[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20220321870A1 - Partial light field display architecture - Google Patents

Partial light field display architecture Download PDF

Info

Publication number
US20220321870A1
US20220321870A1 US17/843,555 US202217843555A US2022321870A1 US 20220321870 A1 US20220321870 A1 US 20220321870A1 US 202217843555 A US202217843555 A US 202217843555A US 2022321870 A1 US2022321870 A1 US 2022321870A1
Authority
US
United States
Prior art keywords
light emitting
emitting elements
light
elements
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/843,555
Inventor
Gang He
Richard Peter SCHNEIDER, JR.
Andrew Victor JONES
James Richard DODD, JR.
Joseph Hsiao-Tien HAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Priority to US17/843,555 priority Critical patent/US20220321870A1/en
Assigned to Raxium, Inc. reassignment Raxium, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHNEIDER, RICHARD PETER, JR., HAN, Joseph Hsiao-Tien, JONES, Andrew Victor, DODD, JAMES RICHARD, JR., HE, GANG
Assigned to GOOGLE LLC reassignment GOOGLE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAXIUM INC.
Publication of US20220321870A1 publication Critical patent/US20220321870A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/957Light-field or plenoptic cameras or camera modules

Definitions

  • aspects of the present disclosure generally relate to displays, and more specifically, to a partial light field display architecture.
  • Light field or lightfield displays present some of the better options as they can be flat displays configured to provide multiple views at different locations to enable the perception of depth or 3D to a viewer.
  • Light field displays can require a large number of light emitting elements, at resolutions that can be two to three orders of magnitude greater than those of traditional displays. Therefore, there are challenges in both the number of light emitting elements and the manner in which they are organized that need consideration to enable the ultra-high-density required to provide the best possible experience to a viewer.
  • sub-raxel may refer to a light emitting element, including light emitting element that produce a single color of light and light emitting elements that produce red, green, and blue light
  • raxel may refer to a group or allocation of sub-raxels (e.g., neighboring or nearby positioned sub-raxels)
  • super-raxel or picture element may refer to an array or arrangement of light emitting elements that are organized, grouped, or otherwise allocated into different raxels.
  • a light field display includes multiple picture elements (e.g., super-raxels), where each picture element includes a first portion having a first set of light emitting elements, where the first portion is configured to produce light outputs that contribute to at least one two-dimensional (2D) view provided by the light field display.
  • a picture element may also be referred to as a light field picture element.
  • Each picture element also includes a second portion having a second set of light emitting elements (e.g., sub-raxels) that produce light outputs that contribute to at least one three-dimensional (3D) view provided by the light field display.
  • the light field display also includes electronic means configured to drive the first set of light emitting elements and the second set of light emitting elements in each picture element.
  • the light field display can also dynamically identify the first portion and the second portion and allocate light emitting elements accordingly.
  • Separate groups (e.g., raxels) of light emitting elements can be configured to compose picture elements (e.g., super-raxels) and a directional resolution of the light field display can be based on the number of groups.
  • FIG. 1A illustrates an example of a picture element for light field displays, in accordance with aspects of this disclosure.
  • FIG. 1B illustrates another example of a picture element for light field displays, in accordance with aspects of this disclosure.
  • FIG. 2 illustrates an example of light emitting elements in a picture element, in accordance with aspects of this disclosure.
  • FIG. 3 illustrates an example of a light field display having multiple picture elements, in accordance with aspects of this disclosure.
  • FIG. 4 illustrates another example of a light field display having multiple picture elements, in accordance with aspects of this disclosure.
  • FIG. 5 illustrates an example of a light field display and camera having multiple picture elements and light detecting elements, in accordance with aspects of this disclosure.
  • FIG. 6A illustrates an example of a cross-sectional view of a portion of a light field display, in accordance with aspects of this disclosure.
  • FIG. 6B illustrates another example of a cross-sectional view of a portion of a light field display, in accordance with aspects of this disclosure.
  • FIG. 7A illustrates an example of a configuration of a light field display, in accordance with aspects of this disclosure.
  • FIG. 7B illustrates another example of a configuration of a light field display, in accordance with aspects of this disclosure.
  • FIG. 8A illustrates an example of an array of light emitting elements in a picture element, in accordance with aspects of this disclosure.
  • FIG. 8B illustrates an example of a picture element with sub-picture elements, in accordance with aspects of this disclosure.
  • FIG. 9A illustrates an example of a light field display picture element with full light field views, in accordance with aspects of this disclosure.
  • FIG. 9B illustrates an example of a light field display picture element with light field views in the middle, in accordance with aspects of this disclosure.
  • FIG. 9C illustrates an example of a light field display picture element with horizontal views in the middle, in accordance with aspects of this disclosure.
  • FIG. 9D illustrates an example of a light field display picture element with light field views in designated locations, in accordance with aspects of this disclosure.
  • FIG. 9E illustrates an example of a light field display picture element with two left-right eye orientations, in accordance with aspects of this disclosure.
  • FIG. 9F illustrates an example of a light field display picture element with continuous left-right eye orientations, in accordance with aspects of this disclosure.
  • FIG. 1A shows a diagram 100 a describing an example of a picture element for light field displays, also referred to as multi-view displays, for example.
  • a light field display (see e.g., light field displays 310 in FIGS. 3-5 ) can include multiple picture elements (see e.g., picture elements 320 in FIGS. 3-5 ), which can be organized in arrays, grids, or other types of ordered arrangements.
  • the multiple picture elements can be monolithically integrated on a same semiconductor substrate. That is, multiple picture elements can be fabricated, constructed, and/or formed from one or more layers of the same or different materials disposed, formed, and/or grown on a single, continuous semiconductor substrate. Additional details regarding materials and other aspects related to the semiconductor substrate are provided below.
  • a “picture element” and the term “super-raxel” can be used interchangeably to describe a similar structural unit in a light field display.
  • a “picture element” can be referred to as a pixel, but it is different from a pixel used in traditional displays.
  • a single picture element can include many light emitting elements 125 .
  • a picture element is different from a pixel in a traditional display in that a pixel generally identifies a discrete element that emits light (e.g., in a non-directional manner, Lambertian emission) while a picture element includes multiple light emitting elements 125 , which are themselves organized and configured to produce or generate light outputs that can be directional in nature, where these light outputs (e.g., ray elements) contribute to the formation of multiple, different light field views that are to be provided by the light field display to a viewer in different locations or positions away from the light field display.
  • each particular location or position away from the light field display can be associated with a light field view provided by the light field display. Additional aspects regarding the arrangement and characteristics of the light emitting elements 125 in a picture element are described in more detail below, further identifying differences between a picture element in a light field display and a pixel in a traditional display.
  • a picture element can have a corresponding light steering optical element 115 as shown in FIG. 1A .
  • the light steering optical element 115 can be configured to steer or direct different ray elements 105 produced (e.g., emitted) by the light emitting elements 125 .
  • the different ray elements 105 may correspond to different directions of light outputs produced by one or more light emitting elements 125 .
  • the directional resolution of the picture element or the light field display may correspond to a number of light output directions supported.
  • the light field views provided by the light field display are produced by a contribution from various light outputs that are received by the viewer in a particular location or position away from the light field display.
  • the light steering optical element 115 can be considered part of the picture element, that is, the light steering optical element 115 is an integral component of the picture element.
  • the light steering optical element 115 can be aligned and physically coupled or bonded to the light emitting elements 125 of its respective picture element.
  • a light steering optical element 115 can be a microlens or a lenslet as shown in FIG. 1A , which can be configured to steer or direct the ray elements 105 (e.g., the different light field views) in the appropriate directions.
  • a light steering optical element 115 can include a single optical structure (e.g., a single microlens or lenslet) or can be constructed or formed to include multiple optical structures.
  • a light steering optical element 115 can have at least one microlens, at least one grating, or a combination of both.
  • a light steering optical element 115 can have multiple layers of optical components (e.g., microlenses and/or gratings) that combined produce the appropriate light steering effect.
  • a light steering optical element 115 can have a first microlens and a second microlens stacked over the first microlens, with the first microlens being associated with a first layer and the second microlens being associated with a second layer.
  • a different example can use a grating or a grating and microlens combination in either or both layers.
  • the construction of the light steering optical element 115 and therefore the positioning and characteristics of any microlenses and/or gratings built or formed therein, is intended to produce the proper steering or directing of the ray elements 105 .
  • a light emitting element 125 can be a light-emitting diode (LED) made from one or more semiconductor materials.
  • the LED can be an inorganic LED.
  • the LED can be, for example, a micro-LED, also referred to as a microLED, an mLED, or a ⁇ LED, which can provide better performance, including brightness and energy efficiency, than other display technologies such as liquid crystal display (LCD) technology or organic LED (OLED) technology.
  • LCD liquid crystal display
  • OLED organic LED
  • the terms “light emitting element,” “light emitter,” or “emitter,” can be used interchangeably in this disclosure, and can also be used to refer to a microLED. Moreover, any of these terms can be used interchangeably with the term “sub-raxel” to describe a similar structural unit in a light field display.
  • the light emitting elements 125 of a picture element can be monolithically integrated on a same semiconductor substrate. That is, the light emitting elements 125 can be fabricated, constructed, and/or formed from one or more layers of the same or different materials disposed, formed, and/or grown on a single, continuous semiconductor substrate.
  • the semiconductor substrate can include one or more of GaN, GaAs, Al 2 O 3 , Si, SiC, Ga 2 O 3 , alloys thereof, or derivatives thereof.
  • the light emitting elements 125 monolithically integrated on the same semiconductor substrate can be made at least partially of one or more of AlN, GaN, InN, AlAs, GaAs, InAs, AlP, GaP, InP, alloys thereof, or derivatives thereof.
  • each of the light emitting elements 125 can include a quantum well active region made from one or more of the materials described above.
  • the light emitting elements 125 can include different types of light emitting elements or devices to provide light of different colors, which in turn enable the light field display to make visually available to viewers a particular color gamut or range.
  • the light emitting elements 125 can include a first type of light emitting element that produces green (G) light, a second type of light emitting element that produces red (R) light, and a third type of light emitting element that produces blue (B) light.
  • the light emitting elements 125 can optionally include a fourth type of light emitting element that produces white (W) light.
  • a single light emitting element 125 may be configured to produce different colors of light.
  • the lights produced by the light emitting elements 125 in a display enable the entire range of colors available on the display, that is, the display's color gamut.
  • the display's color gamut is a function of the wavelength and linewidth of each of the constituent color sources (e.g., red, green, blue color sources).
  • the different types of colors of light can be achieved by having changing the composition of one or more materials (e.g., semiconductor materials) in the light emitting elements or by using different structures (e.g., quantum dots of different sizes) as part of or in connection with the light emitting elements.
  • materials e.g., semiconductor materials
  • structures e.g., quantum dots of different sizes
  • a first set of the LEDs in the picture can be made at least in part of InGaN with a first composition of indium (In)
  • a second set of the LEDs can be made at least in part of InGaN with a second composition of In different from the first composition of In
  • a third set of the LEDs can be made at least in part of InGaN with a third composition of In different from the first and second compositions of In.
  • the different types of colors of light can be achieved by applying different color converters (e.g., color downconverters) to light emitting elements that produce a same or similar color of light.
  • some or all of the light emitting elements 125 can include a respective color conversion media (e.g., color conversion material or combination of materials).
  • each of the light emitting elements 125 in a picture element is configured to produce blue light.
  • a first set of the light emitting elements 125 simply provides the blue light
  • a second set of the light emitting elements 125 is further configured to downconvert (e.g., using one conversion media) the blue light to produce and provide green light
  • a third set of the light emitting elements 125 is also further configured to downconvert (e.g., using another conversion media) the blue light this time to produce and provide red light.
  • the light emitting elements 125 of a picture element can themselves be organized in arrays, grids, or other types or ordered arrangements just like picture elements can be organized using different arrangements in a light field display.
  • each picture element there can be one or more drivers 135 for driving or operating the light emitting elements 125 .
  • the drivers 135 can be electronic circuits or means that are part of a backplane 130 and electronically coupled to the light emitting elements 125 .
  • the drivers 135 can be configured to provide the appropriate signals, voltages, and/or currents in order to drive or operate the light emitting elements 125 (e.g., to select a light emitting element, control settings, control brightness).
  • the drivers 135 can be in the form of unit cells that are configured to drive a single light emitting element 125 or multiple light emitting elements 125 .
  • a light field display can also include a plane 120 having the light emitting elements 125 .
  • a light field display can also include a plane 110 having the light steering optical elements 115 .
  • two of more of the plane 110 , the plane 120 , and the backplane 130 can be integrated or bonded together to form a stacked or three-dimensional (3D) structure. Additional layers, planes, or structures (not shown) can also be part of the stacked or 3D structure to facilitate or configure the connectivity, interoperability, adhesion, and/or distance between the planes.
  • the term “plane” and the term “layer” can be used interchangeably.
  • FIG. 1B shows a diagram 100 b illustrating another example of a picture element for light field displays.
  • the picture element can not only provide or emit ray elements 105 (as shown also in FIG. 1B ), but can also be configured to receive ray elements 107 through the light steering optical element 115 .
  • the ray elements 107 can correspond to directional light inputs that contribute to various views being received by the picture element or the light field display just like the ray elements 105 can correspond to directional light outputs that contribute to various views being provided by the picture element or the light field display to a viewer.
  • a plane 120 a having the light emitting elements 125 can also include one or more light detecting elements 127 to receive or capture light associated with the ray elements 107 .
  • the one or more light detecting elements 127 can be positioned in the plane 120 a adjacently surrounded by the light emitting elements 125 , or alternatively, the one or more light detecting elements 127 can be positioned in the plane 120 a separate from the light emitting elements 125 .
  • the terms “light detecting element,” “light detector,” “light sensor,” or “sensor,” can be used interchangeably in this disclosure.
  • the light detecting elements 127 can be monolithically integrated on the same semiconductor substrate as the light emitting elements 125 .
  • the light detecting elements 127 can be made of the same types of materials as described above from which the light emitting elements 125 can be made.
  • the light detecting elements 127 can be made of different materials and/or structures (e.g., silicon complimentary metal-oxide-semiconductor (CMOS) or variations thereof) from those used to make the light emitting elements 125 .
  • CMOS silicon complimentary metal-oxide-semiconductor
  • a plane 130 a having the drivers 135 can also include one or more detectors 137 electronically coupled to the light detecting elements 127 and configured to provide the appropriate signals, voltages, and/or currents to operate the light detecting elements 127 (e.g., to select a light detecting element, control settings) and to produce signals (e.g., analog or digital signal) representative of the light that is received or captured by the light detecting elements 127 .
  • detectors 137 electronically coupled to the light detecting elements 127 and configured to provide the appropriate signals, voltages, and/or currents to operate the light detecting elements 127 (e.g., to select a light detecting element, control settings) and to produce signals (e.g., analog or digital signal) representative of the light that is received or captured by the light detecting elements 127 .
  • the construction of the light steering optical element 115 in FIG. 1B is intended to produce the right steering or directing of the ray elements 105 away from the picture element to provide the various contributions that are needed for a viewer to perceive the light field views, and also to produce the right steering or directing of the ray elements 107 towards the appropriate light detecting elements 127 .
  • the light detecting elements 127 may use separate or additional light steering optical elements than the light steering optical element 115 used in connection with the light emitting elements 125 . In such cases, the light steering optical element for the light detecting elements 127 can be included in the plane 110 having the light steering optical elements 115 .
  • the different picture element structures described in FIGS. 1A and 1B enable control, placement, and directivity of the ray elements produced by the light emitting elements 125 of the picture element.
  • the picture element structures in FIG. 1B enable control, placement, and directivity of the ray elements received by the picture element.
  • a diagram 200 shows an example of a pattern or mosaic of light emitting elements 125 in a picture element.
  • a portion of an array or grid of light emitting elements 125 that are part of a picture element is enlarged to show one of different patterns or mosaics that can be used for the various types of light emitting elements 125 .
  • This example shows three (3) different types of light emitting elements 125 , a first type of light emitting element 125 a that produces light of one color, a second type of light emitting element 125 b that produces light of another color, and a third type of light emitting element 125 c that produces light of yet another color.
  • These light colors can be red light, green light, and blue light, for example.
  • the pattern can include twice as many light emitting elements that produce red light than those that produce green light or blue light. In other implementations, the pattern can include a light emitting element that produces red light that is twice a size of those that produce green light or blue light. In other implementations, the pattern can include a fourth type of light emitting element 125 that produces light of fourth color, such as white light, for example. Generally, the area of light emitting elements of one color can be varied relative to the area of light emitting elements of other color(s) to meet particular color gamut and/or power efficiency needs.
  • the patterns and colors described in connection with FIG. 2 are provided by way of illustration and not of limitation.
  • a wide range of patterns and/or colors may be available for the light emitting elements 125 of a picture element.
  • additional light emitting elements can be used in a particular pattern to provide redundancy.
  • the diagram 200 in FIG. 2 also illustrates having the various types of light emitting elements 125 (e.g., light emitting elements 125 a , 125 b , and 125 c ) monolithically integrated on a same semiconductor substrate.
  • the different types of light emitting elements 125 are based on different materials (or different variations or compositions of the same material)
  • each of these different materials needs to be compatible with the semiconductor substrate such that the different types of light emitting elements 125 can be monolithically integrated with the semiconductor substrate.
  • This allows for the ultra-high-density arrays of light emitting elements 125 (e.g., arrays of RGB light emitting elements) that are needed for light field displays.
  • a diagram 300 in FIG. 3 shows a light field display 310 having multiple picture elements or super-raxels 320 .
  • a light field display 310 can be used for different types of applications and its size may vary accordingly.
  • a light field display 310 can have different sizes when used as displays for watches, near-eye applications, phones, tablets, laptops, monitors, televisions, and billboards, to name a few.
  • the picture elements 320 in the light field display 310 can be organized into arrays, grids, or other types of ordered arrangements of different sizes. In the example shown in FIG.
  • the picture elements 320 can be organized or positioned into an N ⁇ M array, with N being the number of rows of picture elements in the array and M being the number of columns of picture elements in the array. An enlarged portion of such an array is shown to the right of the light field display 310 .
  • examples of array sizes can include N ⁇ 10 and M ⁇ 10 and N ⁇ 100 and M ⁇ 100, with each picture element 320 in the array having itself an array or grid of light emitting elements 125 .
  • examples of array sizes can include N ⁇ 500 and M ⁇ 500, N ⁇ 1,000 and M ⁇ 1,000, N ⁇ 5,000 and M ⁇ 5,000, and N ⁇ 10,000 and M ⁇ 10,000, with each picture element 320 in the array having itself an array or grid of light emitting elements 125 .
  • the N ⁇ M array of picture elements 320 can be a 2,160 ⁇ 3,840 array including approximately 8.3 million picture elements 320 .
  • the 4K light field display can have a resolution that is one or two orders of magnitude greater than that of a corresponding traditional display.
  • the picture elements or super-raxels 320 include as light emitting elements 125 different LEDs that produce red (R) light, green (G) light, and blue (B) light
  • the 4K light field display can be said to be made from monolithically integrated RGB LED super-raxels.
  • Each of the picture elements 320 in the light field display 310 can represent a minimum picture element size limited by display resolution.
  • an array or grid of light emitting elements 125 of a picture element 320 can be smaller than the corresponding light steering optical element 115 for that picture element.
  • the size of the array or grid of light emitting elements 125 of a picture element 320 it is possible for the size of the array or grid of light emitting elements 125 of a picture element 320 to be similar to the size of the corresponding light steering optical element 115 (e.g., the diameter of a microlens or lenslet), which in turn is similar or the same as a pitch 330 between picture elements 320 .
  • the array of light emitting elements 125 can be a P ⁇ Q array, with P being the number of rows of light emitting elements 125 in the array and Q being the number of columns of light emitting elements 125 in the array.
  • Examples of array sizes can include P ⁇ 5 and Q ⁇ 5, P ⁇ 8 and Q ⁇ 8, P ⁇ 9 and Q ⁇ 9, P ⁇ 10 and Q ⁇ 10, P ⁇ 12 and Q ⁇ 12, P ⁇ 20 and Q ⁇ 20, and P ⁇ 25 and Q ⁇ 25.
  • a P ⁇ Q array is a 9 ⁇ 9 array including 81 light emitting elements or sub-raxels 125 .
  • the array of light emitting elements 125 for the picture element 320 need not be limited to square or rectangular shapes and can be based on a hexagonal shape or other shapes as well.
  • the light emitting elements 125 in the array can include separate and distinct groups of light emitting elements 125 (see e.g., group of light emitting elements 610 in FIGS. 6A, 6B and 8A ) that are allocated or grouped (e.g., logically grouped) based on spatial and angular proximity and that are configured to produce the different light outputs (e.g., directional light outputs) that contribute to produce light field views provided by the light field display 310 to a viewer.
  • the grouping of sub-raxels or light emitting elements into raxels need not be unique. For example, during assembly or manufacturing, there can be a mapping of sub-raxels into particular raxels that best optimize the display experience.
  • a similar re-mapping can be performed by the display once deployed to account for, for example, aging of various parts or elements of the display, including variations in the aging of light emitting elements of different colors and/or in the aging of light steering optical elements.
  • groups of light emitting elements and the term “raxel” can be used interchangeably to describe a similar structural unit in a light field display.
  • the light field views produced by the contribution of the various groups of light emitting elements or raxels can be perceived by a viewer as continuous or non-continuous views.
  • Each of the groups of light emitting elements 125 in the array of light emitting elements 125 includes light emitting elements that produce at least three different colors of light (e.g., red light, green light, blue light, and perhaps also white light).
  • each of these groups or raxels includes at least one light emitting element 125 that produces red light, one light emitting element 125 that produces green light, and one light emitting element 125 that produce blue light.
  • each of these groups or raxels includes two light emitting elements 125 that produce red light, one light emitting element 125 that produces green light, and one light emitting element 125 that produces blue light.
  • each of these groups or raxels includes one light emitting element 125 that produces red light, one light emitting element 125 that produces green light, one light emitting element 125 that produces blue light, and one light emitting element 125 that produces white light.
  • a size of an array or grid of light emitting elements 125 e.g., a diameter, width, or span of the array or grid
  • a size associated with a picture element or super-raxel 320 can be in this range.
  • the term “about” as used in this disclosure indicates a nominal value or a variation within 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, or 25% from the nominal value.
  • a size of each group of light emitting elements 125 (e.g., a diameter, width, or span of the group) in a picture element 320 can range between about 1 micron and about 10 microns. That is, a size associated with a group of light emitting elements 125 (e.g., raxel 610 ) can be in this range.
  • a size of a group of light emitting elements 125 in a picture element 320 can be greater than 10 microns because a size of the light emitting elements 125 in such a group could be as large as 10 microns.
  • a size of each light emitting element 125 can range between about 0.4 microns and about 4 microns. Similarly, a size of each light emitting element 125 (e.g., a diameter, width, or span of the light emitting element or sub-raxel) can be less than about 1 micron. Moreover, a size of each light emitting element 125 in some implementations can be as large as 10 microns. That is, a size associated with a light emitting element or sub-raxel 125 can be in the ranges described above.
  • a size of a light steering optical element 115 can range between about 10 microns and about 1,000 microns, which is similar to the range of sizes for a picture element or super-raxel.
  • a diagram 400 shows another example of the light field display 310 illustrating an enlarged view of a portion of an array of picture elements 320 with corresponding light steering optical elements 115 .
  • the pitch 330 can represent a spacing or distance between picture elements 320 and can be about a size of the light steering optical element 115 (e.g., size of a microlens or lenslet).
  • the light field display 310 in FIG. 4 can be a 4K light field display with a 2,160 ⁇ 3,840 array of picture elements or super-raxels 320 .
  • a size of the light steering optical element 115 can be about 0.5 millimeters. Such a size can be consistent with human acuity of about 1 arc-minute/picture element.
  • the viewer's field of view (FOV) in this example can be about 64 degrees, which can be less than a viewing angle provided by the picture element (e.g., viewing angle >FOV).
  • the multiple views provided by the 4K light field display in this example can have a 4 millimeter width, consistent with a diameter of the human pupil. This can translate to the light steering optical element 115 steering the output light produced by a picture element 320 having, for example, 31 2 light emitting elements 125 . Accordingly, the 4K light field display in this example can provide continuous parallax with light field phase or horizontal parallax with light field phase.
  • the light field display 310 can optionally include a picture element configuration controller 410 that can select, identify, or otherwise choose a configuration that is to be used for the picture elements 320 in the light field display 310 .
  • a picture element configuration controller 410 can identify a particular configuration and can use hardware, software, or a combination of hardware and software to take the light emitting elements of the picture element 320 and organize them into different portions or regions that support the particular configuration of interest.
  • FIGS. 9A-9F which are described in more detail below, provide some illustrative examples of different configurations that can be programmed or configured into the picture elements 320 .
  • the picture element configuration controller 410 can dynamically identify a first portion (e.g., to produce 2D views) and a second portion (e.g., to produce 3D views) of each picture element 320 as in the various configurations described below in connection with FIGS. 9A-9F .
  • the picture element configuration controller 410 can then, based on the identified first portion and second portion, configure a first set of light emitting elements 125 in the picture element 320 and associated with the first portion, and a second set of light emitting elements 125 in the picture element 320 and associated with the second portion.
  • Each of the configurations supported includes a corresponding first portion and second portion.
  • the first portion is identified from a set of several possible first portions based on several possible configurations
  • the second portion is similarly identified from a set of several possible second portions based on several possible configurations.
  • the picture element configuration controller 410 can include a memory 420 with instructions and a processor 415 configured to execute the instructions to perform the dynamic identification and configuration described above.
  • the picture element configuration controller 410 via the processor 415 and/or the memory 420 , can configure one or both of hardware means or software means to perform the dynamic identification and configuration.
  • the picture element configuration controller 410 can configure and/or control the drivers 135 (or unit cells used for driving) in the backplane 130 , any software/firmware that controls the drivers 135 , and/or hardware/software (not shown) that provides information to the drivers 135 in order to perform the dynamic identification and configuration described above.
  • the picture element configuration controller 410 to identify, select, and configure a first set of light emitting elements 125 in a picture element 320 to be part of the first portion of the picture element 320 and a second set of light emitting elements 125 in a picture element 320 to be part of the second portion of the picture element 320 .
  • a diagram 500 in FIG. 5 illustrates an alternative configuration of a light field display that is also capable of operating as a camera by performing light field capture using neighboring light detecting elements or sensors 127 .
  • a light field display and camera 310 a includes an N ⁇ M array of picture elements 320 , a portion of the array is shown enlarged to the right of the diagram 500 .
  • the light detecting elements 127 can be, for example, silicon-based image sensors assembled with similar integral optical elements as those used by the picture elements 320 (e.g., the light steering optical elements 115 ). In one implementation, as shown in FIG.
  • the light detecting elements 127 can be positioned nearby or adjacent to the picture elements 320 in a one-to-one correspondence (e.g., one capture element for each display element). In other implementations, the number of light detecting elements 127 can be less than the number of picture elements 320 .
  • each light detecting element 127 can include multiple sub-sensors for capturing light in the same fashion as each picture element 320 (e.g., a super-raxel) can include multiple light emitting elements 125 (e.g., multiple sub-raxels) or multiple groups of light emitting elements 125 (e.g., multiple raxels).
  • the light detecting elements 127 can be integrated in the same plane 120 a as the light emitting elements 125 . Some or all of the features of the light detecting elements 127 , however, could be implemented in the backplane 130 a since the backplane 130 a is also likely to be silicon-based (e.g., a silicon-based substrate). In such a case, at least some of the features of the light detecting elements 127 can be integrated with the detectors 137 in the backplane 130 a to more efficiently have the circuitry or electronic means in the detectors 137 operate the light detecting elements 127 .
  • a diagram 600 a in FIG. 6A shows a cross-sectional view of a portion of a light field display (e.g., the light field display 310 ) to illustrate some of the structural units described in this disclosure.
  • the diagram 600 a shows three adjacent picture elements or super-raxels 320 a , each having a corresponding light steering optical element 115 .
  • the light steering optical element 115 can be considered separate from the picture element 320 a but in other instances the light steering optical element 115 can be considered to be part of the picture element.
  • each picture element 320 a includes multiple light emitting elements 125 (e.g., multiple sub-raxels), where several light emitting elements 125 (e.g., several sub-raxels) of different types can be grouped together into the group 610 (e.g., into a raxel) associated with a particular light view to be provided by the light field display.
  • a group or raxel can produce various components (see FIG. 6B ) that contribute to a particular ray element 105 as shown by the right-most group or raxel in the middle picture element 320 a . Is it to be understood that the ray elements 105 produced by different groups or raxels in different picture elements can contribute to a view perceived by viewer away from the light field display.
  • FIG. 6A An additional structural unit described in FIG. 6A is the concept of a sub-picture element 620 , which represents a grouping of the light emitting elements 125 of the same type (e.g., produce the same color of light) of the picture element 320 a . Additional details related to sub-picture elements 620 are described below in connection with FIGS. 8B, 9B, and 9C .
  • a diagram 600 b in FIG. 6B shows another cross-sectional view of a portion of a light field display (e.g., the light field display 310 ) to illustrate the varying spatial directionality of the ray elements produced by three adjacent picture elements or super-raxels 320 a , each having a corresponding light steering optical element 115 .
  • a group of light emitting elements 125 in the left-most picture element 320 a produces a ray element 105 a (e.g., light output), where the ray element 105 a is a combination of ray element components 630 (e.g., light output sub-components) produced or generated by the group of light emitting elements 125 .
  • each of these can produce or generate a component (e.g., a light component of a different color) of the ray element 105 a .
  • the ray element 105 a has a certain, specified spatial directionality, which can be defined based on multiple angles (e.g., based on two or three angles).
  • a group of light emitting elements 125 in the middle picture element 320 a produces a ray element 105 b (e.g., light output), where the ray element 105 b is a combination of ray element components 630 produced or generated by the group of light emitting elements 125 .
  • the ray element 105 b has a certain, specified spatial directionality, different from the one of the ray element 105 a , which can also be defined based on multiple angles.
  • a diagram 700 a shows a first configuration or approach for a light field display.
  • this configuration which can be referred to as a picture element array of raxel arrays different light field views (e.g., View A, View B) can be provided by combining the ray elements 105 emitted by the various picture elements 320 b in the light field display 310 .
  • the light steering optical element 115 can be considered to be part of the picture elements 320 b .
  • each picture element 320 b there is an array or grid 710 of groups of light emitting elements 125 (e.g., an array or grid of raxels), where each of these groups produces a light output having at least one component (see FIG. 6B ) that is provided by the light field display 310 as a contribution to construct or form a view perceived by a viewer at a certain location or position from the light field display 310 .
  • groups of light emitting elements 125 e.g., an array or grid of raxels
  • each of these groups produces a light output having at least one component (see FIG. 6B ) that is provided by the light field display 310 as a contribution to construct or form a view perceived by a viewer at a certain location or position from the light field display 310 .
  • the same group or raxel can contribute to
  • each picture element 320 b there can be a spatial (e.g., lateral) offset between a position of the light steering optical element 115 and a position of the array 710 based on where the picture element 320 b is positioned in the light field display 310 .
  • a diagram 700 b shows a second configuration or approach for a light field display that supports light capture as well.
  • the light field display and camera 310 a in this configuration is substantially similar to the light field display 310 shown in FIG. 7A , however, in the light field display and camera 310 a there is a camera lens 725 to steer or direct the ray elements 107 to the appropriate light detecting elements (e.g., sensors 127 ) in an array 710 a having groups of light emitting elements 125 along with the light detecting elements.
  • the appropriate light detecting elements e.g., sensors 127
  • FIG. 8A shows a diagram 800 a describing various details of one implementation of a picture element 320 .
  • the picture element 320 e.g., a super-raxel
  • has a respective light steering optical element 115 shown with a dashed line
  • the light steering optical element 115 can be of the same or similar size as the array 810 , or could be slightly larger than the array 810 as illustrated. It is to be understood that some of the sizes illustrated in the figures of this disclosure have been exaggerated for purposes of illustration and need not be considered to be an exact representation of actual or relative sizes.
  • the light emitting elements 125 in the array 810 include different types of light emitting elements to produce light of different colors and are arranged or configured (e.g., via hardware and/or software) into separate groups 610 (e.g., separate raxels), each of which produces a different light output (e.g., directional light output) that contributes to one or more light field views perceived by a viewer. That is, each group 610 is configured to contribute to one or more of the views that are to be provided to a viewer (or viewers) by the light field display that includes the picture element 320 .
  • groups 610 e.g., separate raxels
  • each group 610 is configured to contribute to one or more of the views that are to be provided to a viewer (or viewers) by the light field display that includes the picture element 320 .
  • the array 810 has a geometric arrangement to allow adjacent or close placement of two or more picture elements.
  • the geometric arrangement can be one of a hexagonal shape (as shown in FIG. 8A ), a square shape, or a rectangular shape.
  • the picture element 320 in FIG. 8A can have corresponding electronic means (e.g., in the backplane 130 in FIG. 1A ) that includes multiple driver circuits configured to drive the light emitting elements 125 in the picture element 230 .
  • the electronic means can include multiple unit cells configured to control the operation of individual groups and/or light emitting elements that are part of a group.
  • FIG. 8B shows a diagram 800 b describing various details of another implementation of a picture element 320 .
  • the picture element 320 e.g., a super-raxel
  • FIG. 8B includes multiple sub-picture elements 620 monolithically integrated on a same semiconductor substrate.
  • Each sub-picture element 620 has a respective light steering optical element 115 (shown with a dashed line) and includes an array or grid 810 a of light emitting elements 125 (e.g., sub-raxels) that produce the same color of light.
  • the light steering optical element 115 can be of the same or similar size as the array 810 a , or could be slightly larger than the array 810 a as illustrated.
  • the light steering optical element 115 of one of the sub-picture elements 620 is configured to minimize the chromatic aberration for a color of light produced by the light emitting elements 125 in that sub-picture element 620 by optimizing the structure of the light steering optical element for the specified color wavelength. By minimizing the chromatic aberration it may be possible to improve the sharpness of the light field views and compensate for how the magnification is different away from the center of the picture element. Moreover, the light steering optical element 115 is aligned and bonded to the array 810 a of the respective sub-picture element 620 .
  • the light emitting elements 125 of the sub-picture elements 620 are arranged into separate groups 610 (e.g., raxels). Each group 610 can provide a contribution (e.g., a ray element) to a view perceived by a viewer at a certain position or location from the light field display.
  • each group 610 can include collocated light emitting elements 125 from each of the sub-picture elements 620 (e.g., same position in each sub-picture element).
  • each group 610 can include non-collocated light emitting elements 125 from each of the sub-picture elements 620 (e.g., different positions in each sub-picture element).
  • each group 610 can include a combination of collocated and non-collocated light emitting elements 125 from each of the sub-picture elements 620 .
  • the array 810 a has a geometric arrangement to allow adjacent placement of two or more sub-picture elements.
  • the geometric arrangement can be one of a hexagonal shape (as shown in FIG. 8B ), a square shape, or a rectangular shape.
  • the picture element 320 in FIG. 8B can have corresponding electronic means (e.g., in the backplane 130 in FIG. 1A ) that includes multiple driver circuits configured to drive the light emitting elements 125 in the picture element 230 .
  • one or more common driver circuits can be used for each of the sub-picture elements 620 .
  • the electronic means can include multiple unit cells configured to control the operation of individual sub-picture elements and/or light emitting elements that are part of a sub-picture element.
  • a light field display that provides a partial set of light field views can be referred to as a partial light field display, for example.
  • the features described above in connection with different light field displays can apply as appropriate to a partial light field display, including having similar physical characteristics and structural units (e.g., picture elements or super-raxels, light emitting elements or sub-raxels, light detecting elements, groups of light emitting elements or raxels, light steering optical elements).
  • the terms “light field views” and “views” can be used interchangeably.
  • a diagram 900 a in FIG. 9A shows an example of a picture element 320 configured to provide or contribute to a full set of light field views.
  • the entire area of the picture element 320 is covered with an array or grid of groups of light emitting elements 610 (or raxels 610 ), where each of these groups provides or contributes to a different light field view.
  • the light field display can provide a full set of light field views based on the contributions from the raxels 610 in the picture elements 320 .
  • a diagram 900 b shows an example of a picture element 320 configured to provide or contribute to light field views in the middle.
  • a first or outer portion or region 910 of the picture element 320 provides a single two dimensional (2D) view around the perimeter of the picture element 320 .
  • a second or inner portion or region 920 of the picture element 320 which is surrounded by the first portion 910 and is placed or positioned about the middle of the picture element 320 , is configured to provide light field views in this portion of the picture element 320 .
  • being placed or positioned about the middle can refer to the second portion 920 being offset (e.g., laterally offset, vertically offset, or a combination) from a center or middle of the picture element 320 .
  • the second portion 920 includes an array or grid of groups of light emitting elements 610 (or raxels 610 ), where each of these groups provides or contributes to a different light field view.
  • the light field display can provide a 2D view in the perimeter and light field views in the middle based on the contributions from the raxels 610 in the picture elements 320 .
  • the first portion 910 can be used to provide more than one (at least one) 2D view.
  • a different 2D view can be provided on a right side of the first portion 910 than one a left side of the first portion 910 .
  • a different 2D view can be provided in a center or middle of the first portion 910 than on either or both of the right side or the left side of the first portion 910 .
  • a diagram 900 c shows an example of a picture element 320 configured to provide or contribute to horizontal light field views in the middle.
  • a first or outer portion or region 910 of the picture element 320 provides a single 2D view around the perimeter of the picture element 320 .
  • a second or inner portion or region 920 of the picture element 320 which is surrounded by the first portion 910 and is placed or positioned about the middle of the picture element 320 , is configured to provide horizontal light field views in this portion of the picture element 320 .
  • being placed or positioned about the middle can refer to the second portion 920 being offset (e.g., laterally offset, vertically offset, or a combination) from a center or middle of the picture element 320 .
  • the second portion 920 includes an array or grid of groups of light emitting elements 610 (or raxels 610 ), where each of these groups provides or contributes to a different horizontal light field view.
  • the groups or raxels 610 in FIG. 9C are different from those in FIG. 9B because the configuration of the raxels 610 in FIG. 9C supports horizontal views only as opposed to support for both horizontal and vertical views as done by the configuration of the raxels 610 in FIG. 9B .
  • the light field display can provide at least a 2D view in the perimeter and horizontal light field views in the middle based on the contributions from the raxels 610 in the picture elements 320 . Moreover, similar to FIG. 9C , more than one 2D view can be produced, with contributions to different 2D views being produced by different areas or regions of the first portion 910 .
  • a diagram 900 d shows an example of a picture element 320 configured to provide or contribute to light field views in designated locations or positions.
  • a first or outer portion or region 910 of the picture element 320 provides a single 2D view generally around the perimeter of the picture element 320 .
  • a second or inner portion or region 920 of the picture element 320 which is surrounded by the first portion 910 , is configured to provide light field views in designated or predetermined locations or positions of the picture element 320 .
  • the second portion 920 can include multiple, separate sub-portions 930 , each of which is in a different location or position of the picture element 320 .
  • the 9D has three sub-portions 930 horizontally aligned, this disclosure need not be so limited. That is, the number of sub-portions 930 can be less or greater than the number shown in FIG. 9D . Moreover, the sub-portions 930 can be aligned in different ways (e.g., horizontally aligned, vertically aligned, or a combination), or need not be aligned at all.
  • Each of the sub-portions 930 of the second portion 920 includes an array or grid of groups of light emitting elements 610 (or raxels 610 ), where each of these groups provides or contributes to a different light field view.
  • the light field display can provide a 2D view in the perimeter and light field views in the designated positions based on the contributions from the raxels 610 that are located in the various sub-portions 930 in the picture elements 320 .
  • a diagram 900 e shows another example of the picture element 320 in FIG. 9D , where the picture element 320 is configured to provide or contribute to light field views in designated locations or positions that enable support for two left-right eye orientations.
  • there are four (4) sub-portion 930 two of which are vertically aligned about the center or middle of the picture element 320 to provide a left-right eye vertical or portrait orientation, and another two are horizontally aligned about the center or middle of the picture element 320 to provide a left-right eye horizontal or landscape orientation.
  • the light field display can provide a 2D view in the perimeter and light field views in the designated positions based on the contributions from the raxels 610 that are located in the various sub-portions 930 in the picture elements 320 , where the light field views provided support vertical and horizontal left-right eye orientations.
  • a diagram 900 f shows an example of a picture element 320 configured to provide or contribute light field views to support any left-right eye orientation.
  • a first or outer portion 910 of the picture element 320 provides a single 2D view around the perimeter of the picture element 320 .
  • a second or inner portion 920 of the picture element 320 which has a disk-shape and is surrounded by the first portion 910 , is placed or positioned about the middle of the picture element 320 , and is configured to provide light field views that support any left-right eye orientation.
  • being placed or positioned about the middle can refer to the second portion 920 being offset (e.g., laterally offset, vertically offset, or a combination) from a center or middle of the picture element 320 .
  • the inside of the disk-shaped second portion 920 can be considered to be part of the first portion 910 and can therefore provide a 2D view in the middle of the picture element 320 .
  • the second portion 920 includes an arrangement of groups of light emitting elements 610 (or raxels 610 ), where each of these groups provides or contributes to a different horizontal light field view.
  • the light field display can provide a 2D view in the perimeter and in the middle/center, and light field views in a disk-shaped portion about the middle/center based on the contributions from the raxels 610 in the picture elements 320 .
  • Each of the configurations described above in connection with FIGS. 9A-9F can be implemented using the array of light emitting elements in a picture element as shown in the diagram 800 a in FIG. 8A , or using a picture element with sub-picture elements as shown in the diagram 800 b in FIG. 8B . That is, the light emitting elements 125 and/or the groups or raxels 610 of light emitting elements 125 can be arranged, organized, and controlled (e.g., addressed) as described in FIG. 8A or as described in FIG. 8B .
  • the portion of the picture element 320 that is used to provide at least one 2D view there are light emitting elements that produce red light, light emitting elements that produce green light, and light emitting elements that produce blue light, where each of the light emitting elements and/or each group of light emitting elements in this portion can be individually controlled by respective circuits in the electronic means.
  • the portion of the picture element 320 that is used to provide at least one 3D view there are also light emitting elements that produce red light, light emitting elements that produce green light, and light emitting elements that produce blue light, where each of the light emitting elements and/or each group of light emitting elements in this portion can be individually controlled by respective circuits in the electronic means.
  • the portion of the picture element 320 that issued to provide at least one 2D view there are light emitting elements that produce red light, light emitting elements that produce green light, and light emitting elements that produce blue light, where the light emitting elements that produce light of the same color (or a subset thereof) can be controlled by respective circuits in the electronic means.
  • the light emitting elements of a particular color (or a subset thereof) in this portion can effectively operate as a single light emitting element.
  • the portion of the picture element 320 that is used to provide at least one 3D view there are also light emitting elements that produce red light, light emitting elements that produce green light, and light emitting elements that produce blue light, where the light emitting elements that produce light of the same color (or a subset thereof) can be controlled by respective circuits in the electronic means.
  • the picture elements 320 described in connection with various configurations as described in FIGS. 9A-9F can be configured to have certain portions or regions produce light outputs that contribute to providing one or more 2D views to a viewer away from the light field display.
  • the picture elements 320 can be further configured to control the light output properties (e.g., illumination levels) of the appropriate light emitting elements 125 and/or groups of light emitting elements (e.g., raxels 610 ) for dimming or turning off the 2D views to, for example, de-emphasize the 2D views relative to 3D views and/or to save power.
  • the light output properties e.g., illumination levels
  • groups of light emitting elements e.g., raxels 610

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computing Systems (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

The disclosure describes various aspects of a partial light field display architecture. In an aspect, a light field display includes multiple picture elements (e.g., super-raxels), where each picture element includes a first portion having a first set of light emitting elements, where the first portion is configured to produce light outputs that contribute to at least one a two-dimensional (2D) view. Each picture element also includes a second portion including a second set of light emitting elements (e.g., sub-raxels) configured to produce light outputs (e.g., ray elements) that contribute to at least one three-dimensional (3D) view. The light field display also includes electronic means configured to drive the first set of light emitting elements and the second set of light emitting elements in each picture element. The light field display can also dynamically identify the first portion and the second portion and allocate light emitting elements accordingly.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 17/306,914 filed May 3, 2021, which is a continuation of U.S. patent application Ser. No. 16/391,987 filed Apr. 23, 2019, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/662,633, filed Apr. 25, 2018. The content of each of the aforementioned applications is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE DISCLOSURE
  • Aspects of the present disclosure generally relate to displays, and more specifically, to a partial light field display architecture.
  • With the advent of different video applications and services, there is a growing interest in the use of displays that can provide an image in three full dimensions (3D). There are different types of displays capable of doing so, including volumetric displays, holographic displays, integral imaging displays, and compressive light field displays, to name a few. Existing display technologies can have several limitations, including limitations on the views provided to the viewer, the complexity of the equipment needed to provide the various views, or the cost associated with making the display.
  • Light field or lightfield displays, however, present some of the better options as they can be flat displays configured to provide multiple views at different locations to enable the perception of depth or 3D to a viewer. Light field displays can require a large number of light emitting elements, at resolutions that can be two to three orders of magnitude greater than those of traditional displays. Therefore, there are challenges in both the number of light emitting elements and the manner in which they are organized that need consideration to enable the ultra-high-density required to provide the best possible experience to a viewer.
  • SUMMARY OF THE DISCLOSURE
  • The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
  • As used in this disclosure, the term sub-raxel may refer to a light emitting element, including light emitting element that produce a single color of light and light emitting elements that produce red, green, and blue light, the term raxel may refer to a group or allocation of sub-raxels (e.g., neighboring or nearby positioned sub-raxels), and the term super-raxel or picture element may refer to an array or arrangement of light emitting elements that are organized, grouped, or otherwise allocated into different raxels.
  • In an aspect of the disclosure, a light field display includes multiple picture elements (e.g., super-raxels), where each picture element includes a first portion having a first set of light emitting elements, where the first portion is configured to produce light outputs that contribute to at least one two-dimensional (2D) view provided by the light field display. A picture element may also be referred to as a light field picture element. Each picture element also includes a second portion having a second set of light emitting elements (e.g., sub-raxels) that produce light outputs that contribute to at least one three-dimensional (3D) view provided by the light field display. The light field display also includes electronic means configured to drive the first set of light emitting elements and the second set of light emitting elements in each picture element. The light field display can also dynamically identify the first portion and the second portion and allocate light emitting elements accordingly. Separate groups (e.g., raxels) of light emitting elements can be configured to compose picture elements (e.g., super-raxels) and a directional resolution of the light field display can be based on the number of groups.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The appended drawings illustrate only some implementation and are therefore not to be considered limiting of scope.
  • FIG. 1A illustrates an example of a picture element for light field displays, in accordance with aspects of this disclosure.
  • FIG. 1B illustrates another example of a picture element for light field displays, in accordance with aspects of this disclosure.
  • FIG. 2 illustrates an example of light emitting elements in a picture element, in accordance with aspects of this disclosure.
  • FIG. 3 illustrates an example of a light field display having multiple picture elements, in accordance with aspects of this disclosure.
  • FIG. 4 illustrates another example of a light field display having multiple picture elements, in accordance with aspects of this disclosure.
  • FIG. 5 illustrates an example of a light field display and camera having multiple picture elements and light detecting elements, in accordance with aspects of this disclosure.
  • FIG. 6A illustrates an example of a cross-sectional view of a portion of a light field display, in accordance with aspects of this disclosure.
  • FIG. 6B illustrates another example of a cross-sectional view of a portion of a light field display, in accordance with aspects of this disclosure.
  • FIG. 7A illustrates an example of a configuration of a light field display, in accordance with aspects of this disclosure.
  • FIG. 7B illustrates another example of a configuration of a light field display, in accordance with aspects of this disclosure.
  • FIG. 8A illustrates an example of an array of light emitting elements in a picture element, in accordance with aspects of this disclosure.
  • FIG. 8B illustrates an example of a picture element with sub-picture elements, in accordance with aspects of this disclosure.
  • FIG. 9A illustrates an example of a light field display picture element with full light field views, in accordance with aspects of this disclosure.
  • FIG. 9B illustrates an example of a light field display picture element with light field views in the middle, in accordance with aspects of this disclosure.
  • FIG. 9C illustrates an example of a light field display picture element with horizontal views in the middle, in accordance with aspects of this disclosure.
  • FIG. 9D illustrates an example of a light field display picture element with light field views in designated locations, in accordance with aspects of this disclosure.
  • FIG. 9E illustrates an example of a light field display picture element with two left-right eye orientations, in accordance with aspects of this disclosure.
  • FIG. 9F illustrates an example of a light field display picture element with continuous left-right eye orientations, in accordance with aspects of this disclosure.
  • DETAILED DESCRIPTION
  • The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known components are shown in block diagram form in order to avoid obscuring such concepts.
  • FIG. 1A shows a diagram 100 a describing an example of a picture element for light field displays, also referred to as multi-view displays, for example. A light field display (see e.g., light field displays 310 in FIGS. 3-5) can include multiple picture elements (see e.g., picture elements 320 in FIGS. 3-5), which can be organized in arrays, grids, or other types of ordered arrangements. In some implementations, the multiple picture elements can be monolithically integrated on a same semiconductor substrate. That is, multiple picture elements can be fabricated, constructed, and/or formed from one or more layers of the same or different materials disposed, formed, and/or grown on a single, continuous semiconductor substrate. Additional details regarding materials and other aspects related to the semiconductor substrate are provided below. In this disclosure, the term “picture element” and the term “super-raxel” can be used interchangeably to describe a similar structural unit in a light field display. In some instances, a “picture element” can be referred to as a pixel, but it is different from a pixel used in traditional displays.
  • A single picture element can include many light emitting elements 125. As noted above, a picture element is different from a pixel in a traditional display in that a pixel generally identifies a discrete element that emits light (e.g., in a non-directional manner, Lambertian emission) while a picture element includes multiple light emitting elements 125, which are themselves organized and configured to produce or generate light outputs that can be directional in nature, where these light outputs (e.g., ray elements) contribute to the formation of multiple, different light field views that are to be provided by the light field display to a viewer in different locations or positions away from the light field display. In an example, each particular location or position away from the light field display can be associated with a light field view provided by the light field display. Additional aspects regarding the arrangement and characteristics of the light emitting elements 125 in a picture element are described in more detail below, further identifying differences between a picture element in a light field display and a pixel in a traditional display.
  • A picture element can have a corresponding light steering optical element 115 as shown in FIG. 1A. The light steering optical element 115 can be configured to steer or direct different ray elements 105 produced (e.g., emitted) by the light emitting elements 125. In an aspect, the different ray elements 105 may correspond to different directions of light outputs produced by one or more light emitting elements 125. In this regard, the directional resolution of the picture element or the light field display may correspond to a number of light output directions supported. Moreover, the light field views provided by the light field display are produced by a contribution from various light outputs that are received by the viewer in a particular location or position away from the light field display. The light steering optical element 115 can be considered part of the picture element, that is, the light steering optical element 115 is an integral component of the picture element. The light steering optical element 115 can be aligned and physically coupled or bonded to the light emitting elements 125 of its respective picture element. In some implementations, there may be one or more layers or materials (e.g., optically transparent layers or materials) disposed between the light steering optical element 115 and the light emitting elements 125 of its respective picture element.
  • In one example, a light steering optical element 115 can be a microlens or a lenslet as shown in FIG. 1A, which can be configured to steer or direct the ray elements 105 (e.g., the different light field views) in the appropriate directions. A light steering optical element 115 can include a single optical structure (e.g., a single microlens or lenslet) or can be constructed or formed to include multiple optical structures. For example, a light steering optical element 115 can have at least one microlens, at least one grating, or a combination of both. In another example, a light steering optical element 115 can have multiple layers of optical components (e.g., microlenses and/or gratings) that combined produce the appropriate light steering effect. For example, a light steering optical element 115 can have a first microlens and a second microlens stacked over the first microlens, with the first microlens being associated with a first layer and the second microlens being associated with a second layer. A different example can use a grating or a grating and microlens combination in either or both layers. The construction of the light steering optical element 115, and therefore the positioning and characteristics of any microlenses and/or gratings built or formed therein, is intended to produce the proper steering or directing of the ray elements 105.
  • Different types of devices can be used for the light emitting elements 125. In one example, a light emitting element 125 can be a light-emitting diode (LED) made from one or more semiconductor materials. The LED can be an inorganic LED. To achieve the high densities needed in light field displays, the LED can be, for example, a micro-LED, also referred to as a microLED, an mLED, or a μLED, which can provide better performance, including brightness and energy efficiency, than other display technologies such as liquid crystal display (LCD) technology or organic LED (OLED) technology. The terms “light emitting element,” “light emitter,” or “emitter,” can be used interchangeably in this disclosure, and can also be used to refer to a microLED. Moreover, any of these terms can be used interchangeably with the term “sub-raxel” to describe a similar structural unit in a light field display.
  • The light emitting elements 125 of a picture element can be monolithically integrated on a same semiconductor substrate. That is, the light emitting elements 125 can be fabricated, constructed, and/or formed from one or more layers of the same or different materials disposed, formed, and/or grown on a single, continuous semiconductor substrate. The semiconductor substrate can include one or more of GaN, GaAs, Al2O3, Si, SiC, Ga2O3, alloys thereof, or derivatives thereof. For their part, the light emitting elements 125 monolithically integrated on the same semiconductor substrate can be made at least partially of one or more of AlN, GaN, InN, AlAs, GaAs, InAs, AlP, GaP, InP, alloys thereof, or derivatives thereof. In some implementations, each of the light emitting elements 125 can include a quantum well active region made from one or more of the materials described above.
  • The light emitting elements 125 can include different types of light emitting elements or devices to provide light of different colors, which in turn enable the light field display to make visually available to viewers a particular color gamut or range. In an example, the light emitting elements 125 can include a first type of light emitting element that produces green (G) light, a second type of light emitting element that produces red (R) light, and a third type of light emitting element that produces blue (B) light. In another example, the light emitting elements 125 can optionally include a fourth type of light emitting element that produces white (W) light. In another example, a single light emitting element 125 may be configured to produce different colors of light. Moreover, the lights produced by the light emitting elements 125 in a display enable the entire range of colors available on the display, that is, the display's color gamut. The display's color gamut is a function of the wavelength and linewidth of each of the constituent color sources (e.g., red, green, blue color sources).
  • In one implementation, the different types of colors of light can be achieved by having changing the composition of one or more materials (e.g., semiconductor materials) in the light emitting elements or by using different structures (e.g., quantum dots of different sizes) as part of or in connection with the light emitting elements. For example, when the light emitting elements 125 of a picture element are LEDs, a first set of the LEDs in the picture can be made at least in part of InGaN with a first composition of indium (In), a second set of the LEDs can be made at least in part of InGaN with a second composition of In different from the first composition of In, and a third set of the LEDs can be made at least in part of InGaN with a third composition of In different from the first and second compositions of In.
  • In another implementation, the different types of colors of light can be achieved by applying different color converters (e.g., color downconverters) to light emitting elements that produce a same or similar color of light. In one implementation, some or all of the light emitting elements 125 can include a respective color conversion media (e.g., color conversion material or combination of materials). For example, each of the light emitting elements 125 in a picture element is configured to produce blue light. A first set of the light emitting elements 125 simply provides the blue light, a second set of the light emitting elements 125 is further configured to downconvert (e.g., using one conversion media) the blue light to produce and provide green light, and a third set of the light emitting elements 125 is also further configured to downconvert (e.g., using another conversion media) the blue light this time to produce and provide red light.
  • The light emitting elements 125 of a picture element can themselves be organized in arrays, grids, or other types or ordered arrangements just like picture elements can be organized using different arrangements in a light field display.
  • Additionally, for each picture element there can be one or more drivers 135 for driving or operating the light emitting elements 125. The drivers 135 can be electronic circuits or means that are part of a backplane 130 and electronically coupled to the light emitting elements 125. The drivers 135 can be configured to provide the appropriate signals, voltages, and/or currents in order to drive or operate the light emitting elements 125 (e.g., to select a light emitting element, control settings, control brightness). In some implementations, there can be a one-to-one correspondence in which one driver 135 can be used to drive or operate a respective light emitting element 125. In other implementations, there can be a one-to-many correspondence in which one driver 135 can be used to drive or operate multiple light emitting elements 125. For example, the drivers 135 can be in the form of unit cells that are configured to drive a single light emitting element 125 or multiple light emitting elements 125.
  • In addition to the backplane 130 that includes the drivers 135, a light field display can also include a plane 120 having the light emitting elements 125. Moreover, a light field display can also include a plane 110 having the light steering optical elements 115. In an implementation, two of more of the plane 110, the plane 120, and the backplane 130 can be integrated or bonded together to form a stacked or three-dimensional (3D) structure. Additional layers, planes, or structures (not shown) can also be part of the stacked or 3D structure to facilitate or configure the connectivity, interoperability, adhesion, and/or distance between the planes. As used in this disclosure, the term “plane” and the term “layer” can be used interchangeably.
  • FIG. 1B shows a diagram 100 b illustrating another example of a picture element for light field displays. In this example, the picture element can not only provide or emit ray elements 105 (as shown also in FIG. 1B), but can also be configured to receive ray elements 107 through the light steering optical element 115. The ray elements 107 can correspond to directional light inputs that contribute to various views being received by the picture element or the light field display just like the ray elements 105 can correspond to directional light outputs that contribute to various views being provided by the picture element or the light field display to a viewer.
  • In the example in FIG. 1B, a plane 120 a having the light emitting elements 125 can also include one or more light detecting elements 127 to receive or capture light associated with the ray elements 107. The one or more light detecting elements 127 can be positioned in the plane 120 a adjacently surrounded by the light emitting elements 125, or alternatively, the one or more light detecting elements 127 can be positioned in the plane 120 a separate from the light emitting elements 125. The terms “light detecting element,” “light detector,” “light sensor,” or “sensor,” can be used interchangeably in this disclosure.
  • In some implementations, the light detecting elements 127 can be monolithically integrated on the same semiconductor substrate as the light emitting elements 125. As such, the light detecting elements 127 can be made of the same types of materials as described above from which the light emitting elements 125 can be made. Alternatively, the light detecting elements 127 can be made of different materials and/or structures (e.g., silicon complimentary metal-oxide-semiconductor (CMOS) or variations thereof) from those used to make the light emitting elements 125.
  • Moreover, a plane 130 a having the drivers 135 can also include one or more detectors 137 electronically coupled to the light detecting elements 127 and configured to provide the appropriate signals, voltages, and/or currents to operate the light detecting elements 127 (e.g., to select a light detecting element, control settings) and to produce signals (e.g., analog or digital signal) representative of the light that is received or captured by the light detecting elements 127.
  • The construction of the light steering optical element 115 in FIG. 1B, and therefore the positioning and characteristics of any microlenses and/or gratings built therein, is intended to produce the right steering or directing of the ray elements 105 away from the picture element to provide the various contributions that are needed for a viewer to perceive the light field views, and also to produce the right steering or directing of the ray elements 107 towards the appropriate light detecting elements 127. In some implementations, the light detecting elements 127 may use separate or additional light steering optical elements than the light steering optical element 115 used in connection with the light emitting elements 125. In such cases, the light steering optical element for the light detecting elements 127 can be included in the plane 110 having the light steering optical elements 115.
  • The different picture element structures described in FIGS. 1A and 1B enable control, placement, and directivity of the ray elements produced by the light emitting elements 125 of the picture element. In addition, the picture element structures in FIG. 1B enable control, placement, and directivity of the ray elements received by the picture element.
  • In FIG. 2, a diagram 200 shows an example of a pattern or mosaic of light emitting elements 125 in a picture element. In this example, a portion of an array or grid of light emitting elements 125 that are part of a picture element is enlarged to show one of different patterns or mosaics that can be used for the various types of light emitting elements 125. This example shows three (3) different types of light emitting elements 125, a first type of light emitting element 125 a that produces light of one color, a second type of light emitting element 125 b that produces light of another color, and a third type of light emitting element 125 c that produces light of yet another color. These light colors can be red light, green light, and blue light, for example. In some implementations, the pattern can include twice as many light emitting elements that produce red light than those that produce green light or blue light. In other implementations, the pattern can include a light emitting element that produces red light that is twice a size of those that produce green light or blue light. In other implementations, the pattern can include a fourth type of light emitting element 125 that produces light of fourth color, such as white light, for example. Generally, the area of light emitting elements of one color can be varied relative to the area of light emitting elements of other color(s) to meet particular color gamut and/or power efficiency needs. The patterns and colors described in connection with FIG. 2 are provided by way of illustration and not of limitation. A wide range of patterns and/or colors (e.g., to enable a specified color gamut in the display) may be available for the light emitting elements 125 of a picture element. In another aspect, additional light emitting elements (of any color) can be used in a particular pattern to provide redundancy.
  • The diagram 200 in FIG. 2 also illustrates having the various types of light emitting elements 125 (e.g., light emitting elements 125 a, 125 b, and 125 c) monolithically integrated on a same semiconductor substrate. For example, when the different types of light emitting elements 125 are based on different materials (or different variations or compositions of the same material), each of these different materials needs to be compatible with the semiconductor substrate such that the different types of light emitting elements 125 can be monolithically integrated with the semiconductor substrate. This allows for the ultra-high-density arrays of light emitting elements 125 (e.g., arrays of RGB light emitting elements) that are needed for light field displays.
  • A diagram 300 in FIG. 3 shows a light field display 310 having multiple picture elements or super-raxels 320. A light field display 310 can be used for different types of applications and its size may vary accordingly. For example, a light field display 310 can have different sizes when used as displays for watches, near-eye applications, phones, tablets, laptops, monitors, televisions, and billboards, to name a few. Accordingly, and depending on the application, the picture elements 320 in the light field display 310 can be organized into arrays, grids, or other types of ordered arrangements of different sizes. In the example shown in FIG. 3, the picture elements 320 can be organized or positioned into an N×M array, with N being the number of rows of picture elements in the array and M being the number of columns of picture elements in the array. An enlarged portion of such an array is shown to the right of the light field display 310. For small displays, examples of array sizes can include N≥10 and M≥10 and N≥100 and M≥100, with each picture element 320 in the array having itself an array or grid of light emitting elements 125. For larger displays, examples of array sizes can include N≥500 and M≥500, N≥1,000 and M≥1,000, N≥5,000 and M≥5,000, and N≥10,000 and M≥10,000, with each picture element 320 in the array having itself an array or grid of light emitting elements 125.
  • In a more specific example, for a 4K light field display in which the pixels in a traditional display are replaced by the picture elements 320, the N×M array of picture elements 320 can be a 2,160×3,840 array including approximately 8.3 million picture elements 320. Depending on the number of light emitting elements 125 in each of the picture elements 320, the 4K light field display can have a resolution that is one or two orders of magnitude greater than that of a corresponding traditional display. When the picture elements or super-raxels 320 include as light emitting elements 125 different LEDs that produce red (R) light, green (G) light, and blue (B) light, the 4K light field display can be said to be made from monolithically integrated RGB LED super-raxels.
  • Each of the picture elements 320 in the light field display 310, including its corresponding light steering optical element 115 (e.g., an integral imaging lens), can represent a minimum picture element size limited by display resolution. In this regard, an array or grid of light emitting elements 125 of a picture element 320 can be smaller than the corresponding light steering optical element 115 for that picture element. In practice, however, it is possible for the size of the array or grid of light emitting elements 125 of a picture element 320 to be similar to the size of the corresponding light steering optical element 115 (e.g., the diameter of a microlens or lenslet), which in turn is similar or the same as a pitch 330 between picture elements 320.
  • An enlarged view of an array of light emitting elements 125 for a picture element 320 is shown to the right of the diagram 300. The array of light emitting elements 125 can be a P×Q array, with P being the number of rows of light emitting elements 125 in the array and Q being the number of columns of light emitting elements 125 in the array. Examples of array sizes can include P≥5 and Q≥5, P≥8 and Q≥8, P≥9 and Q≥9, P≥10 and Q≥10, P≥12 and Q≥12, P≥20 and Q≥20, and P≥25 and Q≥25. In an example, a P×Q array is a 9×9 array including 81 light emitting elements or sub-raxels 125. The array of light emitting elements 125 for the picture element 320 need not be limited to square or rectangular shapes and can be based on a hexagonal shape or other shapes as well.
  • For each picture element 320, the light emitting elements 125 in the array can include separate and distinct groups of light emitting elements 125 (see e.g., group of light emitting elements 610 in FIGS. 6A, 6B and 8A) that are allocated or grouped (e.g., logically grouped) based on spatial and angular proximity and that are configured to produce the different light outputs (e.g., directional light outputs) that contribute to produce light field views provided by the light field display 310 to a viewer. The grouping of sub-raxels or light emitting elements into raxels need not be unique. For example, during assembly or manufacturing, there can be a mapping of sub-raxels into particular raxels that best optimize the display experience. A similar re-mapping can be performed by the display once deployed to account for, for example, aging of various parts or elements of the display, including variations in the aging of light emitting elements of different colors and/or in the aging of light steering optical elements. In this disclosure, the term “groups of light emitting elements” and the term “raxel” can be used interchangeably to describe a similar structural unit in a light field display. The light field views produced by the contribution of the various groups of light emitting elements or raxels can be perceived by a viewer as continuous or non-continuous views.
  • Each of the groups of light emitting elements 125 in the array of light emitting elements 125 includes light emitting elements that produce at least three different colors of light (e.g., red light, green light, blue light, and perhaps also white light). In one example, each of these groups or raxels includes at least one light emitting element 125 that produces red light, one light emitting element 125 that produces green light, and one light emitting element 125 that produce blue light. In another example, each of these groups or raxels includes two light emitting elements 125 that produce red light, one light emitting element 125 that produces green light, and one light emitting element 125 that produces blue light. In yet another example, each of these groups or raxels includes one light emitting element 125 that produces red light, one light emitting element 125 that produces green light, one light emitting element 125 that produces blue light, and one light emitting element 125 that produces white light.
  • Because of the various applications (e.g., different sized light field displays) descried above, the sizes or dimensions of some of the structural units described in connection with the light field display 310 can vary significantly. For example, a size of an array or grid of light emitting elements 125 (e.g., a diameter, width, or span of the array or grid) in a picture element 320 can range between about 10 microns and about 1,000 microns. That is, a size associated with a picture element or super-raxel 320 can be in this range. The term “about” as used in this disclosure indicates a nominal value or a variation within 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, or 25% from the nominal value.
  • In another example, a size of each group of light emitting elements 125 (e.g., a diameter, width, or span of the group) in a picture element 320 can range between about 1 micron and about 10 microns. That is, a size associated with a group of light emitting elements 125 (e.g., raxel 610) can be in this range.
  • In another example, a size of a group of light emitting elements 125 in a picture element 320 can be greater than 10 microns because a size of the light emitting elements 125 in such a group could be as large as 10 microns.
  • In yet another example, a size of each light emitting element 125 (e.g., a diameter, width, or span of the light emitting element or sub-raxel) can range between about 0.4 microns and about 4 microns. Similarly, a size of each light emitting element 125 (e.g., a diameter, width, or span of the light emitting element or sub-raxel) can be less than about 1 micron. Moreover, a size of each light emitting element 125 in some implementations can be as large as 10 microns. That is, a size associated with a light emitting element or sub-raxel 125 can be in the ranges described above.
  • In yet another example, a size of a light steering optical element 115 (e.g., a diameter, width, or span of a microlens or lenslet) can range between about 10 microns and about 1,000 microns, which is similar to the range of sizes for a picture element or super-raxel.
  • In FIG. 4, a diagram 400 shows another example of the light field display 310 illustrating an enlarged view of a portion of an array of picture elements 320 with corresponding light steering optical elements 115. The pitch 330 can represent a spacing or distance between picture elements 320 and can be about a size of the light steering optical element 115 (e.g., size of a microlens or lenslet).
  • In this example, the light field display 310 in FIG. 4 can be a 4K light field display with a 2,160×3,840 array of picture elements or super-raxels 320. In such a case, for a viewer distance of about 1.5 meters or about 5 feet, a size of the light steering optical element 115 can be about 0.5 millimeters. Such a size can be consistent with human acuity of about 1 arc-minute/picture element. The viewer's field of view (FOV) in this example can be about 64 degrees, which can be less than a viewing angle provided by the picture element (e.g., viewing angle >FOV). Moreover, the multiple views provided by the 4K light field display in this example can have a 4 millimeter width, consistent with a diameter of the human pupil. This can translate to the light steering optical element 115 steering the output light produced by a picture element 320 having, for example, 312 light emitting elements 125. Accordingly, the 4K light field display in this example can provide continuous parallax with light field phase or horizontal parallax with light field phase.
  • The light field display 310 can optionally include a picture element configuration controller 410 that can select, identify, or otherwise choose a configuration that is to be used for the picture elements 320 in the light field display 310. For example, there can be different types of configurations associated with whether a picture element is to support the generation of light outputs that contribute to produce 2D views, 3D views, or a combination of 2D views and 3D views. The picture element configuration controller 410 can identify a particular configuration and can use hardware, software, or a combination of hardware and software to take the light emitting elements of the picture element 320 and organize them into different portions or regions that support the particular configuration of interest. FIGS. 9A-9F, which are described in more detail below, provide some illustrative examples of different configurations that can be programmed or configured into the picture elements 320.
  • Accordingly, the picture element configuration controller 410 can dynamically identify a first portion (e.g., to produce 2D views) and a second portion (e.g., to produce 3D views) of each picture element 320 as in the various configurations described below in connection with FIGS. 9A-9F. The picture element configuration controller 410 can then, based on the identified first portion and second portion, configure a first set of light emitting elements 125 in the picture element 320 and associated with the first portion, and a second set of light emitting elements 125 in the picture element 320 and associated with the second portion.
  • Each of the configurations supported includes a corresponding first portion and second portion. As such, when identifying the first portion and the second portion as described above, the first portion is identified from a set of several possible first portions based on several possible configurations, and the second portion is similarly identified from a set of several possible second portions based on several possible configurations.
  • The picture element configuration controller 410 can include a memory 420 with instructions and a processor 415 configured to execute the instructions to perform the dynamic identification and configuration described above. The picture element configuration controller 410, via the processor 415 and/or the memory 420, can configure one or both of hardware means or software means to perform the dynamic identification and configuration. For example, the picture element configuration controller 410 can configure and/or control the drivers 135 (or unit cells used for driving) in the backplane 130, any software/firmware that controls the drivers 135, and/or hardware/software (not shown) that provides information to the drivers 135 in order to perform the dynamic identification and configuration described above. By doing so, it is possible for the picture element configuration controller 410 to identify, select, and configure a first set of light emitting elements 125 in a picture element 320 to be part of the first portion of the picture element 320 and a second set of light emitting elements 125 in a picture element 320 to be part of the second portion of the picture element 320.
  • A diagram 500 in FIG. 5 illustrates an alternative configuration of a light field display that is also capable of operating as a camera by performing light field capture using neighboring light detecting elements or sensors 127. In this example, a light field display and camera 310 a includes an N×M array of picture elements 320, a portion of the array is shown enlarged to the right of the diagram 500. The light detecting elements 127 can be, for example, silicon-based image sensors assembled with similar integral optical elements as those used by the picture elements 320 (e.g., the light steering optical elements 115). In one implementation, as shown in FIG. 5, the light detecting elements 127 can be positioned nearby or adjacent to the picture elements 320 in a one-to-one correspondence (e.g., one capture element for each display element). In other implementations, the number of light detecting elements 127 can be less than the number of picture elements 320.
  • In an example, each light detecting element 127 can include multiple sub-sensors for capturing light in the same fashion as each picture element 320 (e.g., a super-raxel) can include multiple light emitting elements 125 (e.g., multiple sub-raxels) or multiple groups of light emitting elements 125 (e.g., multiple raxels).
  • As described above in connection with FIG. 1B, the light detecting elements 127 can be integrated in the same plane 120 a as the light emitting elements 125. Some or all of the features of the light detecting elements 127, however, could be implemented in the backplane 130 a since the backplane 130 a is also likely to be silicon-based (e.g., a silicon-based substrate). In such a case, at least some of the features of the light detecting elements 127 can be integrated with the detectors 137 in the backplane 130 a to more efficiently have the circuitry or electronic means in the detectors 137 operate the light detecting elements 127.
  • A diagram 600 a in FIG. 6A shows a cross-sectional view of a portion of a light field display (e.g., the light field display 310) to illustrate some of the structural units described in this disclosure. For example, the diagram 600 a shows three adjacent picture elements or super-raxels 320 a, each having a corresponding light steering optical element 115. In this example, the light steering optical element 115 can be considered separate from the picture element 320 a but in other instances the light steering optical element 115 can be considered to be part of the picture element.
  • As shown in FIG. 6A, each picture element 320 a includes multiple light emitting elements 125 (e.g., multiple sub-raxels), where several light emitting elements 125 (e.g., several sub-raxels) of different types can be grouped together into the group 610 (e.g., into a raxel) associated with a particular light view to be provided by the light field display. A group or raxel can produce various components (see FIG. 6B) that contribute to a particular ray element 105 as shown by the right-most group or raxel in the middle picture element 320 a. Is it to be understood that the ray elements 105 produced by different groups or raxels in different picture elements can contribute to a view perceived by viewer away from the light field display.
  • An additional structural unit described in FIG. 6A is the concept of a sub-picture element 620, which represents a grouping of the light emitting elements 125 of the same type (e.g., produce the same color of light) of the picture element 320 a. Additional details related to sub-picture elements 620 are described below in connection with FIGS. 8B, 9B, and 9C.
  • A diagram 600 b in FIG. 6B shows another cross-sectional view of a portion of a light field display (e.g., the light field display 310) to illustrate the varying spatial directionality of the ray elements produced by three adjacent picture elements or super-raxels 320 a, each having a corresponding light steering optical element 115. In this example, a group of light emitting elements 125 in the left-most picture element 320 a produces a ray element 105 a (e.g., light output), where the ray element 105 a is a combination of ray element components 630 (e.g., light output sub-components) produced or generated by the group of light emitting elements 125. For example, when the group of light emitting elements 125 includes three light emitting elements 125, each of these can produce or generate a component (e.g., a light component of a different color) of the ray element 105 a. The ray element 105 a has a certain, specified spatial directionality, which can be defined based on multiple angles (e.g., based on two or three angles).
  • Similarly, a group of light emitting elements 125 in the middle picture element 320 a produces a ray element 105 b (e.g., light output), where the ray element 105 b is a combination of ray element components 630 produced or generated by the group of light emitting elements 125. The ray element 105 b has a certain, specified spatial directionality, different from the one of the ray element 105 a, which can also be defined based on multiple angles. The same applies for the ray element 105 c produced by a group of light emitting elements 125 in the right-most picture element 320 a.
  • The following figures describe different configurations for a light field display (e.g., the light field display 310). In FIG. 7A, a diagram 700 a shows a first configuration or approach for a light field display. In this configuration, which can be referred to as a picture element array of raxel arrays different light field views (e.g., View A, View B) can be provided by combining the ray elements 105 emitted by the various picture elements 320 b in the light field display 310. In this example, the light steering optical element 115 can be considered to be part of the picture elements 320 b. For each picture element 320 b, there is an array or grid 710 of groups of light emitting elements 125 (e.g., an array or grid of raxels), where each of these groups produces a light output having at least one component (see FIG. 6B) that is provided by the light field display 310 as a contribution to construct or form a view perceived by a viewer at a certain location or position from the light field display 310. For example, in each of the picture elements 320 b, there is at least one group or raxel in the array 710 that contributes to View A and there is at least another group or raxel in the array 710 that contributes to View B. In some instances, depending on the location or position of the viewer relative to the light field display 310, the same group or raxel can contribute to both View A and View B.
  • In an aspect of the light field display 310 in FIG. 7A, for each picture element 320 b, there can be a spatial (e.g., lateral) offset between a position of the light steering optical element 115 and a position of the array 710 based on where the picture element 320 b is positioned in the light field display 310.
  • In FIG. 7B, a diagram 700 b shows a second configuration or approach for a light field display that supports light capture as well. The light field display and camera 310 a in this configuration is substantially similar to the light field display 310 shown in FIG. 7A, however, in the light field display and camera 310 a there is a camera lens 725 to steer or direct the ray elements 107 to the appropriate light detecting elements (e.g., sensors 127) in an array 710 a having groups of light emitting elements 125 along with the light detecting elements.
  • FIG. 8A shows a diagram 800 a describing various details of one implementation of a picture element 320. For example, the picture element 320 (e.g., a super-raxel) has a respective light steering optical element 115 (shown with a dashed line) and includes an array or grid 810 of light emitting elements 125 (e.g., sub-raxels) monolithically integrated on a same semiconductor substrate. The light steering optical element 115 can be of the same or similar size as the array 810, or could be slightly larger than the array 810 as illustrated. It is to be understood that some of the sizes illustrated in the figures of this disclosure have been exaggerated for purposes of illustration and need not be considered to be an exact representation of actual or relative sizes.
  • The light emitting elements 125 in the array 810 include different types of light emitting elements to produce light of different colors and are arranged or configured (e.g., via hardware and/or software) into separate groups 610 (e.g., separate raxels), each of which produces a different light output (e.g., directional light output) that contributes to one or more light field views perceived by a viewer. That is, each group 610 is configured to contribute to one or more of the views that are to be provided to a viewer (or viewers) by the light field display that includes the picture element 320.
  • As shown in FIG. 8A, the array 810 has a geometric arrangement to allow adjacent or close placement of two or more picture elements. The geometric arrangement can be one of a hexagonal shape (as shown in FIG. 8A), a square shape, or a rectangular shape.
  • Although not shown, the picture element 320 in FIG. 8A can have corresponding electronic means (e.g., in the backplane 130 in FIG. 1A) that includes multiple driver circuits configured to drive the light emitting elements 125 in the picture element 230. In the example in FIG. 8A, the electronic means can include multiple unit cells configured to control the operation of individual groups and/or light emitting elements that are part of a group.
  • FIG. 8B shows a diagram 800 b describing various details of another implementation of a picture element 320. For example, the picture element 320 (e.g., a super-raxel) in FIG. 8B includes multiple sub-picture elements 620 monolithically integrated on a same semiconductor substrate. Each sub-picture element 620 has a respective light steering optical element 115 (shown with a dashed line) and includes an array or grid 810 a of light emitting elements 125 (e.g., sub-raxels) that produce the same color of light. The light steering optical element 115 can be of the same or similar size as the array 810 a, or could be slightly larger than the array 810 a as illustrated. For the picture element 320, the light steering optical element 115 of one of the sub-picture elements 620 is configured to minimize the chromatic aberration for a color of light produced by the light emitting elements 125 in that sub-picture element 620 by optimizing the structure of the light steering optical element for the specified color wavelength. By minimizing the chromatic aberration it may be possible to improve the sharpness of the light field views and compensate for how the magnification is different away from the center of the picture element. Moreover, the light steering optical element 115 is aligned and bonded to the array 810 a of the respective sub-picture element 620.
  • The light emitting elements 125 of the sub-picture elements 620 are arranged into separate groups 610 (e.g., raxels). Each group 610 can provide a contribution (e.g., a ray element) to a view perceived by a viewer at a certain position or location from the light field display. In one example, each group 610 can include collocated light emitting elements 125 from each of the sub-picture elements 620 (e.g., same position in each sub-picture element). In another example, each group 610 can include non-collocated light emitting elements 125 from each of the sub-picture elements 620 (e.g., different positions in each sub-picture element). In yet another example, each group 610 can include a combination of collocated and non-collocated light emitting elements 125 from each of the sub-picture elements 620.
  • As shown in FIG. 8B, the array 810 a has a geometric arrangement to allow adjacent placement of two or more sub-picture elements. The geometric arrangement can be one of a hexagonal shape (as shown in FIG. 8B), a square shape, or a rectangular shape.
  • Although not shown, the picture element 320 in FIG. 8B can have corresponding electronic means (e.g., in the backplane 130 in FIG. 1A) that includes multiple driver circuits configured to drive the light emitting elements 125 in the picture element 230. In some examples, one or more common driver circuits can be used for each of the sub-picture elements 620. In the example in FIG. 8B, the electronic means can include multiple unit cells configured to control the operation of individual sub-picture elements and/or light emitting elements that are part of a sub-picture element.
  • What follows below are descriptions of various examples of architectures for picture elements (e.g., the picture element 320) that can provide a full set of light field views or a partial set of light field views from a display such as a light field display. A light field display that provides a partial set of light field views can be referred to as a partial light field display, for example. In this regard, the features described above in connection with different light field displays can apply as appropriate to a partial light field display, including having similar physical characteristics and structural units (e.g., picture elements or super-raxels, light emitting elements or sub-raxels, light detecting elements, groups of light emitting elements or raxels, light steering optical elements). In this disclosure, the terms “light field views” and “views” can be used interchangeably.
  • A diagram 900 a in FIG. 9A shows an example of a picture element 320 configured to provide or contribute to a full set of light field views. In this example, the entire area of the picture element 320 is covered with an array or grid of groups of light emitting elements 610 (or raxels 610), where each of these groups provides or contributes to a different light field view. When multiple picture elements 320 in FIG. 9A are used to construct a light field display, the light field display can provide a full set of light field views based on the contributions from the raxels 610 in the picture elements 320.
  • In FIG. 9B, a diagram 900 b shows an example of a picture element 320 configured to provide or contribute to light field views in the middle. In this example, a first or outer portion or region 910 of the picture element 320 provides a single two dimensional (2D) view around the perimeter of the picture element 320. A second or inner portion or region 920 of the picture element 320, which is surrounded by the first portion 910 and is placed or positioned about the middle of the picture element 320, is configured to provide light field views in this portion of the picture element 320. In one implementation, being placed or positioned about the middle can refer to the second portion 920 being offset (e.g., laterally offset, vertically offset, or a combination) from a center or middle of the picture element 320. The second portion 920 includes an array or grid of groups of light emitting elements 610 (or raxels 610), where each of these groups provides or contributes to a different light field view. When multiple picture elements 320 in FIG. 9B are used to construct a light field display, the light field display can provide a 2D view in the perimeter and light field views in the middle based on the contributions from the raxels 610 in the picture elements 320. In some implementations, however, the first portion 910 can be used to provide more than one (at least one) 2D view. That is, there could be different 2D views (or light outputs that contribute to different 2D views) provided throughout the first portion 910. For example, a different 2D view can be provided on a right side of the first portion 910 than one a left side of the first portion 910. In another example, a different 2D view can be provided in a center or middle of the first portion 910 than on either or both of the right side or the left side of the first portion 910. Similarly for the various other configurations described below.
  • In FIG. 9C, a diagram 900 c shows an example of a picture element 320 configured to provide or contribute to horizontal light field views in the middle. In this example, a first or outer portion or region 910 of the picture element 320 provides a single 2D view around the perimeter of the picture element 320. A second or inner portion or region 920 of the picture element 320, which is surrounded by the first portion 910 and is placed or positioned about the middle of the picture element 320, is configured to provide horizontal light field views in this portion of the picture element 320. In one implementation, being placed or positioned about the middle can refer to the second portion 920 being offset (e.g., laterally offset, vertically offset, or a combination) from a center or middle of the picture element 320. The second portion 920 includes an array or grid of groups of light emitting elements 610 (or raxels 610), where each of these groups provides or contributes to a different horizontal light field view. As illustrated, the groups or raxels 610 in FIG. 9C are different from those in FIG. 9B because the configuration of the raxels 610 in FIG. 9C supports horizontal views only as opposed to support for both horizontal and vertical views as done by the configuration of the raxels 610 in FIG. 9B. When multiple picture elements 320 in FIG. 9C are used to construct a light field display, the light field display can provide at least a 2D view in the perimeter and horizontal light field views in the middle based on the contributions from the raxels 610 in the picture elements 320. Moreover, similar to FIG. 9C, more than one 2D view can be produced, with contributions to different 2D views being produced by different areas or regions of the first portion 910.
  • In FIG. 9D, a diagram 900 d shows an example of a picture element 320 configured to provide or contribute to light field views in designated locations or positions. In this example, a first or outer portion or region 910 of the picture element 320 provides a single 2D view generally around the perimeter of the picture element 320. A second or inner portion or region 920 of the picture element 320, which is surrounded by the first portion 910, is configured to provide light field views in designated or predetermined locations or positions of the picture element 320. For example, the second portion 920 can include multiple, separate sub-portions 930, each of which is in a different location or position of the picture element 320. Although the example shown in FIG. 9D has three sub-portions 930 horizontally aligned, this disclosure need not be so limited. That is, the number of sub-portions 930 can be less or greater than the number shown in FIG. 9D. Moreover, the sub-portions 930 can be aligned in different ways (e.g., horizontally aligned, vertically aligned, or a combination), or need not be aligned at all.
  • Each of the sub-portions 930 of the second portion 920 includes an array or grid of groups of light emitting elements 610 (or raxels 610), where each of these groups provides or contributes to a different light field view. When multiple picture elements 320 in FIG. 9D are used to construct a light field display, the light field display can provide a 2D view in the perimeter and light field views in the designated positions based on the contributions from the raxels 610 that are located in the various sub-portions 930 in the picture elements 320.
  • In FIG. 9E, a diagram 900 e shows another example of the picture element 320 in FIG. 9D, where the picture element 320 is configured to provide or contribute to light field views in designated locations or positions that enable support for two left-right eye orientations. In this example, there are four (4) sub-portion 930, two of which are vertically aligned about the center or middle of the picture element 320 to provide a left-right eye vertical or portrait orientation, and another two are horizontally aligned about the center or middle of the picture element 320 to provide a left-right eye horizontal or landscape orientation. When multiple picture elements 320 in FIG. 9E are used to construct a light field display, the light field display can provide a 2D view in the perimeter and light field views in the designated positions based on the contributions from the raxels 610 that are located in the various sub-portions 930 in the picture elements 320, where the light field views provided support vertical and horizontal left-right eye orientations.
  • In FIG. 9F, a diagram 900 f shows an example of a picture element 320 configured to provide or contribute light field views to support any left-right eye orientation. In this example, a first or outer portion 910 of the picture element 320 provides a single 2D view around the perimeter of the picture element 320. A second or inner portion 920 of the picture element 320, which has a disk-shape and is surrounded by the first portion 910, is placed or positioned about the middle of the picture element 320, and is configured to provide light field views that support any left-right eye orientation. In one implementation, being placed or positioned about the middle can refer to the second portion 920 being offset (e.g., laterally offset, vertically offset, or a combination) from a center or middle of the picture element 320. The inside of the disk-shaped second portion 920 can be considered to be part of the first portion 910 and can therefore provide a 2D view in the middle of the picture element 320. The second portion 920 includes an arrangement of groups of light emitting elements 610 (or raxels 610), where each of these groups provides or contributes to a different horizontal light field view. When multiple picture elements 320 in FIG. 9F are used to construct a light field display, the light field display can provide a 2D view in the perimeter and in the middle/center, and light field views in a disk-shaped portion about the middle/center based on the contributions from the raxels 610 in the picture elements 320.
  • Each of the configurations described above in connection with FIGS. 9A-9F can be implemented using the array of light emitting elements in a picture element as shown in the diagram 800 a in FIG. 8A, or using a picture element with sub-picture elements as shown in the diagram 800 b in FIG. 8B. That is, the light emitting elements 125 and/or the groups or raxels 610 of light emitting elements 125 can be arranged, organized, and controlled (e.g., addressed) as described in FIG. 8A or as described in FIG. 8B.
  • In one example associated with the arrangement shown in FIG. 8A, for the portion of the picture element 320 that is used to provide at least one 2D view, there are light emitting elements that produce red light, light emitting elements that produce green light, and light emitting elements that produce blue light, where each of the light emitting elements and/or each group of light emitting elements in this portion can be individually controlled by respective circuits in the electronic means. For the portion of the picture element 320 that is used to provide at least one 3D view, there are also light emitting elements that produce red light, light emitting elements that produce green light, and light emitting elements that produce blue light, where each of the light emitting elements and/or each group of light emitting elements in this portion can be individually controlled by respective circuits in the electronic means.
  • In another example associated with the arrangement shown in FIG. 8B, for the portion of the picture element 320 that issued to provide at least one 2D view, there are light emitting elements that produce red light, light emitting elements that produce green light, and light emitting elements that produce blue light, where the light emitting elements that produce light of the same color (or a subset thereof) can be controlled by respective circuits in the electronic means. In one implementation, the light emitting elements of a particular color (or a subset thereof) in this portion can effectively operate as a single light emitting element. For the portion of the picture element 320 that is used to provide at least one 3D view, there are also light emitting elements that produce red light, light emitting elements that produce green light, and light emitting elements that produce blue light, where the light emitting elements that produce light of the same color (or a subset thereof) can be controlled by respective circuits in the electronic means.
  • In yet another aspect, the picture elements 320 described in connection with various configurations as described in FIGS. 9A-9F can be configured to have certain portions or regions produce light outputs that contribute to providing one or more 2D views to a viewer away from the light field display. In this regard, the picture elements 320 can be further configured to control the light output properties (e.g., illumination levels) of the appropriate light emitting elements 125 and/or groups of light emitting elements (e.g., raxels 610) for dimming or turning off the 2D views to, for example, de-emphasize the 2D views relative to 3D views and/or to save power.
  • Although the present disclosure has been provided in accordance with the implementations shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the scope of the present disclosure. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the scope of the appended claims.

Claims (15)

What is claimed is:
1. A light field display comprising:
multiple picture elements, each one of the multiple picture elements including a plurality of light emitting elements and a respective light-steering optical element in optical communication with the one of the multiple picture elements; and
a backplane including electronic circuits electronically connected with the multiple picture elements,
wherein the plurality of light emitting elements includes
a first array of immediately adjacent light emitting elements configured to produce a first light output contributing to at least one two-dimensional (2D) view, and
a second array of immediately adjacent light emitting elements configured to produce a second light output including at least two different colors and contributing to at least one three-dimensional (3D) view, the second array of immediately adjacent light emitting elements being distinct from the first array of immediately adjacent light emitting elements, and
wherein, for each one of the multiple picture elements, the respective light-steering optical element is configured to change a first propagation direction of the first light output and a second propagation direction of the second light output of the one of the multiple picture elements upon propagation therethrough.
2. The light field display of claim 1, further comprising a semiconductor substrate supporting the multiple picture elements thereon,
wherein the light emitting elements in the first and second arrays of immediately adjacent light emitting elements are monolithically integrated on the semiconductor substrate.
3. The light field display of claim 1, wherein the light emitting elements in the first array of immediately adjacent light emitting elements and in the second array of immediately adjacent light emitting elements are inorganic light emitting diodes (LEDs).
4. The light field display of claim 1, wherein the first light output and the second light output include at least three different colors of light.
5. The light field display of claim 1, the light field display further comprising:
a picture element configuration controller communicatively coupled with the backplane and including a processor and memory storing instructions that, when executed by the processor, control the processor to: (i) dynamically identify the first array and the second array; and (ii) select and configure each of the plurality of light emitting elements to be part of one of the first and second arrays accordingly.
6. The light field display of claim 1, further comprising a third array of immediately adjacent light emitting elements configured to produce a third light output that contributes to at least a second 3D view, and, wherein the first array of immediately adjacent light emitting elements surrounds the second and third arrays of immediately adjacent light emitting elements.
7. The light field display of claim 1, wherein the second array of immediately adjacent light emitting elements forms a disk-shaped portion within at least one of the multiple picture elements.
8. The light field display of claim 1, wherein the light emitting elements are arranged in at least one of a square shape, a rectangular shape, and a hexagonal shape.
9. A display device for producing a plurality of light field views, the display device comprising:
a first substrate supporting a plurality of picture elements thereon, at least one of the plurality of picture elements including a plurality of light emitting elements monolithically integrated on the first substrate,
a second substrate supporting a plurality of drivers thereon, each one of the plurality of drivers being in electronic communication with at least one of the plurality of picture elements; and
a light-steering optical element optically coupled with at least one of the plurality of picture elements,
wherein the plurality of light emitting elements includes
a first array of immediately adjacent light emitting elements for producing a plurality of first ray elements contributing to a two-dimensional (2D) view, and
a second array of immediately adjacent light emitting elements, for producing a plurality of second ray elements contributing to a light field view, that includes (i) a first group of light emitting elements that emit a first color of light and (ii) a second group of light emitting elements that emit a first color of light,
wherein a portion of the plurality of drivers is configured for controlling the first and second arrays of immediately adjacent light emitting elements.
10. The display device of claim 9, wherein each one of the plurality of light emitting elements is an inorganic light emitting diode.
11. The display device of claim 9, further comprising a picture element configuration controller communicatively coupled with the plurality of drivers and including a processor and a memory storing instructions that, when executed by the processor, control the processor to (i) dynamically identify the first array and the second array; and (ii) select and configure each one of the plurality of light emitting elements to be part of one of the first and second arrays accordingly.
12. The display device of claim 9, wherein the second array of immediately adjacent light emitting elements forms a disk-shaped portion of each one of the picture elements in the plurality of picture elements, and the first array of immediately adjacent light emitting elements surrounds the disk-shaped portion formed by the second array.
13. A method for using a light field display device that includes a first substrate supporting a plurality of sets of picture elements, each picture element including a plurality of light emitting elements, a second substrate supporting a plurality of drivers including a picture element configuration controller, and a light steering optical element coupled to each picture element, the method comprising:
identifying a first array of immediately adjacent light emitting elements and a different, second array of immediately adjacent light emitting elements within each picture element;
producing, with the first array of immediately adjacent light emitting elements, a first plurality of ray elements that contribute to a 2D view;
producing, with the second array of immediately adjacent light emitting elements, a second plurality of ray elements that contribute to a 3D view; and
dynamically adjusting the first and second array of immediately adjacent light emitting elements to contribute to at least one of the 2D view, the 3D view, and a combined 2D/3D view.
14. The method of claim 13, further comprising:
identifying a third array of immediately adjacent light emitting elements in each picture element; and
producing, with the third array of immediately adjacent light emitting elements, a third plurality of ray elements that contribute to an additional 3D view
15. The method of claim 13, further comprising steering the first and second pluralities of ray elements away from the picture element to contribute to at least one of the 2D view, the 3D view, and the combined 2D/3D view.
US17/843,555 2018-04-25 2022-06-17 Partial light field display architecture Abandoned US20220321870A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/843,555 US20220321870A1 (en) 2018-04-25 2022-06-17 Partial light field display architecture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862662633P 2018-04-25 2018-04-25
US16/391,987 US10999573B2 (en) 2018-04-25 2019-04-23 Partial light field display architecture
US17/306,914 US11368671B2 (en) 2018-04-25 2021-05-03 Partial light field display architecture
US17/843,555 US20220321870A1 (en) 2018-04-25 2022-06-17 Partial light field display architecture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/306,914 Continuation US11368671B2 (en) 2018-04-25 2021-05-03 Partial light field display architecture

Publications (1)

Publication Number Publication Date
US20220321870A1 true US20220321870A1 (en) 2022-10-06

Family

ID=68293051

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/391,987 Active US10999573B2 (en) 2018-04-25 2019-04-23 Partial light field display architecture
US17/306,914 Active US11368671B2 (en) 2018-04-25 2021-05-03 Partial light field display architecture
US17/843,555 Abandoned US20220321870A1 (en) 2018-04-25 2022-06-17 Partial light field display architecture

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/391,987 Active US10999573B2 (en) 2018-04-25 2019-04-23 Partial light field display architecture
US17/306,914 Active US11368671B2 (en) 2018-04-25 2021-05-03 Partial light field display architecture

Country Status (7)

Country Link
US (3) US10999573B2 (en)
EP (1) EP3785071A4 (en)
JP (1) JP7198347B2 (en)
KR (1) KR102499375B1 (en)
CN (2) CN112119347B (en)
TW (1) TWI799574B (en)
WO (1) WO2019209957A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10999573B2 (en) * 2018-04-25 2021-05-04 Raxium, Inc. Partial light field display architecture
US10825370B1 (en) * 2018-10-30 2020-11-03 Facebook Technologies, Llc Systems and methods for updating pixel arrays
JP2023500234A (en) 2019-11-01 2023-01-05 ラキシウム インコーポレイテッド Brightfield displays incorporating eye trackers and methods for using eye-tracking information to generate views for brightfield displays

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152523A1 (en) * 2002-11-20 2006-07-13 Seijiro Tomita Light source device for image display device
US20110063533A1 (en) * 2009-09-17 2011-03-17 Hwi Kim Method of displaying stereoscopic images mixed with monoscopic images and mono/stereoscopic image display apparatus capable of performing the method
US20110157257A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Backlighting array supporting adaptable parallax barrier
US20120056879A1 (en) * 2010-09-07 2012-03-08 Samsung Electronics Co., Ltd. 3d image display apparatus and method
US20130141423A1 (en) * 2011-12-06 2013-06-06 Jung-hyun Cho Three-dimensional image display apparatus
US20150296580A1 (en) * 2014-04-09 2015-10-15 Apple Inc. Display With Localized Backlight Dimming
US20160150221A1 (en) * 2014-11-24 2016-05-26 Samsung Electronics Co., Ltd. Display apparatus
US20160189633A1 (en) * 2014-12-31 2016-06-30 Samsung Electronics Co., Ltd. Display apparatus and method for driving light source thereof
US20170155891A1 (en) * 2014-06-17 2017-06-01 Aladm 3D Display Technology Co., Ltd. Autostereoscopic pixel emitting unit and autostereoscopic display device
US20170237973A1 (en) * 2016-02-11 2017-08-17 Samsung Display Co., Ltd. Display device
US20180097033A1 (en) * 2016-09-30 2018-04-05 Khaled Ahmed Micro-led displays
US20180166616A1 (en) * 2016-12-09 2018-06-14 Applied Materials, Inc. Collimated oled light field display
US20180284467A1 (en) * 2016-01-04 2018-10-04 Chi-Chung Hu Autostereoscopic Pixel Emitting Unit and 2D/3D Auto-Conversion Display Device
US20180308420A1 (en) * 2017-04-21 2018-10-25 Lumens Co., Ltd. Micro led display device and method of fabricating the same
US20190198576A1 (en) * 2017-12-21 2019-06-27 X Development Llc Directional light emitters and electronic displays featuring the same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862462B2 (en) * 1993-09-09 1999-03-03 シャープ株式会社 3D display device
AU2002354681A1 (en) * 2001-07-13 2003-01-29 Mems Optical, Inc. Autosteroscopic display with rotated microlens-array and method of displaying multidimensional images, especially color images
GB2387664B (en) * 2002-04-17 2005-08-24 Philip Anthony Surman Autostereoscopic display
KR100490416B1 (en) 2002-11-23 2005-05-17 삼성전자주식회사 Apparatus capable of displaying selectively 2D image and 3D image
GB0317909D0 (en) * 2003-07-31 2003-09-03 Koninkl Philips Electronics Nv Switchable 2D/3D display
GB2457691A (en) * 2008-02-21 2009-08-26 Sharp Kk Display with regions simultaneously operable in different viewing modes
CN101893763B (en) 2010-07-01 2011-10-05 深圳超多维光电子有限公司 2D/3D display switching device and driving device and method thereof
KR20120088467A (en) 2011-01-31 2012-08-08 삼성전자주식회사 Method and apparatus for displaying partial 3d image in 2d image disaply area
US9244284B2 (en) * 2011-03-15 2016-01-26 3M Innovative Properties Company Microreplicated film for autostereoscopic displays
EP2942775A3 (en) * 2011-04-19 2015-12-30 Koninklijke Philips N.V. Light output panel and device having the same
US8711167B2 (en) 2011-05-10 2014-04-29 Nvidia Corporation Method and apparatus for generating images using a color field sequential display
JP6095686B2 (en) * 2011-12-06 2017-03-15 オステンド・テクノロジーズ・インコーポレーテッド Spatial optical type and spatio-temporal optical type directional light modulator
US8854724B2 (en) * 2012-03-27 2014-10-07 Ostendo Technologies, Inc. Spatio-temporal directional light modulator
TWI450250B (en) * 2012-03-28 2014-08-21 Chunghwa Picture Tubes Ltd Backlight module used in display device and control method of the same
JP2013231933A (en) 2012-05-02 2013-11-14 Sony Corp Display device and electronic apparatus
KR101907165B1 (en) * 2012-09-14 2018-10-15 삼성전자주식회사 Curved display apparatus
CN105009583B (en) * 2013-03-12 2017-12-19 皇家飞利浦有限公司 Transparent automatic stereoscopic display device
DE102013104046A1 (en) * 2013-04-22 2014-10-23 Osram Opto Semiconductors Gmbh Optical arrangement and display device
BR112016006575A2 (en) 2013-09-30 2017-08-01 Koninklijke Philips Nv auto stereoscopic display device, and content delivery method for an auto stereoscopic display device
KR102175813B1 (en) * 2014-04-18 2020-11-09 삼성디스플레이 주식회사 Three dimensional image display device and method of processing image
US10018449B2 (en) * 2015-02-12 2018-07-10 Nthdegree Technologies Worldwide Inc. Target system transmitting feedback to shooter
EP3283923B1 (en) * 2015-03-30 2020-05-13 LEIA Inc. 2d/3d mode-switchable electronic display with dual layer backlight
US10066819B2 (en) * 2015-12-09 2018-09-04 X-Celeprint Limited Micro-light-emitting diode backlight system
CN205539739U (en) 2016-01-04 2016-08-31 胡继忠 Bore hole 3D display pixel unit and have 2D or 3D switches device of function
CN105739108A (en) 2016-03-23 2016-07-06 南京中电熊猫液晶显示科技有限公司 2D/3D switchable liquid crystal display device and pixel light-up method thereof
US10079252B2 (en) * 2016-06-14 2018-09-18 Innolux Corporation Display apparatus
CN105929552A (en) 2016-06-22 2016-09-07 深圳市华星光电技术有限公司 3d display device
CA3055556C (en) * 2017-04-08 2023-09-19 Leia Inc. Multiview backlight, mode-switchable backlight, and 2d/3d mode-switchable display
US10999573B2 (en) * 2018-04-25 2021-05-04 Raxium, Inc. Partial light field display architecture

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152523A1 (en) * 2002-11-20 2006-07-13 Seijiro Tomita Light source device for image display device
US20110063533A1 (en) * 2009-09-17 2011-03-17 Hwi Kim Method of displaying stereoscopic images mixed with monoscopic images and mono/stereoscopic image display apparatus capable of performing the method
US20110157257A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Backlighting array supporting adaptable parallax barrier
US20120056879A1 (en) * 2010-09-07 2012-03-08 Samsung Electronics Co., Ltd. 3d image display apparatus and method
US20130141423A1 (en) * 2011-12-06 2013-06-06 Jung-hyun Cho Three-dimensional image display apparatus
US20150296580A1 (en) * 2014-04-09 2015-10-15 Apple Inc. Display With Localized Backlight Dimming
US20170155891A1 (en) * 2014-06-17 2017-06-01 Aladm 3D Display Technology Co., Ltd. Autostereoscopic pixel emitting unit and autostereoscopic display device
US20160150221A1 (en) * 2014-11-24 2016-05-26 Samsung Electronics Co., Ltd. Display apparatus
US20160189633A1 (en) * 2014-12-31 2016-06-30 Samsung Electronics Co., Ltd. Display apparatus and method for driving light source thereof
US20180284467A1 (en) * 2016-01-04 2018-10-04 Chi-Chung Hu Autostereoscopic Pixel Emitting Unit and 2D/3D Auto-Conversion Display Device
US20170237973A1 (en) * 2016-02-11 2017-08-17 Samsung Display Co., Ltd. Display device
US20180097033A1 (en) * 2016-09-30 2018-04-05 Khaled Ahmed Micro-led displays
US20180166616A1 (en) * 2016-12-09 2018-06-14 Applied Materials, Inc. Collimated oled light field display
US20180308420A1 (en) * 2017-04-21 2018-10-25 Lumens Co., Ltd. Micro led display device and method of fabricating the same
US20190198576A1 (en) * 2017-12-21 2019-06-27 X Development Llc Directional light emitters and electronic displays featuring the same

Also Published As

Publication number Publication date
US20210274156A1 (en) 2021-09-02
EP3785071A4 (en) 2022-01-26
KR20210022538A (en) 2021-03-03
US20190335165A1 (en) 2019-10-31
WO2019209957A1 (en) 2019-10-31
US11368671B2 (en) 2022-06-21
US10999573B2 (en) 2021-05-04
CN112119347A (en) 2020-12-22
CN115185101A (en) 2022-10-14
JP2021522559A (en) 2021-08-30
JP7198347B2 (en) 2022-12-28
KR102499375B1 (en) 2023-02-13
TWI799574B (en) 2023-04-21
CN112119347B (en) 2022-05-17
EP3785071A1 (en) 2021-03-03
TW202001346A (en) 2020-01-01

Similar Documents

Publication Publication Date Title
US20190333444A1 (en) Architecture for light emitting elements in a light field display
US11694605B2 (en) Architecture for light emitting elements in a light field display
US20220321870A1 (en) Partial light field display architecture
KR102411563B1 (en) Multiview backlight, display and method using active emitter arrays
CN110119031B (en) Stereoscopic display device and aerial stereoscopic display device
CN111684512A (en) 3D light field LED wall display screen
TWI809555B (en) Horizontal parallax multiview backlight, display, and method
KR20230098903A (en) High-density pixel array for auto-viewing 3D displays

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAXIUM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HE, GANG;SCHNEIDER, RICHARD PETER, JR.;JONES, ANDREW VICTOR;AND OTHERS;SIGNING DATES FROM 20191107 TO 20191115;REEL/FRAME:060242/0644

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: GOOGLE LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAXIUM INC.;REEL/FRAME:061214/0766

Effective date: 20220504

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION