US20220267800A1 - Synp88, a promoter for the expression of genes - Google Patents
Synp88, a promoter for the expression of genes Download PDFInfo
- Publication number
- US20220267800A1 US20220267800A1 US17/663,242 US202217663242A US2022267800A1 US 20220267800 A1 US20220267800 A1 US 20220267800A1 US 202217663242 A US202217663242 A US 202217663242A US 2022267800 A1 US2022267800 A1 US 2022267800A1
- Authority
- US
- United States
- Prior art keywords
- cell
- nucleic acid
- gene
- isolated
- acid sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 134
- 230000014509 gene expression Effects 0.000 title claims abstract description 59
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 86
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 64
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 29
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 29
- 210000004027 cell Anatomy 0.000 claims description 102
- 238000000034 method Methods 0.000 claims description 33
- 239000013598 vector Substances 0.000 claims description 24
- 241000282414 Homo sapiens Species 0.000 claims description 18
- 108010050754 Halorhodopsins Proteins 0.000 claims description 13
- 241000702421 Dependoparvovirus Species 0.000 claims description 9
- 108010035848 Channelrhodopsins Proteins 0.000 claims description 7
- 101000597428 Homo sapiens Nucleoredoxin-like protein 1 Proteins 0.000 claims description 6
- -1 MT-NDS Proteins 0.000 claims description 6
- 101000597433 Mus musculus Nucleoredoxin-like protein 1 Proteins 0.000 claims description 6
- 102100035399 Nucleoredoxin-like protein 1 Human genes 0.000 claims description 6
- 239000013603 viral vector Substances 0.000 claims description 5
- 241000283984 Rodentia Species 0.000 claims description 4
- 102100021921 ATP synthase subunit a Human genes 0.000 claims description 3
- 102400000068 Angiostatin Human genes 0.000 claims description 3
- 108010079709 Angiostatins Proteins 0.000 claims description 3
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims description 3
- 108091012583 BCL2 Proteins 0.000 claims description 3
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 claims description 3
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 claims description 3
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 claims description 3
- 108010005939 Ciliary Neurotrophic Factor Proteins 0.000 claims description 3
- 102100031614 Ciliary neurotrophic factor Human genes 0.000 claims description 3
- 102100025287 Cytochrome b Human genes 0.000 claims description 3
- 108010079505 Endostatins Proteins 0.000 claims description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims description 3
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims description 3
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 claims description 3
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 claims description 3
- 101000753741 Homo sapiens ATP synthase subunit a Proteins 0.000 claims description 3
- 101000858267 Homo sapiens Cytochrome b Proteins 0.000 claims description 3
- 101000604411 Homo sapiens NADH-ubiquinone oxidoreductase chain 1 Proteins 0.000 claims description 3
- 101000632748 Homo sapiens NADH-ubiquinone oxidoreductase chain 2 Proteins 0.000 claims description 3
- 101001109052 Homo sapiens NADH-ubiquinone oxidoreductase chain 4 Proteins 0.000 claims description 3
- 101001109060 Homo sapiens NADH-ubiquinone oxidoreductase chain 4L Proteins 0.000 claims description 3
- 101000632623 Homo sapiens NADH-ubiquinone oxidoreductase chain 6 Proteins 0.000 claims description 3
- 101000894525 Homo sapiens Transforming growth factor-beta-induced protein ig-h3 Proteins 0.000 claims description 3
- 101000640713 Homo sapiens Transmembrane protein 126A Proteins 0.000 claims description 3
- 102100038625 NADH-ubiquinone oxidoreductase chain 1 Human genes 0.000 claims description 3
- 102100028488 NADH-ubiquinone oxidoreductase chain 2 Human genes 0.000 claims description 3
- 102100021506 NADH-ubiquinone oxidoreductase chain 4 Human genes 0.000 claims description 3
- 102100021452 NADH-ubiquinone oxidoreductase chain 4L Human genes 0.000 claims description 3
- 102100028386 NADH-ubiquinone oxidoreductase chain 6 Human genes 0.000 claims description 3
- 102100021398 Transforming growth factor-beta-induced protein ig-h3 Human genes 0.000 claims description 3
- 102100033846 Transmembrane protein 126A Human genes 0.000 claims description 3
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 claims description 3
- 208000009606 optic atrophy 7 Diseases 0.000 claims description 3
- 102100040958 Aconitate hydratase, mitochondrial Human genes 0.000 claims description 2
- 101000965314 Homo sapiens Aconitate hydratase, mitochondrial Proteins 0.000 claims description 2
- 210000005260 human cell Anatomy 0.000 claims 2
- 102100031162 Collagen alpha-1(XVIII) chain Human genes 0.000 claims 1
- 102100028203 Cytochrome c oxidase subunit 3 Human genes 0.000 claims 1
- 108010092408 Eosinophil Peroxidase Proteins 0.000 claims 1
- 102100028471 Eosinophil peroxidase Human genes 0.000 claims 1
- 101000765923 Homo sapiens Bcl-2-like protein 1 Proteins 0.000 claims 1
- 101000861034 Homo sapiens Cytochrome c oxidase subunit 3 Proteins 0.000 claims 1
- 101000722054 Homo sapiens Dynamin-like 120 kDa protein, mitochondrial Proteins 0.000 claims 1
- 101000614988 Homo sapiens Mediator of RNA polymerase II transcription subunit 12 Proteins 0.000 claims 1
- 101000722063 Homo sapiens Optic atrophy 3 protein Proteins 0.000 claims 1
- 102000004388 Interleukin-4 Human genes 0.000 claims 1
- 108090000978 Interleukin-4 Proteins 0.000 claims 1
- 102100021070 Mediator of RNA polymerase II transcription subunit 12 Human genes 0.000 claims 1
- 102100025325 Optic atrophy 3 protein Human genes 0.000 claims 1
- 210000003994 retinal ganglion cell Anatomy 0.000 abstract description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 34
- 102000004196 processed proteins & peptides Human genes 0.000 description 32
- 229920001184 polypeptide Polymers 0.000 description 31
- 210000001525 retina Anatomy 0.000 description 30
- 230000002207 retinal effect Effects 0.000 description 29
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 29
- 208000003098 Ganglion Cysts Diseases 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 25
- 241001465754 Metazoa Species 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 15
- 102000040430 polynucleotide Human genes 0.000 description 14
- 108091033319 polynucleotide Proteins 0.000 description 14
- 239000002157 polynucleotide Substances 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 14
- 241000700605 Viruses Species 0.000 description 12
- 125000003275 alpha amino acid group Chemical group 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 239000005090 green fluorescent protein Substances 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 108700019146 Transgenes Proteins 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 150000001413 amino acids Chemical class 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 230000004075 alteration Effects 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 7
- 210000002592 gangliocyte Anatomy 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 108091008695 photoreceptors Proteins 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- 230000000007 visual effect Effects 0.000 description 7
- 102100033135 RNA-binding protein with multiple splicing Human genes 0.000 description 6
- 101710140071 RNA-binding protein with multiple splicing Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 108091023040 Transcription factor Proteins 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 208000005400 Synovial Cyst Diseases 0.000 description 4
- 210000003050 axon Anatomy 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 210000004602 germ cell Anatomy 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 238000002864 sequence alignment Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 210000000225 synapse Anatomy 0.000 description 4
- 230000003363 transsynaptic effect Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 241000242764 Aequorea victoria Species 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 108090000862 Ion Channels Proteins 0.000 description 3
- 102000004310 Ion Channels Human genes 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 3
- 108700009124 Transcription Initiation Site Proteins 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000002873 global sequence alignment Methods 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 239000003068 molecular probe Substances 0.000 description 3
- 208000020911 optic nerve disease Diseases 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- 108010082845 Bacteriorhodopsins Proteins 0.000 description 2
- 101150008012 Bcl2l1 gene Proteins 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 102400001047 Endostatin Human genes 0.000 description 2
- 241000283074 Equus asinus Species 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 241001074968 Halobacteria Species 0.000 description 2
- 208000032087 Hereditary Leber Optic Atrophy Diseases 0.000 description 2
- 101000598279 Homo sapiens NADH-ubiquinone oxidoreductase chain 5 Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 201000000639 Leber hereditary optic neuropathy Diseases 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 102100036971 NADH-ubiquinone oxidoreductase chain 5 Human genes 0.000 description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 description 2
- 102000007072 Nerve Growth Factors Human genes 0.000 description 2
- 108050001704 Opsin Proteins 0.000 description 2
- 102000010175 Opsin Human genes 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 241000242743 Renilla reniformis Species 0.000 description 2
- 208000017442 Retinal disease Diseases 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000002870 angiogenesis inducing agent Substances 0.000 description 2
- 230000001772 anti-angiogenic effect Effects 0.000 description 2
- 230000002424 anti-apoptotic effect Effects 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 108700000711 bcl-X Proteins 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 210000002459 blastocyst Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000000234 capsid Anatomy 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000010291 electrical method Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 210000001259 mesencephalon Anatomy 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000003900 neurotrophic factor Substances 0.000 description 2
- 210000001328 optic nerve Anatomy 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 230000001242 postsynaptic effect Effects 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000001116 retinal neuron Anatomy 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000010798 ubiquitination Methods 0.000 description 2
- 230000034512 ubiquitination Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- 230000005730 ADP ribosylation Effects 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000702423 Adeno-associated virus - 2 Species 0.000 description 1
- 241000243290 Aequorea Species 0.000 description 1
- 241000426851 Aequorea aequorea Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 239000012112 Alexa Fluor 633 Substances 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108091005462 Cation channels Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 241000204946 Halobacterium salinarum Species 0.000 description 1
- 101100246753 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) pyrF gene Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000842327 Homo sapiens Protein-cysteine N-palmitoyltransferase HHAT-like protein Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 101100017006 Mus musculus Hhatl gene Proteins 0.000 description 1
- 241000204971 Natronomonas pharaonis Species 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 108010047956 Nucleosomes Proteins 0.000 description 1
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102100030520 Protein-cysteine N-palmitoyltransferase HHAT-like protein Human genes 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- NCYCYZXNIZJOKI-OVSJKPMPSA-N Retinaldehyde Chemical compound O=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-OVSJKPMPSA-N 0.000 description 1
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 102000004330 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 241000242583 Scyphozoa Species 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 101150006914 TRP1 gene Proteins 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 1
- 101150050575 URA3 gene Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 241000195615 Volvox Species 0.000 description 1
- 241001492404 Woodchuck hepatitis virus Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 208000037919 acquired disease Diseases 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000004347 all-trans-retinol derivatives Chemical class 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 210000000411 amacrine cell Anatomy 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 230000010516 arginylation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 230000027288 circadian rhythm Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001973 epigenetic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 230000006251 gamma-carboxylation Effects 0.000 description 1
- 230000004545 gene duplication Effects 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000001362 glutamatergic neuron Anatomy 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 210000002287 horizontal cell Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000004446 light reflex Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000002406 microsurgery Methods 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000004112 neuroprotection Effects 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000001623 nucleosome Anatomy 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000003977 optic chiasm Anatomy 0.000 description 1
- 210000005112 optic tract Anatomy 0.000 description 1
- 230000004421 optic tracts Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000029264 phototaxis Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- 210000005215 presynaptic neuron Anatomy 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 210000004777 protein coat Anatomy 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 208000009305 pseudorabies Diseases 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000001179 pupillary effect Effects 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 210000003786 sclera Anatomy 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 210000001103 thalamus Anatomy 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000001810 trypsinlike Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 210000000857 visual cortex Anatomy 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/008—Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/80—Vector systems having a special element relevant for transcription from vertebrates
- C12N2830/85—Vector systems having a special element relevant for transcription from vertebrates mammalian
Definitions
- the present invention relates to a nucleic acid sequence leading to the expression of genes specifically in retinal ganglion cells.
- recombinant genes are usually transfected into the target cells, cell populations or tissues, as cDNA constructs in the context of an active expression cassette to allow transcription of the heterologous gene.
- the DNA construct is recognized by the cellular transcription machinery in a process that involves the activity of many trans-acting transcription factors (TF) at cis-regulatory elements, including enhancers, silencers, insulators and promoters (herein globally referred to as “promoters”).
- TF trans-acting transcription factors
- promoter include enhancers, silencers, insulators and promoters
- Gene promoter are involved in all of these levels of regulation, serving as the determinant in gene transcription by integrating the influences of the DNA sequence, transcription factor binding and epigenetic features. They determines the strength of e.g. transgene expression which is encoded by a plasmid vector as well as in which cell type or types said transgene will be expressed.
- CMV human and mouse cytomegalovirus
- RSV Rous Sarcoma Virus
- LTR Rous Sarcoma Virus
- cellular promoters can also be used.
- known promoters are those from house-keeping genes that encode abundantly transcribed cellular transcripts, such as beta-actin, elongation factor 1-alpha (EF-lalpha), or ubiquitin.
- EF-lalpha elongation factor 1-alpha
- ubiquitin Compared to viral promoters, eukaryotic gene expression is more complex and requires a precise coordination of many different factors.
- One of the aspects concerning the use of endogenous regulatory elements for transgene expression is the generation of stable mRNA and that expression can take place in the native environment of the host cell where trans-acting transcription factors are provided accordingly. Since expression of eukaryotic genes is controlled by a complex machinery of cis- and trans-acting regulatory elements, most cellular promoters suffer from a lack of extensive functional characterization. Parts of the eukaryotic promoter are usually located immediately upstream of its transcribed sequence and serves as the point of transcriptional initiation. The core promoter immediately surrounds the transcription start site (TSS) which is sufficient to be recognized by the transcription machinery.
- TSS transcription start site
- the proximal promoter comprises the region upstream of the core promoter and contains the TSS and other sequence features required for transcriptional regulation.
- Transcription factors act sequence-specific by binding to regulatory motifs in the promoter and enhancer sequence thereby activating chromatin and histone modifying enzymes that alter nucleosome structure and its position which finally allows initiation of transcription.
- the identification of a functional promoter is mainly dependent on the presence of associated upstream or downstream enhancer elements.
- Another crucial aspect concerning the use of endogenous regulatory elements for transgene expression is that some promoters can act in a cell specific manner and will lead to the expression of the transgene on in cells of a specific type or, depending on the promoter, in cells of a particular subset.
- one goal of the present invention is to obtain new sequences suitable for expressing recombinant genes in mammal cells with high expression levels and in a cell type specific manner.
- Such sequence address a need in the art for retinal cells specific promoters to develop systems for the study of neurodegenerative disorders, vision restoration, drug discovery, tumor therapies and diagnosis of disorders.
- RPE retinal pigment epithelium
- RGC retinal ganglion cells
- Photoreceptors convert light information in electrical information directed to RGCs, the latter being responsible for transmission of visual information from the retina to the visual cortex.
- RGC retinal ganglion cells
- Photoreceptors convert light information in electrical information directed to RGCs, the latter being responsible for transmission of visual information from the retina to the visual cortex.
- RGCs are mainly glutamatergic neurons, which are located in the inner surface (the ganglion cell layer) of the retina. Their axons form the optic nerve. About 15 to 20 several types of RGC exist. RGCs play a key role in the vision process and RGC dysfunction or degeneration may lead to blindness.
- optic neuropathies A wide variety of pathologies, called optic neuropathies, are caused by a primary deficit of RGCs. Some of which are genetic diseases, such as Leber hereditary optic neuropathy (LHON) caused by mutations of mitochondrial genes.
- LHON Leber hereditary optic neuropathy
- acquired optic neuropathies are much more prevalent, such as glaucoma that is the second most important cause of blindness in developed countries, affecting 70 million people worldwide.
- a targeted expression in ganglion cells of healthy version of the gene responsible for these diseases, or gene encoding neuroprotection factors, may allow treatment of these optic neuropathies. It is therefore essential to be able to obtain strong and specific gene expression in these cells to provide gene-therapy.
- RGCs may constitute a treatment target without being directly implicated in the degenerative process.
- RGCs persist for extended periods after photoreceptor degeneration in diseases where photoreceptors are lost due to inherited (i.e. Retinitis Pigmentosa) or acquired disease thus constituting targets for treatments to reanimate the retina using optogenetic tools.
- RGCs are the cellular targets independent of the degenerating cells where the expression of a photosensitive protein in a strong and restricted manner is essential to the success of vision restoration.
- the present inventors have combined epigenetics, bioinformatics and neuroscience to find promoters which, when in the eye, drive gene expression only in retinal ganglion cells.
- nucleic acid sequence of the sequence of the invention is:
- the present invention hence provides an isolated nucleic acid molecule comprising, or consisting of, the nucleic acid sequence of SEQ ID NO:1 or a nucleic acid sequence of at least 1800 bp having at least 70% identity to said nucleic acid sequence of SEQ ID NO:1, wherein said isolated nucleic acid molecule specifically leads to the expression in retinal ganglions of a gene operatively linked to said nucleic acid sequence coding for said gene.
- the nucleic acid sequence is at least 1800 bp, has at least 80% identity to said nucleic acid sequence of SEQ ID NO:1.
- the nucleic acid sequence is at least 1800 bp, and has at least 85% identity to said nucleic acid sequence of SEQ ID NO:1.
- the nucleic acid sequence is at least 1800 bp, and has at least 90% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 95% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 96% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 97% identity to said nucleic acid sequence of SEQ ID NO:1.
- the nucleic acid sequence is at least 1800 bp, and has at least 98% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 99% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has 100% identity to said nucleic acid sequence of SEQ ID NO:1.
- the isolated nucleic acid molecule of the invention can additionally comprise a minimal promoter, for instance a SV40 minimal promoter, e.g. the SV40 minimal promoter or the one used in the examples, e.g.
- isolated nucleic acid molecule comprising a sequence that hybridizes under stringent conditions to an isolated nucleic acid molecule of the invention as described above.
- the present invention also provides an expression cassette comprising an isolated nucleic acid of the invention as described above, wherein said promoter is operatively linked to at least a nucleic acid sequence encoding for a gene to be expressed specifically in retinal ganglions.
- the present invention further provides a vector comprising the expression cassette of the invention.
- said vector is a viral vector.
- the present invention also encompasses the use of a nucleic acid of the invention, of an expression cassette of the invention or of a vector of the invention for the expression of a gene in retinal ganglions.
- the present invention further provides a method of expressing gene in retinal ganglions comprising the steps of transfecting an isolated cell, a cell line or a cell population (e.g. a tissue) with an expression cassette of the invention, wherein the gene to be expressed will be expressed by the isolated cell, the cell line or the cell population if said cell is, or said cells comprise, retinal ganglions.
- the isolated cell, cell line or cell population or tissue is human.
- the present invention also provides an isolated cell comprising the expression cassette of the invention.
- the expression cassette or vector is stably integrated into the genome of said cell.
- a typical gene which can be operatively linked to the promoter of the invention is a gene encoding for a halorhodopsin or a channelrhodosin.
- Therapeutic genes i.e. genes encoding for a therapeutic protein useful for the treatment of a pathological conditions, can also be used.
- therapeutic genes include, but are not limited to, nucleic acids for replacement of a missing or mutated gene known to cause retinal disease such as MT-ND4 (Gene ID: 4538), MT-ND1 (Gene ID: 4535), MT-ND6 (Gene ID: 4541), MT-CYB (Gene ID: 4519), MT-003 (Gene ID: 4514), MT-ND5 (Gene ID: 4540), MT-ND2 (Gene ID: 4536), 5 MT-001 (Gene ID: 4512), MT-ATP6 (Gene ID: 4508), MT-ND4L (Gene ID: 4539), OPA1 (Gene ID: 4976), OPA3 (Gene ID: 80207), OPA7 (Gene ID: 84233), and ACO2 (Gene ID: 50).
- nucleic acids for replacement of a missing or mutated gene known to cause retinal disease such as MT-ND4 (Gene ID: 4538), MT-ND1 (Gen
- the therapeutic gene may also encode neurotrophic factors such as GDNF (Gene ID: 2668), CNTF (Gene ID: 1270), FGF2 (Gene ID: 2247), BDNF (Gene ID: 627) and EPO (Gene ID: 2056), anti-apoptotic genes such as BCL2 (Gene ID: 596) and BCL2L1 (Gene ID: 598), anti-angiogenic factors such as endostatin, angiostatin and sFlt, anti-inflammatory factors such as 1L10 (Gene ID: 3586), IL1 R1 (Gene ID: 3554), TGFBI (Gene ID; 7045) and IL4 (Gene ID: 3565), or the rod-derived cone viability factor (RdCVF) (Gene ID: 115861).
- neurotrophic factors such as GDNF (Gene ID: 2668), CNTF (Gene ID: 1270), FGF2 (Gene ID: 2247), BDNF (Gene ID: 627)
- the present invention also provides a kit for expressing gene in retinal ganglions, which kit comprises an isolated nucleic acid molecule of the invention.
- the present inventors have combined epigenetics, bioinformatics and neuroscience to find promoters which, when in the eye, drive gene expression only in retinal ganglion cells.
- nucleic acid sequence of the sequence of the invention is:
- the present invention hence provides an isolated nucleic acid molecule comprising, or consisting of, the nucleic acid sequence of SEQ ID NO:1 or a nucleic acid sequence of at least 1800 bp having at least 70% identity to said nucleic acid sequence of SEQ ID NO:1, wherein said isolated nucleic acid molecule specifically leads to the expression in retinal ganglions of a gene operatively linked to said nucleic acid sequence coding for said gene.
- the nucleic acid sequence is at least 1800 bp, has at least 80% identity to said nucleic acid sequence of SEQ ID NO:1.
- the nucleic acid sequence is at least 1800 bp, and has at least 85% identity to said nucleic acid sequence of SEQ ID NO:1.
- the nucleic acid sequence is at least 1800 bp, and has at least 90% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 95% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 96% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 97% identity to said nucleic acid sequence of SEQ ID NO:1.
- the nucleic acid sequence is at least 1800 bp, and has at least 98% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 99% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has 100% identity to said nucleic acid sequence of SEQ ID NO:1.
- the isolated nucleic acid molecule of the invention can additionally comprise a minimal promoter, for instance a SV40 minimal promoter, e.g. the SV40 minimal promoter or the one used in the examples, e.g.
- isolated nucleic acid molecule comprising a sequence that hybridizes under stringent conditions to an isolated nucleic acid molecule of the invention as described above.
- the present invention also provides an expression cassette comprising an isolated nucleic acid of the invention as described above, wherein said promoter is operatively linked to at least a nucleic acid sequence encoding for a gene to be expressed specifically in retinal ganglions.
- the present invention further provides a vector comprising the expression cassette of the invention.
- said vector is a viral vector.
- the present invention also encompasses the use of a nucleic acid of the invention, of an expression cassette of the invention or of a vector of the invention for the expression of a gene in retinal ganglions.
- the present invention further provides a method of expressing gene in retinal ganglions comprising the steps of transfecting an isolated cell, a cell line or a cell population (e.g. a tissue) with an expression cassette of the invention, wherein the gene to be expressed will be expressed by the isolated cell, the cell line or the cell population if said cell is, or said cells comprise, retinal ganglions.
- the isolated cell, cell line or cell population or tissue is human.
- the present invention also provides an isolated cell comprising the expression cassette of the invention.
- the expression cassette or vector is stably integrated into the genome of said cell.
- a typical gene which can be operatively linked to the promoter of the invention is a gene encoding for a halorhodopsin or a channelrhodosin.
- Therapeutic genes i.e. genes encoding for a therapeutic protein useful for the treatment of a pathological conditions, can also be used.
- therapeutic genes include, but are not limited to, nucleic acids for replacement of a missing or mutated gene known to cause retinal disease such as MT-ND4 (Gene ID: 4538), MT-ND1 (Gene ID: 4535), MT-ND6 (Gene ID: 4541), MT-CYB (Gene ID: 4519), MT-003 (Gene ID: 4514), MT-ND5 (Gene ID: 4540), MT-ND2 (Gene ID: 4536), 5 MT-001 (Gene ID: 4512), MT-ATP6 (Gene ID: 4508), MT-ND4L (Gene ID: 4539), OPA1 (Gene ID: 4976), OPA3 (Gene ID: 80207), OPA7 (Gene ID: 84233), and A002 (Gene ID: 50).
- nucleic acids for replacement of a missing or mutated gene known to cause retinal disease such as MT-ND4 (Gene ID: 4538), MT-ND1 (Gen
- the therapeutic gene may also encode neurotrophic factors such as GDNF (Gene ID: 2668), CNTF (Gene ID: 1270), FGF2 (Gene ID: 2247), BDNF (Gene ID: 627) and EPO (Gene ID: 2056), anti-apoptotic genes such as BCL2 (Gene ID: 596) and BCL2L1 (Gene ID: 598), anti-angiogenic factors such as endostatin, angiostatin and sFlt, anti-inflammatory factors such as 1L10 (Gene ID: 3586), IL1 R1 (Gene ID: 3554), TGFBI (Gene ID; 7045) and IL4 (Gene ID: 3565), or the rod-derived cone viability factor (RdCVF) (Gene ID: 115861).
- neurotrophic factors such as GDNF (Gene ID: 2668), CNTF (Gene ID: 1270), FGF2 (Gene ID: 2247), BDNF (Gene ID: 627)
- the present invention also provides a kit for expressing gene in retinal ganglions, which kit comprises an isolated nucleic acid molecule of the invention.
- promoter refers to any cis-regulatory elements, including enhancers, silencers, insulators and promoters.
- a promoter is a region of DNA that is generally located upstream (towards the 5′ region) of the gene that is needed to be transcribed. The promoter permits the proper activation or repression of the gene which it controls.
- the promoters lead to the specific expression of genes operably linked to them in the retinal ganglions. “Specific expression”, also referred to as “expression only in a certain type of cell” means that at least more than 75% of the cells expressing the gene of interest are of the type specified, i.e. retinal ganglions in the present case.
- Expression cassettes are typically introduced into a vector that facilitates entry of the expression cassette into a host cell and maintenance of the expression cassette in the host cell.
- vectors are commonly used and are well known to those of skill in the art. Numerous such vectors are commercially available, e. g., from Invitrogen, Stratagene, Clontech, etc., and are described in numerous guides, such as Ausubel, Guthrie, Strathem, or Berger, all supra.
- Such vectors typically include promoters, polyadenylation signals, etc. in conjunction with multiple cloning sites, as well as additional elements such as origins of replication, selectable marker genes (e. g., LEU2, URA3, TRP 1, HIS3, GFP), centromeric sequences, etc.
- Viral vectors for instance an AAV, a PRV or a lentivirus, are suitable to target and deliver genes to retinal ganglions using a promoter of the invention.
- the output of retinal cells can be measured using an electrical method, such as a multi-electrode array or a patch-clamp, or using a visual method, such as the detection of fluorescence.
- an electrical method such as a multi-electrode array or a patch-clamp
- a visual method such as the detection of fluorescence.
- the methods using nucleic acid sequence of the invention can be used for identifying therapeutic agents for the treatment of a neurological disorder or of a disorder of the retina involving retinal ganglions, said method comprising the steps of contacting a test compound with retinal ganglions expressing one or more transgene under a promoter of the invention, and comparing at least one output of retinal ganglions obtained in the presence of said test compound with the same output obtained in the absence of said test compound.
- the methods using promoters of the invention can also be used for in vitro testing of vision restoration, said method comprising the steps of contacting retinal ganglions expressing one or more transgene under the control of a promoter of the invention with an agent, and comparing at least one output obtained after the contact with said agent with the same output obtained before said contact with said agent.
- Channelrhodopsins are a subfamily of opsin proteins that function as light-gated ion channels. They serve as sensory photoreceptors in unicellular green algae, controlling phototaxis, i.e. movement in response to light. Expressed in cells of other organisms, they enable the use of light to control intracellular acidity, calcium influx, electrical excitability, and other cellular processes. At least three “natural” channelrhodopsins are currently known: Channelrhodopsin-1 (ChR1), Channelrhodopsin-2 (ChR2), and Volvox Channelrhodopsin (VChR1). Moreover, some modified/improved versions of these proteins also exist.
- ChR1 Channelrhodopsin-1
- ChR2 Channelrhodopsin-2
- VhR1 Volvox Channelrhodopsin
- Halorhodopsin is a light-driven ion pump, specific for chloride ions, and found in phylogenetically ancient “bacteria” (archaea), known as halobacteria. It is a seven-transmembrane protein of the retinylidene protein family, homologous to the light-driven proton pump bacteriorhodopsin, and similar in tertiary structure (but not primary sequence structure) to vertebrate rhodopsins, the pigments that sense light in the retina.
- Halorhodopsin also shares sequence similarity to channelrhodopsin, a light-driven ion channel.
- Halorhodopsin contains the essential light-isomerizable vitamin A derivative all-trans-retinal.
- Halorhodopsin is one of the few membrane proteins whose crystal structure is known.
- Halorhodopsin isoforms can be found in multiple species of halobacteria, including H. salinarum, and N. pharaonis. Much ongoing research is exploring these differences, and using them to parse apart the photocycle and pump properties. After bacteriorhodopsin, halorhodopsin may be the best type I (microbial) opsin studied.
- halorhodopsin has become a tool in optogenetics. Just as the blue-light activated ion channel channelrhodopsin-2 opens up the ability to activate excitable cells (such as neurons, muscle cells, pancreatic cells, and immune cells) with brief pulses of blue light, halorhodopsin opens up the ability to silence excitable cells with brief pulses of yellow light. Thus halorhodopsin and channelrhodopsin together enable multiple-color optical activation, silencing, and desynchronization of neural activity, creating a powerful neuroengineering toolbox.
- excitable cells such as neurons, muscle cells, pancreatic cells, and immune cells
- the promoter is part of a vector targeted a retina, said vector expressing at least one reporter gene which is detectable in living retinal ganglions.
- Suitable viral vectors for the invention are well-known in the art.
- an AAV, a PRV or a lentivirus are suitable to target and deliver genes to retinal ganglions.
- optimal viral delivery for retinal cells can be achieved by mounting the ganglion cell side downwards, so that the photoreceptor side of the retina is exposed and can thus be better transfected.
- Another technique is slicing, e.g. with a razor blade, the inner limiting membrane of the retina, such that the delivering viruses can penetrate the inner membranes.
- a further way is to embed the retina in agar, slicing said retina and applying the delivery viruses from the side of the slice.
- the output of transfected cells can be measured using well-known methods, for instance using an electrical method, such as a multi-electrode array or a patch-clamp, or using a visual method, such as the detection of fluorescence.
- an electrical method such as a multi-electrode array or a patch-clamp
- a visual method such as the detection of fluorescence.
- the inner limiting membrane is removed by micro-surgery the inner limiting membrane.
- recording is achieved through slices performed to the inner limiting membrane.
- the retinal cells come from, or are in, a human retina.
- the retina is from an animal, e.g. of bovine or of rodent origin.
- Human retina can be easily obtained from cornea banks where said retinas are normally discarded after the dissection of the cornea.
- Adult human retina has a large surface (about 1100 mm 2 ) and can therefore be easily separated to a number of experimentally subregions.
- retinas can also be used as an extraordinarily for synaptic communication since the retina has synapses that are identical to the rest of the brain.
- the term “animal” is used herein to include all animals.
- the non-human animal is a vertebrate. Examples of animals are human, mice, rats, cows, pigs, horses, chickens, ducks, geese, cats, dogs, etc.
- the term “animal” also includes an individual animal in all stages of development, including embryonic and fetal stages.
- a “genetically-modified animal” is any animal containing one or more cells bearing genetic information altered or received, directly or indirectly, by deliberate genetic manipulation at a sub-cellular level, such as by targeted recombination, microinjection or infection with recombinant virus.
- genetically-modified animal is not intended to encompass classical crossbreeding or in vitro fertilization, but rather is meant to encompass animals in which one or more cells are altered by, or receive, a recombinant DNA molecule.
- This recombinant DNA molecule may be specifically targeted to a defined genetic locus, may be randomly integrated within a chromosome, or it may be extrachromosomally replicating DNA.
- germ-line genetically-modified animal refers to a genetically-modified animal in which the genetic alteration or genetic information was introduced into germline cells, thereby conferring the ability to transfer the genetic information to its offspring. If such offspring in fact possess some or all of that alteration or genetic information, they are genetically-modified animals as well.
- the alteration or genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual recipient, or may be genetic information already possessed by the recipient.
- the altered or introduced gene may be expressed differently than the native gene, or not expressed at all.
- genes used for altering a target gene may be obtained by a wide variety of techniques that include, but are not limited to, isolation from genomic sources, preparation of cDNAs from isolated mRNA templates, direct synthesis, or a combination thereof.
- ES cells A type of target cells for transgene introduction is the ES cells.
- ES cells may be obtained from pre-implantation embryos cultured in vitro and fused with embryos (Evans et al. (1981), Nature 292:154-156; Bradley et al. (1984), Nature 309:255-258; Gossler et al. (1986), Proc. Natl. Acad. Sci. USA 83:9065-9069; Robertson et al. (1986), Nature 322:445-448; Wood et al. (1993), Proc. Natl. Acad. Sci. USA 90:4582- 4584).
- Transgenes can be efficiently introduced into the ES cells by standard techniques such as DNA transfection using electroporation or by retrovirus-mediated transduction.
- the resultant transformed ES cells can thereafter be combined with morulas by aggregation or injected into blastocysts from a non-human animal.
- the introduced ES cells thereafter colonize the embryo and contribute to the germline of the resulting chimeric animal (Jaenisch (1988), Science 240:1468-1474).
- the use of gene-targeted ES cells in the generation of gene-targeted genetically-modified mice was described 1987 (Thomas et al. (1987), Cell 51:503-512) and is reviewed elsewhere (Frohman et al.
- a “targeted gene” is a DNA sequence introduced into the germline of a non-human animal by way of human intervention, including but not limited to, the methods described herein.
- the targeted genes of the invention include DNA sequences which are designed to specifically alter cognate endogenous alleles.
- isolated refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered “by the hand of man” from its natural state.
- an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be “isolated” because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.
- isolated does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotide/sequences of the present invention.
- isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution.
- Isolated RNA molecules include in vivo or in vitro RNA transcripts of the DNA molecules of the present invention.
- a nucleic acid contained in a clone that is a member of a library e.g., a genomic or cDNA library
- a chromosome removed from a cell or a cell lysate e.g. , a “chromosome spread”, as in a karyotype
- a preparation of randomly sheared genomic DNA or a preparation of genomic DNA cut with one or more restriction enzymes is not “isolated” for the purposes of this invention.
- isolated nucleic acid molecules according to the present invention may be produced naturally, recombinantly, or synthetically.
- Polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single-and double-stranded regions, single-and double-stranded RNA, and RNA that is mixture of single-and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single-and double-stranded regions.
- polynucleotides can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. Polynucleotides may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons.
- Modified bases include, for example, tritylated bases and unusual bases such as inosine.
- polynucleotide embraces chemically, enzymatically, or metabolically modified forms.
- polynucleotide encoding a polypeptide encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.
- Stringent hybridization conditions refers to an overnight incubation at 42 degree C. in a solution comprising 50% formamide, 5 ⁇ SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 ⁇ SSC at about 50 degree C. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, moderately high stringency conditions include an overnight incubation at 37 degree C.
- washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5 ⁇ SSC). Variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments.
- Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations.
- the inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.
- fragment when referring to polypeptides means polypeptides which either retain substantially the same biological function or activity as such polypeptides.
- An analog includes a pro-protein which can be activated by cleavage of the pro-protein portion to produce an active mature polypeptide.
- gene means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region “leader and trailer” as well as intervening sequences (introns) between individual coding segments (exons).
- Polypeptides can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids.
- the polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in the polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide.
- polypeptides may contain many types of modifications.
- Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
- Modifications include, but are not limited to, acetylation, acylation, biotinylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, denivatization by known protecting/blocking groups, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, linkage to an antibody molecule or other cellular ligand, methylation, myristoylation, oxidation, pegylation, proteolytic processing (e.g., cleavage), phosphorylation, prenylation
- a polypeptide fragment “having biological activity” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of the original polypeptide, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the original polypeptide (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, in some embodiments, not more than about tenfold less activity, or not more than about three-fold less activity relative to the original polypeptide.)
- Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.
- Variant refers to a polynucleotide or polypeptide differing from the original polynucleotide or polypeptide, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the original polynucleotide or polypeptide.
- nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100%identical to a nucleotide sequence of the present invention can be determined conventionally using known computer programs.
- a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence aligmnent, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Blosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences.
- RNA sequence can be compared by converting U's to T's.
- the result of said global sequence alignment is in percent identity.
- the FASTDB program does not account for 5′ and 3′ truncations of the subject sequence when calculating percent identity.
- the percent identity is corrected by calculating the number of bases of the query sequence that are 5′ and 3′ of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention.
- a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5′ or 3′ of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5′ and 3′ of the subject sequence which are not matched/aligned with the query sequence are manually corrected for.
- a polypeptide having an amino acid sequence at least, for example, 95% “identical” to a query amino acid sequence of the present invention it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
- the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
- up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, or substituted with another amino acid.
- These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
- any particular polypeptide is at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% identical to, for instance, the amino acid sequences shown in a sequence or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs.
- a preferred method for determining, the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245).
- the query and subject sequences are either both nucleotide sequences or both amino acid sequences.
- the result of said global sequence alignment is in percent identity.
- the FASTDB program does not account for N-and C-terminal truncations of the subject sequence when calculating global percent identity.
- the percent identity is corrected by calculating the number of residues of the query sequence that are N-and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score.
- This final percent identity score is what is used for the purposes of the present invention. Only residues to the N-and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N-and C-terminal residues of the subject sequence. Only residue positions outside the N-and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.
- Naturally occurring protein variants are called “allelic variants,” and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes 11, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.
- Label refers to agents that are capable of providing a detectable signal, either directly or through interaction with one or more additional members of a signal producing system. Labels that are directly detectable and may find use in the invention include fluorescent labels. Specific fluorophores include fluorescein, rhodamine, BODIPY, cyanine dyes and the like.
- fluorescent label refers to any label with the ability to emit light of a certain wavelength when activated by light of another wavelength.
- Fluorescence refers to any detectable characteristic of a fluorescent signal, including intensity, spectrum, wavelength, intracellular distribution, etc.
- Detecting fluorescence refers to assessing the fluorescence of a cell using qualitative or quantitative methods. In some of the embodiments of the present invention, fluorescence will be detected in a qualitative manner. In other words, either the fluorescent marker is present, indicating that the recombinant fusion protein is expressed, or not.
- the fluorescence can be determined using quantitative means, e. g., measuring the fluorescence intensity, spectrum, or intracellular distribution, allowing the statistical comparison of values obtained under different conditions. The level can also be determined using qualitative methods, such as the visual analysis and comparison by a human of multiple samples, e. g., samples detected using a fluorescent microscope or other optical detector (e. g., image analysis system, etc.).
- an “alteration” or “modulation” in fluorescence refers to any detectable difference in the intensity, intracellular distribution, spectrum, wavelength, or other aspect of fluorescence under a particular condition as compared to another condition. For example, an “alteration” or “modulation” is detected quantitatively, and the difference is a statistically significant difference. Any “alterations” or “modulations” in fluorescence can be detected using standard instrumentation, such as a fluorescent microscope, CCD, or any other fluorescent detector, and can be detected using an automated system, such as the integrated systems, or can reflect a subjective detection of an alteration by a human observer.
- the “green fluorescent protein” is a protein, composed of 238 amino acids (26.9 kDa), originally isolated from the jellyfish Aequorea victoria/Aequorea aequorea/Aequorea forskalea that fluoresces green when exposed to blue light.
- the GFP from A. victoria has a major excitation peak at a wavelength of 395 nm and a minor one at 475 nm. Its emission peak is at 509 nm which is in the lower green portion of the visible spectrum.
- the GFP from the sea pansy Renilla reniformis ) has a single major excitation peak at 498 nm.
- the “yellow fluorescent protein” (YFP) is a genetic mutant of green fluorescent protein, derived from Aequorea victoria. Its excitation peak is 514nm and its emission peak is 527nm.
- a “virus” is a sub-microscopic infectious agent that is unable to grow or reproduce outside a host cell.
- Each viral particle, or virion consists of genetic material, DNA or RNA, within a protective protein coat called a capsid.
- the capsid shape varies from simple helical and icosahedral (polyhedral or near-spherical) forms, to more complex structures with tails or an envelope.
- Viruses infect cellular life forms and are grouped into animal, plant and bacterial types, according to the type of host infected.
- transsynaptic virus refers to viruses able to migrate from one neurone to another connecting neurone through a synapse.
- transsynaptic virus examples include rhabodiviruses, e.g. rabies virus, and alphaherpesviruses, e.g. pseudorabies or herpes simplex virus.
- transsynaptic virus as used herein also encompasses viral sub-units having by themselves the capacity to migrate from one neurone to another connecting neurone through a synapse and biological vectors, such as modified viruses, incorporating such a sub-unit and demonstrating a capability of migrating from one neurone to another connecting neurone through a synapse.
- Transsynaptic migration can be either anterograde or retrograde.
- a virus will travel from a postsynaptic neuron to a presynaptic one. Accordingly, during anterograde migration, a virus will travel from a presynaptic neuron to a postsynaptic one.
- Homologs refer to proteins that share a common ancestor. Analogs do not share a common ancestor, but have some functional (rather than structural) similarity that causes them to be included in a class (e.g. trypsin like serine proteinases and subtilisin's are clearly not related—their structures outside the active site are completely different, but they have virtually geometrically identical active sites and thus are considered an example of convergent evolution to analogs).
- trypsin like serine proteinases and subtilisin's are clearly not related—their structures outside the active site are completely different, but they have virtually geometrically identical active sites and thus are considered an example of convergent evolution to analogs).
- Orthologs are the same gene (e.g. cytochome ‘c’), in different species. Two genes in the same organism cannot be orthologs. Paralogs are the results of gene duplication (e.g. hemoglobin beta and delta). If two genes/proteins are homologous and in the same organism, they are paralogs.
- disorder refers to an ailment, disease, illness, clinical condition, or pathological condition.
- the term “pharmaceutically acceptable carrier” refers to a carrier medium that does not interfere with the effectiveness of the biological activity of the active ingredient, is chemically inert, and is not toxic to the patient to whom it is administered.
- pharmaceutically acceptable derivative refers to any homolog, analog, or fragment of an agent, e.g. identified using a method of screening of the invention, that is relatively non-toxic to the subject.
- therapeutic agent refers to any molecule, compound, or treatment, that assists in the prevention or treatment of disorders, or complications of disorders.
- compositions comprising such an agent formulated in a compatible pharmaceutical carrier may be prepared, packaged, and labeled for treatment.
- the complex is water-soluble, then it may be formulated in an appropriate buffer, for example, phosphate buffered saline or other physiologically compatible solutions.
- an appropriate buffer for example, phosphate buffered saline or other physiologically compatible solutions.
- the resulting complex may be formulated with a non-ionic surfactant such as Tween, or polyethylene glycol.
- a non-ionic surfactant such as Tween, or polyethylene glycol.
- the compounds and their physiologically acceptable solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral, rectal administration or, in the case of tumors, directly injected into a solid tumor.
- the pharmaceutical preparation may be in liquid form, for example, solutions, syrups or suspensions, or may be presented as a drug product for reconstitution with water or other suitable vehicle before use.
- Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e. g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e. g., lecithin or acacia); non-aqueous vehicles (e. g., almond oil, oily esters, or fractionated vegetable oils); and preservatives (e. g., methyl or propyl-p- hydroxybenzoates or sorbic acid).
- suspending agents e. g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats
- emulsifying agents e. g., lecithin or acacia
- non-aqueous vehicles e. g., almond oil, oily esters, or fractionated vegetable oils
- the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e. g., pregelatinized maize starch, polyvinyl pyrrolidone or hydroxypropyl methylcellulose); fillers (e. g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e. g., magnesium stearate, talc or silica); disintegrants (e. g., potato starch or sodium starch glycolate); or wetting agents (e. g., sodium lauryl sulphate).
- binding agents e. g., pregelatinized maize starch, polyvinyl pyrrolidone or hydroxypropyl methylcellulose
- fillers e. g., lactose, microcrystalline cellulose or calcium hydrogen phosphate
- lubricants e. g., magnesium stearate, talc or silica
- Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
- the compounds may be formulated for parenteral administration by injection, e. g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e. g., in ampoules or in multi-dose containers, with an added preservative.
- compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- the active ingredient may be in powder form for constitution with a suitable vehicle, e. g., sterile pyrogen-free water, before use.
- the compounds may also be formulated as a topical application, such as a cream or lotion.
- the compounds may also be formulated as a depot preparation.
- Such long acting formulations may be administered by implantation (for example, intraocular, subcutaneous or intramuscular) or by intraocular injection.
- the compounds may be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- suitable polymeric or hydrophobic materials for example, as an emulsion in an acceptable oil
- ion exchange resins for example, as an emulsion in an acceptable oil
- sparingly soluble derivatives for example, as a sparingly soluble salt.
- Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophilic drugs.
- compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient.
- the pack may for example comprise metal or plastic foil, such as a blister pack.
- the pack or dispenser device may be accompanied by instructions for administration.
- kits for carrying out the therapeutic regimens of the invention comprise in one or more containers therapeutically or prophylactically effective amounts of the compositions in pharmaceutically acceptable form.
- composition in a vial of a kit may be in the form of a pharmaceutically acceptable solution, e. g., in combination with sterile saline, dextrose solution, or buffered solution, or other pharmaceutically acceptable sterile fluid.
- the complex may be lyophilized or desiccated; in this instance, the kit optionally further comprises in a container a pharmaceutically acceptable solution (e. g., saline, dextrose solution, etc.), preferably sterile, to reconstitute the complex to form a solution for injection purposes.
- a pharmaceutically acceptable solution e. g., saline, dextrose solution, etc.
- kits further comprises a needle or syringe, preferably packaged in sterile form, for injecting the complex, and/or a packaged alcohol pad. Instructions are optionally included for administration of compositions by a clinician or by the patient.
- a “retinal ganglion cell” is a type of neuron located near the inner surface (the ganglion cell layer) of the retina of the eye. It receives visual information from photoreceptors via two intermediate neuron types: bipolar cells and retina amacrine cells. Retinal ganglion cells collectively transmit image-forming and non-image forming visual information from the retina in the form of action potential to several regions in the thalamus, hypothalamus, and mesencephalon, or midbrain. Retinal ganglion cells vary significantly in terms of their size, connections, and responses to visual stimulation but they all share the defining property of having a long axon that extends into the brain.
- axons form the optic nerve, optic chiasm, and optic tract.
- a small percentage of retinal ganglion cells contribute little or nothing to vision, but are themselves photosensitive; their axons form the retinohypothalamic tract and contribute to circadian rhythms and pupillary light reflex, the resizing of the pupil.
- the synthetic promoter used in this study consists of the 2000 bp before the translation start codon of the mouse gene coding for the hedgehog acyltransferase-like (Hhatl).
- GFP coding sequence was inserted immediately after this promoter and the optimized Kozak sequence (GCCACC), and followed by a woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) and SV40 polyadenylation site.
- GCCACC Kozak sequence
- WPRE woodchuck hepatitis virus posttranscriptional regulatory element
- SV40 polyadenylation site SV40 polyadenylation site.
- Mouse retinal neurons were targeted using AAV serotype 2/8 with a titer of 7.7E+09 GC/mL.
- Non-human primate retinal neurons were targeted using AAV serotype BP2 with a titer of 2.9E+13 GC/mL.
- AAV administration in mouse the eyes of anesthetized animals were punctured in the sclera close to the lens by a sharp 30 gauge needle. 24 of AAV particle suspension were injected subretinally by a Hamilton syringe. After 3 weeks, the isolated retinas were fixed for 30 min in 4% PFA in PBS, followed by a washing step in PBS at 4° C. Whole retinas were treated with 10% normal donkey serum (NDS), 1% BSA, 0.5% Triton X-100 in PBS for 1h at room temperature.
- NDS normal donkey serum
- BSA 0.5% Triton X-100
- Sections were washed, mounted with ProLong Gold antifade reagent (Molecular Probes Inc.) on glass slides, and photographed using a Zeiss LSM 700 Axio Imager Z2 laser scanning confocal microscope (Carl Zeiss Inc.).
- ProLong Gold antifade reagent Molecular Probes Inc.
- Molecular Probes Inc. Molecular Probes Inc.
- 50 ⁇ l of AAV particle suspension were injected subretinally in collaboration with an ophthalmologist and a third party contractor in Kunming, China. After 3 month, the isolated eyecups were fixed overnight in 4% PFA in PBS, followed by a washing step in PBS at 4° C. After receiving the fixed eyecups, the infected retinal region was dissected out and underwent the same treatment as described above for the mouse tissue.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The present invention provides an isolated nucleic acid molecule comprising, or consisting of, the nucleic acid sequence of SEQ ID NO:1 or a nucleic acid sequence of at least 1800 bp having at least 80% identity to said sequence of SEQ ID NO:1, wherein said isolated nucleic acid molecule specifically leads to the expression in retinal ganglion cells of a gene when operatively linked to a nucleic acid sequence coding for said gene.
Description
- The present invention relates to a nucleic acid sequence leading to the expression of genes specifically in retinal ganglion cells.
- For expression purposes recombinant genes are usually transfected into the target cells, cell populations or tissues, as cDNA constructs in the context of an active expression cassette to allow transcription of the heterologous gene. The DNA construct is recognized by the cellular transcription machinery in a process that involves the activity of many trans-acting transcription factors (TF) at cis-regulatory elements, including enhancers, silencers, insulators and promoters (herein globally referred to as “promoters”). Gene promoter are involved in all of these levels of regulation, serving as the determinant in gene transcription by integrating the influences of the DNA sequence, transcription factor binding and epigenetic features. They determines the strength of e.g. transgene expression which is encoded by a plasmid vector as well as in which cell type or types said transgene will be expressed.
- The most common promoters used for driving heterologous gene expression in mammalian cells are the human and mouse cytomegalovirus (CMV) major immediate early promoter. They confer a strong expression and have proved robust in several cell types. Other viral promoters such as the SV40 immediate early promoter and the Rous Sarcoma Virus (RSV) long-terminal-repeat (LTR) promoter are also used frequently in expression cassettes. Instead of viral promoters, cellular promoters can also be used. Among known promoters are those from house-keeping genes that encode abundantly transcribed cellular transcripts, such as beta-actin, elongation factor 1-alpha (EF-lalpha), or ubiquitin. Compared to viral promoters, eukaryotic gene expression is more complex and requires a precise coordination of many different factors.
- One of the aspects concerning the use of endogenous regulatory elements for transgene expression is the generation of stable mRNA and that expression can take place in the native environment of the host cell where trans-acting transcription factors are provided accordingly. Since expression of eukaryotic genes is controlled by a complex machinery of cis- and trans-acting regulatory elements, most cellular promoters suffer from a lack of extensive functional characterization. Parts of the eukaryotic promoter are usually located immediately upstream of its transcribed sequence and serves as the point of transcriptional initiation. The core promoter immediately surrounds the transcription start site (TSS) which is sufficient to be recognized by the transcription machinery. The proximal promoter comprises the region upstream of the core promoter and contains the TSS and other sequence features required for transcriptional regulation. Transcription factors act sequence-specific by binding to regulatory motifs in the promoter and enhancer sequence thereby activating chromatin and histone modifying enzymes that alter nucleosome structure and its position which finally allows initiation of transcription. The identification of a functional promoter is mainly dependent on the presence of associated upstream or downstream enhancer elements. Another crucial aspect concerning the use of endogenous regulatory elements for transgene expression is that some promoters can act in a cell specific manner and will lead to the expression of the transgene on in cells of a specific type or, depending on the promoter, in cells of a particular subset.
- Therefore, one goal of the present invention is to obtain new sequences suitable for expressing recombinant genes in mammal cells with high expression levels and in a cell type specific manner.
- Such sequence address a need in the art for retinal cells specific promoters to develop systems for the study of neurodegenerative disorders, vision restoration, drug discovery, tumor therapies and diagnosis of disorders.
- One can divide the retina in two parts, the retinal pigment epithelium (RPE) and the neurosensory retina. RPE is actively involved in maintaining neurosensory retina function. Neurosensory retina is organized as a neural network including photoreceptors and retinal ganglion cells (RGC, or retinal ganglions). Photoreceptors convert light information in electrical information directed to RGCs, the latter being responsible for transmission of visual information from the retina to the visual cortex. Between these different cellular types, we can also find cells having regulatory functions such as horizontal cells that induce a negative feedback allowing adaptation of the retina response to various conditions of light intensity and increase of the contrast information.
- RGCs are mainly glutamatergic neurons, which are located in the inner surface (the ganglion cell layer) of the retina. Their axons form the optic nerve. About 15 to 20 several types of RGC exist. RGCs play a key role in the vision process and RGC dysfunction or degeneration may lead to blindness.
- A wide variety of pathologies, called optic neuropathies, are caused by a primary deficit of RGCs. Some of which are genetic diseases, such as Leber hereditary optic neuropathy (LHON) caused by mutations of mitochondrial genes. However, acquired optic neuropathies are much more prevalent, such as glaucoma that is the second most important cause of blindness in developed countries, affecting 70 million people worldwide.
- A targeted expression in ganglion cells of healthy version of the gene responsible for these diseases, or gene encoding neuroprotection factors, may allow treatment of these optic neuropathies. It is therefore essential to be able to obtain strong and specific gene expression in these cells to provide gene-therapy.
- Furthermore, RGCs may constitute a treatment target without being directly implicated in the degenerative process. For example, RGCs persist for extended periods after photoreceptor degeneration in diseases where photoreceptors are lost due to inherited (i.e. Retinitis Pigmentosa) or acquired disease thus constituting targets for treatments to reanimate the retina using optogenetic tools. In this context, RGCs are the cellular targets independent of the degenerating cells where the expression of a photosensitive protein in a strong and restricted manner is essential to the success of vision restoration.
- The present inventors have combined epigenetics, bioinformatics and neuroscience to find promoters which, when in the eye, drive gene expression only in retinal ganglion cells.
- The nucleic acid sequence of the sequence of the invention is:
-
(SEQ ID NO: 1) GGTGCCCAGGCAGTGGGAGCAGGGCTGACCAGAGTTCTGCAGAGATTGC CTGGAGGCCTTCCTGGAAGAAGAGATCCTGGCACCGCACAAAGAGAAGC ACAGGCTTTCCAGGGCTGAGGAGAGGGAGGTCAAGTGAGGCCCAGGTGC CCCTGCCTGAGCCTGTGTCCCCAGAAACCTCCTCTCCCTCTCATCACCC CCACATCCTCCCTGCCACTCCCCGCAGCTCCCTGTGGCCAAGTGCACTG CAGCACTCGGCTCTGCTCCACAAACGGTCTGCTCCACTCCAGGAAGGCC ACCTCCTCCCCCCCCCCCCACCTCCGGCTGTCACCACTCACCGCTCTAG CCTCCAGGGGGTGGGGACCCCAGAGCTGGACACACCCCATCGAAGCCCC ACAGCTCAGCCAGCCGGACAGACTCACGGTCGGACTCAAGACCCCGGAG CCCTGAGGTGGGCAGCGCGCCAGGGTTCCTCGCAGCCTCTTCAAGGTCA GTGCAAGTTGGGTGTGCAGCCCTTTGGAGCCTTTGAGGTCTGTGGGACT CAGCTCAGAACCCTCATCCCAGACCACGAGCCCCAAGGTGGGCTTCACT CCAGGTGCACCTGAGCCAAGTGCTGGGCAAAGGGCGCCCAGGTCCACAG TCAGCACAGGTCCAGGGGTCCATCAGGAGGGGCCCCAGGCTGGGGGCCA ACCCCTTGCTGAGGCCTCTTTGGGGACACTCCCCACCGGCCATGGGGAG CTAAAATTGGAAAGTGGCGAGTGGGAGGCAGCTGACACAGCTATTTTGT GCGCTCTTCATCCGCTCCGGTTTCACTCTCCTGCTCCACTAACCTGATC CTGTGCTTCCCTCCCCCACCCTGCCGATGAAGAGGTGTCTCAGCCCTCC AGCCACAGTGCAGAGGCTGCTCAGGAGGGCCAGGCCGGGAGCGAGCAGG GCCAGCGTGGTCTGGTCTGAGCCGGGACTCACCAGGAGCACCTGCCCTT CAGAGAAGCTCACTGGATGGCCTCCCGGGTCCCTGACCCTTTGTGACCC ACACCTCTCTGTCAGTGTAGCAAGGAGCGGCCTCCCAGAGCCCCAACTA CAGGGCTGGAGGAGACAGATCTGCAACTGGGAGATCTTGGGTTGGGAGA GATGGGGTGACCCTACCCATCTCCAAAAGGGCACTGCACCGTGTTCCCC TTTCCCTCGGTTCCAGGTCTGGACCTAAGCAACCACTGGAAGACTGGCG GCCAGGCTGAAGAGGGTGGGAGGGGCTTAGGTACTGGCCCAGACCCCAG GGATGGCCCAGCAGGGTAGCCAGAGGGAGTGACCAGACACATCCTGGAC TTGATACCAGTCAGCACCTTGGACAGCAGCCAGCACCCTCCCAGTTGCT GCCTGGCCCTGCCTGGTCCAGCTCTGGCCACTCTGGGGCCTCAAAGAGC CCAACATCCAGCCTGCAGCAAGAGCTTAGACTACACAGCACTTCAAGGG GGACAGTGGGTGAACACAGGCAGGGACCTGAGATAAAACAGACTCACGG CTTGGCGGAGGAATGGAGTCAGCAGAGCCCGGAGTTGAGCGAGTCTGGG AAGTTAGTGCTAGAGGAGTTCACGGGATCTCAGGGGACCTCGTGGGCAG GGCTTTGCTGAGGTTAAGAGAGGCTCACTGTGAGACGGGAGAACTGACA GAGTCTTCCACCATGGGAAAGACCCCATGGTTGGGGAAGTCTTGCAGGA ACAGTTTGGTGTCCCAAACTTGTCAGCCCATCAGAGAGGTATGAAGGAG AGGAAGCTAGTCTGTGCGAAGTCTGGGCTTTGGAGAATCTTCAAAGGAA GCAAGATTGAGAGCTGCAGAGGAAAGGAAGAAGGTGTCTGGGTGTGTTG GGGGGGGTAGATTTACTGACAGCATCCCCAGGGGATGGCTGAGTGGACC AGTCTCCTCAGAGGGTCCACCAGGGGAGGCGAGGCAAGGCTGGGACTGG GGGTTCTCACTCATGCTTCTCCTTCAGCCCTCTCCAGGCC. - The present invention hence provides an isolated nucleic acid molecule comprising, or consisting of, the nucleic acid sequence of SEQ ID NO:1 or a nucleic acid sequence of at least 1800 bp having at least 70% identity to said nucleic acid sequence of SEQ ID NO:1, wherein said isolated nucleic acid molecule specifically leads to the expression in retinal ganglions of a gene operatively linked to said nucleic acid sequence coding for said gene. In some embodiments, the nucleic acid sequence is at least 1800 bp, has at least 80% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 85% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 90% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 95% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 96% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 97% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 98% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 99% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has 100% identity to said nucleic acid sequence of SEQ ID NO:1.
- The isolated nucleic acid molecule of the invention can additionally comprise a minimal promoter, for instance a SV40 minimal promoter, e.g. the SV40 minimal promoter or the one used in the examples, e.g.
-
(SEQ ID NO: 2) ATCCTCACATGGTCCTGCTGGAGTTAGTAGAGGGTATATAATGGAAGCT CGACTTCCAGCTATCACATCCACTGTGTTGTTGTGAACTGGAATCCACT ATAGGCCA. - Also provided is an isolated nucleic acid molecule comprising a sequence that hybridizes under stringent conditions to an isolated nucleic acid molecule of the invention as described above.
- The present invention also provides an expression cassette comprising an isolated nucleic acid of the invention as described above, wherein said promoter is operatively linked to at least a nucleic acid sequence encoding for a gene to be expressed specifically in retinal ganglions.
- The present invention further provides a vector comprising the expression cassette of the invention. In some embodiments, said vector is a viral vector.
- The present invention also encompasses the use of a nucleic acid of the invention, of an expression cassette of the invention or of a vector of the invention for the expression of a gene in retinal ganglions.
- The present invention further provides a method of expressing gene in retinal ganglions comprising the steps of transfecting an isolated cell, a cell line or a cell population (e.g. a tissue) with an expression cassette of the invention, wherein the gene to be expressed will be expressed by the isolated cell, the cell line or the cell population if said cell is, or said cells comprise, retinal ganglions. In some embodiments, the isolated cell, cell line or cell population or tissue is human.
- The present invention also provides an isolated cell comprising the expression cassette of the invention. In some embodiments, the expression cassette or vector is stably integrated into the genome of said cell.
- A typical gene which can be operatively linked to the promoter of the invention is a gene encoding for a halorhodopsin or a channelrhodosin. Therapeutic genes, i.e. genes encoding for a therapeutic protein useful for the treatment of a pathological conditions, can also be used. Examples of therapeutic genes include, but are not limited to, nucleic acids for replacement of a missing or mutated gene known to cause retinal disease such as MT-ND4 (Gene ID: 4538), MT-ND1 (Gene ID: 4535), MT-ND6 (Gene ID: 4541), MT-CYB (Gene ID: 4519), MT-003 (Gene ID: 4514), MT-ND5 (Gene ID: 4540), MT-ND2 (Gene ID: 4536), 5 MT-001 (Gene ID: 4512), MT-ATP6 (Gene ID: 4508), MT-ND4L (Gene ID: 4539), OPA1 (Gene ID: 4976), OPA3 (Gene ID: 80207), OPA7 (Gene ID: 84233), and ACO2 (Gene ID: 50). The therapeutic gene may also encode neurotrophic factors such as GDNF (Gene ID: 2668), CNTF (Gene ID: 1270), FGF2 (Gene ID: 2247), BDNF (Gene ID: 627) and EPO (Gene ID: 2056), anti-apoptotic genes such as BCL2 (Gene ID: 596) and BCL2L1 (Gene ID: 598), anti-angiogenic factors such as endostatin, angiostatin and sFlt, anti-inflammatory factors such as 1L10 (Gene ID: 3586), IL1 R1 (Gene ID: 3554), TGFBI (Gene ID; 7045) and IL4 (Gene ID: 3565), or the rod-derived cone viability factor (RdCVF) (Gene ID: 115861).
- In addition, the present invention also provides a kit for expressing gene in retinal ganglions, which kit comprises an isolated nucleic acid molecule of the invention.
-
FIG. 1 : Laser-scanning confocal microscope images of EGFP expression from the promoter with SEQ ID NO:1 in a mouse retina. 3 weeks after subretinal injection of AAV2/8-synP88-ChR2-EGFP in adult 057BL/6 mouse eyes. Induced expression in retinal ganglion cells labeled by RBPMS staining can be observed. Green=EGFP driven by the SEQ ID NO:1. Magenta=RBPMS (RNA-binding protein with multiple splicing). White=Hoechst. -
FIG. 2 : Laser-scanning confocal microscope images of EGFP expression from the promoter with SEQ ID NO:1 in a NHP retina. 3 month after subretinal injection of AAVBP2-synP88-ChR2-EGFP in adult Non-human primate eyes. Induced expression in retinal ganglion cells labeled by RBPMS staining can be observed. Green=EGFP driven by the SEQ ID NO:1. Magenta=RBPMS (RNA-binding protein with multiple splicing). White=Hoechst. - The present inventors have combined epigenetics, bioinformatics and neuroscience to find promoters which, when in the eye, drive gene expression only in retinal ganglion cells.
- The nucleic acid sequence of the sequence of the invention is:
-
(SEQ ID NO: 1) GGTGCCCAGGCAGTGGGAGCAGGGCTGACCAGAGTTCTGCAGAGATTGC CTGGAGGCCTTCCTGGAAGAAGAGATCCTGGCACCGCACAAAGAGAAGC ACAGGCTTTCCAGGGCTGAGGAGAGGGAGGTCAAGTGAGGCCCAGGTGC CCCTGCCTGAGCCTGTGTCCCCAGAAACCTCCTCTCCCTCTCATCACCC CCACATCCTCCCTGCCACTCCCCGCAGCTCCCTGTGGCCAAGTGCACTG CAGCACTCGGCTCTGCTCCACAAACGGTCTGCTCCACTCCAGGAAGGCC ACCTCCTCCCCCCCCCCCCACCTCCGGCTGTCACCACTCACCGCTCTAG CCTCCAGGGGGTGGGGACCCCAGAGCTGGACACACCCCATCGAAGCCCC ACAGCTCAGCCAGCCGGACAGACTCACGGTCGGACTCAAGACCCCGGAG CCCTGAGGTGGGCAGCGCGCCAGGGTTCCTCGCAGCCTCTTCAAGGTCA GTGCAAGTTGGGTGTGCAGCCCTTTGGAGCCTTTGAGGTCTGTGGGACT CAGCTCAGAACCCTCATCCCAGACCACGAGCCCCAAGGTGGGCTTCACT CCAGGTGCACCTGAGCCAAGTGCTGGGCAAAGGGCGCCCAGGTCCACAG TCAGCACAGGTCCAGGGGTCCATCAGGAGGGGCCCCAGGCTGGGGGCCA ACCCCTTGCTGAGGCCTCTTTGGGGACACTCCCCACCGGCCATGGGGAG CTAAAATTGGAAAGTGGCGAGTGGGAGGCAGCTGACACAGCTATTTTGT GCGCTCTTCATCCGCTCCGGTTTCACTCTCCTGCTCCACTAACCTGATC CTGTGCTTCCCTCCCCCACCCTGCCGATGAAGAGGTGTCTCAGCCCTCC AGCCACAGTGCAGAGGCTGCTCAGGAGGGCCAGGCCGGGAGCGAGCAGG GCCAGCGTGGTCTGGTCTGAGCCGGGACTCACCAGGAGCACCTGCCCTT CAGAGAAGCTCACTGGATGGCCTCCCGGGTCCCTGACCCTTTGTGACCC ACACCTCTCTGTCAGTGTAGCAAGGAGCGGCCTCCCAGAGCCCCAACTA CAGGGCTGGAGGAGACAGATCTGCAACTGGGAGATCTTGGGTTGGGAGA GATGGGGTGACCCTACCCATCTCCAAAAGGGCACTGCACCGTGTTCCCC TTTCCCTCGGTTCCAGGTCTGGACCTAAGCAACCACTGGAAGACTGGCG GCCAGGCTGAAGAGGGTGGGAGGGGCTTAGGTACTGGCCCAGACCCCAG GGATGGCCCAGCAGGGTAGCCAGAGGGAGTGACCAGACACATCCTGGAC TTGATACCAGTCAGCACCTTGGACAGCAGCCAGCACCCTCCCAGTTGCT GCCTGGCCCTGCCTGGTCCAGCTCTGGCCACTCTGGGGCCTCAAAGAGC CCAACATCCAGCCTGCAGCAAGAGCTTAGACTACACAGCACTTCAAGGG GGACAGTGGGTGAACACAGGCAGGGACCTGAGATAAAACAGACTCACGG CTTGGCGGAGGAATGGAGTCAGCAGAGCCCGGAGTTGAGCGAGTCTGGG AAGTTAGTGCTAGAGGAGTTCACGGGATCTCAGGGGACCTCGTGGGCAG GGCTTTGCTGAGGTTAAGAGAGGCTCACTGTGAGACGGGAGAACTGACA GAGTCTTCCACCATGGGAAAGACCCCATGGTTGGGGAAGTCTTGCAGGA ACAGTTTGGTGTCCCAAACTTGTCAGCCCATCAGAGAGGTATGAAGGAG AGGAAGCTAGTCTGTGCGAAGTCTGGGCTTTGGAGAATCTTCAAAGGAA GCAAGATTGAGAGCTGCAGAGGAAAGGAAGAAGGTGTCTGGGTGTGTTG GGGGGGGTAGATTTACTGACAGCATCCCCAGGGGATGGCTGAGTGGACC AGTCTCCTCAGAGGGTCCACCAGGGGAGGCGAGGCAAGGCTGGGACTGG GGGTTCTCACTCATGCTTCTCCTTCAGCCCTCTCCAGGCC. - The present invention hence provides an isolated nucleic acid molecule comprising, or consisting of, the nucleic acid sequence of SEQ ID NO:1 or a nucleic acid sequence of at least 1800 bp having at least 70% identity to said nucleic acid sequence of SEQ ID NO:1, wherein said isolated nucleic acid molecule specifically leads to the expression in retinal ganglions of a gene operatively linked to said nucleic acid sequence coding for said gene. In some embodiments, the nucleic acid sequence is at least 1800 bp, has at least 80% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 85% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 90% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 95% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 96% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 97% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 98% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has at least 99% identity to said nucleic acid sequence of SEQ ID NO:1. In some embodiments, the nucleic acid sequence is at least 1800 bp, and has 100% identity to said nucleic acid sequence of SEQ ID NO:1.
- The isolated nucleic acid molecule of the invention can additionally comprise a minimal promoter, for instance a SV40 minimal promoter, e.g. the SV40 minimal promoter or the one used in the examples, e.g.
-
(SEQ ID NO: 2) ATCCTCACATGGTCCTGCTGGAGTTAGTAGAGGGTATATAATGGAAGCT CGACTTCCAGCTATCACATCCACTGTGTTGTTGTGAACTGGAATCCACT ATAGGCCA. - Also provided is an isolated nucleic acid molecule comprising a sequence that hybridizes under stringent conditions to an isolated nucleic acid molecule of the invention as described above.
- The present invention also provides an expression cassette comprising an isolated nucleic acid of the invention as described above, wherein said promoter is operatively linked to at least a nucleic acid sequence encoding for a gene to be expressed specifically in retinal ganglions.
- The present invention further provides a vector comprising the expression cassette of the invention. In some embodiments, said vector is a viral vector.
- The present invention also encompasses the use of a nucleic acid of the invention, of an expression cassette of the invention or of a vector of the invention for the expression of a gene in retinal ganglions.
- The present invention further provides a method of expressing gene in retinal ganglions comprising the steps of transfecting an isolated cell, a cell line or a cell population (e.g. a tissue) with an expression cassette of the invention, wherein the gene to be expressed will be expressed by the isolated cell, the cell line or the cell population if said cell is, or said cells comprise, retinal ganglions. In some embodiments, the isolated cell, cell line or cell population or tissue is human.
- The present invention also provides an isolated cell comprising the expression cassette of the invention. In some embodiments, the expression cassette or vector is stably integrated into the genome of said cell.
- A typical gene which can be operatively linked to the promoter of the invention is a gene encoding for a halorhodopsin or a channelrhodosin. Therapeutic genes, i.e. genes encoding for a therapeutic protein useful for the treatment of a pathological conditions, can also be used. Examples of therapeutic genes include, but are not limited to, nucleic acids for replacement of a missing or mutated gene known to cause retinal disease such as MT-ND4 (Gene ID: 4538), MT-ND1 (Gene ID: 4535), MT-ND6 (Gene ID: 4541), MT-CYB (Gene ID: 4519), MT-003 (Gene ID: 4514), MT-ND5 (Gene ID: 4540), MT-ND2 (Gene ID: 4536), 5 MT-001 (Gene ID: 4512), MT-ATP6 (Gene ID: 4508), MT-ND4L (Gene ID: 4539), OPA1 (Gene ID: 4976), OPA3 (Gene ID: 80207), OPA7 (Gene ID: 84233), and A002 (Gene ID: 50). The therapeutic gene may also encode neurotrophic factors such as GDNF (Gene ID: 2668), CNTF (Gene ID: 1270), FGF2 (Gene ID: 2247), BDNF (Gene ID: 627) and EPO (Gene ID: 2056), anti-apoptotic genes such as BCL2 (Gene ID: 596) and BCL2L1 (Gene ID: 598), anti-angiogenic factors such as endostatin, angiostatin and sFlt, anti-inflammatory factors such as 1L10 (Gene ID: 3586), IL1 R1 (Gene ID: 3554), TGFBI (Gene ID; 7045) and IL4 (Gene ID: 3565), or the rod-derived cone viability factor (RdCVF) (Gene ID: 115861).
- In addition, the present invention also provides a kit for expressing gene in retinal ganglions, which kit comprises an isolated nucleic acid molecule of the invention.
- As used herein, the term “promoter” refers to any cis-regulatory elements, including enhancers, silencers, insulators and promoters. A promoter is a region of DNA that is generally located upstream (towards the 5′ region) of the gene that is needed to be transcribed. The promoter permits the proper activation or repression of the gene which it controls. In the context of the present invention, the promoters lead to the specific expression of genes operably linked to them in the retinal ganglions. “Specific expression”, also referred to as “expression only in a certain type of cell” means that at least more than 75% of the cells expressing the gene of interest are of the type specified, i.e. retinal ganglions in the present case.
- Expression cassettes are typically introduced into a vector that facilitates entry of the expression cassette into a host cell and maintenance of the expression cassette in the host cell. Such vectors are commonly used and are well known to those of skill in the art. Numerous such vectors are commercially available, e. g., from Invitrogen, Stratagene, Clontech, etc., and are described in numerous guides, such as Ausubel, Guthrie, Strathem, or Berger, all supra. Such vectors typically include promoters, polyadenylation signals, etc. in conjunction with multiple cloning sites, as well as additional elements such as origins of replication, selectable marker genes (e. g., LEU2, URA3, TRP 1, HIS3, GFP), centromeric sequences, etc.
- Viral vectors, for instance an AAV, a PRV or a lentivirus, are suitable to target and deliver genes to retinal ganglions using a promoter of the invention.
- The output of retinal cells can be measured using an electrical method, such as a multi-electrode array or a patch-clamp, or using a visual method, such as the detection of fluorescence.
- The methods using nucleic acid sequence of the invention can be used for identifying therapeutic agents for the treatment of a neurological disorder or of a disorder of the retina involving retinal ganglions, said method comprising the steps of contacting a test compound with retinal ganglions expressing one or more transgene under a promoter of the invention, and comparing at least one output of retinal ganglions obtained in the presence of said test compound with the same output obtained in the absence of said test compound.
- Moreover, the methods using promoters of the invention can also be used for in vitro testing of vision restoration, said method comprising the steps of contacting retinal ganglions expressing one or more transgene under the control of a promoter of the invention with an agent, and comparing at least one output obtained after the contact with said agent with the same output obtained before said contact with said agent.
- Channelrhodopsins are a subfamily of opsin proteins that function as light-gated ion channels. They serve as sensory photoreceptors in unicellular green algae, controlling phototaxis, i.e. movement in response to light. Expressed in cells of other organisms, they enable the use of light to control intracellular acidity, calcium influx, electrical excitability, and other cellular processes. At least three “natural” channelrhodopsins are currently known: Channelrhodopsin-1 (ChR1), Channelrhodopsin-2 (ChR2), and Volvox Channelrhodopsin (VChR1). Moreover, some modified/improved versions of these proteins also exist. All known Channelrhodopsins are unspecific cation channels, conducting H+, Na+, K+, and Ca2+ions. Halorhodopsin is a light-driven ion pump, specific for chloride ions, and found in phylogenetically ancient “bacteria” (archaea), known as halobacteria. It is a seven-transmembrane protein of the retinylidene protein family, homologous to the light-driven proton pump bacteriorhodopsin, and similar in tertiary structure (but not primary sequence structure) to vertebrate rhodopsins, the pigments that sense light in the retina. Halorhodopsin also shares sequence similarity to channelrhodopsin, a light-driven ion channel. Halorhodopsin contains the essential light-isomerizable vitamin A derivative all-trans-retinal. Halorhodopsin is one of the few membrane proteins whose crystal structure is known. Halorhodopsin isoforms can be found in multiple species of halobacteria, including H. salinarum, and N. pharaonis. Much ongoing research is exploring these differences, and using them to parse apart the photocycle and pump properties. After bacteriorhodopsin, halorhodopsin may be the best type I (microbial) opsin studied. Peak absorbance of the halorhodopsin retinal complex is about 570 nm. Recently, halorhodopsin has become a tool in optogenetics. Just as the blue-light activated ion channel channelrhodopsin-2 opens up the ability to activate excitable cells (such as neurons, muscle cells, pancreatic cells, and immune cells) with brief pulses of blue light, halorhodopsin opens up the ability to silence excitable cells with brief pulses of yellow light. Thus halorhodopsin and channelrhodopsin together enable multiple-color optical activation, silencing, and desynchronization of neural activity, creating a powerful neuroengineering toolbox.
- In some embodiments, the promoter is part of a vector targeted a retina, said vector expressing at least one reporter gene which is detectable in living retinal ganglions.
- Suitable viral vectors for the invention are well-known in the art. For instance an AAV, a PRV or a lentivirus, are suitable to target and deliver genes to retinal ganglions.
- When working with isolated retina, optimal viral delivery for retinal cells can be achieved by mounting the ganglion cell side downwards, so that the photoreceptor side of the retina is exposed and can thus be better transfected. Another technique is slicing, e.g. with a razor blade, the inner limiting membrane of the retina, such that the delivering viruses can penetrate the inner membranes. A further way is to embed the retina in agar, slicing said retina and applying the delivery viruses from the side of the slice.
- The output of transfected cells can be measured using well-known methods, for instance using an electrical method, such as a multi-electrode array or a patch-clamp, or using a visual method, such as the detection of fluorescence. In some cases, the inner limiting membrane is removed by micro-surgery the inner limiting membrane. In other cases, recording is achieved through slices performed to the inner limiting membrane.
- Any source of retinal cells can be used for the present invention. In some embodiments of the invention, the retinal cells come from, or are in, a human retina. In other embodiments, the retina is from an animal, e.g. of bovine or of rodent origin. Human retina can be easily obtained from cornea banks where said retinas are normally discarded after the dissection of the cornea. Adult human retina has a large surface (about 1100 mm2) and can therefore be easily separated to a number of experimentally subregions. Moreover, retinas can also be used as an exquisite model for synaptic communication since the retina has synapses that are identical to the rest of the brain.
- As used herein, the term “animal” is used herein to include all animals. In some embodiments of the invention, the non-human animal is a vertebrate. Examples of animals are human, mice, rats, cows, pigs, horses, chickens, ducks, geese, cats, dogs, etc. The term “animal” also includes an individual animal in all stages of development, including embryonic and fetal stages. A “genetically-modified animal” is any animal containing one or more cells bearing genetic information altered or received, directly or indirectly, by deliberate genetic manipulation at a sub-cellular level, such as by targeted recombination, microinjection or infection with recombinant virus. The term “genetically-modified animal” is not intended to encompass classical crossbreeding or in vitro fertilization, but rather is meant to encompass animals in which one or more cells are altered by, or receive, a recombinant DNA molecule. This recombinant DNA molecule may be specifically targeted to a defined genetic locus, may be randomly integrated within a chromosome, or it may be extrachromosomally replicating DNA. The term “germ-line genetically-modified animal” refers to a genetically-modified animal in which the genetic alteration or genetic information was introduced into germline cells, thereby conferring the ability to transfer the genetic information to its offspring. If such offspring in fact possess some or all of that alteration or genetic information, they are genetically-modified animals as well.
- The alteration or genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual recipient, or may be genetic information already possessed by the recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene, or not expressed at all.
- The genes used for altering a target gene may be obtained by a wide variety of techniques that include, but are not limited to, isolation from genomic sources, preparation of cDNAs from isolated mRNA templates, direct synthesis, or a combination thereof.
- A type of target cells for transgene introduction is the ES cells. ES cells may be obtained from pre-implantation embryos cultured in vitro and fused with embryos (Evans et al. (1981), Nature 292:154-156; Bradley et al. (1984), Nature 309:255-258; Gossler et al. (1986), Proc. Natl. Acad. Sci. USA 83:9065-9069; Robertson et al. (1986), Nature 322:445-448; Wood et al. (1993), Proc. Natl. Acad. Sci. USA 90:4582- 4584). Transgenes can be efficiently introduced into the ES cells by standard techniques such as DNA transfection using electroporation or by retrovirus-mediated transduction. The resultant transformed ES cells can thereafter be combined with morulas by aggregation or injected into blastocysts from a non-human animal. The introduced ES cells thereafter colonize the embryo and contribute to the germline of the resulting chimeric animal (Jaenisch (1988), Science 240:1468-1474). The use of gene-targeted ES cells in the generation of gene-targeted genetically-modified mice was described 1987 (Thomas et al. (1987), Cell 51:503-512) and is reviewed elsewhere (Frohman et al. (1989), Cell 56:145-147; Capecchi (1989), Trends in Genet. 5:70-76; Baribault et al. (1989), Mol. Biol. Med. 6:481-492; Wagner (1990), EMBO J. 9:3025-3032; Bradley et al. (1992), Bio/Technology 10:534-539).
- Techniques are available to inactivate or alter any genetic region to any mutation desired by using targeted homologous recombination to insert specific changes into chromosomal alleles.
- As used herein, a “targeted gene” is a DNA sequence introduced into the germline of a non-human animal by way of human intervention, including but not limited to, the methods described herein. The targeted genes of the invention include DNA sequences which are designed to specifically alter cognate endogenous alleles.
- In the present invention, “isolated” refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered “by the hand of man” from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be “isolated” because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide. The term “isolated” does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotide/sequences of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the DNA molecules of the present invention. However, a nucleic acid contained in a clone that is a member of a library (e.g., a genomic or cDNA library) that has not been isolated from other members of the library (e.g., in the form of a homogeneous solution containing the clone and other members of the library) or a chromosome removed from a cell or a cell lysate (e.g. , a “chromosome spread”, as in a karyotype), or a preparation of randomly sheared genomic DNA or a preparation of genomic DNA cut with one or more restriction enzymes is not “isolated” for the purposes of this invention. As discussed further herein, isolated nucleic acid molecules according to the present invention may be produced naturally, recombinantly, or synthetically.
- “Polynucleotides” can be composed of single-and double-stranded DNA, DNA that is a mixture of single-and double-stranded regions, single-and double-stranded RNA, and RNA that is mixture of single-and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single-and double-stranded regions. In addition, polynucleotides can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. Polynucleotides may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. “Modified” bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, “polynucleotide” embraces chemically, enzymatically, or metabolically modified forms.
- The expression “polynucleotide encoding a polypeptide” encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.
- “Stringent hybridization conditions” refers to an overnight incubation at 42 degree C. in a solution comprising 50% formamide, 5× SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5× Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1× SSC at about 50 degree C. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, moderately high stringency conditions include an overnight incubation at 37 degree C. in a solution comprising 6× SSPE (20× SSPE=3M NaCl; 0.2M NaH2PO4; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 μg/ml salmon sperm blocking DNA; followed by washes at 50 degree C. with 1× SSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5× SSC). Variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.
- The terms “fragment,” “derivative” and “analog” when referring to polypeptides means polypeptides which either retain substantially the same biological function or activity as such polypeptides. An analog includes a pro-protein which can be activated by cleavage of the pro-protein portion to produce an active mature polypeptide.
- The term “gene” means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region “leader and trailer” as well as intervening sequences (introns) between individual coding segments (exons).
- Polypeptides can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in the polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include, but are not limited to, acetylation, acylation, biotinylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, denivatization by known protecting/blocking groups, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, linkage to an antibody molecule or other cellular ligand, methylation, myristoylation, oxidation, pegylation, proteolytic processing (e.g., cleavage), phosphorylation, prenylation, racemization , selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS-STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al. , Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)
- A polypeptide fragment “having biological activity” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of the original polypeptide, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the original polypeptide (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, in some embodiments, not more than about tenfold less activity, or not more than about three-fold less activity relative to the original polypeptide.)
- Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.
- “Variant” refers to a polynucleotide or polypeptide differing from the original polynucleotide or polypeptide, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the original polynucleotide or polypeptide.
- As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100%identical to a nucleotide sequence of the present invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence aligmnent, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Blosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty--1, Joining Penalty--30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty--5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter. If the subject sequence is shorter than the query sequence because of 5′ or 3′ deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5′ and 3′ truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5′ or 3′ ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5′ and 3′ of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5′ and 3′ bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score. For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5′ end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5′ end. The 10 impaired bases represent 10% of the sequence (number of bases at the 5′ and 3′ ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5′ or 3′ of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5′ and 3′ of the subject sequence which are not matched/aligned with the query sequence are manually corrected for.
- By a polypeptide having an amino acid sequence at least, for example, 95% “identical” to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
- As a practical matter, whether any particular polypeptide is at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% identical to, for instance, the amino acid sequences shown in a sequence or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determining, the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty--I, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=I, Window Size=sequence length, Gap Penalty--5, Gap Size Penalty--0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter. If the subject sequence is shorter than the query sequence due to N-or C-terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N-and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N-and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N-and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N-and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N-and C-terminal residues of the subject sequence. Only residue positions outside the N-and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.
- Naturally occurring protein variants are called “allelic variants,” and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes 11, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.
- “Label” refers to agents that are capable of providing a detectable signal, either directly or through interaction with one or more additional members of a signal producing system. Labels that are directly detectable and may find use in the invention include fluorescent labels. Specific fluorophores include fluorescein, rhodamine, BODIPY, cyanine dyes and the like.
- A “fluorescent label” refers to any label with the ability to emit light of a certain wavelength when activated by light of another wavelength.
- “Fluorescence” refers to any detectable characteristic of a fluorescent signal, including intensity, spectrum, wavelength, intracellular distribution, etc.
- “Detecting” fluorescence refers to assessing the fluorescence of a cell using qualitative or quantitative methods. In some of the embodiments of the present invention, fluorescence will be detected in a qualitative manner. In other words, either the fluorescent marker is present, indicating that the recombinant fusion protein is expressed, or not. For other instances, the fluorescence can be determined using quantitative means, e. g., measuring the fluorescence intensity, spectrum, or intracellular distribution, allowing the statistical comparison of values obtained under different conditions. The level can also be determined using qualitative methods, such as the visual analysis and comparison by a human of multiple samples, e. g., samples detected using a fluorescent microscope or other optical detector (e. g., image analysis system, etc.). An “alteration” or “modulation” in fluorescence refers to any detectable difference in the intensity, intracellular distribution, spectrum, wavelength, or other aspect of fluorescence under a particular condition as compared to another condition. For example, an “alteration” or “modulation” is detected quantitatively, and the difference is a statistically significant difference. Any “alterations” or “modulations” in fluorescence can be detected using standard instrumentation, such as a fluorescent microscope, CCD, or any other fluorescent detector, and can be detected using an automated system, such as the integrated systems, or can reflect a subjective detection of an alteration by a human observer.
- The “green fluorescent protein” (GFP) is a protein, composed of 238 amino acids (26.9 kDa), originally isolated from the jellyfish Aequorea victoria/Aequorea aequorea/Aequorea forskalea that fluoresces green when exposed to blue light. The GFP from A. victoria has a major excitation peak at a wavelength of 395 nm and a minor one at 475 nm. Its emission peak is at 509 nm which is in the lower green portion of the visible spectrum. The GFP from the sea pansy (Renilla reniformis) has a single major excitation peak at 498 nm. Due to the potential for widespread usage and the evolving needs of researchers, many different mutants of GFP have been engineered. The first major improvement was a single point mutation (S65T) reported in 1995 in Nature by Roger Tsien. This mutation dramatically improved the spectral characteristics of GFP, resulting in increased fluorescence, photostablility and a shift of the major excitation peak to 488 nm with the peak emission kept at 509 nm. The addition of the 37° C. folding efficiency (F64L) point mutant to this scaffold yielded enhanced GFP (EGFP). EGFP has an extinction coefficient (denoted c), also known as its optical cross section of 9.13×10-21 m2/molecule, also quoted as 55,000 L/(mol·cm). Superfolder GFP, a series of mutations that allow GFP to rapidly fold and mature even when fused to poorly folding peptides, was reported in 2006.
- The “yellow fluorescent protein” (YFP) is a genetic mutant of green fluorescent protein, derived from Aequorea victoria. Its excitation peak is 514nm and its emission peak is 527nm.
- As used herein, the singular forms “a”, “an,” and “the” include plural reference unless the context clearly dictates otherwise.
- A “virus” is a sub-microscopic infectious agent that is unable to grow or reproduce outside a host cell. Each viral particle, or virion, consists of genetic material, DNA or RNA, within a protective protein coat called a capsid. The capsid shape varies from simple helical and icosahedral (polyhedral or near-spherical) forms, to more complex structures with tails or an envelope. Viruses infect cellular life forms and are grouped into animal, plant and bacterial types, according to the type of host infected.
- The term “transsynaptic virus” as used herein refers to viruses able to migrate from one neurone to another connecting neurone through a synapse. Examples of such transsynaptic virus are rhabodiviruses, e.g. rabies virus, and alphaherpesviruses, e.g. pseudorabies or herpes simplex virus. The term “transsynaptic virus” as used herein also encompasses viral sub-units having by themselves the capacity to migrate from one neurone to another connecting neurone through a synapse and biological vectors, such as modified viruses, incorporating such a sub-unit and demonstrating a capability of migrating from one neurone to another connecting neurone through a synapse.
- Transsynaptic migration can be either anterograde or retrograde. During a retrograde migration, a virus will travel from a postsynaptic neuron to a presynaptic one. Accordingly, during anterograde migration, a virus will travel from a presynaptic neuron to a postsynaptic one.
- Homologs refer to proteins that share a common ancestor. Analogs do not share a common ancestor, but have some functional (rather than structural) similarity that causes them to be included in a class (e.g. trypsin like serine proteinases and subtilisin's are clearly not related—their structures outside the active site are completely different, but they have virtually geometrically identical active sites and thus are considered an example of convergent evolution to analogs).
- There are two subclasses of homologs—orthologs and paralogs. Orthologs are the same gene (e.g. cytochome ‘c’), in different species. Two genes in the same organism cannot be orthologs. Paralogs are the results of gene duplication (e.g. hemoglobin beta and delta). If two genes/proteins are homologous and in the same organism, they are paralogs.
- As used herein, the term “disorder” refers to an ailment, disease, illness, clinical condition, or pathological condition.
- As used herein, the term “pharmaceutically acceptable carrier” refers to a carrier medium that does not interfere with the effectiveness of the biological activity of the active ingredient, is chemically inert, and is not toxic to the patient to whom it is administered.
- As used herein, the term “pharmaceutically acceptable derivative” refers to any homolog, analog, or fragment of an agent, e.g. identified using a method of screening of the invention, that is relatively non-toxic to the subject.
- The term “therapeutic agent” refers to any molecule, compound, or treatment, that assists in the prevention or treatment of disorders, or complications of disorders.
- Compositions comprising such an agent formulated in a compatible pharmaceutical carrier may be prepared, packaged, and labeled for treatment.
- If the complex is water-soluble, then it may be formulated in an appropriate buffer, for example, phosphate buffered saline or other physiologically compatible solutions.
- Alternatively, if the resulting complex has poor solubility in aqueous solvents, then it may be formulated with a non-ionic surfactant such as Tween, or polyethylene glycol. Thus, the compounds and their physiologically acceptable solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral, rectal administration or, in the case of tumors, directly injected into a solid tumor.
- For oral administration, the pharmaceutical preparation may be in liquid form, for example, solutions, syrups or suspensions, or may be presented as a drug product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e. g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e. g., lecithin or acacia); non-aqueous vehicles (e. g., almond oil, oily esters, or fractionated vegetable oils); and preservatives (e. g., methyl or propyl-p- hydroxybenzoates or sorbic acid). The pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e. g., pregelatinized maize starch, polyvinyl pyrrolidone or hydroxypropyl methylcellulose); fillers (e. g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e. g., magnesium stearate, talc or silica); disintegrants (e. g., potato starch or sodium starch glycolate); or wetting agents (e. g., sodium lauryl sulphate). The tablets may be coated by methods well-known in the art.
- Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
- The compounds may be formulated for parenteral administration by injection, e. g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e. g., in ampoules or in multi-dose containers, with an added preservative.
- The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e. g., sterile pyrogen-free water, before use.
- The compounds may also be formulated as a topical application, such as a cream or lotion.
- In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example, intraocular, subcutaneous or intramuscular) or by intraocular injection.
- Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophilic drugs.
- The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.
- The invention also provides kits for carrying out the therapeutic regimens of the invention. Such kits comprise in one or more containers therapeutically or prophylactically effective amounts of the compositions in pharmaceutically acceptable form.
- The composition in a vial of a kit may be in the form of a pharmaceutically acceptable solution, e. g., in combination with sterile saline, dextrose solution, or buffered solution, or other pharmaceutically acceptable sterile fluid. Alternatively, the complex may be lyophilized or desiccated; in this instance, the kit optionally further comprises in a container a pharmaceutically acceptable solution (e. g., saline, dextrose solution, etc.), preferably sterile, to reconstitute the complex to form a solution for injection purposes.
- In another embodiment, a kit further comprises a needle or syringe, preferably packaged in sterile form, for injecting the complex, and/or a packaged alcohol pad. Instructions are optionally included for administration of compositions by a clinician or by the patient.
- A “retinal ganglion cell” (RGC) is a type of neuron located near the inner surface (the ganglion cell layer) of the retina of the eye. It receives visual information from photoreceptors via two intermediate neuron types: bipolar cells and retina amacrine cells. Retinal ganglion cells collectively transmit image-forming and non-image forming visual information from the retina in the form of action potential to several regions in the thalamus, hypothalamus, and mesencephalon, or midbrain. Retinal ganglion cells vary significantly in terms of their size, connections, and responses to visual stimulation but they all share the defining property of having a long axon that extends into the brain. These axons form the optic nerve, optic chiasm, and optic tract. A small percentage of retinal ganglion cells contribute little or nothing to vision, but are themselves photosensitive; their axons form the retinohypothalamic tract and contribute to circadian rhythms and pupillary light reflex, the resizing of the pupil.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- The synthetic promoter used in this study consists of the 2000 bp before the translation start codon of the mouse gene coding for the hedgehog acyltransferase-like (Hhatl). GFP coding sequence was inserted immediately after this promoter and the optimized Kozak sequence (GCCACC), and followed by a woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) and SV40 polyadenylation site. Mouse retinal neurons were targeted using AAV serotype 2/8 with a titer of 7.7E+09 GC/mL. Non-human primate retinal neurons were targeted using AAV serotype BP2 with a titer of 2.9E+13 GC/mL.
- For AAV administration in mouse, the eyes of anesthetized animals were punctured in the sclera close to the lens by a sharp 30 gauge needle. 24 of AAV particle suspension were injected subretinally by a Hamilton syringe. After 3 weeks, the isolated retinas were fixed for 30 min in 4% PFA in PBS, followed by a washing step in PBS at 4° C. Whole retinas were treated with 10% normal donkey serum (NDS), 1% BSA, 0.5% Triton X-100 in PBS for 1h at room temperature. Treatment with monoclonal rat anti-GFP Ab (Molecular Probes Inc.; 1:500) and polyclonal goat anti-ChAT (Millipore: 1:200) in 3% NDS, 1% BSA, 0.5% Triton X-100 in PBS was carried out for 5 days at room temperature. Treatment with secondary donkey anti-rat Alexa Fluor-488 Ab (Molecular Probes Inc.; 1:200), anti-goat Alexa Fluor-633 and Hoechst, was done for 2 hr. Sections were washed, mounted with ProLong Gold antifade reagent (Molecular Probes Inc.) on glass slides, and photographed using a Zeiss LSM 700 Axio Imager Z2 laser scanning confocal microscope (Carl Zeiss Inc.). For AAV administration in Non-human primates, 50 μl of AAV particle suspension were injected subretinally in collaboration with an ophthalmologist and a third party contractor in Kunming, China. After 3 month, the isolated eyecups were fixed overnight in 4% PFA in PBS, followed by a washing step in PBS at 4° C. After receiving the fixed eyecups, the infected retinal region was dissected out and underwent the same treatment as described above for the mouse tissue.
Claims (16)
1-12. (canceled)
13. An expression cassette comprising an isolated nucleic acid molecule, the isolated nucleic acid molecule comprising the nucleic acid sequence of SEQ ID NO:1, wherein said isolated nucleic acid molecule is operatively linked to at least a nucleic acid sequence encoding for a gene, said nucleic acid sequence encoding for a gene being heterologous to the isolated nucleic acid molecule
14. The expression cassette of claim 13 , wherein said isolated nucleic acid molecule is effective to drive expression of the gene in a cell, wherein the cell is selected from the group consisting of a rodent cell, a non-human primate cell, and a human cell.
15. The expression cassette of claim 13 , further comprising a minimal promoter.
16. The expression cassette of claim 15 , wherein said minimal promoter comprises the nucleic acid sequence of SEQ ID NO:2.
17. The expression cassette of claim 13 , wherein the product of the gene is selected from the group consisting of a light-sensitive molecule, MT-ND4, MT-ND1, MT-ND6, MT-CYB, MT-CO3, MT-NDS, MT-ND2, 5 MT-COI, MT-ATP6, MT-ND4L, OPA1, OPA3, OPA7, ACO2, GDNF, CNTF, FGF2, BDNF, EPO, BCL2, BCL2L 1, endostatin, angiostatin, and sFlt, IL 10, IL 1 R1, TGFBI, IL4, and rod-derived cone viability factor (RdCVF).
18. The expression cassette of claim 17 , wherein the light-sensitive molecule is selected from the group consisting of a channelrhodopsin and a halorhodopsin.
19. A vector comprising the expression cassette of claim 13 .
20. The vector of claim 19 , wherein said vector is a viral vector.
21. The vector of claim 19 , wherein the vector is an adeno-associated virus (AAV) vector.
22. A method of expressing a gene in a cell, the method comprising transfecting an isolated cell, a cell line, or a cell population with the expression cassette of claim 13 .
23. The method of claim 22 , wherein the isolated cell is a rodent cell or the cell line or cell population comprises rodent cells.
24. The method of claim 22 , wherein the isolated cell is a non-human primate cell or the cell line or cell population comprises non-human primate cells.
25. The method of claim 22 , wherein the isolated cell is a human cell or the cell line or cell population comprises non-human primate cells.
26. An isolated cell comprising the expression cassette of claim 13 .
27. The isolated cell of claim 26 , wherein the expression cassette is stably integrated into the genome of said cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/663,242 US20220267800A1 (en) | 2017-02-08 | 2022-05-13 | Synp88, a promoter for the expression of genes |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17155193.0 | 2017-02-08 | ||
EP17155193 | 2017-02-08 | ||
PCT/IB2018/050696 WO2018146588A1 (en) | 2017-02-08 | 2018-02-05 | Synp88, a promoter for the specific expression of genes in retinal ganglion cells |
US201916484252A | 2019-08-07 | 2019-08-07 | |
US17/663,242 US20220267800A1 (en) | 2017-02-08 | 2022-05-13 | Synp88, a promoter for the expression of genes |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2018/050696 Continuation WO2018146588A1 (en) | 2017-02-08 | 2018-02-05 | Synp88, a promoter for the specific expression of genes in retinal ganglion cells |
US16/484,252 Continuation US11371060B2 (en) | 2017-02-08 | 2018-02-05 | SYNP88, a promoter for the specific expression of genes in retinal ganglion cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220267800A1 true US20220267800A1 (en) | 2022-08-25 |
Family
ID=57995117
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/484,252 Active 2038-08-04 US11371060B2 (en) | 2017-02-08 | 2018-02-05 | SYNP88, a promoter for the specific expression of genes in retinal ganglion cells |
US17/663,242 Pending US20220267800A1 (en) | 2017-02-08 | 2022-05-13 | Synp88, a promoter for the expression of genes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/484,252 Active 2038-08-04 US11371060B2 (en) | 2017-02-08 | 2018-02-05 | SYNP88, a promoter for the specific expression of genes in retinal ganglion cells |
Country Status (5)
Country | Link |
---|---|
US (2) | US11371060B2 (en) |
EP (1) | EP3579884A1 (en) |
JP (1) | JP7112414B2 (en) |
CN (1) | CN110392582A (en) |
WO (1) | WO2018146588A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100136550A (en) | 2008-04-18 | 2010-12-28 | 노파르티스 포르슝스티프퉁 쯔바이크니덜라쑹 프리드리히 미셔 인스티튜트 포 바이오메디칼 리서치 | Novel therapeutical tools and methods for treating blindness |
ES2747433T3 (en) | 2015-04-30 | 2020-03-10 | Friedrich Miescher Institute For Biomedical Res | Promoter for specific gene expression in Müller cells |
EP3350330B1 (en) | 2015-09-15 | 2022-06-22 | Friedrich Miescher Institute for Biomedical Research | Novel therapeutical tools and methods for treating blindness by targeting photoreceptors |
EP3362101B1 (en) | 2015-10-14 | 2021-05-19 | Friedrich Miescher Institute for Biomedical Research | Promoter for the specific expression of genes in retinal endothelial cells |
CN108474001B (en) | 2015-12-03 | 2022-04-08 | 弗里德里克·米谢尔生物医学研究所 | Synp160, promoter for specific expression of genes in rod photoreceptors |
AU2016362122A1 (en) | 2015-12-03 | 2018-06-21 | Friedrich Miescher Institute For Biomedical Research | SynP161, a promoter for the specific expression of genes in rod photoreceptors |
JP7058220B2 (en) | 2015-12-03 | 2022-04-21 | フリードリッヒ ミーシェー インスティトゥート フォー バイオメディカル リサーチ | SynP159, promoter for specific expression of genes in rod photoreceptors |
CN108472390B (en) | 2015-12-03 | 2022-04-15 | 弗里德里克·米谢尔生物医学研究所 | Synp162 promoter for specific expression of gene in rod photoreceptors |
BR112019008488A2 (en) | 2016-11-02 | 2019-07-09 | Friedrich Miescher Institute For Biomedical Res | synp198, promoter for gene-specific expression in selectively directed retinal ganglion cells |
US11371060B2 (en) * | 2017-02-08 | 2022-06-28 | Friedrich Miescher Institute For Biomedical Research | SYNP88, a promoter for the specific expression of genes in retinal ganglion cells |
CN111726985B (en) | 2017-11-15 | 2022-06-10 | 弗里德里克·米谢尔生物医学研究所 | Primate retinal pigment epithelial cell specific promoter |
BR112020010928A2 (en) | 2017-11-30 | 2020-11-24 | Friedrich Miescher Institute For Biomedical Research | synpiii, a promoter for specific gene expression in retinal pigment epithelium |
CN110857440B (en) * | 2018-08-23 | 2021-02-19 | 武汉纽福斯生物科技有限公司 | Recombinant human II type mitochondrial dynamic protein sample GTP enzyme gene sequence and application thereof |
WO2020084538A1 (en) * | 2018-10-25 | 2020-04-30 | Friedrich Miescher Institute For Biomedical Research | Synp27 (prob12), a promoter for the specific expression of genes in protoplasmic astrocytes |
WO2020084542A1 (en) * | 2018-10-25 | 2020-04-30 | Friedrich Miescher Institute For Biomedical Research | Synp194 (prob15), a promoter for the specific expression of genes in retinal ganglion cells |
CN116685329A (en) * | 2020-08-05 | 2023-09-01 | 杭州嘉因生物科技有限公司 | Nucleic acid constructs and their use for the treatment of spinal muscular atrophy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11371060B2 (en) * | 2017-02-08 | 2022-06-28 | Friedrich Miescher Institute For Biomedical Research | SYNP88, a promoter for the specific expression of genes in retinal ganglion cells |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070161031A1 (en) * | 2005-12-16 | 2007-07-12 | The Board Of Trustees Of The Leland Stanford Junior University | Functional arrays for high throughput characterization of gene expression regulatory elements |
EP1891976A1 (en) | 2006-08-23 | 2008-02-27 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute for Biomedical Research | Use of light sensitive genes |
KR20100136550A (en) | 2008-04-18 | 2010-12-28 | 노파르티스 포르슝스티프퉁 쯔바이크니덜라쑹 프리드리히 미셔 인스티튜트 포 바이오메디칼 리서치 | Novel therapeutical tools and methods for treating blindness |
EP2888368A1 (en) | 2012-08-27 | 2015-07-01 | Friedrich Miescher Institute for Biomedical Research | Retinal off circuit-specific promoter |
US9999685B2 (en) | 2014-02-10 | 2018-06-19 | Friedrich Miescher Institute For Biomedical Research | AII retinal amacrine cell-specific promoter |
WO2015121793A1 (en) | 2014-02-11 | 2015-08-20 | Friedrich Miescher Institute For Biomedical Research | Müller cell-specific promoter |
ES2747433T3 (en) | 2015-04-30 | 2020-03-10 | Friedrich Miescher Institute For Biomedical Res | Promoter for specific gene expression in Müller cells |
EP3350330B1 (en) | 2015-09-15 | 2022-06-22 | Friedrich Miescher Institute for Biomedical Research | Novel therapeutical tools and methods for treating blindness by targeting photoreceptors |
EP3362101B1 (en) | 2015-10-14 | 2021-05-19 | Friedrich Miescher Institute for Biomedical Research | Promoter for the specific expression of genes in retinal endothelial cells |
JP7058220B2 (en) | 2015-12-03 | 2022-04-21 | フリードリッヒ ミーシェー インスティトゥート フォー バイオメディカル リサーチ | SynP159, promoter for specific expression of genes in rod photoreceptors |
CN108472390B (en) | 2015-12-03 | 2022-04-15 | 弗里德里克·米谢尔生物医学研究所 | Synp162 promoter for specific expression of gene in rod photoreceptors |
AU2016362122A1 (en) | 2015-12-03 | 2018-06-21 | Friedrich Miescher Institute For Biomedical Research | SynP161, a promoter for the specific expression of genes in rod photoreceptors |
CN108474001B (en) | 2015-12-03 | 2022-04-08 | 弗里德里克·米谢尔生物医学研究所 | Synp160, promoter for specific expression of genes in rod photoreceptors |
JP6966442B2 (en) | 2015-12-04 | 2021-11-17 | ソルボンヌ・ユニヴェルシテSorbonne Universite | Promoters and their use |
WO2017199156A1 (en) | 2016-05-17 | 2017-11-23 | Friedrich Miescher Institute For Biomedical Research | Novel therapeutic tools and methods for treating blindness |
BR112019008488A2 (en) | 2016-11-02 | 2019-07-09 | Friedrich Miescher Institute For Biomedical Res | synp198, promoter for gene-specific expression in selectively directed retinal ganglion cells |
WO2018099975A1 (en) | 2016-12-01 | 2018-06-07 | Friedrich Miescher Institute For Biomedical Research | Synpi, a promoter for the specific expression of genes in interneurons |
CN110072559A (en) | 2016-12-01 | 2019-07-30 | 弗里德里克·米谢尔生物医学研究所 | Promoter SynP107 for keeping gene specific expressed in intrerneuron |
CN111726985B (en) | 2017-11-15 | 2022-06-10 | 弗里德里克·米谢尔生物医学研究所 | Primate retinal pigment epithelial cell specific promoter |
BR112020010928A2 (en) | 2017-11-30 | 2020-11-24 | Friedrich Miescher Institute For Biomedical Research | synpiii, a promoter for specific gene expression in retinal pigment epithelium |
CR20200235A (en) | 2017-11-30 | 2020-10-19 | Friedrich Miescher Institute For Biomedical Res | SynP61, A PRIMATE RETINAL PIGMENT EPITHELIUM CELL-SPECIFIC PROMOTER |
WO2020084542A1 (en) | 2018-10-25 | 2020-04-30 | Friedrich Miescher Institute For Biomedical Research | Synp194 (prob15), a promoter for the specific expression of genes in retinal ganglion cells |
WO2020084538A1 (en) | 2018-10-25 | 2020-04-30 | Friedrich Miescher Institute For Biomedical Research | Synp27 (prob12), a promoter for the specific expression of genes in protoplasmic astrocytes |
US20210388386A1 (en) | 2018-10-25 | 2021-12-16 | Friedrich Miescher Institute For Biomedical Research | Synp57 (proa14), a promoter for the specific expression of genes in photoreceptors |
US20210388387A1 (en) | 2018-10-25 | 2021-12-16 | Friedrich Miescher Institute For Biomedical Research | Synp151 (proc29), a promoter for the specific expression of genes in retinal ganglion cells |
US20210355505A1 (en) | 2018-10-25 | 2021-11-18 | Friedrich Miescher Institute For Biomedical Research | Synp78 (proa27), a promoter for the specific expression of genes in retinal ganglion cells |
WO2020084537A1 (en) | 2018-10-25 | 2020-04-30 | Friedrich Miescher Institute For Biomedical Research | Synp17 (prob1), a promoter for the specific expression of genes in retinal ganglion cells |
WO2020152623A1 (en) | 2019-01-24 | 2020-07-30 | Friedrich Miescher Institute For Biomedical Research | Synp5 (proa9), a promoter for the specific expression of genes in retinal ganglion cells |
US20220090062A1 (en) | 2019-01-24 | 2022-03-24 | Friedrich Miescher Institute For Biomedical Research | Synp66 (proa21), a promoter for the specific expression of genes in retinal ganglion cells |
US20220119807A1 (en) | 2019-01-24 | 2022-04-21 | Friedrich Miescher Institute For Biomedical Research | Synp35 (proc8), a promoter for the specific expression of genes in retinal ganglion cells |
WO2020152626A1 (en) | 2019-01-24 | 2020-07-30 | Friedrich Miescher Institute For Biomedical Research | Synp166 (proa36), a promoter for the specific expression of genes in photoreceptors |
WO2020174369A2 (en) | 2019-02-25 | 2020-09-03 | Novartis Ag | Compositions and methods to treat bietti crystalline dystrophy |
EP3931334A1 (en) | 2019-02-25 | 2022-01-05 | Novartis AG | Compositions and methods to treat bietti crystalline dystrophy |
-
2018
- 2018-02-05 US US16/484,252 patent/US11371060B2/en active Active
- 2018-02-05 EP EP18704314.6A patent/EP3579884A1/en not_active Withdrawn
- 2018-02-05 CN CN201880010380.3A patent/CN110392582A/en active Pending
- 2018-02-05 JP JP2019542436A patent/JP7112414B2/en active Active
- 2018-02-05 WO PCT/IB2018/050696 patent/WO2018146588A1/en unknown
-
2022
- 2022-05-13 US US17/663,242 patent/US20220267800A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11371060B2 (en) * | 2017-02-08 | 2022-06-28 | Friedrich Miescher Institute For Biomedical Research | SYNP88, a promoter for the specific expression of genes in retinal ganglion cells |
Also Published As
Publication number | Publication date |
---|---|
JP2020506710A (en) | 2020-03-05 |
EP3579884A1 (en) | 2019-12-18 |
US20200277626A1 (en) | 2020-09-03 |
WO2018146588A1 (en) | 2018-08-16 |
JP7112414B2 (en) | 2022-08-03 |
US11371060B2 (en) | 2022-06-28 |
CN110392582A (en) | 2019-10-29 |
WO2018146588A8 (en) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220267800A1 (en) | Synp88, a promoter for the expression of genes | |
US11857642B2 (en) | SYNP161, a promoter for the expression of genes | |
US11883507B2 (en) | Expression cassette with a SynP160 promoter | |
US11591618B2 (en) | SynP159, a promoter for the expression of genes | |
US11591615B2 (en) | SynPIII, a promoter for the specific expression of genes in retinal pigment epithelium | |
US11608365B2 (en) | SYNP162, a promoter for the expression of genes | |
US20220119841A1 (en) | Synp5 (proa9), a promoter for the specific expression of genes in retinal ganglion cells | |
US20210355505A1 (en) | Synp78 (proa27), a promoter for the specific expression of genes in retinal ganglion cells | |
US20210395750A1 (en) | Synp17 (prob1), a promoter for the specific expression of genes in retinal ganglion cells | |
US20220090062A1 (en) | Synp66 (proa21), a promoter for the specific expression of genes in retinal ganglion cells | |
US20210353773A1 (en) | Synp194 (prob15), a promoter for the specific expression of genes in retinal ganglion cells | |
US20220119807A1 (en) | Synp35 (proc8), a promoter for the specific expression of genes in retinal ganglion cells | |
US20210388387A1 (en) | Synp151 (proc29), a promoter for the specific expression of genes in retinal ganglion cells | |
US20210388386A1 (en) | Synp57 (proa14), a promoter for the specific expression of genes in photoreceptors | |
US20190276847A1 (en) | SynP198, a promoter for the specific expression of genes in direction selective retinal ganglion cells | |
WO2020152626A1 (en) | Synp166 (proa36), a promoter for the specific expression of genes in photoreceptors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSKA, BOTOND;JUETTNER, JOSEPHINE;SIGNING DATES FROM 20180118 TO 20180129;REEL/FRAME:059966/0827 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |