excess biotinylated EpCAM antibody. A sample of 250 μL containing approximately 200 cells was applied to the channel. -
FIG. 6 is a graph showing the percentage of T24 cells pre-labeled with biotinylated EpCAM that were captured on a micro-channel coated with stretpavidin in the presence of different concentrations of excess biotinylated EpCAM antibody. A sample of 2 mL containing approximately 200 cells was applied to the channel. -
FIG. 7 is a graph showing the dilution of the EpCAM capture antibody that is coated onto the micro-channel compared to the capture of T24 cells as a function of the same dilution mixture used to pre-label cells prior to application onto the micro-channel. -
FIG. 8 is a graph depicting the percentage of T24 or SKOV cells captured on a streptavidin-coated micro-channel when pre-labeled with either biotinylated Trop-1 antibody alone or in combination with biotinylated Trop-2 antibody. -
FIG. 9 is a graph depicting the capture of MDA-ND-231 cells on a streptavidin-coated micro-channel when pre-labeled with either biotinylated anti-EpCAM antibody alone or in combination with a mixture of biotinylated capture antibodies. -
FIG. 10 is a graph depicting the percentage of captured SKOV cells on a streptavidin-coated micro-channel when pre-labeled with biotinylated primary antibody or a combination of non-biotinylated primary antibody and biotinylated secondary antibody. -
FIG. 11 shows a series of photomicrographs of cells captured in a coated micro-channel that were subsequently subjected to washes with a viscous solution at different flow rates (20, 50, and 100 μL/min). -
FIG. 12 shows a series of photomicrographs of cells captured in a coated micro-channel. The cells were exposed to a homobifunctional NHS protein cross-linking reagent prior to being subjected to washes with a viscous solution at different flow rates (20, 50, and 100 μL/min). -
FIG. 13 is a graph showing the percentage of captured cells on a coated micro-channel in the absence or presence of a NHS protein cross-linking reagent. -
FIG. 14 is a graph showing the percentage of captured bladder cancer cells on a coated micro-channel when using EpCAM only as the capture antibody compared to using a mixture of antibodies. The graph also shows the staining of the cell types with anti-cytokeratin and anti-vimentin antibodies. -
FIG. 15A is a graph showing the capture of SKOV cells by EpCAM antibody compared to capture by an antibody mixture. -
FIG. 15B shows the staining of SKOV cells after incubation with EpCAM antibody or antibody mixture and detected with fluorescently labeled secondary anti-mouse antibody. FACS analysis of the same cells shows the number of surface antigens labeled with labeled secondary anti-mouse antibody. -
FIG. 16 is an image of SKOV cells spiked into blood and captured on a microchannel using a primary antibody mixture and biotinylated secondary anti-mouse antibody. Cells were stained on the channel with fluorescently labeled neutravidin which tightly binds biotin. Image shows SKOV cell stained green with NeutrAvidin and nearby white blood cells that did not stain with neutravidin but stained only with DAPI to detect the nucleus. -
FIG. 17 shows the recovery of SKBr3 in a blood sample spiked with varying numbers of SKBr3 cells. The results show that the percent capture is independent of the cell input. - The present invention provides devices and methods for capturing and/or analyzing biological targets from fluid samples. In various embodiments, the invention provides methods for capturing circulating tumor cells from biological samples, for the evaluation of a cancer patient's disease. In these and other embodiments, the invention provides methods for identifying and/or evaluating circulating cells for malignancy without or independent of cytokeratin expression.
- In one aspect, the invention is based, in part, on the discovery that pre-labeling or pre-mixing a sample containing a target of interest with a binding partner that specifically binds to the target allows, e.g., enhances the capture of such targets in a micro-channel device, such as a microchannel device described herein. This approach also provides flexibility in the type and nature of primary antibodies that may be used to label cellular antigens. Accordingly, the present invention provides a novel device and method for separating biomolecules or cells of interest from samples, particularly biological samples. In one embodiment, the device comprises a micro-channel and a loading mixture. The micro-channel may comprise a population of posts distributed on the surface of the micro-channel in random pattern. The loading mixture may comprise a biological sample suspected of containing a target cell and a first binding entity, wherein the first binding entity specifically binds to a target entity on the target cell. The surface of the micro-channel is coated with a second binding entity that specifically binds to the first binding entity, either directly or indirectly.
- Any suitable micro-channel device may be used in connection with the present invention. In some embodiments, the micro-channel device comprises a plurality of pre-determined flow paths. In some embodiments, the micro-channel device comprises posts or obstacles arranged in a random pattern or a regular or repeat pattern. In some embodiments, the micro-channel device comprises regions providing streamlined flow or random non-streamlined flow for any fluid passing through.
- The micro-channel device may be a random-flow device for separating biomolecules or cells as described in detail in U.S. Published Application No. 2006/0160243, which is hereby incorporated by reference in its entirety. Such devices can be modified as described herein for use in connection with the invention. In general, the random-flow micro-channel device includes a substrate or support that has a flow path defined therein that includes at least one micro-channel having a collection region, which flow path is linked to a sample inlet and a liquid outlet. In some embodiments, the flow path may include several micro-channels, arranged in series, each of which has one such collection region. Alternatively, a random flow micro-channel may have more than one collection region, arranged in series, and there may also have more than one inlet and more than one outlet. One particular embodiment of the random flow micro-channel device is described in Example 1 and illustrated in
FIG. 1 . - The collection region of the random flow micro-channel can contain a plurality of upstanding posts that are aligned transverse to the liquid flow path and arranged in an irregular, random pattern across the entire width of the collection region portion of the flow channel. In one embodiment, the pattern of the posts is such that there can be no straight-line flow through the collection region and/or that streamlined flow streams are disrupted, assuring there is good contact between the liquid being caused to flow along the flow path and the surfaces of the posts. The posts in general are integral with the flat base of the collection region and extend perpendicular thereto, presenting surfaces that are vertical relative to a horizontal path of liquid being caused to flow through the flow channel of the substrate or support.
- The placement and shape of the posts in the patterned post collection region can be engineered for optimal fluid dynamics and enhancement of capture of target cells through their specific surface characteristics. Very generally, in most instances, the preferred shape of the horizontal cross-section of the transverse fixed posts avoids sharp angles which might promote nonspecific binding to the transverse surfaces of the posts. The posts have rectilinear exterior surfaces and preferably have either a generally circular cross sectional shape or regular polygonal of 6 or more sides. Alternative shapes that might be used are a tear-drop shape where the tip is at the downstream end and shallowly curved, or oval shape; however, should more impact be desired, a square shape could be used. In one embodiment, the pattern of the posts should create a flow pattern in the liquid stream which enhances the capture of target cells by the second binding entity attached to the surfaces of the posts, the base and the facing surface. To achieve this end, the posts, e.g., should be of different sizes and be arranged in a set random pattern. A random pattern of posts of different cross sectional sizes, e.g. circular cross section posts of at least about 3 or 4 different sizes, about 70 to about 130 microns in diameter, in a collection region about 100 microns high where the minimum separation spacing between posts is 50 to 70 μm and preferably about 60 μm.
- In some embodiments, the cross sectional area of the posts, which all have sidewalls formed by parallel lines which are perpendicular to the base, is such that they occupy between about 10 to 40% or about 15 to 25% of the volume of the collection region. Preferably the post pattern will be such that they occupy about 20% of the volume of the collection region, leaving a void volume for liquid flow of about 80%. The posts are substantially spaced apart from one another, e.g. by at least about 60 microns, and posts of different sizes are preferably located upstream and downstream of one another. Smaller posts may create eddy regions downstream of larger posts, and as a result of the flow pattern that is generated, the surfaces in the vicinity may show particular effectiveness in capturing target cells.
- Generally, the substrate component of the micro-channel device can be made from any suitable laboratory-acceptable material, such as silicon, fused silica, glass and polymeric materials. It may be desirable to use a material that is optically transparent, particularly when a diagnosis function is desired to be optionally employed. In its simplest embodiment, the substrate carrying the fabricated micro-channel is sealed with a plate having a flat surface that will abut the facing surface of the substrate. Such plate may be fabricated from the same material or may simply be a cover plate made of glass. Suitable plastics which may be used include polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polycarbonate, polystyrene, polyethylene teraphthalate, as well as other polymeric resins well known for acceptable laboratory material usage. Such patterned substrates may be fabricated using any convenient method such as those selected from among conventional molding and casting techniques.
- Substrates may be conveniently fabricated from polymeric materials using a master or negative mold structure, which can be created in a thick negative photoresist, using optical lithography, as well known in this art. For instance, the construction layer can be formed from a mixture of commercially available, standard grade epoxy resin (EPON SU-8) photoresist and hardener (SU-82025), which may be spun onto silicon wafer substrates at 2000 rpm to provide, for example, a 40 or 50 μm thick film of such photoresist. The thickness determines the height of the flow path in the collection region. The film is subjected to pre-exposure baking for 3 minutes at 60° C. and then 7 minutes at 95° C. on a precisely level hot plate to assure even thickness throughout, and the resultant samples are cooled to room temperature. A Karl Suss Contact Mask Aligner is used to expose a film with the desired pattern for the flow path in the ultimate device. The film is then post-baked at 65° C. for 2 minutes and then at 95° C. for 5 minutes before it is developed in a commercial SU-8 developer for 5 minutes, with light stirring being applied during developing. This creates a negative pattern mold in the epoxy resin photoresist that is then used as a molding master for replication of patterned post substrates in PDMS or other suitable polymeric resin. The layout and the dimensions of the micro-channel and of patterned posts in the collection region are determined by the mask used in exposure step of the fabrication of the master mold. The depth of the micro-channel is controlled by the thickness of the SU-8 layer of the master mold, which is determined by spin-coating conditions.
- The invention further involves a loading mixture that comprises a biological sample suspected of containing a target (e.g., a target cell), and also comprises a first binding entity. The biological sample can include, but is not limited to, a physiological or bodily fluid or tissue or a cell mixture isolated from a biological sample. For example, the biological sample can include, without limitation, blood, plasma, serum, semen, vaginal secretions, urine, saliva, amniotic fluid, cerebral spinal fluid, synovial fluid, a fine needle aspirate (FNA), and a biopsy tissue sample. A target cell can be any cell comprising a detectable surface antigen, such as a cancer cell, stem cell, fetal cell, a viral-, a bacterial- or a fungal-infected cell. In some embodiments, the target cell is a cancer cell. In certain embodiments, the target cell is rare and is present at a low ratio in the biological sample, or expresses a very low level of a particular antigen of interest. Examples of target cells that are rare in the biological samples include circulating tumor cells (CTCs), cells that are in early stages of a disease state such as cells at
Stage 1 of tumorigenesis, early viral-, bacterial, or fungal-infections. - Preferably, the first binding entity specifically binds to a target entity on the target cell. The first binding entity can include, but is not limited to, an antibody, an antigen, an aptamer, a nucleic acid (e.g. DNA and RNA), a protein (e.g. receptor, enzyme, enzyme inhibitor, enzyme substrate, ligand), a peptide, a lectin, a fatty acid or lipid and a polysaccharide. In one embodiment, the first binding entity is an antibody. In another embodiment, the first binding entity comprises a binding entity mixture having at least a first antibody and a second antibody, and wherein the first antibody specifically binds to a first epitope of the target entity and the second antibody specifically binds to a second epitope of the target entity. The first binding entity can comprise a mixture of antibodies or binding entities directed to the one or more target antigens on the cell, or one or more epitopes of the target antigen, or a combination thereof. As used herein the term “epitope” can refer to a binding region on a singular antigen or a binding region on a second antigen. By way of example, in some embodiments, the first antibody binds to a first epitope on a first antigen and the second antibody binds to a second epitope on the first antigen. In other embodiments, the first antibody binds to a first epitope on a first antigen and the second antibody binds to a second epitope on a second antigen. In certain embodiments, the antibodies may be conjugated to a tag molecule including, but not limited to biotin, digoxigenin, FLAG epitope, or polyhistidine.
- In another embodiment of the invention, the loading mixture further comprises a third binding entity conjugated to a detectable or capturable entity. For example, the first binding entity may be a primary antibody or ligand, the third binding entity is a secondary antibody or ligand that specifically binds to the first binding entity, and the second binding entity specifically binds to the third binding entity. A primary antibody can include a monoclonal antibody, a polyclonal antibody, or partially purified antibodies. The secondary antibody can be an antibody that binds to the constant region of the primary antibody. By way of example, if the primary antibody is a mouse antibody, the secondary antibody may be an anti-mouse antibody. The detectable or capturable entity conjugated to the secondary antibody can be a tag including, but not limited to, biotin, digoxigenin, FLAG epitope, or polyhistidine. In one embodiment, the loading mixture further comprises a third binding entity, wherein the first binding entity is a primary antibody, the third binding entity is a biotinylated secondary antibody that specifically binds to the first binding entity and the second binding entity is avidin. As used herein, the term “avidin” includes any expressed or engineered form of the avidin biotin-binding molecule, such as streptavidin, neutravidin and the like.
- The surface of the micro-channel of the device is coated with a second binding entity that specifically binds to the first binding entity. The second binding entity can be an antibody, an antigen, an aptamer, a nucleic acid (e.g. DNA and RNA), a protein (e.g. receptor, enzyme, enzyme inhibitor, enzyme substrate, ligand), a peptide, a lectin, a fatty acid or a lipid, and/or a polysaccharide. The second binding entity may be the same type of molecule as the first binding entity (e.g. antibody-antibody or nucleic acid-nucleic acid) or it may be a different type of molecule than the first binding entity (e.g. nucleic acid-protein). The second binding entity can directly bind to the first binding entity or it can indirectly bind to the first binding entity through a tag molecule. For instance, if the first binding entity is a biotinylated primary antibody, the second binding entity can be avidin. In one embodiment, the second binding entity is avidin. In some embodiments, the loading mixture can comprise both a first binding entity and a third binding entity, wherein the first binding entity binds to a target entity (e.g., on the target cell) and the third binding entity specifically binds to the first binding entity. In such embodiments, the second binding entity specifically binds to the third binding entity either directly or indirectly through a detectable entity. By way of example, if the first binding entity is a mouse primary antibody and the third binding entity is an anti-mouse antibody conjugated to digoxigenin, then the second binding entity can be an anti-digoxigenin antibody.
- The polymeric surface of the micro-channel and/or the patterned post or obstacle region comprised therein can be derivatized in various ways to enable the attachment of the second binding entity onto all the surfaces. For example, after plasma treatment and closure of the micro-channel-carrying substrate, a 1 to 50 volume % solution of an aminofunctional silane (e.g. a 3% solution of Dow Corning Z-6020), or a thio-functional silane, in ethanol may be injected into the micro-channel to fill the collection region between the sample inlet and sample outlet regions, and the flooded micro-channel can then be left to incubate for 30 minutes at room temperature. Derivitization can be performed on a non-fully cured polymer, such as PDMS, before the closure of the micro-channel region with a plate. In such case, an alternative is to slightly undercure the PDMS substrate and then complete the curing after affixing the seal plate and treating with the substituted silane or other functionalizing reagent. For example, a final heating step of about 90 minutes at about 50 to 90° C. might be used to complete the curing after treating with the Z-6020. Alternatively, one or two days at room temperature would also complete the curing. Such derivatization treatment can also be performed before the closure of the micro-channel region because derivatization of the facing flat surface is of no real consequence. The flow path is then purged with ethanol, and the micro-channel is ready for attachment of the second binding entity.
- Second binding entities can be directly or indirectly immobilized upon the surfaces of the posts, obstacles, and/or the micro-channel, and the surfaces can be pre-treated and/or coated to facilitate attachment. In some embodiments, indirect immobilization is preferred and contemplates the employment of an intermediate agent or substance that is first linked to the post or surface. It may be desired to use coupling pairs to link to the intermediate agent. For example, avidin, or an antibody directed against another species antibody, might be attached to the intermediate agent, such as a NHS/maleimide heterobifunctional linker, which would thereafter couple to a biotinylated antibody or to an antibody of such other species.
- Flow through the devices of the invention can be achieved by any suitable means, with or without exterior force. In one embodiment, flow through the devices of the invention is achieved by pumping, e.g. using a syringe pump or the like, or by vacuum that would draw liquid through from a reservoir at an inlet well provided by a large diameter inlet hole. Preferably such a well is included which has a capacity to hold about 50 μl to about 500 μl of liquid sample. In one embodiment, the design of the flow channel is such that, at flow rates through the device within a reasonable range (e.g. by injection of sample using a syringe pump or equivalent device, such as a Biocept syringe pump, or a standard Harvard Apparatus infusion syringe pump or other commercially available syringe pump) to create a flow in the collection region at a rate of about 0.01 to 100 mm per second, there is substantial disruption of streamlined flow through the region without creating turbulence. This results from the random arrangement of posts of different sizes and the relative spacing of the posts throughout the collection region. Relatively smooth, non-streamlined flow without dead spots is achieved at a preferred liquid flow rate of between about 0.3 to 10 mm/sec, and more preferably the flow rate is maintained between about 0.5 and 5 mm/sec and is achieved by suction from an inlet well of defined size.
- The present invention also provides a method for detecting a target cell in a biological sample using the devices described herein. For example, the method may comprise contacting a biological sample with a first binding entity to form a pre-loading mixture, wherein the first binding entity specifically binds to a target entity on the surface of the target cell, passing the pre-loading mixture through a micro-channel, wherein the surface of the micro-channel is coated with a second binding entity capable of specifically binding to the first binding entity, and detecting the presence of the target cell on the surface of the micro-channel. In certain embodiments, the micro-channel comprises a population of posts distributed on the surface of the micro-channel in random pattern.
- Various types of biological samples, such as blood, plasma, serum, bone marrow, semen, vaginal secretions, urine, saliva, amniotic fluid, cerebral spinal fluid, synovial fluid, lung lavages, fine needle aspirates (FNAs) and biopsy tissue samples, are suitable for use in the methods of the invention. In one embodiment, the biological sample is a blood sample from a patient. The target cell can be present in the biological sample in the ratio of 1 out of 1010 cells, 1 out of 5×107, or 1 out of 104 cells. A target cell can be any cell comprising a detectable surface antigen, such as a cancer cell, stem cell, fetal cell, a viral-, a bacterial-, or a fungal-infected cell.
- In one particular embodiment, the target cell is a cancer cell. The cancer cell can be a cell from any type of cancer, such as an epithelial cancer, including, but not limited to, breast cancer cells, prostate cancer cells, colorectal cancer cells, lung cancer cells, pancreatic cancer cells, ovarian cancer cells, bladder cancer cells endometrial or uterine cancer cells, cervical cancer cells, liver cancer cells, renal or kidney cancer cells, thyroid cancer, bone cancer cells, lymphoma cells (e.g. Hodgkin's lymphoma, non-Hodgkin's lymphoma), melanoma cells, and non-melanoma skin cancer cells.
- The first binding entity can be any of the molecules as described herein. In one embodiment, the first binding entity is an antibody. The first binding entity may be a biotinylated-antibody and the second binding entity may be avidin. In some embodiments, the first binding entity can be an antibody that specifically binds to circulating epithelial cells. The antibody can be an epithelial cell adhesion molecule (EpCAM) antibody, such as an antibody that specifically binds to an epithelial cell surface adhesion protein. The first binding entity may be a cocktail of two, three, four, five, or more antibodies, for example, as described herein for capture of target cancer cells. For example, the antibody cocktail may comprise at least antibody against an epithelial cell surface antigen, and at least one antibody against an antigen that is indicative of a mesenchymal phenotype, to thereby isolate cells having a range of epithelial and/or mesenchymal characteristics from the sample.
- For example, where the target cell is a breast cancer cell, the first binding entity may be an antibody that specifically binds to EpCAM (epithelial cell adhesion molecule), Her2/neu (Human Epidermal growth factor Receptor 2), MUC-1, EGFR (epidermal growth factor receptor), TAG-12 (tumor associated glycoprotein 12), IGF1R (insulin-
like growth factor 1 receptor), TACSTD2 (tumor associated calcium signal transducer 2), CD318, CD340, CD104, N-cadherin or a combination (e.g., cocktail) of two or more thereof. - In yet another embodiment, the target cell is a prostate cancer cell and the first binding entity is an antibody that specifically binds to EpCAM, MUC-1, EGFR, PSMA (prostate specific membrane antigen), PSA (prostate specific antigen), TACSTD2, PSCA (prostate stem cell antigen), PCSA (prostate cell surface antigen), CD318, CD104, N-cadherin or a combination thereof. In another embodiment, the target cell is a colorectal cancer cell and the first binding entity is an antibody that specifically binds to EpCAM, CD66c, CD66e, CEA (carcinoembryonic antigen), TACSTD2, CK20 (cytokeratin 20), CD104, MUC-1, CD318, N-cadherin or a combination thereof.
- In still another embodiment, the target cell is a lung cancer cell and the first binding entity is an antibody that specifically binds to CK18, CK19, CEA, EGFR, TACSTD2, CD318, CD104, or EpCAM or a combination thereof. In another embodiment, the target cell is a pancreatic cancer cell and the first binding entity is an antibody that specifically binds to MUC-1, TACSTD2, CEA, CD104, CD318, N-cadherin, EpCAM or a combination thereof. In yet another embodiment, the target cell is an ovarian cancer cell and the first binding entity is an antibody that specifically binds to MUC-1, TACSTD2, CD318, CD104, N-cadherin, EpCAM or a combination thereof.
- In another embodiment, the target cell is an endothelial bladder cancer cell and the first binding entity is an antibody that specifically binds to CD34, CD146, CD62, CD105, CD106, VEGF receptor (vascular endothelial growth factor receptor), MUC-1 or a combination thereof. In another embodiment, the target cell is an epithelial bladder cancer cell and the first binding entity is an antibody that specifically binds to TACSTD2, EpCAM, CD318, EGFR, 6B5 or Folate binding receptor.
- The target cell may be a cancer stem cell, and the first binding entity may be an antibody that specifically binds to CD133, CD135, CD117, CD34 or a combination thereof.
- In some embodiments, the target cell is a circulating cancer cell that expresses mesenchymal antigens and the first binding entity is an antibody (or antibody cocktail) that specifically binds to FGFR1, FGFR4, EGFR, N-cadherin, folate binding receptor, and MSC or a combination thereof.
- In some embodiments, the target cell is a circulating cancer cell that expresses angiogenesis surface antigens and the first binding entity includes an antibody that specifically binds to a VEGF receptor.
- In other embodiments, the target cell is a melanoma cancer cell and the first binding entity is an antibody that specifically binds to one or more of the melanocyte differentiation antigens, oncofetal antigens, tumor specific antigens, SEREX antigens or a combination thereof. Examples of melanocyte differentiation antigens, include but are not limited to tyrosinase, gp75, gp100, Melan A/
MART 1 or TRP-2. Examples of oncofetal antigens include antigens in the MAGE family (MAGE-A1, MAGE-A4), BAGE family, GAGE family or NY-ESO1. Examples of tumor-specific antigens include CDK4 and β-catenin. Examples of SEREX antigens include D-1 and SSX-2. - In certain embodiments, the first binding entity is an antibody directed to mutated peptides that are activated as a result of cellular transformation. These peptides include but are not limited to mutated introns, N-acetylglucosaminyltranferase, V gene product, MUM-1 and p15.
- In other embodiments, the first binding entity is an antibody that recognizes the ganglioside, GM2, GD2, GM3 and/or GD3; high molecular weight chondroitin sulfate proteoglycan, CD146, or p97 melanotransferrin.
- In certain embodiments, the target cell is a circulating tumor cell (CTC). A CTC in the blood sample is a tumor cell is often defined by staining positive for CK and DAPI and is staining negative for CD45 (CK+, CD45−, DAPI+), whereas lymphocytes are CD45+. Detection of the CTCs in the blood circulation can aid disease management, including the ability to monitor treatment efficacy or failure. However, due to the limited number of available CTC-specific antibodies, CTCs have failed to be captured in about 40%-60% of patient blood samples. Accordingly, the present invention in some aspects provides a method for capturing and detecting these rare CTCs.
- In some embodiments, the first binding entity is a mixture (e.g., cocktail) of at least a first antibody and a second antibody, wherein the first antibody specifically binds to a first epitope of the target entity and the second antibody specifically binds to a second epitope of the target entity. The first and second epitopes can be present on the same antigen (molecule) or the first and second epitopes can be present on different antigens (molecules).
- In one embodiment, the first binding entity can be a mixture of a first antibody and a second antibody, wherein the first antibody specifically binds to a stem cell antigen and the second antibody specifically binds to a cancer cell antigen. Stem cell antigens can be present on cancer stem cells, and antibodies directed to these stem cell antigens can be added as general capture antibodies to one or more antibodies directed to cancer antigens, such as those described herein. In some embodiments, the first antibody specifically binds to CD133, CD135, CD117, CD34 or combinations thereof, and the second antibody specifically binds to a cancer antigen.
- In another embodiment, the first binding entity can be a mixture of a first antibody and a second antibody, wherein the first antibody specifically binds to a mesenchymal marker and the second antibody specifically binds to a cancer cell antigen. Circulating tumor cells can downregulate epithelial markers and upregulate mesenchymal markers, and thus can be captured by antibodies that specifically bind to such mesenchymal markers. In some embodiments, the first antibody specifically binds to FGFR1 (fibroblast growth factor receptor 1), FGFR4, MSC (mesenchymal stem cell antigen), EGFR, N-cadherin, folate binding receptor or combinations thereof, and the second antibody specifically binds to a cancer antigen.
- In still another embodiment, the first binding entity can be a mixture of a first antibody and a second antibody, wherein the first antibody specifically binds to an angiogenesis marker and the second antibody specifically binds to a cancer cell antigen. In certain embodiments, the first antibody specifically binds to a VEGF receptor, and the second antibody specifically binds to a cancer antigen.
- In another embodiment of the invention, the method further comprises contacting the pre-loading mixture with a third binding entity. The first binding entity may be a primary antibody, the third binding entity may be a secondary antibody conjugated to a detectable or capturable entity, and the secondary antibody specifically binds to the first binding entity. The second binding entity specifically binds to the third binding entity (e.g., via the capturable entity). In another embodiment, the method further comprises contacting the pre-loading mixture with a third binding entity, wherein the first binding entity is a primary antibody, the third binding entity is a biotinylated secondary antibody that specifically binds to the first binding entity, and wherein the second binding entity is an avidin molecule. The secondary antibody may be a whole or an intact antibody, or fragment thereof, such as Fab′2, Fab′ or Fab, or any antibody derivatives. A derivatized antibody can be a fragment of the antibody, an antibody that has been conjugated to a fatty acid, carbohydrate, peptide, a chemical entity such as a fluorescein, streptavidin etc. A derivatized antibody can be an antibody where the amino acids have been modified to increase the avidity or affinity of the antibody to the target protein.
- In some embodiments, the method further comprises cross-linking the target cell bound to the surface of the micro-channel. Several cross-linking agents can be employed to cross-link the bound target cells to the micro-channel, for example via, amino groups (amide, amine etc.), carbonyl groups, acyl groups, alkyl groups, aryl groups, sulfhydryl groups, and others that are well known to one skilled in the art. Examples of cross-linking agents include, but are not limited to, hydrophilic homobifunctional NHS crosslinking reagents (e.g. Bis(NHS)PEO-5 (bis N-succinimidyl-[pentaethylene glycol] ester) to crosslink primary amines, homobifuctional isothiocyanate derivatives of PEG or dextran polymers, glutaraldehyde, heterobifunctional crosslinkers containing NHS on one end and maleimide on the other end of the polymer; peroxide treated carbohydrate polymers to form reactive aldehyde polymers, and EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride) to crosslink carboxyl groups to primary amines. The length of the cross-linkers may be varied by adding one or more polymeric units between the two reactive groups on either end of the linker. Suitable polymeric units include, but are not limited to polymeric ethylene glycol, carbon chains, polynucleotides, polypeptides, and polysaccharides.
- The cross-linking reagent can be applied to the micro-channel following capture of the target cells. In some embodiments, a second cross-linking treatment is employed following labeling (e.g. fluorescent labeling) of the captured cells to cross-link the label to the captured cells. The concentration of the cross-linking agent and duration of treatment will depend on the type and reactivity of cross-linking reagent, type of target cell, binding entities employed to capture the cells, and expression level of surface antigen to which a binding entity binds. Suitable concentrations can be from about 0.01 mM to about 10 mM, more preferably from about 0.5 mM to about 5 mM, or most preferably about 1 mM. Duration of treatment with the cross-linking reagent can be from about 5 min to about 120 min, about 15 min to about 90 min, or about 30 min to about 60 min. Optimization of the concentration of cross-linking reagent and duration of treatment is within the skill of the ordinary artisan.
- Detecting the presence of captured cells can be by one of several methods known to those skilled in the art. In one embodiment, captured cells can be visualized by photomicroscopy. In another embodiment, captured cells may be labeled with a fluorescent molecule or stained and visualized by fluorescent microscopy or by measuring a fluorescent signal. For instance, captured cells may be stained with the nuclear dye DAPI and subsequently visualized by fluorescence microscopy. In another embodiment, detecting the presence of the target cell is carried out by detecting the presence of the first binding entity. Detection of the first binding entity can include exposing the captured cells to a tagged molecule that recognizes and binds the first binding entity. For example, the tagged molecule may be an antibody labeled with a fluorescent tag or colored latex particle that binds to the first binding entity. In one embodiment, the first binding entity is a biotinylated antibody and the tagged molecule is fluorescently labeled avidin. In some embodiments, the tagged molecule may be the same type of molecule as the second binding entity. In embodiments where a third binding entity is present, the detection of the captured cells can comprise detecting the presence of the third binding entity. In such embodiments, the tagged molecule recognizes and binds to the third binding entity. For example, the first binding entity can be a mouse antibody, the third binding entity can be a biotinylated secondary antibody that binds to mouse antibodies (e.g. a goat derived anti-mouse antibody), and the tagged molecule can be either a fluorescently labeled avidin or a fluorescently labeled antibody that binds to the third binding entity (e.g. a rabbit derived anti-goat antibody).
- In some embodiments, subsequent analysis of the captured cells may be desired. In one embodiment, captured cells can be released from the micro-channel and collected for further analysis. Several methods for releasing the captured cells are known in the art and can include mechanical means (e.g. high fluid flow), chemical means (e.g. change in pH), or use of enzymatic cleavage agents. For example, a reagent may be applied to the micro-channel to cleave the second binding entity or to cleave the bond between the second binding entity and the cells in order to release the target cells from the micro-channel. For instance, trypsin, proteinase K, collegenase, or a specifically focused enzyme may be used to degrade the second binding entity (e.g. antibodies, streptavidin) and/or the cell surface antigens. During such cleavage, the outlet from the micro-channel is connected to a reservoir or other collector, and the discharge stream carrying the released cells is collected for further analysis. Such further analysis may include, but is not limited to, detection of aneuploidy (including monosomy or trisomy of, for example,
chromosomes - In another embodiment, the captured cells may be further analyzed in situ. For example, the cells may be counted while attached, labeled with fluorescent markers, subject to in situ hybridization analysis, such as FISH. Because antibody-antigen bonds are not covalent, they can be dissociated under some circumstances. Therefore, in some embodiments, it is highly desirable to further stabilize the cells on the micro-channel by crosslinking the cells to the channel so that cells are not dislodged and lost during the various in situ labeling, heating, denaturing and washing steps. Cross-linking can be a particularly important consideration with cells that express a low level of the surface antigens targeted by the first binding entity since these cells can be more weakly attached to the second binding entity. Covalent crosslinking of the cells to the channel surface matrix can stabilize captured cells during post-capture analysis.
- In another aspect, the invention provides a method of post-capture analysis of circulating cells. The circulating cells may be captured as described herein, including by the methods or devices of the invention. In some embodiments, the circulating cells are captured and evaluated without one or more enrichment and/or cell replicating or duplicating processes, e.g., via cell culture, etc. In this aspect, circulating cells are evaluated for malignancy independent of CK status or expression, e.g., without CK staining and/or any other evaluating assay. For example, in accordance with this aspect, captured cells are evaluated (as described herein) for aneuploidy. The aneuploidy may be with respect to, for example,
chromosomes trisomy monosomy - This invention is further illustrated by the following additional examples that should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures, are incorporated herein by reference in their entirety.
- One embodiment of a micro-channel device for separating biomolecules or cells is shown in
FIG. 1 . The device comprises a substrate orsupport 11 which is formed with a flow path that includes a micro-channel 13 to which sample liquid is to be supplied through an opening or well 15 that serves as an entrance or inlet at a first end of the device and anopening 19 that serves as an outlet at the second end of the device. The cross-section of thecollection region 17 is greater than that of aninlet section 18 that leads there into from theinlet opening 15. The inlet section contains one or more pairs of axially aligned divider/supports 21 just upstream of where it widens at the end of theregion 18 to enter thecollection region 17. These central dividers break the flow into two or more paths and serve to distribute the flow of liquid more evenly as it is delivered to the entrance end of thecollection region 17. The collection region contains a plurality ofupstanding posts 23 that are aligned transverse to the liquid flow path and arranged in an irregular, generally random pattern across the entire width of the collection region portion of the flow channel. The pattern of the posts is such that there can be no straight-line flow through the collection region and that streamlined flow streams are disrupted, assuring there is good contact between the liquid being caused to flow along the flow path and the surfaces of the posts. The posts are integral with the flat base of thecollection region 17 and extend perpendicular from the base, presenting surfaces that are vertical relative to a horizontal path of the liquid being caused to flow through the flow channel of thesubstrate 11. Another flow divider/support 21 a is located at the exit from the collection region. - The substrate is formed from PDMS and is bonded to a flat glass plate to close the flow channel. The interior surfaces throughout the collection region are derivatized with amine groups (Inventors: Is the amine group specific to PDMS or can there be other active groups, e.g. SH— that can be derivatized. I seem to remember one can coat supports with polylysine to attach cells or positively charged proteins) by incubating for 30 minutes at room temperature with a 3% solution of 3-aminopropyltriethoxysilance. After washing with ethanol the amine groups on the channel are derivatized for 30 minutes with bifunctional PEG linker molecule containing an NHS ester on one end and a maleimide group on the other end. In this reaction the NHS group reacts with the amine groups on the channel. After washing the channel with PBS a solution of 0.5 mg/mL thiolated streptavidin is added which will react with the maleimide groups on the other end of PEG linkers attached to the channel. Thiolated streptavidin is prepared by treatment of streptavidin with Traut's reagent as is commonly known in the art. After incubation for 60 min, the excess thiolated streptavidin is washed from the micro-channel with PBS/1% BSA and stored for future use.
- In a typical example, 10 mLs of blood is obtained and the buffy coat is isolated by density gradient sedimentation as is commonly known in the art. The buffy coat contains the nucleated white blood cell fraction of the blood and also contains epithelial or other nucleated cells present in the blood. The buffy coat contained in a volume of approximately 0.5 mL in a centrifuge tube is incubated with the first binding entity of the present invention for 30 min, and then the tube is filled with approximately 30-fold excess of PBS/BSA and centrifuged to pellet the buffy coat cells. The sample is resuspended in approximately 200 μL and passed through the avidin-coated micro-channel by hooking the micro-channel device up to outlet tubing from a syringe pump which is filled with about 50 μL of the cell suspension. The syringe pump is operated to produce a slow continuous flow of the sample liquid through the micro-channel device at room temperature and a rate of about 10 μL/min. During this period, the avidin attached to the surfaces in the collection region where the random pattern of transverse posts are located, captures the target cells of interest in the sample. After the entire sample has been delivered by the syringe pump, a slow flushing is carried out with a PBS/1% BSA aqueous buffer. About 100 μL of this aqueous buffer is fed through the device over a period of about 10 minutes, which effectively removes all non-specifically bound biomaterial from the flow channel in the device. Two additional washings are then carried out, each with about 100 μL of PBS/1% BSA over a period of about 10 minutes.
- At this time, inasmuch as the device is made of optically clear material, microscopic examination can be made of the effects of the capture using photomicroscopy. Captured cells may be treated further with additional antibodies and fluorescent probes and analyzed by fluorescence microscopy.
- As described in U.S. Published Application No. 2006/0160243, filed Jan. 18, 2005 and elsewhere (Nagrath et al. (2007) Nature, Vol. 450(7173):1235-9), previous devices for capturing cells of interest comprised a micro-channel that was derivatized with an antibody that was specific to antigens on the cells of interest. The suspension containing the rare cells of interest was then passed through the channel and cells were captured by the cell-specific antibody (
FIG. 2 ). - While the level of antigen expression can be determined in cultured cells and on clinical tissue samples such as tumors, it is not known precisely how many antigens are available on the surface of a circulating tumor cell (CTC). It is known that tumors are highly heterogeneous and that cells detached from the tumor into the blood can change their expression levels of antigen. Therefore, it is most likely that CTCs are a highly heterogeneous population with specific antigen levels varying from very low to very high in any given sample. To obtain maximum capture of CTCs from a sample, it is best to optimize the system to capture cells with the lowest antigen expression levels.
- The devices of the present invention comprise a micro-channel derivatized with a general antibody or protein that can bind to cell-specific antibodies as described in Example 1. The cell-specific antibody is added to the sample containing the cells of interest prior to passing the sample through the micro-channel, thus pre-labeling the cells. The cells of interest are then captured when the general antibody or other protein coating the channel binds to the cell-specific antibody bound to the cells of interest (
FIG. 3 ). - The following set of experiments were conducted to determine whether pre-labeling a sample containing CTCs with antigen-specific antibodies result in a better capture rate on micro-channel devices as compared to micro-channel devices coated with the antigen-specific antibody. A common antigen used to capture CTCs is EpCAM, an epithelial cell surface adhesion molecule. For these experiments, the bladder cell line, T24, was used, which is known to express low levels of EpCAM.
- In the traditional device, the micro-channel was derivatized with streptavidin and then biotinylated antibody for EpCAM was pre-loaded onto the channel (EpCAM channel). The EpCAM antibody was able to bind the EpCAM antigen on the surface of the T24 cells, thus capturing the cells in the micro-channel. In the device of the present invention, the micro-channel was derivatized with streptavidin (Strep channel) and the biotinylated antibody for EpCAM was incubated with the sample of T24 cells at approximately 1 μg/mL for 30-60 mins. prior to passage of the cells over the streptavidin-coated channel. The streptavidin binds to the biotinylated EpCAM antibody bound to the surface of T24 cells, thus capturing the cells in the micro-channel. Thus the reagent components of the two devices are identical except that they are applied to the devices in a different order.
- As shown in
FIG. 4 , use of the streptavidin-coated channel with cells pre-incubated with the biotinylated EpCAM antibody unexpectedly produced capture percentages about twice as high as those obtained with the EpCAM channel and unlabeled cells. The increased capture percentage is about 2-3 fold higher when cells are passed through the channel under multiple flow rates. - In a next series of experiments, 1.2 μg/mL of the biotinylated-EpCAM antibody was pre-incubated with the cells for 30 mins. This concentration of antibody was about 100 to 1000 fold molar in excess over the total antigens present on the T24 cells and therefore, significant excess antibody remained in each suspension. After a 30 mins. incubation, the excess antibody was diluted to less than 0.05 μg/mL by dilution of the cells to approximately 200 cells for application on the channel. This sample of cells served as a control sample and was applied directly to the channel in 250 μL PBS/BSA (sample A in
FIG. 5 ). In samples B-D excess antibody at the indicated concentrations were added back to the 250 μL cell suspension prior to running on the channel. As shown inFIG. 5 , free antibody does not interfere with binding to the streptavidin on the channel, and does not decrease cell capture as expected, but in fact increases cell capture. - In a similar experiment, the volume of the initial cell suspension applied to the channel was increased from 250 μl to 2 mL. Since the μg per mL of the added extra antibody remained the same as in
FIG. 5 , the total μg of absolute antibody in the sample with approximately 200 cells was nearly 10 times higher than inFIG. 5 . As shown inFIG. 6 , the added extra antibody shows a similar increase in cell recovery relative to the concentration of the antibody that was observed in the results depicted inFIG. 5 . This result indicates that the observation of higher recovery is related to the concentration of excess antibody in the cell suspension and not the absolute μg of total antibody in the cell suspension. - The results of this series of experiments show unexpected advantages in collecting cells of interest in a micro-channel flow device when the cells are pre-labeled with antibody. As seen in
FIG. 4 , pre-incubating the cells with antigen-specific antibody significantly improves capture in the micro-channel device as compared to capture in micro-channels coated with the antigen-specific antibody. In addition, the presence of excess antibody in the cell sample during the run does not limit this methodology but can in fact mediate increased binding of the cellular antigens to the streptavidin matrix on the channel, thereby enhancing capture. - It has traditionally been considered most efficient to pre-load an antibody onto the channel. However, the negative effects on cell capture of loading a channel with multiple antibodies have not been previously considered. An advantage of using a micro-channel coated with a general binding partner (e.g. antibody or protein) of an antigen-specific antibody is that multiple antibodies can be added to a cell suspension to pre-label cells without lessening the availability of any single antibody. Because multiple antigen sites on a cell are not mutually exclusive, when adding multiple antibodies to the cell suspension the capture efficiency on the channel is not diminished for any single antibody. By way of example, if the channel could accommodate 100 antibody sites and a mixture of 5 different antibodies were added to coat the channel, then each antibody would occupy ˜20% of the channel space. Thus, the potential binding efficiency for each individual antibody is only 20% of what it would be if it covered the entire channel. Regardless of the number of antigens on the cell, the channel is inherently less efficient at capturing those cells with only 20% of that individual antibody. When the cell has a low number of target antigens, the efficacy in capturing these low antigen expressing cells can be amplified by the addition of the antibodies specific for other target antigen in the cell suspension prior to binding to the substrate or support of the micro-channel device. For example, if the same 5 antibodies are added to the cell suspension, then each antibody can maximally bind to all cognate cell surface antigens independently, without interference or reduction due to the presence of other antibodies bound to different epitopes on the cell. By derivatizing each of the five different antibodies with a common capture tag (e.g. biotin), a channel coated with a binding partner for the capture tag (e.g. streptavidin) can bind all 5 antibodies simultaneously to their respective antigens on the cell, thus producing an additive effect on cell capture.
-
FIG. 7 shows a reduction in the capture of T24 cells when the ratio of EpCAM antibody to murine IgG on the channel is lowered when the antibodies are first coated on the substrate/support of the micro-channel device. To determine the effect of EpCAM capture in the presence of additional biotinylated antibodies, the biotinylated EpCAM antibody was diluted with irrelevant biotinylated mouse IgG and the resulting mixture was used, either to coat the channel with antibody or added to the cell suspension prior to passage over the channel.FIG. 7 (sample A) shows that the percentage of T24 cell-capture is about twice as high when the cells were pre-labeled with biotinylated EpCAM antibody only. This observation is consistent with the results seen inFIG. 4 . However, when the EpCAM antibody was diluted in a 1:1 ratio with an irrelevant antibody and used to either label the cells directly or to coat the channel, the channel recovery drops from 24% to 7%, while the recovery of pre-labeled cells is unaffected (FIG. 7 , sample B). When the EpCAM was diluted in a 1:4, the recovery drops to 1% when the antibody mixture was first coated on the channel while the recovery is unchanged when the cells were pre-labeled with the antibody mixture prior to binding to the substrate or support of the microchannel device (FIG. 7 , sample C). These results demonstrate that dilution of the EpCAM antibodies by additional antibodies do not interfere with the maximal binding of the EpCAM antibodies to the cells when the cells were prelabeled with the soluble antibodies, but that precoating of the channel with the diluted EpCAM antibodies shows a significant reduction in the capture of the low EpCAM expressing T24 cells. It is therefore evident that if the EpCAM antibody were mixed with 2 or 3 or 4 different antibodies for binding on the channel, even if the other antibodies were relevant to a surface antigen on the cell, the EpCAM antibody itself would be commensurately diminished in its binding effectiveness. Therefore, when adding multiple antibodies to the channel, the effect of each antibody cannot be expected to be additive. The overall effect on cell capture is unpredictable in this configuration since circulating tumor cell (CTC) antigen levels are variable. By definition the antibody in a mixture that might be directed towards the highest level antigen on the CTC will be diminished by the addition of antibodies to the lesser antigen levels on the CTC. If only one antibody in a mixture recognizes a dominant epitope on a particular CTC, then diluting with several other antibodies on the channel will adversely affect capture instead of enhancing it. By contrast, mixtures of soluble antibodies added to cells prior to passage over the channel are additive. - To demonstrate the additive effect of multiple antibodies on prelabeled cells prior to passage over the channel, two different antibodies to two different cell surface adhesion antigens, Trop-1 and Trop-2, were added to cell suspensions of either T24 bladder cells or SKOV ovarian cells. Each of the antibodies was biotinylated and cells were captured using a micro-channel device coated with streptavidin. When Trop-1 antibody was used to pre-load T24 cells, 29% of the cells are captured (
FIG. 8 ). When Trop-2 antibody, which binds to a different antigen than Trop-1 antibody, was added in combination with the Trop-1 antibody, 94% of the cells are captured. A similar result is obtained with SKOV cells. A capture of 74% of the cells is observed with pre-labeling with Trop-1 antibody alone. However, a capture of 89% of the cells is observed when both Trop-1 and Trop-2 antibodies were added simultaneously (FIG. 8 ). The results show that addition of more than one antibody to more than one target site on the surface of the cell increases the effective number of channel-detectable molecules attached to the target cell and produces an additive effect on cell capture. - In
FIG. 9 the same additive effect is observed using a different cell line and with a different antibody mixture. In this case the breast cancer cell line, MDA-MB-231, which has a low EpCAM expression was tested. InFIG. 9 , the % capture with EpCAM antibody alone is low, but adding a mixture of 6 antibodies specific for the antigens: EpCAM, Trop-2, EGFR, MUC-1, CD318 and HER-2 improves capture to essentially 100%. FACS analysis of the MDA-MB-231 showed that this cell line has very low antigen expression of EpCAM, Trop-2, Her-2, and MUC-1 but higher expression of EGFR and CD318. Therefore, the antibodies to the higher expressing antigens were diluted 3-fold with antibodies to low expressing antigen. The diluted antibodies are still highly effective in capturing this low EpCAM-expressing cell line. This result is consistent with the results shown inFIG. 7 where antibodies were used to pre-label the cells. - In some instances, a non-derivatized primary antibody may more efficiently bind to the antigen of interest or may be easier to employ. With some antibodies their activities are adversely affected by derivatization procedures which modify their surface amino acids. In cases, where one desires to use a non-derivatized primary antibody to bind to cellular antigens, a derivatized secondary antibody may be added to the cell suspension to form a complex with the primary antibody which is bound to the cellular target antigen. Thus, primary antibody mixtures, semi-purified or non-clonal hybridoma supernates can be added to the cell suspension and any antibodies that attach to antigens on the cell can be labeled by the addition of a derivatized (e.g. biotinylated) secondary antibody. Antibodies that do not bind to the cell are simply washed away.
- To illustrate this approach, the cultured ovarian SKOV cell line was pre-labeled with either biotinylated Trop-1 antibody (Sample A in
FIG. 10 ) or non-biotinylated Trop-1 plus a 3-fold molar excess of biotinylated anti-mouse secondary antibody. The primary antibody (Trop-1) concentration was 1 μg/mL and the cells were incubated for 30 mins. either with or without 3 μg/mL secondary antibody before cell capture and purification on a micro-channel device. The difference between samples B and D was that a longer biotin linker on the secondary antibody was used in sample D. In sample C, the cells were washed with PBS/BSA to remove excess primary and secondary antibody before applying the cells to the channel. In all samples, approximately 200 cells were suspended in 250 μL of PBS/BSA for application to the channel. - As shown in
FIG. 10 , all samples have similar recovery. These results demonstrate that biotinylated secondary antibody can be used in combination with unlabeled primary antibody to pre-labeled cells for effective capture in a micro-channel device. The presence of some excess biotinylated secondary antibody did not adversely affect the capture percentage compared to direct pre-labeling with 1 μg of biotinylated Trop-1. Secondary antibodies may include intact IgG antibody, or antibody fragments such as Fab′2, Fab′, Fab or engineered antibody fragments such as single chain Fab or single chain variable fragment. - The process of capturing cells on a micro-channel device involves flow of cells suspended in a liquid. Therefore, the cells are subjected to sheer forces from the liquid flow that can also dislodge the cells from the channel after they are captured. This effect is more pronounced with cells that have lower surface antigen levels because there are relatively fewer attachment points between the cell and the specific cell surface antigens bound to the channel surface by the antibody. Therefore, it is advantageous to provide an additional external attachment of the cell to the channel surface by means of cross-linking reagents to better stabilize the attachment of the cell to the channel. Since the channel is typically coated with a binding protein (e.g. streptavidin or an antibody), a facile means of further anchoring the cell to the channel is through protein cross-linking reagents.
- Reagents known in the art for this purpose can be homo-bifunctional NHS esters to crosslink amino groups on proteins. Another way of cross-linking is through the thiol or disulfide groups on the proteins with thiol reactive reagents, such as heterobifunctional molecules with a maleimide and an NHS ester. In addition, reagents such as EDC can be used to cross-link carboxyl and amino groups. The length of these cross-linkers can be varied by the use of polymeric regions between the two reactive groups, which typically take the form of chemical linkers such as polymeric ethylene glycol or simple carbon chains, but can also include sugars, amino acids or peptides, or oligonucleotides. Polymer chain lengths of from 5 to 50 nm are typical for this purpose but can be shorter or longer as needed. The common property of all of these protein cross-linking reagents is to covalently bind cellular proteins so as to anchor the cell to the surface of the channel by multiple covalent attachment points.
- To examine whether externally added cross-linking reagents enhance retention of the captured cells on the coated micro-channels, cells were captured on coated micro-channels and subjected to high flow rates in the absence or presence of a protein cross-linker. Streptavidin-coated surfaces of micro-channels were prepared. The cultured T24 cell line, which is known to have a low expression level of surface EpCAM, was used as a model cell line. One μg/mL biotinylated anti-EpCAM antibody was incubated with the cells for 30 mins. at 4° C. and approximately 325 cells were suspended in 250 μL of PBS/BSA buffer and passed in triplicates over coated micro-channels at 12 μL/min. The exact number of cells applied to the channel was determined microscopically by counting the cells in duplicate aliquots. After the cell suspension was passed through the channel, the channel containing bound cells was washed once with PBS/BSA and then a solution of homobifunctional NHS ester (bis N-succinimidyl-[pentaethylene glycol] ester) at 2 mM was passed over the channel and allowed to incubate for 20 mins. The control channel without NHS ester received only PBS/BSA solution. The cells were then washed with a 5% PEG solution in PBS for 2 mins. at various flow rates. The 5% PEG/PBS solution increases the solution viscosity and along with higher flow, provides more sheer force on the cells for purposes of this comparison. The cells captured in the channel were then stained with the nuclear staining dye, DAPI and counted.
-
FIG. 11 shows photomicrographs of captured cells subjected to different flow rates in the absence of protein cross-linker. Almost 50% of the cells are lost at a flow rate of 20 μL/min and all of the cells are lost at a flow rate of 100 μL/min. -
FIG. 12 shows photomicrographs of captured cells subjected to different flow rates after exposure to a NHS protein cross-linker. All cells are retained on the channel at flow rates of up to 50 μL/min and only one cell was lost at a flow rate of 100 μL/min. - A quantitative comparison of capture with and without cellular stabilization by protein cross-linking is shown in
FIG. 13 . As in previous experiments, approximately 200 T24 cells were applied to the micro-channel and after capture, the cells were washed with 5% PEG in PBS.FIG. 13 shows that less than 50% of the cells which not treated with crosslinking reagent are recovered compared to the percentage of cells recovered in channels treated with a crosslinker. Thus, the addition of protein cross-linking reagents significantly stabilizes cell attachment to the micro-channel. It should be noted that this result is independent of how the cells were captured on the micro-channel, whether by pre-loading antibody on the cells or on the channel, since the crosslinking agent stabilizes the cell on the micro-channel after the cells have been captured. - A second experiment similar to the above was employed to test for cell stability on the channel. After treatment of the cells with the protein crosslinker as above, the SKOV cells on the channel were subsequently stained with anti-cytokeratin (to visualize epithelial cells) and DAPI (to visualize cells with a nucleus). The difference in this experiment was that the tubing connected to the outlet was disconnected, a process that can cause transient but abrupt pressure pulses that can sheer and dislodge cells from the micro channel.
- Table 1 shows the increasing numbers of cells lost when cells were not crosslinked to the channel were subjected to exogenous mechanical forces as a result of removing the outlet tubing. If cells were fixed to the channel with methanol treatment prior to removal of the tubing connections, there is no significant difference in cell recovery regardless of whether crosslinker was used (data not shown). However, methanol fixation (or any alcohol or acetone fixation) has several undesirable side-effects for the purposes of some subsequent cell analyses. Cells fixed with methanol are permeabilized due to disruption of the cell membrane and therefore cell surface studies cannot be distinguished from internal cell reactions. In addition, cells fixed with methanol become fused to the channel matrix making cell removal difficult and inefficient. Such cells can be subjected to extensive proteolysis to aid in cell removal, but cellular digestion has several undesirable side-effects for some types of subsequent cellular analysis. The procedure of crosslinking cells to the channel allows stabilized cells on the channel to be retained without alcohol fixation during normal channel operations and manipulations including higher flow rates, higher viscosity buffers and removal of channel connections.
-
TABLE 1 2 mM 2 mM 0.2 mM 0.07 mM Crosslinker + Crosslinker Crosslinker Crosslinker Conditions methanol No methanol No methanol No methanol % retained 100% 96% 60% 28% on channel (control) - Urothelial carcinoma (UC) cell lines have lower expression of EpCAM in more invasive tumor models. Such cells in circulation would be expected to limit the utility of EpCAM-based CTC capture. A cohort of 5 UC cell lines (UMUC3, UMUC5, UMUC9, T24, and KU7) were selected based on gene expression heat map analysis as being either more epithelial or more mesenchymal-like. In the latter case, these cells have undergone the epithelial to mesenchymal transition (EMT) which results in epithelial cells with mesenchymal expression and morphological characteristics. This EMT has been proposed as a mechanism by which epithelial cells can dissociate from the tumor and become more migratory and invasive in circulation.
- These EMT cells were further tested by FACS for a variety of cell surface antigens. After identifying expression differences in these cell lines, an antibody mixture of EpCAM and 5 additional antibodies was selected to improve cell capture of all UC cell types. We subsequently compared cell capture rates using microfluidic channels with the antibody mixture compared to EpCAM alone. Cells were also immunostained with cytokeratin and vimentin antibodies to help further distinguish cells having epithelial or mesenchymal-like expression characteristics, respectively.
-
FIG. 14 shows the staining of the 5 UC cells lines with vimentin and cytokeration. Among the 5 UC cell lines, 2 (UC3 and KU7) stained with vimentin and had minimal to no expression of EpCAM. While these cells lines retained some degree of cytokeratin staining, one cell line stained only with vimentin (FIG. 14 ). The remaining 3 lines (UCS, UC9 and T24) stained only for cytokeratin and had significant EpCAM expression. Those cell lines with no EpCAM expression (UC3 and KU7) had no cell recovery when EpCAM alone was utilized as the capture antibody. However, when the antibody mixture, comprising 6b5, CD318, EGFR, MOV18, Trop-2 and EpCam) was used, all 5-cell lines achieved nearly 100% cell capture rates. In the case of KU7, the most mesenchymal-like of this group of cell types, the folate binding receptor (MOV18) was unique and not expressed in the other cell lines. - The results show that the use of a mixture of antibodies allows capture of both bladder epithelial cells and bladder epithelial cells that had undergone EMT. The study shows that the use of antibody mixtures provides a dramatic improvement over cell recovery compared to the use of a single antibody alone, such as EpCAM alone. Because of the heterogeneity of tumor cell types expected in circulation, such an approach is expected to significantly improve the capture and isolation of CTCs from patient samples.
- Common detection methods are needed when cocktails of antibodies are used to simultaneously bind to several different cancer cell types. While cytokeratin stain works well for epithelial cells, some epithelial cells have lost cytokeratin expression as described in Example 6. With other cells types, such as stem cells, there is no specific method for staining these cells that does not have significant crossreactivity to other blood cell types which may be non-specifically bound to the channel. However, high levels of biotinylated primary or secondary antibodies on the surface of the cells are common to all cells captured specifically by the avidin on the microchannel. The benefit of using cocktails of biotin-conjugated antibodies is the additive effect in increasing surface biotins on target cells, which is useful for increasing the capture of low antigen-expressing cells or cells expressing variable levels of one or more antigens in a heterogenous cell population, such as those found in tumor patients. See
FIGS. 8, 9, and 13 . - The unexpected additional advantage of using multiple antibodies in a cocktail is that this provides a common detection method for a heterogenous population of cells that have variable level of antigen expression. An example of this is shown in
FIGS. 15A-15B . -
FIG. 15A shows the percentage capture of SKOV cells, which is known to express a high level of EpCam antigen (approximately 40-70,000 EpCam antigens per cell (apc)), with EpCam alone or with a mixture of antibodies specific for other surface antigens expressed by the cells, including EpCAM, Trop-2, EGFR, MUC-1, CD318 and HER-2. The results show that there is no significant improvement in the percent number of SKOV cells captured with EpCam antibody alone or a mixture of antibodies specific for other antigens in addition to EpCam. - In contrast,
FIG. 15B shows the fluorescence staining intensity of the same SKOV cells by FACS and on slides. These cells stain with very different intensities depending on whether they have been pre-mixed with EpCam alone (66,000 surface antigens) or with an antibody mixture which are directed against Her-2, CD24, CD44, combined surface antigen level of ˜600,000 antigens as determined by the FACS analysis. Fluorescently labeled anti-mouse antibody was used to label the primary antibodies. While there was minimal increase in the capture of these antibody cocktail-incubated SKOV cells using biotinylated secondary antibody as shown inFIG. 15A , using fluorescently labeled secondary antibody inFIG. 15B shows that the staining intensity is significantly higher when using the antibody mixture. In a similar manner, this differential would be obtained if cells were reacted with primary antibody, followed by biotinylated secondary antibody and fluorescently labeled biotin-reactive avidin. Thus there is a significant advantage in using antibody cocktail mixtures even when additional antibodies are not necessary for capture of the cells. In the case of a low EpCam-expressing cells, the capture using EpCam antibody alone is reduced (FIGS. 4-6, 14 ), but is significantly increased when using an antibody cocktail. In this case the staining intensity based on the number of antibodies bound to the surface of the cells would also be increased. Therefore the use of fluorescently-labeled molecules that target the multiple antibodies used to better capture the cells has the universal advantage of better detection of those same cells. The use of antibody cocktails has the unique advantage in allowing detection of cells for which there may not be a known specific marker for detection such as cytokeratin in epithelial cells, or where the cytokeratin has been lost as shown inFIG. 14 . The multiple antibodies used in a mixture for better capture of cells with variable expression of surface markers can still be targeted for fluorescence labeling based solely on their increased levels of bound antibodies from the antibody cocktail. -
FIG. 16 shows the additive effect of multiple antibodies in a cocktail, which contain antibodies specific for the SKOV target cells and which are shown to associate minimally to the non-specific cells present in a blood sample, when the blood sample was spiked with SKOV target cells. The antibody cocktail contained antibodies directed against CD340, EGFR, CD318, Muc-1, Trop-2, EpCam, Mov-18, MSC, c-met and N-Cadherin. Although some of the non-specific cells in the sample may have adsorbed some of the biotinylated antibodies (either primary or secondary) added to the samples, the level of antibodies adsorbed is far too low to be visualized using fluorescently-labeled neutravidin. The differential staining between specific target cells and non-specific cells favors the visualization of the target cells which have higher numbers of biotinylated antibodies from the antibody mixture bound or captured by the target cells.FIGS. 15A-15B and 16 demonstrate that addition of multiple antibodies in a cocktail provides a common and universal method of detecting rare cell types that express low levels of antigens on the microchannel. Thus, the antibody cocktail used to enhance and thereby increase capture of circulating tumor cells that are highly variable in heterogenous cell population in a sample, also enhance detection of any of the captured cells. - In
FIG. 17 , blood samples were spiked with a variable number of SKBr3 cells, a cell line expressing high levels of EpCAM, ranging from about 10-250 cells per 10 mL blood sample. EpCAM antibodies were added to the spiked blood sample and the EpCAM Ab-bound cells were captured on a micro-channel device using the method described in Example 1. - The results in
FIG. 17 shows that approximately a 100% of the SKBr3 cells were recovered from the spiked samples. The data shows that the percent capture of cells by the micro-channel device is independent of the cell input. - Table 2 shows the results of circulating tumor cells (CTCs) captured on a micro-channel device from 10 mL blood samples from patients diagnosed with prostate, lung, pancreatic, renal cell, colorectal, breast and ovarian cancers. The blood samples were pre-labeled with a cocktail of soluble antibodies containing antibodies directed against CD340, EGFR, CD318, Muc-1, Trop-2, EpCam, Mov-18, and MSC, or a anti-EpCAM only. Cells were identified by staining with fluorescently labeled anti-cytokeratin.
-
TABLE 2 Anti-EpCAM MAb Sample No.* only Cocktail 1 (16283-Prostate) 0 2 2 (16302-Prostate) 0 3 3 (16318-Prostate) 95 77 4 (16291-Ovarian) 1 1 5 (16278-Colo/rectal) 0 4 6 (16288-Lung) 0 5 7 (16297-Breast) 1 3 8 (16296-Breast) 0 3 *Samples from prostate, lung, pancreatic, renal cell, colorectal, breast and ovarian cancers. - TABLE 2 shows that the blood samples pre-labeled with a soluble antibody cocktail is superior at capturing CTCs compared to samples pre-labeled with a single type of antibody alone.
- Blood samples were pre-incubated with anti-EpCAM antibody for capture on a micro-channel device or pre-incubated with antibodies that are joined to microscopic iron particles (immunoferromagnetic Abs) and captured using CELLSEARCH® (VERIDEX, LLC). The captured cells were stained for CK, CD45 markers and DAPI, a nuclei stain. The cells that were stained in-situ with CK+/CD45−/DAPI+ were counted.
-
TABLE 3 Sample Total #CTCs by CEE ID (CK+/CD45−/DAPI+)* Veridex 16163 0 0 16170 0 0 16171 60 (34) 54 16172 5 0 16173 0 1 16176 549 (325) 1267 16187 104 (37) 54 16196 0 0 16198 87 (27) 32 16202 5 8 16203 2008 923 16205 78 51 *No Significant difference by Two Tailed t-test (P = 0.715) Total CTC counts indicated in bold include robust, apoptotic and micronuclei; whereas numbers in parenthesis indicate robust CTCs. - TABLE 3 shows that the total number of CTCs captured on the micro-channel device that are CK+/CD45−/DAPI+ are consistently more than the CTCs captured by the VERIDEX systems, indicating that the invention provides for superior capturing of CTCs.
- Circulating tumor cells (CTCs) were captured from blood samples of Stage IV (TABLE 4) and III (TABLE 5) breast cancer patients. The CTCs were pre-labeled with an antibody cocktail, containing antibodies to CD340, EGFR, CD318, Muc-1, Trop-2, EpCam, Mov-18, and MSC, and were released from the micro-channel device. The captured cells were analyzed by fluorescent in-situ hybridization (FISH) for aneuploidy in
chromosome -
TABLE 4 Sample #CTCs #Aneuploid cells Her2/chromosome # (CK+) (Chrom 17 & 8) 17 Ratio 1 3 7 (6 CK−) 1.05 2 1 1 (CK−) 1.0 3 0 3 (CK−) 1.0 4 0 3 (CK−) 1.0 5 0 4 (CK−) 1.0 6 2 13 (CK−/CK+) Mixed 7 1 1 (CK−) 1.0 8 1 7 (CK−) 0.95 9 510 7 (CK+) 1.0 10 16 16 (CK−/CK+) >6 11 1 2 (CK−) 1.0 12 0 4 (CK−) 1 13 0 2 (CK−) 1 14 0 14 (CK−) 1 15 0 1 (CK−) 1.5 16 0 24 (CK−) 1.98 17 3 9 (CK−) 5.714 - TABLE 4 shows that post-capture molecular analyses of CTCs from stage IV breast cancer patients for aneuploidy and Her2 amplification status are superior in detecting breast cancer cells from the captured CTCs compared to CK staining.
- In TABLE 5, captured CTCs from the blood samples of patients diagnosed with Stage III cancer were analyzed for aneuploidy in
chromosome chromosomes -
TABLE 5 Sample #CTCS #Aneuploid ID (CK+) cells Aneuploid Details (Chromosomes 8, 11 and 17) 16610 0 93 4-Monosomy 8; 6-Monosomy 11; 83-Monosomy 17 16620 0 55 26-Monosomy 8; 11-Monosomy 11; 16-Monosomy 17; 2-complex aneuploidy 16621 0 54 8-Monosomy 8; 22-Monosomy 11; 23-Monosomy 17; 1-Trisomy 17 16631 0 169 11-Monosomy 8; 11-Monosomy 11; 265-Monosomy 17; 3-complex monosomies 16632 0 61 9-Monosomy 8; 10-Monosomy 11; 40-Monosomy 17; 2-complex Monosomy 8, 11, 17 16633 0 6 2-Monosomy 8; 1-Monosomy 11; 3-Monosomy 17 16686 0 55 13-Monosomy 8; 13-Monosomy 11; 21 Monosomy 17; 1-Trisomy 8; 1-Trisomy 11; 1-Trisomy 17 16687 0 686 12-Monosomy 8; 82-Monosomy 11; 582-Monosomy 17 16720 0 56 8-Monosomy 8; 23-Monosomy 11; 25-Monosomy 17 16747 0 58 11-Monosomy 8; 19-Monosomy 11; 26-Monosomy 17; 1-Tetrapolid 8; 1-Trisomy 17 16754 0 531 21-Monosomy 8; 123-Monosomy 11; 380-Monosomy 17; 7-complex aneuploidy - Although none of the CTCs captured from the blood of Stage III breast cancer patients were stained positive for CK marker (CK+), post-capture analyses for aneuploidy at
chromosome - Circulating tumor cells (CTCs) were captured from blood samples of bladder cancer patients. The CTCs were pre-labeled with an antibody cocktail, containing antibodies to CD340, EGFR, CD318, Muc-1, Trop-2, EpCam, Mov-18, MSC, c-met and N-Cadherin. Captured cells were analyzed directly within the micro-channel device by fluorescent in-situ hybridization for aneuploidy in
chromosome -
TABLE 6 Sample #CTCS #Aneuploid ID (CK+) cells Aneuploid Details ( Chromosomes 3, 7 and 17)16660 0 17 12- Trisomy 3; 1-Monosomy 3; 2-Monosomy 7;2- Monosomy 1716664 0 13 1- Trisomy 3; 2-Monosomy 3; 4-Monosomy 7;6- Monosomy 1716708 0 27 14- Trisomy 3; 2-Monosomy 3; 8-Monosomy 17;2-Monosomy 7; 1- Tetraploid 316714 0 78 7- Monosomy 3; 3-Monosomy 7; 68-Monosomy 1716719 0 8 2- Monosomy 3; 1-Monosomy 7; 5-Monosomy 1716729 0 29 2- Monosomy 3; 5-Monosomy 7; 10-Monosomy 17;12- Trisomy 316746 0 20 1- Monosomy 17; 13-Trisomy 3; 1-Trisomy 7; 2-Trisomy 17; 1- Monosomy 3; 2-Monosomy 716762 0 18 2- Monosomy 3; 12-Monosomy 17; 3-Trisomy 3; 1-complexaneuploid (triploid for 3, 7, 17) 16761 0 46 1- Monosomy 3; 5-0 Monosomy 7; 8-Monosomy 17;26- Trisomy 3; 2-Trisomy 17; 4-Tetraploid 3 - Table 6 shows that the many of the captured cells from samples obtained from patients with bladder cancer which are stained negative for CK (2nd column) are aneuploid cells (monosomy, trisomy and/or tetraploid at
chromosome 3, 7 and 17). The results in Table 6 show that the method is capable of identifying CTCs from blood obtained from different cancer types. - The results from these experiments show that the ability to identify aneuploidy and expression of specific markers in CTCs captured on a micro-channel device provide a means for predicting and managing diseases, such as cancer during the early stages of tumorigenesis or late stages of tumorigenesis where tumor cells have metatasized and escaped into the circulation. In addition, the method described is also applicable for monitoring treatment efficacy or failure.
- It is understood that the disclosed invention is not limited to the particular methodology, protocols and materials described as these can vary. It is also understood that the terminology used herein is for the purposes of describing particular embodiments only and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Claims (17)
1. A method for characterizing a tumor cell from a biological sample that expresses target entity, the method comprising:
a) combining said biological sample with a first binding entity that selectively binds to said target entity to form bound tumor cells, wherein said first binding entity further comprises a third binding entity and a capturable moiety,
b) contacting said first binding entity bound tumor cells with a surface, wherein said surface comprises a second binding entity, wherein said third binding entity capturable moiety binds to said second binding entity on said surface to form a tumor cell bound surface,
c) contacting said tumor cell bound surface with a detectible entity that binds said third binding moiety and
d) identifying and characterizing said tumor cell on said tumor cell bound surface, wherein said characterizing comprises enumerating said tumor cell, determining an expression level for said target entity or any combination thereof.
2. The method according to claim 1 , wherein said capture moiety is selected from the group consisting of biotin, avidin, streptavidin, digoxigenin, anti-digoxigenin Ab, or a derivative thereof.
3. The method according to claim 1 , wherein said second binding entity comprises biotin or a derivative thereof and said capture moiety comprises streptavidin or a derivative thereof.
4. The method according to the method of claim 1 , wherein said third binding moiety and said capturable moiety are the same moiety.
5. The method according to claim 1 , wherein said third binding moiety and said capturable moiety are biotin.
6. The method according to claim 1 , wherein said biological sample is a physiological fluid or tissue selected from the group consisting of blood, plasma, bone marrow, serum, semen, vaginal secretions, urine, saliva, amniotic fluid, cerebral spinal fluid, synovial fluid, lung lavages, fine needle aspirates (FNA) and biopsy tissue sample.
7. The method according to claim 1 , wherein said tumor cell is a circulating tumor cell.
8. The method according to claim 1 , wherein said tumor cell is a cancer cell selected from a breast cancer cell, a prostate cancer cell, a colorectal cancer cell, a lung cancer cell, a pancreatic cancer cell, a ovarian cancer cell, a bladder cancer cell, a endometrial cancer cell, a cervical cancer cell, a liver cancer cell, a renal cancer cell, a thyroid cancer cell, a bone cancer cell, a lymphoma cancer cell, a melanoma cancer cell, and a non-melanoma cancer cell.
9. The method according to claim 1 , wherein the tumor cell is:
a) a breast cancer cell and wherein said target that binds the actionable antigen is an antibody that specifically binds to Her2/neu, EpCAM, MUC-1, EGFR, TAG-12, IGF1R, TACSTD2, CD318, CD104, or N-cadherin, or said target is an antibody cocktail specifically binding a combination thereof;
b) a melanoma cancer cell and wherein said target that binds the actionable antigen is an antibody that specifically binds to melanocyte differentiation antigens, oncofetal antigens, tumor specific antigens, SEREX antigens or a combination thereof;
c) a prostate cancer cell and wherein said target that binds the actionable antigen is an antibody that specifically binds to EpCAM, MUC-1, EGFR, PSMA, PSA, TACSTD2, PSCA, PCSA, CD318, CD104, or N-cadherin, or said target is an antibody cocktail specifically binding a combination thereof;
d) a colorectal cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to EpCAM, CD66c, CD66e, CEA, TACSTD2, CK20, CD104, MUC-1, CD318, or N-cadherin, or said target is an antibody cocktail specifically binding a combination thereof;
e) a lung cancer cell and said target that binds said actionable antigen is an antibody that specifically binds to CK18, CK19, TACSTD2, CD318, CD104, CEA, EGFR, or EpCAM, or said target is an antibody cocktail specifically binding a combination thereof;
f) a pancreatic cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to MUC-1, CEA, TACSTD2, CD104, CD318, N-cadherin, MUC-1, or EpCAM, or said target is an antibody cocktail specifically binding a combination thereof;
g) an ovarian cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to MUC-1, TACSTD2, CEA, CD318, CD104, N-cadherin, or EpCAM, or said target is an antibody cocktail specifically binding a combination thereof;
h) an endothelial bladder cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to CD34, CD146, CD62, CD105, CD106, VEGF receptor, or MUC-1, or said target is an antibody cocktail specifically binding a combination thereof;
i) an epithelial bladder cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to TACSTD2, EpCAM, CD318, EGFR, 6B5, N-cadherin or folate binding receptor, or said target is an antibody cocktail that specifically binds a combination thereof;
j) a cancer stem cell and said target that binds the actionable antigen is an antibody that specifically binds to CD133, CD135, CD117, or CD34, or said target is an antibody cocktail that specifically binds a combination thereof;
k) a circulating cancer cell that expresses mesenchymal antigens and said target that binds the actionable antigen is an antibody that specifically binds to FGFR1, FGFR4, EGFR, folate binding receptor, N-cadherin or MSC, or said target is an antibody that specifically binds a combination thereof; and/or
l) a circulating cancer cell that expresses angiogenesis surface antigens and said target that binds the actionable antigen is an antibody that specifically binds to a VEGF receptor.
10. The method according to claim 1 , wherein said surface is a microchannel.
11. The method according to claim 1 , wherein said cancer or inflammatory disease treatment is cancer or inflammatory disease therapeutics development, a cancer or inflammatory disease therapy decision, cancer or inflammatory disease therapy monitoring, determination of cancer or inflammatory disease progression, or a minimal residual cancer or inflammatory disease determination.
12. A method for characterizing tumor cells in a biological fluid expressing a target entity for cancer or inflammatory disease treatment, said method comprising:
a) combining said biological fluid with an antibody that selectively binds said target entity, wherein said antibody comprises biotin to form antibody bound tumor cells,
b) contacting said antibody bound tumor cells with a surface, wherein said surface comprises streptavidin, to form a tumor cell bound surface,
c) contacting said tumor cell bound surface with a streptavidin fluorophore to form labeled tumor cells, and
d) characterizing said labeled tumors cells, wherein said characterizing comprises enumerating said labeled tumor cells, determining an expression level for said target entity, determining a signal localization for said actionable antigen with respect to said tumor cells, determining size and/or morphology of said tumor cells, determining a drug treatment biomarker associated with said tumor cells, or any combination thereof.
13. A method for characterizing a tumor cell from a biological sample that expresses target entity, the method comprising:
a) combining said biological sample with a first antibody that selectively binds to said target entity to form antibody bound tumor cells,
b) incubating said antibody bound tumor cells with a biotinylated secondary antibody that targets the first antibody to form antibody complexed tumor cells,
c) contacting said antibody complexed tumor cells with a surface, wherein said surface contains avidin or streptavidin to form a tumor cell bound surface,
d) contacting said tumor cell bound surface with a streptavidin or avidin bound reporter group that binds said biotinylated secondary antibody, and
e) identifying and or characterizing said tumor cell on said tumor cell bound surface, wherein said characterizing comprises enumerating said tumor cell, determining an expression level for said target entity, detecting a drug treatment biomarker associated with said tumor cell, or any combination thereof.
14. The method according to claim 13 , wherein said tumor cell is a tumor cell in a physiological fluid.
15. The method according to claim 13 , wherein said biological sample is a physiological fluid or tissue selected from the group consisting of blood, plasma, bone marrow, serum, semen, vaginal secretions, urine, saliva, amniotic fluid, cerebral spinal fluid, synovial fluid, lung lavages, fine needle aspirates (FNA) and biopsy tissue sample.
16. The method according to claim 13 , wherein said tumor cell is a cancer cell selected from a breast cancer cell, a prostate cancer cell, a colorectal cancer cell, a lung cancer cell, a pancreatic cancer cell, a ovarian cancer cell, a bladder cancer cell, a endometrial cancer cell, a cervical cancer cell, a liver cancer cell, a renal cancer cell, a thyroid cancer cell, a bone cancer cell, a lymphoma cancer cell, a melanoma cancer cell, and a non-melanoma cancer cell.
17. The method according to claim 13 , wherein the tumor cell is:
a) a breast cancer cell and wherein said target that binds the actionable antigen is an antibody that specifically binds to Her2/neu, EpCAM, MUC-1, EGFR, TAG-12, IGF1R, TACSTD2, CD318, CD104, or N-cadherin, or said target is an antibody cocktail specifically binding a combination thereof;
b) a melanoma cancer cell and wherein said target that binds the actionable antigen is an antibody that specifically binds to melanocyte differentiation antigens, oncofetal antigens, tumor specific antigens, SEREX antigens or a combination thereof;
c) a prostate cancer cell and wherein said target that binds the actionable antigen is an antibody that specifically binds to EpCAM, MUC-1, EGFR, PSMA, PSA, TACSTD2, PSCA, PCSA, CD318, CD104, or N-cadherin, or said target is an antibody cocktail specifically binding a combination thereof;
d) a colorectal cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to EpCAM, CD66c, CD66e, CEA, TACSTD2, CK20, CD104, MUC-1, CD318, or N-cadherin, or said target is an antibody cocktail specifically binding a combination thereof;
e) a lung cancer cell and said target that binds said actionable antigen is an antibody that specifically binds to CK18, CK19, TACSTD2, CD318, CD104, CEA, EGFR, or EpCAM, or said target is an antibody cocktail specifically binding a combination thereof;
f) a pancreatic cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to MUC-1, CEA, TACSTD2, CD104, CD318, N-cadherin, MUC-1, or EpCAM, or said target is an antibody cocktail specifically binding a combination thereof;
g) an ovarian cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to MUC-1, TACSTD2, CEA, CD318, CD104, N-cadherin, or EpCAM, or said target is an antibody cocktail specifically binding a combination thereof;
h) an endothelial bladder cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to CD34, CD146, CD62, CD105, CD106, VEGF receptor, or MUC-1, or said target is an antibody cocktail specifically binding a combination thereof;
i) an epithelial bladder cancer cell and said target that binds the actionable antigen is an antibody that specifically binds to TACSTD2, EpCAM, CD318, EGFR, 6B5, N-cadherin or folate binding receptor, or said target is an antibody cocktail that specifically binds a combination thereof;
j) a cancer stem cell and said target that binds the actionable antigen is an antibody that specifically binds to CD133, CD135, CD117, or CD34, or said target is an antibody cocktail that specifically binds a combination thereof;
k) a circulating cancer cell that expresses mesenchymal antigens and said target that binds the actionable antigen is an antibody that specifically binds to FGFR1, FGFR4, EGFR, folate binding receptor, N-cadherin or MSC, or said target is an antibody that specifically binds a combination thereof; and/or
l) a circulating cancer cell that expresses angiogenesis surface antigens and said target that binds the actionable antigen is an antibody that specifically binds to a VEGF receptor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/334,185 US20230408500A1 (en) | 2009-03-24 | 2023-06-13 | Devices and methods of cell capture and analysis |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16300909P | 2009-03-24 | 2009-03-24 | |
US23561509P | 2009-08-20 | 2009-08-20 | |
US29887110P | 2010-01-27 | 2010-01-27 | |
US12/730,738 US9128082B2 (en) | 2009-03-24 | 2010-03-24 | Devices and methods of cell capture and analysis |
US14/812,498 US10527611B2 (en) | 2009-03-24 | 2015-07-29 | Devices and methods of cell capture and analysis |
US16/695,976 US11719692B2 (en) | 2009-03-24 | 2019-11-26 | Devices and methods of cell capture and analysis |
US18/334,185 US20230408500A1 (en) | 2009-03-24 | 2023-06-13 | Devices and methods of cell capture and analysis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/695,976 Continuation US11719692B2 (en) | 2009-03-24 | 2019-11-26 | Devices and methods of cell capture and analysis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230408500A1 true US20230408500A1 (en) | 2023-12-21 |
Family
ID=42781852
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/730,738 Active 2031-10-16 US9128082B2 (en) | 2009-03-24 | 2010-03-24 | Devices and methods of cell capture and analysis |
US14/812,498 Active 2031-01-22 US10527611B2 (en) | 2009-03-24 | 2015-07-29 | Devices and methods of cell capture and analysis |
US16/695,976 Active 2031-10-08 US11719692B2 (en) | 2009-03-24 | 2019-11-26 | Devices and methods of cell capture and analysis |
US18/334,185 Pending US20230408500A1 (en) | 2009-03-24 | 2023-06-13 | Devices and methods of cell capture and analysis |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/730,738 Active 2031-10-16 US9128082B2 (en) | 2009-03-24 | 2010-03-24 | Devices and methods of cell capture and analysis |
US14/812,498 Active 2031-01-22 US10527611B2 (en) | 2009-03-24 | 2015-07-29 | Devices and methods of cell capture and analysis |
US16/695,976 Active 2031-10-08 US11719692B2 (en) | 2009-03-24 | 2019-11-26 | Devices and methods of cell capture and analysis |
Country Status (9)
Country | Link |
---|---|
US (4) | US9128082B2 (en) |
EP (2) | EP2995953B1 (en) |
JP (4) | JP5923035B2 (en) |
CN (2) | CN102414562B (en) |
AU (2) | AU2010229924B2 (en) |
CA (1) | CA2756493C (en) |
ES (1) | ES2557914T3 (en) |
HK (1) | HK1222901A1 (en) |
WO (1) | WO2010111388A2 (en) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6136311A (en) | 1996-05-06 | 2000-10-24 | Cornell Research Foundation, Inc. | Treatment and diagnosis of cancer |
EP1413874A1 (en) | 2002-10-16 | 2004-04-28 | Streck Laboratories, Inc. | Method and device for collecting and preserving cells for analysis |
ES2437845T3 (en) | 2005-01-18 | 2014-01-14 | Biocept, Inc. | Cell separation using a microchannel that has pillars with a configuration |
US20090136982A1 (en) | 2005-01-18 | 2009-05-28 | Biocept, Inc. | Cell separation using microchannel having patterned posts |
ES2363891T3 (en) | 2006-03-20 | 2011-08-18 | The Regents Of The University Of California | ANTIBODIES AGAINST THE ANTIGEN OF TRONCAL CELLS OF THE PROSTATE (PSCA) GENETICALLY MODIFIED FOR ADDRESSING TO CANCER. |
JP6126773B2 (en) | 2007-09-04 | 2017-05-10 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | High affinity anti-prostatic stem cell antigen (PSCA) antibody for cancer targeting and detection |
US11634747B2 (en) | 2009-01-21 | 2023-04-25 | Streck Llc | Preservation of fetal nucleic acids in maternal plasma |
ES2712732T3 (en) | 2009-02-17 | 2019-05-14 | Cornell Res Foundation Inc | Methods and kits for the diagnosis of cancer and the prediction of therapeutic value |
EP2398912B1 (en) | 2009-02-18 | 2017-09-13 | Streck Inc. | Preservation of cell-free nucleic acids |
US20120100538A1 (en) * | 2009-03-24 | 2012-04-26 | Biocept, Inc. | Devices and methods of cell capture and analysis |
CA2756493C (en) * | 2009-03-24 | 2019-07-02 | Biocept, Inc. | Devices and methods of cell capture and analysis |
EP2506876B1 (en) | 2009-12-02 | 2016-10-12 | Imaginab, Inc. | J591 minibodies and cys-diabodies for targeting human prostate specific membrane antigen (psma) and methods for their use |
TWI796132B (en) | 2010-02-24 | 2023-03-11 | 美商免疫遺傳股份有限公司 | Folate receptor 1 antibodies and immunoconjugates and uses thereof |
US11175279B2 (en) | 2010-05-03 | 2021-11-16 | Creatv Microtech, Inc. | Polymer microfilters, devices comprising the same, methods of manufacturing the same, and uses thereof |
US9347946B2 (en) * | 2010-09-23 | 2016-05-24 | Biocept, Inc. | Methods and reagents for signal amplification |
WO2012051390A1 (en) * | 2010-10-14 | 2012-04-19 | Veridex, Llc | Methods and kits for the detection of circulating tumor cells in pancreatic patients using polyspecific capture and cocktail detection reagents |
US10195570B2 (en) * | 2011-01-07 | 2019-02-05 | Creative Micro Tech, Inc. | Fabrication of microfilters and nanofilters and their applications |
RS56916B1 (en) | 2011-04-01 | 2018-05-31 | Immunogen Inc | Methods for increasing efficacy of folr1 cancer therapy |
EP2704740B1 (en) | 2011-05-04 | 2016-10-05 | Streck, Inc. | Inactivated swine flu virus and methods of preparing it |
US9417244B2 (en) * | 2011-09-28 | 2016-08-16 | The General Hospital Corporation | Cadherins as cancer biomarkers |
US10130946B2 (en) | 2011-09-30 | 2018-11-20 | The Regents Of The University Of Michigan | System for detecting rare cells |
WO2013049636A1 (en) | 2011-09-30 | 2013-04-04 | The Regents Of The University Of Michigan | System for detecting rare cells |
ES2724232T3 (en) | 2012-01-24 | 2019-09-09 | Pfizer | 5T4 positive circulating tumor cell detection procedures and 5T4 positive cancer diagnostic procedures in a mammalian subject |
US11156596B2 (en) | 2012-06-01 | 2021-10-26 | Creatv Microtech, Inc. | Capture, identification and use of a new biomarker of solid tumors in body fluids |
JP6425250B2 (en) * | 2012-06-01 | 2018-11-21 | クリエイティブ マイクロテック インコーポレイテッドCreatv Microtech, Inc. | Capture, identification and use of new biomarkers of solid tumors in body fluids |
CN102719353B (en) * | 2012-06-13 | 2014-07-30 | 湖南大学 | Device and method for capturing specificity of circulating cancer cells in peripheral blood |
RS60217B1 (en) | 2012-08-31 | 2020-06-30 | Immunogen Inc | Diagnostic assays and kits for detection of folate receptor 1 |
EP2906953B1 (en) * | 2012-10-12 | 2017-12-06 | HI-STEM gGmbH Im Deutschen Krebsforschungszentrum DKFZ | Novel biomarkers for sub-typing pancreatic ductal adenocarcinoma |
US10073024B2 (en) | 2012-10-29 | 2018-09-11 | The Regents Of The University Of Michigan | Microfluidic device and method for detecting rare cells |
WO2014072465A1 (en) | 2012-11-09 | 2014-05-15 | Roche Diagnostics Gmbh | In vitro capture and analysis of circulating tumor cells |
KR20140073215A (en) | 2012-12-06 | 2014-06-16 | 삼성전자주식회사 | A composition and a kit for seperating a cell, and a method for seperating a cell using the same |
US10161939B2 (en) | 2013-02-02 | 2018-12-25 | Duke University | Method of isolating circulating tumor cells |
US10578633B2 (en) | 2013-03-15 | 2020-03-03 | Fluidigm Corporation | Methods and devices for analysis of defined multicellular combinations |
US20140309553A1 (en) * | 2013-04-11 | 2014-10-16 | Rarecyte, Inc. | Kits and methods for separating a target analyte from a suspension |
ES2938048T3 (en) | 2013-07-24 | 2023-04-04 | Streck Llc | Compositions and methods for stabilizing circulating tumor cells |
AU2014312086B2 (en) | 2013-08-30 | 2020-03-12 | Immunogen, Inc. | Antibodies and assays for detection of folate receptor 1 |
EP3090264B1 (en) * | 2013-12-30 | 2020-02-12 | The Scripps Research Institute | Circulating tumor cell diagnostics for lung cancer |
KR102513866B1 (en) | 2014-03-07 | 2023-03-23 | 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 | Biomimetic microfluid device for capturing circulating tumor cells |
CN103940997B (en) * | 2014-03-21 | 2017-01-04 | 上海柏慧康生物科技有限公司 | A kind of breast carcinoma circulating tumor cell detecting system and test kit |
JP6308525B2 (en) * | 2014-04-11 | 2018-04-11 | 国立大学法人名古屋大学 | Particle separation chip, particle separation system and particle separation method using the particle separation chip |
CN112877426A (en) | 2014-08-25 | 2021-06-01 | 创新微技术公司 | Application of circulating cell biomarker in blood in detecting and diagnosing diseases and separation method thereof |
EP3239691B1 (en) | 2014-12-26 | 2021-11-17 | Sysmex Corporation | Cell imaging device, cell imaging method, and sample cell |
US11168351B2 (en) | 2015-03-05 | 2021-11-09 | Streck, Inc. | Stabilization of nucleic acids in urine |
US10317406B2 (en) | 2015-04-06 | 2019-06-11 | The Regents Of The University Of Michigan | System for detecting rare cells |
JP6746845B2 (en) * | 2015-04-22 | 2020-08-26 | イミューノメディクス、インコーポレイテッドImmunomedics, Inc. | Isolation, detection, diagnosis and/or characterization of circulating TROP-2 positive cancer cells |
KR20180050321A (en) | 2015-08-07 | 2018-05-14 | 이미지냅 인코포레이티드 | An antigen binding construct for targeting a molecule |
IL257531B2 (en) | 2015-09-17 | 2023-04-01 | Immunogen Inc | Therapeutic combinations comprising anti-folr1 immunoconjugates |
JP6860919B2 (en) * | 2015-11-19 | 2021-04-21 | 国立大学法人金沢大学 | Mesenchymal KRAS mutant cancer therapeutic agent |
US20170145475A1 (en) | 2015-11-20 | 2017-05-25 | Streck, Inc. | Single spin process for blood plasma separation and plasma composition including preservative |
US20190310248A1 (en) * | 2015-12-15 | 2019-10-10 | Horiba, Ltd. | Method for removing microorganism, cell, tiny vesicle secreted by said microorganism or said cell or virus from carrier-immobilized antibody |
CN106996976B (en) * | 2016-01-22 | 2018-10-02 | 益善生物技术股份有限公司 | CTC protein parting kits based on microflow control technique |
EP3491381A1 (en) | 2016-07-29 | 2019-06-05 | Streck, Inc. | Suspension composition for hematology analysis control |
KR101994370B1 (en) * | 2016-08-24 | 2019-06-28 | 주식회사 제놉시 | Magnetic nanostructure for detecting and isolating circulating tumor cells comprising antibody- and magnetic nanoparticle-conjugated conductive polymer |
JP6779483B2 (en) | 2016-09-29 | 2020-11-04 | 住友ゴム工業株式会社 | Medical testing equipment and cell testing method |
US10617720B2 (en) * | 2016-10-20 | 2020-04-14 | Miltenyi Biotech, GmbH | Chimeric antigen receptor specific for tumor cells |
WO2018147960A1 (en) | 2017-02-08 | 2018-08-16 | Imaginab, Inc. | Extension sequences for diabodies |
CN110741259A (en) * | 2017-04-12 | 2020-01-31 | 南澳大学 | Bladder cancer detection device and method |
CN107338185B (en) * | 2017-08-02 | 2019-07-30 | 昆山汇先医药技术有限公司 | The catching method of biomolecule in a kind of cell or solution |
CN108103022A (en) * | 2017-12-15 | 2018-06-01 | 京东方科技集团股份有限公司 | A kind of object acquisition equipment |
JP7158671B2 (en) | 2018-02-14 | 2022-10-24 | 住友ゴム工業株式会社 | Specific cell capture method |
JP7109719B2 (en) | 2018-02-14 | 2022-08-01 | 住友ゴム工業株式会社 | Specific cell capture method |
US12133884B2 (en) | 2018-05-11 | 2024-11-05 | Beam Therapeutics Inc. | Methods of substituting pathogenic amino acids using programmable base editor systems |
CN109557296B (en) * | 2018-11-22 | 2022-05-20 | 珠海澳加动力生物科技有限公司 | Method for circularly detecting drug sensitivity of tumor cells |
CN109856388A (en) * | 2018-11-29 | 2019-06-07 | 北京优迅医学检验实验室有限公司 | The catching method and capture kit of circulating tumor cell |
US11614440B2 (en) | 2019-01-24 | 2023-03-28 | Sumitomo Rubber Industries, Ltd. | Specific cell fractionating and capturing methods |
US12053569B2 (en) | 2019-09-04 | 2024-08-06 | The Regents Of The University Of Michigan | Indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells |
WO2021067401A1 (en) * | 2019-09-30 | 2021-04-08 | University Of Florida Research Foundation, Incorporated | Use of ganglioside 2 and 3 for circulating sarcoma cell detection |
CN111596058A (en) * | 2020-05-18 | 2020-08-28 | 山东第一医科大学(山东省医学科学院) | Kit and method for detecting FGFR gene mutation of peripheral blood circulation tumor cells of cholangiocarcinoma patient |
US20230173487A1 (en) * | 2020-05-25 | 2023-06-08 | Tokyo Ohka Kogyo Co., Ltd. | Target particle separation method and system |
CN112391279A (en) * | 2020-11-30 | 2021-02-23 | 江苏信息职业技术学院 | Device structure for capturing circulating tumor cells and manufacturing method thereof |
US20240142400A1 (en) * | 2021-03-03 | 2024-05-02 | Yu-Sheng Hsiao | Bioelectronic system for rare cell separation and application thereof |
LU500787B1 (en) * | 2021-10-26 | 2023-04-27 | Univ Hamburg Eppendorf Uke | Isolation and detection of cdcp1 positive circulating tumor cells |
US20230128478A1 (en) * | 2021-10-26 | 2023-04-27 | Universitaetsklinikum Hamburg-Eppendorf | Isolation and detection of cdcp1 positive circulating tumor cells |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0126772A1 (en) * | 1982-12-03 | 1984-12-05 | E.I. Du Pont De Nemours And Company | Chromogenic support immunoassay |
JPH0714349B2 (en) * | 1983-01-17 | 1995-02-22 | モンサント カンパニ− | Chimeric genes suitable for expression in plant cells |
US6221581B1 (en) | 1984-04-27 | 2001-04-24 | Enzo Diagnostics, Inc. | Processes for detecting polynucleotides, determining genetic mutations or defects in genetic material, separating or isolating nucleic acid of interest from samples, and useful compositions of matter and multihybrid complex compositions |
US5288609A (en) | 1984-04-27 | 1994-02-22 | Enzo Diagnostics, Inc. | Capture sandwich hybridization method and composition |
JPH0480657A (en) * | 1990-07-24 | 1992-03-13 | Hitachi Ltd | Immune measurement method and apparatus |
WO1994007138A1 (en) * | 1992-09-14 | 1994-03-31 | Fodstad Oystein | Detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations |
ES2075802B1 (en) * | 1993-12-02 | 1996-05-01 | Inia | PROCEDURE FOR THE SENSITIVE AND SPECIFIC DETECTION OF ERWINIA CAROTOVORA SUBSP. ATROSEPTICA THROUGH "ELISA-ENRICHMENT". |
NO180658C (en) * | 1994-03-10 | 1997-05-21 | Oeystein Fodstad | Method and Device for Detecting Specific Target Cells in Specialized or Mixed Cell Populations and Solutions Containing Mixed Cell Populations |
JP2000508171A (en) * | 1996-04-05 | 2000-07-04 | ザ・ジョンズ・ホプキンス・ユニバーシティ・スクール・オブ・メディシン | How to enrich rare cells |
US6074827A (en) * | 1996-07-30 | 2000-06-13 | Aclara Biosciences, Inc. | Microfluidic method for nucleic acid purification and processing |
US6368871B1 (en) | 1997-08-13 | 2002-04-09 | Cepheid | Non-planar microstructures for manipulation of fluid samples |
US20020172987A1 (en) * | 1998-02-12 | 2002-11-21 | Terstappen Leon W.M.M. | Methods and reagents for the rapid and efficient isolation of circulating cancer cells |
GB9814008D0 (en) * | 1998-06-30 | 1998-08-26 | Cambridge Sensors Ltd | Method for the analysis of fluids |
JP3030339B2 (en) | 1998-08-07 | 2000-04-10 | 農林水産省農業生物資源研究所長 | Transgenic plants expressing soybean glycinin |
JP2005516217A (en) | 2001-02-16 | 2005-06-02 | イムニベスト・コーポレイション | Methods and reagents for rapid and effective isolation of circulating cancer cells |
JP2003075444A (en) * | 2001-08-31 | 2003-03-12 | Mitsubishi Chemicals Corp | Chip for measuring substance to be measured, substance measuring apparatus and method therefor |
AUPR749901A0 (en) | 2001-09-06 | 2001-09-27 | Monash University | Method of identifying chromosomal abnormalities and prenatal diagnosis |
AU2002360361A1 (en) * | 2001-11-09 | 2003-06-10 | Biomicroarrays, Inc. | High surface area substrates for microarrays and methods to make same |
US7875435B2 (en) | 2001-12-12 | 2011-01-25 | Proteome Systems Ltd | Diagnostic testing process |
CN1871517A (en) * | 2002-02-19 | 2006-11-29 | 免疫公司 | Methods and reagents for the rapid and efficient isolation of circulating cancer cells |
MXPA04012656A (en) | 2002-06-14 | 2005-08-15 | Immunomedics Inc | Humanized monoclonal antiboby hpam4. |
CN1720438A (en) | 2002-11-29 | 2006-01-11 | 日本电气株式会社 | Separation equipment and separation method |
ATE489452T1 (en) | 2003-02-27 | 2010-12-15 | Veridex Llc | CIRCULATING TUMOR CELLS (CTC'S): EARLY ASSESSMENT OF TIME-TO-PROGRESSION, SURVIVAL AND RESPONSE TO THERAPY IN PATIENTS WITH METASTATIC CANCER |
WO2004106925A2 (en) | 2003-03-03 | 2004-12-09 | Nagaoka & Co.Ltd. | Methods and apparatus for use in detection and quantitation of various cell types and use of optical bio-disc for performing same |
CA2521106A1 (en) | 2003-04-01 | 2004-10-14 | Monogram Biosciences, Inc. | Intracellular complexes as biomarkers |
US20040197832A1 (en) | 2003-04-03 | 2004-10-07 | Mor Research Applications Ltd. | Non-invasive prenatal genetic diagnosis using transcervical cells |
US20050181429A1 (en) | 2003-04-03 | 2005-08-18 | Monaliza Medical Ltd. | Non-invasive prenatal genetic diagnosis using transcervical cells |
CN101400778A (en) * | 2004-03-12 | 2009-04-01 | 加利福尼亚大学董事会 | Methods and apparatus for integrated cell handling and measurements |
JP2008503498A (en) | 2004-06-17 | 2008-02-07 | マンカインド コーポレイション | Tumor-associated antigen profiles in cancer diagnosis and immunotherapy |
ES2437845T3 (en) * | 2005-01-18 | 2014-01-14 | Biocept, Inc. | Cell separation using a microchannel that has pillars with a configuration |
US20060252087A1 (en) | 2005-01-18 | 2006-11-09 | Biocept, Inc. | Recovery of rare cells using a microchannel apparatus with patterned posts |
US8158410B2 (en) | 2005-01-18 | 2012-04-17 | Biocept, Inc. | Recovery of rare cells using a microchannel apparatus with patterned posts |
JP2008541017A (en) * | 2005-04-29 | 2008-11-20 | ベックマン コールター インコーポレイテッド | Lateral flow fluorescence immunoassay |
CN103242451B (en) * | 2005-12-16 | 2017-11-21 | Ibc医药公司 | Multivalence bioactive assemblies based on immunoglobulin |
US7695956B2 (en) * | 2006-01-12 | 2010-04-13 | Biocept, Inc. | Device for cell separation and analysis and method of using |
WO2008149803A1 (en) * | 2007-06-06 | 2008-12-11 | The University Of Tokyo | Method of sorting and identifying cancer stem cells in acute lymphocytic leukemia using surface antigen markers |
US7857744B2 (en) * | 2007-06-19 | 2010-12-28 | Caridianbct, Inc. | Blood processing apparatus with flared cell capture chamber and method |
FR2919063B1 (en) | 2007-07-19 | 2009-10-02 | Biomerieux Sa | METHOD OF DETERMINING LEUCOCYTE ELASTASE INHIBITOR FOR IN VITRO DIAGNOSIS OF COLORECTAL CANCER. |
US9155798B2 (en) | 2007-08-24 | 2015-10-13 | Regents Of The University Of Minnesota | Receptor-targeting reagents containing epidermal factor receptor-binding agents and IL-13 receptor-binding agents or IL-4 receptor-binding agents |
WO2009039507A2 (en) | 2007-09-21 | 2009-03-26 | Biocept, Inc. | Identification and isolation of fetal cells and nucleic acid |
US8008032B2 (en) * | 2008-02-25 | 2011-08-30 | Cellective Dx Corporation | Tagged ligands for enrichment of rare analytes from a mixed sample |
CA2756493C (en) * | 2009-03-24 | 2019-07-02 | Biocept, Inc. | Devices and methods of cell capture and analysis |
US20120100538A1 (en) | 2009-03-24 | 2012-04-26 | Biocept, Inc. | Devices and methods of cell capture and analysis |
-
2010
- 2010-03-24 CA CA2756493A patent/CA2756493C/en active Active
- 2010-03-24 EP EP15188374.1A patent/EP2995953B1/en active Active
- 2010-03-24 WO PCT/US2010/028499 patent/WO2010111388A2/en active Application Filing
- 2010-03-24 CN CN201080019566.9A patent/CN102414562B/en active Active
- 2010-03-24 JP JP2012502208A patent/JP5923035B2/en active Active
- 2010-03-24 AU AU2010229924A patent/AU2010229924B2/en active Active
- 2010-03-24 US US12/730,738 patent/US9128082B2/en active Active
- 2010-03-24 CN CN201910312087.9A patent/CN110470835A/en active Pending
- 2010-03-24 ES ES10756790.1T patent/ES2557914T3/en active Active
- 2010-03-24 EP EP10756790.1A patent/EP2411808B1/en active Active
-
2014
- 2014-11-25 JP JP2014237778A patent/JP6081434B2/en active Active
-
2015
- 2015-07-29 US US14/812,498 patent/US10527611B2/en active Active
- 2015-12-24 JP JP2015251296A patent/JP6463668B2/en active Active
-
2016
- 2016-08-30 AU AU2016222325A patent/AU2016222325B2/en active Active
- 2016-09-15 HK HK16110945.7A patent/HK1222901A1/en unknown
-
2018
- 2018-10-30 JP JP2018204145A patent/JP6771010B2/en active Active
-
2019
- 2019-11-26 US US16/695,976 patent/US11719692B2/en active Active
-
2023
- 2023-06-13 US US18/334,185 patent/US20230408500A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2010111388A3 (en) | 2011-03-03 |
JP6771010B2 (en) | 2020-10-21 |
US11719692B2 (en) | 2023-08-08 |
WO2010111388A2 (en) | 2010-09-30 |
EP2411808B1 (en) | 2015-11-11 |
EP2995953A1 (en) | 2016-03-16 |
CA2756493C (en) | 2019-07-02 |
CN110470835A (en) | 2019-11-19 |
US20100255479A1 (en) | 2010-10-07 |
JP6081434B2 (en) | 2017-02-15 |
CA2756493A1 (en) | 2010-09-30 |
JP2012522217A (en) | 2012-09-20 |
US9128082B2 (en) | 2015-09-08 |
EP2995953B1 (en) | 2017-11-29 |
AU2016222325B2 (en) | 2017-09-14 |
CN102414562A (en) | 2012-04-11 |
CN102414562B (en) | 2019-05-07 |
AU2010229924A1 (en) | 2011-10-27 |
JP2016048264A (en) | 2016-04-07 |
EP2411808A2 (en) | 2012-02-01 |
JP2015072280A (en) | 2015-04-16 |
US10527611B2 (en) | 2020-01-07 |
JP6463668B2 (en) | 2019-02-06 |
HK1222901A1 (en) | 2017-07-14 |
AU2016222325A1 (en) | 2016-09-15 |
US20160025720A1 (en) | 2016-01-28 |
EP2411808A4 (en) | 2012-09-12 |
JP5923035B2 (en) | 2016-05-24 |
US20200340985A1 (en) | 2020-10-29 |
AU2010229924B2 (en) | 2016-07-21 |
ES2557914T3 (en) | 2016-01-29 |
JP2019020429A (en) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230408500A1 (en) | Devices and methods of cell capture and analysis | |
US9671407B2 (en) | Devices and methods of cell capture and analysis | |
JP6254951B2 (en) | Method for detecting 5T4-positive circulating tumor cells in a mammalian subject and method for diagnosis of 5T4-positive cancer | |
CZ65995A3 (en) | Method of detecting specific target cells, application of such method and means for making the same | |
Myung et al. | Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs) | |
US20090117532A1 (en) | Pre-clinical method for monitoring serial changes in circulating breast cancer cells in mice | |
CN111019901A (en) | Method for capturing intestinal cancer circulating tumor cells | |
Kumar | Detection and Molecular Characterization of Circulating Tumor Cells (CTCs) in Patient with Metastatic Melanoma: A Potential Application of Liquid Biopsy | |
MX2010004966A (en) | Monitoring serial changs in circulating breast cancer cells in mice. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: PLUS THERAPEUTICS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOCEPT, INC.;REEL/FRAME:067409/0214 Effective date: 20240419 |
|
AS | Assignment |
Owner name: BIOCEPT, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIKOLAJCZYK, SEPHEN;PIRCHER, TONY;TSINBERG, PAVEL;AND OTHERS;REEL/FRAME:069042/0909 Effective date: 20100609 |