US20220265613A1 - Oxazole compound and pharmaceutical composition - Google Patents
Oxazole compound and pharmaceutical composition Download PDFInfo
- Publication number
- US20220265613A1 US20220265613A1 US17/679,659 US202217679659A US2022265613A1 US 20220265613 A1 US20220265613 A1 US 20220265613A1 US 202217679659 A US202217679659 A US 202217679659A US 2022265613 A1 US2022265613 A1 US 2022265613A1
- Authority
- US
- United States
- Prior art keywords
- group
- oxazol
- groups
- substituted
- phenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- -1 Oxazole compound Chemical class 0.000 title claims abstract description 257
- 239000008194 pharmaceutical composition Substances 0.000 title description 8
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 36
- 125000001424 substituent group Chemical group 0.000 claims abstract description 29
- 150000003839 salts Chemical class 0.000 claims abstract description 27
- MSYGAHOHLUJIKV-UHFFFAOYSA-N 3,5-dimethyl-1-(3-nitrophenyl)-1h-pyrazole-4-carboxylic acid ethyl ester Chemical compound CC1=C(C(=O)OCC)C(C)=NN1C1=CC=CC([N+]([O-])=O)=C1 MSYGAHOHLUJIKV-UHFFFAOYSA-N 0.000 claims abstract description 15
- 108010037584 Type 4 Cyclic Nucleotide Phosphodiesterases Proteins 0.000 claims abstract description 15
- 102000011017 Type 4 Cyclic Nucleotide Phosphodiesterases Human genes 0.000 claims abstract description 15
- 125000003118 aryl group Chemical group 0.000 claims abstract description 13
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 6
- 229910052757 nitrogen Chemical group 0.000 claims abstract description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 213
- 125000003545 alkoxy group Chemical group 0.000 claims description 127
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 126
- 125000000217 alkyl group Chemical group 0.000 claims description 51
- 125000003302 alkenyloxy group Chemical group 0.000 claims description 38
- 125000005843 halogen group Chemical group 0.000 claims description 29
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 22
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 20
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 18
- 201000010099 disease Diseases 0.000 claims description 17
- 125000005036 alkoxyphenyl group Chemical group 0.000 claims description 12
- 125000004450 alkenylene group Chemical group 0.000 claims description 10
- 125000005133 alkynyloxy group Chemical group 0.000 claims description 10
- 230000001404 mediated effect Effects 0.000 claims description 10
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 8
- 125000004076 pyridyl group Chemical group 0.000 claims description 8
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 7
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 7
- 125000006383 alkylpyridyl group Chemical group 0.000 claims description 7
- 206010012438 Dermatitis atopic Diseases 0.000 claims description 6
- 125000002252 acyl group Chemical group 0.000 claims description 6
- 201000008937 atopic dermatitis Diseases 0.000 claims description 6
- 210000004027 cell Anatomy 0.000 claims description 6
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 5
- 125000004414 alkyl thio group Chemical group 0.000 claims description 5
- 230000000172 allergic effect Effects 0.000 claims description 5
- 208000010668 atopic eczema Diseases 0.000 claims description 5
- 125000000466 oxiranyl group Chemical group 0.000 claims description 4
- 230000001684 chronic effect Effects 0.000 claims description 3
- 208000035475 disorder Diseases 0.000 claims description 3
- 208000027866 inflammatory disease Diseases 0.000 claims description 3
- 125000004043 oxo group Chemical group O=* 0.000 claims description 3
- 208000017520 skin disease Diseases 0.000 claims description 3
- 230000009885 systemic effect Effects 0.000 claims description 3
- 206010049153 Allergic sinusitis Diseases 0.000 claims description 2
- 208000024827 Alzheimer disease Diseases 0.000 claims description 2
- 208000019901 Anxiety disease Diseases 0.000 claims description 2
- 208000020925 Bipolar disease Diseases 0.000 claims description 2
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 2
- 206010009137 Chronic sinusitis Diseases 0.000 claims description 2
- 206010009900 Colitis ulcerative Diseases 0.000 claims description 2
- 206010010744 Conjunctivitis allergic Diseases 0.000 claims description 2
- 208000011231 Crohn disease Diseases 0.000 claims description 2
- 206010012442 Dermatitis contact Diseases 0.000 claims description 2
- 206010061218 Inflammation Diseases 0.000 claims description 2
- 208000003947 Knee Osteoarthritis Diseases 0.000 claims description 2
- 241001465754 Metazoa Species 0.000 claims description 2
- 208000018737 Parkinson disease Diseases 0.000 claims description 2
- 201000004681 Psoriasis Diseases 0.000 claims description 2
- 206010039085 Rhinitis allergic Diseases 0.000 claims description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 claims description 2
- 208000002205 allergic conjunctivitis Diseases 0.000 claims description 2
- 201000010105 allergic rhinitis Diseases 0.000 claims description 2
- 208000004631 alopecia areata Diseases 0.000 claims description 2
- 230000002917 arthritic effect Effects 0.000 claims description 2
- 208000006673 asthma Diseases 0.000 claims description 2
- 208000024998 atopic conjunctivitis Diseases 0.000 claims description 2
- 208000028683 bipolar I disease Diseases 0.000 claims description 2
- 201000009151 chronic rhinitis Diseases 0.000 claims description 2
- 208000027157 chronic rhinosinusitis Diseases 0.000 claims description 2
- 208000010877 cognitive disease Diseases 0.000 claims description 2
- 208000010247 contact dermatitis Diseases 0.000 claims description 2
- 230000002496 gastric effect Effects 0.000 claims description 2
- 230000004054 inflammatory process Effects 0.000 claims description 2
- 208000030603 inherited susceptibility to asthma Diseases 0.000 claims description 2
- 201000008482 osteoarthritis Diseases 0.000 claims description 2
- 210000002345 respiratory system Anatomy 0.000 claims description 2
- 206010039083 rhinitis Diseases 0.000 claims description 2
- 201000000980 schizophrenia Diseases 0.000 claims description 2
- 231100000331 toxic Toxicity 0.000 claims description 2
- 230000002588 toxic effect Effects 0.000 claims description 2
- 239000013598 vector Substances 0.000 claims 3
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 claims 2
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 claims 2
- 101100296720 Dictyostelium discoideum Pde4 gene Proteins 0.000 claims 1
- 101100082610 Plasmodium falciparum (isolate 3D7) PDEdelta gene Proteins 0.000 claims 1
- 239000002299 complementary DNA Substances 0.000 claims 1
- 210000004962 mammalian cell Anatomy 0.000 claims 1
- 239000013600 plasmid vector Substances 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 abstract description 15
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 956
- 238000005160 1H NMR spectroscopy Methods 0.000 description 483
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 426
- 150000001875 compounds Chemical class 0.000 description 362
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 217
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 162
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 155
- 238000006243 chemical reaction Methods 0.000 description 126
- 239000000203 mixture Substances 0.000 description 124
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 111
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 111
- 239000011541 reaction mixture Substances 0.000 description 99
- 239000002904 solvent Substances 0.000 description 96
- 230000002829 reductive effect Effects 0.000 description 88
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 81
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 75
- 238000010898 silica gel chromatography Methods 0.000 description 71
- 239000000843 powder Substances 0.000 description 70
- 238000001816 cooling Methods 0.000 description 69
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 61
- 239000012044 organic layer Substances 0.000 description 61
- 239000000243 solution Substances 0.000 description 61
- 238000003756 stirring Methods 0.000 description 60
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 57
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 56
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 51
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 49
- 239000013078 crystal Substances 0.000 description 47
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 46
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 40
- 238000000605 extraction Methods 0.000 description 40
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 39
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 39
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 39
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 36
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 36
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 35
- 239000002585 base Substances 0.000 description 35
- 229910052783 alkali metal Inorganic materials 0.000 description 31
- 238000010438 heat treatment Methods 0.000 description 31
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 30
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 30
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 28
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 28
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 27
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 27
- 238000003810 ethyl acetate extraction Methods 0.000 description 27
- 238000001914 filtration Methods 0.000 description 27
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 26
- MOWXJLUYGFNTAL-DEOSSOPVSA-N (s)-[2-chloro-4-fluoro-5-(7-morpholin-4-ylquinazolin-4-yl)phenyl]-(6-methoxypyridazin-3-yl)methanol Chemical compound N1=NC(OC)=CC=C1[C@@H](O)C1=CC(C=2C3=CC=C(C=C3N=CN=2)N2CCOCC2)=C(F)C=C1Cl MOWXJLUYGFNTAL-DEOSSOPVSA-N 0.000 description 23
- 229910000027 potassium carbonate Inorganic materials 0.000 description 23
- 235000011181 potassium carbonates Nutrition 0.000 description 23
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 22
- 239000012312 sodium hydride Substances 0.000 description 22
- 229910000104 sodium hydride Inorganic materials 0.000 description 22
- 239000000126 substance Substances 0.000 description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- 150000001340 alkali metals Chemical class 0.000 description 21
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 21
- 125000003145 oxazol-4-yl group Chemical group O1C=NC(=C1)* 0.000 description 21
- 230000008569 process Effects 0.000 description 21
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 20
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 19
- 150000007529 inorganic bases Chemical class 0.000 description 19
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 19
- 150000007530 organic bases Chemical class 0.000 description 19
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 18
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 18
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 18
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 18
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 17
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 16
- 239000000706 filtrate Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000002253 acid Substances 0.000 description 15
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 15
- 239000000284 extract Substances 0.000 description 15
- NAMYKGVDVNBCFQ-UHFFFAOYSA-N 2-bromopropane Chemical compound CC(C)Br NAMYKGVDVNBCFQ-UHFFFAOYSA-N 0.000 description 14
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 14
- JUSNQUYQJNUTRD-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 JUSNQUYQJNUTRD-UHFFFAOYSA-N 0.000 description 14
- 238000010992 reflux Methods 0.000 description 14
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 13
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 13
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 13
- 239000005456 alcohol based solvent Substances 0.000 description 13
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 13
- AEILLAXRDHDKDY-UHFFFAOYSA-N bromomethylcyclopropane Chemical compound BrCC1CC1 AEILLAXRDHDKDY-UHFFFAOYSA-N 0.000 description 13
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 13
- 239000003759 ester based solvent Substances 0.000 description 13
- 239000004210 ether based solvent Substances 0.000 description 13
- 150000008282 halocarbons Chemical class 0.000 description 13
- 239000005453 ketone based solvent Substances 0.000 description 13
- 239000002798 polar solvent Substances 0.000 description 13
- 239000011734 sodium Substances 0.000 description 13
- 229910052708 sodium Inorganic materials 0.000 description 13
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 12
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 12
- 230000002411 adverse Effects 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 12
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 12
- 235000017557 sodium bicarbonate Nutrition 0.000 description 12
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000001035 drying Methods 0.000 description 11
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 11
- 150000002916 oxazoles Chemical class 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 239000000741 silica gel Substances 0.000 description 11
- 229910002027 silica gel Inorganic materials 0.000 description 11
- SUNMBRGCANLOEG-UHFFFAOYSA-N 1,3-dichloroacetone Chemical compound ClCC(=O)CCl SUNMBRGCANLOEG-UHFFFAOYSA-N 0.000 description 10
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 10
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 10
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 10
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 10
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 10
- 229910000024 caesium carbonate Inorganic materials 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- QXOXUEFXRSIYSW-UHFFFAOYSA-N methyl 3-hydroxy-4-methoxybenzoate Chemical compound COC(=O)C1=CC=C(OC)C(O)=C1 QXOXUEFXRSIYSW-UHFFFAOYSA-N 0.000 description 10
- 229960003975 potassium Drugs 0.000 description 10
- 229910052700 potassium Inorganic materials 0.000 description 10
- 239000011591 potassium Substances 0.000 description 10
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 10
- SGUVLZREKBPKCE-UHFFFAOYSA-N 1,5-diazabicyclo[4.3.0]-non-5-ene Chemical compound C1CCN=C2CCCN21 SGUVLZREKBPKCE-UHFFFAOYSA-N 0.000 description 9
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 9
- ABZWKAPLFBAGDO-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)propan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC(C)C)=CO1 ABZWKAPLFBAGDO-UHFFFAOYSA-N 0.000 description 9
- DMAYBPBPEUFIHJ-UHFFFAOYSA-N 4-bromobut-1-ene Chemical compound BrCCC=C DMAYBPBPEUFIHJ-UHFFFAOYSA-N 0.000 description 9
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 9
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 9
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 9
- 150000008041 alkali metal carbonates Chemical class 0.000 description 9
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 9
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 9
- 229910052808 lithium carbonate Inorganic materials 0.000 description 9
- 229910000032 lithium hydrogen carbonate Inorganic materials 0.000 description 9
- HQRPHMAXFVUBJX-UHFFFAOYSA-M lithium;hydrogen carbonate Chemical compound [Li+].OC([O-])=O HQRPHMAXFVUBJX-UHFFFAOYSA-M 0.000 description 9
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 9
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 9
- 235000015497 potassium bicarbonate Nutrition 0.000 description 9
- 239000011736 potassium bicarbonate Substances 0.000 description 9
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 9
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 9
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 9
- 229910000029 sodium carbonate Inorganic materials 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- 125000005270 trialkylamine group Chemical group 0.000 description 9
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 9
- FYKHAOYJIDNOBL-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(O)C(OC)=CC=2)=N1 FYKHAOYJIDNOBL-UHFFFAOYSA-N 0.000 description 8
- PYILIELQUGBXGX-UHFFFAOYSA-N 4-(chloromethyl)-2-(3,4-diethoxyphenyl)-1,3-oxazole Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCl)=CO1 PYILIELQUGBXGX-UHFFFAOYSA-N 0.000 description 8
- 229940123932 Phosphodiesterase 4 inhibitor Drugs 0.000 description 8
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 8
- BAAGFVKQEIYSJX-UHFFFAOYSA-N [2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methanamine Chemical compound COC1=CC=C(C=2OC=C(CN)N=2)C=C1OCC1CC1 BAAGFVKQEIYSJX-UHFFFAOYSA-N 0.000 description 8
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 8
- 150000008046 alkali metal hydrides Chemical class 0.000 description 8
- 150000004703 alkoxides Chemical class 0.000 description 8
- 239000002587 phosphodiesterase IV inhibitor Substances 0.000 description 8
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 description 8
- 229910000105 potassium hydride Inorganic materials 0.000 description 8
- UFUASNAHBMBJIX-UHFFFAOYSA-N propan-1-one Chemical compound CC[C]=O UFUASNAHBMBJIX-UHFFFAOYSA-N 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 8
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 8
- QBXXFXFAZZLCKK-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(O)C(OC)=CC=2)=N1 QBXXFXFAZZLCKK-UHFFFAOYSA-N 0.000 description 7
- CYNYIHKIEHGYOZ-UHFFFAOYSA-N 1-bromopropane Chemical compound CCCBr CYNYIHKIEHGYOZ-UHFFFAOYSA-N 0.000 description 7
- JSFCPBWMEJORFY-UHFFFAOYSA-N 2-(3,4-diethoxyphenyl)-1,3-oxazole-4-carboxylic acid Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(C(O)=O)=CO1 JSFCPBWMEJORFY-UHFFFAOYSA-N 0.000 description 7
- HOWVEPOEJSTMIX-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazole Chemical compound COC1=CC=C(C=2OC=C(CCl)N=2)C=C1OCC1=CC=CC=C1 HOWVEPOEJSTMIX-UHFFFAOYSA-N 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- 235000011054 acetic acid Nutrition 0.000 description 7
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 6
- HLVFKOKELQSXIQ-UHFFFAOYSA-N 1-bromo-2-methylpropane Chemical compound CC(C)CBr HLVFKOKELQSXIQ-UHFFFAOYSA-N 0.000 description 6
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 6
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 6
- 238000007327 hydrogenolysis reaction Methods 0.000 description 6
- 239000005457 ice water Substances 0.000 description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- LPJJKBSTMIUURB-UHFFFAOYSA-N methyl 3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propanoate Chemical compound COC(=O)CCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC)=CC=2)=N1 LPJJKBSTMIUURB-UHFFFAOYSA-N 0.000 description 6
- 150000007522 mineralic acids Chemical class 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- WMXFJASKSJYWLF-UHFFFAOYSA-N n-[[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CN=2)C)=CO1 WMXFJASKSJYWLF-UHFFFAOYSA-N 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 6
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 235000009518 sodium iodide Nutrition 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- SOCAXRLFGRNEPK-IFZYUDKTSA-N (1r,3s,5r)-2-n-[1-carbamoyl-5-(cyanomethoxy)indol-3-yl]-3-n-[(3-chloro-2-fluorophenyl)methyl]-2-azabicyclo[3.1.0]hexane-2,3-dicarboxamide Chemical compound O=C([C@@H]1C[C@H]2C[C@H]2N1C(=O)NC1=CN(C2=CC=C(OCC#N)C=C21)C(=O)N)NCC1=CC=CC(Cl)=C1F SOCAXRLFGRNEPK-IFZYUDKTSA-N 0.000 description 5
- FJRGLCZRSCMXSW-UHFFFAOYSA-N 1-(2-prop-2-enoxyphenyl)ethanone Chemical compound CC(=O)C1=CC=CC=C1OCC=C FJRGLCZRSCMXSW-UHFFFAOYSA-N 0.000 description 5
- ABVZRXHSZAGVNT-UHFFFAOYSA-N 2-ethoxy-n-[[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(O)C(OC)=CC=2)=N1 ABVZRXHSZAGVNT-UHFFFAOYSA-N 0.000 description 5
- HYSBFCNVDQWQAB-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-methylphenyl)propan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)C)=CO1 HYSBFCNVDQWQAB-UHFFFAOYSA-N 0.000 description 5
- VTOQFOCYBTVOJZ-UHFFFAOYSA-N 3-bromopentane Chemical compound CCC(Br)CC VTOQFOCYBTVOJZ-UHFFFAOYSA-N 0.000 description 5
- KIHWRWIWTDVEOH-UHFFFAOYSA-N 4-(chloromethyl)-2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazole Chemical compound COC1=CC=C(C=2OC=C(CCl)N=2)C=C1OCC1CC1 KIHWRWIWTDVEOH-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- KOSKQOODHCDEMJ-UHFFFAOYSA-N [2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]methanamine Chemical compound C1=C(OC)C(OC)=CC=C1C1=NC(CN)=CO1 KOSKQOODHCDEMJ-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- FLHFTXCMKFVKRP-UHFFFAOYSA-N bromomethylcyclobutane Chemical compound BrCC1CCC1 FLHFTXCMKFVKRP-UHFFFAOYSA-N 0.000 description 5
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 5
- 238000006114 decarboxylation reaction Methods 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- XYGDUNPZOVAYID-UHFFFAOYSA-N methyl 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]propanoate Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)OC)=CO1 XYGDUNPZOVAYID-UHFFFAOYSA-N 0.000 description 5
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- LZMJNVRJMFMYQS-UHFFFAOYSA-N poseltinib Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC(OC=2C=C(NC(=O)C=C)C=CC=2)=C(OC=C2)C2=N1 LZMJNVRJMFMYQS-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 5
- 230000006433 tumor necrosis factor production Effects 0.000 description 5
- RKOUFQLNMRAACI-UHFFFAOYSA-N 1,1,1-trifluoro-2-iodoethane Chemical compound FC(F)(F)CI RKOUFQLNMRAACI-UHFFFAOYSA-N 0.000 description 4
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 4
- KMGCKSAIIHOKCX-UHFFFAOYSA-N 2,3-dihydro-1h-inden-2-ol Chemical compound C1=CC=C2CC(O)CC2=C1 KMGCKSAIIHOKCX-UHFFFAOYSA-N 0.000 description 4
- MFJOGYPBVSUNEW-UHFFFAOYSA-N 2-(3,4-diethoxyphenyl)-1,3-oxazole-4-carbaldehyde Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(C=O)=CO1 MFJOGYPBVSUNEW-UHFFFAOYSA-N 0.000 description 4
- DCYVADKYPPEQON-UHFFFAOYSA-N 2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazole-4-carbaldehyde Chemical compound COC1=CC=C(C=2OC=C(C=O)N=2)C=C1OCC1=CC=CC=C1 DCYVADKYPPEQON-UHFFFAOYSA-N 0.000 description 4
- JECYUBVRTQDVAT-UHFFFAOYSA-N 2-acetylphenol Chemical compound CC(=O)C1=CC=CC=C1O JECYUBVRTQDVAT-UHFFFAOYSA-N 0.000 description 4
- IOQPOZSYGWIDCU-UHFFFAOYSA-N 3,4-diethoxybenzamide Chemical compound CCOC1=CC=C(C(N)=O)C=C1OCC IOQPOZSYGWIDCU-UHFFFAOYSA-N 0.000 description 4
- MAWKZKWAWURLJY-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC)=CO1 MAWKZKWAWURLJY-UHFFFAOYSA-N 0.000 description 4
- YUONUJZWWVPQCG-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-3-(3-methoxypyridin-2-yl)propanal Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(C(CC=O)C=2C(=CC=CN=2)OC)=CO1 YUONUJZWWVPQCG-UHFFFAOYSA-N 0.000 description 4
- DOZZLRSZIFZSIB-UHFFFAOYSA-N 4-(chloromethyl)-2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazole Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCl)N=2)=C1 DOZZLRSZIFZSIB-UHFFFAOYSA-N 0.000 description 4
- DODCYMIRUVFZSP-UHFFFAOYSA-N 4-(chloromethyl)-2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazole Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CCl)=CO1 DODCYMIRUVFZSP-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- AEWXKJVDNYSMLT-UHFFFAOYSA-N [2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methanamine Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CN)=CO1 AEWXKJVDNYSMLT-UHFFFAOYSA-N 0.000 description 4
- MPMDMPNSBPGEHL-UHFFFAOYSA-N [2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methanamine Chemical compound COC1=CC=C(C=2OC=C(CN)N=2)C=C1OCC1=CC=CC=C1 MPMDMPNSBPGEHL-UHFFFAOYSA-N 0.000 description 4
- NICGVVYATMPFMP-UHFFFAOYSA-N [2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methanamine Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CN)=CO1 NICGVVYATMPFMP-UHFFFAOYSA-N 0.000 description 4
- 125000005278 alkyl sulfonyloxy group Chemical group 0.000 description 4
- 125000005279 aryl sulfonyloxy group Chemical group 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- KBPUBCVJHFXPOC-UHFFFAOYSA-N ethyl 3,4-dihydroxybenzoate Chemical compound CCOC(=O)C1=CC=C(O)C(O)=C1 KBPUBCVJHFXPOC-UHFFFAOYSA-N 0.000 description 4
- 230000002757 inflammatory effect Effects 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 235000005985 organic acids Nutrition 0.000 description 4
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 4
- 235000019260 propionic acid Nutrition 0.000 description 4
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- ZGYIXVSQHOKQRZ-COIATFDQSA-N (e)-n-[4-[3-chloro-4-(pyridin-2-ylmethoxy)anilino]-3-cyano-7-[(3s)-oxolan-3-yl]oxyquinolin-6-yl]-4-(dimethylamino)but-2-enamide Chemical compound N#CC1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC(C=C1Cl)=CC=C1OCC1=CC=CC=N1 ZGYIXVSQHOKQRZ-COIATFDQSA-N 0.000 description 3
- PYQZZOCEKJZMPS-UHFFFAOYSA-N 1-(3-ethoxypyridin-2-yl)-3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(O)C(OC)=CC=2)=N1 PYQZZOCEKJZMPS-UHFFFAOYSA-N 0.000 description 3
- XTXSTESGCXKUIH-UHFFFAOYSA-N 1-[2-(trifluoromethoxy)phenyl]ethanone Chemical compound CC(=O)C1=CC=CC=C1OC(F)(F)F XTXSTESGCXKUIH-UHFFFAOYSA-N 0.000 description 3
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 3
- ZBJBWZQMDXVKEP-UHFFFAOYSA-N 2-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]acetic acid Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CC(O)=O)=CO1 ZBJBWZQMDXVKEP-UHFFFAOYSA-N 0.000 description 3
- XDZMPRGFOOFSBL-UHFFFAOYSA-N 2-ethoxybenzoic acid Chemical compound CCOC1=CC=CC=C1C(O)=O XDZMPRGFOOFSBL-UHFFFAOYSA-N 0.000 description 3
- 125000004204 2-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 3
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 3
- BJKNSMHBNPDMDP-UHFFFAOYSA-N 3-[2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]propanoic acid Chemical compound C1=C(OC)C(OC)=CC=C1C1=NC(CCC(O)=O)=CO1 BJKNSMHBNPDMDP-UHFFFAOYSA-N 0.000 description 3
- QCNSFCZKZMQGCJ-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-pyridin-2-ylpropan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2N=CC=CC=2)=CO1 QCNSFCZKZMQGCJ-UHFFFAOYSA-N 0.000 description 3
- FRKSPKGDZSKJKG-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 FRKSPKGDZSKJKG-UHFFFAOYSA-N 0.000 description 3
- YPQADADRKIDKLP-UHFFFAOYSA-N 4-(chloromethyl)-2-[3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazole Chemical compound FC(F)(F)COC1=CC=C(C=2OC=C(CCl)N=2)C=C1OCC1CC1 YPQADADRKIDKLP-UHFFFAOYSA-N 0.000 description 3
- UWLHIPBNOXECBW-UHFFFAOYSA-N 4-(chloromethyl)-2-[4-(difluoromethoxy)-3-phenylmethoxyphenyl]-1,3-oxazole Chemical compound FC(F)OC1=CC=C(C=2OC=C(CCl)N=2)C=C1OCC1=CC=CC=C1 UWLHIPBNOXECBW-UHFFFAOYSA-N 0.000 description 3
- VJPPLCNBDLZIFG-ZDUSSCGKSA-N 4-[(3S)-3-(but-2-ynoylamino)piperidin-1-yl]-5-fluoro-2,3-dimethyl-1H-indole-7-carboxamide Chemical compound C(C#CC)(=O)N[C@@H]1CN(CCC1)C1=C2C(=C(NC2=C(C=C1F)C(=O)N)C)C VJPPLCNBDLZIFG-ZDUSSCGKSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 3
- 239000002841 Lewis acid Substances 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- SLGQSVUDPINLSN-UHFFFAOYSA-N [2-[3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methanamine Chemical compound NCC1=COC(C=2C=C(OCC3CC3)C(OCC(F)(F)F)=CC=2)=N1 SLGQSVUDPINLSN-UHFFFAOYSA-N 0.000 description 3
- ZADSVILRZZOJEP-UHFFFAOYSA-N [2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methanamine Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CN)=CO1 ZADSVILRZZOJEP-UHFFFAOYSA-N 0.000 description 3
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- 235000019270 ammonium chloride Nutrition 0.000 description 3
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000010531 catalytic reduction reaction Methods 0.000 description 3
- DCTOHCCUXLBQMS-UHFFFAOYSA-N cis-undecene Natural products CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- GFPYPKWZXNZXCC-UHFFFAOYSA-N dimethyl 2-[[2-[3,4-bis(phenylmethoxy)phenyl]-1,3-oxazol-4-yl]methyl]propanedioate Chemical compound COC(=O)C(C(=O)OC)CC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OCC=3C=CC=CC=3)=CC=2)=N1 GFPYPKWZXNZXCC-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002140 halogenating effect Effects 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 150000007517 lewis acids Chemical class 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- JTIRIWISMQNTLW-UHFFFAOYSA-N n-[[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-(trifluoromethyl)benzamide Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)C(F)(F)F)=CO1 JTIRIWISMQNTLW-UHFFFAOYSA-N 0.000 description 3
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- HQKGJGUSPDNTGY-UHFFFAOYSA-N undec-1-ene Chemical compound [CH2]CCCCCCCCC=C HQKGJGUSPDNTGY-UHFFFAOYSA-N 0.000 description 3
- DOMQFIFVDIAOOT-ROUUACIJSA-N (2S,3R)-N-[4-(2,6-dimethoxyphenyl)-5-(5-methylpyridin-3-yl)-1,2,4-triazol-3-yl]-3-(5-methylpyrimidin-2-yl)butane-2-sulfonamide Chemical compound COC1=C(C(=CC=C1)OC)N1C(=NN=C1C=1C=NC=C(C=1)C)NS(=O)(=O)[C@@H](C)[C@H](C)C1=NC=C(C=N1)C DOMQFIFVDIAOOT-ROUUACIJSA-N 0.000 description 2
- HNJYSPAKEAXHLU-VAWYXSNFSA-N (e)-3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-methylphenyl)prop-2-en-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(\C=C\C(=O)C=2C(=CC=CC=2)C)=CO1 HNJYSPAKEAXHLU-VAWYXSNFSA-N 0.000 description 2
- JSMFMVZVHWLXQZ-OUKQBFOZSA-N (e)-3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)prop-2-en-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(\C=C\C(=O)C=2C(=CC=CC=2)OC(C)C)=CO1 JSMFMVZVHWLXQZ-OUKQBFOZSA-N 0.000 description 2
- HDDDEUWLDFGFDQ-OUKQBFOZSA-N (e)-3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)prop-2-en-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)\C=C\C1=COC(C=2C=C(OCC)C(OCC)=CC=2)=N1 HDDDEUWLDFGFDQ-OUKQBFOZSA-N 0.000 description 2
- WQTBQNBRTHTYRY-BUHFOSPRSA-N (e)-3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-methylphenyl)prop-2-en-1-one Chemical compound COC1=CC=C(C=2OC=C(\C=C\C(=O)C=3C(=CC=CC=3)C)N=2)C=C1OCC1=CC=CC=C1 WQTBQNBRTHTYRY-BUHFOSPRSA-N 0.000 description 2
- PGUDRJNBLMKSPT-CCEZHUSRSA-N (e)-3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)prop-2-en-1-one Chemical compound COC1=CC=C(C=2OC=C(\C=C\C(=O)C=3C(=CC=CC=3)OC(C)C)N=2)C=C1OCC1=CC=CC=C1 PGUDRJNBLMKSPT-CCEZHUSRSA-N 0.000 description 2
- ISTULBPCSWTHFL-CCEZHUSRSA-N (e)-3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)prop-2-en-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)\C=C\C1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC)=CC=2)=N1 ISTULBPCSWTHFL-CCEZHUSRSA-N 0.000 description 2
- LOOGAKYJTBSDIO-CCEZHUSRSA-N (e)-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]-1-(2-phenylmethoxyphenyl)prop-2-en-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(\C=C\C(=O)C=2C(=CC=CC=2)OCC=2C=CC=CC=2)=CO1 LOOGAKYJTBSDIO-CCEZHUSRSA-N 0.000 description 2
- RRVQSVUODLTDFI-MDZDMXLPSA-N (e)-3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)prop-2-en-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)\C=C\C1=COC(C=2C=C(OCC(F)(F)F)C(OC)=CC=2)=N1 RRVQSVUODLTDFI-MDZDMXLPSA-N 0.000 description 2
- MNWSMBGRSZDJOZ-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-(3-ethoxy-4-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC)N=2)=CC=C1OCC1=CC=CC=C1 MNWSMBGRSZDJOZ-UHFFFAOYSA-N 0.000 description 2
- TVGMOUGXQYQZOL-UHFFFAOYSA-N 1-(2-ethoxyphenyl)ethanone Chemical compound CCOC1=CC=CC=C1C(C)=O TVGMOUGXQYQZOL-UHFFFAOYSA-N 0.000 description 2
- WERQVKMENNYFNL-UHFFFAOYSA-N 1-(2-hydroxyphenyl)-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)O)=CO1 WERQVKMENNYFNL-UHFFFAOYSA-N 0.000 description 2
- LPLRTMRFMKVXGY-UHFFFAOYSA-N 1-(3-methoxypyridin-2-yl)-3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]-2-methylpropan-1-one Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CC(C)C(=O)C=2C(=CC=CN=2)OC)=CO1 LPLRTMRFMKVXGY-UHFFFAOYSA-N 0.000 description 2
- HQULDVLKGXWCCB-UHFFFAOYSA-N 1-[2-(methoxymethoxy)phenyl]-3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound COCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC)=CC=2)=N1 HQULDVLKGXWCCB-UHFFFAOYSA-N 0.000 description 2
- VEAMKXDYEKNHCF-UHFFFAOYSA-N 1-[2-(methoxymethoxy)phenyl]ethanone Chemical compound COCOC1=CC=CC=C1C(C)=O VEAMKXDYEKNHCF-UHFFFAOYSA-N 0.000 description 2
- 125000004778 2,2-difluoroethyl group Chemical group [H]C([H])(*)C([H])(F)F 0.000 description 2
- OJPWXLKLMRAOOK-UHFFFAOYSA-N 2-(3,4-diethoxyphenyl)-4-(pyridin-2-ylsulfanylmethyl)-1,3-oxazole Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CSC=2N=CC=CC=2)=CO1 OJPWXLKLMRAOOK-UHFFFAOYSA-N 0.000 description 2
- VSAKLZJVRAGUOS-UHFFFAOYSA-N 2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazole-4-carbaldehyde Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(C=O)=CO1 VSAKLZJVRAGUOS-UHFFFAOYSA-N 0.000 description 2
- NLPYYCJWPLBLEI-UHFFFAOYSA-N 2-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]ethanamine Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCN)=CO1 NLPYYCJWPLBLEI-UHFFFAOYSA-N 0.000 description 2
- DXNGXOUOLUJPII-UHFFFAOYSA-N 2-[2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]ethanol Chemical compound C1=C(OC)C(OC)=CC=C1C1=NC(CCO)=CO1 DXNGXOUOLUJPII-UHFFFAOYSA-N 0.000 description 2
- JWWVFKKDEXGBIV-UHFFFAOYSA-N 2-[3,4-bis(phenylmethoxy)phenyl]-4-(chloromethyl)-1,3-oxazole Chemical compound ClCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OCC=3C=CC=CC=3)=CC=2)=N1 JWWVFKKDEXGBIV-UHFFFAOYSA-N 0.000 description 2
- XQXQFWCFOZEGHO-UHFFFAOYSA-N 2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazole-4-carbaldehyde Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(C=O)=CO1 XQXQFWCFOZEGHO-UHFFFAOYSA-N 0.000 description 2
- WZVUJXHKPYJPQI-UHFFFAOYSA-N 2-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]isoindole-1,3-dione Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CN2C(C3=CC=CC=C3C2=O)=O)=CO1 WZVUJXHKPYJPQI-UHFFFAOYSA-N 0.000 description 2
- RCWNEDPPGXJMRG-UHFFFAOYSA-N 2-[[2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]methyl]isoindole-1,3-dione Chemical compound C1=C(OC)C(OC)=CC=C1C1=NC(CN2C(C3=CC=CC=C3C2=O)=O)=CO1 RCWNEDPPGXJMRG-UHFFFAOYSA-N 0.000 description 2
- HYHGNGGKPFVTNX-UHFFFAOYSA-N 2-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]isoindole-1,3-dione Chemical compound COC1=CC=C(C=2OC=C(CN3C(C4=CC=CC=C4C3=O)=O)N=2)C=C1OCC1=CC=CC=C1 HYHGNGGKPFVTNX-UHFFFAOYSA-N 0.000 description 2
- CVSFIKAZVVOXGC-UHFFFAOYSA-N 2-[[2-[3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]isoindole-1,3-dione Chemical compound FC(F)(F)COC1=CC=C(C=2OC=C(CN3C(C4=CC=CC=C4C3=O)=O)N=2)C=C1OCC1CC1 CVSFIKAZVVOXGC-UHFFFAOYSA-N 0.000 description 2
- AECPXNMYKYWRKY-UHFFFAOYSA-N 2-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]isoindole-1,3-dione Chemical compound COC1=CC=C(C=2OC=C(CN3C(C4=CC=CC=C4C3=O)=O)N=2)C=C1OCC1CC1 AECPXNMYKYWRKY-UHFFFAOYSA-N 0.000 description 2
- SFEZYMSUHZUIAR-UHFFFAOYSA-N 2-[[2-[4-(difluoromethoxy)-3-phenylmethoxyphenyl]-1,3-oxazol-4-yl]methyl]isoindole-1,3-dione Chemical compound FC(F)OC1=CC=C(C=2OC=C(CN3C(C4=CC=CC=C4C3=O)=O)N=2)C=C1OCC1=CC=CC=C1 SFEZYMSUHZUIAR-UHFFFAOYSA-N 0.000 description 2
- IDZDXFSSQKICQP-UHFFFAOYSA-N 2-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]isoindole-1,3-dione Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CN2C(C3=CC=CC=C3C2=O)=O)=CO1 IDZDXFSSQKICQP-UHFFFAOYSA-N 0.000 description 2
- AIOPFBUOQZVNKH-UHFFFAOYSA-N 2-[[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methyl]isoindole-1,3-dione Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CN2C(C3=CC=CC=C3C2=O)=O)=CO1 AIOPFBUOQZVNKH-UHFFFAOYSA-N 0.000 description 2
- MAISXDKECOFGPQ-UHFFFAOYSA-N 2-cyclopentylethyl methanesulfonate Chemical compound CS(=O)(=O)OCCC1CCCC1 MAISXDKECOFGPQ-UHFFFAOYSA-N 0.000 description 2
- QGIVNHURAZETRF-UHFFFAOYSA-N 2-cyclopropylethyl methanesulfonate Chemical compound CS(=O)(=O)OCCC1CC1 QGIVNHURAZETRF-UHFFFAOYSA-N 0.000 description 2
- KYPUTUOZQKRNFU-UHFFFAOYSA-N 2-ethoxy-n-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC)=CC=2)=N1 KYPUTUOZQKRNFU-UHFFFAOYSA-N 0.000 description 2
- CFMZSMGAMPBRBE-UHFFFAOYSA-N 2-hydroxyisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(O)C(=O)C2=C1 CFMZSMGAMPBRBE-UHFFFAOYSA-N 0.000 description 2
- NGXMISMZMQTPRQ-UHFFFAOYSA-N 2-methoxy-5-[4-[3-(2-methylphenyl)propyl]-1,3-oxazol-2-yl]phenol Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCCC=2C(=CC=CC=2)C)=CO1 NGXMISMZMQTPRQ-UHFFFAOYSA-N 0.000 description 2
- GITAWLBIZDHUSM-UHFFFAOYSA-N 2-methoxy-n-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OC)N=2)C=C1OCC1=CC=CC=C1 GITAWLBIZDHUSM-UHFFFAOYSA-N 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- DKSJUQHGCUSLBJ-UHFFFAOYSA-N 3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)benzamide Chemical compound NC(=O)C1=CC=C(OCC(F)(F)F)C(OCC2CC2)=C1 DKSJUQHGCUSLBJ-UHFFFAOYSA-N 0.000 description 2
- HMWRDAKPUWWDRJ-UHFFFAOYSA-N 3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)benzoic acid Chemical compound OC(=O)C1=CC=C(OCC(F)(F)F)C(OCC2CC2)=C1 HMWRDAKPUWWDRJ-UHFFFAOYSA-N 0.000 description 2
- KWYDIDPEXZNQBW-UHFFFAOYSA-N 3-(cyclopropylmethoxy)-4-methoxybenzamide Chemical compound COC1=CC=C(C(N)=O)C=C1OCC1CC1 KWYDIDPEXZNQBW-UHFFFAOYSA-N 0.000 description 2
- BRBRVEQKAPLESP-UHFFFAOYSA-N 3-(cyclopropylmethoxy)-4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1OCC1CC1 BRBRVEQKAPLESP-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- WXSZCVAHHICLQU-UHFFFAOYSA-N 3-[2-(3-cyclohex-2-en-1-yloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OC1CCCC=C1 WXSZCVAHHICLQU-UHFFFAOYSA-N 0.000 description 2
- LLYQZVAFCIFHIH-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-hydroxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound C1=C(O)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC)N=2)=C1 LLYQZVAFCIFHIH-UHFFFAOYSA-N 0.000 description 2
- FLYUBKYZTPSERZ-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-hydroxyphenyl)propan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)O)=CO1 FLYUBKYZTPSERZ-UHFFFAOYSA-N 0.000 description 2
- UBHPDMYEVWMRBP-UHFFFAOYSA-N 3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(methoxymethoxy)phenyl]propan-1-one Chemical compound COCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(O)C(OC)=CC=2)=N1 UBHPDMYEVWMRBP-UHFFFAOYSA-N 0.000 description 2
- FEGFODJSLKZAQT-UHFFFAOYSA-N 3-[2-(3-methoxy-4-phenylmethoxyphenyl)-1,3-oxazol-4-yl]-1-pyrrolidin-1-ylpropan-1-one Chemical compound COC1=CC(C=2OC=C(CCC(=O)N3CCCC3)N=2)=CC=C1OCC1=CC=CC=C1 FEGFODJSLKZAQT-UHFFFAOYSA-N 0.000 description 2
- DLXOKQQWTNNMRT-UHFFFAOYSA-N 3-[2-(3-methoxy-4-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propanoic acid Chemical compound COC1=CC(C=2OC=C(CCC(O)=O)N=2)=CC=C1OCC1=CC=CC=C1 DLXOKQQWTNNMRT-UHFFFAOYSA-N 0.000 description 2
- PEMWOHFVBLDQLR-UHFFFAOYSA-N 3-[2-(4-hydroxy-3-methoxyphenyl)-1,3-oxazol-4-yl]-1-pyrrolidin-1-ylpropan-1-one Chemical compound C1=C(O)C(OC)=CC(C=2OC=C(CCC(=O)N3CCCC3)N=2)=C1 PEMWOHFVBLDQLR-UHFFFAOYSA-N 0.000 description 2
- GKWSCLHDHHSYIN-UHFFFAOYSA-N 3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC(C)C)N=2)C=C1OCC1=CC=CC=C1 GKWSCLHDHHSYIN-UHFFFAOYSA-N 0.000 description 2
- XQPWALLGNJNQEQ-UHFFFAOYSA-N 3-[2-(4-methoxy-3-prop-2-enoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCC=C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 XQPWALLGNJNQEQ-UHFFFAOYSA-N 0.000 description 2
- NEPZPWOVKMHWBY-UHFFFAOYSA-N 3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 NEPZPWOVKMHWBY-UHFFFAOYSA-N 0.000 description 2
- TWWVHVZBYSODQN-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-hydroxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(O)C(OC(F)F)=CC=2)=N1 TWWVHVZBYSODQN-UHFFFAOYSA-N 0.000 description 2
- KKISDERJGGBMJT-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-phenylmethoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC(F)F)=CC=2)=N1 KKISDERJGGBMJT-UHFFFAOYSA-N 0.000 description 2
- WNEODWDFDXWOLU-QHCPKHFHSA-N 3-[3-(hydroxymethyl)-4-[1-methyl-5-[[5-[(2s)-2-methyl-4-(oxetan-3-yl)piperazin-1-yl]pyridin-2-yl]amino]-6-oxopyridin-3-yl]pyridin-2-yl]-7,7-dimethyl-1,2,6,8-tetrahydrocyclopenta[3,4]pyrrolo[3,5-b]pyrazin-4-one Chemical compound C([C@@H](N(CC1)C=2C=NC(NC=3C(N(C)C=C(C=3)C=3C(=C(N4C(C5=CC=6CC(C)(C)CC=6N5CC4)=O)N=CC=3)CO)=O)=CC=2)C)N1C1COC1 WNEODWDFDXWOLU-QHCPKHFHSA-N 0.000 description 2
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 2
- FJFDREOUZVNBNH-UHFFFAOYSA-N 3-ethoxy-4-phenylmethoxybenzamide Chemical compound CCOC1=CC(C(N)=O)=CC=C1OCC1=CC=CC=C1 FJFDREOUZVNBNH-UHFFFAOYSA-N 0.000 description 2
- MTMXDVSRZZAELA-UHFFFAOYSA-N 3-ethoxy-4-phenylmethoxybenzoic acid Chemical compound CCOC1=CC(C(O)=O)=CC=C1OCC1=CC=CC=C1 MTMXDVSRZZAELA-UHFFFAOYSA-N 0.000 description 2
- IUEVJVXUWYXGDE-UHFFFAOYSA-N 3-ethoxy-n-[[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]pyridine-2-carboxamide Chemical compound CCOC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(O)C(OC)=CC=2)=N1 IUEVJVXUWYXGDE-UHFFFAOYSA-N 0.000 description 2
- LBSOTAPBFSYQQG-UHFFFAOYSA-N 3-ethoxy-n-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]pyridine-2-carboxamide Chemical compound CCOC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC)=CC=2)=N1 LBSOTAPBFSYQQG-UHFFFAOYSA-N 0.000 description 2
- MJTVBYARRVFECA-UHFFFAOYSA-N 3-hydroxy-4-(2,2,2-trifluoroethoxy)benzoic acid Chemical compound OC(=O)C1=CC=C(OCC(F)(F)F)C(O)=C1 MJTVBYARRVFECA-UHFFFAOYSA-N 0.000 description 2
- LBKFGYZQBSGRHY-UHFFFAOYSA-N 3-hydroxy-4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1O LBKFGYZQBSGRHY-UHFFFAOYSA-N 0.000 description 2
- 125000005917 3-methylpentyl group Chemical group 0.000 description 2
- LMHIBYREWJHKNZ-UHFFFAOYSA-N 3-methylpyridine-2-carboxylic acid Chemical compound CC1=CC=CN=C1C(O)=O LMHIBYREWJHKNZ-UHFFFAOYSA-N 0.000 description 2
- CNLSOMCFKSSHJH-UHFFFAOYSA-N 4-(2-bromoethyl)-2-(3,4-diethoxyphenyl)-1,3-oxazole Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCBr)=CO1 CNLSOMCFKSSHJH-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- WCSHJMNFTZADRY-UHFFFAOYSA-N 4-(chloromethyl)-2-(3,4-dimethoxyphenyl)-1,3-oxazole Chemical compound C1=C(OC)C(OC)=CC=C1C1=NC(CCl)=CO1 WCSHJMNFTZADRY-UHFFFAOYSA-N 0.000 description 2
- PEWHRNFSHVHJMM-UHFFFAOYSA-N 4-(chloromethyl)-2-(3-ethoxy-4-phenylmethoxyphenyl)-1,3-oxazole Chemical compound CCOC1=CC(C=2OC=C(CCl)N=2)=CC=C1OCC1=CC=CC=C1 PEWHRNFSHVHJMM-UHFFFAOYSA-N 0.000 description 2
- FBTSLJYRDSGVDB-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazole Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCl)=CO1 FBTSLJYRDSGVDB-UHFFFAOYSA-N 0.000 description 2
- FYGFMRKCBDLFHB-UHFFFAOYSA-N 4-(chloromethyl)-2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazole Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CCl)=CO1 FYGFMRKCBDLFHB-UHFFFAOYSA-N 0.000 description 2
- JBVTWVXASGBUGN-UHFFFAOYSA-N 4-(difluoromethoxy)-3-phenylmethoxybenzaldehyde Chemical compound FC(F)OC1=CC=C(C=O)C=C1OCC1=CC=CC=C1 JBVTWVXASGBUGN-UHFFFAOYSA-N 0.000 description 2
- JROYPZGXMUPTNP-UHFFFAOYSA-N 4-(difluoromethoxy)-3-phenylmethoxybenzamide Chemical compound NC(=O)C1=CC=C(OC(F)F)C(OCC=2C=CC=CC=2)=C1 JROYPZGXMUPTNP-UHFFFAOYSA-N 0.000 description 2
- CRQZAAAKKZXUFG-UHFFFAOYSA-N 4-(difluoromethoxy)-3-phenylmethoxybenzoic acid Chemical compound OC(=O)C1=CC=C(OC(F)F)C(OCC=2C=CC=CC=2)=C1 CRQZAAAKKZXUFG-UHFFFAOYSA-N 0.000 description 2
- MSLAKNMDDNVLMA-UHFFFAOYSA-N 4-[2-(3,4-dihydroxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)butan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCCC1=COC(C=2C=C(O)C(O)=CC=2)=N1 MSLAKNMDDNVLMA-UHFFFAOYSA-N 0.000 description 2
- AJNKQELLQHCMKW-UHFFFAOYSA-N 4-methoxy-3-(2,2,2-trifluoroethoxy)benzamide Chemical compound COC1=CC=C(C(N)=O)C=C1OCC(F)(F)F AJNKQELLQHCMKW-UHFFFAOYSA-N 0.000 description 2
- HCSPGYISMLEBLZ-UHFFFAOYSA-N 4-methoxy-3-(2,2,2-trifluoroethoxy)benzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1OCC(F)(F)F HCSPGYISMLEBLZ-UHFFFAOYSA-N 0.000 description 2
- QZAYJOJOAICRBH-UHFFFAOYSA-N 4-methoxy-3-(2-methylpropoxy)benzamide Chemical compound COC1=CC=C(C(N)=O)C=C1OCC(C)C QZAYJOJOAICRBH-UHFFFAOYSA-N 0.000 description 2
- KJSQGQJPEFWNIL-UHFFFAOYSA-N 4-methoxy-3-(2-methylpropoxy)benzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1OCC(C)C KJSQGQJPEFWNIL-UHFFFAOYSA-N 0.000 description 2
- NOOUWIPRPCXVHN-UHFFFAOYSA-N 4-methoxy-3-phenylmethoxybenzamide Chemical compound COC1=CC=C(C(N)=O)C=C1OCC1=CC=CC=C1 NOOUWIPRPCXVHN-UHFFFAOYSA-N 0.000 description 2
- UBCOLEFQRBNSCW-UHFFFAOYSA-N 4-methoxy-3-propan-2-yloxybenzamide Chemical compound COC1=CC=C(C(N)=O)C=C1OC(C)C UBCOLEFQRBNSCW-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- MWAYRGBWOVHDDZ-UHFFFAOYSA-N Ethyl vanillate Chemical compound CCOC(=O)C1=CC=C(O)C(OC)=C1 MWAYRGBWOVHDDZ-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 2
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- YYVVZHBXKVBNSQ-UHFFFAOYSA-N [2-[4-(difluoromethoxy)-3-phenylmethoxyphenyl]-1,3-oxazol-4-yl]methanamine Chemical compound NCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC(F)F)=CC=2)=N1 YYVVZHBXKVBNSQ-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 125000005604 azodicarboxylate group Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- BIIWHJYKXOMZCF-UHFFFAOYSA-N cyclopentylmethyl methanesulfonate Chemical compound CS(=O)(=O)OCC1CCCC1 BIIWHJYKXOMZCF-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- LKUZDYLEMDFMFS-UHFFFAOYSA-N dimethyl 2-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]propanedioate Chemical compound COC(=O)C(C(=O)OC)CC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC)=CC=2)=N1 LKUZDYLEMDFMFS-UHFFFAOYSA-N 0.000 description 2
- PHUBOKAGQFHRKL-UHFFFAOYSA-N dimethyl 2-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]propanedioate Chemical compound COC(=O)C(C(=O)OC)CC1=COC(C=2C=C(OCC(F)(F)F)C(OC)=CC=2)=N1 PHUBOKAGQFHRKL-UHFFFAOYSA-N 0.000 description 2
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- PIOKCVCQMLLGPB-UHFFFAOYSA-N ethyl 2-(3,4-diethoxyphenyl)-1,3-oxazole-4-carboxylate Chemical compound CCOC(=O)C1=COC(C=2C=C(OCC)C(OCC)=CC=2)=N1 PIOKCVCQMLLGPB-UHFFFAOYSA-N 0.000 description 2
- RCUKGVWKRDRPEB-UHFFFAOYSA-N ethyl 3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)benzoate Chemical compound CCOC(=O)C1=CC=C(OCC(F)(F)F)C(OCC2CC2)=C1 RCUKGVWKRDRPEB-UHFFFAOYSA-N 0.000 description 2
- MOONXTNJHFUJFM-UHFFFAOYSA-N ethyl 3-ethoxy-4-phenylmethoxybenzoate Chemical compound CCOC1=CC(C(=O)OCC)=CC=C1OCC1=CC=CC=C1 MOONXTNJHFUJFM-UHFFFAOYSA-N 0.000 description 2
- NSJRUTVFBMWVHA-UHFFFAOYSA-N ethyl 3-hydroxy-4-(2,2,2-trifluoroethoxy)benzoate Chemical compound CCOC(=O)C1=CC=C(OCC(F)(F)F)C(O)=C1 NSJRUTVFBMWVHA-UHFFFAOYSA-N 0.000 description 2
- ZTCOYZXAMVZIEL-UHFFFAOYSA-N ethyl 3-methoxy-4-(2,2,2-trifluoroethoxy)benzoate Chemical compound CCOC(=O)C1=CC=C(OCC(F)(F)F)C(OC)=C1 ZTCOYZXAMVZIEL-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000003840 hydrochlorides Chemical class 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 230000002390 hyperplastic effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- BTBOGZTXPSGYBR-UHFFFAOYSA-N methyl 2-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-(3-methylpyridin-2-yl)-3-oxopropanoate Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CC(C(=O)OC)C(=O)C=2C(=CC=CN=2)C)=CO1 BTBOGZTXPSGYBR-UHFFFAOYSA-N 0.000 description 2
- NWDFKRGLWQAUKG-UHFFFAOYSA-N methyl 2-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-(3-methoxypyridin-2-yl)-3-oxopropanoate Chemical compound N=1C=CC=C(OC)C=1C(=O)C(C(=O)OC)CC(N=1)=COC=1C(C=1)=CC=C(OC)C=1OCC1=CC=CC=C1 NWDFKRGLWQAUKG-UHFFFAOYSA-N 0.000 description 2
- PFDWBUZTQDNHHJ-UHFFFAOYSA-N methyl 2-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-(3-methylpyridin-2-yl)-3-oxopropanoate Chemical compound N=1C=CC=C(C)C=1C(=O)C(C(=O)OC)CC(N=1)=COC=1C(C=1)=CC=C(OC)C=1OCC1=CC=CC=C1 PFDWBUZTQDNHHJ-UHFFFAOYSA-N 0.000 description 2
- SPBDPILHTRCWSC-UHFFFAOYSA-N methyl 2-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-oxo-3-pyridin-2-ylpropanoate Chemical compound C=1C=CC=NC=1C(=O)C(C(=O)OC)CC(N=1)=COC=1C(C=1)=CC=C(OC)C=1OCC1=CC=CC=C1 SPBDPILHTRCWSC-UHFFFAOYSA-N 0.000 description 2
- SHGXLGYOILXTNS-UHFFFAOYSA-N methyl 2-[[2-[3,4-bis(phenylmethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-(3-methylpyridin-2-yl)-3-oxopropanoate Chemical compound N=1C=CC=C(C)C=1C(=O)C(C(=O)OC)CC(N=1)=COC=1C(C=C1OCC=2C=CC=CC=2)=CC=C1OCC1=CC=CC=C1 SHGXLGYOILXTNS-UHFFFAOYSA-N 0.000 description 2
- NMXSLTYYHCGMGT-UHFFFAOYSA-N methyl 3-(2-ethoxyphenyl)-2-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-oxopropanoate Chemical compound CCOC1=CC=CC=C1C(=O)C(C(=O)OC)CC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC)=CC=2)=N1 NMXSLTYYHCGMGT-UHFFFAOYSA-N 0.000 description 2
- VPAAIYDLFGXKMZ-UHFFFAOYSA-N methyl 3-(2-methoxyphenyl)-2-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-oxopropanoate Chemical compound C=1C=CC=C(OC)C=1C(=O)C(C(=O)OC)CC(N=1)=COC=1C(C=1)=CC=C(OC)C=1OCC1=CC=CC=C1 VPAAIYDLFGXKMZ-UHFFFAOYSA-N 0.000 description 2
- KFMJPVYUFFIKTM-UHFFFAOYSA-N methyl 3-(3-ethoxypyridin-2-yl)-2-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-oxopropanoate Chemical compound CCOC1=CC=CN=C1C(=O)C(C(=O)OC)CC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC)=CC=2)=N1 KFMJPVYUFFIKTM-UHFFFAOYSA-N 0.000 description 2
- GROPIJUMBAGACM-UHFFFAOYSA-N methyl 3-(cyclopropylmethoxy)-4-methoxybenzoate Chemical compound COC(=O)C1=CC=C(OC)C(OCC2CC2)=C1 GROPIJUMBAGACM-UHFFFAOYSA-N 0.000 description 2
- HPVLEFFRKDJEHK-UHFFFAOYSA-N methyl 3-[2-(3-methoxy-4-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propanoate Chemical compound COC(=O)CCC1=COC(C=2C=C(OC)C(OCC=3C=CC=CC=3)=CC=2)=N1 HPVLEFFRKDJEHK-UHFFFAOYSA-N 0.000 description 2
- LEJLWPLNTSXIQS-UHFFFAOYSA-N methyl 3-[2-[3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]propanoate Chemical compound COC(=O)CCC1=COC(C=2C=C(OCC3CC3)C(OCC(F)(F)F)=CC=2)=N1 LEJLWPLNTSXIQS-UHFFFAOYSA-N 0.000 description 2
- WCDFTQHDBNNHFR-UHFFFAOYSA-N methyl 3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]propanoate Chemical compound COC(=O)CCC1=COC(C=2C=C(OCC(F)(F)F)C(OC)=CC=2)=N1 WCDFTQHDBNNHFR-UHFFFAOYSA-N 0.000 description 2
- KSXQRYUHBMAREL-UHFFFAOYSA-N methyl 3-methoxypyridine-2-carboxylate Chemical compound COC(=O)C1=NC=CC=C1OC KSXQRYUHBMAREL-UHFFFAOYSA-N 0.000 description 2
- YDJRHNKOVNTVTL-UHFFFAOYSA-N methyl 4-methoxy-3-(2,2,2-trifluoroethoxy)benzoate Chemical compound COC(=O)C1=CC=C(OC)C(OCC(F)(F)F)=C1 YDJRHNKOVNTVTL-UHFFFAOYSA-N 0.000 description 2
- IAFLPNKZSKOPMA-UHFFFAOYSA-N methyl 4-methoxy-3-(2-methylpropoxy)benzoate Chemical compound COC(=O)C1=CC=C(OC)C(OCC(C)C)=C1 IAFLPNKZSKOPMA-UHFFFAOYSA-N 0.000 description 2
- JCAPCXSPAUTEJF-UHFFFAOYSA-N methyl 4-methoxy-3-phenylmethoxybenzoate Chemical compound COC(=O)C1=CC=C(OC)C(OCC=2C=CC=CC=2)=C1 JCAPCXSPAUTEJF-UHFFFAOYSA-N 0.000 description 2
- 125000006178 methyl benzyl group Chemical group 0.000 description 2
- FMASTMURQSHELY-UHFFFAOYSA-N n-(4-fluoro-2-methylphenyl)-3-methyl-n-[(2-methyl-1h-indol-4-yl)methyl]pyridine-4-carboxamide Chemical compound C1=CC=C2NC(C)=CC2=C1CN(C=1C(=CC(F)=CC=1)C)C(=O)C1=CC=NC=C1C FMASTMURQSHELY-UHFFFAOYSA-N 0.000 description 2
- SFZLYYVNBXZAIS-UHFFFAOYSA-N n-[[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-methoxybenzamide Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OC)=CO1 SFZLYYVNBXZAIS-UHFFFAOYSA-N 0.000 description 2
- QZNBMDMLNIEYDT-UHFFFAOYSA-N n-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-(2,2,2-trifluoroethoxy)benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OCC(F)(F)F)N=2)C=C1OCC1=CC=CC=C1 QZNBMDMLNIEYDT-UHFFFAOYSA-N 0.000 description 2
- DPOCLVHYMCQVRZ-UHFFFAOYSA-N n-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-(trifluoromethyl)benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)C(F)(F)F)N=2)C=C1OCC1=CC=CC=C1 DPOCLVHYMCQVRZ-UHFFFAOYSA-N 0.000 description 2
- KCKYZTWJPYOQSY-UHFFFAOYSA-N n-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCC1=CC=CC=C1 KCKYZTWJPYOQSY-UHFFFAOYSA-N 0.000 description 2
- WKOUTEDUTOYALL-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-(trifluoromethyl)benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)C(F)(F)F)N=2)C=C1OCC1CC1 WKOUTEDUTOYALL-UHFFFAOYSA-N 0.000 description 2
- GJTOSZKFBTWWPE-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-methylsulfanylbenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)SC)N=2)C=C1OCC1CC1 GJTOSZKFBTWWPE-UHFFFAOYSA-N 0.000 description 2
- MHNAUZUUTFTUFD-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-hydroxypyridine-2-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)O)N=2)C=C1OCC1CC1 MHNAUZUUTFTUFD-UHFFFAOYSA-N 0.000 description 2
- ARBRPQDQWUXBNR-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-hydroxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(O)C(OC(F)F)=CC=2)=N1 ARBRPQDQWUXBNR-UHFFFAOYSA-N 0.000 description 2
- XYIPSIASLTXSEB-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-phenylmethoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC(F)F)=CC=2)=N1 XYIPSIASLTXSEB-UHFFFAOYSA-N 0.000 description 2
- VFBILHPIHUPBPZ-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-propan-2-yloxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OC(C)C)C(OC(F)F)=CC=2)=N1 VFBILHPIHUPBPZ-UHFFFAOYSA-N 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- FYRHIOVKTDQVFC-UHFFFAOYSA-M potassium phthalimide Chemical compound [K+].C1=CC=C2C(=O)[N-]C(=O)C2=C1 FYRHIOVKTDQVFC-UHFFFAOYSA-M 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- 125000003652 trifluoroethoxy group Chemical group FC(CO*)(F)F 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- VCGRFBXVSFAGGA-UHFFFAOYSA-N (1,1-dioxo-1,4-thiazinan-4-yl)-[6-[[3-(4-fluorophenyl)-5-methyl-1,2-oxazol-4-yl]methoxy]pyridin-3-yl]methanone Chemical compound CC=1ON=C(C=2C=CC(F)=CC=2)C=1COC(N=C1)=CC=C1C(=O)N1CCS(=O)(=O)CC1 VCGRFBXVSFAGGA-UHFFFAOYSA-N 0.000 description 1
- MAYZWDRUFKUGGP-VIFPVBQESA-N (3s)-1-[5-tert-butyl-3-[(1-methyltetrazol-5-yl)methyl]triazolo[4,5-d]pyrimidin-7-yl]pyrrolidin-3-ol Chemical compound CN1N=NN=C1CN1C2=NC(C(C)(C)C)=NC(N3C[C@@H](O)CC3)=C2N=N1 MAYZWDRUFKUGGP-VIFPVBQESA-N 0.000 description 1
- HGRWHBQLRXWSLV-DEOSSOPVSA-N (4s)-3'-(3,6-dihydro-2h-pyran-5-yl)-1'-fluoro-7'-(3-fluoropyridin-2-yl)spiro[5h-1,3-oxazole-4,5'-chromeno[2,3-c]pyridine]-2-amine Chemical compound C1OC(N)=N[C@]21C1=CC(C=3COCCC=3)=NC(F)=C1OC1=CC=C(C=3C(=CC=CN=3)F)C=C12 HGRWHBQLRXWSLV-DEOSSOPVSA-N 0.000 description 1
- VGRXAHXMIDCTNV-UHFFFAOYSA-N (6-chlorobenzotriazol-1-yl) 4-chlorobenzenesulfonate Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)ON1C2=CC(Cl)=CC=C2N=N1 VGRXAHXMIDCTNV-UHFFFAOYSA-N 0.000 description 1
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 description 1
- UKGJZDSUJSPAJL-YPUOHESYSA-N (e)-n-[(1r)-1-[3,5-difluoro-4-(methanesulfonamido)phenyl]ethyl]-3-[2-propyl-6-(trifluoromethyl)pyridin-3-yl]prop-2-enamide Chemical compound CCCC1=NC(C(F)(F)F)=CC=C1\C=C\C(=O)N[C@H](C)C1=CC(F)=C(NS(C)(=O)=O)C(F)=C1 UKGJZDSUJSPAJL-YPUOHESYSA-N 0.000 description 1
- PCTZLSCYMRXUGW-UHFFFAOYSA-N 1,1,1,2,2-pentafluorobutane Chemical group [CH2]CC(F)(F)C(F)(F)F PCTZLSCYMRXUGW-UHFFFAOYSA-N 0.000 description 1
- FKTXDTWDCPTPHK-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical group FC(F)(F)[C](F)C(F)(F)F FKTXDTWDCPTPHK-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- MASDFXZJIDNRTR-UHFFFAOYSA-N 1,3-bis(trimethylsilyl)urea Chemical compound C[Si](C)(C)NC(=O)N[Si](C)(C)C MASDFXZJIDNRTR-UHFFFAOYSA-N 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- APWRZPQBPCAXFP-UHFFFAOYSA-N 1-(1-oxo-2H-isoquinolin-5-yl)-5-(trifluoromethyl)-N-[2-(trifluoromethyl)pyridin-4-yl]pyrazole-4-carboxamide Chemical compound O=C1NC=CC2=C(C=CC=C12)N1N=CC(=C1C(F)(F)F)C(=O)NC1=CC(=NC=C1)C(F)(F)F APWRZPQBPCAXFP-UHFFFAOYSA-N 0.000 description 1
- MJUVRTYWUMPBTR-MRXNPFEDSA-N 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-n-[1-[(2r)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide Chemical compound FC=1C=C2N(C[C@@H](O)CO)C(C(C)(CO)C)=CC2=CC=1NC(=O)C1(C=2C=C3OC(F)(F)OC3=CC=2)CC1 MJUVRTYWUMPBTR-MRXNPFEDSA-N 0.000 description 1
- VKYMMQQUPJJLSS-UHFFFAOYSA-N 1-(2-chlorophenyl)-3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)Cl)N=2)C=C1OCC1CC1 VKYMMQQUPJJLSS-UHFFFAOYSA-N 0.000 description 1
- ZDOYHCIRUPHUHN-UHFFFAOYSA-N 1-(2-chlorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC=C1Cl ZDOYHCIRUPHUHN-UHFFFAOYSA-N 0.000 description 1
- QYBNVDZEBSEQFZ-UHFFFAOYSA-N 1-(2-ethoxy-4-fluorophenyl)-3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC(F)=CC=3)OCC)N=2)=C1 QYBNVDZEBSEQFZ-UHFFFAOYSA-N 0.000 description 1
- SXCHYBKJTBPXQC-UHFFFAOYSA-N 1-(2-ethoxy-4-fluorophenyl)ethanone Chemical compound CCOC1=CC(F)=CC=C1C(C)=O SXCHYBKJTBPXQC-UHFFFAOYSA-N 0.000 description 1
- SLFDYBYNHIEOTO-UHFFFAOYSA-N 1-(2-ethoxy-4-methylphenyl)-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC(C)=CC=C1C(=O)CCC1=COC(C=2C=C(OC(C)C)C(OC)=CC=2)=N1 SLFDYBYNHIEOTO-UHFFFAOYSA-N 0.000 description 1
- IEWMRDWLPVFLAP-UHFFFAOYSA-N 1-(2-ethoxy-4-methylphenyl)ethanone Chemical compound CCOC1=CC(C)=CC=C1C(C)=O IEWMRDWLPVFLAP-UHFFFAOYSA-N 0.000 description 1
- JQRHYEICSJYDRA-UHFFFAOYSA-N 1-(2-ethoxy-5-methylphenyl)-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=C(C)C=C1C(=O)CCC1=COC(C=2C=C(OC(C)C)C(OC)=CC=2)=N1 JQRHYEICSJYDRA-UHFFFAOYSA-N 0.000 description 1
- MKMBQKWVUDEEHR-UHFFFAOYSA-N 1-(2-ethoxy-5-methylphenyl)ethanone Chemical compound CCOC1=CC=C(C)C=C1C(C)=O MKMBQKWVUDEEHR-UHFFFAOYSA-N 0.000 description 1
- LWCZVDYKHQMEJN-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-(3-ethoxy-4-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC(C)C)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC)N=2)=C1 LWCZVDYKHQMEJN-UHFFFAOYSA-N 0.000 description 1
- LLGDRQPHLFPARE-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-(4-methoxy-3-pent-4-enoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCCCC=C)C(OC)=CC=2)=N1 LLGDRQPHLFPARE-UHFFFAOYSA-N 0.000 description 1
- OPSJZXJWXXJRLX-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-(4-methoxy-3-prop-2-enoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC=C)C(OC)=CC=2)=N1 OPSJZXJWXXJRLX-UHFFFAOYSA-N 0.000 description 1
- XVOBBSIDPUGBJI-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC(C)C)C(OC)=CC=2)=N1 XVOBBSIDPUGBJI-UHFFFAOYSA-N 0.000 description 1
- LXWZZMOEGQURAM-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-(4-methoxy-3-propoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC)C(OCCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC)N=2)=C1 LXWZZMOEGQURAM-UHFFFAOYSA-N 0.000 description 1
- QWGKBKXMPWVJQJ-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-[3-(2-fluoroethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCCF)C(OC)=CC=2)=N1 QWGKBKXMPWVJQJ-UHFFFAOYSA-N 0.000 description 1
- WNZLFGSZEPTLCF-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC(F)(F)F)C(OC)=CC=2)=N1 WNZLFGSZEPTLCF-UHFFFAOYSA-N 0.000 description 1
- WMVSKKWODXGMCC-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC(C)C)C(OC)=CC=2)=N1 WMVSKKWODXGMCC-UHFFFAOYSA-N 0.000 description 1
- XFGFJJPKRADBKE-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-[4-methoxy-3-(2-phenylethoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCCC=3C=CC=CC=3)C(OC)=CC=2)=N1 XFGFJJPKRADBKE-UHFFFAOYSA-N 0.000 description 1
- YNEJYSMDXBEYMP-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-[4-methoxy-3-(3-methylbut-2-enoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC=C(C)C)C(OC)=CC=2)=N1 YNEJYSMDXBEYMP-UHFFFAOYSA-N 0.000 description 1
- FZXXVRWYQVWLBE-UHFFFAOYSA-N 1-(2-ethoxyphenyl)-3-[2-[4-methoxy-3-(3-phenylpropoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCCCC=3C=CC=CC=3)C(OC)=CC=2)=N1 FZXXVRWYQVWLBE-UHFFFAOYSA-N 0.000 description 1
- GEPYXUUMCCRUPO-UHFFFAOYSA-N 1-(2-hydroxyphenyl)-3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)O)N=2)C=C1OCC1=CC=CC=C1 GEPYXUUMCCRUPO-UHFFFAOYSA-N 0.000 description 1
- RPLHDLGBQAECKP-UHFFFAOYSA-N 1-(2-methoxyphenyl)-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC)=CO1 RPLHDLGBQAECKP-UHFFFAOYSA-N 0.000 description 1
- YHBYWPYVBCNLHK-UHFFFAOYSA-N 1-(2-methoxyphenyl)-3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC)=CO1 YHBYWPYVBCNLHK-UHFFFAOYSA-N 0.000 description 1
- YFKLYHKKDVPRAI-UHFFFAOYSA-N 1-(2-propan-2-yloxyphenyl)ethanone Chemical compound CC(C)OC1=CC=CC=C1C(C)=O YFKLYHKKDVPRAI-UHFFFAOYSA-N 0.000 description 1
- BOKCYXGTJYZHBA-UHFFFAOYSA-N 1-(2-propoxyphenyl)ethanone Chemical compound CCCOC1=CC=CC=C1C(C)=O BOKCYXGTJYZHBA-UHFFFAOYSA-N 0.000 description 1
- MIPOQPOABAUUPQ-UHFFFAOYSA-N 1-(3-ethoxypyridin-2-yl)-3-[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound CCOC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OCC(C)C)C(OC)=CC=2)=N1 MIPOQPOABAUUPQ-UHFFFAOYSA-N 0.000 description 1
- YKABVTPNARVEEZ-UHFFFAOYSA-N 1-(3-methoxypyridin-2-yl)-3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]-2,2-dimethylpropan-1-one Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CC(C)(C)C(=O)C=2C(=CC=CN=2)OC)=CO1 YKABVTPNARVEEZ-UHFFFAOYSA-N 0.000 description 1
- FIYBHULAAREEAA-UHFFFAOYSA-N 1-(3-methoxypyridin-2-yl)-3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)OC)=CO1 FIYBHULAAREEAA-UHFFFAOYSA-N 0.000 description 1
- HSTKZANDHWKVBW-UHFFFAOYSA-N 1-(4-fluoro-2-propan-2-yloxyphenyl)ethanone Chemical compound CC(C)OC1=CC(F)=CC=C1C(C)=O HSTKZANDHWKVBW-UHFFFAOYSA-N 0.000 description 1
- ABDDQTDRAHXHOC-QMMMGPOBSA-N 1-[(7s)-5,7-dihydro-4h-thieno[2,3-c]pyran-7-yl]-n-methylmethanamine Chemical compound CNC[C@@H]1OCCC2=C1SC=C2 ABDDQTDRAHXHOC-QMMMGPOBSA-N 0.000 description 1
- NFVKSCXRXYLPEU-UHFFFAOYSA-N 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC(F)F)N=2)=C1 NFVKSCXRXYLPEU-UHFFFAOYSA-N 0.000 description 1
- MCLZUXVXKOEKOB-UHFFFAOYSA-N 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCC(F)F)=CO1 MCLZUXVXKOEKOB-UHFFFAOYSA-N 0.000 description 1
- FXAXLVLCHDCDBR-UHFFFAOYSA-N 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC(F)F)N=2)C=C1OCC1=CC=CC=C1 FXAXLVLCHDCDBR-UHFFFAOYSA-N 0.000 description 1
- VRKCPRYDAZUMNU-UHFFFAOYSA-N 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCC(F)F)=CO1 VRKCPRYDAZUMNU-UHFFFAOYSA-N 0.000 description 1
- VTAGIQFTPXQPOL-UHFFFAOYSA-N 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(4-methoxy-3-propoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC)C(OCCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC(F)F)N=2)=C1 VTAGIQFTPXQPOL-UHFFFAOYSA-N 0.000 description 1
- GZOVQGWAZZAUPI-UHFFFAOYSA-N 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCC(F)F)=CO1 GZOVQGWAZZAUPI-UHFFFAOYSA-N 0.000 description 1
- RSENIAPYDBYNLW-UHFFFAOYSA-N 1-[2-(2-fluoroethoxy)phenyl]-3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCCF)=CO1 RSENIAPYDBYNLW-UHFFFAOYSA-N 0.000 description 1
- OUHUFUHYYLAPOB-UHFFFAOYSA-N 1-[2-(2-fluoroethoxy)phenyl]-3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCCF)N=2)C=C1OCC1=CC=CC=C1 OUHUFUHYYLAPOB-UHFFFAOYSA-N 0.000 description 1
- GFACNWGYXSGKIP-UHFFFAOYSA-N 1-[2-(2-fluoroethoxy)phenyl]-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCCF)=CO1 GFACNWGYXSGKIP-UHFFFAOYSA-N 0.000 description 1
- HEGFHXVSYUVCGK-UHFFFAOYSA-N 1-[2-(2-fluoroethoxy)phenyl]-3-[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCCF)=CO1 HEGFHXVSYUVCGK-UHFFFAOYSA-N 0.000 description 1
- INSUYQWVWDOJPA-UHFFFAOYSA-N 1-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-n-methylmethanamine Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CNC)=CO1 INSUYQWVWDOJPA-UHFFFAOYSA-N 0.000 description 1
- LWQSHDPRXTVVMP-UHFFFAOYSA-N 1-[2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]-n-methylmethanamine Chemical compound CNCC1=COC(C=2C=C(OC)C(OC)=CC=2)=N1 LWQSHDPRXTVVMP-UHFFFAOYSA-N 0.000 description 1
- SZGKLJQKIMNSDP-UHFFFAOYSA-N 1-[2-(difluoromethoxy)phenyl]-3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC(F)F)N=2)=C1 SZGKLJQKIMNSDP-UHFFFAOYSA-N 0.000 description 1
- YDXVQCUECRVULF-UHFFFAOYSA-N 1-[2-(difluoromethoxy)phenyl]-3-[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC(F)F)=CO1 YDXVQCUECRVULF-UHFFFAOYSA-N 0.000 description 1
- VZOZGVAMKLTSOQ-UHFFFAOYSA-N 1-[2-(difluoromethoxy)phenyl]-3-[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC(F)F)N=2)C=C1OCC1=CC=CC=C1 VZOZGVAMKLTSOQ-UHFFFAOYSA-N 0.000 description 1
- UPVRRLYQOGGYAH-UHFFFAOYSA-N 1-[2-(difluoromethoxy)phenyl]-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC(F)F)=CO1 UPVRRLYQOGGYAH-UHFFFAOYSA-N 0.000 description 1
- FPWVUJVELVBIDX-UHFFFAOYSA-N 1-[2-(methoxymethoxy)phenyl]-3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propan-1-one Chemical compound COCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC(C)C)C(OC)=CC=2)=N1 FPWVUJVELVBIDX-UHFFFAOYSA-N 0.000 description 1
- NDJKEXBYKMKNSF-UHFFFAOYSA-N 1-[4-[4-[2-(3,4-diethoxyphenyl)-1,3-oxazole-4-carbonyl]piperazin-1-yl]phenyl]ethanone Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(C(=O)N2CCN(CC2)C=2C=CC(=CC=2)C(C)=O)=CO1 NDJKEXBYKMKNSF-UHFFFAOYSA-N 0.000 description 1
- ULHFFAFDSSHFDA-UHFFFAOYSA-N 1-amino-2-ethoxybenzene Chemical compound CCOC1=CC=CC=C1N ULHFFAFDSSHFDA-UHFFFAOYSA-N 0.000 description 1
- SNUSZUYTMHKCPM-UHFFFAOYSA-N 1-hydroxypyridin-2-one Chemical compound ON1C=CC=CC1=O SNUSZUYTMHKCPM-UHFFFAOYSA-N 0.000 description 1
- YXWWHNCQZBVZPV-UHFFFAOYSA-N 2'-methylacetophenone Chemical compound CC(=O)C1=CC=CC=C1C YXWWHNCQZBVZPV-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- VOGSDFLJZPNWHY-UHFFFAOYSA-N 2,2-difluoroethanol Chemical compound OCC(F)F VOGSDFLJZPNWHY-UHFFFAOYSA-N 0.000 description 1
- JVLBOSKDGOGFEY-UHFFFAOYSA-N 2,2-difluoroethyl methanesulfonate Chemical compound CS(=O)(=O)OCC(F)F JVLBOSKDGOGFEY-UHFFFAOYSA-N 0.000 description 1
- YOYAIZYFCNQIRF-UHFFFAOYSA-N 2,6-dichlorobenzonitrile Chemical compound ClC1=CC=CC(Cl)=C1C#N YOYAIZYFCNQIRF-UHFFFAOYSA-N 0.000 description 1
- KLIDCXVFHGNTTM-UHFFFAOYSA-N 2,6-dimethoxyphenol Chemical group COC1=CC=CC(OC)=C1O KLIDCXVFHGNTTM-UHFFFAOYSA-N 0.000 description 1
- SDFVFVDMDOWETH-UHFFFAOYSA-N 2-(3,4-diethoxyphenyl)-4-(pyridin-2-ylsulfonylmethyl)-1,3-oxazole Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CS(=O)(=O)C=2N=CC=CC=2)=CO1 SDFVFVDMDOWETH-UHFFFAOYSA-N 0.000 description 1
- IEBYYIKOKFZTRZ-UHFFFAOYSA-N 2-(3,4-diethoxyphenyl)-4-[4-(4-methoxyphenyl)piperazin-1-yl]-1,3-oxazole Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(N2CCN(CC2)C=2C=CC(OC)=CC=2)=CO1 IEBYYIKOKFZTRZ-UHFFFAOYSA-N 0.000 description 1
- FDOLLALDDDFPED-UHFFFAOYSA-N 2-(3,4-diethoxyphenyl)-n-phenacyl-1,3-oxazole-4-carboxamide Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(C(=O)NCC(=O)C=2C=CC=CC=2)=CO1 FDOLLALDDDFPED-UHFFFAOYSA-N 0.000 description 1
- AZRTUFPMOJYNOI-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-n-(2-phenylethyl)-1,3-oxazole-4-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C1=NC(C(=O)NCCC=2C=CC=CC=2)=CO1 AZRTUFPMOJYNOI-UHFFFAOYSA-N 0.000 description 1
- FTSFDLXERKLLGS-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-n-(2-pyrrolidin-1-ylethyl)-1,3-oxazole-4-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C1=NC(C(=O)NCCN2CCCC2)=CO1 FTSFDLXERKLLGS-UHFFFAOYSA-N 0.000 description 1
- VKXOJZDTVVRATM-UHFFFAOYSA-N 2-(difluoromethoxy)-n-[[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OC(F)F)=CO1 VKXOJZDTVVRATM-UHFFFAOYSA-N 0.000 description 1
- UEPJVTFYVOXOOA-UHFFFAOYSA-N 2-(difluoromethoxy)-n-[[2-(4-methoxy-3-phenylmethoxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OC(F)F)N=2)C=C1OCC1=CC=CC=C1 UEPJVTFYVOXOOA-UHFFFAOYSA-N 0.000 description 1
- UAHQJPFKRBUDBG-UHFFFAOYSA-N 2-(difluoromethoxy)-n-[[2-(4-methoxy-3-prop-2-enoxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound C1=C(OCC=C)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OC(F)F)=CO1 UAHQJPFKRBUDBG-UHFFFAOYSA-N 0.000 description 1
- PMSPQLZLRARZAZ-UHFFFAOYSA-N 2-(difluoromethoxy)-n-[[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OC(F)F)=CO1 PMSPQLZLRARZAZ-UHFFFAOYSA-N 0.000 description 1
- AGDOJFCUKQMLHD-UHFFFAOYSA-N 2-(difluoromethoxy)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1OC(F)F AGDOJFCUKQMLHD-UHFFFAOYSA-N 0.000 description 1
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 1
- HVVGWJFOFOGDDE-UHFFFAOYSA-N 2-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-n-(2-ethoxyphenyl)acetamide Chemical compound CCOC1=CC=CC=C1NC(=O)CC1=COC(C=2C=C(OCC)C(OCC)=CC=2)=N1 HVVGWJFOFOGDDE-UHFFFAOYSA-N 0.000 description 1
- NUBXRXKCGLELOE-UHFFFAOYSA-N 2-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-n-(3-hydroxypyridin-2-yl)acetamide Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CC(=O)NC=2C(=CC=CN=2)O)=CO1 NUBXRXKCGLELOE-UHFFFAOYSA-N 0.000 description 1
- XAUXLDQXXNAARL-UHFFFAOYSA-N 2-[2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]acetic acid Chemical compound C1=C(OC)C(OC)=CC=C1C1=NC(CC(O)=O)=CO1 XAUXLDQXXNAARL-UHFFFAOYSA-N 0.000 description 1
- PGFNREJNJKEWKL-UHFFFAOYSA-N 2-[3,4-bis(difluoromethoxy)phenyl]-4-(chloromethyl)-1,3-oxazole Chemical compound C1=C(OC(F)F)C(OC(F)F)=CC=C1C1=NC(CCl)=CO1 PGFNREJNJKEWKL-UHFFFAOYSA-N 0.000 description 1
- ODWORWOYIZJIQO-UHFFFAOYSA-N 2-[3,4-bis(difluoromethoxy)phenyl]-n-methyl-1,3-oxazol-4-amine Chemical compound CNC1=COC(C=2C=C(OC(F)F)C(OC(F)F)=CC=2)=N1 ODWORWOYIZJIQO-UHFFFAOYSA-N 0.000 description 1
- ZJDKUIKORRVOGY-UHFFFAOYSA-N 2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-4-[3-(2-ethoxyphenyl)propyl]-1,3-oxazole Chemical compound CCOC1=CC=CC=C1CCCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 ZJDKUIKORRVOGY-UHFFFAOYSA-N 0.000 description 1
- IHSLBNZQRLJEKD-UHFFFAOYSA-N 2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-4-[3-(2-methylphenyl)propyl]-1,3-oxazole Chemical compound COC1=CC=C(C=2OC=C(CCCC=3C(=CC=CC=3)C)N=2)C=C1OCC1CC1 IHSLBNZQRLJEKD-UHFFFAOYSA-N 0.000 description 1
- BMTSZVZQNMNPCT-UHFFFAOYSA-N 2-aminopyridin-3-ol Chemical compound NC1=NC=CC=C1O BMTSZVZQNMNPCT-UHFFFAOYSA-N 0.000 description 1
- UPSXAPQYNGXVBF-UHFFFAOYSA-N 2-bromobutane Chemical compound CCC(C)Br UPSXAPQYNGXVBF-UHFFFAOYSA-N 0.000 description 1
- NXGNOJQIKXYYFC-UHFFFAOYSA-N 2-butoxy-n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCCCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 NXGNOJQIKXYYFC-UHFFFAOYSA-N 0.000 description 1
- PZQFTKYKBLTCFE-UHFFFAOYSA-N 2-chloro-n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)Cl)N=2)C=C1OCC1CC1 PZQFTKYKBLTCFE-UHFFFAOYSA-N 0.000 description 1
- 125000001340 2-chloroethyl group Chemical group [H]C([H])(Cl)C([H])([H])* 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- KKZUMAMOMRDVKA-UHFFFAOYSA-N 2-chloropropane Chemical group [CH2]C(C)Cl KKZUMAMOMRDVKA-UHFFFAOYSA-N 0.000 description 1
- JEXQWCBPEWHFKC-UHFFFAOYSA-N 2-cyclopentylethanol Chemical compound OCCC1CCCC1 JEXQWCBPEWHFKC-UHFFFAOYSA-N 0.000 description 1
- LUNMJRJMSXZSLC-UHFFFAOYSA-N 2-cyclopropylethanol Chemical compound OCCC1CC1 LUNMJRJMSXZSLC-UHFFFAOYSA-N 0.000 description 1
- UUECBYNUOGNCEL-UHFFFAOYSA-N 2-ethoxy-n-[[2-(4-methoxy-3-pentan-3-yloxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OC(CC)CC)C(OC)=CC=2)=N1 UUECBYNUOGNCEL-UHFFFAOYSA-N 0.000 description 1
- LCSHIQAKWDXNKZ-UHFFFAOYSA-N 2-ethoxy-n-[[2-(4-methoxy-3-prop-2-ynoxyphenyl)-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC#C)C(OC)=CC=2)=N1 LCSHIQAKWDXNKZ-UHFFFAOYSA-N 0.000 description 1
- FYGWPOIHRMHRFE-UHFFFAOYSA-N 2-ethoxy-n-[[2-[3-(3-hydroxypropoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCCCO)C(OC)=CC=2)=N1 FYGWPOIHRMHRFE-UHFFFAOYSA-N 0.000 description 1
- GEDODVVYICYGHK-UHFFFAOYSA-N 2-ethoxy-n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC(F)(F)F)C(OC)=CC=2)=N1 GEDODVVYICYGHK-UHFFFAOYSA-N 0.000 description 1
- BDCMYSYJTUYMRU-UHFFFAOYSA-N 2-ethoxy-n-[[2-[4-methoxy-3-(3,3,3-trifluoropropoxy)phenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCCC(F)(F)F)C(OC)=CC=2)=N1 BDCMYSYJTUYMRU-UHFFFAOYSA-N 0.000 description 1
- QVWOTIVFWFHJCD-UHFFFAOYSA-N 2-ethoxy-n-[[2-[4-methoxy-3-(oxiran-2-ylmethoxy)phenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC3OC3)C(OC)=CC=2)=N1 QVWOTIVFWFHJCD-UHFFFAOYSA-N 0.000 description 1
- HXTUFYCLAYVNNT-UHFFFAOYSA-N 2-ethoxybenzenecarboperoxoic acid Chemical compound CCOC1=CC=CC=C1C(=O)OO HXTUFYCLAYVNNT-UHFFFAOYSA-N 0.000 description 1
- AVZBOAGCVKEESJ-UHFFFAOYSA-O 2-ethyl-1,2-benzoxazol-2-ium-7-ol Chemical class C1=CC(O)=C2O[N+](CC)=CC2=C1 AVZBOAGCVKEESJ-UHFFFAOYSA-O 0.000 description 1
- BDOQBKLRHLWMOZ-UHFFFAOYSA-N 2-fluoro-6-methoxy-n-[[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2F)OC)=CO1 BDOQBKLRHLWMOZ-UHFFFAOYSA-N 0.000 description 1
- GGDYAKVUZMZKRV-UHFFFAOYSA-N 2-fluoroethanol Chemical compound OCCF GGDYAKVUZMZKRV-UHFFFAOYSA-N 0.000 description 1
- 125000004777 2-fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- DLFIXPTUMHDGCB-UHFFFAOYSA-N 2-fluoroethyl methanesulfonate Chemical compound CS(=O)(=O)OCCF DLFIXPTUMHDGCB-UHFFFAOYSA-N 0.000 description 1
- UEHDYKJJWSFODT-UHFFFAOYSA-N 2-methoxy-n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OC)=CO1 UEHDYKJJWSFODT-UHFFFAOYSA-N 0.000 description 1
- MYPVQCDKTKOVLP-UHFFFAOYSA-N 2-methoxy-n-[[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OC)=CO1 MYPVQCDKTKOVLP-UHFFFAOYSA-N 0.000 description 1
- 125000006179 2-methyl benzyl group Chemical group [H]C1=C([H])C(=C(C([H])=C1[H])C([H])([H])*)C([H])([H])[H] 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- HDECRAPHCDXMIJ-UHFFFAOYSA-N 2-methylbenzenesulfonyl chloride Chemical compound CC1=CC=CC=C1S(Cl)(=O)=O HDECRAPHCDXMIJ-UHFFFAOYSA-N 0.000 description 1
- WRXNJTBODVGDRY-UHFFFAOYSA-N 2-pyrrolidin-1-ylethanamine Chemical compound NCCN1CCCC1 WRXNJTBODVGDRY-UHFFFAOYSA-N 0.000 description 1
- MDQHTWMXYBVSHU-UHFFFAOYSA-N 2-trimethylsilylacetamide Chemical compound C[Si](C)(C)CC(N)=O MDQHTWMXYBVSHU-UHFFFAOYSA-N 0.000 description 1
- NZTHOAIPLLCGGS-UHFFFAOYSA-N 3,4-bis(phenylmethoxy)benzamide Chemical compound C=1C=CC=CC=1COC1=CC(C(=O)N)=CC=C1OCC1=CC=CC=C1 NZTHOAIPLLCGGS-UHFFFAOYSA-N 0.000 description 1
- XNDZRGTVUVVHQT-UHFFFAOYSA-N 3,4-dimethoxybenzamide Chemical compound COC1=CC=C(C(N)=O)C=C1OC XNDZRGTVUVVHQT-UHFFFAOYSA-N 0.000 description 1
- SDXAWLJRERMRKF-UHFFFAOYSA-N 3,5-dimethyl-1h-pyrazole Chemical compound CC=1C=C(C)NN=1 SDXAWLJRERMRKF-UHFFFAOYSA-N 0.000 description 1
- BNSKPGOGSZSJTP-UHFFFAOYSA-N 3-(2,2-difluoroethoxy)-4-phenylmethoxybenzamide Chemical compound FC(F)COC1=CC(C(=O)N)=CC=C1OCC1=CC=CC=C1 BNSKPGOGSZSJTP-UHFFFAOYSA-N 0.000 description 1
- LURFVMDIIZZKME-UHFFFAOYSA-N 3-(2,2-difluoroethoxy)-4-phenylmethoxybenzoic acid Chemical compound FC(F)COC1=CC(C(=O)O)=CC=C1OCC1=CC=CC=C1 LURFVMDIIZZKME-UHFFFAOYSA-N 0.000 description 1
- HCDMJFOHIXMBOV-UHFFFAOYSA-N 3-(2,6-difluoro-3,5-dimethoxyphenyl)-1-ethyl-8-(morpholin-4-ylmethyl)-4,7-dihydropyrrolo[4,5]pyrido[1,2-d]pyrimidin-2-one Chemical compound C=1C2=C3N(CC)C(=O)N(C=4C(=C(OC)C=C(OC)C=4F)F)CC3=CN=C2NC=1CN1CCOCC1 HCDMJFOHIXMBOV-UHFFFAOYSA-N 0.000 description 1
- NSHAOELVDPKZIC-UHFFFAOYSA-N 3-(2-ethyl-1,2-oxazol-2-ium-5-yl)benzenesulfonic acid;hydroxide Chemical compound [OH-].O1[N+](CC)=CC=C1C1=CC=CC(S(O)(=O)=O)=C1 NSHAOELVDPKZIC-UHFFFAOYSA-N 0.000 description 1
- BYHQTRFJOGIQAO-GOSISDBHSA-N 3-(4-bromophenyl)-8-[(2R)-2-hydroxypropyl]-1-[(3-methoxyphenyl)methyl]-1,3,8-triazaspiro[4.5]decan-2-one Chemical compound C[C@H](CN1CCC2(CC1)CN(C(=O)N2CC3=CC(=CC=C3)OC)C4=CC=C(C=C4)Br)O BYHQTRFJOGIQAO-GOSISDBHSA-N 0.000 description 1
- YGYGASJNJTYNOL-CQSZACIVSA-N 3-[(4r)-2,2-dimethyl-1,1-dioxothian-4-yl]-5-(4-fluorophenyl)-1h-indole-7-carboxamide Chemical compound C1CS(=O)(=O)C(C)(C)C[C@@H]1C1=CNC2=C(C(N)=O)C=C(C=3C=CC(F)=CC=3)C=C12 YGYGASJNJTYNOL-CQSZACIVSA-N 0.000 description 1
- BKKHIVQKTTVFTG-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2,3-dimethoxyphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=C(OC)C=CC=2)OC)=CO1 BKKHIVQKTTVFTG-UHFFFAOYSA-N 0.000 description 1
- YCLZRDXNHDOOQY-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2,4-dimethylphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC(C)=CC=2)C)=CO1 YCLZRDXNHDOOQY-UHFFFAOYSA-N 0.000 description 1
- LGOHSTZMRWVTED-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2,5-dimethoxyphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=C(OC)C=2)OC)=CO1 LGOHSTZMRWVTED-UHFFFAOYSA-N 0.000 description 1
- BDFRJKQHYHBPBZ-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2,5-dimethylphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=C(C)C=2)C)=CO1 BDFRJKQHYHBPBZ-UHFFFAOYSA-N 0.000 description 1
- JOVNWRRNBZMSKU-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxy-3-methylphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=C(C)C=CC=2)OCC)=CO1 JOVNWRRNBZMSKU-UHFFFAOYSA-N 0.000 description 1
- GBPPAMGXDRMRDC-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxy-4-fluorophenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC(F)=CC=2)OCC)=CO1 GBPPAMGXDRMRDC-UHFFFAOYSA-N 0.000 description 1
- DYTWEGMHOZZEMN-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxy-4-methylphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC(C)=CC=2)OCC)=CO1 DYTWEGMHOZZEMN-UHFFFAOYSA-N 0.000 description 1
- MRKHUHJWHJNJBO-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxy-5-methylphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=C(C)C=2)OCC)=CO1 MRKHUHJWHJNJBO-UHFFFAOYSA-N 0.000 description 1
- NHGRMBFINTXGTJ-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCC)=CO1 NHGRMBFINTXGTJ-UHFFFAOYSA-N 0.000 description 1
- WMKJPRZHGDGJCM-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethylphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)CC)=CO1 WMKJPRZHGDGJCM-UHFFFAOYSA-N 0.000 description 1
- VYJQTTUZXUOHHC-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-hydroxyphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)O)=CO1 VYJQTTUZXUOHHC-UHFFFAOYSA-N 0.000 description 1
- VQFDDMIKJVAFSR-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-methylphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)C)=CO1 VQFDDMIKJVAFSR-UHFFFAOYSA-N 0.000 description 1
- JUQATRZKQVSPKY-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC(C)C)=CO1 JUQATRZKQVSPKY-UHFFFAOYSA-N 0.000 description 1
- IVBBVUCRUCSYRZ-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC)C(OCC)=CC=2)=N1 IVBBVUCRUCSYRZ-UHFFFAOYSA-N 0.000 description 1
- YRBIZUFSKFULRZ-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(3-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC(C(=O)CCC=2N=C(OC=2)C=2C=C(OCC)C(OCC)=CC=2)=C1 YRBIZUFSKFULRZ-UHFFFAOYSA-N 0.000 description 1
- VEHHOFOIVUQAQR-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(3-ethoxypyridin-2-yl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)OCC)=CO1 VEHHOFOIVUQAQR-UHFFFAOYSA-N 0.000 description 1
- HEUMBXYJZIDIAS-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(3-hydroxypyrrolidin-1-yl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)N2CC(O)CC2)=CO1 HEUMBXYJZIDIAS-UHFFFAOYSA-N 0.000 description 1
- SYSJKOLVIMJCOF-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 SYSJKOLVIMJCOF-UHFFFAOYSA-N 0.000 description 1
- ROCARXZRFADGJQ-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-(4-ethoxyphenyl)propan-1-one Chemical compound C1=CC(OCC)=CC=C1C(=O)CCC1=COC(C=2C=C(OCC)C(OCC)=CC=2)=N1 ROCARXZRFADGJQ-UHFFFAOYSA-N 0.000 description 1
- VKKPROFCZVSCQX-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(2-fluoroethoxy)phenyl]propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCCF)=CO1 VKKPROFCZVSCQX-UHFFFAOYSA-N 0.000 description 1
- PNYKLNLYSNWOQI-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(methoxymethoxy)phenyl]propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCOC)=CO1 PNYKLNLYSNWOQI-UHFFFAOYSA-N 0.000 description 1
- GTSLTWXJWDLVFQ-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(methoxymethyl)phenyl]propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)COC)=CO1 GTSLTWXJWDLVFQ-UHFFFAOYSA-N 0.000 description 1
- AAPOKQHKQBZSHQ-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(trifluoromethoxy)phenyl]propan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC(F)(F)F)=CO1 AAPOKQHKQBZSHQ-UHFFFAOYSA-N 0.000 description 1
- CKVGCMRMJXEWDD-UHFFFAOYSA-N 3-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]-1-pyrrolidin-1-ylpropan-1-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CCC(=O)N2CCCC2)=CO1 CKVGCMRMJXEWDD-UHFFFAOYSA-N 0.000 description 1
- CQVQBMVHQOWQEG-UHFFFAOYSA-N 3-[2-(3-but-3-enoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCCC=C)C(OC)=CC=2)=N1 CQVQBMVHQOWQEG-UHFFFAOYSA-N 0.000 description 1
- PTUSDNMCUVZMMN-UHFFFAOYSA-N 3-[2-(3-but-3-enoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)propan-1-one Chemical compound C1=C(OCCC=C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC(C)C)=CO1 PTUSDNMCUVZMMN-UHFFFAOYSA-N 0.000 description 1
- FUOWCVLCUSILNP-UHFFFAOYSA-N 3-[2-(3-but-3-enoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCCC=C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 FUOWCVLCUSILNP-UHFFFAOYSA-N 0.000 description 1
- HOKYMDLYNBPMLP-UHFFFAOYSA-N 3-[2-(3-but-3-enoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(2,2-difluoroethoxy)phenyl]propan-1-one Chemical compound C1=C(OCCC=C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCC(F)F)=CO1 HOKYMDLYNBPMLP-UHFFFAOYSA-N 0.000 description 1
- PRTOFIURQCEXHT-UHFFFAOYSA-N 3-[2-(3-but-3-enoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(2-fluoroethoxy)phenyl]propan-1-one Chemical compound C1=C(OCCC=C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCCF)=CO1 PRTOFIURQCEXHT-UHFFFAOYSA-N 0.000 description 1
- HZCJAICOYFUMSO-UHFFFAOYSA-N 3-[2-(3-butan-2-yloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC)C(OC(C)CC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)=C1 HZCJAICOYFUMSO-UHFFFAOYSA-N 0.000 description 1
- UYSSITNTFDXTCS-UHFFFAOYSA-N 3-[2-(3-butoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound C1=C(OC)C(OCCCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC)N=2)=C1 UYSSITNTFDXTCS-UHFFFAOYSA-N 0.000 description 1
- SIARJHNAJQETER-UHFFFAOYSA-N 3-[2-(3-butoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC)C(OCCCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)=C1 SIARJHNAJQETER-UHFFFAOYSA-N 0.000 description 1
- PQSBLNVRGGMAHX-UHFFFAOYSA-N 3-[2-(3-cyclohex-2-en-1-yloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC3C=CCCC3)C(OC)=CC=2)=N1 PQSBLNVRGGMAHX-UHFFFAOYSA-N 0.000 description 1
- PYPWQJUHUJROIR-UHFFFAOYSA-N 3-[2-(3-cyclohexyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OC1CCCCC1 PYPWQJUHUJROIR-UHFFFAOYSA-N 0.000 description 1
- ZOXNOTRIWCOHSH-UHFFFAOYSA-N 3-[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC3CCCC3)C(OC)=CC=2)=N1 ZOXNOTRIWCOHSH-UHFFFAOYSA-N 0.000 description 1
- BDIOVYKCFQCKJF-UHFFFAOYSA-N 3-[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC)N=2)C=C1OC1CCCC1 BDIOVYKCFQCKJF-UHFFFAOYSA-N 0.000 description 1
- LYVCSVFAWSPEQK-UHFFFAOYSA-N 3-[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC3CCCC3)C(OC)=CC=2)=N1 LYVCSVFAWSPEQK-UHFFFAOYSA-N 0.000 description 1
- COVJXDSEKQXAHX-UHFFFAOYSA-N 3-[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-ethoxypyridin-2-yl)propan-1-one Chemical compound CCOC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OC3CCCC3)C(OC)=CC=2)=N1 COVJXDSEKQXAHX-UHFFFAOYSA-N 0.000 description 1
- IGKNVJALQYRXIC-UHFFFAOYSA-N 3-[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methoxypyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)OC)N=2)C=C1OC1CCCC1 IGKNVJALQYRXIC-UHFFFAOYSA-N 0.000 description 1
- SBERQHYGWUHOHM-UHFFFAOYSA-N 3-[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OC1CCCC1 SBERQHYGWUHOHM-UHFFFAOYSA-N 0.000 description 1
- BYIGCARXJFBBRL-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC)N=2)=C1 BYIGCARXJFBBRL-UHFFFAOYSA-N 0.000 description 1
- XSBSQFIBZMWNRA-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC)N=2)=C1 XSBSQFIBZMWNRA-UHFFFAOYSA-N 0.000 description 1
- BOGNPQKXDIWMFZ-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-methylphenyl)propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)C)N=2)=C1 BOGNPQKXDIWMFZ-UHFFFAOYSA-N 0.000 description 1
- UOBLVMZEASZXAN-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC(C)C)N=2)=C1 UOBLVMZEASZXAN-UHFFFAOYSA-N 0.000 description 1
- XVJDHDHCUDZOEQ-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC)C(OC)=CC=2)=N1 XVJDHDHCUDZOEQ-UHFFFAOYSA-N 0.000 description 1
- NZKZICUVSJWJEW-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)=C1 NZKZICUVSJWJEW-UHFFFAOYSA-N 0.000 description 1
- QLUSGTQJFNREMM-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-(4-fluoro-2-propan-2-yloxyphenyl)propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC(F)=CC=3)OC(C)C)N=2)=C1 QLUSGTQJFNREMM-UHFFFAOYSA-N 0.000 description 1
- QDIOSJNDTCSGPU-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(2,2,2-trifluoroethoxy)phenyl]propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC(F)(F)F)N=2)=C1 QDIOSJNDTCSGPU-UHFFFAOYSA-N 0.000 description 1
- PQFFLZYAJRPKII-UHFFFAOYSA-N 3-[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]-1-[2-(trifluoromethoxy)phenyl]propan-1-one Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC(F)(F)F)N=2)=C1 PQFFLZYAJRPKII-UHFFFAOYSA-N 0.000 description 1
- FRVYWGOVWLJPSN-UHFFFAOYSA-N 3-[2-(4-methoxy-3-pent-4-enoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCCCC=C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 FRVYWGOVWLJPSN-UHFFFAOYSA-N 0.000 description 1
- PFWWQYMCQXPLFI-UHFFFAOYSA-N 3-[2-(4-methoxy-3-pentan-3-yloxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC)C(OC(CC)CC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)=C1 PFWWQYMCQXPLFI-UHFFFAOYSA-N 0.000 description 1
- XXESFSDJGAODAK-UHFFFAOYSA-N 3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]-1-(2-methylphenyl)propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)C)=CO1 XXESFSDJGAODAK-UHFFFAOYSA-N 0.000 description 1
- WSPBNUQZWPOWPH-UHFFFAOYSA-N 3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]-1-(2-prop-2-enoxyphenyl)propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCC=C)=CO1 WSPBNUQZWPOWPH-UHFFFAOYSA-N 0.000 description 1
- QUAGMRLRLUPHBC-UHFFFAOYSA-N 3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC(C)C)=CO1 QUAGMRLRLUPHBC-UHFFFAOYSA-N 0.000 description 1
- XFEDICUDCOXDIV-UHFFFAOYSA-N 3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC(C)C)C(OC)=CC=2)=N1 XFEDICUDCOXDIV-UHFFFAOYSA-N 0.000 description 1
- AJUCGGUNKCSIST-UHFFFAOYSA-N 3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]-2,2-dimethyl-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CC(C)(C)C(=O)C=2C(=CC=CN=2)C)=CO1 AJUCGGUNKCSIST-UHFFFAOYSA-N 0.000 description 1
- BQMJGXSOZSHSHR-UHFFFAOYSA-N 3-[2-(4-methoxy-3-propoxyphenyl)-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC)C(OCCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)=C1 BQMJGXSOZSHSHR-UHFFFAOYSA-N 0.000 description 1
- MNHUACLISDNHQT-UHFFFAOYSA-N 3-[2-[3,4-bis(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OCC(F)(F)F)C(OCC(F)(F)F)=CC=2)=N1 MNHUACLISDNHQT-UHFFFAOYSA-N 0.000 description 1
- VZJCFBLLTOQQQO-UHFFFAOYSA-N 3-[2-[3,4-bis(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC(F)F)C(OC(F)F)=CC=2)=N1 VZJCFBLLTOQQQO-UHFFFAOYSA-N 0.000 description 1
- BWUFJERNJDVENP-UHFFFAOYSA-N 3-[2-[3,4-bis(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OC(F)F)C(OC(F)F)=CC=2)=N1 BWUFJERNJDVENP-UHFFFAOYSA-N 0.000 description 1
- VIJXINKBYQPUCR-UHFFFAOYSA-N 3-[2-[3-(2,2-difluoroethoxy)-4-ethoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCC(F)F)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 VIJXINKBYQPUCR-UHFFFAOYSA-N 0.000 description 1
- FLLSPWWOUMVADH-UHFFFAOYSA-N 3-[2-[3-(2,2-difluoroethoxy)-4-hydroxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OCC(F)F)C(O)=CC=2)=N1 FLLSPWWOUMVADH-UHFFFAOYSA-N 0.000 description 1
- QILMUGOJMJXAHZ-UHFFFAOYSA-N 3-[2-[3-(2,2-difluoroethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCC(F)F)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 QILMUGOJMJXAHZ-UHFFFAOYSA-N 0.000 description 1
- MEAXXZGWMOEOEU-UHFFFAOYSA-N 3-[2-[3-(2,2-difluoroethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-[2-(2,2-difluoroethoxy)phenyl]propan-1-one Chemical compound C1=C(OCC(F)F)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCC(F)F)=CO1 MEAXXZGWMOEOEU-UHFFFAOYSA-N 0.000 description 1
- ANKZCOURXMXUEX-UHFFFAOYSA-N 3-[2-[3-(2,2-difluoroethoxy)-4-propan-2-yloxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCC(F)F)C(OC(C)C)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 ANKZCOURXMXUEX-UHFFFAOYSA-N 0.000 description 1
- PGVCQJRYMXMAIM-UHFFFAOYSA-N 3-[2-[3-(2,3-dihydro-1h-inden-2-yloxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC2CC3=CC=CC=C3C2)C(OC)=CC=C1C(OC=1)=NC=1CCC(=O)C1=NC=CC=C1C PGVCQJRYMXMAIM-UHFFFAOYSA-N 0.000 description 1
- LDEKGBGGWKIVHW-UHFFFAOYSA-N 3-[2-[3-(2-cyclopentylethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCCC1CCCC1 LDEKGBGGWKIVHW-UHFFFAOYSA-N 0.000 description 1
- ZAWAMAVTLCJZDV-UHFFFAOYSA-N 3-[2-[3-(2-cyclopropylethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCCC3CC3)C(OC)=CC=2)=N1 ZAWAMAVTLCJZDV-UHFFFAOYSA-N 0.000 description 1
- UUAIDGDYYPQOHY-UHFFFAOYSA-N 3-[2-[3-(2-cyclopropylethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCCC1CC1 UUAIDGDYYPQOHY-UHFFFAOYSA-N 0.000 description 1
- PWVBGIHMAQMAIP-UHFFFAOYSA-N 3-[2-[3-(2-fluoroethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCCF)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 PWVBGIHMAQMAIP-UHFFFAOYSA-N 0.000 description 1
- QIAYRQAWSNJFTC-UHFFFAOYSA-N 3-[2-[3-(cyclobutylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC3CCC3)C(OC)=CC=2)=N1 QIAYRQAWSNJFTC-UHFFFAOYSA-N 0.000 description 1
- WSAXXDOYMCDZAZ-UHFFFAOYSA-N 3-[2-[3-(cyclobutylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC(C)C)N=2)C=C1OCC1CCC1 WSAXXDOYMCDZAZ-UHFFFAOYSA-N 0.000 description 1
- HYYDQBTVGUVAAO-UHFFFAOYSA-N 3-[2-[3-(cyclobutylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC3CCC3)C(OC)=CC=2)=N1 HYYDQBTVGUVAAO-UHFFFAOYSA-N 0.000 description 1
- MZSUPEWQZDQDLW-UHFFFAOYSA-N 3-[2-[3-(cyclobutylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCC1CCC1 MZSUPEWQZDQDLW-UHFFFAOYSA-N 0.000 description 1
- MBAPDCZERSPFMS-UHFFFAOYSA-N 3-[2-[3-(cyclobutylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-pyridin-2-ylpropan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3N=CC=CC=3)N=2)C=C1OCC1CCC1 MBAPDCZERSPFMS-UHFFFAOYSA-N 0.000 description 1
- DASGFKHQOBQYJO-UHFFFAOYSA-N 3-[2-[3-(cyclohexylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC3CCCCC3)C(OC)=CC=2)=N1 DASGFKHQOBQYJO-UHFFFAOYSA-N 0.000 description 1
- NFTYUSHENNGWMM-UHFFFAOYSA-N 3-[2-[3-(cyclohexylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCC1CCCCC1 NFTYUSHENNGWMM-UHFFFAOYSA-N 0.000 description 1
- HMSLLEUHGMFQOK-UHFFFAOYSA-N 3-[2-[3-(cyclopentylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC3CCCC3)C(OC)=CC=2)=N1 HMSLLEUHGMFQOK-UHFFFAOYSA-N 0.000 description 1
- QBBDGPMANADUNR-UHFFFAOYSA-N 3-[2-[3-(cyclopentylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCC1CCCC1 QBBDGPMANADUNR-UHFFFAOYSA-N 0.000 description 1
- KMGMYLGFJRZDET-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methoxypyridin-2-yl)propan-1-one Chemical compound COC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OCC3CC3)C(OCC(F)(F)F)=CC=2)=N1 KMGMYLGFJRZDET-UHFFFAOYSA-N 0.000 description 1
- RZPNRHJDFDADLS-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC3CC3)C(OC(F)F)=CC=2)=N1 RZPNRHJDFDADLS-UHFFFAOYSA-N 0.000 description 1
- YRQIRSUMZAQGHQ-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OCC3CC3)C(OC(F)F)=CC=2)=N1 YRQIRSUMZAQGHQ-UHFFFAOYSA-N 0.000 description 1
- WWRBPFNNNJEIKJ-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-ol Chemical compound CCOC1=CC=CC=C1C(O)CCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 WWRBPFNNNJEIKJ-UHFFFAOYSA-N 0.000 description 1
- GXKNRDWMGVFARF-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-hydroxyphenyl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)O)N=2)C=C1OCC1CC1 GXKNRDWMGVFARF-UHFFFAOYSA-N 0.000 description 1
- OPOBOJVOXNWQEA-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC)N=2)C=C1OCC1CC1 OPOBOJVOXNWQEA-UHFFFAOYSA-N 0.000 description 1
- XMSROYNWWLUQIV-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-methylphenyl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)C)N=2)C=C1OCC1CC1 XMSROYNWWLUQIV-UHFFFAOYSA-N 0.000 description 1
- OUCAEMQMDSVBTJ-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-propan-2-yloxyphenyl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC(C)C)N=2)C=C1OCC1CC1 OUCAEMQMDSVBTJ-UHFFFAOYSA-N 0.000 description 1
- BULZVDVIRUIZDU-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 BULZVDVIRUIZDU-UHFFFAOYSA-N 0.000 description 1
- CFJMMYKYEJKGMG-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-ethoxypyridin-2-yl)propan-1-one Chemical compound CCOC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 CFJMMYKYEJKGMG-UHFFFAOYSA-N 0.000 description 1
- OLYWDWRZHSPRJP-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCC1CC1 OLYWDWRZHSPRJP-UHFFFAOYSA-N 0.000 description 1
- AQFAGKLUERJOCX-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-[2-(2,2-difluoroethoxy)phenyl]propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC(F)F)N=2)C=C1OCC1CC1 AQFAGKLUERJOCX-UHFFFAOYSA-N 0.000 description 1
- GQTTZRIIRAFBCF-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-[2-(trifluoromethoxy)phenyl]propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OC(F)(F)F)N=2)C=C1OCC1CC1 GQTTZRIIRAFBCF-UHFFFAOYSA-N 0.000 description 1
- YJQUCEGCOIJZFP-UHFFFAOYSA-N 3-[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-3-(3-methoxypyridin-2-yl)propanal Chemical compound COC1=CC=C(C=2OC=C(N=2)C(CC=O)C=2C(=CC=CN=2)OC)C=C1OCC1CC1 YJQUCEGCOIJZFP-UHFFFAOYSA-N 0.000 description 1
- IZVVUUAGLVPCIO-UHFFFAOYSA-N 3-[2-[3-(difluoromethoxy)-4-ethoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound C1=C(OC(F)F)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OCC)=CO1 IZVVUUAGLVPCIO-UHFFFAOYSA-N 0.000 description 1
- RKOAXFOHKAKLNU-UHFFFAOYSA-N 3-[2-[3-(difluoromethoxy)-4-ethoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(F)F)C(OCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 RKOAXFOHKAKLNU-UHFFFAOYSA-N 0.000 description 1
- YMTXBXUCSCLYGG-UHFFFAOYSA-N 3-[2-[3-(difluoromethoxy)-4-hydroxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC(F)F)C(O)=CC=2)=N1 YMTXBXUCSCLYGG-UHFFFAOYSA-N 0.000 description 1
- KGOUNCIXVDMCHV-UHFFFAOYSA-N 3-[2-[3-(difluoromethoxy)-4-hydroxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OC(F)F)C(O)=CC=2)=N1 KGOUNCIXVDMCHV-UHFFFAOYSA-N 0.000 description 1
- VCTAJKKAQLVYRA-UHFFFAOYSA-N 3-[2-[3-(difluoromethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC(F)F)C(OC)=CC=2)=N1 VCTAJKKAQLVYRA-UHFFFAOYSA-N 0.000 description 1
- QQGWUUDIPJRESB-UHFFFAOYSA-N 3-[2-[3-(difluoromethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(F)F)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 QQGWUUDIPJRESB-UHFFFAOYSA-N 0.000 description 1
- SDWXVECXYRZDLJ-UHFFFAOYSA-N 3-[2-[3-(difluoromethoxy)-4-propan-2-yloxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(F)F)C(OC(C)C)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 SDWXVECXYRZDLJ-UHFFFAOYSA-N 0.000 description 1
- GRUCUCCDYVPASK-UHFFFAOYSA-N 3-[2-[3-(difluoromethoxy)-4-propoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(F)F)C(OCCC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 GRUCUCCDYVPASK-UHFFFAOYSA-N 0.000 description 1
- YKWJSLZOKJSFJT-UHFFFAOYSA-N 3-[2-[3-but-3-enoxy-4-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCCC=C)C(OC(F)F)=CC=2)=N1 YKWJSLZOKJSFJT-UHFFFAOYSA-N 0.000 description 1
- WINQPMYBRNWAFG-UHFFFAOYSA-N 3-[2-[3-but-3-enoxy-4-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OCCC=C)C(OC(F)F)=CC=2)=N1 WINQPMYBRNWAFG-UHFFFAOYSA-N 0.000 description 1
- WIQDDBGVTVMFRF-UHFFFAOYSA-N 3-[2-[4-(cyclopropylmethoxy)-3-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OC(F)F)C(OCC3CC3)=CC=2)=N1 WIQDDBGVTVMFRF-UHFFFAOYSA-N 0.000 description 1
- YEUOADNBPZYTIU-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-ethoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound C1=C(OC(F)F)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CC=3)OCC)N=2)=C1 YEUOADNBPZYTIU-UHFFFAOYSA-N 0.000 description 1
- LXTJFOJYIUPVNY-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-ethoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(F)F)C(OCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)=C1 LXTJFOJYIUPVNY-UHFFFAOYSA-N 0.000 description 1
- XUXPJDGVWAHJGQ-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-hydroxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(O)C(OC(F)F)=CC=2)=N1 XUXPJDGVWAHJGQ-UHFFFAOYSA-N 0.000 description 1
- OAOAIONEZXMHTI-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-prop-2-enoxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC=C)C(OC(F)F)=CC=2)=N1 OAOAIONEZXMHTI-UHFFFAOYSA-N 0.000 description 1
- FSPPRJQRMQSEBE-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-prop-2-enoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OCC=C)C(OC(F)F)=CC=2)=N1 FSPPRJQRMQSEBE-UHFFFAOYSA-N 0.000 description 1
- RKTKKCVNLWJZRR-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-propan-2-yloxyphenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC(C)C)C(OC(F)F)=CC=2)=N1 RKTKKCVNLWJZRR-UHFFFAOYSA-N 0.000 description 1
- SUMUBGPNAOFJDW-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-propan-2-yloxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(F)F)C(OC(C)C)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)=C1 SUMUBGPNAOFJDW-UHFFFAOYSA-N 0.000 description 1
- LCMGHQLRYSRFHB-UHFFFAOYSA-N 3-[2-[4-(difluoromethoxy)-3-propoxyphenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OC(F)F)C(OCCC)=CC(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)=C1 LCMGHQLRYSRFHB-UHFFFAOYSA-N 0.000 description 1
- AYZBYXMDKFYLEB-UHFFFAOYSA-N 3-[2-[4-but-3-enoxy-3-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one Chemical compound CCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OC(F)F)C(OCCC=C)=CC=2)=N1 AYZBYXMDKFYLEB-UHFFFAOYSA-N 0.000 description 1
- FIMYWOQQGBMCDH-UHFFFAOYSA-N 3-[2-[4-but-3-enoxy-3-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound CC1=CC=CN=C1C(=O)CCC1=COC(C=2C=C(OC(F)F)C(OCCC=C)=CC=2)=N1 FIMYWOQQGBMCDH-UHFFFAOYSA-N 0.000 description 1
- AYBLNERUNUPCHP-UHFFFAOYSA-N 3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one Chemical compound CCCOC1=CC=CC=C1C(=O)CCC1=COC(C=2C=C(OCC(F)(F)F)C(OC)=CC=2)=N1 AYBLNERUNUPCHP-UHFFFAOYSA-N 0.000 description 1
- MNRWEVHSQWTABF-UHFFFAOYSA-N 3-[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 MNRWEVHSQWTABF-UHFFFAOYSA-N 0.000 description 1
- VFYGUWWJVKBVCQ-UHFFFAOYSA-N 3-[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC)=CO1 VFYGUWWJVKBVCQ-UHFFFAOYSA-N 0.000 description 1
- CNZBDQJPZMCWBV-UHFFFAOYSA-N 3-[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 CNZBDQJPZMCWBV-UHFFFAOYSA-N 0.000 description 1
- RGWPFLJQZZVDEB-UHFFFAOYSA-N 3-[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]-3-(3-methoxypyridin-2-yl)propanal Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(C(CC=O)C=2C(=CC=CN=2)OC)=CO1 RGWPFLJQZZVDEB-UHFFFAOYSA-N 0.000 description 1
- CWVBXEUTYMVPQF-UHFFFAOYSA-N 3-[2-[4-methoxy-3-(2-phenylethoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCCC1=CC=CC=C1 CWVBXEUTYMVPQF-UHFFFAOYSA-N 0.000 description 1
- KWCZAZDGIKLZRA-UHFFFAOYSA-N 3-[2-[4-methoxy-3-(3-methylbut-2-enoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound C1=C(OCC=C(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CN=2)C)=CO1 KWCZAZDGIKLZRA-UHFFFAOYSA-N 0.000 description 1
- ZIIDOGGEEFVZFR-UHFFFAOYSA-N 3-[2-[4-methoxy-3-(3-phenylpropoxy)phenyl]-1,3-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one Chemical compound COC1=CC=C(C=2OC=C(CCC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCCCC1=CC=CC=C1 ZIIDOGGEEFVZFR-UHFFFAOYSA-N 0.000 description 1
- SRVXSISGYBMIHR-UHFFFAOYSA-N 3-[3-[3-(2-amino-2-oxoethyl)phenyl]-5-chlorophenyl]-3-(5-methyl-1,3-thiazol-2-yl)propanoic acid Chemical compound S1C(C)=CN=C1C(CC(O)=O)C1=CC(Cl)=CC(C=2C=C(CC(N)=O)C=CC=2)=C1 SRVXSISGYBMIHR-UHFFFAOYSA-N 0.000 description 1
- QPOHRBNPAMRTBX-UHFFFAOYSA-N 3-ethoxy-4-methoxybenzamide Chemical compound CCOC1=CC(C(N)=O)=CC=C1OC QPOHRBNPAMRTBX-UHFFFAOYSA-N 0.000 description 1
- VMHLREUEWDICJT-UHFFFAOYSA-N 3-ethoxy-n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]pyridine-2-carboxamide Chemical compound CCOC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OCC(F)(F)F)C(OC)=CC=2)=N1 VMHLREUEWDICJT-UHFFFAOYSA-N 0.000 description 1
- GFTRVDKUGDSLBK-UHFFFAOYSA-N 3-methoxy-4-phenylmethoxybenzamide Chemical compound COC1=CC(C(N)=O)=CC=C1OCC1=CC=CC=C1 GFTRVDKUGDSLBK-UHFFFAOYSA-N 0.000 description 1
- BODMZNCJWTWDJW-UHFFFAOYSA-N 3-methoxy-n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]pyridine-2-carboxamide Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CN=2)OC)=CO1 BODMZNCJWTWDJW-UHFFFAOYSA-N 0.000 description 1
- 125000006140 3-methylpentyl sulfonyl group Chemical group 0.000 description 1
- AIOUQYUFHADEHR-UHFFFAOYSA-N 3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(N)=O AIOUQYUFHADEHR-UHFFFAOYSA-N 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- WWCXHRYTCIMPOK-UHFFFAOYSA-N 4-(chloromethyl)-2-[3-(2,2-difluoroethoxy)-4-phenylmethoxyphenyl]-1,3-oxazole Chemical compound FC(F)COC1=CC(C=2OC=C(CCl)N=2)=CC=C1OCC1=CC=CC=C1 WWCXHRYTCIMPOK-UHFFFAOYSA-N 0.000 description 1
- PTQQAZFSOCNFMU-UHFFFAOYSA-N 4-(chloromethyl)-2-[3-(difluoromethoxy)-4-phenylmethoxyphenyl]-1,3-oxazole Chemical compound FC(F)OC1=CC(C=2OC=C(CCl)N=2)=CC=C1OCC1=CC=CC=C1 PTQQAZFSOCNFMU-UHFFFAOYSA-N 0.000 description 1
- IGIJSFNBEUBMGB-UHFFFAOYSA-N 4-(cyclohexyliminomethylideneamino)-n,n-diethylcyclohexan-1-amine Chemical compound C1CC(N(CC)CC)CCC1N=C=NC1CCCCC1 IGIJSFNBEUBMGB-UHFFFAOYSA-N 0.000 description 1
- ZLIKNROJGXXNJG-UHFFFAOYSA-N 4-(difluoromethoxy)-3-hydroxybenzaldehyde Chemical compound OC1=CC(C=O)=CC=C1OC(F)F ZLIKNROJGXXNJG-UHFFFAOYSA-N 0.000 description 1
- YFCIFWOJYYFDQP-PTWZRHHISA-N 4-[3-amino-6-[(1S,3S,4S)-3-fluoro-4-hydroxycyclohexyl]pyrazin-2-yl]-N-[(1S)-1-(3-bromo-5-fluorophenyl)-2-(methylamino)ethyl]-2-fluorobenzamide Chemical compound CNC[C@@H](NC(=O)c1ccc(cc1F)-c1nc(cnc1N)[C@H]1CC[C@H](O)[C@@H](F)C1)c1cc(F)cc(Br)c1 YFCIFWOJYYFDQP-PTWZRHHISA-N 0.000 description 1
- PYCYIVFCQNUUTO-UHFFFAOYSA-N 4-[4-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]piperazin-1-yl]phenol Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(N2CCN(CC2)C=2C=CC(O)=CC=2)=CO1 PYCYIVFCQNUUTO-UHFFFAOYSA-N 0.000 description 1
- XYWIPYBIIRTJMM-IBGZPJMESA-N 4-[[(2S)-2-[4-[5-chloro-2-[4-(trifluoromethyl)triazol-1-yl]phenyl]-5-methoxy-2-oxopyridin-1-yl]butanoyl]amino]-2-fluorobenzamide Chemical compound CC[C@H](N1C=C(OC)C(=CC1=O)C1=C(C=CC(Cl)=C1)N1C=C(N=N1)C(F)(F)F)C(=O)NC1=CC(F)=C(C=C1)C(N)=O XYWIPYBIIRTJMM-IBGZPJMESA-N 0.000 description 1
- SMXHHMBWSWSMKA-UHFFFAOYSA-N 4-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]morpholine Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CN2CCOCC2)=CO1 SMXHHMBWSWSMKA-UHFFFAOYSA-N 0.000 description 1
- USHCJYCHXNIYRO-UHFFFAOYSA-N 4-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]piperazin-2-one Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CN2CC(=O)NCC2)=CO1 USHCJYCHXNIYRO-UHFFFAOYSA-N 0.000 description 1
- KVCQTKNUUQOELD-UHFFFAOYSA-N 4-amino-n-[1-(3-chloro-2-fluoroanilino)-6-methylisoquinolin-5-yl]thieno[3,2-d]pyrimidine-7-carboxamide Chemical compound N=1C=CC2=C(NC(=O)C=3C4=NC=NC(N)=C4SC=3)C(C)=CC=C2C=1NC1=CC=CC(Cl)=C1F KVCQTKNUUQOELD-UHFFFAOYSA-N 0.000 description 1
- MOSWRROXHJLMBB-UHFFFAOYSA-N 4-chloro-2-methoxy-n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC(Cl)=CC=2)OC)=CO1 MOSWRROXHJLMBB-UHFFFAOYSA-N 0.000 description 1
- PAIWTAXDYOFLSK-UHFFFAOYSA-N 4-fluoro-2-methoxy-n-[[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methyl]benzamide Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC(F)=CC=2)OC)=CO1 PAIWTAXDYOFLSK-UHFFFAOYSA-N 0.000 description 1
- RWEWUTIPMKOWRT-UHFFFAOYSA-N 4-methoxy-3-propan-2-yloxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1OC(C)C RWEWUTIPMKOWRT-UHFFFAOYSA-N 0.000 description 1
- 125000004217 4-methoxybenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1OC([H])([H])[H])C([H])([H])* 0.000 description 1
- GPEOAEVZTOQXLG-UHFFFAOYSA-N 4-piperazin-1-ium-1-ylphenolate Chemical compound C1=CC(O)=CC=C1N1CCNCC1 GPEOAEVZTOQXLG-UHFFFAOYSA-N 0.000 description 1
- IRPVABHDSJVBNZ-RTHVDDQRSA-N 5-[1-(cyclopropylmethyl)-5-[(1R,5S)-3-(oxetan-3-yl)-3-azabicyclo[3.1.0]hexan-6-yl]pyrazol-3-yl]-3-(trifluoromethyl)pyridin-2-amine Chemical compound C1=C(C(F)(F)F)C(N)=NC=C1C1=NN(CC2CC2)C(C2[C@@H]3CN(C[C@@H]32)C2COC2)=C1 IRPVABHDSJVBNZ-RTHVDDQRSA-N 0.000 description 1
- KCBWAFJCKVKYHO-UHFFFAOYSA-N 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-1-[[4-[1-propan-2-yl-4-(trifluoromethyl)imidazol-2-yl]phenyl]methyl]pyrazolo[3,4-d]pyrimidine Chemical compound C1(CC1)C1=NC=NC(=C1C1=NC=C2C(=N1)N(N=C2)CC1=CC=C(C=C1)C=1N(C=C(N=1)C(F)(F)F)C(C)C)OC KCBWAFJCKVKYHO-UHFFFAOYSA-N 0.000 description 1
- UNQYAAAWKOOBFQ-UHFFFAOYSA-N 7-[(4-chlorophenyl)methyl]-8-[4-chloro-3-(trifluoromethoxy)phenoxy]-1-(3-hydroxypropyl)-3-methylpurine-2,6-dione Chemical compound C=1C=C(Cl)C=CC=1CN1C=2C(=O)N(CCCO)C(=O)N(C)C=2N=C1OC1=CC=C(Cl)C(OC(F)(F)F)=C1 UNQYAAAWKOOBFQ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- ZRPZPNYZFSJUPA-UHFFFAOYSA-N ARS-1620 Chemical compound Oc1cccc(F)c1-c1c(Cl)cc2c(ncnc2c1F)N1CCN(CC1)C(=O)C=C ZRPZPNYZFSJUPA-UHFFFAOYSA-N 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- MIVYGEDNZQZRMH-UHFFFAOYSA-N CCOC(C=CC=C1)=C1C(CCC1=COC(C(C=C2)=CCC2(OC)OCC(F)F)=N1)=O Chemical compound CCOC(C=CC=C1)=C1C(CCC1=COC(C(C=C2)=CCC2(OC)OCC(F)F)=N1)=O MIVYGEDNZQZRMH-UHFFFAOYSA-N 0.000 description 1
- SMUOZHWQKWCONT-UHFFFAOYSA-N CCOC(C=CC=C1)=C1C(CCC1=COC(C(C=C2)=CCC2(OC)OCCC2CCCC2)=N1)=O Chemical compound CCOC(C=CC=C1)=C1C(CCC1=COC(C(C=C2)=CCC2(OC)OCCC2CCCC2)=N1)=O SMUOZHWQKWCONT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XJUZRXYOEPSWMB-UHFFFAOYSA-N Chloromethyl methyl ether Chemical compound COCCl XJUZRXYOEPSWMB-UHFFFAOYSA-N 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- HDFFVHSMHLDSLO-UHFFFAOYSA-N Dibenzyl phosphate Chemical compound C=1C=CC=CC=1COP(=O)(O)OCC1=CC=CC=C1 HDFFVHSMHLDSLO-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- ASMQGLCHMVWBQR-UHFFFAOYSA-N Diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)(O)OC1=CC=CC=C1 ASMQGLCHMVWBQR-UHFFFAOYSA-N 0.000 description 1
- GISRWBROCYNDME-PELMWDNLSA-N F[C@H]1[C@H]([C@H](NC1=O)COC1=NC=CC2=CC(=C(C=C12)OC)C(=O)N)C Chemical compound F[C@H]1[C@H]([C@H](NC1=O)COC1=NC=CC2=CC(=C(C=C12)OC)C(=O)N)C GISRWBROCYNDME-PELMWDNLSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- QZRGKCOWNLSUDK-UHFFFAOYSA-N Iodochlorine Chemical compound ICl QZRGKCOWNLSUDK-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- NMMIHXMBOZYNET-UHFFFAOYSA-N Methyl picolinate Chemical compound COC(=O)C1=CC=CC=N1 NMMIHXMBOZYNET-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- AYCPARAPKDAOEN-LJQANCHMSA-N N-[(1S)-2-(dimethylamino)-1-phenylethyl]-6,6-dimethyl-3-[(2-methyl-4-thieno[3,2-d]pyrimidinyl)amino]-1,4-dihydropyrrolo[3,4-c]pyrazole-5-carboxamide Chemical compound C1([C@H](NC(=O)N2C(C=3NN=C(NC=4C=5SC=CC=5N=C(C)N=4)C=3C2)(C)C)CN(C)C)=CC=CC=C1 AYCPARAPKDAOEN-LJQANCHMSA-N 0.000 description 1
- FEYNFHSRETUBEM-UHFFFAOYSA-N N-[3-(1,1-difluoroethyl)phenyl]-1-(4-methoxyphenyl)-3-methyl-5-oxo-4H-pyrazole-4-carboxamide Chemical compound COc1ccc(cc1)N1N=C(C)C(C(=O)Nc2cccc(c2)C(C)(F)F)C1=O FEYNFHSRETUBEM-UHFFFAOYSA-N 0.000 description 1
- VWFQYQNNIQINJT-UHFFFAOYSA-N N-[[2-[3-(difluoromethoxy)-4-hydroxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OC(F)F)C(O)=CC=2)=N1 VWFQYQNNIQINJT-UHFFFAOYSA-N 0.000 description 1
- CJLVEGWHEHKABD-UHFFFAOYSA-N N-[[2-[3-(difluoromethoxy)-4-hydroxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OC(F)F)C(O)=CC=2)=N1 CJLVEGWHEHKABD-UHFFFAOYSA-N 0.000 description 1
- XNPOFXIBHOVFFH-UHFFFAOYSA-N N-cyclohexyl-N'-(2-(4-morpholinyl)ethyl)carbodiimide Chemical compound C1CCCCC1N=C=NCCN1CCOCC1 XNPOFXIBHOVFFH-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- IDRGFNPZDVBSSE-UHFFFAOYSA-N OCCN1CCN(CC1)c1ccc(Nc2ncc3cccc(-c4cccc(NC(=O)C=C)c4)c3n2)c(F)c1F Chemical compound OCCN1CCN(CC1)c1ccc(Nc2ncc3cccc(-c4cccc(NC(=O)C=C)c4)c3n2)c(F)c1F IDRGFNPZDVBSSE-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 208000018569 Respiratory Tract disease Diseases 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- LXRZVMYMQHNYJB-UNXOBOICSA-N [(1R,2S,4R)-4-[[5-[4-[(1R)-7-chloro-1,2,3,4-tetrahydroisoquinolin-1-yl]-5-methylthiophene-2-carbonyl]pyrimidin-4-yl]amino]-2-hydroxycyclopentyl]methyl sulfamate Chemical compound CC1=C(C=C(S1)C(=O)C1=C(N[C@H]2C[C@H](O)[C@@H](COS(N)(=O)=O)C2)N=CN=C1)[C@@H]1NCCC2=C1C=C(Cl)C=C2 LXRZVMYMQHNYJB-UNXOBOICSA-N 0.000 description 1
- IODFJDTXTJYVPQ-UHFFFAOYSA-N [2-[3-[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]propanoyl]phenyl] acetate Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CCC(=O)C=2C(=CC=CC=2)OC(C)=O)=CO1 IODFJDTXTJYVPQ-UHFFFAOYSA-N 0.000 description 1
- CQODGVQBRIGKLJ-UHFFFAOYSA-L [Na+].[Na+].[O-]OOO[O-] Chemical compound [Na+].[Na+].[O-]OOO[O-] CQODGVQBRIGKLJ-UHFFFAOYSA-L 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003725 azepanyl group Chemical group 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000004622 benzoxazinyl group Chemical group O1NC(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- SIOVKLKJSOKLIF-UHFFFAOYSA-N bis(trimethylsilyl)acetamide Chemical compound C[Si](C)(C)OC(C)=N[Si](C)(C)C SIOVKLKJSOKLIF-UHFFFAOYSA-N 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Substances FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- BRTFVKHPEHKBQF-UHFFFAOYSA-N bromocyclopentane Chemical compound BrC1CCCC1 BRTFVKHPEHKBQF-UHFFFAOYSA-N 0.000 description 1
- 125000005997 bromomethyl group Chemical group 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000001589 carboacyl group Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- DGLFSNZWRYADFC-UHFFFAOYSA-N chembl2334586 Chemical compound C1CCC2=CN=C(N)N=C2C2=C1NC1=CC=C(C#CC(C)(O)C)C=C12 DGLFSNZWRYADFC-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 229940061627 chloromethyl methyl ether Drugs 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- ISQVBYGGNVVVHB-UHFFFAOYSA-N cyclopentylmethanol Chemical compound OCC1CCCC1 ISQVBYGGNVVVHB-UHFFFAOYSA-N 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- 125000004774 dichlorofluoromethyl group Chemical group FC(Cl)(Cl)* 0.000 description 1
- 125000004772 dichloromethyl group Chemical group [H]C(Cl)(Cl)* 0.000 description 1
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 1
- 125000005434 dihydrobenzoxazinyl group Chemical group O1N(CCC2=C1C=CC=C2)* 0.000 description 1
- 125000005435 dihydrobenzoxazolyl group Chemical group O1C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000005047 dihydroimidazolyl group Chemical group N1(CNC=C1)* 0.000 description 1
- 125000005051 dihydropyrazinyl group Chemical group N1(CC=NC=C1)* 0.000 description 1
- 125000004925 dihydropyridyl group Chemical group N1(CC=CC=C1)* 0.000 description 1
- 125000005053 dihydropyrimidinyl group Chemical group N1(CN=CC=C1)* 0.000 description 1
- 125000005054 dihydropyrrolyl group Chemical group [H]C1=C([H])C([H])([H])C([H])([H])N1* 0.000 description 1
- 125000004609 dihydroquinazolinyl group Chemical group N1(CN=CC2=CC=CC=C12)* 0.000 description 1
- 125000005056 dihydrothiazolyl group Chemical group S1C(NC=C1)* 0.000 description 1
- 125000005058 dihydrotriazolyl group Chemical group N1(NNC=C1)* 0.000 description 1
- POEQEQAZSMTJSX-UHFFFAOYSA-N dimethyl 2-[[2-[3-(2,2-difluoroethoxy)-4-phenylmethoxyphenyl]-1,3-oxazol-4-yl]methyl]propanedioate Chemical compound COC(=O)C(C(=O)OC)CC1=COC(C=2C=C(OCC(F)F)C(OCC=3C=CC=CC=3)=CC=2)=N1 POEQEQAZSMTJSX-UHFFFAOYSA-N 0.000 description 1
- LSNOBNLROSTVTM-UHFFFAOYSA-N dimethyl 2-[[2-[4-(difluoromethoxy)-3-phenylmethoxyphenyl]-1,3-oxazol-4-yl]methyl]propanedioate Chemical compound COC(=O)C(C(=O)OC)CC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC(F)F)=CC=2)=N1 LSNOBNLROSTVTM-UHFFFAOYSA-N 0.000 description 1
- HCUYBXPSSCRKRF-UHFFFAOYSA-N diphosgene Chemical compound ClC(=O)OC(Cl)(Cl)Cl HCUYBXPSSCRKRF-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical class CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 description 1
- GCFHZZWXZLABBL-UHFFFAOYSA-N ethanol;hexane Chemical compound CCO.CCCCCC GCFHZZWXZLABBL-UHFFFAOYSA-N 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- JDDFGQMHHRAMCN-UHFFFAOYSA-N ethyl 2-[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]acetate Chemical compound CCOC(=O)CC1=COC(C=2C=C(OCC)C(OCC)=CC=2)=N1 JDDFGQMHHRAMCN-UHFFFAOYSA-N 0.000 description 1
- BNSSGZCQRWLHMA-UHFFFAOYSA-N ethyl 2-[2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]acetate Chemical compound CCOC(=O)CC1=COC(C=2C=C(OC)C(OC)=CC=2)=N1 BNSSGZCQRWLHMA-UHFFFAOYSA-N 0.000 description 1
- RDULEYWUGKOCMR-UHFFFAOYSA-N ethyl 2-chloro-3-oxobutanoate Chemical compound CCOC(=O)C(Cl)C(C)=O RDULEYWUGKOCMR-UHFFFAOYSA-N 0.000 description 1
- OUZCDRGUTZLAGO-UHFFFAOYSA-N ethyl 2-ethoxybenzoate Chemical compound CCOC(=O)C1=CC=CC=C1OCC OUZCDRGUTZLAGO-UHFFFAOYSA-N 0.000 description 1
- ILNZWYKXOCOEQV-UHFFFAOYSA-N ethyl 3,4-bis(difluoromethoxy)benzoate Chemical compound CCOC(=O)C1=CC=C(OC(F)F)C(OC(F)F)=C1 ILNZWYKXOCOEQV-UHFFFAOYSA-N 0.000 description 1
- NLYXSNZLFATKET-UHFFFAOYSA-N ethyl 3-(2,2-difluoroethoxy)-4-phenylmethoxybenzoate Chemical compound FC(F)COC1=CC(C(=O)OCC)=CC=C1OCC1=CC=CC=C1 NLYXSNZLFATKET-UHFFFAOYSA-N 0.000 description 1
- LIUBGYBOBYDVME-UHFFFAOYSA-N ethyl 3-(difluoromethoxy)-4-phenylmethoxybenzoate Chemical compound FC(F)OC1=CC(C(=O)OCC)=CC=C1OCC1=CC=CC=C1 LIUBGYBOBYDVME-UHFFFAOYSA-N 0.000 description 1
- VICYTAYPKBLQFB-UHFFFAOYSA-N ethyl 3-bromo-2-oxopropanoate Chemical compound CCOC(=O)C(=O)CBr VICYTAYPKBLQFB-UHFFFAOYSA-N 0.000 description 1
- VKKVFRWNHZHHQU-UHFFFAOYSA-N ethyl 3-methylpyridine-2-carboxylate Chemical compound CCOC(=O)C1=NC=CC=C1C VKKVFRWNHZHHQU-UHFFFAOYSA-N 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 1
- WMYNMYVRWWCRPS-UHFFFAOYSA-N ethynoxyethane Chemical group CCOC#C WMYNMYVRWWCRPS-UHFFFAOYSA-N 0.000 description 1
- 125000005290 ethynyloxy group Chemical group C(#C)O* 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 150000002306 glutamic acid derivatives Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000006343 heptafluoro propyl group Chemical group 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Chemical group 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 125000005929 isobutyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])OC(*)=O 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003893 lactate salts Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 150000004701 malic acid derivatives Chemical class 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M methanesulfonate group Chemical class CS(=O)(=O)[O-] AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- XWHWDJUHYGCOAB-UHFFFAOYSA-N methyl 2-[[2-[3-(2,2-difluoroethoxy)-4-phenylmethoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-(3-methylpyridin-2-yl)-3-oxopropanoate Chemical compound N=1C=CC=C(C)C=1C(=O)C(C(=O)OC)CC(N=1)=COC=1C(C=C1OCC(F)F)=CC=C1OCC1=CC=CC=C1 XWHWDJUHYGCOAB-UHFFFAOYSA-N 0.000 description 1
- ONDUACLVJBHIKX-UHFFFAOYSA-N methyl 3-(3-methoxypyridin-2-yl)-2-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-oxopropanoate Chemical compound N=1C=CC=C(OC)C=1C(=O)C(C(=O)OC)CC(N=1)=COC=1C1=CC=C(OC)C(OCC(F)(F)F)=C1 ONDUACLVJBHIKX-UHFFFAOYSA-N 0.000 description 1
- SWTCITAPOOKHNM-UHFFFAOYSA-N methyl 3-[2-[3,4-bis(phenylmethoxy)phenyl]-1,3-oxazol-4-yl]propanoate Chemical compound COC(=O)CCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OCC=3C=CC=CC=3)=CC=2)=N1 SWTCITAPOOKHNM-UHFFFAOYSA-N 0.000 description 1
- PXQOXFKGFKWXHW-UHFFFAOYSA-N methyl 3-[2-[3-(2,2-difluoroethoxy)-4-phenylmethoxyphenyl]-1,3-oxazol-4-yl]propanoate Chemical compound COC(=O)CCC1=COC(C=2C=C(OCC(F)F)C(OCC=3C=CC=CC=3)=CC=2)=N1 PXQOXFKGFKWXHW-UHFFFAOYSA-N 0.000 description 1
- ICEZRPNLTHPWLR-UHFFFAOYSA-N methyl 3-[2-[4-(difluoromethoxy)-3-phenylmethoxyphenyl]-1,3-oxazol-4-yl]propanoate Chemical compound COC(=O)CCC1=COC(C=2C=C(OCC=3C=CC=CC=3)C(OC(F)F)=CC=2)=N1 ICEZRPNLTHPWLR-UHFFFAOYSA-N 0.000 description 1
- PYEPIWRQEUGIRK-UHFFFAOYSA-N methyl 3-bromo-4-oxopentanoate Chemical compound COC(=O)CC(Br)C(C)=O PYEPIWRQEUGIRK-UHFFFAOYSA-N 0.000 description 1
- RUIUPJMNQCUHNG-UHFFFAOYSA-N methyl 3-ethoxypyridine-2-carboxylate Chemical compound CCOC1=CC=CN=C1C(=O)OC RUIUPJMNQCUHNG-UHFFFAOYSA-N 0.000 description 1
- CCQFKEITVOTHIW-UHFFFAOYSA-N methyl 3-methylpyridine-2-carboxylate Chemical compound COC(=O)C1=NC=CC=C1C CCQFKEITVOTHIW-UHFFFAOYSA-N 0.000 description 1
- AUQDWNOSVDUIAT-UHFFFAOYSA-N methyl 5-bromo-4-oxopentanoate Chemical compound COC(=O)CCC(=O)CBr AUQDWNOSVDUIAT-UHFFFAOYSA-N 0.000 description 1
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical class COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- UHAAFJWANJYDIS-UHFFFAOYSA-N n,n'-diethylmethanediimine Chemical compound CCN=C=NCC UHAAFJWANJYDIS-UHFFFAOYSA-N 0.000 description 1
- LFMTUFVYMCDPGY-UHFFFAOYSA-N n,n-diethylethanamine oxide Chemical compound CC[N+]([O-])(CC)CC LFMTUFVYMCDPGY-UHFFFAOYSA-N 0.000 description 1
- VMESOKCXSYNAKD-UHFFFAOYSA-N n,n-dimethylhydroxylamine Chemical compound CN(C)O VMESOKCXSYNAKD-UHFFFAOYSA-N 0.000 description 1
- ZKHVCPGMWMTOQV-UHFFFAOYSA-N n-[2-[2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]ethyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCCC1=COC(C=2C=C(OC)C(OC)=CC=2)=N1 ZKHVCPGMWMTOQV-UHFFFAOYSA-N 0.000 description 1
- YZDZDMKRARRDGQ-UHFFFAOYSA-N n-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OCC)=CO1 YZDZDMKRARRDGQ-UHFFFAOYSA-N 0.000 description 1
- OGOISOPUPVGXFX-UHFFFAOYSA-N n-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-methylbenzenesulfonamide Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CNS(=O)(=O)C=2C(=CC=CC=2)C)=CO1 OGOISOPUPVGXFX-UHFFFAOYSA-N 0.000 description 1
- SUKKEERDVSGXKH-UHFFFAOYSA-N n-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-ethoxybenzamide Chemical compound CCOC1=CC=CC(C(=O)NCC=2N=C(OC=2)C=2C=C(OCC)C(OCC)=CC=2)=C1 SUKKEERDVSGXKH-UHFFFAOYSA-N 0.000 description 1
- XTKGZFUOVIGLPO-UHFFFAOYSA-N n-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]-4-ethoxybenzamide Chemical compound C1=CC(OCC)=CC=C1C(=O)NCC1=COC(C=2C=C(OCC)C(OCC)=CC=2)=N1 XTKGZFUOVIGLPO-UHFFFAOYSA-N 0.000 description 1
- DWLAGQWSQHDMAL-UHFFFAOYSA-N n-[[2-(3,4-diethoxyphenyl)-1,3-oxazol-4-yl]methyl]pyridine-2-carboxamide Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(CNC(=O)C=2N=CC=CC=2)=CO1 DWLAGQWSQHDMAL-UHFFFAOYSA-N 0.000 description 1
- BOCSAZOYBQUDET-UHFFFAOYSA-N n-[[2-(3,4-dimethoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-ethoxy-n-methylbenzamide Chemical compound CCOC1=CC=CC=C1C(=O)N(C)CC1=COC(C=2C=C(OC)C(OC)=CC=2)=N1 BOCSAZOYBQUDET-UHFFFAOYSA-N 0.000 description 1
- DYYCYEYAKXRYIT-UHFFFAOYSA-N n-[[2-(3-but-3-enoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCCC=C)C(OC)=CC=2)=N1 DYYCYEYAKXRYIT-UHFFFAOYSA-N 0.000 description 1
- OPVJGVILMRLGNU-UHFFFAOYSA-N n-[[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OC3CCCC3)C(OC)=CC=2)=N1 OPVJGVILMRLGNU-UHFFFAOYSA-N 0.000 description 1
- HFFOMZGGTREHLI-UHFFFAOYSA-N n-[[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-methoxybenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OC)N=2)C=C1OC1CCCC1 HFFOMZGGTREHLI-UHFFFAOYSA-N 0.000 description 1
- BIYNVOWYPTZQKY-UHFFFAOYSA-N n-[[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-ethoxypyridine-2-carboxamide Chemical compound CCOC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OC3CCCC3)C(OC)=CC=2)=N1 BIYNVOWYPTZQKY-UHFFFAOYSA-N 0.000 description 1
- CHZXTPSRFXWGKD-UHFFFAOYSA-N n-[[2-(3-cyclopentyloxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OC1CCCC1 CHZXTPSRFXWGKD-UHFFFAOYSA-N 0.000 description 1
- VKTAZENXEYOAKO-UHFFFAOYSA-N n-[[2-(3-ethoxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC)C(OCC)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)=C1 VKTAZENXEYOAKO-UHFFFAOYSA-N 0.000 description 1
- LJIQLHGEQDPLBN-UHFFFAOYSA-N n-[[2-(3-hydroxy-4-methoxyphenyl)-1,3-oxazol-4-yl]methyl]-2-(2,2,2-trifluoroethoxy)benzamide Chemical compound C1=C(O)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OCC(F)(F)F)=CO1 LJIQLHGEQDPLBN-UHFFFAOYSA-N 0.000 description 1
- WGPQHMNJSRHSAF-UHFFFAOYSA-N n-[[2-(4-methoxy-3-pentan-3-yloxyphenyl)-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC)C(OC(CC)CC)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)=C1 WGPQHMNJSRHSAF-UHFFFAOYSA-N 0.000 description 1
- KPKJIZGYMJVDHG-UHFFFAOYSA-N n-[[2-(4-methoxy-3-propan-2-yloxyphenyl)-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC(C)C)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CN=2)C)=CO1 KPKJIZGYMJVDHG-UHFFFAOYSA-N 0.000 description 1
- ZQQVYPXDTQOXJM-UHFFFAOYSA-N n-[[2-[3,4-bis(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OC(F)F)C(OC(F)F)=CC=2)=N1 ZQQVYPXDTQOXJM-UHFFFAOYSA-N 0.000 description 1
- YNDPDKZMMOKFRV-UHFFFAOYSA-N n-[[2-[3,4-bis(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OC(F)F)C(OC(F)F)=CC=2)=N1 YNDPDKZMMOKFRV-UHFFFAOYSA-N 0.000 description 1
- SFFJGHUKYJYKPZ-UHFFFAOYSA-N n-[[2-[3-(2,3-dihydro-1h-inden-2-yloxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC2CC3=CC=CC=C3C2)C(OC)=CC=C1C(OC=1)=NC=1CNC(=O)C1=NC=CC=C1C SFFJGHUKYJYKPZ-UHFFFAOYSA-N 0.000 description 1
- LTTWMGWDYMSWLE-UHFFFAOYSA-N n-[[2-[3-(3-hydroxypropoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-(trifluoromethyl)benzamide Chemical compound C1=C(OCCCO)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)C(F)(F)F)=CO1 LTTWMGWDYMSWLE-UHFFFAOYSA-N 0.000 description 1
- DBZNZNTVKKYLJK-UHFFFAOYSA-N n-[[2-[3-(cyclobutylmethoxy)-4-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC3CCC3)C(OC(F)F)=CC=2)=N1 DBZNZNTVKKYLJK-UHFFFAOYSA-N 0.000 description 1
- OXUCVRUPOZQECP-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OCC(F)(F)F)=CC=2)=N1 OXUCVRUPOZQECP-UHFFFAOYSA-N 0.000 description 1
- ADWRWQTYZWVWLM-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OCC(F)(F)F)=CC=2)=N1 ADWRWQTYZWVWLM-UHFFFAOYSA-N 0.000 description 1
- GCBKCBWMAZJIDM-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OC(F)F)=CC=2)=N1 GCBKCBWMAZJIDM-UHFFFAOYSA-N 0.000 description 1
- ZPWHKXJIMBLWTR-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2,6-dimethoxybenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3OC)OC)N=2)C=C1OCC1CC1 ZPWHKXJIMBLWTR-UHFFFAOYSA-N 0.000 description 1
- KTHWJDJYQVPKFC-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-(2,2,2-trifluoroethoxy)benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OCC(F)(F)F)N=2)C=C1OCC1CC1 KTHWJDJYQVPKFC-UHFFFAOYSA-N 0.000 description 1
- WCRZVLDTBJQDHC-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-(2-methylpropoxy)benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OCC(C)C)N=2)C=C1OCC1CC1 WCRZVLDTBJQDHC-UHFFFAOYSA-N 0.000 description 1
- GRJBVCVVCHRYDU-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-(trifluoromethoxy)benzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OC(F)(F)F)N=2)C=C1OCC1CC1 GRJBVCVVCHRYDU-UHFFFAOYSA-N 0.000 description 1
- UCCPMEJCZRVBSM-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 UCCPMEJCZRVBSM-UHFFFAOYSA-N 0.000 description 1
- LNZJGTSADFXTTP-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethylbenzamide Chemical compound CCC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 LNZJGTSADFXTTP-UHFFFAOYSA-N 0.000 description 1
- XZFHWWKVGNPEKP-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethylsulfanylbenzamide Chemical compound CCSC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 XZFHWWKVGNPEKP-UHFFFAOYSA-N 0.000 description 1
- WOXVOYUUIGLPQG-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-fluoro-6-methoxybenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3F)OC)N=2)C=C1OCC1CC1 WOXVOYUUIGLPQG-UHFFFAOYSA-N 0.000 description 1
- LXKHTWIZQCFBDR-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-methoxybenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OC)N=2)C=C1OCC1CC1 LXKHTWIZQCFBDR-UHFFFAOYSA-N 0.000 description 1
- WFFBLGPYISLSDR-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-methylbenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)C)N=2)C=C1OCC1CC1 WFFBLGPYISLSDR-UHFFFAOYSA-N 0.000 description 1
- IQZVQGPPMKZEKK-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-methylpyridine-3-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=NC=CC=3)C)N=2)C=C1OCC1CC1 IQZVQGPPMKZEKK-UHFFFAOYSA-N 0.000 description 1
- YSDIJYIKKCRMHW-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-methylsulfonylbenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)S(C)(=O)=O)N=2)C=C1OCC1CC1 YSDIJYIKKCRMHW-UHFFFAOYSA-N 0.000 description 1
- WOMOHMXFWNXKNQ-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-propan-2-yloxybenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OC(C)C)N=2)C=C1OCC1CC1 WOMOHMXFWNXKNQ-UHFFFAOYSA-N 0.000 description 1
- KDBDWAZVQBRHOF-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-propoxybenzamide Chemical compound CCCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 KDBDWAZVQBRHOF-UHFFFAOYSA-N 0.000 description 1
- AHERLJZNDNMXHC-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-(2-methylpropoxy)pyridine-2-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)OCC(C)C)N=2)C=C1OCC1CC1 AHERLJZNDNMXHC-UHFFFAOYSA-N 0.000 description 1
- FJQVPRLSKZYLSI-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-ethoxypyridine-2-carboxamide Chemical compound CCOC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OCC3CC3)C(OC)=CC=2)=N1 FJQVPRLSKZYLSI-UHFFFAOYSA-N 0.000 description 1
- YHHIXXUAMZOOAU-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methoxypyridine-2-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)OC)N=2)C=C1OCC1CC1 YHHIXXUAMZOOAU-UHFFFAOYSA-N 0.000 description 1
- OLXODHGSYVSVKU-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)C=C1OCC1CC1 OLXODHGSYVSVKU-UHFFFAOYSA-N 0.000 description 1
- QHCCUBRLFMHWQK-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-propan-2-yloxypyridine-2-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)OC(C)C)N=2)C=C1OCC1CC1 QHCCUBRLFMHWQK-UHFFFAOYSA-N 0.000 description 1
- OCKXOGYOOSNLBD-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-4-fluoro-2-methoxybenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC(F)=CC=3)OC)N=2)C=C1OCC1CC1 OCKXOGYOOSNLBD-UHFFFAOYSA-N 0.000 description 1
- BQVUHEJFYWRNEJ-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-5-fluoro-2-methoxybenzamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C(=CC=C(F)C=3)OC)N=2)C=C1OCC1CC1 BQVUHEJFYWRNEJ-UHFFFAOYSA-N 0.000 description 1
- LSWRLUPHRCWDGF-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]-n-methyl-2-(trifluoromethyl)benzamide Chemical compound COC1=CC=C(C=2OC=C(CN(C)C(=O)C=3C(=CC=CC=3)C(F)(F)F)N=2)C=C1OCC1CC1 LSWRLUPHRCWDGF-UHFFFAOYSA-N 0.000 description 1
- NYGDAXRQMYRKRH-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]isoquinoline-1-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3C4=CC=CC=C4C=CN=3)N=2)C=C1OCC1CC1 NYGDAXRQMYRKRH-UHFFFAOYSA-N 0.000 description 1
- AUCWHFIDEROXJZ-UHFFFAOYSA-N n-[[2-[3-(cyclopropylmethoxy)-4-methoxyphenyl]-1,3-oxazol-4-yl]methyl]pyrazine-2-carboxamide Chemical compound COC1=CC=C(C=2OC=C(CNC(=O)C=3N=CC=NC=3)N=2)C=C1OCC1CC1 AUCWHFIDEROXJZ-UHFFFAOYSA-N 0.000 description 1
- DRNYXWPKTNXVNX-UHFFFAOYSA-N n-[[2-[3-(difluoromethoxy)-4-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC(F)F)C(OCC(C)C)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CN=2)C)=CO1 DRNYXWPKTNXVNX-UHFFFAOYSA-N 0.000 description 1
- YRCLOSAWONOWOK-UHFFFAOYSA-N n-[[2-[3-(difluoromethoxy)-4-propan-2-yloxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OC(F)F)C(OC(C)C)=CC=2)=N1 YRCLOSAWONOWOK-UHFFFAOYSA-N 0.000 description 1
- FLMQFJMFEDHUTJ-UHFFFAOYSA-N n-[[2-[3-(difluoromethoxy)-4-propoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound C1=C(OC(F)F)C(OCCC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OCC)=CO1 FLMQFJMFEDHUTJ-UHFFFAOYSA-N 0.000 description 1
- LEIGBCQKNIHAJW-UHFFFAOYSA-N n-[[2-[3-but-3-enoxy-4-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCCC=C)C(OC(F)F)=CC=2)=N1 LEIGBCQKNIHAJW-UHFFFAOYSA-N 0.000 description 1
- SSNIJNZQDXXTFT-UHFFFAOYSA-N n-[[2-[3-but-3-enoxy-4-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OCCC=C)C(OC(F)F)=CC=2)=N1 SSNIJNZQDXXTFT-UHFFFAOYSA-N 0.000 description 1
- YIAVIEHCTUOYNE-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC(F)(F)F)C(OC(F)F)=CC=2)=N1 YIAVIEHCTUOYNE-UHFFFAOYSA-N 0.000 description 1
- IRACUEGUHBIDAI-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC(C)C)C(OC(F)F)=CC=2)=N1 IRACUEGUHBIDAI-UHFFFAOYSA-N 0.000 description 1
- CZMBOKSRQLKALJ-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC(F)F)C(OCC(C)C)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)=C1 CZMBOKSRQLKALJ-UHFFFAOYSA-N 0.000 description 1
- LJMSMNPASMREJG-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-ethoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound C1=C(OC(F)F)C(OCC)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OCC)N=2)=C1 LJMSMNPASMREJG-UHFFFAOYSA-N 0.000 description 1
- DVVPPIGHUARGBO-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-ethoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC(F)F)C(OCC)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)=C1 DVVPPIGHUARGBO-UHFFFAOYSA-N 0.000 description 1
- BLYZISYAIDLUIU-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-hydroxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(O)C(OC(F)F)=CC=2)=N1 BLYZISYAIDLUIU-UHFFFAOYSA-N 0.000 description 1
- YDUWYUCABOGYJS-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-pentan-3-yloxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OC(CC)CC)C(OC(F)F)=CC=2)=N1 YDUWYUCABOGYJS-UHFFFAOYSA-N 0.000 description 1
- MBRJWGVUKRVYBT-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-pentan-3-yloxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC(F)F)C(OC(CC)CC)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)=C1 MBRJWGVUKRVYBT-UHFFFAOYSA-N 0.000 description 1
- QPZHOQATADRGBT-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-prop-2-enoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC=C)C(OC(F)F)=CC=2)=N1 QPZHOQATADRGBT-UHFFFAOYSA-N 0.000 description 1
- ZPYPOYFKMYGXCT-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-prop-2-enoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OCC=C)C(OC(F)F)=CC=2)=N1 ZPYPOYFKMYGXCT-UHFFFAOYSA-N 0.000 description 1
- GSQZJZWCDIPFCF-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-propan-2-yloxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC(F)F)C(OC(C)C)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)=C1 GSQZJZWCDIPFCF-UHFFFAOYSA-N 0.000 description 1
- GPZAOJIJIXPWSW-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-propoxyphenyl]-1,3-oxazol-4-yl]methyl]-2-ethoxybenzamide Chemical compound C1=C(OC(F)F)C(OCCC)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CC=3)OCC)N=2)=C1 GPZAOJIJIXPWSW-UHFFFAOYSA-N 0.000 description 1
- FDDJYNUZRVOONW-UHFFFAOYSA-N n-[[2-[4-(difluoromethoxy)-3-propoxyphenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OC(F)F)C(OCCC)=CC(C=2OC=C(CNC(=O)C=3C(=CC=CN=3)C)N=2)=C1 FDDJYNUZRVOONW-UHFFFAOYSA-N 0.000 description 1
- ZMJBVWMVPOEDOZ-UHFFFAOYSA-N n-[[2-[4-but-3-enoxy-3-(difluoromethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound CC1=CC=CN=C1C(=O)NCC1=COC(C=2C=C(OC(F)F)C(OCCC=C)=CC=2)=N1 ZMJBVWMVPOEDOZ-UHFFFAOYSA-N 0.000 description 1
- JRVPWWYFHAZCRR-UHFFFAOYSA-N n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-methylbenzamide Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)C)=CO1 JRVPWWYFHAZCRR-UHFFFAOYSA-N 0.000 description 1
- UMMFZYOVYVTNTA-UHFFFAOYSA-N n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-propan-2-yloxybenzamide Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CC=2)OC(C)C)=CO1 UMMFZYOVYVTNTA-UHFFFAOYSA-N 0.000 description 1
- INIJBAHGYNKEKN-UHFFFAOYSA-N n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-2-propoxybenzamide Chemical compound CCCOC1=CC=CC=C1C(=O)NCC1=COC(C=2C=C(OCC(F)(F)F)C(OC)=CC=2)=N1 INIJBAHGYNKEKN-UHFFFAOYSA-N 0.000 description 1
- DXLHTTOABFTMKT-UHFFFAOYSA-N n-[[2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OCC(F)(F)F)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CN=2)C)=CO1 DXLHTTOABFTMKT-UHFFFAOYSA-N 0.000 description 1
- WVLYDRSRCSIYMQ-UHFFFAOYSA-N n-[[2-[4-methoxy-3-(2-methylpropoxy)phenyl]-1,3-oxazol-4-yl]methyl]-3-methylpyridine-2-carboxamide Chemical compound C1=C(OCC(C)C)C(OC)=CC=C1C1=NC(CNC(=O)C=2C(=CC=CN=2)C)=CO1 WVLYDRSRCSIYMQ-UHFFFAOYSA-N 0.000 description 1
- 125000006126 n-butyl sulfonyl group Chemical group 0.000 description 1
- JVHPKYBRJQNPAT-UHFFFAOYSA-N n-cyclohexyl-2,2-diphenylethenimine Chemical compound C1CCCCC1N=C=C(C=1C=CC=CC=1)C1=CC=CC=C1 JVHPKYBRJQNPAT-UHFFFAOYSA-N 0.000 description 1
- DOWVMJFBDGWVML-UHFFFAOYSA-N n-cyclohexyl-n-methyl-4-(1-oxidopyridin-1-ium-3-yl)imidazole-1-carboxamide Chemical compound C1=NC(C=2C=[N+]([O-])C=CC=2)=CN1C(=O)N(C)C1CCCCC1 DOWVMJFBDGWVML-UHFFFAOYSA-N 0.000 description 1
- NNKPHNTWNILINE-UHFFFAOYSA-N n-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxopyrazin-1-yl]benzamide Chemical compound CNCCOC1=CC=CC=C1C1(NC=2C(N(C=3C(=C(F)C=C(C=3)C(=O)NC3CC3)C)C=CN=2)=O)CC1 NNKPHNTWNILINE-UHFFFAOYSA-N 0.000 description 1
- 125000006137 n-hexyl sulfonyl group Chemical group 0.000 description 1
- 125000006129 n-pentyl sulfonyl group Chemical group 0.000 description 1
- 125000006124 n-propyl sulfonyl group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 125000005933 neopentyloxycarbonyl group Chemical group 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000005061 octahydroisoindolyl group Chemical group C1(NCC2CCCCC12)* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 1
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229910003445 palladium oxide Inorganic materials 0.000 description 1
- MRDGZSKYFPGAKP-UHFFFAOYSA-N para-methoxyphenylpiperazine Chemical compound C1=CC(OC)=CC=C1N1CCNCC1 MRDGZSKYFPGAKP-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003015 phosphoric acid halides Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical class OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- IWELDVXSEVIIGI-UHFFFAOYSA-N piperazin-2-one Chemical compound O=C1CNCCN1 IWELDVXSEVIIGI-UHFFFAOYSA-N 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- IVRIRQXJSNCSPQ-UHFFFAOYSA-N propan-2-yl carbonochloridate Chemical compound CC(C)OC(Cl)=O IVRIRQXJSNCSPQ-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- WHMDPDGBKYUEMW-UHFFFAOYSA-N pyridine-2-thiol Chemical compound SC1=CC=CC=N1 WHMDPDGBKYUEMW-UHFFFAOYSA-N 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 125000005930 sec-butyloxycarbonyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- XIIOFHFUYBLOLW-UHFFFAOYSA-N selpercatinib Chemical compound OC(COC=1C=C(C=2N(C=1)N=CC=2C#N)C=1C=NC(=CC=1)N1CC2N(C(C1)C2)CC=1C=NC(=CC=1)OC)(C)C XIIOFHFUYBLOLW-UHFFFAOYSA-N 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- XGVXKJKTISMIOW-ZDUSSCGKSA-N simurosertib Chemical compound N1N=CC(C=2SC=3C(=O)NC(=NC=3C=2)[C@H]2N3CCC(CC3)C2)=C1C XGVXKJKTISMIOW-ZDUSSCGKSA-N 0.000 description 1
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- CGRKYEALWSRNJS-UHFFFAOYSA-N sodium;2-methylbutan-2-olate Chemical compound [Na+].CCC(C)(C)[O-] CGRKYEALWSRNJS-UHFFFAOYSA-N 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 125000006253 t-butylcarbonyl group Chemical group [H]C([H])([H])C(C(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000003774 valeryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 210000004916 vomit Anatomy 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/30—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D263/34—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/42—Oxazoles
- A61K31/421—1,3-Oxazoles, e.g. pemoline, trimethadione
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/42—Oxazoles
- A61K31/422—Oxazoles not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4965—Non-condensed pyrazines
- A61K31/497—Non-condensed pyrazines containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/30—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D263/32—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/06—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/04—Phosphoric diester hydrolases (3.1.4)
- C12Y301/04012—Sphingomyelin phosphodiesterase (3.1.4.12)
Definitions
- the present invention relates to new oxazole compounds and pharmaceutical compositions.
- PDE4 phosphodiesterase 4
- An object of the present invention is to provide a compound that has a PDE4 inhibitory action and is free from the above-mentioned problems of the prior art.
- the present inventors conducted extensive research to solve the above problems, and succeeded in synthesizing an oxazole compound with a novel structure, the compound having high specificity and a strong PDE4 inhibitory action. Further, the present inventors found that the oxazole compound is capable of exhibiting preventive and/or therapeutic effects on PDE-mediated diseases, and in particular atopic dermatitis, based on its PDE4 inhibitory action. Furthermore, the inventors found that the compound has low penetration into blood when administered transdermally, and thus has low systemic side effects.
- the present inventors further found that the oxazole compound is capable of exhibiting a tumor necrosis factor- ⁇ (TNF- ⁇ ) production inhibitory action.
- TNF- ⁇ tumor necrosis factor- ⁇
- the oxazole compound of the present invention is extremely effective for the treatment of TNF- ⁇ -mediated diseases.
- the present invention has been accomplished by further research based on the above findings.
- the present invention provides a oxazole compound, a pharmaceutical composition comprising said compound, a use of said compound, a method for treating or preventing a disorder, and a process for producing said compound, as described in Item 1 to 14 below.
- R 1 is an aryl group which may have one or more substituents selected from the following (1-1) to (1-11): (1-1) hydroxy groups, (1-2) unsubstituted or halogen-substituted lower alkoxy groups, (1-3) lower alkenyloxy groups, (1-4) lower alkynyloxy groups, (1-5) cyclo C 3-8 alkyl lower alkoxy groups, (1-6) cyclo C 3-8 alkyloxy groups, (1-7) cyclo C 3-8 alkenyloxy groups, (1-8) dihydroindenyloxy groups, (1-9) hydroxy lower alkoxy groups, (1-10) oxiranyl lower alkoxy groups, and (1-11) protected hydroxy groups; R 2 is an aryl group or a nitrogen atom-containing heterocyclic group each of which may have one or more substituents selected from the following (2-1) to (2-10): (1-1) hydroxy groups, (2-2) unsubstituted or halogen-substituted lower alkoxy groups
- a 1 is a lower alkenylene group, or a lower alkylene group which may have one or more substituents selected from the group consisting of hydroxy groups and lower alkoxycarbonyl groups
- Y 1 is a direct bond, —C( ⁇ O)—, —C( ⁇ O)—N(R 3 )—, —N(R 4 )—C( ⁇ O)—, —S(O) m —NH—, or —S(O) n —
- R 3 and R 4 are each independently a hydrogen atom or a lower alkyl group, and m and n are each independently an integer from 0 to 2
- Y 2 is a piperazinediyl group, or a divalent group represented by Formula (iii) or (iv):
- a 2 and A 3 are each independently a lower alkylene group, and R 5 and R 6 are each independently a hydrogen atom or a lower alkyl group; or a salt thereof.
- R 1 is a phenyl group which has 1 to 3 substituents selected from the following (1-2), (1-3), (1-4) and (1-5): (1-2) unsubstituted or halogen-substituted lower alkoxy groups, (1-3) lower alkenyloxy groups, (1-4) lower alkynyloxy groups, and (1-5) cyclo C 3-8 alkyl lower alkoxy groups;
- R 2 is a phenyl group or a pyridyl group each of which may have 1 to 3 substituents selected from the group consisting of the following (2-2), (2-3), (2-4) and (2-5): (2-2) unsubstituted or halogen-substituted lower alkoxy groups, (2-3) unsubstituted or halogen-substituted lower alkyl groups, (2-4) lower alkenyloxy groups, and (2-5) halogen atoms;
- W is a divalent group represented by Formula (i):
- A′ is a lower alkylene group
- Y 1 is —C( ⁇ O)— or —C( ⁇ O)—N(R 3 )— wherein R 3 is a hydrogen atom.
- R 1 is a phenyl group having two substituents selected from the following (1-2), (1-3), (1-4) and (1-5): (1-2) unsubstituted or halogen-substituted lower alkoxy groups, (1-3) lower alkenyloxy groups, (1-4) lower alkynyloxy groups, and (1-5) cyclo C 3-8 alkyl lower alkoxy groups;
- R 2 is a phenyl group or a pyridyl group each of which may have 1 to 2 substituents selected from the following (2-2), (2-3), (2-4) and (2-5): (2-2) unsubstituted or halogen-substituted lower alkoxy groups, (2-3) unsubstituted or halogen-substituted lower alkyl groups, (2-4) lower alkenyloxy groups, and (2-5) halogen atoms; and W is a divalent group represented by Formula (i):
- a 1 is a lower alkylene group
- Y 1 is —C( ⁇ O)— or —C( ⁇ O)—N(R 3 )— wherein R 3 is a hydrogen atom.
- R 1 is a phenyl group substituted on the phenyl ring with two lower alkoxy groups, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one cyclo C 3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl group with one lower alkoxy group and one lower alkenyloxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C 3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group, or a phenyl group substituted on the phenyl ring
- a 1 is a C 1-4 alkylene group
- Y 1 is —C( ⁇ O)— or —C( ⁇ O)—N(R 3 )— wherein R 3 is a hydrogen atom.
- R 1 is a phenyl group substituted on the phenyl ring with two lower alkoxy groups, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one cyclo C 3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl group with one lower alkoxy group and one lower alkenyloxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C 3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group, or a phenyl group substituted on the phenyl ring
- a 1 is a C 1-4 alkylene group
- Y 1 is —C( ⁇ O)—.
- R 1 is a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C 3-8 alkyl lower alkoxy group, or a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group;
- R 2 is a lower alkoxyphenyl group or a lower alkylpyridyl group; and W is a divalent group represented by Formula (i):
- a 1 is a C 1-4 alkylene group
- Y 1 is —C( ⁇ O)—N(R 3 )— wherein R 3 is a hydrogen atom.
- Item 7 A pharmaceutical composition comprising the compound or salt according to any one of items 1 to 6 as an active ingredient and a pharmaceutically acceptable carrier.
- Item 8 A pharmaceutical composition for treating or preventing phosphodiesterase 4-mediated and/or tumor necrosis factor- ⁇ -mediated diseases, the composition comprising the compound or salt according to any one of items 1 to 6.
- Item 9 A pharmaceutical composition for treating or preventing atopic dermatitis, the composition comprising the compound or salt according to any one of items 1 to 6.
- Item 10 A process for producing a pharmaceutical composition, the process comprising mixing the compound or salt according to any one of items 1 to 6 with a pharmaceutically acceptable carrier.
- Item 11 Use of the compound or salt according to any one of items 1 to 6 as a drug.
- Item 12 Use of the compound or salt according to any one of items 1 to 6 as a phosphodiesterase 4 inhibitor and/or tumor necrosis factor- ⁇ production inhibitor.
- Item 13 A method for treating or preventing phosphodiesterase 4-mediated and/or tumor necrosis factor- ⁇ -mediated diseases, the method comprising administering the compound or salt according to any one of items 1 to 6 to human or animal.
- R 1 , R 2 and W are the same as defined in item 1, or a salt thereof, the process comprising a reaction of a compound represented by Formula (2):
- R 2 and W are the same as defined above, and X is a halogen atom, or a salt thereof, with a compound represented by Formula (3):
- R 1 is the same as defined above, or a salt thereof.
- R 1 is preferably a phenyl group.
- the phenyl group represented by R 1 preferably has 1 to 3, and more preferably 2, substituents selected from the group consisting of
- R 2 is preferably a phenyl group or a pyridyl group.
- the phenyl group or pyridyl group represented by R 2 preferably has 1 to 3, and more preferably 1, substituents selected from the group consisting of (2-2) unsubstituted or halogen-substituted lower alkoxy groups, (2-3) unsubstituted or halogen-substituted lower alkyl groups, (2-4) lower alkenyloxy groups, and (2-5) halogen atoms.
- W is preferably a divalent group represented by Formula (i) —Y 1 -A 1 -.
- a 1 is preferably a lower alkylene group;
- Y 1 is preferably —C( ⁇ O)— or —C( ⁇ O)—N(R 3 )—; and
- R 3 is preferably a hydrogen atom.
- oxazole compounds of the present invention those represented by Formula (1A) and salts thereof are preferable, and those represented by Formula (1B) and salts thereof are more preferable.
- R 1 is a phenyl group having two substituents selected from the following (1-2), (1-3), (1-4) and (1-5): (1-2) unsubstituted or halogen-substituted lower alkoxy groups, (1-3) lower alkenyloxy groups, (1-4) lower alkynyloxy groups, and (1-5) cyclo C 3-8 alkyl lower alkoxy groups;
- R 2 is a phenyl group or a pyridyl group each of which may have one or more substituents selected from the following (2-2), (2-3), (2-4) and (2-5): (2-2) unsubstituted or halogen-substituted lower alkoxy groups, (2-3) unsubstituted or halogen-substituted lower alkyl groups, (2-4) lower alkenyloxy groups, and (2-5) halogen atoms; and W is a divalent group represented by Formula (i):
- a 1 is a lower alkylene group
- Y 1 is —C( ⁇ O)— or —C( ⁇ O)—N(R 3 )— wherein R 3 is a hydrogen atom.
- R 1 is a phenyl group substituted on the phenyl ring with two lower alkoxy groups, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one cyclo C 3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl group with one lower alkoxy group and one lower alkenyloxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C 3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group, or a phenyl group substituted on the phenyl ring
- R 2 is a lower alkoxyphenyl group, a lower alkenyloxyphenyl group, a halogen-substituted lower alkoxyphenyl group, a lower alkylpyridyl group, or a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen atom; and
- W is a divalent group represented by Formula (i):
- a 1 is a C 1-4 alkylene group
- Y 1 is —C( ⁇ O)— or —C( ⁇ O)—N(R 3 )— wherein R 3 is a hydrogen atom.
- R 1 is an aryl group.
- the aryl group may have 1 to 3, and preferably 2, substituents selected from the group consisting of (1-1) hydroxy groups, (1-2) unsubstituted or halogen-substituted lower alkoxy groups, (1-3) lower alkenyloxy groups, (1-4) lower alkynyloxy groups, (1-5) cyclo C 3-8 alkyl lower alkoxy groups, (1-6) cyclo C 3-8 alkyloxy groups, (1-7) cyclo C 3-8 alkenyloxy groups, (1-8) dihydroindenyloxy groups, (1-9) hydroxy lower alkoxy groups, (1-10) oxiranyl lower alkoxy groups, and (1-11) protected hydroxy groups.
- R 2 is an aryl group or a nitrogen atom-containing heterocyclic group.
- the aryl group and heterocyclic group may have 1 to 3, and preferably 1, substituent selected from the group consisting of (2-1) hydroxy groups, (2-2) unsubstituted or halogen-substituted lower alkoxy groups, (2-3) unsubstituted or halogen-substituted lower alkyl groups, (2-4) lower alkenyloxy groups, (2-5) halogen atoms, (2-6) lower alkanoyl groups, (2-7) lower alkylthio groups, (2-8) lower alkylsulfonyl groups, (2-9) oxo groups, and (2-10) lower alkoxy lower alkoxy groups.
- W is a divalent group represented by Formula (i) or (ii):
- a 1 is a lower alkenylene group, or a lower alkylene group which may have 1 to 3, and preferably 1, substituent selected from the group consisting of hydroxy groups and lower alkoxycarbonyl groups;
- Y 1 is a direct bond, —C( ⁇ O)—, —C( ⁇ O)—N(R 3 )—, —N(R 4 )—C( ⁇ O)—, —S(O) m —NH—, or —S(O) n — wherein R 3 and R 4 are each independently a hydrogen atom or a lower alkyl group, and m and n are each independently an integer from 0 to 2; and Y 2 is a piperazinediyl group, or a divalent group represented by Formula (iii) or (iv):
- a 2 and A 3 are each independently a lower alkylene group, and R 5 and R 6 are each independently a hydrogen atom or a lower alkyl group.
- aryl groups include phenyl, naphthyl, etc.
- halogen atoms include fluorine, chlorine, bromine, iodine, etc.
- Lower alkyl groups are straight- or branched-chain alkyl groups having 1 to 6 carbon atoms, and examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-ethylpropyl, n-pentyl, neopentyl, n-hexyl, isohexyl, 3-methylpentyl, etc.
- Unsubstituted or halogen-substituted lower alkyl groups are straight- or branched-chain alkyl groups having 1 to 6 carbon atoms as defined above, or such alkyl groups substituted with 1 to 7 halogen atoms.
- Examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-ethylpropyl, n-pentyl, neopentyl, n-hexyl, isohexyl, 3-methyl pentyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, dichlorofluoromethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, 2-chloroethyl, 3,3,3-trifluoropropyl, heptafluoropropyl, heptafluoroisopropyl, 3-chloropropyl, 2-chloropropyl
- Lower alkenyloxy groups are groups composed of an oxygen atom and a C 2-6 straight- or branched-chain alkenyl group having 1 to 3 double bonds.
- Lower alkenyloxy groups have cis and trans forms. More specific examples thereof include vinyloxy, 1-propenyloxy, 2-propenyloxy, 1-methyl-1-propenyloxy, 2-methyl-1-propenyloxy, 2-methyl-2-propenyloxy, 2-propenyloxy, 2-butenyloxy, 1-butenyloxy, 3-butenyloxy, 2-pentenyloxy, 1-pentenyloxy, 3-pentenyloxy, 4-pentenyloxy, 1,3-butadienyloxy, 1,3-pentadienyloxy, 2-penten-4-yloxy, 3-methyl-2-butenyloxy, 2-hexenyloxy, 1-hexenyloxy, 5-hexenyloxy, 3-hexenyloxy, 4-hexenyloxy, 3,3-dimethyl
- lower alkynyloxy groups include groups composed of an oxygen atom and a C 2-6 straight- or branched-chain alkynyl group having 1 to 3 triple bonds. More specific examples thereof include ethynyloxy, 2-propynyloxy, 2-butynyloxy, 3-butynyloxy, 1-methyl-2-propynyloxy, 2-pentynyloxy, 2-hexynyloxy, etc.
- cyclo C 3-8 alkyl groups examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, etc.
- lower alkoxy groups include C 1-6 straight- or branched-chain alkoxy groups.
- such groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, 1-ethylpropoxy, n-pentoxy, neopentoxy, n-hexyloxy, isohexyloxy, 3-methylpentoxy, etc.
- cyclo C 3-8 alkyl lower alkoxy groups include the above-mentioned lower alkoxy groups which have 1 to 3, and preferably 1, cyclo C 3-8 alkyl group as listed above. More specific examples thereof include cyclopropylmethoxy, cyclobutylmethoxy, cyclohexylmethoxy, 2-cyclopropylethoxy, 1-cyclobutylethoxy, cyclopentylmethoxy, 3-cyclopentylpropoxy, 4-cyclohexylbutoxy, 5-cycloheptylpentoxy, 6-cyclooctylhexyloxy, 1,1-dimethyl-2-cyclohexylethoxy, 2-methyl-3-cyclopropylpropoxy, etc.
- cyclo C 3-8 alkyloxy groups include cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, cyclooctyloxy, etc.
- cyclo C 3-8 alkenyloxy groups include cyclopropenyloxy, cyclobutenyloxy, cyclopentenyloxy, cyclohexenyloxy, cycloheptenyloxy, cyclooctenyloxy, etc.
- dihydroindenyloxy groups examples include 2,3-dihydroinden-1-yloxy, 2,3-dihydroinden-2-yloxy, etc.
- hydroxy lower alkoxy groups include lower alkoxy groups (preferably C 1-6 straight- or branched-chain alkoxy groups) having 1 to 5, and preferably 1 to 3, hydroxy groups. More specific examples thereof include hydroxymethyloxy, 2-hydroxyethyloxy, 1-hydroxyethyloxy, 3-hydroxypropyloxy, 2,3-dihydroxypropyloxy, 4-hydroxybutyloxy, 3,4-dihydroxybutyloxy, 1,1-dimethyl-2-hydroxyethyloxy, 5-hydroxypentyloxy, 6-hydroxyhexyloxy, 3,3-dimethyl-3-hydroxypropyloxy, 2-methyl-3-hydroxypropyloxy, 2,3,4-trihydroxybutyloxy, perhydroxyhexyloxy, etc.
- oxiranyl lower alkoxy groups include C 1-6 straight- or branched-chain alkoxy groups having 1 or 2 oxyranyl groups such as, for example, oxiranylmethoxy, 2-oxiranylethoxy, 1-oxiranylethoxy, 3-oxiranylpropoxy, 4-oxiranylbutoxy, 5-oxiranylpentyloxy, 6-oxiranylhexyloxy, 1,1-dimethyl-2-oxiranylethoxy, 2-methyl-3-oxiranylpropoxy, etc.
- oxiranyl lower alkoxy groups include C 1-6 straight- or branched-chain alkoxy groups having 1 or 2 oxyranyl groups such as, for example, oxiranylmethoxy, 2-oxiranylethoxy, 1-oxiranylethoxy, 3-oxiranylpropoxy, 4-oxiranylbutoxy, 5-oxiranylpentyloxy, 6-oxiranylhexyloxy, 1,1-dimethyl-2-oxiranylethoxy
- protecting groups of protected hydroxy groups include lower alkanoyl and other acyl groups; phenyl(lower)alkyl groups which may have one or more suitable substituents (e.g., benzyl, phenethyl, 3-phenylpropyl, 4-methoxybenzyl, trityl, etc.); trisubstituted silyl groups [e.g., tri(lower)alkylsilyl groups (e.g., trimethylsilyl, t-butyldimethylsilyl, etc.) and the like]; tetrahydropyranyl; etc.
- suitable substituents e.g., benzyl, phenethyl, 3-phenylpropyl, 4-methoxybenzyl, trityl, etc.
- trisubstituted silyl groups e.g., tri(lower)alkylsilyl groups (e.g., trimethylsilyl, t-buty
- nitrogen atom-containing heterocyclic groups include pyrrolidinyl, imidazolidinyl, piperidyl, hexahydropyrimidinyl, piperazinyl, octahydroisoindolyl, azepanyl, azocanyl, pyrrolyl, dihydropyrrolyl, imidazolyl, dihydroimidazolyl, triazolyl, dihydrotriazolyl, pyrazolyl, pyridyl and N-oxides thereof, dihydropyridyl, pyrimidinyl, dihydropyrimidinyl, pyrazinyl, dihydropyrazinyl, pyridazinyl, tetrazolyl, indolyl, isoindolyl, indolinyl, isoindolinyl, hexahydroisoindolinyl, benzoimidazolyl, quinolyl, iso
- Unsubstituted or halogen-substituted lower alkoxy groups are straight- or branched-chain alkoxy groups having 1 to 6 carbon atoms, or such alkoxy groups substituted with 1 to 7 halogen atoms. Examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, 1-ethylpropoxy, n-pentoxy, neopentoxy, n-hexyloxy, isohexyloxy, 3-methylpentoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, bromomethoxy, dibromomethoxy, dichlorofluoromethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, pentafluoroethoxy,
- lower alkanoyl groups include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, tert-butylcarbonyl, hexanoyl, and other C 1-6 straight- or branched-chain alkanoyl groups.
- lower alkylthio groups include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, tert-butylthio, n-pentylthio, n-hexylthio, and other C 1-6 straight- or branched-chain alkylthio groups.
- lower alkylsulfonyl groups include C 1-6 straight- or branched-chain alkylsulfonyl groups. More specific examples thereof include methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, tert-butylsulfonyl, sec-butylsulfonyl, n-pentylsulfonyl, isopentylsulfonyl, neopentylsulfonyl, n-hexylsulfonyl, isohexylsulfonyl, 3-methylpentylsulfonyl, etc.
- Lower alkenylene groups include, for example, vinylidene, propylene, butenylene, and other C 2-6 straight- or branched-chain alkenylene groups having 1 to 3 double bonds.
- lower alkoxycarbonyl groups include groups composed of a C 1-6 straight- or branched-chain alkoxy group and a carbonyl group. Specific examples thereof include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, tert-butoxycarbonyl, sec-butoxycarbonyl, n-pentoxycarbonyl, neopentoxycarbonyl, n-hexyloxycarbonyl, isohexyloxycarbonyl, 3-methylpentoxycarbonyl, etc.
- Lower alkylene groups include, for example, ethylene, trimethylene, 2-methyltrimethylene, 2,2-dimethyltrimethylene, 1-methyltrimethylene, methylmethylene, ethylmethylene, tetramethylene, pentamethylene, hexamethylene, and other C 1-6 straight- or branched-chain alkylene groups.
- lower alkoxy lower alkoxy groups include alkoxyalkoxy groups in which the two alkoxy moieties are each independently a C 1-6 straight- or branched-chain alkoxy group. Specific examples thereof include methoxymethoxy, 2-methoxyethoxy, 3-methoxypropoxy, 4-methoxybutoxy, 5-methoxypentoxy, 6-methoxyhexyloxy, ethoxymethoxy, 2-ethoxyethoxy, n-propoxymethoxy, isopropoxymethoxy, n-butoxymethoxy, etc.
- C 1-4 alkylene groups include ethylene, trimethylene, 2-methyltrimethylene, 2,2-dimethyltrimethylene, 1-methyltrimethylene, methylmethylene, ethylmethylene, tetramethylene, and other C 1-4 straight- or branched-chain alkylene groups.
- the oxazole compound represented by Formula (1) can be produced by various processes, one example of which is shown in Reaction Scheme 1.
- R 1 , R 2 and W are as defined in Formula (1), and X is a halogen atom.
- Compound (1) is produced by reacting Compound (2) with Compound (3).
- the reaction of Compound (2) with Compound (3) is usually performed in a suitable solvent.
- suitable solvents include dimethylformamide, dimethylsulfoxide, acetonitrile, and other aprotic polar solvents; acetone, methyl ethyl ketone, and other ketone solvents; benzene, toluene, xylene, tetralin, liquid paraffin, and other hydrocarbon solvents; methanol, ethanol, isopropanol, n-butanol, tert-butanol, and other alcohol solvents; tetrahydrofuran, dioxane, dipropyl ether, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; ethyl acetate, methyl acetate, and other ester solvents; mixtures thereof; etc.
- solvents may contain water.
- the proportion of Compound (3) to Compound (2) is usually 0.5 to 5 mol, and preferably 0.5 to 3 mol, per mol of Compound (2).
- the reaction of Compound (2) with Compound (3) is usually performed by continuing stirring at ⁇ 20 to 200° C., and preferably at 0 to 150° C., for 30 minutes to 60 hours, and preferably 1 to 30 hours.
- Compound (3) used as a starting material is an easily available known compound.
- Compound (2) encompasses novel compounds, and a production process for such a compound is described hereinafter (Reaction Scheme 9).
- Compound (1a) Among the oxazole compounds represented by Formula (1), those in which W is a divalent group represented by —Y 1 -A 1 - wherein Y 1 is —C( ⁇ O)—N(R 3 )— (hereinafter referred to as “Compound (1a)”) can be produced by, for example, the process shown in Reaction Scheme 2.
- R 1 , R 2 , R 3 and A 1 are as defined in Formula (1).
- Compound (1a) is produced by reacting Compound (4) or a reactive derivative thereof at the carboxy group, with Compound (5) or a reactive derivative thereof at the amino or imino group.
- reactive derivatives of Compound (4) include acid halides, acid anhydrides, activated amides, activated esters, etc.
- reactive derivatives include acid chlorides; acid azides; dialkylphosphoric acids, phenylphosphoric acid, diphenylphosphoric acid, dibenzylphosphoric acid, phosphoric acid halides, and other substituted phosphoric acids, dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, sulfuric acid, methanesulfonic acid, and other sulfonic acids, acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, and other aliphatic carboxylic acids, and mixed acid anhydrides with acids such as benzoic acid or other aromatic acids; symmetrical acid anhydrides; activated amides with imidazole, 4-
- condensing agent(s) When using Compound (4) in the form of a free acid or a salt thereof in the above reaction, it is preferable to perform the reaction in the presence of condensing agent(s).
- condensing agents known in this field can be used, including, for example, N,N′-dicyclohexylcarbodiimide; N-cyclohexyl-N′-morpholinoethylcarbodiimide; N-cyclohexyl-N′-(4-diethylaminocyclohexyl)carbodiimide; N,N′-diethylcarbodiimide; N,N′-diisopropylcarbodiimide; N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide and hydrochlorides thereof; N,N′-carbonylbis(2-methylimidazole); pentamethyleneketene-N-cyclohexylimine; diphen
- reactive derivatives of Compound (5) include Schiff base imino- or enamine-type tautomers produced by reacting Compound (5) with carbonyl compounds such as aldehydes, ketones, etc.; silyl derivatives produced by reacting Compound (5) with silyl compounds such as bis(trimethylsilyl)acetamide, mono(trimethylsilyl)acetamide, bis(trimethylsilyl)urea, etc.; derivatives produced by reacting Compound (5) with phosphorus trichloride, phosgene, etc.; and the like.
- the reaction is usually carried out in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diisopropyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; n-pentane, n-hexane, n-heptane, cyclohexane, and other hydrocarbon solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents;
- Inorganic bases include, for example, alkali metals (e.g., sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, etc.), and alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.).
- alkali metals e.g., sodium, potassium, etc.
- alkali metal hydrogencarbonates e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate etc.
- alkali metal hydroxides e.g., lithium hydroxide
- Organic bases include, for example, trialkylamines [e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.], pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- trialkylamines e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.
- pyridine quinoline
- piperidine imidazole
- picoline dimethylaminopyridine
- dimethylaniline dimethylaniline
- N-methylmorpholine 1,5-diazabic
- Such bases can be used singly or in combination.
- the amount of base(s) is usually 0.1 to 10 moles, and preferably 0.1 to 3 moles, per mole of Compound (4).
- the proportion of Compound (4) to Compound (5) in Reaction Scheme 1 is usually at least 1, and preferably about 1 to about 5 mol of the former per mol of the latter.
- the reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 100° C., for 30 minutes to 30 hours, and preferably for 30 minutes to 5 hours.
- Compound (1b) Among the oxazole compounds represented by Formula (1), those in which W is a divalent group represented by —Y 1 -A 1 - wherein Y 1 is —C( ⁇ O)— and A 1 is a lower alkylene group having one lower alkoxycarbonyl group (hereinafter referred to as “Compound (1b)”) can be produced, for example, by the process shown in Reaction Scheme 3.
- R 1 and R 2 are as defined in Formula (1), R 7 and R 8 are each independently a lower alkyl group, and A is a alkylene group.
- the —COOR 8 group in Formula (1b) is the same as the lower alkoxycarbonyl group defined as a substituent of A 1 in Formula (1).
- the lower alkyl group represented by R 7 may be the same as the lower alkyl group as defined above.
- Examples of the C 1-5 alkylene group represented by A 1a include ethylene, trimethylene, 2-methyltrimethylene, 2,2-dimethyltrimethylene, 1-methyltrimethylene, methylmethylene, ethylmethylene, tetramethylene, pentamethylene, and other straight- or branched-chain alkylene groups.
- Compound (1b) is produced by reacting Compound (6) with Compound (7).
- the reaction is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; and mixed solvents thereof.
- Inorganic bases include, for example, alkali metals (e.g., lithium, sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, sodium tert-pentoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like.
- alkali metals e.g., lithium, sodium, potassium, etc.
- alkali metal hydrogencarbonates e.g.
- Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- TBN 1,5-diazabicyclo[4.3.0]non-5-ene
- DABCO 1,4-diazabicyclo[2.2.2]octane
- DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
- bases When such bases are liquid, they can also be used as solvents.
- bases can be used
- the amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (6).
- the proportion of Compound (6) to Compound (7) is usually at least 1 mol, and preferably about 1 to about 5 mol of the former, per mol of the latter.
- the reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 150° C., for 30 minutes to 60 hours, and preferably 1 to 30 minutes.
- oxazole compounds represented by Formula (1) those in which W is a divalent group represented by —Y 1 -A 1 - wherein A 1 is a lower alkylene group (hereinafter referred to as “Compound (1d)”) are produced from the corresponding compounds in which A 1 is a lower alkylene group having lower alkoxycarbonyl group(s) (hereinafter referred to as “Compound (1c)”), by the process shown in Reaction Scheme 4.
- R 1 , R 2 and Y 1 are as defined in Formula (1), A 1b is a lower alkylene group having lower alkoxycarbonyl group(s), and A 1c is a lower alkylene group.
- Compound (1d) is produced by subjecting Compound (1c) to hydrolysis-decarboxylation.
- the reaction is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; and mixed solvents thereof.
- the hydrolysis-decarboxylation of Compound (1c) is usually performed under acidic conditions. For example, an acid is added to a suspension or solution of Compound (1c) in a suitable solvent, and the resulting mixture is stirred at 0 to 120° C. to carry out the hydrolysis-decarboxylation.
- Examples of usable acids include trifluoroacetic acid, acetic acid, and other organic acids, hydrochloric acid, bromic acid, hydrobromic acid, sulfuric acid, and other inorganic acids, etc.
- organic acids can also be used as reaction solvents.
- the amount of acid(s) is usually 0.5 to 30 mol, and preferably 0.5 to 10 mol, per mol of Compound (1c).
- the reaction temperature is usually 0 to 120° C., and 0.5 preferably room temperature to 110° C.
- the reaction time is usually 30 minutes to 24 hours, preferably 30 minutes to 12 hours, and more preferably 1 to 8 hours.
- R 2 and W are as defined in Formula (1);
- R 9 is a protected hydroxy group;
- R 10 is the same group as the substituent (1-2), (1-3), (1-4), (1-5), (1-6), (1-7), (1-8), (1-9) or (1-10) of the aryl group represented by R 1 in Formula (1);
- m is 1 to 5;
- q is 0 to 4;
- m R 9 s may be the same or different; and
- q R 10 s may be the same or different; with the proviso that m+q ⁇ 5.
- Compound (1f) can be produced by subjecting Compound (1e) to an elimination reaction of the hydroxy protecting group(s).
- the elimination reaction can be carried out by hydrolysis, hydrogenolysis, or other conventional methods.
- the reaction is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; and other organic solvents.
- Hydrolysis is preferably carried out in the presence of base(s) or acid(s) (including Lewis acids).
- inorganic and organic bases are usable.
- inorganic bases include alkali metals (e.g., sodium, potassium, etc.), alkaline earth metals (e.g., magnesium, calcium, etc.), hydroxides, carbonates and hydrogencarbonates thereof, etc.
- organic bases include trialkylamines (e.g., trimethylamine, triethylamine, etc.), picoline, 1,5-diazabicyclo[4,3,0]non-5-ene, etc.
- organic and inorganic acids are usable.
- Preferable organic acids include, for example, formic acid, acetic acid, propionic acid, and other fatty acids; trichloroacetic acid, trifluoroacetic acid, and other trihaloacetic acids; and the like.
- Preferable inorganic acids include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, etc.
- Lewis acids include boron trifluoride ether complexes, boron tribromide, aluminium chloride, ferric chloride, etc.
- a cation scavenger e.g., anisole, phenol, etc.
- the amount of base(s) or acid(s) is not limited as long as it is an amount necessary for hydrolysis.
- the reaction temperature is usually 0 to 120° C., preferably room temperature to 100° C., and more preferably room temperature to 80° C.
- the reaction time is usually 30 minutes to 24 hours, preferably 30 minutes to 12 hours, and more preferably 1 to 8 hours.
- Hydrogenolysis can be carried out by a wide variety of known methods including, for example, chemical reduction, catalytic reduction, etc.
- Suitable reducing agents for chemical reduction include hydrides (e.g., hydrogen iodide, hydrogen sulfide, lithium aluminium hydride, sodium borohydride, sodium cyanoborohydride, etc.); and combinations of metals (e.g., tin, zinc, iron, etc.) or metallic compounds (e.g., chromium chloride, chromium acetate, etc.), with organic or inorganic acids (e.g., formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.).
- hydrides e.g., hydrogen iodide, hydrogen sulfide, lithium aluminium hydride, sodium borohydride, sodium cyanoborohydride, etc.
- metals e.g., tin, zinc, iron, etc.
- metallic compounds e.g., chromium chloride,
- Suitable catalysts for catalytic reduction include platinum catalysts (e.g., platinum plates, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wires, etc.), palladium catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium carbon, palladium/barium sulfate, palladium/barium carbonate, etc.), nickel catalysts (e.g., reduced nickel, nickel oxide, Raney nickel, etc.), cobalt catalysts (e.g., reduced cobalt, Raney cobalt, etc.), iron catalysts (e.g., reduced iron and the like), etc.
- platinum catalysts e.g., platinum plates, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wires, etc.
- palladium catalysts e.g., spongy palladium, palladium black, palladium oxide, palladium carbon, palladium/barium sulfate, palladium
- the amounts of reducing agent for chemical reduction and catalyst for catalytic reduction are not limited and may be conventional amounts.
- the reaction temperature is usually 0 to 120° C., preferably room temperature to 100° C., and more preferably room temperature to 80° C.
- the reaction time is usually 30 minutes to 24 hours, preferably 30 minutes to 10 hours, and more preferably 30 minutes to 4 hours.
- Compound (1g) those in which R 1 is a phenyl group substituted on the phenyl ring with R 11 O— group(s) (hereinafter referred to as “Compound (1g)”) are produced from Compound (1f), by the process shown in Reaction Scheme 6.
- R 2 and W are as defined in Formula (1); R 10 m and q are as defined above; X 1 is a halogen atom or a group that undergoes the same substitution reaction as that of a halogen atom; R 11 O is the same group as the substituent (1-2), (1-3), (1-4), (1-5), (1-6), (1-7), (1-8), (1-9) or (1-10) of the aryl group represented by R 1 in Formula (1); and m R 11 Os may be the same or different.
- the halogen atom represented by X 1 is a fluorine atom, chlorine atom, bromine atom, or iodine atom.
- Examples of the group that undergoes the same substitution reaction as that of a halogen atom, the group being represented by X 1 , include lower alkanesulfonyloxy groups, arylsulfonyloxy groups, aralkylsulfonyloxy groups, etc.
- lower alkanesulfonyloxy groups include methanesulfonyloxy, ethanesulfonyloxy, isopropanesulfonyloxy, n-propanesulfonyloxy, n-butanesulfonyloxy, tert-butanesulfonyloxy, n-pentanesulfonyloxy, n-hexanesulfonyloxy, and other C 1-6 straight- or branched-chain alkanesulfonyloxy groups, and the like.
- Arylsulfonyloxy groups include, for example, phenylsulfonyloxy, naphthylsulfonyloxy, etc.
- the phenyl ring of such arylsulfonyloxy groups may have, for example, 1 to 3 substituents selected from the group consisting of C 1-6 straight- or branched-chain alkyl groups, C 1-6 straight- or branched-chain alkoxy groups, nitro groups, and halogen atoms.
- arylsulfonyloxy groups include phenylsulfonyloxy, 4-methylphenylsulfonyloxy, 2-methylphenylsulfonyloxy, 4-nitrophenylsulfonyloxy, 4-methoxyphenylsulfonyloxy, 2-nitrophenylsulfonyloxy, 3-chlorophenylsulfonyloxy, etc.
- naphthylsulfonyloxy groups include ⁇ -naphthylsulfonyloxy, ⁇ -naphthylsulfonyloxy, etc.
- Aralkylsulfonyloxy groups include, for example, phenyl-substituted C 1-6 straight- or branched-chain alkylsulfonyloxy groups which may have, on the phenyl ring, 1 to 3 substituents selected from the group consisting of straight- or branched-chain alkyl groups, C 1-6 straight- or branched-chain alkoxy groups, nitro groups, and halogen atoms; naphthyl-substituted C 1-6 straight- or branched-chain alkylsulfonyloxy groups; etc.
- phenyl-substituted alkylsulfonyloxy groups as mentioned above include benzylsulfonyloxy, 2-phenylethylsulfonyloxy, 4-phenylbutylsulfonyloxy, 2-methylbenzylsulfonyloxy, 4-methoxybenzylsulfonyloxy, 4-nitrobenzylsulfonyloxy, 3-chlorobenzylsulfonyloxy, etc.
- naphthyl-substituted alkylsulfonyloxy groups as mentioned above include ⁇ -naphthylmethylsulfonyloxy, ⁇ -naphthylmethylsulfonyloxy, etc.
- Compound (1g) is produced by reacting Compound (1f) with Compound (8), or by reacting Compound (1f) with Compound (8′).
- the reaction of Compound (1f) with Compound (8) is usually performed in a known solvent that does adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixed solvents thereof; etc.
- base(s) include known inorganic and organic bases.
- Inorganic bases include, for example, alkali metals (e.g., sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like.
- alkali metals e.g., sodium, potassium, etc.
- alkali metal hydrogencarbonates e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc
- Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- TBN 1,5-diazabicyclo[4.3.0]non-5-ene
- DABCO 1,4-diazabicyclo[2.2.2]octane
- DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
- bases When such bases are liquid, they can also be used as solvents.
- bases can be used
- the amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (1f).
- alkali metals such as potassium iodide, sodium iodide, etc. can be added as reaction accelerators to the reaction system, as required.
- the proportion of Compound (1f) to Compound (8) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- the reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction at about room temperature for 1 to 30 hours.
- the reaction of Compound (1f) with Compound (8′) is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; benzene, toluene, xylene, and other aromatic hydrocarbon solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixed solvents thereof; etc.
- the reaction is usually performed in the presence of dialkyl azodicarboxylate(s) such as diisopropyl azodicarboxylate, diethyl azodicarboxylate, etc., and phosphine ligand(s) such as triphenyl phosphine, tri(n-butyl)phosphine, etc.
- dialkyl azodicarboxylate(s) such as diisopropyl azodicarboxylate, diethyl azodicarboxylate, etc.
- phosphine ligand(s) such as triphenyl phosphine, tri(n-butyl)phosphine, etc.
- the amount of dialkyl azodicarboxylate(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mole of Compound (1f).
- phosphine ligand(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol
- Inorganic bases include, for example, alkali metals (e.g., sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like.
- alkali metals e.g., sodium, potassium, etc.
- alkali metal hydrogencarbonates e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.
- alkali metal hydroxides e.g.
- Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- TBN 1,5-diazabicyclo[4.3.0]non-5-ene
- DABCO 1,4-diazabicyclo[2.2.2]octane
- DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
- bases When such bases are liquid, they can also be used as solvents.
- bases can be used
- the amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (1f).
- the proportion of Compound (1f) to Compound (8′) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- the reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction at about room temperature for 1 to 30 hours.
- Compound (1h) Among the oxazole compounds represented by Formula (1), those in which W is a divalent group represented by —Y 1 -A 1 - wherein Y 1 is —C( ⁇ O) and A 1 is a lower alkenylene group (hereinafter referred to as “Compound (1h)”) can be produced by, for example, the process shown in Reaction Scheme 7.
- R 1 and R 2 are as defined in Formula (1), and A 1d is a C 2-4 alkenylene group, a C 1-4 alkylene group, or a direct bond.
- Each of the C 2-4 alkenyl group and C 1-4 alkylene group may be straight- or branched-chain.
- —CH ⁇ CH-A 1d - corresponds to the lower alkenylene group represented by A 1 in Formula (1).
- Compound (1h) is produced by reacting Compound (9) with Compound (10).
- the reaction is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixed solvents thereof; etc.
- Inorganic bases include, for example, alkali metals (e.g., lithium, sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like.
- alkali metals e.g., lithium, sodium, potassium, etc.
- alkali metal hydrogencarbonates e.g., lithium hydrogencarbonate, sodium hydrogencarbonate
- Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- TBN 1,5-diazabicyclo[4.3.0]non-5-ene
- DABCO 1,4-diazabicyclo[2.2.2]octane
- DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
- bases When such bases are liquid, they can also be used as solvents.
- bases can be used
- the amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (9).
- the proportion of Compound (9) to Compound (10) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- the reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 150° C., for 30 minutes to 60 hours, and preferably for 1 to 30 hours.
- Compound (9) used as a starting material in the above reaction is an easily available known compound.
- Compound (10) used as a starting material in the above reaction can be produced by the process shown in Reaction Scheme 12.
- Compound (1j) those in which W is a divalent group represented by —Y 1 -A 1 - wherein A 1 is a lower alkylene group
- Compound (1i) compounds in which A 1 is a lower alkenylene group
- R 1 and R 2 are as defined in Formula (1), Y 1 is as defined above, A 1e is a lower alkenylene group, and A 1f is a lower alkylene group.
- Compound (1j) is produced by subjecting Compound (1i) to hydrogenolysis.
- reaction is performed under the same reaction conditions as of the reaction shown in Reaction Scheme 5 for the hydrogenolysis of Compound (1e) to obtain Compound (1f). Therefore, the same reagent(s) and reaction conditions (e.g., solvent, reaction temperature, etc.) as those used in the hydrogenolysis shown in Reaction Scheme 5 can be used in the above reaction.
- reaction conditions e.g., solvent, reaction temperature, etc.
- R 2 and W are as defined in Formula (1), and X is as defined above.
- halogenation reaction of Compound (11) is performed in a suitable solvent in the presence of a halogenating agent.
- halogenating agents include, for example, Br 2 , Cl 2 , and other halogen molecules; iodine chloride, sulfuryl chloride, cupric bromide, and other copper compounds; N-bromosuccinimide, N-chlorosuccinimide, and other N-halosuccinimides, etc.
- Usable solvents include, for example, dichloromethane, dichloroethane, chloroform, carbon tetrachloride, and other halogenated hydrocarbons; acetic acid, propionic acid, and other fatty acids; carbon disulfide; etc.
- the amount of halogenating agent is usually 1 to 10 mol, and preferably 1 to 5 mol, per mol of Compound (11).
- the reaction is usually complete at 0° C. to the boiling point temperature of the solvent, and preferably about 0 to about 100° C., in about 5 minutes to about 20 hours.
- Compound (5a) those in which R 3 is a hydrogen atom (hereinafter referred to as “Compound (5a)”) are produced by the process shown in Reaction Scheme 10.
- R 1 and A 1 are as defined in Formula (1)
- X 2 and X 3 are each independently a halogen atom or a group that undergoes the same substitution reaction as that of a halogen atom as mentioned above
- M is an alkali metal.
- Examples of the alkali metal represented by M include sodium, potassium, etc.
- Compound (14) is produced by reacting Compound (12) with Compound (13).
- the reaction of Compound (12) with Compound (13) is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; and other organic solvents; etc.
- the proportion of Compound (12) to Compound (13) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- the reaction of Compound (12) with Compound (13) is performed by continuing stirring usually in a temperature range from room temperature to 200° C., and preferably from room temperature to 150° C., usually for 30 minutes to 60 hours, and preferably 1 to 30 hours.
- Compound (16) is produced by reacting Compound (15) with Compound (14).
- the reaction of Compound (15) with Compound (14) is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixtures thereof; etc.
- alkali metal iodides such as potassium iodide, sodium iodide, etc. can be added as reaction accelerators to the reaction system, as required.
- the proportion of Compound (15) to Compound (14) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- the temperature of the reaction of Compound (15) with Compound (14) is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 100° C., for 1 to 60 hours, and preferably for 1 to 30 hours.
- phthalimide can be used in place of Compound (15) and the reaction may be performed in the presence of base(s).
- inorganic bases include alkali metals (e.g., lithium, sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydr
- Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DEN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- trialkylamines e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.
- pyridine quinoline
- piperidine imidazole
- picoline dimethylaminopyridine
- dimethylaniline dimethylaniline
- N-methylmorpholine 1,5-diazabicy
- the amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (14).
- Compound (5a) is produced by reacting Compound (16) with Compound (17).
- the reaction of Compound (16) with Compound (17) is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixtures thereof; etc.
- the proportion of Compound (16) to Compound (17) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- the temperature of the reaction of Compound (16) with Compound (17) is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction at about room temperature for 1 to 30 hours.
- R 1 is as defined in Formula (1); R 8 and A 1a are as defined above; X 4 is a halogen atom or a group that undergoes the same substitution reaction as that of a halogen atom as mentioned above; and R 12 is a lower alkyl group.
- Compound (20) is produced by reacting Compound (18) with Compound (19).
- the reaction of Compound (18) with Compound (19) is usually performed in a known solvent that does not adversely affect the reaction.
- solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixtures thereof; etc.
- Inorganic bases include, for example, alkali metals (e.g., lithium, sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like.
- alkali metals e.g., lithium, sodium, potassium, etc.
- alkali metal hydrogencarbonates e.g., lithium hydrogencarbonate, sodium hydrogencarbonate
- Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- trialkylamines e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.
- pyridine quinoline
- piperidine imidazole
- picoline dimethylaminopyridine
- dimethylaniline dimethylaniline
- N-methylmorpholine 1,5-diazabic
- Such bases can be used singly or in combination.
- the amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (18).
- the proportion of Compound (18) to Compound (19) in Reaction Scheme 11 is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- the reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 100° C., for 30 minutes to 60 hours, and preferably 1 to 30 hours.
- Compound (7) is produced by subjecting Compound (20) to hydrolysis-decarboxylation.
- the hydrolysis-decarboxylation of Compound (20) can be carried out by the process shown in Reference Example 48 given hereinafter, a process similar thereto, the process shown in Reaction Scheme 4 above, or a process similar thereto.
- R 1 is as defined in Formula (1), and X 2 and A 1d are as defined above.
- Compound (10) is produced by subjecting Compound (21) to an oxidation reaction.
- the reaction can be carried out by the process shown in Reference Example 64 given hereinafter, or a process similar thereto, and is performed in the presence of a known solvent that does not adversely affect the reaction.
- Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixtures thereof; etc.
- the reaction is usually performed using oxidizing agent(s) such as dimethyl sulfoxide, hexamethylenetetramine, triethylamine-N-oxide, etc.
- oxidizing agent(s) such as dimethyl sulfoxide, hexamethylenetetramine, triethylamine-N-oxide, etc.
- inorganic bases include, for example, alkali metals (e.g., sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like.
- alkali metals e.g., sodium, potassium, etc.
- alkali metal hydrogencarbonates e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.
- alkali metal hydroxides e.g.
- Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- TBN 1,5-diazabicyclo[4.3.0]non-5-ene
- DABCO 1,4-diazabicyclo[2.2.2]octane
- DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
- bases When such bases are liquid, they can also be used as solvents.
- bases can be used
- the amount of oxidizing agent is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (21).
- the amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (21).
- alkali metals such as potassium iodide, sodium iodide, etc. can be added as reaction accelerators to the reaction system, as required.
- the reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 120° C. for 30 minutes to 30 hours.
- the starting material compounds used in the above reaction schemes may be suitable salts, and the objective compounds obtained by the above reactions may be in the form of suitable salts.
- Each of the objective compounds obtained according to the above reaction schemes can be isolated and purified from the reaction mixture by, for example, cooling the reaction mixture, separating the crude reaction product from the reaction mixture by an isolation procedure such as filtration, concentration, extraction and/or other isolation procedures, and then purifying the crude reaction product by column chromatography, recrystallization and/or other conventional purification procedures.
- Suitable salts of Compound (1) are pharmaceutically acceptable salts including, for example, metal salts such as alkali metal salts (e.g., sodium salt, potassium salt, etc.), alkaline earth metal salts (e.g., calcium salt, magnesium salt, etc.), etc., ammonium salts, alkali metal carbonates (e.g., lithium carbonate, potassium carbonate, sodium carbonate, cesium carbonate, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), and other salts of inorganic bases; tri(lower)alkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethyl
- the starting material compounds and objective compounds represented by the formulae in the above reaction schemes encompass solvates (e.g. hydrates, ethanolates, etc.).
- solvates e.g. hydrates, ethanolates, etc.
- Preferable solvates include hydrates.
- the compounds represented by Formula (1) of the present invention of course encompass isomers such as geometrical isomers, stereoisomer, optical isomers, etc.
- Compounds represented by formula (1), optically active isomers thereof, and salts thereof have a specific inhibitory action against PDE4, and are hence useful as active ingredients for a PDE4 inhibitor.
- the compounds of the invention can be useful as active ingredients of pharmaceutical compositions used as prophylactic and therapeutic agents for various diseases. More specifically, diseases efficiently preventable and treatable by the PED4-specific inhibitory action include various origin-generated acute and chronic (in particular, inflammatory and allergen induced) respiratory tract diseases (e.g. bronchial asthma, chronic obstructive pulmonary disease, etc.); dermatoses (in particular, hyperplastic, inflammatory, and allergic diseases) (e.g.
- psoriasis vulgaris
- toxic and allergic contact eczema atopic dermatitis, alopecia areata, and other hyperplastic, inflammatory and allergic dermatoses
- nervous function abnormality diseases such as learning, memory, and/or cognition disorders associated with Alzheimer's and Parkinson's diseases
- diseases associated with mental function abnormality e.g. manic-depressive psychosis, schizophrenia, anxiety disorder, etc.
- systemic and local arthritic disorders e.g. knee osteoarthritis, articular rheumatism, etc.
- gastrointestinal diffuse inflammation e.g.
- allergic and/or chronic immune-mediated inflammatory diseases in the upper respiratory tract (cavum pharynges, nose) and its vicinity (sinuses, eyes) (e.g. allergic rhinitis/sinusitis, chronic rhinitis/sinusitis, allergic conjunctivitis), and the like.
- the compounds are particularly effective in preventing and treating atopic dermatitis, making this diseases a suitable target disease for prevention and treatment.
- the compounds of the invention can be used as oral agents, injectable solutions, external preparations, and the like.
- the compounds may be prepared in any forms such as powders, tablets, granules, capsules, syrups, films, troches, liquids, etc.
- Such oral agents can contain pharmaceutically acceptable base materials and carriers, and further optionally contain as necessary binders, disintegrators, lubricants, humectants, buffers, preservatives, fragrances, and the like.
- the compounds may be prepared in the form of solutions dissolved in physiological saline, grape sugar solutions and the like, or aqueous suspensions.
- the compounds may be prepared in any forms, for example, such as liquid medicines, oily medicines, lotions, liniments, emulsions, suspensions, creams, ointments, etc.
- Such external preparations can optionally contain various carriers, base materials, and additives as typically used in external preparations, and examples include water, oils, surfactants, solubilized components, emulsifiers, colorants (dyes and pigments), fragrances, preservatives, disinfectants, thickeners, antioxidants, chelators, pH adjusting agents, deodorants, etc.
- effective dose and number of doses a day of the compound vary depending on the purpose of use, kind of compound used, the age, weight, symptoms, etc. of a subject, and cannot be uniformly prescribed.
- the inhibitor or agent can be administered in a dose of 0.1 to 1000 mg of the compound(s) of the present invention per day per adult, and may be administered in one to several portions a day.
- the present invention provides a method for treating or preventing the aforementioned various diseases comprising the step of administrating an effective dose of the compound(s) of the invention to a mammal, such as a human.
- the compounds of the present invention have inhibitory action against TNF- ⁇ production, they are useful as active ingredients for TNF- ⁇ production suppressants. Diseases that benefit from such TNF- ⁇ production inhibitory action include those efficiently preventable and treatable by the aforementioned PDE4-specific inhibitory action. Preparation forms, administration routes and doses of TNF- ⁇ production suppressant containing compounds of the invention are the same as those of the aforementioned PDE4 inhibitor and prophylactic and therapeutic agents.
- the compounds of the present invention have an inhibitory action specific against PDE4, and are hence useful as active ingredients for a PDE 4 inhibitors.
- the compounds of the invention are further useful as prophylactic and therapeutic agents for various diseases including atopic dermatitis.
- a 5.25 g quantity of sodium hydride was suspended in 150 ml of tetrahydrofuran, and a solution of 14.4 g of dimethyl malonate in 75 ml of tetrahydrofuran was added dropwise with ice-cooling over 15 minutes. After stirring for 30 minutes, a solution of 25 g of the 2-(3-benzyloxy-4-methoxyphenyl)-4-chloromethyloxazole obtained in Reference Example 0.5 in 150 ml of dimethylformamide was added dropwise over 15 minutes. After the dropwise addition, the mixture was stirred at 50 to 60° C. for 4 hours, and an aqueous saturated ammonium chloride solution was added with ice-cooling.
- a 0.48 g quantity of sodium hydride was suspended in 15 ml of tetrahydrofuran, and a solution of 1.31 g of dimethyl malonate in 7.5 ml of tetrahydrofuran was added dropwise over 15 minutes. After the mixture was stirred for 30 minutes, a solution of 3.0 g of 4-chloromethyl-2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazole obtained in Reference Example 32 dissolved in 15 ml of dimethylformamide was added over 15 minutes. After the dropwise addition, the mixture was heated at 50 to 60° C. with stirring for 4 hours.
- a 40 g quantity of 3,4-diethoxybenzamide and 80 g of methyl 5-bromo-4-oxopentanoate (containing about 35% of methyl 3-bromo-4-oxopentanoate) were added to 400 ml of dimethylformamide, and the mixture was stirred at 130° C. for 16 hours.
- the reaction mixture was concentrated under reduced pressure and diluted with ethyl acetate.
- Ethyl acetate (500 ml) and saturated sodium bicarbonate solution (500 ml) were gradually added with stirring, and stirring was continued.
- the organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
- a 37.9 g quantity of 3,4-dibenzyloxybenzamide and 28.8 g of 1,3-dichloro-2-propanone were suspended in 500 ml of propanol, and the suspension was heated and refluxed for 3 days. After cooling, the reaction mixture was concentrated to half its original volume under reduced pressure and 300 ml of diisopropyl ether was added. The precipitated crystals were collected by filtration and recrystallized from acetone-methanol-diisopropyl ether. The obtained crystals were dried under reduced pressure to give 20.1 g of colorless powdery 2-(3,4-bis(benzyloxy)phenyl)-4-chloromethyloxazole.
- the crude crystals were recrystallized from a mixture of 30 ml of n-hexane and 15 ml of ethyl acetate to give 8.6 g of colorless plate crystalline ethyl 4-benzyloxy-3-hydroxybenzonate.
- a 170 mg quantity of the N-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 17 was dissolved in 10 ml of tetrahydrofuran. To the obtained solution were added 134 mg of 2-hydroxyindane, 0.5 ml of diisopropyl azodicarboxylate (40% toluene solution) and 202 mg of tri(n-butyl)phosphine, and the mixture was stirred at room temperature overnight, and at 50° C. for 2.5 hours.
- Example 27 Using 0.6 g of the N-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-ethoxypicolinamide obtained in Example 27, 0.5 g of white amorphous N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-ethoxypicolinamide was obtained in the same manner as in Example 2.
- Example 30 Using 0.16 g of the N-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-(2,2,2-trifluoroethoxy)benzamide obtained in Example 30, 0.11 g of white powdery N-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-ylmethyl]-2-(2,2,2-trifluoroethoxy)benzamide was obtained in the same manner as in Example 2.
- Example 33 Using 0.67 g of the N-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methoxybenzamide obtained in Example 33, 0.52 g of white amorphous N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-methoxybenzamide was obtained in the same manner as in Example 2.
- Example 34 Using 0.5 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methoxybenzamide obtained in Example 34, 0.39 g of white powdery N-[2-(3-cyclopentyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methoxybenzamide was obtained in the same manner as in Example 3.
- a 0.2 g quantity of the [2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 13 was suspended in 4 ml of acetone. To the obtained suspension were added 0.2 g of 1-hydroxybenzotriazole, 0.29 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 0.14 g of 3-methylpicolinic acid, and the mixture was heated and refluxed for 30 minutes. The reaction mixture was cooled, water was then added thereto, and extraction was performed with ethyl acetate. The organic layer was washed with water twice, and the solvent was concentrated under reduced pressure.
- Example 44 0.4 g of N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methylsulfanylbenzamide obtained in Example 44 was dissolved in 20 ml of dichloromethane, and 0.67 g of metachloroperbenzoic acid was added thereto while the solution was cooled with ice with stirring. The mixture was then stirred for an hour.
- Example 96 0.16 g of N-[2-(3-benzyloxy-4-difluoromethoxyphenyl) oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 96 was dissolved in 5 ml of ethanol, 20 mg of 10% palladium carbon powder was added thereto, and the mixture was stirred at room temperature for 30 minutes under a hydrogen atmosphere. The catalyst was filtered off, and the filtrate was concentrated to obtain 0.12 g of white powdery N-[2-(4-difluoromethoxy-3-hydroxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide.
- Example 100 A 13.4 g quantity of methyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-(2-ethoxyphenyl)-3-oxopropionate obtained in Example 100 was suspended in 67 ml of ethanol, 67 ml of 47% hydrobromic acid was added thereto, and the suspension was heated and refluxed overnight. After standing to cool, the crystals generated were collected by filtration, washed with water and diisopropyl ether, and dried, thereby yielding 8.1 g of white powdery 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one.
- Example 101 A 0.3 g quantity of 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 101 was suspended in 10 ml of ethanol, 0.37 g of 1,8-diazabicyclo[5,4,0]undec-1-ene and 0.26 g of ethyl iodide were added thereto, and the suspension was stirred for 4 hours while heating and refluxing. After distilling off ethanol under reduced pressure, water was added, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off.
- Example 101 A 0.3 g quantity of 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 101 was suspended in 10 ml of ethanol, 0.37 g of 1,8-diazabicyclo[5,4,0]undec-7-ene and 0.14 ml of allyl bromide were added thereto, and stirring was conducted for 3 hours while heating and refluxing. After distilling off ethanol under reduced pressure, water was added, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off.
- Example 101 A 5.0 g quantity of 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 101 was dissolved in 50 ml of dimethylformamide, 3.35 g of 2-bromopropane and 5.63 g of potassium carbonate were added thereto, and stirring was conducted overnight at room temperature. Water was added to the obtained mixture, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Psychiatry (AREA)
- Dermatology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Ophthalmology & Optometry (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
The present invention provides an oxazole compound represented by Formula (1), or a salt thereof:
wherein R1 is an aryl group which may have one or more substituents; R2 is an aryl group or a nitrogen atom-containing heterocyclic group each of which may have one or more substituents; and W is a divalent group represented by —Y1-A1- or —Y2—C(═O)— wherein Y1 is a group such as —C(═O)—, A1 is a group such as a tower alkylene group, and Y2 is a group such as a piperazinediyl group. The oxazole compound has a specific inhibitory action against phosphodiesterase 4.
Description
- This application is a continuation of U.S. application Ser. No. 16/681,360 filed Nov. 12, 2019, which is a continuation of U.S. application Ser. No. 16/178,517, filed Nov. 1, 2018, now abandoned, which is a continuation of application Ser. No. 15/485,203, now abandoned, filed Apr. 11, 2017, which is a continuation of application Ser. No. 14/104,871, now abandoned, filed Dec. 12, 2013, which is a continuation application of application Ser. No. 12/090,951, filed Mar. 26, 2009, now U.S. Pat. No. 8,637,559, issue date Jan. 28, 2014, which is a National Stage Application of PCT/JP2006/323066, filed Nov. 14, 2006, and claims foreign priority to JP 2005-330590, filed Nov. 15, 2005, all of which are incorporated herein by reference.
- The present invention relates to new oxazole compounds and pharmaceutical compositions.
- Various oxazole compounds have been developed and are disclosed in documents such as WO 03/072102, WO 98/15274, etc. However, the oxazole compounds of the present invention are not disclosed in any literature.
- Some compounds having a specific inhibitory action against phosphodiesterase 4 (PDE4) have been reported. However, known PDE4 inhibitors have problems of side effects such as vomit induction, nausea, etc. and/or a defect of insufficient PDE4 inhibitory action. Therefore, known PDE4 inhibitors are not clinically used as therapeutic agents.
- An object of the present invention is to provide a compound that has a PDE4 inhibitory action and is free from the above-mentioned problems of the prior art.
- The present inventors conducted extensive research to solve the above problems, and succeeded in synthesizing an oxazole compound with a novel structure, the compound having high specificity and a strong PDE4 inhibitory action. Further, the present inventors found that the oxazole compound is capable of exhibiting preventive and/or therapeutic effects on PDE-mediated diseases, and in particular atopic dermatitis, based on its PDE4 inhibitory action. Furthermore, the inventors found that the compound has low penetration into blood when administered transdermally, and thus has low systemic side effects.
- The present inventors further found that the oxazole compound is capable of exhibiting a tumor necrosis factor-α (TNF-α) production inhibitory action.
- In chronic inflammatory diseases such as autoimmune diseases and allergic diseases, cytokines produced by immunocompetent cells are known to be important inflammatory mediators, and among such cytokines, TNF-α is presumed to play a particularly important role. Therefore, the oxazole compound of the present invention is extremely effective for the treatment of TNF-α-mediated diseases.
- The present invention has been accomplished by further research based on the above findings.
- The present invention provides a oxazole compound, a pharmaceutical composition comprising said compound, a use of said compound, a method for treating or preventing a disorder, and a process for producing said compound, as described in Item 1 to 14 below.
- Item 1. An oxazole compound represented by Formula (1)
- wherein R1 is an aryl group which may have one or more substituents selected from the following (1-1) to (1-11):
(1-1) hydroxy groups,
(1-2) unsubstituted or halogen-substituted lower alkoxy groups,
(1-3) lower alkenyloxy groups,
(1-4) lower alkynyloxy groups,
(1-5) cyclo C3-8 alkyl lower alkoxy groups,
(1-6) cyclo C3-8 alkyloxy groups,
(1-7) cyclo C3-8 alkenyloxy groups,
(1-8) dihydroindenyloxy groups,
(1-9) hydroxy lower alkoxy groups,
(1-10) oxiranyl lower alkoxy groups, and
(1-11) protected hydroxy groups;
R2 is an aryl group or a nitrogen atom-containing heterocyclic group each of which may have one or more substituents selected from the following (2-1) to (2-10):
(1-1) hydroxy groups,
(2-2) unsubstituted or halogen-substituted lower alkoxy groups,
(2-3) unsubstituted or halogen-substituted lower alkyl groups,
(2-4) lower alkenyloxy groups,
(2-5) halogen atoms,
(2-6) lower alkanoyl groups,
(2-7) lower alkylthio groups,
(2-8) lower alkylsulfonyl groups,
(2-9) oxo groups, and
(2-10) lower alkoxy lower alkoxy groups; and
W is a divalent group represented by Formula (i) or (ii): -
—Y1-A1- Formula (i) -
—Y2—C(═O)— Formula (ii) - wherein A1 is a lower alkenylene group, or a lower alkylene group which may have one or more substituents selected from the group consisting of hydroxy groups and lower alkoxycarbonyl groups,
Y1 is a direct bond, —C(═O)—, —C(═O)—N(R3)—, —N(R4)—C(═O)—, —S(O)m—NH—, or —S(O)n—
wherein R3 and R4 are each independently a hydrogen atom or a lower alkyl group, and m and n are each independently an integer from 0 to 2, and
Y2 is a piperazinediyl group, or a divalent group represented by Formula (iii) or (iv): -
—C(═O)-A2-N(R5)— Formula (iii) -
-A3-N(R6)— Formula (iv) - wherein A2 and A3 are each independently a lower alkylene group, and R5 and R6 are each independently a hydrogen atom or a lower alkyl group;
or a salt thereof. - Item 2. The compound according to item 1,
- wherein R1 is a phenyl group which has 1 to 3 substituents selected from the following (1-2), (1-3), (1-4) and (1-5):
(1-2) unsubstituted or halogen-substituted lower alkoxy groups,
(1-3) lower alkenyloxy groups,
(1-4) lower alkynyloxy groups, and
(1-5) cyclo C3-8 alkyl lower alkoxy groups;
R2 is a phenyl group or a pyridyl group each of which may have 1 to 3 substituents selected from the group consisting of the following (2-2), (2-3), (2-4) and (2-5):
(2-2) unsubstituted or halogen-substituted lower alkoxy groups,
(2-3) unsubstituted or halogen-substituted lower alkyl groups,
(2-4) lower alkenyloxy groups, and
(2-5) halogen atoms;
W is a divalent group represented by Formula (i): -
—Y1-A1- Formula (i) - wherein A′ is a lower alkylene group, and
Y1 is —C(═O)— or —C(═O)—N(R3)—
wherein R3 is a hydrogen atom. - Item 3. The compound according to item 2,
- wherein R1 is a phenyl group having two substituents selected from the following (1-2), (1-3), (1-4) and (1-5):
(1-2) unsubstituted or halogen-substituted lower alkoxy groups,
(1-3) lower alkenyloxy groups,
(1-4) lower alkynyloxy groups, and
(1-5) cyclo C3-8 alkyl lower alkoxy groups;
R2 is a phenyl group or a pyridyl group each of which may have 1 to 2 substituents selected from the following (2-2), (2-3), (2-4) and (2-5):
(2-2) unsubstituted or halogen-substituted lower alkoxy groups,
(2-3) unsubstituted or halogen-substituted lower alkyl groups,
(2-4) lower alkenyloxy groups, and
(2-5) halogen atoms; and
W is a divalent group represented by Formula (i): -
—Y1-A1- Formula (i) - wherein A1 is a lower alkylene group, and
Y1 is —C(═O)— or —C(═O)—N(R3)—
wherein R3 is a hydrogen atom. - Item 4. The compound according to item 3,
- wherein R1 is a phenyl group substituted on the phenyl ring with two lower alkoxy groups, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl group with one lower alkoxy group and one lower alkenyloxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group, or a phenyl group substituted on the phenyl ring with two halogen-substituted lower alkoxy groups;
R2 is a lower alkoxyphenyl group, a lower alkenyloxyphenyl group, a halogen-substituted lower alkoxyphenyl group, a lower alkylpyridyl group, or a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen atom; and
W is a divalent group represented by Formula (i): -
—Y1-A1- Formula (i) - wherein A1 is a C1-4 alkylene group, and
Y1 is —C(═O)— or —C(═O)—N(R3)—
wherein R3 is a hydrogen atom. - Item 5. The compound according to item 4,
- wherein R1 is a phenyl group substituted on the phenyl ring with two lower alkoxy groups, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl group with one lower alkoxy group and one lower alkenyloxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group, or a phenyl group substituted on the phenyl ring with two halogen-substituted lower alkoxy groups;
R2 is a lower alkoxyphenyl group, a lower alkenyloxy phenyl group, a halogen-substituted lower alkoxyphenyl group, a lower alkylpyridyl group, or a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen atom; and
W is a divalent group represented by Formula (i): -
—Y1-A1- Formula (i) - wherein A1 is a C1-4 alkylene group, and
- Item 6. The compound according to item 4,
- wherein R1 is a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, or a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group;
R2 is a lower alkoxyphenyl group or a lower alkylpyridyl group; and
W is a divalent group represented by Formula (i): -
—Y1-A1- Formula (i) - wherein A1 is a C1-4 alkylene group, and
Y1 is —C(═O)—N(R3)—
wherein R3 is a hydrogen atom. - Item 7. A pharmaceutical composition comprising the compound or salt according to any one of items 1 to 6 as an active ingredient and a pharmaceutically acceptable carrier.
- Item 8. A pharmaceutical composition for treating or preventing phosphodiesterase 4-mediated and/or tumor necrosis factor-α-mediated diseases, the composition comprising the compound or salt according to any one of items 1 to 6.
- Item 9. A pharmaceutical composition for treating or preventing atopic dermatitis, the composition comprising the compound or salt according to any one of items 1 to 6.
- Item 10. A process for producing a pharmaceutical composition, the process comprising mixing the compound or salt according to any one of items 1 to 6 with a pharmaceutically acceptable carrier.
- Item 11. Use of the compound or salt according to any one of items 1 to 6 as a drug.
- Item 12. Use of the compound or salt according to any one of items 1 to 6 as a phosphodiesterase 4 inhibitor and/or tumor necrosis factor-α production inhibitor.
- Item 13. A method for treating or preventing phosphodiesterase 4-mediated and/or tumor necrosis factor-α-mediated diseases, the method comprising administering the compound or salt according to any one of items 1 to 6 to human or animal.
- Item 14. A process for producing an oxazole compound represented by Formula (1):
- wherein R1, R2 and W are the same as defined in item 1, or a salt thereof, the process comprising a reaction of a compound represented by Formula (2):
- wherein R2 and W are the same as defined above, and X is a halogen atom, or a salt thereof, with a compound represented by Formula (3):
- wherein R1 is the same as defined above, or a salt thereof.
- In Formula (1), R1 is preferably a phenyl group. The phenyl group represented by R1 preferably has 1 to 3, and more preferably 2, substituents selected from the group consisting of
- (1-2) unsubstituted or halogen-substituted lower alkoxy groups,
(1-3) lower alkenyloxy groups, (1-4) lower alkynyloxy groups, and
(1-5) cyclo C3-8 alkyl lower alkoxy groups. - In Formula (1), R2 is preferably a phenyl group or a pyridyl group. The phenyl group or pyridyl group represented by R2 preferably has 1 to 3, and more preferably 1, substituents selected from the group consisting of (2-2) unsubstituted or halogen-substituted lower alkoxy groups, (2-3) unsubstituted or halogen-substituted lower alkyl groups, (2-4) lower alkenyloxy groups, and (2-5) halogen atoms.
- In Formula (1), W is preferably a divalent group represented by Formula (i) —Y1-A1-. A1 is preferably a lower alkylene group; Y1 is preferably —C(═O)— or —C(═O)—N(R3)—; and R3 is preferably a hydrogen atom.
- Among the oxazole compounds of the present invention, those represented by Formula (1A) and salts thereof are preferable, and those represented by Formula (1B) and salts thereof are more preferable.
- wherein R1 is a phenyl group having two substituents selected from the following (1-2), (1-3), (1-4) and (1-5):
(1-2) unsubstituted or halogen-substituted lower alkoxy groups,
(1-3) lower alkenyloxy groups,
(1-4) lower alkynyloxy groups, and
(1-5) cyclo C3-8 alkyl lower alkoxy groups;
R2 is a phenyl group or a pyridyl group each of which may have one or more substituents selected from the following (2-2), (2-3), (2-4) and (2-5):
(2-2) unsubstituted or halogen-substituted lower alkoxy groups,
(2-3) unsubstituted or halogen-substituted lower alkyl groups,
(2-4) lower alkenyloxy groups, and
(2-5) halogen atoms; and
W is a divalent group represented by Formula (i): -
—Y1-A1- Formula (i) - wherein A1 is a lower alkylene group, and
Y1 is —C(═O)— or —C(═O)—N(R3)—
wherein R3 is a hydrogen atom. - wherein R1 is a phenyl group substituted on the phenyl ring with two lower alkoxy groups, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl group with one lower alkoxy group and one lower alkenyloxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group, or a phenyl group substituted on the phenyl ring with two halogen-substituted lower alkoxy groups;
- R2 is a lower alkoxyphenyl group, a lower alkenyloxyphenyl group, a halogen-substituted lower alkoxyphenyl group, a lower alkylpyridyl group, or a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen atom; and
- W is a divalent group represented by Formula (i):
-
—Y1-A1- Formula (i) - wherein A1 is a C1-4 alkylene group, and
Y1 is —C(═O)— or —C(═O)—N(R3)—
wherein R3 is a hydrogen atom. - The present invention is described below in further detail.
- Compound represented by Formula (1)
- In Formula (1), R1 is an aryl group. The aryl group may have 1 to 3, and preferably 2, substituents selected from the group consisting of (1-1) hydroxy groups, (1-2) unsubstituted or halogen-substituted lower alkoxy groups, (1-3) lower alkenyloxy groups, (1-4) lower alkynyloxy groups, (1-5) cyclo C3-8 alkyl lower alkoxy groups, (1-6) cyclo C3-8 alkyloxy groups, (1-7) cyclo C3-8 alkenyloxy groups, (1-8) dihydroindenyloxy groups, (1-9) hydroxy lower alkoxy groups, (1-10) oxiranyl lower alkoxy groups, and (1-11) protected hydroxy groups.
- In Formula (1), R2 is an aryl group or a nitrogen atom-containing heterocyclic group. The aryl group and heterocyclic group may have 1 to 3, and preferably 1, substituent selected from the group consisting of (2-1) hydroxy groups, (2-2) unsubstituted or halogen-substituted lower alkoxy groups, (2-3) unsubstituted or halogen-substituted lower alkyl groups, (2-4) lower alkenyloxy groups, (2-5) halogen atoms, (2-6) lower alkanoyl groups, (2-7) lower alkylthio groups, (2-8) lower alkylsulfonyl groups, (2-9) oxo groups, and (2-10) lower alkoxy lower alkoxy groups.
- In Formula (1), W is a divalent group represented by Formula (i) or (ii):
-
—Y1-A1- Formula (i) -
—Y2—C(═O)— Formula (ii) - wherein A1 is a lower alkenylene group, or a lower alkylene group which may have 1 to 3, and preferably 1, substituent selected from the group consisting of hydroxy groups and lower alkoxycarbonyl groups;
Y1 is a direct bond, —C(═O)—, —C(═O)—N(R3)—, —N(R4)—C(═O)—, —S(O)m—NH—, or —S(O)n—
wherein R3 and R4 are each independently a hydrogen atom or a lower alkyl group, and m and n are each independently an integer from 0 to 2; and
Y2 is a piperazinediyl group, or a divalent group represented by Formula (iii) or (iv): -
—C(═O)-A2-N(R5)— Formula (iii) -
-A3-N(R6)— Formula (iv) - wherein A2 and A3 are each independently a lower alkylene group, and
R5 and R6 are each independently a hydrogen atom or a lower alkyl group. - Examples of aryl groups include phenyl, naphthyl, etc.
- Examples of halogen atoms include fluorine, chlorine, bromine, iodine, etc.
- Lower alkyl groups are straight- or branched-chain alkyl groups having 1 to 6 carbon atoms, and examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-ethylpropyl, n-pentyl, neopentyl, n-hexyl, isohexyl, 3-methylpentyl, etc.
- Unsubstituted or halogen-substituted lower alkyl groups are straight- or branched-chain alkyl groups having 1 to 6 carbon atoms as defined above, or such alkyl groups substituted with 1 to 7 halogen atoms. Examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-ethylpropyl, n-pentyl, neopentyl, n-hexyl, isohexyl, 3-methyl pentyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, dichlorofluoromethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, 2-chloroethyl, 3,3,3-trifluoropropyl, heptafluoropropyl, heptafluoroisopropyl, 3-chloropropyl, 2-chloropropyl, 3-bromopropyl, 4,4,4-trifluorobutyl, 4,4,4,3,3-pentafluorobutyl, 4-chlorobutyl, 4-bromobutyl, 2-chlorobutyl, 5,5,5-trifluoropentyl, 5-chloropentyl, 6,6,6-trifluorohexyl, 6-chlorohexyl, etc.
- Lower alkenyloxy groups are groups composed of an oxygen atom and a C2-6 straight- or branched-chain alkenyl group having 1 to 3 double bonds. Lower alkenyloxy groups have cis and trans forms. More specific examples thereof include vinyloxy, 1-propenyloxy, 2-propenyloxy, 1-methyl-1-propenyloxy, 2-methyl-1-propenyloxy, 2-methyl-2-propenyloxy, 2-propenyloxy, 2-butenyloxy, 1-butenyloxy, 3-butenyloxy, 2-pentenyloxy, 1-pentenyloxy, 3-pentenyloxy, 4-pentenyloxy, 1,3-butadienyloxy, 1,3-pentadienyloxy, 2-penten-4-yloxy, 3-methyl-2-butenyloxy, 2-hexenyloxy, 1-hexenyloxy, 5-hexenyloxy, 3-hexenyloxy, 4-hexenyloxy, 3,3-dimethyl-1-propenyloxy, 2-ethyl-1-propenyloxy, 1,3,5-hexatrienyloxy, 1,3-hexadienyloxy, 1,4-hexadienyloxy, etc.
- Examples of lower alkynyloxy groups include groups composed of an oxygen atom and a C2-6 straight- or branched-chain alkynyl group having 1 to 3 triple bonds. More specific examples thereof include ethynyloxy, 2-propynyloxy, 2-butynyloxy, 3-butynyloxy, 1-methyl-2-propynyloxy, 2-pentynyloxy, 2-hexynyloxy, etc.
- Examples of cyclo C3-8 alkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, etc.
- Preferable examples of lower alkoxy groups include C1-6 straight- or branched-chain alkoxy groups. Specifically, such groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, 1-ethylpropoxy, n-pentoxy, neopentoxy, n-hexyloxy, isohexyloxy, 3-methylpentoxy, etc.
- Examples of cyclo C3-8 alkyl lower alkoxy groups include the above-mentioned lower alkoxy groups which have 1 to 3, and preferably 1, cyclo C3-8 alkyl group as listed above. More specific examples thereof include cyclopropylmethoxy, cyclobutylmethoxy, cyclohexylmethoxy, 2-cyclopropylethoxy, 1-cyclobutylethoxy, cyclopentylmethoxy, 3-cyclopentylpropoxy, 4-cyclohexylbutoxy, 5-cycloheptylpentoxy, 6-cyclooctylhexyloxy, 1,1-dimethyl-2-cyclohexylethoxy, 2-methyl-3-cyclopropylpropoxy, etc.
- Examples of cyclo C3-8 alkyloxy groups include cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, cyclooctyloxy, etc.
- Examples of cyclo C3-8 alkenyloxy groups include cyclopropenyloxy, cyclobutenyloxy, cyclopentenyloxy, cyclohexenyloxy, cycloheptenyloxy, cyclooctenyloxy, etc.
- Examples of dihydroindenyloxy groups include 2,3-dihydroinden-1-yloxy, 2,3-dihydroinden-2-yloxy, etc.
- Examples of hydroxy lower alkoxy groups include lower alkoxy groups (preferably C1-6 straight- or branched-chain alkoxy groups) having 1 to 5, and preferably 1 to 3, hydroxy groups. More specific examples thereof include hydroxymethyloxy, 2-hydroxyethyloxy, 1-hydroxyethyloxy, 3-hydroxypropyloxy, 2,3-dihydroxypropyloxy, 4-hydroxybutyloxy, 3,4-dihydroxybutyloxy, 1,1-dimethyl-2-hydroxyethyloxy, 5-hydroxypentyloxy, 6-hydroxyhexyloxy, 3,3-dimethyl-3-hydroxypropyloxy, 2-methyl-3-hydroxypropyloxy, 2,3,4-trihydroxybutyloxy, perhydroxyhexyloxy, etc.
- Examples of oxiranyl lower alkoxy groups include C1-6 straight- or branched-chain alkoxy groups having 1 or 2 oxyranyl groups such as, for example, oxiranylmethoxy, 2-oxiranylethoxy, 1-oxiranylethoxy, 3-oxiranylpropoxy, 4-oxiranylbutoxy, 5-oxiranylpentyloxy, 6-oxiranylhexyloxy, 1,1-dimethyl-2-oxiranylethoxy, 2-methyl-3-oxiranylpropoxy, etc.
- Examples of protecting groups of protected hydroxy groups include lower alkanoyl and other acyl groups; phenyl(lower)alkyl groups which may have one or more suitable substituents (e.g., benzyl, phenethyl, 3-phenylpropyl, 4-methoxybenzyl, trityl, etc.); trisubstituted silyl groups [e.g., tri(lower)alkylsilyl groups (e.g., trimethylsilyl, t-butyldimethylsilyl, etc.) and the like]; tetrahydropyranyl; etc.
- Examples of nitrogen atom-containing heterocyclic groups include pyrrolidinyl, imidazolidinyl, piperidyl, hexahydropyrimidinyl, piperazinyl, octahydroisoindolyl, azepanyl, azocanyl, pyrrolyl, dihydropyrrolyl, imidazolyl, dihydroimidazolyl, triazolyl, dihydrotriazolyl, pyrazolyl, pyridyl and N-oxides thereof, dihydropyridyl, pyrimidinyl, dihydropyrimidinyl, pyrazinyl, dihydropyrazinyl, pyridazinyl, tetrazolyl, indolyl, isoindolyl, indolinyl, isoindolinyl, hexahydroisoindolinyl, benzoimidazolyl, quinolyl, isoquinolyl, indazolyl, quinazolinyl, dihydroquinazolinyl, benzotriazolyl, carbazolyl, oxazolyl, isooxazolyl, oxadiazolyl, oxazolidinyl, isooxazolidinyl, morpholinylbenzoxazolyl, dihydrobenzoxazolyl, benzoxazinyl, dihydrobenzoxazinyl, benzoxazolyl, benzooxadiazolyl, thiazolyl, dihydrothiazolyl, isothiazolyl, thiadiazolyl, dihydrothiazinyl, thiazolyzinyl, benzothiazolyl, benzothiadiazolyl, etc.
- Unsubstituted or halogen-substituted lower alkoxy groups are straight- or branched-chain alkoxy groups having 1 to 6 carbon atoms, or such alkoxy groups substituted with 1 to 7 halogen atoms. Examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, 1-ethylpropoxy, n-pentoxy, neopentoxy, n-hexyloxy, isohexyloxy, 3-methylpentoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, bromomethoxy, dibromomethoxy, dichlorofluoromethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, pentafluoroethoxy, 2-chloroethoxy, 3,3,3-trifluoropropoxy, heptafluoropropoxy, heptafluoroisopropoxy, 3-chloropropoxy, 2-chloropropoxy, 3-bromopropoxy, 4,4,4-trifluorobutoxy, 4,4,4,3,3-pentafluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy, 2-chlorobutoxy, 5,5,5-trifluoropentoxy, 5-chloropentoxy, 6,6,6-trifluorohexyloxy, 6-chlorohexyloxy, etc.
- Examples of lower alkanoyl groups include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, tert-butylcarbonyl, hexanoyl, and other C1-6 straight- or branched-chain alkanoyl groups.
- Examples of lower alkylthio groups include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, tert-butylthio, n-pentylthio, n-hexylthio, and other C1-6 straight- or branched-chain alkylthio groups.
- Preferable examples of lower alkylsulfonyl groups include C1-6 straight- or branched-chain alkylsulfonyl groups. More specific examples thereof include methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, tert-butylsulfonyl, sec-butylsulfonyl, n-pentylsulfonyl, isopentylsulfonyl, neopentylsulfonyl, n-hexylsulfonyl, isohexylsulfonyl, 3-methylpentylsulfonyl, etc.
- Lower alkenylene groups include, for example, vinylidene, propylene, butenylene, and other C2-6 straight- or branched-chain alkenylene groups having 1 to 3 double bonds.
- Preferable examples of lower alkoxycarbonyl groups include groups composed of a C1-6 straight- or branched-chain alkoxy group and a carbonyl group. Specific examples thereof include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, tert-butoxycarbonyl, sec-butoxycarbonyl, n-pentoxycarbonyl, neopentoxycarbonyl, n-hexyloxycarbonyl, isohexyloxycarbonyl, 3-methylpentoxycarbonyl, etc.
- Lower alkylene groups include, for example, ethylene, trimethylene, 2-methyltrimethylene, 2,2-dimethyltrimethylene, 1-methyltrimethylene, methylmethylene, ethylmethylene, tetramethylene, pentamethylene, hexamethylene, and other C1-6 straight- or branched-chain alkylene groups.
- Examples of lower alkoxy lower alkoxy groups include alkoxyalkoxy groups in which the two alkoxy moieties are each independently a C1-6 straight- or branched-chain alkoxy group. Specific examples thereof include methoxymethoxy, 2-methoxyethoxy, 3-methoxypropoxy, 4-methoxybutoxy, 5-methoxypentoxy, 6-methoxyhexyloxy, ethoxymethoxy, 2-ethoxyethoxy, n-propoxymethoxy, isopropoxymethoxy, n-butoxymethoxy, etc.
- Examples of C1-4 alkylene groups include ethylene, trimethylene, 2-methyltrimethylene, 2,2-dimethyltrimethylene, 1-methyltrimethylene, methylmethylene, ethylmethylene, tetramethylene, and other C1-4 straight- or branched-chain alkylene groups.
- The oxazole compound represented by Formula (1) can be produced by various processes, one example of which is shown in Reaction Scheme 1.
- wherein R1, R2 and W are as defined in Formula (1), and X is a halogen atom.
- Compound (1) is produced by reacting Compound (2) with Compound (3).
- The reaction of Compound (2) with Compound (3) is usually performed in a suitable solvent. A wide variety of known solvents can be used as long as they do not inhibit the reaction. Examples of such solvents include dimethylformamide, dimethylsulfoxide, acetonitrile, and other aprotic polar solvents; acetone, methyl ethyl ketone, and other ketone solvents; benzene, toluene, xylene, tetralin, liquid paraffin, and other hydrocarbon solvents; methanol, ethanol, isopropanol, n-butanol, tert-butanol, and other alcohol solvents; tetrahydrofuran, dioxane, dipropyl ether, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; ethyl acetate, methyl acetate, and other ester solvents; mixtures thereof; etc. Such solvents may contain water.
- The proportion of Compound (3) to Compound (2) is usually 0.5 to 5 mol, and preferably 0.5 to 3 mol, per mol of Compound (2).
- The reaction of Compound (2) with Compound (3) is usually performed by continuing stirring at −20 to 200° C., and preferably at 0 to 150° C., for 30 minutes to 60 hours, and preferably 1 to 30 hours.
- Compound (3) used as a starting material is an easily available known compound. Compound (2) encompasses novel compounds, and a production process for such a compound is described hereinafter (Reaction Scheme 9).
- Among the oxazole compounds represented by Formula (1), those in which W is a divalent group represented by —Y1-A1- wherein Y1 is —C(═O)—N(R3)— (hereinafter referred to as “Compound (1a)”) can be produced by, for example, the process shown in Reaction Scheme 2.
- wherein R1, R2, R3 and A1 are as defined in Formula (1).
- Compound (1a) is produced by reacting Compound (4) or a reactive derivative thereof at the carboxy group, with Compound (5) or a reactive derivative thereof at the amino or imino group.
- Preferable examples of reactive derivatives of Compound (4) include acid halides, acid anhydrides, activated amides, activated esters, etc. Preferable examples of reactive derivatives include acid chlorides; acid azides; dialkylphosphoric acids, phenylphosphoric acid, diphenylphosphoric acid, dibenzylphosphoric acid, phosphoric acid halides, and other substituted phosphoric acids, dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, sulfuric acid, methanesulfonic acid, and other sulfonic acids, acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, and other aliphatic carboxylic acids, and mixed acid anhydrides with acids such as benzoic acid or other aromatic acids; symmetrical acid anhydrides; activated amides with imidazole, 4-substituted imidazole, dimethylpyrazole, triazole or tetrazole; cyanomethyl ester, methoxymethyl ester, dimethyliminomethyl ester, vinyl ester, propargyl ester, p-nitrophenyl ester, 2,4-dinitrophenyl ester, trichlorophenyl ester, pentachlorophenyl ester, mesylphenyl ester, and other activated esters, esters with N,N-dimethylhydroxylamine, 1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide, N-hydroxyphthalimide, 1-hydroxy-1H-benzotriazol, and other N-hydroxy compounds; etc. Such reactive derivatives can be selected as desired, according to the type of Compound (4) used.
- When using Compound (4) in the form of a free acid or a salt thereof in the above reaction, it is preferable to perform the reaction in the presence of condensing agent(s). A wide variety of condensing agents known in this field can be used, including, for example, N,N′-dicyclohexylcarbodiimide; N-cyclohexyl-N′-morpholinoethylcarbodiimide; N-cyclohexyl-N′-(4-diethylaminocyclohexyl)carbodiimide; N,N′-diethylcarbodiimide; N,N′-diisopropylcarbodiimide; N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide and hydrochlorides thereof; N,N′-carbonylbis(2-methylimidazole); pentamethyleneketene-N-cyclohexylimine; diphenylketene-N-cyclohexylimine; ethoxyacetylene, 1-alkoxy-1-chloroethylene; trialkyl phosphite; ethyl polyphosphate; isopropyl polyphosphate; phosphorus oxychloride (phosphoryl chloride); phosphorus trichloride; phosphoryl diphenyl azide; thionyl chloride; oxalyl chloride; ethyl chloroformate, isopropyl chloroformate, and other lower alkyl haloformates; triphenylphosphine; 2-ethyl-7-hydroxybenzisooxazolium salt; 2-ethyl-5-(m-sulfophenyl)isooxazolium hydroxide inner salts; hexafluorophosphoric acid benzotriazol-1-yl-oxy-tris(dimethylamino)phosphonium; 1-(p-chlorobenzenesulfonyloxy)-6-chloro-1H-benzotriazol; so-called Vilsmeier reagents prepared by reacting N,N-dimethylformamide with thionyl chloride, phosgene, trichloromethyl chloroformate, phosphorus oxychloride, etc.; and the like. It is more preferable to perform the reaction in the presence of such condensing agent(s) and active esterifying agent(s) such as N-hydroxysuccinimide, N-hydroxyphthalimide, 1-hydroxy-1H-benzotriazol, or the like.
- Preferable examples of reactive derivatives of Compound (5) include Schiff base imino- or enamine-type tautomers produced by reacting Compound (5) with carbonyl compounds such as aldehydes, ketones, etc.; silyl derivatives produced by reacting Compound (5) with silyl compounds such as bis(trimethylsilyl)acetamide, mono(trimethylsilyl)acetamide, bis(trimethylsilyl)urea, etc.; derivatives produced by reacting Compound (5) with phosphorus trichloride, phosgene, etc.; and the like.
- The reaction is usually carried out in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diisopropyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; n-pentane, n-hexane, n-heptane, cyclohexane, and other hydrocarbon solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; and mixed solvents thereof.
- The reaction may be performed in the presence of base(s). A wide variety of known inorganic and organic bases are usable. Inorganic bases include, for example, alkali metals (e.g., sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, etc.), and alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.). Organic bases include, for example, trialkylamines [e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.], pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc. When such bases are liquid, they can also be used as solvents.
- Such bases can be used singly or in combination.
- The amount of base(s) is usually 0.1 to 10 moles, and preferably 0.1 to 3 moles, per mole of Compound (4).
- The proportion of Compound (4) to Compound (5) in Reaction Scheme 1 is usually at least 1, and preferably about 1 to about 5 mol of the former per mol of the latter.
- The reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 100° C., for 30 minutes to 30 hours, and preferably for 30 minutes to 5 hours.
- In the above reaction, Compound (4) for use as a starting material is an easily available known compound. Compound (5) encompasses novel compounds. A production process for Compound (5) is described hereinafter (Reaction Scheme 10).
- Among the oxazole compounds represented by Formula (1), those in which W is a divalent group represented by —Y1-A1- wherein Y1 is —C(═O)— and A1 is a lower alkylene group having one lower alkoxycarbonyl group (hereinafter referred to as “Compound (1b)”) can be produced, for example, by the process shown in Reaction Scheme 3.
- wherein R1 and R2 are as defined in Formula (1), R7 and R8 are each independently a lower alkyl group, and A is a alkylene group.
- The —COOR8 group in Formula (1b) is the same as the lower alkoxycarbonyl group defined as a substituent of A1 in Formula (1). The lower alkyl group represented by R7 may be the same as the lower alkyl group as defined above.
- Examples of the C1-5 alkylene group represented by A1a include ethylene, trimethylene, 2-methyltrimethylene, 2,2-dimethyltrimethylene, 1-methyltrimethylene, methylmethylene, ethylmethylene, tetramethylene, pentamethylene, and other straight- or branched-chain alkylene groups.
- Compound (1b) is produced by reacting Compound (6) with Compound (7).
- The reaction is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; and mixed solvents thereof.
- The reaction can usually be performed in the presence of suitable base(s). A wide variety of known inorganic and organic bases are usable. Inorganic bases include, for example, alkali metals (e.g., lithium, sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, sodium tert-pentoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like. Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc. When such bases are liquid, they can also be used as solvents. Such bases can be used singly or in combination.
- The amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (6).
- The proportion of Compound (6) to Compound (7) is usually at least 1 mol, and preferably about 1 to about 5 mol of the former, per mol of the latter.
- The reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 150° C., for 30 minutes to 60 hours, and preferably 1 to 30 minutes.
- Compound (6) used as a starting material in the above reaction is an easily available known compound. Compound (7) encompasses novel compounds. A production process for Compound (7) is described hereinafter (Reaction Scheme 11).
- Among the oxazole compounds represented by Formula (1), those in which W is a divalent group represented by —Y1-A1- wherein A1 is a lower alkylene group (hereinafter referred to as “Compound (1d)”) are produced from the corresponding compounds in which A1 is a lower alkylene group having lower alkoxycarbonyl group(s) (hereinafter referred to as “Compound (1c)”), by the process shown in Reaction Scheme 4.
- wherein R1, R2 and Y1 are as defined in Formula (1), A1b is a lower alkylene group having lower alkoxycarbonyl group(s), and A1c is a lower alkylene group.
- Compound (1d) is produced by subjecting Compound (1c) to hydrolysis-decarboxylation.
- The reaction is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; and mixed solvents thereof.
- The hydrolysis-decarboxylation of Compound (1c) is usually performed under acidic conditions. For example, an acid is added to a suspension or solution of Compound (1c) in a suitable solvent, and the resulting mixture is stirred at 0 to 120° C. to carry out the hydrolysis-decarboxylation.
- Examples of usable acids include trifluoroacetic acid, acetic acid, and other organic acids, hydrochloric acid, bromic acid, hydrobromic acid, sulfuric acid, and other inorganic acids, etc. Among such organic acids, organic acids can also be used as reaction solvents.
- The amount of acid(s) is usually 0.5 to 30 mol, and preferably 0.5 to 10 mol, per mol of Compound (1c).
- The reaction temperature is usually 0 to 120° C., and 0.5 preferably room temperature to 110° C. The reaction time is usually 30 minutes to 24 hours, preferably 30 minutes to 12 hours, and more preferably 1 to 8 hours.
- Among the oxazole compounds represented by Formula (1), those in which R1 is a phenyl group substituted on the phenyl ring with hydroxy group(s) (hereinafter referred to as “Compound (1f)”) are produced from the corresponding compounds in which R1 is a phenyl group substituted on the phenyl ring with protected hydroxy group(s) (hereinafter referred to as “Compound (1e)”), by the process shown in Reaction Scheme 5.
- wherein R2 and W are as defined in Formula (1); R9 is a protected hydroxy group; R10 is the same group as the substituent (1-2), (1-3), (1-4), (1-5), (1-6), (1-7), (1-8), (1-9) or (1-10) of the aryl group represented by R1 in Formula (1); m is 1 to 5; q is 0 to 4; m R9s may be the same or different; and q R10s may be the same or different; with the proviso that m+q≤5.
- Compound (1f) can be produced by subjecting Compound (1e) to an elimination reaction of the hydroxy protecting group(s).
- The elimination reaction can be carried out by hydrolysis, hydrogenolysis, or other conventional methods.
- The reaction is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; and other organic solvents.
- (i) Hydrolysis:
- Hydrolysis is preferably carried out in the presence of base(s) or acid(s) (including Lewis acids).
- A wide variety of known inorganic and organic bases are usable. Preferable examples of inorganic bases include alkali metals (e.g., sodium, potassium, etc.), alkaline earth metals (e.g., magnesium, calcium, etc.), hydroxides, carbonates and hydrogencarbonates thereof, etc. Preferable examples of organic bases include trialkylamines (e.g., trimethylamine, triethylamine, etc.), picoline, 1,5-diazabicyclo[4,3,0]non-5-ene, etc.
- A wide variety of known organic and inorganic acids are usable. Preferable organic acids include, for example, formic acid, acetic acid, propionic acid, and other fatty acids; trichloroacetic acid, trifluoroacetic acid, and other trihaloacetic acids; and the like. Preferable inorganic acids include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, etc. Examples of Lewis acids include boron trifluoride ether complexes, boron tribromide, aluminium chloride, ferric chloride, etc.
- When using a trihaloacetic acid or Lewis acid, it is preferable to carry out hydrolysis in the presence of a cation scavenger (e.g., anisole, phenol, etc.).
- The amount of base(s) or acid(s) is not limited as long as it is an amount necessary for hydrolysis.
- The reaction temperature is usually 0 to 120° C., preferably room temperature to 100° C., and more preferably room temperature to 80° C. The reaction time is usually 30 minutes to 24 hours, preferably 30 minutes to 12 hours, and more preferably 1 to 8 hours.
- (ii) Hydrogenolysis:
- Hydrogenolysis can be carried out by a wide variety of known methods including, for example, chemical reduction, catalytic reduction, etc.
- Examples of suitable reducing agents for chemical reduction include hydrides (e.g., hydrogen iodide, hydrogen sulfide, lithium aluminium hydride, sodium borohydride, sodium cyanoborohydride, etc.); and combinations of metals (e.g., tin, zinc, iron, etc.) or metallic compounds (e.g., chromium chloride, chromium acetate, etc.), with organic or inorganic acids (e.g., formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.).
- Examples of suitable catalysts for catalytic reduction include platinum catalysts (e.g., platinum plates, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wires, etc.), palladium catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium carbon, palladium/barium sulfate, palladium/barium carbonate, etc.), nickel catalysts (e.g., reduced nickel, nickel oxide, Raney nickel, etc.), cobalt catalysts (e.g., reduced cobalt, Raney cobalt, etc.), iron catalysts (e.g., reduced iron and the like), etc.
- When such acids used for chemical reduction are liquid, they can also be used as solvents.
- The amounts of reducing agent for chemical reduction and catalyst for catalytic reduction are not limited and may be conventional amounts.
- The reaction temperature is usually 0 to 120° C., preferably room temperature to 100° C., and more preferably room temperature to 80° C. The reaction time is usually 30 minutes to 24 hours, preferably 30 minutes to 10 hours, and more preferably 30 minutes to 4 hours.
- Among the oxazole compounds represented by Formula (1), those in which R1 is a phenyl group substituted on the phenyl ring with R11O— group(s) (hereinafter referred to as “Compound (1g)”) are produced from Compound (1f), by the process shown in Reaction Scheme 6.
- wherein R2 and W are as defined in Formula (1); R10 m and q are as defined above; X1 is a halogen atom or a group that undergoes the same substitution reaction as that of a halogen atom; R11O is the same group as the substituent (1-2), (1-3), (1-4), (1-5), (1-6), (1-7), (1-8), (1-9) or (1-10) of the aryl group represented by R1 in Formula (1); and m R11Os may be the same or different.
- In Compound (8), the halogen atom represented by X1 is a fluorine atom, chlorine atom, bromine atom, or iodine atom.
- Examples of the group that undergoes the same substitution reaction as that of a halogen atom, the group being represented by X1, include lower alkanesulfonyloxy groups, arylsulfonyloxy groups, aralkylsulfonyloxy groups, etc.
- Specific examples of lower alkanesulfonyloxy groups include methanesulfonyloxy, ethanesulfonyloxy, isopropanesulfonyloxy, n-propanesulfonyloxy, n-butanesulfonyloxy, tert-butanesulfonyloxy, n-pentanesulfonyloxy, n-hexanesulfonyloxy, and other C1-6 straight- or branched-chain alkanesulfonyloxy groups, and the like.
- Arylsulfonyloxy groups include, for example, phenylsulfonyloxy, naphthylsulfonyloxy, etc. The phenyl ring of such arylsulfonyloxy groups may have, for example, 1 to 3 substituents selected from the group consisting of C1-6 straight- or branched-chain alkyl groups, C1-6 straight- or branched-chain alkoxy groups, nitro groups, and halogen atoms. Specific examples of such arylsulfonyloxy groups include phenylsulfonyloxy, 4-methylphenylsulfonyloxy, 2-methylphenylsulfonyloxy, 4-nitrophenylsulfonyloxy, 4-methoxyphenylsulfonyloxy, 2-nitrophenylsulfonyloxy, 3-chlorophenylsulfonyloxy, etc. Specific examples of naphthylsulfonyloxy groups include α-naphthylsulfonyloxy, β-naphthylsulfonyloxy, etc.
- Aralkylsulfonyloxy groups include, for example, phenyl-substituted C1-6 straight- or branched-chain alkylsulfonyloxy groups which may have, on the phenyl ring, 1 to 3 substituents selected from the group consisting of straight- or branched-chain alkyl groups, C1-6 straight- or branched-chain alkoxy groups, nitro groups, and halogen atoms; naphthyl-substituted C1-6 straight- or branched-chain alkylsulfonyloxy groups; etc. Specific examples of phenyl-substituted alkylsulfonyloxy groups as mentioned above include benzylsulfonyloxy, 2-phenylethylsulfonyloxy, 4-phenylbutylsulfonyloxy, 2-methylbenzylsulfonyloxy, 4-methoxybenzylsulfonyloxy, 4-nitrobenzylsulfonyloxy, 3-chlorobenzylsulfonyloxy, etc. Specific examples of naphthyl-substituted alkylsulfonyloxy groups as mentioned above include α-naphthylmethylsulfonyloxy, β-naphthylmethylsulfonyloxy, etc.
- Compound (1g) is produced by reacting Compound (1f) with Compound (8), or by reacting Compound (1f) with Compound (8′).
- The reaction of Compound (1f) with Compound (8) is described below.
- The reaction of Compound (1f) with Compound (8) is usually performed in a known solvent that does adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixed solvents thereof; etc.
- The reaction of Compound (1f) with Compound (8) is usually carried out in the presence of base(s). Usable bases include known inorganic and organic bases. Inorganic bases include, for example, alkali metals (e.g., sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like. Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc. When such bases are liquid, they can also be used as solvents. Such bases can be used singly or in combination.
- The amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (1f).
- When performing the above reaction, alkali metals such as potassium iodide, sodium iodide, etc. can be added as reaction accelerators to the reaction system, as required.
- The proportion of Compound (1f) to Compound (8) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- The reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction at about room temperature for 1 to 30 hours.
- Next, the reaction of Compound (1f) with Compound (8′) is described.
- The reaction of Compound (1f) with Compound (8′) is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; benzene, toluene, xylene, and other aromatic hydrocarbon solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixed solvents thereof; etc.
- The reaction is usually performed in the presence of dialkyl azodicarboxylate(s) such as diisopropyl azodicarboxylate, diethyl azodicarboxylate, etc., and phosphine ligand(s) such as triphenyl phosphine, tri(n-butyl)phosphine, etc. The amount of dialkyl azodicarboxylate(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mole of Compound (1f). The amount of phosphine ligand(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mole of Compound (1f).
- The reaction of Compound (1f) with Compound (8′) can be carried out in the presence of suitable base(s). A wide variety of known inorganic and organic bases are usable. Inorganic bases include, for example, alkali metals (e.g., sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like. Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc. When such bases are liquid, they can also be used as solvents. Such bases can be used singly or in combination.
- The amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (1f).
- The proportion of Compound (1f) to Compound (8′) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- The reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction at about room temperature for 1 to 30 hours.
- Compounds (8) and (8′) used as starting materials in the above reaction are easily available known compounds.
- Among the oxazole compounds represented by Formula (1), those in which W is a divalent group represented by —Y1-A1- wherein Y1 is —C(═O) and A1 is a lower alkenylene group (hereinafter referred to as “Compound (1h)”) can be produced by, for example, the process shown in Reaction Scheme 7.
- wherein R1 and R2 are as defined in Formula (1), and A1d is a C2-4 alkenylene group, a C1-4 alkylene group, or a direct bond.
- Each of the C2-4 alkenyl group and C1-4 alkylene group may be straight- or branched-chain. —CH═CH-A1d- corresponds to the lower alkenylene group represented by A1 in Formula (1).
- Compound (1h) is produced by reacting Compound (9) with Compound (10).
- The reaction is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixed solvents thereof; etc.
- The reaction can be performed in the presence of base(s). A wide variety of known inorganic and organic bases are usable. Inorganic bases include, for example, alkali metals (e.g., lithium, sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like. Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc. When such bases are liquid, they can also be used as solvents. Such bases can be used singly or in combination.
- The amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (9).
- The proportion of Compound (9) to Compound (10) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- The reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 150° C., for 30 minutes to 60 hours, and preferably for 1 to 30 hours.
- Compound (9) used as a starting material in the above reaction is an easily available known compound. Compound (10) used as a starting material in the above reaction can be produced by the process shown in Reaction Scheme 12.
- Among the oxazole compounds represented by Formula (1), those in which W is a divalent group represented by —Y1-A1- wherein A1 is a lower alkylene group (hereinafter referred to as “Compound (1j)”) can be produced from compounds in which A1 is a lower alkenylene group (hereinafter referred to as “Compound (1i)”), by the process shown in Reaction Scheme 8.
- wherein R1 and R2 are as defined in Formula (1), Y1 is as defined above, A1e is a lower alkenylene group, and A1f is a lower alkylene group.
- Compound (1j) is produced by subjecting Compound (1i) to hydrogenolysis.
- The reaction is performed under the same reaction conditions as of the reaction shown in Reaction Scheme 5 for the hydrogenolysis of Compound (1e) to obtain Compound (1f). Therefore, the same reagent(s) and reaction conditions (e.g., solvent, reaction temperature, etc.) as those used in the hydrogenolysis shown in Reaction Scheme 5 can be used in the above reaction.
- wherein R2 and W are as defined in Formula (1), and X is as defined above.
- The halogenation reaction of Compound (11) is performed in a suitable solvent in the presence of a halogenating agent. Usable halogenating agents include, for example, Br2, Cl2, and other halogen molecules; iodine chloride, sulfuryl chloride, cupric bromide, and other copper compounds; N-bromosuccinimide, N-chlorosuccinimide, and other N-halosuccinimides, etc. Usable solvents include, for example, dichloromethane, dichloroethane, chloroform, carbon tetrachloride, and other halogenated hydrocarbons; acetic acid, propionic acid, and other fatty acids; carbon disulfide; etc. The amount of halogenating agent is usually 1 to 10 mol, and preferably 1 to 5 mol, per mol of Compound (11). The reaction is usually complete at 0° C. to the boiling point temperature of the solvent, and preferably about 0 to about 100° C., in about 5 minutes to about 20 hours.
- Among Compounds (5) for use as starting materials, those in which R3 is a hydrogen atom (hereinafter referred to as “Compound (5a)”) are produced by the process shown in Reaction Scheme 10.
- wherein R1 and A1 are as defined in Formula (1), X2 and X3 are each independently a halogen atom or a group that undergoes the same substitution reaction as that of a halogen atom as mentioned above, and M is an alkali metal.
- Examples of the alkali metal represented by M include sodium, potassium, etc.
- Compound (14) is produced by reacting Compound (12) with Compound (13).
- The reaction of Compound (12) with Compound (13) is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; and other organic solvents; etc.
- The proportion of Compound (12) to Compound (13) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former. The reaction of Compound (12) with Compound (13) is performed by continuing stirring usually in a temperature range from room temperature to 200° C., and preferably from room temperature to 150° C., usually for 30 minutes to 60 hours, and preferably 1 to 30 hours.
- Compound (16) is produced by reacting Compound (15) with Compound (14).
- The reaction of Compound (15) with Compound (14) is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixtures thereof; etc.
- When performing the reaction of Compound (15) with Compound (14), alkali metal iodides such as potassium iodide, sodium iodide, etc. can be added as reaction accelerators to the reaction system, as required.
- The proportion of Compound (15) to Compound (14) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- The temperature of the reaction of Compound (15) with Compound (14) is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 100° C., for 1 to 60 hours, and preferably for 1 to 30 hours.
- In the reaction of Compound (15) with Compound (14), phthalimide can be used in place of Compound (15) and the reaction may be performed in the presence of base(s). A wide variety of known inorganic and organic bases are usable. Examples of inorganic bases include alkali metals (e.g., lithium, sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like. Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DEN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.
- The amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (14).
- Compound (5a) is produced by reacting Compound (16) with Compound (17).
- The reaction of Compound (16) with Compound (17) is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixtures thereof; etc.
- The proportion of Compound (16) to Compound (17) is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- The temperature of the reaction of Compound (16) with Compound (17) is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction at about room temperature for 1 to 30 hours.
- wherein R1 is as defined in Formula (1); R8 and A1a are as defined above; X4 is a halogen atom or a group that undergoes the same substitution reaction as that of a halogen atom as mentioned above; and R12 is a lower alkyl group.
- Compound (20) is produced by reacting Compound (18) with Compound (19).
- The reaction of Compound (18) with Compound (19) is usually performed in a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixtures thereof; etc.
- The reaction of Compound (18) with Compound (19) can usually be performed in the presence of suitable base(s). A wide variety of known inorganic and organic bases are usable. Inorganic bases include, for example, alkali metals (e.g., lithium, sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like. Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc. When such bases are liquid, they can also be used as solvents.
- Such bases can be used singly or in combination.
- The amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (18).
- The proportion of Compound (18) to Compound (19) in Reaction Scheme 11 is usually at least 1 mol, and preferably about 1 to about 5 mol of the latter, per mol of the former.
- The reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 100° C., for 30 minutes to 60 hours, and preferably 1 to 30 hours.
- Compound (7) is produced by subjecting Compound (20) to hydrolysis-decarboxylation. The hydrolysis-decarboxylation of Compound (20) can be carried out by the process shown in Reference Example 48 given hereinafter, a process similar thereto, the process shown in Reaction Scheme 4 above, or a process similar thereto.
- wherein R1 is as defined in Formula (1), and X2 and A1d are as defined above.
- Compound (10) is produced by subjecting Compound (21) to an oxidation reaction. The reaction can be carried out by the process shown in Reference Example 64 given hereinafter, or a process similar thereto, and is performed in the presence of a known solvent that does not adversely affect the reaction. Such solvents include, for example, water; methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol, and other alcohol solvents; acetone, methyl ethyl ketone, and other ketone solvents; tetrahydrofuran, dioxane, diethyl ether, diglyme, and other ether solvents; methyl acetate, ethyl acetate, and other ester solvents; acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, and other aprotic polar solvents; methylene chloride, ethylene chloride, and other halogenated hydrocarbon solvents; other organic solvents; mixtures thereof; etc.
- The reaction is usually performed using oxidizing agent(s) such as dimethyl sulfoxide, hexamethylenetetramine, triethylamine-N-oxide, etc.
- If necessary, the reaction can be performed in the presence of suitable base(s). A wide variety of known inorganic and organic bases are usable. Inorganic bases include, for example, alkali metals (e.g., sodium, potassium, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (e.g., lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkali metal lower alkoxides (e.g., sodium methoxide, sodium ethoxide, etc.), alkali metal hydrides (e.g., sodium hydride, potassium hydride, etc.), and the like. Organic bases include, for example, trialkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc. When such bases are liquid, they can also be used as solvents. Such bases can be used singly or in combination.
- The amount of oxidizing agent is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (21).
- The amount of base(s) is usually 0.5 to 10 mol, and preferably 0.5 to 6 mol, per mol of Compound (21).
- When performing the above reaction, alkali metals such as potassium iodide, sodium iodide, etc. can be added as reaction accelerators to the reaction system, as required.
- The reaction temperature is not limited, and the reaction can usually be performed with cooling, at room temperature, or with heating. It is suitable to perform the reaction in a temperature range from room temperature to 120° C. for 30 minutes to 30 hours.
- The starting material compounds used in the above reaction schemes may be suitable salts, and the objective compounds obtained by the above reactions may be in the form of suitable salts.
- Each of the objective compounds obtained according to the above reaction schemes can be isolated and purified from the reaction mixture by, for example, cooling the reaction mixture, separating the crude reaction product from the reaction mixture by an isolation procedure such as filtration, concentration, extraction and/or other isolation procedures, and then purifying the crude reaction product by column chromatography, recrystallization and/or other conventional purification procedures.
- Suitable salts of Compound (1) are pharmaceutically acceptable salts including, for example, metal salts such as alkali metal salts (e.g., sodium salt, potassium salt, etc.), alkaline earth metal salts (e.g., calcium salt, magnesium salt, etc.), etc., ammonium salts, alkali metal carbonates (e.g., lithium carbonate, potassium carbonate, sodium carbonate, cesium carbonate, etc.), alkali metal hydrogencarbonates (e.g., lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal hydroxides (e.g., lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), and other salts of inorganic bases; tri(lower)alkylamines (e.g., trimethylamine, triethylamine, N-ethyldiisopropylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-(lower)alkylmorpholines (e.g., N-methylmorpholine and the like), DBN, DBU, DABCO, and other salts of organic bases; hydrochlorides, hydrobromides, hydroiodides, sulfates, nitrates, phosphates, and other salts of inorganic acids; formates, acetates, propionates, oxalates, malonates, succinates, fumarates, maleates, lactates, malates, citrates, tartrates, citrates, carbonates, picrates, methanesulfonates, ethanesulfonates, p-toluenesulfonates, glutamates, and other salts of inorganic acids; etc.
- The starting material compounds and objective compounds represented by the formulae in the above reaction schemes encompass solvates (e.g. hydrates, ethanolates, etc.). Preferable solvates include hydrates.
- The compounds represented by Formula (1) of the present invention of course encompass isomers such as geometrical isomers, stereoisomer, optical isomers, etc.
- Compounds represented by formula (1), optically active isomers thereof, and salts thereof (hereinafter referred to as “compounds of the present invention”) have a specific inhibitory action against PDE4, and are hence useful as active ingredients for a PDE4 inhibitor.
- Further, due to their PDE4-specific inhibitory action, the compounds of the invention can be useful as active ingredients of pharmaceutical compositions used as prophylactic and therapeutic agents for various diseases. More specifically, diseases efficiently preventable and treatable by the PED4-specific inhibitory action include various origin-generated acute and chronic (in particular, inflammatory and allergen induced) respiratory tract diseases (e.g. bronchial asthma, chronic obstructive pulmonary disease, etc.); dermatoses (in particular, hyperplastic, inflammatory, and allergic diseases) (e.g. psoriasis (vulgaris), toxic and allergic contact eczema, atopic dermatitis, alopecia areata, and other hyperplastic, inflammatory and allergic dermatoses); nervous function abnormality diseases such as learning, memory, and/or cognition disorders associated with Alzheimer's and Parkinson's diseases; diseases associated with mental function abnormality (e.g. manic-depressive psychosis, schizophrenia, anxiety disorder, etc.); systemic and local arthritic disorders (e.g. knee osteoarthritis, articular rheumatism, etc.); gastrointestinal diffuse inflammation (e.g. Crohn's disease and ulcerative colitis); allergic and/or chronic immune-mediated inflammatory diseases in the upper respiratory tract (cavum pharynges, nose) and its vicinity (sinuses, eyes) (e.g. allergic rhinitis/sinusitis, chronic rhinitis/sinusitis, allergic conjunctivitis), and the like. Among these, the compounds are particularly effective in preventing and treating atopic dermatitis, making this diseases a suitable target disease for prevention and treatment.
- When used as a PDE4 inhibitor or as prophylactic or therapeutic agent for the above-mentioned various diseases, the compounds of the invention can be used as oral agents, injectable solutions, external preparations, and the like.
- For oral agents, for example, the compounds may be prepared in any forms such as powders, tablets, granules, capsules, syrups, films, troches, liquids, etc. Such oral agents can contain pharmaceutically acceptable base materials and carriers, and further optionally contain as necessary binders, disintegrators, lubricants, humectants, buffers, preservatives, fragrances, and the like.
- For injectable solutions, the compounds may be prepared in the form of solutions dissolved in physiological saline, grape sugar solutions and the like, or aqueous suspensions.
- For external preparations, the compounds may be prepared in any forms, for example, such as liquid medicines, oily medicines, lotions, liniments, emulsions, suspensions, creams, ointments, etc. Such external preparations can optionally contain various carriers, base materials, and additives as typically used in external preparations, and examples include water, oils, surfactants, solubilized components, emulsifiers, colorants (dyes and pigments), fragrances, preservatives, disinfectants, thickeners, antioxidants, chelators, pH adjusting agents, deodorants, etc.
- When used as a PDE4 inhibitor, or as prophylactic or therapeutic agent for the aforementioned various diseases, effective dose and number of doses a day of the compound vary depending on the purpose of use, kind of compound used, the age, weight, symptoms, etc. of a subject, and cannot be uniformly prescribed. For example, the inhibitor or agent can be administered in a dose of 0.1 to 1000 mg of the compound(s) of the present invention per day per adult, and may be administered in one to several portions a day.
- Further, in light of other viewpoints, the present invention provides a method for treating or preventing the aforementioned various diseases comprising the step of administrating an effective dose of the compound(s) of the invention to a mammal, such as a human.
- Furthermore, since the compounds of the present invention have inhibitory action against TNF-α production, they are useful as active ingredients for TNF-α production suppressants. Diseases that benefit from such TNF-α production inhibitory action include those efficiently preventable and treatable by the aforementioned PDE4-specific inhibitory action. Preparation forms, administration routes and doses of TNF-α production suppressant containing compounds of the invention are the same as those of the aforementioned PDE4 inhibitor and prophylactic and therapeutic agents.
- The compounds of the present invention have an inhibitory action specific against PDE4, and are hence useful as active ingredients for a PDE 4 inhibitors.
- Due to their specific PDE4 inhibitory activity, the compounds of the invention are further useful as prophylactic and therapeutic agents for various diseases including atopic dermatitis.
- The present invention is described in more detail below with reference to Examples; however, the present invention is not limited thereto.
- A 25 g quantity of isovanillic acid was suspended in 250 ml of methanol, and 1.5 g of p-toluenesulfonic acid monohydrate was added. The mixture was heated and refluxed overnight. After completion of the reaction, methanol was distilled off under reduced pressure. The residue was neutralized with saturated aqueous sodium bicarbonate and then extracted with ethyl acetate. After washing with saturated brine twice, the organic layer was separated and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1) to give 24.5 g of white crystalline methyl 3-hydroxy-4-methoxybenzoate.
- 1H-NMR (CDCl3) δ: 7.63-7.58 (2H, m), 6.67 (1H, d, J=8.1 Hz), 5.63 (1H, s), 3.98 (3H, s), 3.90 (3H, s)
- A 20 g quantity of methyl 3-hydroxy-4-methoxybenzoate obtained in Reference Example 1 was dissolved in 200 ml of methanol, and 24.6 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene and 21 g of benzyl bromide were added. The mixture was heated and refluxed overnight. After the reaction mixture was concentrated, water was added to the residue and extraction with ethyl acetate was performed. The extract was washed with saturated brine twice, and the organic layer was separated and dried over magnesium sulfate. After insolubles were removed by filtration, the filtrate was concentrated under reduced pressure to give 25.5 g of white crystalline methyl 3-benzyloxy-4-methoxybenzoate.
- 1H-NMR (CDCl3) δ: 7.68 (1H, dd, J=8.4, 1.8 Hz), 7.61 (1H, d, J=1.8 Hz), 7.48-7.28 (5H, m), 6.91 (1H, d, J=8.4 Hz), 5.17 (2H, s), 3.93 (3H, s), 3.87 (3H, s)
- A 25 g quantity of the methyl 3-benzyloxy-4-methoxybenzoate obtained in Reference Example 2 was dissolved in 100 ml of acetonitrile, and a solution of 11 g of sodium hydroxide in 100 ml of water was added. The mixture was stirred with heating at 40° C. for 5 hours. The reaction mixture was cooled with ice, and concentrated hydrochloric acid was added to give a pH of about 3. The precipitated crystals were collected by filtration and dried under reduced pressure to give 22.1 g of white crystalline 3-benzyloxy-4-methoxybenzoic acid.
- 1H-NMR (CDCl3) δ: 7.77 (1H, dd, J=8.4, 1.8 Hz), 7.65 (1H, d, J=1.8 Hz), 7.48-7.29 (5H, m), 6.94 (1H, d, J=8.4 Hz), 5.19 (2H, s), 3.95 (3H, s)
- A 20 g quantity of the 3-benzyloxy-4-methoxybenzoic acid obtained in Reference Example 3 was suspended in 200 ml of dichloromethane, and one drop of dimethylformamide was added. A 8.1 ml quantity of oxalyl chloride was added dropwise with ice-cooling and stirring. After 2 hours, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in 50 ml of tetrahydrofuran and the resulting solution was added dropwise to 28% aqueous ammonia with ice-cooling and stirring. The obtained mixture was stirred for 1 hour and the precipitated crystals were collected by filtration and dried under reduced pressure to give 19.9 g of white powdery 3-benzyloxy-4-methoxybenzamide.
- 1H-NMR (CDCl3) δ: 7.85-7.28 (7H, m), 6.90 (1H, d, J=8.1 Hz), 5.67 (2H, br s), 5.18 (2H, s), 3.93 (3H, s)
- A 15 g quantity of 3-benzyloxy-4-methoxybenzamide obtained in Reference Example 4 was suspended in 450 ml of isopropanol, and 13.9 g of 1,3-dichloro-2-propanone was added. The mixture was heated and refluxed overnight. After the reaction mixture was concentrated to half its original volume under reduced pressure, 200 ml of n-hexane was added to the concentrate and the mixture was stirred. The precipitated crystals were collected by filtration and dried under reduced pressure to give 12.2 g of white powdery 2-(3-benzyloxy-4-methoxyphenyl)-4-chloromethyl oxazole.
- 1H-NMR (CDCl3) δ: 7.73-7.71 (3H, m), 7.50-7.29 (5H, m), 6.95 (1H, d, J=5.7 Hz), 5.20 (2H, s), 4.56 (2H, s), 3.93 (3H, s)
- A 11 g quantity of 2-(3-benzyloxy-4-methoxyphenyl)-4-chloromethyl oxazole obtained in Reference Example 5 was suspended in 220 ml of ethanol, and 7.5 g of sodium iodide and 9.3 g of potassium phthalimide were added. The mixture was heated and refluxed overnight. The reaction mixture was cooled with ice, and the precipitated crystals were collected by filtration. The obtained crude crystals were suspended and washed with 100 ml of water. The resulting crystals were dried under reduced pressure to give 9.4 g of white powdery 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione.
- 1H-NMR (CDCl3) δ: 7.91-7.85 (2H, m) 7.76-7.69 (2H, m), 7.61-7.58 (3H, m) 7.46 (2H, d, J=6.6 Hz), 7.39-7.26 (3H, m), 6.91 (1H, d, J=9 Hz), 5.18 (2H, s), 4.85 (2H, s), 3.90 (3H, s)
- A 9 g quantity of the 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione obtained in Reference Example 6 was suspended in 200 ml of ethanol, and 3.1 ml of hydrazine monohydrate was added. The mixture was heated and refluxed for 3 hours. After cooing the reaction mixture, 200 ml of dichloromethane was added and the mixture was stirred. Insolubles were removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (NH silica, product of Fuji Sylisia Chemical Ltd., dichloromethane:methanol=20:1) to give 4.5 g of pale yellow powdery [2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]methylamine.
- 1H-NMR (CDCl3) δ: 7.63-7.59 (2H, m) 7.53-7.46 (3H, m), 7.41-7.27 (3H, m) 6.94 (1H, d, J=9 Hz), 5.20 (2H, s), 3.89 (3H, s), 3.87 (2H, s), 2.14 (2H, br s)
- A 15 g quantity of methyl 3-hydroxy-4-methoxybenzoate obtained in Reference Example 1 was dissolved in 150 ml of dimethylformamide, and 34 g of potassium carbonate and 22.2 g of (bromomethyl)cyclopropane were added. The mixture was heated at 90° C. overnight. Ice Water was added to the reaction mixture, and the precipitated crystals were collected by filtration and washed with an excess of water. The obtained crystals were dried under reduced pressure at room temperature to give 18.3 g of white crystalline methyl 3-cyclopropylmethoxy-4-methoxybenzoate.
- 1H-NMR (CDCl3) δ: 7.67 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=2.1 Hz), 6.89 (1H, d, J=8.4 Hz), 3.94-3.86 (8H, m), 1.43-1.29 (1H, m), 0.70-0.58 (2H, m), 0.45-0.30 (2H, m)
- Using 18 g of methyl 3-cyclopropylmethoxy-4-methoxybenzoate obtained in Reference Example 8 and following the procedure of Reference Example 3, 16.6 g of white crystalline 3-cyclopropylmethoxy-4-methoxybenzoic acid was obtained.
- 1H-NMR (CDCl3) δ: 7.76 (1H, dd, J=8.4, 1.8 Hz), 7.58 (1H, d, J=2.1 Hz), 6.92 (1H, d, J=8.4 Hz), 3.98-3.92 (8H, m), 1.43-1.29 (1H, m), 0.70-0.58 (2H, m), 0.46-0.35 (2H, m)
- Using 16.5 g of 3-cyclopropylmethoxy-4-methoxybenzoic acid obtained in Reference Example 9 and following the procedure of Reference Example 4, 16.2 g of pale yellow powdery 3-cyclopropylmethoxy-4-methoxybenzamide was obtained.
- 1H-NMR (CDCl3) δ: 7.43 (1H, d, J=2.1 Hz), 7.31 (1H, dd, J=8.4, 2.1 Hz), 6.88 (1H, d, J=8.1 Hz), 5.75 (2H, br s), 3.97-3.89 (5H, m), 1.40-1.28 (1H, m), 0.69-0.62 (2H, m), 0.39-0.33 (2H, m)
- Using 13 g of 3-cyclopropylmethoxy-4-methoxybenzamide obtained in Reference Example 10 and following the procedure of Reference Example 5, 10.5 g of pale yellow powdery 4-chloromethyl-2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.65 (1H, d, J=0.9 Hz), 7.20 (1H, dd, J=8.7, 2.1 Hz), 7.53 (1H, d, J=2.1 Hz), 6.93 (1H, d, J=8.4 Hz), 4.57 (2H, s), 3.97-3.90 (5H, m), 1.43-1.32 (1H, m), 0.71-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 8 g of 4-chloromethyl-2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazole obtained in Reference Example 11 and following the procedure of Reference Example 6, 10 g of white crystalline 2-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione was obtained.
- 1H-NMR (CDCl3) δ: 7.90-7.84 (2H, m), 7.76-7.69 (2H, m), 7.62 (1H, s), 7.51 (1H, dd, J=8.4, 2.1 Hz), 7.48 (1H, d, J=2.1 Hz), 6.89 (1H, d, J=8.4 Hz), 4.85 (2H, s), 3.95-3.90 (5H, m), 1.41-1.31 (1H, m), 0.69-0.62 (2H, m), 0.41-0.35 (2H, m)
- Using 9.5 g of 2-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione obtained in Reference Example 12 and following the procedure of Reference Example 7, 5.1 g of white powdery [2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]methylamine was obtained.
- 1H-NMR (CDCl3) δ: 7.61-7.55 (1H, m), 7.53-7.50 (2H, m), 6.92 (1H, d, J=8.4 Hz), 3.96-3.87 (5H, m), 3.83 (2H, s), 1.41-1.33 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- A 5 g quantity of methyl 3-hydroxy-4-methoxybenzoate obtained in Reference Example 1 was dissolved in 100 ml of dimethylformamide, and 11.3 g of potassium carbonate and 5.64 g of isobutyl bromide were added. The mixture was heated at 80° C. for 6 hours. Ice water was added to the reaction mixture, and the precipitated crystals were collected by filtration and washed with an excess of water. The resulting crystals were dried under reduced pressure at room temperature to give 5.85 g of white powdery methyl 3-isobutoxy-4-methoxybenzoate.
- 1H-NMR (CDCl3) δ: 7.65 (1H, dd, J=8.4, 2.1 Hz), 7.53 (1H, d, J=1.8 Hz), 6.88 (1H, d, J=8.1 Hz), 3.96 (3H, s), 3.91 (3H, s), 3.82 (2H, d, J=6.9 Hz), 2.20-2.11 (1H, m), 1.05 (6H, d, J=6.6 Hz)
- Using 5.85 q of methyl 3-isobutoxy-4-methoxybenzoate obtained in Reference Example 14 and following the procedure of Reference Example 3, 5.6 g of white powdery 3-isobutoxy-4-methoxybenzoic acid was obtained.
- 1H-NMR (CDCl3) δ: 7.75 (1H, dd, J=8.4, 1.8 Hz), 7.58 (1H, d, J=2.1 Hz), 6.91 (1H, d, J=8.7 Hz), 3.94 (3H, s), 3.83 (2H, d, J=6.6 Hz), 2.26-2.12 (1H, m), 1.05 (6H, d, J=6.6 Hz)
- Using 5.5 g of 3-isobutoxy-4-methoxybenzoic acid obtained in Reference Example 15 and following the procedure of Reference Example 4, 5.1 g of pale yellow powdery 3-isobutoxy-4-methoxybenzamide was obtained.
- 1H-NMR (CDCl3) δ: 7.43 (1H, d, J=2.1 Hz), 7.31 (1H, dd, J=8.4, 2.1 Hz), 6.87 (1H, d, J=8.7 Hz), 5.78 (2H, br s), 3.91 (3H, s), 3.83 (2H, d, J=6.6 Hz), 2.25-2.11 (1H, m), 1.04 (6H, d, J=6.6 Hz)
- Using 5 g of 3-isobutoxy-4-methoxybenzamide obtained in Reference Example 16 and following the procedure of Reference Example 5, 3.4 g of pale yellow powdery 4-chloromethyl-2-(3-isobutoxy-4-methoxyphenyl)oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.65 (1H, s), 7.60 (1H, dd, J=8.4, 2.1 Hz), 7.53 (1H, d, J=2.1 Hz), 6.92 (1H, d, J=8.4 Hz), 4.57 (2H, s), 3.91 (3H, s), 3.85 (2H, d, J=6.9 Hz), 2.27-2.13 (1H, m), 1.05 (6H, d, J=6.6 Hz)
- Using 3.3 g of 4-chloromethyl-2-(3-isobutoxy-4-methoxyphenyl)oxazole obtained in Reference Example 17 and following the procedure of Reference Example 6, 4.4 g of white powdery 2-[2-(3-isobutoxy-4-methoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione was obtained.
- 1H-NMR (CDCl3) δ: 7.91-7.84 (2H, m), 7.76-7.71 (2H, m), 7.62 (1H, s), 7.55 (1H, dd, J=8.4, 2.1 Hz), 7.49 (1H, d, J=2.1 Hz), 6.88 (1H, d, J=8.4 Hz), 4.85 (2H, s), 3.89 (3H, s), 3.83 (2H, d, J=6.6 Hz), 2.23-2.13 (1H, m), 1.05 (6H, d, J=6.6 Hz)
- Using 4.4 g of 2-[2-(3-isobutoxy-4-methoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione obtained in Reference Example 18 and following the procedure of Reference Example 1, 2 g of white solid [2-(3-isobutoxy-4-methoxyphenyl)oxazol-4-yl]methylamine was obtained.
- 1H-NMR (CDCl3) δ: 7.60-7.51 (3H, m), 6.92 (1H, d, J=8.4 Hz), 3.91 (3H, s), 3.87-3.84 (4H, m), 2.27-2.13 (1H, m), 1.71 (2H, br s), 1.06 (6H, d, J=6.6 Hz)
- Using 10 g of methyl 3-hydroxy-4-methoxybenzoate obtained in Reference Example 1 and following the procedure of Reference Example 14, 12.5 g of white powdery methyl 4-methoxy-3-(2,2,2-trifluoroethoxy)benzoate was obtained.
- 1H-NMR (CDCl3) δ: 7.79 (1H, dd, J=8.7, 1.8 Hz), 7.63 (1H, s), 6.94 (1H, d, J=8.7 Hz), 4.42 (2H, q, J=8.1 Hz), 3.94 (3H, s), 3.91 (3H, s)
- Using 12 g of methyl 4-methoxy-3-(2,2,2-trifluoro ethoxy)benzoate obtained in Reference Example 20 and following the procedure of Reference Example 3, 11.5 g of white powdery 4-methoxy-3-(2,2,2-trifluoroethoxy)benzoic acid was obtained.
- 1H-NMR (CDCl3) δ: 7.86 (1H, dd, J=8.4, 1.8 Hz), 7.67 (1H, d, J=1.8 Hz), 6.97 (1H, d, J=8.4 Hz), 4.43 (2H, q, J=8.4 Hz), 3.96 (3H, s)
- Using 11.5 g of 4-methoxy-3-(2,2,2-trifluoroethoxy) benzoic acid obtained in Reference Example 21 and following the procedure of Reference Example 4, 10.8 g of white powdery 4-methoxy-3-(2,2,2-trifluoroethoxy)benzamide was obtained.
- 1H-NMR (CDCl3) δ: 7.50 (1H, br s), 7.49 (1H, dd, J=8.4, 2.4 Hz), 6.94 (1H, d, J=8.4 Hz), 4.43 (2H, q, J=8.4 Hz), 3.93 (3H, s)
- Using 10.5 g of 4-methoxy-3-(2,2,2-trifluoroethoxy) benzamide obtained in Reference Example 22 and following the procedure of Reference Example 5, 7.1 g of pale yellow powdery 4-chloromethyl-2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.75 (1H, dd, J=8.4, 2.1 Hz), 7.66 (1H, br s), 1.64 (1H, d, J=2.1 Hz), 6.98 (1H, d, J=8.4 Hz), 4.56 (2H, s), 4.45 (2H, q, J=8.4 Hz), 3.94 (3H, s)
- Using 3 g of 4-chloromethyl-2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazole obtained in Reference Example 23 and following the procedure of Reference Example 6, 3.6 g of white powdery 2-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl] oxazol-4-ylmethyl}isoindolin-1,3-dione was obtained.
- 1H-NMR (CDCl3) δ: 7.91-7.85 (2H, m), 7.76-7.64 (3H, m), 7.60 (1H, s), 7.59 (1H, d, J=2.1 Hz), 6.94 (1H, d, J=8.7 Hz), 4.85 (2H, s), 4.43 (2H, q, J=8.4 Hz), 3.91 (3H, s)
- Using 3.6 g of 2-{2-[4-methoxy-3-(2,2,2-trifluoro ethoxy)phenyl]oxazol-4-ylmethyl}isoindolin-1,3-dione obtained in Reference Example 24 and following the procedure of Reference Example 7, 1.93 g of white powdery {2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}methylamine was obtained.
- 1H-NMR (CDCl3) δ: 7.73 (1H, dd, J=8.4, 2.1 Hz), 7.63 (1H, d, J=2.1 Hz), 7.52 (1H, s), 6.98 (1H, d, J=8.4 Hz), 4.46 (2H, q, J=8.4 Hz), 3.93 (3H, s), 3.83 (2H, s), 1.55 (2H, br s)
- Using 9.5 g of ethyl vanillate and following the procedure of Reference Example 14, 11 g of white powdery ethyl 3-methoxy-4-(2,2,2-trifluoroethoxy)benzoate was obtained.
- 1H-NMR (CDCl3) δ: 7.65 (1H, dd, J=8.4, 2.1 Hz), 7.60 (1H, d, J=2.1 Hz), 6.96 (1H, d, J=8.4 Hz), 4.49-4.33 (4H, m), 3.93 (3H, s), 1.39 (3H, t, J=6.9 Hz)
- A 12 g quantity of ethyl 3-methoxy-4-(2,2,2-trifluoroethoxy)benzoate obtained in Reference Example 26 was suspended in 120 ml of 47% hydrobromic acid, and the suspension was heated and refluxed overnight. The reaction mixture was poured into ice water, and the precipitated crystals were collected by filtration, washed with an excess of water, and then dried under reduced pressure to give 8.4 g of pale red powdery 3-hydroxy-4-(2,2,2-trifluoroethoxy)benzoic acid.
- 1H-NMR (CDCl3) δ: 7.71-7.66 (2H, m), 6.91 (1H, d, J=5.1 Hz), 5.55 (1H, br s), 4.50 (2H, q, J=7.8 Hz)
- An 8.4 g quantity of 3-hydroxy-4-(2,2,2-trifluoro ethoxy)benzoic acid obtained in Reference Example 27 was suspended in 150 ml of ethanol, and 0.5 ml of concentrated sulfuric acid was added. The mixture was heated and refluxed overnight. After completion of the reaction, ethanol was distilled off under reduced pressure. The residue was neutralized with saturated aqueous sodium bicarbonate and then extracted with ethyl acetate. After washing with saturated brine twice, the organic layer was separated and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1) to give 7.2 g of white crystalline ethyl 3-hydroxy-4-(2,2,2-trifluoroethoxy) benzoate.
- 1H-NMR (CDCl3) δ: 7.66-7.60 (2H, m), 6.87 (1H, d, J=8.1 Hz), 5.54 (1H, s), 4.48 (2H, q, J=7.8 Hz), 4.35 (2H, q, J=7.2 Hz), 1.38 (3H, t, J=7.2 Hz)
- Using 7 g of ethyl 3-hydroxy-4-(2,2,2-trifluoro ethoxy)benzoate obtained in Reference Example 28 and following the procedure of Reference Example 14, 8.5 g of white powdery ethyl 3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)benzoate was obtained.
- 1H-NMR (CDCl3) δ: 7.63 (1H, dd, J=8.7, 2.1 Hz), 7.58 (1H, d, J=2.1 Hz), 7.00 (1H, d, J=8.7 Hz), 4.48 (2H, q, J=8.1 Hz), 4.35 (2H, q, J=6.9 Hz), 3.92 (2H, d, J=7.2 Hz), 1.41-1.25 (4H, m), 0.69-0.60 (2H, m), 0.40-0.32 (2H, m)
- Using 8.5 g of ethyl 3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)benzoate obtained in Reference Example 29 and following the procedure of Reference Example 3, 7.5 g of white powdery 3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)benzoic acid was obtained.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=8.4, 1.8 Hz), 7.63 (1H, d, J=2.1 Hz), 7.02 (1H, d, J=8.1 Hz), 4.51 (2H, q, J=8.1 Hz), 3.93 (2H, d, J=7.2 Hz), 1.37-1.25 (1H, m), 0.69-0.60 (2H, m), 0.41-0.35 (2H, m)
- Using 7 g of 3-cyclopropylmethoxy-4-(2,2,2-trifluoro ethoxy)benzoic acid obtained in Reference Example 30 and following the procedure of Reference Example 4, 7.35 g of white solid 3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)benzamide was obtained.
- 1H-NMR (CDCl3) δ: 7.48 (1H, d, J=2.1 Hz), 7.28-7.25 (1H, m), 7.01 (1H, d, J=8.4 Hz), 4.48 (2H, q, J=8.4 Hz), 3.93 (2H, d, J=6.9 Hz), 1.37-1.25 (1H, m), 0.69-0.60 (2H, m), 0.41-0.35 (2H, m)
- Using 5 g of 3-cyclopropylmethoxy-4-(2,2,2-trifluoro ethoxy)benzamide obtained in Reference Example 31 and following the procedure of Reference Example 5, 3.1 g of white powdery 4-chloromethyl-2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy) phenyl]oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.67 (1H, s), 7.59-7.56 (2H, m), 7.05 (1H, d, J=9.0 Hz), 4.56 (2H, s), 4.48 (2H, q, J=8.4 Hz), 1.35-1.26 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.85 g of 4-chloromethyl-2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazole obtained in Reference Example 32 and following the procedure of Reference Example 6, 0.6 g of white powdery 2-{2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}isoindolin-1,3-dione was obtained.
- 1H-NMR (CDCl3) δ: 7.91-7.84 (2H, m), 7.76-7.69 (2H, m), 7.64 (1H, s), 7.60-7.51 (2H, m), 7.01 (1H, d, J=8.7 Hz), 4.85 (2H, s), 4.46 (2H, g, J=8.4 Hz), 3.93 (2H, d, J=6.9 Hz), 1.35-1.24 (1H, m), 0.68-0.61 (2H, m), 0.40-0.34 (2H, m)
- Using 0.55 g of 2-{2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}isoindolin-1,3-dione obtained in Reference Example 33 and following the procedure of Reference Example 7, 0.32 g of white powdery {2-[3-cyclopropyl methoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}methylamine was obtained.
- 1H-NMR (CDCl3) δ: 7.61-7.52 (3H, m), 7.05 (1H, d, J=8.7 Hz), 4.48 (2H, q, J=8.4 Hz), 3.95 (2H, d, J=7.2 Hz), 3.84 (2H, s), 1.56 (2H, br s), 1.35-1.24 (1H, m), 0.70-0.61 (2H, m), 0.41-0.35 (2H, m)
- Using 20 g of 3,4-diethoxybenzamide and following the procedure of Reference Example 5, 24.5 g of white powdery 4-chloromethyl-2-(3,4-diethoxyphenyl)oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.65 (1H, s), 7.58 (1H, dd, J=8.4, 1.8 Hz), 7.54 (1H, d, J=1.8 Hz), 6.92 (1H, d, J=8.4 Hz), 4.56 (2H, s), 4.18 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 1.48 (6H, t, J=6.9 Hz)
- Using 8 g of 4-chloromethyl-2-(3,4-diethoxyphenyl) oxazole obtained in Reference Example 35 and following the procedure of Reference Example 6, 10 g of white powdery 2-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione was obtained.
- 1H-NMR (CDCl3) δ: 7.88 (2H, m), 7.72 (2H, m), 7.62 (1H, s), 7.54 (1H, d, J=8.4, 2.1 Hz), 7.50 (1H, d, J=2.1 Hz), 6.88 (1H, d, J=8.4 Hz), 4.85 (2H, s), 4.16 (2H, q, J=6.9 Hz), 4.11 (2H, J=6.9 Hz), 1.47 (6H, t, J=6.9 Hz)
- Using 10 g of 2-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione obtained in Reference Example 36 and following the procedure of Reference Example 7, 5.7 g of white powdery [2-(3,4-diethoxyphenyl)oxazol-4-yl]methylamine was obtained.
- 1H-NMR (CDCl3) δ: 7.56 (1H, d, J=8.4, 1.8 Hz), 7.54 (1H, d, J=1.8 Hz), 7.51 (1H, s), 6.91 (1H, d, J=8.4 Hz), 4.18 (2H, q, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 1.80 (1H, br s), 3.84 (2H, s), 1.48 (3H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- Using 2.0 g of 3,4-dimethoxybenzamide and following the procedure of Reference Example 5, 2.4 g of white powdery 4-chloromethyl-2-(3,4-dimethoxyphenyl)oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.66 (1H, s), 7.62 (1H, dd, J=8.4, 1.8 Hz), 7.55 (1H, d, J=1.8 Hz), 6.93 (1H, d, J=8.4 Hz), 4.52 (2H, s), 3.95 (3H, s), 3.91 (3H, s)
- Using 2.4 g of 4-chloromethyl-2-(3,4-dimethoxyphenyl) oxazole obtained in Reference Example 38 and following the procedure of Reference Example 6, 2.3 g of white powdery 2-[2-(3,4-dimethoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione was obtained.
- Using 2.3 g of the 2-[2-(3,4-dimethoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione obtained in Reference Example 39 and following the procedure of Reference Example 7, 1.3 g of white powdery [2-(3,4-dimethoxyphenyl)oxazol-4-yl]methylamine was obtained. 1H-NMR (CDCl3) δ: 7.60 (1H, d, J=8.1, 2.1 Hz), 7.54 (1H, d, J=2.1 Hz), 6.92 (1H, d, J=8.1 Hz), 3.96 (3H, s), 3.93 (3H, s), 3.85 (2H, s), 1.81 (2H, br s)
- A 9 g quantity of 4-difluoromethoxy-3-hydroxy benzaldehyde was dissolved in 180 ml of acetonitrile, and 13.1 g of potassium carbonate and 8.6 ml of benzyl bromide were added. The mixture was stirred at room temperature for 4 hours. After insolubles were removed by filtration, the filtrate was concentrated and the residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1) to give 11.9 g of colorless oily 3-benzyloxy-4-difluoromethoxybenzaldehyde.
- 1H-NMR (CDCl3) δ: 10.21 (1H, s), 7.56 (1H, t, J=74.1 Hz), 7.53-7.28 (1H, m), 6.68 (1H, d, J=8.4 Hz), 5.20 (2H, s)
- A 6 g quantity of 3-benzyloxy-4-difluoromethoxybenzaldehyde obtained in Reference Example 41 was dissolved in 500 ml of acetone, and 17 g of potassium permanganate was added. The mixture was heated and refluxed overnight. After distilling off acetone from the reaction mixture, 100 ml of 5N sodium hydroxide was added to the residue, and insolubles were removed by filtration. Concentrated hydrochloric acid was added to the filtrate to give a pH of about 3, and the precipitated crystals were collected by filtration. The obtained crystals were dried under reduced pressure to give 2.1 g of brownish powdery 3-benzyloxy-4-difluoromethoxybenzoic acid.
- 1H-NMR (CDCl3) δ: 7.78-7.72 (2H, m), 7.73-7.32 (5H, m), 7.33-7.24 (1H, m), 6.67 (1H, t, J=74.1 Hz), 5.20 (2H, s)
- A 2 g quantity of 3-benzyloxy-4-difluoromethoxybenzoic acid obtained in Reference Example 42 was suspended in 40 ml of dichloromethane, and one drop of dimethylformamide was added. A 0.7 ml quantity of oxalyl chloride was added dropwise with ice-cooling and stirring. After 2 hours, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in 5 ml of acetone and the resulting solution was added dropwise to 28% aqueous ammonia with ice-cooling and stirring. The obtained mixture was stirred for 1 hour and the precipitated crystals were collected by filtration and dried under reduced pressure to give 1.9 g of white powdery 3-benzyloxy-4-difluoromethoxybenzamide.
- 1H-NMR (CDCl3) δ: 7.62 (1H, d, J=1.8 Hz), 7.45-7.20 (7H, m), 6.63 (1H, t, J=74.4 Hz), 5.19 (2H, s), 4.73 (2H, br s)
- A 1.8 g quantity of 3-benzyloxy-4-difluoromethoxybenzamide obtained in Reference Example 43 was suspended in 50 ml of isopropanol, and 1.17 g of 1,3-dichloro-2-propanone was added. The mixture was heated and refluxed overnight. The reaction mixture was concentrated, and the resulting residue was purified by silica gel column chromatography (dichloromethane). The obtained crude crystals were recrystallized from isopropanol to give 0.7 g of white powdery 2-(3-benzyloxy-4-difluoromethoxyphenyl)-4-chloromethyloxazole.
- 1H-NMR (CDCl3) δ: 7.44 (1H, d, J=1.8 Hz), 7.70 (1H, s), 7.48-7.32 (5H, m), 7.28-7.24 (1H, m), 6.63 (1H, t, J=74.7 Hz), 5.21 (2H, s), 4.57 (2H, s)
- A 0.37 g quantity of 2-(3-benzyloxy-4-difluoromethoxy phenyl)-4-chloromethyloxazole obtained in Reference Example 44 was dissolved in 20 ml of ethanol, and 0.23 g of sodium iodide and 0.27 g of potassium phthalimide were added. The mixture was heated and refluxed for 4 hours. After the reaction mixture was concentrated, water was added to the residue and extraction with ethyl acetate was performed. The organic layer was washed with water twice and concentrated by removing the solvent and the residue was purified by silica gel column chromatography (dichloromethane:methanol=20:1) to give 0.3 g of white powdery 2-[2-(3-benzyloxy-4-difluoromethoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione.
- 1H-NMR (CDCl3) δ: 7.90-1.84 (2H, m), 7.76-7.71 (4H, m), 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.47-7.30 (5H, m), 7.22 (1H, d, J=2.4 Hz), 6.60 (1H, t, J=74.7 Hz), 5.20 (2H, s), 4.87 (2H, s)
- A 0.3 g quantity of 2-[2-(3-benzyloxy-4-difluoromethoxyphenyl)oxazol-4-ylmethyl]isoindolin-1,3-dione obtained in Reference Example 45 was suspended in 10 ml of ethanol, and 0.1 ml of hydrazine monohydrate was added. The mixture was heated and refluxed for 2 hours. After cooling the reaction mixture, the precipitated insolubles were removed by filtration. The filtrate was concentrated under reduced pressure to give 0.13 g of colorless oily [2-(3-benzyloxy-4-difluoromethoxyphenyl)oxazol-4-yl]methylamine.
- 1H-NMR (CDCl3) δ: 7.74 (1H, d, J=1.8 Hz), 7.61 (1H, dd, J=7.8, 1.8 Hz), 7.47 (1H, d, J=1.8 Hz), 7.45-7.31 (5H, m), 7.26-7.20 (1H, m), 6.62 (1H, t, J=74.7 Hz), 5.21 (2H, s), 3.85 (2H, br s).
- A 5.25 g quantity of sodium hydride was suspended in 150 ml of tetrahydrofuran, and a solution of 14.4 g of dimethyl malonate in 75 ml of tetrahydrofuran was added dropwise with ice-cooling over 15 minutes. After stirring for 30 minutes, a solution of 25 g of the 2-(3-benzyloxy-4-methoxyphenyl)-4-chloromethyloxazole obtained in Reference Example 0.5 in 150 ml of dimethylformamide was added dropwise over 15 minutes. After the dropwise addition, the mixture was stirred at 50 to 60° C. for 4 hours, and an aqueous saturated ammonium chloride solution was added with ice-cooling. After stirring the mixture for 30 minutes, water was added and extraction with ethyl acetate was performed. The extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off. The residue was recrystallized from a mixture of ethyl acetate and diisopropyl ether to give 26.5 g of white powdery dimethyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]malonate.
- 1H-NMR (DMSO-d6) δ: 7.89 (1H, s), 7.59-7.31 (7H, m), 7.15 (1H, d, J=7.8 Hz), 5.16 (2H, s), 3.90-3.84 (4H, m), 3.71 (6H, s), 3.04 (2H, d, J=7.8 Hz)
- A 26.52 g quantity of the dimethyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]malonate obtained in Reference Example 47 was suspended in 53 ml of dimethyl sulfoxide, and 2.62 g of lithium chloride and 1.12 ml of purified water were added. The mixture was stirred at 130° C. for 4 hours. After the reaction mixture was allowed to cool, water was added and extraction with ethyl acetate was performed. The extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 16 g of white powdery methyl 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]propionate.
- 1H-NMR (CDCl3) δ: 7.62-7.59 (2H, m), 7.47 (2H, d, J=6.9 Hz), 7.40-7.31 (4H, m), 6.93 (1H, d, J=8.4 Hz), 5.20 (2H, s), 3.92 (3H, s), 3.69 (3H, s), 2.91 (2H, t, J=7.2 Hz), 2.72 (2H, t, J=7.2 Hz)
- A 0.48 g quantity of sodium hydride was suspended in 15 ml of tetrahydrofuran, and a solution of 1.31 g of dimethyl malonate in 7.5 ml of tetrahydrofuran was added dropwise over 15 minutes. After the mixture was stirred for 30 minutes, a solution of 3.0 g of 4-chloromethyl-2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazole obtained in Reference Example 32 dissolved in 15 ml of dimethylformamide was added over 15 minutes. After the dropwise addition, the mixture was heated at 50 to 60° C. with stirring for 4 hours. An aqueous saturated ammonium chloride solution was added to the reaction mixture with ice-cooling and stirred was continued for 30 minutes. Water was added and extraction with ethyl acetate was performed. The extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off. A 8.0 ml quantity of dimethylsulfoxide, 0.35 g of lithium chloride, and 0.15 ml of purified water were added to the residue, and the mixture was heated with stirring at 130° C. for 4 hours. After the reaction mixture was allowed to cool, water was added and extraction with ethyl acetate was performed. The extract was dried over anhydrous magnesium sulfate and the solvent was distilled off. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=4:1) to give 1.63 g of colorless oily methyl 3-{2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}propionate.
- 1H-NMR (CDCl3) δ: 7.56-7.53 (2H, m), 7.43 (1H, s), 7.04 (1H, d, J=8.4 Hz), 4.47 (2H, q, J=8.4 Hz), 3.94 (2H, d, J=6.6 Hz), 3.69 (3H, s), 2.91 (2H, t, J=1.2 Hz), 2.72 (2H, t, J=7.2 Hz), 0.88 (1H, t, J=6.6 Hz), 0.69-0.65 (2H, m), 0.40-0.35 (2H, m)
- A 0.5 g quantity of 2-cyclopropylethanol and 3.1 ml of triethylamine were dissolved in 10 ml of ethyl acetate, and 0.75 ml of methanesulfonyl chloride was added with ice-cooling and stirring. After stirring for 30 minutes, water was added to the reaction mixture and extraction was performed. The organic layer was washed with water twice and concentrated by removing the solvent under reduced pressure to give 1 g of pale yellow oily 2-cyclopropylethyl methanesulfonate.
- 1H-NMR (CDCl3) δ: 4.29 (2H, t, J=6.6 Hz), 3.03 (3H, s), 1.66 (2H, q, J=6.6 Hz), 0.84-0.70 (1H, m), 0.54-0.47 (2H, m), 0.20-0.10 (2H, m)
- Using 2 g of 2-cyclopentylethanol and following the procedure of Reference Example 50, 3.4 g of pale yellow oily 2-cyclopentylethyl methanesulfonate was obtained.
- 1H-NMR (CDCl3) δ: 4.24 (2H, t, J=6.6 Hz), 3.03 (3H, s), 1.95-1.73 (5H, m), 1.70-1.48 (4H, m), 1.29-1.06 (2H, m)
- Using 0.5 g of cyclopentylmethanol and following the procedure of Reference Example 50, 0.7 g of pale yellow oily cyclopentylmethyl methanesulfonate was obtained.
- 1H-NMR (CDCl3) δ: 4.11 (2H, d, J=6.9 Hz), 3.04 (3H, s), 2.38-2.23 (1H, m), 1.86-1.76 (2H, m), 1.74-1.53 (4H, m), 1.36-1.24 (2H, m)
- A 25 g quantity of 1-(2-hydroxyphenyl)ethanone and 76 g of potassium carbonate were suspended in 500 ml of acetonitrile, and 31 ml of allyl bromide was added. The mixture was stirred at room temperature for 48 hours. The reaction mixture was filtered to remove insolubles, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=4:1) to give 34 g of pale yellow oily 1-(2-allyloxyphenyl)ethanone.
- 1H-NMR (CDCl3) δ: 7.73 (1H, dd, J=7.8, 1.8 Hz), 7.46-7.40 (1H, m), 7.02-6.93 (2H, m), 6.15-6.02 (1H, m), 5.47-5.30 (2H, m), 4.66-4.61 (2H, m), 2.64 (3H, s)
- A 40 g quantity of 3,4-diethoxybenzamide and 80 g of methyl 5-bromo-4-oxopentanoate (containing about 35% of methyl 3-bromo-4-oxopentanoate) were added to 400 ml of dimethylformamide, and the mixture was stirred at 130° C. for 16 hours. The reaction mixture was concentrated under reduced pressure and diluted with ethyl acetate. Ethyl acetate (500 ml) and saturated sodium bicarbonate solution (500 ml) were gradually added with stirring, and stirring was continued. The organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate:n-hexane=1:8 to 1:4) to give 18 g of white powdery methyl 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]propionate.
- 1H-NMR (CDCl3) δ: 7.65-7.55 (2H, m), 7.51 (1H, s), 6.93 (1H, d, J=8.1 Hz), 4.19 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 3.80 (3H, s), 3.00-2.90 (2H, m), 2.70-2.60 (2H, m), 1.50 (3H, t, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz)
- A 37.9 g quantity of 3,4-dibenzyloxybenzamide and 28.8 g of 1,3-dichloro-2-propanone were suspended in 500 ml of propanol, and the suspension was heated and refluxed for 3 days. After cooling, the reaction mixture was concentrated to half its original volume under reduced pressure and 300 ml of diisopropyl ether was added. The precipitated crystals were collected by filtration and recrystallized from acetone-methanol-diisopropyl ether. The obtained crystals were dried under reduced pressure to give 20.1 g of colorless powdery 2-(3,4-bis(benzyloxy)phenyl)-4-chloromethyloxazole.
- 1H-NMR (CDCl3) δ: 7.66 (1H, d, J=2.1 Hz), 7.64 (1H, s), 7.59 (1H, dd, J=8.4, 2.1 Hz), 1.50-7.28 (10H, m), 6.99 (1H, d, J=8.4 Hz), 5.22 (2H, s), 5.21 (2H, s), 4.55 (2H, s)
- Using 10 g of 2-(3,4-bis(benzyloxy)phenyl)-4-chloromethyloxazole obtained in Reference Example 55 and following the procedure of Reference Example 41, 12.3 g of colorless oily dimethyl 2-[2-(3,4-bis(benzyloxy)phenyl)oxazol-4-ylmethyl]malonate was obtained.
- 1H-NMR (CDCl3) δ: 7.61 (1H, d, J=2.1 Hz), 7.58-7.27 (12H, m), 6.97 (1H, d, J=8.4 Hz), 5.23-5.20 (4H, m), 3.89 (1H, t, J=7.5 Hz), 3.75 (3H, s), 3.73 (3H, s), 3.18 (2H, d, J=7.5 Hz)
- Using 12.3 g of dimethyl 2-[2-(3,4-bis(benzyloxy) phenyl)oxazol-4-ylmethyl]malonate obtained in Reference Example 56 and following the procedure of Reference Example 48, 4 g of pale red powdery methyl 3-[2-(3,4-bis(benzyloxy)phenyl)oxazol-4-yl]propionate was obtained.
- 1H-NMR (CDCl3) δ: 7.63 (1H, d, J=2.1 Hz), 7.57-7.27 (12H, m), 6.97 (1H, d, J=8.4 Hz), 5.21 (2H, d, J=7.2 Hz), 3.69 (3H, s), 2.90 (2H, t, J=7.2 Hz), 2.72 (2H, d, J=7.2 Hz)
- Using 29.4 g of 3-ethoxy-4-methoxybenzamide and 57 g of 1,3-dichloro-2-propanone and following the procedure of Reference Example 55, 19.9 g of white powdery 4-chloromethyl-2-(3-ethoxy-4-methoxyphenyl)oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.65 (1H, s), 7.61 (1H, dd, J=8.1, 2.1 Hz), 7.55 (1H, d, J=2.1 Hz), 6.92 (1H, d, J=8.1 Hz), 4.56 (2H, s), 4.18 (2H, q, J=6.9 Hz), 3.93 (3H, s), 1.50 (3H, t, J=6.9 Hz)
- A 25 g quantity of ethyl 3,4-dihydroxybenzoate was dissolved in 250 ml of dimethylformamide, and 5.5 g of sodium hydride was added with ice-cooling and stirring. The mixture was stirred, and a solution of 16.3 ml of benzylbromide in 10 ml of dimethylformamide was added dropwise. After the dropwise addition, the mixture was stirred at room temperature overnight. Water was added to the reaction mixture and extraction with ethyl acetate was performed. The organic layer was washed with water twice and concentrated by removing the solvent under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=2:1) to give 15 g of crude crystals. The crude crystals were recrystallized from a mixture of 30 ml of n-hexane and 15 ml of ethyl acetate to give 8.6 g of colorless plate crystalline ethyl 4-benzyloxy-3-hydroxybenzonate.
- 1H-NMR (CDCl3) δ: 7.67-7.47 (2H, m), 7.41-7.30 (5H, m), 6.94 (1H, d, J=8.7 Hz), 5.61 (1H, s), 5.16 (2H, s), 4.34 (2H, q, J=7.2 Hz), 1.37 (3H, t, J=7.2 Hz)
- Using ethyl 4-benzyloxy-3-hydroxybenzonate obtained in Reference Example 59 and following the procedure of Reference Example 2, ethyl 4-benzyloxy-3-ethoxybenzoate was obtained.
- 1H-NMR (CDCl3) δ: 7.61-7.55 (2H, m), 7.45-7.27 (5H, m), 6.90 (1H, d, J=8.1 Hz), 5.21 (2H, s), 4.34 (2H, q, J=6.9 Hz), 4.17 (2H, q, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz), 1.37 (3H, t, J=6.9 Hz)
- Using ethyl 4-benzyloxy-3-ethoxybenzoate obtained in Reference Example 60 and following the procedure of Reference Example 3, 4-benzyloxy-3-ethoxybenzoic acid was obtained.
- 1H-NMR (CDCl3) δ: 7.68 (1H, dd, J=8.4, 1.2 Hz), 7.61 (1H, d, J=1.2 Hz), 7.45-7.28 (5H, m), 6.92 (1H, d, J=8.4 Hz), 5.23 (2H, s), 4.17 (2H, q, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- Using 4-benzyloxy-3-ethoxybenzoic acid obtained in Reference Example 61 and following the procedure of Reference Example 4, colorless needle crystalline 4-benzyloxy-3-ethoxybenzamide was obtained.
- 1H-NMR (CDCl3) δ: 7.41-7.21 (7H, m), 6.88 (1H, d, J=8.1 Hz), 5.21 (2H, s), 4.18 (2H, q, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- Using 4-benzyloxy-3-ethoxybenzamide obtained in Reference Example 62 and following the procedure of Reference Example 5, colorless powdery 4-chloromethyl-2-(4-benzyloxy-3-ethoxyphenyl)oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.64 (1H, s), 7.57-7.30 (7H, m), 6.94 (1H, d, J=8.4 Hz), 5.20 (2H, s), 4.56 (2H, s), 4.20 (2H, q, J=7.2 Hz), 1.49 (3H, t, J=7.2 Hz)
- A 6.81 g quantity of sodium iodide and 5.09 g of sodium bicarbonate were added to a suspension of 10 g of 2-(3-benzyloxy-4-methoxyphenyl)-4-chloromethyloxazole obtained in Reference Example 5 in 60 ml of dimethylsulfoxide. The mixture was heated at 120° C. with stirring for 30 minutes. After the reaction mixture was allowed to cool, saturated brine was added and extraction with ethyl acetate was performed. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was then distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 2.98 g of yellow oily 2-(3-benzyloxy-4-methoxyphenyl)oxazole-4-carbaldehyde.
- 1H-NMR (CDCl3) δ: 9.98 (1H, s), 8.26 (1H, s), 7.71 (1H, dd, J=8.1, 2.1 Hz), 7.69 (1H, br s), 7.48 (2H, br d, J=8.4 Hz), 7.42-7.31 (3H, m), 6.98 (1H, d, J=8.1 Hz), 5.21 (2H, s), 3.95 (3H, s)
- Using 4-chloromethyl-2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazole obtained in Reference Example 23 and following the procedure of Reference Example 64, colorless powdery 2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazole-4-carbaldehyde was obtained.
- 1H-NMR (CDCl3) δ: 9.99 (1H, s), 8.28 (1H, s), 7.82 (1H, dd, J=8.4, 2.1 Hz), 7.71 (1H, d, J=2.1 Hz), 7.01 (1H, d, J=8.4 Hz), 4.46 (2H, q, J=8.4 Hz), 3.95 (3H, s)
- Using 4-chloromethyl-2-(3,4-diethoxyphenyl)oxazole obtained in Reference Example 35 and following the procedure of Reference Example 64, pale yellow powdery 2-(3,4-diethoxyphenyl)oxazole-4-carbaldehyde was obtained.
- 1H-NMR (CDCl3) δ: 9.99 (1H, s), 8.26 (1H, s), 7.65 (1H, dd, J=8.4, 2.1 Hz), 7.62 (1H, d, J=2.1 Hz), 6.94 (1H, d, J=8.4 Hz), 4.19 (2H, q, J=7.2 Hz), 4.17 (2H, q, J=7.2 Hz), 1.50 (6H, t, J=7.2 Hz)
- Using 12.7 g of 3-isopropoxy-4-methoxybenzoic acid and following the procedure of Reference Example 4, white powdery 3-isopropoxy-4-methoxybenzamide was obtained.
- 1H-NMR (CDCl3) δ: 7.46 (1H, d, J=2.1 Hz), 7.34 (1H, dd, J=8.4, 2.1 Hz), 6.87 (1H, d, J=8.4 Hz), 5.93 (1H, br s), 4.62 (1H, m), 3.90 (3H, s), 1.38 (6H, d, J=6.0 Hz).
- Using 11.4 g of 3-isopropoxy-4-methoxybenzamide obtained in Reference Example 67 and 25 g of 1,3-dichloro-2-propanone and following the procedure of Reference Example 5, 12.2 g of white powdery 4-chloromethyl-2-(3-isopropoxy-4-methoxyphenyl)oxazole was obtained.
- 1H-NMR (CDCl3) δ: 7.65 (1H, s), 7.61 (1H, dd, J=8.4, 2.1 Hz), 7.57 (1H, d, J=2.1 Hz), 6.93 (1H, d, J=8.4 Hz), 4.64 (1H, m), 4.53 (2H, s), 3.90 (3H, s), 1.40 (6H, d, J=6.0 Hz)
- Using 4-chloromethyl-2-(3-isopropoxy-4-methoxyphenyl) oxazole obtained in Reference Example 68 and following the procedure of Reference Example 64, pale yellow powdery 2-(3-isopropoxy-4-methoxyphenyl)oxazole-4-carbaldehyde was obtained.
- 1H-NMR (CDCl3) δ: 9.99 (1H, s), 8.27 (1H, s), 7.68 (1H, dd, J=8.1, 2.1 Hz), 7.64 (1H, d, J=2.1 Hz), 6.95 (1H, d, J=8.1 Hz), 4.67 (1H, sept., J=6.3 Hz), 3.92 (3H, s), 1.41 (6H, d, J=6.3 Hz)
- A 10 g quantity of 1-(2-hydroxyphenyl)ethanone was dissolved in 100 ml of dimethylformamide, and 11.2 ml of chloromethyl methyl ether and 25.4 g of potassium carbonate were added. The mixture was stirred at 50° C. for 6 hours and then at room temperature for 4 days. After insolubles were removed from the reaction mixture by filtration, ice water was added to the filtrate and extraction with ethyl acetate was performed. The organic layer was washed with water and dried over anhydrous magnesium sulfate. The organic layer was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=5:1) to give 6.26 g of colorless oily 1-(2-methoxymethoxyphenyl)ethanone.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.43 (1H, td, J=7.8, 1.8 Hz), 7.18 (1H, d, J=7.8 Hz), 7.05 (1H, t, J=7.8 Hz), 5.28 (2H, s), 3.52 (3H, s), 2.64 (3H, s)
- A 3 g quantity of methyl 3-[2-(3,4-diethoxyphenyl) oxazol-4-yl]propionate obtained in Reference Example 54 was suspended in 5 ml of methanol, and 5 ml of a 20% aqueous sodium hydroxide solution was added. The mixture was heated and refluxed for 4 hours. After cooling the reaction mixture to room temperature, extraction with dichloromethane was performed. The dichloromethane layer was washed with water and dried over anhydrous magnesium sulfate. The solvent was distilled off and the obtained crystals were dried to give 2.8 g of white powdery 3-[2-(3,4-dimethoxyphenyl)oxazol-4-yl]propionic acid.
- 1H-NMR (CDCl3) δ: 7.65-7.55 (3H, m), 1.51 (1H, d, J=2.1 Hz), 6.91 (1H, d, J=8.4 Hz), 4.17 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 3.00-2.90 (2H, m), 2.90-2.80 (2H, m), 1.48 (3H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- Using 10 g of 4-benzyloxy-3-methoxybenzamide and following the procedure of Reference Example 54, 2 g of white powdery methyl 3-[2-(4-benzyloxy-3-methoxyphenyl)oxazol-4-yl]propionate was obtained.
- 1H-NMR (CDCl3) δ: 7.54-7.28 (8H, m) 6.93 (1H, d, J=8.1 Hz), 5.20 (2H, s), 3.97 (3H, s), 3.68 (3H, s), 2.91 (2H, t, J=7.5 Hz), 2.64 (2H, t, J=7.5 Hz)
- Using 2 g of methyl 3-[2-(4-benzyloxy-3-methoxyphenyl) oxazol-4-yl]propionate obtained in Reference Example 72 and following the procedure of Reference Example 71, 1.03 g of white powdery 3-[2-(4-benzyloxy-3-methoxyphenyl)oxazol-4-yl]propionic acid was obtained.
- 1H-NMR (CDCl3) δ: 12.20 (1H, s), 1.86 (1H, s), 7.51-7.31 (1H, m) 7.17 (1H, d, J=8.4 Hz), 5.15 (2H, s), 3.85 (3H, s), 2.75 (2H, t, J=7.5 Hz), 2.59 (2H, t, J=7.5 Hz)
- A 0.4 g quantity of 4-chloromethyl-2-(3,4-diethoxy phenyl)oxazole obtained in Reference Example 35 was dissolved in 15 ml of methylamine (40% methanol solution), and was heated and refluxed for 1 hour. The reaction mixture was concentrated and the obtained residue was dried under reduced pressure to give 0.23 g of yellow oily [2-(3,4-dimethoxyphenyl)oxazol-4-ylmethyl] methylamine.
- 1H-NMR (CDCl3) δ: 8.00 (1H, s), 7.58-7.50 (2H, m), 6.90 (1H, d, J=8.4 Hz), 4.21-4.10 (6H, m), 2.76 (3H, s), 1.51-1.45 (6H, m)
- Using ethyl 2-chloroacetoacetate and 16 g of 3,4-diethoxybenzamide and following the procedure of Reference Example 5, 3.8 g of ethyl. [2-(3,4-dimethoxyphenyl)oxazol-4-yl]acetate was obtained.
- 1H-NMR (CDCl3) δ: 7.64 (1H, s), 7.60-7.50 (2H, m), 6.91 (1H, d, J=8.1 Hz), 4.25-4.10 (6H, m), 3.58 (2H, s), 1.50-1.40 (6H, m), 1.29 (3H, t, J=6.9 Hz)
- A 0.35 g quantity of lithium aluminum hydride was added to 30 ml of tetrahydrofuran with ice-cooling and stirring, and ethyl [2-(3,4-dimethoxyphenyl)oxazol-4-yl]acetate obtained in Reference Example 75 was slowly added with stirring. After stirring at room temperature for 3 hours, the mixture was stirred with ice-cooling for 3 hours, and 0.35 ml of water, 0.35 ml of a 15% aqueous sodium hydroxide solution, and 1.05 ml of water were added in that order. The reaction mixture was dried over anhydrous magnesium sulfate, and insolubles were then removed by filtration. The filtrate was concentrated under reduced pressure to give 2.5 g of colorless crystalline 2-[2-(3,4-dimethoxyphenyl)oxazol-4-yl]ethanol.
- 1H-NMR (CDCl3) δ: 7.56 (1H, d, J=8.4, 2.1 Hz), 7.52 (1H, d, J=2.1 Hz), 7.46 (1H, s), 6.91 (1H, d, J=8.4 Hz), 4.17 (2H, q, J=7.2 Hz), 4.15 (2H, q, J=7.2 Hz), 3.94 (2H, q, J=5.4 Hz), 2.94 (1H, t, J=5.4 Hz), 2.81 (2H, t, J=5.4 Hz), 1.48 (3H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- A 2.0 g quantity of 2-[2-(3,4-dimethoxyphenyl)oxazol-4-yl]ethanol obtained in Reference Example 76 and 2.3 g of triphenylphosphine were added to 20 ml of dichloromethane, and 2.9 g of carbon tetrabromide was slowly added with ice-cooling and stirring. After the temperature of the mixture had reached room temperature, stirring was continued for 1.5 hours. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography (n-hexane:ethyl acetate 8:1) to give 1.9 g of colorless crystalline 4-(2-bromoethyl)-2-(3,4-diethoxyphenyl)oxazole.
- 1H-NMR (CDCl3) δ: 7.60-7.50 (3H, m), 6.91 (1H, d, J=8.4 Hz), 4.18 (2H, q, J=1.2 Hz), 4.14 (2H, q, J=7.2 Hz), 3.67 (2H, t, J=6.9 Hz), 3.14 (2H, t, J=6.9 Hz), 1.48 (3H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- Using 1.5 g of 4-(2-bromoethyl)-2-(3,4-diethoxyphenyl) oxazole obtained in Reference Example 77 and following the procedures of Reference Examples 6 and 7, 0.8 g of yellow oily 2-[2-(3,4-diethoxyphenyl)oxazol-4-yl]ethylamine was obtained.
- 1H-NMR (CDCl3) δ: 7.60-1.50 (3H, m), 6.91 (1H, d, J=8.4 Hz), 4.17 (2H, q, J=7.2 Hz), 4.15 (2H, q, J=7.2 Hz), 3.90-3.80 (2H, m), 3.00-2.90 (2H, m), 1.85 (2H, brs), 1.48 (3H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- Using 10.4 q of 3,4-diethoxybenzamide and 19.5 g of ethyl 3-bromo-2-oxopropionate and following the procedure of Reference Example 5, 12.9 g of white powdery ethyl 2-(3,4-diethoxyphenyl)oxazole-4-carboxylate was obtained.
- 1H-NMR (CDCl3) δ: 8.21 (1H, d, J=0.9 Hz), 7.64 (1H, dd, J=8.1, 0.9 Hz), 7.63 (1H, s), 6.92 (1H, d, J=8.1 Hz), 4.42 (2H, q, J=7.2 Hz), 4.17 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz), 1.41 (3H, t, J=7.2 Hz)
- Using 10 g of the ethyl 2-(3,4-diethoxyphenyl)oxazole-4-carboxylate obtained in Reference Example 79 and following the procedure of Reference Example 71, 8.6 g of white powdery 2-(3,4-diethoxyphenyl)oxazole-4-carboxylic acid was obtained.
- 1H-NMR (CDCl3) δ: 8.24 (1H, s), 7.60-7.50 (3H, m), 6.02 (1H, brs), 4.13 (4H, q, J=6.9 Hz), 1.46 (3H, t, J=6.9 Hz), 1.39 (3H, t, J=6.9 Hz)
- Using 0.4 g of ethyl [2-(3,4-diethoxyphenyl)oxazol-4-yl]acetate obtained in Reference Example 15 and following the procedure of Reference Example 71, 0.35 g of white powdery [2-(3,4-diethoxyphenyl)oxazol-4-yl]acetic acid was obtained.
- 1H-NMR (CDCl3) δ: 7.65-7.55 (3H, m), 7.51 (1H, d, J=2.1 Hz), 6.91 (1H, d, J=8.4 Hz), 4.17 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 3.73 (2H, s), 1.49 (6H, t, J=6.9 Hz)
- Using 3 g of 4-chloromethyl-2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazole obtained in Reference Example 23 and following the procedure of Reference Example 47, 1.91 g of colorless oily dimethyl 2-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}malonate was obtained.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=8.4, 2.1 Hz), 7.60 (1H, d, J=2.1 Hz), 7.42 (1H, s), 6.96 (1H, d, J=8.4 Hz), 4.44 (2H, q, J=6.9 Hz), 3.93 (3H, s), 3.89 (1H, t, J=7.5 Hz), 3.18 (2H, d, J=7.5 Hz)
- Using 1.9 g of dimethyl 2-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}malonate obtained in Reference Example 82 and following the procedure of Reference Example 48, 1.44 g of colorless oily methyl 3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}propionate was obtained.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=8.4, 2.1 Hz), 1.60 (1H, d, J=2.1 Hz), 7.42 (1H, s), 6.96 (1H, d, J=8.4 Hz), 4.45 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.75 (3H, s), 2.91 (2H, t, J=7.5 Hz), 2.72 (2H, t, J=7.5 Hz)
- A 3.5 g quantity of the [2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-yl]methylamine obtained in Reference Example 7 was suspended in 70 ml of acetone. To the obtained suspension were added 2.3 g of 1-hydroxybenzotriazole, 3.3 g of I-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 3.8 g of 2-ethoxybenzoic acid, and the mixture was heated and refluxed for one hour. The reaction mixture was cooled, and acetone was distilled off under reduced pressure. Water was added to the residue, and extraction was then performed with ethyl acetate. The organic layer was washed with water twice, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane:methanol=20:1) to give 4.6 g of white powdery N-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide.
- 1H-NMR (CDCl3) δ: 8.55 (1H, br s) 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.65-7.61 (3H, m), 7.49-7.29 (6H, m), 7.09 (1H, t, J=7.5 Hz), 7.04-6.92 (2H, m), 5.20 (2H, s), 4.61 (2H, d, J=5.4 Hz), 4.16 (2H, q, J=6.9 Hz), 3.93 (3H, s), 1.26 (3H, t, J=6.9 Hz)
- A 4.65 g quantity of the N-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide obtained in Example 1 was dissolved in 90 ml of ethanol, and 0.45 g of 10% palladium carbon powder was added thereto. The mixture was stirred in a hydrogen atmosphere at room temperature for one hour. The catalyst was removed by filtration, and the filtrate was then concentrated under reduced pressure to give 3.7 g of white crystalline N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s) 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.62-1.55 (3H, m), 7.41 (1H, td, J=7.5 Hz, 1.8 Hz), 7.06 (1H, t, J=7.2 Hz), 6.95-6.88 (2H, m), 5.74 (1H, s), 4.62 (2H, d, J=5.1 Hz), 4.17 (2H, q, J=6.9 Hz), 3.95 (3H, s), 1.47 (3H, t, J=6.9 Hz)
- A 0.2 g quantity of the N-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide obtained in Example 2 and 0.3 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 4 ml of ethanol, and 0.14 g of (bromomethyl)cyclopropane was added thereto. The mixture was heated and refluxed overnight. The reaction mixture was allowed to cool, water was then added thereto, and extraction was performed with ethyl acetate. After washing with water twice, the organic layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 0.18 g of white powdery N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide.
- 1H-NMR (CDCl3) δ: 8.55 (1H, br s) 8.24 (1H, dd, J=7.8, 2.1 Hz), 7.62-7.59 (2H, m), 7.53 (1H, d, J=2.1 Hz), 7.45-7.39 (1H, m), 7.07 (1H, td, J=8.1 Hz, 1.2 Hz), 6.95-6.91 (2H, m), 4.62 (2H, d, J=5.4 Hz), 4.18 (2H, q, J=6.9 Hz), 3.94-3.92 (5H, m), 1.49 (3H, t, J=6.9 Hz), 1.42-1.34 (1H, m), 0.71-0.64 (2H, m), 0.41-0.35 (2H, m)
- A 0.3 g quantity of the N-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide obtained in Example 2 and 0.22 g of potassium carbonate were dissolved in 10 ml of dimethylformamide, and 0.34 g of 1,1,1-trifluoro-2-iodoethane was added thereto. The mixture was stirred with heating at 50° C. overnight. The reaction mixture was allowed to cool, water was then added thereto, and extraction was performed with ethyl acetate. After washing with water twice, the organic layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 0.14 g of white powdery N-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}-2-ethoxybenzamide.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s) 8.24 (1H, dd, J=7.8, 2.1 Hz), 7.73 (1H, dd, J=8.4, 2.1 Hz), 7.65-7.63 (2H, m), 7.45-7.39 (1H, m), 7.09-7.01 (1H, m), 6.99-6.90 (2H, m), 4.62 (2H, d, J=5.4 Hz), 4.55 (2H, q, J=8.4 Hz), 4.32 (2H, q, J=6.9 Hz), 3.93 (3H, s), 1.49 (3H, t, J=6.9 Hz)
- Using 0.2 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-ethoxybenzamide obtained in Example 2, compounds of Examples 5 to 14 were obtained in the same manner as in Example 3.
- Yield 0.2 g
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s) 8.24 (1H, dd, J=7.8, 2.1 Hz), 7.62-7.54 (3H, m), 7.45-7.39 (1H, m), 7.07 (1H, t, J=8.1 Hz), 6.96-6.90 (2H, m), 4.62 (2H, d, J=5.4 Hz), 4.18 (2H, q, J=6.9 Hz), 4.10 (2H, t, J=6.9 Hz), 3.92 (3H, s), 1.92-1.82 (2H, m), 1.59-1.47 (5H, m) 1.00 (3H, t, J=7.5 Hz)
- Yield 0.22 g
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s) 8.24 (1H, dd, J=7.8, 2.1 Hz), 7.62-7.54 (3H, m), 7.45-7.39 (1H, m), 7.07 (1H, t, J=8.1 Hz), 6.96-6.90 (2H, m), 4.91-4.86 (1H, m), 4.62 (2H, d, J=5.4 Hz), 4.17 (2H, q, J=6.9 Hz), 3.90 (3H, s), 2.02-1.60 (8H, m), 1.49 (3H, t, J=6.9 Hz)
- Yield 0.12 g
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s) 8.24 (1H, d, J=7.8 Hz), 7.62-7.54 (3H, m), 7.45-7.39 (1H, m), 7.09-7.06 (1H, m), 6.96-6.90 (2H, m), 4.62 (2H, d, J=5.4 Hz), 4.29-4.16 (4H, m), 3.92-3.79 (5H, m), 2.57 (1H, br s), 2.12 (2H, t, J=5.4 Hz), 1.49 (3H, t, J=6.9 Hz)
- Yield 0.19 g
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s) 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.70-7.63 (3H, m), 7.45-7.39 (1H, m), 7.07 (1H, td, J=8.4, 0.9 Hz), 6.98-6.93 (2H, m), 4.84 (2H, d, J=2.4 Hz), 4.63 (2H, dd, J=5.4, 0.9 Hz), 4.19 (2H, q, J=7.2 Hz), 3.94 (3H, s), 2.54 (1H, t, J=2.4 Hz), 1.50 (3H, t, J=7.2 Hz)
- Yield 0.22 g
- 1H-NMR (CDCl3) δ: 8.55 (1H, br s) 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.62-7.54 (3H, m), 7.44-7.39 (1H, m), 7.07 (1H, t, J=8.1 Hz), 6.96-6.91 (2H, m), 4.62 (2H, d, J=5.4 Hz), 4.23-4.14 (4H, m), 3.93 (3H, s), 1.53-1.46 (6H, m)
- Yield 27 mg
- 1H-NMR (CDCl3) δ: 8.54 (1H, br s) 8.24 (1H, dd, J=7.8, 1.8 Hz), 1.61-7.58 (3H, m), 7.45-7.38 (1H, m), 1.07 (1H, t, J=7.8 Hz), 6.95 (2H, d, J=8.4 Hz), 4.62 (2H, d, J=5.1 Hz), 4.36-4.07 (4H, m), 3.93 (3H, s), 3.46-3.41 (1H, m), 2.92 (1H, t, J=4.5 Hz), 2.80-2.76 (1H, m), 1.48 (3H, t, J=7.2 Hz)
- Yield 0.19 g
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s) 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.63-7.54 (3H, m), 7.45-7.39 (1H, m), 7.07 (1H, td, J=8.4, 1.2 Hz), 6.96-6.91 (2H, m), 4.63 (2H, dd, J=5.1, 0.9 Hz), 4.18 (2H, q, J=6.9 Hz), 4.06 (2H, t, J=6.9 Hz), 3.92 (3H, s), 1.97-1.85 (2H, m), 1.49 (3H, t, J=6.9 Hz), 1.07 (3H, t, J=7.2 Hz)
- Yield 0.17 g
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s) 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.62-7.55 (3H, m), 7.45-7.38 (1H, m), 7.07 (1H, t, J=7.8 Hz), 6.96-6.91 (2H, m), 4.72-4.59 (3H, m), 4.18 (2H, q, J=6.9 Hz), 3.91 (3H, s), 1.49 (3H, t, J=6.9 Hz), 1.41 (6H, d, J=6.3 Hz)
- Yield 0.21 g
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s) 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.63-7.55 (3H, m), 7.45-7.38 (1H, m), 7.07 (1H, t, J=7.8 Hz), 6.96-6.91 (2H, m), 5.97-5.88 (1H, m), 5.23-5.10 (2H, m), 4.62 (2H, dd, J=5.1, 0.9 Hz), 4.21-4.12 (4H, m), 3.92 (3H, s), 2.68-2.60 (2H, m), 1.49 (3H, t, J=6.9 Hz)
- Yield 84 mg
- 1H-NMR (CDCl3) δ: 8.54 (1H, br s), 8.23 (1H, dd, J=7.8, 1.8 Hz) 7.62-1.53 (2H, m), 7.44 (1H, d, J=1.8 Hz), 7.41 (2H, td, J=7.8, 1.8 Hz), 7.06 (1H, t, J=7.8 Hz), 6.95-6.90 (2H, m), 4.62 (2H, d, J=5.4 Hz), 4.18 (2H, q, J=6.9 Hz), 3.91 (3H, s), 3.85 (2H, d, J=6.9 Hz), 2.20 (1H, qt, J=6.9, 6.6 Hz), 1.49 (3H, t, J=6.9 Hz), 1.06 (6H, d, J=6.6 Hz)
- Using 0.2 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-ethoxybenzamide obtained in Example 2, N-{2-[4-methoxy-3-(3,3,3-trifluoropropoxy)phenyl]oxazol-4-ylmethyl}-2-ethoxybenzamide was obtained in the same manner as in Example 4.
- Yield 60 mg
- 1H-NMR (CDCl3) δ: 8.55 (1H, br s) 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.68-7.63 (2H, m), 7.56 (1H, d, J=2.1 Hz), 7.45-7.39 (1H, m), 7.07 (1H, t, J=7.2 Hz), 6.97-6.93 (2H, m), 4.62 (2H, d, J=5.4 Hz), 4.32 (2H, t, J=6.9 Hz), 4.18 (2H, q, J=6.9 Hz), 3.92 (3H, s), 2.78-2.67 (2H, m), 1.49 (3H, t, J=6.9 Hz)
- A 1.5 g quantity of the [2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-yl]methylamine obtained in Reference Example 7 was suspended in 30 ml of acetone. To the obtained suspension were added 1.0 g of 1-hydroxybenzotriazole, 1.4 g of I-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 0.8 g of 3-methylpicolinic acid, and the mixture was heated and refluxed for 30 minutes. The reaction mixture was cooled, and acetone was distilled off under reduced pressure. Water was added to the residue, and extraction was then performed with ethyl acetate. The organic layer was washed with water twice, and the solvent was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane:methanol=20:1) to give 1.5 g of white powdery N-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s), 8.39 (1H, d, J=7.5 Hz), 7.65-7.28 (10H, m), 6.94 (1H, d, J=9.0 Hz), 5.21 (2H, s), 4.58 (2H, dd, J=5.7, 0.9 Hz), 3.93 (3H, s), 2.76 (3H, s)
- A 1.5 g quantity of the N-[2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 16 was dissolved in 50 ml of ethanol, and 0.1 g of 10% palladium carbon powder was added thereto. The mixture was stirred in a hydrogen atmosphere at 50° C. for two hours. The catalyst was removed by filtration, and the filtrate was then concentrated to give 1.3 g of white crystalline N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.38 (1H, dd, J=4.5, 0.9 Hz), 7.63 (1H, s), 7.62-1.54 (3H, m), 7.32-7.27 (1H, m), 6.90 (1H, d, J=8.4 Hz), 5.75 (1H, br s), 4.58 (2H, dd, J=6.0, 0.9 Hz), 3.94 (3H, s), 2.75 (3H, s)
- A 0.15 g quantity of the N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 17 and 0.5 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 4 ml of ethanol, and 0.13 g of bromocyclopentane was added thereto. The mixture was heated and refluxed for 3 hours. The reaction mixture was allowed to cool, water was then added thereto, and extraction was performed with ethyl acetate. The extract was washed with water twice, and the organic layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 0.11 g of white powdery N-[2-(3-cyclopentyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s), 8.39 (1H, dd, J=4.8, 0.9 Hz), 7.62-1.53 (4H, m), 7.32-1.21 (1H, m), 6.91 (1H, d, J=8.4 Hz), 4.88 (1H, tt, J=3.3 Hz), 4.59 (2H, dd, J=5.7, 0.9 Hz), 3.89 (3H, s), 2.76 (3H, s), 2.07-1.79 (6H, m), 1.70-1.60 (2H, m)
- A 0.15 g quantity of the N-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 17 and 0.18 g of potassium carbonate were dissolved in 4 ml of dimethylformamide, and 0.19 g of 1,1,1-trifluoro-2-iodoethane was added thereto. The mixture was stirred with heating at 80° C. overnight. The reaction mixture was allowed to cool, water was then added thereto, and extraction was performed with ethyl acetate. The extract was washed with water twice, and the organic layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 0.11 g of white powdery N-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, dd, J=4.5, 1.2 Hz), 7.73 (1H, dd, J=8.7, 2.1 Hz), 7.63-7.57 (3H, m), 7.32-7.27 (1H, m), 6.97 (1H, d, J=8.4 Hz), 4.59 (2H, dd, J=5.7, 0.9 Hz), 4.46 (2H, q, J=8.4 Hz), 3.93 (3H, s), 2.76 (3H, s)
- Using 0.2 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 17, 0.11 g of N-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s), 8.39 (1H, dd, J=4.8, 1.5 Hz), 7.65-7.50 (4H, m), 7.30 (1H, dd, J=7.8, 4.8 Hz), 6.92 (1H, d, J=8.1 Hz), 4.59 (1H, dd, J=6.0, 0.6 Hz), 4.19 (2H, q, J=6.9 Hz), 4.11 (2H, q, J=6.9 Hz), 3.92 (3H, s), 2.76 (3H, s), 1.50 (3H, t, J=6.9 Hz)
- Using 0.15 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 17, 45 mg of N-[2-(3-allyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, dd, J=4.5, 1.5 Hz), 7.65-7.50 (4H, m), 7.30 (1H, dd, J=7.8, 4.5 Hz), 6.93 (1H, d, J=8.4 Hz), 6.12 (1H, m), 5.45 (1H, m), 5.32 (1H, dd, J=9.6, 1.5 Hz), 4.70 (2H, d, J=5.4 Hz), 4.59 (1H, d, J=6.0 Hz), 3.92 (3H, s), 2.76 (3H, s).
- A 170 mg quantity of the N-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 17 was dissolved in 10 ml of tetrahydrofuran. To the obtained solution were added 134 mg of 2-hydroxyindane, 0.5 ml of diisopropyl azodicarboxylate (40% toluene solution) and 202 mg of tri(n-butyl)phosphine, and the mixture was stirred at room temperature overnight, and at 50° C. for 2.5 hours. To the reaction mixture were added 100 mg of 2-hydroxyindane, 0.5 ml of diisopropyl azodicarboxylate (40% toluene solution) and 200 mg of tri(n-butyl)phosphine, and the mixture was stirred at 50° C. for 5 hours, and at room temperature overnight. The reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate:methylene chloride=1:1:1) to give 92 mg of N-{2-[3-(indan-2-yloxy)-4-methoxyphenyl]oxazol-4-ylmethyl}-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.59 (1H, br s), 8.39 (1H, d, J=3.3 Hz), 7.65-7.16 (9H, m), 6.93 (1H, d, J=8.1 Hz), 5.30 (1H, tt, J=6.6, 3.9 Hz), 4.60 (2H, d, J=5.7 Hz), 3.86 (3H, s), 3.46 (2H, dd, J=16.8, 6.6 Hz), 3.27 (2H, dd, J=16.8, 3.9 Hz), 2.76 (3H, s)
- Using 0.88 g of the [2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-yl]methylamine obtained in Reference Example 7, 1.03 g of white powdery N-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-trifluoromethylbenzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 7.72-7.46 (9H, m), 7.40-7.27 (3H, m), 6.95 (1H, d, J=8.4 Hz) 6.34 (1H, br s), 5.20 (2H, s), 4.59 (2H, d, J=5.4 Hz), 3.93 (3H, s)
- Using 1.0 g of the N-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-trifluoromethylbenzamide obtained in Example 23, 0.66 g of white powdery N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-trifluoromethylbenzamide was obtained in the same manner as in Example 2.
- 1H-NMR (CDCl3) δ: 7.71-7.50 (7H, m), 6.90 (1H, d, J=8.4 Hz), 6.39 (1H, br s), 5.76 (1H, s), 4.59 (2H, d, J=5.4 Hz), 3.94 (3H, s)
- Using 0.2 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-trifluoromethylbenzamide obtained in Example 24, 0.18 g of white powdery N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-trifluoromethylbenzamide was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 7.72-7.50 (7H, m), 6.93 (1H, d, J=8.4 Hz), 6.34 (1H, s), 4.60 (2H, d, J=5.4 Hz), 3.93 (3H, s), 1.42-1.32 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.2 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-trifluoromethylbenzamide obtained in Example 24, 40 mg of white powdery N-{2-[3-(3-hydroxypropoxy)-4-methoxyphenyl]oxazol-4-ylmethyl}-2-trifluoromethylbenzamide was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 7.11-7.50 (7H, m), 6.92 (1H, d, J=8.4 Hz), 6.34 (1H, br s), 4.60 (2H, d, J=5.4 Hz), 4.28 (2H, q, J=5.7 Hz), 3.98-3.86 (5H, m), 2.47 (1H, t, J=5.7 Hz), 2.15-2.07 (3H, m)
- Using 0.5 g of the 2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-yl]methylamine obtained in Reference Example 7, 0.62 g of white powdery N-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-ethoxypicolinamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.24-8.22 (2H, m), 7.64-7.60 (3H, m), 7.50-7.46 (2H, m), 7.41-7.28 (5H, m), 6.94 (1H, d, J=9.0 Hz), 5.20 (2H, s), 4.61 (2H, d, J=5.1 Hz), 4.17 (2H, q, J=6.9 Hz), 3.93 (3H, s), 1.50 (3H, t, J=6.9 Hz)
- Using 0.6 g of the N-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-ethoxypicolinamide obtained in Example 27, 0.5 g of white amorphous N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-ethoxypicolinamide was obtained in the same manner as in Example 2.
- 1H-NMR (CDCl3) δ: 8.25-8.22 (2H, m), 7.64 (1H, d, J=1.8 Hz), 7.60-7.54 (2H, m), 7.39-7.28 (2H, m), 6.91 (1H, d, J=8.1 Hz), 5.71 (1H, br s), 4.61 (2H, dd, J=5.4, 0.9 Hz), 4.17 (2H, q, J=6.9 Hz), 3.94 (3H, s), 1.52 (3H, t, J=6.9 Hz)
- Using 0.5 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-ethoxypicolinamide obtained in Example 28, 0.18 g of white amorphous N-[2-(3-cyclopentyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-ethoxypicolinamide was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 8.25-8.22 (2H, m), 7.64 (1H, s), 7.58 (1H, dd, J=8.4, 2.1 Hz), 7.53 (1H, d, J=1.8 Hz), 7.39-7.32 (2H, m), 6.91 (1H, d, J=8.4 Hz), 4.91-4.86 (1H, m), 4.62 (2H, dd, J=5.4, 0.9 Hz), 4.17 (2H, q, J=6.9 Hz), 3.89 (3H, s), 2.05-1.79 (6H, m), 1.66-1.60 (2H, m), 1.51 (3H, t, J=6.9 Hz)
- Using 0.31 g of the 2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-yl]methylamine obtained in Reference Example 7, 0.16 g of white powdery N-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-(2,2,2-trifluoroethoxy)benzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.22 (1H, dd, J=7.8, 1.8 Hz), 7.82 (1H, br s), 7.63-7.60 (3H, m), 7.49-7.27 (6H, m), 7.19 (1H, t, J=7.2 Hz), 6.96-6.88 (2H, m), 5.19 (2H, s), 4.62 (2H, d, J=5.4 Hz), 4.41 (2H, q, J=7.8 Hz), 3.92 (3H, s)
- Using 0.16 g of the N-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-(2,2,2-trifluoroethoxy)benzamide obtained in Example 30, 0.11 g of white powdery N-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-ylmethyl]-2-(2,2,2-trifluoroethoxy)benzamide was obtained in the same manner as in Example 2.
- 1H-NMR (CDCl3) δ: 8.21 (1H, dd, J=7.8, 1.8 Hz), 7.84 (1H, br s), 7.62-7.54 (3H, m), 7.49-7.43 (1H, m), 7.19 (1H, td, J=7.8, 0.9 Hz), 5.71 (1H, s), 4.62 (2H, dd, J=5.4, 0.9 Hz), 4.48 (2H, q, J=7.8 Hz), 3.94 (3H, s)
- Using 0.11 g of the N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-(2,2,2-trifluoroethoxy) benzamide obtained in Example 31, 78 mg of white amorphous N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-(2,2,2-trifluoroethoxy)benzamide was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 8.22 (1H, dd, J=7.8, 2.1 Hz), 7.83 (1H, br s), 7.61-7.57 (3H, m), 7.53 (1H, d, J=2.1 Hz), 7.50-7.43 (1H, m), 7.19 (1H, td, J=7.8, 0.9 Hz), 6.94-6.88 (2H, m), 4.63 (2H, dd, J=5.4, 0.9 Hz), 4.48 (2H, q, J=7.8 Hz), 1.42-1.32 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.5 g of the 2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-yl]methylamine obtained in Reference Example 7, 0.68 g of pale yellow powdery N-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-methoxybenzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.39 (1H, br s), 8.23 (1H, dd, J=4.8, 1.8 Hz), 7.65-7.60 (3H, m), 7.50-7.28 (6H, m), 7.08 (1H, t, J=7.2 Hz), 6.98-6.93 (2H, m), 5.21 (2H, s), 4.61 (2H, dd, J=5.4, 0.9 Hz), 3.95 (3H, s), 3.93 (3H, s)
- Using 0.67 g of the N-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methoxybenzamide obtained in Example 33, 0.52 g of white amorphous N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-methoxybenzamide was obtained in the same manner as in Example 2.
- 1H-NMR (CDCl3) δ: 8.43 (1H, br s), 8.23 (1H, dd, J=7.8, 2.1 Hz), 7.63 (1H, s), 7.60-7.54 (2H, m), 7.47-7.41 (1H, m), 7.10-7.05 (1H, m), 6.97 (1H, d, J=8.4 Hz), 6.91 (1H, d, J=8.1 Hz), 5.74 (1H, br s), 4.62 (2H, dd, J=5.4, 0.9 Hz), 3.91 (3H, s), 3.95 (3H, s)
- Using 0.5 g of the N-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methoxybenzamide obtained in Example 34, 0.39 g of white powdery N-[2-(3-cyclopentyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methoxybenzamide was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 8.41 (1H, br s), 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.63 (1H, s), 7.59 (1H, dd, J=8.4, 1.8 Hz), 7.54 (1H, d, J=1.8 Hz), 1.48-1.42 (1H, m), 7.08 (1H, t, J=7.8 Hz), 6.98 (1H, d, J=8.1 Hz), 6.92 (1H, d, J=8.4 Hz), 4.91-4.81 (1H, m), 4.62 (2H, dd, J=5.4, 0.9 Hz), 3.97 (3H, s), 3.90 (3H, s), 2.05-1.80 (6H, m), 1.66-1.59 (2H, m)
- A 0.2 g quantity of the [2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 13 was suspended in 4 ml of acetone. To the obtained suspension were added 0.2 g of 1-hydroxybenzotriazole, 0.29 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 0.14 g of 3-methylpicolinic acid, and the mixture was heated and refluxed for 30 minutes. The reaction mixture was cooled, water was then added thereto, and extraction was performed with ethyl acetate. The organic layer was washed with water twice, and the solvent was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1) to give 0.16 g of white powdery N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s) 8.39 (1H, dd, J=4.5, 1.2 Hz), 7.63-7.57 (3H, m), 7.52 (1H, d, J=2.1 Hz), 7.33-7.28 (1H, m), 6.92 (1H, d, J=8.4 Hz), 4.59 (2H, dd, J=6.0, 0.9 Hz), 3.97-3.90 (5H, m), 2.76 (3H, s), 1.41-1.31 (1H, m), 0.10-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.2 g of the [2-(3-cyclopropylmethoxy-4-methoxy phenyl)oxazol-4-yl]methylamine obtained in Reference Example 13, compounds of Examples 37 to 43 were obtained in the same manner as in Example 1.
- Yield 0.17 g
- 1H-NMR (CDCl3) δ: 8.62 (1H, br s) 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.62-7.58 (2H, m), 7.54 (1H, d, J=2.1 Hz), 7.43-7.38 (1H, m), 7.05 (1H, td, J=8.1, 0.9 Hz), 6.97-6.91 (2H, m), 4.76-4.67 (1H, m), 4.61 (2H, dd, J=5.4, 0.9 Hz), 3.94-3.90 (5H, m), 1.41-1.38 (7H, m), 0.69-0.64 (2H, m), 0.41-0.35 (2H, m)
- Yield 0.16 g
- 1H-NMR (CDCl3) δ: 7.64 (1H, s) 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.50 (1H, d, J=2.1 Hz), 7.41-7.16 (3H, m), 6.93 (1H, d, J=8.4 Hz), 6.31 (1H, br s), 4.58 (2H, dd, J=5.4, 0.9 Hz), 3.95-3.92 (5H, m), 2.46 (3H, s), 1.42-1.32 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 0.15 g
- 1H-NMR (CDCl3) δ: 7.64 (1H, s) 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.50 (1H, d, J=1.8 Hz), 7.41-7.16 (3H, m), 6.93 (1H, d, J=8.1 Hz), 6.31 (1H, br s), 4.57 (2H, d, J=5.4 Hz), 3.95-3.92 (5H, m), 2.81 (2H, q, J=7.5 Hz), 1.42-1.32 (1H, m), 1.23 (3H, t, J=7.5 Hz), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 0.17 g
- 1H-NMR (CDCl3) δ: 7.71-7.66 (2H, m), 7.59 (1H, dd, J=8.4, 1.8 Hz), 7.50 (1H, d, J=2.1 Hz), 7.42-7.29 (3H, m), 6.93 (1H, d, J=8.4 Hz), 6.75 (1H, br s), 4.62 (2H, dd, J=5.4, 0.9 Hz), 3.95-3.92 (5H, m), 1.41-1.32 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 0.19 g
- 1H-NMR (CDCl3) δ: 8.45 (1H, br s), 7.94 (1H, dd, J=9.6, 3.3 Hz), 7.63 (1H, s), 7.61 (1H, dd, J=8.1, 1.8 Hz), 7.51 (1H, d, J=1.8 Hz), 7.17-7.10 (1H, m), 6.95-6.90 (2H, m), 4.61 (2H, d, J=5.4 Hz), 3.96-3.92 (8H, m), 1.40-1.30 (1H, m), 0.70-0.64 (2H, m), 0.41-0.35 (2H, m)
- Yield 0.19 g
- 1H-NMR (CDCl3) δ: 8.27-8.21 (2H, m), 7.63-7.58 (2H, m), 7.52 (1H, d, J=2.1 Hz), 6.93 (1H, d, J=8.4 Hz), 6.81-6.74 (1H, m), 6.69 (1H, dd, J=10.2, 2.1 Hz), 4.60 (2H, dd, J=5.4, 0.9 Hz), 3.97-3.90 (8H, m), 1.40-1.30 (1H, m), 0.70-0.64 (2H, m), 0.41-0.35 (2H, m)
- Yield 0.17 g
- 1H-NMR (CDCl3) δ: 7.65 (1H, s), 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.50 (1H, d, J=2.1 Hz), 7.34-7.27 (1H, m), 6.92 (1H, d, J=8.4 Hz), 6.76-6.70 (2H, m), 6.51 (1H, br s), 4.61 (2H, d, J=5.7 Hz), 3.94-3.91 (5H, m), 3.85 (3H, s), 1.42-1.31 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.4 g of the [2-(3-cyclopropylmethoxy-4-methoxy phenyl)oxazol-4-yl]methylamine obtained in Reference Example 13, N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-methylsulfanylbenzamide was obtained in the same manner as in Example 1.
- Yield 0.4 g
- 1H-NMR (CDCl3) δ: 7.68 (1H, s), 7.61-7.56 (2H, m), 7.50 (1H, d, J=1.8 Hz), 7.34-7.17 (3H, m), 6.95-6.90 (2H, m), 4.61 (2H, dd, J=5.4, 0.9 Hz), 3.95-3.92 (5H, m), 2.46 (3H, s), 1.42-1.31 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.7 g of the [2-(3-cyclopropylmethoxy-4-methoxy phenyl)oxazol-4-yl]methylamine obtained in Reference Example 13, N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-hydroxypicolinamide was obtained in the same manner as in Example 1.
- Yield 0.6 g
- 1H-NMR (CDCl3) δ: 12.02 (1H, s), 8.45 (1H, br s), 8.06 (1H, dd, J=4.2, 1.8 Hz), 7.63-7.59 (2H, m), 7.52 (1H, s), 7.37-7.29 (3H, m), 6.93 (1H, d, J=8.4 Hz), 4.60 (2H, d, J=6.0 Hz), 3.96-3.93 (5H, m), 1.56-1.33 (1H, m), 0.70-0.64 (2H, m), 0.42-0.36 (2H, m)
- Using 0.1 g of the [2-(3-cyclopropylmethoxy-4-methoxy phenyl)oxazol-4-yl]methylamine obtained in Reference Example 13, compounds of Examples 46 to 56 were obtained in the same manner as in Example 1.
- Yield 0.1 g
- 1H-NMR (CDCl3) δ: 8.40 (1H, br s), 8.23 (1H, dd, J=7.8, 2.1 Hz) 7.64-7.58 (2H, m), 7.52 (1H, d, J=2.1 Hz), 7.48-7.42 (1H, m), 7.08 (1H, td, J=7.8, 0.9 Hz), 6.99-6.91 (2H, m), 4.62 (2H, dd, J=5.4, 0.9 Hz), 3.97-3.91 (8H, m), 1.40-1.32 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 43 mg
- 1H-NMR (CDCl3) δ: 8.02 (1H, dd, J=7.8, 1.8 Hz), 7.64-7.27 (6H, m), 7.10 (1H, br s), 6.93 (1H, d, J=8.4 Hz), 4.62 (2H, dd, J=5.4, 0.9 Hz), 3.95-3.92 (5H, m), 1.43-1.28 (1H, m), 0.69-0.63 (2H, m), 0.41-0.36 (2H, m)
- Yield 0.1 g
- 1H-NMR (CDCl3) δ: 8.50 (1H, br s), 8.24 (1H, dd, J=1.8, 1.8 Hz) 7.61-7.58 (2H, m), 7.53 (1H, d, J=1.8 Hz), 7.44-7.38 (1H, m), 7.06 (1H, t, J=7.8 Hz), 6.95-6.91 (2H, m), 4.62 (2H, d, J=5.1 Hz), 4.06 (2H, t, J=6.6 Hz), 3.95-3.68 (5H, m), 1.86 (2H, td, J=7.5, 6.6 Hz), 1.41-1.31 (1H, m), 0.96 (3H, t, J=7.5 Hz), 0.40-0.61 (2H, m), 0.41-0.35 (2H, m)
- Yield 90 mg
- 1H-NMR (CDCl3) δ: 9.42 (1H, s), 8.75 (1H, d, J=2.4 Hz), 8.52 (1H, dd, J=2.1, 1.5 Hz), 8.25 (1H, br s), 7.64 (1H, s), 7.60 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 6.92 (1H, d, J=8.4 Hz), 4.63 (2H, dd, J=5.4, 0.9 Hz), 4.11-3.92 (5H, m), 1.40-1.32 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 85 mg
- 1H-NMR (CDCl3) δ: 8.24-8.22 (2H, m) 7.64 (1H, s), 7.60 (1H, dd, J=8.4, 1.8 Hz), 7.51 (1H, d, J=2.1 Hz), 1.39-1.32 (2H, m), 6.92 (1H, d, J=8.4 Hz), 4.62 (2H, dd, J=5.4, 0.9 Hz), 4.17 (2H, q, J=6.9 Hz), 3.98-3.92 (5H, m), 1.52 (3H, t, J=6.9 Hz), 1.43-1.32 (1H, m), 0.71-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 70 mg
- 1H-NMR (CDCl3) δ: 8.48 (1H, br s) 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.63-7.59 (2H, m), 7.53 (1H, d, J=2.1 Hz), 7.45-7.38 (1H, m), 7.06 (1H, td, J=8.4, 0.9 Hz), 6.96-6.91 (2H, m), 4.61 (2H, d, J=5.1 Hz), 4.09 (2H, t, J=6.6 Hz), 3.94-3.91 (5H, m), 1.84-1.75 (2H, m), 1.46-1.33 (3H, m), 0.84 (3H, t, J=7.2 Hz), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 0.12 g
- 1H-NMR (CDCl3) δ: 8.46 (1H, br s) 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.62-7.58 (2H, m), 7.52 (1H, d, J=1.8 Hz), 7.41 (1H, t, J=7.2 Hz), 7.06 (1H, t, J=7.2 Hz), 6.95-6.91 (2H, m), 4.62 (2H, d, J=5.1 Hz), 3.95-3.92 (5H, m), 3.86 (2H, d, J=6.3 Hz), 2.20-2.10 (1H, m), 1.40-1.31 (1H, m), 0.95 (6H, d, J=6.6 Hz), 0.70-0.63 (2H, m), 0.41-0.37 (2H, m)
- Yield 0.1 g
- 1H-NMR (CDCl3) δ: 8.28-8.25 (2H, m) 7.63 (1H, s), 7.60 (1H, dd, J=8.4, 2.1 Hz), 7.52 (1H, d, J=2.1 Hz), 7.38-1.31 (2H, m), 6.93 (1H, d, J=8.4 Hz), 4.70-4.61 (3H, m), 3.98-3.90 (5H, m), 1.42-1.31 (7H, m), 0.70-0.61 (2H, m), 0.41-0.35 (2H, m)
- Yield 85 mg
- 1H-NMR (CDCl3) δ: 7.70-7.66 (2H, m), 7.59 (1H, dd, J=8.4, 1.8 Hz), 7.51 (1H, d, J=2.1 Hz), 7.43-7.32 (2H, m), 7.27-7.22 (2H, m), 6.92 (1H, d, J=8.7 Hz), 4.61 (2H, dd, J=5.4, 0.6 Hz), 3.95-3.92 (5H, m), 2.90 (2H, q, J=7.5 Hz), 1.40-1.34 (1H, m), 1.26 (3H, t, J=7.2 Hz), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 53 mg
- 1H-NMR (CDCl3) δ: 11.64 (1H, br s), 8.44 (1H, dd, J=7.8, 2.1 Hz), 8.25 (1H, d, J=6.3 Hz), 7.63-7.35 (5H, m), 6.91 (1H, d, J=8.7 Hz), 4.65 (2H, d, J=5.7 Hz), 3.97-3.88 (5H, m), 1.43-1.32 (1H, m), 0.70-0.63 (2H, m), 0.41-0.36 (2H, m)
- Yield 46 mg
- 1H-NMR (CDCl3) δ: 7.67 (1H, s), 7.59 (1H, dd, J=8.4, 1.8 Hz), 7.50 (1H, d, J=2.1 Hz), 7.30-7.24 (1H, m), 6.92 (1H, d, J=8.4 Hz), 6.56 (2H, d, J=8.4 Hz), 6.24 (1H, br s), 4.62 (2H, dd, J=5.1, 0.9 Hz), 3.95-3.92 (5H, m), 3.81 (6H, s), 1.41-1.32 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.13 g of [2-(3-cyclopropylmethoxy-4-methoxy phenyl)oxazol-4-yl]methylamine, compounds of Examples 57 to 59 were obtained in the same manner as in Example 1.
- Yield 24 mg
- 1H-NMR (CDCl3) δ: 8.23-8.19 (2H, m) 7.65 (1H, s), 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.51 (1H, d, J=1.8 Hz), 1.43-7.34 (2H, m), 6.92 (1H, d, J=8.7 Hz), 4.60 (2H, d, J=5.4 Hz), 3.96-3.93 (8H, m), 1.43-1.30 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 0.11 g
- 1H-NMR (CDCl3) δ: 8.24 (1H, dd, J=3.9, 1.8 Hz), 8.17 (1H, br s), 7.63 (1H, s), 7.59 (1H, dd, J=8.4, 1.8 Hz), 7.38-7.31 (2H, m), 6.92 (1H, d, J=8.4 Hz), 4.62 (2H, dd, J=5.4, 0.9 Hz), 3.95-3.92 (5H, m), 3.84 (2H, d, J=6.3 Hz), 2.20 (1H, qt, J=6.6 Hz), 1.40-1.34 (1H, m), 1.03 (6H, d, J=6.6 Hz), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Yield 71 mg
- 1H-NMR (CDCl3) δ: 8.55 (1H, dd, J=7.8, 1.8 Hz), 7.71 (1H, dd, J=7.5, 1.8 Hz), 7.65 (1H, s), 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.17-1.13 (1H, m), 6.93 (2H, d, J=8.4 Hz), 6.35 (1H, br s), 4.58 (2H, dd, J=5.4, 0.9 Hz), 3.96-3.91 (5H, m), 2.69 (3H, s), 1.41-1.31 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- 0.4 g of N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methylsulfanylbenzamide obtained in Example 44 was dissolved in 20 ml of dichloromethane, and 0.67 g of metachloroperbenzoic acid was added thereto while the solution was cooled with ice with stirring. The mixture was then stirred for an hour. The reaction mixture was concentrated under reduced pressure, the residue was purified by silica gel column chromatography (NH silica, n-hexane:ethyl acetate=1:1), and 50 mg of white powdery N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl) oxazol-4-ylmethyl]-2-methanesulfonylbenzamide was obtained.
- 1H-NMR (CDCl3) δ: 8.11 (1H, dd, J=7.8, 0.9 Hz), 7.76 (1H, s), 7.69-1.55 (4H, m), 7.50 (1H, d, J=2.1 Hz), 6.93 (1H, d, J=8.4 Hz), 6.50 (1H, br s), 4.62 (2H, d, J=5.4 Hz), 3.95-3.90 (5H, m), 3.93-3.67 (1H, m), 3.37 (3H, s), 1.40-1.32 (1H, m), 1.27-1.18 (3H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- 0.1 g of N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-hydroxypicolinamide obtained in Example 45 and 0.16 g of cesium carbonate were dissolved in 4 ml of acetonitrile, and 0.2 g of 1-bromopropane was added thereto and stirred overnight at room temperature. Water was added to the reaction mixture and extraction was performed with ethyl acetate. The extract was washed with water once, and further washed with saturated aqueous citric acid once. The organic layer was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography, yielding 72 mg of white powdery N-2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-propoxypicolinamide.
- 1H-NMR (CDCl3) δ: 8.25-8.20 (2H, m) 7.64 (1H, s), 7.60 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.39-7.32 (2H, m), 6.92 (1H, d, J=8.4 Hz), 4.62 (2H, dd, J=5.7, 0.9 Hz), 4.05 (2H, t, J=6.6 Hz), 3.94-3.92 (5H, m), 1.90 (2H, t, J=7.5, 6.6 Hz), 1.40-1.33 (1H, m), 1.04 (3H, t, J=7.5 Hz), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.18 g of [2-(3-isobutoxy-4-methoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 19, 0.16 g of white powdery N-[2-(3-isobutoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s) 8.39 (1H, dd, J=4.5, 1.8 Hz), 7.63 (1H, s), 7.62-7.59 (2H, m), 7.57 (1H, d, J=0.9 Hz), 7.32-7.27 (1H, m), 6.92 (1H, d, J=8.4 Hz), 4.59 (2H, dd, J=6.0, 0.9 Hz), 3.91 (3H, s), 3.86 (2H, d, J=6.9 Hz), 2.76 (3H, s), 2.20 (1H, qt, J=6.9, 6.6 Hz), 1.06 (6H, d, J=6.6 Hz)
- Using 0.15 g of [2-(3-isobutoxy-4-methoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 19, compounds of Examples 63 to 75 were obtained in the same manner as in Example 1.
- Yield 0.12 g
- 1H-NMR (CDCl3) δ: 8.41 (1H, br s) 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.64 (1H, s), 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.53 (1H, d, J=2.1 Hz), 7.48-7.42 (1H, m), 7.11-6.90 (3H, m), 4.63 (2H, dd, J=5.4, 0.9 Hz), 3.97 (3H, s), 3.91 (3H, s), 3.86 (2H, d, J=6.9 Hz), 2.21 (1H, qt, J=6.6 Hz), 1.06 (6H, d, J=6.6 Hz)
- Yield 0.15 g
- 1H-NMR (CDCl3) δ: 7.69 (1H, s), 7.61-7.56 (2H, m), 7.51 (1H, d, J=1.8 Hz), 7.45-7.15 (3H, m) 6.94-6.90 (2H, m), 4.61 (2H, d, J=5.7 Hz), 3.91 (3H, s), 3.85 (2H, d, J=6.9 Hz), 2.46 (3H, s), 2.20 (1H, qt, J=6.9 Hz), 1.06 (6H, d, J=6.9 Hz)
- Yield 80 mg
- 1H-NMR (CDCl3) δ: 8.25-8.22 (2H, m) 7.65 (1H, s), 7.58 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.40-7.32 (2H, m), 6.92 (1H, d, J=8.4 Hz), 4.62 (2H, dd, J=5.4, 0.9 Hz), 4.18 (2H, q, J=6.9 Hz), 3.91 (3H, s), 3.86 (2H, d, J=6.9 Hz), 2.20 (1H, qt, J=6.9 Hz), 1.52 (3H, t, J=6.9 Hz), 1.06 (6H, d, J=6.6 Hz)
- Yield 0.11 g
- 1H-NMR (CDCl3) δ: 8.27-8.21 (2H, m), 7.63 (1H, s), 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.52 (1H, d, J=2.1 Hz), 6.93 (1H, d, J=8.4 Hz), 6.81-6.74 (1H, m), 6.69 (1H, dd, J=10.5, 2.4 Hz), 4.61 (2H, dd, J=5.4, 0.9 Hz), 3.96 (3H, s), 3.91 (3H, 5), 3.85 (2H, d, J=6.6 Hz), 2.20 (1H, qt, J=6.9, 6.6 Hz), 1.06 (6H, d, 0=6.6 Hz)
- Yield 0.15 g
- 1H-NMR (CDCl3) δ: 8.64 (1H, br s) 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.62-1.57 (2H, m), 7.54 (1H, d, J=1.8 Hz), 7.44-7.37 (1H, m), 7.08-7.02 (1H, m), 6.98-6.91 (2H, m), 4.72 (1H, q, J=6.0 Hz), 4.62 (2H, dd, J=5.1, 0.9 Hz), 3.92 (3H, s), 3.85 (2H, d, J=6.6 Hz), 2.20 (1H, qt, J=6.6 Hz), 1.40 (6H, d, J=6.0 Hz), 1.06 (6H, d, J=6.6 Hz)
- Yield 0.13 g
- 1H-NMR (CDCl3) δ: 7.65 (1H, d, J=0.9 Hz), 7.58 (1H, dd, J=8.4, 2.1 Hz), 7.51 (1H, d, J=2.1 Hz), 7.34-7.24 (1H, m), 6.92 (1H, d, J=8.4 Hz), 6.77-6.10 (2H, m), 6.52 (1H, br s), 4.62 (2H, dd, J=5.7, 0.9 Hz), 3.91 (3H, s), 3.90-3.82 (5H, m), 2.20 (1H, qt, J=6.9 Hz), 1.06 (6H, d, J=6.9 Hz)
- Yield 0.14 g
- 1H-NMR (CDCl3) δ: 8.19-8.22 (2H, m), 7.65 (1H, s), 7.58 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=2.1 Hz), 7.43-1.34 (1H, m), 6.92 (1H, d, J=8.4 Hz), 4.61 (2H, dd, J=5.7, 0.9 Hz), 3.96 (3H, s), 3.91 (3H, s), 3.86 (2H, d, J=6.6 Hz), 2.20 (1H, qt, J=6.9, 6.6 Hz), 1.06 (6H, d, J=6.9 Hz)
- Yield 68 mg
- 1H-NMR (CDCl3) δ: 8.24 (1H, dd, J=3.9, 2.1 Hz), 8.17 (1H, br s), 7.64 (1H, s), 7.58 (1H, dd, J=8.4, 2.1 Hz), 7.52 (1H, d, J=1.8 Hz), 7.38-7.28 (2H, m), 6.92 (2H, d, J=8.4 Hz), 4.63 (2H, dd, J=5.4, 0.9 Hz), 3.91 (3H, s), 3.87-3.82 (4H, m), 2.27-2.13 (2H, m), 1.07-1.02 (2H, m)
- Yield 75 mg
- 1H-NMR (CDCl3) δ: 8.52 (1H, br s), 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.62-7.58 (2H, m), 7.53 (1H, s), 7.42 (1H, td, J=7.2, 1.8 Hz), 1.06 (1H, t, J=7.8 Hz), 6.95-6.91 (2H, m), 4.62 (2H, d, J=5.1 Hz), 4.06 (2H, t, J=6.6 Hz), 3.94 (3H, s), 3.85 (2H, d, J=6.6 Hz), 2.24-2.16 (1H, m), 1.93-1.81 (2H, m), 1.06 (6H, d, J=6.6 Hz), 0.97 (3H, t, J=7.2 Hz)
- Yield 41 mg
- 1H-NMR (CDCl3) δ: 8.48 (1H, br s), 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.62-7.58 (2H, m), 7.53 (1H, s), 7.42 (1H, td, J=1.2, 1.8 Hz), 7.06 (1H, t, J=7.8 Hz), 6.95-6.91 (2H, m), 4.61 (2H, d, J=5.1 Hz), 4.10 (2H, t, J=6.6 Hz), 3.91 (3H, s), 3.85 (2H, d, J=6.6 Hz), 2.24-2.16 (1H, m), 1.85-1.75 (2H, m), 1.43-1.36 (2H, m), 1.05 (6H, d, J=6.6 Hz), 0.84 (3H, t, J=7.2 Hz)
- Yield 90 mg
- 1H-NMR (CDCl3) δ: 8.52 (1H, br s), 8.23 (1H, dd, 0=1.8, 1.8 Hz), 7.62-7.58 (2H, m), 7.53 (1H, s), 7.42 (1H, td, J=7.2, 1.8 Hz), 7.06 (1H, t, J=7.8 Hz), 6.93-6.90 (2H, m), 4.62 (2H, d, J=5.1 Hz), 3.91 (3H, s), 3.87-3.83 (4H, m), 2.24-2.16 (2H, m), 1.06 (6H, d, J=6.6 Hz), 0.95 (6H, d, J=6.6 Hz)
- Yield 0.11 g
- 1H-NMR (CDCl3) δ: 8.52 (1H, br s), 8.21 (1H, br s), 7.63 (1H, s), 7.58 (1H, dd, J=7.8, 1.8 Hz), 1.53 (1H, s), 1.35-1.34 (2H, m), 6.92 (1H, d, J=8.4 Hz), 4.67-4.61 (3H, m), 3.91 (3H, s), 3.85 (2H, d, J=6.6 Hz), 2.22-2.17 (1H, m), 1.42 (6H, d, J=6.6 Hz), 1.06 (6H, d, J=6.6 Hz)
- Yield 0.13 g
- 1H-NMR (CDCl3) δ: 8.52 (1H, br s), 7.86 (1H, d, J=7.5 Hz), 7.76 (1H, d, J=7.5 Hz), 7.69 (1H, s), 7.59 (1H, d, J=4.2 Hz), 7.56 (1H, s), 6.92 (1H, d, J=8.7 Hz), 4.58 (2H, d, J=5.1 Hz), 3.91 (3H, s), 3.84 (2H, d, J=6.9 Hz), 2.69 (3H, s), 2.23-2.15 (1H, m), 1.05 (6H, d, 0=5.1 Hz)
- Using 0.2 g of {2-[4-methoxy-3-(2,2,2-trifluoroethoxy) phenyl]oxazol-4-yl}methylamine obtained in Reference Example 25, 0.24 g of white powdery N-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy) phenyl]oxazol-4-ylmethyl}-3-methoxypicolinamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.24-8.19 (2H, m), 7.12 (1H, dd, J=8.4, 1.8 Hz), 7.65 (1H, d, J=0.9 Hz), 7.62 (1H, d, J=1.8 Hz), 7.43-7.35 (2H, m), 6.98 (1H, d, J=8.4 Hz), 4.60 (2H, dd, J=5.7, 0.9 Hz), 4.46 (2H, q, J=5.4 Hz), 3.95 (3H, s), 3.93 (3H, s)
- Using 0.2 g of {2-[4-methoxy-3-(2,2,2-trifluoroethoxy) phenyl]oxazol-4-yl}methylamine obtained in Reference Example 25, compounds of Example 77 to 79 were obtained in the same manner as in Example 1.
- Yield 0.24 g
- 1H-NMR (CDCl3) δ: 8.26-8.22 (2H, m), 7.72 (1H, dd, J=8.4, 2.1 Hz), 7.65 (1H, s), 7.63 (1H, d, J=1.8 Hz), 7.40-7.32 (2H, m), 6.98 (1H, d, J=8.1 Hz), 4.62 (2H, dd, J=5.7, 0.9 Hz), 4.46 (2H, q, J=8.4 Hz), 4.18 (2H, q, J=6.9 Hz), 1.52 (3H, t, J=6.9 Hz)
- Yield 0.18 g
- 1H-NMR (CDCl3) δ: 8.42 (1H, br s), 8.23 (1H, dd, J=7.5, 1.8 Hz), 7.73 (1H, dd, J=8.4, 2.1 Hz), 7.65-7.60 (2H, m), 7.48-7.42 (1H, m), 7.08 (1H, td, J=8.4, 0.9 Hz), 6.98 (1H, d, J=8.4 Hz), 4.62 (2H, dd, J=5.4, 0.9 Hz), 4.46 (2H, q, J=8.4 Hz), 3.98 (3H, s), 3.93 (3H, s)
- Yield 0.15 g
- 1H-NMR (CDCl3) δ: 7.72 (1H, dd, J=8.4, 2.1 Hz), 7.66 (1H, s), 7.61 (1H, d, J=2.1 Hz), 7.41-7.14 (4H, m), 6.98 (1H, d, J=8.4 Hz), 6.31 (1H, br s), 4.58 (2H, dd, J=5.4, 0.9 Hz), 4.45 (2H, q, J=8.4 Hz), 3.93 (3H, s), 2.46 (3H, s)
- Using 0.15 g of {2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}methylamine obtained Reference Example 25, compounds of Examples 80 to 82 were obtained in the same manner as in Example 1.
- Yield 0.15 g
- 1H-NMR (CDCl3) δ: 8.53 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.73 (1H, dd, J=8.4, 2.1 Hz), 1.65-1.60 (2H, m), 7.45-7.38 (1H, m), 7.09-6.93 (3H, m), 4.62 (2H, d, J=5.1 Hz), 4.45 (2H, q, J=8.1 Hz), 4.07 (2H, t, J=6.6 Hz), 3.94 (3H, s), 1.88 (2H, qt, =7.5, 6.6 Hz), 0.98 (3H, t, J=7.5 Hz)
- Yield 0.18 g
- 1H-NMR (CDCl3) δ: 8.64 (1H, br s), 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.14 (1H, dd, J=8.4, 2.1 Hz), 7.65 (1H, d, J=2.1 Hz), 7.63 (1H, s), 7.44-7.37 (1H, m), 7.08-6.94 (3H, m), 4.73 (1H, tt, J=6.0 Hz), 4.62 (2H, dd, J=5.1, 0.9 Hz), 4.46 (2H, q, J=8.4 Hz), 3.94 (3H, s), 1.41 (6H, d, J=6.0 Hz)
- Yield 0.21 g
- 1H-NMR (CDCl3) δ: 8.29 (1H, br s), 8.17 (1H, d, J=8.4 Hz), 7.73 (1H, dd, J=8.4, 1.8 Hz), 7.64 (1H, d, J=1.5 Hz), 7.07 (1H, dd, J=8.4, 1.8 Hz), 7.00-6.96 (2H, m), 4.60 (2H, dd, J=5.4, 0.9 Hz), 4.46 (2H, q, J=8.4 Hz), 3.98 (3H, s), 3.93 (3H, s)
- Using 0.1 g of {2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}methylamine obtained in Reference Example 34, 0.11 g of white powdery N-{2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}-2-ethoxybenzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.54 (1H, br s), 8.23 (1H, dd, J=7.8, 1.8 Hz) 7.64 (1H, s), 7.60-7.55 (2H, m), 7.45-7.38 (1H, m), 7.10-7.04 (2H, m), 6.94 (1H, d, J=8.1 Hz), 4.62 (2H, dd, J=5.4, 0.9 Hz), 4.48 (2H, q, J=8.4 Hz), 4.18 (2H, q, J=6.9 Hz), 3.95 (2H, d, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz), 1.35-1.29 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.18 g of {2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}methylamine obtained in Reference Example 34, 0.2 g of white powdery N-{2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}-3-methylpicolinamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s), 8.39 (1H, dd, J=4.5, 1.2 Hz) 7.64 (1H, s), 7.60-7.55 (3H, m), 7.32-7.26 (1H, m), 7.06-7.03 (1H, m), 4.59 (2H, dd, J=5.7, 0.9 Hz), 4.48 (2H, q, J=8.4 Hz), 3.95 (2H, d, J=6.9 Hz), 2.76 (3H, s), 1.38-1.28 (1H, m), 0.69-0.62 (2H, m), 0.40-0.35 (2H, m)
- Using 0.3 g of [2-(3,4-diethoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 37, 0.11 g of white powdery N-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]-2-propoxy benzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.51 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.60-7.50 (3H, m), 7.41 (1H, m), 7.06 (1H, m), 7.00-6.90 (2H, m), 4.61 (2H, d, J=5.1 Hz), 4.06 (2H, t, J=6.6 Hz), 1.87 (2H, tq, J=7.2, 6.6 Hz), 1.49 (6H, t, J=6.9 Hz), 0.96 (3H, t, J=7.2 Hz)
- Using 0.3 g of [2-(3,4-diethoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 37, compounds of Examples 86 to 91 were obtained in the same manner as in Example 1.
- Yield 0.11 g
- 1H-NMR (CDCl3) δ: 7.75-7.50 (7H, m), 6.91 (1H, d, J=8.4 Hz), 6.32 (1H, br s), 4.59 (2H, d, J=5.4 Hz), 4.17 (2H, q, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 1.48 (6H, t, J=6.9 Hz)
- Yield 0.34 g
- 1H-NMR (CDCl3) δ: 8.55 (1H, m), 8.47 (1H, br s), 8.21 (1H, d, J=7.8 Hz), 7.85 (1H, m), 7.57 (1H, dd, J=8.4, 1.8 Hz), 7.55 (1H, d, J=1.8 Hz), 7.42 (1H, m), 6.91 (1H, d, J=8.4 Hz), 6.32 (1H, br s), 4.63 (2H, d, J=6.0 Hz), 4.18 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- Yield 0.23 g
- 1H-NMR (CDCl3) δ: 8.55 (1H, m), 8.47 (1H, br s), 8.21 (1H, d, J=7.8 Hz), 7.85 (1H, m), 7.57 (1H, dd, J=8.4, 1.8 Hz), 7.55 (1H, d, J=1.8 Hz), 7.42 (1H, m), 6.91 (1H, d, J=8.4 Hz), 6.32 (1H, br s), 4.63 (2H, d, J=6.0 Hz), 4.18 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- Yield 0.32 g
- 1H-NMR (CDCl3) δ: 7.80-7.70 (2H, m), 7.63 (1H, s), 7.60-7.50 (2H, m), 6.95-6.85 (3H, m), 6.66 (1H, br s), 4.57 (2H, q, J=6.0 Hz), 4.17 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 4.06 (2H, q, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz), 1.42 (3H, t, J=6.9 Hz).
- Yield 0.34 g
- 1H-NMR (CDCl3) δ: 7.95 (1H, br s), 7.73 (1H, d, J=3.0 Hz), 7.70-7.50 (3H, m), 6.99 (1H, dd, J=9.0, 3.0 Hz), 6.90-6.80 (2H, m), 4.61 (2H, d, J=6.0 Hz), 4.18 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 3.82 (3H, s), 1.48 (3H, t, J=6.9 Hz), 1.46 (3H, t, J=6.9 Hz)
- Yield 0.12 g
- 1H-NMR (CDCl3) δ: 7.57 (1H, dd, J=8.1, 2.1 Hz), 7.53 (1H, d, J=2.1 Hz), 7.35-7.25 (3H, m), 7.01 (1H, m), 6.92 (1H, d, J=8.1 Hz), 6.68 (1H, br s), 4.58 (2H, d, J=5.4 Hz), 4.18 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 4.07 (2H, q, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz), 1.42 (3H, t, J=6.9 Hz)
- Using 0.3 g of [2-(3,4-dimethoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 40, 0.27 g of white powdery N-[2-(3,4-dimethoxyphenyl)oxazol-4-ylmethyl]-2-ethoxy benzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s), 8.24 (1H, dd, J=8.1, 1.8 Hz), 7.65-7.60 (2H, m), 7.55 (1H, d, J=1.5 Hz), 7.42 (1H, m), 7.07 (1H, m), 6.95-6.90 (2H, m), 4.63 (2H, d, J=5.1 Hz), 4.18 (2H, q, J=6.9 Hz), 3.98 (3H, s), 3.97 (3H, s), 1.26 (3H, t, J=6.9 Hz)
- Using 0.25 g of [2-(3,4-dimethoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 40, 0.23 g of white powdery N-[2-(3,4-dimethoxyphenyl)oxazol-4-ylmethyl]-2-ethyl benzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 7.66 (1H, s), 7.60 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.40-7.20 (4H, m), 6.93 (1H, d, J=8.4 Hz), 6.34 (1H, br s), 4.58 (2H, d, J=5.4 Hz), 3.96 (3H, s), 3.94 (3H, s), 2.82 (2H, q, J=7.5 Hz), 1.20 (3H, t, J=7.5 Hz)
- Using 0.2 g of [2-(3,4-dimethoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 40, 0.16 g of white powdery N-[2-(3,4-dimethoxyphenyl)oxazol-4-ylmethyl]-3-methyl picolinamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, m), 7.65-7.55 (4H, m), 7.30 (1H, m), 6.92 (1H, d, J=8.4 Hz), 4.59 (2H, d, J=6.0 Hz), 3.97 (3H, s), 3.93 (3H, s), 2.76 (3H, s), 1.58 (3H, s)
- Using 0.2 g of [2-(3,4-dimethoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 40, 0.12 g of white powdery N-[2-(3,4-dimethoxyphenyl)oxazol-4-ylmethyl]-3-methoxy picolinamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.21 (1H, br s), 8.20 (1H, dd, J=3.9, 1.8 Hz), 7.65 (1H, s), 7.61 (1H, dd, J=8.4, 1.8 Hz), 7.54 (1H, d, J=1.8 Hz), 7.45-7.30 (2H, m), 6.92 (1H, d, J=8.4 Hz), 4.61 (2H, d, J=6.0 Hz), 3.97 (3H, s), 3.96 (3H, s), 3.93 (3H, s)
- 0.13 g of [2-(3-benzyloxy-4-difluoromethoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 46 was suspended in 10 ml of acetone. Then 0.14 g of 1-hydroxybenzotriazole and 0.19 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 0.14 g of 3-methyl picolinate were added to the obtained suspension and the mixture was refluxed for 30 minutes. The reaction mixture was concentrated under reduced pressure, and water was added to the residue. Ethyl acetate extraction was performed. The organic layer was washed twice with water, and concentrated. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1), yielding 0.16 g of white powdery N-[2-(3-benzyloxy-4-difluoromethoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s), 8.40 (1H, d, J=3.9 Hz), 7.74-7.58 (4H, m), 7.47-7.23 (7H, m), 6.62 (1H, t, J=74.7 Hz), 5.21 (2H, s), 4.60 (2H, d, J=5.7 Hz), 2.76 (3H, s)
- 0.16 g of N-[2-(3-benzyloxy-4-difluoromethoxyphenyl) oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 96 was dissolved in 5 ml of ethanol, 20 mg of 10% palladium carbon powder was added thereto, and the mixture was stirred at room temperature for 30 minutes under a hydrogen atmosphere. The catalyst was filtered off, and the filtrate was concentrated to obtain 0.12 g of white powdery N-[2-(4-difluoromethoxy-3-hydroxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.60-8.54 (1H, m), 8.39 (1H, d, J=3.3 Hz), 7.69-7.55 (4H, m), 7.37-7.28 (1H, m), 7.18 (1H, d, J=8.4 Hz), 6.59 (1H, t, J=73.2 Hz), 5.19 (1H, br s), 4.59 (2H, dd, J=6.0, 0.9 Hz), 2.76 (3H, s)
- 0.12 g of N-[2-(4-difluoromethoxy-3-hydroxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide obtained in Example 97 and 0.15 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 4 ml of ethanol. 0. 15 ml of (bromomethyl)cyclopropane was added thereto and refluxed with heating for 3 hours. The solvent was distilled off, and water was added to the residue. Ethyl acetate extraction was performed. The organic layer was washed twice with water, and concentrated. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1). The obtained crude crystals were recrystallized using an ethanol-n-hexane mixture, and 60 mg of white powdery N-[2-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained.
- 1H-NMR (CDCl3) δ: 8.59-8.54 (1H, m), 8.39 (1H, dd, J=4.5, 1.2 Hz), 7.67 (1H, s), 7.63-7.56 (3H, m), 7.37-7.28 (1H, m), 7.22 (1H, d, J=8.1 Hz), 6.69 (1H, t, J=75.0 Hz), 4.59 (2H, dd, J=5.7, 0.9 Hz), 3.98 (2H, d, J=6.9 Hz), 2.76 (3H, s), 1.35-1.20 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using 0.2 g of [2-(3-cyclopropylmethoxy-4-methoxyphenyl) oxazol-4-yl]methylamine obtained in Reference Example 13, 0.11 g of white powdery N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl) oxazol-4-ylmethyl]isoquinoline-1-carboxamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 9.60 (1H, m), 8.67 (1H, br s), 8.47 (1H, d, J=2.4 Hz), 7.90-7.80 (2H, m), 7.75-1.65 (3H, m), 7.61 (1H, dd, J=8.4, 1.8 Hz), 7.53 (1H, d, J=1.8 Hz), 6.92 (1H, d, J=8.4 Hz), 4.68 (2H, d, J=6.0 Hz), 3.94 (2H, d, J=7.5 Hz), 3.92 (3H, s), 1.39 (1H, m), 0.10-0.60 (2H, m), 0.40-0.35 (2H, m)
- 4.42 g of sodium hydroxide was suspended in 160 ml of dimethoxyethane. The suspension was stirred with ice cooling while 16 g of 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]methyl propionate obtained in Reference Example 48 and 39.23 g of 2-ethoxyperbenzoic acid were separately added, and then heating and refluxing were conducted for 7 hours. After cooling with ice, saturated ammonium chloride solution was added to the mixture and stirred for 30 minutes. Water was then added thereto, and ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate, and the solvent was then distilled off. The residue was subjected to silica gel column purification (n-hexane:ethyl acetate=3:1), and 13.4 g of yellow oily substance, methyl 2-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-(2-ethoxyphenyl)-3-oxopropionate was obtained.
- 1H-NMR (CDCl3) δ: 7.71 (1H, d, J=7.8 Hz), 7.57-7.54 (3H, m), 7.48-7.28 (6H, m), 6.99-6.90 (3H, m), 5.16 (2H, s), 4.98 (1H, t, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 3.91 (3H, s), 3.70 (3H, s), 3.27-3.19 (2H, m), 1.45 (3H, t, J=6.9 Hz)
- A 13.4 g quantity of methyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-(2-ethoxyphenyl)-3-oxopropionate obtained in Example 100 was suspended in 67 ml of ethanol, 67 ml of 47% hydrobromic acid was added thereto, and the suspension was heated and refluxed overnight. After standing to cool, the crystals generated were collected by filtration, washed with water and diisopropyl ether, and dried, thereby yielding 8.1 g of white powdery 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one.
- 1H-NMR (CDCl3) δ: 8.30 (1H, d, J=8.1 Hz), 7.84 (1H, d, J=1.8 Hz), 7.83-1.71 (2H, m), 7.45 (1H, t, J=8.4 Hz), 7.06 (1H, d, J=8.7 Hz), 6.99-6.93 (2H, m), 4.17 (2H, q, J=6.9 Hz), 4.00 (3H, s), 3.67 (2H, t, J=6.6 Hz), 3.35 (2H, t, J=6.6 Hz), 1.55 (3H, t, J=6.9 Hz)
- A 8.1 g quantity of 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 101 was suspended in 220 ml of ethanol, 10 g of 1,8-diazabicyclo[5,4,0]undec-7-ene and 5.96 g of (bromomethyl) cyclopropane were added thereto, and stirring was conducted for 5 hours while heating and refluxing. After distilling off ethanol under reduced pressure, water was added, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off. The residue was subjected to silica gel column purification (n-hexane:ethyl acetate=4:1), and the obtained crude crystals were recrystallized using ethanol, thereby yielding 4.4 g of white powdery 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-ethoxy phenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 1.56 (1H, dd, J=8.4, 2.1 Hz), 7.50 (1H, s), 7.45-7.39 (2H, m), 1.00-6.89 (3H, m), 4.13 (2H, q, J=7.2 Hz), 3.93-3.91 (5H, m), 3.41 (2H, t, J=6.6 Hz), 2.99 (2H, t, J=6.6 Hz), 1.51 (3H, t, J=7.2 Hz), 1.47 (1H, m), 0.67-0.64 (2H, m), 0.40-0.36 (2H, m)
- A 0.3 g quantity of 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 101 was suspended in 10 ml of ethanol, 0.37 g of 1,8-diazabicyclo[5,4,0]undec-1-ene and 0.26 g of ethyl iodide were added thereto, and the suspension was stirred for 4 hours while heating and refluxing. After distilling off ethanol under reduced pressure, water was added, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off. The residue was subjected to silica gel column purification (n-hexane:ethyl acetate=3:1), thereby yielding 0.15 g of white powdery 3-[2-(3-ethoxy-4-methoxyphenyl) oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 1.56 (1H, dd, J=8.4, 1.8 Hz), 7.52-1.40 (2H, m), 6.99-6.89 (3H, m), 4.21-4.09 (4H, m), 3.91 (3H, s), 3.42 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz), 1.51-1.45 (6H, m)
- A 0.3 g quantity of 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 101 was suspended in 10 ml of ethanol, 0.37 g of 1,8-diazabicyclo[5,4,0]undec-7-ene and 0.14 ml of allyl bromide were added thereto, and stirring was conducted for 3 hours while heating and refluxing. After distilling off ethanol under reduced pressure, water was added, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off. The residue was subjected to silica gel column purification (n-hexane:ethyl acetate=3:1), thereby yielding 0.2 g of white powdery 0.3-[2-(3-allyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.58 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.45-1.40 (2H, m), 7.00-6.90 (3H, m), 6.18-6.05 (1H, m), 5.47-5.29 (2H, m), 4.67 (2H, d, J=5.1 Hz), 4.13 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.47 (3H, t, J=6.9 Hz).
- Using 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-yl]propan-1-one obtained in Example 101, compounds of Examples 105 to 110 were obtained in the same manner as in Examples 102.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.57-7.51 (2H, m), 7.45-7.39 (2H, m), 6.99-6.88 (3H, m), 4.88 (1H, br s), 4.12 (2H, q, J=6.9 Hz), 3.88 (3H, s), 3.42 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz), 2.04-1.81 (6H, m), 1.65-1.60 (2H, m), 1.47 (3H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.55 (1H, dd, J=8.4, 1.8 Hz), 7.50 (1H, d, J=2.1 Hz), 7.45-7.40 (2H, m), 4.13 (2H, q, J=6.9 Hz), 3.90 (3H, s), 3.84 (2H, d, J=6.9 Hz), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.23-2.14 (1H, m), 1.48 (3H, t, J=6.9 Hz), 1.05 (6H, d, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.56 (1H, dd, J=8.1, 1.8 Hz), 7.52 (1H, s), 7.45-7.40 (2H, m), 7.00-6.89 (3H, m), 4.13 (2H, g, J=6.9 Hz), 4.05 (2H, t, J=6.9 Hz), 3.90 (3H, s), 3.42 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 1.95-1.84 (2H, m), 1.41 (3H, t, J=6.9 Hz), 1.05 (3H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.57 (1H, dd, J=8.4, 1.8 Hz), 1.52 (1H, s), 7.45-7.40 (2H, m), 6.97-6.89 (3H, m), 6.00-5.90 (1H, m), 5.22-5.10 (2H, m), 4.17-4.11 (4H, m), 3.90 (3H, s), 3.42 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.67-2.62 (2H, m), 1.47 (3H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 1.70 (1H, dd, J=7.5, 1.8 Hz), 7.57 (1H, dd, J=8.4, 1.8 Hz), 7.53 (1H, d, J=2.1 Hz), 7.45-7.39 (2H, m), 7.00-6.89 (3H, m), 4.16-4.07 (4H, m), 3.98 (3H, s), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.90-1.86 (2H, m), 1.57-1.42 (5H, m), 0.99 (3H, t, J=7.2 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.66-7.63 (2H, m), 7.46-7.39 (2H, m), 7.00-6.92 (3H, m), 4.83 (2H, d, J=2.1 Hz), 4.13 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.52 (1H, t, J=2.1 Hz), 1.47 (3H, t, J=6.9 Hz)
- A 5.0 g quantity of 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 101 was dissolved in 50 ml of dimethylformamide, 3.35 g of 2-bromopropane and 5.63 g of potassium carbonate were added thereto, and stirring was conducted overnight at room temperature. Water was added to the obtained mixture, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off. The residue was subjected to silica gel column purification (n-hexane:ethyl acetate=4:1), and the obtained crude crystals were recrystallized using ethanol, thereby yielding 2.99 g of white powdery 1-(2-ethoxyphenyl)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.59-7.54 (2H, m), 7.45-7.39 (2H, m), 7.00-6.89 (3H, m), 4.68-4.60 (1H, m), 4.13 (2H, q, J=6.9 Hz), 3.89 (3H, s), 3.42 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz), 1.47 (3H, t, J=6.9 Hz), 1.39 (6H, d, J=6.3 Hz)
- Using 1-(2-ethoxyphenyl)-3-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-yl]propane-1-one obtained in Example 101, compounds of Examples 112 to 122 were obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 7.72-7.68 (2H, m), 7.60 (1H, d, J=1.8 Hz), 7.45-7.39 (2H, m), 7.00-6.92 (3H, m), 4.44 (2H, q, J=8.4 Hz), 4.13 (2H, q, J=6.6 Hz), 3.90 (3H, s), 3.42 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz), 1.48 (3H, t, J=6.6 Hz)
- 1H-NMR (CDCl3) 7.70 (1H, dd, J=7.5, 1.8 Hz), 1.55 (1H, dd, J=8.4, 1.8 Hz), 7.50 (1H, d, J=1.8 Hz), 7.45-7.40 (2H, m), 7.00-6.88 (3H, m), 4.14 (2H, q, J=6.9 Hz), 3.90 (3H, s), 3.86 (2H, d, J=6.0 Hz), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.00-1.86 (3H, m), 1.79-1.63 (3H, m), 1.45 (3H, t, J=6.9 Hz), 1.40-1.22 (2H, m), 1.10-1.02 (2H, m)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.55 (1H, dd, J=8.4, 1.8 Hz), 7.50 (1H, d, J=1.8 Hz), 7.45-7.40 (2H, m), 7.00-6.88 (3H, m), 4.14 (2H, q, J=6.9 Hz), 3.95 (2H, d, J=7.2 Hz), 3.90 (3H, s), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.48-2.44 (1H, m), 2.04-1.86 (2H, m), 1.63-1.50 (4H, m), 1.45 (3H, s), 1.39-1.35 (2H, m)
- 1H-NMR (CDCl3) δ: 1.70 (1H, dd, J=7.5, 2.1 Hz), 7.56 (1H, dd, J=8.1, 2.1 Hz), 7.51 (1H, d, J=2.1 Hz), 7.45-7.39 (2H, m), 1.00-6.89 (3H, m), 5.87-5.81 (1H, m), 5.10-4.99 (2H, m), 4.11-4.08 (4H, m), 3.91 (3H, s), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.27-2.22 (2H, m), 2.04-1.95 (2H, m), 1.47 (3H, t, J=7.2 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 2.1 Hz), 7.56 (1H, dd, J=8.1, 2.1 Hz), 7.51 (1H, d, J=2.1 Hz), 7.45-7.39 (2H, m), 7.00-6.80 (3H, m), 4.13 (2H, q, J=7.2 Hz), 4.07 (2H, d, J=7.2 Hz), 3.90 (3H, s), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=1.2 Hz), 2.96-2.85 (1H, m), 2.20-2.14 (2H, m), 1.91-1.80 (2H, m), 1.45 (3H, t, J=7.2 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.57 (1H, dd, J=8.1, 1.8 Hz), 7.51 (1H, d, J=1.8 Hz), 7.00-6.89 (3H, m), 5.55 (1H, t, J=6.6 Hz), 4.64 (2H, d, J=6.6 Hz), 4.13 (2H, q, J=6.9 Hz), 3.91 (3H, s), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.77 (6H, d, J=6.6 Hz), 1.45 (3H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.60-7.57 (2H, m), 7.42-7.39 (2H, m), 7.00-6.89 (3H, m), 6.00-5.92 (2H, m), 4.88 (1H, br s), 4.15 (2H, q, J=7.2 Hz), 3.89 (3H, s), 3.42 (2H, t, J=1.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.04-1.80 (4H, m), 1.72-1.53 (2H, m), 1.45 (3H, t, J=7.2 Hz)
- 1H-NMR (CDCl3) δ: 7.69 (1H, dd, J=7.8, 1.8 Hz), 7.59 (1H, dd, J=8.4, 1.8 Hz), 7.56 (1H, d, J=1.8 Hz), 7.51-6.98 (7H, m), 6.95-6.90 (3H, m), 4.27 (2H, t, J=7.2 Hz), 4.11 (2H, q, J=6.9 Hz), 3.91 (3H, s), 3.41 (2H, t, J=7.2 Hz), 3.20 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.54 (3H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.58 (1H, dd, J=8.4, 1.8 Hz), 7.56 (1H, d, J=1.8 Hz), 7.49-7.39 (2H, m), 7.30-7.15 (5H, m), 6.99-6.90 (3H, m), 4.16-4.08 (4H, m), 3.92 (3H, s), 3.42 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 2.84 (2H, t, J=8.1 Hz), 2.24-2.15 (2H, m), 1.46 (3H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.57-7.55 (2H, m), 7.43-7.39 (2H, m), 7.00-6.89 (3H, m), 4.19-4.10 (4H, m), 3.91 (3H, s), 3.42 (2H, t, J=6.9 Hz), 3.01 (2H, t, J=6.9 Hz), 1.81-1.74 (2H, m), 1.48 (3H, t, J=6.9 Hz), 0.88-0.83 (1H, m), 0.52-0.47 (2H, m), 0.16-0.12 (2H, m)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.56 (1H, dd, J=8.4, 1.8 Hz), 7.51 (1H, d, J=2.1 Hz), 7.45-7.39 (2H, m), 7.00-6.89 (3H, m), 4.17-4.07 (4H, m), 3.90 (3H, s), 3.42 (2H, t, J=6.9 Hz), 3.00 (2H, t, J=6.9 Hz), 2.00-1.81 (5H, m), 1.66-1.62 (4H, m), 1.45 (3H, t, J=6.9 Hz), 1.28-1.15 (2H, m)
- A 1.0 g quantity of methyl 3-{2-[3-cyclopropylmethoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}propionate obtained in Reference Example 49 and 0.54 g of methyl 3-methoxypicolinate were added to 5 ml of dimethylformamide, and the mixture was stirred with ice cooling for 10 minutes. A 0.83 g of sodium pentoxide was added to the obtained mixture, which was then stirred with ice cooling for an hour, followed by further stirring at room temperature for 1 hour. The reaction mixture was stirred with ice cooling, saturated ammonium chloride solution was added thereto, and further stirred for 30 minutes. Water was added to the mixture, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off. A 5.0 ml quantity of dimethylsulfoxide, 84 mg of lithium chloride and 41 μl of purified water were added to the residue, and the mixture was stirred with heating at 110° C. overnight. After standing to cool, water was added to the obtained mixture, ethyl acetate extraction was performed, followed by drying over anhydrous magnesium sulfate and distilling the solvent off. The obtained residue was subjected to silica gel column purification (n-hexane:ethyl acetate=4:1), and the obtained crude crystals were recrystallized from a mixture of ethyl acetate and diisopropyl ether, thereby yielding 0.11 g white powdery 3-{2-[3-cyclopropyl methoxy-4-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}-1-(3-methoxy pyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.24 (1H, d, J=4.2 Hz), 7.55-7.47 (2H, m), 7.43 (1H, s), 7.40-7.35 (2H, m), 7.03 (1H, d, J=8.4 Hz), 4.46 (2H, q, J=1.2 Hz), 3.94 (2H, d, J=6.6 Hz), 3.90 (3H, s), 3.51 (2H, d, J=7.2 Hz), 3.01 (2H, d, J=7.2 Hz), 1.31-1.26 (1H, m), 0.68-0.62 (2H, m), 0.39-0.34 (2H, m)
- A 2 g quantity of methyl 3-[2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-yl]propionate obtained in Reference Example 48 and 1.1 g of methyl 3-methoxypicolinate were dissolved in 10 ml of dimethylformamide, and while stirring the solution with ice cooling 1.81 g of sodium t-pentoxide was added thereto and stirred for 30 minutes. The mixture was further stirred for 5 hours at room temperature, ice was added to the reaction mixture, followed by addition of saturated aqueous ammonium chloride solution, and the mixture was further stirred. After stirring the reaction mixture for 30 minutes, water was added thereto and ethyl acetate extraction was performed. The organic layer was washed twice with water, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1), thereby yielding 1.55 g of white amorphous methyl 2-[2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-ylmethyl]-3-(3-methoxypyridin-2-yl)-3-oxopropionate.
- 1H-NMR (CDCl3) δ: 8.24 (1H, dd, J=4.5, 1.8 Hz), 7.57-7.28 (10H, m), 6.91 (1H, d, J=9.0 Hz), 5.18-5.13 (3H, m), 3.91-3.90 (6H, m), 3.64 (3H, s), 3.36-3.18 (2H, m)
- A 1.5 g quantity of methyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-(3-methoxypyridin-2-yl)-3-oxopropionate obtained in Example 124 was dissolved in 22.5 ml of ethanol, 7.5 ml of 47% hydrobromic acid was added threreto, and the mixture was stirred with heating at 80° C. for 7.5 hours. While stirring with ice cooling, the reaction mixture was neutralized with a 5N sodium hydroxide solution, and ethyl acetate extraction was performed. The organic layer was washed twice with water, and concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (dichloromethane:methanol=20:1), thereby yielding 0.65 g of pale yellow oily substance, 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-3-(3-methoxypyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.24 (1H, dd, J=7.2, 1.5 Hz), 7.55-7.27 (5H, m), 6.88 (1H, d, J=8.7 Hz), 5.72 (1H, s), 3.92-3.89 (6H, m), 3.51 (2H, t, J=1.5 Hz), 3.03 (2H, t, J=7.5 Hz)
- Using 0.24 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-3-(3-methoxypyridine-2-yl)propan-1-one obtained in Example 125, 0.11 g of white powdery 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-3-(3-methoxypyridin-2-yl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 8.24 (1H, dd, J=4.2, 1.2 Hz), 7.59-7.32 (5H, m), 6.91 (1H, d, J=8.4 Hz), 3.94-3.90 (8H, m), 3.51 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 1.40-1.30 (1H, m), 0.69-0.62 (2H, m), 0.41-0.35 (2H, m)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-3-(3-methoxypyridin-2-yl)propan-1-one obtained in Example 125, compounds of Examples 127 and 128 were obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 8.24 (1H, dd, J=4.2, 1.5 Hz), 7.58-7.30 (5H, m), 6.91 (1H, d, J=8.4 Hz), 3.92-3.90 (6H, m), 3.84 (2H, d, J=6.9 Hz), 3.52 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 2.20 (1H, q, J=6.9 Hz), 1.06 (6H, d, J=6.9 Hz)
- Using 0.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-yl]-3-(3-methoxypyridin-2-yl)propan-1-one obtained in Example 125, 44 mg of white powdery 1-(3-methoxypyridin-2-yl)-3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}propan-1-one was obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 8.24 (1H, dd, J=4.2, 1.2 Hz), 7.70 (1H, dd, J=8.4, 1.8 Hz), 7.60 (1H, d, J=1.8 Hz), 7.51 (1H, d, J=1.8 Hz), 7.47-7.32 (2H, m), 6.96 (1H, d, J=8.4 Hz), 4.45 (2H, q, J=8.4 Hz), 3.95-3.88 (6H, m), 3.52 (2H, t, J=1.2 Hz), 3.01 (2H, t, J=7.2 Hz)
- A 2 g quantity of methyl 3-[2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-yl]propionate obtained in Reference Example 48 and 1 g of methyl 3-ethoxypicolinate were dissolved in 10 ml of dimethylformamide, and while stirring the solution with ice cooling 1.81 g of sodium t-pentoxide was added thereto and stirred for 30 minutes. The mixture was further stirred for 4 hours at room temperature, and ice was added to the reaction mixture, followed by addition of saturated aqueous ammonium chloride solution for further stirring. After stirring the reaction mixture for 30 minutes, water was added thereto and ethyl acetate extraction was performed. The organic layer was washed twice with water, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1), thereby yielding 1.5 g of colorless oily substance methyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-(3-ethoxypyridin-2-yl)-3-oxopropionate.
- 1H-NMR (CDCl3) δ: 8.22 (1H, dd, J=4.2, 1.2 Hz), 7.57-1.21 (10H, m), 6.91 (1H, d, J=9.0 Hz), 5.18-5.12 (3H, m), 4.12 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.65 (3H, s), 3.30-3.23 (2H, m), 1.46 (3H, t, J=6.9 Hz)
- Using 1.5 g of methyl 2-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-(3-ethoxypyridin-2-yl)-3-oxopropionate obtained in Example 130, 0.7 g of pale yellow oily substance, 1-(3-ethoxypyridin-2-yl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one, was obtained in the same manner as in Example 125.
- 1H-NMR (CDCl3) δ: 8.23 (1H, dd, J=4.2, 1.2 Hz), 7.55-7.49 (2H, m), 7.45 (1H, s), 7.42-1.28 (2H, m), 6.88 (1H, d, J=8.1 Hz), 5.70 (1H, s), 4.11 (2H, q, J=6.9 Hz), 3.49 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=6.9 Hz), 1.46 (3H, t, J=6.9 Hz)
- Using 0.2 g of 1-(3-ethoxypyridin-2-yl)-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 131, 0.2 g of pale yellow oily substance, 3-[2-(3-cyclopentyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-ethoxypyridin-2-yl)propan-1-one, was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 8.23 (1H, dd, J=4.5, 1.5 Hz), 7.57-7.45 (2H, m), 7.44 (1H, d, J=0.9 Hz), 7.38-7.28 (2H, m), 6.89 (1H, d, J=8.7 Hz), 4.89-4.87 (1H, m), 4.12 (2H, q, J=6.9 Hz), 3.94-3.91 (5H, m), 3.88 (3H, s), 3.49 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 2.01-1.81 (6H, m), 1.65-1.58 (2H, m), 1.47 (3H, t, J=6.9 Hz)
- Using 1-(3-ethoxypyridin-2-yl)-3-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-yl] propan-1-one obtained in Example 131, compounds of Examples 133 and 134 were obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 8.23 (1H, dd, J=4.2, 1.5 Hz), 7.57 (1H, dd, J=8.4, 1.8 Hz), 7.50 (1H, d, J=1.8 Hz), 7.45 (1H, d, J=1.8 Hz), 7.38-7.28 (2H, m), 6.91 (1H, d, J=8.4 Hz), 4.12 (2H, q, J=6.9 Hz), 3.94-3.91 (5H, m), 3.49 (2H, t, J=7.2 Hz), 3.02 (2H, t, J=7.2 Hz), 1.46 (3H, t, J=6.9 Hz), 1.42-1.32 (1H, m), 0.69-0.62 (2H, m), 0.40-0.35 (2H, m)
- 1H-NMR (CDCl3) δ: 8.23 (1H, dd, J=4.5, 1.5 Hz), 7.56 (1H, dd, J=8.4, 2.1 Hz), 7.50 (1H, d, J=2.1 Hz), 7.45 (1H, s), 7.38-7.28 (2H, m), 6.90 (1H, d, J=8.4 Hz), 4.12 (2H, q, J=6.9 Hz), 3.90 (3H, s), 3.85 (2H, d, J=6.6 Hz), 3.50 (2H, t, J=6.9 Hz), 3.02 (2H, t, J=6.9 Hz), 2.19 (2H, qt, J=6.6 Hz), 1.47 (3H, t, J=6.9 Hz), 1.05 (6H, d, J=6.6 Hz)
- A 5 g quantity of methyl 3-[2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-yl]propionate obtained in Reference Example 48 and 3.2 g of methyl 3-methylpicolinate were dissolved in 150 ml of dimethoxyethane. While stirring the solution with ice cooling 1.2 g of sodium hydride was added thereto and further stirred. The reaction mixture was heated and refluxed for 4 hours. At the completion of the reaction, a saturated aqueous ammonium chloride solution was added to the mixture while stirring with ice cooling, and the mixture was further stirred. After stirring the reaction mixture for 30 minutes, water was added thereto and ethyl acetate extraction was performed. The organic layer was washed twice with water, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=2:1), thereby yielding 5.5 g of colorless oily substance methyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-(3-methylpyridin-2-yl)-3-oxopropionate.
- 1H-NMR (CDCl3) δ: 8.49 (1H, dd, J=4.8, 1.2 Hz), 7.59-7.28 (10H, m), 6.91 (1H, d, J=9.0 Hz), 5.23-5.16 (3H, m), 3.91 (3H, s), 3.65 (3H, s), 3.37-3.18 (2H, m,) 2.59 (3H, s)
- A 5.5 g quantity of methyl 2-[2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-ylmethyl]-3-(3-methylpyridin-2-yl)-3-oxopropionate obtained in Example 135 was dissolved in 20 ml of ethanol, 80 ml of a 5N aqueous hydrochloric acid solution was added thereto, and the mixture was stirred with heating at 80° C. for 1.5 hours. While stirring with ice cooling, the reaction mixture was neutralized with 5 N aqueous sodium hydroxide solution, and ethyl acetate extraction was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained crude crystals were recrystallized with a mixture of 20 ml of ethanol and 40 ml of n-hexane, thereby yielding 1.92 g of pale yellow powdery 3-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.49 (1H, dd, J=4.5, 1.2 Hz), 7.60-7.51 (3H, m), 7.44 (1H, d, J=0.9 Hz), 7.41-7.29 (1H, m), 6.89 (1H, dd, J=7.8, 1.2 Hz), 5.68 (1H, s), 3.93 (3H, s), 3.58 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.57 (3H, s)
- A 0.3 g quantity of 3-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136 and 0.4 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 5 ml of ethanol, 0.24 g of (bromomethyl)cyclopropane was added thereto, and the mixture was heated and refluxed for 4.5 hours. After standing to cool, water was added to the reaction mixture, and ethyl acetate extraction was performed. The extract was washed twice with water, the organic layer was then concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=2:1), thereby yielding 0.2 g of white powdery 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methyl pyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.60-7.54 (2H, m), 7.49 (1H, d, J=1.8 Hz), 7.45 (1H, s), 7.34-7.29 (1H, m), 6.91 (1H, d, J=8.7 Hz), 3.94-3.91 (5H, m), 3.60 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.57 (3H, s), 1.40-1.32 (1H, m), 0.69-0.62 (2H, m), 0.41-0.35 (2H, m)
- A 0.23 g quantity of 3-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136 and 0.3 ml of 1,8-diazabicyclo[5,4,0]undec-1-ene were dissolved in 5 ml of ethanol, 0.21 g of ethyl iodide was added thereto, and the mixture was heated and refluxed for 4 hours. After standing to cool, water was added to the reaction mixture, and ethyl acetate extraction was performed. The extract was washed twice with water, the organic layer was then concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=2:1), thereby yielding 0.17 g of white powdery 3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl) propan-1-one.
- 1H-NMR (CDCl3) δ: 8.24 (1H, d, J=4.2 Hz), 7.58-7.55 (2H, m), 7.51 (1H, d, J=2.1 Hz), 7.45 (1H, s), 6.90 (1H, d, J=8.4 Hz), 4.19 (2H, q, J=7.2 Hz), 3.91 (3H, s), 3.59 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.57 (3H, s), 1.49 (3H, t, J=7.2 Hz)
- A 0.3 g quantity of 3-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136 and 0.4 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 5 ml of ethanol, 0.23 g of 2-bromopropane was added thereto, and the mixture was heated and refluxed for 4.5 hours. After standing to cool, water was added to the reaction mixture, and ethyl acetate extraction was performed. The extract was washed twice with water, the organic layer was then concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=2:1), thereby yielding 0.16 g of white powdery 3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.59-7.53 (3H, m), 7.45 (1H, s), 7.34-1.31 (1H, m), 6.91 (1H, d, J=8.7 Hz), 4.65 (1H, sept., J=6.0 Hz), 3.89 (3H, s), 3.59 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.62 (3H, s), 1.39 (6H, d, J=6.0 Hz)
- A 0.3 g quantity of 3-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136 and 0.3 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 6 ml of ethanol, 0.22 g of allyl bromide was added thereto, and the mixture was heated and refluxed for 4 hours. After standing to cool, water was added to the reaction mixture, and ethyl acetate extraction was performed. The extract was washed twice with water, the organic layer was then concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=2:1), thereby yielding 0.18 g of white powdery 3-[2-(3-allyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.51-8.48 (1H, m), 7.60-7.56 (2H, m), 7.52 (1H, d, J=2.1 Hz), 7.45 (1H, s), 7.34-7.29 (1H, m), 6.92 (1H, d, J=8.7 Hz), 6.16-6.05 (1H, m), 5.48-5.28 (2H, m), 4.69-4.66 (2H, m), 3.92 (3H, s), 3.60 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.57 (3H, s)
- A 0.15 g quantity of 3-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136 and 0.15 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 5 ml of ethanol, 0.13 g of (bromomethyl) cyclobutane was added thereto, and the mixture was heated and refluxed overnight. After standing to cool, water was added to the reaction mixture, and ethyl acetate extraction was performed. The extract was washed twice with water, the organic layer was then concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=2:1), thereby yielding 90 mg of white powdery 3-[2-(3-cyclobutylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.60-7.51 (3H, m), 7.45 (1H, d, J=2.1 Hz), 7.34-7.29 (1H, m), 6.89 (1H, d, J=8.7 Hz), 4.01 (2H, d, J=6.9 Hz), 3.89 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.89-2.83 (1H, m), 2.57 (3H, s), 2.22-2.13 (2H, m), 2.00-1.84 (4H, m)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136, compounds of Examples 142 to 154 were obtained in the same manner as in Example 137.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.60-7.53 (2H, m), 7.50 (1H, d, J=1.8 Hz), 7.45 (1H, s), 7.34-1.28 (1H, m), 6.90 (1H, d, J=8.4 Hz), 3.90 (3H, s), 3.84 (2H, d, J=6.9 Hz), 3.60 (2H, t, J=7.8 Hz), 3.01 (2H, t, J=7.8 Hz), 2.57 (3H, s), 2.20 (1H, qt, J=6.9 Hz), 1.05 (6H, d, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.59-7.54 (2H, m), 7.51 (1H, d, J=1.8 Hz), 7.50 (1H, s), 7.34-7.29 (1H, m), 6.90 (1H, d, J=8.4 Hz), 4.05 (2H, t, J=6.9 Hz), 3.91 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 1.90 (2H, qt, J=6.9 Hz), 1.24 (3H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.59-7.50 (3H, m), 7.44 (1H, d, J=1.2 Hz), 7.34-7.31 (1H, m), 6.89 (1H, d, J=8.4 Hz), 4.90-4.84 (1H, m), 3.88 (3H, s), 3.59 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.57 (3H, s), 2.03-1.80 (6H, m), 1.64-1.58 (2H, m)
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.5 Hz), 7.67-7.63 (2H, m), 7.58 (1H, d, J=8.1 Hz), 7.46 (1H, s), 7.34-7.30 (1H, m), 6.93 (1H, dd, J=6.6, 2.4 Hz), 4.82 (2H, d, J=2.4 Hz), 3.92 (3H, s), 3.60 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 2.58 (3H, s), 2.53 (1H, t, J=2.4 Hz)
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.2, 1.5 Hz), 7.59-7.55 (2H, m), 7.52 (1H, d, J=2.1 Hz), 7.45 (1H, d, J=2.1 Hz), 7.34-7.29 (1H, m), 5.97-5.85 (1H, m), 5.23-5.09 (2H, m), 4.14 (2H, t, J=6.9 Hz), 3.91 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.68-2.57 (5H, m)
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.8 Hz), 7.59-7.51 (3H, m), 7.45 (1H, s), 7.34-7.30 (1H, m), 6.90 (1H, d, J=8.7 Hz), 4.09 (2H, t, J=6.6 Hz), 3.90 (3H, s), 3.60 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 2.57 (3H, s), 1.86 (2H, td, J=7.2, 6.6 Hz), 1.56-1.45 (2H, m), 0.99 (3H, t, J=7.2 Hz)
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.5 Hz), 7.61-7.53 (2H, m), 7.49 (1H, d, J=1.8 Hz), 7.45 (1H, s), 7.34-7.28 (1H, m), 6.89 (1H, d, J=8.7 Hz), 3.90-3.86 (5H, m), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 1.94-1.85 (3H, m), 1.79-1.57 (3H, m), 1.38-0.88 (5H, m)
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.59-7.54 (2H, m), 7.51 (1H, d, J=2.1 Hz), 7.45 (1H, s), 7.34-7.29 (1H, m), 6.91 (1H, d, J=8.4 Hz), 5.91-5.80 (1H, m), 5.11-4.97 (2H, m), 4.10 (2H, d, J=6.6 Hz), 3.91 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 2.30-2.22 (2H, m), 2.05-1.92 (2H, m)
- 1H-NMR (CDCl3) δ: 8.48 (1H, dd, J=4.5, 0.9 Hz), 7.60-7.49 (3H, m), 7.43 (1H, s), 7.35-7.20 (6H, m), 6.91 (1H, d, J=8.7 Hz), 4.27 (2H, t, J=7.5 Hz), 3.91 (3H, s), 3.58 (2H, t, J=7.2 Hz), 3.19 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.2 Hz), 2.55 (3H, s)
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.58 (1H, d, J=2.1 Hz), 7.55 (1H, d, J=2.1 Hz), 7.49 (1H, d, J=2.1 Hz), 7.44 (1H, s), 7.34-7.15 (6H, m), 6.91 (1H, d, J=8.4 Hz), 4.11 (2H, t, J=6.6 Hz), 3.92 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.84 (2H, t, J=7.5 Hz), 2.57 (3H, s), 2.20 (2H, tt, J=7.5, 6.6 Hz)
- Using 0.5 g of cyclopentylmethyl methanesulfonate obtained in Reference Example 52 and 0.2 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136, 90 mg of white powdery 3-[2-(3-cyclopentylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methyl pyridin-2-yl)propan-1-one was obtained in the same manner as in Example 137.
- 1H-NMR (CDCl3) δ: 8.49 (1H, d, J=3.9 Hz), 1.59-7.50 (3H, m), 7.45 (1H, s), 1.34-7.29 (1H, m), 6.90 (1H, d, J=8.4 Hz), 3.95 (2H, d, J=7.2 Hz), 3.90 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 2.54-2.41 (1H, m), 1.91-1.82 (2H, m), 1.68-1.56 (4H, m), 1.42-1.24 (2H, m)
- Using 0.16 g of 2-cyclopropylethyl methanesulfonate obtained in Reference Example 50 and 0.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136, 0.1 g of white powdery 3-{2-[3-(2-cyclopropylethoxy)-4-methoxyphenyl]oxazol-4-yl}-1-(3-methyl pyridin-2-yl)propan-1-one was obtained in the same manner as in Example 137.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.5 Hz), 7.60-7.54 (3H, m), 7.46 (1H, s), 7.35-7.27 (1H, m), 6.91 (1H, d, J=8.1 Hz), 4.18 (2H, t, J=6.9 Hz), 3.91 (3H, s), 3.61 (2H, t, J=7.5 Hz), 3.02 (2H, t, J=7.5 Hz), 2.58 (3H, s), 1.78 (2H, q, J=6.9 Hz), 0.91-0.80 (1H, m), 0.53-0.46 (2H, m), 0.16-0.11 (2H, m)
- Using 0.19 g of 2-cyclopentylethyl methanesulfonate obtained in Reference Example 51 and 0.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136, 0.13 g of white powdery 3-{2-[3-(2-cyclopentylethoxy)-4-methoxyphenyl]oxazol-4-yl}-1-(3-methyl pyridin-2-yl)propan-1-one was obtained in the same manner as in Example 137.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.60-7.50 (3H, m), 7.45 (1H, s), 7.34-7.30 (1H, m), 6.90 (1H, d, J=8.4 Hz), 4.10 (2H, t, J=6.9 Hz), 3.92 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 2.01-1.79 (5H, m), 1.67-1.50 (5H, m), 1.24-1.12 (2H, m)
- A 0.23 g quantity of 3-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136 and 0.28 g of potassium carbonate were dissolved in 5 ml of dimethylformamide. A 0.29 g quantity of 1,1,1-trifluoro-2-iodoethane was added thereto, and the mixture was stirred with heating at 80° C. overnight. The reaction mixture was allowed to cool, water was then added thereto, and extraction was performed with ethyl acetate. After washing with water twice, the organic layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane:ethyl acetate=1:1) to give 0.14 g of white powdery 3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 0.9 Hz), 7.70 (1H, dd, J=8.4, 2.1 Hz), 7.60-7.56 (2H, m), 7.46 (1H, d, J=2.1 Hz), 7.35-7.30 (1H, m), 6.96 (1H, d, J=8.4 Hz), 4.45 (2H, q, J=8.4 Hz), 3.92 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.57 (3H, s)
- Using 0.1 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136, 45 mg of pale yellow powdery 3-{2-[4-methoxy-3-(3-methyl-2-butenyloxy)phenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one was obtained in the same manner as in Example 155.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.59-7.52 (3H, m), 7.45 (1H, s), 7.34-7.29 (1H, m), 6.90 (1H, d, J=8.4 Hz), 5.58-5.52 (1H, m), 4.64 (2H, d, J=6.9 Hz), 3.91 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 1.78 (3H, d, J=0.9 Hz), 1.77 (3H, s)
- Using 0.6 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136, 0.31 g of white powdery 3-{2-[3-(2-cyclohexenyloxy)-4-methoxyphenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one was obtained in the same manner as in Example 155.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.60-7.56 (3H, m), 7.45 (1H, s), 7.34-1.29 (1H, m), 6.91 (1H, d, J=9.0 Hz), 5.99-5.88 (2H, m), 4.88 (1H, br s), 3.89 (3H, s), 3.60 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 2.57 (3H, s), 2.17-1.84 (5H, m), 1.71-1.61 (1H, m)
- A 0.3 g quantity of 3-{2-[3-(2-cyclohexenyloxy)-4-methoxyphenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 157 was dissolved in 20 ml of ethanol. A 50 mg quantity of 10% palladium-carbon powder was added thereto, and the mixture was stirred at room temperature for 2 hours. The catalyst was removed by filtration, and the filtrate was then concentrated. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 0.2 g of pale yellow oily 3-[2-(3-cyclohexyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.5 Hz), 1.59-7.54 (3H, m), 1.45 (1H, s), 7.34-7.30 (1H, m), 6.91 (1H, d, J=8.1 Hz), 4.35-4.25 (1H, m), 3.89 (3H, s), 3.60 (2H, t, J=1.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 2.07-2.02 (2H, m), 1.84-1.80 (2H, m), 1.60-1.51 (4H, m), 1.43-1.23 (2H, m)
- A 0.26 g quantity of 3-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 136 was dissolved in 10 ml of tetrahydrofuran. To the obtained solution were added 0.2 g of 2-hydroxyindane, 0.15 ml of diisopropyl azodicarboxylate (40% toluene solution) and 0.31 g of tri(n-butyl)phosphine, and the mixture was stirred at 50° C. After 3 hours, 0.2 g of 2-hydroxyindan, 0.75 ml of diisopropyl azodicarboxylate (40% toluene solution) and 0.31 g of tri(n-butyl)phosphine were further added thereto, and the mixture was stirred at 50° C. overnight. The reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate:dichloromethane=1:1:1), and recrystallized from acetone/diisopropyl ether to give 0.13 g of colorless powdery 3-{2-[3-(indan-2-yloxy)-4-methoxyphenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.51 (1H, br d, J=4.8 Hz), 1.62-7.16 (9H, m), 6.91 (1H, d, J=8.7 Hz), 5.29 (1H, tt, J=6.6, 3.9 Hz), 3.85 (3H, s), 3.63 (2H, t, J=7.2 Hz), 3.45 (2H, dd, J=16.8, 6.6 Hz), 3.26 (2H, dd, J=16.8, 3.9 Hz), 3.01 (2H, t, J=7.2 Hz), 2.58 (3H, s)
- A 2 g quantity of methyl 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]propionate obtained in Reference Example 48 and 1.5 g of methyl picolinate were dissolved in 40 ml of dimethoxyethane. A 0.33 g quantity of sodium hydride was added thereto with ice-cooling and stirring, and stirring was further continued. The reaction mixture was heated and refluxed for 2 hours. After the reaction, an aqueous saturated ammonium chloride solution was added thereto with ice-cooling and stirring, and the mixture was stirred. The reaction mixture was stirred for 30 minutes, water was then added thereto, and extraction was performed with ethyl acetate. The organic layer was washed twice with water and concentrated by removing the solvent under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 2 g of colorless oily methyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-oxo-3-pyridin-2-ylpropionate.
- 1H-NMR (CDCl3) δ: 8.67 (1H, dd, J=4.2, 0.9 Hz), 8.07 (1H, dd, J=7.8, 2.1 Hz), 7.83 (1H, td, J=7.8, 1.8 Hz), 7.55-7.30 (9H, m), 6.90 (1H, d, J=9.0 Hz), 5.29 (1H, t, J=7.8 Hz), 5.16 (2H, s), 3.91 (3H, s), 3.66 (3H, s), 3.36-3.28 (2H, m)
- Using 2 g of methyl 2-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-oxo-3-(pyridin-2-yl)propionate obtained in Example 160, 0.48 g of white powdery 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(pyridin-2-yl)propan-1-one was obtained in the same manner as in Example 136.
- 1H-NMR (CDCl3) δ: 8.67 (1H, dd, J=4.2, 0.9 Hz), 8.05 (1H, dd, J=7.8, 2.1 Hz), 7.83 (1H, td, J=7.8, 1.8 Hz), 7.55-7.43 (4H, m), 6.88 (1H, dd, J=7.8, 2.1 Hz), 5.72 (1H, s), 3.93 (3H, s), 3.64 (2H, t, J=7.5 Hz), 3.03 (2H, t, J=7.5 Hz)
- A 0.15 g quantity of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(pyridin-2-yl)propan-1-one obtained in Example 161 and 0.2 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 5 ml of ethanol. A 0.14 g quantity of (bromomethyl)cyclobutane was added thereto, and the mixture was heated and refluxed overnight. The reaction mixture was allowed to cool, water was then added thereto, and extraction was performed with ethyl acetate. After washing with water twice, the organic layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane:ethyl acetate=5:1) to give 50 mg of white powdery 3-[2-(3-cyclobutylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(pyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.68 (1H, d, J=4.5 Hz), 8.05 (1H, d, J=7.8 Hz), 1.83 (1H, td, J=1.8, 1.8 Hz), 7.58-7.44 (4H, m), 6.90 (1H, d, J=8.4 Hz), 4.07 (2H, d, J=6.9 Hz), 3.89 (3H, s), 3.65 (2H, t, J=7.5 Hz), 3.05 (2H, t, J=7.5 Hz), 2.94-2.81 (1H, m), 2.24-2.04 (2H, m), 2.00-1.81 (4H, m)
- Using 0.3 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(pyridin-2-yl)propan-1-one obtained in Example 161, 0.28 g of white powdery 3-[2-(4-methoxy-3-(4-pentenyloxy)phenyl) oxazol-4-1,1]-1-(pyridin-2-yl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 8.69 (1H, dd, J=4.2, 1.5 Hz), 8.05 (1H, d, J=7.8 Hz), 7.85 (1H, t, J=7.8 Hz), 1.60-7.46 (4H, m), 6.91 (1H, d, J=8.4 Hz), 5.92-5.83 (1H, m), 5.11-4.99 (2H, m), 4.11 (2H, d, J=6.9 Hz), 3.91 (3H, s), 3.65 (2H, t, J=7.5 Hz), 3.05 (2H, t, J=7.5 Hz), 2.28-2.23 (2H, m), 1.98 (2H, t, J=7.5 Hz)
- A 10 g quantity of 2-(3-benzyloxy-4-methoxyphenyl)-4-chloromethyloxazole obtained in Reference Example 5 and 10.7 g of 1-(2-allyloxyphenyl)ethanone obtained in Reference Example 53 were dissolved in 200 ml of tetrahydrofuran. A 1.82 g quantity of sodium hydride was added thereto with ice-cooling and stirring, and stirring was further continued. The reaction mixture was heated and refluxed for 4 hours. After the reaction, an aqueous saturated ammonium chloride solution was added thereto with ice-cooling and stirring, and the mixture was stirred. After stirring for 30 minutes, water was added thereto, and extraction was performed with ethyl acetate. The organic layer was washed with water twice and concentrated by removing the solvent under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 1.4 g of white powdery 1-(2-allyloxyphenyl)-3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.62-7.58 (2H, m), 7.49-7.30 (7H, m), 7.02-6.91 (3H, m), 6.12-6.02 (1H, m), 5.42 (1H, dd, J=17.4, 1.5 Hz), 5.30 (1H, dd, J=10.5, 1.5 Hz), 5.19 (2H, s), 4.65-4.62 (2H, m), 3.92 (3H, s), 3.42 (2H, t, J=, 7.2 Hz), 2.99 (2H, t, J=7.2 Hz)
- Using 1.4 g of 1-(2-allyloxyphenyl)-3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 164, 0.55 g of pale yellow oily 3-[2-(3-hydroxy-4-methoxyphenyl) oxazol-4-yl]-1-(2-hydroxyphenyl)propan-1-one was obtained in the same manner as in Example 101.
- 1H-NMR (CDCl3) δ: 12.5 (1H, s), 7.81 (1H, dd, J=7.8, 1.5 Hz), 7.57-7.30 (4H, m), 6.98 (1H, d, J=8.1 Hz), 6.92-6.86 (2H, m), 5.73 (1H, br s), 3.94 (3H, s), 3.44 (2H, t, J=7.5 Hz), 3.02 (2H, t, J=7.5 Hz)
- Using 0.5 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-hydroxyphenyl)propan-1-one obtained in Example 165, 0.61 g of white powdery 3-[2-(3-allyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-allyloxyphenyl)propan-1-one was obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 2.1 Hz), 7.58 (1H, dd, J=8.1, 2.1 Hz), 7.52 (1H, d, J=2.1 Hz), 7.45-7.40 (2H, m), 7.02-6.90 (3H, m), 6.16-6.03 (2H, m), 5.47-5.27 (4H, m), 4.68-4.62 (4H, m), 3.92 (3H, s), 3.42 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz)
- Using 1.1 g of methyl 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]propionate obtained in Reference Example 48, 1 g of yellow oily methyl 2-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-3-(2-methoxyphenyl)-3-oxopropionate was obtained in the same manner as in Example 100.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.57-7.53 (3H, m), 7.48-7.30 (6H, m), 6.97 (1H, t, J=7.2 Hz), 6.91 (2H, d, J=7.8 Hz), 5.17 (2H, s), 4.99 (1H, t, J=6.9 Hz), 3.92 (3H, s), 3.90 (3H, s), 3.69 (3H, s), 3.27-3.19 (2H, m)
- Using 1 g of methyl 2-[2-(3-benzyloxy-4-methoxyphenyl) oxazol-4-ylmethyl]-3-(2-methoxyphenyl)-3-oxopropionate obtained in Example 167, 0.63 g of white powdery 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one was obtained in the same manner as in Example 101.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=8.4, 2.1 Hz), 7.56-7.52 (2H, m), 7.44-7.41 (2H, m), 6.99-6.87 (3H, m), 3.95 (3H, s), 3.89 (3H, s), 3.38 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz)
- Using 0.22 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one obtained in Example 168, 90 mg of colorless oily 3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.70 (1H, d, J=7.5 Hz), 7.57 (1H, d, J=8.1 Hz), 7.54 (1H, s), 7.47-7.40 (2H, m), 7.01-6.89 (3H, m), 4.67-4.62 (1H, m), 3.91 (6H, s), 3.38 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.39 (6H, d, J=6.3 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one obtained in Example 168, compounds of Examples 170 to 173 were obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.69-7.40 (4H, m), 6.99-6.89 (4H, m), 3.94-3.89 (8H, m), 3.31 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 1.40-1.35 (1H, m), 0.67-0.65 (2H, m), 0.38-0.36 (2H, m)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.56 (1H, dd, J=8.4, 2.1 Hz), 7.51 (1H, s), 7.43 (1H, td, J=8.4, 1.8 Hz), 6.99-6.88 (3H, m), 4.48 (1H, br s), 3.89 (3H, s), 3.88 (3H, s), 3.38 (2H, t, J=6.6 Hz), 2.98 (2H, t, J=6.6 Hz), 2.04-1.85 (4H, m), 1.63-1.55 (4H, m)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 1.51 (1H, dd, J=8.1, 2.1 Hz), 7.51 (1H, d, J=1.8 Hz), 7.47-7.41 (2H, m), 7.01-6.89 (3H, m), 4.18 (2H, q, J=7.8 Hz), 3.94 (3H, s), 3.90 (3H, s), 3.38 (2H, t, J=6.6 Hz), 2.99 (2H, t, J=6.6 Hz), 1.49 (3H, t, J=7.8 Hz)
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.58-7.36 (4H, m), 7.01-6.89 (3H, m), 3.90 (6H, s), 3.84 (2H, d, J=6.6 Hz), 3.38 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz), 2.22-2.10 (1H, m), 1.05 (6H, d, J=6.6 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxyphenyl)propan-1-one obtained in Example 168, compounds of Examples 174 to 175 were obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.59 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.48-7.41 (2H, m), 7.02-6.90 (3H, m), 6.12-6.07 (1H, m), 5.43 (1H, dd, J=17, 1.5 Hz), 5.31 (1H, d, J=10 Hz), 4.68 (2H, d, J=5.4 Hz), 3.92 (3H, s), 3.90 (3H, s), 3.38 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz)
- 1H-NMR (CDCl3) δ: 7.69 (1H, dd, J=7.5, 1.8 Hz), 7.60 (1H, d, J=1.8 Hz), 7.48-7.42 (2H, m), 7.02-6.95 (3H, m), 4.43 (2H, q, J=8.1 Hz), 3.92 (3H, s), 3.90 (3H, s), 3.38 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz)
- A 0.4 g quantity of sodium hydride was suspended in 20 ml of tetrahydrofuran, and 1.13 g of 1-(2-benzyloxy)ethanone and 1.46 g of 4-chloromethyl-2-(3-cyclopropylmethoxy-4-methoxyphenyl) oxazole obtained in Reference Example 11 were successively added thereto with ice-cooling. The mixture was stirred for 4 hours with heating and refluxing. An aqueous saturated ammonium chloride solution was added to the reaction mixture with ice cooling. After stirring for 15 minutes, water was added thereto, and extraction was performed with ethyl acetate. Drying was performed with anhydrous magnesium sulfate, and the solvent was removed. Purification was performed using a silica gel column (n-hexane:ethyl acetate=4:1), and the obtained compound was dissolved in 12 ml of ethanol. A 35 mg quantity of 10% palladium-carbon powder was added thereto, and stirring was performed under a hydrogen atmosphere overnight. The catalyst was removed by filtration and the obtained filtrate was concentrated. The residue was purified using a silica gel column (n-hexane:ethyl acetate=4:1) to give 0.43 g of white powdery 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-hydroxy phenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 12.2 (1H, s), 7.83 (1H, d, J=1.5 Hz), 7.80-7.44 (4H, m), 7.00-6.87 (3H, m), 3.94-3.92 (5H, m), 3.44 (2H, t, J=7.2 Hz), 3.03 (2H, t, J=7.2 Hz), 1.37-1.26 (1H, m), 0.70-0.65 (2H, m), 0.41-0.37 (2H, m)
- A 2 g quantity of 4-chloromethyl-2-(3-cyclopropyl methoxy-4-methoxyphenyl)oxazole obtained in Reference Example 11 and 3.6 g of 1-(2-allyloxyphenyl)ethanone obtained in Reference Example 53 were dissolved in 40 ml of tetrahydrofuran. A 0.55 g quantity of sodium hydride was added thereto with ice-cooling and stirring, and the mixture was stirred. The reaction mixture was heated and refluxed for 6 hours. After the reaction completion, an aqueous saturated ammonium chloride solution was added thereto with ice-cooling, and the mixture was stirred. The reaction mixture was stirred for 30 minutes, water was then added thereto, and extraction was performed with ethyl acetate. The organic layer was washed with water twice and concentrated by removing the solvent under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 0.5 g of while powdery 1-(2-allyloxyphenyl)-3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl) oxazol-4-yl]propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.57 (1H, dd, J=8.4, 2.1 Hz), 7.49 (1H, d, J=2.1 Hz), 7.45-7.39 (2H, m), 7.02-6.89 (3H, m), 6.09-6.02 (1H, m), 5.45-5.26 (2H, m), 4.65-4.62 (2H, m), 3.94-3.91 (5H, m), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.45-1.35 (1H, m), 0.68-0.62 (2H, m), 0.40-0.36 (2H, m)
- Using 1.4 g of 4-chloromethyl-2-(3,4-diethoxyphenyl) oxazole obtained in Reference Example 35 and 0.88 g of 1-(2-allyloxyphenyl)ethanone obtained in Reference Example 53, 0.42 g of white powdery 1-(2-allyloxyphenyl)-3-[2-(3,4-diethoxyphenyl) oxazol-4-yl]propan-1-one was obtained in the same manner as in Example 177.
- 1H-NMR (CDCl3) δ: 7.69 (1H, dd, J=7.5, 2.1 Hz), 7.56-7.51 (2H, m), 7.45-7.39 (2H, m), 7.02-6.89 (3H, m), 6.14-6.01 (1H, m), 5.42 (1H, dd, J=17, 1.5 Hz), 5.29 (1H, dd, J=10.5, 1.5 Hz), 4.65-4.62 (2H, m), 4.20-4.10 (4H, m), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.50 (6H, t, J=7.2 Hz)
- Using 0.31 g of 1-(2-chlorophenyl)ethanone and 0.59 g of 4-chloromethyl-2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazole obtained in Reference Example 11, 0.11 g of colorless oily 1-(2-chlorophenyl)-3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained in the same manner as in Example 177.
- 1H-NMR (CDCl3) δ: 7.60-7.55 (2H, m), 7.49-7.43 (2H, m), 7.40 (1H, s), 7.39-7.30 (2H, m), 6.91 (1H, d, J=8.7 Hz), 3.94-3.91 (5H, m), 3.36 (2H, t, J=6.9 Hz), 3.01 (2H, t, J=6.9 Hz), 1.37-1.29 (1H, m), 0.69-0.63 (2H, m), 0.40-0.37 (2H, m)
- Using 2 g of methyl 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]propionate obtained in Reference Example 54 and 1.3 g of ethyl 3-methylpicolinate, 0.8 g of yellow oily methyl 2-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]-3-(3-methylpyridin-2-yl)-3-oxopropionate was obtained in the same manner as in Example 124.
- 1H-NMR (CDCl3) δ: 8.50 (1H, m), 7.60-7.40 (4H, m), 7.30 (1H, m), 6.88 (1H, d, J=8.4 Hz), 5.20 (1H, t, J=7.2 Hz), 4.20-4.05 (4H, m), 2.99 (3H, s), 3.35-3.20 (2H, m), 2.59 (3H, s), 1.47 (3H, t, J=6.9 Hz), 1.47 (3H, t, J=6.9 Hz)
- A 0.8 g quantity of methyl 2-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]-3-(3-methylpyridin-2-yl)-3-oxopropionate obtained in Example 180 was added to a mixture of 5 ml acetic acid and 1.5 ml of concentrated hydrochloric acid, and the resulting mixture was stirred at 110° C. for 4 hours. After cooling the obtained solution to room temperature, 30 ml of ethyl acetate and 30 ml of saturated sodium hydrogen carbonate solution were gradually added thereto with stirring, and stirring was further continued. The organic layer was dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate:n-hexane=3:1), and further recrystallized from ethyl acetate/n-hexane to give 0.28 g of white powdery 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.49 (1H, m), 7.60-7.50 (3H, m), 7.44 (1H, s), 7.32 (1H, m), 6.90 (1H, d, J=8.1 Hz), 4.17 (2H, q, J=6.9 Hz), 4.13 (2H, q, J=6.9 Hz), 3.51 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.57 (3H, s), 1.48 (3H, t, J=6.9 Hz), 1.47 (3H, t, J=6.9 Hz)
- A 2 g quantity of methyl 3-[2-(3,4-diethoxyphenyl) oxazol-4-yl]propionate obtained in Reference Example 54 and 1.5 g of ethyl 2-ethoxybenzoate were dissolved in 10 ml of dimethylformamide. A 1.81 g quantity of sodium t-pentoxide was added thereto with ice-cooling and stirring, and the mixture was stirred for 30 minutes. The reaction mixture was further stirred at room temperature for 5 hours, and ice was added thereto. An aqueous saturated ammonium chloride solution was added thereto, and the mixture was stirred. The reaction mixture was stirred for 30 minutes, water was then added thereto, and extraction was performed with ethyl acetate. The organic layer was washed with water twice and concentrated by removing the solvent under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1). The obtained yellow oily substance was added to a mixture of 5 ml of acetic acid and 1.5 ml of concentrated hydrochloric acid, and the resulting mixture was stirred at 110° C. for 4 hours. After cooling the mixture to room temperature, 30 ml of ethyl acetate and 30 ml of saturated sodium hydrogen carbonate solution were gradually added thereto with stirring, and stirring was further continued. The organic layer was dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate:n-hexane=3:1), and the obtained crude crystals were recrystallized from ethyl acetate/n-hexane to give 0.46 g of white powdery 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 2.1 Hz), 7.60-7.50 (2H, m), 7.45-1.3.5 (2H, m), 7.00-6.80 (2H, m), 4.17 (2H, q, J=7.2 Hz), 4.13 (2H, q, J=7.2 Hz), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- Using methyl 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl] propionate obtained in Reference Example 54, compounds of Example 183 to 185 were obtained in the same manner as in Example 182.
- 1H-NMR (CDCl3) δ: 8.23 (1H, dd, J=4.5, 1.2 Hz), 7.55-7.50 (2H, m), 7.40-7.25 (2H, m), 7.45 (1H, s), 6.90 (1H, d, J=8.1 Hz), 4.20-4.05 (6H, m), 3.49 (2H, t, J=7.2 Hz), 3.02 (2H, t, J=7.2 Hz), 1.47 (3H, t, J=7.2 Hz), 1.47 (3H, t, J=7.2 Hz), 1.46 (3H, t, J=7.2 Hz)
- 1H-NMR (CDCl3) δ: 8.00-7.95 (2H, m), 7.60-7.50 (2H, m), 7.43 (1H, s), 6.95-6.85 (3H, m), 4.17 (2H, q, J=7.2 Hz), 4.17 (2H, q, J=7.2 Hz), 4.09 (2H, q, J=7.2 Hz), 3.34 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz), 1.44 (3H, t, J=7.2 Hz).
- 1H-NMR (CDCl3) δ: 7.60-7.50 (4H, m), 7.44 (1H, s), 7.35 (1H, t, J=7.8 Hz), 7.09 (1H, dd, J=9.0, 2.4 Hz), 6.10 (1H, d, J=5.4 Hz), 4.16 (2H, q, J=7.2 Hz), 4.15 (2H, q, J=7.2 Hz), 4.08 (2H, q, J=7.2 Hz), 3.38 (2H, t, J=7.2 Hz), 3.02 (28, t, J=7.2 Hz), 1.48 (38, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz), 1.40 (38, t, J=7.2 Hz).
- Using 2 g of dimethyl 2-[2-(3,4-bis(benzyloxy)phenyl) oxazol-4-ylmethyl]malonate obtained in Reference Example 56, 2.2 g of pale yellow oily methyl 2-[2-(3,4-bisbenzyloxyphenyl)oxazol-4-ylmethyl]-3-(3-methylpyridin-2-yl)-3-oxopropionate was obtained in the same manner as in Example 100.
- 1H-NMR (CDCl3) δ: 8.49 (1H, dd, J=4.5, 1.2 Hz), 7.59-7.28 (158, m), 6.94 (18, d, J=8.4 Hz), 5.23-5.17 (5H, m), 3.69 (3H, s), 3.32-3.23 (2H, m), 2.59 (3H, s)
- Using 2.2 g of methyl 2-[2-(3,4-bisbenzyloxyphenyl) oxazol-4-ylmethyl]-3-(3-methylpyridin-2-yl)-3-oxopropionate obtained in Example 186, 0.24 g of white powdery 3-[2-(3,4-dihydroxyphenyl)oxazol-4-ylmethyl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained in the same manner as in Example 136.
- 1H-NMR (CDCl3) δ: 9.46 (1H, br s), 9.32 (18, br s), 8.54 (18, d, J=3.0 Hz), 7.80-7.76 (2H, m), 7.54-7.49 (1H, m), 7.32 (1H, d, J=2.1 Hz), 7.23 (18, dd, J=8.4, 2.1 Hz), 6.82 (1H, d, J=8.4 Hz), 3.47 (2H, t, J=7.5 Hz), 2.83 (2H, t, J=7.5 Hz), 2.51 (3H, s)
- Using 0.12 g of 3-[2-(3,4-dihydroxyphenyl)oxazol-4-ylmethyl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 187, 35 mg of white powdery 3-{2-[3,4-bis-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl) propan-1-one was obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.5 Hz), 7.68 (1H, dd, J=8.4, 1.8 Hz), 7.63 (1H, d, J=1.8 Hz), 7.58 (1H, d, J=8.4 Hz), 7.49 (1H, s), 7.35-7.28 (1H, m), 7.04 (1H, d, J=8.4 Hz), 4.50-4.39 (4H, m), 3.60 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 2.59 (3H, s)
- Using 0.76 g of 4-chloromethyl-2-(3-ethoxy-4-methoxyphenyl)oxazole obtained in Reference Example 58 and 0.5 g of 1-(2-allyloxyphenyl)ethanone obtained in Reference Example 53, 0.13 g of white powdery 1-(2-allyloxyphenyl)-3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained in the same manner as in Example 177.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=1.5, 2.1 Hz), 7.56 (1H, dd, J=8.4, 2.1 Hz), 7.51 (1H, d, J=2.1 Hz), 7.45-7.40 (2H, m), 7.02-6.89 (3H, m), 6.12-6.01 (1H, m), 5.42 (1H, dd, J=17, 1.5 Hz), 5.28 (1H, dd, J=17, 1.5 Hz), 4.65-4.62 (2H, m), 4.18 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.42 (2H, t, J=1.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.49 (3H, t, J=6.9 Hz)
- A 2 g quantity of 4-chloromethyl-2-(4-benzyloxy-3-ethoxyphenyl)oxazole obtained in Reference Example 63 and 0.96 g of 1-(2-ethoxyphenyl)ethanone were dissolved in 20 ml of tetrahydrofuran, and 0.47 g sodium hydride was added thereto. After foaming, the reaction mixture was heated and refluxed for 3 hours. After cooling, the reaction mixture was added to ice water, and extraction was performed with ethyl acetate. The organic layer was washed with water, dried over magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 0.4 g of colorless powdery 3-[2-(4-benzyloxy-3-ethoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.55-7.30 (8H, m), 6.97 (2H, t, J=7.5 Hz), 6.93 (1H, d, J=7.5 Hz), 5.19 (2H, s), 4.18 (2H, q, J=6.9 Hz), 4.13 (2H, q, J=6.9 Hz), 3.41 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz), 1.47 (3H, t, J=6.9 Hz)
- Using 3-[2-(4-benzyloxy-3-ethoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one obtained in Example 190, colorless oily 3-[2-(3-ethoxy-4-hydroxyphenyl)oxazol-4-yl]-1-(2-ethoxy phenyl)propan-1-one was obtained in the same manner as in Example 2.
- 1H-NMR (CDCl3) δ: 7.10 (1H, dd, J=1.5, 1.8 Hz), 1.52 (1H, dd, J=8.1, 2.1 Hz), 7.49 (1H, d, J=2.1 Hz), 7.45-7.38 (2H, m), 6.97 (1H, t, J=7.5 Hz), 6.95 (1H, d, J=7.5 Hz), 6.93 (1H, d, J=8.1 Hz), 5.89 (1H, s), 4.20 (2H, q, J=7.2 Hz), 4.13 (2H, q, J=7.2 Hz), 3.41 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.47 (3H, t, J=7.2 Hz), 1.47 (3H, t, J=7.2 Hz)
- Using 3-[2-(3-ethoxy-4-hydroxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one obtained in Example 191, colorless needle crystalline 3-[2-(3-ethoxy-4-isopropoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one was obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.54-7.51 (2H, m), 7.45-1.39 (2H, m), 6.97 (2H, br t, J=7.5 Hz), 6.93 (1H, d, J=7.5 Hz), 4.55 (1H, sept, J=6.0 Hz), 4.14 (2H, q, J=6.9 Hz), 4.13 (2H, q, J=6.9 Hz), 3.42 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz), 1.47 (3H, t, J=6.9 Hz), 1.45 (3H, t, J=6.9 Hz), 1.37 (6H, d, J=6.0 Hz)
- A 2.98 g quantity of 2-(3-benzyloxy-4-methoxyphenyl) oxazole-4-carbaldehyde obtained in Reference Example 64 and 1.72 g of 1-(2-propoxyphenyl)ethanone were dissolved in 50 ml of pyridine. A 2.66 g quantity of potassium carbonate was added thereto, and the mixture was heated and stirred at 120° C. for 22 hours. After cooling, the reaction mixture was added to saturated brine, and extraction was performed with ethyl acetate. The organic layer was washed with water and then dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 1.82 g of colorless oily (E)-3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)-2-propen-1-one.
- 1H-NMR (CDCl3) δ: 7.80 (1H, s), 7.79 (1H, d, J=15.3 Hz), 7.69-7.66 (3H, m), 7.51-7.32 (7H, m), 7.04-6.95 (3H, m), 5.21 (2H, s), 4.05 (2H, t, J=6.3 Hz), 3.94 (3H, s), 1.88 (2H, sext., J=6.3 Hz), 1.08 (3H, t, J=6.3 Hz)
- A 1.82 g quantity of (E)-3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)-2-propen-1-one obtained in Example 193 was dissolved in 50 ml of methanol. A 200 mg quantity of 5% palladium-carbon powder was added thereto, and the mixture was stirred under a hydrogen atmosphere at room temperature for 2 hours. The catalyst was then removed by filtration. The filtrate was diluted with 100 ml of methanol, and 500 mg of 10% palladium-carbon powder was added thereto. The mixture was stirred under a hydrogen atmosphere at room temperature for 3 hours. The catalyst was removed by filtration, and the solvent was removed under reduced pressure. Diisopropyl ether was added to the residue for crystallization to give 0.78 g of colorless powdery 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.55 (1H, d, J=2.1 Hz), 7.53 (1H, dd, J=8.1, 2.1 Hz), 7.42 (1H, ddd, J=8.1, 7.5, 1.8 Hz), 7.40 (1H, s), 6.97 (1H, td, J=7.5, 0.9 Hz), 6.93 (1H, br d, J=8.1 Hz), 6.89 (1H, d, J=8.1 Hz), 4.02 (2H, t, J=6.6 Hz), 3.94 (3H, s), 3.43 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.88 (2H, sext., J=6.6 Hz), 1.06 (3H, t, J=6.6 Hz)
- Using 0.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one obtained in Example 194, 67 mg of colorless powdery 3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.59-7.40 (4H, m), 6.97 (1H, t, J=7.8 Hz), 6.94 (1H, d, J=7.8 Hz), 6.91 (1H, d, J=7.8 Hz), 4.18 (2H, q, J=6.6 Hz), 4.02 (2H, t, J=6.6 Hz), 3.92 (3H, s), 3.43 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.87 (2H, sext., J=6.6 Hz), 1.49 (3H, t, J=6.6 Hz), 1.06 (3H, t, J=6.6 Hz)
- Using 0.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one obtained in Example 194, 67 mg of colorless oily 3-[2-(3-cyclopentyloxy-4-methoxyphenyl) oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=1.5, 1.8 Hz), 7.55 (1H, dd, J=8.4, 1.8 Hz), 1.51 (1H, d, J=1.8 Hz), 1.42 (1H, br t, J=7.5 Hz), 7.39 (1H, s), 6.97 (1H, t, J=7.5 Hz), 6.93 (1H, d, J=7.5 Hz), 6.89 (1H, d, J=8.4 Hz), 4.90-4.84 (1H, m), 4.02 (2H, t, J=6.6 Hz), 3.88 (3H, s), 3.43 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.03-1.60 (10H, m), 1.05 (3H, t, J=7.2 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one obtained in Example 194, colorless oily 3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxy phenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.57 (1H, dd, J=8.4, 2.1 Hz), 7.54 (1H, d, J=2.1 Hz), 7.42 (1H, ddd, J=8.4, 7.2, 1.8 Hz), 7.39 (1H, s), 6.97 (1H, br t, J=7.2 Hz), 6.96 (1H, br d, J=8.4 Hz), 6.91 (1H, d, J=8.4 Hz), 4.65 (1H, sept., J=6.0 Hz), 4.02 (2H, t, J=7.2 Hz), 3.90 (3H, s), 3.43 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.87 (2H, sext., J=7.2 Hz), 1.40 (6H, d, J=6.0 Hz), 1.06 (3H, t, J=7.2 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one obtained in Example 194, colorless powdery 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.5, 1.8 Hz), 7.57 (1H, dd, J=8.4, 1.8 Hz), 7.50 (1H, d, J=1.8 Hz), 7.45-7.39 (2H, m), 6.97 (1H, br t, J=7.5 Hz), 6.93 (1H, br d, J=7.5 Hz), 6.91 (1H, br d, J=8.4 Hz), 4.02 (2H, t, J=6.6 Hz), 3.92 (2H, d, J=7.2 Hz), 3.92 (3H, s), 3.43 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.87 (2H, sext., J=6.6 Hz), 1.41-1.32 (1H, m), 1.06 (3H, t, J=6.6 Hz), 0.69-0.63 (2H, m), 0.40-0.35 (2H, m)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one obtained in Example 194, colorless needle crystalline 3-[2-(3-(3-butenyloxy)-4-methoxyphenyl)oxazol-4-1,1]-1-(2-propoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 1.11 (1H, dd, J=7.1, 1.5 Hz), 1.58 (1H, dd, J=8.5, 2.0 Hz), 7.52 (1H, d, J=2.0 Hz), 7.42 (1H, ddd, J=7.7, 7.5, 1.8 Hz), 7.40 (1H, s), 6.97 (1H, ddd, J=7.7, 7.5, 0.9 Hz), 6.93 (1H, br d, J=7.7 Hz), 6.91 (1H, d, J=8.5 Hz), 5.92 (1H, ddt, J=17.3, 10.3, 6.8 Hz), 5.19 (1H, ddd, J=17.3, 3.3, 1.5 Hz), 5.11 (1H, ddd, J=10.3. 3.3, 0.6 Hz), 4.14 (2H, t, J=7.2 Hz), 4.02 (2H, t, J=7.2 Hz), 3.91 (3H, s), 3.43 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.63 (2H, br q, J=6.9 Hz), 1.87 (2H, sext., J=7.2 Hz), 1.06 (3H, t, J=7.2 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one obtained in Example 194, colorless needle crystalline 3-[2-(3-allyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.7, 1.8 Hz), 7.59 (1H, dd, J=8.5, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.42 (1H, ddd, J=8.3, 7.7, 1.8 Hz), 7.40 (1H, s), 6.97 (1H, td, J=7.7, 1.1 Hz), 6.93 (1H, br d, J=8.3 Hz), 6.91 (1H, d, J=8.5 Hz), 6.12 (1H, ddt, J=17.3, 10.5, 5.5 Hz), 5.44 (1H, ddd, J=17.3, 3.0, 1.5 Hz), 5.31 (1H, ddd, J=10.5. 3.0, 1.5 Hz), 4.67 (2H, dt, J=5.5, 1.5 Hz), 4.02 (2H, t, J=6.3 Hz), 3.92 (3H, s), 3.43 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.87 (2H, sext., J=6.3 Hz), 1.06 (3H, t, J=6.3 Hz)
- Using 0.1 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one obtained in Example 194, 67 mg of colorless powdery 3-[2-(3-cyclobutylmethoxy-4-methoxy phenyl)oxazol-4-yl]-1-(2-propoxyphenyl)propan-1-one was obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.56 (1H, dd, J=7.8, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.45-7.40 (2H, m), 6.98 (1H, t, J=7.8 Hz), 6.94 (1H, d, J=7.8 Hz), 6.90 (1H, d, J=7.8 Hz), 4.07 (2H, d, J=6.9 Hz), 4.02 (2H, t, J=6.6 Hz), 3.90 (3H, s), 3.44 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.86 (1H, quint, J=7.2 Hz), 2.21-2.16 (2H, m), 1.96-1.84 (6H, m), 1.06 (3H, t, J=7.5 Hz)
- Using 2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl] oxazole-4-carbaldehyde obtained in Reference Example 65, pale yellow oily (E)-3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl] oxazol-4-yl}-1-(2-propoxyphenyl)-2-propen-1-one was obtained in the same manner as in Example 193.
- 1H-NMR (CDCl3) δ: 7.83 (1H, d, J=15.0 Hz), 7.81 (1H, s), 7.76 (1H, dd, J=8.4, 2.1 Hz), 7.69 (1H, dd, J=7.8, 1.8 Hz), 7.69 (1H, d, J=2.1 Hz), 7.50 (1H, d, J=15.0 Hz), 7.45 (1H, ddd, J=8.4, 7.8, 1.8 Hz), 7.01 (1H, br t, J=8.4 Hz), 6.99 (1H, d, J=8.4 Hz), 6.98 (1H, br d, J=7.8 Hz), 4.46 (2H, q, J=8.4 Hz), 4.06 (2H, t, J=6.3 Hz), 3.94 (3H, s), 1.90 (2H, sext., J=6.3 Hz), 1.09 (3H, t, J=6.3 Hz)
- Using (E)-3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy) phenyl]oxazol-4-yl}-1-(2-propoxyphenyl)-2-propen-1-one obtained in Example 202, colorless powdery 3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}-1-(2-propoxyphenyl)propan-1-one was obtained in the same manner as in Example 194.
- 1H-NMR (DMSO-d5) δ: 7.83 (1H, s), 7.62 (1H, dd, J=7.8, 1.8 Hz), 7.51 (1H, dd, J=7.8, 1.5 Hz), 7.55 (1H, d, J=1.5 Hz), 7.51 (1H, br t, J=7.8 Hz), 7.17 (1H, d, J=7.8 Hz), 7.15 (1H, d, J=7.8 Hz), 7.01 (1H, t, J=7.8 Hz), 4.80 (2H, q, J=9.0 Hz), 4.06 (2H, t, J=6.6 Hz), 3.86 (3H, s), 3.33 (2H, t, J=7.2 Hz), 2.84 (2H, t, J=7.2 Hz), 1.79 (2H, sext., J=6.6 Hz), 0.99 (3H, t, J=6.6 Hz)
- Using 2-(3,4-diethoxyphenyl)oxazole-4-carbaldehyde obtained in Reference Example 66, pale yellow powdery (E)-3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)-2-propen-1-one was obtained in the same manner as in Example 193.
- 1H-NMR (CDCl3) δ: 7.81 (1H, d, J=15.0 Hz), 7.79 (1H, br d, J=7.5 Hz), 7.68 (1H, dd, J=7.8, 1.8 Hz), 7.62 (1H, d, J=1.8 Hz), 7.59 (1H, br s), 7.49 (1H, d, J=15.0 Hz), 7.44 (1H, br t, J=7.5 Hz), 7.01 (1H, br t, J=7.5 Hz), 6.97 (1H, br d, J=7.5 Hz), 6.93 (1H, d, J=7.8 Hz), 4.18 (2H, q, J=6.9 Hz), 4.16 (2H, q, J=6.9 Hz), 4.05 (2H, t, J=6.3 Hz), 1.89 (1H, br sext., J=6.9 Hz), 1.50 (3H, t, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz), 1.09 (3H, t, J=7.2 Hz)
- Using (E)-3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl)-2-propen-1-one obtained in Example 204, colorless powdery 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-propoxyphenyl) propan-1-one was obtained in the same manner as in Example 194.
- 1H-NMR (CDCl3) δ: 1.60 (1H, dd, J=1.8, 1.8 Hz), 7.54 (1H, dd, J=8.4, 2.1 Hz), 7.52 (1H, d, J=2.1 Hz), 7.42 (1H, ddd, J=7.8, 7.2, 1.8 Hz), 7.39 (1H, s), 6.97 (1H, td, J=7.8, 1.2 Hz), 6.93 (1H, br d, J=7.2 Hz), 6.90 (1H, d, J=8.4 Hz), 4.17 (2H, q, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 4.02 (2H, t, J=6.6 Hz), 3.43 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.87 (2H, sept., J=6.6 Hz), 1.48 (6H, t, J=6.9 Hz), 1.05 (3H, t, J=6.6 Hz)
- Using 2-(3-benzyloxy-4-methoxyphenyl)oxazole-4-carbaldehyde obtained in Reference Example 64, pale yellow powdery (E)-3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)-2-propen-1-one was obtained in the same manner as in Example 193.
- 1H-NMR (CDCl3) δ: 7.79 (1H, s), 7.79 (1H, d, J=15.3 Hz), 7.69-7.65 (3H, m), 7.50-7.32 (7H, m), 7.03-6.95 (3H, m), 5.21 (2H, s), 4.66 (1H, sept, J=6.0 Hz), 3.94 (3H, s), 1.41 (6H, d, J=6.0 Hz)
- Using (E)-3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)-2-propen-1-one obtained in Example 206, colorless powdery 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one was obtained in the same manner as in Example 194.
- 1H-NMR (CDCl3) δ: 7.61 (1H, dd, J=7.5, 1.8 Hz), 1.55 (1H, br s), 7.54 (1H, dd, J=7.5, 1.8 Hz), 7.40 (1H, td, J=7.5, 1.8 Hz), 7.40 (1H, s), 6.95 (1H, br t, J=7.5 Hz), 6.93 (1H, br d, J=7.5 Hz), 6.89 (1H, d, J=7.5 Hz), 5.64 (1H, s), 4.68 (1H, sept., J=6.0 Hz), 3.94 (3H, s), 3.40 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.40 (6H, d, J=6.0 Hz) The above compound was also obtained by the following method. A 10 g quantity of 2-(3-benzyloxy-4-methoxyphenyl-4-chloromethyloxazole obtained in Reference Example 5 and 5.4 g of 1-(2-isopropoxyphenyl)ethanone were dissolved in 100 ml of tetrahydrofuran, and 2.42 g of sodium hydride was added thereto. After foaming, the reaction mixture was heated and refluxed for 3 hours. After cooling, the reaction mixture was added to ice water, and extraction was performed with ethyl acetate. The organic layer was washed with water, dried over magnesium sulfate, and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 4.30 g of pale yellow oily 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one. Subsequently, 1.84 g of the obtained 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one was dissolved in 100 ml of methanol. An 800 mg quantity of 10% palladium-carbon powder was added thereto. The mixture was stirred under a hydrogen atmosphere at room temperature for 1 hour. The catalyst was removed by filtration, and the solvent was removed. The residue was then recrystallized from acetone/diisopropyl ether to give 1.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one.
- Using 0.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one obtained in Example 207, 0.12 g of pale yellow oily 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.67 (1H, dd, J=7.8, 1.8 Hz), 7.57 (1H, dd, J=8.4, 2.1 Hz), 7.50 (1H, d, J=2.1 Hz), 7.41 (1H, td, J=7.8, 1.8 Hz), 7.39 (1H, s), 6.95 (1H, br t, J=7.8 Hz), 6.93 (1H, br d, J=7.8 Hz), 6.91 (1H, d, J=8.4 Hz), 4.68 (1H, sept., J=6.0 Hz), 3.92 (2H, d, J=6.9 Hz), 3.92 (3H, s), 3.41 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.40 (6H, d, J=6.0 Hz), 1.46-1.32 (1H, m), 0.69-0.62 (2H, m), 0.40-0.35 (2H, m)
- Using 0.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one obtained in Example 207, 42 mg of colorless powdery 3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.68 (1H, dd, J=7.7, 1.8 Hz), 7.57 (1H, dd, J=8.5, 2.0 Hz), 7.52 (1H, d, J=2.0 Hz), 7.41 (1H, td, J=7.7, 1.8 Hz), 7.40 (1H, s), 6.95 (1H, br t, J=7.7 Hz), 6.94 (1H, br d, J=7.7 Hz), 6.91 (1H, d, J=8.5 Hz), 4.69 (1H, sept., J=6.0 Hz), 4.18 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.41 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz), 1.40 (6H, d, J=6.0 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one obtained in Example 207, pale yellow oily 3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.68 (1H, dd, J=7.5, 1.8 Hz), 7.57 (1H, dd, J=7.5, 1.8 Hz), 7.54 (1H, d, J=1.8 Hz), 7.44-7.38 (2H, m), 6.95 (1H, br t, J=7.5 Hz), 6.94 (1H, d, J=7.5 Hz), 6.91 (1H, d, J=7.5 Hz), 4.67 (2H, sept., J=6.0 Hz), 3.90 (3H, s), 3.40 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.40 (12H, d, J=6.0 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one obtained in Example 207, colorless oily 3-[2-(3-allyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 1.68 (1H, dd, J=7.1, 1.8 Hz), 7.58 (1H, dd, J=8.3, 1.8 Hz), 7.53 (1H, d, J=1.8 Hz), 7.41 (1H, ddd, J=7.9, 7.7, 1.8 Hz), 7.40 (1H, s), 6.98 (1H, td, J=7.9, 1.8 Hz), 6.94 (1H, br d, J=7.7 Hz), 6.92 (1H, d, J=8.3 Hz), 6.12 (1H, ddt, J=17.3, 10.5, 5.3 Hz), 5.44 (1H, ddd, J=11.3, 3.0, 1.7 Hz), 5.31 (1H, ddd, J=10.5. 3.0, 1.5 Hz), 4.75-4.60 (3H, m), 3.92 (3H, s), 3.41 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.40 (6H, d, J=6.0 Hz).
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one obtained in Example 207, colorless needle crystalline 3-[2-(3-(3-butenyloxy)-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.67 (1H, dd, J=7.9, 1.8 Hz), 7.57 (1H, dd, J=8.5, 2.0 Hz), 7.53 (1H, d, J=2.0 Hz), 7.40 (1H, ddd, J=7.9, 7.5, 1.8 Hz), 7.40 (1H, s), 6.95 (1H, br t, J=7.5 Hz), 6.93 (1H, br d, J=7.5 Hz), 6.91 (1H, d, J=8.5 Hz), 5.92 (1H, ddt, J=17.1, 10.3, 6.8 Hz), 5.19 (1H, ddd, J=17.3, 3.3, 1.5 Hz), 5.10 (1H, ddd, J=10.3. 3.3, 1.3 Hz), 4.68 (1H, sept., J=6.0 Hz), 4.14 (2H, t, J=7.2 Hz), 3.91 (3H, s), 3.41 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 2.63 (2H, br q, J=7.2 Hz), 1.40 (6H, d, J=6.0 Hz)
- Using 0.15 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one obtained in Example 207, mg of colorless powdery 1-(2-isopropoxyphenyl)-3-{2-[4-methoxy-3-(2,2,2=trifluoroethoxy)phenyl]oxazol-4-yl}propan-1-one was obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 7.70-7.60 (2H, m), 7.44-7.38 (2H, m), 6.98-6.91 (4H, m), 4.69 (1H, sept., J=6.0 Hz), 4.48-4.41 (2H, m), 3.93 (3H, s), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.41 (6H, d, J=6.0 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one obtained in Example 207, colorless powdery 3-[2-(3-cyclobutylmethoxy-4-methoxyphenyl) oxazol-4-yl]-1-(2-isopropoxyphenyl)propan-1-one was obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 7.68 (1H, dd, J=8.4, 1.8 Hz), 7.56 (1H, dd, J=8.4, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.44-7.38 (2H, m), 6.95 (1H, br t, J=8.4 Hz), 6.94 (1H, br d, J=8.4 Hz), 6.90 (1H, d, J=8.4 Hz), 4.69 (1H, sept., J=6.0 Hz), 4.07 (2H, d, J=6.9 Hz), 3.90 (3H, s), 3.41 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.86 (1H, quint, J=7.2 Hz), 2.22-2.14 (2H, m), 1.99-1.84 (4H, m), 1.40 (6H, d, J=6.0 Hz)
- Using 2-(3,4-diethoxyphenyl)oxazole-4-carbaldehyde obtained in Reference Example 66, yellow oily (E)-3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)-2-propen-1-one was obtained in the same manner as in Example 193.
- 1H-NMR (CDCl3) δ: 7.81 (1H, d, J=15.3 Hz), 0.7.79 (1H, br s), 7.69-7.53 (3H, m), 7.46 (1H, d, J=15.3 Hz), 7.43 (1H, td, J=7.8, 1.2 Hz), 7.00 (1H, br t, J=7.8 Hz), 6.93 (1H, br d, J=7.8 Hz), 6.91 (1H, br d, J=7.8 Hz), 4.67 (1H, sept, J=6.0 Hz), 4.22-4.11 (4H, m), 1.52-1.45 (6H, m), 1.41 (6H, d, J=6.0 Hz)
- Using (E)-3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-isopropoxyphenyl)-2-propen-1-one obtained in Example 215, pale yellow oily 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-isopropoxy phenyl)propan-1-one was obtained in the same manner as in Example 194.
- 1H-NMR (CDCl3) δ: 7.67 (1H, dd, J=7.5, 1.5 Hz), 7.60-7.38 (4H, m), 6.97-6.89 (3H, m), 4.68 (1H, sept, J=6.0 Hz), 4.21-4.10 (4H, m), 3.41 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.48 (6H, br t, J=7.2 Hz), 1.40 (6H, d, J=6.0 Hz)
- Using 2-(3,4-diethoxyphenyl)oxazole-4-carbaldehyde obtained in Reference Example 66, colorless powdery (E)-3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-o-tolyl-2-propen-1-one was obtained in the same manner as in Example 193.
- 1H-NMR (CDCl3) δ: 7.81 (1H, s), 7.64-7.28 (8H, m), 6.93 (1H, d, J=8.1 Hz), 4.20 (2H, q, J=6.9 Hz), 4.16 (2H, q, J=6.9 Hz), 2.47 (3H, s), 1.50 (3H, t, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz)
- Using (E)-3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-o-tolyl-2-propen-1-one obtained in Example 217, colorless needle crystalline 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-o-tolyl propan-1-one was obtained in the same manner as in Example 194.
- 1H-NMR (CDCl3) δ: 7.68 (1H, dd, J=7.5, 1.8 Hz), 7.55 (1H, dd, J=8.1, 1.8 Hz), 7.51 (1H, d, J=1.8 Hz), 7.43 (1H, br s), 7.36 (1H, td, J=7.5, 1.5 Hz), 7.27-7.22 (2H, m), 6.90 (1H, d, J=8.1 Hz), 4.11 (2H, q, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 3.32 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.49 (3H, s), 1.48 (6H, t, J=6.9 Hz)
- Using 2-(3-benzyloxy-4-methoxyphenyl)oxazole-4-carbaldehyde obtained in Reference Example 64, pale yellow powdery (E)-3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolyl-2-propen-1-one was obtained in the same manner as in Example 193.
- 1H-NMR (CDCl3) δ: 7.81 (1H, s), 7.69-7.26 (13H, m), 6.96 (1H, d, J=9.0 Hz), 5.23 (2H, s), 3.94 (3H, s), 2.47 (3H, s)
- Using (E)-3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolyl-2-propen-1-one obtained in Example 219, colorless powdery 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolyl propan-1-one was obtained in the same manner as in Example 194.
- 1H-NMR (CDCl3) δ: 7.67 (1H, dd, J=7.2, 1.8 Hz), 7.56 (1H, d, J=1.8 Hz), 7.53 (1H, dd, J=8.1, 1.8 Hz), 7.43 (1H, s), 7.35 (1H, td, J=7.2, 1.8 Hz), 7.26-1.22 (2H, m), 6.89 (1H, d, J=8.1 Hz), 5.69 (1H, s), 3.94 (3H, s), 3.31 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.49 (3H, s)
- A 0.15 g quantity of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolylpropan-1-one obtained in Example 220 was dissolved in 10 ml of isopropyl alcohol. An 86 μl quantity of (bromomethyl)cyclopropane and 200 μl of 1,8-diazabicyclo[5,4,0]undec-7-ene were added thereto, and the mixture was heated and refluxed for 24 hours. Water was added to the reaction mixture, and extraction was then performed with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1), and recrystallized from acetone/diisopropyl ether/n-hexane to give 71 mg of colorless needle crystalline 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolylpropan-1-one.
- 1H-NMR (CDCl3) δ: 7.68 (1H, dd, J=7.5, 1.5 Hz), 7.57 dd, J=8.1, 2.1 Hz), 7.49 (1H, d, J=2.1 Hz), 7.43 (1H, t, J=0.9 Hz), 7.36 (1H, td, J=7.5, 1.5 Hz), 7.25-7.22 (2H, m), 6.91 (1H, d, J=8.1 Hz), 3.93 (2H, d, J=6.9 Hz), 3.92 (3H, s), 3.32 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.49 (3H, s), 1.41-1.32 (1H, m), 0.69-0.63 (2H, m), 0.40-0.35 (2H, m)
- Using 2-(3-isopropoxy-4-methoxyphenyl)oxazole-4-carbaldehyde obtained in Reference Example 69, yellow powdery (E)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-benzyloxyphenyl)-2-propen-1-one was obtained in the same manner as in Example 193.
- 1H-NMR (CDCl3) δ: 7.76 (1H, s), 7.69-6.92 (14H, m), 5.20 (2H, s), 4.63 (1H, sept., J=6.0 Hz), 1.38 (6H, d, J=6.0 Hz)
- Using (E)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-benzyloxyphenyl)-2-propen-1-one obtained in Example 222, colorless plate crystalline 1-(2-hydroxyphenyl)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained in the same manner as in Example 194.
- 1H-NMR (CDCl3) δ: 12.25 (1H, s), 7.82 (1H, dd, J=8.4, 1.5 Hz), 7.58 (1H, dd, J=8.4, 1.8 Hz), 7.54 (1H, d, J=1.8 Hz), 7.46 (1H, ddd, J=8.4, 7.2, 1.5 Hz), 7.45 (1H, s), 6.98 (1H, dd, J=8.4, 1.2 Hz), 6.92 (1H, d, J=8.4 Hz), 6.89 (1H, ddd, J=8.4, 7.2, 1.2 Hz), 4.65 (1H, sept., J=6.0 Hz), 3.90 (3H, s), 3.44 (2H, t, J=7.5 Hz), 3.03 (2H, t, J=7.5 Hz), 1.40 (6H, d, J=6.0 Hz)
- A 67 mg quantity of 1-(2-hydroxyphenyl)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one obtained in Example 223 was dissolved in 5 ml of dimethylformamide. A 31 gi quantity of allyl bromide and 73 mg of potassium carbonate were added thereto, and the mixture was stirred at room temperature overnight. A 50 μl quantity of allyl bromide was further added thereto, and the mixture was stirred at 50° C. for 8 hours, and at room temperature overnight. The reaction mixture was added to water, and extraction was then performed with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1), and crystallized from n-hexane to give 33 mg of colorless powdery 1-(2-allyloxyphenyl)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.57 (1H, dd, J=8.4, 2.1 Hz), 7.54 (1H, d, J=2.1 Hz), 7.44 (1H, ddd, J=7.8, 7.5, 1.8 Hz), 7.40 (1H, br s), 6.99 (1H, td, J=7.8, 1.2 Hz), 6.94 (1H, br d, J=7.5 Hz), 6.91 (1H, d, J=8.4 Hz), 6.08 (1H, ddt, J=17.1, 10.5, 5.4 Hz), 5.42 (1H, ddd, J=17.1, 3.0, 1.5 Hz), 5.29 (1H, ddd, J=10.5, 2.7, 1.5 Hz), 4.69-4.61 (3H, m), 3.89 (3H, s), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.39 (6H, d, J=6.3 Hz)
- Using 0.3 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolylpropan-1-one obtained in Example 220, 0.15 g of white powdery 3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolylpropan-1-one was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 1.68 (1H, m), 7.57 (1H, dd, J=8.1, 2.1 Hz), 7.51 (1H, d, J=2.1 Hz), 7.44 (1H, d, J=0.9 Hz), 7.36 (1H, m), 7.30-7.20 (3H, m), 6.91 (1H, d, J=8.4 Hz), 4.18 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.35-3.25 (2H, m), 3.05-2.95 (2H, m), 2.50 (3H, s), 1.50 (3H, t, J=6.9 Hz)
- Using 0.3 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolylpropan-1-one obtained in Example 220, 0.1 g of white powdery 3-[2-(3-allyloxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolylpropan-1-one was obtained in the same manner as in Example 3. 1H-NMR (CDCl3) δ: 7.68 (1H, m), 7.59 (1H, dd, J=8.4, 2.1 Hz), 7.52 (1H, d, J=2.1 Hz), 7.43 (1H, s), 7.38 (1H, m), 7.35-7.25 (2H, m), 6.92 (1H, d, J=8.4 Hz), 6.13 (1H, ddd, J=17.1, 10.5, 5.4 Hz), 5.44 (1H, ddd, J=17.1, 2.7, 1.5 Hz), 5.31 (1H, ddd, J=10.5, 2.7, 1.5 Hz), 4.68 (1H, dt, J=5.4, 1.5 Hz), 3.92 (3H, s), 3.32 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.50 (3H, s)
- Using 0.2 g of 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolylpropan-1-one obtained in Example 220, 0.1 g of pale yellow oily 3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]-1-o-tolylpropan-1-one was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 7.69 (1H, m), 7.60-7.50 (2H, m), 7.50-7.30 (3H, m), 7.24 (1H, m), 6.91 (1H, dd, J=5.1, 3.0 Hz), 4.65 (1H, m), 3.90 (3H, s), 3.35-3.25 (2H, m), 3.05-2.95 (2H, m), 2.49 (3H, s), 1.40 (6H, d, J=6.0 Hz)
- A 65 mg quantity of sodium hydride was suspended in 5 ml of tetrahydrofuran. A 0.27 g quantity of 1-(2-ethoxyphenyl)ethanone and 0.3 g of 2-(3-benzyloxy-4-difluoro methoxyphenyl)-4-chloromethyloxazole obtained in Reference Example 44 was successively added thereto with ice-cooling and stirring, and the mixture was stirred for 3 hours with heating and refluxing. An aqueous saturated ammonium chloride solution was added to the reaction mixture with ice-cooling and stirring. After stirring for 15 minutes, water was added thereto, and extraction was performed with ethyl acetate. The mixture was dried over anhydrous magnesium sulfate, and the solvent was removed. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=4:1) to give 75 mg of colorless oily 3-[2-(3-benzyloxy-4-difluoromethoxyphenyl) oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.72-7.69 (2H, m), 7.59 (1H, dd, J=8.1, 1.8 Hz), 7.47-7.32 (7H, m), 7.00-6.92 (3H, m), 6.61 (1H, t, J=74.7 Hz), 5.20 (2H, s), 4.15 (2H, q, J=7.2 Hz), 3.43 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- A 75 mg quantity of 3-[2-(3-benzyloxy-4-difluoromethoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one obtained in Example 228 was dissolved in 1 ml of ethanol. A 7 mg quantity of 10% palladium-carbon powder was added thereto, and the mixture was stirred under a hydrogen atmosphere at room temperature for 45 minutes. The catalyst was removed by filtration, the filtrate was concentrated, and the obtained residue was purified by silica gel column chromatography (dichloromethane:ethanol=100:1) to give 32 mg of white powdery 3-[2-(4-difluoromethoxy-3-hydroxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.10 (1H, dd, J=7.5, 1.8 Hz), 1.65 (1H, d, J=1.8 Hz), 7.56-7.43 (3H, m), 7.16 (1H, d, J=6.0 Hz), 6.98-6.92 (2H, m), 6.57 (1H, t, J=74.7 Hz), 5.57 (1H, s), 4.13 (2H, q, J=7.2 Hz), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- A 30 mg quantity of 3-[2-(4-difluoromethoxy-3-hydroxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one obtained in Example 229 was dissolved in 0.5 ml of dimethylformamide. An 18 mg quantity of 2-bromopropane and 30 mg of potassium carbonate were added thereto, and the mixture was stirred at room temperature overnight. Water was added to the reaction mixture, and extraction was performed with ethyl acetate. Drying was performed with anhydrous magnesium sulfate, and the solvent was removed. The obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=4:1) to give 23 mg of white powdery 3-[2-(4-difluoromethoxy-3-isopropoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.61 (1H, d, J=1.8 Hz), 7.55 (1H, dd, J=8.4, 1.8 Hz), 7.50-7.38 (2H, m), 7.19 (1H, d, J=8.1 Hz), 7.00-6.70 (2H, m), 6.60 (1H, t, J=74.7 Hz), 4.72-4.64 (1H, m), 4.13 (2H, q, J=7.2 Hz), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz), 1.39 (6H, d, J=6.0 Hz)
- Using 2-(3-benzyloxy-4-methoxyphenyl)-4-chloromethyl oxazole obtained in Reference Example 5 and 1-(2-methoxymethoxy phenyl)ethanone obtained in Reference Example 70, yellow oily 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxymethoxy phenyl)propan-1-one was obtained in the same manner as in Example 190.
- 1H-NMR (CDCl3) δ: 7.66 (1H, dd, J=7.8, 1.8 Hz), 7.59 (1H, dd, J=7.8, 1.8 Hz), 7.51 (1H, br s), 7.49-7.27 (7H, m), 7.17 (1H, br d, J=7.8 Hz), 1.04 (1H, td, J=7.5, 1.2 Hz), 6.93 (1H, br d, J=7.8 Hz), 5.25 (2H, s), 5.19 (2H, s), 3.92 (3H, s), 3.48 (3H, s), 3.39 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz)
- Using 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxymethoxyphenyl)propan-1-one obtained in Example 231, 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxymethoxy phenyl)propan-1-one was obtained in the same manner as in Example 194.
- 1H-NMR (CDCl3) δ: 7.66 (1H, dd, J=7.8, 1.8 Hz), 7.55 (1H, d, J=2.1 Hz), 7.53 (1H, dd, J=8.1, 2.1 Hz), 7.41 (1H, s), 7.41 (1H, ddd, J=7.8, 7.5, 1.8 Hz), 7.17 (1H, br d, J=7.8 Hz), 7.04 (1H, td, J=7.5, 0.8 Hz), 6.89 (1H, d, J=8.1 Hz), 5.64 (1H, s), 5.26 (2H, s), 3.94 (3H, s), 3.49 (3H, s), 3.40 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz)
- Using 3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxymethoxyphenyl)propan-1-one obtained in Example 232, colorless oily 3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-methoxymethoxyphenyl)propan-1-one was obtained in the same manner as in Example 102.
- 1H-NMR (CDCl3) δ: 7.66 (1H, dd, J=7.5, 1.8 Hz), 7.57 (1H, dd, J=8.4, 1.8 Hz), 7.53 (1H, d, J=1.8 Hz), 7.42 (1H, ddd, J=8.4, 7.5, 1.8 Hz), 7.41 (1H, s), 7.17 (1H, dd, J=8.4, 1.2 Hz), 7.04 (1H, td, J=7.5, 1.2 Hz), 6.91 (1H, d, J=8.4 Hz), 5.26 (2H, s), 4.64 (1H, sept, J=6.0 Hz), 3.90 (3H, s), 3.49 (3H, s), 3.40 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.39 (6H, d, J=6.0 Hz)
- Using 0.76 g of 4-chloromethyl-2-(3-ethoxy-4-methoxyphenyl)oxazole obtained in Reference Example 58, 60 mg of white powdery 3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]-1-[2-(2,2,2-trifluoroethoxy)phenyl]propan-1-one was obtained in the same manner as in Example 228.
- 1H-NMR (CDCl3) δ: 7.76 (1H, dd, J=7.8, 2.1 Hz), 7.58-7.48 (3H, m), 7.39 (1H, s), 7.12 (1H, t, J=7.5 Hz), 6.92-6.88 (2H, m), 4.46 (2H, q, J=7.8 Hz), 4.18 (2H, q, J=7.2 Hz), 3.92 (3H, s), 3.40 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 1.49 (3H, t, J=7.2 Hz)
- Using 0.76 g of 4-chloromethyl-2-(3-ethoxy-4-methoxyphenyl)oxazole obtained in Reference Example 58 and 0.58 g of 1-(2-trifluoromethoxyphenyl)ethanone, 0.18 g of pale yellow oily 3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-trifluoro methoxyphenyl)propan-1-one was obtained in the same manner as in Example 228.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.5, 1.8 Hz), 7.58-7.50 (3H, m), 7.42 (1H, s), 7.38-7.30 (2H, m), 6.91 (1H, d, J=8.4 Hz), 4.17 (2H, q, J=6.6 Hz), 3.91 (3H, s), 3.45 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 1.49 (3H, t, J=6.6 Hz)
- Using 0.5 g of 3-[2-(3,4-dimethoxyphenyl)oxazol-4-yl] propionic acid obtained in Reference Example 71, 0.32 g of white powdery 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-pyrrolidin-1-yl-propan-1-one was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 7.55 (1H, dd, J=6.75, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 7.44 (1H, s), 6.91 (1H, d, J=8.1 Hz), 4.20-4.10 (4H, m), 3.50-3.40 (4H, m), 3.00-2.90 (2H, m), 2.70-2.60 (2H, m), 1.95-1.75 (4H, m), 1.48 (3H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- Using 0.3 g of 3-[2-(3,4-dimethoxyphenyl)oxazol-4-yl] propionic acid obtained in Reference Example 71, 0.28 g of white powdery 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(3-hydroxy pyrrolidin-1-yl)propan-1-one was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 7.55 (1H, dd, J=6.75, 1.8 Hz), 7.52 (1H, d, J=1.8 Hz), 1.44 (1H, s), 6.91 (1H, d, J=8.1 Hz), 4.20-4.10 (4H, m), 3.50-3.40 (4H, m), 3.00-2.90 (2H, m), 2.70-2.60 (2H, m), 2.10-1.90 (3H, m), 1.48 (3H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- Using 1 g of 3-[2-(4-benzyloxy-3-methoxyphenyl)oxazol-4-yl]propionic acid obtained in Reference Example 73, 1.03 g of pale yellow powdery 3-[2-(4-benzyloxy-3-methoxyphenyl)oxazol-4-yl]-1-pyrrolidin-1-ylpropan-1-one was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 7.61-7.27 (8H, m), 6.93 (1H, d, J=8.4 Hz), 5.20 (2H, s), 3.97 (3H, s), 3.49-3.39 (4H, m), 2.94 (2H, t, J=7.5 Hz), 2.65 (2H, t, J=7.5 Hz), 1.95-1.78 (4H, m)
- Using 1 g of 3-[2-(4-benzyloxy-3-methoxyphenyl)oxazol-4-yl]-1-pyrrolidin-1-yl-propan-1-one obtained in Example 238, 0.59 g of white powdery 3-[2-(4-hydroxy-3-methoxyphenyl)oxazol-4-yl]-1-pyrrolidin-1-ylpropan-1-one was obtained in the same manner as in Example 2.
- 1H-NMR (CDCl3) δ: 7.56-7.51 (2H, m), 7.44 (1H, s), 6.90 (1H, d, J=8.4 Hz), 5.97 (1H, s), 3.91 (3H, s), 3.49-3.39 (4H, m), 2.94 (2H, t, J=7.5 Hz), 2.66 (2H, t, J=7.5 Hz), 1.97-1.79 (4H, m)
- Using 0.15 g of 3-[2-(4-hydroxy-3-methoxyphenyl)oxazol-4-yl]-1-pyrrolidin-1-yl-propan-1-one obtained in Example 239, 0.13 g of white powdery 3-[2-(4-ethoxy-3-methoxyphenyl)oxazol-4-1/1]-1-pyrrolidin-1-ylpropan-1-one was obtained in the same manner as in Example 3.
- 1H-NMR (CDCl3) δ: 7.57 (1H, dd, J=8.1, 2.1 Hz), 7.52 (1H, d, J=1.8 Hz), 7.45 (1H, s), 6.91 (1H, d, J=8.1 Hz), 4.15 (2H, q, J=6.9 Hz), 3.96 (3H, s), 3.49-3.40 (4H, m), 2.94 (2H, t, J=7.2 Hz), 2.66 (2H, t, J=7.2 Hz), 1.97-1.79 (4H, m), 1.49 (3H, t, J=6.9 Hz)
- N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-trifluoromethylbenzamide obtained in Example 25 was dissolved in 1 ml of dimethylformamide. A 30 mg quantity of sodium hydride was added thereto with ice-cooling and stirring, and the mixture was stirred for 30 minutes. A 30 mg quantity of methyl iodide was added thereto, and the reaction mixture was stirred at room temperature for 2 hours. Water and ethyl acetate were then added thereto, and extraction was performed. The organic layer was washed with water twice and concentrated by removing the solvent under reduced pressure. The residue was purified by silica gel chromatography (n-hexane:ethyl acetate=3:1) to give 35 mg of colorless oily N-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-ylmethyl]-N-methyl-2-trifluoromethylbenzamide.
- 1H-NMR (CDCl3) δ: 7.72-7.34 (7H, m), 6.94 (1H, dd, J=8.4, 1.8 Hz), 4.88-4.11 (1H, m), 3.98-3.89 (5H, m), 3.17-2.88 (3H, m), 1.43-1.34 (1H, m), 0.71-0.64 (2H, m), 0.42-0.36 (2H, m)
- Using 0.14 g of [2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]methylamine obtained in Reference Example 74, 70 mg of colorless oily N-[2-(3,4-dimethoxyphenyl)oxazol-4-ylmethyl]-2-ethoxy-N-methylbenzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) □δ: 7.60-7.26 (5H, m), 7.00-6.87 (3H, m), 4.23-4.02 (8H, m), 3.19-2.96 (3H, m), 1.52-1.40 (6H, m), 1.36 (3H, t, J=6.9 Hz)
- Using 0.2 g of 2-[2-(3,4-diethoxyphenyl)oxazol-4-yl]ethylamine obtained in Reference Example 78 and 0.18 g of 2-ethoxy benzoic acid, 0.14 g of white powdery N-{2-[2-(3,4-dimethoxyphenyl)oxazol-4-yl]ethyl}-2-ethoxybenzamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) □δ: 8.22 (1H, dd, J=7.5, 4.8 Hz), 7.60-7.50 (2H, m), 7.47 (1H, s), 7.39 (1H, m), 7.06 (1H, m), 6.95-6.85 (2H, m), 4.30-4.05 (6H, m), 4.09 (2H, q, J=6.9 Hz), 3.85 (2H, q, J=6.6 Hz), 2.91 (2H, t, J=6.6 Hz), 1.48 (6H, t, J=6.9 Hz), 1.28 (6H, t, J=6.9 Hz)
- Using 0.3 g of 2-(3,4-diethoxyphenyl)oxazole-4-carboxylic acid obtained in Reference Example 80 and 0.28 g of 1-(2-amino)ethanone, 0.32 g of white powdery N-(2-oxo-2-phenylethyl)-2-(3,4-diethoxyphenyl)oxazole-4-carboxamide was obtained in the same manner as in Example 1.
- 1H-NMR (DMSO-d6) δ: 8.67 (1H, d, J=0.9 Hz), 8.49 (1H, t, J=5.7 Hz), 8.10-8.00 (2H, m), 7.70-7.50 (5H, m), 7.16 (1H, m), 4.81 (2H, d, J=5.7 Hz), 4.13 (4H, q, J=6.9 Hz), 1.38 (6H, t, J=6.9 Hz), 1.37 (3H, t, J=6.9 Hz)
- Using 2-(3,4-diethoxyphenyl)oxazole-4-carboxylic acid obtained in Reference Example 80, 0.32 g of white powdery 1-(4-{4-[2-(3,4-diethoxyphenyl)oxazole-4-carbonyl]piperazin-1-yl}phenyl)ethanone was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.20 (1H, s), 7.95-7.85 (2H, m), 7.62 (1H, dd, J=8.4, 2.1 Hz), 7.54 (1H, d, J=2.1 Hz), 7.00-6.85 (3H, m), 4.40-4.20 (2H, m), 4.19 (2H, q, J=6.9 Hz), 4.16 (2H, q, J=6.9 Hz), 4.00-3.80 (2H, m), 3.50-3.45 (4H, m), 2.53 (3H, s), 1.50 (3H, t, J=6.9 Hz), 1.50 (3H, t, J=6.9 Hz)
- Using 0.28 g of 2-(3,4-diethoxyphenyl)oxazole-4-carboxylic acid obtained in Reference Example 80 and 0.2 g of 1-(4-methoxyphenyl)piperazine, 0.36 g of white powdery 4-(2-(3,4-diethoxyphenyl)oxazol-4-yl)-1-(4-methoxyphenyl)piperazine was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.16 (1H, s), 7.61 (1H, dd, J=8.7, 2.1 Hz), 7.54 (1H, s), 6.95-6.84 (5H, m), 4.40-4.30 (2H, m), 4.21-4.12 (4H, m), 4.00-3.93 (2H, m), 3.78 (3H, s), 3.14 (4H, t, J=4.8 Hz), 1.47 (6H, t, J=7.2 Hz)
- Using 0.28 g of 2-(3,4-diethoxyphenyl)oxazole-4-carboxylic acid obtained in Reference Example 80 and 1-(4-hydroxyphenyl)piperazine, white powdery 4-(2-(3,4-diethoxyphenyl) oxazol-4-yl)-1-(4-hydroxyphenyl)piperazine was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) □δ: 8.16 (1H, s), 7.61 (1H, dd, J=8.4, 2.1 Hz), 7.54 (1H, s), 6.95-6.78 (5H, m), 4.40-4.30 (2H, m), 4.21-4.12 (4H, m), 4.00-3.93 (2H, m), 3.14 (4H, t, J=4.8 Hz), 1.49 (6H, t, J=7.2 Hz)
- Using 0.28 g of 2-(3,4-diethoxyphenyl)oxazole-4-carboxylic acid obtained in Reference Example 80 and 0.14 g of 2-phenylethylamine, 0.21 g of white powdery N-phenethyl-2-(3,4-dimethoxyphenyl)oxazole-4-carboxamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.17 (1H, s), 7.56 (1H, dd, J=8.4, 2.1 Hz), 7.50 (1H, d, J=2.1 Hz), 7.36-7.21 (5H, m), 7.12 (1H, br s), 6.93 (1H, d, J=8.4 Hz), 4.22-4.12 (4H, m), 3.74-3.66 (2H, m), 2.95 (2H, t, J=7.2 Hz), 1.57-1.46 (6H, m)
- Using 0.28 g of 2-(3,4-diethoxyphenyl)oxazole-4-carboxylic acid obtained in Reference Example 80 and 0.13 g of 1-(2-aminoethyl)pyrrolidine, 0.15 g of pale yellow powdery N-(2-(pyrrolidin-1-yl)ethyl)-2-(3,4-dimethoxyphenyl)oxazole-4-carboxamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.17 (1H, s), 7.60 (1H, dd, J=8.4, 1.8 Hz), 7.55 (1H, d, J=1.8 Hz), 7.44 (1H, br s), 6.92 (1H, d, J=8.4 Hz), 4.23-4.12 (4H, m), 3.65-3.58 (2H, m), 2.79 (2H, t, J=6.6 Hz), 2.70-2.58 (4H, m), 1.87-1.75 (4H, m), 1.53-1.46 (6H, m)
- Using 0.15 g of [2-(3,4-diethoxyphenyl)oxazol-4-yl]acetic acid obtained in Reference Example 81 and 0.11 g of o-phenetidine, 0.12 g of white powdery 2-[2-(3,4-diethoxyphenyl) oxazol-4-yl]-N-(2-ethoxyphenyl)acetamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 8.74 (1H, br s), 8.37 (1H, dd, J=7.2, 1.8 Hz), 7.70-7.65 (2H, m), 7.61 (1H, d, J=1.8 Hz), 7.00-6.90 (3H, m), 6.80 (1H, dd, J=7.8, 1.2 Hz), 4.18 (2H, q, J=6.9 Hz), 4.16 (2H, q, J=6.9 Hz), 3.97 (2H, q, J=7.2 Hz), 3.74 (2H, s), 1.49 (3H, t, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz), 1.18 (3H, t, J=7.2 Hz)
- Using 0.15 g of [2-(3,4-diethoxyphenyl)oxazol-4-yl]acetic acid obtained in Reference Example 81 and 85 mg of 2-amino-3-hydroxypyridine, 0.11 g of white powdery 2-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-N-(3-hydroxypyridin-2-yl)acetamide was obtained in the same manner as in Example 1.
- 1H-NMR (CDCl3) δ: 10.37 (1H, brs), 9.88 (1H, brs), 1.84 (1H, dd, J=4.8, 1.2 Hz), 7.65-1.60 (3H, m), 7.31 (1H, dd, J=4.2, 1.2 Hz), 6.94 (1H, d, J=9.0 Hz), 4.22 (2H, q, J=6.9 Hz), 4.16 (2H, q, J=6.9 Hz), 1.51 (3H, t, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz)
- A 0.5 g quantity of 4-chloromethyl-2-(3,4-diethoxyphenyl)oxazole obtained in Reference Example 35, 0.36 g of piperazin-2-one and 0.28 g of potassium carbonate were added to 10 ml of acetonitrile, and the mixture was heated and refluxed for 7 hours. The residue was diluted with ethyl acetate, and washed with water and then with saturated brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated by removing the solvent under reduced pressure. The residue was purified by silica gel column chromatography (dichloromethane:methanol=1:0 to 50:1), and the obtained crude crystals were recrystallized from ethyl acetate to give 0.25 g of colorless crystalline 4-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]piperazin-2-one.
- 1H-NMR (CDCl3) δ: 7.59 (1H, d, J=8.1, 2.1 Hz), 7.56 (1H, d, J=2.1 Hz), 6.91 (1H, d, J=8.1 Hz), 6.03 (1H, brs), 4.17 (2H, q, J=6.9 Hz), 4.15 (2H, q, J=6.9 Hz), 3.61 (2H, s), 3.45-3.35 (2H, m), 3.27 (2H, s), 2.80-2.75 (2H, m), 1.48 (6H, t, J=6.9 Hz)
- Using 0.5 g of 4-chloromethyl-2-(3,4-diethoxyphenyl) oxazole obtained in Reference Example 35 and 0.5 g of morpholine, 0.31 g of white powdery 4-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]morpholine was obtained in the same manner as in Example 252.
- 1H-NMR (CDCl3) δ: 7.70-7.50 (2H, m), 7.54 (1H, s), 6.91 (1H, d, J=8.4 Hz), 4.25-4.10 (4H, m), 3.80-3.70 (4H, m), 3.51 (2H, s), 2.60-2.50 (4H, m), 1.48 (6H, t, J=6.9 Hz)
- A 0.5 g quantity of 4-chloromethyl-2-(3,4-diethoxy phenyl)oxazole obtained in Reference Example 35, 0.28 g of 2-mercaptopyridine and 0.28 g of potassium carbonate were added to 10 ml of dimethylformamide, and the mixture was stirred at room temperature for 24 hours. The reaction mixture was diluted with ethyl acetate, and washed with water and then with saturated brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated by removing the solvent under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate:n-hexane=1:4 to 1:2), and the obtained crude crystals were recrystallized from a mixture of ethyl acetate and n-hexane to give 0.63 g of colorless crystalline 2-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethylsulfanyl] pyridine.
- 1H-NMR (CDCl3) δ: 8.45 (3H, m), 7.60-7.50 (3H, m), 7.47 (1H, m), 7.18 (1H, d, J=8.1 Hz), 6.99 (1H, m), 6.89 (1H, d, J=8.1 Hz), 4.38 (2H, s), 4.17 (2H, q, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 1.47 (6H, t, J=6.9 Hz)
- A 0.58 g quantity of 2-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethylsulfanyl]pyridine obtained in Example 254 was added to 20 ml of dichloromethane. A 0.55 g quantity of m-chloroperbenzoic acid was gradually added thereto with ice-cooling, and the mixture was then stirred. The reaction mixture was diluted with 30 ml of dichloromethane, and washed with an aqueous 10% sodium hydroxide solution and then with saturated brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated by removing the solvent under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate:n-hexane=2:1 to 3:1), and the obtained crude crystals was recrystallized from a mixture of ethyl acetate and n-hexane to give 0.49 g of colorless crystalline 2-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethanesulfonyl]pyridine.
- 1H-NMR (CDCl3) δ: 8.81 (1H, m), 8.00 (1H, m), 7.91 (1H, m), 7.61 (1H, s), 7.55 (1H, m), 7.50-7.40 (2H, m), 6.87 (1H, d, J=8.4 Hz), 4.71 (2H, s), 4.13 (4H, q, J=6.9 Hz), 1.47 (6H, t, J=6.9 Hz)
- A 0.27 g quantity of [2-(3,4-diethoxyphenyl)oxazol-4-yl]methylamine obtained in Reference Example 37 and 0.3 ml of triethylamine were dissolved in 10 ml of acetonitrile. A 0.19 g quantity of o-toluenesulfonylchloride was added thereto, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction mixture, and extraction was performed with ethyl acetate. The organic layer was washed with water twice, and the solvent was removed. The obtained residue was purified using a silica gel column (n-hexane:ethyl acetate=1:1). The obtained crude crystals were recrystallized from a mixture of n-hexane and ethyl acetate to give 0.3 g of white powdery N-[2-(3,4-diethoxyphenyl)oxazol-4-ylmethyl]-2-methylbenzenesulfonamide.
- 1H-NMR (CDCl3) δ: 7.96 (1H, dd, J=7.5, 1.5 Hz), 7.48-7.16 (6H, m), 6.90 (1H, d, J=8.4 Hz), 5.11 (1H, br s), 4.21-4.11 (6H, m), 2.64 (3H, s), 1.52-1.46 (6H, m)
- A 0.5 g quantity of 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one obtained in Example 102 and 0.18 ml of hydrazine monohydrate were added to diethylene glycol. A 0.14 g quantity of potassium hydroxide was added thereto, and the mixture was stirred at 150° C. for 1 hour. The reaction mixture was allowed to cool, water was then added thereto, and extraction was performed with ethyl acetate. Drying was performed with anhydrous magnesium sulfate, and the solvent was removed. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=4:1) to give 0.1 g of colorless oily 2-(3-cyclopropylmethoxy-4-methoxyphenyl)-4-[3-(2-ethoxyphenyl)propyl]oxazole.
- 1H-NMR (CDCl3) δ: 7.58 (1H, dd, J=8.4, 1.8 Hz), 1.51 (1H, d, J=1.8 Hz), 7.39 (1H, s), 7.17-7.12 (2H, m), 6.93-6.81 (3H, m), 4.03 (2H, q, J=6.9 Hz), 3.94-3.92 (5H, m), 2.72 (2H, t, J=7.5 Hz), 2.62 (2H, t, J=7.5 Hz), 2.03-1.96 (2H, m), 1.43-1.25 (4H, m), 0.69-0.63 (2H, m), 0.40-0.35 (2H, m)
- A 1.6 g quantity of sodium hydride was suspended in 100 ml of tetrahydrofuran. A 2.68 g quantity of 1-(2-methylphenyl) ethanone and 6.58 g of 2-(3-benzyloxy-4-methoxyphenyl)-4-chloro methyloxazole obtained in Reference Example 5 were successively added thereto with ice-cooling and stirring, and the mixture was heated and refluxed for 4 hours. An aqueous saturated ammonium chloride solution was added thereto with ice-cooling. After stirring for 15 minutes, water was added thereto, and extraction was performed with ethyl acetate. Drying was then performed with anhydrous magnesium sulfate, and the solvent was removed. The residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=4:1), and 1.6 g of the obtained crude product was dissolved in 20 ml of ethanol. A 0.16 g quantity of 10% palladium-carbon powder was added thereto, and the mixture was stirred under a hydrogen atmosphere for 18 hours. The reaction mixture was filtered, and the obtained filtrate was concentrated. The residue was purified by silica gel column chromatography (dichloromethane:ethanol=100:1) to give 0.47 g of yellow oily 2-(3-hydroxy-4-methoxyphenyl)-4-(3-o-tolyl propyl)oxazole.
- 1H-NMR (CDCl3) δ: 7.60-7.54 (2H, m), 7.38 (1H, s), 7.15-7.08 (4H, m), 6.90 (1H, d, J=8.4 Hz), 5.65 (1H, s), 3.94 (3H, s), 2.72-2.62 (4H, m), 2.37 (3H, s)
- Using 0.47 g of 2-(3-hydroxy-4-methoxyphenyl)-4-(3-o-tolylpropyl)oxazole obtained in Example 258, 0.37 g of colorless oily 2-(3-cyclopropylmethoxy-4-methoxyphenyl)-4-(3-o-tolylpropyl) oxazole was obtained in the same manner as in Example 111.
- 1H-NMR (CDCl3) δ: 7.58 (1H, dd, J=8.1, 2.1 Hz), 7.51 (1H, d, J=2.1 Hz), 7.38 (1H, s), 7.15-7.08 (4H, m), 6.92 (1H, d, J=8.1 Hz), 3.94-3.92 (5H, m), 2.72-2.62 (4H, m), 2.31 (3H, s), 2.04-1.92 (2H, m), 1.40-1.35 (1H, m), 0.69-0.63 (2H, m), 0.40-0.35 (2H, m)
- A 0.21 g quantity of 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one obtained in Example 102 was added to 5 ml of ethanol, and the mixture was stirred with ice-cooling. A 37 mg quantity of sodium borohydride was gradually added thereto. After the temperature of the reaction mixture had reached room temperature, stirring was performed for 2 hours. An aqueous 5N hydrochloric acid solution was added to the reaction mixture, and solvent was then removed. Extraction was performed with dichloromethane, and the extract was washed with saturate brine. The extract was then dried over anhydrous magnesium sulfate, the solvent was removed, and the residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1) to give 0.18 g of colorless oily 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-ol.
- 1H-NMR (CDCl3) δ: 7.58 (1H, dd, J=8.4, 2.1 Hz), 7.50 (1H, d, J=1.8 Hz), 7.39-7.35 (2H, m), 7.23-7.18 (1H, m), 6.97-6.84 (3H, m), 5.00 (1H, br s), 4.07 (2H, q, J=6.6 Hz), 3.94-3.92 (5H, m), 3.44 (1H, br s), 2.80-2.60 (2H, m), 2.20-2.15 (2H, m), 1.43-1.37 (4H, m), 0.69-0.63 (2H, m), 0.40-0.37 (2H, m)
- An 80 mg quantity of 3-[2-(3-isopropoxy-4-methoxy phenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one obtained in Example 139 was dissolved in 3 MI of dimethylformamide. A 0.2 g quantity of sodium hydride was added thereto with ice-cooling and stirring, and the mixture was stirred for 30 minutes. A 75 mg quantity of methyl iodide was added thereto, and the reaction mixture was stirred at room temperature for 8 hours. Water was added to the reaction mixture, and extraction was performed with ethyl acetate. The organic layer was washed with water twice, and the solvent was removed. The obtained residue was purified using a silica gel column (n-hexane:ethyl acetate=3:1) to give 35 mg of colorless oily 3-[2-(3-isopropoxy-4-methoxyphenyl) oxazol-4-yl]-2,2-dimethyl-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.41 (1H, dd, J=4.5, 1.2 Hz), 7.38-7.60 (3H, m), 7.34 (1H, s), 7.21-7.24 (1H, m), 6.90 (1H, d, J=8.7 Hz), 4.63 (1H, sept., J=6.0 Hz), 3.94 (3H, s), 3.15 (2H, s), 2.28 (3H, s), 1.38-1.49 (12H, m)
- Using 0.9 g of methyl 3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}propionate obtained in Reference Example 83, 1.05 g of yellow oily methyl 3-(3-methoxypyridin-2-yl)-2-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy) phenyl]oxazol-4-ylmethyl}-3-oxopropinate was obtained in the same manner as in Example 100.
- 1H-NMR (CDCl3) δ: 8.25 (1H, dd, J=4.5, 1.5 Hz), 7.65 (1H, dd, J=8.4, 2.1 Hz), 7.55 (1H, d, J=2.1 Hz), 7.47-7.33 (3H, m), 6.94 (1H, d, J=8.4 Hz), 5.17 (1H, t, J=6.9 Hz), 4.43 (2H, q, J=8.4 Hz), 3.93 (3H, s), 3.92 (3H, s), 3.65 (3H, s), 3.32-3.23 (2H, m)
- Using 0.7 g of methyl 3-(3-methoxypyridin-2-yl)-2-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}-3-oxopropionate obtained in Example 262, 0.42 g of colorless oily methyl 2-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}-2-methyl-3-(3-methylpyridin-2-yl)-3-oxopropinate was obtained in the same manner as in Example 261.
- 1H-NMR (CDCl3) δ: 8.18 (1H, dd, J=6.9, 1.8 Hz), 7.64 (1H, dd, J=8.4, 2.1 Hz), 7.54 (1H, d, J=2.1 Hz), 7.42-7.34 (3H, m), 6.93 (1H, d, J=8.7 Hz), 4.43 (2H, q, J=8.4 Hz), 3.93 (3H, s), 3.91 (3H, s), 3.64 (3H, s), 3.40 (1H, d, J=15 Hz), 3.26 (1H, d, J=15 Hz)
- Using 0.42 g of methyl 2-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-ylmethyl}-2-methyl-3-(3-methyl pyridin-2-yl)-3-oxopropinate obtained in Example 263, 0.25 g of colorless oily 1-(3-methoxypyridin-2-yl)-3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}-2-methylpropan-1-one was obtained in the same manner as in Example 136.
- 1H-NMR (CDCl3) δ: 8.24 (1H, dd, J=4.5, 1.5 Hz), 7.67 (1H, dd, J=8.4, 2.1 Hz), 7.57 (1H, d, J=2.1 Hz), 7.43-7.28 (3H, m), 6.94 (1H, d, J=8.7 Hz), 4.45 (1H, q, J=8.4 Hz), 4.21 (1H, q, J=6.9 Hz), 3.91 (3H, s), 3.88 (3H, s), 3.15-3.06 (1H, m), 2.73-2.64 (1H, m), 1.23 (3H, d, J=7.2 Hz)
- Using 0.2 g of 1-(3-methoxypyridin-2-yl)-3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}-2-methyl propan-1-one obtained in Example 264, 80 mg of colorless oily 1-(3-methoxypyridin-2-yl)-3-{2-[4-methoxy-3-(2,2,2-trifluoroethoxy)phenyl]oxazol-4-yl}-2,2-dimethylpropan-1-one was obtained in the same manner as in Example 261.
- 1H-NMR (CDCl3) δ: 8.17 (1H, dd, J=4.5, 1.5 Hz), 7.70 (1H, dd, J=8.4, 1.8 Hz), 7.60 (1H, d, J=1.8 Hz), 7.31-7.21 (2H, m), 6.96 (1H, d, J=8.4 Hz), 4.45 (2H, q, J=8.4 Hz), 3.92 (3H, s), 3.78 (3H, s), 3.05 (2H, s), 1.34 (6H, s)
- A 60 ml quantity of trifluoroacetic acid was stirred with ice cooling, 12.3 g of the compound obtained in Example 231 was added thereto, and stirring was conducted for one hour. At the completion of the reaction, the reaction mixture was neutralized by addition of an aqueous saturated sodium bicarbonate solution, and ethyl acetate was added to the obtained mixture. The organic layer was washed twice with water, separated, concentrated under reduced pressure, and the obtained crude crystals were recrystallized from ethanol, thereby yielding 5.9 g of white powdery 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-hydroxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 12.2 (1H, s), 7.81 (1H, d, J=8.1 Hz), 7.62-7.26 (9H, m), 6.99-6.85 (3H, m), 5.19 (2H, s), 3.92 (3H, s), 3.43 (2H, t, J=7.5 Hz), 3.02 (2H, t, J=7.5 Hz)
- Using the compound obtained in Example 266 and chlorodifluoromethane, white powdery 3-[2-(3-benzyloxy-4-methoxy phenyl)oxazol-4-yl]-1-(2-difluoromethoxyphenyl)propan-1-one was obtained following the procedure of Example 19.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.90-6.60 (7H, m), 6.34 (1H, t, J=73.8 Hz), 5.20 (2H, s), 3.92 (3H, s), 3.36 (2H, t, J=7.2 Hz), 2.29 (2H, t, J=7.2 Hz)
- Using 2-fluoroethanol, a colorless oily 2-fluoroethyl methanesulfonate was obtained following the procedure of Reference Example 50.
- 1H-NMR (CDCl3) δ: 4.76-4.73 (1H, m), 4.60-4.58 (1H, m), 4.53-4.50 (1H, m), 4.43-4.41 (1H, m), 3.08 (3H, s)
- Using 2,2-difluoroethanol, colorless oily 2,2-difluoro ethylmethanesulfonate was obtained following the procedure of Reference Example 50.
- 1H-NMR (CDCl3) δ: 6.01 (1H, tt, J=54.3, 3.9 Hz), 4.38 (2H, td, J=12.9, 3.9 Hz), 3.12 (3H, s)
- Using the compound obtained in Example 266 and the compound obtained in Reference Example 84, white powdery 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-[2-(2-fluoroethoxy) phenyl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.8, 1.8 Hz), 7.61-7.59 (2H, m), 7.49-7.31 (7H, m), 7.07 (1H, t, J=7.8 Hz), 6.92 (2H, d, J=8.7 Hz), 5.20 (2H, s), 4.90-4.87 (1H, m), 4.74-4.71 (1H, m), 4.37-4.35 (1H, m), 4.28-4.26 (1H, m), 3.92 (3H, s), 3.44 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz)
- Using the compound obtained in Example 266 and the compound obtained in Reference Example 85, white powdery 3-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-yl]-1-[2-(2,2-difluoroethoxy) phenyl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.8, 1.8 Hz), 7.61-7.28 (9H, m), 7.08 (1H, t, J=7.8 Hz), 6.95-6.89 (2H, m), 6.22 (1H, tt, J=54.9, 3.9 Hz), 5.19 (2H, s), 4.29 (1H, td, 0=12.9, 3.9 Hz), 3.92 (3H, s), 3.38 (2H, t, J=7.5 Hz), 2.98 (2H, t, J=7.5 Hz)
- Using the compound obtained in Example 267, white powdery 1-(2-difluoromethoxyphenyl)-3-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 2.
- 1H-NMR (CDCl3) δ: 7.71 (1H, t, J=7.5 Hz), 7.54-7.41 (4H, m), 7.38-7.16 (2H, m), 6.89 (1H, d, J=8.1 Hz), 6.59 (1H, t, J=74.7 Hz), 5.69 (1H, s), 3.93 (3H, s), 3.36 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz)
- Using the compound obtained in Example 268, white powdery 1-[2-(2-fluoroethoxy)phenyl]-3-[2-(3-hydroxy-4-methoxy phenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 2.
- 1H-NMR (CDCl3) δ: 7.73 (1H, dd, J=7.8, 1.8 Hz), 7.55-7.42 (4H, m), 7.05 (1H, t, J=7.8 Hz), 6.91 (2H, d, J=8.7 Hz), 4.91-4.88 (1H, m), 4.75-4.72 (1H, m), 4.38-4.35 (1H, m), 4.29-4.26 (1H, m), 3.94 (3H, s), 3.43 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz)
- Using the compound obtained in Example 269, white powdery 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 2.
- 1H-NMR (CDCl3) δ: 7.73 (1H, dd, J=7.8, 1.8 Hz), 7.56-7.41 (4H, m), 7.08 (1H, t, J=7.8 Hz), 6.92-6.87 (2H, m), 6.21 (1H, tt, J=54.9, 3.9 Hz), 5.67 (1H, s), 4.29 (1H, td, J=12.9, 3.9 Hz), 3.94 (3H, s), 3.38 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz)
- Using the compound obtained in Example 270 and 2-bromopropane, white powdery 1-(2-difluoromethoxyphenyl)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.70-7.25 (5H, m), 7.20-6.80 (2H, m), 6.59 (1H, t., J=73.5 Hz), 4.64 (1H, m), 3.93 (3H, s), 1.39 (3H, d, J=6.0 Hz)
- Using the compound obtained in Example 270 and ethyl iodide, white powdery 1-(2-difluoromethoxyphenyl)-3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.60-7.46 (3H, m), 7.42 (1H, s), 7.31-7.16 (2H, m), 6.91 (1H, d, J=8.1 Hz), 6.59 (1H, t, J=73.5 Hz), 4.18 (2H, q, J=7.2 Hz), 3.92 (3H, s), 3.37 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.49 (3H, t, J=7.2 Hz)
- Using the compound obtained in Example 271 and 2-bromopropane, white powdery 1-(2-fluoroethoxyphenyl)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.73 (1H, d, J=7.2 Hz), 7.58-7.54 (2H, m), 7.45-7.41 (2H, m), 7.04 (1H, t, J=7.2 Hz), 6.92 (2H, t, J=8.1 Hz), 4.81 (2H, dt, J=47.4, 4.2 Hz), 4.64-4.60 (1H, m), 4.32 (2H, dt, J=23.1, 4.2 Hz), 3.89 (3H, s), 3.43 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.39 (6H, d, J=5.7 Hz)
- Using the compound obtained in Example 271 and 4-bromo-1-butene, white powdery 3-[2-(3-but-3-enyloxy-4-methoxyphenyl) oxazol-4-yl]-1-[2-(2-fluoroethoxy)phenyl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.73 (1H, d, J=7.5 Hz), 7.58-7.53 (2H, m), 7.45-7.42 (2H, m), 7.03 (1H, t, J=7.8 Hz), 6.92 (2H, t, J=8.4 Hz), 6.00-5.84 (1H, m), 5.21-5.09 (2H, m) 4.81 (2H, dt, J=47.4, 4.2 Hz), 4.32 (2H, dt, J=23.1, 4.2 Hz), 4.14 (2H, t, J=7.2 Hz), 3.90 (3H, s), 3.43 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.64-2.61 (2H, m)
- Using the compound obtained in Example 271 and isobutyl bromide, white powdery 1-[2-(2-fluoroethoxy)phenyl]-3-[2-(3-isobutoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.73 (1H, dd, J=7.8, 1.8 Hz), 7.51-7.51 (2H, m), 7.48-7.42 (2H, m), 7.40 (1H, t, J=7.5 Hz), 6.92 (2H, t, J=8.7 Hz), 4.81 (2H, dt, J=47.4, 4.2 Hz), 4.32 (2H, dt, J=23.1, 4.2 Hz), 3.90 (3H, s), 3.84 (2H, d, J=6.9 Hz), 3.43 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.23-2.14 (1H, m), 1.04 (6H, d, J=5.7 Hz)
- Using the compound obtained in Example 272 and 2-bromopropane, white powdery 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.5, 1.8 Hz), 7.59-7.44 (3H, m), 7.41 (1H, s), 7.08 (1H, t, J=7.5 Hz), 6.91 (1H, d, J=8.4 Hz), 6.22 (1H, tt, J=54.6, 3.9 Hz) 4.65 (1H, sept., J=6.0 Hz), 4.29 (2H, td, J=12.9, 3.9 Hz), 3.90 (3H, s) 3.38 (2H, t, J=7.5 Hz) 2.99 (2H, t, J=7.5 Hz) 1.40 (6H, d, J=6.0 Hz)
- Using the compound obtained in Example 272 and 1-bromopropane, white powdery 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(3-propoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.8, 1.8 Hz), 7.61-7.43 (3H, m), 7.41 (1H, s), 7.08 (1H, t, J=7.5 Hz), 6.92-6.89 (2H, m), 6.23 (1H, tt, J=54.6, 3.9 Hz), 4.29 (2H, td, J=12.9, 3.9 Hz), 4.06 (2H, t, J=6.9 Hz), 3.91 (3H, s), 3.38 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz), 1.90 (2H, qt, J=7.2 Hz), 1.06 (3H, t, J=7.2 Hz)
- Using the compound obtained in Example 272 and ethyl iodide, white powdery 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.8, 1.8 Hz), 7.61-7.44 (3H, m), 7.41 (1H, s), 7.08 (1H, t, J=7.8 Hz), 6.93-6.90 (2H, m), 6.23 (1H, tt, J=54.6, 3.9 Hz) 4.29 (2H, td, J=12.9, 3.9 Hz), 4.18 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.38 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz), 1.50 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 272 and ally bromide, white powdery 3-[2-(3-allyloxy-4-methoxyphenyl)oxazol-4-yl]-1-[2-(2,2-difluoroethoxy)phenyl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.8, 1.8 Hz), 7.60-7.44 (3H, m), 7.41 (1H, s), 7.08 (1H, t, J=7.5 Hz), 6.94-6.89 (2H, m), 6.41-6.04 (2H, m), 5.44 (1H, dd, J=17.4, 1.5 Hz), 5.31 (1H, dd, J=10.2, 1.5 Hz), 4.29 (2H, td, J=12.9, 3.9 Hz), 3.92 (3H, s), 3.38 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz)
- Using the compound obtained in Example 272 and 4-bromo-1-butene, white powdery 3-[2-(3-but-3-enyloxy-4-methoxyphenyl) oxazol-4-yl]-1-[2-(2,2-difluoroethoxy)phenyl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.75 (1H, dd, J=7.8, 1.8 Hz), 7.60-7.44 (3H, m), 7.42 (1H, s), 7.09 (1H, t, J=7.5 Hz), 6.93-6.89 (2H, m), 6.23 (1H, tt, J=54.6, 3.9 Hz), 5.99-5.85 (1H, m), 5.23-5.10 (2H, m), 4.29 (2H, td, J=12.9, 3.9 Hz), 4.14 (2H, t, J=7.2 Hz), 3.91 (3H, s), 3.39 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.68-2.60 (2H, m)
- Using the compound obtained in Example 272 and (bromomethyl)cyclopropane, white powdery 3-[2-(3-cyclopropyl methoxy-4-methoxyphenyl)oxazol-4-yl]-1-[2-(2,2-difluoroethoxy) phenyl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.75 (1H, dd, J=7.8, 1.8 Hz), 7.58-7.44 (3H, m), 7.41 (1H, s), 7.09 (1H, t, J=7.5 Hz), 6.93-6.90 (2H, m), 6.24 (1H, tt, J=54.6, 3.9 Hz), 4.29 (2H, td, J=12.9, 3.9 Hz), 3.94-3.91 (5H, m), 3.39 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.43-1.33 (1H, m), 0.70-0.63 (2H, m), 0.41-0.35 (2H, m)
- Using the compound obtained in Example 272 and the compound obtained in Reference Example 85, white powdery 3-{2-[3-(2,2-difluoroethoxy)-4-methoxyphenyl]oxazol-4-yl}-1-[2-(2,2-difluoroethoxy)phenyl]propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.8, 1.8 Hz), 7.65 (1H, dd, J=7.8, 1.8 Hz), 7.50 (1H, d, J=2.1 Hz), 7.50-′7.42 (1H, m), 7.42 (1H, s), 7.08 (1H, t, J=7.5 Hz), 6.96-6.89 (2H, m), 6.42-5.95 (2H, m), 4.35-4.23 (4H, m), 3.92 (3H, s), 3.39 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz)
- Using the compound obtained in Example 272 and isobutyl bromide, white powdery 1-[2-(2,2-difluoroethoxy)phenyl]-3-[2-(3-isobutoxy-4-methoxyphenyl)oxazol-4-yl]-propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (114, d, J=7.5 Hz), 7.57-7.44 (3H, m), 7.41 (1H, s), 7.08 (1H, t, J=7.5 Hz), 6.92-6.89 (2H, m), 6.23 (1H, tt, J=54.6, 3.9 Hz), 4.29 (2H, td, J=12.9, 3.9 Hz), 3.90 (3H, s), 3.85 (2H, d, J=6.6 Hz), 3.38 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz), 2.19 (1H, qt, J=6.6 Hz), 1.05 (6H, d, J=6.6 Hz)
- Using the compound obtained in Reference Example 35 and the compound obtained in Reference Example 70, pale yellow oily 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-methoxymethoxyphenyl) propan-1-one was obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) δ: 7.66 (1H, dd, J=7.8, 1.8 Hz), 7.56-7.38 (3H, m), 7.17 (1H, d, J=8.4 Hz), 7.04 (1H, t, J=7.5 Hz), 6.92-6.88 (2H, m), 5.26 (2H, s), 4.21-4.08 (4H, m), 3.49 (3H, s), 3.40 (2H, t, J=1.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.51-1.45 (6H, m)
- Using the compound obtained in Example 286, white powdery 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-hydroxyphenyl) propan-1-one was obtained following the procedure of Example 266.
- 1H-NMR (CDCl3) δ: 12.25 (1H, s), 7.82 (1H, dd, J=8.1, 1.5 Hz), 7.60-7.43 (4H, m), 6.98 (1H, d, J=8.4 Hz), 6.92-6.86 (2H, m), 4.21-4.10 (4H, m), 3.44 (2H, t, J=7.2 Hz), 3.03 (2H, t, J=7.2 Hz), 1.51-1.43 (6H, m)
- Using the compound obtained in Example 287 and chlorodifluoromethane, white powdery 3-[2-(3,4-diethoxyphenyl oxazol-4-yl)-1-(2-difluoromethoxyphenyl)propan-1-one was obtained following the procedure of Example 19.
- 1H-NMR (CDCl3) δ: 7.51 (1H, d, J=8.7 Hz), 7.60-7.45 (3H, m), 7.30 (1H, s), 7.28-7.19 (2H, m), 6.90 (1H, d, J=8.7 Hz), 6.58 (1H, t, J=75 Hz), 4.15 (4H, q, J=7.2 Hz) 3.36 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.41 (6H, t, J=7.2 Hz)
- Using the compound obtained in Example 287 and the compound obtained in Reference Example 84, white powdery 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-[2-(2-fluoroethoxy)phenyl] propan-1-one was obtained following the procedure of Example 3. 1H-NMR (CDCl3) δ: 1.14 (1H, dd, J=7.8, 1.8 Hz), 7.56-7.41 (4H, m), 7.04 (1H, td, J=7.5, 0.9 Hz), 6.95-6.88 (2H, m), 4.81 (2H, dt, J=47.1, 4.2 Hz), 4.32 (2H, dt, J=27.3, 4.2 Hz), 4.21-4.10 (4H, m), 3.43 (2H, t, J=7.2 Hz) 3.00 (2H, t, J=7.2 Hz) 1.50-1.45 (6H, m)
- Using the compound obtained in Example 287 and the compound obtained in Reference Example 85, white powdery 3-(2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-[2-(2,2-difluoroethoxy)phenyl] propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.5, 1.8 Hz), 7.56-7.43 (3H, m), 7.41 (1H, s), 7.08 (1H, t, J=7.5 Hz), 6.90 (1H, d, J=7.8 Hz), 6.23 (1H, tt, J=54.9, 3.9 Hz), 4.29 (2H, td, J=13.2, 3.9 Hz), 4.21-4.10 (4H, m), 3.38 (2H, t, J=7.5 Hz) 2.98 (2H, t, J=7.5 Hz), 1.50-1.45 (6H, m)
- A 0.2 g quantity of the compound obtained in Example 223 and 0.1 ml of triethylamine were dissolved in 5 ml of dichloromethane, 0.1 ml of acetyl chloride was added to the obtained solution, and the mixture was stirred for 6 hours at room temperature. At the completion of the reaction, water was added to the reaction mixture, and the obtained mixture was extracted with ethyl acetate. The organic layer was washed twice with water, and the solvent was distilled off. The residue was purified using a silica gel column (n-hexane:ethyl acetate=2:1), and the obtained crude crystals were recrystallized with ethanol, thereby yielding 15 mg of white powdery 2-{3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propionyl}phenyl acetate.
- 1H-NMR (CDCl3) δ: 7.83 (1H, dd, J=7.8, 1.5 Hz), 7.60-7.50 (3H, m), 7.42 (1H, s), 7.34-7.28 (1H, m), 7.12 (1H, dd, J=8.1, 0.9 Hz), 6.92 (1H, d, J=8.4 Hz), 4.69-4.61 (1H, m), 3.90 (3H, s), 3.32 (2H, t, J=7.2 Hz), 2.97 (2H, t, J=7.2 Hz), 2.35 (3H, s), 1.40 (6H, d, J=6.0 Hz)
- Using the compound obtained in Reference Example 35 and 1-(2-trifluoromethoxyphenyl)ethanone, white powdery 3-[2-(3,4-diethoxyphenyl)oxazol-4-yl]-1-(2-trifluoromethoxyphenyl)propan-1-one was obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.58-7.41 (3H, m), 7.38 (1H, s), 7.35-7.29 (2H, m), 6.90 (1H, d, J=8.4 Hz), 4.20-4.10 (4H, m), 3.34 (2H, t, J=6.9 Hz), 3.00 (2H, t, J=6.9 Hz), 1.48 (6H, t, J=6.9 Hz)
- Using the compound obtained in Reference Example 11 and 1-(2-trifluoromethoxyphenyl)ethanone, white powdery 3-[2-(3-cyclopropylmethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-trifluoro methoxyphenyl)propan-1-one was obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) δ: 7.70 (1H, d, J=8.7 Hz), 7.57-7.53 (3H, m), 7.49 (1H, s), 7.42-7.30 (2H, m), 6.90 (1H, d, J=8.7 Hz), 3.94-3.91 (5H, m), 3.34 (2H, t, J=7.2 Hz) 3.00 (2H, t, J=7.2 Hz), 1.42-1.30 (1H, m), 0.67-0.64 (2H, m), 0.40-0.36 (2H, m)
- Using the compound obtained in Reference Example 35 and the corresponding acetophenone derivatives, compounds of Examples 294 to 299 were obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) □: 7.57-7.52 (2H, m), 7.40 (1H, s), 7.01 (1H, dd, J=9.0, 3.3 Hz), 6.90 (2H, t, J=8.4 Hz), 4.20-4.10 (4H, m), 3.85 (3H, s), 3.78 (3H, s), 3.39 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.47 (6H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.61-7.49 (3H, m), 7.40 (1H, s), 7.25-7.20 (2H, m), 6.90 (1H, d, J=8.1 Hz), 6.83 (1H, d, J=8.4 Hz), 4.21-4.06 (6H, m), 3.41 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz), 2.28 (3H, s), 1.53-1.40 (9H, m)
- 1H-NMR (CDCl3) δ: 7.63 (1H, d, J=8.4 Hz), 7.54 (1H, dd, J=8.4, 1.8 Hz), 7.51 (1H, d, J=1.8 Hz), 7.42 (1H, s), 7.06-7.02 (2H, m), 6.90 (1H, d, J=8.4 Hz), 4.17 (2H, q, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 3.30 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.49 (3H, s), 2.34 (3H, s), 1.48 (6H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.55 (1H, br s, J=8.7 Hz), 7.52 (1H, br s), 7.44 (1H, br d, J=8.7 Hz), 7.17-7.09 (2H, m), 6.90 (1H, d, J=8.7 Hz), 4.17 (2H, q, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 3.29 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 2.44 (3H, s), 2.33 (3H, s), 1.47 (6H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.66 (1H, d, J=7.8 Hz), 7.60-7.51 (2H, m), 7.39 (1H, s), 6.90 (1H, d, J=8.4 Hz), 6.79 (1H, d, J=8.4 Hz), 6.73 (1H, s), 4.21-4.08 (6H, m), 3.40 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 2.36 (3H, s), 1.53-1.45 (9H, m)
- 1H-NMR (CDCl3) δ: 7.78 (1H, dd, J=8.7, 7.2 Hz), 7.54 (1H, dd, J=8.4, 2.1 Hz), 7.51 (1H, d, J=2.1 Hz), 7.39 (1H, br s), 6.90 (1H, d, J=8.4 Hz), 6.71-6.61 (2H, m), 4.16 (2H, q, J=6.9 Hz), 4.14 (2H, q, J=6.9 Hz), 4.11 (2H, q, J=6.9 Hz), 3.39 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.49 (3H, t, J=6.9 Hz), 1.47 (6H, t, J=6.9 Hz)
- The compound obtained in Reference Example 54 and methyl (2-methoxymethyl)benzoate were used and treated following the procedure of Example 100, followed by treatment according to Reference Example 48, yielding white powdery 3-[2-(3,4-diethoxy phenyl)oxazol-4-yl]-1-(2-methoxymethylphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.74 (1H, dd, J=7.8, 1.2 Hz), 7.64-7.27 (6H, m), 6.91 (1H, d, J=8.4 Hz), 4.73 (2H, s), 4.21-4.10 (4H, m), 3.43 (3H, s), 3.34 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.51-1.43 (6H, m)
- Using the compound obtained in Reference Example 54 and the corresponding methyl benzoate derivatives, compounds of Examples 301 to 303 were obtained following the procedure of the Example 300.
- 1H-NMR (CDCl3) δ: 7.62-7.51 (4H, m), 7.43 (1H, s), 7.38-7.30 (2H, m), 6.90 (1H, d, J=8.7 Hz), 4.18-4.13 (4H, m), 3.31 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.81 (2H, q, J=7.5 Hz), 1.48 (6H, t, J=6.9 Hz), 1.20 (3H, t, J=7.5 Hz)
- 1H-NMR (CDCl3) δ: 7.56-7.51 (2H, m), 7.41 (1H, s), 7.18-7.01 (3H, m), 6.90 (1H, d, J=8.4 Hz), 4.21-4.10 (4H, m), 3.89 (6H, s), 3.38 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.48 (6H, t, J=6.9 Hz)
- 1H-NMR (CDCl3) δ: 7.55-7.51 (2H, m), 7.40 (1H, s), 7.36-7.29 (2H, m), 7.04 (1H, t, J=7.2 Hz), 6.90 (1H, d, J=8.1 Hz), 4.20-4.11 (4H, m), 3.83 (2H, q, J=7.5 Hz), 3.39 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 2.30 (3H, s), 1.48 (6H, t, J=6.9 Hz), 1.26 (3H, t, J=6.9 Hz)
- Using the compound obtained in Reference Example 58 and 1-(2-ethoxy-4-fluorophenyl)ethanone, pale yellow powdery 1-(2-ethoxy-4-fluorophenyl)-3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) δ: 7.77 (1H, t, J=7.8 Hz), 7.56 (1H, dd, J=8.4, 1.8 Hz), 7.51 (1H, d, J=1.8 Hz), 7.40 (1H, s), 6.91 (1H, d, J=8.4 Hz), 6.71-6.61 (2H, m), 4.21-4.07 (4H, m), 3.92 (3H, s), 3.39 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.52-1.47 (6H, m)
- Using the compound obtained in Reference Example 58 and 1-(4-fluoro-2-isopropoxyphenyl)ethanone, colorless oily 3-[2-(3-ethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(4-fluoro-2-isopropoxy phenyl)propan-1-one was obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) δ: 1.77 (1H, t, J=7.8 Hz), 7.57 (1H, dd, J=8.4, 1.8 Hz), 7.51 (1H, d, J=1.8 Hz), 7.40 (1H, s), 6.91 (1H, d, J=8.4 Hz), 6.71-6.61 (2H, m), 4.63 (1H, sept, J=6.0 Hz), 4.18 (2H, q, J=6.9 Hz), 3.92 (3H, s), 3.38 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 1.50 (3H, t, J=6.9 Hz), 1.42 (6H, d, J=6.0 Hz)
- Using the compound obtained in Reference Example 68 and 1-(2-ethoxy-5-methylphenyl)ethanone, white powdery 1-(2-ethoxy-5-methylphenyl)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl]propan-1-one was obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) δ: 7.60-7.40 (3H, m), 1.39 (1H, s), 7.24-7.19 (1H, m), 6.91 (1H, d, J=8.1 Hz), 6.83 (1H, d, J=8.4 Hz), 4.69-4.58 (1H, m), 4.10 (2H, q, J=6.9 Hz), 3.89 (3H, s), 3.41 (2H, t, J=7.2 Hz), 2.98 (2H, t, J=7.2 Hz), 2.29 (3H, s), 1.48-1.38 (9H, m)
- Using the compound obtained in Reference Example 68 and 1-(2-ethoxy-4-methylphenyl)ethanone, white powdery 1-(2-ethoxy-4-methylphenyl)-3-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-yl] propan-1-one was obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) δ: 7.66 (1H, d, J=8.1 Hz), 7.59-7.53 (2H, m), 7.39 (1H, s), 6.91 (1H, d, J=8.4 Hz), 6.79 (1H, d, J=8.1 Hz), 6.73 (1H, s), 4.58-4.71 (1H, m), 4.12 (2H, q, J=6.9 Hz), 3.90 (1H, s) 3.40 (2H, t, J=7.5 Hz), 2.98 (2H, t, J=7.5 Hz), 2.36 (3H, s), 1.48 (3H, t, J=6.9 Hz), 1.40 (6H, d, J=6.0 Hz)
- Using the compound obtained in Example 136 and chlorodifluoromethane, white powdery 3-[2-(3-difluoromethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 4.
- 1H-NMR (CDCl3) δ: 8.50 (1H, m), 7.83 (1H, dd, J=8.4, 2.1 Hz), 7.78 (1H, d, J=2.1 Hz), 7.58 (1H, d, J=7.8 Hz), 7.47 (1H, s), 7.32 (1H, m), 7.00 (1H, d, J=8.4 Hz), 6.58 (1H, t, J=74.7 Hz), 3.93 (3H, s), 3.59 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.57 (3H, s)
- Using the compound obtained in Example 136 and the compound obtained in Reference Example 85, white powdery 3-{2-[3-(2,2-difluoroethoxy)-4-methoxyphenyl]oxazol-4-yl}-1-(3-methyl pyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 0.9 Hz), 7.66 (1H, dd, J=8.4, 2.1 Hz), 7.60-7.54 (2H, m), 7.46 (1H, s), 7.35-1.31 (1H, m), 6.94 (1H, d, J=8.7 Hz), 6.16 (1H, tt, J=54.9, 1.2 Hz) 4.29 (2H, td, J=12.9, 1.2 Hz), 3.92 (3H, s), 3.61 (2H, t, J=6.9 Hz), 3.01 (2H, t, J=6.9 Hz), 2.58 (3H, s)
- Using the compound obtained in Example 136 and the compound obtained in Reference Example 84, white powdery 3-{2-[3-(2-fluoroethoxy)-4-methoxyphenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50-8.49 (1H, m), 7.63-7.54 (3H, m), 7.45 (1H, s), 7.34-7.27 (1H, m), 6.93 (1H, d, J=8.7 Hz), 4.88 (1H, t, J=4.2 Hz), 4.72 (1H, t, J=4.2 Hz) 4.39 (1H, t, J=4.2 Hz), 4.30 (1H, t, J=4.2 Hz), 3.92 (3H, s), 3.60 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.57 (3H, s)
- Using the compound obtained in Example 136 and 2-bromobutane, yellow oily 3-[2-(3-sec-butoxy-4-methoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.59-7.55 (3H, m), 7.54 (1H, s), 7.45-7.30 (1H, m), 6.91 (1H, d, J=8.4 Hz), 4.43-4.37 (1H, m), 3.89 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 1.86-1.62 (2H, m), 1.34 (3H, d, J=6.6 Hz), 1.00 (3H, t, J=6.6 Hz)
- Using the compound obtained in Example 136 and 3-bromopentane, white powdery 3-{2-[3-(1-ethylpropoxy)-4-methoxy phenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.61-7.53 (3H, m), 7.45 (1H, s), 7.34-7.30 (1H, m), 6.91 (1H, d, J=8.1 Hz), 4.28-4.20 (1H, m), 3.89 (3H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 1.78-1.68 (4H, m), 0.98 (6H, t, J=6.6 Hz)
- Using the compound obtained in Example 101 and chlorodifluoromethane, white powdery 3-[2-(3-difluoromethoxy-4-methoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one was obtained following the procedure of Example 4.
- 1H-NMR (CDCl3) δ: 7.85-7.80 (2H, m), 7.70 (1H, m), 7.50-7.40 (2H, m), 7.0-6.9 (3H, m), 6.58 (1H, t, J=74.4 Hz), 4.14 (2H, q, J=6.9 Hz), 3.93 (3H, s), 3.42 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.48 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 101 and the compound obtained in Reference Example 85, white powdery 3-{2-[4-(2,2-difluoroethoxy)-4-methoxyphenyl]oxazol-4-yl}-1-(2-ethoxy phenyl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.73-7.63 (2H, m), 7.55 (1H, d, J=2.1 Hz), 7.46-7.39 (2H, m), 7.01-6.91 (3H, m), 6.16 (1H, tt, J=54.9, 1.2 Hz), 4.29 (2H, td, J=12.9, 1.2 Hz), 4.14 (2H, q, J=6.9 Hz), 3.91 (3H, s), 3.43 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.48 (3H, t, J=7.2 Hz)
- Using the compound obtained in Example 101 and the compound obtained in Reference Example 84, white powdery 1-(2-ethoxyphenyl)-3-{2-[3-(2-fluoroethoxy)-4-methoxyphenyl]oxazol-4-yl}propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) 7.69 (1H, dd, J=7.8, 1.8 Hz), 7.61 (1H, dd, J=8.4, 1.8 Hz), 7.55 (1H, s), 7.44-7.39 (2H, m), 7.00-6.91 (3H, m), 4.81 (2H, dt, J=47.4, 4.2 Hz), 4.32 (2H, dt, J=23.1, 4.2 Hz), 4.17-4.10 (2H, m), 3.90 (3H, s), 3.41 (2H, t, J=7.2 Hz), 2.99 (2H, t, J=7.2 Hz), 1.46 (3H, t, J=5.7 Hz)
- Using the compound obtained in Reference Example 59 and the compound obtained in Reference Example 85, white powdery ethyl 4-benzyloxy-3-(2,2-difluoroethoxy)benzoate was obtained following the procedure of Example 4.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=8.4, 2.1 Hz), 7.61 (1H, d, J=2.1 Hz), 7.44-7.29 (5H, m), 6.95 (1H, d, J=8.4 Hz), 6.11 (1H, tt, J=54.9, 4.2 Hz), 5.19 (2H, s), 4.38-4.21 (4H, m), 1.39 (3H, t, J=7.2 Hz)
- Using the compound obtained in Reference Example 86, white powdery 4-benzyloxy-3-(2,2-difluoroethoxy)benzoic acid was obtained following the procedure of Reference Example 3. 1H-NMR (DMSO d6) δ: 7.61 (1H, dd, J=8.4, 1.8 Hz), 7.54 (1H, d, J=1.8 Hz), 7.50-7.30 (5H, m), 7.18 (1H, d, J=8.4 Hz), 6.38 (1H, tt, J=54.3, 3.6 Hz), 5.22 (2H, s), 4.37 (2H, td, J=14.7, 3.6 Hz)
- Using the compound obtained in Reference Example 87, white powdery 4-benzyloxy-3-(2,2-difluoroethoxy)benzamide was obtained following the procedure of Reference Example 4.
- 1H-NMR (DMSO d6) δ: 7.86 (1H, br s), 7.56-7.29 (7H, m), 7.25 (1H, br s), 7.14 (1H, d, J=8.4 Hz), 6.40 (1H, tt, J=54.3, 3.6 Hz), 5.20 (2H, s), 4.34 (2H, td, J=14.7, 3.6 Hz)
- Using the compound obtained in Reference Example 88, white powdery 2-[4-benzyloxy-3-(2,2-difluoroethoxy)phenyl]-4-chloromethyloxazole was obtained following the procedure of Reference Example 5.
- 1H-NMR (CDCl3) δ: 7.68-1.60 (3H, m), 7.45-7.30 (5H, m), 7.01 (1H, d, J=8.4 Hz), 6.12 (1H, tt, J=54.9, 4.2 Hz) 5.18 (2H, s), 4.56 (2H, s), 4.30 (2H, td, J=13.2, 4.2 Hz)
- Using the compound obtained in Reference Example 89, white powdery dimethyl 2-{2-[4-benzyloxy-3-(2,2-difluoroethoxy) phenyl]oxazol-4-ylmethyl}malonate was obtained following the procedure of Reference Example 47.
- 1H-NMR (CDCl3) δ: 7.63-7.57 (2H, m), 7.45-7.30 (6H, m), 6.99 (1H, d, J=8.1 Hz), 6.12 (1H, tt, J=54.9, 4.2 Hz), 5.18 (2H, s), 4.29 (2H, td, J=13.2, 4.2 Hz), 3.89 (2H, t, J=7.5 Hz), 3.75 (6H, s), 3.18 (2H, t, J=1.5 Hz)
- Using the compound obtained in Reference Example 90, brownish oily methyl 3-{2-[4-benzyloxy-3-(2,2-difluoro ethoxy)phenyl]oxazol-4-yl}-propionate was obtained following the procedure of Reference Example 48.
- 1H-NMR (CDCl3) δ: 7.64-1.59 (2H, m), 1.42-7.33 (6H, m), 6.99 (1H, d, J=8.1 Hz), 6.12 (1H, tt, J=54.9, 4.2 Hz), 5.18 (2H, s), 4.29 (2H, td, J=13.2, 4.2 Hz), 3.68 (3H, s), 2.91 (2H, t, J=7.5 Hz), 2.72 (2H, t, J=7.5 Hz)
- Using the compound obtained in Reference Example 91, pale yellow oily methyl 2-{2-[4-benzyloxy-3-(2,2-difluoroethoxy)-phenyl]oxazol-4-ylmethyl}-3-(3-methylpyridin-2-yl)-3-oxo-propionate was obtained following the procedure of Example 100.
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.5 Hz), 7.60-7.52 (3H, m), 7.46-7.30 (7H, m), 6.97 (1H, d, J=8.1 Hz), 6.11 (1H, tt, J=54.9, 4.2 Hz), 5.24-5.16 (3H, m), 4.21 (2H, td, J=13.2, 4.2 Hz), 3.66 (3H, s), 3.34-3.22 (2H, m), 2.60 (3H, s)
- Using the compound obtained in Example 316, white powdery 3-{2-[3-(2,2-difluoroethoxy)-4-hydroxyphenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 136.
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.5 Hz), 1.61-1.57 (2H, m), 7.52 (1H, s), 7.45 (1H, s), 7.34-1.30 (1H, m), 7.00 (1H, d, J=8.1 Hz), 6.11 (1H, tt, J=54.9, 4.2 Hz), 6.07 (1H, s), 4.32 (2H, td, J=13.2, 4.2 Hz), 3.59 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 2.57 (3H, s)
- Using the compound obtained in Example 317 and methyl iodide, white powdery 3-{2-[3-(2,2-difluoroethoxy)-4-ethoxyphenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)-propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.51 (1H, d, J=4.5 Hz), 7.66-7.57 (3H, m), 1.46 (1H, s), 1.34-1.30 (1H, m), 6.94 (1H, d, J=8.4 Hz), 6.14 (1H, tt, J=54.6, 3.9 Hz), 4.28 (2H, td, J=12.9, 3.9 Hz), 4.13 (2H, q, J=6.9 Hz), 3.60 (2H, t, J=7.5 Hz), 3.02 (2H, t, -7.5 Hz), 2.57 (3H, s), 1.47 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 317 and 2-bromopropane, white powdery 3-{2-[3-(2,2-difluoroethoxy)-4-isopropoxyphenyl]oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.51 (1H, d, J=4.5 Hz), 7.65-7.57 (3H, m), 7.46 (1H, s), 7.34-7.30 (1H, m), 6.95 (1H, d, J=8.4 Hz), 6.12 (1H, tt, J=54.6, 3.9 Hz), 4.62-4.54 (1H, m), 4.26 (2H, td, J=12.9, 3.9 Hz), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 1.37 (6H, d, J=6.0 Hz)
- Using the compound obtained in Reference Example 7 and 2-difluoromethoxy benzoic acid, white powdery N-[2-(3-benzyloxy-4-methoxyphenyl)oxazol-4-ylmethyl]-2-difluoromethoxybenzamide was obtained following the procedure of Example 1.
- 1H-NMR (CDCl3) δ: 8.10 (1H, dd, J=7.8, 1.8 Hz), 7.64-7.57 (3H, m), 7.51-7.45 (4H, m), 7.40-7.26 (4H, m), 7.15 (1H, d, J=8.4 Hz), 6.95 (1H, d, J=9.0 Hz), 6.59 (1H, t, J=72.9 Hz), 5.20 (2H, s), 4.61 (2H, d, J=5.4 Hz), 3.93 (3H, s)
- Using the compound obtained in Example 320, white powdery 2-difluoromethoxy-N-[2-(3-hydroxy-4-methoxyphenyl)oxazol-4-ylmethyl]-benzamide was obtained following the procedure of Example 2.
- 1H-NMR (CDCl3) δ: 8.09 (1H, d, J=7.8 Hz), 7.64-7.45 (5H, m), 7.32 (1H, t, J=7.8 Hz), 7.15 (1H, d, J=7.8 Hz), 6.91 (1H, d, J=8.4 Hz), 6.60 (1H, t, J=72.9 Hz), 5.77 (1H, s), 4.61 (2H, d, J=5.1 Hz), 3.94 (3H, s)
- Using the compound obtained in Example 321 and allyl bromide, white powdery N-[2-(3-allyloxy-4-methoxyphenyl)-oxazol-4-ylmethyl]-2-difluoromethoxybenzamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.10 (1H, d, J=1.8 Hz), 1.64-7.30 (6H, m), 7.15 (1H, d, J=8.4 Hz), 6.94 (1H, d, J=8.1 Hz), 6.61 (1H, t, J=75 Hz), 6.17-6.08 (1H, m), 5.45 (1H, dd, J=17.1, 1.5 Hz), 5.32 (1H, dd, J=10.5, 1.5 Hz), 4.70 (2H, t, J=5.4 Hz), 4.62 (2H, t, J=5.4 Hz), 3.93 (3H, s)
- Using the compound obtained in Example 321 and 2-bromopropane, white powdery 2-difluoromethoxy-N-[2-(3-isopropoxy-4-methoxyphenyl)oxazol-4-ylmethyl]benzamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.10 (1H, d, J=7.8 Hz), 7.64-7.30 (6H, m), 7.15 (1H, d, J=8.4 Hz), 6.94 (1H, d, J=8.1 Hz), 6.61 (1H, t, J=75 Hz), 4.70-4.61 (5H, m), 3.91 (3H, s), 1.39 (6H, d, J=6.0 Hz)
- Using the compound obtained in Example 17 and 3-bromopentane, white powdery N-{2-[3-(1-ethylpropoxy)-4-methoxy phenyl]oxazol-4-ylmethyl}-3-methylpicolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, d, J=4.5 Hz), 7.63-7.55 (4H, m), 7.32-7.28 (1H, m), 6.92 (1H, d, J=8.4 Hz), 4.59 (2H, d, J=6.0 Hz), 4.28-4.20 (1H, m), 3.90 (3H, s), 2.76 (3H, s), 1.82-1.68 (4H, m), 0.99 (6H, t, J=7.5 Hz)
- Using the compound obtained in Example 2 and 3-bromopentane, white powdery 2-ethoxy-N-{2-[3-(1-ethylpropoxy)-4-methoxyphenyl]oxazol-4-ylmethyl}benzamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s), 8.24 (1H, dd, J=8.1, 1.8 Hz), 7.62-7.56 (3H, m), 7.45-7.39 (1H, m), 7.07 (1H, t, J=8.1 Hz), 6.96-6.91 (2H, m), 4.63 (2H, dd, J=5.4, 0.9 Hz), 4.26-4.14 (3H, m), 3.90 (3H, s), 1.79-1.69 (4H, m), 1.49 (3H, t, J=7.2 Hz), 1.00 (6H, t, J=7.2 Hz)
- Using the compound obtained in Reference Example 44, colorless oily dimethyl 2-[2-(3-benzyloxy-4-difluoromethoxy phenyl)oxazol-4-ylmethyl]malonate was obtained following the procedure of Reference Example 47.
- 1H-NMR (CDCl3) δ: 7.70 (1H, s), 7.59 (1H, d, J=7.8 Hz), 7.48-7.22 (6H, m), 6.62 (1H, t, J=74.7 Hz), 5.21 (2H, s), 3.90 (1H, t, J=7.5 Hz), 3.73 (6H, s), 3.20 (2H, t, J=7.5 Hz)
- Using the compound obtained in Reference Example 92, pale yellow oily methyl 3-[2-(3-benzyloxy-4-difluoromethoxy phenyl)oxazol-4-yl]propionate was obtained following the procedure of Reference Example 48.
- 1H-NMR (CDCl3) δ: 7.71 (1H, d, J=1.8 Hz), 7.48-7.31 (6H, m), 7.24 (1H, d, J=8.4 Hz), 6.62 (1H, t, J=74.7 Hz), 5.21 (2H, s), 3.70 (3H, s), 2.93 (2H, t, J=7.2 Hz), 2.71 (2H, t, J=7.2 Hz)
- Using the compound obtained in Reference Example 93, colorless oily methyl 2-[2-(3-benzyloxy-4-difluoromethoxy phenyl)oxazol-4-ylmethyl]-3-(3-methylpyridin-2-yl)-3-oxo propionate was obtained following the procedure of Example 100.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.8, 1.2 Hz), 7.67-7.30 (10H, m), 7.21 (1H, d, J=8.4 Hz), 6.60 (1H, t, J=74.7 Hz), 5.18 (2H, s), 4.11 (1H, t, J=7.2 Hz), 3.65 (3H, s), 3.45-3.20 (2H, m), 2.60 (3H, s)
- The compound obtained in Example 326 was used and treated following the procedure of Example 125, followed by treatment according to the procedure of Example 2, yielding white powdery 3-[2-(4-difluoromethoxy-3-hydroxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.67-7.45 (4H, m), 7.33-7.30 (1H, m), 7.16 (1H, d, J=8.1 Hz), 6.58 (1H, t, J=75 Hz), 5.76 (1H, s), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s)
- A 0.15 quantity of the compound obtained in Example 327 and 0.18 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 3 ml of ethanol, 0.15 g of (bromomethyl)cyclopropane was then added to the obtained solution, and the obtained mixture was heated and refluxed overnight. After cooling, water was added to the obtained reaction mixture, and ethyl acetate extraction was performed. The organic layer was washed twice with water and concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from aqueous 80% ethanol, thereby yielding 42 mg of white powdery 3-[2-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.51 (1H, dd, J=4.8, 1.2 Hz), 7.60-7.53 (3H, m), 7.50 (1H, s), 7.35-7.31 (1H, m), 7.21 (1H, d, J=8.1 Hz), 6.68 (1H, t, J=75.3 Hz), 3.95 (2H, d, J=6.9 Hz), 3.60 (2H, t, J=7.5 Hz), 3.02 (2H, t, J=7.5 Hz), 2.58 (3H, s), 1.37-1.25 (1H, m), 0.69-0.63 (2H, m), 0.40-0.34 (2H, m)
- A 80 mg quantity of the compound obtained in Example 327 and 0.09 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 2 ml of ethanol, 80 mg of 1-bromopropane was then added to the obtained solution, and heated and refluxed overnight. After cooling, water was added to the obtained reaction mixture, and ethyl acetate extraction was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from aqueous 80% ethanol, thereby yielding 25 mg of white powdery 3-[2-(4-difluoromethoxy-3-propoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.51 (1H, dd, J=4.8, 1.2 Hz), 7.61-7.53 (3H, m), 7.50 (1H, s), 7.35-7.31 (1H, m), 7.20 (1H, d, J=8.1 Hz), 6.61 (1H, t, J=75 Hz), 4.07 (2H, t, J=6.6 Hz), 3.60 (2H, t, J=7.5 Hz), 3.02 (2H, t, J=1.5 Hz), 2.58 (3H, s), 1.87 (2H, td, J=7.5, 6.6 Hz), 1.07 (3H, t, J=1.5 Hz)
- A 0.15 g quantity of the compound obtained in Example 327 and 0.18 ml of 1,8-diazabicyclo[5,4,0]undec-1-ene were dissolved in 3 ml of ethanol, 0.15 g of allyl bromide was then added to the obtained solution, and heating and refluxing were conducted for 2 hours. After cooling, water was added to the obtained reaction mixture, and ethyl acetate was performed. The organic layer was washed twice with water, concentrated, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from aqueous 80% ethanol, thereby yielding 70 mg of white powdery 3-[2-(3-allyloxy-4-difluoromethoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one.
- 1H-NMR (CDCl3) δ: 8.51 (1H, dd, J=4.5, 1.2 Hz), 7.62-7.56 (3H, m), 7.50 (1H, s), 7.50-7.31 (1H, m), 7.22 (1H, d, J=8.4 Hz), 6.62 (1H, t, J=75 Hz), 6.12-6.02 (1H, m), 5.46 (1H, dd, J=17.4, 1.5 Hz), 5.33 (1H, dd, J=10.8, 1.5 Hz), 4.68 (2H, d, J=8.1 Hz), 3.61 (2H, t, J=7.2 Hz), 3.02 (2H, t, J=7.2 Hz), 2.58 (3H, s)
- An 80 mg quantity of the compound obtained in Example 327 and 0.09 ml of 1,8-diazabicyclo[5,4,0]undec-7-ene were dissolved in 2 ml of ethanol, and 80 mg of 4-bromo-1-butene was then added to the obtained solution, and heating and refluxing were conducted overnight. After cooling, water was added to the obtained reaction mixture, and ethyl acetate extraction was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from aqueous 80% ethanol, thereby yielding 22 mg of white powdery 3-[2-(3-but-3-enyloxy-4-difluoromethoxyphenyl)-oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one
- 1H-NMR (CDCl3) δ: 8.51 (1H, dd, J=4.8, 1.2 Hz), 7.61-7.54 (3H, m), 7.50 (1H, s), 7.35-7.31 (1H, m), 7.20 (1H, d, J=8.4 Hz), 6.62 (1H, t, J=75 Hz), 5.98-5.83 (1H, m), 5.24-5.12 (2H, m), 4.16 (2H, t, J=6.6 Hz), 3.61 (2H, t, J=7.2 Hz), 3.03 (2H, t, J=7.2 Hz), 2.64-2.58 (5H, m)
- A 0.15 g quantity of the compound obtained in Example 327 and 0.18 ml of DBU were dissolved in 3 ml of ethanol, 0.15 g of 2-bromopropane was then added to the obtained solution, and heating and refluxing were conducted overnight. After cooling, water was added to the reaction mixture, and ethyl acetate extraction was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from aqueous 80% ethanol, thereby yielding 70 mg of white powdery 3-[2-(4-difluoromethoxy-3-isopropoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one
- 1H-NMR (CDCl3) δ: 8.51 (1H, dd, J=4.8, 0.9 Hz), 7.63-7.53 (3H, m), 7.50 (1H, s), 7.35-7.31 (1H, m), 7.20 (1H, d, J=8.1 Hz), 6.61 (1H, t, J=75 Hz), 4.73-4.65 (1H, m), 3.61 (2H, t, J=7.2 Hz), 3.02 (2H, t, J=7.2 Hz), 2.58 (3H, s), 1.39 (6H, d, J=6.0 Hz)
- Using the compound obtained in Example 327 and ethyl iodide, white powdery 3-[2-(4-difluoromethoxy-3-ethoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 330.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.5, 1.2 Hz), 7.61-7.49 (4H, m), 7.35-7.30 (1H, m), 7.20 (1H, d, J=8.4 Hz), 6.62 (1H, t, J=75 Hz), 4.18 (2H, q, J=6.9 Hz), 3.61 (2H, t, J=7.2 Hz), 3.02 (2H, t, J=7.2 Hz), 2.58 (3H, s), 1.47 (3H, t, J=6.9 Hz)
- A 60 mg quantity of the compound obtained in Example 229 and 0.2 ml of DBU were dissolved in 4 ml of ethanol, 0.2 ml of ethyl iodide was then added to the obtained solution, and heating and refluxing were conducted for 2 hours. After cooling, water was added to the reaction mixture, and ethyl acetate extraction was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from ethanol, thereby yielding 36 mg of white powdery 3-[2-(4-difluoromethoxy-3-ethoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl) propan-1-one.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.5, 1.8 Hz), 7.60-7.34 (4H, m), 7.01-6.91 (2H, m), 7.20 (1H, d, J=8.1 Hz), 6.62 (1H, t, J=75 Hz), 4.22-4.07 (4H, m), 3.43 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.50-1.40 (6H, m)
- A 0.15 g quantity of the compound obtained in Example 229 and 0.17 ml of DBU were dissolved in 4 ml of ethanol, 0.14 g of ally bromide was then added to the obtained solution, and heating and refluxing were conducted for 2 hours. After cooling, water was added to the obtained reaction mixture, and ethyl acetate extraction was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from aqueous 80% ethanol, thereby yielding 90 mg of white powdery 3-[2-(3-allyloxy-4-difluoromethoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.5, 1.8 Hz), 7.62-1.56 (2H, m), 7.46-7.40 (2H, m), 1.22 (1H, d, J=8.1 Hz), 7.01-6.92 (2H, m), 6.62 (1H, t, J=75 Hz), 6.15-6.00 (1H, m), 5.45 (1H, dd, J=17.1, 1.5 Hz), 5.32 (1H, dd, J=10.5, 1.5 Hz), 4.67 (2H, d, J=8.1 Hz), 4.14 (2H, q, J=6.9 Hz), 3.42 (2H, t, J=7.5 Hz), 3.00 (2H, t, J=7.5 Hz), 1.48 (3H, t, J=6.9 Hz)
- A 0.12 g quantity of the compound obtained in Example 229 and 0.14 ml of DBU were dissolved in 3 ml of ethanol, 0.12 g of (bromomethyl)cyclopropane was then added to the obtained solution, and heating and refluxing were conducted overnight. After cooling, water was added to the obtained reaction mixture, and ethyl acetate extraction was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from ethanol, thereby yielding 80 mg of white powdery 3-[2-(3-cyclopropylmethoxy-4-difluoromethoxy phenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.59-7.54 (2H, m), 7.46-7.40 (2H, m), 7.21 (1H, d, J=8.1 Hz), 7.01-6.95 (2H, m), 6.68 (1H, t, J=75 Hz), 4.14 (2H, q, J=6.9 Hz), 3.95 (2H, d, J=6.9 Hz), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 1.47 (3H, t, J=6.9 Hz), 1.34-1.28 (1H, m), 0.69-0.63 (2H, m), 0.40-0.34 (2H, m).
- A 0.12 g quantity of the compound obtained in Example 229 and 0.14 ml of DBU were dissolved in 3 ml of ethanol, 0.12 g of 4-bromo-1-butene was then added to the obtained solution, and heating and refluxing were conducted overnight. After cooling, water was added to the obtained reaction mixture, and ethyl acetate extract was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from ethanol, thereby yielding 80 mg of white powdery 3-[2-(3-but-3-enyloxy-4-difluoromethoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.61-7.54 (2H, m), 7.45-7.40 (2H, m), 7.20 (1H, d, J=8.1 Hz), 7.00-6.92 (2H, m), 6.62 (1H, t, J=75 Hz), 5.97-5.83 (1H, m), 5.23-5.12 (2H, m), 4.18-4.10 (4H, m), 3.42 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.63-2.56 (4H, m), 1.47 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 97 and ethyl iodide, white powdery N-[2-(4-difluoromethoxy-3-ethoxyphenyl)-oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.39 (1H, d, J=3.6 Hz), 7.67-7.57 (4H, m), 7.33-7.20 (2H, m), 6.63 (1H, t, J=75 Hz), 4.60 (2H, d, J=5.7 Hz), 4.20 (2H, q, J=6.9 Hz), 2.76 (3H, s), 1.48 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 97 and allyl bromide, white solid N-[2-(3-allyloxy-4-difluoromethoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.40-8.39 (1H, m), 7.67 (1H, s), 7.65-1.58 (3H, m), 7.33-7.22 (3H, m), 6.63 (1H, t, J=75 Hz), 6.13-6.03 (1H, m), 5.50-5.32 (2H, m), 4.70-4.68 (2H, m), 4.60 (2H, d, J=8.7 Hz), 2.76 (3H, s)
- Using the compound obtained in Example 97 and 1-bromopropane, white powdery N-[2-(4-difluoromethoxy-3-propoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, d, J=7.8, Hz), 7.67-7.57 (4H, m), 7.33-7.20 (2H, m), 6.62 (1H, t, J=75 Hz), 4.60 (2H, d, J=6.0 Hz), 4.08 (2H, t, J=6.6 Hz), 2.76 (3H, s), 1.94-1.82 (2H, m), 1.07 (3H, t, J=7.5 Hz)
- Using the compound obtained in Example 97 and 2-bromopropane, white solid N-[2-(4-difluoromethoxy-3-isopropoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39-8.38 (1H, m), 7.67-7.57 (4H, m), 7.33-7.19 (2H, m), 6.62 (1H, t, J=75 Hz), 4.74-4.67 (1H, m), 4.59 (2H, d, J=6.0 Hz), 2.76 (3H, s), 1.39 (6H, d, J=6.0 Hz)
- Using the compound obtained in Example 97 and 3-bromopentane, colorless oily N-{2-[4-difluoromethoxy-3-(1-ethylpropoxy)phenyl]oxazol-4-ylmethyl}-3-methylpicolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.40-8.38 (1H, m), 7.67 (1H, s), 7.63-7.55 (3H, m), 7.33-1.20 (3H, m), 6.61 (1H, t, J=75 Hz), 4.59 (2H, d, J=6.0 Hz), 4.33 (1H, qt, J=6.0 Hz), 2.76 (3H, s), 1.79-1.70 (4H, m), 0.98 (6H, t, J=7.2 Hz)
- Using the compound obtained in Example 97 and 4-bromo-1-butene, colorless oily N-[2-(3-but-3-enyloxy-4-difluoromethoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.40-8.38 (1H, m), 7.67 (1H, s), 7.64-7.58 (3H, m), 7.33-7.20 (2H, m), 6.63 (1H, t, J=75 Hz), 5.95-5.84 (1H, m), 5.23-5.13 (2H, m), 4.61-4.59 (2H, m), 4.18 (2H, t, J=6.6 Hz), 2.76 (3H, s), 2.64-2.58 (2H, m)
- Using the compound obtained in Example 97 and isobutyl bromide, colorless oily N-[2-(4-difluoromethoxy-3-isobutoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.39 (1H, br s), 7.68 (1H, s), 7.62-7.57 (3H, m), 7.33-7.20 (2H, m), 6.61 (1H, t, J=75 Hz), 4.60 (2H, d, J=6.0 Hz), 3.88 (2H, d, J=6.3 Hz), 2.76 (3H, s), 2.19-2.04 (1H, m), 1.06 (6H, d, J=6.3 Hz)
- Using the compound obtained in Example 97 and (bromomethyl)cyclobutane, colorless oily N-[2-(3-cyclobutyl methoxy-4-difluoromethoxyphenyl)oxazol-4-ylmethyl]-3-methyl picolinamide was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.40 (1H, br s), 7.68 (1H, s), 7.64-7.59 (3H, m), 7.33-7.20 (2H, m), 6.61 (1H, t, J=75 Hz), 4.60 (2H, d, J=6.0 Hz), 4.08 (2H, d, J=6.6 Hz), 2.89-2.76 (4H, m), 2.25-2.12 (2H, m), 2.04-1.92 (4H, m)
- Using the compound obtained in Reference Example 46 and 2-ethoxybenzoic acid, white powdery N-[2-(3-benzyloxy-4-difluoro methoxyphenyl)oxazol-4-ylmethyl)-2-ethoxybenzamide was obtained following the procedure of Example 96.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.73 (1H, d, J=1.8 Hz), 7.68-7.61 (2H, m), 7.48-7.24 (7H, m), 7.07 (1H, t, J=8.1 Hz), 6.95 (1H, d, J=8.4 Hz), 6.63 (1H, t, J=75 Hz), 5.21 (2H, s), 4.63 (2H, d, J=5.4 Hz), 4.18 (2H, q, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 346, white powdery N-[2-(4-difluoromethoxy-3-hydroxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 97.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.23 (1H, dd, J=1.8, 1.8 Hz), 7.71-7.60 (2H, m), 7.57 (1H, dd, J=8.4, 1.8 Hz), 7.46-7.39 (1H, m), 7.19 (1H, d, J=8.4 Hz), 7.07 (1H, t, J=8.1 Hz), 6.95 (1H, d, J=8.4 Hz), 6.61 (1H, t, J=73.2 Hz), 6.02 (1H, br s), 4.64 (2H, dd, J=5.4, 0.9 Hz), 4.19 (2H, q, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz)
- A 80 mg quantity of the compound obtained in Example 347 and 0.1 ml of DBU were dissolved in 2 ml of ethanol, 80 mg of isobutyl bromide was then added to the obtained solution, and heating and refluxing were conducted overnight. After cooling, water was added to the obtained reaction mixture, and ethyl acetate extraction was performed. The organic layer was washed twice with water, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane:ethyl acetate=3:1). The obtained crystals were recrystallized from aqueous 80% ethanol, thereby yielding 30 mg of white powdery N-[2-(4-difluoromethoxy-3-isobutoxyphenyl) oxazol-4-ylmethyl]-2-ethoxybenzamide.
- 1H-NMR (CDCl3) δ: 8.54 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.67 (1H, s), 7.66-7.57 (2H, m), 7.45-7.39 (1H, m), 7.23 (1H, d, J=8.1 Hz), 1.07 (1H, t, J=8.1 Hz), 6.95 (1H, d, J=7.5 Hz), 6.62 (1H, t, J=75 Hz), 4.64 (2H, d, J=5.1 Hz), 4.19 (2H, q, J=6.9 Hz), 3.87 (2H, d, J=6.6 Hz), 2.17 (1H, qt, J=6.6 Hz), 1.49 (3H, t, J=6.9 Hz), 1.07 (6H, d, J=6.9 Hz)
- Using the compound obtained in Example 347 and ethyl iodide, white powdery N-[2-(4-difluoromethoxy-3-ethoxyphenyl) oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.67-7.58 (3H, m), 7.46-7.40 (1H, m), 7.24-7.21 (1H, m), 7.08 (1H, t, J=7.8 Hz), 6.95 (1H, d, J=1.8 Hz), 6.64 (1H, t, J=75 Hz) 4.63 (1H, d, J=5.1 Hz), 4.23-4.15 (4H, m), 1.52-1.46 (6H, m)
- Using the compound obtained in Example 347 and 1-bromopropane, white powdery N-[2-(4-difluoromethoxy-3-propoxy phenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s), 8.24 (1H, dd, J=7.5, 1.8 Hz), 7.67 (1H, s), 7.64-7.57 (2H, m), 7.46-7.40 (1H, m), 7.23 (1H, d, J=7.8 Hz), 7.07 (1H, t, J=7.5 Hz), 6.95 (1H, d, J=8.4 Hz), 6.63 (1H, t, J=75 Hz), 4.64 (2H, d, J=5.4 Hz), 4.19 (2H, q, J=7.2 Hz), 4.07 (2H, t, J=6.6 Hz), 1.90 (2H, qt, J=1.2, 6.6 Hz), 1.49 (3H, t, J=6.9 Hz), 1.08 (3H, t, J=7.2 Hz)
- Using the compound obtained in Example 347 and allyl bromide, white powdery N-[2-(3-allyloxy-4-difluoromethoxy phenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.55 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.68 (1H, s), 7.65-7.60 (2H, m), 7.46-7.40 (1H, m), 7.25-7.23 (1H, m), 7.08 (1H, t, J=7.8 Hz), 6.96 (1H, d, J=8.4 Hz), 6.64 (1H, t, J=74.7 Hz), 6.10-6.03 (1H, m), 5.47 (1H, dd, J=17.4, 1.5 Hz), 5.34 (1H, dd, J=10.5, 1.5 Hz), 4.69 (2H, dt, J=5.1, 1.5 Hz), 4.63 (2H, dd, J=5.4, 1.2 Hz), 4.19 (2H, q, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 347 and 2-bromopropane, white powdery N-[2-(4-difluoromethoxy-3-isopropoxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s), 8.24 (1H, dd, J=7.5, 1.8 Hz), 7.67 (1H, s), 7.65-7.57 (2H, m), 7.46-7.40 (1H, m), 7.26-7.21 (1H, m), 7.08 (1H, t, J=7.5 Hz), 6.95 (1H, d, J=8.4 Hz), 6.63 (1H, t, J=75 Hz), 4.74-4.62 (3H, m), 4.19 (2H, q, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz), 1.40 (6H, d, J=6.3 Hz)
- Using the compound obtained in Example 347 and (bromomethyl)cyclopropane, white powdery N-[2-(3-cyclopropyl methoxy-4-difluoromethoxyphenyl)oxazol-4-ylmethyl]-2-ethoxy benzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.55 (1H, br s), 8.24 (1H, dd, J=8.1, 1.8 Hz), 7.67 (1H, s), 7.61-7.58 (2H, m), 7.46-7.39 (1H, m), 7.26-7.21 (1H, m), 7.07 (1H, t, J=7.5 Hz), 6.95 (1H, d, J=8.4 Hz), 6.70 (1H, t, J=75 Hz) 4.63 (2H, dd, J=5.4, 0.9 Hz), 4.19 (2H, q, J=6.9 Hz), 1.49 (3H, t, J=6.9 Hz), 1.35-1.30 (1H, m), 0.71-0.64 (2H, m), 0.41-0.35 (2H, m)
- Using the compound obtained in Example 347 and 4-bromo-1-butene, white powdery N-[2-(3-but-3-enyloxy-4-difluoromethoxy phenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s), 8.24 (1H, dd, J=7.5, 1.8 Hz), 7.67 (1H, s), 7.64-7.58 (2H, m), 7.46-7.40 (1H, m), 7.26-7.21 (1H, m), 7.08 (1H, t, J=7.5 Hz), 6.95 (1H, d, J=8.4 Hz), 6.64 (1H, t, J=75 Hz), 5.92-5.86 (1H, m), 5.24-5.13 (2H, m), 4.64 (2H, d, J=5.1 Hz), 4.22-4.14 (4H, m), 2.65-2.58 (2H, m), 1.49 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 347 and 3-bromopentane, white powdery N-{2-[4-difluoromethoxy-3-(1-ethylpropoxy)phenyl]oxazol-4-ylmethyl}-2-ethoxybenzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.57 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.67 (1H, s), 7.63-1.58 (2H, m), 7.46-7.40 (1H, m), 7.23 (1H, d, J=8.4 Hz), 7.07 (1H, t, J=8.1 Hz), 6.95 (1H, d, J=8.1 Hz), 6.63 (1H, t, J=75 Hz), 4.64 (2H, d, J=5.1 Hz), 4.33 (1H, qt, J=6.0, 5.1 Hz), 4.19 (2H, q, J=6.9 Hz), 1.79-1.70 (4H, m), 1.49 (3H, t, J=6.9 Hz), 0.99 (6H, t, J=7.5 Hz)
- Using the compound obtained in Reference Example 59 and chlorodifluoromethane, white powdery ethyl 4-benzyloxy-3-difluoromethoxybenzoate was obtained following the procedure of Example 4.
- 1H-NMR (CDCl3) δ: 7.90-7.80 (2H, m), 7.45-7.30 (5H, m), 7.03 (1H, d, J=8.4 Hz), 6.59 (1H, t, J=74.4 Hz), 5.23 (2H, s), 4.35 (2H, q, J=7.2 Hz), 1.38 (3H, t, J=7.2 Hz)
- Using the compound obtained in Reference Example 94, white powdery 2-(4-benzyloxy-3-difluoromethoxyphenyl)-4-chloromethyloxazole was obtained following the procedures of Reference Examples 3 to 5.
- 1H-NMR (CDCl3) δ: 7.90-7.80 (2H, m), 7.65 (1H, s), 7.45-7.30 (5H, m), 7.06 (1H, d, J=7.2 Hz), 6.60 (1H, t, J=74.7 Hz), 5.20 (2H, s), 4.56 (2H, s)
- Using the compound obtained in Reference Example 95, white powdery 3-{2-(3-difluoromethoxy-4-hydroxyphenyl)oxazol-4-yl}-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedures of Reference Examples 92 and 93 and Examples 326 and 327.
- 1H-NMR (CDCl3) δ: 8.49 (1H, d, J=4.5 Hz), 7.76-7.72 (2H, m), 7.59 (1H, d, J=8.4 Hz), 7.57 (1H, s), 1.37-7.30 (1H, m), 7.02 (1H, d, J=8.4 Hz), 6.59 (1H, t, J=75 Hz), 3.59 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s)
- Using the compound obtained in Example 356 and 2-bromopropane, white powdery 3-[2-(3-difluoromethoxy-4-isopropoxy phenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.5 Hz), 7.83-7.78 (2H, m), 7.58 (1H, d, J=8.4 Hz), 7.47 (1H, s), 7.34-7.30 (1H, m), 7.01 (1H, d, J=8.4 Hz), 6.58 (1H, t, J=75 Hz), 4.67-4.57 (1H, m), 3.59 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.57 (3H, s), 1.39 (6H, d, J=6.0 Hz)
- Using the compound obtained in Example 356 and allyl bromide, white powdery 3-[2-(4-allyloxy-3-difluoromethoxy phenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.8, 1.2 Hz), 7.84-7.80 (2H, m), 7.60-7.56 (1H, m), 7.47 (1H, d, J=1.2 Hz), 7.34-7.30 (1H, m), 7.01 (1H, d, J=8.4 Hz), 6.60 (1H, t, J=74.7 Hz), 6.10-6.00 (1H, m), 5.44 (1H, dd, J=17.4, 1.5 Hz), 5.33 (1H, dd, J=10.5, 1.5 Hz), 4.65 (2H, dt, J=5.1, 1.5 Hz), 3.60 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.58 (3H, s)
- Using the compound obtained in Example 356 and 4-bromo-1-butene, white powdery 3-[2-(4-but-3-enyloxy-3-difluoromethoxy phenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.8, 1.2 Hz), 7.84-7.78 (2H, m), 7.58 (1H, d, J=7.5 Hz), 7.46 (1H, s), 7.34-7.30 (1H, m), 7.00 (1H, d, J=8.4 Hz), 6.59 (1H, t, J=75 Hz), 5.94-5.85 (1H, m), 5.23-5.12 (2H, m), 4.12 (2H, t, J=6.6 Hz), 3.60 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.63-2.56 (5H, m)
- Using the compound obtained in Example 356 and (bromomethyl)cyclopropane, white powdery 3-[2-(4-cyclopropyl methoxy-3-difluoromethoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.8, 1.2 Hz), 7.83-7.79 (2H, m), 7.57 (1H, d, J=7.5 Hz), 7.46 (1H, s), 7.34-7.30 (1H, m), 6.98 (1H, d, J=8.1 Hz), 6.65 (1H, t, J=75 Hz), 3.92 (2H, d, J=7.2 Hz), 3.59 (2H, t, J=7.2 Hz), 3.00 (2H, t, J=7.2 Hz), 2.57 (3H, s), 1.33-1.27 (1H, m), 0.69-0.63 (2H, m), 0.40-0.34 (2H, m)
- Using the compound obtained in Example 356 and 1-bromopropane, white powdery 3-[2-(3-difluoromethoxy-4-propoxy phenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, dd, J=4.8, 1.2 Hz), 7.84-7.78 (2H, m), 7.58 (1H, d, J=8.1 Hz), 7.47 (1H, s), 1.43-7.30 (1H, m), 7.00 (1H, d, J=8.4 Hz), 6.59 (1H, t, J=75 Hz), 4.03 (2H, t, J=6.6 Hz), 3.59 (2H, t, J=7.5 Hz), 3.01 (2H, t, J=7.5 Hz), 2.58 (3H, s), 1.87 (2H, qt, J=7.2 Hz), 1.06 (3H, t, J=7.2 Hz)
- Using the compound obtained in Example 356 and ethyl iodide, white powdery 3-[2-(3-difluoromethoxy-4-ethoxyphenyl) oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 8.50 (1H, d, J=4.5 Hz), 7.84-7.78 (2H, m), 7.59 (1H, d, J=8.4 Hz), 7.47 (1H, s), 7.34-7.30 (1H, m), 6.99 (1H, d, J=8.4 Hz), 6.60 (1H, t, J=75 Hz), 4.15 (2H, q, J=6.9 Hz), 3.59 (2H, t, J=7.2 Hz), 3.01 (2H, t, J=7.2 Hz), 2.57 (3H, s), 1.47 (3H, t, J=6.9 Hz)
- The compound obtained in Reference Example 95 was used and treated following the procedure of Example 228, followed by treatment according to the procedure of Example 229, yielding white powdery 3-[2-(3-difluoromethoxy-4-hydroxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one.
- 1H-NMR (CDCl3) δ: 7.80-7.75 (2H, m), 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.46-7.40 (2H, m), 7.22-6.69 (3H, m), 6.59 (1H, t, J=75 Hz), 5.91 (1H, br s), 4.14 (2H, q, J=7.2 Hz), 3.42 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz), 1.48 (3H, t, J=7.2 Hz)
- Using the compound obtained in Example 363 and 4-bromo-1-butene, white powdery 3-[2-(4-but-3-enyloxy-3-difluoromethoxy phenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.84-7.79 (2H, m), 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.46-7.39 (2H, m), 7.01-6.92 (3H, m), 6.59 (1H, t, J=75 Hz), 5.91-5.85 (1H, m), 5.23-5.12 (2H, m), 4.18-4.09 (4H, m), 3.42 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz), 2.60 (2H, m), 1.48 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 363 and allyl bromide, white powdery 3-[2-(4-allyloxy-3-difluoromethoxy phenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.83-7.79 (2H, m), 7.70 (1H, dd, J=7.8, 1.8 Hz), 7.46-7.39 (2H, m), 7.02-6.92 (3H, m), 6.60 (1H, t, J=74.7 Hz), 6.06-6.00 (1H, m), 5.47-5.30 (2H, m), 4.66-4.63 (2H, m), 4.14 (2H, q, J=6.9 Hz), 3.42 (2H, t, J=6.9 Hz), 2.99 (2H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 363 and ethyl iodide, white powdery 3-[2-(3-difluoromethoxy-4-ethoxyphenyl) oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one was obtained following the procedure of Example 3.
- 1H-NMR (CDCl3) δ: 7.84-7.80 (2H, m), 7.71 (1H, dd, J=7.8, 1.8 Hz), 7.45-7.39 (2H, m), 7.00-6.91 (3H, m), 6.60 (1H, t, J=75 Hz) 4.18-4.10 (4H, m), 3.42 (2H, t, J=7.5 Hz), 2.99 (2H, t, J=7.5 Hz), 1.50-1.44 (6H, m)
- The compound obtained in Reference Example 95 was used and treated following the procedure of Reference Example 45, followed by treatment according to the procedure of Reference Example 46, yielding pale yellow oily 12-(4-benzyloxy-3-difluoromethoxyphenyl)oxazol-4-yl]methylamine was obtained.
- 1H-NMR (CDCl3) δ: 7.89-7.82 (2H, m), 7.61 (1H, s), 1.56-7.31 (5H, m), 7.07 (1H, d, J=8.1 Hz), 6.62 (1H, t, J=75 Hz), 5.19 (2H, s), 3.83 (2H, s)
- The compound obtained in Reference Example 96 was used and treated following the procedure of Example 96, followed by treatment according to the procedure of Example 97, yielding white powdery N-[2-(3-difluoromethoxy-4-hydroxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide.
- 1H-NMR (CDCl3) δ: 8.59 (1H, br s), 8.39 (1H, d, J=4.5 Hz), 7.79-7.76 (2H, m), 7.63-7.58 (2H, m), 7.37-7.28 (1H, m), 7.07 (1H, d, J=8.1 Hz), 6.61 (1H, t, J=75 Hz), 6.16 (1H, s), 4.58 (2H, d, J=5.4 Hz), 2.76 (3H, s)
- Using the compound obtained in Example 367 and allyl bromide, white powdery N-[2-(4-allyloxy-3-difluoromethoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.39 (1H, d, J=4.5 Hz), 1.87-7.83 (2H, m), 7.65 (1H, s), 1.60-1.57 (1H, m), 7.33-7.29 (1H, m), 7.10 (1H, d, J=8.4 Hz), 6.61 (1H, t, J=75 Hz), 6.10-5.99 (1H, m), 5.55 (1H, dd, J=17.1, 1.5 Hz), 5.34 (1H, dd, J=10.5, 1.5 Hz), 4.65 (2H, d, J=5.4 Hz), 4.58 (2H, d, J=5.4 Hz), 2.76 (3H, s)
- Using the compound obtained in Example 367 and (bromomethyl)cyclobutane, white powdery N-[2-(4-cyclobutyl methoxy-3-difluoromethoxyphenyl)oxazol-4-ylmethyl]=3-methyl picolinamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, d, J=4.5 Hz), 7.87-7.82 (2H, m), 7.64 (1H, s), 7.59 (1H, d, J=8.4 Hz), 7.33-7.29 (2H, m), 7.01 (1H, d, J=8.4 Hz), 6.59 (1H, t, J=75 Hz), 4.59 (1H, d, J=5.4 Hz), 4.03 (2H, d, J=6.9 Hz), 2.90-2.82 (1H, m), 2.76 (3H, s), 2.22-2.13 (2H, m), 2.00-1.84 (4H, m)
- Using the compound obtained in Example 367 and isobutyl bromide, white powdery N-[2-(3-difluoromethoxy-4-isobutoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, d, J=4.5 Hz), 7.87-7.83 (2H, m), 7.64 (1H, s), 7.60-7.57 (1H, m), 7.33-1.28 (1H, m), 7.00 (1H, d, J=8.4 Hz), 6.59 (1H, t, J=75 Hz), 4.59 (1H, d, J=5.4 Hz), 3.81 (2H, d, J=6.9 Hz), 2.76 (3H, s), 2.22-2.09 (1H, m), 1.06 (6H, d, J=6.6 Hz)
- Using the compound obtained in Example 367 and 4-bromo-1-butene, white powdery N-[2-(4-but-3-enyloxy-3-difluoromethoxy phenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.59 (1H, br s), 8.39 (1H, d, J=4.5 Hz), 7.88-7.83 (2H, m), 7.65 (1H, s), 7.60-7.57 (1H, m), 7.33-7.29 (1H, m), 7.01 (1H, d, J=8.4 Hz), 6.61 (1H, t, J=75 Hz), 5.94-5.83 (1H, m), 5.24-5.12 (2H, m), 4.59 (1H, d, J=5.4 Hz), 4.13 (2H, t, J=6.6 Hz), 2.76 (3H, s), 2.63-2.57 (2H, m)
- Using the compound obtained in Example 367 and (bromomethyl)cyclopropane, white powdery N-[2-(4-cyclopropyl methoxy-3-difluoromethoxyphenyl)oxazol-4-ylmethyl]-3-methyl picolinamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, d, J=4.5 Hz), 7.86-7.83 (2H, m), 7.65 (1H, s), 7.59 (1H, d, J=8.4 Hz), 7.33-7.28 (1H, m), 7.00 (1H, d, J=8.4 Hz), 6.66 (1H, t, J=75 Hz), 4.59 (2H, d, J=5.4 Hz), 3.93 (2H, d, J=6.9 Hz), 2.76 (3H, s), 1.33-1.24 (1H, m), 0.70-0.64 (2H, m), 0.41-0.35 (2H, m)
- The compound obtained in Reference Example 96 was used and treated following the procedure of Example 96, followed by treatment according to the procedure of Example 97, yielding white powdery N-[2-(3-difluoromethoxy-4-hydroxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide.
- 1H-NMR (CDCl3) δ: 8.59 (1H, br s), 8.24 (1H, dd, J=7.8, 1.2 Hz), 7.81-7.78 (2H, m), 7.63 (1H, s), 7.46-7.40 (1H, m), 7.11-7.05 (2H, m), 6.96 (1H, d, J=8.4 Hz), 6.62 (1H, t, J=75 Hz), 5.87 (1H, br s), 4.62 (2H, d, J=5.4 Hz), 4.19 (2H, q, J=6.9 Hz), 1.50 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 373 and 2-bromopropane, white powdery N-[2-(3-difluoromethoxy-4-isopropoxy phenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.24 (1H, dd, J=7.8, 2.1 Hz), 7.85-7.82 (2H, m), 7.64 (1H, s), 7.45-7.39 (1H, m), 7.09-7.01 (2H, m), 6.95 (1H, d, J=8.1 Hz), 6.59 (1H, t, J=75 Hz), 4.71-4.61 (5H, m), 4.19 (2H, q, J=6.9 Hz), 1.51 (3H, t, J=6.9 Hz), 1.40 (6H, d, J=6.9 Hz)
- Using the compound obtained in Example 373 and (bromomethyl)cyclopropane, white powdery N-[2-(4-cyclopropyl methoxy-3-difluoromethoxyphenyl)oxazol-4-ylmethyl]-2-ethoxy benzamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.59 (1H, br s), 8.24 (1H, dd, J=7.8, 2.1 Hz), 7.85-7.82 (2H, m), 7.64 (1H, s), 7.45-7.39 (1H, m), 7.09-6.94 (3H, m), 6.66 (1H, t, J=75 Hz), 4.62 (2H, d, J=5.4 Hz), 4.19 (2H, q, J=6.9 Hz), 3.93 (2H, d, J=8.4 Hz), 1.50 (3H, t, J=6.9 Hz), 1.34-1.24 (1H, m), 0.71-0.64 (2H, m), 0.41-0.35 (2H, m)
- Using the compound obtained in Example 373 and 1-bromopropane, white powdery N-[2-(3-difluoromethoxy-4-propoxy phenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.87-7.83 (2H, m), 7.64 (1H, s), 7.42 (1H, t, J=7.5 Hz), 7.09-6.85 (3H, m), 6.35 (1H, t, J=75 Hz), 4.62 (2H, d, J=6.0 Hz), 4.19 (2H, q, J=6.6 Hz), 4.04 (2H, t, J=6.0 Hz), 1.91-1.84 (2H, m), 1.50 (3H, t, J=6.9 Hz), 1.07 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 373 and allyl bromide, white powdery N-[2-(4-allyloxy-3-difluoromethoxyphenyl) oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 98.
- 1H-NMR (CDCl3) δ: 8.60 (1H, br s), 8.23 (1H, dd, J=7.8, 1.8 Hz), 7.86-7.83 (2H, m), 7.64 (1H, s), 7.42 (1H, t, J=7.5 Hz), 7.10-6.97 (3H, m), 6.61 (1H, t, J=75 Hz), 6.07-6.01 (1H, m), 5.49-5.32 (2H, m), 4.68-4.61 (4H, m), 4.19 (2H, q, J=6.9 Hz), 1.50 (3H, t, J=6.9 Hz)
- Using ethyl 3,4-dihydroxybenzoate and chlorodifluoro methane, white powdery ethyl 3,4-bis-difluoromethoxybenzoate was obtained following the procedure of Example 4.
- 1H-NMR (CDCl3) δ: 8.00-7.90 (2H, m), 7.31 (1H, d, J=8.1 Hz), 6.60 (1H, t, J=72.9 Hz), 6.57 (1H, t, J=72.9 Hz), 4.39 (2H, q, J=7.2 Hz), 1.40 (3H, t, J=7.2 Hz)
- Using the compound obtained in Reference Example 97, white powdery 2-(3,4-bis-difluoromethoxyphenyl)-4-chloromethyl oxazol was obtained following the procedures of Reference Examples 3 to 5.
- 1H-NMR (CDCl3) δ: 7.95-7.90 (2H, m), 7.73 (1H, s), 7.35 (1H, d, J=8.4 Hz), 6.60 (1H, t, J=72.9 Hz), 6.59 (1H, t, J=72.9 Hz), 4.57 (2H, s)
- Using the compound obtained in Reference Example 98, white powdery 3-[2-(3,4-bis-difluoromethoxyphenyl)oxazol-4-yl]-1-(2-ethoxyphenyl)propan-1-one was obtained following the procedure of Example 190.
- 1H-NMR (CDCl3) δ: 7.89-7.84 (2H, m), 7.71 (1H, dd, J=7.5, 1.8 Hz), 7.48-7.41 (2H, m), 7.32 (1H, d, J=8.4 Hz), 7.01-6.93 (2H, m), 6.58 (1H, t, J=75 Hz), 6.57 (1H, t, J=75 Hz), 4.14 (2H, q, J=6.9 Hz), 3.43 (2H, t, J=6.9 Hz), 3.00 (2H, t, J=6.9 Hz), 1.48 (3H, t, J=6.9 Hz)
- The compound obtained in Reference Example 98 was used and treated following the procedure of Reference Example 45, followed by treatment according to the procedure of Reference Example 46, yielding pale yellow oily [2-(3,4-bis-difluoromethoxy phenyl)oxazol-4-yl]-methylamine.
- 1H-NMR (CDCl3) δ: 7.92-7.88 (2H, m), 7.58 (1H, s), 7.34 (1H, d, J=8.4 Hz), 6.60 (1H, t, J=75 Hz), 6.59 (1H, t, J=75 Hz), 3.85 (2H, s)
- Using the compound obtained in Reference Example 99, white powdery N-[2-(3,4-bis-difluoromethoxyphenyl)oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 96.
- 1H-NMR (CDCl3) δ: 8.61 (1H, br s), 8.40 (1H, dd, J=7.5, 1.5 Hz), 7.93-7.88 (2H, m), 7.70 (1H, s), 7.60 (1H, d, J=1.5 Hz), 7.58-7.31 (2H, m), 6.60 (1H, t, J=75 Hz), 6.58 (1H, t, J=75 Hz), 4.60 (2H, dd, J=6.0, 1.2 Hz), 2.77 (3H, s)
- Using the compound obtained in Reference Example 99, white powdery N-[2-(3,4-bis-difluoromethoxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of in Example 1.
- 1H-NMR (CDCl3) δ: 8.59 (1H, br s), 8.23 (1H, dd, J=7.5, 1.8 Hz), 7.94-7.88 (2H, m), 7.70 (1H, s), 7.46-7.33 (2H, m), 7.07 (1H, t, J=7.5 Hz), 6.95 (1H, d, J=8.4 Hz), 6.60 (1H, t, J=75 Hz), 6.59 (1H, t, J=75 Hz), 4.63 (2H, d, J=6.0 Hz), 4.19 (2H, q, J=6.9 Hz), 1.50 (3H, t, J=6.9 Hz)
- Using the compound obtained in Reference Example 98, white powdery 3-[2-(3,4-bis-difluoromethoxyphenyl)oxazol-4-yl]-1-(3-methylpyridin-2-yl)propan-1-one was obtained following the procedure of Example 356.
- 1H-NMR (CDCl3) δ: 8.51 (1H, br s), 7.88-7.85 (2H, m), 7.59 (1H, d, J=8.4 Hz), 7.53 (1H, s), 7.35-7.30 (2H, m), 6.58 (1H, t, J=75 Hz), 6.57 (1H, t, J=75 Hz), 3.60 (2H, t, J=6.3 Hz), 3.02 (2H, t, J=6.3 Hz), 2.58 (3H, s)
- Using the compound obtained in Example 347 and the compound obtained in Reference Example 85, white powdery N-{2-[4-difluoro methoxy-3-(2,2-difluoroethoxy)phenyl]-oxazol-4-ylmethyl}-2-ethoxy benzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.55 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 1.11-1.65 (3H, m), 1.46-1.41 (1H, m), 1.29 (1H, s), 1.08 (1H, t, J=8.1 Hz), 6.96 (1H, d, J=8.1 Hz), 6.59 (1H, t, J=74.1 Hz), 6.15 (1H, tt, J=54.9, 4.2 Hz) 4.64 (2H, d, J=5.4 Hz), 4.32 (2H, td, J=12.9, 4.2 Hz), 4.20 (2H, q, J=6.9 Hz) 1.50 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 347 and 1,1,1-trifluoro-2-iodoethane, white powdery N-{2-[4-difluoromethoxy-3-(2,2,2-trifluoroethoxy)phenyl]-oxazol-4-ylmethyl}-2-ethoxy benzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.75-7.68 (3H, m), 7.46-7.40 (1H, m), 7.30 (1H, d, J=8.4 Hz), 7.08 (1H, t, J=8.1 Hz), 6.96 (1H, d, J=8.1 Hz), 6.60 (1H, t, J=74.1 Hz), 4.63 (2H, d, J=5.4 Hz), 4.49 (2H, q, J=8.1 Hz), 4.20 (2H, q, J=6.9 Hz) 1.50 (3H, t, J=6.9 Hz)
- Using the compound obtained in Example 17 and 2-bromo propane, colorless oily N-[2-(4-methoxy-3-isopropoxyphenyl) oxazol-4-ylmethyl]-3-methylpicolinamide was obtained following the procedure of Example 19.
- 1H-NMR (CDCl3) δ: 8.58 (1H, br s), 8.39 (1H, dd, J=4.8, 1.2 Hz), 7.63-7.57 (4H, m), 7.33-7.28 (1H, m), 6.93 (1H, d, J=8.4 Hz), 4.68 (1H, sept., J=6.3 Hz), 4.59 (2H, d, J=5.7 Hz), 3.89 (3H, s), 2.76 (3H, s), 1.41 (6H, d, J=6.3 Hz)
- Using the compound obtained in Example 347 and (bromomethyl)cyclobutane, white powdery N-[2-(3-Cyclobutylmethoxy-4-difluoromethoxyphenyl)oxazol-4-ylmethyl]-2-ethoxybenzamide was obtained following the procedure of Example 348.
- 1H-NMR (CDCl3) δ: 8.56 (1H, br s), 8.24 (1H, dd, J=7.8, 1.8 Hz), 7.67-7.58 (3H, m), 7.50-7.40 (1H, m), 7.23 (1H, d, J=8.4 Hz), 7.08 (1H, t, J=8.1 Hz), 6.96 (1H, d, J=8.1 Hz), 6.63 (1H, t, J=75 Hz), 4.64 (2H, d, J=5.1 Hz), 4.19 (2H, q, J=6.9 Hz), 4.08 (2H, d, J=6.6 Hz) 2.86-2.82 (1H, m), 2.19-2.12 (2H, m), 2.04-1.87 (4H, m), 1.50 (3H, t, J=6.9 Hz)
- The chemical structures of the compounds obtained above in the Reference Examples and Examples are shown below in Tables 1 to 40.
-
TABLE 3 Ex. No. Ara 25 2-Trifluoromethylphenyl 32 2-(2,2,2-Trifluoroethoxy)phenyl 37 2-iso-Propoxyphenyl 38 2-Methylphenyl 39 2-Ethylphenyl 40 2-Chlorophenyl 41 5-Fluoro-2-methoxyphenyl 42 4-Fluoro-2-methoxyphenyl 43 6-Fluoro-2-methoxyphenyl 44 2-Methylthiophenyl 46 2-Methoxyphenyl 47 2-Trifluoromethoxyphenyl 48 2-n-Propoxyphenyl 51 2-n-Butoxyphenyl 52 2-iso-Butoxyphenyl 54 2-Ethylthiophenyl 56 2,6-Dimethoxyphenyl 60 2-Methanesulfonylphenyl -
TABLE 7 Ex. No. Are Rd Re 23 2-Trifluoromethylphenyl Methyl Benzyl 24 2-Trifluoromethylphenyl Methyl H 26 2-Trifluoromethylphenyl Methyl 30 2-(2,2,2- Methyl Benzyl Trifluoroethoxy)phenyl 31 2-(2,2,2- Methyl H Trifluoroethoxy)phenyl 33 2-Methoxyphenyl Methyl Benzyl 34 2-Methoxyphenyl Methyl H 35 2-Methoxyphenyl Methyl cyclo-Pentyl 83 2-Ethoxyphenyl —CH2CF3 93 2-Ethoxyphenyl Methyl Methyl -
TABLE 11 Ex. No. Rl Rm 101 Methyl H 102 Methyl 103 Methyl Ethyl 104 Methyl Allyl 105 Methyl Cyclopentyl 106 Methyl iso-Butyl 107 Methyl n-Propyl 108 Methyl 109 Methyl n-Butyl 110 Methyl 111 Methyl iso-Propyl 112 Methyl —CH2CF3 113 Methyl 114 Methyl 115 Methyl 116 Methyl 117 Methyl 118 Methyl 119 Methyl 120 Methyl 121 Methyl 122 Methyl 182 Ethyl Ethyl 190 Benzyl Ethyl 191 H Ethyl 192 iso- Ethyl Propyl 228 —CHF2 Benzyl 229 —CHF2 H 230 —CHF2 iso-Propyl —OEt: Ethoxy -
TABLE 22 Ex. No. Arh Rv Rw 193 2-n-Propoxyphenyl Methyl Benzyl 202 2-n-Propoxyphenyl Methyl —CH2CF3 204 2-n-Propoxyphenyl Ethyl Ethyl 206 2-iso-Propoxyphenyl Methyl Benzyl 215 2-iso-Propoxyphenyl Ethyl Ethyl 217 2-Methylphenyl Ethyl Ethyl 219 2-Methylphenyl Methyl Benzyl 222 2-Benzyloxyphenyl Methyl iso-Propyl -
TABLE 32 Ex. No. RA RB 325 Methyl 1-Ethylpropyl 346 Difluoromethyl Benzyl 347 Difluoromethyl H 348 Difluoromethyl iso-Butyl 349 Difluoromethyl Ethyl 350 Difluoromethyl n-Propyl 351 Difluoromethyl Allyl 352 Difluoromethyl iso-Propyl 353 Difluoromethyl Cyclopropylmethyl 354 Difluoromethyl 3-Butenyl 355 Difluoromethyl 1-Ethylpropyl 373 H Difluoromethyl 374 iso-Propyl Difluoromethyl 375 Cyclopropylmethyl Difluoromethyl 376 n-Propyl Difluoromethyl 377 Allyl Difluoromethyl 380 Difluoromethyl Difluoromethyl 382 Difluoromethyl 2,2-Difluoroethyl 383 Difluoromethyl 2,2,2-Trifluoroethyl 385 Difluoromethyl Cyclobutylmethyl —OEt: Ethoxy -
TABLE 33 Ex. No. RC RD 324 Methyl 1-Ethylpropyl 338 Difluoromethyl Ethyl 339 Difluoromethyl Allyl 340 Difluoromethyl n-Propyl 341 Difluoromethyl iso-Propyl 342 Difluoromethyl 1-Ethylpropyl 343 Difluoromethyl 3-Butenyl 344 Difluoromethyl iso-Butyl 345 Difluoromethyl Cyclobutylmethyl 367 H Difluoromethyl 368 Allyl Difluoromethyl 369 Cyclobutylmethyl Difluoromethyl 370 iso-Butyl Difluoromethyl 371 3-Butenyl Difluoromethyl 379 Difluoromethyl Difluoromethyl -
TABLE 34 Ex. No. RE RF 313 Methyl Difluoromethyl 314 Methyl 2,2-Difluoroethyl 315 Methyl 2-Fluoroethyl 334 Difluoromethyl Ethyl 335 Difluoromethyl Allyl 336 Difluoromethyl Cyclopropylmethyl 337 Difluoromethyl 3-Butenyl 363 H Difluoromethyl 364 3-Butenyl Difluoromethyl 365 Allyl Difluoromethyl 366 Ethyl Difluoromethyl 378 Difluoromethyl Difluoromethyl —OEt: Ethoxy -
TABLE 35 Ex. No. PG RH 308 Methyl Difluoromethyl 309 Methyl 2,2-Difluoroethyl 310 Methyl 2-Fluoroethyl 311 Methyl sec-Butyl 312 Methyl 1-Ethylpropyl 317 H 2,2-Difluoroethyl 318 Ethyl 2,2-Difluoroethyl 319 iso-Propyl 2,2-Difluoroethyl 327 Difluoromethyl H 328 Difluoromethyl Cyclopropylmethyl 329 Difluoromethyl n-Propyl 330 Difluoromethyl Allyl 331 Difluoromethyl 3-Butenyl 332 Difluoromethyl iso-Propyl 333 Difluoromethyl Ethyl 356 H Difluoromethyl 357 iso-Propyl Difluoromethyl 358 Allyl Difluoromethyl 359 3-Butenyl Difluoromethyl 360 Cyclopropylmethyl Difluoromethyl 361 n-Propyl Difluoromethyl 362 Ethyl Difluoromethyl 381 Difluoromethyl Difluoromethyl -
TABLE 36 Ex. No. RI RJ RK 267 Methyl Benzyl Difluoromethyl 268 Methyl Benzyl 2-Fluoroethyl 269 Methyl Benzyl 2,2-Difluoroethyl 270 Methyl H Difluoromethyl 271 Methyl H 2-Fluoroethyl 272 Methyl H 2,2-Difluoroethyl 273 Methyl iso-Propyl Difluoromethyl 274 Methyl Ethyl Difluoromethyl 275 Methyl iso-Propyl 2-Fluoroethyl 276 Methyl 3-Butenyl 2-Fluoroethyl 277 Methyl iso-Butyl 2-Fluoroethyl 278 Methyl iso-Propyl 2,2-Difluoroethyl 279 Methyl n-Propyl 2,2-Difiuoroethyl 280 Methyl Ethyl 2,2-Difluoroethyl 281 Methyl Allyl 2,2-Difluoroethyl 282 Methyl 3-Butenyl 2,2-Difluoroethyl 283 Methyl Cyclopropylmethyl 2,2-Difluoroethyl 284 Methyl 2,2-Difluoroethyl 2,2-Difiuoroethyl 285 Methyl iso-Butyl 2,2-Difluoroethyl 288 Ethyl Ethyl Difluoromethyl 289 Ethyl Ethyl 2-Fluoroethyl 290 Ethyl Ethyl 2,2-Difluoroethyl 292 Ethyl Ethyl Trifluoromethyl 293 Methyl Cyclopropylmethyl Trifluoromethyl - Plasmid containing genes (HPDE4D) coding for human PDE4D3 cDNA (stored in Otsuka America Pharmaceutical, Inc., Maryland Research Laboratories) was transformed in E. coli, cultured on a large scale, and purified using an EndoFree™ Plasmid Maxi Kit (Qiagen).
- COS-7 cells derived from African green monkey kidneys were passage cultured in D-MEM media containing 100 units/ml penicillin, 100 μg/ml streptomycin, and 10% FBS. The cells were transfected with the plasmid prepared in (1) above using Lipofectamine™ 2000 (hereinafter referred to as “LF2000”, Invitrogen), following the manufacturer's protocol. The COS-7 cells were inoculated in a 10 cm culture dish on the previous day so as to be 90% confluent on the day of transfection. Culture dishes each containing a plasmid solution (solution A) in which 24 μg of plasmid was diluted in 1.5 ml Opti-MEM I Reduced Serum Medium (Invitrogen) and an LF2000 solution (solution B) in which 60 μl of LF2000 was diluted in 1.5 ml Opti-MEM I Reduced Serum Medium were separately allowed to stand for 5 minutes at room temperature. Solutions A and B were then mixed and the mixture was allowed to stand for 20 minutes at room temperature. The mixture was added to the cultured cells, and incubated at 37° C. (5% CO2) overnight. On the following day, the medium was replaced, and the mixture was further incubated overnight to harvest the cells in the following manner. The cells were washed with PBS (Sigma) once, and 10 ml of a Trypsin-EDTA solution (Sigma) was added to each culture dish. After the solution was distributed to each of the culture dishes, the cells were detached, and the dishes were allowed to stand for about 5 minutes at 37° C. The detached cells from the dishes were suspended in media, collected into centrifuge tubes, and centrifuged at 1200 rpm for 5 minutes at 4° C., and supernatants were removed. The cells were further washed with PBS, and stored at −80° C. KHEM buffer (100 mM Hepes, 50 mM KCl, 10 mM EGTA, 1.92 mM MgCl2, pH 7.4) containing 1 mM DTT, 1 μg/ml antipain, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 1 μg/ml pepstatin A, 157 μg/ml benzamidine, and 120 μg/ml Pefabloc SC was added to the stored cells, and the contents were moved to a glass homogenizer to be homogenized on ice. The cell suspension was centrifuged at 1000 rpm for 5 minutes at 4° C., and the supernatant was further centrifuged at 14000 rpm for one hour. After centrifugation, the supernatant was dispensed into new tubes as PDE4D enzyme solutions, and stored in a deep freezer.
- The PDE4D enzyme solutions prepared in (2) above were dissolved in 20 mM Tris-HCl solution (pH 7.4) to give 10-, 25-, 50-, 100-, 200-, 400-, and 800-fold dilutions of the enzyme solutions. PDE4D activities were measured according to (4) below. The percentage of catalyzed cAMP to total cAMP was calculated, and such a dilution, in which the percentage was between 10% and 30%, was adopted in the inhibitory study below.
- Necessary amounts of test compounds were weighed, and 100% dimethylsulfoxide (DMSO) was added thereto to adjust the concentration to 10 mM. The solutions were stored in a freezer as stock solutions of each test compound. After being thawed when required, the solutions were diluted 20-fold with 100% DMSO to give a 500 μm concentration. Further, 10-fold serial dilutions were made with 100% DMSO to prepare test compounds of different concentrations. 2 μl of solutions containing one of each of the test compound were separately added into 1.2 ml tubes in which 23 μl of 20 mM Tris-HCl (pH 7.4) had been placed beforehand. 25 of a PDE4D enzyme solution diluted at an optimal ratio determined in (3) above were added on ice to each of the tubes, and 50 μl of a substrate solution containing 2 μM[3H]cAMP prepared by dilution with a 20 mM Tris-HCl (pH 7.4) containing 10 mM MgCl2 was added thereto. The final DMSO concentration in the reaction liquid was 2%. After mixing, the mixture was incubated for 10 minutes at 30° C. At the completion of the incubation, the tubes were placed in a bath containing boiling water for 3 minutes, and the reaction was stopped. After cooling the tubes in ice, 25 μl solution of 0.2 mg/ml snake venom was added thereto, and after mixing the mixture was incubated for 10 minutes at 30° C. At the completion of the incubation, 0.4 ml of a Dowex 1×8 resin solution prepared in an EtOH:H2O (1:1) solution was added thereto. After mixing, the tubes were allowed to stand at room temperature for at least an hour. 50 μl of the supernatant in one of each of the tubes was moved to one of the wells of a topCount plate, and the plate was dried overnight. 3H radioactivity (cpm) was measured using a TopCount™.
- The IC50 values (concentration which produced 50% inhibition of substrate hydrolysis) for the test compounds were determined with the Excel (Microsoft Excel 2000 SR-1) statistical package using regression analysis function.
- The results are shown in Table 41. The table demonstrates that compounds represented by formula (I) have the outstanding PDE4 inhibitory activities.
- In the structural formulae shown in the following table, -Me is a methyl group, -Et is an ethyl group, —OMe is a methoxy group, —OEt is an ethoxy group, and —SMe is a methylthio group.
-
TABLE 41 PDE 4 Ex. No. Chemical Structure (IC50: nM) 3 <50 14 <50 18 <50 19 <50 21 <50 22 <50 29 <50 32 <50 35 <50 36 <50 42 <50 43 <50 44 <50 61 <50 62 <50 63 <50 76 <50 98 <50 99 <50 102 <50 103 <50 104 <50 108 <50 111 <50 112 <50 116 <50 126 <50 129 <50 132 <50 133 <50 137 <50 138 <50 139 <50 140 <50 141 <50 143 <50 146 <50 153 <50 155 <50 157 <50 159 <50 166 <50 169 <50 170 <50 172 <50 174 <50 177 <50 181 <50 182 <50 195 <50 208 <50 224 <50 232 <50 274 <50 275 <50 276 <50 278 <50 280 <50 281 <50 283 <50 284 <50 285 <50 289 <50 290 <50 299 <50 304 <50 305 <50 309 <50 311 <50 312 <50 314 <50 315 <50 318 <50 324 <50 328 <50 329 <50 330 <50 331 <50 332 <50 333 <50 334 <50 335 <50 336 <50 337 <50 338 <50 339 <50 340 <50 341 <50 342 <50 343 <50 344 <50 345 <50 348 <50 349 <50 350 <50 351 <50 352 <50 353 <50 354 <50 355 <50 382 <50 383 <50 384 <50 - TNF-α production inhibitory activity was evaluated according to the following tests.
- (1) Isolation of Mononuclear Cells from Mouse Peripheral Blood
- Mononuclear cells were isolated from heparinized blood obtained from male BALB/c mice (Charles River Laboratories, Japan) by density gradient centrifugation using Lympholyte-M (Cedarlane Laboratories). Viable cell numbers in the peripheral blood mononuclear cells were counted using trypan blue dye, and prepared in cell culture medium (RPMI 1640 medium containing 10% FCS) to 1.25×106 cells/ml.
- Test compounds were dissolved in DMSO, and test compound solutions were diluted for use in cell culture media. 20 μl test compound solutions of different concentrations and 160 peripheral blood mononuclear cell suspensions were placed in a 96-well plate, and cultured for 30 minutes. 20 μl (final concentration 1 μg/ml) lipopolysaccharide (LPS) derived from E. coli (serotype 055:B5) was added thereto to induce TNF-α production. The mixtures were then cultured at 37° C. for 5 hours, and the culture supernatant was removed from each well.
- TNF-α concentrations in the culture supernatants were measured by ELISA (OptEIA™ Set Mouse TNF-α, BD Pharmingen). The IC50 values (concentration which produced 50% inhibition of TNF-α production) for the test compounds were determined with the Excel (Microsoft Excel 2000 SR-1) statistical package using regression analysis function.
- The results obtained are shown in table 42.
-
TABLE 42 Test compounds TNF-α (IC50: nM) Compound of Ex. 18 <50 Compound of Ex. 43 <50 Compound of Ex. 126 <50 Compound of Ex. 157 <50 Compound of Ex. 177 <50
Claims (10)
1. A method for obtaining cells expressing phosphodiesterase (PDE) 4, comprising:
preparing a vector containing cDNA encoding human PDE4,
introducing the vector into mammalian cells,
cultivating the cells in a medium, and
collecting the cells.
2. The method of claim 1 , wherein the cells are COS-7 cells.
3. The method of claim 1 , wherein the vector is a plasmid vector.
4. A method for treating or preventing phosphodiesterase 4-mediated and/or tumor necrosis factor-α-mediated disease, the method comprising administering to human or animal in need thereof an oxazole compound represented by Formula (1)
wherein R1 is an aryl group which may have one or more substituents selected from the following (1-1) to (1-11):
(1-1) hydroxy groups,
(1-2) unsubstituted or halogen-substituted lower alkoxy groups,
(1-3) lower alkenyloxy groups,
(1-4) lower alkynyloxy groups,
(1-5) cyclo C3-8 alkyl lower alkoxy groups,
(1-6) cyclo C3-8 alkyloxy groups,
(1-7) cyclo C3-8 alkenyloxy groups,
(1-8) dihydroindenyloxy groups,
(1-9) hydroxy lower alkoxy groups,
(1-10) oxiranyl lower alkoxy groups, and
(1-11) protected hydroxy groups;
R2 is an aryl group or a nitrogen atom-containing heterocyclic group each of which may have one or more substituents selected from the following (2-1) to (2-10):
(2-1) hydroxy groups,
(2-2) unsubstituted or halogen-substituted lower alkoxy groups,
(2-3) unsubstituted or halogen-substituted lower alkyl groups,
(2-4) lower alkenyloxy groups,
(2-5) halogen atoms,
(2-6) lower alkanoyl groups,
(2-7) lower alkylthio groups,
(2-8) lower alkylsulfonyl groups,
(2-9) oxo groups, and
(2-10) lower alkoxy lower alkoxy groups; and
W is a divalent group represented by Formula (i) or (ii):
—Y1-A1- Formula (i)
—Y2—C(═O)— Formula (ii)
—Y1-A1- Formula (i)
—Y2—C(═O)— Formula (ii)
wherein A1 is a lower alkenylene group, or a lower alkylene group which may have one or more substituents selected from the group consisting of hydroxy groups and lower alkoxycarbonyl groups,
Y1 is a direct bond, —C(═O)—, —C(═O)—N(R3)—, —N(R4)—C(═O)—, —S(O)m—NH—, or —S(O)n—
wherein R3 and R4 are each independently a hydrogen atom or a lower alkyl group, and m and n are each independently an integer from 0 to 2, and
Y2 is a piperazinediyl group, or a divalent group represented by Formula (iii) or (iv):
—C(═O)-A2-N(R5)— Formula (iii)
-A3-N(R6)— Formula (iv)
—C(═O)-A2-N(R5)— Formula (iii)
-A3-N(R6)— Formula (iv)
wherein A2 and A3 are each independently a lower alkylene group, and
R5 and R6 are each independently a hydrogen atom or a lower alkyl group; or a salt thereof.
5. The method of claim 4 , wherein the disease is at least one selected from the group consisting of bronchial asthma, chronic obstructive pulmonary disease, dermatoses, psoriasis, toxic and allergic contact eczema, atopic dermatitis, alopecia areata, learning, memory, and/or cognition disorders associated with Alzheimer's or Parkinson's diseases, manic-depressive psychosis, schizophrenia, anxiety disorder, systemic and local arthritic disorders, knee osteoarthritis, articular rheumatism, gastrointestinal diffuse inflammation, Crohn's disease and ulcerative colitis, allergic and/or chronic immune-mediated inflammatory diseases in the upper respiratory tract, allergic rhinitis/sinusitis, chronic rhinitis/sinusitis, and allergic conjunctivitis.
6. The method of claim 4 , wherein R1 is a phenyl group which has 1 to 3 substituents selected from the following (1-2), (1-3), (1-4) and (1-5):
(1-2) unsubstituted or halogen-substituted lower alkoxy groups,
(1-3) lower alkenyloxy groups,
(1-4) lower alkynyloxy groups, and
(1-5) cyclo C3-8 alkyl lower alkoxy groups;
R2 is a phenyl group or a pyridyl group each of which may have 1 to 3 substituents selected from the group consisting of the following (2-2), (2-3), (2-4) and (2-5):
(2-2) unsubstituted or halogen-substituted lower alkoxy groups,
(2-3) unsubstituted or halogen-substituted lower alkyl groups,
(2-4) lower alkenyloxy groups, and
(2-5) halogen atoms;
W is a divalent group represented by Formula (i):
—Y1-A1- Formula (i)
—Y1-A1- Formula (i)
wherein A1 is a lower alkylene group, and
Y1 is —C(═O)—, —C(═O)—N(R3)—
wherein R3 is a hydrogen atom.
7. The method of claim 4 , wherein R1 is a phenyl group having two substituents selected from the following (1-2), (1-3), (1-4) and (1-5):
(1-2) unsubstituted or halogen-substituted lower alkoxy groups,
(1-3) lower alkenyloxy groups,
(1-4) lower alkynyloxy groups, and
(1-5) cyclo C3-8 alkyl lower alkoxy groups:
R2 is a phenyl group or a pyridyl group each of which may have 1 to 2 substituents selected from the following (2-2), (2-3), (2-4) and (2-5):
(2-2) unsubstituted or halogen-substituted lower alkoxy groups,
(2-3) unsubstituted or halogen-substituted lower alkyl groups,
(2-4) lower alkenyloxy groups, and
(2-5) halogen atoms; and
W is a divalent group represented by Formula (i):
—Y1-A1- Formula (i)
—Y1-A1- Formula (i)
wherein A1 is a lower alkylene group, and
Y1 is —C(═O)—, —C(═O)—N(R3)—
wherein R3 is a hydrogen atom.
8. The method of claim 4 , wherein R1 is a phenyl group substituted on the phenyl ring with two lower alkoxy groups, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl group with one lower alkoxy group and one lower alkenyloxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group, or a phenyl group substituted on the phenyl ring with two halogen-substituted lower alkoxy groups:
R2 is a lower alkoxyphenyl group, a lower alkenyloxyphenyl group, a halogen-substituted lower alkoxyphenyl group, a lower alkylpyridyl group, or a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen atom; and
W is a divalent group represented by Formula (i):
—Y1-A1- Formula (i)
—Y1-A1- Formula (i)
wherein A1 is a lower alkylene group, and
Y1 is —C(═O)—, —C(═O)—N(R3)—
wherein R3 is a hydrogen atom.
9. The method of claim 4 , wherein R1 is a phenyl group substituted on the phenyl ring with two lower alkoxy groups, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl group with one lower alkoxy group and one lower alkenyloxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group, or a phenyl group substituted on the phenyl ring with two halogen-substituted lower alkoxy groups;
R2 is a lower alkoxyphenyl group, a lower alkenyloxy phenyl group, a halogen-substituted lower alkoxyphenyl group, a lower alkylpyridyl group, or a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen atom; and
W is a divalent group represented by Formula (i):
—Y1-A1- Formula (i)
—Y1-A1- Formula (i)
wherein A1 is a C1-4 alkylene group, and
Y1 is —C(═O)—.
10. The method of claim 4 , wherein R1 is a phenyl group substituted on the phenyl ring with one lower alkoxy group and one halogen-substituted lower alkoxy group, a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one cyclo C3-8 alkyl lower alkoxy group, or a phenyl group substituted on the phenyl ring with one halogen-substituted lower alkoxy group and one lower alkenyloxy group;
R2 is a lower alkoxyphenyl group or a lower alkylpyridyl group; and
W is a divalent group represented by Formula (i):
—Y1-A1- Formula (i)
—Y1-A1- Formula (i)
wherein A1 is a C1-4 alkylene group, and
Y1 is —C(═O)—N(R3)—
wherein R3 is a hydrogen atom.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/679,659 US20220265613A1 (en) | 2005-11-15 | 2022-02-24 | Oxazole compound and pharmaceutical composition |
US18/405,633 US20240148699A1 (en) | 2005-11-15 | 2024-01-05 | Oxazole compound and pharmaceutical composition |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005330590 | 2005-11-15 | ||
JP2005-330590 | 2005-11-15 | ||
PCT/JP2006/323066 WO2007058338A2 (en) | 2005-11-15 | 2006-11-14 | Oxazole compound and pharmaceutical composition |
US9095109A | 2009-03-26 | 2009-03-26 | |
US14/104,871 US20140100226A1 (en) | 2005-11-15 | 2013-12-12 | Oxazole compound and pharmaceutical composition |
US15/485,203 US20170216260A1 (en) | 2005-11-15 | 2017-04-11 | Oxazole compound and pharmaceutical composition |
US16/178,517 US20190070151A1 (en) | 2005-11-15 | 2018-11-01 | Oxazole compound and pharmaceutical composition |
US16/681,360 US20200078340A1 (en) | 2005-11-15 | 2019-11-12 | Oxazole compound and pharmaceutical composition |
US17/679,659 US20220265613A1 (en) | 2005-11-15 | 2022-02-24 | Oxazole compound and pharmaceutical composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/681,360 Continuation US20200078340A1 (en) | 2005-11-15 | 2019-11-12 | Oxazole compound and pharmaceutical composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/405,633 Continuation US20240148699A1 (en) | 2005-11-15 | 2024-01-05 | Oxazole compound and pharmaceutical composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220265613A1 true US20220265613A1 (en) | 2022-08-25 |
Family
ID=37879936
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/623,249 Active 2028-02-09 USRE46792E1 (en) | 2005-11-15 | 2006-11-14 | Oxazole compound and pharmaceutical composition |
US12/090,951 Ceased US8637559B2 (en) | 2005-11-15 | 2006-11-14 | Oxazole compound and pharmaceutical composition |
US14/104,871 Abandoned US20140100226A1 (en) | 2005-11-15 | 2013-12-12 | Oxazole compound and pharmaceutical composition |
US15/485,203 Abandoned US20170216260A1 (en) | 2005-11-15 | 2017-04-11 | Oxazole compound and pharmaceutical composition |
US16/178,517 Abandoned US20190070151A1 (en) | 2005-11-15 | 2018-11-01 | Oxazole compound and pharmaceutical composition |
US16/681,360 Abandoned US20200078340A1 (en) | 2005-11-15 | 2019-11-12 | Oxazole compound and pharmaceutical composition |
US17/679,659 Abandoned US20220265613A1 (en) | 2005-11-15 | 2022-02-24 | Oxazole compound and pharmaceutical composition |
US18/405,633 Pending US20240148699A1 (en) | 2005-11-15 | 2024-01-05 | Oxazole compound and pharmaceutical composition |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/623,249 Active 2028-02-09 USRE46792E1 (en) | 2005-11-15 | 2006-11-14 | Oxazole compound and pharmaceutical composition |
US12/090,951 Ceased US8637559B2 (en) | 2005-11-15 | 2006-11-14 | Oxazole compound and pharmaceutical composition |
US14/104,871 Abandoned US20140100226A1 (en) | 2005-11-15 | 2013-12-12 | Oxazole compound and pharmaceutical composition |
US15/485,203 Abandoned US20170216260A1 (en) | 2005-11-15 | 2017-04-11 | Oxazole compound and pharmaceutical composition |
US16/178,517 Abandoned US20190070151A1 (en) | 2005-11-15 | 2018-11-01 | Oxazole compound and pharmaceutical composition |
US16/681,360 Abandoned US20200078340A1 (en) | 2005-11-15 | 2019-11-12 | Oxazole compound and pharmaceutical composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/405,633 Pending US20240148699A1 (en) | 2005-11-15 | 2024-01-05 | Oxazole compound and pharmaceutical composition |
Country Status (23)
Country | Link |
---|---|
US (8) | USRE46792E1 (en) |
EP (1) | EP1954684B1 (en) |
JP (1) | JP5305914B2 (en) |
KR (1) | KR101439557B1 (en) |
CN (1) | CN101309912B (en) |
AR (3) | AR057891A1 (en) |
AU (1) | AU2006316079B2 (en) |
BR (1) | BRPI0618589B8 (en) |
CA (1) | CA2627541C (en) |
CY (1) | CY1115302T1 (en) |
DK (1) | DK1954684T3 (en) |
ES (1) | ES2483992T3 (en) |
HK (1) | HK1121162A1 (en) |
IL (1) | IL191008A (en) |
MY (1) | MY153720A (en) |
NO (1) | NO341440B1 (en) |
PL (1) | PL1954684T3 (en) |
PT (1) | PT1954684E (en) |
RU (1) | RU2418793C2 (en) |
SI (1) | SI1954684T1 (en) |
TW (1) | TWI330639B (en) |
WO (1) | WO2007058338A2 (en) |
ZA (1) | ZA200803758B (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4986927B2 (en) * | 2007-05-14 | 2012-07-25 | 大塚製薬株式会社 | Medicine |
US9029408B2 (en) | 2008-06-16 | 2015-05-12 | Gtx, Inc. | Compounds for treatment of cancer |
PT2959900T (en) * | 2008-06-16 | 2017-06-22 | Univ Tennessee Res Found | Compound for treatment of cancer |
US8822513B2 (en) | 2010-03-01 | 2014-09-02 | Gtx, Inc. | Compounds for treatment of cancer |
US9447049B2 (en) | 2010-03-01 | 2016-09-20 | University Of Tennessee Research Foundation | Compounds for treatment of cancer |
GB2465890A (en) * | 2008-12-05 | 2010-06-09 | Scynexis Inc | 2-Arylazole derivatives as antiprotozoal agents |
AU2010347233B2 (en) | 2010-03-01 | 2015-06-18 | Oncternal Therapeutics, Inc. | Compounds for treatment of cancer |
US8513230B2 (en) * | 2010-03-05 | 2013-08-20 | Karyopharm Therapeutics, Inc. | Nuclear transport modulators and uses thereof |
US8343970B2 (en) | 2010-03-12 | 2013-01-01 | Omeros Corporation | PDE10 inhibitors and related compositions and methods |
WO2012099807A1 (en) | 2011-01-17 | 2012-07-26 | Karyopharm Therapeutics, Inc. | Olefin containing nuclear transport modulators and uses thereof |
WO2013019561A1 (en) | 2011-07-29 | 2013-02-07 | Karyopharm Therapeutics, Inc. | Nuclear transport modulators and uses thereof |
AR087342A1 (en) | 2011-07-29 | 2014-03-19 | Karyopharm Therapeutics Inc | NUCLEAR TRANSPORT MODULATORS CONTAINING HYDRAZIDE AND ITS USES |
US8809372B2 (en) | 2011-09-30 | 2014-08-19 | Asana Biosciences, Llc | Pyridine derivatives |
US9199975B2 (en) | 2011-09-30 | 2015-12-01 | Asana Biosciences, Llc | Biaryl imidazole derivatives for regulating CYP17 |
CN104080770A (en) * | 2011-11-09 | 2014-10-01 | 迈兰实验室有限公司 | An improved process for the preparation of roflumilast |
IN2014DN09434A (en) | 2012-05-09 | 2015-07-17 | Karyopharm Therapeutics Inc | |
RU2015111236A (en) * | 2012-08-30 | 2016-10-20 | Оцука Фармасьютикал Ко., Лтд. | METHOD FOR PRODUCING OXAZOLE DERIVATIVE |
WO2014144772A1 (en) | 2013-03-15 | 2014-09-18 | Karyopharm Therapeutics Inc. | Methods of promoting wound healing using crm1 inhibitors |
CA2915365C (en) | 2013-06-21 | 2022-08-16 | Karyopharm Therapeutics Inc. | Nuclear transport modulators and uses thereof |
CN105085428B (en) * | 2014-04-25 | 2019-03-22 | 广东东阳光药业有限公司 | Aromatic heterocyclic derivatives and its application on drug |
NZ630803A (en) | 2014-04-28 | 2016-03-31 | Omeros Corp | Optically active pde10 inhibitor |
NZ716494A (en) | 2014-04-28 | 2017-07-28 | Omeros Corp | Processes and intermediates for the preparation of a pde10 inhibitor |
UA123535C2 (en) | 2014-08-15 | 2021-04-21 | Каріофарм Терапеутікс Інк. | Polymorphs of selinexor |
TWI689497B (en) * | 2014-09-04 | 2020-04-01 | 南北兄弟藥業投資有限公司 | Heteroaromatic derivatives and parmaceutical applications thereof |
EP3285760A4 (en) | 2015-04-24 | 2018-09-26 | Omeros Corporation | Pde10 inhibitors and related compositions and methods |
CN106188027B (en) * | 2015-09-02 | 2020-10-20 | 广东东阳光药业有限公司 | Aromatic heterocyclic derivative and application thereof in medicine |
CA3003611C (en) | 2015-11-04 | 2022-11-01 | Omeros Corporation | Solid state forms of a pde10 inhibitor |
TWI726027B (en) | 2015-12-28 | 2021-05-01 | 日商大塚製藥股份有限公司 | Ointment |
CN106279138B (en) * | 2015-12-29 | 2019-03-01 | 广东东阳光药业有限公司 | Aromatic heterocyclic derivatives and its application in drug |
WO2017117535A1 (en) | 2015-12-31 | 2017-07-06 | Karyopharm Therapeutics Inc. | Nuclear transport modulators and uses thereof |
WO2017117529A1 (en) | 2015-12-31 | 2017-07-06 | Karyopharm Therapeutics Inc. | Nuclear transport modulators and uses thereof |
US11602530B2 (en) | 2016-11-28 | 2023-03-14 | Biogen Ma Inc. | CRM1 inhibitors for treating epilepsy |
ES2982586T3 (en) * | 2018-04-04 | 2024-10-16 | Otsuka Pharma Co Ltd | Oxazole compound crystal |
TW202227424A (en) * | 2020-11-27 | 2022-07-16 | 大陸商瑞石生物醫藥有限公司 | Aryl or heteroaryl substituted five-membered aromatic heterocyclic compounds and uses thereof |
CN112425610A (en) * | 2021-01-22 | 2021-03-02 | 深圳市洛奇机电科技有限公司 | Preparation system and application of pesticide suspending agent for preventing and treating kaffir lily leaf spot disease |
CN118843463A (en) | 2022-03-25 | 2024-10-25 | 大塚制药株式会社 | Composition for wound treatment |
CN115785014A (en) * | 2022-12-27 | 2023-03-14 | 瑞石生物医药有限公司 | Tetrazole derivatives and uses thereof |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4735961A (en) | 1984-05-07 | 1988-04-05 | Merck & Co., Inc. | Oxazoles and thiazoles containing an aminohydroxypropoxyphenyl moiety |
WO1989008651A1 (en) * | 1988-03-08 | 1989-09-21 | Pfizer Inc. | Hypoglycemic thiazolidinedione derivatives |
US5814651A (en) * | 1992-12-02 | 1998-09-29 | Pfizer Inc. | Catechol diethers as selective PDEIV inhibitors |
US20020169173A1 (en) | 1993-11-08 | 2002-11-14 | Smithkline Beecham Corporation | Oxazoles for treating cytokine mediated diseases |
CA2193725A1 (en) * | 1994-06-24 | 1996-01-04 | David Cavalla | Aryl derivative compounds and uses to inhibit phosphodiesterase iv acti vity |
AUPO156596A0 (en) | 1996-08-09 | 1996-09-05 | University Of Sydney, The | Synthetic polynucleotides |
DE19632549A1 (en) | 1996-08-13 | 1998-02-19 | Merck Patent Gmbh | Arylalkanoylpyridazines |
AU4015497A (en) | 1996-08-26 | 1998-03-19 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Thiazole derivatives useful as selective inhibitors of pde-iv |
IL129748A (en) | 1996-10-07 | 2003-11-23 | Lilly Co Eli | Phenyl oxazole, thiazole, oxazoline, oxadiazole and benzoxazole compounds and neuro-protective pharmaceutical compositions comprising the same |
US6020339A (en) | 1997-10-03 | 2000-02-01 | Merck & Co., Inc. | Aryl furan derivatives as PDE IV inhibitors |
JP4518587B2 (en) | 1998-03-09 | 2010-08-04 | 興和創薬株式会社 | 2-Phenylmorpholine derivative |
EP1435944B1 (en) | 2001-10-16 | 2009-09-30 | Memory Pharmaceutical Corporation | 4(4-alkoxy-3-hydroxyphenyl)-2-pyrrolidone derivatives as pde-4 inhibitors for the treatment of neurological syndromes |
DE60324898D1 (en) | 2002-02-25 | 2009-01-08 | Lilly Co Eli | MODULATORS OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS |
JP2004203871A (en) | 2002-12-13 | 2004-07-22 | Yamanouchi Pharmaceut Co Ltd | Medicinal composition |
TW200505913A (en) | 2003-03-28 | 2005-02-16 | Hoffmann La Roche | Novel oxazole derivatives, their manufacture and use as pharmaceutical agents |
AU2005243384A1 (en) | 2004-05-17 | 2005-11-24 | Otsuka Pharmaceutical Co., Ltd. | Thiazole compound and use thereof |
SI1786790T1 (en) | 2004-07-26 | 2009-10-31 | Lilly Co Eli | Oxazole derivatives as histamine h3 receptor agents, preparation and therapeutic uses |
DE102004051277A1 (en) * | 2004-10-21 | 2006-04-27 | Merck Patent Gmbh | Heterocyclic carbonyl compounds |
CA2602336A1 (en) * | 2005-03-31 | 2006-10-05 | Ucb Pharma S.A. | Compounds comprising an oxazole or thiazole moiety, processes for making them, and their uses |
-
2006
- 2006-11-14 BR BRPI0618589A patent/BRPI0618589B8/en active IP Right Grant
- 2006-11-14 EP EP06823467.3A patent/EP1954684B1/en active Active
- 2006-11-14 ZA ZA200803758A patent/ZA200803758B/en unknown
- 2006-11-14 PL PL06823467T patent/PL1954684T3/en unknown
- 2006-11-14 DK DK06823467.3T patent/DK1954684T3/en active
- 2006-11-14 TW TW095142068A patent/TWI330639B/en active
- 2006-11-14 AR ARP060104973A patent/AR057891A1/en active IP Right Grant
- 2006-11-14 US US15/623,249 patent/USRE46792E1/en active Active
- 2006-11-14 SI SI200631792T patent/SI1954684T1/en unknown
- 2006-11-14 CN CN200680042484XA patent/CN101309912B/en active Active
- 2006-11-14 PT PT68234673T patent/PT1954684E/en unknown
- 2006-11-14 KR KR1020087014483A patent/KR101439557B1/en active IP Right Grant
- 2006-11-14 MY MYPI20081379A patent/MY153720A/en unknown
- 2006-11-14 US US12/090,951 patent/US8637559B2/en not_active Ceased
- 2006-11-14 AU AU2006316079A patent/AU2006316079B2/en active Active
- 2006-11-14 WO PCT/JP2006/323066 patent/WO2007058338A2/en active Application Filing
- 2006-11-14 RU RU2008123839/04A patent/RU2418793C2/en active
- 2006-11-14 JP JP2008539670A patent/JP5305914B2/en active Active
- 2006-11-14 ES ES06823467.3T patent/ES2483992T3/en active Active
- 2006-11-14 CA CA2627541A patent/CA2627541C/en active Active
-
2008
- 2008-04-23 NO NO20081930A patent/NO341440B1/en unknown
- 2008-04-27 IL IL191008A patent/IL191008A/en active IP Right Grant
-
2009
- 2009-02-06 HK HK09101124.8A patent/HK1121162A1/en unknown
-
2013
- 2013-12-12 US US14/104,871 patent/US20140100226A1/en not_active Abandoned
-
2014
- 2014-07-01 CY CY20141100485T patent/CY1115302T1/en unknown
-
2017
- 2017-04-11 US US15/485,203 patent/US20170216260A1/en not_active Abandoned
- 2017-07-10 AR ARP170101905A patent/AR109007A2/en unknown
- 2017-07-10 AR ARP170101904A patent/AR109006A2/en unknown
-
2018
- 2018-11-01 US US16/178,517 patent/US20190070151A1/en not_active Abandoned
-
2019
- 2019-11-12 US US16/681,360 patent/US20200078340A1/en not_active Abandoned
-
2022
- 2022-02-24 US US17/679,659 patent/US20220265613A1/en not_active Abandoned
-
2024
- 2024-01-05 US US18/405,633 patent/US20240148699A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220265613A1 (en) | Oxazole compound and pharmaceutical composition | |
US7598266B2 (en) | Fused heterocyclic derivatives as PPAR modulators | |
EP1513812B1 (en) | Substituted indoles | |
AU717699B2 (en) | Chemical compounds | |
US20210387941A1 (en) | Diphenyl-like Compound, Intermediate Thereof, Preparation Method Therefor, Pharmaceutical Composition Thereof And Uses Thereof | |
ES2457521T3 (en) | 1,2,3-Triazole derivatives for use as stearoyl-coA desaturase inhibitors | |
JP4986927B2 (en) | Medicine | |
JP2013047189A (en) | Novel parabanic acid derivative, and medicine containing the same as effective component | |
US20090192203A1 (en) | Compounds and compositions as ppar modulators | |
EP0207454A2 (en) | Isoxazole and furan derivatives, their preparation and use as antiviral agents | |
US7176224B2 (en) | Oxazolyl-aryloxyacetic acid derivatives and their use as PPAR agonists | |
US5002960A (en) | N-haloalkyl-4-(isoxazol-5-yl)alkoxy benzamides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |