US20220313786A1 - Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid - Google Patents
Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid Download PDFInfo
- Publication number
- US20220313786A1 US20220313786A1 US17/831,836 US202217831836A US2022313786A1 US 20220313786 A1 US20220313786 A1 US 20220313786A1 US 202217831836 A US202217831836 A US 202217831836A US 2022313786 A1 US2022313786 A1 US 2022313786A1
- Authority
- US
- United States
- Prior art keywords
- ethoxy
- glp
- mmol
- amino
- carboxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- JOOXCMJARBKPKM-UHFFFAOYSA-N CC(=O)CCC(=O)O Chemical compound CC(=O)CCC(=O)O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 description 3
- NJEKDCUDSORUJA-UHFFFAOYSA-M O=C([O-])CCCCCCCNC(=O)c1ccccc1O Chemical compound O=C([O-])CCCCCCCNC(=O)c1ccccc1O NJEKDCUDSORUJA-UHFFFAOYSA-M 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/26—Glucagons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
Definitions
- the present invention relates to solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid and their use in medicine.
- Human GLP-1 and analogues thereof have a low oral bioavailability. Exposure and bioavailability of human GLP-1 and analogues thereof is very low following oral administration. Human GLP-1 and analogues thereof can only be detected in plasma after oral administration if formulated with certain absorption enhancers in a specific amount.
- Steinert et al. (Am 3 Clin Nutr, October 2010; 92: 810-817) discloses oral administration of a tablet comprising GLP-1(7-36)amide and 150 mg sodium N-(8-(2-hydroxybenzoyl)amino)caprylate (SNAC).
- WO 2010/020978 discloses an oral pharmaceutical composition comprising a protein and N-(8-[2-hydroxybenzoyl) amino)caprylate (SNAC).
- the invention relates to a solid composition for oral administration comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino) caprylic acid, wherein a) the amount of said salt of N-(8-(2-hydroxybenzoyl)amino) caprylic acid is at least 0.6 mmol or at least 0.8 mmol; and b) said GLP-1 agonist is GLP-1 (7-37), GLP-1 (7-36)amide, exendin-4 or an analogue thereof, and wherein said GLP-1 agonist optionally comprises one substituent.
- the invention relates to the use of a composition as defined herein in medicine.
- the present invention relates to solid compositions of a GLP-1 agonist and salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
- solid compositions comprising certain amounts of a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid, such as SNAC, are optimal for oral administration of GLP-1 agonists. Accordingly, the compositions provide improved exposure and/or bioavailability of the GLP-1 agonist.
- bioavailability refers to the fraction of an administered dose of an active pharmaceutical ingredient (API), such as a GLP-1 agonist as defined herein, which reaches the systemic circulation unchanged.
- API active pharmaceutical ingredient
- GLP-1 agonist a GLP-1 agonist as defined herein
- Absolute oral bioavailability is calculated as the relative exposure of the API in systemic circulation following oral administration (estimated as the area under the plasma concentration versus time curve, or AUC) compared to the exposure of the API following intravenous administration.
- GLP-1 agonist refers to a compound, which fully or partially activates the human GLP-1 receptor.
- the “GLP-1 agonist” binds to a GLP-1 receptor, e.g., with an affinity constant (K D ) or activate the receptor with a potency (EC 50 ) of below 1 ⁇ M, e.g. below 100 nM as measured by methods known in the art (see e.g. WO 98/08871) and exhibits insulinotropic activity, where insulinotropic activity may be measured in vivo or in vitro assays known to those of ordinary skill in the art.
- the GLP-1 agonist may be administered to an animal with increased blood glucose (e.g.
- IVGTT Intravenous Glucose Tolerance Test
- the GLP-1 agonist is a GLP-1 analogue, optionally comprising one substituent.
- analogue as used herein referring to a GLP-1 peptide (hereafter “peptide”) means a peptide wherein at least one amino acid residue of the peptide has been substituted with another amino acid residue and/or wherein at least one amino acid residue has been deleted from the peptide and/or wherein at least one amino acid residue has been added to the peptide and/or wherein at least one amino acid residue of the peptide has been modified. Such addition or deletion of amino acid residues may take place at the N-terminal of the peptide and/or at the C-terminal of the peptide.
- GLP-1 agonist designates an analogue of GLP-1(7-37) wherein the naturally occurring Ala in position 8 has been substituted with Aib.
- GLP-1 agonist comprises a maximum of twelve, such as a maximum of 10, 8 or 6, amino acids which have been alterered, e.g., by substitution, deletion, insertion and/or modification, compared to e.g. GLP-1(7-37).
- the analogue comprises up to 10 substitutions, deletions, additions and/or insertions, such as up to 9 substitutions, deletions, additions and/or insertions, up to 8 substitutions, deletions, additions and/or insertions, up to 7 substitutions, deletions, additions and/or insertions, up to 6 substitutions, deletions, additions and/or insertions, up to 5 substitutions, deletions, additions and/or insertions, up to 4 substitutions, deletions, additions and/or insertions or up to 3 substitutions, deletions, additions and/or insertions, compared to e.g. GLP-1(7-37). Unless otherwise stated the GLP-1 comprises only L-amino acids.
- GLP-1 analogue or “analogue of GLP-1” as used herein refers to a peptide, or a compound, which is a variant of the human Glucagon-Like Peptide-1 (GLP-1(7-37)).
- GLP-1(7-37) has the sequence HAEGTFTSDV SSYLEGQAAKEFIAWLVKGRG (SEQ ID No: 1).
- variant refers to a compound which comprises one or more amino acid substitutions, deletions, additions and/or insertions.
- the GLP-1 agonist exhibits at least 60%, 65%, 70%, 80% or 90% sequence identity to GLP-1(7-37) over the entire length of GLP-1(7-37).
- sequence identity As an example of a method for determination of sequence identity between two analogues the two peptides [Aib8]GLP-1(7-37) and GLP-1(7-37) are aligned.
- the sequence identity of [Aib8]GLP-1(7-37) relative to GLP-1(7-37) is given by the number of aligned identical residues minus the number of different residues divided by the total number of residues in GLP-1(7-37). Accordingly, in said example the sequence identity is (31-1)/31.
- the C-terminal of the GLP-1 agonist is an amide.
- the GLP-1 agonist is GLP-1(7-37) or GLP-1(7-36)amide. In some embodiments the GLP-1 agonist is exendin-4, the sequence of which is HGEGTFITSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS (SEQ ID No: 2).
- the GLP-1 agonist comprises one substituent which is covalently attached to the peptide.
- the substituent comprises a fatty acid or a fatty diacid.
- the substituent comprises a C16, C18 or C20 fatty acid.
- the substituent comprises a C16, C18 or C20 fatty diacid.
- the substituent comprises formula (X)
- n is at least 13, such as n is 13, 14, 15, 16, 17, 18 or 19.
- the substituent comprises formula (X), wherein n is in the range of 13 to 19, such as in the range of 13 to 17.
- the substituent comprises formula (X), wherein n is 13, 15 or 17.
- the substituent comprises formula (X), wherein n is 13.
- the substituent comprises formula (X), wherein n is 15.
- the substituent comprises formula (X), wherein n is 17.
- the substituent comprises one or more 8-amino-3,6-dioxaoctanoic acid (OEG), such as two OEG.
- OEG 8-amino-3,6-dioxaoctanoic acid
- the substituent is [2-(2- ⁇ 2-[2-(2- ⁇ 2-[(S)-4-carboxy-4-(17-carboxyheptadecanoylamino) butyrylamino]ethoxy ⁇ ethoxy)acetylamino] ethoxy ⁇ ethoxy)acetyl].
- the substituent is [2-(2- ⁇ 2-[2-(2- ⁇ 2-[(S)-4-carboxy-4-( ⁇ trans-4-[(19-carboxynonadecanoylamino)methyl]cyclohexanecarbonyl ⁇ amino)butyrylamino]ethoxy ⁇ ethoxy)acetylamino]ethoxy ⁇ ethoxy)acetyl].
- the GLP-1 agonist is semaglutide, also known as N-epsilon26-[2-(2- ⁇ 2-[2-(2- ⁇ 2-[(S)-4-carboxy-4-(17-carboxyheptadecanoylamino) butyrylamino]ethoxy ⁇ ethoxy)acetylamino]ethoxy ⁇ ethoxy)acetyl][Aib8,Arg34]GLP-1(7-37), which may be prepared as described in WO2006/097537, Example 4.
- composition comprises the GLP-1 agonist or a pharmaceutically acceptable salt, amide, or ester thereof. In some embodiments the composition comprises the GLP-1 agonist one or more pharmaceutically acceptable counter ions.
- the dosage of GLP-1 is in the range of 0.01 mg to 100 mg.
- the composition comprises an amount of a GLP-1 agonist in the range of 0.1 to 40 mg or 1 to 20 mg.
- the composition comprises an amount of a GLP-1 agonist in the range of 5 to 20 mg, such as in the range of 5 to 15 mg, such as 5 mg, such as 10 mg, such as 15 mg, such as 20 mg.
- the composition comprises an amount of a GLP-1 agonist in the range of 0.05 to 25 ⁇ mol, such as in the range of 0.5 to 2.5 ⁇ mol.
- the GLP-1 agonist is selected from one or more of the GLP-1 agonists mentioned in WO93/19175, WO96/29342, WO98/08871, WO99/43707, WO99/43706, WO99/43341, WO99/43708, WO2005/027978, WO2005/058954, WO2005/058958, WO2006/005667, WO2006/037810, WO2006/037811, WO2006/097537, WO2006/097538, WO2008/023050, WO2009/030738, WO2009/030771 and WO2009/030774.
- the GLP-1 agonist is selected from the group consisting of N-epsilon37 ⁇ 2-[2-(2- ⁇ 2-[2-((R)-3-carboxy-3- ⁇ [1-(19-carboxynonadecanoyl) piperidine-4-carbonyl]amino ⁇ propionylamino)ethoxy]ethoxy ⁇ acetylamino)ethoxy]ethoxy ⁇ acetyl [desaminoHis7,Glu22,Arg26,Arg34,Lys37]GLP-1(7-37)amide; N-epsilon26 ⁇ 2-[2-(2- ⁇ 2-[2-((R)-3-carboxy-3- ⁇ [1-(19-carboxynonadecanoyl) piperidine-4-carbonyl]amino ⁇ propionylamino)ethoxy]ethoxy ⁇ acetylamino)ethoxy] ethoxy ⁇ acetyl [desaminoHis7, Arg34]
- the delivery agent used in the present invention is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
- the structural formula of N-(8-(2-hydroxybenzoyl)amino)caprylate is shown in formula (I).
- the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid comprises one monovalent cation, two monovalent cations or one divalent cation. In some embodiments the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is selected from the group consisting of the sodium salt, potassium salt and calcium salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
- Salts of N-(8-(2-hydroxybenzoyl)amino)caprylate may be prepared using the method described in e.g. WO96/030036, WO0/046182, WO01/092206 or WO2008/028859.
- the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid may be crystalline and/or amorphous.
- the delivery agent comprises the anhydrate, monohydrate, dihydrate, trihydrate, a solvate or one third of a hydrate of the salt of N(8-(2-hydroxybenzoyl)amino) caprylic acid as well as combinations thereof.
- the delivery agent is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid as described in WO2007/121318.
- the delivery agent is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate (referred to as “SNAC” herein), also known as sodium 8-(salicyloylamino) octanoate.
- SNAC sodium N-(8-(2-hydroxybenzoyl)amino)caprylate
- the amount of the salt of N-(8-(2-hydroxybenzoyl) amino)caprylic acid in the composition is at least 0.6 mmol, such as selected from the group consisting of at least 0.65 mmol, at least 0.7 mmol, at least 0.75 mmol, at least 0.8 mmol, at least 0.8 mmol, at least 0.9 mmol, at least 0.95 mmol and at least 1 mmol. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl) amino)caprylic acid in the composition is in the range of 0.6-2.1 mmol or 0.6-1.9 mmol.
- the amount of the salt of N-(8-(2-hydroxybenzoyl) amino)caprylic acid in the composition is in the range of 0.7-1.7 mmol or 0.8-1.3 mmol. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid in the composition is up to 2.1 mmol, such as selected from the group consisting of up to 2.1 mmol, up to 2 mmol, up to 1.9 mmol, up to 1.8 mmol, up to 1.7 mmol, up to 1.6 mmol, up to 1.5 mmol, up to 1.4 mmol, up to 1.3 mmol, up to 1.2 mmol and up to 1.1 mmol. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is 1 mmol, such as 1.08 mmol.
- the amount of SNAC in the composition is at least 175 mg, such as an amount selected from the group consisting of at least 200 mg, at least 210 mg, at least 220 mg, at least 230 mg, at least 240 mg, at least 250 mg, at least 260 mg, at least 270 mg and at least 280 mg. In some embodiments the amount of SNAC in the composition is in the range of 175-575 mg, such as 200-500 mg or 250-400 mg.
- the amount of SNAC in the composition is up to 575 mg, such as an amount selected from the group consisting of up to 550 mg, up to 525 mg, up to 500 mg, up to 475 mg, up to 450 mg, up to 425 mg, up to 400 mg, up to 375 mg, up to 350 mg and up to 325 mg. In some embodiments the amount of SNAC in the composition is 300 mg.
- the molar ratio between GLP-1 agonist and delivery agent in the composition is less than 10, such as less than 5 or less than 1.
- composition of the present invention is a solid composition and is administered by the oral route.
- the composition comprises at least one pharmaceutically acceptable excipient.
- excipient as used herein broadly refers to any component other than the active therapeutic ingredient(s).
- the excipient may be an inert substance, an inactive substance, and/or a not medicinally active substance.
- the excipient may serve various purposes, e.g. as a carrier, vehicle, filler, binder, lubricant, glidant, disintegrant, flow control agents, crystallization retarders, solubilizers, stabilizer, colouring agent, flavouring agent, surfactant, emulsifier and/or to improve administration, and/or absorption of the active substance.
- a person skilled in the art may select one or more of the aforementioned excipients with respect to the particular desired properties of the solid oral dosage form by routine experimentation and without any undue burden.
- the amount of each excipient used may vary within ranges conventional in the art. Techniques and excipients which may be used to formulate oral dosage forms are described in Handbook of Pharmaceutical Excipients, 6th edition, Rowe et al., Eds., American Pharmaceuticals Association and the Pharmaceutical Press, publications department of the Royal Pharmaceutical Society of Great Britain (2009); and Remington: the Science and Practice of Pharmacy, 21th edition, Gennaro, Ed., Lippincott Williams & Wilkins (2005).
- the excipients may be selected from binders, such as polyvinyl pyrrolidone (povidone), etc.; fillers such as cellulose powder, microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxy-propylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, etc.; lubricants and/or glidants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol tribehenate, etc.; flow control agents such as colloidal silica, talc, etc.; crystallization retarders such as Povidone, etc.; solubilizers such as Pluronic, Povidone, etc.; colouring agents, including dyes and pigments such as Iron Oxide Red or Yellow, titanium dioxide, talc, etc.; pH control agents such as citric acid, tartaric acid, fumaric acid, sodium citrate
- the composition comprises at least 60% (w/w) delivery agent, less than 10% (w/w) binder, 5-40% (w/w) filler, and less than 10% (w/w) lubricant or glidant.
- the composition comprises at least 60% (w/w), such as at least 70% (w/w) or at least 75% (w/w), delivery agent.
- the composition comprises 0.1-10% (w/w), such as 0.2-4% (w/w) or 0.5-3% (w/w), of binder. In some embodiments the composition comprises 1% (w/w) or 2% (w/w) of binder.
- the composition may comprise a binder, such as povidone; starches; celluloses and derivatives thereof, such as microcrystalline cellulose, e.g., AVICEL PH from FMC (Philadelphia, Pa.), hydroxypropyl cellulose hydroxylethyl cellulose and hydroxylpropylmethyl cellulose METHOCEL from Dow Chemical Corp. (Midland, Mich.); sucrose; dextrose; corn syrup; polysaccharides; and gelatin.
- a binder such as povidone; starches; celluloses and derivatives thereof, such as microcrystalline cellulose, e.g., AVICEL PH from FMC (Philadelphia, Pa.), hydroxypropyl cellulose hydroxylethyl
- the binder may be selected from the group consisting of dry binders and/or wet granulation binders.
- Suitable dry binders are, e.g., cellulose powder and microcrystalline cellulose, such as Avicel PH 102 and Avicel PH 200.
- the composition comprises avicel, such as avicel PH 102.
- Suitable binders for wet granulation or dry granulation are corn starch, polyvinyl pyrrolidone (povidon), vinylpyrrolidone-vinylacetate copolymer (copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxyl-propylmethylcellulose.
- the composition comprises povidone.
- the composition comprises 5-40% (w/w), such as 10-30% (w/w) or 5-25% (w/w), of filler. In some embodiments the composition comprises 10.9% (w/w) or 18% (w/w) of filler, or comprises 19.5% (w/w) or 20.5 (w/w) of filler.
- the filler may be selected from lactose, mannitol, erythritol, sucrose, sorbitol, calcium phosphate, such as calciumhydrogen phosphate, microcrystalline cellulose, powdered cellulose, confectioner's sugar, compressible sugar, dextrates, dextrin and dextrose. In some embodiments the composition comprises microcrystalline cellulose, such as Avicel PH 102 or Avicel PH 200.
- the composition comprises 0.1-10% (w/w) or 0.5-5% (w/w), such as 1-3.5% (w/w) or 1% (w/w), of lubricant and/or a glidant.
- the composition comprises a lubricant and/or a glidant, such as talc, magnesium stearate, calcium stearate, zinc stearate, glyceryl behenate, polyethylene oxide polymers, sodium lauryl sulfate, magnesium lauryl sulfate, sodium oleate, sodium stearyl fumarate, stearic acid, hydrogenated vegetable oils, silicon dioxide and/or polyethylene glycol.
- the composition comprises magnesium stearate.
- the composition comprises a disintegrant, such as sodium starch glycolate, polacrilin potassium, sodium starch glycolate, crospovidon, croscarmellose, sodium carboxymethylcellulose or dried corn starch.
- a disintegrant such as sodium starch glycolate, polacrilin potassium, sodium starch glycolate, crospovidon, croscarmellose, sodium carboxymethylcellulose or dried corn starch.
- the composition may comprise one or more surfactants, for example a surfactant, at least one surfactant, or two different surfactants.
- surfactant refers to any molecules or ions that are comprised of a water-soluble (hydrophilic) part, and a fatsoluble (lipophilic) part.
- the surfactant may e.g. be selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, and/or zwitterionic surfactants.
- composition may be formulated as is known in the art of oral formulations of insulinotropic compounds, e.g. using any one or more of the formulations described in WO 2008/145728.
- a composition may also be used in the formulation of site specific, controlled, sustained, protracted, prolonged, delayed, pulsatile, retarded, and/or slow release drug delivery systems.
- composition of the invention may be prepared as is known in the art.
- the composition may be administered in several dosage forms, for example as a tablet; a coated tablet; a chewing gum; a capsule such as hard or soft gelatine capsules or a powder.
- the composition may further be compounded in a drug carrier or drug delivery system, e.g. in order to improve stability and/or solubility or further improve bioavailability.
- the composition may be a freeze-dried or spray-dried composition.
- the composition may be in the form of a tablet.
- the weight of the tablet is in the range of 175 mg to 1000 mg, such as in the range of 175-250 mg, 300-500 mg or 500-900 mg, or such as about 200 mg, about 400 mg or about 700 mg.
- the weight of the tablet is in the range of 200 mg to 1000 mg, such as in the range of 500-700 mg or 600-1000 mg, or such as about 200 mg, about 400 mg, about 600 mg or about 800 mg.
- the composition may be granulated prior to being compacted.
- the composition may comprise an intragranular part and an extragranular part, wherein the intragranular part has been granulated and the extragranular part has been added after granulation.
- the intragranular part may comprise the GLP-1 agonist, the delivery agent and a binder.
- the intragranular part comprises povidone.
- the extragranular part may comprise a filler, a lubricant and/or a glidant.
- the extragranular part comprises microcrystalline cellulose, such as avicel, e.g. avicel PH120 or avicel PH200.
- the extragranular part comprises magnesium stearate.
- the various components are weighed, optionally delumped and then combined.
- the mixing of the components may be carried out until a homogeneous blend is obtained.
- granules are to be used in the tabletting material, granules may be produced in a manner known to a person skilled in the art, for example using wet granulation methods known for the production of “built-up” granules or “broken-down” granules.
- Methods for the formation of built-up granules may operate continuously and comprise, for example simultaneously spraying the granulation mass with granulation solution and drying, for example in a drum granulator, in pan granulators, on disc granulators, in a fluidized bed, by spray-drying or spray-solidifying, or operate discontinuously, for example in a fluidized bed, in a rotary fluid bed, in a batch mixer, such as a high shear mixer or a low shear mixer, or in a spray-drying drum.
- Methods for the production of broken-down granules which may be carried out discontinuously and in which the granulation mass first forms a wet aggregate with the granulation solution, which is subsequently comminuted or by other means formed into granules of the desired size and the granules may then be dried.
- Suitable equipment for the granulation step are planetary mixers, low shear mixers, high shear mixers, extruders and spheronizers, such as an apparatus from the companies Loedige, Glatt, Diosna, Fielder, Collette, Aeschbach, Alexanderwerk, Ytron, Wyss & Probst, Werner & Pfleiderer, HKD, Loser, Fuji, Nica, Caleva and Gabler.
- Granules may be also formed by dry granulation techniques in which the pharmaceutically active agent is compressed with the excipients to form relatively large moldings, for example slugs or ribbons, which are comminuted by grinding, and the ground material serves as the tabletting material to be later compacted.
- Suitable equipment for dry granulation is roller compaction equipment from Gerteis, such as Gerteis MINI-PACTOR.
- a tablet press may be used to compact the tabletting material into a solid oral dosage form, for example a tablet.
- a tabletting press the tabletting material is filled (e.g. force fed or gravity fed) into a die cavity.
- the tabletting material is then compacted by a punch with pressure.
- the resulting compact, or tablet is ejected from the tabletting press.
- compaction process is subsequently referred to herein as the “compaction process”.
- Suitable tablet presses include, but are not limited to, rotary tablet presses and eccentric tablet presses.
- tablet presses include, but are not limited to, the Fette 102i (Fette GmbH), the Korsch XL100, the Korsch PH 106 rotary tablet press (Korsch AG, Germany), the Korsch EK-O eccentric tabletting press (Korsch AG, Germany) and the Manesty F-Press (Manesty Machines Ltd., United Kingdom).
- the method of preparation of the tablet comprises a) wet granulation of a mixture comprising the GLP-1 agonist, the delivery agent and a binder; b) optionally drying the wet granulate; c) blending of the dried wet granulates with at least a filler and at least a lubricant or a glidant, and then d) compression of the blend into tablets.
- the granulation may be a wet granulation or a dry granulation.
- the disintegration time of the tablet is in the range of 7 minutes to 15 minutes, such as in the range of 8 minutes to 13 minutes.
- Disintegration time may be determined using a Pharma Test PTZ AUTO disintegration test apparatus.
- the disintegration apparatus consists of a basket rack holding 2 ⁇ 6 plastic tubes, open at the top and bottom, the bottom of the tube is covered by a screen. Tablets are placed in the tubes and on top of the tablets are placed discs for automated disintegration detection.
- the basket is immersed in 800 ml purified water maintained at 37° C., in a 1 L beaker. Time for complete disintegration is measured. Furthermore, tablets may be observed visually for surface eroding behaviour during the disintegration test.
- the tablet of the invention co-releases the active ingredients and the delivery agent by surface erosion; hence, the tablets becomes smaller and smaller with time by dissolution primarily from the surface from non-disintegrated tablets.
- Concurrent release In some embodiments the compositions show concurrent release of the GLP-1 agonist and the delivery agent from the surface of the tablet. This can be tested by visual inspection during the disintegration test; the tablets do not have concurrent release of the GLP-1 agonist and the delivery agent from the surface of the tablet if the tablet breaks into smaller parts during the first 8 minutes of the disintegration test.
- the dissolution test is carried out as described in the following: Dissolution is performed on a Varian 705 DS. The analysis is based on the pharmacopeia method Ph Eur 2.9.3, Apparatus 2 (Paddle apparatus). 100 ml mini vessel with mini-paddles is used, and paddle speed is 75 rpm. After 120 minutes, the paddle speed is changed to 250 rpm.
- the dissolution medium used for the dissolution test is 100 ml of 200 mM KH2PO4 (containing 0.07% Tween 80 to avoid the GLP-1 agonist from sticking to the wall of the bath and to the paddle), with pH 6.8. Samples are taken after 5, 15, 30, 45, 60, 120 and 135 minutes. The volume of the sample is 2 ml, and the sample is taken with a disposable syringe. After each sample is taken, the same volume (2 ml) of the dissolution medium is added to the bath, in order to keep the total volume of 100 ml constant. The sample is pressed through a 0.22 pm Millex®-GV filter. Finally, the samples are analysed for concentration of the GLP-1 agonist and for concentration of the delivery agent by UPLC.
- the hardness of the tablets is measured with a Pharma Test (33AA02), which measures the force required to disrupt the tablet, and the test is based on the pharmacopeia method Ph Eur 2.9.8.
- the treatment with a composition according to the present invention may also be combined with one or more additional pharmacologically active substances, e.g. selected from antidiabetic agents, antiobesity agents, appetite regulating agents, antihypertensive agents, agents for the treatment and/or prevention of complications resulting from or associated with diabetes and agents for the treatment and/or prevention of complications and disorders resulting from or associated with obesity.
- additional pharmacologically active substances e.g. selected from antidiabetic agents, antiobesity agents, appetite regulating agents, antihypertensive agents, agents for the treatment and/or prevention of complications resulting from or associated with diabetes and agents for the treatment and/or prevention of complications and disorders resulting from or associated with obesity.
- Examples of these pharmacologically active substances are: Insulin, sulphonylureas, biguanides, meglitinides, glucosidase inhibitors, glucagon antagonists, DPP-IV (dipeptidyl peptidase-IV) inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose uptake modulators, compounds modifying the lipid metabolism such as antihyperlipidemic agents as HMG CoA inhibitors (statins), Gastric Inhibitory Polypeptides (GIP analogs), compounds lowering food intake, RXR agonists and agents acting on the ATP-dependent potassium channel of the p-cells; Cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol, dextrothyroxine, neteglinide, repaglinide; p-blockers such as
- compositions of the invention are described in the section headed “particular embodiments” before the experimental section.
- the present invention also relates to a composition of the invention for use as a medicament.
- the composition of the invention may be used for the following medical treatments, all preferably relating one way or the other to diabetes:
- diabetes prevention and/or treatment of all forms of diabetes, such as hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, non-insulin dependent diabetes, MODY (maturity onset diabetes of the young), gestational diabetes, and/or for reduction of HbA1C;
- diabetes such as hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, non-insulin dependent diabetes, MODY (maturity onset diabetes of the young), gestational diabetes, and/or for reduction of HbA1C;
- diabetes delaying or preventing diabetic disease progression, such as progression in type 2 diabetes, delaying the progression of impaired glucose tolerance (IGT) to insulin requiring type 2 diabetes, and/or delaying the progression of non-insulin requiring type 2 diabetes to insulin requiring type 2 diabetes;
- ITT impaired glucose tolerance
- eating disorders such as obesity, e.g. by decreasing food intake, reducing body weight, suppressing appetite, inducing satiety; treating or preventing binge eating disorder, bulimia nervosa, and/or obesity induced by administration of an antipsychotic or a steroid; reduction of gastric motility; and/or delaying gastric emptying;
- diabetes prevention and/or treatment of diabetic complications, such as neuropathy, including peripheral neuropathy; nephropathy; or retinopathy;
- lipid parameters such as prevention and/or treatment of dyslipidemia, lowering total serum lipids; lowering HDL; lowering small, dense LDL; lowering VLDL: lowering triglycerides; lowering cholesterol; increasing HDL; lowering plasma levels of lipoprotein a (Lp(a)) in a human; inhibiting generation of apolipoprotein a (apo(a)) in vitro and/or in vivo;
- cardiovascular diseases such as syndrome X; atherosclerosis; myocardial infarction; coronary heart disease; stroke, cerebral ischemia; an early cardiac or early cardiovascular disease, such as left ventricular hypertrophy; coronary artery disease; essential hypertension; acute hypertensive emergency; cardiomyopathy; heart insufficiency; exercise tolerance; chronic heart failure; arrhythmia; cardiac dysrhythmia; syncopy; atheroschlerosis; mild chronic heart failure; angina pectoris; cardiac bypass reocclusion; intermittent claudication (atheroschlerosis oblitterens); diastolic dysfunction; and/or systolic dysfunction;
- cardiovascular diseases such as syndrome X; atherosclerosis; myocardial infarction; coronary heart disease; stroke, cerebral ischemia; an early cardiac or early cardiovascular disease, such as left ventricular hypertrophy; coronary artery disease; essential hypertension; acute hypertensive emergency; cardiomyopathy; heart insufficiency; exercise tolerance; chronic heart failure; arrhythm
- x prevention and/or treatment of critical illness, such as treatment of a critically ill patient, a critical illness poly-nephropathy (CIPNP) patient, and/or a potential CIPNP patient; prevention of critical illness or development of CIPNP; prevention, treatment and/or cure of systemic inflammatory response syndrome (SIRS) in a patient; and/or for the prevention or reduction of the likelihood of a patient suffering from bacteraemia, septicaemia, and/or septic shock during hospitalisation; and/or
- CIPNP critical illness poly-nephropathy
- SIRS systemic inflammatory response syndrome
- the indication is selected from the group consisting of (i)-(iii) and (v)-(iix), such as indications (i), (ii), and/or (iii); or indication (v), indication (vi), indication (vii), and/or indication (iix).
- the indication is (i).
- the indication is (v).
- the indication is (iix).
- the indications are type 2 diabetes and/or obesity.
- the objective of the present study was to evaluate the oral bioavailability in beagle dogs of a series of compositions comprising semaglutide and SNAC.
- the plasma was analyzed for semaglutide using a Luminescence Oxygen Channeling Immunoassay (LOCI).
- LOCI Luminescence Oxygen Channeling Immunoassay
- the LOCI assay employs donor beads coated with streptavidin and acceptor beads conjugated with a monoclonal antibody binding to a mid-molecular region of semaglutide.
- the three reactants were combined with the semaglutide which form a two-sited immuno-complex. Illumination of the complex releases singlet oxygen atoms from the donor beads which channels into the acceptor beads and trigger chemiluminescence which was measured in the EnVision plate reader.
- the amount of light was proportional to the concentration of semaglutide and the lower limit of quantification (LLOQ) in plasma was 100 pM.
- the amount of semaglutide and SNAC in the composition were assayed using a reversed-phase HPLC method, with UV detection at 230 nm, a linear gradient of mobile phases made up of deionised H2O:trifluoroacetic acid (TFA) (1000:1) (v/v) (A), and acetonitrile:TFA (1000:1) (v/v) (B).
- TFA deionised H2O:trifluoroacetic acid
- B acetonitrile:TFA
- Semaglutide plasma concentration data were subjected to non-compartmental pharmacokinetic analysis using the PC based software WinNonlin, v. 5.2 (Pharsight, Mountain View, Calif. 94041, USA).
- C max maximum plasma concentration
- t max time for maximum plasma concentration
- the following pharmacokinetic parameters were estimated: Area Under the Curve to infinity (AUCinf.), and AUCinf./Dose (AUCinf./D).
- Bioavailability (F) was calculated as the fraction absorbed (in %) based on the dose normalised AUC (AUCinf./D) following oral and intravenous administration. Summary statistics of pharmacokinetic results were presented as arithmetic mean with calculated standard deviation, also for T max and plasma half life.
- Tablets with different amounts of SNAC (150, 300 and 600 mg) and semaglutide (5, 10, 15 and 20 mg) were prepared.
- the composition of the tablets is shown in Table 1.
- composition expressed as “per tablet” Composition A B C D E F Semaglutide (mg) 10 10 10 5 15 20 SNAC (mg) 150 300 600 300 300 300 300 Povidone (mg) 2 4 7 3.5 4 4 Extragranular Avicel PH 102 (mg) 36 82 76 38 77 72 Magesium Stearate 2 4 7 3.5 4 4 (mg) Tablet Weight (mg) 200 400 700 350 400 400 400
- Semaglutide was prepared according to the method described in WO2006/097537, Example 4, and subsequently freeze-dried.
- SNAC was prepared according to the method described in WO2008/028859. The compositions were prepared using the following manufacturing process:
- the tablet hardness of was more than 50 N as determined by the Pharma Test (33AA02), which measures the force required to disrupt the tablet, and the test is based on the pharmacopeia method Ph Eur 2.9.8.
- Table 2 summarises the pharmacokinetic parameters for semaglutide from single dosing of the tablets shown in Table 1.
- tablets comprising 300 mg SNAC showed improved bioavailability in the current study compared to tablets comprising 150 mg or 600 mg SNAC.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Reproductive Health (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Pregnancy & Childbirth (AREA)
- Emergency Medicine (AREA)
- Child & Adolescent Psychology (AREA)
- Gynecology & Obstetrics (AREA)
- Cardiology (AREA)
- Hospice & Palliative Care (AREA)
Abstract
The present invention relates to solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid and their use in medicine.
Description
- This application is a continuation of U.S. application Ser. No. 17/180,370, filed Feb. 19, 2021, which is a continuation of U.S. application Ser. No. 16/118,381, filed Aug. 30, 2018 (Issued as 10,960,052), which is a continuation of U.S. application Ser. No. 15/019,412, filed Feb. 9, 2016 (Issued as 10,086,047), which is a continuation of U.S. application Ser. No. 13/994,262 filed Sep. 16, 2013 (Issued as 9,278,123), which is a 35 U.S.C. § 371 National Stage application of International Application PCT/EP2011/073060 (WO 2012/080471), filed Dec. 16, 2011, which claimed priority of European Patent Application 10195285.1, filed Dec. 16, 2010; this application claims priority under 35 U.S.C. § 119 of U.S. Provisional Application 61/425,087; filed Dec. 20, 2010; the contents of which are incorporated herein by reference.
- The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 1, 2022, is named 8253US10_SequenceListing_ST25.txt and is 2 kilobytes in size.
- The present invention relates to solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid and their use in medicine.
- Human GLP-1 and analogues thereof have a low oral bioavailability. Exposure and bioavailability of human GLP-1 and analogues thereof is very low following oral administration. Human GLP-1 and analogues thereof can only be detected in plasma after oral administration if formulated with certain absorption enhancers in a specific amount. Steinert et al. (Am 3 Clin Nutr, October 2010; 92: 810-817) discloses oral administration of a tablet comprising GLP-1(7-36)amide and 150 mg sodium N-(8-(2-hydroxybenzoyl)amino)caprylate (SNAC). WO 2010/020978 discloses an oral pharmaceutical composition comprising a protein and N-(8-[2-hydroxybenzoyl) amino)caprylate (SNAC).
- There is still a need for an optimized pharmaceutical composition for oral administration of a GLP-1 agonist such as a GLP-1 agonist comprising a substituent.
- In some embodiments the invention relates to a solid composition for oral administration comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino) caprylic acid, wherein a) the amount of said salt of N-(8-(2-hydroxybenzoyl)amino) caprylic acid is at least 0.6 mmol or at least 0.8 mmol; and b) said GLP-1 agonist is GLP-1 (7-37), GLP-1 (7-36)amide, exendin-4 or an analogue thereof, and wherein said GLP-1 agonist optionally comprises one substituent. In some embodiments the invention relates to the use of a composition as defined herein in medicine.
- The present invention relates to solid compositions of a GLP-1 agonist and salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid. Surprisingly, the present inventors have found that solid compositions comprising certain amounts of a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid, such as SNAC, are optimal for oral administration of GLP-1 agonists. Accordingly, the compositions provide improved exposure and/or bioavailability of the GLP-1 agonist.
- Generally, the term “bioavailability” as used herein refers to the fraction of an administered dose of an active pharmaceutical ingredient (API), such as a GLP-1 agonist as defined herein, which reaches the systemic circulation unchanged. By definition, when an API is administered intravenously, its bioavailability is 100%. However, when it is administered via other routes (such as orally), its bioavailability decreases (due to incomplete absorption and first-pass metabolism). Knowledge about bioavailability is important when calculating dosages for non-intravenous routes of administration.
- Absolute oral bioavailability is calculated as the relative exposure of the API in systemic circulation following oral administration (estimated as the area under the plasma concentration versus time curve, or AUC) compared to the exposure of the API following intravenous administration.
- The term “GLP-1 agonist” as used herein refers to a compound, which fully or partially activates the human GLP-1 receptor. In some embodiments the “GLP-1 agonist” binds to a GLP-1 receptor, e.g., with an affinity constant (KD) or activate the receptor with a potency (EC50) of below 1 μM, e.g. below 100 nM as measured by methods known in the art (see e.g. WO 98/08871) and exhibits insulinotropic activity, where insulinotropic activity may be measured in vivo or in vitro assays known to those of ordinary skill in the art. For example, the GLP-1 agonist may be administered to an animal with increased blood glucose (e.g. obtained using an Intravenous Glucose Tolerance Test (IVGTT), a person skilled in the art will be able to determine a suitable glucose dosage and a suitable blood sampling regime, e.g. depending on the species of the animal, for the IVGTT) and the plasma insulin concentration measured over time.
- In some embodiments the GLP-1 agonist is a GLP-1 analogue, optionally comprising one substituent. The term “analogue” as used herein referring to a GLP-1 peptide (hereafter “peptide”) means a peptide wherein at least one amino acid residue of the peptide has been substituted with another amino acid residue and/or wherein at least one amino acid residue has been deleted from the peptide and/or wherein at least one amino acid residue has been added to the peptide and/or wherein at least one amino acid residue of the peptide has been modified. Such addition or deletion of amino acid residues may take place at the N-terminal of the peptide and/or at the C-terminal of the peptide. In some embodiments a simple nomenclature is used to describe the GLP-1 agonist, e.g., [Aib8] GLP-1(7-37) designates an analogue of GLP-1(7-37) wherein the naturally occurring Ala in position 8 has been substituted with Aib. In some embodiments the GLP-1 agonist comprises a maximum of twelve, such as a maximum of 10, 8 or 6, amino acids which have been alterered, e.g., by substitution, deletion, insertion and/or modification, compared to e.g. GLP-1(7-37). In some embodiments the analogue comprises up to 10 substitutions, deletions, additions and/or insertions, such as up to 9 substitutions, deletions, additions and/or insertions, up to 8 substitutions, deletions, additions and/or insertions, up to 7 substitutions, deletions, additions and/or insertions, up to 6 substitutions, deletions, additions and/or insertions, up to 5 substitutions, deletions, additions and/or insertions, up to 4 substitutions, deletions, additions and/or insertions or up to 3 substitutions, deletions, additions and/or insertions, compared to e.g. GLP-1(7-37). Unless otherwise stated the GLP-1 comprises only L-amino acids.
- In some embodiments the term “GLP-1 analogue” or “analogue of GLP-1” as used herein refers to a peptide, or a compound, which is a variant of the human Glucagon-Like Peptide-1 (GLP-1(7-37)). GLP-1(7-37) has the sequence HAEGTFTSDV SSYLEGQAAKEFIAWLVKGRG (SEQ ID No: 1). In some embodiments the term “variant” refers to a compound which comprises one or more amino acid substitutions, deletions, additions and/or insertions.
- In one embodiment the GLP-1 agonist exhibits at least 60%, 65%, 70%, 80% or 90% sequence identity to GLP-1(7-37) over the entire length of GLP-1(7-37). As an example of a method for determination of sequence identity between two analogues the two peptides [Aib8]GLP-1(7-37) and GLP-1(7-37) are aligned. The sequence identity of [Aib8]GLP-1(7-37) relative to GLP-1(7-37) is given by the number of aligned identical residues minus the number of different residues divided by the total number of residues in GLP-1(7-37). Accordingly, in said example the sequence identity is (31-1)/31.
- In one embodiment the C-terminal of the GLP-1 agonist is an amide.
- In some embodiments the GLP-1 agonist is GLP-1(7-37) or GLP-1(7-36)amide. In some embodiments the GLP-1 agonist is exendin-4, the sequence of which is HGEGTFITSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS (SEQ ID No: 2).
- In some embodiments the GLP-1 agonist comprises one substituent which is covalently attached to the peptide. In some embodiments the substituent comprises a fatty acid or a fatty diacid. In some embodiments the substituent comprises a C16, C18 or C20 fatty acid. In some embodiments the substituent comprises a C16, C18 or C20 fatty diacid. In some embodiments the substituent comprises formula (X)
- wherein n is at least 13, such as n is 13, 14, 15, 16, 17, 18 or 19. In some embodiments the substituent comprises formula (X), wherein n is in the range of 13 to 19, such as in the range of 13 to 17. In some embodiments the substituent comprises formula (X), wherein n is 13, 15 or 17. In some embodiments the substituent comprises formula (X), wherein n is 13. In some embodiments the substituent comprises formula (X), wherein n is 15. In some embodiments the substituent comprises formula (X), wherein n is 17. In some embodiments the substituent comprises one or more 8-amino-3,6-dioxaoctanoic acid (OEG), such as two OEG.
- In some embodiments the substituent is [2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxyheptadecanoylamino) butyrylamino]ethoxy}ethoxy)acetylamino] ethoxy}ethoxy)acetyl].
- In some embodiments the substituent is [2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxynonadecanoylamino)methyl]cyclohexanecarbonyl}amino)butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl].
- In some embodiments the GLP-1 agonist is semaglutide, also known as N-epsilon26-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxyheptadecanoylamino) butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1(7-37), which may be prepared as described in WO2006/097537, Example 4.
- In some embodiments the composition comprises the GLP-1 agonist or a pharmaceutically acceptable salt, amide, or ester thereof. In some embodiments the composition comprises the GLP-1 agonist one or more pharmaceutically acceptable counter ions.
- In some embodiments the dosage of GLP-1 is in the range of 0.01 mg to 100 mg. In some embodiments the composition comprises an amount of a GLP-1 agonist in the range of 0.1 to 40 mg or 1 to 20 mg. In some embodiments the composition comprises an amount of a GLP-1 agonist in the range of 5 to 20 mg, such as in the range of 5 to 15 mg, such as 5 mg, such as 10 mg, such as 15 mg, such as 20 mg.
- In some embodiments the composition comprises an amount of a GLP-1 agonist in the range of 0.05 to 25 μmol, such as in the range of 0.5 to 2.5 μmol.
- In some embodiments the GLP-1 agonist is selected from one or more of the GLP-1 agonists mentioned in WO93/19175, WO96/29342, WO98/08871, WO99/43707, WO99/43706, WO99/43341, WO99/43708, WO2005/027978, WO2005/058954, WO2005/058958, WO2006/005667, WO2006/037810, WO2006/037811, WO2006/097537, WO2006/097538, WO2008/023050, WO2009/030738, WO2009/030771 and WO2009/030774.
- In some embodiments the GLP-1 agonist is selected from the group consisting of N-epsilon37{2-[2-(2-{2-[2-((R)-3-carboxy-3-{[1-(19-carboxynonadecanoyl) piperidine-4-carbonyl]amino}propionylamino)ethoxy]ethoxy}acetylamino)ethoxy]ethoxy}acetyl [desaminoHis7,Glu22,Arg26,Arg34,Lys37]GLP-1(7-37)amide; N-epsilon26{2-[2-(2-{2-[2-((R)-3-carboxy-3-{[1-(19-carboxynonadecanoyl) piperidine-4-carbonyl]amino}propionylamino)ethoxy]ethoxy}acetylamino)ethoxy] ethoxy}acetyl [desaminoHis7, Arg34] GLP-1-(7-37); N-epsilon37{2-[2-(2-{2-[2-((S)-3-carboxy-3-{[1-(19-carboxy-nonadecanoyl) piperidine-4-carbonyl]amino}propionylamino)ethoxy] ethoxy}acetylamino)ethoxy] ethoxy}acetyl[Aib8,Glu22,Arg26,Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-[2-(2-[2-(2-((R)-3-[1-(17-carboxyheptadecanoyl)piperidin-4-ylcarbonylamino]3-carboxypropionylamino)ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl][,DesaminoHis7, Glu22 Arg26, Arg 34, Phe(m-CF3)28]GLP-1-(7-37)amide; N-epsilon26-[(S)-4-carboxy-4-({trans-4-[(19-carboxynonadecanoylamino)methyl] cyclohexanecarbonyl}amino)butyryl][Aib8,Arg34]GLP-1-(7-37); N-epsilon26-{4-[(S)-4-carboxy-4-({trans-4-[(19-carboxynonadecanoylamino) methyl]cyclohexanecarbonyl}amino)butyrylamino]butyryl}[Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino) methyl]cyclohexanecarbonyl}amino)butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl]cyclohexanecarbonyl}amino)butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy) acetyl][Aib8,Arg34]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl]cyclohexanecarbonyl}amino) butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][Aib8,Glu22,Arg26, Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl]cyclohexanecarbonyl}amino) butyrylamino] ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][DesaminoHis7,Glu22, Arg26,Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({4-[(trans-19-carboxy-nonadecanoylamino)methyl]cyclohexanecarbonyl}amino) butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][DesaminoHis7,Arg26,Arg34,Lys 37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl]cyclohexanecarbonyl}amino) butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][DesaminoHis7,Glu22,Arg26,Arg 34,Lys37]GLP-1-(7-37); N-epsilon26[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({4-[(19-carboxy-nonadecanoylamino)methyl]cyclohexanecarbonyl}amino)butyrylamino] ethoxy}ethoxy) acetylamino]ethoxy}ethoxy)acetyl[Aib8, Lys 26]GLP-1 (7-37)amide; N-epsilon26 [2-(2-[2-(2-[2-(2-((S)-2-[trans-4-((9-carboxynonadecanoylamino] methyl) cyclohexylcarbonylamino]-4-carboxybutanoylamino)ethoxy)ethoxy]acetylamino) ethoxy]ethoxy)acetyl][Aib8, Lys26] GLP-1 (7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl]cyclohexane-carbonyl} amino)butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][DesaminoHis7,Arg26,Arg34,Lys37]GLP-1-(7-37); N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl]cyclohexanecarbonyl}amino)butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][DesaminoHis7,Glu2 2,Arg26,Glu30,Arg34,Lys37]GLP-1-(7-37); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{4-[4-(16-(1H-tetrazol-5-yl)-hexadecanoylsulfamoyl)butyrylamino]-butyrylamino}butyrylamino) butyrylamino] ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoyl-sulfamoyl)butyrylamino]dodecanoylamino}butyrylamino) butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{6-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino]hexanoylamino} butyrylamino)butyrylamino]ethoxy}ethoxy) acetyl][Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{4-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino] butyrylamino}butyrylamino)butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-34); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino]-dodecanoylamino}butyrylamino) butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-34); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{6-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl) butyrylamino]hexanoylamino}butyrylamino) butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-34); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoyl-sulfamoyl)butyrylamino]dodecanoylamino}butyrylamino)butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-35); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{6-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino]hexanoylamino} butyrylamino)butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-35); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{6-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino]hexanoylamino}butyrylamino)butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-36)amide; N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{6-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl) butyrylamino]hexanoylamino}butyrylamino) butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-35); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino]dodecanoylamino}butyryl-amino)butyrylamino]ethoxy} ethoxy)acetyl][Aib8,Lys33,Arg34]GLP-1-(7-34); N-epsilon26-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino]dodecanoylamino}butyrylamino)butyrylamino]ethoxy}ethoxy)acetyl][Ab8,Arg34]GLP-1-(7-36)amide; N-epsilon26-[2-(2-{2-[2-(2-{2-[2-(2-{2-[2-(2-{2-[2-(2-{2-[2-(2-{2-[(S)4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl) butyrylamino]dodecanoylamino}butyrylamino) butyrylamino]ethoxy}ethoxy) acetylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][Aib8,Lys26,Arg34]GLP-1-(7-36)amide; N-epsilon37-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino] dodecanoylamino}butyrylamino) butyrylamino]ethoxy}ethoxy)acetyl][Aib8,Glu22,Arg26,Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl)butyrylamino]dodecanoylamino}butyrylamino) butyrylamino]ethoxy}ethoxy)acetyl][DesaminoHis7,Glu22,Arg26,Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37{2-[2-(2-{2-[2-((R)-3-carboxy-3-{[1-(19-carboxy-nonadecanoyl) piperidine-4-carbonyl]amino}propionylamino)ethoxy]ethoxy} acetylamino)ethoxy] ethoxy}acetyl [desaminoHis7,Glu22,Arg26,Arg34,Lys37]GLP-1(7-37)amide; N-epsilon37{2-[2-(2-{2-[2-((S)-3-carboxy-3-{[1-(19-carboxynonadecanoyl) piperidine-4-carbonyl]amino}propionylamino) ethoxy]ethoxy}acetylamino)ethoxy] ethoxy} acetyl [Aib8,Glu22, Arg26,Arg34, Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-[2-(2-[2-(2-((R)-3-[1-(17-carboxyhepta-decanoyl)piperidin-4-ylcarbonylamino]3-carboxy-propionylamino) ethoxy)ethoxy] acetylamino) ethoxy] ethoxy)acetyl] [DesaminoHis7, Glu22,Arg26, Arg34,Phe(m-CF3)28] GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl] cyclohexanecarbonyl}amino)butyrylamino]ethoxy} ethoxy)acetylamino] ethoxy}ethoxy)acetyl][Aib8,Glu22,Arg26,Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl]cyclohexanecarbonyl} amino)butyrylamino]ethoxy}ethoxy) acetylamino]ethoxy}ethoxy)acetyl][DesaminoHis7,Glu22,Arg26,Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino)methyl] cyclohexanecarbonyl}amino)butyrylamino]ethoxy}ethoxy) acetylamino]ethoxy} ethoxy)acetyl][DesaminoHis7,Glu22,Arg26,Arg34, Lys37]GLP-1-(7-37); N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxy-nonadecanoylamino) methyl]cyclohexanecarbonyl}amino)butyrylamino]ethoxy}ethoxy) acetylamino] ethoxy}ethoxy)acetyl][DesaminoHis7,Glu22,Arg26,Glu30,Arg34, Lys37]GLP-1-(7-37); N-epsilon37-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl) butyrylamino]dodecanoylamino} butyrylamino) butyrylamino] ethoxy}ethoxy)acetyl] [Aib8,Glu22,Arg26,Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[(S)-4-carboxy-4-((S)-4-carboxy-4-{12-[4-(16-(1H-tetrazol-5-yl)hexadecanoylsulfamoyl) butyrylamino]dodecanoylamino}butyrylamino) butyrylamino]ethoxy}ethoxy)acetyl] [DesaminoHis7,Glu22,Arg26,Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-(3-((2-(2-(2-(2-(2-Hexadecyloxyethoxy)ethoxy)ethoxy) ethoxy) ethoxy)) propionyl)[DesaminoHis7,Glu22,Arg26,Arg34,Lys37]GLP-1(7-37)-amide; N-epsilon37-{2-(2-(2-(2-[2-(2-(4-(hexadecanoylamino)-4-carboxybutyryl-amino)ethoxy) ethoxy]acetyl)ethoxy)ethoxy)acetyl)}-[desaminoHis7,Glu22,Arg26, Glu30,Arg34,Lys37] GLP-1-(7-37)amide; N-epsilon37-{2-(2-(2-(2-[2-(2-(4-(hexadecanoylamino)-4-carboxybutyryl-amino) ethoxy)ethoxy]acetyl)ethoxy)ethoxy) acetyl)}-[desaminoHis7,Glu22, Arg26, Arg34,Lys37]GLP-1-(7-37)amide; N-epsilon37-(2-(2-(2-(2-(2-(2-(2-(2-(2-(octadecanoyl-amino)ethoxy)ethoxy) acetylamino)ethoxy) ethoxy)acetylamino) ethoxy)ethoxy) acetyl)[desaminoHis7,Glu22,Arg26,Arg34,Lys37] GLP-1 (7-37)amide; N-epsilon37-[4-(16-(1H-Tetrazol-5-yl)hexadecanoylsulfamoyl) butyryl] [DesaminoHis7,Glu22,Arg26, Arg34, Lys37]GLP-1-(7-37)amide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(19-carboxynonadecanoylamino) butyrylamino] ethoxy}ethoxy) acetylamino]ethoxy} ethoxy)acetyl] [DesaminoHis7,Glu22,Arg26, Arg34,Lys37]GLP-1-(7-37); N-epsilon37-(2-{2-[2-((S)-4-carboxy-4-{(S)-4-carboxy-4-[(S)-4-carboxy-4-(19-carboxy-nonadecanoylamino)butyrylamino]butyrylamino} butyrylamino)ethoxy]ethoxy}acetyl)[DesaminoHis7,Glu22,Arg26,Arg34,Lys37]GLP-1-(7-37); N-epsilon37-{2-[2-(2-{(S)-4-[(S)-4-(12-{4-[16-(2-tert-Butyl-2H-tetrazol-5-yl)-hexadecanoylsulfamoyl] butyrylamino}dodecanoylamino)-4-carboxybutyrylamino]-4-carboxybutyrylamino} ethoxy)ethoxy]acetyl}[DesaminoHis7,Glu22,Arg26,Arg34,Lys37] GLP-1 (7-37); N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetyl] [Aib8,Glu22, Arg26,Arg34,Lys37]GLP-1-(7-37); N-alpha37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)- butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetyl] [Aib8,Glu22,Arg26,Arg34,epsilon-Lys37]GLP-1-(7-37)peptide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetyl] [desaminoHis7, Glu22,Arg26,Arg34,Lys37] GLP-1-(7-37); N-epsilon36-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(15-carboxy-pentadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)acetylamino]-ethoxy}-ethoxy)-acetyl] [desaminoHis7, Glu22,Arg26,Glu30,Arg34,Lys36]GLP-1-(7-37)-Glu-Lys peptide; N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxynonadecanoylamino)methyl]cyclohexanecarbonyl}amino)butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][Ab8,Glu22,Arg26,Arg34,Lys37]GL P-1-(7-37); N-epsilon37-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxyheptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)acetyl]-[Aib8,Glu22, Arg26,Arg34,Aib35,Lys37]GLP-1-(7-37); N-epsilon37-[(S)-4-carboxy-4-(2-{2-[2-(2-{2-[2-(17-carboxyheptadecanoylamino) ethoxy] ethoxy} acetylamino) ethoxy] ethoxy} acetylamino) butyryl] [Aib8,Glu22,Arg26,34,Lys37] GLP-1 (7-37); N-epsilon37-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)-4(S)carboxybutyrylamino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl] [ImPr7,Glu22, Arg26,34,Lys37], GLP-1-(7-37); N-epsilon26-{2-[2-(2-{2-[2-(2-{(S)-4-carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]butyrylamino}ethoxy)ethoxy] acetylamino}ethoxy) ethoxy]acetyl}, N-epsilon37-{2-[2-(2-{2-[2-(2-{(S)-4-carboxy-4-[10-(4-carboxyphenoxy) decanoylamino] butyrylamino}ethoxy)ethoxy]acetylamino}ethoxy) ethoxy]acetyl}-[Aib8,Arg34,Lys37]GLP-1(7-37)-OH; N-epsilon26 (17-carboxyheptadecanoyl)-[Aib8,Arg34]GLP-1-(7-37)-peptide; N-epsilon26-(19-carboxynonadecanoyl)[Aib8,Arg34]GLP-1-(7-37); N-epsilon26-(4-{[N-(2-carboxyethyl)-N-(15-carboxypentadecanoyl)amino]methyl}benzoyl[Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)-4(S)-carboxybutyrylamino]ethoxy)ethoxy] acetylamino) ethoxy]ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(19-carboxynonadecanoylamino)-4(S)-carboxybutyrylamino]ethoxy)ethoxy] acetylamino)ethoxy]ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)-4(S)-carboxybutyrylamino]ethoxy)ethoxy] acetylamino)ethoxy]ethoxy)acetyl][3-(4-Imidazolyl)Propionyl7,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)-(carboxymethylamino)acetylamino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)-3(S)Sulfopropionylamino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Ab8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)-4(S)carboxybutyrylamino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Gly8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)-4(S)carboxybutyrylamino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37)-amide; N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)4(S)-carboxybutyrylamino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Aib8,Arg34,Pro37]GLP-1-(7-37)amide; Aib8,Lys26(N-epsilon26-{2-(2-(2-(2-[2-(2-(4-(pentadecanoylamino)-4-carboxybutyrylamino)ethoxy)ethoxy]acetyl)ethoxy) ethoxy)acetyl)}), Arg34)GLP-1 H(7-37)-OH; N-epsilon26-[2-(2-[2-(2-[2-(2-[4-{[N-(2-carboxyethyl)-N-(17-carboxyheptadecanoyl)amino]methyl}benzoyl)amino]ethoxy) ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Aib8,Arg34]GLP-1(7-37); N-alpha7-formyl, N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoyl-amino)-4(S)-carboxybutyrylamino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl] [Arg34]GLP-1-(7-37); N-epsilon2626-[2-(2-[2-(2-[2-(2-[4-(17-carboxyheptadecanoylamino)-4(S)-carboxybutyrylamino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Aib8, Glu22, Arg34]GLP-1-(7-37); N-epsilon26{3-[2-(2-{2-[2-(2-{2-[2-(2-[4-(15-(N-((S)-1,3-dicarboxypropyl) carbamoyl)pentadecanoylamino)-(S)-4-carboxybutyrylamino] ethoxy)ethoxy] ethoxy}ethoxy)ethoxy]ethoxy}ethoxy)ethoxy]propionyl} [Aib8,Arg34]GLP-1-(7-37); N-epsilon26-[2-(2-[2-(2-[2-(2-[4-{[N-(2-carboxyethyl)-N-(17-carboxyheptadecanoyl)amino]methyl}benzoyl)amino](4(S)-carboxybutyryl-amino)ethoxy) ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Aib8,Arg34] GLP-1(7-37); N-epsilon26-{(S)-4-carboxy-4-((S)-4-carboxy-4-((S)-4-carboxy-4-((S)-4-carboxy-4-(19-carboxynonadecanoylamino)butyrylamino)butyrylamino)butyrylamino) butyrylamino}[Aib8,Arg34]GLP-1-(7-37); N-epsilon26-4-(17-carboxyheptadecanoyl-amino)-4(S)carboxybutyryl-[Aib8,Arg34]GLP-1-(7-37); N-epsilon26-{3-[2-(2-{2-[2-(2-{2-[2-(2-[4-(17-carboxyheptadecanoylamino)-4(S)-carboxybutyrylamino]ethoxy)ethoxy]ethoxy}ethoxy)ethoxy]ethoxy}ethoxy)ethoxy]propionyl}[Aib8,Arg34]GLP-1-(7-37); N-epsilon26-{2-(2-(2-(2-[2-(2-(4-(17-carboxyheptadecanoylamino)-4-carboxybutyrylamino) ethoxy)ethoxy]acetyl)ethoxy)ethoxy)acetyl)}-[Aib8,22,27,30,35,Arg34,Pro37, Lys26] GLP-1 (7-37)amide; N-epsilon26-[2-(2-[2-[4-(21-carboxyuneicosanoylamino)-4(S)carboxybutyrylamino]ethoxy]ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37); and N-epsilon26-[2-(2-[2-(2-[2-(2-[4-(21-carboxyuneicosanoylamino)-4(S)-carboxybutyrylamino] ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37).
- The delivery agent used in the present invention is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid. The structural formula of N-(8-(2-hydroxybenzoyl)amino)caprylate is shown in formula (I).
- In some embodiments the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid comprises one monovalent cation, two monovalent cations or one divalent cation. In some embodiments the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is selected from the group consisting of the sodium salt, potassium salt and calcium salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
- Salts of N-(8-(2-hydroxybenzoyl)amino)caprylate may be prepared using the method described in e.g. WO96/030036, WO0/046182, WO01/092206 or WO2008/028859.
- The salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid may be crystalline and/or amorphous. In some embodiments the delivery agent comprises the anhydrate, monohydrate, dihydrate, trihydrate, a solvate or one third of a hydrate of the salt of N(8-(2-hydroxybenzoyl)amino) caprylic acid as well as combinations thereof. In some embodiments the delivery agent is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid as described in WO2007/121318.
- In some embodiments the delivery agent is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate (referred to as “SNAC” herein), also known as sodium 8-(salicyloylamino) octanoate.
- In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl) amino)caprylic acid in the composition is at least 0.6 mmol, such as selected from the group consisting of at least 0.65 mmol, at least 0.7 mmol, at least 0.75 mmol, at least 0.8 mmol, at least 0.8 mmol, at least 0.9 mmol, at least 0.95 mmol and at least 1 mmol. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl) amino)caprylic acid in the composition is in the range of 0.6-2.1 mmol or 0.6-1.9 mmol. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl) amino)caprylic acid in the composition is in the range of 0.7-1.7 mmol or 0.8-1.3 mmol. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid in the composition is up to 2.1 mmol, such as selected from the group consisting of up to 2.1 mmol, up to 2 mmol, up to 1.9 mmol, up to 1.8 mmol, up to 1.7 mmol, up to 1.6 mmol, up to 1.5 mmol, up to 1.4 mmol, up to 1.3 mmol, up to 1.2 mmol and up to 1.1 mmol. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is 1 mmol, such as 1.08 mmol.
- In some embodiments the amount of SNAC in the composition is at least 175 mg, such as an amount selected from the group consisting of at least 200 mg, at least 210 mg, at least 220 mg, at least 230 mg, at least 240 mg, at least 250 mg, at least 260 mg, at least 270 mg and at least 280 mg. In some embodiments the amount of SNAC in the composition is in the range of 175-575 mg, such as 200-500 mg or 250-400 mg. In some embodiments the amount of SNAC in the composition is up to 575 mg, such as an amount selected from the group consisting of up to 550 mg, up to 525 mg, up to 500 mg, up to 475 mg, up to 450 mg, up to 425 mg, up to 400 mg, up to 375 mg, up to 350 mg and up to 325 mg. In some embodiments the amount of SNAC in the composition is 300 mg.
- In some embodiments the molar ratio between GLP-1 agonist and delivery agent in the composition is less than 10, such as less than 5 or less than 1.
- The composition of the present invention is a solid composition and is administered by the oral route.
- In some embodiments the composition comprises at least one pharmaceutically acceptable excipient. The term “excipient” as used herein broadly refers to any component other than the active therapeutic ingredient(s). The excipient may be an inert substance, an inactive substance, and/or a not medicinally active substance. The excipient may serve various purposes, e.g. as a carrier, vehicle, filler, binder, lubricant, glidant, disintegrant, flow control agents, crystallization retarders, solubilizers, stabilizer, colouring agent, flavouring agent, surfactant, emulsifier and/or to improve administration, and/or absorption of the active substance. A person skilled in the art may select one or more of the aforementioned excipients with respect to the particular desired properties of the solid oral dosage form by routine experimentation and without any undue burden. The amount of each excipient used may vary within ranges conventional in the art. Techniques and excipients which may be used to formulate oral dosage forms are described in Handbook of Pharmaceutical Excipients, 6th edition, Rowe et al., Eds., American Pharmaceuticals Association and the Pharmaceutical Press, publications department of the Royal Pharmaceutical Society of Great Britain (2009); and Remington: the Science and Practice of Pharmacy, 21th edition, Gennaro, Ed., Lippincott Williams & Wilkins (2005). In some embodiments the excipients may be selected from binders, such as polyvinyl pyrrolidone (povidone), etc.; fillers such as cellulose powder, microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxy-propylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, etc.; lubricants and/or glidants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol tribehenate, etc.; flow control agents such as colloidal silica, talc, etc.; crystallization retarders such as Povidone, etc.; solubilizers such as Pluronic, Povidone, etc.; colouring agents, including dyes and pigments such as Iron Oxide Red or Yellow, titanium dioxide, talc, etc.; pH control agents such as citric acid, tartaric acid, fumaric acid, sodium citrate, dibasic calcium phosphate, dibasic sodium phosphate, etc.; surfactants and emulsifiers such as Pluronic, polyethylene glycols, sodium carboxymethyl cellulose, polyethoxylated and hydrogenated castor oil, etc.; and mixtures of two or more of these excipients and/or adjuvants.
- In some embodiments the composition comprises at least 60% (w/w) delivery agent, less than 10% (w/w) binder, 5-40% (w/w) filler, and less than 10% (w/w) lubricant or glidant.
- In some embodiments the composition comprises at least 60% (w/w), such as at least 70% (w/w) or at least 75% (w/w), delivery agent.
- In some embodiments the composition comprises 0.1-10% (w/w), such as 0.2-4% (w/w) or 0.5-3% (w/w), of binder. In some embodiments the composition comprises 1% (w/w) or 2% (w/w) of binder. The composition may comprise a binder, such as povidone; starches; celluloses and derivatives thereof, such as microcrystalline cellulose, e.g., AVICEL PH from FMC (Philadelphia, Pa.), hydroxypropyl cellulose hydroxylethyl cellulose and hydroxylpropylmethyl cellulose METHOCEL from Dow Chemical Corp. (Midland, Mich.); sucrose; dextrose; corn syrup; polysaccharides; and gelatin. The binder may be selected from the group consisting of dry binders and/or wet granulation binders. Suitable dry binders are, e.g., cellulose powder and microcrystalline cellulose, such as Avicel PH 102 and Avicel PH 200. In some embodiments the composition comprises avicel, such as avicel PH 102. Suitable binders for wet granulation or dry granulation are corn starch, polyvinyl pyrrolidone (povidon), vinylpyrrolidone-vinylacetate copolymer (copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxyl-propylmethylcellulose. In some embodiments the composition comprises povidone.
- In some embodiments the composition comprises 5-40% (w/w), such as 10-30% (w/w) or 5-25% (w/w), of filler. In some embodiments the composition comprises 10.9% (w/w) or 18% (w/w) of filler, or comprises 19.5% (w/w) or 20.5 (w/w) of filler. The filler may be selected from lactose, mannitol, erythritol, sucrose, sorbitol, calcium phosphate, such as calciumhydrogen phosphate, microcrystalline cellulose, powdered cellulose, confectioner's sugar, compressible sugar, dextrates, dextrin and dextrose. In some embodiments the composition comprises microcrystalline cellulose, such as Avicel PH 102 or Avicel PH 200.
- In some embodiments the composition comprises 0.1-10% (w/w) or 0.5-5% (w/w), such as 1-3.5% (w/w) or 1% (w/w), of lubricant and/or a glidant. In some embodiments the composition comprises a lubricant and/or a glidant, such as talc, magnesium stearate, calcium stearate, zinc stearate, glyceryl behenate, polyethylene oxide polymers, sodium lauryl sulfate, magnesium lauryl sulfate, sodium oleate, sodium stearyl fumarate, stearic acid, hydrogenated vegetable oils, silicon dioxide and/or polyethylene glycol. In some embodiments the composition comprises magnesium stearate.
- In some embodiments the composition comprises a disintegrant, such as sodium starch glycolate, polacrilin potassium, sodium starch glycolate, crospovidon, croscarmellose, sodium carboxymethylcellulose or dried corn starch.
- The composition may comprise one or more surfactants, for example a surfactant, at least one surfactant, or two different surfactants. The term “surfactant” refers to any molecules or ions that are comprised of a water-soluble (hydrophilic) part, and a fatsoluble (lipophilic) part. The surfactant may e.g. be selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, and/or zwitterionic surfactants.
- Still further, the composition may be formulated as is known in the art of oral formulations of insulinotropic compounds, e.g. using any one or more of the formulations described in WO 2008/145728.
- A composition may also be used in the formulation of site specific, controlled, sustained, protracted, prolonged, delayed, pulsatile, retarded, and/or slow release drug delivery systems.
- The composition of the invention may be prepared as is known in the art.
- The composition may be administered in several dosage forms, for example as a tablet; a coated tablet; a chewing gum; a capsule such as hard or soft gelatine capsules or a powder. The composition may further be compounded in a drug carrier or drug delivery system, e.g. in order to improve stability and/or solubility or further improve bioavailability. The composition may be a freeze-dried or spray-dried composition.
- The composition may be in the form of a tablet. In some embodiments the weight of the tablet is in the range of 175 mg to 1000 mg, such as in the range of 175-250 mg, 300-500 mg or 500-900 mg, or such as about 200 mg, about 400 mg or about 700 mg. In some embodiments the weight of the tablet is in the range of 200 mg to 1000 mg, such as in the range of 500-700 mg or 600-1000 mg, or such as about 200 mg, about 400 mg, about 600 mg or about 800 mg.
- In some embodiments the composition may be granulated prior to being compacted. The composition may comprise an intragranular part and an extragranular part, wherein the intragranular part has been granulated and the extragranular part has been added after granulation. The intragranular part may comprise the GLP-1 agonist, the delivery agent and a binder. In some embodiments the intragranular part comprises povidone. The extragranular part may comprise a filler, a lubricant and/or a glidant. In some embodiments the extragranular part comprises microcrystalline cellulose, such as avicel, e.g. avicel PH120 or avicel PH200. In some embodiments the extragranular part comprises magnesium stearate.
- To prepare a dry blend of tabletting material, the various components are weighed, optionally delumped and then combined. The mixing of the components may be carried out until a homogeneous blend is obtained.
- If granules are to be used in the tabletting material, granules may be produced in a manner known to a person skilled in the art, for example using wet granulation methods known for the production of “built-up” granules or “broken-down” granules. Methods for the formation of built-up granules may operate continuously and comprise, for example simultaneously spraying the granulation mass with granulation solution and drying, for example in a drum granulator, in pan granulators, on disc granulators, in a fluidized bed, by spray-drying or spray-solidifying, or operate discontinuously, for example in a fluidized bed, in a rotary fluid bed, in a batch mixer, such as a high shear mixer or a low shear mixer, or in a spray-drying drum. Methods for the production of broken-down granules, which may be carried out discontinuously and in which the granulation mass first forms a wet aggregate with the granulation solution, which is subsequently comminuted or by other means formed into granules of the desired size and the granules may then be dried. Suitable equipment for the granulation step are planetary mixers, low shear mixers, high shear mixers, extruders and spheronizers, such as an apparatus from the companies Loedige, Glatt, Diosna, Fielder, Collette, Aeschbach, Alexanderwerk, Ytron, Wyss & Probst, Werner & Pfleiderer, HKD, Loser, Fuji, Nica, Caleva and Gabler. Granules may be also formed by dry granulation techniques in which the pharmaceutically active agent is compressed with the excipients to form relatively large moldings, for example slugs or ribbons, which are comminuted by grinding, and the ground material serves as the tabletting material to be later compacted. Suitable equipment for dry granulation is roller compaction equipment from Gerteis, such as Gerteis MINI-PACTOR.
- To compact the tabletting material into a solid oral dosage form, for example a tablet, a tablet press may be used. In a tabletting press, the tabletting material is filled (e.g. force fed or gravity fed) into a die cavity. The tabletting material is then compacted by a punch with pressure. Subsequently, the resulting compact, or tablet is ejected from the tabletting press. The above mentioned compaction process is subsequently referred to herein as the “compaction process”. Suitable tablet presses include, but are not limited to, rotary tablet presses and eccentric tablet presses. Examples of tablet presses include, but are not limited to, the Fette 102i (Fette GmbH), the Korsch XL100, the Korsch PH 106 rotary tablet press (Korsch AG, Germany), the Korsch EK-O eccentric tabletting press (Korsch AG, Germany) and the Manesty F-Press (Manesty Machines Ltd., United Kingdom).
- In some embodiments the method of preparation of the tablet comprises a) wet granulation of a mixture comprising the GLP-1 agonist, the delivery agent and a binder; b) optionally drying the wet granulate; c) blending of the dried wet granulates with at least a filler and at least a lubricant or a glidant, and then d) compression of the blend into tablets. The granulation may be a wet granulation or a dry granulation.
- Disintegration Time:
- In some embodiments the disintegration time of the tablet is in the range of 7 minutes to 15 minutes, such as in the range of 8 minutes to 13 minutes. Disintegration time may be determined using a Pharma Test PTZ AUTO disintegration test apparatus. The disintegration apparatus consists of a basket rack holding 2×6 plastic tubes, open at the top and bottom, the bottom of the tube is covered by a screen. Tablets are placed in the tubes and on top of the tablets are placed discs for automated disintegration detection. The basket is immersed in 800 ml purified water maintained at 37° C., in a 1 L beaker. Time for complete disintegration is measured. Furthermore, tablets may be observed visually for surface eroding behaviour during the disintegration test.
- In some embodiments the tablet of the invention co-releases the active ingredients and the delivery agent by surface erosion; hence, the tablets becomes smaller and smaller with time by dissolution primarily from the surface from non-disintegrated tablets. Concurrent release: In some embodiments the compositions show concurrent release of the GLP-1 agonist and the delivery agent from the surface of the tablet. This can be tested by visual inspection during the disintegration test; the tablets do not have concurrent release of the GLP-1 agonist and the delivery agent from the surface of the tablet if the tablet breaks into smaller parts during the first 8 minutes of the disintegration test.
- Dissolution Test:
- Another test for concurrent release of the GLP-1 agonist and the delivery agent is the dissolution test. Here, the rate of appearance (in percentage) of the GLP-1 agonist and the delivery agent is measured. The dissolution test may be carried out as described in the following: Dissolution is performed on a Varian 705 DS. The analysis is based on the pharmacopeia method Ph Eur 2.9.3, Apparatus 2 (Paddle apparatus). 100 ml mini vessel with mini-paddles is used, and paddle speed is 75 rpm. After 120 minutes, the paddle speed is changed to 250 rpm. The dissolution medium used for the dissolution test is 100 ml of 200 mM KH2PO4 (containing 0.07% Tween 80 to avoid the GLP-1 agonist from sticking to the wall of the bath and to the paddle), with pH 6.8. Samples are taken after 5, 15, 30, 45, 60, 120 and 135 minutes. The volume of the sample is 2 ml, and the sample is taken with a disposable syringe. After each sample is taken, the same volume (2 ml) of the dissolution medium is added to the bath, in order to keep the total volume of 100 ml constant. The sample is pressed through a 0.22 pm Millex®-GV filter. Finally, the samples are analysed for concentration of the GLP-1 agonist and for concentration of the delivery agent by UPLC.
- Hardness Test:
- The hardness of the tablets is measured with a Pharma Test (33AA02), which measures the force required to disrupt the tablet, and the test is based on the pharmacopeia method Ph Eur 2.9.8.
- The treatment with a composition according to the present invention may also be combined with one or more additional pharmacologically active substances, e.g. selected from antidiabetic agents, antiobesity agents, appetite regulating agents, antihypertensive agents, agents for the treatment and/or prevention of complications resulting from or associated with diabetes and agents for the treatment and/or prevention of complications and disorders resulting from or associated with obesity. Examples of these pharmacologically active substances are: Insulin, sulphonylureas, biguanides, meglitinides, glucosidase inhibitors, glucagon antagonists, DPP-IV (dipeptidyl peptidase-IV) inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose uptake modulators, compounds modifying the lipid metabolism such as antihyperlipidemic agents as HMG CoA inhibitors (statins), Gastric Inhibitory Polypeptides (GIP analogs), compounds lowering food intake, RXR agonists and agents acting on the ATP-dependent potassium channel of the p-cells; Cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol, dextrothyroxine, neteglinide, repaglinide; p-blockers such as alprenolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, alatriopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil, and α-blockers such as doxazosin, urapidil, prazosin and terazosin; CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, PYY agonists, Y2 receptor agonists, Y4 receptor agonits, mixed Y2/Y4 receptor agonists, MC4 (melanocortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, β3 agonists, oxyntomodulin and analogues, MSH (melanocyte-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin re-uptake inhibitors, serotonin and noradrenaline re-uptake inhibitors, mixed serotonin and noradrenergic compounds, 5HT (serotonin) agonists, bombesin agonists, galanin antagonists, growth hormone, growth hormone releasing compounds, TRH (thyreotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators, leptin agonists, DA agonists (bromocriptin, doprexin), lipase/amylase inhibitors, RXR (retinoid X receptor) modulators, TR β agonists; histamine H3 antagonists, Gastric Inhibitory Polypeptide agonists or antagonists (GIP analogs), gastrin and gastrin analogs.
- Additional embodiments of the compositions of the invention are described in the section headed “particular embodiments” before the experimental section.
- The present invention also relates to a composition of the invention for use as a medicament. In particular embodiments the composition of the invention may be used for the following medical treatments, all preferably relating one way or the other to diabetes:
- (i) prevention and/or treatment of all forms of diabetes, such as hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, non-insulin dependent diabetes, MODY (maturity onset diabetes of the young), gestational diabetes, and/or for reduction of HbA1C;
- (ii) delaying or preventing diabetic disease progression, such as progression in type 2 diabetes, delaying the progression of impaired glucose tolerance (IGT) to insulin requiring type 2 diabetes, and/or delaying the progression of non-insulin requiring type 2 diabetes to insulin requiring type 2 diabetes;
- (iii) improving β-cell function, such as decreasing β-cell apoptosis, increasing Pcell function and/or β-cell mass, and/or for restoring glucose sensitivity to β-cells;
- (iv) prevention and/or treatment of cognitive disorders;
- (v) prevention and/or treatment of eating disorders, such as obesity, e.g. by decreasing food intake, reducing body weight, suppressing appetite, inducing satiety; treating or preventing binge eating disorder, bulimia nervosa, and/or obesity induced by administration of an antipsychotic or a steroid; reduction of gastric motility; and/or delaying gastric emptying;
- (vi) prevention and/or treatment of diabetic complications, such as neuropathy, including peripheral neuropathy; nephropathy; or retinopathy;
- (vii) improving lipid parameters, such as prevention and/or treatment of dyslipidemia, lowering total serum lipids; lowering HDL; lowering small, dense LDL; lowering VLDL: lowering triglycerides; lowering cholesterol; increasing HDL; lowering plasma levels of lipoprotein a (Lp(a)) in a human; inhibiting generation of apolipoprotein a (apo(a)) in vitro and/or in vivo;
- (iix) prevention and/or treatment of cardiovascular diseases, such as syndrome X; atherosclerosis; myocardial infarction; coronary heart disease; stroke, cerebral ischemia; an early cardiac or early cardiovascular disease, such as left ventricular hypertrophy; coronary artery disease; essential hypertension; acute hypertensive emergency; cardiomyopathy; heart insufficiency; exercise tolerance; chronic heart failure; arrhythmia; cardiac dysrhythmia; syncopy; atheroschlerosis; mild chronic heart failure; angina pectoris; cardiac bypass reocclusion; intermittent claudication (atheroschlerosis oblitterens); diastolic dysfunction; and/or systolic dysfunction;
- (ix) prevention and/or treatment of gastrointestinal diseases, such as inflammatory bowel syndrome; small bowel syndrome, or Crohn's disease; dyspepsia; and/or gastric ulcers;
- (x) prevention and/or treatment of critical illness, such as treatment of a critically ill patient, a critical illness poly-nephropathy (CIPNP) patient, and/or a potential CIPNP patient; prevention of critical illness or development of CIPNP; prevention, treatment and/or cure of systemic inflammatory response syndrome (SIRS) in a patient; and/or for the prevention or reduction of the likelihood of a patient suffering from bacteraemia, septicaemia, and/or septic shock during hospitalisation; and/or
- (xi) prevention and/or treatment of polycystic ovary syndrome (PCOS).
- In a particular embodiment, the indication is selected from the group consisting of (i)-(iii) and (v)-(iix), such as indications (i), (ii), and/or (iii); or indication (v), indication (vi), indication (vii), and/or indication (iix). In another particular embodiment, the indication is (i). In a further particular embodiment the indication is (v). In a still further particular embodiment the indication is (iix). In some embodiments the indications are type 2 diabetes and/or obesity.
-
- 1. A solid composition for oral administration comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid, wherein the amount of said salt of N(8-(2-hydroxybenzoyl)amino)caprylic acid is at least 0.6 mmol.
- 2. A solid composition for oral administration comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid, wherein the amount of said salt of N(8-(2-hydroxybenzoyl)amino)caprylic acid is at least 0.8 mmol.
-
- 3. A composition according to any one of the preceding embodiments, wherein said composition is in the form of a tablet.
- 4. A composition according to any one of the preceding embodiments, wherein the tablet has a weight in the range of 175-1000 mg.
- 5. A composition according to any one of the preceding embodiments, wherein the tablet has a weight in the range of 200-800 mg.
- 6. A composition according to any one of the preceding embodiments, wherein the tablet has a weight selected from the group consisting of 200 mg, such as 400 mg or 700 mg.
- 7. A composition according to any one of the preceding embodiments, wherein the tablet has a weight selected from the group consisting of 200 mg, 400 mg, 600 mg or 800 mg.
Salt of N-(8-(2-hydroxybenzoyl)amino)caprylic Acid - 8. A composition according to any one of the preceding embodiments, wherein said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid comprises one monovalent cation, two monovalent cations or one divalent cation.
- 9. A composition according to any one of the preceding embodiments, wherein said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is selected from the group consisting of the sodium salt, potassium salt and calcium salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
- 10. A composition according to any one of the preceding embodiments, wherein said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate (SNAC).
Amount of Salt of N-(8-(2-hydroxybenzoyl)amino)caprylic Acid - 11. A composition according to any one of the preceding embodiments, wherein the amount of said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is in the range of 0.6-2.1 mmol, such as 0.6-1.9 mmol, 0.7-1.7 mmol or 0.8-1.3 mmol.
- 12. A composition according to any one of the preceding embodiments, wherein the amount of said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is at least 0.6 mmol, such as selected from the group consisting of at least 0.65 mmol, at least 0.7 mmol, at least 0.75 mmol, at least 0.8 mmol, at least 0.8 mmol, at least 0.9 mmol, at least 0.95 mmol and at least 1 mmol.
- 13. A composition according to any one of the preceding embodiments, wherein the amount of said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is up to 2.1 mmol, such as selected from the group consisting of up to 2.1 mmol, up to 2 mmol, up to 1.9 mmol, up to 1.8 mmol, up to 1.7 mmol, up to 1.6 mmol, up to 1.5 mmol, up to 1.4 mmol, up to 1.3 mmol, up to 1.2 mmol and up to 1.1 mmol.
- 14. A composition according to any one of the preceding embodiments, wherein the amount of said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is 1 mmol, such as 1.08 mmol.
- 15. A composition according to any one of the preceding embodiments, wherein said composition comprises at least 60% (w/w), such as at least 70% (w/w) or at least 75% (w/w), of said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
-
- 16. A composition according to embodiment 10, wherein the amount of SNAC is at least 175 mg, such as an amount selected from the group consisting of at least 200 mg, at least 210 mg, at least 220 mg, at least 230 mg, at least 240 mg, at least 250 mg, at least 260 mg, at least 270 mg and at least 280 mg.
- 17. A composition according to embodiment 10, wherein the amount of SNAC is up to 575 mg, such as an amount selected from the group consisting of up to 550 mg, up to 525 mg, up to 500 mg, up to 475 mg, up to 450 mg, up to 425 mg, up to 400 mg, up to 375 mg, up to 350 mg and up to 325 mg.
- 18. A composition according to embodiment 10, wherein the amount of SNAC is 300 mg.
-
- 19. A composition according to any one of the preceding embodiments, wherein the amount of the GLP-1 agonist is in the range of 0.01 mg to 100 mg.
- 20. A composition according to any one of the preceding embodiments, wherein the GLP-1 agonist comprises one substituent.
- 21. A composition according to any one of the preceding embodiments, wherein said substituent comprises a fatty acid or a fatty diacid.
- 22. A composition according to any one of the preceding embodiments, wherein said substituent comprises a C16, C18 or C20 fatty acid.
- 23. A composition according to any one of the preceding embodiments, wherein said substituent comprises a C16, C18 or C20 fatty diacid.
- 24. A composition according to any one of the preceding embodiments, wherein said substituent comprises formula (X)
-
- wherein n is at least 13, such as n is 13, 14, 15, 16, 17, 18 or 19.
- 25. A composition according to any one of the preceding embodiments, wherein said substituent comprises one or more 8-amino-3,6-dioxaoctanoic acid (OEG), such as two OEG.
- 26. A composition according to any one of the preceding embodiments, wherein the GLP-1 agonist is GLP-1 (7-37), GLP-1 (7-36)amide, exendin-4 or an analogue thereof comprising up to 10 substitutions, deletions, additions and/or insertions, wherein said GLP-1 agonist optionally comprises one substituent.
- 27. A composition according to any one of the preceding embodiments, wherein the GLP-1 agonist is GLP-1 (7-37), GLP-1 (7-36)amide, exendin-4 or an analogue thereof comprising up to 7 substitutions, deletions, additions and/or insertions, wherein said GLP-1 agonist optionally comprises one substituent.
- 28. A composition according to any one of the preceding embodiments, wherein the GLP-1 agonist is GLP-1 (7-37), GLP-1 (7-36)amide, exendin-4 or an analogue thereof comprising up to 4 substitutions, deletions, additions and/or insertions, wherein said GLP-1 agonist optionally comprises one substituent.
- 29. A composition according to any one of the preceding embodiments, wherein the GLP-1 agonist is GLP-1 (7-37), GLP-1 (7-36)amide, exendin-4 or an analogue thereof comprising up to 3 substitutions, deletions, additions and/or insertions, wherein said GLP-1 agonist optionally comprises one substituent.
- 30. A composition according to any one of the preceding embodiments, wherein the GLP-1 agonist is semaglutide.
- 31. A composition according to any one of the preceding embodiments, wherein the amount of the GLP-1 agonist is in the range of 1 to 20 mg, such as in the range of 5 to 20 mg, such as in the range of 5 to 15 mg, such as 10 mg.
- 32. A composition according to any one of the preceding embodiments, wherein the amount of GLP-1 is in the range of 0.05 to 25 μmol, such as in the range of 0.5 to 2.5 μmol.
-
- 33. A composition according to any one of the preceding embodiments, wherein said composition comprises at least one additional pharmaceutically acceptable excipient.
- 34. A composition according to any one of the preceding embodiments, wherein said excipient is selected from one or more from the group consisting of binders, fillers, disintegrants and lubricants and/or glidants.
- 35. A composition according to any one of the preceding embodiments, wherein said composition comprises 0.1-10% (w/w), such as 0.2-4% (w/w) or 0.5-3% (w/w), of binder.
- 36. A composition according to any one of the preceding embodiments, wherein said composition comprises 1% (w/w) or 2% (w/w) of binder.
- 37. A composition according to any one of the preceding embodiments, wherein said binder is povidone.
- 38. A composition according to any one of the preceding embodiments, wherein said composition comprises 5-40% (w/w), such as 10-30% (w/w) or 5-25% (w/w), of filler.
- 39. A composition according to any one of the preceding embodiments, wherein said composition comprises 10.9% (w/w) or 18% (w/w) of filler, or comprises 19.5% (w/w) or 20.5 (w/w) of filler.
- 40. A composition according to any one of the preceding embodiments, wherein said filler is avicel, such as avicel PH 102 or avicel PH 200.
- 41. A composition according to any one of the preceding embodiments, wherein said composition comprises 0.1-10% (w/w) or 0.5-5% (w/w) lubricant and/or a glidant.
- 42. A composition according to any one of the preceding embodiments, wherein said composition comprises 1-3.5% (w/w) or 1% (w/w) lubricant and/or a glidant.
- 43. A composition according to any one of the preceding embodiments, wherein said excipient is magnesium stearate.
- 44. A composition according to any one of the preceding embodiments, wherein said composition comprises at least 60% (w/w) delivery agent, less than 10% (w/w) binder, 5-40% (w/w) filler, and less than 10% (w/w) lubricant and/or glidant.
-
- 45. Use of a composition according to any one of the preceding embodiments, wherein the composition is administered orally.
-
- 46. A composition according to any one of the preceding embodiments, wherein said tablet has surface eroding properties.
- 47. A composition according to any one of the preceding embodiments, wherein said tablet has co-release of the GLP-1 agonist and the delivery agent as determined by the concurrent release test described herein.
- 48. A composition according to any one of the preceding embodiments, wherein said tablet has a disintegration time in the range of 7-15 minutes as determined by the disintegration test described herein.
- 49. A composition according to any one of the preceding embodiments, wherein said tablet has a hardness of at least 50 N as determined by the hardness test described herein.
-
- 50. Use of a composition as defined in any one of the preceding embodiments in medicine.
- 51. Use of a composition as defined in any one of the preceding embodiments for treatment of type 2 diabetes or obesity.
- 52. A method for the treatment of type 2 diabetes or obesity comprising administering a composition as defined in any one of the preceding embodiments.
- The objective of the present study was to evaluate the oral bioavailability in beagle dogs of a series of compositions comprising semaglutide and SNAC.
- Twenty four male and 24 female beagle dogs, weighing 6-11 kg during the study period were included in the study. The dogs were dosed in fasting state. The compositions were administered by a single oral dosing to the dogs in groups of 4 male and 4 females. Blood samples were taken at the following time points: predose, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 24, 48, 72, 96, 120, 144, 192 and 240 hours post dosing.
- The i.v. solution (20 nmol/mL in a pH 7.4 solution comprising 0.1 mg/ml Tween 20, 5.5 mg/ml Phenol, 1.42 mg/ml Na2HPO4 and 14 mg/ml Propylene Glycol) was dosed in a dose volume of 0.1 mL/kg in the same dog colony in one dosing group (n=8). Blood samples were taken at the following time points: predose, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 24, 48, 72, 96, 120, 144, 192 and 240 hours post dosing.
- All blood samples were collected into test tubes containing EDTA for stabilisation and kept on ice until centrifugation. Plasma was separated from whole blood by centrifugation and the plasma was stored at −20° C. or lower until analysis.
- The plasma was analyzed for semaglutide using a Luminescence Oxygen Channeling Immunoassay (LOCI). The LOCI assay employs donor beads coated with streptavidin and acceptor beads conjugated with a monoclonal antibody binding to a mid-molecular region of semaglutide. The other monoclonal antibody, specific for an N-terminal epitope, was biotinylated. In the assay the three reactants were combined with the semaglutide which form a two-sited immuno-complex. Illumination of the complex releases singlet oxygen atoms from the donor beads which channels into the acceptor beads and trigger chemiluminescence which was measured in the EnVision plate reader. The amount of light was proportional to the concentration of semaglutide and the lower limit of quantification (LLOQ) in plasma was 100 pM.
- The amount of semaglutide and SNAC in the composition were assayed using a reversed-phase HPLC method, with UV detection at 230 nm, a linear gradient of mobile phases made up of deionised H2O:trifluoroacetic acid (TFA) (1000:1) (v/v) (A), and acetonitrile:TFA (1000:1) (v/v) (B).
- Semaglutide plasma concentration data were subjected to non-compartmental pharmacokinetic analysis using the PC based software WinNonlin, v. 5.2 (Pharsight, Mountain View, Calif. 94041, USA). For each individual dog the maximum plasma concentration (Cmax) and time for maximum plasma concentration (tmax) were read from the plasma concentration time curves. The following pharmacokinetic parameters were estimated: Area Under the Curve to infinity (AUCinf.), and AUCinf./Dose (AUCinf./D). Bioavailability (F) was calculated as the fraction absorbed (in %) based on the dose normalised AUC (AUCinf./D) following oral and intravenous administration. Summary statistics of pharmacokinetic results were presented as arithmetic mean with calculated standard deviation, also for Tmax and plasma half life.
- Tablets with different amounts of SNAC (150, 300 and 600 mg) and semaglutide (5, 10, 15 and 20 mg) were prepared. The composition of the tablets is shown in Table 1.
-
TABLE 1 Tablet composition expressed as “per tablet” Composition A B C D E F Semaglutide (mg) 10 10 10 5 15 20 SNAC (mg) 150 300 600 300 300 300 Povidone (mg) 2 4 7 3.5 4 4 Extragranular Avicel PH 102 (mg) 36 82 76 38 77 72 Magesium Stearate 2 4 7 3.5 4 4 (mg) Tablet Weight (mg) 200 400 700 350 400 400 - Semaglutide was prepared according to the method described in WO2006/097537, Example 4, and subsequently freeze-dried. SNAC was prepared according to the method described in WO2008/028859. The compositions were prepared using the following manufacturing process:
- 1) The ingredients were first screened through a #35 mesh;
2) semaglutide and SNAC were geometrically blended in a mortar and pestle;
3) povidone was dissolved in water and the resulting solution was used to granulate the blend of semaglutide and SNAC;
4) the granules were dried at a temperature not exceeding 40° C. to a moisture level of 4%; and
5) the resulting dried granules were milled through a #35 mesh;
6) finally, the granules were blended with the extra granular ingredients (see Table 1) and the final blend was compressed into tablets, wherein the compression was performed at a pressure of approximately 4.4 kN or higher. - The tablet hardness of was more than 50 N as determined by the Pharma Test (33AA02), which measures the force required to disrupt the tablet, and the test is based on the pharmacopeia method Ph Eur 2.9.8.
- Table 2 summarises the pharmacokinetic parameters for semaglutide from single dosing of the tablets shown in Table 1.
-
TABLE 2 Summary of pharmacokinetic parameters for semaglutide from single dosing of tablets comprising 10 mg semaglutide in combination with 150 mg (A), 300 mg (B) or 600 mg (C) SNAC. SNAC Tmax Cmax F Composition (mg) (h) (pM) AUCinf./D (%) A 150 0.6 6222 0.62 0.17 B 300 0.8 21871 2.335 0.63 C 600 1.1 9972 1.09 0.29 - Individual and mean (SD) calculated pharmacokinetic parameters following oral dosing appear from Tables 3 to 5 and following intravenous administration appear from Table 6.
-
TABLE 3 Pharmacokinetic parameters for semaglutide following oral dosing of oral dosing of the combination of 10 mg semaglutide and 150 mg SNAC (Composition A) to 4 male and 4 female Beagle dogs. AUCinf./D Dose Tmax Cmax (h*kg*pmol/ F Dog no (nmol/kg) (h) (pM) l/pmol) (%) 1025 285 1.5 38300 4.08 1.1 1026 548 n.a. 0 0 0 1027 278 0.2 228 0 0.00003 1028 338 2.0 3410 0.31 0.08 1029 246 n.a. 0 0 0 1030 244 0.2 2030 0.07 0.02 1031 223 n.a. 0 0 0 1032 254 0.5 5810 0.47 0.13 Mean 302 0.6 6222 0.62 0.17 SD 105 0.5 13130 1.41 0.38 n.a.) not analysed -
TABLE 4 Pharmacokinetic parameters for semaglutide following oral dosing of oral dosing of the combination of 10 mg semaglutide and 300 mg SNAC (Composition B) to 4 male and 4 female Beagle dogs. AUCinf./D Dose Tmax Cmax (h*kg*pmol/ F Dog no (nmol/kg) (h) (pM) l/pmol) (%) 1033 294 0.5 5540 0.35 0.09 1034 301 2.0 72000 6.83 1.8 1035 276 n.a. 0 0 0 1036 258 1.5 21100 2.52 0.68 1037 239 2.0 70000 8.73 2.3 1038 261 0.7 4050 0.28 0.07 1039 223 0.5 2010 0.07 0.02 1040 249 0.2 271 0.00 0.0001 Mean 263 0.8 21871 2.35 0.63 SD 26.7 0.5 31061 3.49 0.94 n.a.) not analysed -
TABLE 5 Pharmacokinetic parameters for semaglutide following oral dosing of the combination of 10 mg semaglutide and 600 mg SNAC (Composition C) to 4 male and 4 female Beagle dogs. AUCinf./D Dose Tmax Cmax (h*kg*pmol/ F Dog no (nmol/kg) (h) (pM) l/pmol) (%) 1041 262 n.a. 0 0 0 1042 278 0.5 1890 0.52 0.14 1043 265 3.0 261 0 0.0005 1044 265 0.7 1270 0.02 0.01 1045 251 1.5 48400 5.2 1.4 1046 285 2.0 22900 2.53 0.68 1047 226 0.7 4100 0.4 0.11 1048 248 0.7 953 0.01 0.004 Mean 260 1.1 9972 1.09 0.29 SD 18 0.5 17298 1.87 0.50 n.a.) not analysed -
TABLE 6 Pharmacokinetic parameters for semaglutide following intravenous dosing of 2 nmol/kg semaglutide to 4 male and 4 female Beagle dogs. AUCinf./D Dose Tmax Cmax (h*kg*pmol/ Dog no (pmol/kg) (h) (pM) l/pmol) 1065 1980 0.5 31400 310 1066 1980 0.2 17400 227 1067 1980 0.2 28300 385 1068 1980 4.0 12900 384 1069 1980 0.2 28300 398 1070 1980 0.2 27400 383 1071 1980 0.2 31000 472 1072 1980 0.2 25700 418 Mean 1980 0.8 25300 372 SD 0 1.3 6638 73.8 -
TABLE 7 Summary of pharmacokinetic parameters for semaglutide from single dosing of composition comprising 300 mg SNAC in combination with 5, 10, 15 or 20 mg semaglutide. SNAC Semaglutide Tmax Cmax F Composition (mg) (mg) (h) (pM) AUCinf./D (%) D 300 5 0.5 4446 1.22 0.33 B 300 10 0.8 21871 2.33 0.63 E 300 15 1.0 42612 4.61 1.2 F 300 20 1.3 9603 5.09 1.4 -
TABLE 8 Pharmacokinetic parameters for semaglutide following oral dosing of the combination of 5 mg semaglutide and 300 mg SNAC (Composition D) to 4 male and 4 female Beagle dogs. AUCinf./D Dose Tmax Cmax (h*kg*pmol/ F Dog no (nmol/kg) (h) (pM) l/pmol) (%) 1049 123 1 4490 1.54 0.41 1050 153 0.7 4420 0.5 0.13 1051 114 1 17200 4.27 1.1 1052 131 0.2 2390 0.52 0.14 1053 119 0.5 1860 0.31 0.08 1054 131 0.2 575 0.03 0.01 1055 113 0.7 3210 0.45 0.12 1056 107 0.5 1420 2.16 0.58 Mean 124 0.5 4446 1.22 0.33 SD 15 0.5 5335 1.42 0.38 -
TABLE 9 Pharmacokinetic parameters for semaglutide following oral dosing of the combination of 15 mg semaglutide and 300 mg SNAC (Composition E) to 6 Beagle dogs. AUCinf./D Dose Tmax Cmax (h*kg*pmol/ F Dog no (nmol/kg) (h) (pM) l/pmol) (%) 1067 318 1 56500 5.18 1.4 1068 393 1.5 61000 4.75 1.3 1069 322 1 15100 1.23 0.3 1070 341 0.5 2090 0 0.01 1071 283 2.5 114000 16.00 4.3 1072 312 0.5 6980 0.47 0.1 Mean 328 1.0 42612 4.61 1.2 SD 37 0.8 43118 6.00 1.6 -
TABLE 10 Pharmacokinetic parameters for semaglutide following oral dosing of the combination of 20 mg semaglutide and 300 mg SNAC (Composition F) to 4 male and 4 female Beagle dogs. AUCinf./D Dose Tmax Cmax (h*kg*pmol/ F Dog no (nmol/kg) (h) (pM) l/pmol) (%) 1057 588 1 197000 9.60 2.6 1058 619 1.5 144000 7.11 1.9 1059 508 1.5 77400 4.45 1.2 1060 519 1.5 91900 5.18 1.4 1061 519 2 70400 4.72 1.3 1062 519 1.5 155000 9.09 2.4 1063 460 0.7 1620 0.01 0.004 1064 487 1.5 11500 0.61 0.16 Mean 527 1.3 93603 5.09 1.4 SD 52 0.5 68667 3.52 0.95 - Surprisingly, tablets comprising 300 mg SNAC showed improved bioavailability in the current study compared to tablets comprising 150 mg or 600 mg SNAC.
Claims (11)
1. A solid composition for oral administration comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid, wherein the amount of said salt of N(8-(2-hydroxybenzoyl)amino)caprylic acid is at least 0.6 or at least 0.8 mmol; and said GLP-1 agonist optionally comprises one substituent.
2. A composition according to claim 1 , wherein said composition is in the form of a tablet.
3. A composition according to claim 1 , wherein said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate (SNAC).
4. A composition according to claim 1 , wherein the amount of said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is in the range of 0.6-2.1 mmol, such as 0.6-1.9 mmol, 0.7-1.7 mmol or 0.8-1.3 mmol.
5. A composition according to claim 1 , wherein the amount of said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is up to 2.1 mmol, such as selected from the group consisting of up to 2.1 mmol, up to 2 mmol, up to 1.9 mmol, up to 1.8 mmol, up to 1.7 mmol, up to 1.6 mmol, up to 1.5 mmol, up to 1.4 mmol, up to 1.3 mmol, up to 1.2 mmol and up to 1.1 mmol.
6. A composition according to claim 1 , wherein the amount of the GLP-1 agonist is in the range of 0.01 mg to 100 mg.
7. A composition according to claim 1 , wherein said GLP-1 agonist is GLP-1 (7-37), GLP-1 (7-36)amide, exendin-4 or an analogue thereof comprising up to 10 substitutions, deletions, additions and/or insertions, and wherein said GLP-1 agonist optionally comprises one substituent.
8. A composition according to claim 7 , wherein said substituent comprises a fatty acid or a fatty diacid.
10. A composition according to claim 1 , wherein the amount of GLP-1 is in the range of 0.05 to 25 μmol, such as in the range of 0.5 to 2.5 μmol.
11. A composition according to claim 1 , wherein said composition comprises at least one additional pharmaceutically acceptable excipient.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/831,836 US20220313786A1 (en) | 2010-12-16 | 2022-06-03 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US18/130,441 US20230302092A1 (en) | 2010-12-16 | 2023-04-04 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US18/643,038 US20240277817A1 (en) | 2010-12-16 | 2024-04-23 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10195285.1 | 2010-12-16 | ||
EP10195285 | 2010-12-16 | ||
US201061425087P | 2010-12-20 | 2010-12-20 | |
PCT/EP2011/073060 WO2012080471A1 (en) | 2010-12-16 | 2011-12-16 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US201313994262A | 2013-09-16 | 2013-09-16 | |
US15/019,412 US10086047B2 (en) | 2010-12-16 | 2016-02-09 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US16/118,381 US10960052B2 (en) | 2010-12-16 | 2018-08-30 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl) amino) caprylic acid |
US17/180,370 US11382957B2 (en) | 2010-12-16 | 2021-02-19 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US17/831,836 US20220313786A1 (en) | 2010-12-16 | 2022-06-03 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/180,370 Continuation US11382957B2 (en) | 2010-12-16 | 2021-02-19 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/130,441 Continuation US20230302092A1 (en) | 2010-12-16 | 2023-04-04 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220313786A1 true US20220313786A1 (en) | 2022-10-06 |
Family
ID=43903993
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/994,262 Active US9278123B2 (en) | 2010-12-16 | 2011-12-16 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US15/019,412 Active US10086047B2 (en) | 2010-12-16 | 2016-02-09 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US16/118,381 Active US10960052B2 (en) | 2010-12-16 | 2018-08-30 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl) amino) caprylic acid |
US17/180,370 Active US11382957B2 (en) | 2010-12-16 | 2021-02-19 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US17/831,836 Abandoned US20220313786A1 (en) | 2010-12-16 | 2022-06-03 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US18/130,441 Abandoned US20230302092A1 (en) | 2010-12-16 | 2023-04-04 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US18/643,038 Pending US20240277817A1 (en) | 2010-12-16 | 2024-04-23 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/994,262 Active US9278123B2 (en) | 2010-12-16 | 2011-12-16 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US15/019,412 Active US10086047B2 (en) | 2010-12-16 | 2016-02-09 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US16/118,381 Active US10960052B2 (en) | 2010-12-16 | 2018-08-30 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl) amino) caprylic acid |
US17/180,370 Active US11382957B2 (en) | 2010-12-16 | 2021-02-19 | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/130,441 Abandoned US20230302092A1 (en) | 2010-12-16 | 2023-04-04 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
US18/643,038 Pending US20240277817A1 (en) | 2010-12-16 | 2024-04-23 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
Country Status (20)
Country | Link |
---|---|
US (7) | US9278123B2 (en) |
EP (3) | EP2651398B1 (en) |
JP (2) | JP5902194B2 (en) |
KR (1) | KR101925620B1 (en) |
CN (2) | CN103260608A (en) |
AU (1) | AU2011343190B2 (en) |
BR (1) | BR112013014942B1 (en) |
CA (1) | CA2821886A1 (en) |
DK (2) | DK3326620T3 (en) |
ES (1) | ES2661676T3 (en) |
HR (1) | HRP20180425T1 (en) |
HU (1) | HUE036066T2 (en) |
LT (1) | LT2651398T (en) |
MX (1) | MX345501B (en) |
PL (2) | PL3326620T3 (en) |
PT (1) | PT2651398T (en) |
RS (2) | RS60321B1 (en) |
RU (1) | RU2600440C3 (en) |
SI (2) | SI2651398T1 (en) |
WO (1) | WO2012080471A1 (en) |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3326620T3 (en) | 2010-12-16 | 2020-08-24 | Novo Nordisk A/S | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2- hydroxybenzoyl)amino)caprylic acid |
KR101972836B1 (en) | 2011-04-12 | 2019-04-29 | 노보 노르디스크 에이/에스 | Double-acylated glp-1 derivatives |
RS58636B1 (en) | 2012-03-22 | 2019-05-31 | Novo Nordisk As | Compositions comprising a delivery agent and preparation thereof |
PT2827845T (en) | 2012-03-22 | 2019-03-29 | Novo Nordisk As | Compositions comprising a delivery agent and preparation thereof |
BR112014023374B1 (en) | 2012-03-22 | 2021-09-21 | Novo Nordisk A/S | COMPOSITIONS OF GLP-1 PEPTIDES, THEIR PREPARATION PROCESS AND THEIR USE FOR THE TREATMENT OF DIABETES AND OBESITY |
JP6517690B2 (en) * | 2012-06-20 | 2019-05-22 | ノヴォ ノルディスク アー/エス | Tablet formulation containing peptide and delivery agent |
MX366405B (en) | 2012-07-01 | 2019-07-08 | Novo Nordisk As | Use of long-acting glp-1 peptides. |
UA116217C2 (en) | 2012-10-09 | 2018-02-26 | Санофі | Exendin-4 derivatives as dual glp1/glucagon agonists |
PL2934568T3 (en) | 2012-12-21 | 2018-03-30 | Sanofi | Dual glp1/gip or trigonal glp1/gip/glucagon agonists |
US9457086B2 (en) | 2013-03-05 | 2016-10-04 | Enteris Biopharma, Inc. | Pharmaceuticals for oral delivery |
CN104055735B (en) * | 2013-03-22 | 2016-08-03 | 深圳翰宇药业股份有限公司 | A kind of liposome of Sa Molutai and preparation method thereof |
MX369259B (en) * | 2013-05-02 | 2019-11-04 | Novo Nordisk As | Oral dosing of glp-1 compounds. |
TW201609799A (en) | 2013-12-13 | 2016-03-16 | 賽諾菲公司 | Dual GLP-1/GIP receptor agonists |
EP3080152A1 (en) | 2013-12-13 | 2016-10-19 | Sanofi | Non-acylated exendin-4 peptide analogues |
WO2015086728A1 (en) | 2013-12-13 | 2015-06-18 | Sanofi | Exendin-4 peptide analogues as dual glp-1/gip receptor agonists |
TW201609797A (en) | 2013-12-13 | 2016-03-16 | 賽諾菲公司 | Dual GLP-1/glucagon receptor agonists |
TW201625670A (en) | 2014-04-07 | 2016-07-16 | 賽諾菲公司 | Dual GLP-1/glucagon receptor agonists derived from EXENDIN-4 |
TW201625669A (en) | 2014-04-07 | 2016-07-16 | 賽諾菲公司 | Peptidic dual GLP-1/glucagon receptor agonists derived from Exendin-4 |
TW201625668A (en) | 2014-04-07 | 2016-07-16 | 賽諾菲公司 | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
DK3006045T3 (en) * | 2014-10-07 | 2017-07-17 | Cyprumed Gmbh | Pharmaceutical formulations for oral administration of peptide or protein drugs |
CN105777872B (en) * | 2014-12-16 | 2019-06-07 | 深圳翰宇药业股份有限公司 | A kind of purification process of Sa Molu peptide |
KR102294577B1 (en) | 2015-01-12 | 2021-08-26 | 엔터리스 바이오파마, 인크. | solid oral dosage form |
JP7211704B2 (en) * | 2015-01-29 | 2023-01-24 | ノヴォ ノルディスク アー/エス | A tablet containing a GLP-1 agonist and an enteric coating |
WO2016128970A1 (en) * | 2015-02-09 | 2016-08-18 | Entera Bio Ltd. | Treatment of hypoparathyroidism |
WO2016168388A2 (en) | 2015-04-14 | 2016-10-20 | Palatin Technologies, Inc. | Therapies for obesity, diabetes and related indications |
AR105319A1 (en) | 2015-06-05 | 2017-09-27 | Sanofi Sa | PROPHARMS THAT INCLUDE A DUAL AGONIST GLU-1 / GLUCAGON CONJUGATE HIALURONIC ACID CONNECTOR |
TW201706291A (en) | 2015-07-10 | 2017-02-16 | 賽諾菲公司 | New EXENDIN-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
WO2017149070A1 (en) | 2016-03-03 | 2017-09-08 | Novo Nordisk A/S | Glp-1 derivatives and uses thereof |
CA3022535A1 (en) * | 2016-04-28 | 2017-11-02 | Novo Nordisk A/S | Semaglutide in cardiovascular conditions |
JOP20190060A1 (en) | 2016-09-26 | 2019-03-26 | Chugai Pharmaceutical Co Ltd | Pyrazolopyridine derivative having glp-1 receptor agonist effect |
US11166939B2 (en) | 2017-04-25 | 2021-11-09 | Otsuka Pharmaceutical Co. Ltd | Lisinopril compositions with an ingestible event marker |
TWI797133B (en) * | 2017-06-09 | 2023-04-01 | 丹麥商諾佛 儂迪克股份有限公司 | Solid compositions for oral administration |
CN110809464A (en) | 2017-06-27 | 2020-02-18 | 株式会社培旺精廉宅 | Mucoadhesive oral preparation |
SG11202002841PA (en) | 2017-10-12 | 2020-04-29 | Novo Nordisk As | Semaglutide in medical therapy |
CN111683676B (en) * | 2018-02-02 | 2024-06-18 | 诺和诺德股份有限公司 | Solid composition comprising a GLP-1 agonist, a salt of N- (8- (2-hydroxybenzoyl) amino) octanoic acid and a lubricant |
TWI829687B (en) * | 2018-05-07 | 2024-01-21 | 丹麥商諾佛 儂迪克股份有限公司 | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
HUE062893T2 (en) | 2018-10-26 | 2023-12-28 | Novo Nordisk As | Stable semaglutide compositions and uses thereof |
CN113329810A (en) | 2019-01-24 | 2021-08-31 | 诺和诺德股份有限公司 | Roller press and dry granulation method using the same |
CN113677336B (en) | 2019-04-10 | 2024-04-30 | 基恩菲特公司 | Combination therapy comprising a compound of formula (I) and a GLP-1 receptor agonist |
JP2022543826A (en) * | 2019-08-07 | 2022-10-14 | ノヴォ ノルディスク アー/エス | A solid composition containing a PYY compound and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
AU2020326265A1 (en) | 2019-08-07 | 2022-02-03 | Novo Nordisk A/S | Solid compositions comprising an EGF(A) derivative and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
WO2021043803A1 (en) | 2019-09-02 | 2021-03-11 | Novo Nordisk A/S | Process for producing a tablet comprising glp-1 peptides |
BR112022007721A2 (en) * | 2019-11-06 | 2022-07-12 | Novo Nordisk As | METHOD FOR THE TREATMENT OF DEMENTIA |
KR20220112751A (en) | 2019-11-07 | 2022-08-11 | 노보 노르디스크 에이/에스 | A solid composition comprising a PCSK9 inhibitor and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid |
CN114641276A (en) | 2019-11-07 | 2022-06-17 | 诺和诺德股份有限公司 | Solid compositions comprising a GLP-1 agonist, an SGLT2 inhibitor, and a salt of N- (8- (2-hydroxybenzoyl) amino) caprylic acid |
US20230165939A1 (en) * | 2020-04-29 | 2023-06-01 | Novo Nordisk A/S | Solid compositions comprising a glp-1 agonist and histidine |
CN113735733B (en) * | 2020-05-29 | 2024-04-26 | 杭州先为达生物科技股份有限公司 | Crystal polymorphs of N- [8- (2-hydroxybenzoyl) amino ] caprylic acid potassium and preparation method and application thereof |
EP4159712A4 (en) * | 2020-05-29 | 2023-12-20 | Sciwind Biosciences Co., Ltd. | N-[8-(2-hydroxybenzoyl)amino]potassium octanoate crystal polymorph, and preparation method therefor and use thereof |
KR20230029480A (en) | 2020-07-22 | 2023-03-03 | 노보 노르디스크 에이/에스 | Co-agonist at glp-1 and gip receptors suitable for oral delivery |
CN112274633B (en) * | 2020-09-16 | 2023-11-07 | 广州新济薇娜生物科技有限公司 | Cord Ma Lutai blood glucose-reducing weight-reducing microneedle patch and preparation method and application thereof |
CN112062690A (en) * | 2020-11-11 | 2020-12-11 | 北京先为达生物科技有限公司 | Potassium N- [8- (2-hydroxybenzoyl) amino ] caprylate crystal polymorph and preparation method and application thereof |
TWI850611B (en) | 2020-12-18 | 2024-08-01 | 丹麥商諾佛 儂迪克股份有限公司 | Co-agonists of the glp-1 and amylin receptors |
FR3120189A1 (en) | 2021-03-01 | 2022-09-02 | Farid Bennis | Pharmaceutical composition for oral administration of a GLP-1 receptor agonist |
EP4317145A1 (en) | 2021-03-24 | 2024-02-07 | Shionogi & Co., Ltd | Pharmaceutical composition containing glp-1 receptor agonist having fused ring |
WO2022221629A1 (en) | 2021-04-16 | 2022-10-20 | Navinta Iii Inc | Process for the preparation of highly pure salcaprozic acid and pharmaceutically acceptable salts thereof |
US11667614B2 (en) | 2021-04-16 | 2023-06-06 | Navinta III Inc. | Process for the preparation of highly pure Salcaprozic Acid and pharmaceutically acceptable salts thereof |
PE20240640A1 (en) | 2021-04-22 | 2024-04-04 | Civi Biopharma Inc | ORAL ADMINISTRATION OF OLIGONUCLEOTIDES |
EP4360645A1 (en) * | 2021-06-25 | 2024-05-01 | Gan & Lee Pharmaceuticals Co., Ltd. | Pharmaceutical composition containing glp-1 compound |
IL309535A (en) | 2021-07-15 | 2024-02-01 | Novo Nordisk As | Tablet comprising a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
CA3223247A1 (en) | 2021-07-16 | 2023-01-19 | Thomas Kvistgaard Vilhelmsen | Sodium n-(8-(2- hydroxybenzoyl)amino)caprylate polymorphic form a |
US20230053812A1 (en) * | 2021-07-27 | 2023-02-23 | Aurobindo Pharma Ltd | Stable peptide formulations for oral use |
WO2023012263A1 (en) | 2021-08-04 | 2023-02-09 | Novo Nordisk A/S | Solid oral peptide formulations |
EP4299057A1 (en) * | 2022-06-30 | 2024-01-03 | Adocia | Solid compositions comprising a peptide or a protein and an acylated amino acid |
EP4180060A1 (en) * | 2021-11-15 | 2023-05-17 | Adocia | Solid compositions comprising a peptide or a protein and an acylated amino acid |
TW202330584A (en) | 2022-01-20 | 2023-08-01 | 丹麥商諾佛 儂迪克股份有限公司 | Prodrugs and uses thereof |
IL315204A (en) * | 2022-02-24 | 2024-10-01 | Entera Bio Ltd | Formulations comprising acid-neutralizing polymer for oral administration of glucagon-like peptide-1 and analogs thereof |
EP4337244A1 (en) * | 2022-03-25 | 2024-03-20 | Beijing QL Biopharmaceutical Co., Ltd. | Pharmaceutical compositions of polypeptide conjugates and methods of uses thereof |
WO2024017139A1 (en) * | 2022-07-20 | 2024-01-25 | 成都海博为药业有限公司 | Pharmaceutical composition containing glp-1 receptor agonist analog |
TW202421645A (en) | 2022-11-25 | 2024-06-01 | 丹麥商諾佛 儂迪克股份有限公司 | Oral administration of peptide therapeutics, such as glp-1 |
WO2024141760A1 (en) | 2022-12-30 | 2024-07-04 | Algipharma As | Compositions and methods to increase the systemic bioavailability of a polypeptide therapeutic agent undergoing oral administration |
Family Cites Families (192)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4918098A (en) | 1986-03-12 | 1990-04-17 | American Cyanamid Company | Macrolide compounds |
US5545618A (en) | 1990-01-24 | 1996-08-13 | Buckley; Douglas I. | GLP-1 analogs useful for diabetes treatment |
JP3262329B2 (en) | 1990-01-24 | 2002-03-04 | アイ. バックレイ,ダグラス | GLP-1 analog useful for the treatment of diabetes |
DK39892D0 (en) | 1992-03-25 | 1992-03-25 | Bernard Thorens | PEPTIDE |
PL310897A1 (en) | 1993-03-29 | 1996-01-08 | Univ Cincinnati | Analogues of yy peptide and their application |
US5705483A (en) | 1993-12-09 | 1998-01-06 | Eli Lilly And Company | Glucagon-like insulinotropic peptides, compositions and methods |
WO1995033474A1 (en) | 1994-06-03 | 1995-12-14 | Tsumura & Co. | Medicinal composition |
US5512549A (en) | 1994-10-18 | 1996-04-30 | Eli Lilly And Company | Glucagon-like insulinotropic peptide analogs, compositions, and methods of use |
US5574010A (en) | 1994-11-14 | 1996-11-12 | The Regents Of The University Of California | Treatment of pancreatic tumors with peptide YY and analogs thereof |
US5869602A (en) | 1995-03-17 | 1999-02-09 | Novo Nordisk A/S | Peptide derivatives |
US5866536A (en) | 1995-03-31 | 1999-02-02 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
BR9604880A (en) | 1995-03-31 | 1998-05-19 | Emisphere Tech Inc | Compound composition dosage unit form methods for administering a biologically active agent for preparing a composition for administering an active agent and for preparing a compound and pharmacological composition |
US5650386A (en) | 1995-03-31 | 1997-07-22 | Emisphere Technologies, Inc. | Compositions for oral delivery of active agents |
SE9600070D0 (en) | 1996-01-08 | 1996-01-08 | Astra Ab | New oral pharmaceutical dosage forms |
US7235627B2 (en) | 1996-08-30 | 2007-06-26 | Novo Nordisk A/S | Derivatives of GLP-1 analogs |
BRPI9711437B8 (en) | 1996-08-30 | 2021-05-25 | Novo Nordisk As | glp-1 derivatives |
US6268343B1 (en) | 1996-08-30 | 2001-07-31 | Novo Nordisk A/S | Derivatives of GLP-1 analogs |
US6458924B2 (en) | 1996-08-30 | 2002-10-01 | Novo Nordisk A/S | Derivatives of GLP-1 analogs |
ES2290799T3 (en) | 1996-11-12 | 2008-02-16 | Novo Nordisk A/S | USE OF GLP-1 PEPTIDES. |
JP2000505105A (en) | 1996-11-13 | 2000-04-25 | ユニヴァーシティ・オブ・シンシナティ | Analogs of peptide YY and uses thereof |
US5773647A (en) | 1997-02-07 | 1998-06-30 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
EP0908515A3 (en) | 1997-09-16 | 2000-04-26 | Smithkline Beecham Plc | Pancreatic polypeptide |
AU3247799A (en) | 1998-02-27 | 1999-09-15 | Novo Nordisk A/S | Glp-1 derivatives of glp-1 and exendin with protracted profile of action |
JP2002508162A (en) | 1998-02-27 | 2002-03-19 | ノボ ノルディスク アクティーゼルスカブ | GLP-1 derivative with shortened N-terminus |
ATE466028T1 (en) | 1998-02-27 | 2010-05-15 | Novo Nordisk As | N-TERMINALLY MODIFIED GLP-1 DERIVATIVES |
DE69916811T2 (en) | 1998-02-27 | 2005-04-14 | Novo Nordisk A/S | GLP-1 DERIVATIVES HAVING A HELIX CONTENT OVER 25% FOR PARTIALLY MADE STRUCTURED MICRO-SPECIFIC AGGREGATES |
AU2610699A (en) | 1998-02-27 | 1999-09-15 | Novo Nordisk A/S | Derivatives of glp-1 analogs |
US6046167A (en) | 1998-03-25 | 2000-04-04 | University Of Cincinnati | Peptide YY analogs |
JP2002517483A (en) | 1998-06-08 | 2002-06-18 | シェーリング コーポレイション | Neuropeptide Y5 receptor antagonist |
SE9802080D0 (en) | 1998-06-11 | 1998-06-11 | Hellstroem | Pharmaceutical composition for the treatment of functional dyspepsia and / or irritable bowel syndrome and new use of substances therein |
EP1100530B1 (en) | 1998-07-31 | 2003-10-08 | Novo Nordisk A/S | In-vitro stimulation of beta cell proliferation |
MY155270A (en) | 1998-09-24 | 2015-09-30 | Lilly Co Eli | Use of glp-1 or analogs in treatment of stroke |
CA2353574C (en) | 1998-12-07 | 2012-05-08 | Zheng Xin Dong | Analogues of glp-1 |
AU3357800A (en) | 1999-02-05 | 2000-08-25 | Emisphere Technologies, Inc. | Method of preparing alkylated salicylamides |
DE60038097T2 (en) | 1999-02-22 | 2009-02-12 | Merrion Research I Ltd. | SOLID ORAL DOSAGE FORM CONTAINING A RESORPTION AMPLIFIER |
AU3240900A (en) | 1999-02-22 | 2000-09-04 | Emisphere Holdings, Inc. | Solid oral dosage form containing heparin or a heparinoid in combination with a carrier |
US7658938B2 (en) | 1999-02-22 | 2010-02-09 | Merrion Reasearch III Limited | Solid oral dosage form containing an enhancer |
EP2264064A1 (en) | 1999-04-30 | 2010-12-22 | Amylin Pharmaceuticals Inc. | Modified exendins and exendin agonists |
PT1180121E (en) | 1999-05-17 | 2004-03-31 | Conjuchem Inc | LONG-TERM INSULINOTROPIC PEPTIDES |
US7601691B2 (en) | 1999-05-17 | 2009-10-13 | Conjuchem Biotechnologies Inc. | Anti-obesity agents |
EP1076066A1 (en) | 1999-07-12 | 2001-02-14 | Zealand Pharmaceuticals A/S | Peptides for lowering blood glucose levels |
GB9923436D0 (en) | 1999-10-04 | 1999-12-08 | American Home Prod | Pharmaceutical compositions |
US6793934B1 (en) | 1999-12-08 | 2004-09-21 | Shire Laboratories, Inc. | Solid oral dosage form |
US7262325B2 (en) | 2000-06-02 | 2007-08-28 | Emisphere Technologies, Inc. | Method of preparing salicylamides |
US7049283B2 (en) | 2000-12-06 | 2006-05-23 | Novartis Ag | Pharmaceutical compositions for the oral delivery of pharmacologically active agents |
DK1724284T3 (en) | 2000-12-07 | 2009-11-02 | Lilly Co Eli | GLP-1 fusion proteins |
AU2002228608A1 (en) | 2000-12-13 | 2002-06-24 | Eli Lilly And Company | Amidated glucagon-like peptide-1 |
BR0116206A (en) | 2000-12-14 | 2003-12-23 | Amylin Pharmaceuticals Inc | Yy Peptide and yy Peptide Agonists for Treatment of Metabolic Disorders |
US6589938B2 (en) | 2001-06-29 | 2003-07-08 | National University Of Singapore | Use of angiotensin I derivatives as an agent for the treatment and prevention of infarction-related cardiac injuries and disorders |
US20030068356A1 (en) | 2001-07-10 | 2003-04-10 | Pather S. Indiran | Sequential drug delivery systems |
ATE536881T1 (en) | 2001-07-31 | 2011-12-15 | Us Gov Health & Human Serv | GLP-1, EXENDIN-4, PEPTIDE ANALOGS AND USES THEREOF |
ES2320979T3 (en) | 2001-09-24 | 2009-06-01 | Imperial Innovations Limited | PYY-36 FOR THE REDUCTION OR PREVENTION OF OBESITY. |
EP1461031B1 (en) | 2001-11-29 | 2016-06-29 | Emisphere Technologies, Inc. | Formulations for oral administration of cromolyn sodium |
US8058233B2 (en) | 2002-01-10 | 2011-11-15 | Oregon Health And Science University | Modification of feeding behavior using PYY and GLP-1 |
EP1478347A1 (en) | 2002-02-01 | 2004-11-24 | Pfizer Products Inc. | Dry granulated formulations of azithromycin |
BR0307727A (en) * | 2002-02-20 | 2005-01-25 | Lilly Co Eli | Fomulation |
MXPA04012497A (en) | 2002-07-04 | 2005-07-14 | Zealand Pharma As | Glp-1 and methods for treating diabetes. |
JP2004131398A (en) | 2002-10-08 | 2004-04-30 | Taihei Chemical Industrial Co Ltd | Lubricant for tablet |
EP1583549A4 (en) | 2003-01-17 | 2006-10-04 | Sod Conseils Rech Applic | Peptide yy analogs |
WO2004067548A2 (en) | 2003-01-31 | 2004-08-12 | Theratechnologies Inc. | Chemically modified metabolites of regulatory peptides and methods of producing and using same |
MXPA05009940A (en) | 2003-03-19 | 2005-12-05 | Lilly Co Eli | Polyethelene glycol link glp-1 compounds. |
EP1624882A2 (en) | 2003-05-14 | 2006-02-15 | Emisphere Technologies, Inc. | Compositions for delivering peptide yy and pyy agonists |
US7572581B2 (en) | 2003-06-30 | 2009-08-11 | Roche Molecular Systems, Inc. | 2′-terminator nucleotide-related methods and systems |
ATE442158T1 (en) | 2003-07-11 | 2009-09-15 | Novartis Pharma Gmbh | ORALLY ADMINISTERED PHARMACEUTICAL COMPOSITIONS HAVING A DELIVERY AGENT IN MICRONIZED FORM |
EP1654004A2 (en) | 2003-08-08 | 2006-05-10 | Novo Nordisk A/S | Synthesis and application of new structural well defined branched polymers as conjugating agents for peptides |
CN100444898C (en) | 2003-09-19 | 2008-12-24 | 诺沃挪第克公司 | Novel glp-1 derivatives |
MXPA06002941A (en) | 2003-09-19 | 2006-05-31 | Novo Nordisk As | Albumin-binding derivatives of therapeutic peptides. |
WO2005028516A2 (en) | 2003-09-19 | 2005-03-31 | Novo Nordisk A/S | Albumin-binding derivatives of therapeutic peptides |
WO2005049061A2 (en) | 2003-11-20 | 2005-06-02 | Novo Nordisk A/S | Propylene glycol-containing peptide formulations which are optimal for production and for use in injection devices |
WO2005058958A2 (en) | 2003-12-18 | 2005-06-30 | Novo Nordisk A/S | Novel glp-1 analogues linked to albumin-like agents |
JP2007537141A (en) | 2003-12-18 | 2007-12-20 | ノボ ノルディスク アクティーゼルスカブ | Novel GLP-1 compound |
US20060286129A1 (en) | 2003-12-19 | 2006-12-21 | Emisphere Technologies, Inc. | Oral GLP-1 formulations |
CN103897066A (en) | 2004-02-11 | 2014-07-02 | 安米林药品有限责任公司 | Hybrid polypeptides with selectable properties |
US8603969B2 (en) | 2004-02-11 | 2013-12-10 | Amylin Pharmaceuticals, Llc | Pancreatic polypeptide family motifs and polypeptides comprising the same |
CN100425282C (en) | 2004-03-17 | 2008-10-15 | 7Tm制药联合股份有限公司 | Y2/Y4 selective receptor agonists for therapeutic interventions |
BRPI0508861A (en) | 2004-03-17 | 2007-08-28 | 7Tm Pharmas As | selective y2 / y4 receptor agonists for therapeutic interventions |
JP2007531713A (en) | 2004-03-17 | 2007-11-08 | 7ティーエム ファーマ エイ/エス | Y2-selective receptor agonists for therapeutic intervention |
EA012071B1 (en) | 2004-03-17 | 2009-08-28 | 7ТиЭм ФАРМА А/С | Y4 selective receptor agonists for therapeutic intervention |
WO2005099672A1 (en) | 2004-04-13 | 2005-10-27 | Ranbaxy Laboratories Limited | A modified release pharmaceutical formulation comprising amoxicillin and clavulanate |
CN102001963B (en) | 2004-05-06 | 2014-04-16 | 爱密斯菲尔科技公司 | Crystalline polymorphic forms of monosodium n-[8-(2-hydroxybenzoyl)amino]caprylate |
EP1750729A2 (en) | 2004-05-06 | 2007-02-14 | Emisphere Technologies, Inc. | Solid dosage form of wetted heparin |
NZ597499A (en) * | 2004-05-14 | 2013-04-26 | Emisphere Tech Inc | Compounds and compositions for delivering active agents |
GB0412181D0 (en) | 2004-06-01 | 2004-06-30 | Celltech R&D Ltd | Biological products |
WO2005121090A1 (en) | 2004-06-02 | 2005-12-22 | Abbott Laboratories | Substituted piperidines that have antiangiogenic activity |
CN101010339B (en) | 2004-07-02 | 2011-11-09 | 布里斯托尔-迈尔斯斯奎布公司 | Human glucagon-like-peptide-1 modulators and their use in treatment of diabetes and related conditions |
TW200611704A (en) | 2004-07-02 | 2006-04-16 | Bristol Myers Squibb Co | Human glucagon-like-peptide-1 modulators and their use in the treatment of diabetes and related conditions |
ES2564167T3 (en) | 2004-07-08 | 2016-03-18 | Novo Nordisk A/S | Conjugates of long-acting polypeptides containing a tetrazole fraction |
JP5749879B2 (en) | 2004-07-12 | 2015-07-15 | エミスフェアー・テクノロジーズ・インク | Composition for delivery of peptide YY and peptide YY agonist |
WO2006020207A2 (en) | 2004-07-19 | 2006-02-23 | University Of Cincinnati | Compounds for control of appetite |
JP2008509933A (en) | 2004-08-13 | 2008-04-03 | エミスフェアー・テクノロジーズ・インク | Pharmaceutical formulation comprising microparticles or nanoparticles of a delivery agent |
WO2006049681A2 (en) | 2004-08-30 | 2006-05-11 | Bayer Pharmaceuticals Corporation | Selective neuropeptide y2 receptor agonists |
JP2008515856A (en) | 2004-10-07 | 2008-05-15 | ノボ ノルディスク アクティーゼルスカブ | Delayed GLP-1 compound |
US8030273B2 (en) | 2004-10-07 | 2011-10-04 | Novo Nordisk A/S | Protracted exendin-4 compounds |
CN101115597A (en) | 2004-12-09 | 2008-01-30 | 辐形技术有限公司 | Material handling for radial timber sawing |
US7410949B2 (en) | 2005-01-18 | 2008-08-12 | Hoffmann-La Roche Inc. | Neuropeptide-2 receptor (Y-2R) agonists and uses thereof |
ES2540929T3 (en) | 2005-02-01 | 2015-07-14 | Emisphere Technologies, Inc. | Gastric retention and controlled release administration system |
ES2438145T3 (en) | 2005-02-02 | 2014-01-16 | Novo Nordisk A/S | New insulin derivatives |
WO2006096515A2 (en) | 2005-03-04 | 2006-09-14 | Biorexis Pharmaceutical Corporation | Modified transferrin fusion proteins |
GB0504857D0 (en) | 2005-03-09 | 2005-04-13 | Imp College Innovations Ltd | Novel compounds and their effects on feeding behaviour |
TWI372629B (en) | 2005-03-18 | 2012-09-21 | Novo Nordisk As | Acylated glp-1 compounds |
US20090062192A1 (en) | 2005-03-18 | 2009-03-05 | Novo Nordisk A/S | Dimeric Peptide Agonists of the Glp-1 Receptor |
WO2006097535A2 (en) | 2005-03-18 | 2006-09-21 | Novo Nordisk A/S | Peptide agonists of the glucagon family with secretin like activity |
JP5755398B2 (en) | 2005-03-18 | 2015-07-29 | ノヴォ ノルディスク アー/エス | Elongated GLP-1 compound |
US20080260818A1 (en) | 2005-03-28 | 2008-10-23 | Dexcel Pharma Technologies Ltd. | Controlled Absorption of Statins in the Intestine |
WO2006127948A2 (en) | 2005-05-26 | 2006-11-30 | Bristol-Myers Squibb Company | N-terminally modified glp-1 receptor modulators |
US20090054326A1 (en) | 2005-07-11 | 2009-02-26 | Nastech Pharmaceutical Company Inc. | Formulations for enhanced mucosal delivery of pyy |
WO2007011958A2 (en) | 2005-07-15 | 2007-01-25 | Emisphere Technologies, Inc. | Intraoral dosage forms of glucagon |
CN101222942A (en) | 2005-07-18 | 2008-07-16 | 诺沃-诺迪斯克有限公司 | Peptides for use in the treatment of obesity |
DK1971362T3 (en) | 2005-08-19 | 2015-01-26 | Amylin Pharmaceuticals Llc | Exendin for treating diabetes and reducing body weight |
US20070049557A1 (en) | 2005-08-24 | 2007-03-01 | Hashim Ahmed | Solid pharmaceutical dosage forms comprising bisphosphonates and modified amino acid carriers |
BRPI0520566A2 (en) | 2005-09-21 | 2009-05-19 | 7Tm Pharma As | selective y2 receptor agonists for therapeutic interventions |
US8022035B2 (en) | 2005-09-21 | 2011-09-20 | 7Tm Pharma A/S | Y4 selective receptor agonists for therapeutic interventions |
WO2007061434A2 (en) | 2005-11-10 | 2007-05-31 | Nastech Pharmaceutical Company Inc. | A pharmaceutical formulation of glp-1 and its use for treating a metabolic syndrome |
AU2006318815B2 (en) | 2005-11-17 | 2010-08-19 | Novartis Ag | Pharmaceutical composition |
JP5000663B2 (en) | 2005-12-07 | 2012-08-15 | エフ.ホフマン−ラ ロシュ アーゲー | Neuropeptide 2 receptor agonist |
EP1959987A2 (en) | 2005-12-08 | 2008-08-27 | Nastech Pharmaceutical Company Inc. | Mucosal delivery of stabilized formulations of exendin |
US20100029903A1 (en) | 2005-12-14 | 2010-02-04 | Novo Nordisk A/S | Polypeptide Protracting Tags |
US20070197445A1 (en) | 2006-01-18 | 2007-08-23 | University Of Cincinnati | Compounds for control of appetite |
WO2007109354A2 (en) | 2006-03-21 | 2007-09-27 | Amylin Pharmaceuticals, Inc. | Peptide-peptidase inhibitor conjugates and methods of using same |
EP2526950A1 (en) | 2006-04-07 | 2012-11-28 | Merrion Research III Limited | Solid oral dosage form containing an enhancer |
US8927015B2 (en) | 2006-04-12 | 2015-01-06 | Emisphere Technologies, Inc. | Formulations for delivering insulin |
ES2395738T3 (en) | 2006-05-09 | 2013-02-14 | Novo Nordisk A/S | Insulin derivative |
CA2654566A1 (en) | 2006-06-09 | 2007-12-21 | Merrion Research Iii Limited | Solid oral dosage form containing an enhancer |
WO2008003050A2 (en) | 2006-06-28 | 2008-01-03 | Emisphere Technologies, Inc. | Gallium nitrate formulations |
GB0613196D0 (en) | 2006-07-03 | 2006-08-09 | Imp Innovations Ltd | Novel compounds and their effects on feeding behaviour |
ES2296529B1 (en) | 2006-08-07 | 2009-04-01 | Laboratorios Farmaceuticos Rovi, S.A. | PHARMACEUTICAL COMPOSITION WITH ABSORPTION PROMOTERS. |
US20090318353A1 (en) | 2006-08-25 | 2009-12-24 | Novo Nordisk A/S | Acylated Exendin-4 Compounds |
MX2009002121A (en) | 2006-09-07 | 2009-05-20 | Hoffmann La Roche | A process for the manufacture of snac (salcaprozate sodium). |
JO2945B1 (en) | 2006-09-13 | 2016-03-15 | سميث كلاين بيتشام كوربوريشن | Methods For Administering Long-lasting Hypoglycemic Agents. |
WO2008039351A2 (en) | 2006-09-22 | 2008-04-03 | Novartis Ag | Method of manufacturing tablets containing pharmacologically active agents |
GB0621973D0 (en) | 2006-11-03 | 2006-12-13 | Philogen Spa | Binding molecules and uses thereof |
WO2008070543A1 (en) | 2006-12-01 | 2008-06-12 | Emisphere Technologies Inc. | Improved acyclovir formulations |
US20090099074A1 (en) | 2007-01-10 | 2009-04-16 | Conjuchem Biotechnologies Inc. | Modulating food intake |
EP2101822A2 (en) | 2007-01-18 | 2009-09-23 | Novo Nordisk A/S | Use of peptides in combination with surgical intervention for the treatment of obesity |
US20100016237A1 (en) | 2007-01-18 | 2010-01-21 | Novo Nordisk A/S | Novel Peptides for Use in the Treatment of Obesity |
ATE507818T1 (en) | 2007-03-02 | 2011-05-15 | Novartis Ag | ORAL ADMINISTRATION OF A CALCITONIN |
GB0708226D0 (en) | 2007-04-27 | 2007-06-06 | 7Tm Pharma As | Y-receptor agonists |
US20110144010A1 (en) | 2007-06-01 | 2011-06-16 | Novo Nordisk A/S | Spontaneously Dispersible Preconcentrates Including a Peptide Drug in a Solid or Semisolid Carrier |
EP2171080A4 (en) | 2007-06-12 | 2010-10-27 | Glaxosmithkline Llc | Methods for detecting protein in plasma |
RU2506273C2 (en) | 2007-07-09 | 2014-02-10 | Импиэриэл Инноувейшнс Лимитид | Analogue of human pancreatic polypeptide (versions), pharmaceutical composition based thereon, method of treating obesity or diabetes, method of reducing appetite, reducing food intake or reducing calorie intake and method for cosmetic weight reduction using said analogue |
AU2008296444A1 (en) | 2007-08-29 | 2009-03-12 | The Regents Of The University Of California | Salicylanilide modified peptides for use as oral therapeutics |
EP2190460B1 (en) | 2007-09-05 | 2014-12-17 | Novo Nordisk A/S | Peptides derivatized with a-b-c-d- and their therapeutical use |
ES2550363T3 (en) | 2007-09-05 | 2015-11-06 | Novo Nordisk A/S | Truncated GLP-1 derivatives and their therapeutic use |
WO2009030738A1 (en) | 2007-09-05 | 2009-03-12 | Novo Nordisk A/S | Glucagon-like peptide-1 derivatives and their pharmaceutical use |
CA2698824A1 (en) | 2007-09-11 | 2009-03-19 | Mondobiotech Laboratories Ag | Use of peptide yy, alone or in combination with glucagon-like peptide, for use in medicine |
WO2009042922A2 (en) | 2007-09-27 | 2009-04-02 | Amylin Pharmaceuticals, Inc. | Peptide-peptidase inhibitor conjugates and methods of making and using same |
WO2009050738A2 (en) | 2007-10-16 | 2009-04-23 | Biocon Limited | An orally administerable solid pharmaceutical composition and a process thereof |
PT2215047E (en) | 2007-11-02 | 2014-01-20 | Emisphere Tech Inc | Method of treating vitamin b12 deficiency |
US20090124639A1 (en) | 2007-11-06 | 2009-05-14 | Emisphere Technologies Inc. | valacyclovir formulations |
US20100317057A1 (en) | 2007-12-28 | 2010-12-16 | Novo Nordisk A/S | Semi-recombinant preparation of glp-1 analogues |
MX2010011845A (en) | 2008-05-16 | 2010-11-22 | Novo Nordisk As | Long-acting y2 and/or y4 receptor agonists. |
CA2734442C (en) | 2008-08-18 | 2016-08-16 | Oramed Ltd | Methods and compositions for oral administration of proteins |
CN102149411A (en) | 2008-09-12 | 2011-08-10 | 诺沃—诺迪斯克有限公司 | Method of acylating a peptide or protein |
US8299023B2 (en) | 2008-09-17 | 2012-10-30 | Hoffmann-La Roche Inc. | Neuropeptide-2 receptor (Y-2R) agonists |
GB0817067D0 (en) | 2008-09-18 | 2008-10-22 | 7Tm Pharma As | Intestinal treatment |
EP2386203B1 (en) | 2008-10-15 | 2013-11-20 | Bayer CropScience AG | Use of dithiin tetracarboximides for combating phytopathogenic fungi |
MX2011004427A (en) | 2008-11-05 | 2011-05-31 | Hoffmann La Roche | Neuropeptide-2-receptor (y-2r) agonists and uses thereof. |
CN101463081B (en) | 2009-01-12 | 2012-07-04 | 华东师范大学 | GLP-1 derivative |
CN106177958A (en) | 2009-02-13 | 2016-12-07 | 勃林格殷格翰国际有限公司 | Comprise DPP 4 inhibitor (BI 1356) and optionally combine the antidiabetic medicine of other antidiabetic drug |
WO2010096175A1 (en) | 2009-02-20 | 2010-08-26 | Ipsen Pharma S.A.S. | Cytotoxic conjugates having neuropeptide y receptor binding compound |
ITRM20090347A1 (en) | 2009-07-03 | 2011-01-04 | Univ Siena | ANALYSIS DEVICE FOR THE CENTRAL NERVOUS SYSTEM THROUGH THE APPLICATION OF DIFFERENT NATURAL STIMULATES COMBINED BETWEEN THEM AND THE STUDY OF THE CORRESPONDING REACTIONS. |
AR077956A1 (en) | 2009-09-14 | 2011-10-05 | Bayer Cropscience Ag | COMBINATIONS OF ACTIVE COMPOUNDS |
US20130040877A1 (en) | 2009-09-18 | 2013-02-14 | Novo Nordisk A/S | Long-acting y2 receptor agonists |
JP2013507414A (en) | 2009-10-13 | 2013-03-04 | エフ.ホフマン−ラ ロシュ アーゲー | Neuropeptide-2 receptor (Y-2R) agonist |
US20130096055A1 (en) | 2009-11-13 | 2013-04-18 | Novo Nordisk A/S | Long-acting y2 receptor agonists |
JP2013514322A (en) | 2009-12-16 | 2013-04-25 | ノヴォ ノルディスク アー/エス | GLP-1 receptor agonist compounds having a modified N-terminus |
EP2512454A2 (en) | 2009-12-16 | 2012-10-24 | Nod Pharmaceuticals, Inc. | Compositions and methods for oral drug delivery |
US20110182985A1 (en) | 2010-01-28 | 2011-07-28 | Coughlan David C | Solid Pharmaceutical Composition with Enhancers and Methods of Preparing thereof |
WO2011109787A1 (en) | 2010-03-05 | 2011-09-09 | Conjuchem, Llc | Methods of administering insulinotropic peptides |
US20110311621A1 (en) | 2010-03-16 | 2011-12-22 | Paul Salama | Pharmaceutical compositions and methods of delvery |
WO2011131646A1 (en) | 2010-04-20 | 2011-10-27 | Novo Nordisk A/S | Long-acting gastrin derivatives |
EP2565202A4 (en) | 2010-04-30 | 2013-10-30 | Sanwa Kagaku Kenkyusho Co | Peptide for improving in vivo stability of physiologically active substance or the like and physiologically active substance with improved in vivo stability |
WO2011138421A1 (en) | 2010-05-05 | 2011-11-10 | Boehringer Ingelheim International Gmbh | Combination therapy |
DE202010015867U1 (en) | 2010-11-25 | 2011-05-05 | Buchhalter, Thomas | Electromechanical holder for holding navigation and communication devices in the vehicle |
PL3326620T3 (en) | 2010-12-16 | 2020-08-24 | Novo Nordisk A/S | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2- hydroxybenzoyl)amino)caprylic acid |
GB201101459D0 (en) | 2011-01-27 | 2011-03-16 | Imp Innovations Ltd | Novel compounds and thier effects on fedding behaviour |
KR101972836B1 (en) | 2011-04-12 | 2019-04-29 | 노보 노르디스크 에이/에스 | Double-acylated glp-1 derivatives |
CN104271588B (en) | 2011-07-08 | 2017-10-10 | 安米林药品有限责任公司 | The engineered polypeptide of immunogenicity with enhanced acting duration and reduction |
BR112014023374B1 (en) | 2012-03-22 | 2021-09-21 | Novo Nordisk A/S | COMPOSITIONS OF GLP-1 PEPTIDES, THEIR PREPARATION PROCESS AND THEIR USE FOR THE TREATMENT OF DIABETES AND OBESITY |
PT2827845T (en) | 2012-03-22 | 2019-03-29 | Novo Nordisk As | Compositions comprising a delivery agent and preparation thereof |
RS58636B1 (en) | 2012-03-22 | 2019-05-31 | Novo Nordisk As | Compositions comprising a delivery agent and preparation thereof |
US20150141336A1 (en) | 2012-05-29 | 2015-05-21 | Novo Nordisk A/S | Pancreatic Peptide Compounds and Use |
JP6517690B2 (en) | 2012-06-20 | 2019-05-22 | ノヴォ ノルディスク アー/エス | Tablet formulation containing peptide and delivery agent |
MX366405B (en) | 2012-07-01 | 2019-07-08 | Novo Nordisk As | Use of long-acting glp-1 peptides. |
RU2015144632A (en) | 2013-05-02 | 2017-06-07 | Глаксосмитклайн Интеллекчуал Проперти Дивелопмент Лимитед | THERAPEUTIC PEPTIDES |
MX369259B (en) | 2013-05-02 | 2019-11-04 | Novo Nordisk As | Oral dosing of glp-1 compounds. |
WO2015071356A1 (en) | 2013-11-15 | 2015-05-21 | Novo Nordisk A/S | Hpyy(1 -36) having a beta-homoarginine substitution at position 35 |
AU2014350197B2 (en) | 2013-11-15 | 2018-10-04 | Novo Nordisk A/S | Selective PYY compounds and uses thereof |
WO2016128970A1 (en) | 2015-02-09 | 2016-08-18 | Entera Bio Ltd. | Treatment of hypoparathyroidism |
MX2017015105A (en) | 2015-06-12 | 2018-05-07 | Novo Nordisk As | Selective pyy compounds and uses thereof. |
AU2016335287A1 (en) | 2015-10-07 | 2018-04-12 | Cyprumed Gmbh | Pharmaceutical formulations for the oral delivery of peptide drugs |
CN111683676B (en) | 2018-02-02 | 2024-06-18 | 诺和诺德股份有限公司 | Solid composition comprising a GLP-1 agonist, a salt of N- (8- (2-hydroxybenzoyl) amino) octanoic acid and a lubricant |
-
2011
- 2011-12-16 PL PL17204363T patent/PL3326620T3/en unknown
- 2011-12-16 RS RS20200612A patent/RS60321B1/en unknown
- 2011-12-16 JP JP2013543814A patent/JP5902194B2/en active Active
- 2011-12-16 RU RU2013131913A patent/RU2600440C3/en active Protection Beyond IP Right Term
- 2011-12-16 ES ES11805824.7T patent/ES2661676T3/en active Active
- 2011-12-16 RS RS20180295A patent/RS56998B1/en unknown
- 2011-12-16 CN CN2011800604631A patent/CN103260608A/en active Pending
- 2011-12-16 US US13/994,262 patent/US9278123B2/en active Active
- 2011-12-16 KR KR1020137017719A patent/KR101925620B1/en active IP Right Grant
- 2011-12-16 PT PT118058247T patent/PT2651398T/en unknown
- 2011-12-16 WO PCT/EP2011/073060 patent/WO2012080471A1/en active Application Filing
- 2011-12-16 PL PL11805824T patent/PL2651398T3/en unknown
- 2011-12-16 MX MX2013006171A patent/MX345501B/en active IP Right Grant
- 2011-12-16 BR BR112013014942A patent/BR112013014942B1/en active IP Right Grant
- 2011-12-16 CA CA2821886A patent/CA2821886A1/en not_active Withdrawn
- 2011-12-16 EP EP11805824.7A patent/EP2651398B1/en active Active
- 2011-12-16 SI SI201131427T patent/SI2651398T1/en unknown
- 2011-12-16 DK DK17204363.0T patent/DK3326620T3/en active
- 2011-12-16 CN CN201610420028.XA patent/CN105963685B/en active Active
- 2011-12-16 DK DK11805824.7T patent/DK2651398T3/en active
- 2011-12-16 AU AU2011343190A patent/AU2011343190B2/en active Active
- 2011-12-16 LT LTEP11805824.7T patent/LT2651398T/en unknown
- 2011-12-16 EP EP17204363.0A patent/EP3326620B1/en active Active
- 2011-12-16 SI SI201131885T patent/SI3326620T1/en unknown
- 2011-12-16 HU HUE11805824A patent/HUE036066T2/en unknown
- 2011-12-16 EP EP20160668.8A patent/EP3730127A1/en active Pending
-
2016
- 2016-02-09 US US15/019,412 patent/US10086047B2/en active Active
- 2016-03-09 JP JP2016045452A patent/JP2016117759A/en not_active Withdrawn
-
2018
- 2018-03-12 HR HRP20180425TT patent/HRP20180425T1/en unknown
- 2018-08-30 US US16/118,381 patent/US10960052B2/en active Active
-
2021
- 2021-02-19 US US17/180,370 patent/US11382957B2/en active Active
-
2022
- 2022-06-03 US US17/831,836 patent/US20220313786A1/en not_active Abandoned
-
2023
- 2023-04-04 US US18/130,441 patent/US20230302092A1/en not_active Abandoned
-
2024
- 2024-04-23 US US18/643,038 patent/US20240277817A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11382957B2 (en) | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid | |
US11833248B2 (en) | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid | |
US11622996B2 (en) | Solid compositions comprising a GLP-1 agonist and a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid | |
US20220265777A1 (en) | Solid compositions comprising a glp-1 agonist, an sglt2 inhibitor and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid | |
RU2807183C2 (en) | Solid compositions containing glp-1 agonist and n-(8-(2-hydroxybenzoyl)amino)caprylic acid salt and lubricant | |
WO2023012263A1 (en) | Solid oral peptide formulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |