[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20220323558A1 - Cancer vaccines - Google Patents

Cancer vaccines Download PDF

Info

Publication number
US20220323558A1
US20220323558A1 US17/319,395 US202117319395A US2022323558A1 US 20220323558 A1 US20220323558 A1 US 20220323558A1 US 202117319395 A US202117319395 A US 202117319395A US 2022323558 A1 US2022323558 A1 US 2022323558A1
Authority
US
United States
Prior art keywords
plasmid
polypeptide
immunogenic
muc1
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/319,395
Inventor
Joseph John BINDER
Paul Jason Cockle
Derek John Falconer
Siradanahalli Guru
Karin Ute JOOSS
Marianne Marcela Andrea Martinic
Kenneth Nelson Wills
Helen Kim Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfizer Inc
Original Assignee
Pfizer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfizer Inc filed Critical Pfizer Inc
Priority to US17/319,395 priority Critical patent/US20220323558A1/en
Publication of US20220323558A1 publication Critical patent/US20220323558A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • A61K39/001157Telomerase or TERT [telomerase reverse transcriptase]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001169Tumor associated carbohydrates
    • A61K39/00117Mucins, e.g. MUC-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4727Mucins, e.g. human intestinal mucin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • A61K2039/812Breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • A61K2039/852Pancreas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • A61K2039/892Reproductive system [uterus, ovaries, cervix, testes]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins

Definitions

  • sequence listing is provided as a file in .txt format entitled “PC71855A_SeqList_ST25.txt”, created on Nov. 8, 2016, and having a size of 751 KB.
  • sequence listing contained in the .txt file is part of the specification and is herein incorporated by reference in its entity.
  • the present invention relates generally to immunotherapy and specifically to vaccines and methods for treating or preventing neoplastic disorders.
  • Pancreatic cancers are a leading cause of mortality worldwide. They may occur in a variety of organs, such as pancreas, ovaries, breasts, lung, colon, and rectum. Pancreatic cancers are the fourth most common cause of cancer deaths in the United States. Pancreatic cancers may occur in the exocrine or endocrine component of the pancreas.
  • Exocrine cancers include (1) pancreatic adenocarcinoma, which is by far the most common type, (2) acinar cell carcinoma, which represents 5% of exocrine pancreatic cancers, (3) cystadenocarcinomas, which account for 1% of pancreatic cancers, and (4) other rare forms of cancers, such as pancreatoblastoma, adenosquamous carcinomas, signet ring cell carcinomas, hepatoid carcinomas, colloid carcinomas, undifferentiated carcinomas, and undifferentiated carcinomas with osteoclast-like giant cells.
  • Ovarian cancer accounts for about 3% of cancers among women, but it causes more deaths than any other cancer of the female reproductive system.
  • Ovarian cancers include (1) epithelial cancers, such as epithelial ovarian carcinomas, (2) germ cell cancers, such as immature teratomas, and (3) stromal cancers, such as granulosa cell tumors.
  • Breast cancer is the second most common cancer among American women and the second leading cause of cancer death in women.
  • Breast cancers can be classified based on the hormone receptors and HER2/neu status, such as (1) hormone receptor-positive cancers (where the cancer cells contain either estrogen receptors or progesterone receptors), (2) hormone receptor-negative cancers (where the cancer cells don't have either estrogen or progesterone receptors), (3) HER2/neu positive (wherein cancers that have excessive HER2/neu protein or extra copies of the HER2/neu gene), (4) HER2/neu negative cancers (where the cancers don't have excess HER2/neu), (5) triple-negative cancers (wherein the breast cancer cells have neither estrogen receptors, nor progesterone receptors, nor excessive HER2), and (6) triple-positive cancers (where the cancers are estrogen receptor-positive, progesterone receptor-positive, and have too much HER2).
  • hormone receptor-positive cancers where the cancer cells contain either estrogen receptors or progesterone receptors
  • hormone receptor-negative cancers where the cancer
  • Lung cancer accounts for more than a quarter of all cancer deaths and is by far the leading cause of cancer death among both men and women.
  • the most common type of lung cancers is non-small cell lung cancers (NSCLC), which account for about 85% to 90% of lung cancers.
  • NSCLC may be further classified into several subtypes, such as squamous cell (epidermoid) carcinoma, adenocarcinoma, large cell (undifferentiated) carcinoma, adenosquamous carcinoma, and sarcomatoid carcinoma.
  • SCLC small cell lung cancer
  • CRC Colorectal cancer
  • Gastric cancer is the third most common cause of cancer-related death in the world. It remains difficult to cure, primarily because most patients present with advanced disease. In the United States, gastric cancer is currently the 15 th most common cancer. About 90-95% of gastric cancers are adenocarcinomas; other less common types include lymphoma (4%), GISTs, and carcinoid tumors (3%).
  • the present disclosure relates to immunogens derived from the tumor-associated antigens MUC1, mesothelin, and TERT, nucleic acid molecules encoding the immunogens, and compositions comprising such immunogens or nucleic acids.
  • the human mucin 1 (MUC1; also known as episialin, PEM, H23Ag, EMA, CA15-3, and MCA) is a polymorphic transmembrane glycoprotein expressed on the apical surfaces of simple and glandular epithelia.
  • the MUC1 gene encodes a single polypeptide chain precursor that includes a signal peptide sequence. Immediately after translation the signal peptide sequence is removed and the remaining portion of the MUC1 precursor is further cleaved into two peptide fragments: the longer N-terminal subunit (MUC1-N or MUC1a) and the shorter C-terminal subunit (MUC1-C or MUC1P).
  • the mature MUC1 comprises a MUC1-N and a MUC1-C associated through stable hydrogen bonds.
  • MUC1-N which is an extracellular domain, contains 25 to 125 variable number tandem repeats (VNTR) of 20 amino acid residues.
  • MUC1-C contains a short extracellular region (approximately 53 amino acids), a transmembrane domain (approximately 28 amino acid), and a cytoplasmic tail (approximately 72 amino acids).
  • the cytoplasmic tail of MUC1 (MUC1-CT) contains highly conserved serine and tyrosine residues that are phosphorylated by growth factor receptors and intracellular kinases.
  • Human MUC1 exists in multiple isoforms resulting from different types of MUC1 RNA alternative splicing.
  • the amino acid sequence of full length human MUC1 isoform 1 protein precursor (isoform 1, Uniprot P15941-1) is provided in SEQ ID NO: 1 (“MUC1 Isoform 1 Reference Polypeptide”).
  • MUC1 Isoform 1 Reference Polypeptide At least 16 other isoforms of human MUC-1 have been reported so far (Uniprot P15941-2 through P15941-17), which include various insertions, deletions, or substitutions as compared to the sequence of isoform 1.
  • the full length human MUC1 isoform 1 precursor protein consists of 1255 amino acids, which includes a signal peptide sequence at amino acids 1-23.
  • the MUC1-N and MUC1-C domains of the mature MUC1 protein consist of amino acids 24-1097 and 1098-1255, respectively.
  • Mesothelin (also known as MSLN) is a membrane-bound glycoprotein present on the surface of cells lining the pleura, peritoneum and pericardium, and is overexpressed in several human tumors, including mesothelioma, ovarian, and pancreatic adenocarcinoma.
  • the Mesothelin gene encodes a 71-kilodalton (kDa) precursor protein that is processed to a 40-kDa Mesothelin protein and a secreted megakaryocyte potentiating factor (MPF) protein (Chang, et al, Proc Natl Acad Sci USA (1996) 93:136-40).
  • Isoform 2 is the major form of MSLN.
  • Isoform 1 which consists of 630 amino acids, differs from isoform 2 by having an insertion of 8 amino acids (PQAPRRPL) at position 409 of the isoform 2 sequence.
  • Isoform 3 has an alternative C terminus (at positions 593-622 of isoform 2) while isoform 4 has a deletion of amino acid 44, as compared with isoform 2.
  • Isoform 2 is initially translated as a 622-amino acid precursor, which comprises a signal peptide sequence (amino acids 1-36) at the N-terminus and a GPI-anchor sequence at the C-terminus.
  • the signal peptide sequence and the GPI-anchor sequence may be cleaved off in the mature mesothelin.
  • Telomerase reverse transcriptase is the catalytic component of the telomerase, which is a ribonucleoprotein polymerase responsible for maintaining telomere ends by addition of the telomere repeat TTAGGG.
  • telomerase also includes an RNA component which serves as a template for the telomere repeat.
  • Human TERT gene encodes an 1132 amino acid protein. Several isoforms of human TERT exist, which result from alternative splicing.
  • the amino acid sequences of isoform 1, isoform 2, isoform 3, and isoform 4 are available at Uniprot ( ⁇ www.uniprot.org>; Uniprot identifiers 014746-1, 014746-2, 014746-3, and 014746-4, respectively).
  • the amino acid sequence of human full length TERT isoform 1 protein (isoform 1, Genbank AAD30037, Uniprot 014746-1) is also provided herein in SEQ ID NO:3 (“TERT Isoform 1 Reference Polypeptide”).
  • isoform 2 (014746-2) has replacement of amino acids 764-807 (STLTDLQPYM . . .
  • LNEASSGLFD ⁇ LRPVPGDPAG . . . AGRAAPAFGG LNEASSGLFD ⁇ LRPVPGDPAG . . . AGRAAPAFGG
  • isoform 3 (014746-3) has deletion of amino acids 885-947
  • isoform 4 (014746-4) has deletions of amino acids 711-722 and 808-1132, and replacement of amino acids 764-807 (STLTDLQPYM . . . LNEASSGLFD ⁇ LRPVPGDPAG . . . AGRAAPAFGG).
  • the present disclosure provides isolated immunogenic polypeptides which comprise amino acid sequences of one or more human TAA selected from MUC1, MSLN, and TERT.
  • the immunogenic polypeptides are useful, for example, in eliciting an immune response in vivo in a subject or for use as a component in vaccines for treating cancer.
  • the present disclosure provides nucleic acid molecules that encode an immunogenic polypeptide provided by the present disclosure.
  • the present disclosure provides multi-antigen nucleic acid constructs that each encode two, three, or more immunogenic polypeptides.
  • the disclosure also provides vectors containing one or more nucleic acid molecules of the invention.
  • the vectors are useful for cloning or expressing the immunogenic TAA polypeptides encoded by the nucleic acid molecules, or for delivering the nucleic acid molecules in a composition, such as a vaccine, to a host cell or to a host animal or a human.
  • compositions comprising one or more immunogenic TAA polypeptides, isolated nucleic acid molecules encoding immunogenic TAA polypeptides, or vectors or plasmids containing nucleic acid molecules encoding immunogenic TAA polypeptides.
  • the composition is an immunogenic composition useful for eliciting an immune response against a TAA in a subject, such as a mouse, dog, monkey, or human.
  • the composition is a vaccine composition useful for immunization of a mammal, such as a human, for inhibiting abnormal cell proliferation, for providing protection against the development of cancer (used as a prophylactic), or for treatment of disorders (used as a therapeutic) associated with TAA over-expression, such as cancer, particularly pancreatic, ovarian, and triple-negative breast cancer.
  • the present disclosure provides methods of using the immunogenic TAA polypeptides, isolated nucleic acid molecules, and compositions comprising an immunogenic TAA polypeptide or isolated nucleic acid molecules described herein above.
  • the present disclosure provides a method of eliciting an immune response against a TAA in a subject, particularly a human, comprising administering to the subject an effective amount of a polypeptide provided by the invention that is immunogenic against the target TAA, an effective amount of an isolated nucleic acid molecule encoding such an immunogenic polypeptide, or a composition comprising such an immunogenic TAA polypeptide or an isolated nucleic acid molecule encoding such an immunogenic TAA polypeptide.
  • the polypeptides, nucleic acids, or compositions comprising the polypeptide or nucleic acid may be used together with one or more adjuvants or immune modulators.
  • adjuvant refers to a substance that is capable of enhancing, accelerating, or prolonging an immune response elicited by an immunogen.
  • agonist refers to a substance which promotes (induces, causes, enhances or increases) the activity of another molecule (such as a receptor).
  • agonist encompasses substances which bind a receptor and substances which promote receptor function without binding thereto.
  • antagonist refers to a substance that partially or fully blocks, inhibits, or neutralizes a biological activity of another molecule or a receptor.
  • co-administration refers to administration of two or more agents to the same subject during a treatment period.
  • the two or more agents may be encompassed in a single formulation and thus be administered simultaneously. Alternatively, the two or more agents may be in separate physical formulations and administered separately, either sequentially or simultaneously to the subject.
  • administered simultaneously or “simultaneous administration” means that the administration of the first agent and that of a second agent overlap in time with each other, while the term “administered sequentially” or “sequential administration” means that the administration of the first agent and that of a second agent do not overlap in time with each other.
  • cytosolic or “cytoplasmic” means that after a nucleotide sequence encoding a particular polypeptide is expressed by a host cell, the expressed polypeptide is expected to be retained inside the host cell.
  • degenerate variant refers to a polynucleotide that differs in the nucleotide sequence from the reference polynucleotide but encodes the same polypeptidesequence as encoded by the reference polynucleotide.
  • Most of the 20 natural amino acids that are components of proteins or peptides are specified by more than one codon.
  • the codons CGU, CGC, CGA, CGG, AGA, and AGG all encode the amino acid arginine.
  • the codon can be altered to any of the corresponding codons described without altering the amino acid sequence of the encoded protein. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given polypeptide.
  • the term “effective amount” refers to an amount administered to a subject that is sufficient to cause a desired effect in the subject.
  • fragment of a given polypeptide refers to a polypeptide that is shorter than the given polypeptide and shares 100% identity with the sequence of the given polypeptide.
  • an immunogenic TAA polypeptide refers to a polypeptide that comprises from 90% to 110% of the number of amino acids of the reference immunogenic TAA polypeptide, has lower than 100% but higher than 95% identity to the amino acid sequence of the reference TAA polypeptide, and possess the same or similar immunogenic properties of the reference immunogenic TAA polypeptide.
  • nucleic acids refers to two or more nucleic acids, or two or more polypeptides, that share the exact same sequence of nucleotides or amino acids, respectively.
  • percent identity describes the level of similarity between two or more nucleic acids or polypeptides. When two sequences are aligned by bioinformatics software, “percent identity” is calculated by multiplying the number of exact nucleotide/amino acid matches between the sequences by 100, and dividing by the length of the aligned region, including gaps. For example, two 100-amino acid long polypeptides that exhibit 10 mismatches when aligned would be 90% identical.
  • immune-effector-cell enhancer refers to a substance capable of increasing or enhancing the number, quality, and/or function of one or more types of immune effector cells of a subject.
  • immune effector cells include cytolytic CD8 T cells, CD4 T cells, NK cells, and B cells.
  • immune modulator refers to a substance capable of altering (e.g., inhibiting, decreasing, increasing, enhancing or stimulating) the working or function of any component of the innate, humoral, or cellular immune system of a subject.
  • the term “immune modulator” encompasses the “immune-effector-cell enhancer” as defined herein and the “immune-suppressive-cell inhibitor” as defined herein, as well as substance that affects any other components of the immune system of a subject.
  • immune response refers to any detectable response to a particular substance (such as an antigen or immunogen) by the immune system of a host vertebrate animal, including, but not limited to, innate immune responses (e.g., activation of Toll-like receptor signaling cascade), cell-mediated immune responses (e.g., responses mediated by T cells, such as antigen-specific T cells, and non-specific cells of the immune system), and humoral immune responses (e.g., responses mediated by B cells, such as generation and secretion of antibodies into the plasma, lymph, and/or tissue fluids).
  • innate immune responses e.g., activation of Toll-like receptor signaling cascade
  • cell-mediated immune responses e.g., responses mediated by T cells, such as antigen-specific T cells, and non-specific cells of the immune system
  • humoral immune responses e.g., responses mediated by B cells, such as generation and secretion of antibodies into the plasma, lymph, and/or tissue fluids.
  • immune responses include an alteration (e.g., increase) in Toll-like receptor activation, lymphokine (e.g., cytokine (e.g., Th1, Th2 or Th17 type cytokines) or chemokine) expression or secretion, macrophage activation, dendritic cell activation, T cell (e.g., CD4+ or CD8+ T cell) activation, NK cell activation, B cell activation (e.g., antibody generation and/or secretion), binding of an immunogen (e.g., antigen, immunogenic polypeptide) to an MHC molecule, induction of a cytotoxic T lymphocyte (“CTL”) response, induction of a B cell response (e.g., antibody production), and expansion (e.g., growth of a population of cells) of cells of the immune system (e.g., T cells and B cells), and increased processing and presentation of antigen by antigen presenting cells.
  • lymphokine e.g., cytokine (e
  • immunogen refers to a substance that is immunogenic.
  • immunogenic refers to the ability of a substance upon administration to a subject (such as a human) to cause, elicit, stimulate, or induce an immune response, or to improve, enhance, increase or prolong a pre-existing immune response, against a particular antigen in the subject, whether alone or when linked to a carrier, in the presence or absence of an adjuvant.
  • immunogenic composition refers to a composition that is immunogenic.
  • immunogenic MUC1 polypeptide refers to a polypeptide that is immunogenic against a human native MUC1 protein or against cells expressing the human native MUC1 protein.
  • the polypeptide may have the same amino acid sequence as that of a human native MUC1 protein or display one or more mutations as compared to the amino acid sequence of a human native MUC1 protein.
  • immunogenic MSLN polypeptide refers to a polypeptide that is immunogenic against a human native MSLN protein or against cells expressing human native MSLN protein.
  • the polypeptide may have the same amino acid sequence as that of a human native MSLN protein or displays one or more mutations as compared to the amino acid sequence of a human native MSLN protein.
  • immunogenic TERT polypeptide refers to a polypeptide that is immunogenic against a human native TERT protein or against cells expressing a human native TERT protein.
  • the polypeptide may have the same amino acid sequence as that of a human native TERT protein or displays one or more mutations as compared to the amino acid sequence of a human native TERT protein.
  • immunogenic TAA polypeptide refers to an “immunogenic MSLN polypeptide,” an “immunogenic MUC1 polypeptide, or an “immunogenic TERT polypeptide,” each as defined herein above.
  • immunogenic MUC1 nucleic acid molecule refers to a nucleic acid molecule that encodes an “immunogenic MUC1 polypeptide” as defined herein.
  • immunogenic MSLN nucleic acid molecule refers to a nucleic acid molecule that encodes an “immunogenic MSLN polypeptide” as defined herein.
  • immunogenic TERT nucleic acid molecule refers to a nucleic acid molecule that encodes an “immunogenic TERT polypeptide” as defined herein.
  • immunogenic TAA nucleic acid molecule refers to a nucleic acid molecule that encodes an “immunogenic MUC1 polypeptide,” an “immunogenic MSLN polypeptide, or an “immunogenic TERT polypeptide” as defined herein above.
  • immune-suppressive-cell inhibitor refers to a substance capable of reducing and/or suppressing the number and/or function of immune suppressive cells of a subject.
  • immune suppressive cells include regulatory T cells (“Tregs”), myeloid-derived suppressor cells, and tumor-associated macrophages.
  • subject refers to either a human or a non-human mammal.
  • mammal refers to any animal species of the Mammalia class. Examples of mammals include: humans; non-human primates such as monkeys; laboratory animals such as rats, mice, guinea pigs; domestic animals such as cats, dogs, rabbits, cattle, sheep, goats, horses, and pigs; and captive wild animals such as lions, tigers, elephants, and the like.
  • membrane-bound means that after a nucleotide sequence encoding a particular polypeptide is expressed by a host cell, the expressed polypeptide is bound to, attached to, or otherwise associated with, the membrane of the cell.
  • neoplastic disorder refers to a condition in which cells proliferate at an abnormally high and uncontrolled rate, the rate exceeding and uncoordinated with that of the surrounding normal tissues. It usually results in a solid lesion or lump known as “tumor.” This term encompasses benign and malignant neoplastic disorders.
  • malignant neoplastic disorder which is used interchangeably with the term “cancer” in the present disclosure, refers to a neoplastic disorder characterized by the ability of the tumor cells to spread to other locations in the body (known as “metastasis”).
  • benign neoplastic disorder refers to a neoplastic disorder in which the tumor cells lack the ability to metastasize.
  • mutant refers to deletion, addition, or substitution of amino acid residues in the amino acid sequence of a protein or polypeptide as compared to the amino acid sequence of a reference protein or polypeptide.
  • operably linked refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner.
  • a control sequence “operably linked” to a transgene is ligated in such a way that expression of the transgene is achieved under conditions compatible with the control sequences.
  • composition refers to a solid or liquid composition suitable for administration to a subject (e.g. a human patient) for eliciting a desired physiological, pharmacological, or therapeutic effect.
  • a pharmaceutical composition may contain one or more pharmaceutically acceptable excipients.
  • pharmaceutically acceptable excipient refers to a substance in an immunogenic, pharmaceutical, or vaccine composition, other than the active ingredients (e.g., the antigen, antigen-coding nucleic acid, immune modulator, or adjuvant) that is compatible with the active ingredients and does not cause significant untoward effect in subjects to whom it is administered.
  • active ingredients e.g., the antigen, antigen-coding nucleic acid, immune modulator, or adjuvant
  • peptide refers to a polymeric form of amino acids of any length, which can include coded and non-coded amino acids, chemically, or biochemically modified or derivatized amino acids, and polypeptides having modified polypeptide backbones.
  • preventing refers to (a) keeping a disorder from occurring or (b) delaying the onset of a disorder or onset of symptoms of a disorder.
  • secreted in the context of a polypeptide means that after a nucleotide sequence encoding the polypeptide is expressed by a host cell, the expressed polypeptide is secreted outside of the host cell.
  • suboptimal dose when used to describe the amount of an immune modulator, such as a protein kinase inhibitor, refers to a dose of the immune modulator that is below the minimum amount required to produce the desired therapeutic effect for the disease being treated when the immune modulator is administered alone to a patient.
  • treating refers to abrogating a disorder, reducing the severity of a disorder, or reducing the severity or occurrence frequency of a symptom of a disorder.
  • tumor-associated antigen refers to an antigen which is specifically expressed by tumor cells or expressed at a higher frequency or density by tumor cells than by non-tumor cells of the same tissue type.
  • Tumor-associated antigens may be antigens not normally expressed by the host; they may be mutated, truncated, misfolded, or otherwise abnormal manifestations of molecules normally expressed by the host; they may be identical to molecules normally expressed but expressed at abnormally high levels; or they may be expressed in a context or milieu that is abnormal.
  • Tumor-associated antigens may be, for example, proteins or protein fragments, complex carbohydrates, gangliosides, haptens, nucleic acids, or any combination of these or other biological molecules.
  • vaccine refers to an immunogenic composition for administration to a mammal (such as a human) for eliciting a protective immune response against a particular antigen or antigens.
  • the primary active ingredient of a vaccine is the immunogen(s).
  • vector refers to a nucleic acid molecule, or a modified microorganism, that is capable of transporting or transferring a foreign nucleic acid molecule into a host cell.
  • the foreign nucleic acid molecule is referred to as “insert” or “transgene.”
  • a vector generally consists of an insert and a larger sequence that serves as the backbone of the vector. Based on the structure or origin of vectors, major types of vectors include plasmid vectors, cosmid vectors, phage vectors (such as lambda phage), viral vectors (such as adenovirus vectors), artificial chromosomes, and bacterial vectors.
  • TAA Immunogenic Tumor-Associated-Antigen
  • the present disclosure provides isolated immunogenic MUC1 polypeptides, TERT polypeptides, and MSLN polypeptides, which are useful, for example, for eliciting an immune response in a subject against MUC1, TERT, and MSLN, respectively, or for use as a component in vaccines for treating cancer, such as pancreatic, ovarian, and breast cancer, particularly triple-negative breast cancer.
  • immunogenic TAA polypeptides can be prepared by methods known in the art in light of the present disclosure.
  • the capability of the polypeptides to elicit an immune response can be measured in in vitro assays or in vivo assays.
  • In vitro assays for determining the capability of a polypeptide or DNA construct to elicit immune responses are known in the art.
  • One example of such in vitro assays is to measure the capability of the polypeptide or nucleic acid expressing a polypeptide to stimulate T cell response as described in U.S. Pat. No. 7,387,882, the disclosure of which is incorporated in this application.
  • the assay method comprises the steps of: (1) contacting antigen presenting cells in culture with an antigen thereby the antigen can be taken up and processed by the antigen presenting cells, producing one or more processed antigens; (2) contacting the antigen presenting cells with T cells under conditions sufficient for the T cells to respond to one or more of the processed antigens; (3) determining whether the T cells respond to one or more of the processed antigens.
  • the T cells used may be CD8 + T cells or CD4 + T cells.
  • T cell response may be determined by measuring the release of one of more of cytokines, such as interferon-gamma and interleukin-2, and lysis of the antigen presenting cells (tumor cells).
  • B cell response may be determined by measuring the production of antibodies.
  • the present disclosure provides isolated immunogenic MUC1 polypeptides derived from a human native MUC1, wherein the MUC1 polypeptides display one or more introduced mutations relative to the human native MUC1 protein.
  • mutations include deletion of some, but not all, of the tandem repeats of 20 amino acids in the VNTR region of the MUC1 protein, deletion of the signal peptide sequence in whole or in part, and deletion of amino acids of non-consensus amino acid sequences found in the MUC1 isoforms.
  • the immunogenic MUC1 polypeptides provided by the present disclosure comprise (1) the amino acid sequence of 3 to 30 tandem repeats of 20 amino acids of a human MUC1 protein and (2) the amino acid sequences of the human MUC1 protein that flank the VNTR region.
  • the immunogenic MUC1 polypeptides comprise (1) the amino acid sequence of 5 to 25 tandem repeats of the human MUC1 and (2) the amino acid sequences of the human MUC1 protein that flank the VNTR region.
  • the immunogenic MUC1 polypeptides are in cytoplasmic form (or “cMUC1”).
  • cytoplasmic form refers to an immunogenic MUC1 polypeptide that lacks in whole or in part the secretory sequence (amino acids 1-23; also known as “signal peptide sequence”) of the human native MUC1 protein. The deletion of amino acids of the secretory sequence is expected to prevent the polypeptide from entering the secretory pathway as it is expressed in the cells.
  • the immunogenic MUC1 polypeptides comprise the amino acid sequence of a membrane-bond form of the MUC1.
  • the immunogenic MUC1 polypeptides provided by the present disclosure may be derived, constructed, or prepared from the amino acid sequence of any of the human MUC1 isoforms known in the art or discovered in the future, including, for example, Uniprot isoforms 1, 2, 3, 4, 5, 6, Y, 8, 9, F, Y-LSP, S2, M6, ZD, T10, E2, and J13 (Uniprot P15941-1 through P15941-17, respectively).
  • the immunogenic MUC1 polypeptides comprise an amino acid sequence that is part of human MUC1 isoform 1 wherein the amino acid sequence of the human MUC1 isoform 1 is set forth in SEQ ID NO:1.
  • the immunogenic MUC1 polypeptide comprises amino acids 24-225 and 1098-1255 of the amino acid sequence of SEQ ID NO:1. In another specific embodiment, the immunogenic MUC1 polypeptide comprises amino acids 22-225 and 946-1255 of the amino acid sequence of SEQ ID NO:1. In some other specific embodiments, the immunogenic MUC1 polypeptide comprises, or consists of, the amino acid sequence selected from the group consisting of:
  • the immunogenic MUC1 polypeptides comprise the amino acid sequence of SEQ ID NO:8 (Plasmid 1027 polypeptide) or SEQ ID NO:16 (Plasmid 1197 polypeptide).
  • the present disclosure provides isolated immunogenic MSLN polypeptides derived from a human MSLN precursor by deletion of a portion or the entire signal peptide sequence of the MSLN precursor.
  • the immunogenic MSLN polypeptides comprise the amino acid sequence of a native human MSLN precursor, wherein part or the entire signal peptide sequence of the MSLN precursor is absent.
  • part of, or the entire, GPI anchor sequence of the native human MSLN i.e., amino acids 598-622 of SEQ ID NO:2
  • the term “human MSLN” encompasses any human MSLN isoform, such as isoform 1, 2, 3, or 4. In some particular embodiments, the human MSLN is human MSLN isoform 2.
  • the isolated immunogenic MSLN polypeptide is selected from the group consisting of:
  • polypeptide comprising an amino acid sequence that is at least 90%, 95%, 98%, or 99% identical to the amino acid sequence consisting of amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • polypeptide comprising, or consisting of, the amino acid sequence of SEQ ID NO:6, or amino acids 4-564 of the amino acid sequence of SEQ ID NO:6;
  • polypeptide comprising an amino acid sequence that has at least 93%-99%, 94%-98%, or 94%-97% identity to the amino acid sequence of SEQ ID NO:6 (“Plasmid 1103 Polypeptide”).
  • the present disclosure provides isolated immunogenic TERT polypeptides derived from a human TERT protein by deletion of up to 600 of the N-terminal amino acids of the TERT protein.
  • the immunogenic TERT polypeptides comprise the amino acid sequence of TERT isoform 1 set forth in SEQ ID NO:3, wherein up to about 600 amino acids from the N-terminus (amino terminus) of the amino acid sequence of TERT isoform 1 are absent. Any number of amino acids up to 600 from the N-terminus of the TERT isoform 1 may be absent in the immunogenic TERT polypeptide.
  • an immunogenic TERT polypeptide provided by the present disclosure may comprise amino acids 51-1132, 101-1132, 151-1132, 201-1132, 251-1132, 301-1132, 351-1132, 401-1132, 451-1132, 501-1132, or 551-1132 of SEQ ID NO:3.
  • the immunogenic TERT polypeptides may also be constructed from other TERT isoforms. Where the polypeptides are constructed from TERT isoforms with C-terminal truncations, however, it is preferred that fewer amino acids may be deleted from the N-terminus.
  • the immunogenic TERT polypeptide further comprises one or more amino acid mutations that inactivate the TERT catalytic domain.
  • amino acid mutations include substitution of aspartic acid with alanine at position 712 of SEQ ID NO:3 (D712A) and substitution of valine with isoleucine at position 713 of SEQ ID NO:3 (V7131).
  • the immunogenic TERT polypeptide comprises both mutations D712A and V7131.
  • the present disclosure provides an immunogenic TERT polypeptide selected from the group consisting of:
  • polypeptide comprising an amino acid sequence of SEQ ID NO:10 or amino acids 2-892 of SEQ ID NO:10 (“Plasmid 1112 Polypeptide”); or a functional variant of the polypeptide;
  • polypeptide comprising an amino acid sequence of SEQ ID NO:14 or amino acids 3-789 of SEQ ID NO:14 (“Plasmid 1326 Polypeptide”), or a functional variant of the polypeptide;
  • polypeptide comprising an amino acid sequence of SEQ ID NO:12 or amino acids 4-591 of SEQ ID NO:12 (“Plasmid 1330 Polypeptide”), or a functional variant of the polypeptide.
  • the present disclosure provides nucleic acid molecules that each encode one, two, three, or more separate immunogenic TAA polypeptides that are provided by the present disclosure.
  • the nucleic acid molecules can be deoxyribonucleotides (DNA) or ribonucleotides (RNA).
  • RNA ribonucleotides
  • a nucleic acid molecule can comprise a nucleotide sequence disclosed herein wherein thymidine (T) can also be uracil (U), which reflects the differences between the chemical structures of DNA and RNA.
  • T thymidine
  • U uracil
  • the nucleic acid molecules can be modified forms, single or double stranded forms, or linear or circular forms.
  • the nucleic acid molecules can be prepared using methods known in the art light of the present disclosure.
  • the present disclosure provides an isolated nucleic acid molecule, which comprises a nucleotide sequence encoding a single immunogenic MUC1 polypeptide, a single immunogenic MSLN polypeptide, or a single immunogenic TERT polypeptide provided by the present disclosure.
  • a nucleic acid molecule that encodes only one immunogenic TAA polypeptide, such as an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, or an immunogenic TERT, is also referred to herein as “single-antigen construct.”
  • the present disclosure provides isolated nucleic acid molecules that encode an immunogenic MUC1 polypeptide provided in the present disclosure.
  • the immunogenic MUC1 polypeptide encoded by a nucleic acid molecule may be in cytoplasmic form (or cMUC1) or “membrane-bound form (or mMUC1).
  • cMUC1 cytoplasmic form
  • mMUC1 membrane-bound form
  • membrane-bound form refers to an immunogenic MUC1 polypeptide that, after being expressed from the coding nucleic acid by a host cell, is bound to, attached to, or otherwise associated with, the membrane of the host cell.
  • the isolated nucleic acid molecules provided by the present disclosure comprise a nucleotide sequence that encodes an immunogenic MUC1 polypeptide selected from the group consisting of:
  • an immunogenic MUC1 polypeptide comprising the amino acid sequence of SEQ ID NO:8 (Plasmid 1027 polypeptide);
  • an immunogenic MUC1 polypeptide comprising amino acids 4-517 of SEQ ID NO:16, with the proviso that the amino acid at positon 513 is T;
  • an immunogenic MUC1 polypeptide comprising amino acids 24-225 and 946-1255 of SEQ ID NO:1.
  • the isolated nucleic acid molecules provided by the present disclosure comprise a nucleotide sequence, or a degenerate variant thereof, selected from the group consisting of:
  • nucleotide sequence comprising nucleotides 10-1551 of SEQ ID NO:15;
  • the present disclosure provides isolated nucleic acid molecules that encode an immunogenic MSLN polypeptide provided in the present disclosure.
  • the isolated nucleic acid molecule encodes an immunogenic MSLN polypeptide selected from the group consisting of:
  • an immunogenic MSLN polypeptide comprising, or consisting of, amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • an immunogenic MSLN polypeptide comprising an amino acid sequence that is at least 90%, 95%, 98%, or 99% identical to the amino acid sequence consisting of amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • an immunogenic MSLN polypeptide comprising, or consisting of, the amino acid sequence of SEQ ID NO:6;
  • an immunogenic MSLN polypeptide comprising an amino acid sequence that has at least 93%-99%, 94%-98%, or 94%-97% identity to the amino acid sequence of SEQ ID NO:6 (“Plasmid 1103 Polypeptide”).
  • the isolated nucleic acid molecules provided by the present disclosure comprise a nucleotide sequence, or a degenerate variant thereof, selected from the group consisting of:
  • the present disclosure provides isolated nucleic acid molecules that encode an immunogenic TERT polypeptide provided in the present disclosure.
  • An immunogenic TERT polypeptide encoded by a nucleic acid provided by the represent disclosure may contain a deletion of maximum of 600 amino acids from the N-terminus of the amino acid sequence of TERT isoform 1.
  • an immunogenic TERT polypeptide may be expected to possess stronger immunogenicity if it has deletion of fewer amino acids from the N-terminus of the TERT protein.
  • the number of N-terminal amino acids that can be deleted from the TERT protein may be determined based on how the nucleic acid molecule encoding the polypeptide is intended to be used or delivered. For example, where the nucleic acid molecule is to be delivered using a particular viral vector, the deletion may be determined based on the capacity of the vector used.
  • the immunogenic TERT polypeptides encoded by the nucleic acid molecules comprise one or more amino acid mutations that inactivate the TERT catalytic domain.
  • amino acid mutations include substitution of aspartic acid with alanine at position 712 of SEQ ID NO:3 (D712A) and substitution of valine with isoleucine at position 713 of SEQ ID NO:3 (V7131).
  • the immunogenic TERT polypeptide comprises both mutations D712A and V7131.
  • the isolated nucleic acid molecules encode an immunogenic TERT polypeptide selected from the group consisting of:
  • an immunogenic TERT polypeptide comprising an amino acid sequence of SEQ ID NO:10 or amino acids 2-892 of SEQ ID NO:10 (“Plasmid 1112 Polypeptide”), or a functional variant of the polypeptide;
  • an immunogenic TERT polypeptide comprising an amino acid sequence of SEQ ID NO:14 or amino acids 3-789 of SEQ ID NO:14 (“Plasmid 1326 Polypeptide” or a functional variant of the polypeptide; and
  • an immunogenic TERT polypeptide comprising an amino acid sequence of SEQ ID NO:12 or amino acids 4-591 of SEQ ID NO:12 (“Plasmid 1330 Polypeptide”), or a functional variant of the polypeptide.
  • the isolated nucleic acid molecules comprise a nucleotide sequence, or a degenerate variant thereof, selected from the group consisting of:
  • nucleotide sequence comprising nucleotides 10-1782 of SEQ ID NO:11;
  • nucleotide sequence comprising nucleotides 7-2373 of SEQ ID NO:13.
  • the present disclosure provides nucleic acid molecules that each encode two, three, or more different immunogenic TAA polypeptides.
  • a nucleic acid molecule that encodes more than one immunogenic TAA polypeptide is also referred to as “multi-antigen construct,” “multi-antigen vaccine,” “multi-antigen plasmid,” and the like, in the present disclosure.
  • a nucleic acid molecule that encodes two different immunogenic TAA polypeptides is also referred to as a “dual-antigen construct,” “dual antigen vaccine,” or “dual antigen plasmid,” etc., in this disclosure.
  • a nucleic acid molecule that encodes three different immunogenic TAA polypeptides is also referred to as a “triple-antigen construct,” “triple-antigen vaccine,” or “triple-antigen plasmid” in this disclosure.
  • Multi-antigen constructs provided by the present disclosure can be prepared using various techniques known in the art in light of the disclosure.
  • a multi-antigen construct can be constructed by incorporating multiple independent promoters into a single plasmid (Huang, Y., Z. Chen, et al. (2008). “Design, construction, and characterization of a dual-promoter multigenic DNA vaccine directed against an HIV-1 subtype C/B’ recombinant.” J Acquir Immune Defic Syndr 47(4): 403-411; Xu, K., Z. Y. Ling, et al. (2011).
  • the plasmid can be engineered to carry multiple expression cassettes, each consisting of a) a eukaryotic promoter for initiating RNA polymerase dependent transcription, with or without an enhancer element, b) a gene encoding a target antigen, and c) a transcription terminator sequence.
  • a eukaryotic promoter for initiating RNA polymerase dependent transcription, with or without an enhancer element
  • b) a gene encoding a target antigen a gene encoding a target antigen
  • c) a transcription terminator sequence Upon delivery of the plasmid to the transfected cell nucleus, transcription will be initiated from each promoter, resulting in the production of separate mRNAs, each encoding one of the target antigens. The mRNAs will be independently translated, thereby producing the desired antigens.
  • Multi-antigen constructs provided by the present disclosure can also be constructed through the use of viral 2A peptides (Szymczak, A. L. and D. A. Vignali (2005). “Development of 2A peptide-based strategies in the design of multicistronic vectors.” Expert Opin Biol Ther 5(5): 627-638; de Felipe, P., G. A. Luke, et al. (2006). “E unum pluribus: multiple proteins from a self-processing polyprotein.” Trends Biotechnol 24(2): 68-75; Luke, G. A., P. de Felipe, et al. (2008).
  • cleavage cassettes cis-acting hydrolase elements
  • CHYSELs cleavage cassettes
  • EMCV Encephalomyocarditis virus
  • PTV Porcine teschovirus
  • TAV Thosea asigna virus
  • the ribosomal skipping acts like a cotranslational autocatalytic “cleavage” that releases the peptide sequences upstream of the 2A peptide from those downstream.
  • the incorporation of a 2A peptide between two protein antigens may result in the addition of ⁇ 20 amino acids onto the C-terminus of the upstream polypeptide and 1 amino acid (proline) to the N-terminus of downstream protein.
  • protease cleavage sites can be incorporated at the N terminus of the 2A cassette such that ubiquitous proteases will cleave the cassette from the upstream protein (Fang, J., S. Yi, et al. (2007). “An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo.” Mol Ther 15(6): 1153-1159).
  • IRES internal ribosomal entry site
  • Internal ribosomal entry sites are RNA elements found in the 5′ untranslated regions of certain RNA molecules (Bonnal, S., C. Boutonnet, et al. (2003). “IRESdb: the Internal Ribosome Entry Site database.” Nucleic Acids Res 31(1): 427-428). They attract eukaryotic ribosomes to the RNA to facilitate translation of downstream open reading frames. Unlike normal cellular 7-methylguanosine cap-dependent translation, IRES-mediated translation can initiate at AUG codons far within an RNA molecule.
  • the present disclosure provides a dual-antigen construct comprising two coding nucleotide sequences, wherein each of the coding nucleotide sequences encodes an individual immunogenic TAA polypeptide.
  • the structure of such a dual-antigen construct is shown in formula (I):
  • TAA1 and TAA2 are nucleotide sequences each encoding an immunogenic TAA polypeptides selected from the group consisting of an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, wherein TAA1 and TAA 2 encode different immunogenic TAA polypeptides; and
  • SPACER1 is a spacer nucleotide sequence, or may be absent.
  • the present disclosure provides a dual-antigen construct of formula (I), wherein in formula (I) TAA1 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide, and TAA2 is a nucleotide sequence encoding an immunogenic MSLN polypeptide or immunogenic TERT polypeptide.
  • the present disclosure provides a dual-antigen construct of formula (I), wherein in formula (I) TAA1 is a nucleotide sequence encoding an immunogenic MSLN polypeptide, and TAA2 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide or immunogenic TERT polypeptide.
  • the present disclosure provides a dual-antigen construct of formula (I), wherein in formula (I) TAA1 is a nucleotide sequence encoding an immunogenic TERT polypeptide, and TAA2 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide or immunogenic MSLN polypeptide.
  • the present disclosure provides a dual-antigen construct of a formula selected from a group consisting of:
  • MUC1, MSLN, and TERT represent a nucleotide sequence encoding an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, respectively, and (ii) 2A is a nucleotide sequence encoding a 2A peptide.
  • the present disclosure provides a triple-antigen construct comprising three coding nucleotide sequences wherein each of the coding nucleotide sequences expresses a different individual immunogenic TAA polypeptide.
  • the structure of a triple-antigen construct is shown in formula (VIII):
  • TAA1, TAA2, and TAA3 are each a nucleotide sequence encoding an immunogenic TAA polypeptide selected from the group consisting of an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, wherein TAA1, TAA2, and TAA3 encode different immunogenic TAA polypeptides; and
  • SPACER1 and SPACER2 are each a spacer nucleotide sequence, wherein (a) SPACER1 and SPACER2 may be the same or different and (b) either SPACER1 or SPACER2 or both SPACER1 and SPACER2 may be absent.
  • spacer nucleotide sequence refers to a nucleotide sequence that is inserted between two coding sequences or transgenes in an open reading frame of a nucleic acid molecule and functions to allow co-expression or translation of two separate gene products from the nucleic acid molecule.
  • Examples of spacer nucleotide sequences that may be used in the multi-antigen constructs provided by the present disclosure include eukaryotic promoters, nucleotide sequences encoding a 2A peptide, and internal ribosomal entry sites (IRES).
  • Examples of 2A peptides include foot-and-mouth disease virus 2A peptide (FMD2A), equine rhinitis A virus 2A peptide (ERA2A), Equine rhinitis B virus 2A peptide (ERB2A), encephalomyocarditis virus 2A peptide (EMC2A), porcine teschovirus 2A peptide (PT2A), and Thosea asigna virus 2A peptide (T2A).
  • FMD2A foot-and-mouth disease virus 2A peptide
  • ERA2A equine rhinitis A virus 2A peptide
  • ERP2A Equine rhinitis B virus 2A peptide
  • EMC2A encephalomyocarditis virus 2A peptide
  • PT2A porcine teschovirus 2A peptide
  • T2A Thosea asigna virus 2A peptide
  • SPACER1 and SPACER2 are, independently, a nucleotide sequence encoding a 2A peptide, or a nucleotide sequence encoding GGSGG.
  • the present disclosure provides a triple-antigen construct of formula (VIII), wherein in formula (VIII) (i) TAA1 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide, (ii) TAA2 is a nucleotide sequence encoding an immunogenic MSLN polypeptide, and (iii) TAA3 is a nucleotide sequence encoding an immunogenic TERT polypeptide.
  • the present disclosure provides a triple-antigen construct of formula (VIII), wherein in formula (VIII) (i) TAA1 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide, (ii) TAA2 is a nucleotide sequence encoding an immunogenic TERT polypeptide, and (iii) TAA3 is a nucleotide sequence encoding an immunogenic MSLN polypeptide.
  • the present disclosure provides a triple-antigen construct of formula (VIII), wherein in formula (VIII) (i) TAA1 is a nucleotide sequence encoding an immunogenic MSLN polypeptide, (ii) TAA2 is a nucleotide sequence encoding an immunogenic TERT polypeptide, and (iii) TAA3 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide.
  • the present disclosure provides a triple-antigen construct of formula (VIII), wherein in formula (VIII) (i) TAA1 is a nucleotide sequence encoding an immunogenic MSLN polypeptide, (ii) TAA2 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide, and (iii) TAA3 is a nucleotide sequence encoding an immunogenic TERT polypeptide.
  • the present disclosure provides a triple-antigen construct of a formula selected from the group consisting of:
  • the immunogenic MSLN polypeptide encoded by a multi-antigen construct may be a full length MSLN protein or a fragment thereof, such as a cytoplasmic, secreted, or membrane-bound fragment.
  • the multi-antigen construct comprises a nucleotide sequence encoding an immunogenic MSLN polypeptide selected from the group consisting of:
  • polypeptide comprising an amino acid sequence that is at least 90%, 95%, 98%, or 99% identical to the amino acid sequence consisting of amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • polypeptide comprising, or consisting of, the amino acid sequence of SEQ ID NO:6, or amino acids 4-564 of the amino acid sequence of SEQ ID NO:6;
  • polypeptide comprising an amino acid sequence that has at least 93%-99%, 94%-98%, or 94%-97% identity to the amino acid sequence of SEQ ID NO:8 (“Plasmid 1103 Polypeptide”).
  • the multi-antigen construct comprises a nucleotide sequence of SEQ ID NO:5 or a degenerate variant thereof.
  • the immunogenic MUC1 polypeptide encoded by a multi-antigen construct may comprise (1) an amino acid sequence of 3 to 30 tandem repeats of 20 amino acids of a human MUC1 protein and (2) the amino acid sequences of the human MUC1 protein that flank the VNTR region.
  • the multi-antigen construct comprises a nucleotide sequence encoding an immunogenic MUC1 polypeptide, wherein the immunogenic MUC1 polypeptide comprises, or consists of, the amino acid sequence selected from the group consisting of:
  • the multi-antigen construct comprises a nucleotide sequence of SEQ ID NO:7, a nucleotide sequence of SEQ ID NO:15, or a degenerate variant of the nucleotide sequence of SEQ ID NO:7 or 15.
  • the immunogenic TERT polypeptide encoded by a multi-antigen construct may be the full length protein or any truncated form.
  • the full length TERT protein is expected to generate stronger immune responses than a truncated form.
  • the vector may not have the capacity to carry the gene encoding the full TERT protein. Therefore, deletions of some amino acids from the protein may be made such that the transgenes would fit into a particular vector.
  • the deletions of amino acids can be made from the N-terminus, C-terminus, or anywhere in the sequence of the TERT protein. Additional deletions may be made in order to remove the nuclear localization signal, thereby rendering the polypeptides cytoplasmic, increasing access to cellular antigen processing/presentation machinery.
  • the amino acids up to position 200, 300, 400, 500, or 600 of the N-terminus of the TERT protein are absent from the immunogenic TERT polypeptides. Mutations of additional amino acids may be introduced in order to inactivate the TERT catalytic domain. Examples of such mutations include D712A and V713T.
  • the multi-antigen construct comprises a nucleotide sequence encoding an immunogenic TERT polypeptide, wherein the immunogenic TERT polypeptide comprises, or consist of, an amino acid sequence selected from the group consisting of;
  • the multi-antigen construct comprises the nucleotide sequence of SEQ ID NO:9, 11, or 13, or a degenerate variant of the nucleotide sequence of SEQ ID NO:9, 11, or 13.
  • the present disclosure provides a dual antigen construct encoding an immunogenic MUC1 polypeptide and an immunogenic MSLN polypeptide, which comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequence encoding the amino acid sequence of SEQ ID NO:18, 20, 22, or 24;
  • the present disclosure provides a dual antigen construct encoding an immunogenic MUC1 polypeptide and an immunogenic TERT polypeptide, which comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequence encoding the amino acid sequence of SEQ ID NO:26, 28, 30, 32, or 34;
  • the present disclosure provides a dual antigen construct encoding an immunogenic MSLN polypeptide and an immunogenic TERT polypeptide, which comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequence encoding the amino acid sequence of SEQ ID NO:36, 38, 40, or 42;
  • the present disclosure provides a triple-antigen construct encoding an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, which comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequence encoding the amino acid sequence of SEQ ID NO:44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, or 66;
  • Another aspect of the invention relates to vectors containing one or more of any of the nucleic acid molecules provided by the present disclosure, including single antigen constructs, dual-antigen constructs, triple-antigen constructs, and other multi-antigen constructs.
  • the vectors are useful for cloning or expressing the immunogenic TAA polypeptides encoded by the nucleic acid molecules, or for delivering the nucleic acid molecule in a composition, such as a vaccine, to a host cell or to a host subject, such as a human.
  • the vector comprises a triple-antigen construct encoding an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, wherein the triple-antigen construct which comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequence encoding the amino acid sequence of SEQ ID NO:44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, or 66;
  • vectors may be prepared to contain and express a nucleic acid molecule of the invention, such as plasmid vectors, cosmid vectors, phage vectors, and viral vectors.
  • the disclosure provides a plasmid-based vector containing a nucleic acid molecule of the invention.
  • suitable plasmid vectors include pBR325, pUC18, pSKF, pET23D, and pGB-2.
  • Other examples of plasmid vectors, as well as method of constructing such vectors, are described in U.S. Pat. Nos. 5,580,859, 5,589,466, 5,688,688, 5,814,482, and 5,580,859.
  • the present invention provides vectors that are constructed from viruses, such as retroviruses, alphaviruses, and adenoviruses.
  • viruses such as retroviruses, alphaviruses, and adenoviruses.
  • retroviral vectors are described in U.S. Pat. Nos. 5,219,740, 5,716,613, 5,851,529, 5,591,624, 5,716,826, 5,716,832, and 5,817,491.
  • Representative examples of vectors that can be generated from alphaviruses are described in U.S. Pat. Nos. 5,091,309 and 5,217,879, 5,843,723, and 5,789,245.
  • the present disclosure provides adenoviral vectors that comprise a nucleic acid sequence of non-human primate adenoviruses, such as simian adenoviruses.
  • adenoviral vectors that comprise a nucleic acid sequence of non-human primate adenoviruses, such as simian adenoviruses.
  • non-human primate adenoviruses such as simian adenoviruses.
  • non-replicating vectors constructed from simian adenoviruses such as ChAd3, ChAd4, ChAd5, ChAd7, ChAd8, ChAd9, ChAd10, ChAd11, ChAd16, ChAd17, ChAd19, ChAd20, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63, ChAd68, ChA
  • the vector is constructed from ChAd3 or ChAd68.
  • Suitable vectors can also be generated from other viruses such as: (1) pox viruses, such as canary pox virus or vaccinia virus (Fisher-Hoch et al., PNAS 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci.
  • Expression vectors typically include one or more control elements that are operatively linked to the nucleic acid sequence to be expressed.
  • control elements refers collectively to promoter regions, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites (“IRES”), enhancers, and the like, which collectively provide for the replication, transcription, and translation of a coding sequence in a recipient cell. Not all of these control elements need always be present so long as the selected coding sequence is capable of being replicated, transcribed, and translated in an appropriate host cell.
  • control elements are selected based on a number of factors known to those skilled in that art, such as the specific host cells and source or structures of other vector components.
  • a Kozak sequence may be provided upstream of the sequence encoding the immunogenic TAA polypeptide.
  • a known Kozak sequence is (GCC)NCCATGG, wherein N is A or G and GCC is less conserved.
  • Exemplary Kozak sequences that may be used include GAACATGG, ACCAUGG and ACCATGG.
  • compositions Comprising an Immunogenic TAA Polypeptide (Polypeptide Compositions)
  • polypeptide compositions which comprise one or more isolated immunogenic TAA polypeptides provided by the present disclosure (“polypeptide composition”).
  • polypeptide composition is an immunogenic composition useful for eliciting an immune response against a TAA protein in a subject, such as a mouse, dog, nonhuman primates or human.
  • polypeptide composition is a pharmaceutical composition for administration to a subject, such as a human.
  • the polypeptide composition is a vaccine composition useful for immunization of a mammal, such as a human, for inhibiting abnormal cell proliferation, for providing protection against the development of cancer (used as a prophylactic), or for treatment of disorders (used as a therapeutic) associated with TAA over expression, such as cancers.
  • a polypeptide composition provided by the present disclosure may contain a single type of immunogenic TAA polypeptide, such an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, or an immunogenic TERT polypeptide.
  • a composition may also contain a combination of two or more different types of immunogenic TAA polypeptides.
  • a polypeptide composition may contain immunogenic TAA polypeptides in any of the following combinations:
  • a polypeptide composition provided by the present disclosure such as an immunogenic composition, a pharmaceutical composition, or a vaccine composition, further comprises a pharmaceutically acceptable excipient.
  • Pharmaceutically acceptable excipients suitable for immunogenic, pharmaceutical, or vaccine compositions are known in the art.
  • suitable excipients include biocompatible oils, such as rape seed oil, sunflower oil, peanut oil, cotton seed oil, jojoba oil, squalan, squalene, physiological saline solution, preservatives and osmotic pressure controlling agents, carrier gases, pH-controlling agents, organic solvents, hydrophobic agents, enzyme inhibitors, water absorbing polymers, surfactants, absorption promoters, pH modifiers, and anti-oxidative agents.
  • biocompatible oils such as rape seed oil, sunflower oil, peanut oil, cotton seed oil, jojoba oil, squalan, squalene, physiological saline solution, preservatives and osmotic pressure controlling agents, carrier gases, pH-controlling agents, organic solvents, hydrophobic agents, enzyme inhibitors, water absorbing polymers, surfactants, absorption promoters, pH modifiers, and anti-oxidative agents.
  • the immunogenic TAA polypeptide in a composition may be linked to, conjugated to, or otherwise incorporated into a carrier for administration to a subject.
  • carrier refers to a substance or structure that an immunogenic polypeptide can be attached to or otherwise associated with for delivery of the immunogenic polypeptide to the subject.
  • the carrier itself may be immunogenic.
  • carriers include immunogenic polypeptides, immune CpG islands, limpet hemocyanin (KLH), tetanus toxoid (TT), cholera toxin subunit B (CTB), bacteria or bacterial ghosts, liposome, chitosome, virosomes, microspheres, dendritic cells, or their like.
  • KLH limpet hemocyanin
  • TT tetanus toxoid
  • CTB cholera toxin subunit B
  • One or more immunogenic TAA polypeptide molecules may be linked to a single carrier molecule.
  • a vaccine composition or immunogenic composition provided by the present disclosure may be used in conjunction or combination with one or more immune modulators or adjuvants.
  • the immune modulators or adjuvants may be formulated separately from the vaccine composition or immunogenic composition, or they may be part of the same composition formulation.
  • the present disclosure provides a vaccine composition that further comprises one or more immune modulators or adjuvants. Examples of immune modulators and adjuvants are provided herein below.
  • polypeptide compositions including the immunogenic and vaccine compositions, can be prepared in any suitable dosage forms, such as liquid forms (e.g., solutions, suspensions, or emulsions) and solid forms (e.g., capsules, tablets, or powder), and by methods known to one skilled in the art.
  • suitable dosage forms such as liquid forms (e.g., solutions, suspensions, or emulsions) and solid forms (e.g., capsules, tablets, or powder), and by methods known to one skilled in the art.
  • compositions Comprising an Immunogenic TAA Nucleic Acid Molecule (Nucleic Acid Compositions)
  • nucleic acid compositions which comprise an isolated nucleic acid molecule or vector provided by the present disclosure (“nucleic acid composition”).
  • the nucleic acid compositions are useful for eliciting an immune response against a TAA protein in vitro or in vivo in a subject, including a human.
  • the nucleic acid compositions are immunogenic compositions or pharmaceutical compositions.
  • the nucleic acid composition is a DNA vaccine composition for administration to a subject, such as a human for (1) inhibiting abnormal cell proliferation, providing protection against the development of cancer (used as a prophylactic), (2) treatment of cancer (used as a therapeutic) associated with TAA over-expression, or (3) eliciting an immune response against a particular human TAA, such as MSLN, MUC1, or TERT.
  • the nucleic acid molecule in the composition may be a “naked” nucleic acid molecule, i.e., simply in the form of an isolated DNA free from elements that promote transfection or expression.
  • the nucleic acid molecule in the composition is incorporated into a vector, such as a plasmid vector or a viral vector.
  • a nucleic acid composition provided by the present disclosure may comprise individual isolated nucleic acid molecules that each encode only one type of immunogenic TAA polypeptide, such as an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, or an immunogenic TERT polypeptide.
  • a nucleic acid composition may comprise a multi-antigen construct that encodes two or more types of immunogenic TAA polypeptides.
  • a multi-antigen construct may encode two or more immunogenic TAA polypeptides in any of the following combinations:
  • compositions provided by the present disclosure comprise a dual antigen construct comprising a nucleotide sequence selected from the group consisting of:
  • nucleotide sequence encoding the amino acid sequence of SEQ ID NO:18, 20, 22, or 24, 26, 28, 30, 32, or 34, 36, 38, 30, 40, or 42;
  • compositions provided by the present disclosure comprise a triple-antigen construct comprising a nucleotide sequence selected from the group consisting of:
  • nucleotide sequence encoding the amino acid sequence of SEQ ID NO:44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, or 66;
  • the nucleic acid compositions may further comprise a pharmaceutically acceptable excipient.
  • Pharmaceutical acceptable excipients suitable for nucleic acid compositions, including DNA vaccine compositions are well known to those skilled in the art. Such excipients may be aqueous or nonaqueous solutions, suspensions, and emulsions. Examples of non-aqueous excipients include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Examples of aqueous excipient include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • Suitable excipients also include agents that assist in cellular uptake of the polynucleotide molecule.
  • agents that assist in cellular uptake of the polynucleotide molecule are (i) chemicals that modify cellular permeability, such as bupivacaine, (ii) liposomes or viral particles for encapsulation of the polynucleotide, or (iii) cationic lipids or silica, gold, or tungsten microparticles which associate themselves with the polynucleotides.
  • Liposomes A Practical Approach, RPC New Ed, IRL press (1990), for a detailed description of methods for making liposomes
  • Cationic lipids are also known in the art and are commonly used for gene delivery.
  • Such lipids include LipofectinTM also known as DOTMA (N-[I-(2,3-dioleyloxy) propyls N,N, N-trimethylammonium chloride), DOTAP (1,2-bis (oleyloxy)-3 (trimethylammonio) propane), DDAB (dimethyldioctadecyl-ammonium bromide), DOGS (dioctadecylamidologlycyl spermine) and cholesterol derivatives such as DCChol (3 beta-(N-(N′,N′-dimethyl aminomethane)-carbamoyl) cholesterol).
  • DOTMA N-[I-(2,3-dioleyloxy) propyls N,N, N-trimethylammonium chloride
  • DOTAP 1,2-bis (oleyloxy)-3 (trimethylammonio) propane
  • DDAB dimethyldioctadecyl-ammonium bromide
  • DOGS dio
  • a description of these cationic lipids can be found in EP 187,702, WO 90/11092, U.S. Pat. No. 5,283,185, WO 91/15501, WO 95/26356, and U.S. Pat. No. 5,527,928.
  • a particular useful cationic lipid formulation that may be used with the nucleic acid compositions provided by the disclosure is VAXFECTIN, which is a commixture of a cationic lipid (GAP-DMORIE) and a neutral phospholipid (DPyPE) which, when combined in an aqueous vehicle, self-assemble to form liposomes.
  • VAXFECTIN is a commixture of a cationic lipid (GAP-DMORIE) and a neutral phospholipid (DPyPE) which, when combined in an aqueous vehicle, self-assemble to form liposomes.
  • Cationic lipids for gene delivery are preferably used in association with a neutral lipid such as DOPE (dioleyl phosphatidylethanolamine), as described in WO 90/11092 as an example.
  • a nucleic acid construct such as a DNA construct, can also be formulated with a nonionic block copolymer such as CRL1005.
  • a nucleic acid composition provided by the present disclosure may be used in conjunction or combination with one or more immune modulators.
  • the nucleic acid composition such as a pharmaceutical composition or immunogenic composition, may also be used in conjunction or combination with one or more adjuvants.
  • the nucleic acid composition may be used in conjunction or combination with one or more immune modulators and one or more adjuvants.
  • the immune modulators or adjuvants may be formulated separately from the nucleic composition, or they may be part of the same composition formulation.
  • the present disclosure provides a nucleic acid vaccine composition that further comprises one or more immune modulators and/or one or more adjuvants. Examples of immune modulators and adjuvants are provided herein below.
  • nucleic acid compositions can be prepared in any suitable dosage forms, such as liquid forms (e.g., solutions, suspensions, or emulsions) and solid forms (e.g., capsules, tablets, or powder), and by methods known to one skilled in the art.
  • suitable dosage forms such as liquid forms (e.g., solutions, suspensions, or emulsions) and solid forms (e.g., capsules, tablets, or powder), and by methods known to one skilled in the art.
  • the present disclosure provides methods of using the immunogenic TAA polypeptides, isolated nucleic acid molecules, and compositions described herein above.
  • the present disclosure provides a method of eliciting an immune response against a TAA in a subject, particularly a human, comprising administering to the subject an effective amount of (1) an immunogenic TAA polypeptide that is immunogenic against the target TAA, (2) an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides, (3) a composition comprising one or more immunogenic TAA polypeptides, or (4) a composition comprising an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides.
  • the disclosure provides a method of eliciting an immune response against MSLN in a subject, comprising administering to the subject an effective amount of an immunogenic MSLN composition provided by the present disclosure, wherein the immunogenic MSLN composition is selected from: (1) an immunogenic MSLN polypeptide, (2) an isolated nucleic acid molecule encoding an immunogenic MSLN polypeptide, (3) a composition comprising an immunogenic MSLN polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding an immunogenic MSLN polypeptide.
  • the disclosure provides a method of eliciting an immune response against MUC1 in a subject, comprising administering to the subject an effective amount of an immunogenic MUC1 composition provided by the present disclosure, wherein the immunogenic MUC1 composition is selected from: (1) an immunogenic MUC1 polypeptide, (2) an isolated nucleic acid molecule encoding an immunogenic MUC1 polypeptide, (3) a composition comprising an immunogenic MUC1 polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding an immunogenic MUC1 polypeptide.
  • the disclosure provides a method of eliciting an immune response against TERT in a subject, comprising administering to the subject an effective amount of an immunogenic TERT composition provided by the present disclosure, wherein the immunogenic TERT composition is selected from: (1) an immunogenic TERT polypeptide, (2) an isolated nucleic acid molecule encoding an immunogenic TERT polypeptide, (3) a composition comprising an immunogenic TERT polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding an immunogenic TERT polypeptide.
  • the present disclosure provides a method of inhibiting abnormal cell proliferation in a human, wherein the abnormal cell proliferation is associated with over-expression of a TAA.
  • the method comprises administering to the human an effective amount of immunogenic TAA composition provided by the present disclosure that is immunogenic against the over-expressed TAA.
  • the immunogenic TAA composition may be (1) an immunogenic TAA polypeptide, (2) an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides, (3) a composition comprising an immunogenic TAA polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides.
  • the abnormal cell proliferation may be in any organ or tissues of a human, such as breast, stomach, ovaries, lungs, bladder, large intestine (e.g., colon and rectum), kidneys, pancreas, and prostate.
  • the method is for inhibiting abnormal cell proliferation in the breast, ovaries, pancreas, colon, lung, stomach, and rectum.
  • the present disclosure provides a method of treating cancer in a human wherein the cancer is associated with over-expression of a TAA.
  • the method comprises administering to the human an effective amount of immunogenic TAA composition capable of eliciting an immune response against the over-expressed TAA.
  • the immunogenic TAA composition may be (1) an immunogenic TAA polypeptide, (2) an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides, (3) a composition comprising an immunogenic TAA polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides.
  • the disclosure provides a method of treating a cancer in a human, comprising administering to the human an effective amount of a nucleic acid composition provided herein above.
  • the nucleic acids in the composition may be a single-antigen construct encoding only one particular immunogenic TAA polypeptide, such as an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, or an immunogenic TERT polypeptide.
  • the nucleic acids in the composition may also be a multi-antigen construct encoding two, three, or more different immunogenic TAA polypeptides.
  • the disclosure provides a method of treating a cancer in a human, comprising administering to the human an effective amount of a composition comprising a dual-antigen construct.
  • the dual-antigen construct may encode any two different immunogenic TAA polypeptides selected from: (1) an immunogenic MSLN polypeptide and an immunogenic MUC1 polypeptide; (2) an immunogenic MSLN polypeptide and an immunogenic TERT polypeptide; (3) an immunogenic TERT polypeptide and an immunogenic MUC1 polypeptide.
  • the disclosure provides a method of treating a cancer in a human, wherein the cancer is associated with over-expression of one or more TAAs selected from MUC1, MSLN, and TERT, which method comprises administering to the human an effective amount of a composition comprising a triple-antigen construct encoding an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, and an immunogenic TERT polypeptide.
  • cancers include breast cancer, ovarian cancer, lung cancer (such as small cell lung cancer and non-small cell lung cancer), colorectal cancer, gastric cancer, and pancreatic cancer.
  • the present disclosure provide a method of treating cancer in a human, which comprises administering to the human an effective amount of a composition comprising a triple-antigen construct, wherein the cancer is (1) breast cancer, such as triple-negative breast cancer, (2) pancreatic cancer, such as pancreatic ductal adenocarcinoma, or (3) ovarian cancer, such as ovarian adenocarcinoma.
  • breast cancer such as triple-negative breast cancer
  • pancreatic cancer such as pancreatic ductal adenocarcinoma
  • ovarian cancer such as ovarian adenocarcinoma.
  • the polypeptide and nucleic acid compositions can be administered to a subject, including human (such as a human patient), by a number of suitable methods known in the art.
  • suitable methods include: (1) intramuscular, intradermal, intraepidermal, or subcutaneous administration, (2) oral administration, and (3) topical application (such as ocular, intranasal, and intravaginal application).
  • One particular method of intradermal or intraepidermal administration of a nucleic acid composition that may be used is gene gun delivery using the Particle Mediated Epidermal Delivery (PMEDTM) DNA delivery device marketed by PowderMed.
  • PMED is a needle-free method of administering DNAs to animals or humans.
  • the PMED system involves the precipitation of DNA onto microscopic gold particles that are then propelled by helium gas into the epidermis.
  • the DNA-coated gold particles are delivered to the APCs and keratinocytes of the epidermis, and once inside the nuclei of these cells, the DNA elutes off the gold and becomes transcriptionally active, producing encoded protein.
  • One particular method for intramuscular administration of a nucleic acid composition is electroporation. Electroporation uses controlled electrical pulses to create temporary pores in the cell membrane, which facilitates cellular uptake of the nucleic acid composition injected into the muscle.
  • the CpG and nucleic acid composition may be co-formulated in one formulation and the formulation is administered intramuscularly by electroporation.
  • the effective amount of the immunogenic TAA polypeptide or nucleic acid encoding an immunogenic TAA polypeptide in the composition to be administered to a subject, such as human patient, a given method provided by the present disclosure can be readily determined by a person skilled in the art and will depend on a number of factors.
  • factors that may be considered in determining the effective amount of the immunogenic TAA polypeptide or nucleic acid include, but not limited: (1) the subject to be treated, including the subject's immune status and health, (2) the severity or stage of the cancer to be treated, (3) the specific immunogenic TAA polypeptides used or expressed, (4) the degree of protection or treatment desired, (5) the administration method and schedule, and (6) other therapeutic agents (such as adjuvants or immune modulators) used.
  • nucleic acid vaccine compositions including the multi-antigen vaccine compositions
  • the method of formulation and delivery are among the key factors for determining the dose of the nucleic acid required to elicit an effective immune response.
  • the effective amounts of the nucleic acid may be in the range of 2 ⁇ g/dose-10 mg/dose when the nucleic acid vaccine composition is formulated as an aqueous solution and administered by hypodermic needle injection or pneumatic injection, whereas only 16 ng/dose-16 ⁇ g/dose may be required when the nucleic acid is prepared as coated gold beads and delivered using a gene gun technology.
  • the dose range for a nucleic acid vaccine by electroporation is generally in the range of 0.5-10 mg/dose.
  • the dose of the nucleic acid vaccine may be in the range of 0.5-5 mg/dose and the dose of CpG is typically in the range of 0.05 mg-5 mg/dose, such as 0.05, 0.2, 0.6, or 1.2 mg/dose per person.
  • the nucleic acid or polypeptide vaccine compositions of the present invention can be used in a prime-boost strategy to induce robust and long-lasting immune response. Priming and boosting vaccination protocols based on repeated injections of the same immunogenic construct are well known. In general, the first dose may not produce protective immunity, but only “primes” the immune system.
  • a protective immune response develops after the second or third dose (the “boosts”).
  • the boosts are performed according to conventional techniques, and can be further optimized empirically in terms of schedule of administration, route of administration, choice of adjuvant, dose, and potential sequence when administered with another vaccine.
  • the nucleic acid or polypeptide vaccines of the present invention are used in a conventional homologous prime-boost strategy, in which the same vaccine is administered to the animal in multiple doses.
  • the nucleic acid or polypeptide vaccine compositions are used in a heterologous prime-boost vaccination, in which different types of vaccines containing the same antigens are administered at predetermined time intervals.
  • a nucleic acid construct may be administered in the form of a plasmid in the initial dose (“prime”) and as part of a vector in the subsequent doses (“boosts”), or vice versa.
  • polypeptide or nucleic acid immunogenic compositions of the present disclosure may be used together with one or more adjuvants.
  • suitable adjuvants include: (1) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl polypeptides or bacterial cell wall components), such as (a) MF59TM (PCT Publication No. WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach , eds.
  • interferons e.g. gamma interferon
  • M-CSF macrophage colony stimulating factor
  • TNF tumor necrosis factor
  • MPL monophosphoryl lipid A
  • 3dMPL 3-O-deacylated MPL
  • oligonucleotides comprising CpG motifs, i.e.
  • a polyoxyethylene ether or a polyoxyethylene ester WO 99/52549
  • a polyoxyethylene sorbitan ester surfactant in combination with an octoxynol WO 01/21207
  • a polyoxyethylene alkyl ether or ester surfactant in combination with at least one additional non-ionic surfactant such as an octoxynol (WO 01/21152)
  • a saponin and an immunostimulatory oligonucleotide e.g.
  • a CpG oligonucleotide (WO 00/62800); (11) metal salt, including aluminum salts (also known as alum), such as aluminum phosphate and aluminum hydroxide; (12) a saponin and an oil-in-water emulsion (WO 99/11241); and (13) a combination of saponin (e.g. QS21), 3dMPL, and 1M2 (WO 98/57659).
  • the polypeptide or nucleic acid compositions, including vaccine compositions, provided by the present disclosure may be administered in combination with one or more immune modulators.
  • the immune modulator may be an immune-suppressive-cell inhibitor (ISC inhibitor) or an immune-effector-cell enhancer (IEC enhancer). Further, one or more ISC inhibitors may be used in combination with one or more IEC enhancers.
  • the immune modulators may be administered by any suitable methods and routes, including (1) systemic administration such as intravenous, intramuscular, or oral administration, and (2) local administration such intradermal and subcutaneous administration. Where appropriate or suitable, local administration is generally preferred over systemic administration. Local administration of any immune modulators can be carried out at any location of the body of the subject that is suitable for local administration of pharmaceuticals; however, it is more preferable that these immune modulators are administered locally at close proximity to the vaccine draining lymph node.
  • compositions such as a vaccine
  • two or more immune modulators when they are used, they may be administered simultaneously or sequentially with respect to each other.
  • a vaccine is administered simultaneously (e.g., in a mixture) with respect to one immune modulator, but sequentially with respect to one or more additional immune modulators.
  • Co-administration of the vaccine and the immune modulators can include cases in which the vaccine and at least one immune modulator are administered so that each is present at the administration site, such as vaccine draining lymph node, at the same time, even though the antigen and the immune modulators are not administered simultaneously.
  • Co-administration of the vaccine and the immune modulators also can include cases in which the vaccine or the immune modulator is cleared from the administration site, but at least one cellular effect of the cleared vaccine or immune modulator persists at the administration site, such as vaccine draining lymph node, at least until one or more additional immune modulators are administered to the administration site.
  • a nucleic acid vaccine is administered in combination with a CpG
  • the vaccine and CpG may be contained in a single formulation and administered together by any suitable method.
  • the nucleic acid vaccine and CpG in a co-formulation (mixture) is administered by intramuscular injection in combination with electroporation.
  • the immune modulator that is used in combination with the polypeptide or nucleic acid composition is an ISC inhibitor.
  • ISC inhibitors include (1) protein kinase inhibitors, such as imatinib, sorafenib, lapatinib, BIRB-796, and AZD-1152, AMG706, Zactima (ZD6474), MP-412, sorafenib (BAY 43-9006), dasatinib, CEP-701 (lestaurtinib), XL647, XL999, Tykerb (lapatinib), MLN518, (formerly known as CT53518), PKC412, ST1571, AEE 788, OSI-930, OSI-817, sunitinib malate (SUTENT), axitinib (AG-013736), erlotinib, gefitinib, axitinib, bosutinib, temsirolismus and nilot
  • the tyrosine kinase inhibitor is sunitinib, sorafenib, or a pharmaceutically acceptable salt or derivative (such as a malate or a tosylate) of sunitinib or sorafenib; (2) cyclooxygenase-2 (COX-2) inhibitors, such as celecoxib and rofecoxib; (3) phosphodiesterase type 5 (PDE5) inhibitors, such as Examples of PDE5 inhibitors include avanafil, lodenafil, mirodenafil, sildenafil, tadalafil, vardenafil, udenafil, and zaprinast, and (4) DNA crosslinkers, such as cyclophosphamide.
  • the immune modulator that is used in combination with the polypeptide or nucleic acid composition is an IEC enhancer.
  • IEC enhancers Two or more IEC enhancers may be used together.
  • IEC enhancers include: (1) TNFR agonists, such as agonists of OX40, 4-1BB (such as BMS-663513), GITR (such as TRX518), and CD40 (such as CD40 agonistic antibodies); (2) CTLA-4 inhibitors, such as is Ipilimumab and Tremelimumab; (3) TLR agonists, such as CpG 7909 (5′ TCGTCGTTTTGTCGTTTTGTCGTT3′), CpG 24555 (5′ TCGTCGTTTTTCGGTGCTTTT3′ (CpG 24555); and CpG 10103 (5′ TCGTCGTTTTTCGGTCGTTTT3′); (4) programmed cell death protein 1 (PD-1) inhibitors, such as nivolumab and pembrolizumab; and (5)
  • the IEC enhancer is CD40 agonist antibody, which may be a human, humanized or part-human chimeric anti-CD40 antibody.
  • CD40 agonist antibodies include the G28-5, mAb89, EA-5 or S2C6 monoclonal antibody, and CP870,893.
  • CP-870,893 is a fully human agonistic CD40 monoclonal antibody (mAb) that has been investigated clinically as an anti-tumor therapy.
  • CP870,893 The structure and preparation of CP870,893 is disclosed in WO2003041070 (where the antibody is identified by the internal identified “21.4.1” and the amino acid sequences of the heavy chain and light chain of the antibody are set forth in SEQ ID NO: 40 and SEQ ID NO: 41, respectively).
  • CP-870,893 may be administered by any suitable route, such as intradermal, subcutaneous, or intramuscular injection.
  • the effective amount of CP870893 is generally in the range of 0.01-0.25 mg/kg. In some embodiment, CP870893 is administered at an amount of 0.05-0.1 mg/kg.
  • the IEC enhancer is a CTLA-4 inhibitor, such as Ipilimumab and Tremelimumab.
  • Ipilimumab also known as MEX-010 or MDX-101
  • YERVOY is a human anti-human CTLA-4 antibody.
  • Ipilimumab can also be referred to by its CAS Registry No. 477202-00-9, and is disclosed as antibody 10DI in PCT Publication No. WO 01/14424.
  • Tremelimumab also known as CP-675,206
  • Tremelimumab is a fully human IgG2 monoclonal antibody and has the CAS number 745013-59-6. Tremelimumab is disclosed in U.S. Pat. No.
  • Tremelimumab may be administered locally, particularly intradermally or subcutaneously.
  • the effective amount of Tremelimumab administered intradermally or subcutaneously is typically in the range of 5-200 mg/dose per person.
  • the effective amount of Tremelimumab is in the range of 10-150 mg/dose per person per dose.
  • the effective amount of Tremelimumab is about 10, 25, 50, 75, 100, 125, 150, 175, or 200 mg/dose per person.
  • the immune modulator is a PD-1 inhibitor or PD-L1 inhibitor, such as nivolumab, pembrolizumab, RN888 (anti-PD-1 antibody), Atezolizumab (PD-L1-specific mAbs from Roche), Durvalumab (PD-L1-specific mAbs from Astra Zeneca), and Avelumab (PD-L1-specific mAbs from Merck).
  • PD-1 inhibitor or PD-L1 inhibitor such as nivolumab, pembrolizumab, RN888 (anti-PD-1 antibody), Atezolizumab (PD-L1-specific mAbs from Roche), Durvalumab (PD-L1-specific mAbs from Astra Zeneca), and Avelumab (PD-L1-specific mAbs from Merck).
  • the present disclosure provides use of an immune modulator with a vaccine, including anti-cancer vaccines, wherein the immune modulator is an inhibitor of indoleamine 2,3-dioxygenase 1 (also known as “IDO1”).
  • IDO1 indoleamine 2,3-dioxygenase 1
  • the enzyme degrades the essential amino acid tryptophan into kynurenine and other metabolites. It was found that these metabolites and the paucity of tryptophan leads to suppression of effector T-cell function and augmented differentiation of regulatory T cells.
  • the IDO1 inhibitors may be large molecules, such as an antibody, or a small molecule, such as a chemical compound.
  • the polypeptide or nucleic acid composition provided by the present disclosure is used in combination with a 1,2,5-oxadiazole derivative IDO1 inhibitor disclosed in WO2010/005958.
  • a 1,2,5-oxadiazole derivative IDO1 inhibitor disclosed in WO2010/005958 examples include the following compounds:
  • the 1,2,5-oxadiazole derivative IDO1 inhibitors are typically administered orally once or twice per day and effective amount by oral administration is generally in the range of 25 mg-1000 mg per dose per patient, such as 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, or 1000 mg.
  • the polypeptide or nucleic acid composition provided by the present disclosure is used in combination with 4-( ⁇ 2-[(aminosulfonyl)amino]ethyl ⁇ amino)-N-(3-bromo-4-fluorophenyl)-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide administered orally twice per day at 25 mg or 50 mg per dose.
  • the 1,2,5-oxadiazole derivatives may be synthesized as described in U.S. Pat. No. 8,088,803, which is incorporated herein by reference in its entirety.
  • the polypeptide or nucleic acid composition provided by the present disclosure is used in combination with a pyrrolidine-2,5-dione derivative IDO1 inhibitor disclosed in WO2015/173764.
  • pyrrolidine-2,5-dione derivative inhibitors include the following compounds:
  • the pyrrolidine-2,5-dione derivative IDO1 inhibitors are typically administered orally once or twice per day and the effective amount by oral administration is generally in the range of 50 mg-1000 mg per dose per patient, such as 125 mg, 250 mg, 500 mg, 750 mg, or 1000 mg.
  • the polypeptide or nucleic acid composition provided by the present disclosure is used in combination with 3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione administered orally once per day at 125-100 mg per dose per patient.
  • the pyrrolidine-2,5-dione derivatives may be synthesized as described in U.S. patent application publication US2015329525, which is incorporated herein by reference in its entirety.
  • Example 1 illustrates the construction of single antigen constructs, dual-antigen constructs, and triple antigen constructs.
  • reference to amino acid positions or residues of MUC1, MSLN, and TERT protein refers to the amino acid sequence of human MUC1 isoform 1 precursor protein as set forth in SEQ ID NO:1, amino acid sequence of human mesothelin (MSLN) isoform 2 precursor protein as set forth in SEQ ID NO:2, and the amino acid sequence of human TERT isoform 1 precursor protein as set forth in SEQ ID NO:3, respectively.
  • Plasmid 1027 (MUC1). Plasmid 1027 was generated using the techniques of gene synthesis and restriction fragment exchange. The amino acid sequence of human MUC1 with a 5 ⁇ tandem repeat VNTR region was submitted to GeneArt for gene optimization and synthesis. The gene encoding the polypeptide was optimized for expression, synthesized, and cloned. The MUC-1 open reading frame was excised from the GeneArt vector by digestion with NheI and BgIII and inserted into similarly digested plasmid pPJV7563. The open reading frame (ORF) nucleotide sequence of Plasmid 1027 is set forth in SEQ ID NO:7. The amino acid sequence encoded by Plasmid 1027 is set for in SEQ ID NO:8.
  • Plasmid 1103 (cMSLN). Plasmid 1103 was constructed using the techniques of PCR and restriction fragment exchange. First, the gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1084 with primers MSLN34 and MSLN598, resulting in the addition of NheI and BgIII restriction sites at the 5′ and 3′ ends of the amplicon, respectively. The amplicon was digested with NheI and Bgl II and inserted into similarly digested plasmid pPJV7563. The open reading frame nucleotide sequence of Plasmid 1103 is set forth in SEQ ID NO:5. The amino acid sequence encoded by Plasmid 1103 is set for in SEQ ID NO:6.
  • Plasmid 1112 (TERT240). Plasmid 1112 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding TERT amino acids 241-1132 was amplified by PCR from plasmid 1065 with primers f pmed TERT 241G and r TERT co#pMed. The amplicon was cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid1112 is set forth in SEQ ID NO:9. The amino acid sequence encoded by Plasmid 1112 is set for in SEQ ID NO:10.
  • Plasmid 1197 (cMUC1). Plasmid 1197 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding MUC1 amino acids 22-225, 946-1255 was amplified by PCR from plasmid 1027 with primers ID1197F and ID1197R. The amplicon was cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1197 is set forth in SEQ ID NO:15. The amino acid sequence encoded by Plasmid 1197 is set for in SEQ ID NO:16.
  • Plasmid 1326 (TERT343). Plasmid 1326 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding TERT amino acids 344-1132 was amplified by PCR from plasmid 1112 with primers TertA343-F and Tert-R. The amplicon was cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid1326 is set forth in SEQ ID NO:13. The amino acid sequence encoded by Plasmid 1326 is set for in SEQ ID NO:14.
  • Plasmid 1330 (TERT541). Plasmid 1330 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding TERT amino acids 542-1132 was amplified by PCR from plasmid 1112 with primers TertA541-F and Tert-R. The amplicon was cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1330 is set forth in SEQ ID NO:11. The amino acid sequence encoded by Plasmid 1330 is set for in SEQ ID NO:12.
  • Plasmid 1158 (cMSLN-PT2A-Muc1). Plasmid 1158 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN and r PTV2A Bamh cMSLN. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f1 PTV2A Muc, f2 PTV2A, and r pmed Bgl Muc.
  • Plasmid 1158 The open reading frame nucleotide sequence of Plasmid 1158 is set forth in SEQ ID NO:23.
  • the amino acid sequence encoded by Plasmid 1158 is set for in SEQ ID NO:24.
  • Plasmid 1159 (Muc1-PT2A-cMSLN). Plasmid 1159 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f1 PTV2A cMSLN, f2 PTV2A, and r pmed Bgl cMSLN. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f pmed Nhe Muc and r PTV2A Bamh Muc.
  • Plasmid 1159 The open reading frame nucleotide sequence of Plasmid 1159 is set forth in SEQ ID NO:21.
  • the amino acid sequence encoded by Plasmid 1159 is set for in SEQ ID NO:22.
  • Plasmid 1269 (Muc1-Ter240). Plasmid 1269 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f tg link Ter240 and r pmed Bgl Ter240. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f pmed Nhe Muc and r link muc. PCR resulted in the addition of an overlapping GGSGG linker at the 5′ end of Tert and 3′ end of Muc1.
  • Plasmid 1269 The open reading frame nucleotide sequence of Plasmid 1269 is set forth in SEQ ID NO:25.
  • the amino acid sequence encoded by Plasmid 1269 is set for in SEQ ID NO:26.
  • Plasmid 1270 (Muc1-ERB2A-Ter240). Plasmid 1270 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f2 ERBV2A, f1 ERBV2A Ter240, and r pmed Bgl Ter240. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f pmed Nhe Muc and r ERB2A Bamh Muc.
  • Plasmid 1270 The open reading frame nucleotide sequence of Plasmid 1270 is set forth in SEQ ID NO:27.
  • the amino acid sequence encoded by Plasmid 1270 is set for in SEQ ID NO:28.
  • Plasmid 1271 (Ter240-ERB2A-Muc1). Plasmid 1271 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r ERB2A Bamh Ter240. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f2 ERBV2A, f1 ERBV2A Muc, and r pmed Bgl Muc.
  • Plasmid 1271 The open reading frame nucleotide sequence of Plasmid 1271 is set forth in SEQ ID NO:29.
  • the amino acid sequence encoded by Plasmid 1271 is set for in SEQ ID NO:30.
  • Plasmid 1272 (Ter240-T2A-cMSLN). Plasmid 1272 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r T2A Tert240. The gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f2 T2A, f1 T2A cMSLN, and r pmed Bgl cMSLN.
  • Plasmid 1272 The open reading frame nucleotide sequence of Plasmid 1272 is set forth in SEQ ID NO:35.
  • the amino acid sequence encoded by Plasmid 1272 is set for in SEQ ID NO:36.
  • Plasmid 1273 (Tert240-cMSLN). Plasmid 1273 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r link Tert240. The gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f tert ink cMSLN and r pmed Bgl cMSLN. PCR resulted in the addition of an overlapping GGSGG linker at the 3′ end of Tert and 5′ end of cMSLN.
  • Plasmid 1273 The open reading frame nucleotide sequence of Plasmid 1273 is set forth in SEQ ID NO:37.
  • the amino acid sequence encoded by Plasmid 1273 is set for in SEQ ID NO:38.
  • Plasmid 1274 (cMSLN-T2A-Tert240). Plasmid 1274 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f2 T2A, f1 T2A Tert240 and r pmed Bgl Ter240. The gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN and r T2A Bamh cMSLN.
  • Plasmid 1274 The open reading frame nucleotide sequence of Plasmid 1274 is set forth in SEQ ID NO:39.
  • the amino acid sequence encoded by Plasmid 1274 is set for in SEQ ID NO:40.
  • Plasmid 1275 (cMSLN-Tert240). Plasmid 1275 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f tg link Ter240 and r pmed Bgl Ter240. The gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN and r link cMSLN. PCR resulted in the addition of an overlapping GGSGG linker at the 5′ end of Tert and 3′ end of cMSLN.
  • Plasmid 1275 The open reading frame nucleotide sequence of Plasmid 1275 is set forth in SEQ ID NO:41.
  • the amino acid sequence encoded by Plasmid 1275 is set for in SEQ ID NO:42.
  • Plasmid 1286 (cMuc1-ERB2A-Tert240). Plasmid 1286 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f2 ERBV2A, f1 ERBV2A Ter240, and r pmed Bgl Ter240. The gene encoding human Mucin-1 amino acids 22-225, 946-1255 was amplified by PCR from plasmid 1197 with primers f pmed Nhe cytMuc and r ERB2A Bamh Muc.
  • Plasmid 1286 The open reading frame nucleotide sequence of Plasmid 1286 is set forth in SEQ ID NO:31.
  • the amino acid sequence encoded by Plasmid 1286 is set for in SEQ ID NO:32.
  • Plasmid 1287 (Tert240-ERB2A-cMuc1). Plasmid 1287 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r ERB2A Bamh Ter240. The gene encoding human Mucin-1 amino acids 22-225, 946-1255 was amplified by PCR from plasmid 1197 with primers f2 ERBV2A, f1 ERBV2A cMuc, and r pmed Bgl Muc.
  • Plasmid 1287 The open reading frame nucleotide sequence of Plasmid 1287 is set forth in SEQ ID NO:33.
  • the amino acid sequence encoded by Plasmid 1287 is set for in SEQ ID NO: 34.
  • Plasmid 1313 (Muc1-EMC2A-cMSLN). Plasmid 1313 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers EMCV_cMSLN_F—33, EMCV2A_F—34 and pMED_cMSLN_R—37. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers pMED_MUC1_F—31, EMCV2A_R—36, and EMCV_Muc1_R—35.
  • Plasmid 1313 The open reading frame nucleotide sequence of Plasmid 1313 is set forth in SEQ ID NO:19.
  • the amino acid sequence encoded by Plasmid 1313 is set for in SEQ ID NO:20.
  • Plasmid 1316 (cMSLN-EMC2A-Muc1). Plasmid 1316 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN and r EM2A Bamh cMSLN. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f1 EM2A Muc, f2 EMCV2A, and r pmed Bgl Muc.
  • Plasmid 1316 The open reading frame nucleotide sequence of Plasmid 1316 is set forth in SEQ ID NO:17.
  • the amino acid sequence encoded by Plasmid 1316 is set for in SEQ ID NO:18.
  • Plasmid 1317 (Muc1-EMC2A-cMSLN-T2A-Tert240). Plasmid 1317 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human Mucin-1 amino acids 2-225, 946-1255, an EMCV 2A peptide, and the amino terminal half of the mesothelin precursor were amplified by PCR from plasmid 1313 with primers f pmed Nhe Muc and r MSLN 1051-1033.
  • the genes encoding the carboxy terminal half of the mesothelin precursor, a TAV 2A peptide, and human telomerase amino acids 241-1132 were amplified by PCR from plasmid 1274 with primers f MSLN 1028-1051 and r pmed Bgl Ter240.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1317 is set forth in SEQ ID NO:43.
  • the amino acid sequence encoded by Plasmid 1317 is set for in SEQ ID NO:44.
  • Plasmid 1318 (Muc1-ERB2A-Tert240-T2A-cMSLN). Plasmid 1318 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human Mucin-1 amino acids 2-225, 946-1255, an ERBV 2A peptide, and the amino terminal half of human telomerase were amplified by PCR from plasmid 1270 with primers f pmed Nhe Muc and r tert 1602-1579.
  • the genes encoding the carboxy terminal half of telomerase, a TAV 2A peptide, and human mesothelin precursor amino acids 37-597 were amplified by PCR from plasmid 1272 with primers f tert 1584-1607 and r pmed Bgl cMSLN.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1318 is set forth in SEQ ID NO:45.
  • the amino acid sequence encoded by Plasmid 1318 is set for in SEQ ID NO:46.
  • Plasmid 1319 (cMSLN-EMC2A-Muc1-ERB2A-Tert240). Plasmid 1319 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human mesothelin precursor amino acids 37-597, an EMCV 2A peptide, and the amino terminal half of human Mucin-1 were amplified by PCR from plasmid 1316 with primers f pmed Nhe cMSLN and r muc 986-963.
  • the genes encoding the carboxy terminal half of Mucin-1, an ERBV 2A peptide, and human telomerase amino acids 241-1132 were amplified by PCR from plasmid 1270 with primers f Muc 960-983 and r pmed Bgl Ter240.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1319 is set forth in SEQ ID NO:47.
  • the amino acid sequence encoded by Plasmid 1319 is set for in SEQ ID NO:48.
  • Plasmid 1320 (cMSLN-T2A-Tert240-ERB2A-Muc1). Plasmid 1320 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human mesothelin precursor amino acids 37-597, a TAV 2A peptide, and the amino terminal half of human telomerase were amplified by PCR from plasmid 1274 with primers f pmed Nhe cMSLN and r tert 1602-1579.
  • the genes encoding the carboxy terminal half of telomerase, an ERBV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from plasmid 1271 with primers f tert 1584-1607 and r pmed Bgl Muc.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1320 is set forth in SEQ ID NO:49.
  • the amino acid sequence encoded by Plasmid 1320 is set for in SEQ ID NO:50.
  • Plasmid 1321 (Tert240-T2A-cMSLN-EMC2A-Muc1). Plasmid 1321 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the amino terminal half of human telomerase was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r tert 1602-1579. The genes encoding the carboxy terminal half of telomerase, a TAV 2A peptide, and the amino terminal half of human mesothelin precursor were amplified by PCR from plasmid 1272 with primers f tert 1584-1607 and r MSLN 1051-1033.
  • the genes encoding the carboxy terminal half of human mesothelin precursor, an EMCV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from plasmid 1316 with primers f MSLN 1028-1051 and r pmed Bgl Muc. The three partially overlapping amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1321 is set forth in SEQ ID NO:51.
  • the amino acid sequence encoded by Plasmid 1321 is set for in SEQ ID NO:52.
  • Plasmid 1322 (Tert240-ERB2A-Muc1-EMC2A-cMSLN). Plasmid 1322 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human telomerase amino acids 241-1132, an ERBV 2A peptide, and the amino terminal half of human Mucin-1 were amplified by PCR from plasmid 1271 with primers f pmed Nhe Ter240 and r muc 986-963.
  • the genes encoding the carboxy terminal half of Mucin-1, an EMCV 2A peptide, and human mesothelin precursor amino acids 37-597 were amplified by PCR from plasmid 1313 with primers f Muc 960-983 and r pmed Bgl cMSLN. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1322 is set forth in SEQ ID NO:53.
  • the amino acid sequence encoded by Plasmid 1322 is set for in SEQ ID NO:54.
  • Plasmid 1351 (Muc1-EMC2A-cMSLN-T2A-Tert541). Plasmid 1351 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human Mucin-1 amino acids 2-225, 946-1255, an EMCV 2A peptide, and the human mesothelin precursor were amplified by PCR from plasmid 1313 with primers f pmed Nhe Muc and r T2A Bamh cMSLN.
  • the genes encoding a TAV 2A peptide and human telomerase amino acids 541-1132 were amplified by PCR from plasmid 1330 with primers f1 T2A Tert d541, f2 T2A, and r pmed Bgl Ter240.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1351 is set forth in SEQ ID NO:55.
  • the amino acid sequence encoded by Plasmid 1351 is set for in SEQ ID NO:56.
  • Plasmid 1352 (cMSLN-EMC2A-Muc1-ERB2A-Tert541). Plasmid 1352 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human mesothelin precursor amino acids 37-597, an EMCV 2A peptide, and human Mucin-1 were amplified by PCR from plasmid 1316 with primers f pmed Nhe cMSLN and r ERB2A Bamh Muc.
  • the genes encoding an ERBV 2A peptide and human telomerase amino acids 541-1132 were amplified by PCR from plasmid 1330 with primers f1 ERBV2A Tert d541, f2 ERBV2A, and r pmed Bgl Ter240.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1352 is set forth in SEQ ID NO:57.
  • the amino acid sequence encoded by Plasmid 1352 is set for in SEQ ID NO:58.
  • Plasmid 1353 (cMSLN-T2A-Tert541-ERB2A-Muc1). Plasmid 1353 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding human mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN, r2 T2A, and r T2A Bamh cMSLN.
  • the genes encoding a TAV 2A peptide, human telomerase amino acids 541-1132, an ERBV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from plasmid 1271 with primers f1 T2A Tert d541 and r pmed Bgl Muc.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1353 is set forth in SEQ ID NO:59.
  • the amino acid sequence encoded by Plasmid 1353 is set for in SEQ ID NO:60.
  • Plasmid 1354 (Muc1-EMC2A-cMSLN-T2A-Tert342). Plasmid 1354 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human Mucin-1 amino acids 2-225, 946-1255, an EMCV 2A peptide, and the human mesothelin precursor were amplified by PCR from plasmid 1313 with primers f pmed Nhe Muc and r T2A Bamh cMSLN.
  • the genes encoding a TAV 2A peptide and human telomerase amino acids 342-1132 were amplified by PCR from plasmid 1326 with primers f1 T2A Tert d342, f2 T2A, and r pmed Bgl Ter240.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1354 is set forth in SEQ ID NO:61.
  • the amino acid sequence encoded by Plasmid 1354 is set for in SEQ ID NO:62.
  • Plasmid 1355 (cMSLN-EMC2A-Muc1-ERB2A-Tert342). Plasmid 1355 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human mesothelin precursor amino acids 37-597, an EMCV 2A peptide, and human Mucin-1 were amplified by PCR from plasmid 1316 with primers f pmed Nhe cMSLN and r ERB2A Bamh Muc.
  • the genes encoding an ERBV 2A peptide, and human telomerase amino acids 342-1132 were amplified by PCR from plasmid 1326 with primers f1 ERBV2A Ter d342, f2 ERBV2A, and r pmed Bgl Ter240.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the open reading frame nucleotide sequence of Plasmid 1355 is set forth in SEQ ID NO:63.
  • the amino acid sequence encoded by Plasmid 1355 is set for in SEQ ID NO:64.
  • Plasmid 1356 (cMSLN-T2A-Tert342-ERB2A-Muc1). Plasmid 1356 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding human mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN, r2 T2A, and r T2A Bamh cMSLN.
  • the genes encoding a TAV 2A peptide, human telomerase amino acids 342-1132, an ERBV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from plasmid 1271 with primers f1 T2A Tert d342 and r pmed Bgl Muc.
  • the partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning.
  • the resulting clone #3 contained an unintended single base mutation. To correct the mutation, PCR and Seamless cloning were repeated using clone #3 as the template.
  • the genes encoding human mesothelin precursor amino acids 37-597, a TAV 2A peptide, and the amino terminal half of human telomerase were amplified by PCR from clone #3 with primers f pmed Nhe cMSLN and r tert 1602-1579.
  • the genes encoding the carboxy terminal half of telomerase, an ERBV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from clone #3 with primers f tert 1584-1607 and r pmed Bgl Muc.
  • Plasmid 1356 The open reading frame nucleotide sequence of Plasmid 1356 is set forth in SEQ ID NO:65.
  • the amino acid sequence encoded by Plasmid 1356 is set for in SEQ ID NO:66.
  • Vectors for expressing single or multi-antigen constructs were constructed from chimpanzee adenovirus Ad68 genomic sequences. Three versions of the AdC68 backbone without transgenes (called “empty vectors”) were designed in silico. The vectors differed only in the extent of the E1 and E3 deletions that were engineered into the viruses to render them replication incompetent and create space for transgene insertion.
  • Vectors AdC68W and AdC68 ⁇ were described in international patent application WO2015/063647A1.
  • Vector AdC68Y carrying deletions of bases 456-3256 and 27476-31831, was engineered to have improved growth properties over AdC68X and a greater transgene carrying capacity than AdC68W.
  • mice Twelve mixed gender HLA-A2/DR1 mice were primed on day 0 and boosted on day 14 with DNA construct Plasmid 1027 (which encodes the membrane-bound immunogenic MUC1 polypeptide of SEQ ID NO:8) or Plasmid 1197 (which encodes the cytosolic immunogenic MUC1 polypeptide of SEQ ID NO:16) using the PMED method.
  • mice were sacrificed and splenocytes assessed for MUC1-specific cellular immunogenicity in an interferon-gamma (IFN- ⁇ ) ELISpot and intracellular cytokine staining (ICS) assay.
  • IFN- ⁇ interferon-gamma
  • ICS intracellular cytokine staining
  • PMED Particle Mediated Epidermal Delivery
  • the PMED system involves the precipitation of DNA onto microscopic gold particles that are then propelled by helium gas into the epidermis.
  • the ND10 a single use device, uses pressurized helium from an internal cylinder to deliver gold particles and the X15, a repeater delivery device, uses an external helium tank which is connected to the X15 via high pressure hose to deliver the gold particles. Both of these devices were used in studies to deliver the MUC1 DNA plasmids.
  • the gold particle was usually 1-3 ⁇ m in diameter and the particles were formulated to contain 2 ⁇ g of antigen DNA plasmids per 1 mg of gold particles.
  • IFN- ⁇ ELISpot assay Splenocytes from individual animals were co-incubated in triplicate with individual Ag-specific peptides (each peptide at 2-10 ug/ml, 2.5-5e5 cells per well) or pools of 15mer Ag-specific peptides (overlapping by 11 amino acids, covering the entire Ag-specific amino acid sequence; each peptide at 2-5 ug/ml, 1.25-5e5 cells per well) in IFN- ⁇ ELISPOT plates (see also Peptide Pools Table (Table 18), and Tables 15-17). The plates were incubated for ⁇ 16 hours at 37° C., 5% CO 2 , then washed and developed, as per manufacturer's instruction.
  • the number of IFN- ⁇ spot forming cells (SFC) was counted with a CTL reader. The average of the triplicates was calculated and the response of the negative control wells, which contained no peptides, subtracted. The SFC counts were then normalized to describe the response per 1e6 splenocytes.
  • the antigen-specific responses in the tables represent the sum of the responses to the Ag-specific peptides or peptide pools.
  • ICS assay Splenocytes from individual animals were co-incubated with H-2b-, HLA-A2-, or HLA-A24-restricted Ag-specific peptides (each peptide at 5-10 ug/ml, 1-2e6 splenocytes per well) or pools of 15mer Ag-specific peptides (overlapping by 11 amino acids, covering the entire Ag-specific amino acid sequence; each peptide at 2-5 ug/ml, 1-2e6 splenocytes per well) in U-bottom 96-well-plate tissue culture plates (see also Peptide Pools Table (Table 18) and Tables 15-17). The plates were incubated ⁇ 16 hours at 37° C., 5% CO 2 .
  • the cells were then stained to detect intracellular IFN- ⁇ expression from CD8 + T cells and fixed. Cells were acquired on a flow cytometer. The data was presented per animal as frequency of peptide(s) Ag- or peptide pool Ag-specific IFN- ⁇ + CD8 + T cells after subtraction of the responses obtained in the negative control wells, which contained no peptide.
  • Sandwich ELISA assay The standard sandwich ELISA assay was done using the Tecan Evo, Biomek Fx P , and BioTek 405 Select TS automation instruments. The 384 well microplates (flat-well, high binding) were coated at 25 ⁇ l/well with 1.0 ⁇ g/mL human MUC1 or human MSLN protein (antigen) in 1 ⁇ PBS, and incubated overnight at 4° C. The next morning, plates were blocked for one hour at RT with 5% FBS in PBS with 0.05% Tween 20 (PBS-T). Mouse sera was prepared at a 1/100 starting dilution in PBS-T in 96 U-bottom well plates.
  • the Tecan Evo performed 1 ⁇ 2 log serial dilutions in PBS-T over 9 dilution increment points, followed by stamping of 25 ⁇ l/well of diluted serum from the 96 well plates to 384 well plates.
  • the 384 well plates were incubated for 1 hour at RT on a shaker at 600 RPM, then, using the BioTek EL 405 Select TS plate washer, the plates were washed 4 times in PBS-T.
  • Secondary mouse anti-IgG-HRP antibody was diluted to an appropriate dilution and stamped by Biomek Fx P at 25 ⁇ l/well into 384 well plates, and incubated for 1 hour at RT on a shaker at 600 RPM, followed by 5 repeated washes.
  • Table 1 shows ELISpot and ICS data from HLA-A2/DR1 splenocytes cultured with peptide pools derived from the MUC1 peptide library (see also tables 15 and 18) or MUC1 peptide aa516-530, respectively.
  • Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MUC1 peptide pools, and background subtraction.
  • Numbers in column 4 represent the frequency of CD8 + T cells being IFN- ⁇ + after restimulation with MUC1 peptide aa516-530 and background subtraction.
  • a positive response is defined as having SFC>100 and a frequency of IFN- ⁇ + CD8 + T cells >0.05%.
  • the immunogenic MUC1 polypeptides made with the full-length membrane-bound (Plasmid 1027) and cytosolic (Plasmid 1197) MUC1 constructs described in Example 1A above are capable of inducing MUC1-specific T cell responses including HLA-A2-restricted MUC1 peptide aa516-530-specific CD8 + T cell responses.
  • the cytosolic MUC1 antigen format induced the highest magnitude of T cell responses.
  • T cell responses derived from cancer patients against the MUC1 peptide aa516-530 have been shown to correlate with anti-tumor efficacy in vitro (Jochems C et al., Cancer Immunol Immunother (2014) 63:161-174) demonstrating the importance of raising cellular responses against this specific epitope.
  • mice were primed on day 0 and boosted on days 14, 28 and 42 with DNA construct Plasmid 1027 by PMED administration. On day 21, mice were sacrificed and splenocytes assessed for MUC1-specific cellular immunogenicity (ELISpot).
  • ELISpot MUC1-specific cellular immunogenicity
  • Table 2 shows ELISpot data from HLA-A24 splenocytes cultured with peptide pools derived from the MUC1 peptide library (see also Peptide Pools Table (Table 18) and Table 15). Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MUC1 peptide pools and background subtraction. The number in bold font indicates that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated. A positive response is defined as having SFC>100. As shown in Table 2, membrane-bound MUC1 construct is capable of inducing MUC1-specific cellular responses.
  • PBMCs from individual animals were co-incubated in duplicate with pools of 15mer Ag-specific peptides (overlapping by 11 amino acids, covering the entire Ag-specific amino acid sequence), each peptide at 2 ug/ml, 4e5 cells per well, in IFN- ⁇ ELISPOT plates (see also Peptide Pools Table (Table 18) and Tables 15-17).
  • the plates were incubated for ⁇ 16 hours at 37° C., 5% CO 2 , then washed and developed, as per manufacturer's instruction.
  • the number of IFN- ⁇ spot forming cells (SFC) was counted with a CTL reader. The average of the duplicates was calculated and the response of the negative control wells, which contained no peptides, subtracted.
  • the SFC counts were then normalized to describe the response per 1e6 PBMCs.
  • the antigen-specific responses in the tables represent the sum of the responses to the Ag-specific peptide pools.
  • ICS assay PBMCs from individual animals were co-incubated with pools of 15mer MUC1 peptides (overlapping by 11 amino acids, covering the entire native full-length MUC1 amino acid sequence, see Table 15), each peptide at 2 ug/mL, 1.5-2e6 PBMCs per well, in U-bottom 96-well-plate tissue culture plates. The plates were incubated for ⁇ 16 hours at 37° C., 5% CO 2 , and then stained to detect intracellular IFN- ⁇ expression from CD8 T cells. After fixation, the cells were acquired on a flow cytometer.
  • results are presented per individual animal as number of MUC1, MSLN, or TERT-specific IFN- ⁇ + CD8 + T cells after subtraction of the responses obtained in the negative control wells, which contained no peptide, and normalized to 1e6 CD8 + T cells.
  • Sandwich ELISA assay The standard sandwich ELISA assay was done using the Tecan Evo, Biomek Fx P , and BioTek 405 Select TS automation instruments. The 384 well microplates (flat-well, high binding) were coated at 25 ⁇ l/well with 1.0 ⁇ g/mL human MUC1 or human MSLN protein (antigen) in 1 ⁇ PBS, and incubated overnight at 4° C. The next morning, plates were blocked for one hour at RT with 5% FBS in PBS with 0.05% Tween 20 (PBS-T). Sera from Chinese cynomolgus macaques was prepared at a 1/100 starting dilution in PBS-T in 96 U-bottom well plates.
  • the Tecan Evo performed 1 ⁇ 2 log serial dilutions in PBS-T over 9 dilution increment points, followed by stamping of 25 ⁇ l/well of diluted serum from the 96 well plates to 384 well plates.
  • the 384 well plates were incubated for 1 hour at RT on a shaker at 600 RPM, then, using the BioTek EL 405 Select TS plate washer, the plates were washed 4 times in PBS-T.
  • Table 3 shows the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the MUC1 peptide library (see also Peptide Pools Table (Table 18) and Table 15), and the ELISA data from Chinese cynomolgus macaques' sera. Numbers in column 3 represent #IFN- ⁇ spots/10 6 PBMCs after restimulation with MUC1 peptide pools and background subtraction. Numbers in column 4 represent #IFN- ⁇ + CD8 + T cells/10 6 CD8 + T cells after restimulation with MUC1 peptide pools and background subtraction.
  • a positive response is defined as having SFC>50, IFN- ⁇ + CD8 + T cells/1e6 CD8 + T cells >50, and IgG titers >99.
  • the immunogenic MUC1 polypeptides made with the cytosolic (1197) and native full-length membrane-bound (1027) MUC1 constructs are capable of inducing MUC1-specific T and B cell responses.
  • the native full-length membrane-bound MUC1 construct (1027) was shown to induce the overall best MUC1-specific cellular and humoral response.
  • mice Twelve female HLA-A2/DR1 mice were primed with an AdC68W adenovirus vector encoding the membrane-bound (Plasmid 1084) or cytosolic MSLN antigen (Plasmid 1103) at 1e10 viral particles by intramuscular injection (50 ul). 28 days later, animals were boosted with DNA single-antigen construct encoding an immunogenic MSLN polypeptide using PMED method as described in Example 2. The antigen-specific T cell response was measured seven days later in an IFN- ⁇ ELISPOT and ICS assay.
  • AdC68W adenovirus vector encoding the membrane-bound (Plasmid 1084) or cytosolic MSLN antigen (Plasmid 1103) at 1e10 viral particles by intramuscular injection (50 ul). 28 days later, animals were boosted with DNA single-antigen construct encoding an immunogenic MSLN polypeptide using PMED method as described in Example 2. The antigen-specific T cell response was measured seven days later in an IFN- ⁇
  • Table 4 shows ELISpot and ICS data from HLA-A2/DR1 splenocytes cultured with peptide pools derived from the MSLN peptide library (see also Peptide Pools Table (Table 18) and Table 16) or MSLN peptides aa50-64, aa102-116, and aa542-556, respectively.
  • Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MSLN peptide pools and background subtraction.
  • Numbers in column 4 represent the frequency of CD8 + T cells being IFN- ⁇ + after restimulation with MSLN peptides aa50-64, aa102-116 and aa542-556, and background subtraction.
  • a positive response is defined as having SFC>100 and a frequency of IFN- ⁇ + CD8 + T cells >0.05%.
  • the immunogenic MSLN polypeptides made with the membrane-bound (1084) and cytosolic (1103) MSLN constructs described in Example 1A above are capable of inducing MSLN-specific T cell responses.
  • the cytosolic MSLN antigen format induced the highest magnitude of MSLN-specific T cell responses.
  • Table 5 shows ELISpot and ICS data from HLA-A24 splenocytes cultured with peptide pools derived from the MSLN peptide library (see also Peptide Pools Table (Table 18) and Table 16) or MSLN peptides aa130-144 and aa230-244, respectively.
  • Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MSLN peptide pools and background subtraction.
  • Numbers in column 4 represent the frequency of CD8 + T cells being IFN- ⁇ + after restimulation with MSLN peptides aa130-144 and aa230-244, and background subtraction.
  • a positive response is defined as having SFC>100 and a frequency of IFN- ⁇ + CD8 + T cells >0.05%.
  • the immunogenic MSLN polypeptides made with the membrane-bound (1084) and cytosolic MSLN (1103) constructs are capable of inducing MSLN-specific T cell responses.
  • the cytosolic MSLN antigen format induced the highest magnitude of MSLN-specific T cell responses.
  • Table 6 shows the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the MSLN peptide library (see also Peptide Pools Table (Table 18) and Table 16), and the ELISA data from Chinese cynomolgus macaques' sera.
  • Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MSLN peptide pools and background subtraction.
  • Numbers in column 4 represent #IFN- ⁇ + CD8 + T cells/10 6 CD8 + T cells after restimulation with MSLN peptide pools and background subtraction.
  • a positive response is defined as having SFC>50, IFN- ⁇ + CD8 + T cells/1e6 CD8 + T cells >50, and IgG titers >99.
  • the immunogenic MSLN polypeptides made with the membrane-bound (1084) and cytosolic (1103) MSLN constructs are capable of inducing MSLN-specific T and B cell responses.
  • the cytoplasmic MSLN construct (Plasmid 1103) was shown to induce the strongest MSLN-specific cellular response; in contrast, the membrane-bound MSLN construct (Plasmid 1084) was shown to induce the strongest MSLN-specific humoral response.
  • mice Six mixed gender HLA-A2/DR1 mice were primed with an AdC68W adenovirus vector encoding the truncated (A240) cytosolic immunogenic TERT polypeptide (Plasmid 1112) at 1e10 viral particles by intramuscular injection (50 ul). 28 days later, animals were boosted intramuscularly with 50 ug DNA delivered bilaterally via electroporation (2 ⁇ 20 ul) encoding the truncated (A240) cytosolic TERT antigen (Plasmid 1112). The antigen-specific T cell response was measured seven days later in an IFN- ⁇ ELISPOT and ICS assay.
  • AdC68W adenovirus vector encoding the truncated (A240) cytosolic immunogenic TERT polypeptide (Plasmid 1112) at 1e10 viral particles by intramuscular injection (50 ul). 28 days later, animals were boosted intramuscularly with 50 ug DNA delivered bilaterally via electroporation (2 ⁇ 20
  • Table 7 shows ELISpot and ICS data from HLA-A2/DR1 splenocytes cultured with peptide pools derived from the TERT peptide library (see also Peptide Pools Table (Table 18) and Table 17) or TERT peptide aa861-875, respectively.
  • Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with TERT peptide pools and background subtraction.
  • Numbers in column 4 represent the frequency of CD8 + T cells being IFN- ⁇ + after restimulation with TERT peptide aa861-875 and background subtraction.
  • a positive response is defined as having SFC>100 and a frequency of IFN- ⁇ + CD8 + T cells >0.05%.
  • the immunogenic TERT polypeptide made with the truncated (A240) cytosolic TERT construct described in Example 1A above is capable of inducing HLA-A2-restricted TERT-specific CD8 T cell responses.
  • mice Eight mixed gender HLA-A24 mice were primed with an AdC68W adenovirus vector encoding the truncated (A240) cytosolic TERT antigen (Plasmid 1112) at 1e10 viral particles total by bilateral intramuscular injection (50 ul into each tibialis anterior muscle). 14 days later, animals were boosted intramuscularly with 50 ug DNA delivered bilaterally via electroporation (2 ⁇ 20 ul) encoding the truncated (A240) cytosolic TERT antigen (Plasmid 1112). The antigen-specific T cell response was measured seven days later in an IFN- ⁇ ELISPOT and ICS assay.
  • AdC68W adenovirus vector encoding the truncated (A240) cytosolic TERT antigen (Plasmid 1112) at 1e10 viral particles total by bilateral intramuscular injection (50 ul into each tibialis anterior muscle). 14 days later, animals were boosted intramuscularly with 50
  • Table 8 shows IFN- ⁇ ELISpot and ICS data from HLA-A24 splenocytes cultured with peptide pools derived from the TERT peptide library (see also Peptide Pools Table (Table 18) and Table 17) or TERT peptide aa841-855), respectively.
  • Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with TERT peptide pools and background subtraction.
  • Numbers in column 4 represent the frequency of CD8 + T cells being IFN- ⁇ + after restimulation with TERT peptides aa841-855, and background subtraction. The number in bold font indicates that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated.
  • a positive response is defined as having SFC>100 and a frequency of IFN- ⁇ + CD8 + T cells >0.1%.
  • the immunogenic TERT polypeptide made with the truncated ( ⁇ 240) cytosolic TERT (1112) construct is capable of inducing HLA-A24-restricted TERT-specific CD8 + T cell responses.
  • Table 9 shows the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the TERT peptide library (see also Peptide Pools Table (table 18) and Table 17). Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with TERT peptide pools and background subtraction. Numbers in column 4 represent #IFN- ⁇ + CD8 + T cells/10 6 CD8 + T cells after restimulation with TERT peptide pools and background subtraction. A positive response is defined as having SFC>50 and IFN- ⁇ + CD8 + T cells/1e6 CD8 + T cells >50. As shown in Table 9, the immunogenic TERT polypeptide made with the truncated ( ⁇ 240) cytosolic (Plasmid 1112) TERT construct is capable of inducing TERT-specific T cell responses.
  • MUC1-2A-TERT ⁇ 240 (Plasmid 1270), an AdC68W vector and DNA plasmid encoding MUC1 and TERT linked by a 2A peptide
  • TERT ⁇ 240 -2A-MUC1 (Plasmid 1271), an AdC68W vector and DNA plasmid encoding TERT and MUC1 linked by a 2A peptide
  • MUC1-TERT ⁇ 240 (Plasmid 1269), an AdC68W vector and DNA plasmid encoding the MUC1-TERT fusion protein (see also Example 1B).
  • Table 10 shows the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the MUC1 and TERT peptide libraries (see also Peptide Pools Table (Table 18) and Tables 15 and 17), and the ELISA data from Chinese cynomolgus macaques' sera.
  • a positive response is defined as having SFC>50, IFN- ⁇ + CD8 + T cells/1e6 CD8 + T cells >50, and IgG titers >99. Numbers in columns 3 and 6 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MUC1 and TERT peptide pools and background subtraction, respectively.
  • Numbers in bold font indicates that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated.
  • Numbers in columns 4 and 7 represent #IFN- ⁇ + CD8 + T cells/10 6 CD8 #T cells after restimulation with MUC1 peptide pools and TERT peptide pools, respectively, and background subtraction.
  • the immunogenic MUC1 and TERT polypeptides made with the MUC1- and TERT-expressing dual-antigen constructs are capable of inducing MUC1- and TERT-specific T cell responses, and MUC1-specific B cell responses.
  • the dual-antigen construct 1269 encoding a MUC1-TERT fusion protein was shown to induce the strongest overall MUC1-specific cellular response; in contrast, dual-antigen construct Plasmid 1271 (TERT-2A-MUC1) was shown to induce the strongest overall TERT-specific cellular response. All three dual-antigen constructs were shown to induce a comparable MUC1-specific humoral response.
  • Example 6 illustrates the capability of triple-antigen adenoviral and nucleic acid constructs expressing the human native full-length membrane-bound MUC1 antigen (MUC1), human cytosolic MSLN antigen (cMSLN), and human truncated ( ⁇ 240) cytosolic TERT antigen (TERT ⁇ 240 or TERT ⁇ 541 ) to elicit Ag-specific T and B cell responses to all three encoded cancer antigens.
  • MUC1 human native full-length membrane-bound MUC1 antigen
  • cMSLN human cytosolic MSLN antigen
  • ⁇ 240 human truncated cytosolic TERT antigen
  • mice 48 female C57BL/6J mice were immunized with triple-antigen DNA constructs encoding human MUC1, cMSLN, and TERT ⁇ 240 .
  • the triple-antigen DNA construct 100 ug was delivered intramuscularly bilaterally (20 ul total into each tibialis anterior muscle) with concomitant electroporation in a prime/boost regimen, two weeks apart between each vaccination.
  • MUC1-, MSLN-, and TERT-specific cellular responses, and MUC1- and MSLN-specific humoral responses were measured 7 days after the last immunization in an IFN- ⁇ ELISpot assay and ELISA assay, respectively.
  • MUC1-2A-cMSLN-2A-TERT ⁇ 240 (Plasmid 1317), MUC1-2A-TERT ⁇ 240 -2A-cMSLN (Plasmid 1318), cMSLN-2A-MUC1-2A-TERT ⁇ 240 (Plasmid 1319), cMSLN-2A-TERT ⁇ 240 -2A-MUC1 (Plasmid 1320), TERT ⁇ 240 -2A-cMSLN-2A-MUC1 (Plasmid 1321), TERT ⁇ 240 -2A-MUC1-2A-cMSLN (Plasmid 1322) (see also Example 1C).
  • Table 11 shows the ELISpot data from C57BL/6J splenocytes cultured with peptide pools derived from the MUC1, MSLN, and TERT peptide libraries (see also Peptide Pools Table (Table 18) and Tables 15-17), and the ELISA data from C57BL/6J mouse sera.
  • a positive response is defined as having SFC>100 and IgG titers >99.
  • Numbers in columns 3, 5 and 7 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MUC1, MSLN and TERT peptide pools and background subtraction, respectively. Numbers in bold font indicates that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated.
  • O.D Optical Density
  • L.O.D Limit of Detection
  • the immunogenic MUC1, MSLN, and TERT polypeptides made with the MUC1-, MSLN-, and TERT-expressing triple-antigen constructs are capable of inducing T cell responses against all three antigens, and B cell responses against MUC1; in contrast, only triple-antigen constructs Plasmids 1317, 1318, and 1322 are capable of inducing B cell responses against MSLN.
  • MUC1-, MSLN-, and TERT-specific cellular responses were measured 7 days after the last immunization in an IFN- ⁇ ELISpot and ICS assay, and an ELISA assay, respectively.
  • MUC1-2A-cMSLN-2A-TERT ⁇ 240 (Plasmid 1317), cMSLN-2A-MUC1-2A-TERT ⁇ 240 (Plasmid 1319), cMSLN-2A-TERT ⁇ 240 -2A-MUC1 (Plasmid 1320), and MUC1-2A-cMSLN-2A-TERT ⁇ 541 (Plasmid 1351), cMSLN-2A-MUC1-2A-TERT ⁇ 541 (Plasmid 1352), cMSLN-2A-TERT ⁇ 541 -2A-MUC1 (Plasmid 1353) (see
  • Table 12 shows the ELISpot data from C57BL/6J splenocytes cultured with peptide pools derived from the MUC1, MSLN, and TERT peptide libraries (see also Peptide Pools Table (Table 18) and Tables 15-17), the ICS data from C57BL/6J splenocytes cultured with TERT peptide aa1025-1039, and the ELISA data from C57BL/6J mouse sera.
  • a positive response is defined as having SFC>100, a frequency of IFN- ⁇ + CD8 + T cells >0.1%, and IgG titers >99.
  • Numbers in columns 3, 5, and 7 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MUC1, MSLN and TERT peptide pools, and background subtraction, respectively. Numbers in bold font indicate that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated.
  • Numbers in column 8 represent #IFN- ⁇ + CD8 + T cells/10 6 CD8 + T cells after restimulation with TERT-specific peptide TERT aa1025-1039, and background subtraction.
  • the immunogenic MUC1, MSLN, and TERT polypeptides made with MUC1-, MSLN-, and TERT-expressing triple-antigen constructs are capable of inducing T cell responses against all three antigens, and B cell responses against MUC1; in contrast, only triple-antigen constructs 1317 and 1351 are capable of inducing B cell responses against MSLN.
  • HLA-A24 mice were primed with an adenoviral AdC68Y triple-antigen construct (Plasmid 1317; MUC1-2A-cMSLN-2A-TERT ⁇ 240 ) encoding human MUC1, cMSLN, and TERT ⁇ 240 at 1e10 viral particles by intramuscular injection (50 ul into each tibialis anterior muscle). 14 days later, animals were boosted intramuscularly with 50 ug triple-antigen DNA construct (Plasmid 1317) encoding the same three antigens (20 ul delivered into each tibialis anterior muscle with concomitant electroporation). HLA-A24-restricted MUC1-specific cellular responses were measured 7 days after the last immunization in an IFN- ⁇ ELISpot assay.
  • adenoviral AdC68Y triple-antigen construct (Plasmid 1317; MUC1-2A-cMSLN-2A-TERT ⁇ 240 ) encoding human MUC1, cMSL
  • Table 13 shows the ELISpot data from HLA-A24 splenocytes cultured with the MUC1 peptide aa524-532. A positive response is defined as having SFC>50. Numbers in column 3 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MUC1 peptide aa524-532 and background subtraction. As shown in Table 13, the immunogenic MUC1 polypeptides made with the MUC1-, MSLN-, and TERT-expressing triple-antigen construct 1317 are capable of inducing HLA-A24-restricted MUC1 peptide aa524-532-specific CD8′ T cell responses.
  • T cell responses derived from cancer patients against this specific MUC1 peptide have been shown to correlate with anti-tumor efficacy in vitro (Jochems C et al., Cancer Immunol Immunother (2014) 63:161-174) demonstrating the importance of raising cellular responses against this specific epitope.
  • mice 21 days after the last immunization, animals were bled and PBMCs and serum isolated to assess MUC1-, MSLN-, and TERT-specific cellular (ELISpot, ICS) and MUC1- and MSLN-specific humoral (ELISA) responses, respectively.
  • ELISpot, ICS TERT-specific cellular
  • ELISA humoral
  • MUC1-2A-cMSLN-2A-TERT ⁇ 240 (Plasmid 1317), cMSLN-2A-MUC1-2A-TERT ⁇ 240 (Plasmid 1319), and cMSLN-2A-TERT ⁇ 240 -2A-MUC1 (Plasmid 1320).
  • Tables 14A, 14B, and 14C show the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the MUC1, MSLN, and TERT peptide libraries (see also Peptide Pools Table (Table 18) and Tables 15-17), and the ELISA data from Chinese cynomolgus macaques' sera.
  • a positive response is defined as having SFC>50, IFN- ⁇ + CD8 + T cells/1e6 CD8 + T cells >50, and IgG titers >99.
  • Numbers in columns 3, 6, and 9 represent #IFN- ⁇ spots/10 6 splenocytes after restimulation with MUC1, MSLN, and TERT peptide pools, and background subtraction, respectively. Numbers in bold font indicate that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated. Numbers in columns 4, 7, and 10 represent #IFN- ⁇ + CD8 + T cells/10 6 CD8 + T cells after restimulation with MUC1, MSLN, and TERT peptide pools, respectively, and background subtraction.
  • O.D Optical Density
  • L.O.D Limit of Detection
  • Table 14 the immunogenic MUC1, MSLN, and TERT polypeptides made with MUC1-, MSLN-, and TERT-expressing triple-Ag constructs are capable of inducing cellular responses against all three antigens, and humoral responses against MUC1. However, only triple-antigen construct 1317 is able to induce significant MSLN-specific B cell responses.
  • MUC1 116 sequential 15-mer peptides, overlapping by 11 amino acids, covering amino acids 1-224 and 945-1255 of the MUC1 precursor protein of SEQ ID NO:1 (amino acid sequence of SEQ ID NO:8)
  • MSLN 153 sequential 15-mer peptides, overlapping by 11 amino acids, covering the entire MSLN precursor protein sequence of SEQ ID NO:2.
  • TERT 221 sequential 15-mer peptides, overlapping by 11 amino acids, covering the TERT ⁇ 240 protein sequence of SEQ ID NO:10 (amino acids 239-1132 of SEQ ID NO:3 (total 894 amino acids, (excluding the first 238 amino acids of the native full-length TERT recursor protein of SEQ ID NO:3)
  • CTLA4 anti-Cytotoxic T-Lymphocyte Antigen
  • IDO1 indoleamine 2,3-dioxygenase 1
  • mice were implanted on study day 0 with TUBO tumor cells by subcutaneous injection. Mice were dosed with 200 mg/Kg of 3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (IDO1 inhibitor) or vehicle twice daily from study day 7 using oral gavage. Comparator groups were sham dosed with vehicle from study day 7 onwards. Appropriated mice were immunized on study day 10 with 1e10 Viral Particles of an adenovirus vector engineered to express rat HER2 (rHER2) (rHER2 vaccine) or vector lacking the rHER2 transgene (control vaccine), by intramuscular injection.
  • rHER2 rat HER2
  • control vaccine the rHER2 transgene
  • mice were immunized with 100 ug of a DNA plasmid encoding rHER2 (rHER2 vaccine) or a DNA plasmid lacking the rHER2 transgene (control vaccine) by electroporation.
  • an anti-CTLA4 antibody murine monoclonal antibody to CTLA-4, clone 9D9
  • IgG2 isotype control monoclonal antibody was injected subcutaneously in close proximity to lymph nodes draining the site of adenovirus vector injection. Every two weeks thereafter, mice were immunized with 100 ug of a DNA plasmid encoding rHER2 (rHER2 vaccine) or a DNA plasmid lacking the rHER2 transgene (control vaccine) by electroporation.
  • Subcutaneous tumor volumes of individual animals in each treatment group are presented in Tables 20-A-20-H.
  • mice treated with the anti-CTLA4 antibody alone or with the IDO1 inhibitor alone No effect on tumor growth rates was observed in mice treated with the anti-CTLA4 antibody alone or with the IDO1 inhibitor alone. However, slower growth rates were observed in some of the animals treated with the rHER2 vaccine alone. Mice treated with the rHER2 vaccine in combination with the anti-CTLA4 antibody and mice treated with the rHER2 vaccine in combination with the IDO1 inhibitor had reduced tumor growth rates compared to the corresponding control animals. Tumor growth inhibition was most pronounced in mice treated with the rHER2 vaccine, the anti-CTLA4 antibody, and the IDO1 inhibitor.
  • MUC1 Isoform 1 protein (Reference Polypeptide; Uniprot P15941-1) (human) SEQ ID NO: 1 MTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTS SVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPA HDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTA PPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRP APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRP APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRP APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGST
  • Encephalomyocarditis Virus (EMCV) 2A Nucleotide sequence: SEQ ID NO: 67 ggatccggcagaatcttcaacgcccactacgccggctacttcgccgacctgctgatccacgacatcgagacaaaccctg gcccc Encephalomyocarditis Virus (EMCV) 2A Amino acid sequence: SEQ ID NO: 68 GSGRIFNAHYAGYFADLLIHDIETNPGP Thosea Asigna Virus (TAV) 2A Nucleotide sequence: SEQ ID NO: 69 ggatccggcgagggcagaggcagcctgctgacatgtggcgacgtggaagagaaccctggccccc Thosea Asigna Virus (TAV) 2A Amino acid sequence: SEQ ID NO: 70 GSGEGRGSLLTCGDVEENPGP Equine Rh

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Reproductive Health (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present disclosure provides (i) isolated immunogenic TAA polypeptides (i.e., an immunogenic MUC1 polypeptides, an immunogenic MSLN polypeptides, and an immunogenic TERT polypeptides), (ii) isolated nucleic acid molecules encoding one or more immunogenic TAA polypeptides, (iii) compositions comprising an immunogenic TAA polypeptide or an isolated nucleic acid molecule encoding an immunogenic TAA polypeptide, and (iv) methods relating to uses of the polypeptides, nucleic acid molecules, and compositions.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application No. 62/280,636 filed Jan. 19, 2016 and U.S. Provisional Application No. 62/419,190 filed Nov. 8, 2016. The entire content of each of the foregoing applications is incorporated herein by reference.
  • REFERENCE TO SEQUENCE LISTING
  • This application is being filed along with a sequence listing in electronic format. The sequence listing is provided as a file in .txt format entitled “PC71855A_SeqList_ST25.txt”, created on Nov. 8, 2016, and having a size of 751 KB. The sequence listing contained in the .txt file is part of the specification and is herein incorporated by reference in its entity.
  • FIELD OF THE INVENTION
  • The present invention relates generally to immunotherapy and specifically to vaccines and methods for treating or preventing neoplastic disorders.
  • BACKGROUND OF THE INVENTION
  • Cancers are a leading cause of mortality worldwide. They may occur in a variety of organs, such as pancreas, ovaries, breasts, lung, colon, and rectum. Pancreatic cancers are the fourth most common cause of cancer deaths in the United States. Pancreatic cancers may occur in the exocrine or endocrine component of the pancreas. Exocrine cancers include (1) pancreatic adenocarcinoma, which is by far the most common type, (2) acinar cell carcinoma, which represents 5% of exocrine pancreatic cancers, (3) cystadenocarcinomas, which account for 1% of pancreatic cancers, and (4) other rare forms of cancers, such as pancreatoblastoma, adenosquamous carcinomas, signet ring cell carcinomas, hepatoid carcinomas, colloid carcinomas, undifferentiated carcinomas, and undifferentiated carcinomas with osteoclast-like giant cells.
  • Ovarian cancer accounts for about 3% of cancers among women, but it causes more deaths than any other cancer of the female reproductive system. Ovarian cancers include (1) epithelial cancers, such as epithelial ovarian carcinomas, (2) germ cell cancers, such as immature teratomas, and (3) stromal cancers, such as granulosa cell tumors.
  • Breast cancer is the second most common cancer among American women and the second leading cause of cancer death in women. Breast cancers can be classified based on the hormone receptors and HER2/neu status, such as (1) hormone receptor-positive cancers (where the cancer cells contain either estrogen receptors or progesterone receptors), (2) hormone receptor-negative cancers (where the cancer cells don't have either estrogen or progesterone receptors), (3) HER2/neu positive (wherein cancers that have excessive HER2/neu protein or extra copies of the HER2/neu gene), (4) HER2/neu negative cancers (where the cancers don't have excess HER2/neu), (5) triple-negative cancers (wherein the breast cancer cells have neither estrogen receptors, nor progesterone receptors, nor excessive HER2), and (6) triple-positive cancers (where the cancers are estrogen receptor-positive, progesterone receptor-positive, and have too much HER2).
  • Lung cancer accounts for more than a quarter of all cancer deaths and is by far the leading cause of cancer death among both men and women. The most common type of lung cancers is non-small cell lung cancers (NSCLC), which account for about 85% to 90% of lung cancers. NSCLC may be further classified into several subtypes, such as squamous cell (epidermoid) carcinoma, adenocarcinoma, large cell (undifferentiated) carcinoma, adenosquamous carcinoma, and sarcomatoid carcinoma. The second common type of lung cancer is small cell lung cancer (SCLC), which accounts for about 10% to 15% of all lung cancers.
  • Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States when both men and women are combined. Adenocarcinoma is the most common type of CRC, which accounts for more than 95% of colorectal cancers. Other less common types of CRC include Carcinoid tumors, gastrointestinal stromal tumors (GISTs), lymphomas, and sarcomas.
  • Gastric cancer is the third most common cause of cancer-related death in the world. It remains difficult to cure, primarily because most patients present with advanced disease. In the United States, gastric cancer is currently the 15th most common cancer. About 90-95% of gastric cancers are adenocarcinomas; other less common types include lymphoma (4%), GISTs, and carcinoid tumors (3%).
  • Traditional regimens of cancer management have been successful in the management of a selective group of circulating and solid cancers. However, many types of cancers are resistant to traditional approaches. In recent years, immunotherapy for cancers has been explored, particularly cancer vaccines and antibody therapies. One approach of cancer immunotherapy involves the administering an immunogen to generate an active systemic immune response towards a tumor-associated antigen (TAA) on the target cancer cell. While a large number of tumor-associated antigens have been identified and many of these antigens have been explored as viral-, bacterial-, protein-, peptide-, or DNA-based vaccines for the treatment or prevention of cancers, most clinical trials so far have failed to produce a therapeutic product. Therefore, there exists a need for immunogens that may be used in the treatment or prevention of cancers.
  • The present disclosure relates to immunogens derived from the tumor-associated antigens MUC1, mesothelin, and TERT, nucleic acid molecules encoding the immunogens, and compositions comprising such immunogens or nucleic acids.
  • The human mucin 1 (MUC1; also known as episialin, PEM, H23Ag, EMA, CA15-3, and MCA) is a polymorphic transmembrane glycoprotein expressed on the apical surfaces of simple and glandular epithelia. The MUC1 gene encodes a single polypeptide chain precursor that includes a signal peptide sequence. Immediately after translation the signal peptide sequence is removed and the remaining portion of the MUC1 precursor is further cleaved into two peptide fragments: the longer N-terminal subunit (MUC1-N or MUC1a) and the shorter C-terminal subunit (MUC1-C or MUC1P). The mature MUC1 comprises a MUC1-N and a MUC1-C associated through stable hydrogen bonds. MUC1-N, which is an extracellular domain, contains 25 to 125 variable number tandem repeats (VNTR) of 20 amino acid residues. MUC1-C contains a short extracellular region (approximately 53 amino acids), a transmembrane domain (approximately 28 amino acid), and a cytoplasmic tail (approximately 72 amino acids). The cytoplasmic tail of MUC1 (MUC1-CT) contains highly conserved serine and tyrosine residues that are phosphorylated by growth factor receptors and intracellular kinases. Human MUC1 exists in multiple isoforms resulting from different types of MUC1 RNA alternative splicing. The amino acid sequence of full length human MUC1 isoform 1 protein precursor (isoform 1, Uniprot P15941-1) is provided in SEQ ID NO: 1 (“MUC1 Isoform 1 Reference Polypeptide”). At least 16 other isoforms of human MUC-1 have been reported so far (Uniprot P15941-2 through P15941-17), which include various insertions, deletions, or substitutions as compared to the sequence of isoform 1. These isoforms are known as isoform 2, 3, 4, 5, 6, Y, 8, 9, F, Y-LSP, S2, M6, ZD, T10, E2, and J13 (Uniprot P15941-2 through P15941-17, respectively). The full length human MUC1 isoform 1 precursor protein consists of 1255 amino acids, which includes a signal peptide sequence at amino acids 1-23. The MUC1-N and MUC1-C domains of the mature MUC1 protein consist of amino acids 24-1097 and 1098-1255, respectively.
  • Mesothelin (also known as MSLN) is a membrane-bound glycoprotein present on the surface of cells lining the pleura, peritoneum and pericardium, and is overexpressed in several human tumors, including mesothelioma, ovarian, and pancreatic adenocarcinoma. The Mesothelin gene encodes a 71-kilodalton (kDa) precursor protein that is processed to a 40-kDa Mesothelin protein and a secreted megakaryocyte potentiating factor (MPF) protein (Chang, et al, Proc Natl Acad Sci USA (1996) 93:136-40). Alternative splicing of MSLN gene results in at least four mesothelin isoforms. The amino acid sequences of isoform 1 (Uniprot Q13421-1), isoform 2 (Uniprot Q13421-3), isoform 3 (Uniprot Q13421-2), and isoform 4 (Uniprot Q13421-4) are available at Uniprot (www.uniprot.org). The amino acid sequence of full length human MSLN isoform 2 precursor protein (Uniprot identifier Q13421-3), which consists of 622 amino acids, is provided in SEQ ID N0:2 (“Mesothelin Precursor Isoform 2 Reference Polypeptide”). The cytoplasmic portion of MSLN comprises amino acid residues 37 to 597 of SEQ ID N0:2 Isoform 2 is the major form of MSLN. Isoform 1, which consists of 630 amino acids, differs from isoform 2 by having an insertion of 8 amino acids (PQAPRRPL) at position 409 of the isoform 2 sequence. Isoform 3 has an alternative C terminus (at positions 593-622 of isoform 2) while isoform 4 has a deletion of amino acid 44, as compared with isoform 2. Isoform 2 is initially translated as a 622-amino acid precursor, which comprises a signal peptide sequence (amino acids 1-36) at the N-terminus and a GPI-anchor sequence at the C-terminus. The signal peptide sequence and the GPI-anchor sequence may be cleaved off in the mature mesothelin.
  • Telomerase reverse transcriptase (or TERT) is the catalytic component of the telomerase, which is a ribonucleoprotein polymerase responsible for maintaining telomere ends by addition of the telomere repeat TTAGGG. In addition to TERT, telomerase also includes an RNA component which serves as a template for the telomere repeat. Human TERT gene encodes an 1132 amino acid protein. Several isoforms of human TERT exist, which result from alternative splicing. The amino acid sequences of isoform 1, isoform 2, isoform 3, and isoform 4 are available at Uniprot (<www.uniprot.org>; Uniprot identifiers 014746-1, 014746-2, 014746-3, and 014746-4, respectively). The amino acid sequence of human full length TERT isoform 1 protein (isoform 1, Genbank AAD30037, Uniprot 014746-1) is also provided herein in SEQ ID NO:3 (“TERT Isoform 1 Reference Polypeptide”). As compared with TERT isoform 1 (014746-1), isoform 2 (014746-2) has replacement of amino acids 764-807 (STLTDLQPYM . . . LNEASSGLFD→LRPVPGDPAG . . . AGRAAPAFGG) and deletion of C-terminal amino acids 808-1132), isoform 3 (014746-3) has deletion of amino acids 885-947, and isoform 4 (014746-4) has deletions of amino acids 711-722 and 808-1132, and replacement of amino acids 764-807 (STLTDLQPYM . . . LNEASSGLFD→LRPVPGDPAG . . . AGRAAPAFGG).
  • SUMMARY OF THE INVENTION
  • In some aspects, the present disclosure provides isolated immunogenic polypeptides which comprise amino acid sequences of one or more human TAA selected from MUC1, MSLN, and TERT. The immunogenic polypeptides are useful, for example, in eliciting an immune response in vivo in a subject or for use as a component in vaccines for treating cancer.
  • In other aspects, the present disclosure provides nucleic acid molecules that encode an immunogenic polypeptide provided by the present disclosure. In some embodiments, the present disclosure provides multi-antigen nucleic acid constructs that each encode two, three, or more immunogenic polypeptides.
  • The disclosure also provides vectors containing one or more nucleic acid molecules of the invention. The vectors are useful for cloning or expressing the immunogenic TAA polypeptides encoded by the nucleic acid molecules, or for delivering the nucleic acid molecules in a composition, such as a vaccine, to a host cell or to a host animal or a human.
  • In some further aspects, the present disclosure provides compositions comprising one or more immunogenic TAA polypeptides, isolated nucleic acid molecules encoding immunogenic TAA polypeptides, or vectors or plasmids containing nucleic acid molecules encoding immunogenic TAA polypeptides. In some embodiments, the composition is an immunogenic composition useful for eliciting an immune response against a TAA in a subject, such as a mouse, dog, monkey, or human. In some embodiments, the composition is a vaccine composition useful for immunization of a mammal, such as a human, for inhibiting abnormal cell proliferation, for providing protection against the development of cancer (used as a prophylactic), or for treatment of disorders (used as a therapeutic) associated with TAA over-expression, such as cancer, particularly pancreatic, ovarian, and triple-negative breast cancer. In still other aspects, the present disclosure provides methods of using the immunogenic TAA polypeptides, isolated nucleic acid molecules, and compositions comprising an immunogenic TAA polypeptide or isolated nucleic acid molecules described herein above. In some embodiments, the present disclosure provides a method of eliciting an immune response against a TAA in a subject, particularly a human, comprising administering to the subject an effective amount of a polypeptide provided by the invention that is immunogenic against the target TAA, an effective amount of an isolated nucleic acid molecule encoding such an immunogenic polypeptide, or a composition comprising such an immunogenic TAA polypeptide or an isolated nucleic acid molecule encoding such an immunogenic TAA polypeptide. The polypeptides, nucleic acids, or compositions comprising the polypeptide or nucleic acid may be used together with one or more adjuvants or immune modulators.
  • DETAILED DESCRIPTION OF THE INVENTION A. Definitions
  • The term “adjuvant” refers to a substance that is capable of enhancing, accelerating, or prolonging an immune response elicited by an immunogen.
  • The term “agonist” refers to a substance which promotes (induces, causes, enhances or increases) the activity of another molecule (such as a receptor). The term “agonist” encompasses substances which bind a receptor and substances which promote receptor function without binding thereto.
  • The term “antagonist” or “inhibitor” refers to a substance that partially or fully blocks, inhibits, or neutralizes a biological activity of another molecule or a receptor.
  • The term “co-administration” refers to administration of two or more agents to the same subject during a treatment period. The two or more agents may be encompassed in a single formulation and thus be administered simultaneously. Alternatively, the two or more agents may be in separate physical formulations and administered separately, either sequentially or simultaneously to the subject. The term “administered simultaneously” or “simultaneous administration” means that the administration of the first agent and that of a second agent overlap in time with each other, while the term “administered sequentially” or “sequential administration” means that the administration of the first agent and that of a second agent do not overlap in time with each other.
  • The term “cytosolic” or “cytoplasmic” means that after a nucleotide sequence encoding a particular polypeptide is expressed by a host cell, the expressed polypeptide is expected to be retained inside the host cell.
  • The term “degenerate variant” refers to a polynucleotide that differs in the nucleotide sequence from the reference polynucleotide but encodes the same polypeptidesequence as encoded by the reference polynucleotide. Most of the 20 natural amino acids that are components of proteins or peptides are specified by more than one codon. For instance, the codons CGU, CGC, CGA, CGG, AGA, and AGG all encode the amino acid arginine. Thus, at every position where an arginine is specified within a protein-encoding sequence, the codon can be altered to any of the corresponding codons described without altering the amino acid sequence of the encoded protein. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given polypeptide.
  • The term “effective amount” refers to an amount administered to a subject that is sufficient to cause a desired effect in the subject.
  • The term “fragment” of a given polypeptide refers to a polypeptide that is shorter than the given polypeptide and shares 100% identity with the sequence of the given polypeptide.
  • The term “functional variant” of an immunogenic TAA polypeptide refers to a polypeptide that comprises from 90% to 110% of the number of amino acids of the reference immunogenic TAA polypeptide, has lower than 100% but higher than 95% identity to the amino acid sequence of the reference TAA polypeptide, and possess the same or similar immunogenic properties of the reference immunogenic TAA polypeptide.
  • The term “identical” refers to two or more nucleic acids, or two or more polypeptides, that share the exact same sequence of nucleotides or amino acids, respectively. The term “percent identity” describes the level of similarity between two or more nucleic acids or polypeptides. When two sequences are aligned by bioinformatics software, “percent identity” is calculated by multiplying the number of exact nucleotide/amino acid matches between the sequences by 100, and dividing by the length of the aligned region, including gaps. For example, two 100-amino acid long polypeptides that exhibit 10 mismatches when aligned would be 90% identical.
  • The term “immune-effector-cell enhancer” or “IEC enhancer” refers to a substance capable of increasing or enhancing the number, quality, and/or function of one or more types of immune effector cells of a subject. Examples of immune effector cells include cytolytic CD8 T cells, CD4 T cells, NK cells, and B cells.
  • The term “immune modulator” refers to a substance capable of altering (e.g., inhibiting, decreasing, increasing, enhancing or stimulating) the working or function of any component of the innate, humoral, or cellular immune system of a subject. Thus, the term “immune modulator” encompasses the “immune-effector-cell enhancer” as defined herein and the “immune-suppressive-cell inhibitor” as defined herein, as well as substance that affects any other components of the immune system of a subject.
  • The term “immune response” refers to any detectable response to a particular substance (such as an antigen or immunogen) by the immune system of a host vertebrate animal, including, but not limited to, innate immune responses (e.g., activation of Toll-like receptor signaling cascade), cell-mediated immune responses (e.g., responses mediated by T cells, such as antigen-specific T cells, and non-specific cells of the immune system), and humoral immune responses (e.g., responses mediated by B cells, such as generation and secretion of antibodies into the plasma, lymph, and/or tissue fluids). Examples of immune responses include an alteration (e.g., increase) in Toll-like receptor activation, lymphokine (e.g., cytokine (e.g., Th1, Th2 or Th17 type cytokines) or chemokine) expression or secretion, macrophage activation, dendritic cell activation, T cell (e.g., CD4+ or CD8+ T cell) activation, NK cell activation, B cell activation (e.g., antibody generation and/or secretion), binding of an immunogen (e.g., antigen, immunogenic polypeptide) to an MHC molecule, induction of a cytotoxic T lymphocyte (“CTL”) response, induction of a B cell response (e.g., antibody production), and expansion (e.g., growth of a population of cells) of cells of the immune system (e.g., T cells and B cells), and increased processing and presentation of antigen by antigen presenting cells. The term “immune response” also encompasses any detectable response to a particular substance (such as an antigen or immunogen) by one or more components of the immune system of a vertebrate animal in vitro.
  • The term “immunogen” refers to a substance that is immunogenic.
  • The term “immunogenic” refers to the ability of a substance upon administration to a subject (such as a human) to cause, elicit, stimulate, or induce an immune response, or to improve, enhance, increase or prolong a pre-existing immune response, against a particular antigen in the subject, whether alone or when linked to a carrier, in the presence or absence of an adjuvant.
  • The term “immunogenic composition” refers to a composition that is immunogenic.
  • The term “immunogenic MUC1 polypeptide” refers to a polypeptide that is immunogenic against a human native MUC1 protein or against cells expressing the human native MUC1 protein. The polypeptide may have the same amino acid sequence as that of a human native MUC1 protein or display one or more mutations as compared to the amino acid sequence of a human native MUC1 protein.
  • The term “immunogenic MSLN polypeptide” refers to a polypeptide that is immunogenic against a human native MSLN protein or against cells expressing human native MSLN protein. The polypeptide may have the same amino acid sequence as that of a human native MSLN protein or displays one or more mutations as compared to the amino acid sequence of a human native MSLN protein.
  • The term “immunogenic TERT polypeptide” refers to a polypeptide that is immunogenic against a human native TERT protein or against cells expressing a human native TERT protein. The polypeptide may have the same amino acid sequence as that of a human native TERT protein or displays one or more mutations as compared to the amino acid sequence of a human native TERT protein.
  • The term “immunogenic TAA polypeptide” refers to an “immunogenic MSLN polypeptide,” an “immunogenic MUC1 polypeptide, or an “immunogenic TERT polypeptide,” each as defined herein above.
  • The term “immunogenic MUC1 nucleic acid molecule” refers to a nucleic acid molecule that encodes an “immunogenic MUC1 polypeptide” as defined herein.
  • The term “immunogenic MSLN nucleic acid molecule” refers to a nucleic acid molecule that encodes an “immunogenic MSLN polypeptide” as defined herein.
  • The term “immunogenic TERT nucleic acid molecule” refers to a nucleic acid molecule that encodes an “immunogenic TERT polypeptide” as defined herein.
  • The term “immunogenic TAA nucleic acid molecule” refers to a nucleic acid molecule that encodes an “immunogenic MUC1 polypeptide,” an “immunogenic MSLN polypeptide, or an “immunogenic TERT polypeptide” as defined herein above.
  • The term “immune-suppressive-cell inhibitor” or “ISC inhibitor” refers to a substance capable of reducing and/or suppressing the number and/or function of immune suppressive cells of a subject. Examples of immune suppressive cells include regulatory T cells (“Tregs”), myeloid-derived suppressor cells, and tumor-associated macrophages.
  • The term “subject” refers to either a human or a non-human mammal. The term “mammal” refers to any animal species of the Mammalia class. Examples of mammals include: humans; non-human primates such as monkeys; laboratory animals such as rats, mice, guinea pigs; domestic animals such as cats, dogs, rabbits, cattle, sheep, goats, horses, and pigs; and captive wild animals such as lions, tigers, elephants, and the like.
  • The term “membrane-bound” means that after a nucleotide sequence encoding a particular polypeptide is expressed by a host cell, the expressed polypeptide is bound to, attached to, or otherwise associated with, the membrane of the cell.
  • The term “neoplastic disorder” refers to a condition in which cells proliferate at an abnormally high and uncontrolled rate, the rate exceeding and uncoordinated with that of the surrounding normal tissues. It usually results in a solid lesion or lump known as “tumor.” This term encompasses benign and malignant neoplastic disorders. The term “malignant neoplastic disorder”, which is used interchangeably with the term “cancer” in the present disclosure, refers to a neoplastic disorder characterized by the ability of the tumor cells to spread to other locations in the body (known as “metastasis”). The term “benign neoplastic disorder” refers to a neoplastic disorder in which the tumor cells lack the ability to metastasize.
  • The term “mutation” refers to deletion, addition, or substitution of amino acid residues in the amino acid sequence of a protein or polypeptide as compared to the amino acid sequence of a reference protein or polypeptide.
  • The term “operably linked” refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A control sequence “operably linked” to a transgene is ligated in such a way that expression of the transgene is achieved under conditions compatible with the control sequences.
  • The term “pharmaceutically composition” refers to a solid or liquid composition suitable for administration to a subject (e.g. a human patient) for eliciting a desired physiological, pharmacological, or therapeutic effect. In addition to containing one or more active ingredients, a pharmaceutical composition may contain one or more pharmaceutically acceptable excipients.
  • The term “pharmaceutically acceptable excipient” refers to a substance in an immunogenic, pharmaceutical, or vaccine composition, other than the active ingredients (e.g., the antigen, antigen-coding nucleic acid, immune modulator, or adjuvant) that is compatible with the active ingredients and does not cause significant untoward effect in subjects to whom it is administered.
  • The terms “peptide,” “polypeptide,” and “protein” are used interchangeably herein, and refer to a polymeric form of amino acids of any length, which can include coded and non-coded amino acids, chemically, or biochemically modified or derivatized amino acids, and polypeptides having modified polypeptide backbones.
  • The term “preventing” or “prevent” refers to (a) keeping a disorder from occurring or (b) delaying the onset of a disorder or onset of symptoms of a disorder.
  • The term “secreted” in the context of a polypeptide means that after a nucleotide sequence encoding the polypeptide is expressed by a host cell, the expressed polypeptide is secreted outside of the host cell.
  • The term “suboptimal dose” when used to describe the amount of an immune modulator, such as a protein kinase inhibitor, refers to a dose of the immune modulator that is below the minimum amount required to produce the desired therapeutic effect for the disease being treated when the immune modulator is administered alone to a patient. The term “treating,” “treatment,” or “treat” refers to abrogating a disorder, reducing the severity of a disorder, or reducing the severity or occurrence frequency of a symptom of a disorder.
  • The term “tumor-associated antigen” or “TAA refers to an antigen which is specifically expressed by tumor cells or expressed at a higher frequency or density by tumor cells than by non-tumor cells of the same tissue type. Tumor-associated antigens may be antigens not normally expressed by the host; they may be mutated, truncated, misfolded, or otherwise abnormal manifestations of molecules normally expressed by the host; they may be identical to molecules normally expressed but expressed at abnormally high levels; or they may be expressed in a context or milieu that is abnormal. Tumor-associated antigens may be, for example, proteins or protein fragments, complex carbohydrates, gangliosides, haptens, nucleic acids, or any combination of these or other biological molecules.
  • The term “vaccine” refers to an immunogenic composition for administration to a mammal (such as a human) for eliciting a protective immune response against a particular antigen or antigens. The primary active ingredient of a vaccine is the immunogen(s).
  • The term “vector” refers to a nucleic acid molecule, or a modified microorganism, that is capable of transporting or transferring a foreign nucleic acid molecule into a host cell. The foreign nucleic acid molecule is referred to as “insert” or “transgene.” A vector generally consists of an insert and a larger sequence that serves as the backbone of the vector. Based on the structure or origin of vectors, major types of vectors include plasmid vectors, cosmid vectors, phage vectors (such as lambda phage), viral vectors (such as adenovirus vectors), artificial chromosomes, and bacterial vectors.
  • B. Immunogenic Tumor-Associated-Antigen (TAA) Polypeptides
  • In some aspects, the present disclosure provides isolated immunogenic MUC1 polypeptides, TERT polypeptides, and MSLN polypeptides, which are useful, for example, for eliciting an immune response in a subject against MUC1, TERT, and MSLN, respectively, or for use as a component in vaccines for treating cancer, such as pancreatic, ovarian, and breast cancer, particularly triple-negative breast cancer.
  • These immunogenic TAA polypeptides can be prepared by methods known in the art in light of the present disclosure. The capability of the polypeptides to elicit an immune response can be measured in in vitro assays or in vivo assays. In vitro assays for determining the capability of a polypeptide or DNA construct to elicit immune responses are known in the art. One example of such in vitro assays is to measure the capability of the polypeptide or nucleic acid expressing a polypeptide to stimulate T cell response as described in U.S. Pat. No. 7,387,882, the disclosure of which is incorporated in this application. The assay method comprises the steps of: (1) contacting antigen presenting cells in culture with an antigen thereby the antigen can be taken up and processed by the antigen presenting cells, producing one or more processed antigens; (2) contacting the antigen presenting cells with T cells under conditions sufficient for the T cells to respond to one or more of the processed antigens; (3) determining whether the T cells respond to one or more of the processed antigens. The T cells used may be CD8+ T cells or CD4+ T cells. T cell response may be determined by measuring the release of one of more of cytokines, such as interferon-gamma and interleukin-2, and lysis of the antigen presenting cells (tumor cells). B cell response may be determined by measuring the production of antibodies.
  • B-1. Immunogenic MUC1 Polypeptides
  • In one aspect, the present disclosure provides isolated immunogenic MUC1 polypeptides derived from a human native MUC1, wherein the MUC1 polypeptides display one or more introduced mutations relative to the human native MUC1 protein. Examples of mutations include deletion of some, but not all, of the tandem repeats of 20 amino acids in the VNTR region of the MUC1 protein, deletion of the signal peptide sequence in whole or in part, and deletion of amino acids of non-consensus amino acid sequences found in the MUC1 isoforms. Thus, in some embodiments, the immunogenic MUC1 polypeptides provided by the present disclosure comprise (1) the amino acid sequence of 3 to 30 tandem repeats of 20 amino acids of a human MUC1 protein and (2) the amino acid sequences of the human MUC1 protein that flank the VNTR region. In some particular embodiments, the immunogenic MUC1 polypeptides comprise (1) the amino acid sequence of 5 to 25 tandem repeats of the human MUC1 and (2) the amino acid sequences of the human MUC1 protein that flank the VNTR region. In some further embodiments, the immunogenic MUC1 polypeptides are in cytoplasmic form (or “cMUC1”). The term “cytoplasmic form” refers to an immunogenic MUC1 polypeptide that lacks in whole or in part the secretory sequence (amino acids 1-23; also known as “signal peptide sequence”) of the human native MUC1 protein. The deletion of amino acids of the secretory sequence is expected to prevent the polypeptide from entering the secretory pathway as it is expressed in the cells. In some other embodiments, the immunogenic MUC1 polypeptides comprise the amino acid sequence of a membrane-bond form of the MUC1.
  • The immunogenic MUC1 polypeptides provided by the present disclosure may be derived, constructed, or prepared from the amino acid sequence of any of the human MUC1 isoforms known in the art or discovered in the future, including, for example, Uniprot isoforms 1, 2, 3, 4, 5, 6, Y, 8, 9, F, Y-LSP, S2, M6, ZD, T10, E2, and J13 (Uniprot P15941-1 through P15941-17, respectively). In some embodiments, the immunogenic MUC1 polypeptides comprise an amino acid sequence that is part of human MUC1 isoform 1 wherein the amino acid sequence of the human MUC1 isoform 1 is set forth in SEQ ID NO:1. In a specific embodiment, the immunogenic MUC1 polypeptide comprises amino acids 24-225 and 1098-1255 of the amino acid sequence of SEQ ID NO:1. In another specific embodiment, the immunogenic MUC1 polypeptide comprises amino acids 22-225 and 946-1255 of the amino acid sequence of SEQ ID NO:1. In some other specific embodiments, the immunogenic MUC1 polypeptide comprises, or consists of, the amino acid sequence selected from the group consisting of:
  • (1) the amino acid sequence of SEQ ID NO:8 (Plasmid 1027 polypeptide);
  • (2) an amino acid sequence comprising amino acids 4-537 of SEQ ID NO:8;
  • (3) an amino acid sequence comprising amino acids 24-537 of SEQ ID NO:8;
  • (4) the amino acid sequence of SEQ ID NO:16 (Plasmid 1197 polypeptide);
  • (5) an amino acid sequence comprising amino acids 4-517 of SEQ ID NO:16; and
  • (6) an amino acid sequence comprising amino acids 4-517 of SEQ ID NO:16, wherein in SEQ ID NO:16 the amino acid at positon 513 is T.
  • In some specific embodiments, the immunogenic MUC1 polypeptides comprise the amino acid sequence of SEQ ID NO:8 (Plasmid 1027 polypeptide) or SEQ ID NO:16 (Plasmid 1197 polypeptide).
  • B-2. Immunogenic MSLN Polypeptides
  • In one aspect, the present disclosure provides isolated immunogenic MSLN polypeptides derived from a human MSLN precursor by deletion of a portion or the entire signal peptide sequence of the MSLN precursor. Thus, the immunogenic MSLN polypeptides comprise the amino acid sequence of a native human MSLN precursor, wherein part or the entire signal peptide sequence of the MSLN precursor is absent. In some embodiments, part of, or the entire, GPI anchor sequence of the native human MSLN (i.e., amino acids 598-622 of SEQ ID NO:2) is also absent in the immunogenic MSLN polypeptide. As used herein, the term “human MSLN” encompasses any human MSLN isoform, such as isoform 1, 2, 3, or 4. In some particular embodiments, the human MSLN is human MSLN isoform 2.
  • In some particular embodiments, the isolated immunogenic MSLN polypeptide is selected from the group consisting of:
  • 1) a polypeptide comprising, or consisting of, amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • 2) a polypeptide comprising an amino acid sequence that is at least 90%, 95%, 98%, or 99% identical to the amino acid sequence consisting of amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • 3) a polypeptide comprising, or consisting of, the amino acid sequence of SEQ ID NO:6, or amino acids 4-564 of the amino acid sequence of SEQ ID NO:6; and
  • 4) a polypeptide comprising an amino acid sequence that has at least 93%-99%, 94%-98%, or 94%-97% identity to the amino acid sequence of SEQ ID NO:6 (“Plasmid 1103 Polypeptide”).
  • B-3. Immunogenic TERT Polypeptides
  • In another aspect, the present disclosure provides isolated immunogenic TERT polypeptides derived from a human TERT protein by deletion of up to 600 of the N-terminal amino acids of the TERT protein. Thus, in some embodiments, the immunogenic TERT polypeptides comprise the amino acid sequence of TERT isoform 1 set forth in SEQ ID NO:3, wherein up to about 600 amino acids from the N-terminus (amino terminus) of the amino acid sequence of TERT isoform 1 are absent. Any number of amino acids up to 600 from the N-terminus of the TERT isoform 1 may be absent in the immunogenic TERT polypeptide. For example, the N-terminal amino acids from position 1 through position 50, 100, 50, 200, 245, 300, 350, 400, 450, 500, 550, or 600 of the TERT isoform 1 of SEQ ID NO:3 may be absent from the immunogenic TERT polypeptide. Thus, an immunogenic TERT polypeptide provided by the present disclosure may comprise amino acids 51-1132, 101-1132, 151-1132, 201-1132, 251-1132, 301-1132, 351-1132, 401-1132, 451-1132, 501-1132, or 551-1132 of SEQ ID NO:3. The immunogenic TERT polypeptides may also be constructed from other TERT isoforms. Where the polypeptides are constructed from TERT isoforms with C-terminal truncations, however, it is preferred that fewer amino acids may be deleted from the N-terminus.
  • In some further embodiments, the immunogenic TERT polypeptide further comprises one or more amino acid mutations that inactivate the TERT catalytic domain. Examples of such amino acid mutations include substitution of aspartic acid with alanine at position 712 of SEQ ID NO:3 (D712A) and substitution of valine with isoleucine at position 713 of SEQ ID NO:3 (V7131). In some embodiments the immunogenic TERT polypeptide comprises both mutations D712A and V7131.
  • In some specific embodiments, the present disclosure provides an immunogenic TERT polypeptide selected from the group consisting of:
  • 1) a polypeptide comprising an amino acid sequence of SEQ ID NO:10 or amino acids 2-892 of SEQ ID NO:10 (“Plasmid 1112 Polypeptide”); or a functional variant of the polypeptide;
  • 2), a polypeptide comprising an amino acid sequence of SEQ ID NO:14 or amino acids 3-789 of SEQ ID NO:14 (“Plasmid 1326 Polypeptide”), or a functional variant of the polypeptide; and
  • 3) a polypeptide comprising an amino acid sequence of SEQ ID NO:12 or amino acids 4-591 of SEQ ID NO:12 (“Plasmid 1330 Polypeptide”), or a functional variant of the polypeptide.
  • C. Nucleic Acid Molecules Encoding Immunogenic TAA Polypeptides
  • In some aspects, the present disclosure provides nucleic acid molecules that each encode one, two, three, or more separate immunogenic TAA polypeptides that are provided by the present disclosure. The nucleic acid molecules can be deoxyribonucleotides (DNA) or ribonucleotides (RNA). Thus, a nucleic acid molecule can comprise a nucleotide sequence disclosed herein wherein thymidine (T) can also be uracil (U), which reflects the differences between the chemical structures of DNA and RNA. The nucleic acid molecules can be modified forms, single or double stranded forms, or linear or circular forms. The nucleic acid molecules can be prepared using methods known in the art light of the present disclosure.
  • C-1. Single-Antigen Constructs
  • In one aspect, the present disclosure provides an isolated nucleic acid molecule, which comprises a nucleotide sequence encoding a single immunogenic MUC1 polypeptide, a single immunogenic MSLN polypeptide, or a single immunogenic TERT polypeptide provided by the present disclosure. A nucleic acid molecule that encodes only one immunogenic TAA polypeptide, such as an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, or an immunogenic TERT, is also referred to herein as “single-antigen construct.”
  • C-1a. MUC1 Single Antigen Constructs
  • In some embodiments, the present disclosure provides isolated nucleic acid molecules that encode an immunogenic MUC1 polypeptide provided in the present disclosure. The immunogenic MUC1 polypeptide encoded by a nucleic acid molecule may be in cytoplasmic form (or cMUC1) or “membrane-bound form (or mMUC1). The term “membrane-bound form” refers to an immunogenic MUC1 polypeptide that, after being expressed from the coding nucleic acid by a host cell, is bound to, attached to, or otherwise associated with, the membrane of the host cell.
  • In some specific embodiments, the isolated nucleic acid molecules provided by the present disclosure comprise a nucleotide sequence that encodes an immunogenic MUC1 polypeptide selected from the group consisting of:
  • (1) an immunogenic MUC1 polypeptide comprising the amino acid sequence of SEQ ID NO:8 (Plasmid 1027 polypeptide);
  • (2) an immunogenic MUC1 polypeptide comprising amino acids 4-537 of SEQ ID NO:8;
  • (3) an immunogenic MUC1 polypeptide comprising amino acids 24-537 of SEQ ID NO:8;
  • (4) an immunogenic MUC1 polypeptide comprising the amino acid sequence of SEQ ID NO:16 (Plasmid 1197 polypeptide);
  • (5) an immunogenic MUC1 polypeptide comprising amino acids 4-517 of SEQ ID NO:16;
  • (6) an immunogenic MUC1 polypeptide comprising amino acids 4-517 of SEQ ID NO:16, with the proviso that the amino acid at positon 513 is T; and
  • (7) an immunogenic MUC1 polypeptide comprising amino acids 24-225 and 946-1255 of SEQ ID NO:1.
  • In some other specific embodiments, the isolated nucleic acid molecules provided by the present disclosure comprise a nucleotide sequence, or a degenerate variant thereof, selected from the group consisting of:
  • (1) the nucleotide sequence of SEQ ID NO:7 (Plasmid 1027);
  • (2) a nucleotide sequence comprising nucleotides 10-1611 of SEQ ID NO:7; (3) the nucleotide sequence of SEQ ID NO:15 (Plasmid 1197); and
  • (4) a nucleotide sequence comprising nucleotides 10-1551 of SEQ ID NO:15;
  • C-1b. MSLN Single Antigen Constructs
  • In some embodiments, the present disclosure provides isolated nucleic acid molecules that encode an immunogenic MSLN polypeptide provided in the present disclosure.
  • In some particular embodiments, the isolated nucleic acid molecule encodes an immunogenic MSLN polypeptide selected from the group consisting of:
  • 1) an immunogenic MSLN polypeptide comprising, or consisting of, amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • 2) an immunogenic MSLN polypeptide comprising an amino acid sequence that is at least 90%, 95%, 98%, or 99% identical to the amino acid sequence consisting of amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • 3) an immunogenic MSLN polypeptide comprising, or consisting of, the amino acid sequence of SEQ ID NO:6; and
  • 4) an immunogenic MSLN polypeptide comprising an amino acid sequence that has at least 93%-99%, 94%-98%, or 94%-97% identity to the amino acid sequence of SEQ ID NO:6 (“Plasmid 1103 Polypeptide”).
  • In some other specific embodiments, the isolated nucleic acid molecules provided by the present disclosure comprise a nucleotide sequence, or a degenerate variant thereof, selected from the group consisting of:
  • (1) the nucleotide sequence of SEQ ID NO:5; and
  • (2) a nucleotide sequence comprising nucleotides 10-1692 of SEQ ID NO:5.
  • C-1c. TERT Single Antigen Constructs
  • In some other embodiments, the present disclosure provides isolated nucleic acid molecules that encode an immunogenic TERT polypeptide provided in the present disclosure.
  • An immunogenic TERT polypeptide encoded by a nucleic acid provided by the represent disclosure may contain a deletion of maximum of 600 amino acids from the N-terminus of the amino acid sequence of TERT isoform 1. Generally, an immunogenic TERT polypeptide may be expected to possess stronger immunogenicity if it has deletion of fewer amino acids from the N-terminus of the TERT protein. The number of N-terminal amino acids that can be deleted from the TERT protein may be determined based on how the nucleic acid molecule encoding the polypeptide is intended to be used or delivered. For example, where the nucleic acid molecule is to be delivered using a particular viral vector, the deletion may be determined based on the capacity of the vector used.
  • In some embodiments, the immunogenic TERT polypeptides encoded by the nucleic acid molecules comprise one or more amino acid mutations that inactivate the TERT catalytic domain. Examples of such amino acid mutations include substitution of aspartic acid with alanine at position 712 of SEQ ID NO:3 (D712A) and substitution of valine with isoleucine at position 713 of SEQ ID NO:3 (V7131). In some embodiments the immunogenic TERT polypeptide comprises both mutations D712A and V7131.
  • In some specific embodiments, the isolated nucleic acid molecules encode an immunogenic TERT polypeptide selected from the group consisting of:
  • (1) an immunogenic TERT polypeptide comprising an amino acid sequence of SEQ ID NO:10 or amino acids 2-892 of SEQ ID NO:10 (“Plasmid 1112 Polypeptide”), or a functional variant of the polypeptide;
  • (2), an immunogenic TERT polypeptide comprising an amino acid sequence of SEQ ID NO:14 or amino acids 3-789 of SEQ ID NO:14 (“Plasmid 1326 Polypeptide” or a functional variant of the polypeptide; and
  • (3) an immunogenic TERT polypeptide comprising an amino acid sequence of SEQ ID NO:12 or amino acids 4-591 of SEQ ID NO:12 (“Plasmid 1330 Polypeptide”), or a functional variant of the polypeptide.
  • In some particular embodiments, the isolated nucleic acid molecules comprise a nucleotide sequence, or a degenerate variant thereof, selected from the group consisting of:
  • (1) the nucleotide sequence of SEQ ID NO:9 (TERT240);
  • (2) a nucleotide sequence comprising nucleotides 4-2679 of SEQ ID NO:9;
  • (3) the nucleotide sequence of SEQ ID NO:11 (TERT541);
  • (4) a nucleotide sequence comprising nucleotides 10-1782 of SEQ ID NO:11;
  • (5) the nucleotide sequence of SEQ ID NO:13 (TERT342); and
  • (6) a nucleotide sequence comprising nucleotides 7-2373 of SEQ ID NO:13.
  • C-2. Multi-Antigen Constructs
  • In another aspect, the present disclosure provides nucleic acid molecules that each encode two, three, or more different immunogenic TAA polypeptides. A nucleic acid molecule that encodes more than one immunogenic TAA polypeptide is also referred to as “multi-antigen construct,” “multi-antigen vaccine,” “multi-antigen plasmid,” and the like, in the present disclosure. A nucleic acid molecule that encodes two different immunogenic TAA polypeptides is also referred to as a “dual-antigen construct,” “dual antigen vaccine,” or “dual antigen plasmid,” etc., in this disclosure. A nucleic acid molecule that encodes three different immunogenic TAA polypeptides is also referred to as a “triple-antigen construct,” “triple-antigen vaccine,” or “triple-antigen plasmid” in this disclosure.
  • Multi-antigen constructs provided by the present disclosure can be prepared using various techniques known in the art in light of the disclosure. For example, a multi-antigen construct can be constructed by incorporating multiple independent promoters into a single plasmid (Huang, Y., Z. Chen, et al. (2008). “Design, construction, and characterization of a dual-promoter multigenic DNA vaccine directed against an HIV-1 subtype C/B’ recombinant.” J Acquir Immune Defic Syndr 47(4): 403-411; Xu, K., Z. Y. Ling, et al. (2011). “Broad humoral and cellular immunity elicited by a bivalent DNA vaccine encoding HA and NP genes from an H5N1 virus.” Viral Immunol 24(1): 45-56). The plasmid can be engineered to carry multiple expression cassettes, each consisting of a) a eukaryotic promoter for initiating RNA polymerase dependent transcription, with or without an enhancer element, b) a gene encoding a target antigen, and c) a transcription terminator sequence. Upon delivery of the plasmid to the transfected cell nucleus, transcription will be initiated from each promoter, resulting in the production of separate mRNAs, each encoding one of the target antigens. The mRNAs will be independently translated, thereby producing the desired antigens.
  • Multi-antigen constructs provided by the present disclosure can also be constructed through the use of viral 2A peptides (Szymczak, A. L. and D. A. Vignali (2005). “Development of 2A peptide-based strategies in the design of multicistronic vectors.” Expert Opin Biol Ther 5(5): 627-638; de Felipe, P., G. A. Luke, et al. (2006). “E unum pluribus: multiple proteins from a self-processing polyprotein.” Trends Biotechnol 24(2): 68-75; Luke, G. A., P. de Felipe, et al. (2008). “Occurrence, function and evolutionary origins of ‘2A-like’ sequences in virus genomes.” J Gen Virol 89(Pt 4): 1036-1042; Ibrahimi, A., G. Vande Velde, et al. (2009). “Highly efficient multicistronic lentiviral vectors with peptide 2A sequences.” Hum Gene Ther 20(8): 845-860; Kim, J. H., S. R. Lee, et al. (2011). “High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice.” PLoS One 6(4): e18556). These peptides, also called cleavage cassettes or CHYSELs (cis-acting hydrolase elements), are approximately 20 amino acids long with a highly conserved carboxy terminal D-V/I-EXNPGP motif (Table 19). These peptides are rare in nature, most commonly found in viruses such as Foot-and-mouth disease virus (FMDV), Equine rhinitis A virus (ERAV), Equine rhinitis B virus (ERBV), Encephalomyocarditis virus (EMCV), Porcine teschovirus (PTV), and Thosea asigna virus (TAV) (Luke, G. A., P. de Felipe, et al. (2008). “Occurrence, function and evolutionary origins of ‘2A-like’ sequences in virus genomes.” J Gen Virol 89(Pt 4): 1036-1042). With a 2A-based multi-antigen expression strategy, genes encoding multiple target antigens are linked together in a single open reading frame, separated by sequences encoding viral 2A peptides. The entire open reading frame can be cloned into a vector with a single promoter and terminator. Upon delivery of the constructs to a host cell, mRNA encoding the multiple antigens will be transcribed and translated as a single polyprotein. During translation of the 2A peptides, ribosomes skip the bond between the C-terminal glycine and proline. The ribosomal skipping acts like a cotranslational autocatalytic “cleavage” that releases the peptide sequences upstream of the 2A peptide from those downstream. The incorporation of a 2A peptide between two protein antigens may result in the addition of ˜20 amino acids onto the C-terminus of the upstream polypeptide and 1 amino acid (proline) to the N-terminus of downstream protein. In an adaptation of this methodology, protease cleavage sites can be incorporated at the N terminus of the 2A cassette such that ubiquitous proteases will cleave the cassette from the upstream protein (Fang, J., S. Yi, et al. (2007). “An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo.” Mol Ther 15(6): 1153-1159).
  • Another strategy for constructing the multi-antigen constructs provided by the present disclosure involves the use of an internal ribosomal entry site, or IRES. Internal ribosomal entry sites are RNA elements found in the 5′ untranslated regions of certain RNA molecules (Bonnal, S., C. Boutonnet, et al. (2003). “IRESdb: the Internal Ribosome Entry Site database.” Nucleic Acids Res 31(1): 427-428). They attract eukaryotic ribosomes to the RNA to facilitate translation of downstream open reading frames. Unlike normal cellular 7-methylguanosine cap-dependent translation, IRES-mediated translation can initiate at AUG codons far within an RNA molecule. The highly efficient process can be exploited for use in multi-cistronic expression vectors (Bochkov, Y. A. and A. C. Palmenberg (2006). “Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location.” Biotechniques 41(3): 283-284, 286, 288). Typically, two transgenes are inserted into a vector between a promoter and transcription terminator as two separate open reading frames separated by an IRES. Upon delivery of the constructs to a host cell, a single long transcript encoding both transgenes will be transcribed. The first open reading frame (ORF) will be translated in the traditional cap-dependent manner, terminating at a stop codon upstream of the IRES. The second ORF will be translated in a cap-independent manner using the IRES. In this way, two independent proteins can be produced from a single mRNA transcribed from a vector with a single expression cassette.
  • In some aspects, the present disclosure provides a dual-antigen construct comprising two coding nucleotide sequences, wherein each of the coding nucleotide sequences encodes an individual immunogenic TAA polypeptide. The structure of such a dual-antigen construct is shown in formula (I):

  • TAA1-SPACER1-TAA2  (1),
  • wherein in formula (I):
  • (i) TAA1 and TAA2 are nucleotide sequences each encoding an immunogenic TAA polypeptides selected from the group consisting of an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, wherein TAA1 and TAA 2 encode different immunogenic TAA polypeptides; and
  • (ii) SPACER1 is a spacer nucleotide sequence, or may be absent.
  • In some embodiments, the present disclosure provides a dual-antigen construct of formula (I), wherein in formula (I) TAA1 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide, and TAA2 is a nucleotide sequence encoding an immunogenic MSLN polypeptide or immunogenic TERT polypeptide.
  • In some other embodiments, the present disclosure provides a dual-antigen construct of formula (I), wherein in formula (I) TAA1 is a nucleotide sequence encoding an immunogenic MSLN polypeptide, and TAA2 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide or immunogenic TERT polypeptide.
  • In some further embodiments, the present disclosure provides a dual-antigen construct of formula (I), wherein in formula (I) TAA1 is a nucleotide sequence encoding an immunogenic TERT polypeptide, and TAA2 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide or immunogenic MSLN polypeptide.
  • In some specific embodiments, the present disclosure provides a dual-antigen construct of a formula selected from a group consisting of:

  • (1) MUC1-2A-TERT  (II)

  • (2) MUC1-2A-MSLN  (III)

  • (3) MSLN-2A-TERT  (IV)

  • (4) MSLN-2A-MUC1  (V)

  • (5) TERT-2A-MSLN  (VI)

  • (6) TERT-2A-MUC1  (VII)
  • wherein in each of formulas (II)-(VII): (i) MUC1, MSLN, and TERT represent a nucleotide sequence encoding an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, respectively, and (ii) 2A is a nucleotide sequence encoding a 2A peptide.
  • In some other aspects, the present disclosure provides a triple-antigen construct comprising three coding nucleotide sequences wherein each of the coding nucleotide sequences expresses a different individual immunogenic TAA polypeptide. The structure of a triple-antigen construct is shown in formula (VIII):

  • TAA1-SPACER1-TAA2-SPACER2-TAA3  (VIII)
  • wherein in formula (VIII):
  • (i) TAA1, TAA2, and TAA3 are each a nucleotide sequence encoding an immunogenic TAA polypeptide selected from the group consisting of an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, wherein TAA1, TAA2, and TAA3 encode different immunogenic TAA polypeptides; and
  • (ii) SPACER1 and SPACER2 are each a spacer nucleotide sequence, wherein (a) SPACER1 and SPACER2 may be the same or different and (b) either SPACER1 or SPACER2 or both SPACER1 and SPACER2 may be absent.
  • The term “spacer nucleotide sequence” as used in the present disclosure refers to a nucleotide sequence that is inserted between two coding sequences or transgenes in an open reading frame of a nucleic acid molecule and functions to allow co-expression or translation of two separate gene products from the nucleic acid molecule. Examples of spacer nucleotide sequences that may be used in the multi-antigen constructs provided by the present disclosure include eukaryotic promoters, nucleotide sequences encoding a 2A peptide, and internal ribosomal entry sites (IRES). Examples of 2A peptides include foot-and-mouth disease virus 2A peptide (FMD2A), equine rhinitis A virus 2A peptide (ERA2A), Equine rhinitis B virus 2A peptide (ERB2A), encephalomyocarditis virus 2A peptide (EMC2A), porcine teschovirus 2A peptide (PT2A), and Thosea asigna virus 2A peptide (T2A). The sequences of these 2A peptides are provided in Table 19.
  • In some embodiments, SPACER1 and SPACER2 are, independently, a nucleotide sequence encoding a 2A peptide, or a nucleotide sequence encoding GGSGG.
  • In some embodiments, the present disclosure provides a triple-antigen construct of formula (VIII), wherein in formula (VIII) (i) TAA1 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide, (ii) TAA2 is a nucleotide sequence encoding an immunogenic MSLN polypeptide, and (iii) TAA3 is a nucleotide sequence encoding an immunogenic TERT polypeptide.
  • In some other embodiments, the present disclosure provides a triple-antigen construct of formula (VIII), wherein in formula (VIII) (i) TAA1 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide, (ii) TAA2 is a nucleotide sequence encoding an immunogenic TERT polypeptide, and (iii) TAA3 is a nucleotide sequence encoding an immunogenic MSLN polypeptide.
  • In some other embodiments, the present disclosure provides a triple-antigen construct of formula (VIII), wherein in formula (VIII) (i) TAA1 is a nucleotide sequence encoding an immunogenic MSLN polypeptide, (ii) TAA2 is a nucleotide sequence encoding an immunogenic TERT polypeptide, and (iii) TAA3 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide.
  • In some other embodiments, the present disclosure provides a triple-antigen construct of formula (VIII), wherein in formula (VIII) (i) TAA1 is a nucleotide sequence encoding an immunogenic MSLN polypeptide, (ii) TAA2 is a nucleotide sequence encoding an immunogenic MUC1 polypeptide, and (iii) TAA3 is a nucleotide sequence encoding an immunogenic TERT polypeptide.
  • In some specific embodiments, the present disclosure provides a triple-antigen construct of a formula selected from the group consisting of:

  • (1) MUC1-2A-MSLN-2A-TERT  (IX)

  • (2) MUC1-2A-TERT-2A-MSLN  (X)

  • (3) MSLN-2A-MUC1-2A-TERT  (XI)

  • (4) MSLN-2A-TERT-2A-MUC1  (XII)

  • (5) TERT-2A-MUC1-2A-MSLN  (XIII)

  • (6) TERT-2A-MSLN-2A-MUC1  (XIV)
  • wherein in each of formulas (IX)-(XIV: (i) MUC1, MSLN, and TERT represent a nucleotide sequence encoding an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, respectively, and (ii) 2A is a nucleotide sequence encoding a 2A peptide.
  • The immunogenic MSLN polypeptide encoded by a multi-antigen construct may be a full length MSLN protein or a fragment thereof, such as a cytoplasmic, secreted, or membrane-bound fragment. In some embodiments the multi-antigen construct comprises a nucleotide sequence encoding an immunogenic MSLN polypeptide selected from the group consisting of:
  • 1) a polypeptide comprising, or consisting of, amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • 2) a polypeptide comprising an amino acid sequence that is at least 90%, 95%, 98%, or 99% identical to the amino acid sequence consisting of amino acids 37-597 of the amino acid sequence of SEQ ID NO:2;
  • 3) a polypeptide comprising, or consisting of, the amino acid sequence of SEQ ID NO:6, or amino acids 4-564 of the amino acid sequence of SEQ ID NO:6; and
  • 4) polypeptide comprising an amino acid sequence that has at least 93%-99%, 94%-98%, or 94%-97% identity to the amino acid sequence of SEQ ID NO:8 (“Plasmid 1103 Polypeptide”).
  • In some particular embodiments the multi-antigen construct comprises a nucleotide sequence of SEQ ID NO:5 or a degenerate variant thereof.
  • The immunogenic MUC1 polypeptide encoded by a multi-antigen construct may comprise (1) an amino acid sequence of 3 to 30 tandem repeats of 20 amino acids of a human MUC1 protein and (2) the amino acid sequences of the human MUC1 protein that flank the VNTR region. In some embodiments the multi-antigen construct comprises a nucleotide sequence encoding an immunogenic MUC1 polypeptide, wherein the immunogenic MUC1 polypeptide comprises, or consists of, the amino acid sequence selected from the group consisting of:
  • (1) the amino acid sequence of SEQ ID NO:8 (Plasmid 1027 polypeptide);
  • (2) an amino acid sequence comprising amino acids 4-537 of SEQ ID NO:8;
  • (3) an amino acid sequence comprising amino acids 24-537 of SEQ ID NO:8;
  • (4) the amino acid sequence of SEQ ID NO:16 (Plasmid 1197 polypeptide);
  • (5) an amino acid sequence comprising amino acids 4-517 of SEQ ID NO:16; and
  • (6) an amino acid sequence comprising amino acids 4-517 of SEQ ID NO:16, with the proviso that the amino acid at positon 513 is T.
  • In some particular embodiments, the multi-antigen construct comprises a nucleotide sequence of SEQ ID NO:7, a nucleotide sequence of SEQ ID NO:15, or a degenerate variant of the nucleotide sequence of SEQ ID NO:7 or 15.
  • The immunogenic TERT polypeptide encoded by a multi-antigen construct may be the full length protein or any truncated form. The full length TERT protein is expected to generate stronger immune responses than a truncated form. However, depending on the specific vector chosen to deliver the construct, the vector may not have the capacity to carry the gene encoding the full TERT protein. Therefore, deletions of some amino acids from the protein may be made such that the transgenes would fit into a particular vector. The deletions of amino acids can be made from the N-terminus, C-terminus, or anywhere in the sequence of the TERT protein. Additional deletions may be made in order to remove the nuclear localization signal, thereby rendering the polypeptides cytoplasmic, increasing access to cellular antigen processing/presentation machinery.
  • In some embodiments, the amino acids up to position 200, 300, 400, 500, or 600 of the N-terminus of the TERT protein are absent from the immunogenic TERT polypeptides. Mutations of additional amino acids may be introduced in order to inactivate the TERT catalytic domain. Examples of such mutations include D712A and V713T.
  • In some further embodiments, the multi-antigen construct comprises a nucleotide sequence encoding an immunogenic TERT polypeptide, wherein the immunogenic TERT polypeptide comprises, or consist of, an amino acid sequence selected from the group consisting of;
  • 1) the amino acid sequence of SEQ ID NO:10 (“Plasmid 1112 Polypeptide”; TERT 240);
  • 2) the amino acid sequence of SEQ ID NO:12 (“Plasmid 1330 Polypeptide”; TERT 541); and
  • 3) the amino acid sequence of SEQ ID NO: 14 (“Plasmid 1326 Polypeptide”; TERT 343).
  • In some particular embodiments, the multi-antigen construct comprises the nucleotide sequence of SEQ ID NO:9, 11, or 13, or a degenerate variant of the nucleotide sequence of SEQ ID NO:9, 11, or 13.
  • In some particular embodiments, the present disclosure provides a dual antigen construct encoding an immunogenic MUC1 polypeptide and an immunogenic MSLN polypeptide, which comprises a nucleotide sequence selected from the group consisting of:
  • (1) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:18, 20, 22, or 24;
  • (2) the nucleotide sequence of SEQ ID NO:17, 19, 21, or 23; and
  • (3) a degenerate variant of the nucleotide sequence of SEQ ID NO:17, 19, 21, or 23.
  • In some other particular embodiments, the present disclosure provides a dual antigen construct encoding an immunogenic MUC1 polypeptide and an immunogenic TERT polypeptide, which comprises a nucleotide sequence selected from the group consisting of:
  • (1) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:26, 28, 30, 32, or 34;
  • (2) a nucleotide sequence of SEQ ID NO:25, 27, 29, 31, or 33; and
  • (3) a degenerate variant of the nucleotide sequence of SEQ ID NO:25, 27, 29, 31, or 33.
  • In some other particular embodiments, the present disclosure provides a dual antigen construct encoding an immunogenic MSLN polypeptide and an immunogenic TERT polypeptide, which comprises a nucleotide sequence selected from the group consisting of:
  • (1) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:36, 38, 40, or 42;
  • (2) the nucleotide sequence of SEQ ID NO:35, 37, 39, or 41; and
  • (3) a degenerate variant of the nucleotide sequence of SEQ ID NO:35, 37, 39, or 41.
  • In some other particular embodiments, the present disclosure provides a triple-antigen construct encoding an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, which comprises a nucleotide sequence selected from the group consisting of:
  • (1) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, or 66;
  • (2) the nucleotide sequence of SEQ ID NO:43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, or 65; and
  • (3) a degenerate variant of the nucleotide sequence of SEQ ID NO: 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, or 65.
  • D. Vectors Containing a Nucleic Acid Molecule Encoding an Immunogenic TAA Polypeptide
  • Another aspect of the invention relates to vectors containing one or more of any of the nucleic acid molecules provided by the present disclosure, including single antigen constructs, dual-antigen constructs, triple-antigen constructs, and other multi-antigen constructs. The vectors are useful for cloning or expressing the immunogenic TAA polypeptides encoded by the nucleic acid molecules, or for delivering the nucleic acid molecule in a composition, such as a vaccine, to a host cell or to a host subject, such as a human. In some particular embodiments, the vector comprises a triple-antigen construct encoding an immunogenic MUC1 polypeptide, an immunogenic MSLN polypeptide, and an immunogenic TERT polypeptide, wherein the triple-antigen construct which comprises a nucleotide sequence selected from the group consisting of:
  • (1) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, or 66;
  • (2) the nucleotide sequence of SEQ ID NO:43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, or 65; and
  • (3) a degenerate variant of the nucleotide sequence of SEQ ID NO: 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, or 65.
  • A wide variety of vectors may be prepared to contain and express a nucleic acid molecule of the invention, such as plasmid vectors, cosmid vectors, phage vectors, and viral vectors.
  • In some embodiments, the disclosure provides a plasmid-based vector containing a nucleic acid molecule of the invention. Examples of suitable plasmid vectors include pBR325, pUC18, pSKF, pET23D, and pGB-2. Other examples of plasmid vectors, as well as method of constructing such vectors, are described in U.S. Pat. Nos. 5,580,859, 5,589,466, 5,688,688, 5,814,482, and 5,580,859.
  • In other embodiments, the present invention provides vectors that are constructed from viruses, such as retroviruses, alphaviruses, and adenoviruses. Examples of retroviral vectors are described in U.S. Pat. Nos. 5,219,740, 5,716,613, 5,851,529, 5,591,624, 5,716,826, 5,716,832, and 5,817,491. Representative examples of vectors that can be generated from alphaviruses are described in U.S. Pat. Nos. 5,091,309 and 5,217,879, 5,843,723, and 5,789,245.
  • In some particular embodiments, the present disclosure provides adenoviral vectors that comprise a nucleic acid sequence of non-human primate adenoviruses, such as simian adenoviruses. Examples of such adenoviral vectors, as well as their preparation, are described in PCT application publications WO2005/071093 and WO 2010/086189, and include non-replicating vectors constructed from simian adenoviruses, such as ChAd3, ChAd4, ChAd5, ChAd7, ChAd8, ChAd9, ChAd10, ChAd11, ChAd16, ChAd17, ChAd19, ChAd20, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63, ChAd68, ChAd82, ChAd55, ChAd73, ChAd83, ChAd146, ChAd147, PanAd1, Pan Ad2, and Pan Ad3, and replication-competent vectors constructed simian adenoviruses Ad4 or Ad7. It is preferred that in constructing the adenoviral vectors from the simian adenoviruses one or more of the early genes from the genomic region of the virus selected from E1A, E1B, E2A, E2B, E3, and E4 are either deleted or rendered non-functional by deletion or mutation. In a particular embodiment, the vector is constructed from ChAd3 or ChAd68. Suitable vectors can also be generated from other viruses such as: (1) pox viruses, such as canary pox virus or vaccinia virus (Fisher-Hoch et al., PNAS 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Pat. Nos. 4,603,112, 4,769,330 and 5,017,487; WO 89/01973); (2) SV40 (Mulligan et al., Nature 277:108-114, 1979); (3) herpes (Kit, Adv. Exp. Med. Biol. 215:219-236, 1989; U.S. Pat. No. 5,288,641); and (4) lentivirus such as HIV (Poznansky, J. Virol. 65:532-536, 1991).
  • Methods of constructing vectors are well known in the art. Expression vectors typically include one or more control elements that are operatively linked to the nucleic acid sequence to be expressed. The term “control elements” refers collectively to promoter regions, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites (“IRES”), enhancers, and the like, which collectively provide for the replication, transcription, and translation of a coding sequence in a recipient cell. Not all of these control elements need always be present so long as the selected coding sequence is capable of being replicated, transcribed, and translated in an appropriate host cell. The control elements are selected based on a number of factors known to those skilled in that art, such as the specific host cells and source or structures of other vector components. For enhancing the expression of an immunogenic TAA polypeptide, a Kozak sequence may be provided upstream of the sequence encoding the immunogenic TAA polypeptide. For vertebrates, a known Kozak sequence is (GCC)NCCATGG, wherein N is A or G and GCC is less conserved. Exemplary Kozak sequences that may be used include GAACATGG, ACCAUGG and ACCATGG.
  • E. Compositions Comprising an Immunogenic TAA Polypeptide (Polypeptide Compositions)
  • In another aspect, the present disclosure provides polypeptide compositions, which comprise one or more isolated immunogenic TAA polypeptides provided by the present disclosure (“polypeptide composition”). In some embodiments, the polypeptide composition is an immunogenic composition useful for eliciting an immune response against a TAA protein in a subject, such as a mouse, dog, nonhuman primates or human. In some other embodiments the polypeptide composition is a pharmaceutical composition for administration to a subject, such as a human. In still other embodiments, the polypeptide composition is a vaccine composition useful for immunization of a mammal, such as a human, for inhibiting abnormal cell proliferation, for providing protection against the development of cancer (used as a prophylactic), or for treatment of disorders (used as a therapeutic) associated with TAA over expression, such as cancers.
  • A polypeptide composition provided by the present disclosure may contain a single type of immunogenic TAA polypeptide, such an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, or an immunogenic TERT polypeptide. A composition may also contain a combination of two or more different types of immunogenic TAA polypeptides. For example, a polypeptide composition may contain immunogenic TAA polypeptides in any of the following combinations:
  • 1) an immunogenic MSLN polypeptide and an immunogenic MUC1 polypeptide;
  • 2) an immunogenic MSLN polypeptide and a TERT polypeptide; or
  • 3) an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, and a TERT polypeptide.
  • In some embodiments, a polypeptide composition provided by the present disclosure, such as an immunogenic composition, a pharmaceutical composition, or a vaccine composition, further comprises a pharmaceutically acceptable excipient. Pharmaceutically acceptable excipients suitable for immunogenic, pharmaceutical, or vaccine compositions are known in the art. Examples of suitable excipients that may be used in the compositions include biocompatible oils, such as rape seed oil, sunflower oil, peanut oil, cotton seed oil, jojoba oil, squalan, squalene, physiological saline solution, preservatives and osmotic pressure controlling agents, carrier gases, pH-controlling agents, organic solvents, hydrophobic agents, enzyme inhibitors, water absorbing polymers, surfactants, absorption promoters, pH modifiers, and anti-oxidative agents.
  • The immunogenic TAA polypeptide in a composition, particularly an immunogenic composition or a vaccine composition, may be linked to, conjugated to, or otherwise incorporated into a carrier for administration to a subject. The term “carrier” refers to a substance or structure that an immunogenic polypeptide can be attached to or otherwise associated with for delivery of the immunogenic polypeptide to the subject. The carrier itself may be immunogenic. Examples of carriers include immunogenic polypeptides, immune CpG islands, limpet hemocyanin (KLH), tetanus toxoid (TT), cholera toxin subunit B (CTB), bacteria or bacterial ghosts, liposome, chitosome, virosomes, microspheres, dendritic cells, or their like. One or more immunogenic TAA polypeptide molecules may be linked to a single carrier molecule. Methods for linking an immunogenic polypeptide to a carrier are known in the art,
  • A vaccine composition or immunogenic composition provided by the present disclosure may be used in conjunction or combination with one or more immune modulators or adjuvants. The immune modulators or adjuvants may be formulated separately from the vaccine composition or immunogenic composition, or they may be part of the same composition formulation. Thus, in some embodiments, the present disclosure provides a vaccine composition that further comprises one or more immune modulators or adjuvants. Examples of immune modulators and adjuvants are provided herein below.
  • The polypeptide compositions, including the immunogenic and vaccine compositions, can be prepared in any suitable dosage forms, such as liquid forms (e.g., solutions, suspensions, or emulsions) and solid forms (e.g., capsules, tablets, or powder), and by methods known to one skilled in the art.
  • F. Compositions Comprising an Immunogenic TAA Nucleic Acid Molecule (Nucleic Acid Compositions)
  • The present disclosure also provides nucleic acid compositions, which comprise an isolated nucleic acid molecule or vector provided by the present disclosure (“nucleic acid composition”). The nucleic acid compositions are useful for eliciting an immune response against a TAA protein in vitro or in vivo in a subject, including a human. In some embodiments, the nucleic acid compositions are immunogenic compositions or pharmaceutical compositions.
  • In some particular embodiments, the nucleic acid composition is a DNA vaccine composition for administration to a subject, such as a human for (1) inhibiting abnormal cell proliferation, providing protection against the development of cancer (used as a prophylactic), (2) treatment of cancer (used as a therapeutic) associated with TAA over-expression, or (3) eliciting an immune response against a particular human TAA, such as MSLN, MUC1, or TERT. The nucleic acid molecule in the composition may be a “naked” nucleic acid molecule, i.e., simply in the form of an isolated DNA free from elements that promote transfection or expression. Alternatively, the nucleic acid molecule in the composition is incorporated into a vector, such as a plasmid vector or a viral vector.
  • A nucleic acid composition provided by the present disclosure may comprise individual isolated nucleic acid molecules that each encode only one type of immunogenic TAA polypeptide, such as an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, or an immunogenic TERT polypeptide.
  • A nucleic acid composition may comprise a multi-antigen construct that encodes two or more types of immunogenic TAA polypeptides. For example, a multi-antigen construct may encode two or more immunogenic TAA polypeptides in any of the following combinations:
  • (1) an immunogenic MSLN polypeptide and an immunogenic MUC1 polypeptide;
  • (2) an immunogenic MSLN polypeptide and an immunogenic TERT polypeptide;
  • (3) an immunogenic MUC1 polypeptide and an immunogenic TERT polypeptide; and
  • (4) an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, and an immunogenic TERT polypeptide.
  • In some particular embodiments, the compositions provided by the present disclosure comprise a dual antigen construct comprising a nucleotide sequence selected from the group consisting of:
  • (1) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:18, 20, 22, or 24, 26, 28, 30, 32, or 34, 36, 38, 30, 40, or 42;
  • (2) the nucleotide sequence of SEQ ID NO:17, 19, 21, or 23, 25, 27, 29, 31, or 33, 35, 37, 39, or 41; and
  • (3) a degenerate variant of the nucleotide sequence of SEQ ID NO:17, 19, 21, or 23, 25, 27, 29, 31, or 33, 35, 37, 39, or 41.
  • In some other particular embodiments, the compositions provided by the present disclosure comprise a triple-antigen construct comprising a nucleotide sequence selected from the group consisting of:
  • (1) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, or 66;
  • (2) the nucleotide sequence of SEQ ID NO:43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, or 65; and
  • (3) a degenerate variant of the nucleotide sequence of SEQ ID NO: 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, or 65.
  • The nucleic acid compositions, such as a pharmaceutical composition or a DNA vaccine composition, may further comprise a pharmaceutically acceptable excipient. Pharmaceutical acceptable excipients suitable for nucleic acid compositions, including DNA vaccine compositions, are well known to those skilled in the art. Such excipients may be aqueous or nonaqueous solutions, suspensions, and emulsions. Examples of non-aqueous excipients include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Examples of aqueous excipient include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Suitable excipients also include agents that assist in cellular uptake of the polynucleotide molecule. Examples of such agents are (i) chemicals that modify cellular permeability, such as bupivacaine, (ii) liposomes or viral particles for encapsulation of the polynucleotide, or (iii) cationic lipids or silica, gold, or tungsten microparticles which associate themselves with the polynucleotides. Anionic and neutral liposomes are well-known in the art (see, e.g., Liposomes: A Practical Approach, RPC New Ed, IRL press (1990), for a detailed description of methods for making liposomes) and are useful for delivering a large range of products, including polynucleotides. Cationic lipids are also known in the art and are commonly used for gene delivery. Such lipids include Lipofectin™ also known as DOTMA (N-[I-(2,3-dioleyloxy) propyls N,N, N-trimethylammonium chloride), DOTAP (1,2-bis (oleyloxy)-3 (trimethylammonio) propane), DDAB (dimethyldioctadecyl-ammonium bromide), DOGS (dioctadecylamidologlycyl spermine) and cholesterol derivatives such as DCChol (3 beta-(N-(N′,N′-dimethyl aminomethane)-carbamoyl) cholesterol). A description of these cationic lipids can be found in EP 187,702, WO 90/11092, U.S. Pat. No. 5,283,185, WO 91/15501, WO 95/26356, and U.S. Pat. No. 5,527,928. A particular useful cationic lipid formulation that may be used with the nucleic acid compositions provided by the disclosure is VAXFECTIN, which is a commixture of a cationic lipid (GAP-DMORIE) and a neutral phospholipid (DPyPE) which, when combined in an aqueous vehicle, self-assemble to form liposomes. Cationic lipids for gene delivery are preferably used in association with a neutral lipid such as DOPE (dioleyl phosphatidylethanolamine), as described in WO 90/11092 as an example. In addition, a nucleic acid construct, such as a DNA construct, can also be formulated with a nonionic block copolymer such as CRL1005.
  • A nucleic acid composition provided by the present disclosure, such as a pharmaceutical composition or immunogenic composition, may be used in conjunction or combination with one or more immune modulators. The nucleic acid composition, such as a pharmaceutical composition or immunogenic composition, may also be used in conjunction or combination with one or more adjuvants. Further, the nucleic acid composition may be used in conjunction or combination with one or more immune modulators and one or more adjuvants. The immune modulators or adjuvants may be formulated separately from the nucleic composition, or they may be part of the same composition formulation. Thus, in some embodiments, the present disclosure provides a nucleic acid vaccine composition that further comprises one or more immune modulators and/or one or more adjuvants. Examples of immune modulators and adjuvants are provided herein below.
  • The nucleic acid compositions, including vaccine compositions, can be prepared in any suitable dosage forms, such as liquid forms (e.g., solutions, suspensions, or emulsions) and solid forms (e.g., capsules, tablets, or powder), and by methods known to one skilled in the art.
  • G. Uses of the Immunogenic TAA Polypeptides, Nucleic Acid Molecules, and Compositions
  • In other aspects, the present disclosure provides methods of using the immunogenic TAA polypeptides, isolated nucleic acid molecules, and compositions described herein above. In one aspect, the present disclosure provides a method of eliciting an immune response against a TAA in a subject, particularly a human, comprising administering to the subject an effective amount of (1) an immunogenic TAA polypeptide that is immunogenic against the target TAA, (2) an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides, (3) a composition comprising one or more immunogenic TAA polypeptides, or (4) a composition comprising an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides. In some embodiments, the disclosure provides a method of eliciting an immune response against MSLN in a subject, comprising administering to the subject an effective amount of an immunogenic MSLN composition provided by the present disclosure, wherein the immunogenic MSLN composition is selected from: (1) an immunogenic MSLN polypeptide, (2) an isolated nucleic acid molecule encoding an immunogenic MSLN polypeptide, (3) a composition comprising an immunogenic MSLN polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding an immunogenic MSLN polypeptide. In some other embodiments, the disclosure provides a method of eliciting an immune response against MUC1 in a subject, comprising administering to the subject an effective amount of an immunogenic MUC1 composition provided by the present disclosure, wherein the immunogenic MUC1 composition is selected from: (1) an immunogenic MUC1 polypeptide, (2) an isolated nucleic acid molecule encoding an immunogenic MUC1 polypeptide, (3) a composition comprising an immunogenic MUC1 polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding an immunogenic MUC1 polypeptide. In some embodiments, the disclosure provides a method of eliciting an immune response against TERT in a subject, comprising administering to the subject an effective amount of an immunogenic TERT composition provided by the present disclosure, wherein the immunogenic TERT composition is selected from: (1) an immunogenic TERT polypeptide, (2) an isolated nucleic acid molecule encoding an immunogenic TERT polypeptide, (3) a composition comprising an immunogenic TERT polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding an immunogenic TERT polypeptide.
  • In another aspect, the present disclosure provides a method of inhibiting abnormal cell proliferation in a human, wherein the abnormal cell proliferation is associated with over-expression of a TAA. The method comprises administering to the human an effective amount of immunogenic TAA composition provided by the present disclosure that is immunogenic against the over-expressed TAA. The immunogenic TAA composition may be (1) an immunogenic TAA polypeptide, (2) an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides, (3) a composition comprising an immunogenic TAA polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides. The abnormal cell proliferation may be in any organ or tissues of a human, such as breast, stomach, ovaries, lungs, bladder, large intestine (e.g., colon and rectum), kidneys, pancreas, and prostate. In some embodiments, the method is for inhibiting abnormal cell proliferation in the breast, ovaries, pancreas, colon, lung, stomach, and rectum.
  • In another aspect, the present disclosure provides a method of treating cancer in a human wherein the cancer is associated with over-expression of a TAA. The method comprises administering to the human an effective amount of immunogenic TAA composition capable of eliciting an immune response against the over-expressed TAA. The immunogenic TAA composition may be (1) an immunogenic TAA polypeptide, (2) an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides, (3) a composition comprising an immunogenic TAA polypeptide, or (4) a composition comprising an isolated nucleic acid molecule encoding one or more immunogenic TAA polypeptides.
  • In some embodiments, the disclosure provides a method of treating a cancer in a human, comprising administering to the human an effective amount of a nucleic acid composition provided herein above. The nucleic acids in the composition may be a single-antigen construct encoding only one particular immunogenic TAA polypeptide, such as an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, or an immunogenic TERT polypeptide. The nucleic acids in the composition may also be a multi-antigen construct encoding two, three, or more different immunogenic TAA polypeptides. In some specific embodiments, the disclosure provides a method of treating a cancer in a human, comprising administering to the human an effective amount of a composition comprising a dual-antigen construct. The dual-antigen construct may encode any two different immunogenic TAA polypeptides selected from: (1) an immunogenic MSLN polypeptide and an immunogenic MUC1 polypeptide; (2) an immunogenic MSLN polypeptide and an immunogenic TERT polypeptide; (3) an immunogenic TERT polypeptide and an immunogenic MUC1 polypeptide.
  • In some other specific embodiments, the disclosure provides a method of treating a cancer in a human, wherein the cancer is associated with over-expression of one or more TAAs selected from MUC1, MSLN, and TERT, which method comprises administering to the human an effective amount of a composition comprising a triple-antigen construct encoding an immunogenic MSLN polypeptide, an immunogenic MUC1 polypeptide, and an immunogenic TERT polypeptide.
  • Any cancer that over-expresses the tumor-associate antigen MUC1, MSLN, and/or TERT may be treated by a method provided by the present disclosure. Examples of cancers include breast cancer, ovarian cancer, lung cancer (such as small cell lung cancer and non-small cell lung cancer), colorectal cancer, gastric cancer, and pancreatic cancer. In some particular embodiments, the present disclosure provide a method of treating cancer in a human, which comprises administering to the human an effective amount of a composition comprising a triple-antigen construct, wherein the cancer is (1) breast cancer, such as triple-negative breast cancer, (2) pancreatic cancer, such as pancreatic ductal adenocarcinoma, or (3) ovarian cancer, such as ovarian adenocarcinoma.
  • The polypeptide and nucleic acid compositions can be administered to a subject, including human (such as a human patient), by a number of suitable methods known in the art. Examples of suitable methods include: (1) intramuscular, intradermal, intraepidermal, or subcutaneous administration, (2) oral administration, and (3) topical application (such as ocular, intranasal, and intravaginal application). One particular method of intradermal or intraepidermal administration of a nucleic acid composition that may be used is gene gun delivery using the Particle Mediated Epidermal Delivery (PMED™) DNA delivery device marketed by PowderMed. PMED is a needle-free method of administering DNAs to animals or humans. The PMED system involves the precipitation of DNA onto microscopic gold particles that are then propelled by helium gas into the epidermis. The DNA-coated gold particles are delivered to the APCs and keratinocytes of the epidermis, and once inside the nuclei of these cells, the DNA elutes off the gold and becomes transcriptionally active, producing encoded protein. One particular method for intramuscular administration of a nucleic acid composition is electroporation. Electroporation uses controlled electrical pulses to create temporary pores in the cell membrane, which facilitates cellular uptake of the nucleic acid composition injected into the muscle. Where a CpG is used in combination with a nucleic acid composition, the CpG and nucleic acid composition may be co-formulated in one formulation and the formulation is administered intramuscularly by electroporation.
  • The effective amount of the immunogenic TAA polypeptide or nucleic acid encoding an immunogenic TAA polypeptide in the composition to be administered to a subject, such as human patient, a given method provided by the present disclosure can be readily determined by a person skilled in the art and will depend on a number of factors. In a method of treating cancer, such as pancreatic cancer, ovarian cancer, and breast cancer, factors that may be considered in determining the effective amount of the immunogenic TAA polypeptide or nucleic acid include, but not limited: (1) the subject to be treated, including the subject's immune status and health, (2) the severity or stage of the cancer to be treated, (3) the specific immunogenic TAA polypeptides used or expressed, (4) the degree of protection or treatment desired, (5) the administration method and schedule, and (6) other therapeutic agents (such as adjuvants or immune modulators) used. In the case of nucleic acid vaccine compositions, including the multi-antigen vaccine compositions, the method of formulation and delivery are among the key factors for determining the dose of the nucleic acid required to elicit an effective immune response. For example, the effective amounts of the nucleic acid may be in the range of 2 μg/dose-10 mg/dose when the nucleic acid vaccine composition is formulated as an aqueous solution and administered by hypodermic needle injection or pneumatic injection, whereas only 16 ng/dose-16 μg/dose may be required when the nucleic acid is prepared as coated gold beads and delivered using a gene gun technology. The dose range for a nucleic acid vaccine by electroporation is generally in the range of 0.5-10 mg/dose. In the case where the nucleic acid vaccine is administered together with a CpG by electroporation in a co-formulation, the dose of the nucleic acid vaccine may be in the range of 0.5-5 mg/dose and the dose of CpG is typically in the range of 0.05 mg-5 mg/dose, such as 0.05, 0.2, 0.6, or 1.2 mg/dose per person. The nucleic acid or polypeptide vaccine compositions of the present invention can be used in a prime-boost strategy to induce robust and long-lasting immune response. Priming and boosting vaccination protocols based on repeated injections of the same immunogenic construct are well known. In general, the first dose may not produce protective immunity, but only “primes” the immune system. A protective immune response develops after the second or third dose (the “boosts”). The boosts are performed according to conventional techniques, and can be further optimized empirically in terms of schedule of administration, route of administration, choice of adjuvant, dose, and potential sequence when administered with another vaccine. In one embodiment, the nucleic acid or polypeptide vaccines of the present invention are used in a conventional homologous prime-boost strategy, in which the same vaccine is administered to the animal in multiple doses. In another embodiment, the nucleic acid or polypeptide vaccine compositions are used in a heterologous prime-boost vaccination, in which different types of vaccines containing the same antigens are administered at predetermined time intervals. For example, a nucleic acid construct may be administered in the form of a plasmid in the initial dose (“prime”) and as part of a vector in the subsequent doses (“boosts”), or vice versa.
  • The polypeptide or nucleic acid immunogenic compositions of the present disclosure may be used together with one or more adjuvants. Examples of suitable adjuvants include: (1) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl polypeptides or bacterial cell wall components), such as (a) MF59™ (PCT Publication No. WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80 (polyoxyethylene sorbitan mono-oleate), and 0.5% Span 85 (sorbitan trioleate) formulated into submicron particles using a microfluidizer, (b) SAF, containing 10% Squalene, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RIBI™ adjuvant system (RAS) (Ribi Immunochem, Hamilton, Mont.) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components such as monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS); (2) saponin adjuvants, such as QS21, STIMULON™ (Cambridge Bioscience, Worcester, Mass.), Abisco® (Isconova, Sweden), or Iscomatrix® (Commonwealth Serum Laboratories, Australia); (3) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (4) cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 (PCT Publication No. WO 99/44636), etc.), interferons (e.g. gamma interferon), macrophage colony stimulating factor (M-CSF), and tumor necrosis factor (TNF); (5) monophosphoryl lipid A (MPL) or 3-O-deacylated MPL (3dMPL), (WO 00/56358); (6) combinations of 3dMPL with QS21 and/or oil-in-water emulsions (EP-A-0835318, EP-A-0735898, EP-A-0761231); (7) oligonucleotides comprising CpG motifs, i.e. containing at least one CG dinucleotide, where the cytosine is unmethylated (WO 98/40100, WO 98/55495, WO 98/37919 and WO 98/52581); (8) a polyoxyethylene ether or a polyoxyethylene ester (WO 99/52549); (9) a polyoxyethylene sorbitan ester surfactant in combination with an octoxynol (WO 01/21207) or a polyoxyethylene alkyl ether or ester surfactant in combination with at least one additional non-ionic surfactant such as an octoxynol (WO 01/21152); (10) a saponin and an immunostimulatory oligonucleotide (e.g. a CpG oligonucleotide) (WO 00/62800); (11) metal salt, including aluminum salts (also known as alum), such as aluminum phosphate and aluminum hydroxide; (12) a saponin and an oil-in-water emulsion (WO 99/11241); and (13) a combination of saponin (e.g. QS21), 3dMPL, and 1M2 (WO 98/57659).
  • Further, for the treatment of a neoplastic disorder, including a cancer, in a subject, such as a human patient, the polypeptide or nucleic acid compositions, including vaccine compositions, provided by the present disclosure may be administered in combination with one or more immune modulators. The immune modulator may be an immune-suppressive-cell inhibitor (ISC inhibitor) or an immune-effector-cell enhancer (IEC enhancer). Further, one or more ISC inhibitors may be used in combination with one or more IEC enhancers. The immune modulators may be administered by any suitable methods and routes, including (1) systemic administration such as intravenous, intramuscular, or oral administration, and (2) local administration such intradermal and subcutaneous administration. Where appropriate or suitable, local administration is generally preferred over systemic administration. Local administration of any immune modulators can be carried out at any location of the body of the subject that is suitable for local administration of pharmaceuticals; however, it is more preferable that these immune modulators are administered locally at close proximity to the vaccine draining lymph node.
  • The compositions, such as a vaccine, may be administered simultaneously or sequentially with any or all of the immune modulators used. Similarly, when two or more immune modulators are used, they may be administered simultaneously or sequentially with respect to each other. In some embodiments, a vaccine is administered simultaneously (e.g., in a mixture) with respect to one immune modulator, but sequentially with respect to one or more additional immune modulators. Co-administration of the vaccine and the immune modulators can include cases in which the vaccine and at least one immune modulator are administered so that each is present at the administration site, such as vaccine draining lymph node, at the same time, even though the antigen and the immune modulators are not administered simultaneously. Co-administration of the vaccine and the immune modulators also can include cases in which the vaccine or the immune modulator is cleared from the administration site, but at least one cellular effect of the cleared vaccine or immune modulator persists at the administration site, such as vaccine draining lymph node, at least until one or more additional immune modulators are administered to the administration site. In cases where a nucleic acid vaccine is administered in combination with a CpG, the vaccine and CpG may be contained in a single formulation and administered together by any suitable method. In some embodiments, the nucleic acid vaccine and CpG in a co-formulation (mixture) is administered by intramuscular injection in combination with electroporation.
  • In some embodiments, the immune modulator that is used in combination with the polypeptide or nucleic acid composition is an ISC inhibitor. Examples of SIC inhibitors include (1) protein kinase inhibitors, such as imatinib, sorafenib, lapatinib, BIRB-796, and AZD-1152, AMG706, Zactima (ZD6474), MP-412, sorafenib (BAY 43-9006), dasatinib, CEP-701 (lestaurtinib), XL647, XL999, Tykerb (lapatinib), MLN518, (formerly known as CT53518), PKC412, ST1571, AEE 788, OSI-930, OSI-817, sunitinib malate (SUTENT), axitinib (AG-013736), erlotinib, gefitinib, axitinib, bosutinib, temsirolismus and nilotinib (AMN107). In some particular embodiments, the tyrosine kinase inhibitor is sunitinib, sorafenib, or a pharmaceutically acceptable salt or derivative (such as a malate or a tosylate) of sunitinib or sorafenib; (2) cyclooxygenase-2 (COX-2) inhibitors, such as celecoxib and rofecoxib; (3) phosphodiesterase type 5 (PDE5) inhibitors, such as Examples of PDE5 inhibitors include avanafil, lodenafil, mirodenafil, sildenafil, tadalafil, vardenafil, udenafil, and zaprinast, and (4) DNA crosslinkers, such as cyclophosphamide.
  • In some embodiments, the immune modulator that is used in combination with the polypeptide or nucleic acid composition is an IEC enhancer. Two or more IEC enhancers may be used together. Examples of IEC enhancers that may be used include: (1) TNFR agonists, such as agonists of OX40, 4-1BB (such as BMS-663513), GITR (such as TRX518), and CD40 (such as CD40 agonistic antibodies); (2) CTLA-4 inhibitors, such as is Ipilimumab and Tremelimumab; (3) TLR agonists, such as CpG 7909 (5′ TCGTCGTTTTGTCGTTTTGTCGTT3′), CpG 24555 (5′ TCGTCGTTTTTCGGTGCTTTT3′ (CpG 24555); and CpG 10103 (5′ TCGTCGTTTTTCGGTCGTTTT3′); (4) programmed cell death protein 1 (PD-1) inhibitors, such as nivolumab and pembrolizumab; and (5) PD-L1 inhibitors, such as atezolizumab, durvalumab, and velumab; and (6) IDO1 inhibitors.
  • In some embodiments, the IEC enhancer is CD40 agonist antibody, which may be a human, humanized or part-human chimeric anti-CD40 antibody. Examples of specific CD40 agonist antibodies include the G28-5, mAb89, EA-5 or S2C6 monoclonal antibody, and CP870,893. CP-870,893 is a fully human agonistic CD40 monoclonal antibody (mAb) that has been investigated clinically as an anti-tumor therapy. The structure and preparation of CP870,893 is disclosed in WO2003041070 (where the antibody is identified by the internal identified “21.4.1” and the amino acid sequences of the heavy chain and light chain of the antibody are set forth in SEQ ID NO: 40 and SEQ ID NO: 41, respectively). For use in combination with a composition present disclosure, CP-870,893 may be administered by any suitable route, such as intradermal, subcutaneous, or intramuscular injection. The effective amount of CP870893 is generally in the range of 0.01-0.25 mg/kg. In some embodiment, CP870893 is administered at an amount of 0.05-0.1 mg/kg.
  • In some other embodiments, the IEC enhancer is a CTLA-4 inhibitor, such as Ipilimumab and Tremelimumab. Ipilimumab (also known as MEX-010 or MDX-101), marketed as YERVOY, is a human anti-human CTLA-4 antibody. Ipilimumab can also be referred to by its CAS Registry No. 477202-00-9, and is disclosed as antibody 10DI in PCT Publication No. WO 01/14424. Tremelimumab (also known as CP-675,206) is a fully human IgG2 monoclonal antibody and has the CAS number 745013-59-6. Tremelimumab is disclosed in U.S. Pat. No. 6,682,736, incorporated herein by reference in its entirety, where it is identified as antibody 11.2.1 and the amino acid sequences of its heavy chain and light chain are set forth in SEQ ID NOs:42 and 43, respectively. For use in combination with a composition provided by the present disclosure, Tremelimumab may be administered locally, particularly intradermally or subcutaneously. The effective amount of Tremelimumab administered intradermally or subcutaneously is typically in the range of 5-200 mg/dose per person. In some embodiments, the effective amount of Tremelimumab is in the range of 10-150 mg/dose per person per dose. In some particular embodiments, the effective amount of Tremelimumab is about 10, 25, 50, 75, 100, 125, 150, 175, or 200 mg/dose per person.
  • In some other embodiments, the immune modulator is a PD-1 inhibitor or PD-L1 inhibitor, such as nivolumab, pembrolizumab, RN888 (anti-PD-1 antibody), Atezolizumab (PD-L1-specific mAbs from Roche), Durvalumab (PD-L1-specific mAbs from Astra Zeneca), and Avelumab (PD-L1-specific mAbs from Merck). (Okazaki T et al., International Immunology (2007); 19, 7:813-824, Sunshine J et al., Curr Opin Pharmacol. 2015 August; 23:32-8).
  • In other embodiments, the present disclosure provides use of an immune modulator with a vaccine, including anti-cancer vaccines, wherein the immune modulator is an inhibitor of indoleamine 2,3-dioxygenase 1 (also known as “IDO1”). IDO1 was found to modulate immune cell function to a suppressive phenotype and was, therefore, believed to partially account for tumor escape from host immune surveillance. The enzyme degrades the essential amino acid tryptophan into kynurenine and other metabolites. It was found that these metabolites and the paucity of tryptophan leads to suppression of effector T-cell function and augmented differentiation of regulatory T cells. The IDO1 inhibitors may be large molecules, such as an antibody, or a small molecule, such as a chemical compound.
  • In some particular embodiments, the polypeptide or nucleic acid composition provided by the present disclosure is used in combination with a 1,2,5-oxadiazole derivative IDO1 inhibitor disclosed in WO2010/005958. Examples of specific 1,2,5-oxadiazole derivative IDO1 inhibitors include the following compounds:
    • 4-({2-[(aminosulfonyl)amino]ethyl}amino)-N-(3-bromo-4-fluorophenyl)-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide;
    • 4-({2 [(aminosulfonyl)amino]ethyl} amino)-N-(3-chloro-4-fluorophenyl)-N′-hydroxy-1,2,5-oxadiazole 3-carboximidamide;
    • 4-({2 [(aminosulfonyl)amino]ethyl} amino)-N-[4-fluoro-3-(trifluoromethyl)phenyl]-N′-hydroxy-1,2,5 oxadiazole-3-carboximidamide;
    • 4-({2 [(aminosulfonyl)amino]ethyl} amino)-N′-hydroxy-N-[3-(trifluoromethyl)phenyl]-1,2,5 oxadiazole-3-carboximidamide;
    • 4-({2 [(aminosulfonyl)amino]ethyl} amino)-N-(3-cyano-4-fluorophenyl)-N′-hydroxy-1,2,5-oxadiazole 3-carboximidamide;
    • 4-({2 [(aminosulfonyl)amino] ethyl} amino)-N-[(4-bromo-2-furyl)methyl]-N′-hydroxy-1,2,5 oxadiazole-3-carboximidamide; or
    • 4-({2 [(aminosulfonyl)amino] ethyl} amino)-N-[(4-chloro-2-furyl)methyl]-N′-hydroxy-1,2,5 oxadiazole-3-carboximidamide.
  • The 1,2,5-oxadiazole derivative IDO1 inhibitors are typically administered orally once or twice per day and effective amount by oral administration is generally in the range of 25 mg-1000 mg per dose per patient, such as 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, or 1000 mg. In a particular embodiment, the polypeptide or nucleic acid composition provided by the present disclosure is used in combination with 4-({2-[(aminosulfonyl)amino]ethyl}amino)-N-(3-bromo-4-fluorophenyl)-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide administered orally twice per day at 25 mg or 50 mg per dose. The 1,2,5-oxadiazole derivatives may be synthesized as described in U.S. Pat. No. 8,088,803, which is incorporated herein by reference in its entirety.
  • In some other specific embodiments, the polypeptide or nucleic acid composition provided by the present disclosure is used in combination with a pyrrolidine-2,5-dione derivative IDO1 inhibitor disclosed in WO2015/173764. Examples of specific pyrrolidine-2,5-dione derivative inhibitors include the following compounds:
    • 3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione;
    • (3-2H)-3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione;
    • (−)-(R)-3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione;
    • 3-(1H-indol-3-yl)pyrrolidine-2,5-dione;
    • (−)-(R)-3-(1H-indol-3-yl)pyrrolidine-2,5-dione;
    • 3-(5-chloro-1H-indol-3-yl)pyrrolidine-2,5-dione;
    • (−)-(R)-3-(5-chloro-1H-indol-3-yl)pyrrolidine-2,5-dione;
    • 3-(5-bromo-1H-indol-3-yl)pyrrolidine-2,5-dione;
    • 3-(5,6-difluoro-1H-indol-3-yl)pyrrolidine-2,5-dione; and
    • 3-(6-chloro-1H-indol-3-yl)pyrrolidine-2,5-dione.
  • The pyrrolidine-2,5-dione derivative IDO1 inhibitors are typically administered orally once or twice per day and the effective amount by oral administration is generally in the range of 50 mg-1000 mg per dose per patient, such as 125 mg, 250 mg, 500 mg, 750 mg, or 1000 mg. In a particular embodiment, the polypeptide or nucleic acid composition provided by the present disclosure is used in combination with 3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione administered orally once per day at 125-100 mg per dose per patient. The pyrrolidine-2,5-dione derivatives may be synthesized as described in U.S. patent application publication US2015329525, which is incorporated herein by reference in its entirety.
  • H. Examples
  • The following examples are provided to illustrate certain embodiments of the invention. They should not be construed to limit the scope of the invention in any way. From the above description and these examples, one skilled in the art can ascertain the essential characteristics of the invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usage and conditions.
  • Example 1. Construction of Single-Antigen, Dual-Antigen, and Triple-Antigen Constructs
  • Example 1 illustrates the construction of single antigen constructs, dual-antigen constructs, and triple antigen constructs. Unless as otherwise noted, reference to amino acid positions or residues of MUC1, MSLN, and TERT protein refers to the amino acid sequence of human MUC1 isoform 1 precursor protein as set forth in SEQ ID NO:1, amino acid sequence of human mesothelin (MSLN) isoform 2 precursor protein as set forth in SEQ ID NO:2, and the amino acid sequence of human TERT isoform 1 precursor protein as set forth in SEQ ID NO:3, respectively.
  • 1A. Single-Antigen Constructs
  • Plasmid 1027 (MUC1). Plasmid 1027 was generated using the techniques of gene synthesis and restriction fragment exchange. The amino acid sequence of human MUC1 with a 5× tandem repeat VNTR region was submitted to GeneArt for gene optimization and synthesis. The gene encoding the polypeptide was optimized for expression, synthesized, and cloned. The MUC-1 open reading frame was excised from the GeneArt vector by digestion with NheI and BgIII and inserted into similarly digested plasmid pPJV7563. The open reading frame (ORF) nucleotide sequence of Plasmid 1027 is set forth in SEQ ID NO:7. The amino acid sequence encoded by Plasmid 1027 is set for in SEQ ID NO:8.
  • Plasmid 1103 (cMSLN). Plasmid 1103 was constructed using the techniques of PCR and restriction fragment exchange. First, the gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1084 with primers MSLN34 and MSLN598, resulting in the addition of NheI and BgIII restriction sites at the 5′ and 3′ ends of the amplicon, respectively. The amplicon was digested with NheI and Bgl II and inserted into similarly digested plasmid pPJV7563. The open reading frame nucleotide sequence of Plasmid 1103 is set forth in SEQ ID NO:5. The amino acid sequence encoded by Plasmid 1103 is set for in SEQ ID NO:6.
  • Plasmid 1112 (TERT240). Plasmid 1112 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding TERT amino acids 241-1132 was amplified by PCR from plasmid 1065 with primers f pmed TERT 241G and r TERT co#pMed. The amplicon was cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid1112 is set forth in SEQ ID NO:9. The amino acid sequence encoded by Plasmid 1112 is set for in SEQ ID NO:10.
  • Plasmid 1197 (cMUC1). Plasmid 1197 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding MUC1 amino acids 22-225, 946-1255 was amplified by PCR from plasmid 1027 with primers ID1197F and ID1197R. The amplicon was cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1197 is set forth in SEQ ID NO:15. The amino acid sequence encoded by Plasmid 1197 is set for in SEQ ID NO:16.
  • Plasmid 1326 (TERT343). Plasmid 1326 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding TERT amino acids 344-1132 was amplified by PCR from plasmid 1112 with primers TertA343-F and Tert-R. The amplicon was cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid1326 is set forth in SEQ ID NO:13. The amino acid sequence encoded by Plasmid 1326 is set for in SEQ ID NO:14.
  • Plasmid 1330 (TERT541). Plasmid 1330 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding TERT amino acids 542-1132 was amplified by PCR from plasmid 1112 with primers TertA541-F and Tert-R. The amplicon was cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1330 is set forth in SEQ ID NO:11. The amino acid sequence encoded by Plasmid 1330 is set for in SEQ ID NO:12.
  • 1B. Dual-Antigen Constructs
  • Plasmid 1158 (cMSLN-PT2A-Muc1). Plasmid 1158 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN and r PTV2A Bamh cMSLN. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f1 PTV2A Muc, f2 PTV2A, and r pmed Bgl Muc. PCR resulted in the addition of overlapping PTV 2A sequences at the 3′ end of cMSLN and 5′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1158 is set forth in SEQ ID NO:23. The amino acid sequence encoded by Plasmid 1158 is set for in SEQ ID NO:24.
  • Plasmid 1159 (Muc1-PT2A-cMSLN). Plasmid 1159 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f1 PTV2A cMSLN, f2 PTV2A, and r pmed Bgl cMSLN. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f pmed Nhe Muc and r PTV2A Bamh Muc. PCR resulted in the addition of overlapping PTV 2A sequences at the 5′ end of cMSLN and 3′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1159 is set forth in SEQ ID NO:21. The amino acid sequence encoded by Plasmid 1159 is set for in SEQ ID NO:22.
  • Plasmid 1269 (Muc1-Ter240). Plasmid 1269 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f tg link Ter240 and r pmed Bgl Ter240. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f pmed Nhe Muc and r link muc. PCR resulted in the addition of an overlapping GGSGG linker at the 5′ end of Tert and 3′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1269 is set forth in SEQ ID NO:25. The amino acid sequence encoded by Plasmid 1269 is set for in SEQ ID NO:26.
  • Plasmid 1270 (Muc1-ERB2A-Ter240). Plasmid 1270 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f2 ERBV2A, f1 ERBV2A Ter240, and r pmed Bgl Ter240. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f pmed Nhe Muc and r ERB2A Bamh Muc. PCR resulted in the addition of overlapping ERBV 2A sequences at the 5′ end of Tert and 3′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1270 is set forth in SEQ ID NO:27. The amino acid sequence encoded by Plasmid 1270 is set for in SEQ ID NO:28.
  • Plasmid 1271 (Ter240-ERB2A-Muc1). Plasmid 1271 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r ERB2A Bamh Ter240. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f2 ERBV2A, f1 ERBV2A Muc, and r pmed Bgl Muc. PCR resulted in the addition of overlapping ERBV 2A sequences at the 3′ end of Tert and 5′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1271 is set forth in SEQ ID NO:29. The amino acid sequence encoded by Plasmid 1271 is set for in SEQ ID NO:30.
  • Plasmid 1272 (Ter240-T2A-cMSLN). Plasmid 1272 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r T2A Tert240. The gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f2 T2A, f1 T2A cMSLN, and r pmed Bgl cMSLN. PCR resulted in the addition of overlapping TAV 2A sequences at the 3′ end of Tert and 5′ end of cMSLN. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1272 is set forth in SEQ ID NO:35. The amino acid sequence encoded by Plasmid 1272 is set for in SEQ ID NO:36.
  • Plasmid 1273 (Tert240-cMSLN). Plasmid 1273 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r link Tert240. The gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f tert ink cMSLN and r pmed Bgl cMSLN. PCR resulted in the addition of an overlapping GGSGG linker at the 3′ end of Tert and 5′ end of cMSLN. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1273 is set forth in SEQ ID NO:37. The amino acid sequence encoded by Plasmid 1273 is set for in SEQ ID NO:38.
  • Plasmid 1274 (cMSLN-T2A-Tert240). Plasmid 1274 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f2 T2A, f1 T2A Tert240 and r pmed Bgl Ter240. The gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN and r T2A Bamh cMSLN. PCR resulted in the addition of overlapping TAV 2A sequences at the 5′ end of Tert and 3′ end of cMSLN. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1274 is set forth in SEQ ID NO:39. The amino acid sequence encoded by Plasmid 1274 is set for in SEQ ID NO:40.
  • Plasmid 1275 (cMSLN-Tert240). Plasmid 1275 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f tg link Ter240 and r pmed Bgl Ter240. The gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN and r link cMSLN. PCR resulted in the addition of an overlapping GGSGG linker at the 5′ end of Tert and 3′ end of cMSLN. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1275 is set forth in SEQ ID NO:41. The amino acid sequence encoded by Plasmid 1275 is set for in SEQ ID NO:42.
  • Plasmid 1286 (cMuc1-ERB2A-Tert240). Plasmid 1286 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f2 ERBV2A, f1 ERBV2A Ter240, and r pmed Bgl Ter240. The gene encoding human Mucin-1 amino acids 22-225, 946-1255 was amplified by PCR from plasmid 1197 with primers f pmed Nhe cytMuc and r ERB2A Bamh Muc. PCR resulted in the addition of overlapping ERBV 2A sequences at the 5′ end of Tert and 3′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1286 is set forth in SEQ ID NO:31. The amino acid sequence encoded by Plasmid 1286 is set for in SEQ ID NO:32.
  • Plasmid 1287 (Tert240-ERB2A-cMuc1). Plasmid 1287 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human telomerase amino acids 241-1132 was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r ERB2A Bamh Ter240. The gene encoding human Mucin-1 amino acids 22-225, 946-1255 was amplified by PCR from plasmid 1197 with primers f2 ERBV2A, f1 ERBV2A cMuc, and r pmed Bgl Muc. PCR resulted in the addition of overlapping ERBV 2A sequences at the 3′ end of Tert and 5′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1287 is set forth in SEQ ID NO:33. The amino acid sequence encoded by Plasmid 1287 is set for in SEQ ID NO: 34.
  • Plasmid 1313 (Muc1-EMC2A-cMSLN). Plasmid 1313 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers EMCV_cMSLN_F—33, EMCV2A_F—34 and pMED_cMSLN_R—37. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers pMED_MUC1_F—31, EMCV2A_R—36, and EMCV_Muc1_R—35. PCR resulted in the addition of overlapping EMCV 2A sequences at the 5′ end of cMSLN and 3′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1313 is set forth in SEQ ID NO:19. The amino acid sequence encoded by Plasmid 1313 is set for in SEQ ID NO:20.
  • Plasmid 1316 (cMSLN-EMC2A-Muc1). Plasmid 1316 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the human mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN and r EM2A Bamh cMSLN. The gene encoding human Mucin-1 amino acids 2-225, 946-1255 was amplified by PCR from plasmid 1027 with primers f1 EM2A Muc, f2 EMCV2A, and r pmed Bgl Muc. PCR resulted in the addition of overlapping EMCV 2A sequences at the 3′ end of cMSLN and 5′ end of Muc1. The amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1316 is set forth in SEQ ID NO:17. The amino acid sequence encoded by Plasmid 1316 is set for in SEQ ID NO:18.
  • 1C. Triple-Antigen Constructs
  • Plasmid 1317 (Muc1-EMC2A-cMSLN-T2A-Tert240). Plasmid 1317 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human Mucin-1 amino acids 2-225, 946-1255, an EMCV 2A peptide, and the amino terminal half of the mesothelin precursor were amplified by PCR from plasmid 1313 with primers f pmed Nhe Muc and r MSLN 1051-1033. The genes encoding the carboxy terminal half of the mesothelin precursor, a TAV 2A peptide, and human telomerase amino acids 241-1132 were amplified by PCR from plasmid 1274 with primers f MSLN 1028-1051 and r pmed Bgl Ter240. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1317 is set forth in SEQ ID NO:43. The amino acid sequence encoded by Plasmid 1317 is set for in SEQ ID NO:44.
  • Plasmid 1318 (Muc1-ERB2A-Tert240-T2A-cMSLN). Plasmid 1318 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human Mucin-1 amino acids 2-225, 946-1255, an ERBV 2A peptide, and the amino terminal half of human telomerase were amplified by PCR from plasmid 1270 with primers f pmed Nhe Muc and r tert 1602-1579. The genes encoding the carboxy terminal half of telomerase, a TAV 2A peptide, and human mesothelin precursor amino acids 37-597 were amplified by PCR from plasmid 1272 with primers f tert 1584-1607 and r pmed Bgl cMSLN. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1318 is set forth in SEQ ID NO:45. The amino acid sequence encoded by Plasmid 1318 is set for in SEQ ID NO:46.
  • Plasmid 1319 (cMSLN-EMC2A-Muc1-ERB2A-Tert240). Plasmid 1319 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human mesothelin precursor amino acids 37-597, an EMCV 2A peptide, and the amino terminal half of human Mucin-1 were amplified by PCR from plasmid 1316 with primers f pmed Nhe cMSLN and r muc 986-963. The genes encoding the carboxy terminal half of Mucin-1, an ERBV 2A peptide, and human telomerase amino acids 241-1132 were amplified by PCR from plasmid 1270 with primers f Muc 960-983 and r pmed Bgl Ter240. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1319 is set forth in SEQ ID NO:47. The amino acid sequence encoded by Plasmid 1319 is set for in SEQ ID NO:48.
  • Plasmid 1320 (cMSLN-T2A-Tert240-ERB2A-Muc1). Plasmid 1320 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human mesothelin precursor amino acids 37-597, a TAV 2A peptide, and the amino terminal half of human telomerase were amplified by PCR from plasmid 1274 with primers f pmed Nhe cMSLN and r tert 1602-1579. The genes encoding the carboxy terminal half of telomerase, an ERBV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from plasmid 1271 with primers f tert 1584-1607 and r pmed Bgl Muc. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1320 is set forth in SEQ ID NO:49. The amino acid sequence encoded by Plasmid 1320 is set for in SEQ ID NO:50.
  • Plasmid 1321 (Tert240-T2A-cMSLN-EMC2A-Muc1). Plasmid 1321 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding the amino terminal half of human telomerase was amplified by PCR from plasmid 1112 with primers f pmed Nhe Ter240 and r tert 1602-1579. The genes encoding the carboxy terminal half of telomerase, a TAV 2A peptide, and the amino terminal half of human mesothelin precursor were amplified by PCR from plasmid 1272 with primers f tert 1584-1607 and r MSLN 1051-1033. The genes encoding the carboxy terminal half of human mesothelin precursor, an EMCV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from plasmid 1316 with primers f MSLN 1028-1051 and r pmed Bgl Muc. The three partially overlapping amplicons were mixed together and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1321 is set forth in SEQ ID NO:51. The amino acid sequence encoded by Plasmid 1321 is set for in SEQ ID NO:52.
  • Plasmid 1322 (Tert240-ERB2A-Muc1-EMC2A-cMSLN). Plasmid 1322 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human telomerase amino acids 241-1132, an ERBV 2A peptide, and the amino terminal half of human Mucin-1 were amplified by PCR from plasmid 1271 with primers f pmed Nhe Ter240 and r muc 986-963. The genes encoding the carboxy terminal half of Mucin-1, an EMCV 2A peptide, and human mesothelin precursor amino acids 37-597 were amplified by PCR from plasmid 1313 with primers f Muc 960-983 and r pmed Bgl cMSLN. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1322 is set forth in SEQ ID NO:53. The amino acid sequence encoded by Plasmid 1322 is set for in SEQ ID NO:54.
  • Plasmid 1351 (Muc1-EMC2A-cMSLN-T2A-Tert541). Plasmid 1351 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human Mucin-1 amino acids 2-225, 946-1255, an EMCV 2A peptide, and the human mesothelin precursor were amplified by PCR from plasmid 1313 with primers f pmed Nhe Muc and r T2A Bamh cMSLN. The genes encoding a TAV 2A peptide and human telomerase amino acids 541-1132 were amplified by PCR from plasmid 1330 with primers f1 T2A Tert d541, f2 T2A, and r pmed Bgl Ter240. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1351 is set forth in SEQ ID NO:55. The amino acid sequence encoded by Plasmid 1351 is set for in SEQ ID NO:56.
  • Plasmid 1352 (cMSLN-EMC2A-Muc1-ERB2A-Tert541). Plasmid 1352 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human mesothelin precursor amino acids 37-597, an EMCV 2A peptide, and human Mucin-1 were amplified by PCR from plasmid 1316 with primers f pmed Nhe cMSLN and r ERB2A Bamh Muc. The genes encoding an ERBV 2A peptide and human telomerase amino acids 541-1132 were amplified by PCR from plasmid 1330 with primers f1 ERBV2A Tert d541, f2 ERBV2A, and r pmed Bgl Ter240. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1352 is set forth in SEQ ID NO:57. The amino acid sequence encoded by Plasmid 1352 is set for in SEQ ID NO:58.
  • Plasmid 1353 (cMSLN-T2A-Tert541-ERB2A-Muc1). Plasmid 1353 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding human mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN, r2 T2A, and r T2A Bamh cMSLN. The genes encoding a TAV 2A peptide, human telomerase amino acids 541-1132, an ERBV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from plasmid 1271 with primers f1 T2A Tert d541 and r pmed Bgl Muc. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1353 is set forth in SEQ ID NO:59. The amino acid sequence encoded by Plasmid 1353 is set for in SEQ ID NO:60.
  • Plasmid 1354 (Muc1-EMC2A-cMSLN-T2A-Tert342). Plasmid 1354 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human Mucin-1 amino acids 2-225, 946-1255, an EMCV 2A peptide, and the human mesothelin precursor were amplified by PCR from plasmid 1313 with primers f pmed Nhe Muc and r T2A Bamh cMSLN. The genes encoding a TAV 2A peptide and human telomerase amino acids 342-1132 were amplified by PCR from plasmid 1326 with primers f1 T2A Tert d342, f2 T2A, and r pmed Bgl Ter240. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1354 is set forth in SEQ ID NO:61. The amino acid sequence encoded by Plasmid 1354 is set for in SEQ ID NO:62.
  • Plasmid 1355 (cMSLN-EMC2A-Muc1-ERB2A-Tert342). Plasmid 1355 was constructed using the techniques of PCR and Seamless cloning. First, the genes encoding human mesothelin precursor amino acids 37-597, an EMCV 2A peptide, and human Mucin-1 were amplified by PCR from plasmid 1316 with primers f pmed Nhe cMSLN and r ERB2A Bamh Muc. The genes encoding an ERBV 2A peptide, and human telomerase amino acids 342-1132 were amplified by PCR from plasmid 1326 with primers f1 ERBV2A Ter d342, f2 ERBV2A, and r pmed Bgl Ter240. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1355 is set forth in SEQ ID NO:63. The amino acid sequence encoded by Plasmid 1355 is set for in SEQ ID NO:64.
  • Plasmid 1356 (cMSLN-T2A-Tert342-ERB2A-Muc1). Plasmid 1356 was constructed using the techniques of PCR and Seamless cloning. First, the gene encoding human mesothelin precursor amino acids 37-597 was amplified by PCR from plasmid 1103 with primers f pmed Nhe cMSLN, r2 T2A, and r T2A Bamh cMSLN. The genes encoding a TAV 2A peptide, human telomerase amino acids 342-1132, an ERBV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from plasmid 1271 with primers f1 T2A Tert d342 and r pmed Bgl Muc. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The resulting clone #3 contained an unintended single base mutation. To correct the mutation, PCR and Seamless cloning were repeated using clone #3 as the template. The genes encoding human mesothelin precursor amino acids 37-597, a TAV 2A peptide, and the amino terminal half of human telomerase were amplified by PCR from clone #3 with primers f pmed Nhe cMSLN and r tert 1602-1579. The genes encoding the carboxy terminal half of telomerase, an ERBV 2A peptide, and human Mucin-1 amino acids 2-225, 946-1255 were amplified by PCR from clone #3 with primers f tert 1584-1607 and r pmed Bgl Muc. The partially overlapping amplicons were digested with Dpn I, mixed together, and cloned into the Nhe I/Bgl II sites of pPJV7563 by Seamless cloning. The open reading frame nucleotide sequence of Plasmid 1356 is set forth in SEQ ID NO:65. The amino acid sequence encoded by Plasmid 1356 is set for in SEQ ID NO:66.
  • 1D. Vector Construction
  • Vectors for expressing single or multi-antigen constructs were constructed from chimpanzee adenovirus Ad68 genomic sequences. Three versions of the AdC68 backbone without transgenes (called “empty vectors”) were designed in silico. The vectors differed only in the extent of the E1 and E3 deletions that were engineered into the viruses to render them replication incompetent and create space for transgene insertion. Vectors AdC68W and AdC68× were described in international patent application WO2015/063647A1. Vector AdC68Y, carrying deletions of bases 456-3256 and 27476-31831, was engineered to have improved growth properties over AdC68X and a greater transgene carrying capacity than AdC68W. All three empty vectors were biochemically synthesized in a multi-stage process utilizing in vitro oligo synthesis and subsequent recombination-mediated intermediate assembly in Escherichia coli (E. coli) and yeast. Open reading frames (ORF) encoding the various immunogenic TAA polypeptides were amplified by PCR from the plasmids described in the Examples. Open reading frames were then inserted into the empty vector bacmids. Recombinant viral genomes were released from the bacmids by digestion with PacI and the linearized nucleic acids were transfected into an E1 complimenting adherent HEK293 cell line. Upon visible cytopathic effects and adenovirus foci formation, cultures were harvested by multiple rounds of freezing/thawing to release virus from the cells. Viruses were amplified and purified by standard techniques.
  • Example 2. Immunogenicity of Immunogenic MUC1 Single-Antigen
  • Constructs
  • Study in HLA-A2/DR1 Mice
  • Study design. Twelve mixed gender HLA-A2/DR1 mice were primed on day 0 and boosted on day 14 with DNA construct Plasmid 1027 (which encodes the membrane-bound immunogenic MUC1 polypeptide of SEQ ID NO:8) or Plasmid 1197 (which encodes the cytosolic immunogenic MUC1 polypeptide of SEQ ID NO:16) using the PMED method. On day 21, mice were sacrificed and splenocytes assessed for MUC1-specific cellular immunogenicity in an interferon-gamma (IFN-γ) ELISpot and intracellular cytokine staining (ICS) assay.
  • Particle Mediated Epidermal Delivery (PMED). PMED is a needle-free method of administering DNAs to a subject. The PMED system involves the precipitation of DNA onto microscopic gold particles that are then propelled by helium gas into the epidermis. The ND10, a single use device, uses pressurized helium from an internal cylinder to deliver gold particles and the X15, a repeater delivery device, uses an external helium tank which is connected to the X15 via high pressure hose to deliver the gold particles. Both of these devices were used in studies to deliver the MUC1 DNA plasmids. The gold particle was usually 1-3 μm in diameter and the particles were formulated to contain 2 μg of antigen DNA plasmids per 1 mg of gold particles. (Sharpe, M. et al.: P. Protection of mice from H5N1 influenza challenge by prophylactic DNA vaccination using particle mediated epidermal delivery. Vaccine, 2007, 25(34): 6392-98: Roberts L K, et al.: Clinical safety and efficacy of a powdered Hepatitis B nucleic acid vaccine delivered to the epidermis by a commercial prototype device. Vaccine, 2005; 23(40):4867-78).
  • IFN-γ ELISpot assay. Splenocytes from individual animals were co-incubated in triplicate with individual Ag-specific peptides (each peptide at 2-10 ug/ml, 2.5-5e5 cells per well) or pools of 15mer Ag-specific peptides (overlapping by 11 amino acids, covering the entire Ag-specific amino acid sequence; each peptide at 2-5 ug/ml, 1.25-5e5 cells per well) in IFN-γ ELISPOT plates (see also Peptide Pools Table (Table 18), and Tables 15-17). The plates were incubated for ˜16 hours at 37° C., 5% CO2, then washed and developed, as per manufacturer's instruction. The number of IFN-γ spot forming cells (SFC) was counted with a CTL reader. The average of the triplicates was calculated and the response of the negative control wells, which contained no peptides, subtracted. The SFC counts were then normalized to describe the response per 1e6 splenocytes. The antigen-specific responses in the tables represent the sum of the responses to the Ag-specific peptides or peptide pools.
  • ICS assay. Splenocytes from individual animals were co-incubated with H-2b-, HLA-A2-, or HLA-A24-restricted Ag-specific peptides (each peptide at 5-10 ug/ml, 1-2e6 splenocytes per well) or pools of 15mer Ag-specific peptides (overlapping by 11 amino acids, covering the entire Ag-specific amino acid sequence; each peptide at 2-5 ug/ml, 1-2e6 splenocytes per well) in U-bottom 96-well-plate tissue culture plates (see also Peptide Pools Table (Table 18) and Tables 15-17). The plates were incubated ˜16 hours at 37° C., 5% CO2. The cells were then stained to detect intracellular IFN-γ expression from CD8+ T cells and fixed. Cells were acquired on a flow cytometer. The data was presented per animal as frequency of peptide(s) Ag- or peptide pool Ag-specific IFN-γ+ CD8+ T cells after subtraction of the responses obtained in the negative control wells, which contained no peptide.
  • Sandwich ELISA assay. The standard sandwich ELISA assay was done using the Tecan Evo, Biomek FxP, and BioTek 405 Select TS automation instruments. The 384 well microplates (flat-well, high binding) were coated at 25 μl/well with 1.0 μg/mL human MUC1 or human MSLN protein (antigen) in 1×PBS, and incubated overnight at 4° C. The next morning, plates were blocked for one hour at RT with 5% FBS in PBS with 0.05% Tween 20 (PBS-T). Mouse sera was prepared at a 1/100 starting dilution in PBS-T in 96 U-bottom well plates. The Tecan Evo performed ½ log serial dilutions in PBS-T over 9 dilution increment points, followed by stamping of 25 μl/well of diluted serum from the 96 well plates to 384 well plates. The 384 well plates were incubated for 1 hour at RT on a shaker at 600 RPM, then, using the BioTek EL 405 Select TS plate washer, the plates were washed 4 times in PBS-T. Secondary mouse anti-IgG-HRP antibody was diluted to an appropriate dilution and stamped by Biomek FxP at 25 μl/well into 384 well plates, and incubated for 1 hour at RT on a shaker at 600 RPM, followed by 5 repeated washes. Using the Biomek FxP, plates were stamped at 25 μl/well of RT TMB substrate and incubated in the dark at RT for 30 minutes, followed by 25 μl/well stamping of 1 N H2SO4 acid to stop the enzymatic reaction. Plates were read on the Molecular Devices, Spectramax 340PC/384 Plus at 450 nm wavelength. Data were reported as calculated titers at OD of 1.0 with a limit of detection of 99.0. The antigen-specific commercial monoclonal antibody was used in each plate as a positive control to track plate-to-plate variation performance, irrelevant vaccinated mouse serum was used as a negative control, and PBS-T only wells were used to monitor non-specific binding background. Titers in the tables represent antigen-specific IgG titers elicited from individual animals.
  • Results. Table 1 shows ELISpot and ICS data from HLA-A2/DR1 splenocytes cultured with peptide pools derived from the MUC1 peptide library (see also tables 15 and 18) or MUC1 peptide aa516-530, respectively. Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with MUC1 peptide pools, and background subtraction. Numbers in column 4 represent the frequency of CD8+ T cells being IFN-γ+ after restimulation with MUC1 peptide aa516-530 and background subtraction. A positive response is defined as having SFC>100 and a frequency of IFN-γ+ CD8+ T cells >0.05%. As shown in Table 1, the immunogenic MUC1 polypeptides made with the full-length membrane-bound (Plasmid 1027) and cytosolic (Plasmid 1197) MUC1 constructs described in Example 1A above are capable of inducing MUC1-specific T cell responses including HLA-A2-restricted MUC1 peptide aa516-530-specific CD8+ T cell responses. The cytosolic MUC1 antigen format induced the highest magnitude of T cell responses. Importantly, T cell responses derived from cancer patients against the MUC1 peptide aa516-530 have been shown to correlate with anti-tumor efficacy in vitro (Jochems C et al., Cancer Immunol Immunother (2014) 63:161-174) demonstrating the importance of raising cellular responses against this specific epitope.
  • TABLE 1
    T cell response induced by the single-antigen MUC1 DNA
    constructs (Plasmid 1027 and Plasmid 1197)
    in HLA-A2/DR1 mice
    # IFN-γ % CD8+ T
    Animal spots/106 cells being
    Construct ID # splenocytes IFN-γ+
    Plasmid 1027 31 494 2.25
    32 277 1.44
    33 475 0.10
    34 1096 0.84
    35 282 1.45
    36 649 1.36
    Plasmid 1197 43 569 4.69
    44 1131 2.15
    45 122 2.81
    46 373 1.73
    47 503 1.80
    48 2114 5.52
  • Study in HLA-A24 Mice
  • Study design. Mixed gender HLA-A24 mice were primed on day 0 and boosted on days 14, 28 and 42 with DNA construct Plasmid 1027 by PMED administration. On day 21, mice were sacrificed and splenocytes assessed for MUC1-specific cellular immunogenicity (ELISpot).
  • Results. Table 2 shows ELISpot data from HLA-A24 splenocytes cultured with peptide pools derived from the MUC1 peptide library (see also Peptide Pools Table (Table 18) and Table 15). Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with MUC1 peptide pools and background subtraction. The number in bold font indicates that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated. A positive response is defined as having SFC>100. As shown in Table 2, membrane-bound MUC1 construct is capable of inducing MUC1-specific cellular responses.
  • TABLE 2
    T cell response induced by the single-antigen DNA
    construct Plasmid 1027 encoding human native full-length
    membrane-bound MUC1 antigen in HLA-A24 mice
    # IFN-γ spots/106
    Construct ID Animal # splenocytes
    Plasmid 1027 8 3341
    9 3181
    10 6207
    11 3112
    12 3346
    13 3699
  • Study in Monkeys
  • Study design. 14 Chinese cynomolgus macaques were primed with an AdC68W adenovirus vector encoding the cytosolic (Plasmid 1197) or full-length membrane-bound MUC1 antigen (Plasmid 1027) at 2e11 viral particles by bilateral intramuscular injection (1 mL total). 29 days later, animals were boosted with DNA encoding cytosolic or full-length membrane-bound MUC1 antigen delivered intramuscularly bilaterally via electroporation (2 mL total). Anti-CTLA-4 was administered subcutaneously on days 1 (32 mg) and 29 (50 mg). 14 days after the last immunization, animals were bled and PBMCs and sera isolated to assess MUC1-specific cellular (ELISpot, ICS) and humoral (ELISA) responses, respectively.
  • NHP-Specific Immune Assays.
  • ELISpot assay. PBMCs from individual animals were co-incubated in duplicate with pools of 15mer Ag-specific peptides (overlapping by 11 amino acids, covering the entire Ag-specific amino acid sequence), each peptide at 2 ug/ml, 4e5 cells per well, in IFN-γ ELISPOT plates (see also Peptide Pools Table (Table 18) and Tables 15-17). The plates were incubated for ˜16 hours at 37° C., 5% CO2, then washed and developed, as per manufacturer's instruction. The number of IFN-γ spot forming cells (SFC) was counted with a CTL reader. The average of the duplicates was calculated and the response of the negative control wells, which contained no peptides, subtracted. The SFC counts were then normalized to describe the response per 1e6 PBMCs. The antigen-specific responses in the tables represent the sum of the responses to the Ag-specific peptide pools.
  • ICS assay. PBMCs from individual animals were co-incubated with pools of 15mer MUC1 peptides (overlapping by 11 amino acids, covering the entire native full-length MUC1 amino acid sequence, see Table 15), each peptide at 2 ug/mL, 1.5-2e6 PBMCs per well, in U-bottom 96-well-plate tissue culture plates. The plates were incubated for ˜16 hours at 37° C., 5% CO2, and then stained to detect intracellular IFN-γ expression from CD8 T cells. After fixation, the cells were acquired on a flow cytometer. The results are presented per individual animal as number of MUC1, MSLN, or TERT-specific IFN-γ+ CD8+ T cells after subtraction of the responses obtained in the negative control wells, which contained no peptide, and normalized to 1e6 CD8+ T cells.
  • Sandwich ELISA assay. The standard sandwich ELISA assay was done using the Tecan Evo, Biomek FxP, and BioTek 405 Select TS automation instruments. The 384 well microplates (flat-well, high binding) were coated at 25 μl/well with 1.0 μg/mL human MUC1 or human MSLN protein (antigen) in 1×PBS, and incubated overnight at 4° C. The next morning, plates were blocked for one hour at RT with 5% FBS in PBS with 0.05% Tween 20 (PBS-T). Sera from Chinese cynomolgus macaques was prepared at a 1/100 starting dilution in PBS-T in 96 U-bottom well plates. The Tecan Evo performed ½ log serial dilutions in PBS-T over 9 dilution increment points, followed by stamping of 25 μl/well of diluted serum from the 96 well plates to 384 well plates. The 384 well plates were incubated for 1 hour at RT on a shaker at 600 RPM, then, using the BioTek EL 405 Select TS plate washer, the plates were washed 4 times in PBS-T. Secondary rhesus anti-IgG-HRP antibody, which cross-reacts with cynomolgus IgG, was diluted to an appropriate dilution and stamped by Biomek FxP at 25 μl/well into 384 well plates, and incubated for 1 hour at RT on a shaker at 600 RPM, followed by 5 repeated washes. Using the Biomek FxP, plates were stamped at 25 μl/well of RT TMB substrate and incubated in the dark at RT for 30 minutes, followed by 25 μl/well stamping of 1 N H2SO4 acid to stop the enzymatic reaction. Plates were read on the Molecular Devices, Spectramax 340PC/384 Plus at 450 nm wavelength. Data were reported as calculated titers at OD of 1.0 with a limit of detection of 99.0. The antigen-specific commercial monoclonal antibody was used in each plate as a positive control to track plate-to-plate variation performance, irrelevant vaccinated mouse serum was used as a negative control, and PBS-T only wells were used to monitor non-specific binding background. Titers in the tables represent antigen-specific IgG titers elicited from individual animals.
  • Results. Table 3 shows the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the MUC1 peptide library (see also Peptide Pools Table (Table 18) and Table 15), and the ELISA data from Chinese cynomolgus macaques' sera. Numbers in column 3 represent #IFN-γ spots/106 PBMCs after restimulation with MUC1 peptide pools and background subtraction. Numbers in column 4 represent #IFN-γ+ CD8+ T cells/106 CD8+ T cells after restimulation with MUC1 peptide pools and background subtraction. Numbers in column 5 represent the anti-MUC1 IgG titer (Optical Density (O.D)=1, Limit of Detection (L.O.D)=99.0). A positive response is defined as having SFC>50, IFN-γ+ CD8+ T cells/1e6 CD8+ T cells >50, and IgG titers >99. As shown in Table 3, the immunogenic MUC1 polypeptides made with the cytosolic (1197) and native full-length membrane-bound (1027) MUC1 constructs are capable of inducing MUC1-specific T and B cell responses. The native full-length membrane-bound MUC1 construct (1027) was shown to induce the overall best MUC1-specific cellular and humoral response.
  • TABLE 3
    T and B cell responses induced by the single-antigen adenoviral
    AdC68W and single-antigen DNA constructs (Plasmid
    1197; Plasmid 1027) in Chinese cynomolgus macaques
    # IFN-γ # IFN-γ+ CD8+ T
    Construct Animal spots/106 cells/1e6 CD8+ T IgG
    ID # # splenocytes cells titer
    Plasmid 4001 0 0.0 8589.7
    1197 4002 38 1549.0 4245.9
    4003 17 0.0 2631.9
    4501 165 4792.3 614.6
    4502 1703 47727.4 1882.8
    4503 0 802.8 4366.4
    4504 373 1857.0 4419.3
    Plasmid 5001 797 813.5 5332.2
    1027 5002 1013 312.9 16233.5
    5003 1011 9496.9 6885.8
    5004 175 170.2 48759.0
    5501 214 4803.3 13010.4
    5502 306 8367.6 13115.3
    5503 405 0.0 89423.0
  • Example 3. Immunogenicity of MSLN Single-Antigen Constructs
  • Immune Response Study in Pasteur (HLA-A2/DR1) Mice
  • Study design. Twelve female HLA-A2/DR1 mice were primed with an AdC68W adenovirus vector encoding the membrane-bound (Plasmid 1084) or cytosolic MSLN antigen (Plasmid 1103) at 1e10 viral particles by intramuscular injection (50 ul). 28 days later, animals were boosted with DNA single-antigen construct encoding an immunogenic MSLN polypeptide using PMED method as described in Example 2. The antigen-specific T cell response was measured seven days later in an IFN-γ ELISPOT and ICS assay.
  • Results. Table 4 shows ELISpot and ICS data from HLA-A2/DR1 splenocytes cultured with peptide pools derived from the MSLN peptide library (see also Peptide Pools Table (Table 18) and Table 16) or MSLN peptides aa50-64, aa102-116, and aa542-556, respectively. Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with MSLN peptide pools and background subtraction. Numbers in column 4 represent the frequency of CD8+ T cells being IFN-γ+ after restimulation with MSLN peptides aa50-64, aa102-116 and aa542-556, and background subtraction. A positive response is defined as having SFC>100 and a frequency of IFN-γ+ CD8+ T cells >0.05%. As shown in Table 4, the immunogenic MSLN polypeptides made with the membrane-bound (1084) and cytosolic (1103) MSLN constructs described in Example 1A above are capable of inducing MSLN-specific T cell responses. The cytosolic MSLN antigen format induced the highest magnitude of MSLN-specific T cell responses.
  • TABLE 4
    T cell response induced by the single-
    antigen adenoviral AdC68W and single-
    antigen DNA constructs in HLA-A2/DR1 mice
    % CD8+
    # IFN-γ T cells
    Animal spots/106 being
    Construct ID # splenocytes IFN-γ+
    Plasmid 1084 37 1744  1.07
    38 3488  3.13
    39 1905  0.19
    40 1649  2.47
    41 1900  0.09
    42 1108  1.87
    Plasmid 1103 49 4839  2.34
    50 4685 13.49
    51 2508  3.69
    52 1865  2.09
    53  708  0.38
    54 2525  4.41
  • Immune Response Study in HLA A24 Mice
  • Study designs. Twelve mixed-gender HLA-A24 mice were immunized with membrane-bound (1084) or cytosolic MSLN (1103) DNA constructs using the PMED method in a prime/boost/boost/boost regimen, two weeks apart between each vaccination. MSLN-specific T cell responses were measured 7 days after the last immunization in an IFN-γ ELISpot and ICS assay.
  • Results. Table 5 shows ELISpot and ICS data from HLA-A24 splenocytes cultured with peptide pools derived from the MSLN peptide library (see also Peptide Pools Table (Table 18) and Table 16) or MSLN peptides aa130-144 and aa230-244, respectively. Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with MSLN peptide pools and background subtraction. Numbers in column 4 represent the frequency of CD8+ T cells being IFN-γ+ after restimulation with MSLN peptides aa130-144 and aa230-244, and background subtraction. A positive response is defined as having SFC>100 and a frequency of IFN-γ+ CD8+ T cells >0.05%. As shown in Table 5, the immunogenic MSLN polypeptides made with the membrane-bound (1084) and cytosolic MSLN (1103) constructs are capable of inducing MSLN-specific T cell responses. The cytosolic MSLN antigen format induced the highest magnitude of MSLN-specific T cell responses.
  • TABLE 5
    T cell response induced by the single-
    antigen DNA constructs in HLA-A24 mice
    % CD8+
    # IFN-γ T cells
    Animal spots/106 being
    Construct ID # splenocytes IFN-γ+
    Plasmid 1084  1  47 Not determined
     2  161 Not determined
     3  13 Not determined
     7  105 Not determined
     8  232 Not determined
     9  151 Not determined
    Plasmid 1103 13 2440 0.00
    14 2345 0.17
    15 1789 0.00
    19 3184 0.64
    21 5463 1.62
    22 2324 0.39
  • Immune Response Study in Monkeys
  • Study design. 14 Chinese cynomolgus macaques were primed with an AdC68W adenovirus vector encoding the membrane-bound (Plasmid 1084) or cytosolic MSLN antigen (Plasmid 1103) at 2e11 viral particles by bilateral intramuscular injection (1 mL total). 29 days later, animals were boosted with DNA encoding membrane-bound (1084) or cytosolic MSLN antigen (1103) delivered intramuscularly bilaterally via electroporation (2 mL total). Anti-CTLA-4 was administered subcutaneously on days 1 (32 mg) and 29 (50 mg). 14 days after the last immunization, animals were bled and PBMCs and serum isolated to assess MSLN-specific cellular (ELISpot, ICS) and humoral (ELISA) responses, respectively.
  • Results. Table 6 shows the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the MSLN peptide library (see also Peptide Pools Table (Table 18) and Table 16), and the ELISA data from Chinese cynomolgus macaques' sera. Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with MSLN peptide pools and background subtraction. Numbers in column 4 represent #IFN-γ+ CD8+ T cells/106 CD8+ T cells after restimulation with MSLN peptide pools and background subtraction. Numbers in column 5 represent the anti-MSLN IgG titer (Optical Density (O.D)=1, Limit of Detection (L.O.D)=99.0). A positive response is defined as having SFC>50, IFN-γ+ CD8+ T cells/1e6 CD8+ T cells >50, and IgG titers >99. As shown in Table 6, the immunogenic MSLN polypeptides made with the membrane-bound (1084) and cytosolic (1103) MSLN constructs are capable of inducing MSLN-specific T and B cell responses. The cytoplasmic MSLN construct (Plasmid 1103) was shown to induce the strongest MSLN-specific cellular response; in contrast, the membrane-bound MSLN construct (Plasmid 1084) was shown to induce the strongest MSLN-specific humoral response.
  • TABLE 6
    T and B cell responses induced by the single-
    antigen adenoviral AdC68W and single-antigen
    DNA constructs in Chinese cynomolgus macaques
    # IFN-γ+
    CD8+
    # IFN-γ T cells/
    Animal spots/106 1e6 CD8+
    Construct ID # # splenocytes T cells IgG titer
    Plasmid 1084 1001 390 181.4 40886.6
    1002 787 512.0 41476.1
    1003 2083 5642.6 11948.1
    1501 894 1083.7 41248.3
    1502 1789 6501.0 42668.3
    1503 2358 37238.3 42026.5
    1504 269 1340.9 43023.6
    Plasmid 1103 2001 2131 15318.5 1459.3
    2002 2818 7163.4 99.0
    2003 1115 2291.0 2393.2
    2004 948 3602.6 1948.0
    2501 2477 13741.4 1751.7
    2502 2082 9318.7 15412.5
    2503 831 1797.8 99.0
  • Example 4. Immunogenicity of Tert Single-Antigen Constructs
  • Immune Responses Study in Pasteur Mice
  • Study design. Six mixed gender HLA-A2/DR1 mice were primed with an AdC68W adenovirus vector encoding the truncated (A240) cytosolic immunogenic TERT polypeptide (Plasmid 1112) at 1e10 viral particles by intramuscular injection (50 ul). 28 days later, animals were boosted intramuscularly with 50 ug DNA delivered bilaterally via electroporation (2×20 ul) encoding the truncated (A240) cytosolic TERT antigen (Plasmid 1112). The antigen-specific T cell response was measured seven days later in an IFN-γ ELISPOT and ICS assay.
  • Results. Table 7 shows ELISpot and ICS data from HLA-A2/DR1 splenocytes cultured with peptide pools derived from the TERT peptide library (see also Peptide Pools Table (Table 18) and Table 17) or TERT peptide aa861-875, respectively. Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with TERT peptide pools and background subtraction. Numbers in column 4 represent the frequency of CD8+ T cells being IFN-γ+ after restimulation with TERT peptide aa861-875 and background subtraction. A positive response is defined as having SFC>100 and a frequency of IFN-γ+ CD8+ T cells >0.05%. As shown in Table 7, the immunogenic TERT polypeptide made with the truncated (A240) cytosolic TERT construct described in Example 1A above is capable of inducing HLA-A2-restricted TERT-specific CD8 T cell responses.
  • TABLE 7
    T cell response induced by the single-antigen adenoviral
    AdC68W and single-antigen DNA constructs
    (Plasmid 1112) encoding human truncated (Δ240)
    cytosolic TERT antigen in HLA-A2/DR1 mice
    % CD8+
    # IFN-γ T cells
    Animal spots/106 being
    Construct ID # splenocytes IFN-γ+
    Plasmid 1112 13 2851 32.79
    14 2691 13.60
    15 3697  7.87
    16 2984 21.30
    17 1832 26.40
    18 1385  3.16
  • Immune Responses Study in HLA A24 Mice
  • Study designs. Eight mixed gender HLA-A24 mice were primed with an AdC68W adenovirus vector encoding the truncated (A240) cytosolic TERT antigen (Plasmid 1112) at 1e10 viral particles total by bilateral intramuscular injection (50 ul into each tibialis anterior muscle). 14 days later, animals were boosted intramuscularly with 50 ug DNA delivered bilaterally via electroporation (2×20 ul) encoding the truncated (A240) cytosolic TERT antigen (Plasmid 1112). The antigen-specific T cell response was measured seven days later in an IFN-γ ELISPOT and ICS assay.
  • Results. Table 8 shows IFN-γ ELISpot and ICS data from HLA-A24 splenocytes cultured with peptide pools derived from the TERT peptide library (see also Peptide Pools Table (Table 18) and Table 17) or TERT peptide aa841-855), respectively. Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with TERT peptide pools and background subtraction. Numbers in column 4 represent the frequency of CD8+ T cells being IFN-γ+ after restimulation with TERT peptides aa841-855, and background subtraction. The number in bold font indicates that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated. A positive response is defined as having SFC>100 and a frequency of IFN-γ+ CD8+ T cells >0.1%. As shown in Table 8, the immunogenic TERT polypeptide made with the truncated (Δ240) cytosolic TERT (1112) construct is capable of inducing HLA-A24-restricted TERT-specific CD8+ T cell responses.
  • TABLE 8
    T cell response induced by the single-antigen
    adenoviral AdC68W single-(Δ240) cytosolic
    antigen DNA constructs (Plasmid 1112)
    encoding human truncated
    TERT antigen in HLA-A24 mice
    % CD8+
    # IFN-γ T cells
    Animal spots/106 being
    Construct ID # splenocytes IFN-γ+
    Plasmid 1112 17 4233 41.5
    18 2643 3.34
    19 1741 31.5
    20 3407 3.05
    21 3213 0.0903
    22  596 0
    23 1875 13.8
    24 2011 19.8
  • Immune Responses Study in Monkeys
  • Study design. Eight Chinese cynomolgus macaques were primed with an AdC68W adenovirus vector encoding the truncated (Δ240) cytosolic TERT antigen (Plasmid 1112) at 2e11 viral particles by bilateral intramuscular injection (1 mL total). 30 and 64 days later, animals were boosted with DNA (Plasmid 1112) encoding truncated (Δ240) cytosolic TERT antigen delivered intramuscularly bilaterally via electroporation (2 mL total). Anti-CTLA-4 was administered subcutaneously on days 1 (32 mg), 31 (50 mg) and 65 (75 mg). 14 days after the last immunization, animals were bled and PBMCs isolated to assess TERT-specific cellular (ELISpot, ICS) responses.
  • Results. Table 9 shows the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the TERT peptide library (see also Peptide Pools Table (table 18) and Table 17). Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with TERT peptide pools and background subtraction. Numbers in column 4 represent #IFN-γ+ CD8+ T cells/106 CD8+ T cells after restimulation with TERT peptide pools and background subtraction. A positive response is defined as having SFC>50 and IFN-γ+ CD8+ T cells/1e6 CD8+ T cells >50. As shown in Table 9, the immunogenic TERT polypeptide made with the truncated (Δ240) cytosolic (Plasmid 1112) TERT construct is capable of inducing TERT-specific T cell responses.
  • TABLE 9
    T cell response induced by the TERT single-antigen
    adenoviral AdC68W and TERT single-antigen DNA
    constructs in Chinese cynomolgus macaques
    # IFN-γ+
    CD8+
    # IFN-γ T cells/
    Animal spots/106 1e6 CD8+
    Construct ID # # splenocytes T cells
    Plasmid 1112 1001 3487 29472.2
    1002 1130 4906.6
    1003 2077 2984.2
    1004  133 337.8
    1501 3157 5325.1
    1502 2037 653.2
    1503 2697 16953.4
    1504 1208 1178.9
  • Example 5. Immunogenicity of Dual-Antigen Constructs
  • Immune Response Study in Monkeys
  • Study design. 24 Chinese cynomolgus macaques were primed with dual-antigen adenoviral AdC68W vectors encoding human native full-length membrane-bound MUC1 (MUC1) and human truncated (Δ240) cytosolic TERT (TERTΔ240) antigens at 2e11 viral particles by bilateral intramuscular injection (1 mL total). 30 and 64 days later, animals were boosted with dual-antigen DNA constructs (Plasmids 1270, 1271, and 1269) encoding the same two antigens delivered intramuscularly bilaterally via electroporation (2 mL total). Anti-CTLA-4 was administered subcutaneously on days 1 (32 mg), 31 (50 mg) and 65 (75 mg). 14 days after the last immunization, animals were bled and PBMCs and serum isolated to assess MUC1- and TERT-specific cellular (ELISpot, ICS) and MUC1-specific humoral (ELISA) responses, respectively. In total, three different dual-antigen constructs, which co-expressed both antigens, were evaluated: a) MUC1-2A-TERTΔ240 (Plasmid 1270), an AdC68W vector and DNA plasmid encoding MUC1 and TERT linked by a 2A peptide; b) TERTΔ240-2A-MUC1 (Plasmid 1271), an AdC68W vector and DNA plasmid encoding TERT and MUC1 linked by a 2A peptide; c) MUC1-TERTΔ240 (Plasmid 1269), an AdC68W vector and DNA plasmid encoding the MUC1-TERT fusion protein (see also Example 1B).
  • Results. Table 10 shows the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the MUC1 and TERT peptide libraries (see also Peptide Pools Table (Table 18) and Tables 15 and 17), and the ELISA data from Chinese cynomolgus macaques' sera. A positive response is defined as having SFC>50, IFN-γ+ CD8+ T cells/1e6 CD8+ T cells >50, and IgG titers >99. Numbers in columns 3 and 6 represent #IFN-γ spots/106 splenocytes after restimulation with MUC1 and TERT peptide pools and background subtraction, respectively. Numbers in bold font indicates that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated. Numbers in columns 4 and 7 represent #IFN-γ+ CD8+ T cells/106 CD8 #T cells after restimulation with MUC1 peptide pools and TERT peptide pools, respectively, and background subtraction. Numbers in column 5 represent the ani-MUC1 IgG titer (Optical Density (O.D)=1, Limit of Detection (L.O.D)=99.0). As shown in Table 10, the immunogenic MUC1 and TERT polypeptides made with the MUC1- and TERT-expressing dual-antigen constructs (Plasmids 1270, 1271, and 1269) are capable of inducing MUC1- and TERT-specific T cell responses, and MUC1-specific B cell responses. The dual-antigen construct 1269 encoding a MUC1-TERT fusion protein was shown to induce the strongest overall MUC1-specific cellular response; in contrast, dual-antigen construct Plasmid 1271 (TERT-2A-MUC1) was shown to induce the strongest overall TERT-specific cellular response. All three dual-antigen constructs were shown to induce a comparable MUC1-specific humoral response.
  • TABLE 10
    T and B cell responses induced by the dual-antigen adenoviral
    AdC68W and single-antigen DNA constructs (Plasmid 1270,
    1271, and 1269) encoding an immunogenic MUC1 and/or TERT
    polypeptide in Chinese cynomolgus macaques
    MUC1 TERT
    # IFN-γ # IFN-γ+ # IFN-γ # IFN-γ+
    spots/ CD8+ T spots/ CD8+ T
    106 cells/1e6 106 cells/1e6
    Construct Animal spleno- CD8+ T IgG spleno- CD8+ T
    ID # cytes cells titer cytes cells
    Plasmid 5001 813 1024.4 10725.8 307 436.9
    1270 5002 2778 14740.6 27090.7 1573 423.0
    5003 217 1198.7 19339.6 1687 40680.3
    5004 298 Excluded 3980.3 252 805.3
    5501 2287 6255.7 16278.9 692 0.0
    5502 760 0.0 6496.2 3010 13302.0
    5503 1315 199.8 6446.4 3702 7259.3
    5504 500 281.8 39868.0 2005 13727.8
    Plasmid 6001 1037 0.0 11770.3 2937 63106.1
    1271 6002 185 0.0 13925.4 1295 194.8
    6003 372 267.4 15439.7 2138 46023.2
    6004 203 97.1 10530.7 1562 8424.0
    6501 1315 2137.3 43487.3 3794 20358.2
    6502 1008 179.2 8742.0 2955 1503.5
    6503 552 226.4 35183.4 1797 50008.6
    6504 2200 162.8 35539.9 4402 24058.6
    Plasmid 7001 193 0.0 14868.3 3320 7321.5
    1269 7002 1353 2153.2 7546.6 870 736.2
    7003 1253 133.5 21277.4 2750 25827.7
    7004 1858 20846.7 10359.9 3230 19664.0
    7501 2138 773.6 31272.8 927 332.0
    7502 2177 10547.7 16635.5 2640 7527.3
    7503 1460 5086.2 5465.1 2362 938.6
    7504 922 0.0 38530.4 2875 2949.3
  • Example 6. Immunogenicity of Triple-Antigen Constructs
  • Example 6 illustrates the capability of triple-antigen adenoviral and nucleic acid constructs expressing the human native full-length membrane-bound MUC1 antigen (MUC1), human cytosolic MSLN antigen (cMSLN), and human truncated (Δ240) cytosolic TERT antigen (TERTΔ240 or TERTΔ541) to elicit Ag-specific T and B cell responses to all three encoded cancer antigens.
  • Immune Response Study in C57BL16J Mice Using Electroporation
  • Study Design. 48 female C57BL/6J mice were immunized with triple-antigen DNA constructs encoding human MUC1, cMSLN, and TERTΔ240. The triple-antigen DNA construct (100 ug) was delivered intramuscularly bilaterally (20 ul total into each tibialis anterior muscle) with concomitant electroporation in a prime/boost regimen, two weeks apart between each vaccination. MUC1-, MSLN-, and TERT-specific cellular responses, and MUC1- and MSLN-specific humoral responses were measured 7 days after the last immunization in an IFN-γ ELISpot assay and ELISA assay, respectively. In total, six different triple-antigen DNA constructs encoding all three antigens linked by 2A peptides were used as follows: MUC1-2A-cMSLN-2A-TERTΔ240 (Plasmid 1317), MUC1-2A-TERTΔ240-2A-cMSLN (Plasmid 1318), cMSLN-2A-MUC1-2A-TERTΔ240 (Plasmid 1319), cMSLN-2A-TERTΔ240-2A-MUC1 (Plasmid 1320), TERTΔ240-2A-cMSLN-2A-MUC1 (Plasmid 1321), TERTΔ240-2A-MUC1-2A-cMSLN (Plasmid 1322) (see also Example 1C). Results. Table 11 shows the ELISpot data from C57BL/6J splenocytes cultured with peptide pools derived from the MUC1, MSLN, and TERT peptide libraries (see also Peptide Pools Table (Table 18) and Tables 15-17), and the ELISA data from C57BL/6J mouse sera. A positive response is defined as having SFC>100 and IgG titers >99. Numbers in columns 3, 5 and 7 represent #IFN-γ spots/106 splenocytes after restimulation with MUC1, MSLN and TERT peptide pools and background subtraction, respectively. Numbers in bold font indicates that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated. Numbers in columns 4 and 6 represent the anti-MUC1 and MSLN IgG titer, respectively (Optical Density (O.D)=1, Limit of Detection (L.O.D)=99.0). As shown in Table 11, the immunogenic MUC1, MSLN, and TERT polypeptides made with the MUC1-, MSLN-, and TERT-expressing triple-antigen constructs are capable of inducing T cell responses against all three antigens, and B cell responses against MUC1; in contrast, only triple-antigen constructs Plasmids 1317, 1318, and 1322 are capable of inducing B cell responses against MSLN.
  • TABLE 11
    T and B cell responses induced by the triple-antigen DNA
    constructs (1317-1322) encoding human native full-length
    membrane-bound MUC1, human cytosolic MSLN, and human truncated
    (Δ240) cytosolic TERT antigens in C57BL/6J mice
    MUC1 MSLN TERT
    # IFN-γ # IFN-γ # IFN-γ
    spots/ spots/ spots/
    106 106 106
    Construct spleno- IgG spleno- IgG spleno-
    ID Animal cytes titer cytes titer cytes
    Plasmid 1 1433 1772.7 369 3069.8 2920
    1317 2 1979 5214.6 2764 9420.3 3133
    3 1729 3229.9 464 6205.6 2413
    4 1570 3220.1 1108 3892.8 3255
    5 1023 3837.1 497 11621.6 2293
    6 1509 5573.0 898 2804.0 2817
    7 1095 3905.2 163 1745.6 2311
    8 1778 5147.2 2140 7709.5 3233
    Plasmid 9 842 7873.1 652 99.0 2875
    1319 10 1443 8987.3 760 99.0 3652
    11 2832 7789.4 343 99.0 3510
    12 1797 13430.0 603 99.0 3863
    13 1351 9923.4 901 99.0 3443
    14 1626 3242.3 917 99.0 3541
    15 829 7361.0 563 99.0 3003
    16 1165 6143.4 871 99.0 3080
    Plasmid 17 475 1352.7 160 194.3 704
    1318 18 1027 6933.6 188 99.0 2413
    19 1424 1886.9 557 213.2 2244
    20 2241 3864.1 597 326.3 2799
    21 1447 5095.6 240 1926.4 2787
    22 789 3992.6 116 1198.2 2455
    23 700 4968.0 195 3040.2 2221
    24 1584 5403.9 231 3017.3 3310
    Plasmid 25 2043 4173.3 908 99.0 4896
    1320 26 2307 4158.6 1609 99.0 4532
    27 2271 10258.5 1281 99.0 3807
    28 829 6768.5 243 99.0 2420
    29 1355 7163.9 624 99.0 2993
    30 1938 7404.1 673 99.0 3214
    31 1373 3941.5 386 99.0 3139
    32 1581 7843.7 393 99.0 3745
    Plasmid 33 964 5579.2 225 99.0 2500
    1321 34 690 6364.0 141 99.0 2674
    35 923 8861.3 99 99.0 2492
    36 767 10270.5 573 99.0 2467
    37 1039 3211.9 148 99.0 1785
    38 1283 8614.10 308 99.0 2042
    39 1929 15147.2 276 99.0 2805
    40 529 3581.12 199 99.0 1412
    Plasmid 41 1017 5933.07 281 7430.2 2702
    1322 42 1936 5333.3 271 112.5 3317
    43 1719 3113.3 484 7054.2 3711
    44 994 4422.0 254 4499.5 2797
    45 1824 3902.0 1710 3246.3 5541
    46 1435 1189.9 416 1122.6 4654
    47 2430 686.7 613 99.0 4548
    48 1931 7288.6 1665 2088.1 4408
  • Immune Response Study in C57BL/6J Mice Using Adenoviral Vectors Study Design. 36 female C57BL/6J mice were primed with triple-antigen adenoviral vectors encoding human MUC1, cMSLN, and TERTΔ240 or TERTΔ541, at 1e10 viral particles by intramuscular injection (50 ul). 28 days later, animals were boosted with triple-antigen DNA constructs (50 ug) delivered intramuscularly bilaterally (20 ul total into each tibialis anterior muscle) with concomitant electroporation. MUC1-, MSLN-, and TERT-specific cellular responses, and MUC1- and MSLN-specific humoral responses were measured 7 days after the last immunization in an IFN-γ ELISpot and ICS assay, and an ELISA assay, respectively. In total, three triple-antigen adenoviral and DNA constructs encoding MUC1, cMSLN, and TERTΔ240 linked by 2A peptides, and three triple-antigen adenoviral and DNA constructs encoding MUC1, cMSLN, and TERTΔ541 linked by 2A peptides were used as follows: MUC1-2A-cMSLN-2A-TERTΔ240 (Plasmid 1317), cMSLN-2A-MUC1-2A-TERTΔ240 (Plasmid 1319), cMSLN-2A-TERTΔ240-2A-MUC1 (Plasmid 1320), and MUC1-2A-cMSLN-2A-TERTΔ541 (Plasmid 1351), cMSLN-2A-MUC1-2A-TERTΔ541 (Plasmid 1352), cMSLN-2A-TERTΔ541-2A-MUC1 (Plasmid 1353) (see also Example 1C).
  • Results. Table 12 shows the ELISpot data from C57BL/6J splenocytes cultured with peptide pools derived from the MUC1, MSLN, and TERT peptide libraries (see also Peptide Pools Table (Table 18) and Tables 15-17), the ICS data from C57BL/6J splenocytes cultured with TERT peptide aa1025-1039, and the ELISA data from C57BL/6J mouse sera. A positive response is defined as having SFC>100, a frequency of IFN-γ+ CD8+ T cells >0.1%, and IgG titers >99. Numbers in columns 3, 5, and 7 represent #IFN-γ spots/106 splenocytes after restimulation with MUC1, MSLN and TERT peptide pools, and background subtraction, respectively. Numbers in bold font indicate that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated. Numbers in column 8 represent #IFN-γ+ CD8+ T cells/106 CD8+ T cells after restimulation with TERT-specific peptide TERT aa1025-1039, and background subtraction. Numbers in columns 4 and 6 represent the anti-MUC1 and anti-MSLN IgG titer, respectively (Optical Density (O.D)=1, Limit of Detection (L.O.D)=99.0). As shown in Table 12, the immunogenic MUC1, MSLN, and TERT polypeptides made with MUC1-, MSLN-, and TERT-expressing triple-antigen constructs are capable of inducing T cell responses against all three antigens, and B cell responses against MUC1; in contrast, only triple-antigen constructs 1317 and 1351 are capable of inducing B cell responses against MSLN.
  • TABLE 12A
    MUC1-specific T and B cell responses induced
    by the triple-antigen adenoviral AdC68Y and
    DNA constructs (Plasmids 1317, 1319, and 1320)
    encoding human native full-length membrane-bound
    MUC1, human cytosolic MSLN, and human
    truncated (Δ240) cytosolic TERT antigens,
    and by the triple-antigen adenoviral AdC68Y
    and DNA constructs (Plasmids 1351-1353)
    encoding human native full-length
    membrane-bound MUC1, human cytosolic
    MSLN, and human truncated (Δ541)
    cytosolic TERT antigens in C57BL/6J mice
    MUC1
    # IFN-γ
    Animal spots/106 IgG
    Construct ID # splenocytes titer
    Plasmid 1317 19 3119 11653.4
    20 3347 11941.0
    21 1712 7287.2
    22 3604 14391.7
    23 2349 12599.0
    24 2457 12969.1
    Plasmid 1319 25 1865 15018.2
    26 1661 8836.8
    27 1657 13335.1
    28 1933 17854.1
    29 1293 10560.2
    30 2035 10477.6
    Plasmid 1320 31 2377 2667.4
    32 1629 11322.4
    33 1632 9562.9
    34 1259 7092.0
    35 2024 11306.8
    36  861 1785.1
    Plasmid 1351 37 2615 10253.1
    38 1595 13535.4
    39 1889 14557.4
    40 1869 15470.1
    41 1979 11944.4
    42 1892 18093.0
    Plasmid 1352 43 1593 22002.4
    44 2133 11821.6
    45 1341 48297.5
    46 1673 8682.2
    47 1933 11621.7
    48 1767 19318.1
    Plasmid 1353 49 1859 4826.7
    50 1845 3060.0
    51 1784 4499.9
    52 2209 2940.9
    53 2177 7738.32
    54 1821 2985.5
  • TABLE 12B
    MSLN-specific T and B cell responses
    induced by the triple-antigen adenoviral
    AdC68Y and DNA constructs (Plasmids
    1317, 1319, and 1320) encoding human native
    full-length membrane-bound MUC1, human
    cytosolic MSLN, and human truncated (Δ240)
    cytosolic TERT antigens, and by the triple-
    antigen adenoviral AdC68Y full-length and DNA
    constructs (Plasmids 1351-1353) encoding
    human native membrane-bound MUC1, human
    cytosolic MSLN, and human truncated (Δ541)
    cytosolic TERT antigens in C57BL/6J mice
    MSLN
    # IFN-γ
    Animal spots/106 IgG
    Construct ID # splenocytes titer
    Plasmid 1317 19 856 99.0
    20 911 1581.9
    21 336 1401.2
    22 820 767.3
    23 721 99.0
    24 1067 99.0
    Plasmid 1319 25 708 99.0
    26 368 99.0
    27 769 99.0
    28 1620 99.0
    29 880 99.0
    30 427 99.0
    Plasmid 1320 31 424 99.0
    32 399 99.0
    33 289 99.0
    34 321 99.0
    35 540 99.0
    36 316 99.0
    Plasmid 1351 37 685 99.0
    38 804 281.3
    39 505 155.8
    40 333 99.0
    41 285 2186.7
    42 444 99.0
    Plasmid 1352 43 1504 99.0
    44 421 99.0
    45 1293 99.0
    46 581 99.0
    47 747 99.0
    48 821 99.0
    Plasmid 1353 49 984 99.0
    50 740 99.0
    51 412 99.0
    52 1266 99.0
    53 764 99.0
    54 432 99.0
  • TABLE 12 C
    TERT-specific T cell responses
    induced by the triple-antigen adenoviral
    AdC68Y and DNA constructs (Plasmids
    1317, 1319, and 1320) encoding human native
    full-length membrane-bound MUC1, human
    cytosolic MSLN, and human truncated (Δ240)
    cytosolic TERT antigens, and by the triple-
    antigen adenoviral AdC68Y and DNA
    constructs (Plasmids 1351-1353) encoding
    human native full-length membrane-bound
    MUC1, human cytosolic MSLN, and human
    truncated (Δ541) cytosolic TERT antigens in
    C57BL/6J mice
    TERT
    % CD8+
    # IFN-γ T cells
    Animal spots/106 being
    Construct ID # splenocytes IFN-γ+
    Plasmid 1317 19 5730 4.1
    20 4119 2.0
    21 4587 4.9
    22 5522 4.3
    23 5120 3.6
    24 4383 4.5
    Plasmid 1319 25 4995 3.1
    26 4628 7.1
    27 2892 2.7
    28 4977 4.7
    29 3913 5.2
    30 3153 2.9
    Plasmid 1320 31 3732 3.6
    32 4308 4.3
    33 4153 1.4
    34 5067 5.2
    35 5351 5.1
    36 3268 5.0
    Plasmid 1351 37 3766 2.4
    38 5805 7.7
    39 4391 4.7
    40 3401 2.7
    41 3874 4.0
    42 3260 2.5
    Plasmid 1352 43 5235 5.0
    44 2853 3.4
    45 2876 3.5
    46 2610 3.3
    47 3275 2.8
    48 3009 3.3
    Plasmid 1353 49 5806 9.1
    50 6114 6.1
    51 4759 6.5
    52 5157 4.8
    53 3999 2.9
    54 4719 3.3
  • Immune Response Study in HLA-A24 Mice
  • Study Design. Eight mixed gender HLA-A24 mice were primed with an adenoviral AdC68Y triple-antigen construct (Plasmid 1317; MUC1-2A-cMSLN-2A-TERTΔ240) encoding human MUC1, cMSLN, and TERTΔ240 at 1e10 viral particles by intramuscular injection (50 ul into each tibialis anterior muscle). 14 days later, animals were boosted intramuscularly with 50 ug triple-antigen DNA construct (Plasmid 1317) encoding the same three antigens (20 ul delivered into each tibialis anterior muscle with concomitant electroporation). HLA-A24-restricted MUC1-specific cellular responses were measured 7 days after the last immunization in an IFN-γ ELISpot assay.
  • Results. Table 13 shows the ELISpot data from HLA-A24 splenocytes cultured with the MUC1 peptide aa524-532. A positive response is defined as having SFC>50. Numbers in column 3 represent #IFN-γ spots/106 splenocytes after restimulation with MUC1 peptide aa524-532 and background subtraction. As shown in Table 13, the immunogenic MUC1 polypeptides made with the MUC1-, MSLN-, and TERT-expressing triple-antigen construct 1317 are capable of inducing HLA-A24-restricted MUC1 peptide aa524-532-specific CD8′ T cell responses. Importantly, T cell responses derived from cancer patients against this specific MUC1 peptide have been shown to correlate with anti-tumor efficacy in vitro (Jochems C et al., Cancer Immunol Immunother (2014) 63:161-174) demonstrating the importance of raising cellular responses against this specific epitope.
  • TABLE 13
    HLA-A24-restricted MUC1 peptide aa524-532-
    specific T cell responses induced by the triple-
    antigen adenoviral and DNA constructs Plasmid 1317
    (MUC1-2A-cMSLN-2A-TERTΔ240) encoding
    human native full-length membrane-bound MUC1,
    human cytosolic MSLN, and human truncated
    (Δ240) cytosolic TERT antigens in HLA-A24 mice
    # IFN-γ
    Animal spots/106
    Construct ID # splenocytes
    Plasmid 1317 89  89
    90 289
    91 291
    92 207
    93  83
    94 295
    95  82
    96 100
  • Immune Response Study in Monkeys
  • Study design. 24 Chinese cynomolgus macaques were primed with AdC68Y adenoviral vectors encoding human native full-length membrane-bound MUC1 (MUC1), human cytoplasmic MSLN (cMSLN), and human truncated (Δ240) cytosolic TERT (TERTΔ240) antigens at 2e1 l viral particles by bilateral intramuscular injection (1 mL total). 28 and 56 days later, animals were boosted with DNA encoding the same three antigens delivered intramuscularly bilaterally via electroporation (2 mL total). Anti-CTLA-4 was administered subcutaneously on days 1 (32 mg), 29 (50 mg) and 57 (75 mg). 21 days after the last immunization, animals were bled and PBMCs and serum isolated to assess MUC1-, MSLN-, and TERT-specific cellular (ELISpot, ICS) and MUC1- and MSLN-specific humoral (ELISA) responses, respectively. In total, three triple-antigen adenoviral and DNA constructs encoding MUC1, cMSLN, and TERTΔ240 linked by 2A peptides were evaluated: MUC1-2A-cMSLN-2A-TERTΔ240 (Plasmid 1317), cMSLN-2A-MUC1-2A-TERTΔ240 (Plasmid 1319), and cMSLN-2A-TERTΔ240-2A-MUC1 (Plasmid 1320).
  • Results. Tables 14A, 14B, and 14C show the ELISpot and ICS data from Chinese cynomolgus macaques' PBMCs cultured with peptide pools derived from the MUC1, MSLN, and TERT peptide libraries (see also Peptide Pools Table (Table 18) and Tables 15-17), and the ELISA data from Chinese cynomolgus macaques' sera. A positive response is defined as having SFC>50, IFN-γ+ CD8+ T cells/1e6 CD8+ T cells >50, and IgG titers >99. Numbers in columns 3, 6, and 9 represent #IFN-γ spots/106 splenocytes after restimulation with MUC1, MSLN, and TERT peptide pools, and background subtraction, respectively. Numbers in bold font indicate that at least 1 peptide pool tested was too numerous to count, therefore the true figure is at least the value stated. Numbers in columns 4, 7, and 10 represent #IFN-γ+ CD8+ T cells/106 CD8+ T cells after restimulation with MUC1, MSLN, and TERT peptide pools, respectively, and background subtraction. Numbers in column 5 and 8 represent the anti-MUC1 and anti-MSLN IgG titer (Optical Density (O.D)=1, Limit of Detection (L.O.D)=99.0), respectively. As shown in Table 14, the immunogenic MUC1, MSLN, and TERT polypeptides made with MUC1-, MSLN-, and TERT-expressing triple-Ag constructs are capable of inducing cellular responses against all three antigens, and humoral responses against MUC1. However, only triple-antigen construct 1317 is able to induce significant MSLN-specific B cell responses.
  • TABLE 14A
    MUC1-specific T and B cell responses
    induced by the triple-antigen
    adenoviral AdC68Y and DNA constructs
    (Plasmids 1317, 1319, and 1320) encoding
    human native full-length membrane-bound
    MUC1, human cytoplasmic MSLN, and
    human truncated (Δ240) cytosolic TERT
    antigens in Chinese cynomolgus macaques
    MUC1
    # IFN-γ+
    CD8+
    # IFN-γ T cells/
    Animal spots/106 1e6 CD8+ IgG
    Construct ID # splenocytes T cells titer
    Plasmid 1317 4001 1319 0.0 27565.9
    4002 2664 48690.6 55784.5
    4003 373 322.3 16151.0
    4004 1617 8476.8 29970.0
    4501 2341 1359.0 24289.1
    4502 1157 0.0 21841.4
    4503 2286 3071.1 63872.6
    4504 1638 2172.4 45515.2
    Plasmid 1319 5001 88 0.0 22857.2
    5002 1308 0.0 29024.8
    5003 294 0.0 13356.0
    5004 527 468.8 15029.1
    5501 1296 2088.2 44573.6
    5502 1377 6624.2 23185.5
    5503 1302 0.0 25699.1
    5504 2499 10403.1 14456.8
    Plasmid 1320 6001 486 0.0 24454.1
    6002 1742 412.3 31986.3
    6003 1369 1154.9 23966.8
    6004 1129 561.6 39738.0
    6501 1673 447.4 21119.6
    6502 1215 0.0 18092.2
    6503 1817 3332.4 16364.6
    6504 1212 1157.1 17340.2
  • TABLE 14B
    MSLN-specific T and B cell responses
    induced by the triple-antigen
    adenoviral AdC68Y and DNA constructs
    (Plasmids 1317, 1319, and 1320) encoding
    human native full-length membrane-bound
    MUC1, human cytoplasmic MSLN, and
    human truncated (Δ240) cytosolic TERT
    antigens in Chinese cynomolgus macaques
    MSLN
    # IFN-γ+
    CD8+
    # IFN-γ T cells/
    Animal spots/106 1e6 CD8+ IgG
    Construct ID # splenocytes T cells titer
    Plasmid 1317 4001 1479 3732.4 7683.9
    4002 1587 1795.3 6147.4
    4003 648 884.7 3197.3
    4004 164 0.0 4561.3
    4501 2279 15469.0 6350.0
    4502 1930 22480.2 11699.5
    4503 1234 865.1 19065.6
    4504 1543 2348.1 4492.7
    Plasmid 1319 5001 258 426.6 99.0
    5002 1855 2030.9 232.0
    5003 1505 642.8 99.0
    5004 1275 2410.4 243.3
    5501 282 0.0 99.0
    5502 732 558.6 418.4
    5503 2070 4529.3 130.9
    5504 871 3466.9 99.0
    Plasmid 1320 6001 2446 6723.2 1381
    6002 1953 3185.0 184.8
    6003 2045 4053.7 99.0
    6004 395 0.0 419.3
    6501 1742 5813.1 322.7
    6502 1617 12311.5 99.0
    6503 448 0.0 285.6
    6504 338 0.0 168.8
  • TABLE 14C
    TERT-specific T cell responses
    induced by the triple-antigen
    adenoviral AdC68Y and DNA constructs
    (Plasmids 1317, 1319, and 1320) encoding
    human native full-length membrane-bound
    MUC1, human cytoplasmic MSLN, and
    human truncated (Δ240) cytosolic TERT
    antigens in Chinese cynomolgus macaques
    TERT
    # IFN-γ+
    CD8+
    # IFN-γ T cells/
    Animal spots/106 1e6 CD8+
    Construct ID # splenocytes T cells
    Plasmid 1317 4001 1723 8843.8
    4002 870 658.1
    4003 2128 5976.1
    4004 420 0.0
    4501 2136 999.1
    4502 2342 1195.6
    4503 1966 6701.1
    4504 2436 6985.5
    Plasmid 1319 5001 1018 1724.4
    5002 2121 713.8
    5003 2184 324.3
    5004 822 714.4
    5501 462 1851.4
    5502 325 692.9
    5503 401 0.0
    5504 517 0.0
    Plasmid 1320 6001 3011 8615.5
    6002 2825 2002.0
    6003 1489 1235.8
    6004 2272 2462.2
    6501 2428 1362.2
    6502 1875 4649.5
    6503 2515 8493.2
    6504 2584 5171.0
  • TABLE 15
    Human MUC1 Peptide Library peptide pools
    and corresponding amino acid sequences
    Amino Acid Sequence Peptide # SEQ ID NO
    MASTPGTQSPFFLLL   1aAS 132
    TPGTQSPFFLLLLLT   1bAS 133
    TQSPFFLLLLLTVLT   2 134
    FFLLLLLTVLTVVTG   3 135
    LLLTVLTVVTGSGHA   4 136
    VLTVVTGSGHASSTP   5 137
    VTGSGHASSTPGGEK   6 138
    GHASSTPGGEKETSA   7 139
    STPGGEKETSATQRS   8 140
    GEKETSATQRSSVPS   9 141
    TSATQRSSVPSSTEK  10 142
    QRSSVPSSTEKNAVS  11 143
    VPSSTEKNAVSMTSS  12 144
    TEKNAVSMTSSVLSS  13 145
    AVSMTSSVLSSHSPG  14 146
    TSSVLSSHSPGSGSS  15 147
    LSSHSPGSGSSTTQG  16 148
    SPGSGSSTTQGQDVT  17 149
    GSSTTQGQDVTLAPA  18 150
    TQGQDVTLAPATEPA  19 151
    DVTLAPATEPASGSA  20 152
    APATEPASGSAATWG  21 153
    EPASGSAATWGQDVT  22 154
    GSAATWGQDVTSVPV  23 155
    TWGQDVTSVPVTRPA  24 156
    DVTSVPVTRPALGST  25 157
    VPVTRPALGSTTPPA  26 158
    RPALGSTTPPAHDVT  27 159
    GSTTPPAHDVTSAPD  28 160
    PPAHDVTSAPDNKPA  29 161
    DVTSAPDNKPAPGST  30 162
    APDNKPAPGSTAPPA  31 163
    KPAPGSTAPPAHGVT  32 164
    GSTAPPAHGVTSAPD  33 165
    PPAHGVTSAPDTRPA  34 166
    GVTSAPDTRPAPGST  35 167
    APDTRPAPGSTAPPA  36 168
    RPAPGSTAPPAHGVT  37 169
    GVTSAPDTRPALGST  55 170
    APDTRPALGSTAPPV  56 171
    RPALGSTAPPVHNVT  57 172
    GSTAPPVHNVTSASG  58 173
    PPVHNVTSASGSASG  59 174
    NVTSASGSASGSAST  60 175
    ASGSASGSASTLVHN  61 176
    ASGSASTLVHNGTSA  62 177
    ASTLVHNGTSARATT  63 178
    VHNGTSARATTTPAS  64 179
    TSARATTTPASKSTP  65 180
    ATTTPASKSTPFSIP  66 181
    PASKSTPFSIPSHHS  67 182
    STPFSIPSHHSDTPT  68 183
    SIPSHHSDTPTTLAS  69 184
    HHSDTPTTLASHSTK  70 185
    TPTTLASHSTKTDAS  71 186
    LASHSTKTDASSTHH  72 187
    STKTDASSTHHSSVP  73 188
    DASSTHHSSVPPLTS  74 189
    THHSSVPPLTSSNHS  75 190
    SVPPLTSSNHSTSPQ  76 191
    LTSSNHSTSPQLSTG  77 192
    NHSTSPQLSTGVSFF  78 193
    SPQLSTGVSFFFLSF  79 194
    STGVSFFFLSFHISN  80 195
    SFFFLSFHISNLQFN  81 196
    LSFHISNLQFNSSLE  82 197
    ISNLQFNSSLEDPST  83 198
    QFNSSLEDPSTDYYQ  84 199
    SLEDPSTDYYQELQR  85 200
    PSTDYYQELQRDISE  86 201
    YYQELQRDISEMFLQ  87 202
    LQRDISEMFLQIYKQ  88 203
    ISEMFLQIYKQGGFL  89 204
    FLQIYKQGGFLGLSN  90 205
    YKQGGFLGLSNIKFR  91 206
    GFLGLSNIKFRPGSV  92X 207
    LSNIKFRPGSVVVQL  93X 208
    KFRPGSVVVQLTLAF  94X 209
    GSVVVQLTLAFREGT  95X 210
    VVVQLTLAFREGTIN  95XX 211
    QLTLAFREGTINVHD  96 212
    AFREGTINVHDVETQ  97 213
    GTINVHDVETQFNQY  98 214
    VHDVETQFNQYKTEA  99 215
    ETQFNQYKTEAASRY 100 216
    NQYKTEAASRYNLTI 101 217
    TEAASRYNLTISDVS 102 218
    SRYNLTISDVSVSDV 103 219
    LTISDVSVSDVPFPF 104 220
    DVSVSDVPFPFSAQS 105 221
    SDVPFPFSAQSGAGV 106 222
    FPFSAQSGAGVPGWG 107 223
    AQSGAGVPGWGIALL 108 224
    AGVPGWGIALLVLVC 109 225
    GWGIALLVLVCVLVA 110 226
    ALLVLVCVLVALAIV 111 227
    LVCVLVALAIVYLIA 112 228
    LVALAIVYLIALAVC 113 229
    AIVYLIALAVCQCRR 114 230
    LIALAVCQCRRKNYG 115 231
    AVCQCRRKNYGQLDI 116 232
    CRRKNYGQLDIFPAR 117 233
    NYGQLDIFPARDTYH 118 234
    LDIFPARDTYHPMSE 119 235
    PARDTYHPMSEYPTY 120 236
    TYHPMSEYPTYHTHG 121 237
    MSEYPTYHTHGRYVP 122 238
    PTYHTHGRYVPPSST 123 239
    THGRYVPPSSTDRSP 124 240
    YVPPSSTDRSPYEKV 125 241
    SSTDRSPYEKVSAGN 126 242
    RSPYEKVSAGNGGSS 127 243
    EKVSAGNGGSSLSYT 128 244
    AGNGGSSLSYTNPAV 129 245
    GSSLSYTNPAVAAAS 130 246
    LSYTNPAVAAASANL 131 247
  • TABLE 16
    Human MSLN Peptide Library peptide pools
    and corresponding amino acid sequences
    Amino Acid Sequence Peptide # SEQ ID NO
    MASLPTARPLLGSCG   1aS 248
    TARPLLGSCGTPALG   2 249
    LLGSCGTPALGSLLF   3 250
    CGTPALGSLLFLLFS   4 251
    ALGSLLFLLFSLGWV   5 252
    LLFLLFSLGWVQPSR   6 253
    LFSLGWVQPSRTLAG   7 254
    GWVQPSRTLAGETGQ   8 255
    PSRTLAGETGQEAAP   9 256
    TLAGETGQEAAPLDG  10X 257
    TGQEAAPLDGVLANP  11 258
    AAPLDGVLANPPNIS  12 259
    DGVLANPPNISSLSP  13 260
    ANPPNISSLSPRQLL  14 261
    NISSLSPRQLLGFPC  15 262
    LSPRQLLGFPCAEVS  16 263
    QLLGFPCAEVSGLST  17 264
    FPCAEVSGLSTERVR  18 265
    EVSGLSTERVRELAV  19 266
    LSTERVRELAVALAQ  20 267
    RVRELAVALAQKNVK  21 268
    LAVALAQKNVKLSTE  22 269
    LAQKNVKLSTEQLRC  23 270
    NVKLSTEQLRCLAHR  24 271
    STEQLRCLAHRLSEP  25 272
    LRCLAHRLSEPPEDL  26 273
    AHRLSEPPEDLDALP  27 274
    SEPPEDLDALPLDLL  28 275
    EDLDALPLDLLLFLN  29 276
    ALPLDLLLFLNPDAF  30 277
    DLLLFLNPDAFSGPQ  31 278
    FLNPDAFSGPQACTR  32 279
    DAFSGPQACTRFFSR  33 280
    GPQACTRFFSRITKA  34 281
    CTRFFSRITKANVDL  35 282
    FSRITKANVDLLPRG  36 283
    TKANVDLLPRGAPER  37 284
    VDLLPRGAPERQRLL  38 285
    PRGAPERQRLLPAAL  39 286
    PERQRLLPAALACWG  40 287
    RLLPAALACWGVRGS  41 288
    AALACWGVRGSLLSE  42 289
    CWGVRGSLLSEADVR  43 290
    RGSLLSEADVRALGG  44 291
    LSEADVRALGGLACD  45 292
    DVRALGGLACDLPGR  46 293
    LGGLACDLPGRFVAE  47 294
    ACDLPGRFVAESAEV  48 295
    PGRFVAESAEVLLPR  49 296
    VAESAEVLLPRLVSC  50 297
    AEVLLPRLVSCPGPL  51 298
    LPRLVSCPGPLDQDQ  52 299
    VSCPGPLDQDQQEAA  53 300
    GPLDQDQQEAARAAL  54 301
    QDQQEAARAALQGGG  55 302
    EAARAALQGGGPPYG  56 303
    AALQGGGPPYGPPST  57 304
    GGGPPYGPPSTWSVS  58 305
    PYGPPSTWSVSTMDA  59 306
    PSTWSVSTMDALRGL  60 307
    SVSTMDALRGLLPVL  61 308
    MDALRGLLPVLGQPI  62 309
    RGLLPVLGQPIIRSI  63 310
    PVLGQPIIRSIPQGI  64 311
    QPIIRSIPQGIVAAW  65 312
    RSIPQGIVAAWRQRS  66 313
    QGIVAAWRQRSSRDP  67 314
    AAWRQRSSRDPSWRQ  68 315
    QRSSRDPSWRQPERT  69 316
    RDPSWRQPERTILRP  70 317
    WRQPERTILRPRFRR  71 318
    ERTILRPRFRREVEK  72 319
    LRPRFRREVEKTACP  73 320
    FRREVEKTACPSGKK  74 321
    VEKTACPSGKKAREI  75 322
    ACPSGKKAREIDESL  76 323
    GKKAREIDESLIFYK  77 324
    REIDESLIFYKKWEL  78 325
    ESLIFYKKWELEACV  79 326
    FYKKWELEACVDAAL  80 327
    WELEACVDAALLATQ  81 328
    ACVDAALLATQMDRV  82 329
    AALLATQMDRVNAIP  83 330
    ATQMDRVNAIPFTYE  84 331
    DRVNAIPFTYEQLDV  85 332
    AIPFTYEQLDVLKHK  86 333
    TYEQLDVLKHKLDEL  87 334
    LDVLKHKLDELYPQG  88 335
    KHKLDELYPQGYPES  89 336
    DELYPQGYPESVIQH  90 337
    PQGYPESVIQHLGYL  91 338
    PESVIQHLGYLFLKM  92 339
    IQHLGYLFLKMSPED  93 340
    GYLFLKMSPEDIRKW  94 341
    LKMSPEDIRKWNVTS  95 342
    PEDIRKWNVTSLETL  96 343
    RKWNVTSLETLKALL  97 344
    VTSLETLKALLEVNK  98 345
    ETLKALLEVNKGHEM  99 346
    ALLEVNKGHEMSPQV 100 347
    VNKGHEMSPQVATLI 101 348
    HEMSPQVATLIDRFV 102 349
    PQVATLIDRFVKGRG 103 350
    TLIDRFVKGRGQLDK 104 351
    RFVKGRGQLDKDTLD 105 352
    GRGQLDKDTLDTLTA 106 353
    LDKDTLDTLTAFYPG 107 354
    TLDTLTAFYPGYLCS 108 355
    LTAFYPGYLCSLSPE 109 356
    YPGYLCSLSPEELSS 110 357
    LCSLSPEELSSVPPS 111 358
    SPEELSSVPPSSIWA 112 359
    LSSVPPSSIWAVRPQ 113 360
    PPSSIWAVRPQDLDT 114 361
    IWAVRPQDLDTCDPR 115 362
    RPQDLDTCDPRQLDV 116 363
    LDTCDPRQLDVLYPK 117 364
    DPRQLDVLYPKARLA 118 365
    LDVLYPKARLAFQNM 119 366
    YPKARLAFQNMNGSE 120 367
    RLAFQNMNGSEYFVK 121 368
    QNMNGSEYFVKIQSF 122 369
    GSEYFVKIQSFLGGA 123 370
    FVKIQSFLGGAPTED 124 371
    QSFLGGAPTEDLKAL 125 372
    GGAPTEDLKALSQQN 126 373
    TEDLKALSQQNVSMD 127 374
    KALSQQNVSMDLATF 128 375
    QQNVSMDLATFMKLR 129 376
    SMDLATFMKLRTDAV 130 377
    ATFMKLRTDAVLPLT 131 378
    KLRTDAVLPLTVAEV 132 379
    DAVLPLTVAEVQKLL 133 380
    PLTVAEVQKLLGPHV 134 381
    AEVQKLLGPHVEGLK 135 382
    KLLGPHVEGLKAEER 136 383
    PHVEGLKAEERHRPV 137 384
    GLKAEERHRPVRDWI 138 385
    EERHRPVRDWILRQR 139 386
    RPVRDWILRQRQDDL 140 387
    DWILRQRQDDLDTLG 141 388
    RQRQDDLDTLGLGLQ 142 389
    DDLDTLGLGLQGGIP 143 390
    TLGLGLQGGIPNGYL 144 391
    GLQGGIPNGYLVLDL 145 392
    GIPNGYLVLDLSMQE 146 393
    YLVLDLSMQEALSGT 147XX 394
    LDLSMQEALSGTPCL 148 395
    MQEALSGTPCLLGPG 149 396
    LSGTPCLLGPGPVLT 150 397
    PCLLGPGPVLTVLAL 151 398
    GPGPVLTVLALLLAS 152 399
    PVLTVLALLLASTLA 153 400
  • TABLE 17
    Human TERT Peptide Library peptide pools
    and corresponding amino acid sequences
    Amino Acid Sequence Peptide # SEQ ID NO
    RRGAAPEPERTPVGQ 61 401
    APEPERTPVGQGSWA 62 402
    ERTPVGQGSWAHPGR 63 403
    VGQGSWAHPGRTRGP 64 404
    SWAHPGRTRGPSDRG 65 405
    PGRTRGPSDRGFCVV 66 406
    RGPSDRGFCVVSPAR 67 407
    DRGFCVVSPARPAEE 68 408
    CVVSPARPAEEATSL 69 409
    PARPAEEATSLEGAL 70 410
    AEEATSLEGALSGTR 71 411
    TSLEGALSGTRHSHP 72 412
    GALSGTRHSHPSVGR 73 413
    GTRHSHPSVGRQHHA 74 414
    SHPSVGRQHHAGPPS 75 415
    VGRQHHAGPPSTSRP 76 416
    HHAGPPSTSRPPRPW 77 417
    PPSTSRPPRPWDTPC 78 418
    SRPPRPWDTPCPPVY 79 419
    RPWDTPCPPVYAETK 80 420
    TPCPPVYAETKHFLY 81 421
    PVYAETKHFLYSSGD 82 422
    ETKHFLYSSGDKEQL 83 423
    FLYSSGDKEQLRPSF 84 424
    SGDKEQLRPSFLLSS 85 425
    EQLRPSFLLSSLRPS 86 426
    PSFLLSSLRPSLTGA 87 427
    LSSLRPSLTGARRLV 88 428
    RPSLTGARRLVETIF 89 429
    TGARRLVETIFLGSR 90 430
    RLVETIFLGSRPWMP 91 431
    TIFLGSRPWMPGTPR 92 432
    GSRPWMPGTPRRLPR 93 433
    WMPGTPRRLPRLPQR 94 434
    TPRRLPRLPQRYWQM 95 435
    LPRLPQRYWQMRPLF 96 436
    PQRYWQMRPLFLELL 97 437
    WQMRPLFLELLGNHA 98 438
    PLFLELLGNHAQCPY 99 439
    ELLGNHAQCPYGVLL 100 440
    NHAQCPYGVLLKTHC 101 441
    CPYGVLLKTHCPLRA 102 442
    VLLKTHCPLRAAVTP 103 443
    THCPLRAAVTPAAGV 104 444
    LRAAVTPAAGVCARE 105 445
    VTPAAGVCAREKPQG 106 446
    AGVCAREKPQGSVAA 107 447
    AREKPQGSVAAPEEE 108 448
    PQGSVAAPEEEDTDP 109 449
    VAAPEEEDTDPRRLV 110 450
    EEEDTDPRRLVQLLR 111 451
    TDPRRLVQLLRQHSS 112 452
    RLVQLLRQHSSPWQV 113 453
    LLRQHSSPWQVYGFV 114 454
    HSSPWQVYGFVRACL 115 455
    WQVYGFVRACLRRLV 116 456
    GFVRACLRRLVPPGL 117 457
    ACLRRLVPPGLWGSR 118 458
    RLVPPGLWGSRHNER 119 459
    PGLWGSRHNERRFLR 120 460
    GSRHNERRFLRNTKK 121 461
    NERRFLRNTKKFISL 122 462
    FLRNTKKFISLGKHA 123 463
    TKKFISLGKHAKLSL 124 464
    ISLGKHAKLSLQELT 125 465
    KHAKLSLQELTWKMS 126 466
    LSLQELTWKMSVRDC 127 467
    ELTWKMSVRDCAWLR 128 468
    KMSVRDCAWLRRSPG 129 469
    RDCAWLRRSPGVGCV 130 470
    WLRRSPGVGCVPAAE 131 471
    SPGVGCVPAAEHRLR 132 472
    GCVPAAEHRLREEIL 133 473
    AAEHRLREEILAKFL 134 474
    RLREEILAKFLHWLM 135 475
    EILAKFLHWLMSVYV 136 476
    KFLHWLMSVYVVELL 137 477
    WLMSVYVVELLRSFF 138 478
    VYVVELLRSFFYVTE 139 479
    ELLRSFFYVTETTFQ 140 480
    SFFYVTETTFQKNRL 141 481
    VTETTFQKNRLFFYR 142 482
    TFQKNRLFFYRKSVW 143 483
    NRLFFYRKSVWSKLQ 144 484
    FYRKSVWSKLQSIGI 145 485
    SVWSKLQSIGIRQHL 146 486
    KLQSIGIRQHLKRVQ 147 487
    IGIRQHLKRVQLREL 148 488
    QHLKRVQLRELSEAE 149 489
    RVQLRELSEAEVRQH 150 490
    RELSEAEVRQHREAR 151 491
    EAEVRQHREARPALL 152 492
    RQHREARPALLTSRL 153 493
    EARPALLTSRLRFIP 154 494
    ALLTSRLRFIPKPDG 155 495
    SRLRFIPKPDGLRPI 156 496
    FIPKPDGLRPIVNMD 157 497
    PDGLRPIVNMDYVVG 158 498
    RPIVNMDYVVGARTF 159 499
    NMDYVVGARTFRREK 160 500
    VVGARTFRREKRAER 161 501
    RTFRREKRAERLTSR 162 502
    REKRAERLTSRVKAL 163 503
    AERLTSRVKALFSVL 164 504
    TSRVKALFSVLNYER 165 505
    KALFSVLNYERARRP 166 506
    SVLNYERARRPGLLG 167 507
    YERARRPGLLGASVL 168 508
    RRPGLLGASVLGLDD 169 509
    LLGASVLGLDDIHRA 170 510
    SVLGLDDIHRAWRTF 171 511
    LDDIHRAWRTFVLRV 172 512
    HRAWRTFVLRVRAQD 173 513
    RTFVLRVRAQDPPPE 174 514
    LRVRAQDPPPELYFV 175 515
    AQDPPPELYFVKVDV 176 516
    PPELYFVKVDVTGAY 177 517
    YFVKVDVTGAYDTIP 178 518
    VDVTGAYDTIPQDRL 179 519
    GAYDTIPQDRLTEVI 180 520
    TIPQDRLTEVIASII 181 521
    DRLTEVIASIIKPQN 182 522
    EVIASIIKPQNTYCV 183 523
    SIIKPQNTYCVRRYA 184 524
    PQNTYCVRRYAVVQK 185 525
    YCVRRYAVVQKAAHG 186 526
    RYAVVQKAAHGHVRK 187 527
    VQKAAHGHVRKAFKS 188 528
    AHGHVRKAFKSHVST 189 529
    VRKAFKSHVSTLTDL 190 530
    FKSHVSTLTDLQPYM 191 531
    VSTLTDLQPYMRQFV 192 532
    TDLQPYMRQFVAHLQ 193 533
    PYMRQFVAHLQETSP 194 534
    QFVAHLQETSPLRDA 195 535
    HLQETSPLRDAVVIE 196 536
    TSPLRDAVVIEQSSS 197 537
    RDAVVIEQSSSLNEA 198 538
    VIEQSSSLNEASSGL 199 539
    SSSLNEASSGLFDVF 200 540
    NEASSGLFDVFLRFM 201 541
    SGLFDVFLRFMCHHA 202 542
    DVFLRFMCHHAVRIR 203 543
    RFMCHHAVRIRGKSY 204 544
    HHAVRIRGKSYVQCQ 205 545
    RIRGKSYVQCQGIPQ 206 546
    KSYVQCQGIPQGSIL 207 547
    QCQGIPQGSILSTLL 208 548
    IPQGSILSTLLCSLC 209 549
    SILSTLLCSLCYGDM 210 550
    TLLCSLCYGDMENKL 211 551
    SLCYGDMENKLFAGI 212 552
    GDMENKLFAGIRRDG 213 553
    NKLFAGIRRDGLLLR 214 554
    AGIRRDGLLLRLVDD 215 555
    RDGLLLRLVDDFLLV 216 556
    LLRLVDDFLLVTPHL 217 557
    VDDFLLVTPHLTHAK 218 558
    LLVTPHLTHAKTFLR 219 559
    PHLTHAKTFLRTLVR 220 560
    HAKTFLRTLVRGVPE 221 561
    FLRTLVRGVPEYGCV 222 562
    LVRGVPEYGCVVNLR 223 563
    VPEYGCVVNLRKTVV 224 564
    GCVVNLRKTVVNFPV 225 565
    NLRKTVVNFPVEDEA 226 566
    TVVNFPVEDEALGGT 227 567
    FPVEDEALGGTAFVQ 228 568
    DEALGGTAFVQMPAH 229 569
    GGTAFVQMPANGLFP 230 570
    FVQMPAHGLFPWCGL 231 571
    PAHGLFPWCGLLLDT 232 572
    LFPWCGLLLDTRTLE 233 573
    CGLLLDTRTLEVQSD 234 574
    LDTRTLEVQSDYSSY 235 575
    TLEVQSDYSSYARTS 236 576
    QSDYSSYARTSIRAS 237 577
    SSYARTSIRASLTFN 238 578
    RTSIRASLTFNRGFK 239 579
    RASLTFNRGFKAGRN 240 580
    TFNRGFKAGRNMRRK 241 581
    GFKAGRNMRRKLFGV 242 582
    GRNMRRKLFGVLRLK 243 583
    RRKLFGVLRLKCHSL 244 584
    FGVLRLKCHSLFLDL 245 585
    RLKCHSLFLDLQVNS 246 586
    HSLFLDLQVNSLQTV 247 587
    LDLQVNSLQTVCTNI 248 588
    VNSLQTVCTNIYKIL 249 589
    QTVCTNIYKILLLQA 250 590
    TNIYKILLLQAYRFH 251 591
    KILLLQAYRFHACVL 252 592
    LQAYRFHACVLQLPF 253 593
    RFHACVLQLPFHQQV 254 594
    CVLQLPFHQQVWKNP 255 595
    LPFHQQVWKNPTFFL 256 596
    QQVWKNPTFFLRVIS 257 597
    KNPTFFLRVISDTAS 258 598
    FFLRVISDTASLCYS 259 599
    VISDTASLCYSILKA 260 600
    TASLCYSILKAKNAG 261 601
    CYSILKAKNAGMSLG 262 602
    LKAKNAGMSLGAKGA 263 603
    NAGMSLGAKGAAGPL 264 604
    SLGAKGAAGPLPSEA 265 605
    KGAAGPLPSEAVQWL 266 606
    GPLPSEAVQWLCHQA 267 607
    SEAVQWLCHQAFLLK 268 608
    QWLCHQAFLLKLTRH 269 609
    HQAFLLKLTRHRVTY 270 610
    LLKLTRHRVTYVPLL 271 611
    TRHRVTYVPLLGSLR 272 612
    VTYVPLLGSLRTAQT 273 613
    PLLGSLRTAQTQLSR 274 614
    SLRTAQTQLSRKLPG 275 615
    AQTQLSRKLPGTTLT 276 616
    LSRKLPGTTLTALEA 277 617
    LPGTTLTALEAAANP 278 618
    TLTALEAAANPALPS 279 619
    LEAAANPALPSDFKT 280 620
    AANPALPSDFKTILD 281 621
  • TABLE 18
    Peptide Pools
    Antigen Peptide Pools
    MUC1 116 sequential 15-mer peptides, overlapping by
    11 amino acids, covering amino acids 1-224 and
    945-1255 of the MUC1 precursor protein of SEQ
    ID NO:1 (amino acid sequence of SEQ ID NO:8)
    MSLN 153 sequential 15-mer peptides, overlapping by
    11 amino acids, covering the entire MSLN
    precursor protein sequence of SEQ ID NO:2.
    TERT 221 sequential 15-mer peptides, overlapping by
    11 amino acids, covering the TERTΔ240 protein
    sequence of SEQ ID NO:10 (amino acids 239-1132
    of SEQ ID NO:3 (total 894 amino acids,
    (excluding the first 238 amino acids of the native
    full-length TERT recursor protein of SEQ ID NO:3)
  • TABLE 19
    2A Peptides
    2A Peptide Amino Acid Sequence
    FMD2A QTLNFDLLKLAGDVESNPGP
    T2A EGRGSLLTCGDVEENPGP
    EMC2A HYAGYFADLLIHDIETNPGP
    ERA2A QCTNYALLKLAGDVESNPGP
    ERB2A TILSEGATNFSLLKLAGDVELNPGP
    PT2A ATNFSLLKQAGDVEENPGP
  • Example 7. Combination of Vaccines with Immune Modulators
  • The following example is provided to illustrate enhanced tumor growth inhibition effects when an anti-cancer vaccine was administered in combination with an anti-Cytotoxic T-Lymphocyte Antigen (CTLA4) antibody and/or an indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor.
  • Study Procedures.
  • BALB-neuT mice were implanted on study day 0 with TUBO tumor cells by subcutaneous injection. Mice were dosed with 200 mg/Kg of 3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (IDO1 inhibitor) or vehicle twice daily from study day 7 using oral gavage. Comparator groups were sham dosed with vehicle from study day 7 onwards. Appropriated mice were immunized on study day 10 with 1e10 Viral Particles of an adenovirus vector engineered to express rat HER2 (rHER2) (rHER2 vaccine) or vector lacking the rHER2 transgene (control vaccine), by intramuscular injection. Subsequently, 250 ug of an anti-CTLA4 antibody (murine monoclonal antibody to CTLA-4, clone 9D9) or an IgG2 isotype control monoclonal antibody was injected subcutaneously in close proximity to lymph nodes draining the site of adenovirus vector injection. Every two weeks thereafter, mice were immunized with 100 ug of a DNA plasmid encoding rHER2 (rHER2 vaccine) or a DNA plasmid lacking the rHER2 transgene (control vaccine) by electroporation. Subsequent to the DNA plasmid administration, 250 ug of the anti-CTLA4 antibody was injected subcutaneously in close proximity to lymph nodes draining the site of DNA plasmid injection. To track tumor progression, subcutaneous tumor volumes were measured twice a week throughout the study. Animals with subcutaneous tumor volumes that reached 2000 mm3 or displaying irreversible signs of disease were euthanized.
  • Results.
  • Subcutaneous tumor volumes of individual animals in each treatment group are presented in Tables 20-A-20-H.
  • No effect on tumor growth rates was observed in mice treated with the anti-CTLA4 antibody alone or with the IDO1 inhibitor alone. However, slower growth rates were observed in some of the animals treated with the rHER2 vaccine alone. Mice treated with the rHER2 vaccine in combination with the anti-CTLA4 antibody and mice treated with the rHER2 vaccine in combination with the IDO1 inhibitor had reduced tumor growth rates compared to the corresponding control animals. Tumor growth inhibition was most pronounced in mice treated with the rHER2 vaccine, the anti-CTLA4 antibody, and the IDO1 inhibitor.
  • TABLE 20-A
    Subcutaneous tumor volumes from BALB-neuT mice treated with rHER2 vaccine, isotype control antibody, and vehicle
    Study Animal ID
    Day 001 002 003 004 005 006 007 008 009 010 011 012 013
    7 15.28 24.88 25.22 43.22 20.92 23.31 54.61 18.97 15.63 7.26 34.97 23.85 26.51
    11 59.85 51.25 32.16 70.17 53.95 33.47 58.64 27.65 23.43 24.93 52.01 30.46 64.37
    14 69.49 58.15 44.48 92.14 77.00 48.03 94.39 35.07 28.64 28.73 95.93 60.86 76.06
    18 121.53 105.11 69.57 162.26 147.15 89.85 200.97 64.56 54.34 48.57 268.43 62.34 99.72
    21 177.93 109.81 78.17 182.61 145.82 106.58 194.34 63.14 71.46 88.39 254.23 83.27 137.39
    24 209.82 89.80 80.60 186.71 130.91 120.51 309.21 70.57 101.02 90.27 340.71 80.33 151.06
    27 251.78 178.06 145.48 172.65 203.23 132.37 304.55 129.14 107.72 127.13 324.79 113.27 147.59
    32 288.46 299.49 182.91 299.93 228.06 119.13 357.37 132.57 171.17 155.00 466.10 139.30 163.84
    35 442.65 518.22 233.63 307.12 283.16 209.64 434.25 208.03 213.44 233.02 481.62 260.75 261.80
    39 419.12 503.33 442.52 345.36 355.59 231.06 432.68 318.63 315.93 286.47 572.77 298.59 303.23
    42 379.48 513.54 449.02 340.25 362.51 254.14 487.55 294.58 349.26 379.28 626.35 286.86 319.48
    46 601.65 778.43 637.73 453.39 899.49 292.45 519.25 294.40 531.22 342.83 642.31 445.75 300.56
    49 525.83 682.34 768.94 337.45 594.31 291.11 632.67 388.48 639.75 491.05 631.72 408.40 308.73
    53 618.09 893.01 932.23 391.25 576.25 280.96 657.04 503.44 829.63 456.57 606.13 491.55 447.34
    56 793.23 1309.26 1085.82 411.50 412.62 350.51 750.48 685.26 1125.76 612.29 700.58 616.91 526.88
    60 739.94 1422.57 1373.49 551.40 804.04 337.95 707.31 785.59 1195.66 563.75 843.39 638.94 693.70
    63 741.90 1467.32 1450.32 446.17 1078.52 366.30 677.67 875.47 1369.64 687.52 845.94 700.93 563.40
    66 866.83 1933.07 1695.44 407.94 1033.35 329.52 871.66 1274.41 1664.40 748.11 844.09 755.00 658.18
    70 906.91 2055.70 454.26 1128.39 377.46 857.93 1429.06 1902.09 899.02 977.86 1151.34 739.87
    74 1050.44 510.24 1176.17 431.46 953.57 1316.47 1008.84 1082.74 1132.80 737.69
    77 1053.86 487.54 1454.97 504.43 974.43 1218.43 1062.30 1010.54 809.49
    80 1195.52 560.59 1461.63 527.31 1298.82 1316.89 1165.74 1123.06
    83 1211.15 591.58 1883.74 529.70 1530.85 1405.59 1132.02 1269.96
    88 1999.58 680.13 489.05 1515.67 1704.43 1117.78
    91 676.45 468.02 1731.76 1139.45
    94 742.06 547.24 1340.71
    98 848.97 778.30 1455.98
    102 878.51 1299.14 1594.26
    105 941.87 1052.06 1687.50
    109 1033.39 1954.73
    112
    116
    119
    123
    130
  • TABLE 20-B
    Subcutaneous tumor volumes from BALB-neuT mice treated with rHER2 vaccine, anti-CTLA4 antibody, and vehicle
    Study Animal ID
    Day 014 015 016 017 018 019 020 021 022 023 024 025 026
    7 13.95 22.56 18.32 15.62 11.30 23.49 18.30 31.84 9.95 19.57 33.34 16.69 65.80
    11 34.59 36.30 43.55 30.54 62.36 47.97 41.74 74.32 25.47 36.62 50.96 29.98 154.10
    14 41.04 48.08 62.76 42.47 80.69 57.69 51.46 96.98 43.76 43.28 47.76 38.12 130.87
    18 67.89 80.31 110.34 86.72 183.17 111.21 105.15 128.14 61.38 44.66 65.32 95.87 166.62
    21 99.74 87.70 116.80 63.01 202.53 131.95 170.80 144.47 74.50 81.06 95.35 96.24 225.45
    24 100.18 104.47 126.72 123.72 199.19 174.90 181.60 189.93 79.15 104.51 107.09 138.34 229.64
    27 138.24 115.05 170.33 106.01 207.56 164.46 196.44 218.62 82.23 134.48 146.91 157.49 324.63
    32 196.50 135.98 189.16 163.10 293.78 208.00 248.90 280.19 114.59 185.61 191.56 183.81 337.93
    35 300.50 169.60 305.77 181.56 291.73 245.74 290.40 320.25 111.99 184.88 184.57 176.67 380.74
    39 348.00 183.57 256.74 228.53 263.61 223.27 360.65 295.43 100.52 194.95 192.31 190.70 367.56
    42 390.91 204.84 371.25 210.94 300.94 254.67 476.59 322.83 133.90 191.45 219.12 210.83 422.25
    46 421.06 239.56 459.18 283.40 311.32 342.97 627.22 297.13 153.38 228.26 252.46 338.26 514.20
    49 570.42 242.71 444.89 285.69 254.99 300.41 686.74 284.73 156.78 285.33 230.83 351.06 418.01
    53 564.06 227.19 491.62 296.54 257.35 357.26 800.42 310.23 193.53 335.75 222.12 356.37 601.40
    56 733.33 228.06 627.11 472.36 259.93 418.71 1013.00 302.14 219.62 383.69 241.56 449.13 609.87
    60 897.14 267.39 607.90 517.19 312.72 420.79 1308.77 320.64 239.16 515.83 299.24 489.26 749.84
    63 1057.26 268.83 660.87 445.35 316.86 483.64 1291.15 287.14 232.50 662.34 282.33 535.65 896.13
    66 1300.92 322.12 896.63 481.50 348.28 488.58 1429.48 306.39 233.64 847.54 266.11 657.11 1007.19
    70 1405.80 390.93 904.47 478.25 348.24 601.13 1420.89 382.32 315.81 804.92 268.72 760.97 977.72
    74 1663.99 530.06 1051.68 520.03 404.21 658.56 367.96 440.99 955.16 344.38 794.70 1421.67
    77 1926.01 573.89 1219.67 601.49 470.28 749.73 412.46 464.76 1194.80 329.63 901.75 1329.51
    80 739.80 1349.40 718.31 394.95 752.93 420.98 495.99 1263.58 373.06 946.52 1232.01
    83 877.75 1653.19 910.62 466.02 820.70 448.59 566.16 1553.21 438.83 942.35 1298.75
    88 954.88 1265.55 846.03 937.01 414.87 788.55 1916.96 495.65 1301.75 2002.26
    91 961.42 1174.80 866.62 954.49 491.20 846.32 581.42 1283.15
    94 1053.93 1399.91 1002.14 1078.80 408.20 933.39 495.83 1539.79
    98 1477.19 1785.93 1094.65 1355.24 480.75 1020.62 695.49
    102 2005.53 2455.90 1132.60 1506.85 617.31 1196.80 1049.34
    105 1137.28 1646.70 558.65 1519.06 973.46
    109 1629.53 2411.79 567.21 1927.56 1376.50
    112 1610.74 659.07 1331.93
    116 1903.32 736.53 2020.97
    119 843.09
    123 812.58
    130
  • TABLE 20-C
    Subcutaneous tumor volumes from BALB-neuT mice treated with rHER2
    vaccine, isotype monoclonal antibody, and IDO1 inhibitor
    Study Animal ID
    Day 027 028 029 030 031 032 033 034 035 036 037 038 039
    7 22.57 18.54 24.25 23.74 62.87 47.26 26.06 19.89 10.02 28.07 9.21 19.87 26.44
    11 27.87 26.90 25.69 35.75 109.91 55.24 54.27 30.68 16.48 75.34 18.47 66.24 42.82
    14 32.46 29.47 31.95 40.32 144.26 47.57 54.29 58.07 25.83 92.84 31.83 58.95 71.17
    18 37.10 57.13 44.48 94.60 278.87 90.96 63.91 74.80 44.97 129.98 43.36 94.67 123.44
    21 50.62 96.30 64.33 124.60 392.48 143.92 101.50 73.61 71.45 153.08 63.58 123.83 111.42
    24 55.76 109.72 75.91 174.47 438.38 161.19 115.11 79.60 109.91 174.26 64.08 93.15 128.18
    27 55.49 118.93 95.32 178.96 542.65 202.58 154.54 105.80 127.26 195.71 79.97 106.00 144.12
    32 113.02 157.60 160.49 235.16 717.70 252.81 233.30 127.84 188.83 260.21 93.05 177.97 137.99
    35 92.45 185.58 176.42 257.51 786.70 368.98 292.35 142.96 309.08 262.68 119.74 194.95 127.66
    39 128.29 276.68 279.74 333.07 937.96 457.17 284.18 216.33 363.62 340.70 113.68 234.56 162.13
    42 200.60 308.88 309.27 411.98 1141.65 546.41 378.60 193.55 445.98 279.28 139.47 238.77 171.63
    46 245.58 362.11 390.14 554.66 1129.43 699.15 522.13 211.14 579.92 446.04 163.31 271.10 171.35
    49 185.53 407.07 389.34 678.29 1357.08 663.42 435.48 199.16 548.74 496.65 256.92 327.15 158.18
    53 234.92 572.92 472.69 760.44 1657.89 764.79 576.68 195.14 749.50 403.22 271.69 340.39 179.89
    56 315.08 654.90 527.02 970.81 1830.37 918.21 811.53 215.44 1080.73 535.72 398.94 394.64 240.12
    60 358.46 802.56 733.00 1126.99 2337.11 943.99 973.45 235.27 1169.89 727.24 431.20 437.25 219.66
    63 329.23 988.22 686.07 1326.18 1114.22 1180.40 205.89 1491.79 749.53 706.03 443.52 228.26
    66 419.20 1116.22 720.64 1550.51 1367.74 2093.28 183.53 1747.57 1500.11 948.51 536.57 249.72
    70 474.17 1374.23 967.99 1760.87 227.05 1478.26 1065.41 623.91 248.73
    74 624.62 1772.89 1197.73 2006.03 233.91 1494.91 1316.37 622.88 374.49
    77 647.51 1989.96 1262.15 253.71 1990.94 1897.98 714.20 486.35
    80 1539.37 247.06 746.30 361.49
    83 2002.66 221.28 947.06 470.06
    88 302.35 1049.34 607.71
    91 283.62 1094.29 584.53
    94 240.95 1223.56 707.49
    98 267.69 1157.88 819.76
    102 332.05 1588.42 1166.09
    105
    109
    112
    116
    119
    123
    130
  • TABLE 20-D
    Subcutaneous tumor volumes from BALB-neuT mice treated with rHER2 vaccine, anti-CTLA4 antibody, and IDO1 inhibitor
    Study Animal ID
    Day 040 041 042 043 044 045 046 047 048 049 050 051 052
    7 54.10 39.35 23.64 21.18 12.84 21.67 20.25 19.96 25.33 36.98 36.19 31.76 23.13
    11 44.01 62.51 25.95 22.00 20.61 29.61 22.93 31.30 54.95 60.31 40.28 64.26 35.48
    14 82.71 61.84 44.03 41.17 27.61 39.84 31.52 50.27 53.59 167.13 39.13 71.77 46.37
    18 109.42 104.01 70.45 47.24 39.37 43.45 46.45 64.50 96.05 118.82 86.60 117.11 52.67
    21 156.97 122.98 122.03 88.69 39.10 79.80 74.00 59.76 126.21 150.23 67.16 106.50 64.01
    24 161.80 181.51 136.55 66.17 83.81 80.21 101.01 78.26 212.63 154.56 83.75 155.85 83.60
    27 193.79 191.62 257.40 93.98 102.01 129.31 84.05 104.26 160.51 139.11 77.42 167.41 92.72
    32 243.54 263.07 273.35 158.04 101.16 150.00 98.57 156.07 255.04 162.11 101.56 203.30 114.82
    35 312.75 361.78 504.87 164.62 144.05 120.50 122.05 142.97 316.54 172.90 114.17 218.18 132.22
    39 396.82 323.31 582.32 242.63 157.89 232.03 95.33 154.30 425.09 257.83 149.53 267.35 168.35
    42 413.28 367.59 663.21 254.92 250.62 281.01 169.40 159.04 427.33 259.24 151.88 259.86 147.14
    46 442.03 400.06 833.78 245.54 247.14 265.42 196.92 188.31 582.82 304.99 146.35 227.25 171.42
    49 499.68 458.65 692.49 269.68 303.80 298.85 239.11 199.54 582.63 363.70 147.05 184.65 192.15
    53 602.85 388.55 832.63 319.74 338.88 350.68 147.19 189.14 683.19 425.27 141.44 180.96 175.06
    56 678.49 583.14 1172.40 313.88 375.36 490.44 121.54 250.75 1015.63 421.92 193.75 223.80 167.34
    60 716.23 566.05 1993.58 297.92 405.37 488.16 168.02 276.09 1016.18 568.77 192.25 253.13 176.65
    63 763.88 694.35 360.21 477.42 576.05 214.59 394.42 1118.06 623.54 160.79 259.78 142.51
    66 903.52 896.37 398.70 639.62 743.61 272.91 395.65 1444.51 200.21 264.16 219.92
    70 1067.20 981.05 432.21 590.19 768.14 239.03 427.52 1594.41 193.97 320.82 183.68
    74 991.59 1190.31 573.68 743.70 903.33 222.29 428.53 1656.59 188.48 308.71 167.55
    77 1018.46 1567.97 556.19 716.08 967.81 309.27 484.64 1917.82 194.87 253.57 162.01
    80 1195.74 1390.97 574.12 1102.62 277.63 627.19 261.80 367.28 201.87
    83 1331.93 1884.11 579.14 1695.16 256.90 690.39 292.88 325.23 199.87
    88 772.39 1995.92 276.57 645.27 363.61 379.12 210.81
    91 751.29 320.68 626.20 350.28 428.39 224.19
    94 1288.49 335.59 627.27 402.96 462.28 238.84
    98 1164.73 337.65 830.60 438.33 581.69 298.47
    102 1324.12 409.66 1014.27 505.42 602.90 427.80
    105 1202.44 467.05 1140.43 521.30 712.86 411.28
    109 2079.90 483.78 1218.84 757.14 707.01 544.77
    112 579.36 1346.57 607.66 873.67 598.32
    116 814.25 1570.94 721.33 1148.33 658.27
    119 782.56 1999.79 784.41 1318.46 601.06
    123 661.23 664.85 1320.43 626.48
    130 1027.75 883.59 1979.35 671.05
  • TABLE 20-E
    Subcutaneous tumor volumes from BALB-neuT mice treated with control vaccine, isotype monoclonal antibody, and vehicle
    Study Animal ID
    Day 053 054 055 056 057 058 059 060 061 062 063 064 065
    7 15.08 18.70 72.45 17.86 31.00 18.49 33.40 29.51 67.11 24.58 10.81 23.92 19.49
    11 58.60 54.25 123.35 30.28 58.33 33.39 50.68 123.50 101.88 40.82 37.88 46.17 54.79
    14 66.13 57.25 141.53 59.92 51.27 38.54 69.03 149.25 115.84 59.04 60.55 47.41 60.04
    18 100.35 127.83 169.74 108.08 98.62 74.59 93.79 221.58 216.32 66.67 150.77 88.44 96.81
    21 104.51 155.77 207.70 135.72 129.89 107.63 104.90 323.75 280.31 81.26 154.01 106.39 153.56
    24 164.46 178.17 273.86 194.10 166.70 130.99 108.08 428.86 388.16 121.42 204.26 240.02 179.89
    27 173.12 266.11 433.12 274.20 221.81 175.65 208.91 501.03 393.66 143.97 228.35 196.57 262.10
    32 240.12 374.31 702.18 390.43 326.57 241.87 243.68 603.91 567.21 223.65 309.24 290.32 450.62
    35 372.09 483.08 708.07 543.61 542.74 318.46 343.70 890.20 705.62 251.46 424.33 286.92 397.85
    39 455.22 657.38 939.28 588.96 567.05 467.47 473.88 956.11 993.67 395.46 526.97 308.71 620.57
    42 585.12 765.03 1120.45 666.99 688.37 555.97 607.03 951.75 1173.89 463.83 672.59 469.69 773.08
    46 791.60 1105.75 1323.69 1128.15 1155.17 702.22 789.24 1616.22 1451.45 639.83 934.86 479.77 927.62
    49 1097.81 1189.35 2028.49 1236.32 1244.71 1014.51 1016.09 1914.25 2034.67 749.54 1173.78 707.56 1212.93
    53 1363.43 1631.61 1657.80 1743.67 1081.25 1316.46 1274.45 1667.48 790.81 1474.56
    56 1483.62 1904.26 1771.67 1688.79 1183.68 1311.02 1098.40 1953.44 960.80 1659.31
    60 1901.83 2068.50 2061.22 1286.21 2034.92 1705.47 1061.59 1779.08
    63 1517.04 1642.50 1308.21
    66 1902.74 1940.74 1450.05
    70
    74
    77
    80
    83
    88
    91
    94
    98
    102
    105
    109
    112
    116
    119
    123
    130
  • TABLE 20-F
    Subcutaneous tumor volumes from BALB-neuT mice treated with control vaccine, anti-CTLA4 antibody, and vehicle
    Study Animal ID
    Day 066 067 068 069 070 071 072 073 074 075 076 077 078
    7 31.57 16.81 19.84 26.53 31.95 45.30 30.22 15.04 28.27 24.27 18.27 23.86 26.78
    11 65.01 42.45 77.71 42.97 36.94 69.07 53.78 18.79 28.90 60.85 35.20 33.73 35.30
    14 67.75 52.64 58.52 59.81 51.64 133.54 50.06 18.81 54.38 56.90 38.19 43.61 42.69
    18 107.43 80.43 24.77 75.41 120.27 138.58 113.91 32.23 72.21 86.65 63.99 61.86 79.41
    21 108.33 122.66 58.44 99.93 115.49 169.67 108.74 33.66 68.85 81.49 66.19 88.88 92.80
    24 135.87 142.73 205.72 138.58 195.34 245.58 199.84 38.82 78.26 111.41 115.74 81.24 114.15
    27 202.52 136.92 233.44 218.55 257.60 249.39 215.05 76.57 102.07 177.24 146.52 118.63 158.62
    32 265.16 246.28 392.99 523.97 289.01 453.52 389.26 119.16 173.75 215.29 168.01 195.78 237.85
    35 268.11 307.75 523.86 498.69 338.58 411.31 536.87 158.61 254.89 319.28 282.80 305.00 330.57
    39 409.74 488.72 621.93 678.35 518.57 665.59 568.49 234.62 508.87 394.05 315.21 347.86 518.94
    42 497.76 579.50 613.71 650.46 604.07 786.51 635.44 267.01 515.71 498.47 474.74 425.11 661.10
    46 568.07 779.30 807.17 846.95 842.44 866.45 856.31 300.02 602.44 740.77 583.16 507.16 874.70
    49 870.94 998.56 1070.92 1642.07 1027.26 1066.57 957.73 354.92 833.74 770.76 792.40 839.43 1103.46
    53 924.06 1547.25 1372.06 2026.49 1295.16 1430.84 1522.16 498.99 1122.50 971.82 967.85 1050.27 1374.42
    56 1119.84 1615.70 1971.09 1602.07 1567.94 598.49 1087.10 1101.63 1179.51 1148.98 1930.34
    60 1734.81 2275.56 1953.31 2130.99 821.52 1460.04 1371.70 1568.95 1543.35
    63 2187.87 881.14 1613.94 1944.88 1672.95
    66 1097.85 2080.38 2213.55
    70 1476.50
    74 1925.13
    77
    80
    83
    88
    91
    94
    98
    102
    105
    109
    112
    116
    119
    123
    130
  • TABLE 20-G
    Subcutaneous tumor volumes from BALB-neuT mice treated with control
    vaccine, isotype control monoclonal antibody, and IDO1 inhibitor
    Study Animal ID
    Day 079 080 081 082 083 084 085 086 087 088 089 090 091
    7 27.80 36.46 21.11 15.78 34.61 12.22 14.78 20.72 28.62 21.87 32.40 18.45 21.99
    11 50.27 46.02 29.32 42.34 66.59 21.18 19.13 51.22 33.59 28.63 52.20 24.65 50.36
    14 66.16 39.75 31.22 43.83 99.08 27.42 36.76 53.21 62.59 35.08 54.92 44.31 85.94
    18 87.17 73.84 62.25 84.25 115.90 47.77 40.28 81.38 130.43 43.33 77.07 67.44 136.82
    21 91.03 75.81 78.22 89.04 182.85 58.23 54.88 135.90 127.97 64.93 113.76 113.10 163.91
    24 161.46 100.08 101.79 140.26 284.27 88.35 55.22 110.30 155.81 92.35 169.45 127.09 198.49
    27 163.11 125.82 123.19 186.49 361.01 112.48 80.13 147.33 241.15 110.42 171.37 129.44 240.05
    32 252.04 251.57 194.14 275.98 541.91 153.38 110.90 184.76 321.37 173.28 301.94 202.21 337.79
    35 324.53 262.56 246.60 364.82 598.92 209.97 141.15 244.33 521.30 260.28 306.58 377.96 401.70
    39 414.72 434.13 389.39 471.60 671.98 338.06 192.15 328.32 572.30 343.13 512.15 430.30 596.09
    42 603.00 551.64 463.99 601.50 820.44 340.52 268.88 441.62 676.89 408.33 574.86 574.25 680.54
    46 660.63 696.77 782.22 933.81 997.91 431.11 345.63 682.81 1060.91 604.23 818.67 719.57 909.66
    49 685.30 917.68 1138.52 1124.52 1219.32 609.28 470.15 807.07 1164.50 629.55 940.30 942.51 1045.76
    53 864.42 1073.56 1288.73 1449.44 1275.84 735.98 547.89 1167.81 1618.54 792.50 1373.25 1139.13 1614.31
    56 943.28 1323.69 1631.81 1937.45 2064.17 952.77 893.91 1714.64 1754.98 1128.21 1630.88 1431.28 1471.68
    60 1384.35 1653.35 1673.55 1107.86 928.10 1923.35 1918.84 1450.47 1946.29
    63 1600.66 2089.13 1682.01 1426.67 938.92 1652.48
    66 1776.61 1982.89 1416.50 1198.20 1985.40
    70 2186.37 1974.53 1804.46
    74 1816.96
    77 2039.55
    80
    83
    88
    91
    94
    98
    102
    105
    109
    112
    116
    119
    123
    130
  • TABLE 20-H
    Subcutaneous tumor volumes from BALB-neuT mice treated with control vaccine, anti-CTLA4 antibody, and IDO1 inhibitor
    Study Animal ID
    Day 092 093 094 095 096 097 098 099 100 101 102 103 104
    7 23.50 79.61 37.58 33.69 19.24 51.28 54.39 19.99 17.96 31.15 41.65 32.98 14.52
    11 45.95 175.07 60.28 42.51 34.51 127.99 62.57 55.07 51.65 88.69 90.89 44.64 17.86
    14 63.89 163.67 77.18 67.42 37.76 116.30 79.39 64.35 48.63 82.68 82.10 61.33 31.37
    18 97.30 243.40 197.71 102.33 112.32 153.27 92.24 113.19 68.81 140.37 217.09 87.60 42.00
    21 160.23 249.28 155.64 109.24 159.77 171.07 124.87 141.01 104.12 184.89 223.66 124.77 52.28
    24 214.44 358.20 178.52 146.05 155.75 189.29 160.00 185.05 133.44 222.78 308.93 149.93 65.39
    27 240.41 415.24 198.00 191.28 267.39 298.20 231.41 157.93 191.15 238.17 416.37 211.67 87.13
    32 513.57 601.62 385.73 344.44 444.06 376.94 324.54 244.96 328.38 365.22 635.31 358.92 99.41
    35 616.99 692.22 389.96 455.32 417.99 484.35 441.24 264.56 333.93 437.71 813.28 385.04 177.23
    39 715.16 1023.24 500.83 638.78 601.10 775.30 639.05 308.73 509.92 543.97 905.65 530.66 235.25
    42 717.28 1165.74 503.20 815.34 596.80 798.96 795.51 361.27 438.96 638.64 1106.64 673.19 239.49
    46 1123.80 1329.85 768.11 1034.27 895.57 1266.07 1001.88 500.68 781.21 813.68 1270.88 827.87 352.48
    49 1401.34 1734.62 1016.27 1222.00 945.71 1346.31 1044.92 712.92 1214.73 954.08 1780.32 843.85 571.40
    53 1589.06 2021.70 1176.32 1559.52 1296.01 1620.80 1558.21 958.70 1154.16 2036.34 931.60 673.63
    56 2311.25 1343.46 1818.39 1465.17 2067.77 1760.94 1195.69 1541.24 1296.52 901.88
    60 1631.83 2068.78 1667.99 1626.18 1630.40 1783.77 1468.55 1185.11
    63 1969.65 1571.44 1651.73 2028.86 1737.96 1296.69
    66 1927.56 1929.80
    70
    74
    77
    80
    83
    88
    91
    94
    98
    102
    105
    109
    112
    116
    119
    123
    130
  • RAW SEQUENCE LISTING
    MUC1 Isoform 1 protein (Reference Polypeptide; Uniprot P15941-1)
    (human)
    SEQ ID NO: 1
    MTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTS
    SVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPA
    HDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTA
    PPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPG
    STAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRP
    APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPD
    TRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTS
    APDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHG
    VTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPP
    AHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGST
    APPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAP
    GSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTR
    PAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAP
    DTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVT
    SAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAH
    GVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAP
    PAHGVTSAPDTRPAPGSTAPPAHGVTSAPDNRPALGSTAPPVHNVTSASGSASGSAS
    TLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDASSTHHSSVPPLTSSN
    HSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEMFLQIYKQGGFLGL
    SNIKFRPGSWVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFS
    AQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLDIFPARDTYHPMSE
    YPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAATSANL
    Mesothelin Isoform 2 precursor protein (Reference Polypeptide;
    Uniprot Q13421-3) (human)
    SEQ ID NO: 2
    MALPTARPLLGSCGTPALGSLLFLLFSLGWVQPSRTLAGETGQEAAPLDGVLANPPNIS
    SLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPEDLDAL
    PLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGVRGSLL
    SEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQGGGPPY
    GPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERTILRPRF
    RREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYEQLDVL
    KHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMSPQ
    VATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDLDTCD
    PRQLDVLYPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATFMKLR
    TDAVLPLTVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQGGIPNG
    YLVLDLSMQEALSGTPCLLGPGPVLTVLALLLASTLA
    TERT Isoform 1 protein (Reference Polypeptide; Genbank
    AAD30037, Uniprot 014746-1) (human)
    SEQ ID NO: 3
    MPRAPRCRAVRSLLRSHYREVLPLATFVRRLGPQGWRLVQRGDPAAFRALVAQCLVC
    VPWDARPPPAAPSFRQVSCLKELVARVLQRLCERGAKNVLAFGFALLDGARGGPPEA
    FTTSVRSYLPNTVTDALRGSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCG
    PPLYQLGAATQARPPPHASGPRRRLGCERAWNHSVREAGVPLGLPAPGARRRGGSA
    SRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATS
    LEGALSGTRHSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQL
    RPSFLLSSLRPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGN
    HAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHS
    SPWQVYGFVRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMS
    VRDCAWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKN
    RLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGL
    RPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHR
    AWRTFVLRVRAQDPPPELYFVKVDVTGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVV
    QKAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGL
    FDVFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLL
    RLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQM
    PAHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRL
    KCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTA
    SLCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRT
    AQTQLSRKLPGTTLTALEAAANPALPSDFKTILD
    AdC68Y Empty
    SEQ ID NO: 4
    ccatcttcaataatatacctcaaactttttgtgcgcgttaatatgcaaatgaggcgtttgaatttggggaggaagggcggtgatt
    ggtcgagggatgagcgaccgttaggggcggggcgagtgacgttttgatgacgtggttgcgaggaggagccagtttgcaa
    gttctcgtgggaaaagtgacgtcaaacgaggtgtggtttgaacacggaaatactcaattttcccgcgctctctgacaggaaa
    tgaggtgtttctgggcggatgcaagtgaaaacgggccattttcgcgcgaaaactgaatgaggaagtgaaaatctgagtaa
    tttcgcgtttatggcagggaggagtatttgccgagggccgagtagactttgaccgattacgtgggggtttcgattaccgtgttttt
    cacctaaatttccgcgtacggtgtcaaagtccggtgthttactactgtaatagtaatcaattacggggtcattagttcatagccc
    atatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtc
    aataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc
    acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattat
    gcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttg
    gcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgt
    tttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtac
    ggtgggaggtctatataagcagagctgtccctatcagtgatagagatctccctatcagtgatagagagtttagtgaaccgtc
    agatccgctagggtaccgcgatcgcacctcgagctgatcataatcagccataccacatttgtagaggttttacttgctttaaa
    aaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggtt
    acaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaat
    gtatcttaccaggtgccgagcctgcgagtgcggagggaagcatgccaggttccagcccgtgtgtgtggatgtgacggagg
    acctgcgacccgatcatttggtgttgccctgcaccgggacggagttcggttccagcggggaagaatctgactagagtgagt
    agtgttctggggcgggggaggacctgcatgagggccagaataactgaaatctgtgcttttctgtgtgttgcagcagcatgag
    cggaagcggctcctttgagggaggggtattcagcccttatctgacggggcgtctcccctcctgggcgggagtgcgtcagaa
    tgtgatgggatccacggtggacggccggcccgtgcagcccgcgaactcttcaaccctgacctatgcaaccctgagctcttc
    gtcgttggacgcagctgccgccgcagctgctgcatctgccgccagcgccgtgcgcggaatggccatgggcgccggctac
    tacggcactctggtggccaactcgagttccaccaataatcccgccagcctgaacgaggagaagctgttgctgctgatggc
    ccagctcgaggccttgacccagcgcctgggcgagctgacccagcaggtggctcagctgcaggagcagacgcgggccg
    cggttgccacggtgaaatccaaataaaaaatgaatcaataaataaacggagacggttgttgattttaacacagagtctgaa
    tctttatttgatttttcgcgcgcggtaggccctggaccaccggtctcgatcattgagcacccggtggatcttttccaggacccgg
    tagaggtgggcttggatgttgaggtacatgggcatgagcccgtcccgggggtggaggtagctccattgcagggcctcgtgc
    tcgggggtggtgttgtaaatcacccagtcatagcaggggcgcagggcatggtgttgcacaatatctttgaggaggagactg
    atggccacgggcagccctttggtgtaggtgtttacaaatctgttgagctgggagggatgcatgcggggggagatgaggtgc
    atcttggcctggatcttgagattggcgatgttaccgcccagatcccgcctggggttcatgttgtgcaggaccaccagcacggt
    gtatccggtgcacttggggaatttatcatgcaacttggaagggaaggcgtgaaagaatttggcgacgcctttgtgcccgccc
    aggttttccatgcactcatccatgatgatggcgatgggcccgtgggcggcggcctgggcaaagacgtttcgggggtcgga
    cacatcatagttgtggtcctgggtgaggtcatcataggccattttaatgaatttggggcggagggtgccggactgggggaca
    aaggtaccctcgatcccgggggcgtagttcccctcacagatctgcatctcccaggctttgagctcggagggggggatcatg
    tccacctgcggggcgataaagaacacggtttccggggcgggggagatgagctgggccgaaagcaagttccggagcag
    ctgggacttgccgcagccggtggggccgtagatgaccccgatgaccggctgcaggtggtagttgagggagagacagct
    gccgtcctcccggaggaggggggccacctcgttcatcatctcgcgcacgtgcatgttctcgcgcaccagttccgccagga
    ggcgctctccccccagggataggagctcctggagcgaggcgaagtttttcagcggcttgagtccgtcggccatgggcatttt
    ggagagggtttgttgcaagagttccaggcggtcccagagctcggtgatgtgctctacggcatctcgatccagcagacctcct
    cgtttcgcgggttgggacggctgcgggagtagggcaccagacgatgggcgtccagcgcagccagggtccggtccttcca
    gggtcgcagcgtccgcgtcagggtggtctccgtcacggtgaaggggtgcgcgccgggctgggcgcttgcgagggtgcgc
    ttcaggctcatccggctggtcgaaaaccgctcccgatcggcgccctgcgcgtcggccaggtagcaattgaccatgagttcg
    tagttgagcgcctcggccgcgtggcctttggcgcggagcttacctttggaagtctgcccgcaggcgggacagaggaggg
    acttgagggcgtagagcttgggggcgaggaagacggactcgggggcgtaggcgtccgcgccgcagtgggcgcagac
    ggtctcgcactccacgagccaggtgaggtcgggctggtcggggtcaaaaaccagtttcccgccgttctttttgatgcgtttctt
    acctttggtctccatgagctcgtgtccccgctgggtgacaaagaggctgtccgtgtccccgtagaccgactttatgggccggt
    cctcgagcggtgtgccgcggtcctcctcgtagaggaaccccgcccactccgagacgaaagcccgggtccaggccagc
    acgaaggaggccacgtgggacgggtagcggtcgttgtccaccagcgggtccaccttttccagggtatgcaaacacatgtc
    cccctcgtccacatccaggaaggtgattggcttgtaagtgtaggccacgtgaccgggggtcccggccgggggggtataa
    aagggtgcgggtccctgctcgtcctcactgtcttccggatcgctgtccaggagcgccagctgttggggtaggtattccctctc
    gaaggcgggcatgacctcggcactcaggttgtcagtttctagaaacgaggaggatttgatattgacggtgccggcggaga
    tgcctttcaagagcccctcgtccatctggtcagaaaagacgatctttttgttgtcgagcttggtggcgaaggagccgtagagg
    gcgttggagaggagcttggcgatggagcgcatggtctggtttttttccttgtcggcgcgctccttggcggcgatgttgagctgc
    acgtactcgcgcgccacgcacttccattcggggaagacggtggtcagctcgtcgggcacgattctgacctgccagccccg
    attatgcagggtgatgaggtccacactggtggccacctcgccgcgcaggggctcattagtccagcagaggcgtccgccct
    tgcgcgagcagaaggggggcagggggtccagcatgacctcgtcgggggggtcggcatcgatggtgaagatgccgggc
    aggaggtcggggtcaaagtagctgatggaagtggccagatcgtccagggcagcttgccattcgcgcacggccagcgcg
    cgctcgtagggactgaggggcgtgccccagggcatgggatgggtaagcgcggaggcgtacatgccgcagatgtcgtag
    acgtagaggggctcctcgaggatgccgatgtaggtggggtagcagcgccccccgcggatgctggcgcgcacgtagtcat
    acagctcgtgcgagggggcgaggagccccgggcccaggttggtgcgactgggcttttcggcgcggtagacgatctggc
    ggaaaatggcatgcgagttggaggagatggtgggcctttggaagatgttgaagtgggcgtggggcagtccgaccgagtc
    gcggatgaagtgggcgtaggagtcttgcagcttggcgacgagctcggcggtgactaggacgtccagagcgcagtagtcg
    agggtctcctggatgatgtcatacttgagctgtcccttttgtttccacagctcgcggttgagaaggaactcttcgcggtccttcca
    gtactcttcgagggggaacccgtcctgatctgcacggtaagagcctagcatgtagaactggttgacggccttgtaggcgca
    gcagcccttctccacggggagggcgtaggcctgggcggccttgcgcagggaggtgtgcgtgagggcgaaagtgtccct
    gaccatgaccttgaggaactggtgcttgaagtcgatatcgtcgcagcccccctgctcccagagctggaagtccgtgcgctt
    cttgtaggcggggttgggcaaagcgaaagtaacatcgttgaagaggatcttgcccgcgcggggcataaagttgcgagtg
    atgcggaaaggttggggcacctcggcccggttgttgatgacctgggcggcgagcacgatctcgtcgaagccgttgatgttg
    tggcccacgatgtagagttccacgaatcgcggacggcccttgacgtggggcagtttcttgagctcctcgtaggtgagctcgt
    cggggtcgctgagcccgtgctgctcgagcgcccagtcggcgagatgggggttggcgcggaggaaggaagtccagaga
    tccacggccagggcggtttgcagacggtcccggtactgacggaactgctgcccgacggccattttttcgggggtgacgca
    gtagaaggtgcgggggtccccgtgccagcgatcccatttgagctggagggcgagatcgagggcgagctcgacgagcc
    ggtcgtccccggagagtttcatgaccagcatgaaggggacgagctgcttgccgaaggaccccatccaggtgtaggtttcc
    acatcgtaggtgaggaagagcctttcggtgcgaggatgcgagccgatggggaagaactggatctcctgccaccaattgg
    aggaatggctgttgatgtgatggaagtagaaatgccgacggcgcgccgaacactcgtgcttgtgtttatacaagcggccac
    agtgctcgcaacgctgcacgggatgcacgtgctgcacgagctgtacctgagttcctttgacgaggaatttcagtgggaagt
    ggagtcgtggcgcctgcatctcgtgctgtactacgtcgtggtggtcggcctggccctcttctgcctcgatggtggtcatgctga
    cgagcccgcgcgggaggcaggtccagacctcggcgcgagcgggtcggagagcgaggacgagggcgcgcaggccg
    gagctgtccagggtcctgagacgctgcggagtcaggtcagtgggcagcggcggcgcgcggttgacttgcaggagtttttc
    cagggcgcgcgggaggtccagatggtacttgatctccaccgcgccattggtggcgacgtcgatggcttgcagggtcccgt
    gcccctggggtgtgaccaccgtcccccgtttcttcttgggcggctggggcgacgggggcggtgcctcttccatggttagaag
    cggcggcgaggacgcgcgccgggcggcaggggcggctcggggcccggaggcaggggcggcaggggcacgtcgg
    cgccgcgcgcgggtaggttctggtactgcgcccggagaagactggcgtgagcgacgacgcgacggttgacgtcctggat
    ctgacgcctctgggtgaaggccacgggacccgtgagtttgaacctgaaagagagttcgacagaatcaatctcggtatcgtt
    gacggcggcctgccgcaggatctcttgcacgtcgcccgagttgtcctggtaggcgatctcggtcatgaactgctcgatctcct
    cctcttgaaggtctccgcggccggcgcgctccacggtggccgcgaggtcgttggagatgcggcccatgagctgcgagaa
    ggcgttcatgcccgcctcgttccagacgcggctgtagaccacgacgccctcgggatcgcGggcgcgcatgaccacctg
    ggcgaggttgagctccacgtggcgcgtgaagaccgcgtagttgcagaggcgctggtagaggtagttgagcgtggtggcg
    atgtgctcggtgacgaagaaatacatgatccagcggcggagcggcatctcgctgacgtcgcccagcgcctccaaacgtt
    ccatggcctcgtaaaagtccacggcgaagttgaaaaactgggagttgcgcgccgagacggtcaactcctcctccagaag
    acggatgagctcggcgatggtggcgcgcacctcgcgctcgaaggcccccgggagttcctccacttcctcttcttcctcctcc
    actaacatctcttctacttcctcctcaggcggcagtggtggcgggggagggggcctgcgtcgccggcggcgcacgggca
    gacggtcgatgaagcgctcgatggtctcgccgcgccggcgtcgcatggtctcggtgacggcgcgcccgtcctcgcgggg
    ccgcagcgtgaagacgccgccgcgcatctccaggtggccgggggggtccccgttgggcagggagagggcgctgacg
    atgcatcttatcaattgccccgtagggactccgcgcaaggacctgagcgtctcgagatccacgggatctgaaaaccgctg
    aacgaaggcttcgagccagtcgcagtcgcaaggtaggctgagcacggtttcttctggcgggtcatgttggttgggagcggg
    gcgggcgatgctgctggtgatgaagttgaaataggcggttctgagacggcggatggtggcgaggagcaccaggtctttgg
    gcccggcttgctggatgcgcagacggtcggccatgccccaggcgtggtcctgacacctggccaggtccttgtagtagtcct
    gcatgagccgctccacgggcacctcctcctcgcccgcgcggccgtgcatgcgcgtgagcccgaagccgcgctggggct
    ggacgagcgccaggtcggcgacgacgcgctcggcgaggatggcttgctggatctgggtgagggtggtctggaagtcatc
    aaagtcgacgaagcggtggtaggctccggtgttgatggtgtaggagcagttggccatgacggaccagttgacggtctggt
    ggcccggacgcacgagctcgtggtacttgaggcgcgagtaggcgcgcgtgtcgaagatgtagtcgttgcaggtgcgcac
    caggtactggtagccgatgaggaagtgcggcggcggctggcggtagagcggccatcgctcggtggcgggggcgccgg
    gcgcgaggtcctcgagcatggtgcggtggtagccgtagatgtacctggacatccaggtgatgccggcggcggtggtgga
    ggcgcgcgggaactcgcggacgcggttccagatgttgcgcagcggcaggaagtagttcatggtgggcacggtctggcc
    cgtgaggcgcgcgcagtcgtggatgctctatacgggcaaaaacgaaagcggtcagcggctcgactccgtggcctggag
    gctaagcgaacgggttgggctgcgcgtgtaccccggttcgaatctcgaatcaggctggagccgcagctaacgtggtattg
    gcactcccgtctcgacccaagcctgcaccaaccctccaggatacggaggcgggtcgttttgcaacttttttttggaggccgg
    atgagactagtaagcgcggaaagcggccgaccgcgatggctcgctgccgtagtctggagaagaatcgccagggttgcg
    ttgcggtgtgccccggttcgaggccggccggattccgcggctaacgagggcgtggctgccccgtcgtttccaagaccccat
    agccagccgacttctccagttacggagcgagcccctcttttgttttgtttgtttttgccagatgcatcccgtactgcggcagatgc
    gcccccaccaccctccaccgcaacaacagccccctccacagccggcgcttctgcccccgccccagcagcaacttccag
    ccacgaccgccgcggccgccgtgagcggggctggacagagttatgatcaccagctggccttggaagagggcgagggg
    ctggcgcgcctgggggcgtcgtcgccggagcggcacccgcgcgtgcagatgaaaagggacgctcgcgaggcctacgt
    gcccaagcagaacctgttcagagacaggagcggcgaggagcccgaggagatgcgcgcggcccggttccacgcggg
    gcgggagctgcggcgcggcctggaccgaaagagggtgctgagggacgaggatttcgaggcggacgagctgacggg
    gatcagccccgcgcgcgcgcacgtggccgcggccaacctggtcacggcgtacgagcagaccgtgaaggaggagag
    caacttccaaaaatccttcaacaaccacgtgcgcaccctgatcgcgcgcgaggaggtgaccctgggcctgatgcacctgt
    gggacctgctggaggccatcgtgcagaaccccaccagcaagccgctgacggcgcagctgttcctggtggtgcagcata
    gtcgggacaacgaagcgttcagggaggcgctgctgaatatcaccgagcccgagggccgctggctcctggacctggtga
    acattctgcagagcatcgtggtgcaggagcgcgggctgccgctgtccgagaagctggcggccatcaacttctcggtgctg
    agtttgggcaagtactacgctaggaagatctacaagaccccgtacgtgcccatagacaaggaggtgaagatcgacgggt
    tttacatgcgcatgaccctgaaagtgctgaccctgagcgacgatctgggggtgtaccgcaacgacaggatgcaccgtgcg
    gtgagcgccagcaggcggcgcgagctgagcgaccaggagctgatgcatagtctgcagcgggccctgaccggggccg
    ggaccgagggggagagctactttgacatgggcgcggacctgcactggcagcccagccgccgggccttggaggcggcg
    gcaggaccctacgtagaagaggtggacgatgaggtggacgaggagggcgagtacctggaagactgatggcgcgacc
    gtatttttgctagatgcaacaacaacagccacctcctgatcccgcgatgcgggcggcgctgcagagccagccgtccggca
    ttaactcctcggacgattggacccaggccatgcaacgcatcatggcgctgacgacccgcaaccccgaagcctttagaca
    gcagccccaggccaaccggctctcggccatcctggaggccgtggtgccctcgcgctccaaccccacgcacgagaaggt
    cctggccatcgtgaacgcgctggtggagaacaaggccatccgcggcgacgaggccggcctggtgtacaacgcgctgct
    ggagcgcgtggcccgctacaacagcaccaacgtgcagaccaacctggaccgcatggtgaccgacgtgcgcgaggcc
    gtggcccagcgcgagcggttccaccgcgagtccaacctgggatccatggtggcgctgaacgccttcctcagcacccagc
    ccgccaacgtgccccggggccaggaggactacaccaacttcatcagcgccctgcgcctgatggtgaccgaggtgcccc
    agagcgaggtgtaccagtccgggccggactacttcttccagaccagtcgccagggcttgcagaccgtgaacctgagcca
    ggctttcaagaacttgcagggcctgtggggcgtgcaggccccggtcggggaccgcgcgacggtgtcgagcctgctgacg
    ccgaactcgcgcctgctgctgctgctggtggcccccttcacggacagcggcagcatcaaccgcaactcgtacctgggcta
    cctgattaacctgtaccgcgaggccatcggccaggcgcacgtggacgagcagacctaccaggagatcacccacgtga
    gccgcgccctgggccaggacgacccgggcaacctggaagccaccctgaactttttgctgaccaaccggtcgcagaaga
    tcccgccccagtacgcgctcagcaccgaggaggagcgcatcctgcgttacgtgcagcagagcgtgggcctgttcctgatg
    caggagggggccacccccagcgccgcgctcgacatgaccgcgcgcaacatggagcccagcatgtacgccagcaac
    cgcccgttcatcaataaactgatggactacttgcatcgggcggccgccatgaactctgactatttcaccaacgccatcctga
    atccccactggctcccgccgccggggttctacacgggcgagtacgacatgcccgaccccaatgacgggttcctgtggga
    cgatgtggacagcagcgtgttctccccccgaccgggtgctaacgagcgccccttgtggaagaaggaaggcagcgaccg
    acgcccgtcctcggcgctgtccggccgcgagggtgctgccgcggcggtgcccgaggccgccagtcctttcccgagcttgc
    ccttctcgctgaacagtatccgcagcagcgagctgggcaggatcacgcgcccgcgcttgctgggcgaagaggagtactt
    gaatgactcgctgttgagacccgagcgggagaagaacttccccaataacgggatagaaagcctggtggacaagatga
    gccgctggaagacgtatgcgcaggagcacagggacgatccccgggcgtcgcagggggccacgagccggggcagcg
    ccgcccgtaaacgccggtggcacgacaggcagcggggacagatgtgggacgatgaggactccgccgacgacagca
    gcgtgttggacttgggtgggagtggtaacccgttcgctcacctgcgcccccgtatcgggcgcatgatgtaagagaaaccg
    aaaataaatgatactcaccaaggccatggcgaccagcgtgcgttcgtttcttctctgttgttgttgtatctagtatgatgaggcgt
    gcgtacccggagggtcctcctccctcgtacgagagcgtgatgcagcaggcgatggcggcggcggcgatgcagcccccg
    ctggaggctccttacgtgcccccgcggtacctggcgcctacggaggggcggaacagcattcgttactcggagctggcacc
    cttgtacgataccacccggttgtacctggtggacaacaagtcggcggacatcgcctcgctgaactaccagaacgaccac
    agcaacttcctgaccaccgtggtgcagaacaatgacttcacccccacggaggccagcacccagaccatcaactttgacg
    agcgctcgcggtggggcggccagctgaaaaccatcatgcacaccaacatgcccaacgtgaacgagttcatgtacagca
    acaagttcaaggcgcgggtgatggtctcccgcaagacccccaatggggtgacagtgacagaggattatgatggtagtca
    ggatgagctgaagtatgaatgggtggaatttgagctgcccgaaggcaacttctcggtgaccatgaccatcgacctgatga
    acaacgccatcatcgacaattacttggcggtggggcggcagaacggggtgctggagagcgacatcggcgtgaagttcg
    acactaggaacttcaggctgggctgggaccccgtgaccgagctggtcatgcccggggtgtacaccaacgaggctttccat
    cccgatattgtcttgctgcccggctgcggggtggacttcaccgagagccgcctcagcaacctgctgggcattcgcaagag
    gcagcccttccaggaaggcttccagatcatgtacgaggatctggaggggggcaacatccccgcgctcctggatgtcgac
    gcctatgagaaaagcaaggaggatgcagcagctgaagcaactgcagccgtagctaccgcctctaccgaggtcagggg
    cgataattttgcaagcgccgcagcagtggcagcggccgaggcggctgaaaccgaaagtaagatagtcattcagccggt
    ggagaaggatagcaagaacaggagctacaacgtactaccggacaagataaacaccgcctaccgcagctggtaccta
    gcctacaactatggcgaccccgagaagggcgtgcgctcctggacgctgctcaccacctcggacgtcacctgcggcgtgg
    agcaagtctactggtcgctgcccgacatgatgcaagacccggtcaccttccgctccacgcgtcaagttagcaactacccg
    gtggtgggcgccgagctcctgcccgtctactccaagagcttcttcaacgagcaggccgtctactcgcagcagctgcgcgc
    cttcacctcgcttacgcacgtcttcaaccgcttccccgagaaccagatcctcgtccgcccgcccgcgcccaccattaccac
    cgtcagtgaaaacgttcctgctctcacagatcacgggaccctgccgctgcgcagcagtatccggggagtccagcgcgtg
    accgttactgacgccagacgccgcacctgcccctacgtctacaaggccctgggcatagtcgcgccgcgcgtcctctcgag
    ccgcaccttctaaatgtccattctcatctcgcccagtaataacaccggttggggcctgcgcgcgcccagcaagatgtacgg
    aggcgctcgccaacgctccacgcaacaccccgtgcgcgtgcgcgggcacttccgcgctccctggggcgccctcaaggg
    ccgcgtgcggtcgcgcaccaccgtcgacgacgtgatcgaccaggtggtggccgacgcgcgcaactacacccccgccg
    ccgcgcccgtctccaccgtggacgccgtcatcgacagcgtggtggcCgacgcgcgccggtacgcccgcgccaagagc
    cggcggcggcgcatcgcccggcggcaccggagcacccccgccatgcgcgcggcgcgagccttgctgcgcagggcca
    ggcgcacgggacgcagggccatgctcagggcggccagacgcgcggcttcaggcgccagcgccggcaggacccgga
    gacgcgcggccacggcggcggcagcggccatcgccagcatgtcccgcccgcggcgagggaacgtgtactgggtgcg
    cgacgccgccaccggtgtgcgcgtgcccgtgcgcacccgcccccctcgcacttgaagatgttcacttcgcgatgttgatgt
    gtcccagcggcgaggaggatgtccaagcgcaaattcaaggaagagatgctccaggtcatcgcgcctgagatctacggc
    cctgcggtggtgaaggaggaaagaaagccccgcaaaatcaagcgggtcaaaaaggacaaaaaggaagaagaaag
    tgatgtggacggattggtggagtttgtgcgcgagttcgccccccggcggcgcgtgcagtggcgcgggcggaaggtgcaa
    ccggtgctgagacccggcaccaccgtggtcttcacgcccggcgagcgctccggcaccgcttccaagcgctcctacgacg
    aggtgtacggggatgatgatattctggagcaggcggccgagcgcctgggcgagtttgcttacggcaagcgcagccgttcc
    gcaccgaaggaagaggcggtgtccatcccgctggaccacggcaaccccacgccgagcctcaagcccgtgaccttgca
    gcaggtgctgccgaccgcggcgccgcgccgggggttcaagcgcgagggcgaggatctgtaccccaccatgcagctga
    tggtgcccaagcgccagaagctggaagacgtgctggagaccatgaaggtggacccggacgtgcagcccgaggtcaa
    ggtgcggcccatcaagcaggtggccccgggcctgggcgtgcagaccgtggacatcaagattcccacggagcccatgg
    aaacgcagaccgagcccatgatcaagcccagcaccagcaccatggaggtgcagacggatccctggatgccatcggct
    cctagtcgaagaccccggcgcaagtacggcgcggccagcctgctgatgcccaactacgcgctgcatccttccatcatccc
    cacgccgggctaccgcggcacgcgcttctaccgcggtcataccagcagccgccgccgcaagaccaccactcgccgcc
    gccgtcgccgcaccgccgctgcaaccacccctgccgccctggtgcggagagtgtaccgccgcggccgcgcacctctga
    ccctgccgcgcgcgcgctaccacccgagcatcgccatttaaactttcgccTgctttgcagatcaatggccctcacatgccg
    ccttcgcgttcccattacgggctaccgaggaagaaaaccgcgccgtagaaggctggcggggaacgggatgcgtcgcca
    ccaccaccggcggcggcgcgccatcagcaagcggttggggggaggcttcctgcccgcgctgatccccatcatcgccgc
    ggcgatcggggcgatccccggcattgcttccgtggcggtgcaggcctctcagcgccactgagacacacttggaaacatct
    tgtaataaaccAatggactctgacgctcctggtcctgtgatgtgttttcgtagacagatggaagacatcaatttttcgtccctgg
    ctccgcgacacggcacgcggccgttcatgggcacctggagcgacatcggcaccagccaactgaacgggggcgccttc
    aattggagcagtctctggagcgggcttaagaatttcgggtccacgcttaaaacctatggcagcaaggcgtggaacagcac
    cacagggcaggcgctgagggataagctgaaagagcagaacttccagcagaaggtggtcgatgggctcgcctcgggca
    tcaacggggtggtggacctggccaaccaggccgtgcagcggcagatcaacagccgcctggacccggtgccgcccgcc
    ggctccgtggagatgccgcaggtggaggaggagctgcctcccctggacaagcggggcgagaagcgaccccgccccg
    atgcggaggagacgctgctgacgcacacggacgagccgcccccgtacgaggaggcggtgaaactgggtctgcccac
    cacgcggcccatcgcgcccctggccaccggggtgctgaaacccgaaaagcccgcgaccctggacttgcctcctcccca
    gccttcccgcccctctacagtggctaagcccctgccgccggtggccgtggcccgcgcgcgacccgggggcaccgcccg
    ccctcatgcgaactggcagagcactctgaacagcatcgtgggtctgggagtgcagagtgtgaagcgccgccgctgctatt
    aaacctaccgtagcgcttaacttgcttgtctgtgtgtgtatgtattatgtcgccgccgccgctgtccaccagaaggaggagtg
    aagaggcgcgtcgccgagttgcaagatggccaccccatcgatgctgccccagtgggcgtacatgcacatcgccggaca
    ggacgcttcggagtacctgagtccgggtctggtgcagtttgcccgcgccacagacacctacttcagtctggggaacaagttt
    aggaaccccacggtggcgcccacgcacgatgtgaccaccgaccgcagccagcggctgacgctgcgcttcgtgcccgt
    ggaccgcgaggacaacacctactcgtacaaagtgcgctacacgctggccgtgggcgacaaccgcgtgctggacatgg
    ccagcacctactttgacatccgcggcgtgctggatcggggccctagcttcaaaccctactccggcaccgcctacaacagtc
    tggcccccaagggagcacccaacacttgtcagtggacatataaagccgatggtgaaactgccacagaaaaaacctata
    catatggaaatgcacccgtgcagggcattaacatcacaaaagatggtattcaacttggaactgacaccgatgatcagcca
    atctacgcagataaaacctatcagcctgaacctcaagtgggtgatgctgaatggcatgacatcactggtactgatgaaaag
    tatggaggcagagctcttaagcctgataccaaaatgaagccttgttatggttcttttgccaagcctactaataaagaaggag
    gtcaggcaaatgtgaaaacaggaacaggcactactaaagaatatgacatagacatggctttctttgacaacagaagtgc
    ggctgctgctggcctagctccagaaattgttttgtatactgaaaatgtggatttggaaactccagatacccatattgtatacaa
    agcaggcacagatgacagcagctcttctattaatttgggtcagcaagccatgcccaacagacctaactacattggtttcag
    agacaactttatcgggctcatgtactacaacagcactggcaatatgggggtgctggccggtcaggcttctcagctgaatgct
    gtggttgacttgcaagacagaaacaccgagctgtcctaccagctcttgcttgactctctgggtgacagaacccggtatttcag
    tatgtggaatcaggcggtggacagctatgatcctgatgtgcgcattattgaaaatcatggtgtggaggatgaacttcccaact
    attgtttccctctggatgctgttggcagaacagatacttatcagggaattaaggctaatggaactgatcaaaccacatggacc
    aaagatgacagtgtcaatgatgctaatgagataggcaagggtaatccattcgccatggaaatcaacatccaagccaacct
    gtggaggaacttcctctacgccaacgtggccctgtacctgcccgactcttacaagtacacgccggccaatgttaccctgcc
    caccaacaccaacacctacgattacatgaacggccgggtggtggcgccctcgctggtggactcctacatcaacatcggg
    gcgcgctggtcgctggatcccatggacaacgtgaaccccttcaaccaccaccgcaatgcggggctgcgctaccgctcca
    tgctcctgggcaacgggcgctacgtgcccttccacatccaggtgccccagaaatttttcgccatcaagagcctcctgctcct
    gcccgggtcctacacctacgagtggaacttccgcaaggacgtcaacatgatcctgcagagctccctcggcaacgacctg
    cgcacggacggggcctccatctccttcaccagcatcaacctctacgccaccttcttccccatggcgcacaacacggcctcc
    acgctcgaggccatgctgcgcaacgacaccaacgaccagtccttcaacgactacctctcggcggccaacatgctctacc
    ccatcccggccaacgccaccaacgtgcccatctccatcccctcgcgcaactgggccgccttccgcggctggtccttcacg
    cgtctcaagaccaaggagacgccctcgctgggctccgggttcgacccctacttcgtctactcgggctccatcccctacctcg
    acggcaccttctacctcaaccacaccttcaagaaggtctccatcaccttcgactcctccgtcagctggcccggcaacgacc
    ggctcctgacgcccaacgagttcgaaatcaagcgcaccgtcgacggcgagggctacaacgtggcccagtgcaacatg
    accaaggactggttcctggtccagatgctggcccactacaacatcggctaccagggcttctacgtgcccgagggctacaa
    ggaccgcatgtactccttcttccgcaacttccagcccatgagccgccaggtggtggacgaggtcaactacaaggactacc
    aggccgtcaccctggcctaccagcacaacaactcgggcttcgtcggctacctcgcgcccaccatgcgccagggccagc
    cctaccccgccaactacccctacccgctcatcggcaagagcgccgtcaccagcgtcacccagaaaaagttcctctgcga
    cagggtcatgtggcgcatccccttctccagcaacttcatgtccatgggcgcgctcaccgacctcggccagaacatgctctat
    gccaactccgcccacgcgctagacatgaatttcgaagtcgaccccatggatgagtccacccttctctatgttgtcttcgaagt
    cttcgacgtcgtccgagtgcaccagccccaccgcggcgtcatcgaggccgtctacctgcgcacccccttctcggccggta
    acgccaccacctaagctcttgcttcttgcaagccatggccgcgggctccggcgagcaggagctcagggccatcatccgc
    gacctgggctgcgggccctacttcctgggcaccttcgataagcgcttcccgggattcatggccccgcacaagctggcctgc
    gccatcgtcaacacggccggccgcgagaccgggggcgagcactggctggccttcgcctggaacccgcgctcgaacac
    ctgctacctcttcgaccccttcgggttctcggacgagcgcctcaagcagatctaccagttcgagtacgagggcctgctgcgc
    cgcagcgccctggccaccgaggaccgctgcgtcaccctggaaaagtccacccagaccgtgcagggtccgcgctcggc
    cgcctgcgggctcttctgctgcatgttcctgcacgccttcgtgcactggcccgaccgccccatggacaagaaccccaccat
    gaacttgctgacgggggtgcccaacggcatgctccagtcgccccaggtggaacccaccctgcgccgcaaccaggagg
    cgctctaccgcttcctcaactcccactccgcctactttcgctcccaccgcgcgcgcatcgagaaggccaccgccttcgacc
    gcatgaatcaagacatgtaaaccgtgtgtgtatgttaaatgtctttaataaacagcactttcatgttacacatgcatctgagatg
    atttatttagaaatcgaaagggttctgccgggtctcggcatggcccgcgggcagggacacgttgcggaactggtacttggc
    cagccacttgaactcggggatcagcagtttgggcagcggggtgtcggggaaggagtcggtccacagcttccgcgtcagtt
    gcagggcgcccagcaggtcgggcgcggagatcttgaaatcgcagttgggacccgcgttctgcgcgcgggagttgcggt
    acacggggttgcagcactggaacaccatcagggccgggtgcttcacgctcgccagcaccgtcgcgtcggtgatgctctcc
    acgtcgaggtcctcggcgttggccatcccgaagggggtcatcttgcaggtctgccttcccatggtgggcacgcacccgggc
    ttgtggttgcaatcgcagtgcagggggatcagcatcatctgggcctggtcggcgttcatccccgggtacatggccttcatga
    aagcctccaattgcctgaacgcctgctgggccttggctccctcggtgaagaagaccccgcaggacttgctagagaactgg
    ttggtggcgcacccggcgtcgtgcacgcagcagcgcgcgtcgttgttggccagctgcaccacgctgcgcccccagcggtt
    ctgggtgatcttggcccggtcggggttctccttcagcgcgcgctgcccgttctcgctcgccacatccatctcgatcatgtgctcc
    ttctggatcatggtggtcccgtgcaggcaccgcagcttgccctcggcctcggtgcacccgtgcagccacagcgcgcaccc
    ggtgcactcccagttcttgtgggcgatctgggaatgcgcgtgcacgaagccctgcaggaagcggcccatcatggtggtca
    gggtcttgttgctagtgaaggtcagcggaatgccgcggtgctcctcgttgatgtacaggtggcagatgcggcggtacacctc
    gccctgctcgggcatcagctggaagttggctttcaggtcggtctccacgcggtagcggtccatcagcatagtcatgatttcca
    tacccttctcccaggccgagacgatgggcaggctcatagggttcttcaccatcatcttagcgctagcagccgcggccaggg
    ggtcgctctcgtccagggtctcaaagctccgcttgccgtccttctcggtgatccgcaccggggggtagctgaagcccacgg
    ccgccagctcctcctcggcctgtctttcgtcctcgctgtcctggctgacgtcctgcaggaccacatgcttggtcttgcggggtttc
    ttcttgggcggcagcggcggcggagatgttggagatggcgagggggagcgcgagttctcgctcaccactactatctcttcc
    tcttcttggtccgaggccacgcggcggtaggtatgtctcttcgggggcagaggcggaggcgacgggctctcgccgccgcg
    acttggcggatggctggcagagccccttccgcgttcgggggtgcgctcccggcggcgctctgactgacttcctccgcggcc
    ggccattgtgttctcctagggaggaacaacaagcatggagactcagccatcgccaacctcgccatctgcccccaccgcc
    gacgagaagcagcagcagcagaatgaaagcttaaccgccccgccgcccagccccgccacctccgacgcggccgtcc
    cagacatgcaagagatggaggaatccatcgagattgacctgggctatgtgacgcccgcggagcacgaggaggagctg
    gcagtgcgcttttcacaagaagagatacaccaagaacagccagagcaggaagcagagaatgagcagagtcaggctg
    ggctcgagcatgacggcgactacctccacctgagcgggggggaggacgcgctcatcaagcatctggcccggcaggcc
    accatcgtcaaggatgcgctgctcgaccgcaccgaggtgcccctcagcgtggaggagctcagccgcgcctacgagttga
    acctcttctcgccgcgcgtgccccccaagcgccagcccaatggcacctgcgagcccaacccgcgcctcaacttctaccc
    ggtcttcgcggtgcccgaggccctggccacctaccacatctttttcaagaaccaaaagatccccgtctcctgccgcgccaa
    ccgcacccgcgccgacgcccttttcaacctgggtcccggcgcccgcctacctgatatcgcctccttggaagaggttcccaa
    gatcttcgagggtctgggcagcgacgagactcgggccgcgaacgctctgcaaggagaaggaggagagcatgagcac
    cacagcgccctggtcgagttggaaggcgacaacgcgcggctggcggtgctcaaacgcacggtcgagctgacccatttc
    gcctacccggctctgaacctgccccccaaagtcatgagcgcggtcatggaccaggtgctcatcaagcgcgcgtcgccca
    tctccgaggacgagggcatgcaagactccgaggagggcaagcccgtggtcagcgacgagcagctggcccggtggctg
    ggtcctaatgctagtccccagagtttggaagagcggcgcaaactcatgatggccgtggtcctggtgaccgtggagctgga
    gtgcctgcgccgcttcttcgccgacgcggagaccctgcgcaaggtcgaggagaacctgcactacctcttcaggcacgggt
    tcgtgcgccaggcctgcaagatctccaacgtggagctgaccaacctggtctcctacatgggcatcttgcacgagaaccgc
    ctggggcagaacgtgctgcacaccaccctgcgcggggaggcccggcgcgactacatccgcgactgcgtctacctctac
    ctctgccacacctggcagacgggcatgggcgtgtggcagcagtgtctggaggagcagaacctgaaagagctctgcaag
    ctcctgcagaagaacctcaagggtctgtggaccgggttcgacgagcgcaccaccgcctcggacctggccgacctcatttt
    ccccgagcgcctcaggctgacgctgcgcaacggcctgcccgactttatgagccaaagcatgttgcaaaactttcgctctttc
    atcctcgaacgctccggaatcctgcccgccacctgctccgcgctgccctcggacttcgtgccgctgaccttccgcgagtgcc
    ccccgccgctgtggagccactgctacctgctgcgcctggccaactacctggcctaccactcggacgtgatcgaggacgtc
    agcggcgagggcctgctcgagtgccactgccgctgcaacctctgcacgccgcaccgctccctggcctgcaacccccag
    ctgctgagcgagacccagatcatcggcaccttcgagttgcaagggcccagcgaaggcgagggttcagccgccaaggg
    gggtctgaaactcaccccggggctgtggacctcggcctacttgcgcaagttcgtgcccgaggactaccatcccttcgagat
    caggttctacgaggaccaatcccatccgcccaaggccgagctgtcggcctgcgtcatcacccagggggcgatcctggcc
    caattgcaagccatccagaaatcccgccaagaattcttgctgaaaaagggccgcggggtctacctcgacccccagaccg
    gtgaggagctcaaccccggcttcccccaggatgccccgaggaaacaagaagctgaaagtggagctgccgcccgtgga
    ggatttggaggaagactgggagaacagcagtcaggcagaggaggaggagatggaggaagactgggacagcactca
    ggcagaggaggacagcctgcaagacagtctggaggaagacgaggaggaggcagaggaggaggtggaagaagca
    gccgccgccagaccgtcgtcctcggcgggggagaaagcaagcagcacggataccatctccgctccgggtcggggtcc
    cgctcgaccacacagtagatgggacgagaccggacgattcccgaaccccaccacccagaccggtaagaaggagcg
    gcagggatacaagtcctggcgggggcacaaaaacgccatcgtctcctgcttgcaggcctgcgggggcaacatctccttc
    acccggcgctacctgctcttccaccgcggggtgaactttccccgcaacatcttgcattactaccgtcacctccacagcccct
    actacttccaagaagaggcagcagcagcagaaaaagaccagcagaaaaccagcagctagaaaatccacagcggc
    ggcagcaggtggactgaggatcgcggcgaacgagccggcgcaaacccgggagctgaggaaccggatctttcccacc
    ctctatgccatcttccagcagagtcgggggcaggagcaggaactgaaagtcaagaaccgttctctgcgctcgctcacccg
    cagttgtctgtatcacaagagcgaagaccaacttcagcgcactctcgaggacgccgaggctctcttcaacaagtactgcg
    cgctcactcttaaagagtagcccgcgcccgcccagtcgcagaaaaaggcgggaattacgtcacctgtgcccttcgcccta
    gccgcctccacccatcatcatgagcaaagagattcccacgccttacatgtggagctaccagccccagatgggcctggcc
    gccggtgccgcccaggactactccacccgcatgaattggctcagcgccgggcccgcgatgatctcacgggtgaatgaca
    tccgcgcccaccgaaaccagatactcctagaacagtcagcgctcaccgccacgccccgcaatcacctcaatccgcgta
    attggcccgccgccctggtgtaccaggaaattccccagcccacgaccgtactacttccgcgagacgcccaggccgaagt
    ccagctgactaactcaggtgtccagctggcgggcggcgccaccctgtgtcgtcaccgccccgctcagggtataaagcgg
    ctggtgatccggggcagaggcacacagctcaacgacgaggtggtgagctcttcgctgggtctgcgacctgacggagtctt
    ccaactcgccggatcggggagatcttccttcacgcctcgtcaggccgtcctgactliggagagttcgtcctcgcagccccgc
    tcgggtggcatcggcactctccagttcgtggaggagttcactccctcggtctacttcaaccccttctccggctcccccggcca
    ctacccggacgagttcatcccgaacttcgacgccatcagcgagtcggtggacggctacgattgaatgtcccatggtggcg
    cagctgacctagctcggcttcgacacctggaccactgccgccgcttccgctgcttcgctcgggatctcgccgagtttgcctac
    tttgagctgcccgaggagcaccctcagggcccggcccacggagtgcggatcgtcgtcgaagggggcctcgactcccac
    ctgcttcggatcttcagccagcgtccgatcctggtcgagcgcgagcaaggacagacccttctgactctgtactgcatctgca
    accaccccggcctgcatgaaagtctttgttgtctgctgtgtactgagtataataaaagctgagatcagcgactactccggact
    tccgtgtgtTTAAACtcacccccttatccagtgaaataaagatcatattgatgatgattttacagaaataaaaaataatcatt
    tgatttgaaataaagatacaatcatattgatgatttgagtttaacaaaaaaataaagaatcacttacttgaaatctgataccag
    gtctctgtccatgttttctgccaacaccacttcactcccctcttcccagctctggtactgcaggccccggcgggctgcaaacttc
    ctccacacgctgaaggggatgtcaaattcctcctgtccctcaatcttcattttatcttctatcagatgtccaaaaagcgcgtccg
    ggtggatgatgacttcgaccccgtctacccctacgatgcagacaacgcaccgaccgtgcccttcatcaacccccccttcgt
    ctcttcagatggattccaagagaagcccctgggggtgttgtccctgcgactggccgaccccgtcaccaccaagaacggg
    gaaatcaccctcaagctgggagagggggtggacctcgattcctcgggaaaactcatctccaacacggccaccaaggcc
    gccgcccctctcagtttttccaacaacaccatttcccttaacatggatcaccccttttacactaaagatggaaaattatccttac
    aagtttctccaccattaaatatactgagaacaagcattctaaacacactagctttaggttttggatcaggtttaggactccgtgg
    ctctgccttggcagtacagttagtctctccacttacatttgatactgatggaaacataaagcttaccttagacagaggtttgcat
    gttacaacaggagatgcaattgaaagcaacataagctgggctaaaggtttaaaatttgaagatggagccatagcaacca
    acattggaaatgggttagagtttggaagcagtagtacagaaacaggtgttgatgatgcttacccaatccaagttaaacttgg
    atctggccttagctttgacagtacaggagccataatggctggtaacaaagaagacgataaactcactttgtggacaacacc
    tgatccatcaccaaactgtcaaatactcgcagaaaatgatgcaaaactaacactttgcttgactaaatgtggtagtcaaata
    ctggccactgtgtcagtcttagttgtaggaagtggaaacctaaaccccattactggcaccgtaagcagtgctcaggtgtttct
    acglittgatgcaaacggtgttcttttaacagaacattctacactaaaaaaatactgggggtataggcagggagatagcata
    gatggcactccatataccaatgctgtaggattcatgcccaatttaaaagcttatccaaagtcacaaagttctactactaaaaa
    taatatagtagggcaagtatacatgaatggagatgtttcaaaacctatgcttctcactataaccctcaatggtactgatgaca
    gcaacagtacatattcaatgtcattttcatacacctggactaatggaagctatgttggagcaacatttggggctaactcttatac
    cttctcatacatcgcccaagaatgaacactgtatcccaccctgcatgccaacccttcccaccccactctgtggaacaaactc
    tgaaacacaaaataaaataaagttcaagtgttttattgattcaacagttttacaggattcgagcagttatttttcctccaccctcc
    caggacatggaatacaccaccctctccccccgcacagccttgaacatctgaatgccattggtgatggacatgcttttggtctc
    cacgttccacacagtttcagagcgagccagtctcgggtcggtcagggagatgaaaccctccgggcactcccgcatctgca
    cctcacagctcaacagctgaggattgtcctcggtggtcgggatcacggttatctggaagaagcagaagagcggcggtgg
    gaatcatagtccgcgaacgggatcggccggtggtgtcgcatcaggccccgcagcagtcgctgccgccgccgctccgtca
    agctgctgctcagggggtccgggtccagggactccctcagcatgatgcccacggccctcagcatcagtcgtctggtgcgg
    cgggcgcagcagcgcatgcggatctcgctcaggtcgctgcagtacgtgcaacacagaaccaccaggttgttcaacagtc
    catagttcaacacgctccagccgaaactcatcgcgggaaggatgctacccacgtggccgtcgtaccagatcctcaggta
    aatcaagtggtgccccctccagaacacgctgcccacgtacatgatctccttgggcatgtggcggttcaccacctcccggta
    ccacatcaccctctggttgaacatgcagccccggatgatcctgcggaaccacagggccagcaccgccccgcccgccat
    gcagcgaagagaccccgggtcccggcaatggcaatggaggacccaccgctcgtacccgtggatcatctgggagctga
    acaagtctatgttggcacagcacaggcatatgctcatgcatctcttcagcactctcaactcctcgggggtcaaaaccatatc
    ccagggcacggggaactcttgcaggacagcgaaccccgcagaacagggcaatcctcgcacagaacttacattgtgcat
    ggacagggtatcgcaatcaggcagcaccgggtgatcctccaccagagaagcgcgggtctcggtctcctcacagcgtggt
    aagggggccggccgatacgggtgatggcgggacgcggctgatcgtgttcgcgaccgtgtcatgatgcagttgctttcgga
    cattttcgtacttgctgtagcagaacctggtccgggcgctgcacaccgatcgccggcggcggtctcggcgcttggaacgctc
    ggtgttgaaattgtaaaacagccactctctcagaccgtgcagcagatctagggcctcaggagtgatgaagatcccatcatg
    cctgatggctctgatcacatcgaccaccgtggaatgggccagacccagccagatgatgcaattttgttgggtttcggtgacg
    gcgggggagggaagaacaggaagaaccatgattaacttttaatccaaacggtctcggagtacttcaaaatgaagatcgc
    ggagatggcacctctcgcccccgctgtgttggtggaaaataacagccaggtcaaaggtgatacggttctcgagatgttcca
    cggtggcttccagcaaagcctccacgcgcacatccagaaacaagacaatagcgaaagcgggagggttctctaattcctc
    aatcatcatgttacactcctgcaccatccccagataattttcatttttccagccttgaatgattcgaactagttcCtgaggtaaat
    ccaagccagccatgataaagagctcgcgcagagcgccctccaccggcattcttaagcacaccctcataattccaagatat
    tctgctcctggttcacctgcagcagattgacaagcggaatatcaaaatctctgccgcgatccctgagctcctccctcagcaat
    aactgtaagtactctttcatatcctctccgaaatttttagccataggaccaccaggaataagattagggcaagccacagtac
    agataaaccgaagtcctccccagtgagcattgccaaatgcaagactgctataagcatgctggctagacccggtgatatctt
    ccagataactggacagaaaatcgcccaggcaatttttaagaaaatcaacaaaagaaaaatcctccaggtggacgtttag
    agcctcgggaacaacgatgaagtaaatgcaagcggtgcgttccagcatggttagttagctgatctgtagaaaaaacaaa
    aatgaacattaaaccatgctagcctggcgaacaggtgggtaaatcgttctctccagcaccaggcaggccacggggtctcc
    ggcgcgaccctcgtaaaaattgtcgctatgattgaaaaccatcacagagagacgttcccggtggccggcgtgaatgattc
    gacaagatgaatacacccccggaacattggcgtccgcgagtgaaaaaaagcgcccgaggaagcaataaggcactac
    aatgctcagtctcaagtccagcaaagcgatgccatgcggatgaagcacaaaattctcaggtgcgtacaaaatgtaattact
    cccctcctgcacaggcagcaaagcccccgatccctccaggtacacatacaaagcctcagcgtccatagcttaccgagca
    gcagcacacaacaggcgcaagagtcagagaaaggctgagctctaacctgtccacccgctctctgctcaatatatagccc
    agatctacactgacgtaaaggccaaagtctaaaaatacccgccaaataatcacacacgcccagcacacgcccagaaa
    ccggtgacacactcaaaaaaatacgcgcacttcctcaaacgcccaaaactgccgtcatttccgggttcccacgctacgtc
    atcaaaacacgactttcaaattccgtcgaccgttaaaaacgtcacccgccccgcccctaacggtcgcccgtctctcagcca
    atcagcgccccgcatccccaaattcaaacacctcatttgcatattaacgcgcacaaaaagtttgaggtatattattgatgatg
    g
    Plasmid 1103 ORF (cMSLN)
    SEQ ID NO: 5
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctg
    Plasmid 1103 Polypeptide (cMSLN)
    SEQ ID NO: 6
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEAL
    Plasmid 1027 ORF (MUC1)
    SEQ ID NO: 7
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctg
    Plasmid 1027 Polypeptide (537 aa) (MUC1)
    SEQ ID NO: 8
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANL
    Plasmid 1112 ORF (TERT240)
    SEQ ID NO: 9
    atgggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccgggacgcaccaggggac
    catccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcgagggagcgttgtctg
    gaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccagaccgccacggcca
    tgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaaggaacagcttcggccg
    tccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcacgtccgtg
    gatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaattgctgg
    gaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtcactccggcggccgg
    agtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccgcctcgtg
    caacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccgcctggg
    ctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgccaagttgt
    cgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtgttcca
    gctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagctgctgc
    gctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctgcagtc
    aatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgggaggc
    ccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatggattacgt
    cgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtgctgaa
    ctacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggcggacc
    tttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatgatacta
    ttccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtacgccgtg
    gtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagccttacat
    gaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcctgaacg
    aagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcatacgtgca
    gtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaagctgttcg
    ctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacgccaaa
    acctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaatttccctgt
    cgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgctgctgga
    cacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttcaatcgcg
    gctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgatctccaa
    gtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcgtgcttca
    gctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgttactcaat
    cctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggtgcagt
    ggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcgcactg
    cacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcattgccgt
    cagatttcaagaccatcttggac
    Plasmid 1112 Polypeptide (TERT240)
    SEQ ID NO: 10
    MGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTRHS
    HPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRP
    SLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLL
    KTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVR
    ACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRS
    PGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVW
    SKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVV
    GARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVR
    AQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKA
    FKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHH
    AVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPH
    LTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPANGLFPWCGLL
    LDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNS
    LQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAG
    MSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTT
    LTALEAAANPALPSDFKTILD
    Plasmid 1330 ORF (TERT541)
    SEQ ID NO: 11
    atggctagcgccaaatttctgcattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactac
    ctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaag
    agggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgt
    ctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgt
    gaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcct
    ggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaa
    gaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccga
    agtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggc
    cacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgc
    aagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttga
    cgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaagg
    cagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggtt
    gctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgagg
    ggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggagg
    aaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcag
    tccgactactccagctatgcccggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacat
    gcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtg
    cacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgt
    ggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccgg
    aatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcct
    gaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaa
    actccccggcaccaccctgaccgctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1330 Polypeptide (TERT541)
    SEQ ID NO: 12
    MASAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRV
    QLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLT
    SRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAIT
    GAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYM
    RQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIP
    QGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVP
    EYGCVVNLRKTVVNFPVEDEALGGTAFVQMPANGLFPWCGLLLDTRTLEVQSDYSSY
    ARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQA
    YRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPS
    EAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSD
    FKTILD
    Plasmid 1326 ORF (TERT343)
    SEQ ID NO: 13
    atggctagcttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcac
    gtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaa
    ttgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtcactccggc
    ggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccg
    cctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccg
    cctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgcca
    agttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtg
    ttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagct
    gctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctg
    cagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgg
    gaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatgga
    ttacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtg
    ctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggc
    ggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatg
    atactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtac
    gccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagc
    cttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcct
    gaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcata
    cgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaag
    ctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacg
    ccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaattt
    ccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgct
    gctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttca
    atcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgat
    ctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcg
    tgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgtta
    ctcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggt
    gcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcg
    cactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcatt
    gccgtcagatttcaagaccatcttggac
    Plasmid 1326 Polypeptide (TERT343)
    SEQ ID NO: 14
    MASFLLSSLRPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGN
    HAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHS
    SPWQVYGFVRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMS
    VRDCAWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKN
    RLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGL
    RPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHR
    AWRTFVLRVRAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQ
    KAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLF
    DVFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLR
    LVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMP
    AHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLK
    CHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTAS
    LCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTA
    QTQLSRKLPGTTLTALEAAANPALPSDFKTILD
    Plasmid 1197 ORF (cMUC1)
    SEQ ID NO: 15
    atggctagcacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagca
    gcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggca
    gcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggac
    aggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgccc
    ctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagcccc
    aggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcct
    gcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatca
    gctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctg
    ctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgc
    acaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccaca
    gcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctct
    gaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctg
    cagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgc
    aaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccct
    ggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagcc
    ggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccagg
    atggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgc
    cggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacatac
    cacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcgg
    cagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctg
    Plasmid 1197 Polypeptide) (cMUC1)
    SEQ ID NO: 16
    MASTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPGSGSSTTQG
    QDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPGSTA
    PPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPG
    STAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPALGSTAPPVHNVTSASGSAS
    GSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDASSTHHSSVPPL
    TSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEMFLQIYKQG
    GFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSD
    VPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLDIFPARDTY
    HPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAASANL
    Plasmid 1316 ORF
    SEQ ID NO: 17
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcagaatcttcaacgcccactacgccggctacttcgccgacct
    gctgatccacgacatcgagacaaaccctggccccacccctggaacccagagccccttcttccttctgctgctgctgaccgt
    gctgactgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaa
    gcagcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcg
    gcagcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggg
    gacaggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcg
    cccctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagc
    cccaggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcct
    cctgcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgaca
    tcagctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagac
    ctgctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggt
    gcacaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccacca
    cagcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccc
    tctgaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacc
    tgcagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcct
    gcaaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgacc
    ctggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccag
    ccggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccag
    gatggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagt
    gccggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacat
    accacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggc
    ggcagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctg
    Plasmid 1316 Polypeptide
    SEQ ID NO: 18
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGRIFNAHYAGYFADLLIH
    DIETNPGPTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKN
    AVSMTSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALG
    STTPPAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRP
    APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPD
    TRPALGSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTP
    TTLASHSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPS
    TDYYQELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQF
    NQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIAL
    AVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGG
    SSLSYTNPAVAAASANL
    Plasmid 1313 ORF
    SEQ ID NO: 19
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctgggatccggcagaatcttcaacgcccactacgccggctacttcgccgacctg
    ctgatccacgacatcgagacaaaccctggccccctggctggcgagacaggacaggaagccgctcctctggacggcgtg
    ctggccaaccctcccaatatcagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgag
    cacagagagagtgcgggaactggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgc
    ctggcccacagactgtctgagcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgcctt
    cagcggacctcaggcctgcacccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccc
    tgagagacagagactgctgcctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggcc
    ctgggaggcctggcttgtgatctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtc
    ccggccctctggaccaggatcagcaggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctag
    cacttggagcgtgtccaccatggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccaca
    gggcatcgtggccgcctggcggcagagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcc
    caggtttcggagagaggtggaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatctt
    ctacaagaagtgggagctggaagcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccc
    cttcacctatgagcagctggacgtgctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatc
    cagcacctgggctacctgtttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctga
    aggccctgctggaagtgaacaagggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggca
    gaggccagctggacaaggacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgagga
    actgagcagcgtgccacctagctctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgt
    gctgtatcccaaggcccggctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcg
    gagcccctaccgaggacctgaaagctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggac
    cgacgccgtgctgcctctgacagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaaga
    acggcacagacccgtgcgcgactggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcagg
    ggggcatccctaatggctacctggtgctggacctgagcatgcaggaagccctg
    Plasmid 1313 Polypeptide
    SEQ ID NO: 20
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANLGSGRIFNAHYAGYFADLLIHDIETNPGPLAGETGQEAAPLDGVLAN
    PPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPE
    DLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGV
    RGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQG
    GGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERT
    ILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYE
    QLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHE
    MSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDL
    DTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATF
    MKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQG
    GIPNGYLVLDLSMQEAL
    Plasmid 1159 ORF
    SEQ ID NO: 21
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctgggatccggcgccaccaatttcagcctgctgaaacaggccggcgacgtgga
    agagaaccctggccctctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaa
    tatcagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgg
    gaactggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtct
    gagcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcct
    gcacccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgc
    tgcctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgt
    gatctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccag
    gatcagcaggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccac
    catggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcct
    ggcggcagagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagagg
    tggaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggag
    ctggaagcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagct
    ggacgtgctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacct
    gtttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagt
    gaacaagggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggaca
    aggacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgcca
    cctagctctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggccc
    ggctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgagga
    cctgaaagctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctct
    gacagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtg
    cgcgactggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatgg
    ctacctggtgctggacctgagcatgcaggaagccctg
    Plasmid 1159 Polypeptide
    SEQ ID NO: 22
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANLGSGATNFSLLKQAGDVEENPGPLAGETGQEAAPLDGVLANPPNIS
    SLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPEDLDAL
    PLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGVRGSLL
    SEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQGGGPPY
    GPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERTILRPRF
    RREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYEQLDVL
    KHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMSPQ
    VATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDLDTCD
    PRQLDVLYPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATFMKLR
    TDAVLPLTVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQGGIPNG
    YLVLDLSMQEAL
    Plasmid 1158 ORF
    SEQ ID NO: 23
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcgccaccaatttcagcctgctgaaacaggccggcgacgtg
    gaagagaaccctggccctacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacag
    gctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagca
    gcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaaca
    cagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgaca
    agcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagc
    ctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagc
    cccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtg
    acaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacact
    agacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagc
    accgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcac
    cagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccct
    accacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagc
    aaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacag
    cagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaag
    cagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccggga
    aggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctg
    accatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgc
    tctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaaga
    attacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacg
    gcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctga
    gctacacaaatcctgccgtggccgctgcctccgccaacctg
    Plasmid 1158 Polypeptide
    SEQ ID NO: 24
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGATNFSLLKQAGDVEEN
    PGPTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANL
    Plasmid 1269 ORF
    SEQ ID NO: 25
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctgggaggctccggcggaggagctgccccggagccggagaggacccccgtt
    ggccagggatcgtgggcccatccgggacgcaccaggggaccatccgacaggggattctgtgtggtgtcaccggccagg
    ccagcagaagaggcaaccagcctcgagggagcgttgtctggaaccagacattcccacccgtcggtgggccggcagca
    ccacgcgggaccaccgtccacttccagaccgccacggccatgggacaccccttgcccgcctgtgtatgccgagactaaa
    cacttcctgtactcatccggagacaaggaacagcttcggccgtccttcctcctgtcgtcgctcagaccgagcctgaccgga
    gcacgcagattggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctccca
    cagagatactggcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaag
    actcactgccctctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagccccagggaagcgtggc
    agctccggaagaggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtctac
    gggttcgtccgcgcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgaga
    aatactaagaagtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgatt
    gcgcctggctgcgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggccaa
    atttctgcattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaacc
    gcctgttcttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcg
    ggaactttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatccca
    aagcccgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccg
    aacgcttgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagct
    tcggtgctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaagaccctccgccgga
    actgtacttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatc
    atcaaaccgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggc
    gttcaagtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccc
    tgagagatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttca
    tgtgtcatcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgact
    ctcttgtgttccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggt
    ggacgacttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaata
    cggctgtgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaa
    atgccagcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagct
    atgcccggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagcttttc
    ggagtcctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaa
    gatcctgctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgacc
    ttctttctgcgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcg
    aaaggagccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggc
    acagagtgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaaactccccggcaccac
    cctgaccgctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1269 Polypeptide
    SEQ ID NO: 26
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANLGGSGGGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARP
    AEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSS
    GDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLF
    LELLGNHAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQL
    LRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELT
    WKMSVRDCAWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTET
    TFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIP
    KPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGL
    DDIHRAWRTFVLRVRAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRR
    YAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEA
    SSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRD
    GLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAF
    VQMPAHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFG
    VLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVI
    SDTASLCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLG
    SLRTAQTQLSRKLPGTTLTALEAAANPALPSDFKTILD
    Plasmid 1270 ORF
    SEQ ID NO: 27
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctgggatccggcacaatcctgtctgagggcgccaccaacttcagcctgctgaaa
    ctggccggcgacgtggaactgaaccctggccctggagctgccccggagccggagaggacccccgttggccagggatc
    gtgggcccatccgggacgcaccaggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaag
    aggcaaccagcctcgagggagcgttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcggga
    ccaccgtccacttccagaccgccacggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtac
    tcatccggagacaaggaacagcttcggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagatt
    ggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactg
    gcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccct
    ctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaag
    aggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgc
    gcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaa
    gtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctg
    cgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattgg
    ctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttcta
    ccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccg
    aggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacg
    ggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacct
    cacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctggga
    ctggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtg
    aaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgca
    gaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgca
    cgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcg
    gtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacg
    cggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccct
    ttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcct
    gctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggt
    caatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcac
    atggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggac
    gagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagctlitcggagtcctcc
    ggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgc
    tccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgg
    gtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagcc
    gcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgac
    ctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctc
    tggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1270 Polypeptide
    SEQ ID NO: 28
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANLGSGTILSEGATNFSLLKLAGDVELNPGPGAAPEPERTPVGQGSWA
    HPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRP
    PRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRPW
    MPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAVTPAAGVCAR
    EKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNE
    RRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGCVPAAEHRLREEILA
    KFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLREL
    SEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKA
    LFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITGAYDT
    IPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQFVA
    HLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSIL
    STLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGC
    VVNLRKTVVNFPVEDEALGGTAFVQMPANGLFPWCGLLLDTRTLEVQSDYSSYARTSI
    RASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFH
    ACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPSEAVQ
    WLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSDFKTIL
    D
    Plasmid 1271 ORF
    SEQ ID NO: 29
    atggctagcggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccgggacgcacca
    ggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcgagggagc
    gttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccagaccgcca
    cggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaaggaacagctt
    cggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcac
    gtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaa
    ttgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtcactccggc
    ggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccg
    cctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccg
    cctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgcca
    agttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtg
    ttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagct
    gctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctg
    cagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgg
    gaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatgga
    ttacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtg
    ctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggc
    ggacctligttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatg
    atactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtac
    gccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagc
    cttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcct
    gaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcata
    cgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaag
    ctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacg
    ccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaattt
    ccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgct
    gctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttca
    atcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgat
    ctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcg
    tgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgtta
    ctcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggt
    gcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcg
    cactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcatt
    gccgtcagatttcaagaccatcttggacggatccggcacaatcctgtctgagggcgccaccaacttcagcctgctgaaact
    ggccggcgacgtggaactgaaccctggccctacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctg
    actgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagca
    gcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggca
    gcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggac
    aggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgccc
    ctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagcccc
    aggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcct
    gcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatca
    gctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctg
    ctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgc
    acaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccaca
    gcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctct
    gaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctlictgtccttccacatcagcaacctg
    cagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgc
    aaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccct
    ggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagcc
    ggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccagg
    atggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgc
    cggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacatac
    cacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcgg
    cagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctg
    Plasmid 1271 Polypeptide
    SEQ ID NO: 30
    MASGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTR
    HSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSL
    RPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGV
    LLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGF
    VRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLR
    RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSV
    WSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYV
    VGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRV
    RAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRK
    AFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCH
    HAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTP
    HLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCG
    LLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQV
    NSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKN
    AGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLP
    GTTLTALEAAANPALPSDFKTILDGSGTILSEGATNFSLLKLAGDVELNPGPTPGTQSPF
    FLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPG
    SGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDN
    KPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSA
    PDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPALGSTAPPVHNV
    TSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDASST
    HHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEM
    FLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTI
    SDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLD
    IFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAASA
    NL
    Plasmid 1286 ORF
    SEQ ID NO: 31
    atggctagcacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagca
    gcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggca
    gcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggac
    aggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgccc
    ctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagcccc
    aggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcct
    gcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatca
    gctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctg
    ctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgc
    acaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccaca
    gcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctct
    gaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctg
    cagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgc
    aaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccct
    ggclitccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagcc
    ggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccagg
    atggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgc
    cggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacatac
    cacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcgg
    cagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctgggatccggcacaatcctgtctgagggcg
    ccaccaacttcagcctgctgaaactggccggcgacgtggaactgaaccctggccctggagctgccccggagccggaga
    ggacccccgttggccagggatcgtgggcccatccgggacgcaccaggggaccatccgacaggggattctgtgtggtgtc
    accggccaggccagcagaagaggcaaccagcctcgagggagcgttgtctggaaccagacattcccacccgtcggtgg
    gccggcagcaccacgcgggaccaccgtccacttccagaccgccacggccatgggacaccccttgcccgcctgtgtatg
    ccgagactaaacacttcctgtactcatccggagacaaggaacagcttcggccgtccttcctcctgtcgtcgctcagaccga
    gcctgaccggagcacgcagattggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggcgcctcc
    cgcgcctcccacagagatactggcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgtacgga
    gtcctgctcaagactcactgccctctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagccccag
    ggaagcgtggcagctccggaagaggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcctcgccc
    tggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacgagcgc
    cgcttcctgagaaatactaagaagtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtggaagatgt
    cagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgagagaaga
    aattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactaccttt
    caaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaagagg
    gtgcagctgcgggaactttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgtctga
    gattcatcccaaagcccgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaa
    agcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcctggcct
    gctgggagcttcggtgctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaagaccc
    tccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccgaagtcat
    cgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggccacgtg
    agaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgcaagag
    acttcgcccctgagagatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttc
    ctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaaggcagcat
    tctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggttgctgct
    cagactggtggacgacttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgaggggagtg
    ccagaatacggctgtgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgc
    atttgtccaaatgccagcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcagtccgact
    actccagctatgcccggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacatgcgcag
    aaagcttttcggagtcctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaa
    catctacaagatcctgctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaaga
    acccgaccttctttctgcgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcg
    ctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcctgaagct
    gaccaggcacagagtgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaaactcccc
    ggcaccaccctgaccgctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1286 Polypeptide
    SEQ ID NO: 32
    MASTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPGSGSSTTQG
    QDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPGSTA
    PPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPG
    STAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPALGSTAPPVHNVTSASGSAS
    GSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDASSTHHSSVPPL
    TSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEMFLQIYKQG
    GFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSD
    VPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLDIFPARDTY
    HPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAASANLGSGTIL
    SEGATNFSLLKLAGDVELNPGPGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVS
    PARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHF
    LYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQM
    RPLFLELLGNHAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRR
    LVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSL
    QELTWKMSVRDCAWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFY
    VTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRL
    RFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASV
    LGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCV
    RRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLN
    EASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIR
    RDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGT
    AFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLF
    GVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLR
    VISDTASLCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLL
    GSLRTAQTQLSRKLPGTTLTALEAAANPALPSDFKTILD
    Plasmid 1287 ORF
    SEQ ID NO: 33
    atggctagcggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccgggacgcacca
    ggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcgagggagc
    gttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccagaccgcca
    cggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaaggaacagctt
    cggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcac
    gtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaa
    ttgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtcactccggc
    ggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccg
    cctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccg
    cctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgcca
    agttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtg
    ttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagct
    gctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctg
    cagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgg
    gaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatgga
    ttacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtg
    ctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggc
    ggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatg
    atactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtac
    gccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagc
    cttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcct
    gaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcata
    cgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaag
    ctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacg
    ccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaattt
    ccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgct
    gctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttca
    atcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgat
    ctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcg
    tgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgtta
    ctcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggt
    gcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcg
    cactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcatt
    gccgtcagatttcaagaccatcttggacggatccggcacaatcctgtctgagggcgccaccaacttcagcctgctgaaact
    ggccggcgacgtggaactgaaccctggccctacaggctctggccacgccagctctacacctggcggcgagaaagaga
    caagcgccacccagagaagcagcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgag
    cagccactctcctggcagcggcagcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcct
    ctggatctgccgccacctggggacaggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacacccc
    ctgcccacgatgtgaccagcgcccctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctct
    gccccagataccagaccagccccaggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagac
    ccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagca
    ccaccagcacatggcgtgacatcagctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtga
    ccagcgcacctgataccagacctgctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgcc
    agcggctctgcctctacactggtgcacaacggcaccagcgccagagccacaacaaccccagccagcaagagcaccc
    ccttcagcatccctagccaccacagcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcac
    ccaccactccagcgtgccccctctgaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttcttt
    ctgtccttccacatcagcaacctgcagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagc
    gggatatcagcgagatgttcctgcaaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggc
    agcgtggtggtgcagctgaccctggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagt
    acaagaccgaggccgccagccggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgccc
    agtctggcgcaggcgtgccaggatggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctg
    attgccctggccgtgtgccagtgccggcggaagaattacggccagctggacatcttccccgccagagacacctaccacc
    ccatgagcgagtaccccacataccacacccacggcagatacgtgccacccagctccaccgacagatccccctacgag
    aaagtgtctgccggcaacggcggcagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctg
    Plasmid 1287 Polypeptide
    SEQ ID NO: 34
    MASGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTR
    HSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSL
    RPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGV
    LLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGF
    VRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLR
    RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSV
    WSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYV
    VGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRV
    RAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRK
    AFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCH
    HAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTP
    HLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPANGLFPWCG
    LLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQV
    NSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKN
    AGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLP
    GTTLTALEAAANPALPSDFKTILDGSGTILSEGATNFSLLKLAGDVELNPGPTGSGHASS
    TPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPGSGSSTTQGQDVTLAPATEP
    ASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPGSTAPPAHGVTSAPD
    TRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTS
    APDTRPAPGSTAPPAHGVTSAPDTRPALGSTAPPVHNVTSASGSASGSASTLVHNGT
    SARATTTPASKSTPFSIFSHHSDTPTTLASHSTKTDASSTHHSSVPPLTSSNHSTSPQL
    STGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEMFLQIYKQGGFLGLSNIKFRP
    GSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAG
    VPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTH
    GRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAASANL
    Plasmid 1272 ORF
    SEQ ID NO: 35
    atggctagcggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccgggacgcacca
    ggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcgagggagc
    gttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccagaccgcca
    cggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaaggaacagctt
    cggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcac
    gtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaa
    ttgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtcactccggc
    ggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccg
    cctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccg
    cctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgcca
    agttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtg
    ttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagct
    gctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctg
    cagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgg
    gaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatgga
    ttacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtg
    ctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggc
    ggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatg
    atactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtac
    gccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagc
    cttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcct
    gaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcata
    cgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaag
    ctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacg
    ccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaattt
    ccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgct
    gctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttca
    atcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgat
    ctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcg
    tgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgtta
    ctcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggt
    gcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcg
    cactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcatt
    gccgtcagatttcaagaccatcttggacggatccggcgagggcagaggcagcctgctgacatgtggcgacgtggaaga
    gaaccctggccccctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatat
    cagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcggga
    actggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctga
    gcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgc
    acccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctg
    cctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtga
    tctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccagga
    tcagcaggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccacca
    tggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctgg
    cggcagagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtg
    gaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagct
    ggaagcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctg
    gacgtgctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgt
    ttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtga
    acaagggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaag
    gacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacct
    agctctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccgg
    ctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacct
    gaaagctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctga
    cagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcg
    cgactggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggcta
    cctggtgctggacctgagcatgcaggaagccctg
    Plasmid 1272 Polypeptide
    SEQ ID NO: 36
    MASGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTR
    HSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSL
    RPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGV
    LLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGF
    VRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLR
    RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSV
    WSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYV
    VGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRV
    RAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRK
    AFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCH
    HAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTP
    HLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCG
    LLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQV
    NSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKN
    AGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLP
    GTTLTALEAAANPALPSDFKTILDGSGEGRGSLLTCGDVEENPGPLAGETGQEAAPLD
    GVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRL
    SEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAAL
    ACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAAR
    AALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWR
    QPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAI
    PFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEV
    NKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAV
    RPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVS
    MDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLG
    LGLQGGIPNGYLVLDLSMQEAL
    Plasmid 1273 ORF
    SEQ ID NO: 37
    atggctagcggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccgggacgcacca
    ggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcgagggagc
    gttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccagaccgcca
    cggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaaggaacagctt
    cggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcac
    gtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaa
    ttgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtcactccggc
    ggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccg
    cctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccg
    cctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgcca
    agttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtg
    ttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagct
    gctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctg
    cagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgg
    gaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatgga
    ttacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtg
    ctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggc
    ggacctttglictccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatg
    atactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtac
    gccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagc
    cttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcct
    gaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcata
    cgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaag
    ctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacg
    ccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaattt
    ccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgct
    gctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttca
    atcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgat
    ctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcg
    tgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgtta
    ctcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggt
    gcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcg
    cactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcatt
    gccgtcagatttcaagaccatcttggacggaggctccggcggactggctggcgagacaggacaggaagccgctcctctg
    gacggcgtgctggccaaccctcccaatatcagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtc
    cggcctgagcacagagagagtgcgggaactggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcag
    ctgcggtgcctggcccacagactgtctgagcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaacc
    ccgacgccttcagcggacctcaggcctgcacccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccag
    aggcgcccctgagagacagagactgctgcctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgat
    gtgcgggccctgggaggcctggcttgtgatctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagact
    ggtgtcctgtcccggccctctggaccaggatcagcaggaagctgccagagctgctctgcagggcggaggccctccttatg
    gacctcctagcacttggagcgtgtccaccatggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagat
    ccatcccacagggcatcgtggccgcctggcggcagagaagctctagagatccctcttggcggcagcccgagcggacaa
    tcctgcggcccaggtttcggagagaggtggaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgag
    agcctgatcttctacaagaagtgggagctggaagcctgcgtggacgccgctctgctggccacccagatggacagagtga
    acgccatccccttcacctatgagcagctggacgtgctgaagcacaagctggatgagctgtacccccagggctaccccga
    gagcgtgatccagcacctgggctacctgtttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctg
    gaaaccctgaaggccctgctggaagtgaacaagggccacgagatgtccccccaggtggccacactgatcgacagattc
    gtgaagggcagaggccagctggacaaggacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgt
    cccccgaggaactgagcagcgtgccacctagctctatctgggctgtgcggccccaggacctggatacctgcgatcctaga
    cagctggatgtgctgtatcccaaggcccggctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtc
    cttcctgggcggagcccctaccgaggacctgaaagctctgagccagcagaacgtgtccatggatctggccacctttatga
    agctgcggaccgacgccgtgctgcctctgacagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaa
    ggccgaagaacggcacagacccgtgcgcgactggatcctgaggcagagacaggatgacctggacacactgggcctg
    ggactgcaggggggcatccctaatggctacctggtgctggacctgagcatgcaggaagccctg
    Plasmid 1273 Polypeptide
    SEQ ID NO: 38
    MASGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTR
    HSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSL
    RPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGV
    LLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGF
    VRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLR
    RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSV
    WSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYV
    VGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRV
    RAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRK
    AFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCH
    HAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTP
    HLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCG
    LLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQV
    NSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKN
    AGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLP
    GTTLTALEAAANPALPSDFKTILDGGSGGLAGETGQEAAPLDGVLANPPNISSLSPRQL
    LGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLF
    LNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGVRGSLLSEADVR
    ALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQGGGPPYGPPSTW
    SVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERTILRPRFRREVEK
    TACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYEQLDVLKHKLDEL
    YPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMSPQVATLIDRF
    VKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVL
    YPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPL
    TVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLS
    MQEAL
    Plasmid 1274 ORF
    SEQ ID NO: 39
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcgagggcagaggcagcctgctgacatgtggcgacgtgga
    agagaaccctggccccggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccggga
    cgcaccaggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcga
    gggagcgttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccag
    accgccacggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaagg
    aacagcttcggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttcctt
    gggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgtt
    cctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtca
    ctccggcggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatc
    cgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcct
    ggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaa
    acatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcg
    tcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtg
    gtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtgga
    gcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgcca
    gcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtc
    aacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccct
    cttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccacc
    gggcttggcggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccg
    gagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtca
    ggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccg
    acctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcaga
    gctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcagggg
    aaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatgg
    aaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacc
    tcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgt
    ggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgc
    ggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcct
    cactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctct
    ttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccac
    gcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctcc
    ctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcga
    agcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctc
    gctgcgcactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaaccc
    agcattgccgtcagatttcaagaccatcttggac
    Plasmid 1274 Polypeptide
    SEQ ID NO: 40
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGEGRGSLLTCGDVEEN
    PGPGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTR
    HSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSL
    RPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGV
    LLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGF
    VRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLR
    RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSV
    WSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYV
    VGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRV
    RAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRK
    AFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCH
    HAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTP
    HLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCG
    LLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQV
    NSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKN
    AGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLP
    GTTLTALEAAANPALPSDFKTILD
    Plasmid 1275 ORF
    SEQ ID NO: 41
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggaggctccggcggaggagctgccccggagccggagaggacccccg
    ttggccagggatcgtgggcccatccgggacgcaccaggggaccatccgacaggggattctgtgtggtgtcaccggccag
    gccagcagaagaggcaaccagcctcgagggagcgttgtctggaaccagacattcccacccgtcggtgggccggcagc
    accacgcgggaccaccgtccacttccagaccgccacggccatgggacaccccttgcccgcctgtgtatgccgagactaa
    acacttcctgtactcatccggagacaaggaacagcttcggccgtccttcctcctgtcgtcgctcagaccgagcctgaccgg
    agcacgcagattggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctccc
    acagagatactggcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaa
    gactcactgccctctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagccccagggaagcgtgg
    cagctccggaagaggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtcta
    cgggttcgtccgcgcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgag
    aaatactaagaagtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgat
    tgcgcctggctgcgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggcca
    aatttctgcattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaac
    cgcctgttcttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgc
    gggaactttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatccc
    aaagcccgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggcc
    gaacgcttgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcctggcctgctgggag
    cttcggtgctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaagaccctccgccgg
    aactgtacttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgat
    catcaaaccgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaagg
    cgttcaagtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgccc
    ctgagagatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttc
    atgtgtcatcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcga
    ctctcttgtgttccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactg
    gtggacgacttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaat
    acggctgtgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtcca
    aatgccagcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagc
    tatgcccggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagctttt
    cggagtcctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaa
    gatcctgctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgacc
    ttctttctgcgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcg
    aaaggagccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggc
    acagagtgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaaactccccggcaccac
    cctgaccgctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1275 Polypeptide
    SEQ ID NO: 42
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGGSGGGAAPEPERTPVGQ
    GSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPS
    TSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGS
    RPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAVTPAAGV
    CAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSR
    HNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGCVPAAEHRLRE
    EILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQL
    RELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSR
    VKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITGA
    YDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQ
    FVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQ
    GSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPE
    YGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYA
    RTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAY
    RFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPSE
    AVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSDF
    KTILD
    Plasmid 1317 ORF
    SEQ ID NO 43
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctgggatccggcagaatcttcaacgcccactacgccggctacttcgccgacctg
    ctgatccacgacatcgagacaaaccctggccccctggctggcgagacaggacaggaagccgctcctctggacggcgtg
    ctggccaaccctcccaatatcagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgag
    cacagagagagtgcgggaactggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgc
    ctggcccacagactgtctgagcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgcctt
    cagcggacctcaggcctgcacccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccc
    tgagagacagagactgctgcctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggcc
    ctgggaggcctggcttgtgatctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtc
    ccggccctctggaccaggatcagcaggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctag
    cacttggagcgtgtccaccatggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccaca
    gggcatcgtggccgcctggcggcagagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcc
    caggtttcggagagaggtggaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatctt
    ctacaagaagtgggagctggaagcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccc
    cttcacctatgagcagctggacgtgctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatc
    cagcacctgggctacctgtttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctga
    aggccctgctggaagtgaacaagggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggca
    gaggccagctggacaaggacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgagga
    actgagcagcgtgccacctagctctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgt
    gctgtatcccaaggcccggctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcg
    gagcccctaccgaggacctgaaagctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggac
    cgacgccgtgctgcctctgacagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaaga
    acggcacagacccgtgcgcgactggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcagg
    ggggcatccctaatggctacctggtgctggacctgagcatgcaggaagccctgggatccggcgagggcagaggcagcc
    tgctgacatgtggcgacgtggaagagaaccctggccccggagctgccccggagccggagaggacccccgttggccag
    ggatcgtgggcccatccgggacgcaccaggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagca
    gaagaggcaaccagcctcgagggagcgttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgc
    gggaccaccgtccacttccagaccgccacggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcc
    tgtactcatccggagacaaggaacagcttcggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgc
    agattggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagaga
    tactggcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcact
    gccctctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctcc
    ggaagaggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttc
    gtccgcgcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgagaaatact
    aagaagtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcct
    ggctgcgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctg
    cattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgtt
    cttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaac
    tttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcc
    cgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgct
    tgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagcttcggtg
    ctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaagaccctccgccggaactgta
    cttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaa
    accgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaa
    gtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgaga
    gatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtc
    atcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttg
    tgttccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggtggacg
    acttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaatacggctg
    tgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgcca
    gcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagctatgccc
    ggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtc
    ctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctg
    ctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctg
    cgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaagg
    agccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagag
    tgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaaactccccggcaccaccctgacc
    gctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1317 Polypeptide
    SEQ ID NO: 44
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANLGSGRIFNAHYAGYFADLLIHDIETNPGPLAGETGQEAAPLDGVLAN
    PPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPE
    DLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGV
    RGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQG
    GGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERT
    ILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYE
    QLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHE
    MSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDL
    DTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATF
    MKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQG
    GIPNGYLVLDLSMQEALGSGEGRGSLLTCGDVEENPGPGAAPEPERTPVGQGSWAH
    PGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRPP
    RPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRPWM
    PGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAVTPAAGVCARE
    KPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNER
    RFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGCVPAAEHRLREEILAK
    FLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELS
    EAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKAL
    FSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITGAYDTI
    PQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQFVAH
    LQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSILS
    TLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCV
    VNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYARTSIR
    ASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHA
    CVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPSEAVQW
    LCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSDFKTILD
    Plasmid 1318 ORF
    SEQ ID NO: 45
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctgggatccggcacaatcctgtctgagggcgccaccaacttcagcctgctgaaa
    ctggccggcgacgtggaactgaaccctggccctggagctgccccggagccggagaggacccccgttggccagggatc
    gtgggcccatccgggacgcaccaggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaag
    aggcaaccagcctcgagggagcgttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcggga
    ccaccgtccacttccagaccgccacggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtac
    tcatccggagacaaggaacagcttcggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagatt
    ggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactg
    gcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccct
    ctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaag
    aggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgc
    gcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaa
    gtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctg
    cgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattgg
    ctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttcta
    ccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccg
    aggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacg
    ggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacct
    cacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctggga
    ctggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtg
    aaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgca
    gaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgca
    cgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcg
    gtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacg
    cggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccct
    ttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcct
    gctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggt
    caatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcac
    atggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggac
    gagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctcc
    ggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgc
    tccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgg
    gtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagcc
    gcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgac
    ctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctc
    tggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggacggatccggcgagggcagaggcagcc
    tgctgacatgtggcgacgtggaagagaaccctggccccctggctggcgagacaggacaggaagccgctcctctggacg
    gcgtgctggccaaccctcccaatatcagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggc
    ctgagcacagagagagtgcgggaactggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgc
    ggtgcctggcccacagactgtctgagcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccga
    cgccttcagcggacctcaggcctgcacccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggc
    gcccctgagagacagagactgctgcctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgc
    gggccctgggaggcctggcttgtgatctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgt
    cctgtcccggccctctggaccaggatcagcaggaagctgccagagctgctctgcagggcggaggccctccttatggacct
    cctagcacttggagcgtgtccaccatggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatc
    ccacagggcatcgtggccgcctggcggcagagaagctctagagatccctcttggcggcagcccgagcggacaatcctg
    cggcccaggtttcggagagaggtggaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgagagcc
    tgatcttctacaagaagtgggagctggaagcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgc
    catccccttcacctatgagcagctggacgtgctgaagcacaagctggatgagctgtacccccagggctaccccgagagc
    gtgatccagcacctgggctacctgtttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctggaaa
    ccctgaaggccctgctggaagtgaacaagggccacgagatgtccccccaggtggccacactgatcgacagattcgtga
    agggcagaggccagctggacaaggacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccc
    cgaggaactgagcagcgtgccacctagctctatctgggctgtgcggccccaggacctggatacctgcgatcctagacag
    ctggatgtgctgtatcccaaggcccggctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttc
    ctgggcggagcccctaccgaggacctgaaagctctgagccagcagaacgtgtccatggatctggccacctttatgaagct
    gcggaccgacgccgtgctgcctctgacagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggc
    cgaagaacggcacagacccgtgcgcgactggatcctgaggcagagacaggatgacctggacacactgggcctggga
    ctgcaggggggcatccctaatggctacctggtgctggacctgagcatgcaggaagccctg
    Plasmid 1318 Polypeptide
    SEQ ID NO: 46
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANLGSGTILSEGATNFSLLKLAGDVELNPGPGAAPEPERTPVGQGSWA
    HPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRP
    PRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRPW
    MPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAVTPAAGVCAR
    EKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNE
    RRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGCVPAAEHRLREEILA
    KFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLREL
    SEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKA
    LFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITGAYDT
    IPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQFVA
    HLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSIL
    STLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGC
    VVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYARTSI
    RASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFH
    ACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPSEAVQ
    WLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSDFKTIL
    DGSGEGRGSLLTCGDVEENPGPLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPC
    AEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDA
    FSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGL
    ACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVST
    MDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACP
    SGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQ
    GYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKG
    RGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPK
    ARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVA
    EVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQ
    EAL
    Plasmid 1319 ORF
    SEQ ID NO: 47
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcagaatcttcaacgcccactacgccggctacttcgccgacct
    gctgatccacgacatcgagacaaaccctggccccacccctggaacccagagccccttcttccttctgctgctgctgaccgt
    gctgactgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaa
    gcagcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcg
    gcagcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggg
    gacaggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcg
    cccctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagc
    cccaggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcct
    cctgcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgaca
    tcagctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagac
    ctgctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggt
    gcacaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccacca
    cagcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccc
    tctgaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacc
    tgcagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcct
    gcaaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgacc
    ctggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccag
    ccggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccag
    gatggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagt
    gccggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacat
    accacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggc
    ggcagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctgggatccggcacaatcctgtctgaggg
    cgccaccaacttcagcctgctgaaactggccggcgacgtggaactgaaccctggccctggagctgccccggagccgga
    gaggacccccgttggccagggatcgtgggcccatccgggacgcaccaggggaccatccgacaggggattctgtgtggt
    gtcaccggccaggccagcagaagaggcaaccagcctcgagggagcgttgtctggaaccagacattcccacccgtcgg
    tgggccggcagcaccacgcgggaccaccgtccacttccagaccgccacggccatgggacaccccttgcccgcctgtgt
    atgccgagactaaacacttcctgtactcatccggagacaaggaacagcttcggccgtccttcctcctgtcgtcgctcagacc
    gagcctgaccggagcacgcagattggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggcgcc
    tcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgtacg
    gagtcctgctcaagactcactgccctctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagcccc
    agggaagcgtggcagctccggaagaggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcctcgc
    cctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacgagc
    gccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtggaagat
    gtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgagagaa
    gaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactac
    ctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaag
    agggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgt
    ctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgt
    gaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcct
    ggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaa
    gaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccga
    agtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggc
    cacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgc
    aagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttga
    cgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaagg
    cagcattctgtcgactctcttgtgliccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggtt
    gctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgagg
    ggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggagg
    aaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcag
    tccgactactccagctatgcccggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacat
    gcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtg
    cacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgt
    ggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccgg
    aatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcct
    gaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaa
    actccccggcaccaccctgaccgctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1319 Polypeptide
    SEQ ID NO: 48
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGRIFNAHYAGYFADLLIH
    DIETNPGPTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKN
    AVSMTSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALG
    STTPPAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRP
    APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPD
    TRPALGSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTP
    TTLASHSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPS
    TDYYQELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQF
    NQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIAL
    AVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGG
    SSLSYTNPAVAAASANLGSGTILSEGATNFSLLKLAGDVELNPGPGAAPEPERTPVGQ
    GSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPS
    TSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGS
    RPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAVTPAAGV
    CAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSR
    HNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGCVPAAEHRLRE
    EILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQL
    RELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSR
    VKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITGA
    YDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQ
    FVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQ
    GSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPE
    YGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYA
    RTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAY
    RFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPSE
    AVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSDF
    KTILD
    Plasmid 1320 ORF
    SEQ ID NO: 49
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcgagggcagaggcagcctgctgacatgtggcgacgtgga
    agagaaccctggccccggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccggga
    cgcaccaggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcga
    gggagcgttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccag
    accgccacggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaagg
    aacagcttcggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttcctt
    gggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgtt
    cctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtca
    ctccggcggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatc
    cgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcct
    ggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaa
    acatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcg
    tcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtg
    gtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtgga
    gcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgcca
    gcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtc
    aacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccct
    cttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccacc
    gggcttggcggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccg
    gagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtca
    ggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccg
    acctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcaga
    gctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcagggg
    aaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatgg
    aaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacc
    tcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgt
    ggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgc
    ggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcct
    cactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctct
    ttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccac
    gcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctcc
    ctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcga
    agcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctc
    gctgcgcactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaaccc
    agcattgccgtcagatttcaagaccatcttggacggatccggcacaatcctgtctgagggcgccaccaacttcagcctgct
    gaaactggccggcgacgtggaactgaaccctggccctacccctggaacccagagccccttcttccttctgctgctgctgac
    cgtgctgactgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccaga
    gaagcagcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggca
    gcggcagcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacct
    ggggacaggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgacca
    gcgcccctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagacc
    agccccaggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgc
    tcctcctgcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtg
    acatcagctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgatacca
    gacctgctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacac
    tggtgcacaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagcca
    ccacagcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgcc
    ccctctgaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagca
    acctgcagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgtt
    cctgcaaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctg
    accctggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgcc
    agccggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgcc
    aggatggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgcca
    gtgccggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccac
    ataccacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacg
    gcggcagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctg
    Plasmid 1320 Polypeptide
    SEQ ID NO: 50
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGEGRGSLLTCGDVEEN
    PGPGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTR
    HSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSL
    RPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGV
    LLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGF
    VRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLR
    RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSV
    WSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYV
    VGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRV
    RAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRK
    AFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCH
    HAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTP
    HLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCG
    LLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQV
    NSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKN
    AGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLP
    GTTLTALEAAANPALPSDFKTILDGSGTILSEGATNFSLLKLAGDVELNPGPTPGTQSPF
    FLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPG
    SGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDN
    KPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSA
    PDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPALGSTAPPVHNV
    TSASGSASGSASTLVHNGTSARATTTPASKSTPFSIFSHHSDTPTTLASHSTKTDASST
    HHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEM
    FLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTI
    SDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLD
    IFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAASA
    NL
    Plasmid 1321 ORF
    SEQ ID NO: 51
    atggctagcggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccgggacgcacca
    ggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcgagggagc
    gttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccagaccgcca
    cggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaaggaacagctt
    cggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcac
    gtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaa
    ttgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtcactccggc
    ggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccg
    cctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccg
    cctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgcca
    agttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtg
    ttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagct
    gctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctg
    cagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgg
    gaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatgga
    ttacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtg
    ctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggc
    ggacctligttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatg
    atactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtac
    gccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagc
    cttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcct
    gaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcata
    cgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaag
    ctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacg
    ccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaattt
    ccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgct
    gctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttca
    atcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgat
    ctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcg
    tgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctlictgcgggtcattagcgatactgcctccctgtgtta
    ctcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggt
    gcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcg
    cactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcatt
    gccgtcagatttcaagaccatcttggacggatccggcgagggcagaggcagcctgctgacatgtggcgacgtggaaga
    gaaccctggccccctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatat
    cagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcggga
    actggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctga
    gcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgc
    acccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctg
    cctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtga
    tctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccagga
    tcagcaggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccacca
    tggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctgg
    cggcagagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtg
    gaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagct
    ggaagcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctg
    gacgtgctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgt
    ttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtga
    acaagggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaag
    gacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacct
    agctctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccgg
    ctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacct
    gaaagctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctga
    cagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcg
    cgactggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggcta
    cctggtgctggacctgagcatgcaggaagccctgggatccggcagaatcttcaacgcccactacgccggctacttcgccg
    acctgctgatccacgacatcgagacaaaccctggccccacccctggaacccagagccccttcttccttctgctgctgctga
    ccgtgctgactgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccaga
    gaagcagcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggca
    gcggcagcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacct
    ggggacaggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgacca
    gcgcccctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagacc
    agccccaggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgc
    tcctcctgcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtg
    acatcagctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgatacca
    gacctgctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacac
    tggtgcacaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagcca
    ccacagcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgcc
    ccctctgaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagca
    acctgcagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgtt
    cctgcaaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctg
    accctggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgcc
    agccggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgcc
    aggatggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgcca
    gtgccggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccac
    ataccacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacg
    gcggcagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctg
    Plasmid 1321 Polypeptide
    SEQ ID NO: 52
    MASGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTR
    HSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSL
    RPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGV
    LLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGF
    VRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLR
    RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSV
    WSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYV
    VGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRV
    RAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRK
    AFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCH
    HAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTP
    HLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCG
    LLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQV
    NSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKN
    AGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLP
    GTTLTALEAAANPALPSDFKTILDGSGEGRGSLLTCGDVEENPGPLAGETGQEAAPLD
    GVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRL
    SEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAAL
    ACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAAR
    AALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWR
    QPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAI
    PFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEV
    NKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAV
    RPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVS
    MDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLG
    LGLQGGIPNGYLVLDLSMQEALGSGRIFNAHYAGYFADLLIHDIETNPGPTPGTQSPFFL
    LLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPGSG
    SSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDNKP
    APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPD
    TRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPALGSTAPPVHNVTSA
    SGSASGSASTLVHNGTSARATTTPASKSTPFSIFSHHSDTPTTLASHSTKTDASSTHHS
    SVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEMFLQI
    YKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDV
    SVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLDIFPA
    RDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAASANL
    Plasmid 1322 ORF
    SEQ ID NO: 53
    atggctagcggagctgccccggagccggagaggacccccgttggccagggatcgtgggcccatccgggacgcacca
    ggggaccatccgacaggggattctgtgtggtgtcaccggccaggccagcagaagaggcaaccagcctcgagggagc
    gttgtctggaaccagacattcccacccgtcggtgggccggcagcaccacgcgggaccaccgtccacttccagaccgcca
    cggccatgggacaccccttgcccgcctgtgtatgccgagactaaacacttcctgtactcatccggagacaaggaacagctt
    cggccgtccttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcac
    gtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaa
    ttgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcggtcactccggc
    ggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccg
    cctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccg
    cctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgcca
    agttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtg
    ttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagct
    gctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctg
    cagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgg
    gaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatgga
    ttacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtg
    ctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggc
    ggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatg
    atactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtac
    gccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagc
    cttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcct
    gaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcata
    cgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaag
    ctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacg
    ccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaattt
    ccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgct
    gctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttca
    atcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgat
    ctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcg
    tgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgtta
    ctcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggt
    gcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcg
    cactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcatt
    gccgtcagatttcaagaccatcttggacggatccggcacaatcctgtctgagggcgccaccaacttcagcctgctgaaact
    ggccggcgacgtggaactgaaccctggccctacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctg
    actgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagca
    gcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggca
    gcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggac
    aggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgccc
    ctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagcccc
    aggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcct
    gcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatca
    gctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctg
    ctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgc
    acaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccaca
    gcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctct
    gaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctg
    cagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgc
    aaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccct
    ggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagcc
    ggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccagg
    atggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgc
    cggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacatac
    cacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcgg
    cagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctgggatccggcagaatcttcaacgcccact
    acgccggctacttcgccgacctgctgatccacgacatcgagacaaaccctggccccctggctggcgagacaggacagg
    aagccgctcctctggacggcgtgctggccaaccctcccaatatcagcagcctgagccccagacagctgctgggattccct
    tgtgccgaggtgtccggcctgagcacagagagagtgcgggaactggctgtggccctggcccagaaaaacgtgaagctg
    agcaccgagcagctgcggtgcctggcccacagactgtctgagcctcccgaggatctggacgccctgcctctggatctgct
    gctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccggttcttcagcagaatcaccaaggccaacgtgg
    acctgctgcccagaggcgcccctgagagacagagactgctgcctgctgctctggcctgttggggagtgcggggctctctg
    ctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcctggaagattcgtggccgagagcgccgaagtg
    ctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagcaggaagctgccagagctgctctgcagggcgg
    aggccctccttatggacctcctagcacttggagcgtgtccaccatggatgccctgaggggcctgctgccagtgctgggcca
    gcctatcatcagatccatcccacagggcatcgtggccgcctggcggcagagaagctctagagatccctcttggcggcagc
    ccgagcggacaatcctgcggcccaggtttcggagagaggtggaaaagaccgcctgcccctctggcaagaaggccaga
    gagatcgacgagagcctgatcttctacaagaagtgggagctggaagcctgcgtggacgccgctctgctggccacccaga
    tggacagagtgaacgccatccccttcacctatgagcagctggacgtgctgaagcacaagctggatgagctgtaccccca
    gggctaccccgagagcgtgatccagcacctgggctacctgtttctgaagatgagccccgaggacatccggaagtggaac
    gtgaccagcctggaaaccctgaaggccctgctggaagtgaacaagggccacgagatgtccccccaggtggccacact
    gatcgacagattcgtgaagggcagaggccagctggacaaggacaccctggatacactgaccgccttctaccccggctat
    ctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagctctatctgggctgtgcggccccaggacctggatac
    ctgcgatcctagacagctggatgtgctgtatcccaaggcccggctggccttccagaacatgaacggcagcgagtacttcgt
    gaagatccagtccttcctgggcggagcccctaccgaggacctgaaagctctgagccagcagaacgtgtccatggatctg
    gccacctttatgaagctgcggaccgacgccgtgctgcctctgacagtggctgaggtgcagaaactgctgggcccccatgt
    ggaagggctgaaggccgaagaacggcacagacccgtgcgcgactggatcctgaggcagagacaggatgacctgga
    cacactgggcctgggactgcaggggggcatccctaatggctacctggtgctggacctgagcatgcaggaagccctg
    Plasmid 1322 Polypeptide
    SEQ ID NO: 54
    MASGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTR
    HSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSL
    RPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGV
    LLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGF
    VRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLR
    RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSV
    WSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYV
    VGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRV
    RAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRK
    AFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCH
    HAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTP
    HLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCG
    LLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQV
    NSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKN
    AGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLP
    GTTLTALEAAANPALPSDFKTILDGSGTILSEGATNFSLLKLAGDVELNPGPTPGTQSPF
    FLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPG
    SGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDN
    KPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSA
    PDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPALGSTAPPVHNV
    TSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDASST
    HHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEM
    FLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTI
    SDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLD
    IFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAASA
    NLGSGRIFNAHYAGYFADLLIHDIETNPGPLAGETGQEAAPLDGVLANPPNISSLSPRQL
    LGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLF
    LNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGVRGSLLSEADVR
    ALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQGGGPPYGPPSTW
    SVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERTILRPRFRREVEK
    TACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYEQLDVLKHKLDEL
    YPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMSPQVATLIDRF
    VKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVL
    YPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPL
    TVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLS
    MQEAL
    Plasmid 1351 ORF
    SEQ ID NO: 55
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctgggatccggcagaatcttcaacgcccactacgccggctacttcgccgacctg
    ctgatccacgacatcgagacaaaccctggccccctggctggcgagacaggacaggaagccgctcctctggacggcgtg
    ctggccaaccctcccaatatcagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgag
    cacagagagagtgcgggaactggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgc
    ctggcccacagactgtctgagcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgcctt
    cagcggacctcaggcctgcacccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccc
    tgagagacagagactgctgcctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggcc
    ctgggaggcctggcttgtgatctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtc
    ccggccctctggaccaggatcagcaggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctag
    cacttggagcgtgtccaccatggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccaca
    gggcatcgtggccgcctggcggcagagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcc
    caggtttcggagagaggtggaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatctt
    ctacaagaagtgggagctggaagcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccc
    cttcacctatgagcagctggacgtgctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatc
    cagcacctgggctacctgtttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctga
    aggccctgctggaagtgaacaagggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggca
    gaggccagctggacaaggacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgagga
    actgagcagcgtgccacctagctctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgt
    gctgtatcccaaggcccggctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcg
    gagcccctaccgaggacctgaaagctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggac
    cgacgccgtgctgcctctgacagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaaga
    acggcacagacccgtgcgcgactggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcagg
    ggggcatccctaatggctacctggtgctggacctgagcatgcaggaagccctgggatccggcgagggcagaggcagcc
    tgctgacatgtggcgacgtggaagagaaccctggccccgccaaatttctgcattggctgatgtcagtgtacgtggtcgagct
    gctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctg
    cagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgg
    gaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatgga
    ttacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtg
    ctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggc
    ggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatg
    atactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtac
    gccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagc
    cttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcct
    gaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcata
    cgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaag
    ctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacg
    ccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaattt
    ccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgct
    gctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttca
    atcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgat
    ctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcg
    tgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgtta
    ctcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggt
    gcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcg
    cactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcatt
    gccgtcagatttcaagaccatcttggac
    Plasmid 1351 Polypeptide
    SEQ ID NO: 56
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANLGSGRIFNAHYAGYFADLLIHDIETNPGPLAGETGQEAAPLDGVLAN
    PPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPE
    DLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGV
    RGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQG
    GGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERT
    ILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYE
    QLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHE
    MSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDL
    DTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATF
    MKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQG
    GIPNGYLVLDLSMQEALGSGEGRGSLLTCGDVEENPGPAKFLHWLMSVYVVELLRSFF
    YVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSR
    LRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGAS
    VLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYC
    VRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSL
    NEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGI
    RRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGG
    TAFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKL
    FGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFL
    RVISDTASLCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPL
    LGSLRTAQTQLSRKLPGTTLTALEAAANPALPSDFKTILD
    Plasmid 1352 ORF
    SEQ ID NO: 57
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcagaatcttcaacgcccactacgccggctacttcgccgacct
    gctgatccacgacatcgagacaaaccctggccccacccctggaacccagagccccttcttccttctgctgctgctgaccgt
    gctgactgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaa
    gcagcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcg
    gcagcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggg
    gacaggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcg
    cccctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagc
    cccaggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcct
    cctgcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgaca
    tcagctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagac
    ctgctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggt
    gcacaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccacca
    cagcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccc
    tctgaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacc
    tgcagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcct
    gcaaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgacc
    ctggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccag
    ccggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccag
    gatggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagt
    gccggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacat
    accacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggc
    ggcagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctgggatccggcacaatcctgtctgaggg
    cgccaccaacttcagcctgctgaaactggccggcgacgtggaactgaaccctggccctgccaaatttctgcattggctgat
    gtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgc
    aaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggc
    agaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggct
    gaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcac
    gggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactg
    gacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaag
    gtggcgatcaccggagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaa
    cacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtg
    tccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtgg
    tcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggt
    gcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgct
    acggcgatatggaaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctg
    gtgactccgcacctcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaat
    ctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatgg
    cctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagc
    atccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggctt
    aaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaa
    gcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcatt
    agcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgg
    gacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacg
    tcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaa
    gccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1352 Polypeptide
    SEQ ID NO: 58
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGRIFNAHYAGYFADLLIH
    DIETNPGPTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKN
    AVSMTSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALG
    STTPPAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRP
    APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPD
    TRPALGSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIFSHHSDTP
    TTLASHSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPS
    TDYYQELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQF
    NQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIAL
    AVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSRYEKVSAGNGG
    SSLSYTNPAVAAASANLGSGTILSEGATNFSLLKLAGDVELNPGPAKFLHWLMSVYVVE
    LLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARP
    ALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERARRP
    GLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIK
    PQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVI
    EQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDME
    NKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPV
    EDEALGGTAFVQMPANGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAG
    RNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVW
    KNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRH
    RVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSDFKTILD
    Plasmid 1353 ORF
    SEQ ID NO: 59
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcgagggcagaggcagcctgctgacatgtggcgacgtgga
    agagaaccctggccccgccaaatttctgcattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcact
    gagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagc
    atctgaagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctca
    cgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacct
    ttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaag
    acggcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgaga
    gcccaagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgact
    caccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcg
    catggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcg
    catttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtc
    tgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatccc
    acaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacggg
    acgggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctg
    gtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactc
    ggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaa
    gtgcagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacg
    aaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagac
    cgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaac
    aggtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaac
    gccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggcttt
    cctcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtcta
    gaaaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttg
    gacggatccggcacaatcctgtctgagggcgccaccaacttcagcctgctgaaactggccggcgacgtggaactgaac
    cctggccctacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctg
    Plasmid 1353 Polypeptide
    SEQ ID NO: 60
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGEGRGSLLTCGDVEEN
    PGPAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQ
    LRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTS
    RVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVAITG
    AYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMR
    QFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIP
    QGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVP
    EYGCVVNLRKTVVNFPVEDEALGGTAFVQMPANGLFPWCGLLLDTRTLEVQSDYSSY
    ARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQA
    YRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPS
    EAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSD
    FKTILDGSGTILSEGATNFSLLKLAGDVELNPGPTPGTQSPFFLLLLLTVLTVVTGSGHA
    SSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPGSGSSTTQGQDVTLAPAT
    EPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPGSTAPPAHGVTSA
    PDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGV
    TSAPDTRPAPGSTAPPAHGVTSAPDTRPALGSTAPPVHNVTSASGSASGSASTLVHN
    GTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDASSTHHSSVPPLTSSNHSTSP
    QLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEMFLQIYKQGGFLGLSNIKF
    RPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSG
    AGVPGWGIALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLDIFPARDTYHPMSEYPTY
    HTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAASANL
    Plasmid 1354 ORF
    SEQ ID NO: 61
    atggctagcacccctggaacccagagccccttcttccttctgctgctgctgaccgtgctgactgtcgtgacaggctctggcca
    cgccagctctacacctggcggcgagaaagagacaagcgccacccagagaagcagcgtgccaagcagcaccgaga
    agaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcggcagcagcacaacacagggccag
    gatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggggacaggacgtgacaagcgtgccag
    tgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcgcccctgataacaagcctgcccctgg
    aagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagccccaggatctacagccccacccgc
    acacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcctcctgcccatggcgtgacaagcgctc
    ccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgacatcagctcccgacactagacctgctcc
    cggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagacctgctctgggaagcaccgcccctcc
    cgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggtgcacaacggcaccagcgccaga
    gccacaacaaccccagccagcaagagcacccccttcagcatccctagccaccacagcgacacccctaccacactggc
    cagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccctctgaccagcagcaaccacagcac
    aagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacctgcagttcaacagcagcctggaag
    atcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcctgcaaatctacaagcagggcggctt
    cctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgaccctggctttccgggaaggcaccatc
    aacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccagccggtacaacctgaccatctccgat
    gtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccaggatggggaattgctctgctggtgctc
    gtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagtgccggcggaagaattacggccagc
    tggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacataccacacccacggcagatacgtgc
    cacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggcggcagctccctgagctacacaaatc
    ctgccgtggccgctgcctccgccaacctgggatccggcagaatcttcaacgcccactacgccggctacttcgccgacctg
    ctgatccacgacatcgagacaaaccctggccccctggctggcgagacaggacaggaagccgctcctctggacggcgtg
    ctggccaaccctcccaatatcagcagcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgag
    cacagagagagtgcgggaactggctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgc
    ctggcccacagactgtctgagcctcccgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgcctt
    cagcggacctcaggcctgcacccggttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccc
    tgagagacagagactgctgcctgctgctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggcc
    ctgggaggcctggcttgtgatctgcctggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtc
    ccggccctctggaccaggatcagcaggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctag
    cacttggagcgtgtccaccatggatgccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccaca
    gggcatcgtggccgcctggcggcagagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcc
    caggtttcggagagaggtggaaaagaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatctt
    ctacaagaagtgggagctggaagcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccc
    cttcacctatgagcagctggacgtgctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatc
    cagcacctgggctacctgtttctgaagatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctga
    aggccctgctggaagtgaacaagggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggca
    gaggccagctggacaaggacaccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgagga
    actgagcagcgtgccacctagctctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgt
    gctgtatcccaaggcccggctggccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcg
    gagcccctaccgaggacctgaaagctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggac
    cgacgccgtgctgcctctgacagtggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaaga
    acggcacagacccgtgcgcgactggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcagg
    ggggcatccctaatggctacctggtgctggacctgagcatgcaggaagccctgggatccggcgagggcagaggcagcc
    tgctgacatgtggcgacgtggaagagaaccctggccccagcttcctcctgtcgtcgctcagaccgagcctgaccggagca
    cgcagattggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacag
    agatactggcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagact
    cactgccctctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagccccagggaagcgtggcag
    ctccggaagaggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgg
    gttcgtccgcgcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgagaaa
    tactaagaagtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgc
    gcctggctgcgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggccaaatt
    tctgcattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgc
    ctgttcttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcgg
    gaactttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaa
    agcccgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccga
    acgcttgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagctt
    cggtgctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgagagcccaagaccctccgccggaa
    ctgtacttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatca
    tcaaaccgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggcgt
    tcaagtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctg
    agagatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatg
    tgtcatcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgactct
    cttgtgttccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggtgg
    acgacttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaatacg
    gctgtgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaat
    gccagcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagctat
    gcccggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagcttttcg
    gagtcctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaag
    atcctgctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgacctt
    ctttctgcgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcga
    aaggagccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggcac
    agagtgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctagaaaactccccggcaccaccct
    gaccgctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttggac
    Plasmid 1354 Polypeptide
    SEQ ID NO: 62
    MASTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
    TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTP
    PAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGS
    TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAL
    GSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLAS
    HSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYY
    QELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYK
    TEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQ
    CRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLS
    YTNPAVAAASANLGSGRIFNAHYAGYFADLLIHDIETNPGPLAGETGQEAAPLDGVLAN
    PPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPE
    DLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGV
    RGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQG
    GGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERT
    ILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYE
    QLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHE
    MSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDL
    DTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATF
    MKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQG
    GIPNGYLVLDLSMQEALGSGEGRGSLLTCGDVEENPGPSFLLSSLRPSLTGARRLVETI
    FLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAVTP
    AAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGL
    WGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGCVPAAEH
    RLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVVVSKLQSIGIRQHLK
    RVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAE
    RLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVK
    VAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQ
    PYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQC
    QGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTFLRTLV
    RGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCGLLLDTRTLEVQSD
    YSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKIL
    LLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAKGAAG
    PLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPA
    LPSDFKTILD
    Plasmid 1355 ORF
    SEQ ID NO: 63
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcagaatcttcaacgcccactacgccggctacttcgccgacct
    gctgatccacgacatcgagacaaaccctggccccacccctggaacccagagccccttcttccttctgctgctgctgaccgt
    gctgactgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacccagagaa
    gcagcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcctggcagcg
    gcagcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgccacctggg
    gacaggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgtgaccagcg
    cccctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagataccagaccagc
    cccaggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctctactgctcct
    cctgcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatggcgtgaca
    tcagctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctgataccagac
    ctgctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctctacactggt
    gcacaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatccctagccacca
    cagcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagcgtgccccc
    tctgaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacatcagcaacc
    tgcagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcgagatgttcct
    gcaaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtgcagctgacc
    ctggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgaggccgccag
    ccggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcaggcgtgccag
    gatggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccgtgtgccagt
    gccggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagtaccccacat
    accacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccggcaacggc
    ggcagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctgggatccggcacaatcctgtctgaggg
    cgccaccaacttcagcctgctgaaactggccggcgacgtggaactgaaccctggccctagcttcctcctgtcgtcgctcag
    accgagcctgaccggagcacgcagattggtggaaactatcttccttgggtcacgtccgtggatgccaggtaccccacggc
    gcctcccgcgcctcccacagagatactggcagatgcggcctctgttcctggaattgctgggaaaccacgctcagtgcccgt
    acggagtcctgctcaagactcactgccctctgagggcggcggtcactccggcggccggagtgtgcgcacgggagaagc
    cccagggaagcgtggcagctccggaagaggaggacaccgatccgcgccgcctcgtgcaacttctgcgccagcactcct
    cgccctggcaagtctacgggttcgtccgcgcctgcctgcgccgcctggtgccgcctgggctctggggttcccggcataacg
    agcgccgcttcctgagaaatactaagaagtttatctcacttggaaaacatgccaagttgtcgctgcaagaactcacgtgga
    agatgtcagtccgcgattgcgcctggctgcgccgctcgccgggcgtcgggtgtgttccagctgcagaacaccgcctgaga
    gaagaaattctggccaaatttctgcattggctgatgtcagtgtacgtggtcgagctgctgcgctcctttttctacgtcactgaga
    ctacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgtggagcaagctgcagtcaatcggcattcgccagcatctg
    aagagggtgcagctgcgggaactttccgaggcagaagtccgccagcaccgggaggcccggccggcgcttctcacgtc
    gcgtctgagattcatcccaaagcccgacgggctgaggcctatcgtcaacatggattacgtcgtgggcgctcgcacctttcg
    ccgtgaaaagcgggccgaacgcttgacctcacgggtgaaggccctcttctccgtgctgaactacgagagagcaagacg
    gcctggcctgctgggagcttcggtgctgggactggacgatatccaccgggcttggcggacctttgttctccgggtgagagcc
    caagaccctccgccggaactgtacttcgtgaaggtggcgatcaccggagcctatgatactattccgcaagatcgactcac
    cgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcgtcaggcggtacgccgtggtccagaaggccgcgcat
    ggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcaccgacctccagccttacatgaggcaattcgttgcgcat
    ttgcaagagacttcgcccctgagagatgcggtggtcatcgagcagagctccagcctgaacgaagcgagcagcggtctgt
    ttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcaggggaaaatcatacgtgcagtgccagggaatcccaca
    aggcagcattctgtcgactctcttgtgttccctttgctacggcgatatggaaaacaagctgttcgctgggatcagacgggacg
    ggttgctgctcagactggtggacgacttcctgctggtgactccgcacctcactcacgccaaaacctttctccgcactctggtg
    aggggagtgccagaatacggctgtgtggtcaatctccggaaaactgtggtgaatttccctgtcgaggatgaggcactcgg
    aggaaccgcatttgtccaaatgccagcacatggcctgttcccatggtgcggtctgctgctggacacccgaactcttgaagtg
    cagtccgactactccagctatgcccggacgagcatccgcgccagcctcactttcaatcgcggctttaaggccggacgaaa
    catgcgcagaaagcttttcggagtcctccggcttaaatgccattcgctctttctcgatctccaagtcaattcgctgcagaccgt
    gtgcacgaacatctacaagatcctgctgctccaagcctaccggttccacgcttgcgtgcttcagctgccgtttcaccaacag
    gtgtggaagaacccgaccttctttctgcgggtcattagcgatactgcctccctgtgttactcaatcctcaaggcaaagaacgc
    cggaatgtcgctgggtgcgaaaggagccgcgggacctcttcctagcgaagcggtgcagtggctctgccaccaggctttcc
    tcctgaagctgaccaggcacagagtgacctacgtcccgctgctgggctcgctgcgcactgcacagacccagctgtctaga
    aaactccccggcaccaccctgaccgctctggaagccgccgccaacccagcattgccgtcagatttcaagaccatcttgga
    C
    Plasmid 1355 Polypeptide
    SEQ ID NO: 64
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGRIFNAHYAGYFADLLIH
    DIETNPGPTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKN
    AVSMTSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALG
    STTPPAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRP
    APGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPD
    TRPALGSTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTP
    TTLASHSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPS
    TDYYQELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQF
    NQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIAL
    AVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGG
    SSLSYTNPAVAAASANLGSGTILSEGATNFSLLKLAGDVELNPGPSFLLSSLRPSLTGA
    RRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCP
    LRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRACLRR
    LVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGC
    VPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSI
    GIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFR
    REKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPP
    ELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSHVS
    TLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGK
    SYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKTF
    LRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWCGLLLDTRTLE
    VQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCT
    NIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSLGAK
    GAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEA
    AANPALPSDFKTILD
    Plasmid 1356 ORF
    SEQ ID NO: 65
    atggctagcctggctggcgagacaggacaggaagccgctcctctggacggcgtgctggccaaccctcccaatatcagc
    agcctgagccccagacagctgctgggattcccttgtgccgaggtgtccggcctgagcacagagagagtgcgggaactgg
    ctgtggccctggcccagaaaaacgtgaagctgagcaccgagcagctgcggtgcctggcccacagactgtctgagcctcc
    cgaggatctggacgccctgcctctggatctgctgctgttcctgaaccccgacgccttcagcggacctcaggcctgcacccg
    gttcttcagcagaatcaccaaggccaacgtggacctgctgcccagaggcgcccctgagagacagagactgctgcctgct
    gctctggcctgttggggagtgcggggctctctgctgtctgaagctgatgtgcgggccctgggaggcctggcttgtgatctgcc
    tggaagattcgtggccgagagcgccgaagtgctgctgcctagactggtgtcctgtcccggccctctggaccaggatcagc
    aggaagctgccagagctgctctgcagggcggaggccctccttatggacctcctagcacttggagcgtgtccaccatggat
    gccctgaggggcctgctgccagtgctgggccagcctatcatcagatccatcccacagggcatcgtggccgcctggcggc
    agagaagctctagagatccctcttggcggcagcccgagcggacaatcctgcggcccaggtttcggagagaggtggaaa
    agaccgcctgcccctctggcaagaaggccagagagatcgacgagagcctgatcttctacaagaagtgggagctggaa
    gcctgcgtggacgccgctctgctggccacccagatggacagagtgaacgccatccccttcacctatgagcagctggacgt
    gctgaagcacaagctggatgagctgtacccccagggctaccccgagagcgtgatccagcacctgggctacctgtttctga
    agatgagccccgaggacatccggaagtggaacgtgaccagcctggaaaccctgaaggccctgctggaagtgaacaa
    gggccacgagatgtccccccaggtggccacactgatcgacagattcgtgaagggcagaggccagctggacaaggaca
    ccctggatacactgaccgccttctaccccggctatctgtgcagcctgtcccccgaggaactgagcagcgtgccacctagct
    ctatctgggctgtgcggccccaggacctggatacctgcgatcctagacagctggatgtgctgtatcccaaggcccggctgg
    ccttccagaacatgaacggcagcgagtacttcgtgaagatccagtccttcctgggcggagcccctaccgaggacctgaa
    agctctgagccagcagaacgtgtccatggatctggccacctttatgaagctgcggaccgacgccgtgctgcctctgacagt
    ggctgaggtgcagaaactgctgggcccccatgtggaagggctgaaggccgaagaacggcacagacccgtgcgcgac
    tggatcctgaggcagagacaggatgacctggacacactgggcctgggactgcaggggggcatccctaatggctacctg
    gtgctggacctgagcatgcaggaagccctgggatccggcgagggcagaggcagcctgctgacatgtggcgacgtgga
    agagaaccctggccccagcttcctcctgtcgtcgctcagaccgagcctgaccggagcacgcagattggtggaaactatctt
    ccttgggtcacgtccgtggatgccaggtaccccacggcgcctcccgcgcctcccacagagatactggcagatgcggcctc
    tgttcctggaattgctgggaaaccacgctcagtgcccgtacggagtcctgctcaagactcactgccctctgagggcggcgg
    tcactccggcggccggagtgtgcgcacgggagaagccccagggaagcgtggcagctccggaagaggaggacaccg
    atccgcgccgcctcgtgcaacttctgcgccagcactcctcgccctggcaagtctacgggttcgtccgcgcctgcctgcgcc
    gcctggtgccgcctgggctctggggttcccggcataacgagcgccgcttcctgagaaatactaagaagtttatctcacttgg
    aaaacatgccaagttgtcgctgcaagaactcacgtggaagatgtcagtccgcgattgcgcctggctgcgccgctcgccgg
    gcgtcgggtgtgttccagctgcagaacaccgcctgagagaagaaattctggccaaatttctgcattggctgatgtcagtgta
    cgtggtcgagctgctgcgctcctttttctacgtcactgagactacctttcaaaagaaccgcctgttcttctaccgcaaatctgtgt
    ggagcaagctgcagtcaatcggcattcgccagcatctgaagagggtgcagctgcgggaactttccgaggcagaagtcc
    gccagcaccgggaggcccggccggcgcttctcacgtcgcgtctgagattcatcccaaagcccgacgggctgaggcctat
    cgtcaacatggattacgtcgtgggcgctcgcacctttcgccgtgaaaagcgggccgaacgcttgacctcacgggtgaagg
    ccctcttctccgtgctgaactacgagagagcaagacggcctggcctgctgggagcttcggtgctgggactggacgatatcc
    accgggcttggcggacctttgttctccgggtgagagcccaagaccctccgccggaactgtacttcgtgaaggtggcgatca
    ccggagcctatgatactattccgcaagatcgactcaccgaagtcatcgcctcgatcatcaaaccgcagaacacttactgcg
    tcaggcggtacgccgtggtccagaaggccgcgcatggccacgtgagaaaggcgttcaagtcgcacgtgtccactctcac
    cgacctccagccttacatgaggcaattcgttgcgcatttgcaagagacttcgcccctgagagatgcggtggtcatcgagca
    gagctccagcctgaacgaagcgagcagcggtctgtttgacgtgttcctccgcttcatgtgtcatcacgcggtgcgaatcagg
    ggaaaatcatacgtgcagtgccagggaatcccacaaggcagcattctgtcgactctcttgtgttccctttgctacggcgatat
    ggaaaacaagctgttcgctgggatcagacgggacgggttgctgctcagactggtggacgacttcctgctggtgactccgc
    acctcactcacgccaaaacctttctccgcactctggtgaggggagtgccagaatacggctgtgtggtcaatctccggaaaa
    ctgtggtgaatttccctgtcgaggatgaggcactcggaggaaccgcatttgtccaaatgccagcacatggcctgttcccatg
    gtgcggtctgctgctggacacccgaactcttgaagtgcagtccgactactccagctatgcccggacgagcatccgcgcca
    gcctcactttcaatcgcggctttaaggccggacgaaacatgcgcagaaagcttttcggagtcctccggcttaaatgccattc
    gctctttctcgatctccaagtcaattcgctgcagaccgtgtgcacgaacatctacaagatcctgctgctccaagcctaccggtt
    ccacgcttgcgtgcttcagctgccgtttcaccaacaggtgtggaagaacccgaccttctttctgcgggtcattagcgatactg
    cctccctgtgttactcaatcctcaaggcaaagaacgccggaatgtcgctgggtgcgaaaggagccgcgggacctcttcct
    agcgaagcggtgcagtggctctgccaccaggctttcctcctgaagctgaccaggcacagagtgacctacgtcccgctgct
    gggctcgctgcgcactgcacagacccagctgtctagaaaactccccggcaccaccctgaccgctctggaagccgccgc
    caacccagcattgccgtcagatttcaagaccatcttggacggatccggcacaatcctgtctgagggcgccaccaacttcag
    cctgctgaaactggccggcgacgtggaactgaaccctggccctacccctggaacccagagccccttcttccttctgctgctg
    ctgaccgtgctgactgtcgtgacaggctctggccacgccagctctacacctggcggcgagaaagagacaagcgccacc
    cagagaagcagcgtgccaagcagcaccgagaagaacgccgtgtccatgaccagctccgtgctgagcagccactctcct
    ggcagcggcagcagcacaacacagggccaggatgtgacactggcccctgccacagaacctgcctctggatctgccgc
    cacctggggacaggacgtgacaagcgtgccagtgaccagacctgccctgggctctacaacaccccctgcccacgatgt
    gaccagcgcccctgataacaagcctgcccctggaagcacagcccctccagctcatggcgtgacctctgccccagatacc
    agaccagccccaggatctacagccccacccgcacacggcgtgacaagtgcccctgacacaagacccgctccaggctc
    tactgctcctcctgcccatggcgtgacaagcgctcccgatacaaggccagctcctggctccacagcaccaccagcacatg
    gcgtgacatcagctcccgacactagacctgctcccggatcaaccgctccaccagctcacggcgtgaccagcgcacctga
    taccagacctgctctgggaagcaccgcccctcccgtgcacaatgtgacatctgcttccggcagcgccagcggctctgcctc
    tacactggtgcacaacggcaccagcgccagagccacaacaaccccagccagcaagagcacccccttcagcatcccta
    gccaccacagcgacacccctaccacactggccagccactccaccaagaccgatgcctctagcacccaccactccagc
    gtgccccctctgaccagcagcaaccacagcacaagcccccagctgtctaccggcgtctcattcttctttctgtccttccacat
    cagcaacctgcagttcaacagcagcctggaagatcccagcaccgactactaccaggaactgcagcgggatatcagcg
    agatgttcctgcaaatctacaagcagggcggcttcctgggcctgagcaacatcaagttcagacccggcagcgtggtggtg
    cagctgaccctggctttccgggaaggcaccatcaacgtgcacgacgtggaaacccagttcaaccagtacaagaccgag
    gccgccagccggtacaacctgaccatctccgatgtgtccgtgtccgacgtgcccttcccattctctgcccagtctggcgcag
    gcgtgccaggatggggaattgctctgctggtgctcgtgtgcgtgctggtggccctggccatcgtgtatctgattgccctggccg
    tgtgccagtgccggcggaagaattacggccagctggacatcttccccgccagagacacctaccaccccatgagcgagta
    ccccacataccacacccacggcagatacgtgccacccagctccaccgacagatccccctacgagaaagtgtctgccgg
    caacggcggcagctccctgagctacacaaatcctgccgtggccgctgcctccgccaacctg
    Plasmid 1356 Polypeptide
    SEQ ID NO: 66
    MASLAGETGQEAAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQ
    KNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDL
    LPRGAPERQRLLPAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLV
    SCPGPLDQDQQEAARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGI
    VAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEA
    CVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDI
    RKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLC
    SLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAFQNMNGSEYFVKIQSFL
    GGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQKLLGPHVEGLKAEERHRP
    VRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALGSGEGRGSLLTCGDVEEN
    PGPSFLLSSLRPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYVVQMRPLFLELLG
    NHAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQH
    SSPWQVYGFVRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKM
    SVRDCAWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQK
    NRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDG
    LRPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHR
    AWRTFVLRVRAQDPPPELYFVKVAITGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQ
    KAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLF
    DVFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLR
    LVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMP
    AHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLK
    CHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTAS
    LCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTA
    QTQLSRKLPGTTLTALEAAANPALPSDFKTILDGSGTILSEGATNFSLLKLAGDVELNPG
    PTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTS
    SVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPA
    HDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTA
    PPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPALG
    STAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASH
    STKTDASSTHHSSVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQ
    ELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKT
    EAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAVCQC
    RRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSY
    TNPAVAAASANL
    2A PEPTIDES
    The amino acid sequence of the 2A peptides set forth in SEQ ID NOs: 67-74 includes
    a glycine-serine-glycine (GSG) linker encoded by the nucleic acid sequence
    (SEQ ID NOs: 67-74)
    GGATCCGGC.
    Encephalomyocarditis Virus (EMCV) 2A Nucleotide sequence:
    SEQ ID NO: 67
    ggatccggcagaatcttcaacgcccactacgccggctacttcgccgacctgctgatccacgacatcgagacaaaccctg
    gcccc
    Encephalomyocarditis Virus (EMCV) 2A Amino acid sequence:
    SEQ ID NO: 68
    GSGRIFNAHYAGYFADLLIHDIETNPGP
    Thosea Asigna Virus (TAV) 2A Nucleotide sequence:
    SEQ ID NO: 69
    ggatccggcgagggcagaggcagcctgctgacatgtggcgacgtggaagagaaccctggcccc
    Thosea Asigna Virus (TAV) 2A Amino acid sequence:
    SEQ ID NO: 70
    GSGEGRGSLLTCGDVEENPGP
    Equine Rhinitis B Virus (ERBV) 2A Nucleotide sequence:
    SEQ ID NO: 71
    ggatccggcacaatcctgtctgagggcgccaccaacttcagcctgctgaaactggccggcgacgtggaactgaaccctg
    gccct
    Equine Rhinitis B Virus (ERBV) 2A Amino acid sequence:
    SEQ ID NO: 72
    GSGTILSEGATNFSLLKLAGDVELNPGP
    Porcine teschovirus (PTV) 2A Nucleotide sequence:
    SEQ ID NO: 73
    ggatccggcgccaccaatttcagcctgctgaaacaggccggcgacgtggaagagaaccctggccct
    Porcine teschovirus (PTV) 2A Amino acid sequence:
    SEQ ID NO: 74
    GSGATNFSLLKQAGDVEENPGP
  • SEQ
    Primer SEQUENCE (5′ TO 3′) Strand ID NO
    EMCV_cMSLN_F- GAGACAAACCCTGGCCCCCTGGCTGGCGAGACAGGAC Sense 75
    33 AGGAAG
    EMCV_Muc1_R- GTTGAAGATTCTGCCGGATCCCAGGTTGGCGGAGGCA Antisense 76
    35 GCGGCCACG
    EMCV2A_F-34 GCTACTTCGCCGACCTGCTGATCCACGACATCGAGACA Sense 77
    AACCCTGGC
    EMCV2A_R-36 GGTCGGCGAAGTAGCCGGCGTAGTGGGCGTTGAAGAT Antisense 78
    TCTGCCGGAT
    f MSLN 1028- TTCTGAAGATGAGCCCCGAGGACA Sense 79
    1051
    f Muc 960-983 CGGCGTCTCATTCTTCTTTCTGTC Sense 80
    f pmed Nhe ACCCTGTGACGAACATGGCTAGCCTGGCTGGCGAGAC Sense 81
    cMSLN AGGACAGGA
    f pmed Nhe ACCCTGTGACGAACATGGCTAGCACAGGCTCTGGCCAC Sense 82
    cytMuc GCCAG
    f pmed Nhe Muc ACCCTGTGACGAACATGGCTAGCACCCCTGGAACCCAG Sense 83
    AGCC
    f pmed Nhe ACCCTGTGACGAACATGGCTAGCGGAGCTGCCCCGGA Sense 84
    Ter240 GCCGG
    f tert 1584-1607 TCTCACCGACCTCCAGCCTTACAT Sense 85
    f tert ink cMSLN ACGGAGGCTCCGGCGGACTGGCTGGCGAGACAGGACA Sense 86
    f tg link Ter240 TGGGAGGCTCCGGCGGAGGAGCTGCCCCGGAGCCGG Sense 87
    f1 EM2A Muc CCTGCTGATCCACGACATCGAGACAAACCCTGGCCCCA Sense 88
    CCCCTGGAACCCAGAGCC
    f1 ERBV2A cMuc TGGCCGGCGACGTGGAACTGAACCCTGGCCCTACAGG Sense 89
    CTCTGGCCACGCCAG
    f1 ERBV2A Muc TGGCCGGCGACGTGGAACTGAACCCTGGCCCTACCCCT Sense 90
    GGAACCCAGAGCC
    f1 ERBV2A Ter TGGCCGGCGACGTGGAACTGAACCCTGGCCCTAGCTTC Sense 91
    d342 CTCCTGTCGTCGCTCA
    f1 ERBV2A Ter240 TGGCCGGCGACGTGGAACTGAACCCTGGCCCTGGAGC Sense 92
    TGCCCCGGAGCCGG
    f1 ERBV2A Tert TGGCCGGCGACGTGGAACTGAACCCTGGCCCTGCCAA Sense 93
    d541 ATTTCTGCATTGGCTGATG
    f1 PTV2A cMSLN TGGAAGAGAACCCTGGCCCTCTGGCTGGCGAGACAGG Sense 94
    ACAGGA
    f1 PTV2A Muc TGGAAGAGAACCCTGGCCCTACCCCTGGAACCCAGAGC Sense 95
    C
    f1 T2A cMSLN GCGACGTGGAAGAGAACCCTGGCCCCCTGGCTGGCGA Sense 96
    GACAGGACAGGA
    f1 T2A Tert d342 GCGACGTGGAAGAGAACCCTGGCCCCAGCTTCCTCCTG Sense 97
    TCGTCGCTCA
    f1 T2A Tert d541 GCGACGTGGAAGAGAACCCTGGCCCCGCCAAATTTCTG Sense 98
    CATTGGCTGATG
    f1 T2A Tert240 GCGACGTGGAAGAGAACCCTGGCCCCGGAGCTGCCCC Sense 99
    GGAGCCGG
    f2 EMCV2A AGAATCTTCAACGCCCACTACGCCGGCTACTTCGCCGA Sense 100
    CCTGCTGATCCACGACATCGA
    f2 ERBV2A TGTCTGAGGGCGCCACCAACTTCAGCCTGCTGAAACTG Sense 101
    GCCGGCGACGTGGAACTG
    f2 PTV2A TTCAGCCTGCTGAAACAGGCCGGCGACGTGGAAGAGA Sense 102
    ACCCTGGCCCT
    f2 T2A CCGGCGAGGGCAGAGGCAGCCTGCTGACATGTGGCGA Sense 103
    CGTGGAAGAGAACCCTG
    pMED_cMSLN_R- GGGCCCAGATCTTCACAGGGCTTCCTGCATGCTCAGGT Antisense 104
    37 CCAGCAC
    pMED_MUC1_F- ACGAACATGGCTAGCACCCCTGGAACCCAGAGCCCCTT Sense 105
    31 C
    r EM2A Bamh GTGGGCGTTGAAGATTCTGCCGGATCCCAGGGCTTCCT Antisense 106
    cMSLN GCATGCTCAGGT
    r ERB2A Bamh TGGTGGCGCCCTCAGACAGGATTGTGCCGGATCCCAG Antisense 107
    Muc GTTGGCGGAGGCAGCG
    r ERB2A Bamh TGGTGGCGCCCTCAGACAGGATTGTGCCGGATCCGTCC Antisense 108
    Ter240 AAGATGGTCTTGAAATCTGA
    r link cMSLN TCCGCCGGAGCCTCCCAGGGCTTCCTGCATGCTCAGGT Antisense 109
    r link muc TCCGCCGGAGCCTCCCAGGTTGGCGGAGGCAGCG Antisense 110
    r link Tert240 TCCGCCGGAGCCTCCGTCCAAGATGGTCTTGAAATCTG Antisense 111
    A
    r MSLN 1051- TGTCCTCGGGGCTCATCTT Antisense 112
    1033
    r muc 986-963 AAGGACAGAAAGAAGAATGAGACG Antisense 113
    r pmed Bgl TTGTTTTGTTAGGGCCCAGATCTTCACAGGGCTTCCTGC Antisense 114
    cMSLN ATGCTCAGG
    r pmed Bgl Muc TTGTTTTGTTAGGGCCCAGATCTTCACAGGTTGGCGGA Antisense 115
    GGCAGCG
    r pmed Bgl TTGTTTTGTTAGGGCCCAGATCTTCAGTCCAAGATGGTC Antisense 116
    Ter240 TTGAAATCTGA
    r PTV2A Bamh CTGTTTCAGCAGGCTGAAATTGGTGGCGCCGGATCCCA Antisense 117
    cMSLN GGGCTTCCTGCATGCTCAGGT
    r PTV2A Bamh CTGTTTCAGCAGGCTGAAATTGGTGGCGCCGGATCCCA Antisense 118
    Muc GGTTGGCGGAGGCAGCG
    r T2A Bamh TGCCTCTGCCCTCGCCGGATCCCAGGGCTTCCTGCATGC Antisense 119
    cMSLN TCAGGT
    r T2A Tert240 TGCCTCTGCCCTCGCCGGATCCGTCCAAGATGGTCTTGA Antisense 120
    AATCTGA
    r tert 1602-1579 AGGCTGGAGGTCGGTGAGAGTGGA Antisense 121
    r2 T2A AGGGTTCTCTTCCACGTCGCCACATGTCAGCAGGCTGC Antisense 122
    CTCTGCCCTCGCCGGATCC
    TertΔ343-F ACGAACATGGCTAGCTTCCTCCTGTCGTCGCTCAGACC Sense 123
    GAG
    Tert-R TTGTTTTGTTAGGGCCCAGATCTTCAGTCCAAGATGGTC Antisense 124
    TTGAAATC
    TertΔ541-F ACGAACATGGCTAGCGCCAAATTTCTGCATTGGCTGAT Sense 125
    GTC
    r TERT co# pMed TTGTTTTGTTAGGGCCCAGATCTTCAGTCCAAGATGGTC Antisense 126
    TTGAAATC
    f pmed TERT ACCCTGTGACGAACATGGGAGCTGCCCCGGAGCCGGA Sense 127
    241G GA
    MSLN34 CAACAAGCTAGCCTGGCTGGCGAGACAGGACA Sense 128
    MSLN598 CAACAAAGATCTTTACAGGGCTTCCTGCATGCACAG Antisense 129
    ID1197F ACCCTGTGACGAACATGGCTAGC Sense 130
    ID1197R AGATCTGGGCCCTAACA Antisense 131

Claims (21)

1-20. (canceled)
21. An antigen construct, which comprises a nucleotide sequence encoding an immunogenic TERT polypeptide of SEQ ID NO:3, wherein about 200 to about 600 amino acids of the N-terminus of the sequence of SEQ ID NO:3 are absent.
22. The antigen construct of claim 21, where in the immunogenic TERT polypeptide comprises amino acids 501-1132 of SEQ ID NO:3.
23. The antigen construct of claim 21, where in the immunogenic TERT polypeptide comprises amino acids 200-1132 of SEQ ID NO:3.
24. The antigen construct of claim 21, wherein the immunogenic TERT polypeptide is selected from the group consisting of:
(1) a polypeptide comprising the amino acid sequence of SEQ ID NO:10 or amino acids 20892 of SEQ ID NO:10;
(2) a polypeptide comprising the amino acid sequence of SEQ ID NO:12 or amino acids 4-591 of SEQ ID NO:12; and
(3) a polypeptide comprising the amino acid sequence of SEQ ID NO:14 or amino acids 3-789 of SEQ ID NO:14.
25. The antigen construct of claim 21, wherein the nucleotide sequence encoding the immunogenic TERT polypeptide is selected from the group consisting of:
(1) the nucleotide sequence of SEQ ID NO:9;
(2) a) the nucleotide sequence of SEQ ID NO:11;
(3) the nucleotide sequence of SEQ ID NO:13; and
(4) a degenerate variant of the nucleotide sequence of SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13.
26. The antigen construct of claim 21, which is a DNA.
27. The antigen construct of claim 21, which is an RNA
28. A vector, comprising the antigen construct of claim 21.
29. The vector of claim 28, where the vector is a plasmid vector.
30. The vector of claim 28, wherein the vector is a viral vector.
31. A composition, comprising the antigen construct of claim 21.
32. The composition of claim 31, where in the antigen construct is an RNA.
33. The composition of claim 31, further comprising a pharmaceutically acceptable carrier.
34. The composition of claim 33, wherein where in the antigen construct is an RNA.
35. A method of treating cancer in a patient, comprising administering to the patient an effective amount of the composition of claim 33.
36. The method of claim 35, wherein the cancer over-expresses tumor-associated antigen TERT.
37. The method of claim 35, wherein the cancer is breast cancer, pancreatic cancer, and ovarian cancer.
38. The method of claim 35, further comprising administering to the patient an immune modulator.
39. The method of claim 38, wherein the immune modulator is a PD-1 inhibitor or PD-L1 inhibitor.
40. The method of claim 38, wherein the immune modulator RN888.
US17/319,395 2016-01-19 2021-05-13 Cancer vaccines Abandoned US20220323558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/319,395 US20220323558A1 (en) 2016-01-19 2021-05-13 Cancer vaccines

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662280636P 2016-01-19 2016-01-19
US201662419190P 2016-11-08 2016-11-08
US15/407,890 US10251944B2 (en) 2016-01-19 2017-01-17 Cancer vaccines
US16/252,239 US11058753B2 (en) 2016-01-19 2019-01-18 Cancer vaccines
US17/319,395 US20220323558A1 (en) 2016-01-19 2021-05-13 Cancer vaccines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/252,239 Division US11058753B2 (en) 2016-01-19 2019-01-18 Cancer vaccines

Publications (1)

Publication Number Publication Date
US20220323558A1 true US20220323558A1 (en) 2022-10-13

Family

ID=57960563

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/407,890 Expired - Fee Related US10251944B2 (en) 2016-01-19 2017-01-17 Cancer vaccines
US16/252,239 Active 2037-07-18 US11058753B2 (en) 2016-01-19 2019-01-18 Cancer vaccines
US17/319,395 Abandoned US20220323558A1 (en) 2016-01-19 2021-05-13 Cancer vaccines

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/407,890 Expired - Fee Related US10251944B2 (en) 2016-01-19 2017-01-17 Cancer vaccines
US16/252,239 Active 2037-07-18 US11058753B2 (en) 2016-01-19 2019-01-18 Cancer vaccines

Country Status (22)

Country Link
US (3) US10251944B2 (en)
EP (2) EP3733201A1 (en)
JP (2) JP6820935B2 (en)
KR (2) KR102158923B1 (en)
CN (1) CN108778321A (en)
AU (1) AU2017208848A1 (en)
BR (1) BR112018013967A2 (en)
CA (1) CA2954892A1 (en)
CO (1) CO2018007442A2 (en)
DK (1) DK3405212T3 (en)
ES (1) ES2811523T3 (en)
HU (1) HUE051722T2 (en)
IL (2) IL260321B (en)
MX (1) MX2018008797A (en)
PH (1) PH12018501532A1 (en)
PL (1) PL3405212T3 (en)
PT (1) PT3405212T (en)
RU (2) RU2718663C2 (en)
SG (1) SG11201805621SA (en)
SI (1) SI3405212T1 (en)
TW (3) TW202111125A (en)
WO (1) WO2017125844A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204760A1 (en) * 2017-05-05 2018-11-08 David Weiner Ctla4 antibodies and vaccine combinations and use of same for immunotherapy
WO2022258794A2 (en) * 2021-06-09 2022-12-15 Ultimovacs Ab A conjugate

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769330A (en) 1981-12-24 1988-09-06 Health Research, Incorporated Modified vaccinia virus and methods for making and using the same
US4603112A (en) 1981-12-24 1986-07-29 Health Research, Incorporated Modified vaccinia virus
US5288641A (en) 1984-06-04 1994-02-22 Arch Development Corporation Herpes Simplex virus as a vector
CA1341482C (en) 1984-10-31 2005-05-10 Paul A. Luciw Process for preparing fragments of aids-associated retroviruses
ATE50983T1 (en) 1985-01-07 1990-03-15 Syntex Inc SURFACE ACTIVE N-(OMEGA, OMEGA-1-DIALKOXY)AND N-(OMEGA, OMEGA-1-DIALKENOXY)-ALK-1-YL-N,N,NTRI-SUBSTITUTED AMMONIUM COMPOUNDS, THEIR PREPARATION AND PHARMACEUTICAL FORMULATIONS CONTAINING THEM.
GB8508845D0 (en) 1985-04-04 1985-05-09 Hoffmann La Roche Vaccinia dna
US5091309A (en) 1986-01-16 1992-02-25 Washington University Sindbis virus vectors
US5219740A (en) 1987-02-13 1993-06-15 Fred Hutchinson Cancer Research Center Retroviral gene transfer into diploid fibroblasts for gene therapy
WO1989001973A2 (en) 1987-09-02 1989-03-09 Applied Biotechnology, Inc. Recombinant pox virus for immunization against tumor-associated antigens
US5716826A (en) 1988-03-21 1998-02-10 Chiron Viagene, Inc. Recombinant retroviruses
US5591624A (en) 1988-03-21 1997-01-07 Chiron Viagene, Inc. Retroviral packaging cell lines
US5217879A (en) 1989-01-12 1993-06-08 Washington University Infectious Sindbis virus vectors
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
ATE277193T1 (en) 1989-03-21 2004-10-15 Vical Inc EXPRESSION OF EXOGENEOUS POLYNUCLEOTIDE SEQUENCES IN VERTEBRATES
JPH0832638B2 (en) 1989-05-25 1996-03-29 カイロン コーポレイション Adjuvant formulation comprising submicron oil droplet emulsion
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5817491A (en) 1990-09-21 1998-10-06 The Regents Of The University Of California VSV G pseusdotyped retroviral vectors
US5283185A (en) 1991-08-28 1994-02-01 University Of Tennessee Research Corporation Method for delivering nucleic acids into cells
JPH07501942A (en) 1991-11-29 1995-03-02 カイロン コーポレイション Vector construct for anti-cancer immunotherapy
ES2143716T3 (en) 1992-06-25 2000-05-16 Smithkline Beecham Biolog VACCINE COMPOSITION CONTAINING ADJUVANTS.
IL107366A (en) 1992-10-23 2003-03-12 Chugai Pharmaceutical Co Ltd Genes coding for megakaryocyte potentiator
US6015686A (en) 1993-09-15 2000-01-18 Chiron Viagene, Inc. Eukaryotic layered vector initiation systems
GB9326253D0 (en) 1993-12-23 1994-02-23 Smithkline Beecham Biolog Vaccines
US5651981A (en) 1994-03-29 1997-07-29 Northwestern University Cationic phospholipids for transfection
US5527928A (en) 1994-09-30 1996-06-18 Nantz; Michael H. Cationic transport reagents
GB9513261D0 (en) 1995-06-29 1995-09-06 Smithkline Beecham Biolog Vaccines
DE69726404T2 (en) 1996-01-05 2004-09-09 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Mesotheline antigen, method and test set for targeting
US7375183B1 (en) 1996-01-05 2008-05-20 The United States Of America As Represented By The Department Of Health And Human Services Mesothelin, immunogenic peptides derived therefrom, and compositions comprising mesothelin, or immunogenic peptides thereof
CA2249395A1 (en) 1996-03-20 1997-09-25 Sloan-Kettering Institute For Cancer Research Conjugated mucin peptide vaccines
US6475789B1 (en) 1996-10-01 2002-11-05 University Technology Corporation Human telomerase catalytic subunit: diagnostic and therapeutic methods
US7585622B1 (en) 1996-10-01 2009-09-08 Geron Corporation Increasing the proliferative capacity of cells using telomerase reverse transcriptase
DE841396T1 (en) 1996-10-01 1998-09-24 Geron Corp Catalytic subunit of human telomerase
US6261836B1 (en) 1996-10-01 2001-07-17 Geron Corporation Telomerase
US6093809A (en) 1996-10-01 2000-07-25 University Technology Corporation Telomerase
US6214806B1 (en) 1997-02-28 2001-04-10 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders
DE69841122D1 (en) 1997-03-10 2009-10-15 Coley Pharm Gmbh Use of non-methylated CpG dinucleotide in combination with aluminum as adjuvants
US20050013825A1 (en) 1997-04-18 2005-01-20 Geron Corporation Vaccine containing the catalytic subunit of telomerase for treating cancer
US7622549B2 (en) 1997-04-18 2009-11-24 Geron Corporation Human telomerase reverse transcriptase polypeptides
US6339068B1 (en) 1997-05-20 2002-01-15 University Of Iowa Research Foundation Vectors and methods for immunization or therapeutic protocols
AU755322B2 (en) 1997-06-06 2002-12-12 Dynavax Technologies Corporation Inhibitors of DNA immunostimulatory sequence activity
GB9712347D0 (en) 1997-06-14 1997-08-13 Smithkline Beecham Biolog Vaccine
CA2302554C (en) 1997-09-05 2007-04-10 Smithkline Beecham Biologicals S.A. Oil in water emulsions containing saponins
US6303114B1 (en) 1998-03-05 2001-10-16 The Medical College Of Ohio IL-12 enhancement of immune responses to T-independent antigens
US6337200B1 (en) 1998-03-31 2002-01-08 Geron Corporation Human telomerase catalytic subunit variants
IL138000A0 (en) 1998-04-09 2001-10-31 Smithkline Beecham Biolog Adjuvant compositions
US6962790B1 (en) 1998-09-23 2005-11-08 University Of Massachusetts Medical Center Predictive assay for immune response
US6682736B1 (en) 1998-12-23 2004-01-27 Abgenix, Inc. Human monoclonal antibodies to CTLA-4
BR0009163A (en) 1999-03-19 2001-12-26 Smithkline Beecham Biolog Vaccine
CN1227030C (en) 1999-04-19 2005-11-16 史密丝克莱恩比彻姆生物有限公司 Adjuvant composition comprising saponin and an immunostimulatory oligonucleotide
US6472028B1 (en) 1999-08-12 2002-10-29 Joseph Frazzitta Method of producing a high gloss coating on a printed surface
EP1212422B1 (en) 1999-08-24 2007-02-21 Medarex, Inc. Human ctla-4 antibodies and their uses
AR025749A1 (en) 1999-09-24 2002-12-11 Smithkline Beecham Biolog VACCINES
CA2383413A1 (en) 1999-09-24 2001-03-29 Smithkline Beecham Biologicals S.A. Use of combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines
GB9930359D0 (en) 1999-12-22 2000-02-09 Glaxo Group Ltd Novel polypeptides
CA2399816A1 (en) 2000-02-15 2001-08-23 Regents Of The University Of California A universal vaccine and method for treating cancer employing telomerase reverse transcriptase
AU2001282290A1 (en) 2000-08-17 2002-03-04 University Of Wales College Of Medicine Htert-immortalised cell lines, their preparation and use
US20040136963A1 (en) 2001-06-22 2004-07-15 The Trustees Of The University Of Pennsylvania Simian adenovirus vectors and methods of use
US20030143228A1 (en) 2001-10-29 2003-07-31 Baylor College Of Medicine Human telomerase reverse transcriptase as a class-II restricted tumor-associated antigen
TWI228718B (en) 2001-11-05 2005-03-01 Tdk Corp Manufacturing method and device of mold plate for information medium
DE10162480A1 (en) 2001-12-19 2003-08-07 Ingmar Hoerr The application of mRNA for use as a therapeutic agent against tumor diseases
GB0212046D0 (en) * 2002-05-24 2002-07-03 Glaxo Group Ltd Vaccines
CA2492160A1 (en) 2002-07-12 2004-01-22 The Johns Hopkins University Mesothelin vaccines and model systems
US9200036B2 (en) 2002-07-12 2015-12-01 The Johns Hopkins University Mesothelin vaccines and model systems
CN1315536C (en) * 2002-09-13 2007-05-16 李进 Novel vaccine of tumor antigen, its preparation method and vaccine composition
PT1711518E (en) 2004-01-23 2010-02-26 Isti Di Ric Di Bio Moleco P An Chimpanzee adenovirus vaccine carriers
DE102004035227A1 (en) 2004-07-21 2006-02-16 Curevac Gmbh mRNA mixture for vaccination against tumor diseases
EP1832654B1 (en) * 2004-12-28 2011-07-27 Sekisui Medical Co., Ltd. Anti-human soluble fibrin monoclonal antibody and immunological assay method using the antibody
EP1748067A1 (en) 2005-07-29 2007-01-31 Institut Pasteur Polynucleotides encoding MHC class I-restricted hTERT epitopes, analogues thereof or polyepitopes
CA2652310A1 (en) 2006-01-19 2007-08-23 The Regents Of The University Of California Human telomerase reverse transcriptase peptides
KR20090079938A (en) * 2006-10-12 2009-07-22 이스티투토 디 리세르쉐 디 비올로지아 몰레콜라레 피. 안젤레티에스.피.에이. Telomerase reverse transcriptase fusion protein, nucleotides encoding it, and uses thereof
EP1994942A1 (en) 2007-05-25 2008-11-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Pharmaceutical compositions comprising telomerase, and uses thereof
US8362209B2 (en) 2007-08-23 2013-01-29 University Of Medicine And Dentistry Of New Jersey Telomerase reverse transcriptase variant
WO2009046738A1 (en) * 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating lung cancer, particularly of non-small lung cancers (nsclc)
EP2824100B1 (en) 2008-07-08 2018-02-21 Incyte Holdings Corporation 1,2,5-Oxadiazoles as inhibitors of indoleamine 2,3-dioxygenase
JP5882741B2 (en) 2009-02-02 2016-03-09 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Nucleic acid and amino acid sequences of simian adenovirus, vectors containing the same, and uses thereof
CN101920009B (en) 2010-03-06 2012-08-08 河北医科大学 Vaccine for preventing and curing tumor
US20140335050A1 (en) * 2011-05-27 2014-11-13 The General Hospital Corporation Methods, compositions, and kits for the treatment of cancer
AR087380A1 (en) 2011-07-27 2014-03-19 Baylor Res Inst DENDRITIC CELL VACCINES (CD) FOR PANCREAS CANCER THERAPY
US8523590B2 (en) * 2011-07-29 2013-09-03 General Electric Company Cable system and methods of assembling a cable system
BR112014003477B1 (en) * 2011-08-17 2021-11-03 Globeimmune, Inc. IMMUNOTHERAPEUTIC COMPOSITION OF YEAST MUC1
AU2013255511B2 (en) * 2012-05-04 2016-01-28 Pfizer Inc. Prostate-associated antigens and vaccine-based immunotherapy regimens
US10184216B2 (en) * 2012-07-18 2019-01-22 Thomas Urbanek Advantageous detectable warning area and methods of forming the same
US10137182B2 (en) * 2013-02-14 2018-11-27 Immunocellular Therapeutics, Ltd. Cancer vaccines and vaccination methods
JP6769865B2 (en) 2013-03-15 2020-10-14 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア Cancer vaccine and treatment method using it
HUE043042T2 (en) 2013-11-01 2019-07-29 Pfizer Vectors for expression of prostate-associated antigens
JP6231226B2 (en) 2014-05-15 2017-11-15 アイティーオス セラペウティクス Pyrrolidine-2,5-dione derivatives, pharmaceutical compositions and methods for use as IDO1 inhibitors

Also Published As

Publication number Publication date
EP3405212B1 (en) 2020-07-08
DK3405212T3 (en) 2020-08-24
SI3405212T1 (en) 2020-09-30
US20190142918A1 (en) 2019-05-16
JP2021061851A (en) 2021-04-22
KR20180101537A (en) 2018-09-12
PH12018501532A1 (en) 2019-05-15
MX2018008797A (en) 2018-11-29
TW201932598A (en) 2019-08-16
JP6820935B2 (en) 2021-01-27
WO2017125844A1 (en) 2017-07-27
RU2718663C2 (en) 2020-04-13
IL260321B (en) 2020-10-29
TW202111125A (en) 2021-03-16
US20170202938A1 (en) 2017-07-20
TW201738377A (en) 2017-11-01
JP2019505210A (en) 2019-02-28
US10251944B2 (en) 2019-04-09
RU2018126487A3 (en) 2020-02-20
TWI654302B (en) 2019-03-21
EP3733201A1 (en) 2020-11-04
ES2811523T3 (en) 2021-03-12
AU2017208848A1 (en) 2018-07-12
IL277752A (en) 2020-11-30
HUE051722T2 (en) 2021-03-29
TWI709647B (en) 2020-11-11
US11058753B2 (en) 2021-07-13
KR102158923B1 (en) 2020-09-23
RU2018126487A (en) 2020-02-20
CO2018007442A2 (en) 2018-07-31
CN108778321A (en) 2018-11-09
BR112018013967A2 (en) 2019-02-05
PT3405212T (en) 2020-08-25
CA2954892A1 (en) 2017-07-19
RU2020110148A (en) 2020-09-18
SG11201805621SA (en) 2018-08-30
PL3405212T3 (en) 2020-11-16
IL260321A (en) 2018-08-30
EP3405212A1 (en) 2018-11-28
KR20200109395A (en) 2020-09-22

Similar Documents

Publication Publication Date Title
JP7014764B2 (en) Vector for expressing prostate-related antigen
US20220323558A1 (en) Cancer vaccines
JP2022031653A (en) Immunogenic compositions comprising cea muc1 and tert

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION