US20220213009A1 - Hydrofluorination of 1233xf to 244bb by sbf5 - Google Patents
Hydrofluorination of 1233xf to 244bb by sbf5 Download PDFInfo
- Publication number
- US20220213009A1 US20220213009A1 US17/656,340 US202217656340A US2022213009A1 US 20220213009 A1 US20220213009 A1 US 20220213009A1 US 202217656340 A US202217656340 A US 202217656340A US 2022213009 A1 US2022213009 A1 US 2022213009A1
- Authority
- US
- United States
- Prior art keywords
- composition
- hydrofluoroalkane
- chloro
- catalyst
- reacting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 claims abstract description 50
- 150000005828 hydrofluoroalkanes Chemical class 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 44
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 claims abstract description 24
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 claims abstract description 24
- 239000012808 vapor phase Substances 0.000 claims abstract description 18
- 150000001336 alkenes Chemical class 0.000 claims abstract description 17
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims description 58
- 239000003054 catalyst Substances 0.000 claims description 50
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 claims description 24
- 239000007791 liquid phase Substances 0.000 claims description 24
- OQISUJXQFPPARX-UHFFFAOYSA-N 2-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C(Cl)=C OQISUJXQFPPARX-UHFFFAOYSA-N 0.000 claims description 19
- SMCNZLDHTZESTK-UHFFFAOYSA-N 2-chloro-1,1,1,2-tetrafluoropropane Chemical compound CC(F)(Cl)C(F)(F)F SMCNZLDHTZESTK-UHFFFAOYSA-N 0.000 claims description 18
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical group 0.000 claims description 7
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 claims description 7
- FDOPVENYMZRARC-UHFFFAOYSA-N 1,1,1,2,2-pentafluoropropane Chemical compound CC(F)(F)C(F)(F)F FDOPVENYMZRARC-UHFFFAOYSA-N 0.000 claims description 5
- DCWQLZUJMHEDKD-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoropropane Chemical compound CC(Cl)(Cl)C(F)(F)F DCWQLZUJMHEDKD-UHFFFAOYSA-N 0.000 claims 2
- 125000001153 fluoro group Chemical group F* 0.000 abstract description 29
- 125000001309 chloro group Chemical group Cl* 0.000 abstract description 22
- 229910052801 chlorine Inorganic materials 0.000 abstract description 17
- 229910052731 fluorine Inorganic materials 0.000 abstract description 16
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 9
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 abstract description 4
- 229910052794 bromium Inorganic materials 0.000 abstract description 4
- 125000001246 bromo group Chemical group Br* 0.000 abstract description 4
- 125000000217 alkyl group Chemical group 0.000 description 19
- -1 carbonium ion Chemical class 0.000 description 18
- 239000000460 chlorine Substances 0.000 description 17
- 238000003682 fluorination reaction Methods 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 13
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 10
- 150000001721 carbon Chemical group 0.000 description 10
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 10
- 229910000423 chromium oxide Inorganic materials 0.000 description 10
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000011737 fluorine Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 229910001507 metal halide Inorganic materials 0.000 description 9
- 150000005309 metal halides Chemical class 0.000 description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical class Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 8
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 8
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 6
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 5
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- LDTMPQQAWUMPKS-OWOJBTEDSA-N (e)-1-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)\C=C\Cl LDTMPQQAWUMPKS-OWOJBTEDSA-N 0.000 description 3
- 229910003074 TiCl4 Inorganic materials 0.000 description 3
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 238000007033 dehydrochlorination reaction Methods 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910001026 inconel Inorganic materials 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- CDOOAUSHHFGWSA-OWOJBTEDSA-N (e)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C\C(F)(F)F CDOOAUSHHFGWSA-OWOJBTEDSA-N 0.000 description 2
- FDMFUZHCIRHGRG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C=C FDMFUZHCIRHGRG-UHFFFAOYSA-N 0.000 description 2
- ZGOMEYREADWKLC-UHFFFAOYSA-N 3-chloro-1,1,1,3-tetrafluoropropane Chemical compound FC(Cl)CC(F)(F)F ZGOMEYREADWKLC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 2
- 229910000792 Monel Inorganic materials 0.000 description 2
- 229910019804 NbCl5 Inorganic materials 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910004537 TaCl5 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000006704 dehydrohalogenation reaction Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012025 fluorinating agent Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000026030 halogenation Effects 0.000 description 2
- 238000005658 halogenation reaction Methods 0.000 description 2
- 229910000856 hastalloy Inorganic materials 0.000 description 2
- 229910001119 inconels 625 Inorganic materials 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 238000006053 organic reaction Methods 0.000 description 2
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 2
- INEMUVRCEAELBK-UHFFFAOYSA-N 1,1,1,2-tetrafluoropropane Chemical group CC(F)C(F)(F)F INEMUVRCEAELBK-UHFFFAOYSA-N 0.000 description 1
- PFFGXVGPSGJOBV-UHFFFAOYSA-N 1,1,1,3-tetrafluoropropane Chemical compound FCCC(F)(F)F PFFGXVGPSGJOBV-UHFFFAOYSA-N 0.000 description 1
- UMGQVBVEWTXECF-UHFFFAOYSA-N 1,1,2,3-tetrachloroprop-1-ene Chemical compound ClCC(Cl)=C(Cl)Cl UMGQVBVEWTXECF-UHFFFAOYSA-N 0.000 description 1
- HMAHQANPHFVLPT-UHFFFAOYSA-N 1,3,3-trifluoroprop-1-yne Chemical compound FC#CC(F)F HMAHQANPHFVLPT-UHFFFAOYSA-N 0.000 description 1
- LLJWABOOFANACB-UHFFFAOYSA-N 1-chloro-1,1,3,3,3-pentafluoropropane Chemical compound FC(F)(F)CC(F)(F)Cl LLJWABOOFANACB-UHFFFAOYSA-N 0.000 description 1
- LOCOMRPWMOCMPV-UHFFFAOYSA-N 2,3-dichloro-1,1,1,2-tetrafluoropropane Chemical group FC(F)(F)C(F)(Cl)CCl LOCOMRPWMOCMPV-UHFFFAOYSA-N 0.000 description 1
- IRCLJRMKYIULFK-UHFFFAOYSA-N 2,3-dichloro-1,1,1,3-tetrafluoropropane Chemical compound FC(Cl)C(Cl)C(F)(F)F IRCLJRMKYIULFK-UHFFFAOYSA-N 0.000 description 1
- AWRHGKKFIUAKHZ-UHFFFAOYSA-N 3,3-dichloro-1,1,2,3-tetrafluoroprop-1-ene Chemical class FC(F)=C(F)C(F)(Cl)Cl AWRHGKKFIUAKHZ-UHFFFAOYSA-N 0.000 description 1
- XTRPJEPJFXGYCI-UHFFFAOYSA-N 3-chloro-1,1,1,2,2-pentafluoropropane Chemical compound FC(F)(F)C(F)(F)CCl XTRPJEPJFXGYCI-UHFFFAOYSA-N 0.000 description 1
- HXNJCCYKKHPFIO-UHFFFAOYSA-N 3-chloro-1,1,2,3-tetrafluoroprop-1-ene Chemical class FC(Cl)C(F)=C(F)F HXNJCCYKKHPFIO-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 238000010471 Markovnikov's rule Methods 0.000 description 1
- 229910000934 Monel 400 Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Inorganic materials [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000007805 chemical reaction reactant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- OANFWJQPUHQWDL-UHFFFAOYSA-N copper iron manganese nickel Chemical compound [Mn].[Fe].[Ni].[Cu] OANFWJQPUHQWDL-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000012035 limiting reagent Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000004812 organic fluorine compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/07—Preparation of halogenated hydrocarbons by addition of hydrogen halides
- C07C17/087—Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/18—Arsenic, antimony or bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/08—Halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/07—Preparation of halogenated hydrocarbons by addition of hydrogen halides
- C07C17/08—Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/25—Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
- C07C19/10—Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/06—Halogens; Compounds thereof
- C07C2527/08—Halides
- C07C2527/12—Fluorides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/06—Halogens; Compounds thereof
- C07C2527/133—Compounds comprising a halogen and vanadium, niobium, tantalium, antimonium or bismuth
Definitions
- This disclosure relates to novel methods for preparing fluorinated organic compounds, and more particularly to methods of producing fluorinated hydrocarbons.
- Hydrofluorocarbons in particular hydrofluoroalkenes or fluoroolefins, such as tetrafluoropropenes (including 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf or 1234yf)) have been disclosed to be effective refrigerants, fire extinguishants, heat transfer media, propellants, foaming agents, blowing agents, gaseous dielectrics, sterilant carriers, polymerization media, particulate removal fluids, carrier fluids, buffing abrasive agents, displacement drying agents and power cycle working fluids.
- HFCs Hydrofluorocarbons
- HFCs Unlike chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), both of which potentially damage the Earth's ozone layer, HFCs do not contain chlorine and, thus, pose no threat to the ozone layer.
- compositions that meet both low ozone depletion standards as well as having low global warming potentials.
- Certain fluoroolefins are believed to meet both goals.
- manufacturing processes that provide halogenated hydrocarbons and fluoroolefins that contain no chlorine that also have a low global warming potential.
- HFO-1234yf 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf or 1234yf).
- the hydrofluorination of 1233xf to 244bb is usually conducted in the presence of fluorinated SbCl 5 at temperatures above 70° C.; otherwise the catalyst will freeze. Under these conditions, the 1233xf is not completely converted to 244bb because of equilibrium limitations, especially at higher temperatures. As a result, significant amounts of 1233xf are present in the product formed. Since the boiling points of 1233xf and 244bb are only about 2° C. apart, separation of these two species is difficult and expensive.
- the present invention fulfills that need.
- the disclosure relates to a method for hydrofluorination of an olefin of the formula: RCX ⁇ CYZ to produce hydrofluoroalkanes of formula RCXFCHYZ and RCHXCFYZ, wherein X, Y and Z are independently the same or different and are selected from the group consisting of H, F, Cl, Br, and C 1 -C 6 alkyl which is partly or fully substituted with chloro or fluoro or bromo, and R is a C 1 -C 6 alkyl which is partially or fully substituted with chloro or fluoro or bromo, comprising reacting the fluoroolefin with HF in the liquid-phase, in the presence of SbF 5 , at a temperature ranging from about ⁇ 30° C. to about 65° C.
- the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
- a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
- “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B is true (or present).
- olefin refers to a compound containing a carbon-carbon double bond. It is defined herein relative to the formula RCX ⁇ CYZ.
- hydrofluoroalkene or “fluoroolefin”, as used herein, denotes a compound containing hydrogen, carbon, fluorine, and at least one carbon-carbon double bond and optionally chlorine.
- HFO indicates a compound containing hydrogen, carbon, fluorine, and at least one carbon-carbon double, and no chlorine.
- HCFO indicates a compound containing hydrogen, carbon, chlorine, fluorine, and at least one carbon-carbon double.
- HCO indicates a compound containing hydrogen, carbon, chlorine, and at least one carbon-carbon double bond, and no fluorine.
- hydrofluorination is understood to mean the addition reaction of hydrogen fluoride to a carbon-carbon double bond.
- hydrofluoroalkane refers to an alkane having two or more carbon atoms containing hydrogen, fluorine, and optionally chlorine, whereby a fluorine atom and a hydrogen atom are substituted on two adjacent carbon atoms.
- the hydrofluoroalkane can be the product from the hydrofluorination of the fluoroolefin.
- the HF used herein is an anhydrous liquid hydrogen fluoride which is commercially available or it may be a gas that is bubbled into the reactor.
- Anhydrous HF is sold by, for example, Solvay S.A, The Chemours Company FC, LLC and Honeywell International, Inc.
- conversion with respect to a reactant, which typically is a limiting agent, refers to the number of moles reacted in the reaction process divided by the number of moles of that reactant initially present in the process multiplied by 100.
- percent conversion is defined as 100%, less the weight percent of starting material in the effluent from the reaction vessel.
- the term “selectivity” with respect to an organic reaction product refers to the ratio of the moles of that reaction product to the total of the moles of the organic reaction products multiplied by 100.
- percent selectivity is defined as the weight of a desired product formed, as a fraction of the total amount of the products formed in the reaction, and excluding the starting material.
- fluoroolefins of this disclosure e.g., CF 3 CH ⁇ CHCl (HCFO-1233zd or 1233zd)
- HCFO-1233zd CF 3 CH ⁇ CHCl
- 1233zd fluoroolefins of this disclosure
- CF 3 CH ⁇ CHCl e.g., CF 3 CH ⁇ CHCl
- the present disclosure is intended to include all single configurational isomers, single stereoisomers, or any combination thereof.
- HCFO-1233zd is meant to represent the E-isomer, Z-isomer, or any combination or mixture of both isomers in any ratio.
- X, Y and Z may independently be the same or different and are selected from H, F, Cl and an alkyl group having 1 to 6 carbon atoms, which alkyl group is partially or fully substituted with fluorine or chlorine; and R is an alkyl group having 1 to 6 carbon atoms, which alkyl group is partially or fully substituted with fluorine or chlorine comprising reacting a fluoroolefin of the formula RCX ⁇ CYZ with HF in the liquid-phase, in the presence of a catalytic effective amount of SbF 5 .
- alkyl group is partially or fully substituted with chlorine” and “chlorinated alkyl” are synonymous and it is meant that the alkyl group must be at least monosubstituted with Cl.
- alkyl group is partially or fully substituted with fluorine” and “fluorinated alkyl” are synonymous and it is meant that the alkyl group must be at least monosubstituted with F.
- the alkyl group may have one or more fluoro substituents thereon or one or more chloro substituents thereon or a combination of one or more chloro or fluoro groups thereon. Some of the carbon atoms may be substituted with one or more chloro or fluoro atoms.
- the alkyl group is substituted with one or more fluoro atoms. In an embodiment, the alkyl group is fully substituted with chloro or fluoro or combination of both chloro and fluoro. In another embodiment, the alkyl group is perchlorinated, while in another embodiment, the alkyl group is perfluorinated.
- the alkyl group may be branched or linear. In an embodiment, the alkyl group is linear. In an embodiment, the alkyl group contains 1-4 carbon atoms, and in another embodiment, it contains 1 or 2 or 3 carbon atoms and in still another embodiment 1 or 2 carbon atoms. In another embodiment, it contains only 1 carbon atom. Examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
- R is defined, among other things, as being partially or fully substituted with chloro or fluoro and X, Y, or Z may be, among other things, partially or fully substituted with chloro or fluoro.
- X, Y, Z are independently partially or fully substituted with chloro or fluoro, and in another embodiment, two of X, Y, and Z are partially or fully substituted with chloro or fluoro, and in another embodiment, one of X, Y, and Z is partially or fully substituted with chloro or fluoro, in still another embodiment, three of X, Y and Z are partially or fully substituted with chloro or fluoro, and in another embodiment, none of X, Y, Z are partially or fully substituted with chloro or fluoro.
- X, Y, and Z when defined as partially or fully substituted with chloro or fluoro, and with respect to R, in an embodiment, at least one carbon atom alpha or beta to the carbon atom bearing the double bond (if alkyl group contains 2 or more carbon atoms) is substituted with chloro or fluoro.
- X, Y, and Z are independently H or fluoro or chloro.
- R is perchlorinated or perfluorinated.
- R is —CF 3 or —CF 2 CF 3 .
- X, Y, and Z are independently H or fluoro or chloro and R is perfluorinated or perchlorinated.
- X, Y, Z are independently H or fluoro or chloro and R is perfluorinated, for example, —CF 3 or —CF 2 CF 3 .
- reactor refers to any vessel in which the reaction may be performed in either a batchwise mode, or in a continuous mode. Suitable reactors include tank reactor vessels with and without agitators, or tubular reactors.
- the reactor is comprised of materials which are resistant to corrosion including stainless steel, Hastelloy, Inconel, Monel, gold or gold-lined or quartz. In another embodiment, the reactor is TFE or PFA-lined.
- the olefin described herein has the formula RCX ⁇ CYZ, where R, X, Y, Z are as defined hereinabove.
- R, X, Y, Z are as defined hereinabove. Examples include RCCl ⁇ CH 2 , RCH ⁇ CHCl, RCCl ⁇ CHCl, RCH ⁇ CCl 2 and RCH ⁇ CH 2 , and the like.
- R is trifluoromethyl and in another embodiment, R is pentafluoroethyl.
- Representative olefins include 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1-chloro-3,3,3-trifluooropropene (HCFO-1233zd), chlorotetrafluoropropenes (HCFO-1224 or 1224), 2,3,3,3-tetrafluoropropene (1234yf), dichlorotetrafluoropropenes (HCFO-1214 or 1214), 1,3,3,3-tetrafluoropropene (1234ze), 3,3,3-trifluoropropene (HFO-1243zf or 1234zf), and the like.
- hydrofluoroalkanes described herein are the addition products of HF to the fluoroolefins, as defined hereinabove. As defined herein, they have the formula RCXFCHYZ or RCXHCFYZ, wherein R, X, Y, Z are as defined hereinabove. As described hereinabove, in one embodiment, R is trifluoromethyl and in another embodiment, R is pentafluoroethyl.
- Representative hydrofluoropropanes include 1,1,1,2-tetrafluoro-2-chloropropane, 1,1,1,3-tetrafluoro-3-chloropropane, 1,1,1,3,3-pentafluoro-3-chloropropane, 1,1,1,2,2-pentafluoro-3-chloropropane, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane and the like.
- the present process adds HF across the double bond of the fluoroolefin to produce a hydrofluoroalkane.
- the F atom may add to an internal or terminal carbon atom and the hydrogen atom may add to a terminal or internal carbon atom.
- the fluoroolefin when the fluoroolefin is RCCl ⁇ CH 2 , the product is RCFClCH 3 .
- the fluoroolefin is RCH ⁇ CHCl, the product is RCH 2 CHFCl.
- the fluoroolefin is RCH ⁇ CCl 2
- the hydrofluoropropane is RCH 2 CFCl 2 .
- the fluoroolefin when the fluoroolefin is RCH ⁇ CH 2 , the hydrofluoropropanes formed are RCHFCH 3 and RCH 2 CH 2 F.
- R can be CF 3 or C 2 F 6 .
- the fluoroolefin is 2-chloro-3,3,3-trifluoropropene and the hydrofluoroalkane is 2-chloro-1,1,1,2-tetrafluoropropane.
- the fluoroolefin is 3,3,3-trifluoropropene and the hydrofluoroalkane is 1,1,1,2-tetrafluoropropane and 1,1,1,3-tetrafluoropropane.
- the fluoroolefin is (Z)- or (E)-1-chloro-3,3,3-tetrafluoropropene and the hydrofluoroalkane is 3-chloro-1,1,1,3-tetrafluoropropane.
- the fluoroolefin is cis- or trans-1,2-dichloro-3,3,3-trifluoropropene and the hydrofluoroalkane is 1,1,1,2-tetrafluoro-2,3-dichloropropane and 1,1,1,3-tetrafluoro-2,3-dichloropropane.
- the fluoroolefin is 2,3,3,3-tetrafluoropropene, and the hydrofluoroalkane is 1,1,1,2,2-pentafluoropropane.
- the fluoroolefin is 1,3,3,3-tetrafluoropropene and the hydrofluoroalkane is 1,1,1,3,3-pentafluoropropane.
- the fluorine atom adds to the carbon atom of the double bond which has the most halogens attached thereto.
- the HF is added to the carbon atom of the double bond in accordance with Markovnikov's rule, i.e., the hydrogen of HF will add to the carbon atom that will form the more stable carbonium ion.
- the hydrogen atom of HF will add to the carbon atom having the most hydrogen atoms substituted thereon.
- the above process is conducted in the liquid phase.
- the fluoroolefin as well as the hydrogen fluoride are liquids at reaction conditions. Since water is used to quench the reaction, the amount of water present is minimized.
- the hydrogen fluoride used is anhydrous.
- the hydrogen fluoride can be bubbled in as a gas or added as a liquid into the liquid fluoroolefin or it may be present in an anhydrous solvent, such as pyridine.
- the fluoroolefin is dried with a desiccant before being mixed with HF or the catalyst.
- the reaction can be conducted in an inert atmosphere, such as under nitrogen, helium, argon and the like. However, in an embodiment, the reaction can be conducted in air and in another embodiment, the reaction is conducted without drying the fluoroolefin.
- the reaction when anhydrous liquid HF is used or HF is fed as a gas, the reaction is conducted without any solvent in addition to the solvent in which the anhydrous HF is dissolved. If the HF is fed as a gas, such as, being bubbled in as a gas, the reaction may be conducted without any solvent present.
- the hydrofluorination reaction is conducted at a temperature ranging from about ⁇ 30° C. to about 65° C. In another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about ⁇ 10° C. to about 40° C. In another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about 0° C. to about 30° C. In still another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about 0° C. to about 25° C. In another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about 5° C. to about 25° C. In still another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about 5° C.
- the hydrofluorination reaction can be conducted at any temperature in-between the ranges disclosed hereinabove, and these temperatures are contemplated within the scope of the present invention.
- the hydrofluorination described hereinabove is conducted in a reaction vessel at about ⁇ 30° C., about ⁇ 29° C., about ⁇ 28° C., about ⁇ 27° C., about ⁇ 26° C., about ⁇ 25° C., about ⁇ 24° C., about ⁇ 23° C., about ⁇ 22° C., about ⁇ 21° C., about ⁇ 20° C., about ⁇ 19° C., about ⁇ 18° C., about ⁇ 17° C., about ⁇ 16° C., about ⁇ 15° C., about ⁇ 14° C., about ⁇ 13° C., about ⁇ 12° C., about ⁇ 11° C., about ⁇ 10° C., about ⁇ 9° C., about ⁇ 8° C., about
- the reaction mixture is stirred using techniques known in the art.
- the reaction mixture is spun using a stirring bar.
- the reactor in which the reaction takes place is equipped with an impeller or other stirring device which stirs the reaction mixture.
- mixing may be provided by alternatives to stirring devices.
- Such methods are known in the industry and include using the mixing provided by gas bubbles from gas added to the vessel or generated within the vessel by vaporization of liquid. Mixing can also be provided by withdrawing the liquid from the vessel to a pump and pumping the liquid back into the vessel.
- a static mixer or other device intended to mix the contents can be present in the circulation path of the liquid to provide additional mixing power input.
- the mole ratio of HF to fluoroolefin ranges from about 0.5 to about 20. In another embodiment, the mole ratio of HF to fluoroolefin is from about 1 to about 10. In another embodiment, the mole ratio of HF to fluoroolefin is from about 1 to about 5.
- the SbF 5 is present in catalytic effective amounts. In one embodiment, the SbF 5 catalyst is present from about 1% to about 50% by weight of the mixture. In another embodiment, the SbF 5 catalyst is present from about 2% to about 30% by weight. In another embodiment, the SbF 5 catalyst is present from about 3% to about 15% by weight.
- hydrofluoroalkanes are prepared by catalytic fluorination of the fluoroolefin.
- the catalytic fluorination of the fluoroolefin results in a percent conversion to the hydrofluoroalkane of at least 90 mole %.
- the catalytic fluorination of the fluoroolefin results in a percent conversion to the hydrofluoroalkane of at least 95%.
- the catalytic fluorination of the fluoroolefin results in a percent conversion to the hydrofluoroalkane of at least 98%.
- the catalytic fluorination of the fluoroolefin results in a percent conversion to the hydrofluoroalkane of at least 99%.
- An aspect of the invention is to replace step (ii) of the reaction for making 1234yf described in the introduction with the present process.
- One of the advantages of the present disclosure is that the catalytic reaction for hydrofluorination, as described herein, takes place at lower temperatures, much lower than other catalysts for the other hydrofluorination reactions of fluoroolefin, such as SbCl 5 or fluorinated SbCl 5 .
- SbF 5 is a liquid at these lower temperatures that are used in the present process. Therefore, less energy is required to conduct these hydrofluorination reactions.
- the catalyst has substantial activity at the lower temperature. Thus, the catalytic process proceeds at a low temperature, thereby making it more efficient.
- the ratio of the desired hydrofluoroalkane produced relative to the starting olefin is about 90:1 or greater, and in another embodiment, is about 100:1 or greater and in another embodiment is about 110:1 or greater. Thus, for another reason, this reaction is quite efficient.
- an olefin and the resulting hydrofluoroalkane from the hydrofluorination reaction such as 1233xf and 244bb
- additional hydrofluoroalkane product would be formed.
- the feed material ratio of olefin, such as 1233xf, to hydrofluoroalkane, such a 244bb is greater than about 1 mole %, the present process will significantly convert the unreacted olefin to hydrofluoroalkane, thereby increasing the amount of the hydrofluoroalkane in the mixture.
- the present disclosure thus provides a method of maximizing the yield of the desired hydrofluoroalkane relative to the olefin.
- the olefin is 1233xf and the hydrofluoroalkane is 244bb
- 1233xf is present in greater than about 1 mole %
- the resulting product would have significantly more 244bb present than prior to the reaction.
- this advantage of the present disclosure can be used to improve the yield of HFO-1234yf being produced.
- the preparation of HFO-1234yf may include at least three reaction steps, as follows:
- a starting composition which comprises 1,1,2,3-tetrachloropropene (HCO-1230xa or 1230xa)
- a first reactor fluorination reactor
- the reaction is carried out in a reactor in the gaseous phase at a temperature of about 200° C. to about 400° C. and a pressure of about 0 to about 200 psig.
- the effluent stream exiting in the vapor phase reactor may optionally comprise additional components, such as un-reacted HF, un-reacted starting composition, heavy intermediates, HFC-245cb, or the like.
- This reaction may be conducted in any reactor suitable for a vapor phase fluorination reaction.
- the reactor may be constructed from materials which are resistant to the corrosive effects of hydrogen fluoride such as Hastelloy, Inconel, Monel, and the like.
- the reactor is filled with a vapor phase fluorination catalyst. Any fluorination catalysts known in the art may be used in this process.
- Suitable catalysts include, but are not limited to, metal oxides, hydroxides, halides, oxyhalides, inorganic salts thereof and their mixtures, any of which may be optionally halogenated, wherein the metal includes, but is not limited to, chromium, aluminum, cobalt, manganese, nickel, iron, and combinations of two or more thereof.
- Combinations of catalysts suitable for the present invention nonexclusively include Cr 2 O 3 , FeCl 3 /C, Cr 2 O 3 /Al 2 O 3 , Cr 2 O 3 /AlF 3 , Cr 2 O 3 /carbon, CoCl 2 /Cr 2 O 3 /Al 2 O 3 , NiCl 2 /Cr 2 O 3 /Al 2 O 3 , CoCl 2 /AlF 3 , NiCl 2 /AlF 3 and mixtures thereof.
- Chromium oxide/aluminum oxide catalysts are described in U.S. Pat. No. 5,155,082, the contents of which are incorporated herein by reference.
- Chromium (III) oxides such as crystalline chromium oxide or amorphous chromium oxide are preferred with amorphous chromium oxide being most preferred.
- Chromium oxide (Cr 2 O 3 ) is a commercially available material which may be purchased in a variety of particle sizes. Fluorination catalysts having a purity of at least 98% are preferred. The fluorination catalyst is present in an excess but in at least an amount sufficient to drive the reaction.
- This first step of the reaction is not necessarily limited to a vapor phase reaction and may also be performed using a liquid phase reaction or a combination of liquid and vapor phases, such as that disclosed in U.S. Published Patent Application No. 2007/0197842, the contents of which are incorporated herein by reference. It is also contemplated that the reaction can be carried out batch wise or in a continuous manner, or a combination of these.
- the reaction can be catalytic or non-catalytic.
- Lewis acid catalysts such as metal-halide catalysts, including antimony halides, tin halides, thallium halides, iron halides, and combinations of two or more of these, may be employed.
- metal chlorides and metal fluorides are employed, including, but not limited to, SbCl 5 , SbCl 3 , SbF 5 , SnCl 4 , TiCl 4 , FeCl 3 , and combinations of two or more of these. It is noted that SbF 5 is a liquid at low temperature.
- HCFO-1233xf is converted to HCFC-244bb.
- this step can be performed in the liquid phase in a liquid phase reactor, which may be TFE or PFA-lined.
- a liquid phase reactor which may be TFE or PFA-lined.
- Such a process can be performed in a temperature range of about 70° C. to about 120° C. and at a pressure ranging from about 50 to about 120 psig.
- Any liquid phase fluorination catalyst may be used that is effective at these temperatures.
- a non-exhaustive list includes Lewis acids, transition metal halides, transition metal oxides, Group IVb metal halides, Group Vb metal halides, or combinations thereof.
- Non-exclusive examples of liquid phase fluorination catalysts are antimony halide, tin halide, tantalum halide, titanium halide, niobium halide, molybdenum halide, iron halide, fluorinated chrome halide, fluorinated chrome oxide or combinations thereof.
- liquid phase fluorination catalysts are SbCl 5 , SbCl 3 , SbF 5 , SnCl 4 , TaCl 5 , TiCl 4 , NbCl 5 , MoCl 6 , FeCl 3 , fluorinated species of SbCl 5 , fluorinated species of SbCl 3 , fluorinated species of SnCl 4 , fluorinated species of TaCl 5 , fluorinated species of TiCl 4 , fluorinated species of NbCl 5 , fluorinated species of MoCl 6 , fluorinated species of FeCl 3 , or combinations thereof.
- catalysts can be readily regenerated by any means known in the art if they become deactivated.
- One suitable method of regenerating the catalyst involves flowing a stream of chlorine through the catalyst. For example, from about 0.002 to about 0.2 lb per hour of chlorine can be added to the liquid phase reaction for every pound of liquid phase fluorination catalyst. This may be done, for example, for from about 1 to about 2 hours or continuously at a temperature of from about 65° C. to about 100° C.
- This second step of the reaction is not necessarily limited to a liquid phase reaction and may also be performed using a vapor phase reaction or a combination of liquid and vapor phases, such as that disclosed in U.S. Published Patent Application No. 2007/0197842, the contents of which are incorporated herein by reference.
- the HCFO-1233xf containing feed stream is preheated to a temperature of from about 50° C. to about 400° C., and is contacted with a catalyst and fluorinating agent.
- Catalysts may include standard vapor phase agents used for such a reaction and fluorinating agents may include those generally known in the art, such as, but not limited to, hydrogen fluoride.
- the product from the second step is then transferred to a third reactor wherein the 244bb is dehydrohalogenated.
- the catalysts in the dehydrochlorination reaction may be or comprise metal halide, halogenated metal oxide, neutral (or zero oxidation state) metal or metal alloy, or activated carbon in bulk or supported form.
- Metal halide or metal oxide catalysts may include, but are not limited to, mono-, bi-, and tri-valent metal halides, oxides and their mixtures/combinations, and more preferably mono-, and bi-valent metal halides and their mixtures/combinations.
- Component metals of metal halides, oxides and their mixtures/combinations include, but are not limited to, Cr 3+ , Fe 3+ , Mg 2+ , Ca 2+ , Ni 2+ , Zn 2+ , Pd 2+ , Li + , Na + , K + , and Cs + .
- Component halides include, but are not limited to, F, Cl, Br, and I.
- Examples of useful mono- or bi-valent metal halide include, but are not limited to, LiF, NaF, KF, CsF, MgF 2 , CaF 2 , LiCi, NaCl, KCl, and CsCl.
- Halogenation treatments can include any of those known in the prior art, particularly those that employ HF, F 2 , HCl, Cl 2 , HBr, Br 2 , HI, and I 2 as the halogenation source.
- metals and metal alloys and their mixtures are used.
- Useful metals include, but are not limited to, Pd, Pt, Rh, Fe, Co, Ni, Cu, Mo, Cr, Mn, and combinations of the foregoing as alloys or mixtures.
- the catalyst may be supported or unsupported.
- Useful examples of metal alloys include, but are not limited to, SS 316, Monel 400, Inconel 825, Inconel 600, and Inconel 625. Such catalysts may be provided as discrete supported or unsupported elements and/or as part of the reactor and/or the reactor walls.
- Preferred, but non-limiting, catalysts include activated carbon, stainless steel (e.g., SS 316), austenitic nickel-based alloys (e.g., Inconel 625), nickel, fluorinated 10% CsCl/MgO, and 10% CsCl/MgF 2 .
- a suitable reaction temperature is about 300° C. to about 550° C. and a suitable reaction pressure may be between about 0 psig to about 150 psig.
- the reactor effluent may be fed to a caustic scrubber or to a distillation column to remove the byproduct of HCl to produce an acid-free organic product which, optionally, may undergo further purification using one or any combination of purification techniques that are known in the art.
- the dehydrohalogenation reaction is carried out in the vapor phase. It may be carried out at a temperature range of from about 200° C. to about 800° C., from about 300° C. to about 600° C., or from about 400° C. to about 500° C. Suitable reactor pressures range from about 0 psig to about 200 psig, from about 10 psig to about 100 psig, or from about 20 to about 70 psig.
- a method of increasing the yield and conversion of 1233xf to 1234yf and to make the process more efficient is to react the product of step (ii), which contains a mixture of 1233xf and 244bb, with SbF 5 in accordance with the process of the present invention prior to the dehydrochlorination step.
- This increases the amount of 244bb present (decreasing the amount of 1233xf present) and the resulting product can then be subjected to step (iii) above.
- step (iii) By conducting this additional hydrofluorination reaction, more 244bb is produced, and as a result, significantly more 1234yf is produced.
- the 244bb thus produced is then transferred to another reactor wherein it undergoes dehydrohalogenation, in accordance with step (iii).
- step (ii) of the process instead of conducting step (ii) of the process, the 1233xf produced in step (i) is hydrofluorinated with HF in the presence of SbF 5 , in accordance with the present invention, as described herein.
- the 244bb product thus formed is then dehydrochlorinated to form 1234yf, in accordance with step (iii) described hereinabove.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
- This application is a divisional of co-pending U.S. application Ser. No. 17/220,427 filed Apr. 1, 2021, which is a divisional of U.S. application Ser. No. 16/423,352 filed May 28, 2019, now U.S. Pat. No. 11,008,267, which is a continuation of U.S. application Ser. No. 15/575,526 filed Nov. 20, 2017, now U.S. Pat. No. 10,301,236, which is a 371 National Stage Application of PCT/US2016/033450 filed May 20, 2016, which claims the benefit of and priority to U.S. Provisional Application No. 62/164,631 filed May 21, 2015, all of which are hereby incorporated by reference in their entirety.
- This disclosure relates to novel methods for preparing fluorinated organic compounds, and more particularly to methods of producing fluorinated hydrocarbons.
- Hydrofluorocarbons (HFCs), in particular hydrofluoroalkenes or fluoroolefins, such as tetrafluoropropenes (including 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf or 1234yf)) have been disclosed to be effective refrigerants, fire extinguishants, heat transfer media, propellants, foaming agents, blowing agents, gaseous dielectrics, sterilant carriers, polymerization media, particulate removal fluids, carrier fluids, buffing abrasive agents, displacement drying agents and power cycle working fluids. Unlike chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), both of which potentially damage the Earth's ozone layer, HFCs do not contain chlorine and, thus, pose no threat to the ozone layer.
- In addition to ozone depleting concerns, global warming is another environmental concern in many of these applications. Thus, there is a need for compositions that meet both low ozone depletion standards as well as having low global warming potentials. Certain fluoroolefins are believed to meet both goals. Thus, there is a need for manufacturing processes that provide halogenated hydrocarbons and fluoroolefins that contain no chlorine that also have a low global warming potential.
- One such HFO is 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf or 1234yf). The preparation of HFO-1234yf starting from CQ2=CCl—CH2Q or CQ3-CCl═CH2 or CQ3-CHCl—CH2Q may include three reaction steps, as follows:
-
- (i) (CQ2=CCl—CH2Q or CQ3-CCl═CH2 or CQ3-CHCl—CH2Q)+HF-2-chloro-3,3,3-trifluoropropene (HCFO-1233xf or 1233xf)+HCl in a vapor phase reactor charged with a solid catalyst;
- (ii) 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf)+HF-2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb or 244bb) in a liquid phase reactor charged with a liquid hydrofluorination catalyst; and
- (iii) 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb)-2,3,3,3-tetrafluoropropene (HFO-1234yf) in a vapor phase reactor;
wherein Q is independently selected from F, Cl, Br, and I, provided that at least one Q is not fluorine.
- The hydrofluorination of 1233xf to 244bb is usually conducted in the presence of fluorinated SbCl5 at temperatures above 70° C.; otherwise the catalyst will freeze. Under these conditions, the 1233xf is not completely converted to 244bb because of equilibrium limitations, especially at higher temperatures. As a result, significant amounts of 1233xf are present in the product formed. Since the boiling points of 1233xf and 244bb are only about 2° C. apart, separation of these two species is difficult and expensive.
- Moreover, the presence of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) in the reaction starting materials, such as HCFC-244bb feedstock, can lead to dramatically reduced conversion of HCFC-244bb to HFO-1234yf. In addition, the 2-chloro-3,3,3-trifluoropropene copresence in the starting material, when subjected to dehydrochlorination, can lead to the formation of trifluoropropyne and oligomers, which can produce tar. This result is disadvantageous from the standpoint of a reduced yield of the desired product. Therefore, there is a need for a better catalytic reaction to achieve a higher conversion of 1233xf to 244bb to avoid and/or minimize the need for purification.
- The present invention fulfills that need.
- The disclosure relates to a method for hydrofluorination of an olefin of the formula: RCX═CYZ to produce hydrofluoroalkanes of formula RCXFCHYZ and RCHXCFYZ, wherein X, Y and Z are independently the same or different and are selected from the group consisting of H, F, Cl, Br, and C1-C6 alkyl which is partly or fully substituted with chloro or fluoro or bromo, and R is a C1-C6 alkyl which is partially or fully substituted with chloro or fluoro or bromo, comprising reacting the fluoroolefin with HF in the liquid-phase, in the presence of SbF5, at a temperature ranging from about −30° C. to about 65° C.
- The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
- As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B is true (or present).
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, suitable methods and materials are described below. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- The term “olefin”, as used herein refers to a compound containing a carbon-carbon double bond. It is defined herein relative to the formula RCX═CYZ.
- The terms “hydrofluoroalkene” or “fluoroolefin”, as used herein, denotes a compound containing hydrogen, carbon, fluorine, and at least one carbon-carbon double bond and optionally chlorine.
- “HFO”, as used herein, indicates a compound containing hydrogen, carbon, fluorine, and at least one carbon-carbon double, and no chlorine. “HCFO”, as used herein, indicates a compound containing hydrogen, carbon, chlorine, fluorine, and at least one carbon-carbon double. “HCO”, as used herein, indicates a compound containing hydrogen, carbon, chlorine, and at least one carbon-carbon double bond, and no fluorine.
- The term “hydrofluorination” is understood to mean the addition reaction of hydrogen fluoride to a carbon-carbon double bond.
- The term “hydrofluoroalkane”, as used herein, refers to an alkane having two or more carbon atoms containing hydrogen, fluorine, and optionally chlorine, whereby a fluorine atom and a hydrogen atom are substituted on two adjacent carbon atoms. As used herein, the hydrofluoroalkane can be the product from the hydrofluorination of the fluoroolefin.
- The HF used herein is an anhydrous liquid hydrogen fluoride which is commercially available or it may be a gas that is bubbled into the reactor. Anhydrous HF is sold by, for example, Solvay S.A, The Chemours Company FC, LLC and Honeywell International, Inc.
- As used herein, the term “conversion” with respect to a reactant, which typically is a limiting agent, refers to the number of moles reacted in the reaction process divided by the number of moles of that reactant initially present in the process multiplied by 100.
- As used herein, percent conversion is defined as 100%, less the weight percent of starting material in the effluent from the reaction vessel.
- As used herein, the term “selectivity” with respect to an organic reaction product refers to the ratio of the moles of that reaction product to the total of the moles of the organic reaction products multiplied by 100.
- As used herein, “percent selectivity” is defined as the weight of a desired product formed, as a fraction of the total amount of the products formed in the reaction, and excluding the starting material.
- Some fluoroolefins of this disclosure, e.g., CF3CH═CHCl (HCFO-1233zd or 1233zd), exist as different configurational isomers or stereoisomers. When the specific isomer is not designated, the present disclosure is intended to include all single configurational isomers, single stereoisomers, or any combination thereof. For instance, HCFO-1233zd is meant to represent the E-isomer, Z-isomer, or any combination or mixture of both isomers in any ratio.
- Described is a method for producing hydrofluoroalkanes of formula RCXFCHYZ, wherein X, Y and Z may independently be the same or different and are selected from H, F, Cl and an alkyl group having 1 to 6 carbon atoms, which alkyl group is partially or fully substituted with fluorine or chlorine; and R is an alkyl group having 1 to 6 carbon atoms, which alkyl group is partially or fully substituted with fluorine or chlorine comprising reacting a fluoroolefin of the formula RCX═CYZ with HF in the liquid-phase, in the presence of a catalytic effective amount of SbF5.
- The terms “alkyl group is partially or fully substituted with chlorine” and “chlorinated alkyl” are synonymous and it is meant that the alkyl group must be at least monosubstituted with Cl. Similarly, the terms “alkyl group is partially or fully substituted with fluorine” and “fluorinated alkyl” are synonymous and it is meant that the alkyl group must be at least monosubstituted with F. However, in both cases, the alkyl group may have one or more fluoro substituents thereon or one or more chloro substituents thereon or a combination of one or more chloro or fluoro groups thereon. Some of the carbon atoms may be substituted with one or more chloro or fluoro atoms. In an embodiment, the alkyl group is substituted with one or more fluoro atoms. In an embodiment, the alkyl group is fully substituted with chloro or fluoro or combination of both chloro and fluoro. In another embodiment, the alkyl group is perchlorinated, while in another embodiment, the alkyl group is perfluorinated.
- The alkyl group may be branched or linear. In an embodiment, the alkyl group is linear. In an embodiment, the alkyl group contains 1-4 carbon atoms, and in another embodiment, it contains 1 or 2 or 3 carbon atoms and in still another embodiment 1 or 2 carbon atoms. In another embodiment, it contains only 1 carbon atom. Examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
- As defined herein, the carbon atoms which are part of the carbon-carbon double bond are substituted with R, X, Y, and Z. R is defined, among other things, as being partially or fully substituted with chloro or fluoro and X, Y, or Z may be, among other things, partially or fully substituted with chloro or fluoro. In one embodiment, X, Y, Z are independently partially or fully substituted with chloro or fluoro, and in another embodiment, two of X, Y, and Z are partially or fully substituted with chloro or fluoro, and in another embodiment, one of X, Y, and Z is partially or fully substituted with chloro or fluoro, in still another embodiment, three of X, Y and Z are partially or fully substituted with chloro or fluoro, and in another embodiment, none of X, Y, Z are partially or fully substituted with chloro or fluoro. With respect to X, Y, and Z, when defined as partially or fully substituted with chloro or fluoro, and with respect to R, in an embodiment, at least one carbon atom alpha or beta to the carbon atom bearing the double bond (if alkyl group contains 2 or more carbon atoms) is substituted with chloro or fluoro.
- In one embodiment, X, Y, and Z are independently H or fluoro or chloro. In another embodiment, R is perchlorinated or perfluorinated. In some embodiments of this invention, R is —CF3 or —CF2CF3. In another embodiment, X, Y, and Z are independently H or fluoro or chloro and R is perfluorinated or perchlorinated. In still further embodiment, X, Y, Z are independently H or fluoro or chloro and R is perfluorinated, for example, —CF3 or —CF2CF3.
- The process according to the invention can be carried out in any reactor made of a material that is resistant to reactants employed, especially to hydrogen fluoride. As used herein, the term “reactor” refers to any vessel in which the reaction may be performed in either a batchwise mode, or in a continuous mode. Suitable reactors include tank reactor vessels with and without agitators, or tubular reactors.
- In one embodiment, the reactor is comprised of materials which are resistant to corrosion including stainless steel, Hastelloy, Inconel, Monel, gold or gold-lined or quartz. In another embodiment, the reactor is TFE or PFA-lined.
- The olefin described herein has the formula RCX═CYZ, where R, X, Y, Z are as defined hereinabove. Examples include RCCl═CH2, RCH═CHCl, RCCl═CHCl, RCH═CCl2 and RCH═CH2, and the like. In one embodiment, R is trifluoromethyl and in another embodiment, R is pentafluoroethyl. Representative olefins include 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1-chloro-3,3,3-trifluooropropene (HCFO-1233zd), chlorotetrafluoropropenes (HCFO-1224 or 1224), 2,3,3,3-tetrafluoropropene (1234yf), dichlorotetrafluoropropenes (HCFO-1214 or 1214), 1,3,3,3-tetrafluoropropene (1234ze), 3,3,3-trifluoropropene (HFO-1243zf or 1234zf), and the like.
- The hydrofluoroalkanes described herein are the addition products of HF to the fluoroolefins, as defined hereinabove. As defined herein, they have the formula RCXFCHYZ or RCXHCFYZ, wherein R, X, Y, Z are as defined hereinabove. As described hereinabove, in one embodiment, R is trifluoromethyl and in another embodiment, R is pentafluoroethyl. Representative hydrofluoropropanes include 1,1,1,2-tetrafluoro-2-chloropropane, 1,1,1,3-tetrafluoro-3-chloropropane, 1,1,1,3,3-pentafluoro-3-chloropropane, 1,1,1,2,2-pentafluoro-3-chloropropane, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane and the like.
- The present process adds HF across the double bond of the fluoroolefin to produce a hydrofluoroalkane. The F atom may add to an internal or terminal carbon atom and the hydrogen atom may add to a terminal or internal carbon atom. Thus, for example, in accordance with the present disclosure, when the fluoroolefin is RCCl═CH2, the product is RCFClCH3. In another embodiment, when the fluoroolefin is RCH═CHCl, the product is RCH2CHFCl. In another embodiment, when the fluoroolefin is RCH═CCl2, the hydrofluoropropane is RCH2CFCl2. In yet another embodiment, when the fluoroolefin is RCH═CH2, the hydrofluoropropanes formed are RCHFCH3 and RCH2CH2F. With respect to the aforementioned examples, in an embodiment, R can be CF3 or C2F6.
- In one embodiment, the fluoroolefin is 2-chloro-3,3,3-trifluoropropene and the hydrofluoroalkane is 2-chloro-1,1,1,2-tetrafluoropropane. In another embodiment, the fluoroolefin is 3,3,3-trifluoropropene and the hydrofluoroalkane is 1,1,1,2-tetrafluoropropane and 1,1,1,3-tetrafluoropropane. In another embodiment, the fluoroolefin is (Z)- or (E)-1-chloro-3,3,3-tetrafluoropropene and the hydrofluoroalkane is 3-chloro-1,1,1,3-tetrafluoropropane. In another embodiment, the fluoroolefin is cis- or trans-1,2-dichloro-3,3,3-trifluoropropene and the hydrofluoroalkane is 1,1,1,2-tetrafluoro-2,3-dichloropropane and 1,1,1,3-tetrafluoro-2,3-dichloropropane. In another embodiment, the fluoroolefin is 2,3,3,3-tetrafluoropropene, and the hydrofluoroalkane is 1,1,1,2,2-pentafluoropropane. In yet another embodiment, the fluoroolefin is 1,3,3,3-tetrafluoropropene and the hydrofluoroalkane is 1,1,1,3,3-pentafluoropropane.
- Without wishing to be bound, it is believed that with respect to HF addition to a carbon-carbon double bond, the fluorine atom adds to the carbon atom of the double bond which has the most halogens attached thereto. Otherwise, without wishing to be bound, the HF is added to the carbon atom of the double bond in accordance with Markovnikov's rule, i.e., the hydrogen of HF will add to the carbon atom that will form the more stable carbonium ion. Thus, for example, if one of the carbon atoms of the carbon-carbon double bond has more hydrogen atoms substituted thereon than the other carbon atom of the carbon-carbon double bond, the hydrogen atom of HF will add to the carbon atom having the most hydrogen atoms substituted thereon.
- The above process is conducted in the liquid phase. The fluoroolefin as well as the hydrogen fluoride are liquids at reaction conditions. Since water is used to quench the reaction, the amount of water present is minimized. For example, the hydrogen fluoride used is anhydrous. The hydrogen fluoride can be bubbled in as a gas or added as a liquid into the liquid fluoroolefin or it may be present in an anhydrous solvent, such as pyridine. Thus, for example, in an embodiment, although not necessary, the fluoroolefin is dried with a desiccant before being mixed with HF or the catalyst. By “desiccant,” it is meant any material which will absorb water without dissolving in or otherwise contaminating the fluoroolefin being dried, e.g., calcium sulfate or molecular sieves, and the like. In another embodiment, the reaction can be conducted in an inert atmosphere, such as under nitrogen, helium, argon and the like. However, in an embodiment, the reaction can be conducted in air and in another embodiment, the reaction is conducted without drying the fluoroolefin.
- In an embodiment, when anhydrous liquid HF is used or HF is fed as a gas, the reaction is conducted without any solvent in addition to the solvent in which the anhydrous HF is dissolved. If the HF is fed as a gas, such as, being bubbled in as a gas, the reaction may be conducted without any solvent present.
- In one embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about −30° C. to about 65° C. In another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about −10° C. to about 40° C. In another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about 0° C. to about 30° C. In still another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about 0° C. to about 25° C. In another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about 5° C. to about 25° C. In still another embodiment, the hydrofluorination reaction is conducted at a temperature ranging from about 5° C. to about 20° C. Moreover, the hydrofluorination reaction can be conducted at any temperature in-between the ranges disclosed hereinabove, and these temperatures are contemplated within the scope of the present invention. Thus, the hydrofluorination described hereinabove is conducted in a reaction vessel at about −30° C., about −29° C., about −28° C., about −27° C., about −26° C., about −25° C., about −24° C., about −23° C., about −22° C., about −21° C., about −20° C., about −19° C., about −18° C., about −17° C., about −16° C., about −15° C., about −14° C., about −13° C., about −12° C., about −11° C., about −10° C., about −9° C., about −8° C., about −7° C., about −6° C., about −5° C., about −4° C., about −3° C., about −2° C., about −1° C., about 0° C., about 1° C., about 2° C., about 3° C., about 4° C., about 5° C., about 6° C., about 7° C., about 8° C., about 9° C., about 10° C., about 11° C., about 12° C., about 13° C., about 14° C., about 15° C., about 16° C., about 17° C., about 18° C., about 19° C., about 20° C., about 21° C., about 22° C., about 23° C., about 24° C., about 25° C., about 26° C., about 27° C., about 28° C., about 29° C., about 30° C., about 31° C., about 32° C., about 33° C., about 34° C., about 35° C., about 36° C., about 37° C., about 38° C., about 39° C., about 40° C., about 41° C., about 42° C., about 43° C., about 44° C., about 45° C., about 46° C., about 47° C., about 48° C., about 49° C., about 50° C., about 51° C., about 52° C., about 53° C., about 54° C., about 55° C., about 56° C., about 57° C., about 58° C., about 59° C., about 60° C., about 61° C., about 62° C., about 63° C., about 64° C., or about 65° C.
- In an embodiment, the reaction mixture is stirred using techniques known in the art. For example, the reaction mixture is spun using a stirring bar. Alternatively, the reactor in which the reaction takes place is equipped with an impeller or other stirring device which stirs the reaction mixture.
- In another embodiment, mixing may be provided by alternatives to stirring devices. Such methods are known in the industry and include using the mixing provided by gas bubbles from gas added to the vessel or generated within the vessel by vaporization of liquid. Mixing can also be provided by withdrawing the liquid from the vessel to a pump and pumping the liquid back into the vessel. A static mixer or other device intended to mix the contents can be present in the circulation path of the liquid to provide additional mixing power input.
- In one embodiment, the mole ratio of HF to fluoroolefin ranges from about 0.5 to about 20. In another embodiment, the mole ratio of HF to fluoroolefin is from about 1 to about 10. In another embodiment, the mole ratio of HF to fluoroolefin is from about 1 to about 5.
- The SbF5 is present in catalytic effective amounts. In one embodiment, the SbF5 catalyst is present from about 1% to about 50% by weight of the mixture. In another embodiment, the SbF5 catalyst is present from about 2% to about 30% by weight. In another embodiment, the SbF5 catalyst is present from about 3% to about 15% by weight.
- As described hereinabove, hydrofluoroalkanes are prepared by catalytic fluorination of the fluoroolefin. In one embodiment, the catalytic fluorination of the fluoroolefin results in a percent conversion to the hydrofluoroalkane of at least 90 mole %. In another embodiment, the catalytic fluorination of the fluoroolefin results in a percent conversion to the hydrofluoroalkane of at least 95%. In another embodiment, the catalytic fluorination of the fluoroolefin results in a percent conversion to the hydrofluoroalkane of at least 98%. In still another embodiment, the catalytic fluorination of the fluoroolefin results in a percent conversion to the hydrofluoroalkane of at least 99%.
- An aspect of the invention is to replace step (ii) of the reaction for making 1234yf described in the introduction with the present process.
- One of the advantages of the present disclosure is that the catalytic reaction for hydrofluorination, as described herein, takes place at lower temperatures, much lower than other catalysts for the other hydrofluorination reactions of fluoroolefin, such as SbCl5 or fluorinated SbCl5. Unlike these other catalysts, SbF5 is a liquid at these lower temperatures that are used in the present process. Therefore, less energy is required to conduct these hydrofluorination reactions. In addition, in the present process, the catalyst has substantial activity at the lower temperature. Thus, the catalytic process proceeds at a low temperature, thereby making it more efficient.
- In addition, another advantage is that the ratio of the desired hydrofluoroalkane produced relative to the starting olefin is about 90:1 or greater, and in another embodiment, is about 100:1 or greater and in another embodiment is about 110:1 or greater. Thus, for another reason, this reaction is quite efficient.
- Moreover, in view of the efficiency, if an olefin and the resulting hydrofluoroalkane from the hydrofluorination reaction, such as 1233xf and 244bb, were mixed together and reacted under the conditions of the present invention with SbF5, additional hydrofluoroalkane product would be formed. For example, in one embodiment, if the feed material ratio of olefin, such as 1233xf, to hydrofluoroalkane, such a 244bb, is greater than about 1 mole %, the present process will significantly convert the unreacted olefin to hydrofluoroalkane, thereby increasing the amount of the hydrofluoroalkane in the mixture. The present disclosure thus provides a method of maximizing the yield of the desired hydrofluoroalkane relative to the olefin. Thus, in the above example, wherein the olefin is 1233xf and the hydrofluoroalkane is 244bb, if 1233xf is present in greater than about 1 mole %, the resulting product would have significantly more 244bb present than prior to the reaction.
- Thus, in one embodiment, this advantage of the present disclosure can be used to improve the yield of HFO-1234yf being produced. As described hereinabove, the preparation of HFO-1234yf may include at least three reaction steps, as follows:
-
- (i) (CQ2=CCl—CH2Q or CQ3-CCl═CH2 or CQ3-CHCl—CH2Q)+HF-2-chloro-3,3,3-trifluoropropene (HCFO-1233xf)+HCl in a vapor phase reactor charged with a solid catalyst;
- (ii) 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf)+HF-2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) in a liquid phase reactor charged with a liquid hydrofluorination catalyst; and
- (iii) 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb)-2,3,3,3-tetrafluoropropene (HFO-1234yf) in a vapor phase reactor.
- The general reactions of steps (i), (ii) and (iii) are well known in the art. For example, they are described in U.S. Pat. No. 8,846,990, the contents of which are incorporated by reference.
- In the first step, a starting composition, which comprises 1,1,2,3-tetrachloropropene (HCO-1230xa or 1230xa), reacts with anhydrous HF in a first reactor (fluorination reactor) to produce a mixture of at least HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) and HCl. The reaction is carried out in a reactor in the gaseous phase at a temperature of about 200° C. to about 400° C. and a pressure of about 0 to about 200 psig. The effluent stream exiting in the vapor phase reactor may optionally comprise additional components, such as un-reacted HF, un-reacted starting composition, heavy intermediates, HFC-245cb, or the like.
- This reaction may be conducted in any reactor suitable for a vapor phase fluorination reaction. The reactor may be constructed from materials which are resistant to the corrosive effects of hydrogen fluoride such as Hastelloy, Inconel, Monel, and the like. In the case of a vapor phase process, the reactor is filled with a vapor phase fluorination catalyst. Any fluorination catalysts known in the art may be used in this process. Suitable catalysts include, but are not limited to, metal oxides, hydroxides, halides, oxyhalides, inorganic salts thereof and their mixtures, any of which may be optionally halogenated, wherein the metal includes, but is not limited to, chromium, aluminum, cobalt, manganese, nickel, iron, and combinations of two or more thereof. Combinations of catalysts suitable for the present invention nonexclusively include Cr2O3, FeCl3/C, Cr2O3/Al2O3, Cr2O3/AlF3, Cr2O3/carbon, CoCl2/Cr2O3/Al2O3, NiCl2/Cr2O3/Al2O3, CoCl2/AlF3, NiCl2/AlF3 and mixtures thereof. Chromium oxide/aluminum oxide catalysts are described in U.S. Pat. No. 5,155,082, the contents of which are incorporated herein by reference. Chromium (III) oxides such as crystalline chromium oxide or amorphous chromium oxide are preferred with amorphous chromium oxide being most preferred. Chromium oxide (Cr2O3) is a commercially available material which may be purchased in a variety of particle sizes. Fluorination catalysts having a purity of at least 98% are preferred. The fluorination catalyst is present in an excess but in at least an amount sufficient to drive the reaction.
- This first step of the reaction is not necessarily limited to a vapor phase reaction and may also be performed using a liquid phase reaction or a combination of liquid and vapor phases, such as that disclosed in U.S. Published Patent Application No. 2007/0197842, the contents of which are incorporated herein by reference. It is also contemplated that the reaction can be carried out batch wise or in a continuous manner, or a combination of these.
- For embodiments in which the reaction comprises a liquid phase reaction, the reaction can be catalytic or non-catalytic. Lewis acid catalysts, such as metal-halide catalysts, including antimony halides, tin halides, thallium halides, iron halides, and combinations of two or more of these, may be employed. In certain embodiments, metal chlorides and metal fluorides are employed, including, but not limited to, SbCl5, SbCl3, SbF5, SnCl4, TiCl4, FeCl3, and combinations of two or more of these. It is noted that SbF5 is a liquid at low temperature.
- In the second step of the process for forming 2,3,3,3-tetrafluoropropene, HCFO-1233xf is converted to HCFC-244bb. In one embodiment, this step can be performed in the liquid phase in a liquid phase reactor, which may be TFE or PFA-lined. Such a process can be performed in a temperature range of about 70° C. to about 120° C. and at a pressure ranging from about 50 to about 120 psig. Any liquid phase fluorination catalyst may be used that is effective at these temperatures. A non-exhaustive list includes Lewis acids, transition metal halides, transition metal oxides, Group IVb metal halides, Group Vb metal halides, or combinations thereof. Non-exclusive examples of liquid phase fluorination catalysts are antimony halide, tin halide, tantalum halide, titanium halide, niobium halide, molybdenum halide, iron halide, fluorinated chrome halide, fluorinated chrome oxide or combinations thereof. Specific non-exclusive examples of liquid phase fluorination catalysts are SbCl5, SbCl3, SbF5, SnCl4, TaCl5, TiCl4, NbCl5, MoCl6, FeCl3, fluorinated species of SbCl5, fluorinated species of SbCl3, fluorinated species of SnCl4, fluorinated species of TaCl5, fluorinated species of TiCl4, fluorinated species of NbCl5, fluorinated species of MoCl6, fluorinated species of FeCl3, or combinations thereof.
- These catalysts can be readily regenerated by any means known in the art if they become deactivated. One suitable method of regenerating the catalyst involves flowing a stream of chlorine through the catalyst. For example, from about 0.002 to about 0.2 lb per hour of chlorine can be added to the liquid phase reaction for every pound of liquid phase fluorination catalyst. This may be done, for example, for from about 1 to about 2 hours or continuously at a temperature of from about 65° C. to about 100° C.
- This second step of the reaction is not necessarily limited to a liquid phase reaction and may also be performed using a vapor phase reaction or a combination of liquid and vapor phases, such as that disclosed in U.S. Published Patent Application No. 2007/0197842, the contents of which are incorporated herein by reference. To this end, the HCFO-1233xf containing feed stream is preheated to a temperature of from about 50° C. to about 400° C., and is contacted with a catalyst and fluorinating agent. Catalysts may include standard vapor phase agents used for such a reaction and fluorinating agents may include those generally known in the art, such as, but not limited to, hydrogen fluoride.
- In the process described in the art, such as that described in U.S. Published Patent Application No. 2007/0197842, the product from the second step is then transferred to a third reactor wherein the 244bb is dehydrohalogenated. The catalysts in the dehydrochlorination reaction may be or comprise metal halide, halogenated metal oxide, neutral (or zero oxidation state) metal or metal alloy, or activated carbon in bulk or supported form. Metal halide or metal oxide catalysts may include, but are not limited to, mono-, bi-, and tri-valent metal halides, oxides and their mixtures/combinations, and more preferably mono-, and bi-valent metal halides and their mixtures/combinations. Component metals of metal halides, oxides and their mixtures/combinations include, but are not limited to, Cr3+, Fe3+, Mg2+, Ca2+, Ni2+, Zn2+, Pd2+, Li+, Na+, K+, and Cs+. Component halides include, but are not limited to, F, Cl, Br, and I. Examples of useful mono- or bi-valent metal halide include, but are not limited to, LiF, NaF, KF, CsF, MgF2, CaF2, LiCi, NaCl, KCl, and CsCl. Halogenation treatments can include any of those known in the prior art, particularly those that employ HF, F2, HCl, Cl2, HBr, Br2, HI, and I2 as the halogenation source.
- When the catalyst is or comprises a neutral, i.e., zero valent metal, then metals and metal alloys and their mixtures are used. Useful metals include, but are not limited to, Pd, Pt, Rh, Fe, Co, Ni, Cu, Mo, Cr, Mn, and combinations of the foregoing as alloys or mixtures. The catalyst may be supported or unsupported. Useful examples of metal alloys include, but are not limited to, SS 316, Monel 400, Inconel 825, Inconel 600, and Inconel 625. Such catalysts may be provided as discrete supported or unsupported elements and/or as part of the reactor and/or the reactor walls.
- Preferred, but non-limiting, catalysts include activated carbon, stainless steel (e.g., SS 316), austenitic nickel-based alloys (e.g., Inconel 625), nickel, fluorinated 10% CsCl/MgO, and 10% CsCl/MgF2. A suitable reaction temperature is about 300° C. to about 550° C. and a suitable reaction pressure may be between about 0 psig to about 150 psig. The reactor effluent may be fed to a caustic scrubber or to a distillation column to remove the byproduct of HCl to produce an acid-free organic product which, optionally, may undergo further purification using one or any combination of purification techniques that are known in the art.
- The dehydrohalogenation reaction is carried out in the vapor phase. It may be carried out at a temperature range of from about 200° C. to about 800° C., from about 300° C. to about 600° C., or from about 400° C. to about 500° C. Suitable reactor pressures range from about 0 psig to about 200 psig, from about 10 psig to about 100 psig, or from about 20 to about 70 psig.
- A method of increasing the yield and conversion of 1233xf to 1234yf and to make the process more efficient is to react the product of step (ii), which contains a mixture of 1233xf and 244bb, with SbF5 in accordance with the process of the present invention prior to the dehydrochlorination step. This increases the amount of 244bb present (decreasing the amount of 1233xf present) and the resulting product can then be subjected to step (iii) above. By conducting this additional hydrofluorination reaction, more 244bb is produced, and as a result, significantly more 1234yf is produced. The 244bb thus produced is then transferred to another reactor wherein it undergoes dehydrohalogenation, in accordance with step (iii).
- Alternatively, as described above, instead of conducting step (ii) of the process, the 1233xf produced in step (i) is hydrofluorinated with HF in the presence of SbF5, in accordance with the present invention, as described herein. The 244bb product thus formed is then dehydrochlorinated to form 1234yf, in accordance with step (iii) described hereinabove.
- The following non-limiting examples further illustrate the invention.
- 13.8 g of HF and 5 g of SbF5 were loaded into a 210 mL shaker tube reactor. The reactor was then evacuated and chilled to −15° C. 30 g of 1233xf was added into the reactor. The reactor was then heated to 30° C. with agitation. Once the temperature reached 30° C., water was added to the reactor to quench the catalyst. The organic layer was vapor transferred into a stainless steel cylinder and analyzed by GC-MS. Table 1 below shows the results of the GC-MS analysis.
-
TABLE 1 mol ratio mol % 1233xf/244bb 143a 0.005% 245cb 0.032% 245fa 0.059% Unknown 0.001% 244bb 99.420% 0.48% 1233xf 0.474% 243ab 0.009% - 13.8 g of HF and 5 g of SbF5 were loaded into a 210 mL shaker tube reactor. The reactor was then evacuated and chilled to −15° C. 30 g of 1233xf was added into the reactor. The reactor was then heated to 10° C. with agitation. Once the temperature reached 10° C., water was added to the reactor to quench the catalyst. The organic layer was vapor transferred into a stainless steel cylinder and analyzed by GC-MS. Table 2 below shows the results of the GC-MS analysis.
-
TABLE 2 mol ratio Compounds mol % 1233xf/244bb 245cb 0.017% 245fa 0.0200% 244bb 98.236% 1233xf 0.794% 0.81% 1233xf dimer 0.934% - 10.0 g of HBF and 5 g of SbF5 were loaded into a 210 mL shaker tube reactor. The reactor was then evacuated and chilled to −40° C. 30 g of 1233xf was added into the reactor. The reactor was then heated to 30° C. with agitation and stirred for an hour. The reactor was chilled to −30° C. quickly and 75 mL of water was added to the reactor to quench the catalyst. The organic layer was vapor transferred into a stainless steel cylinder and analyzed by GC-MS. Table 3 below shows the results of the GC-MS analysis.
-
TABLE 3 mol ratio Compound mol % 1233xf/244bb 245cb 14.412% 245fa 0.096% 244bb 84.147% 1233xf 0.768% 0.91% 243ab 0.576% - 18.0 g of HF and 14.0 g of SbCl5 were loaded into a 210 mL shaker tube reactor and heated at 100° C. for 2 hours with agitation. The reactor was then evacuated and chilled to 0° C. to vent off HCl. 20 g of 244bb (99.7 mol %) was added into the reactor. The reactor was then heated to 80° C. for an hour and then quickly chilled to 30° C. Water was added to the reactor to quench the catalyst. The organic layer was vapor transferred into a stainless steel cylinder and analyzed by GC-MS. Table 4 below shows the results of the GC-MS analysis. The 1233xf/244bb ratio increased to 1.95 mol % from 0.3 mol %. This indicates the existence of equilibrium between 1233xf and 244bb which prevents the full conversion of 1233xf to 244bb.
-
TABLE 4 mol ratio mol % 1233xf/244bb 245cb 0.089% 244bb 92.907% 1233xf 1.815% 1.95% 243ab 4.905% Others 0.284% - Many aspects and embodiments have been described and are merely exemplary and not limiting. After reading the specification, skilled artisans appreciate that other aspects and embodiments are possible without departing from the scope of the invention.
- Other features and benefits of any one or more of the embodiments will be apparent from the hereinabove detailed description and the claims.
Claims (18)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/656,340 US20220213009A1 (en) | 2015-05-21 | 2022-03-24 | Hydrofluorination of 1233xf to 244bb by sbf5 |
US18/052,391 US12006274B2 (en) | 2015-05-21 | 2022-11-03 | Compositions including olefin and hydrofluoroalkane |
US18/653,386 US20240360055A1 (en) | 2015-05-21 | 2024-05-02 | Hydrofluorination of 1233xf to 244bb by sbf5 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562164631P | 2015-05-21 | 2015-05-21 | |
PCT/US2016/033450 WO2016187507A1 (en) | 2015-05-21 | 2016-05-20 | HYDROFLUORINATION OF 1233xf TO 244bb BY SbF5 |
US201715575526A | 2017-11-20 | 2017-11-20 | |
US16/423,352 US11008267B2 (en) | 2015-05-21 | 2019-05-28 | Hydrofluoroalkane composition |
US17/220,427 US11572326B2 (en) | 2015-05-21 | 2021-04-01 | Method for preparing 1,1,1,2,2-pentafluoropropane |
US17/656,340 US20220213009A1 (en) | 2015-05-21 | 2022-03-24 | Hydrofluorination of 1233xf to 244bb by sbf5 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/220,427 Division US11572326B2 (en) | 2015-05-21 | 2021-04-01 | Method for preparing 1,1,1,2,2-pentafluoropropane |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/052,391 Continuation US12006274B2 (en) | 2015-05-21 | 2022-11-03 | Compositions including olefin and hydrofluoroalkane |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220213009A1 true US20220213009A1 (en) | 2022-07-07 |
Family
ID=57320876
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/575,526 Active US10301236B2 (en) | 2015-05-21 | 2016-05-20 | Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase |
US16/423,352 Active US11008267B2 (en) | 2015-05-21 | 2019-05-28 | Hydrofluoroalkane composition |
US16/847,041 Active US10988422B2 (en) | 2015-05-21 | 2020-04-13 | Hydrofluoroalkane composition |
US17/220,427 Active US11572326B2 (en) | 2015-05-21 | 2021-04-01 | Method for preparing 1,1,1,2,2-pentafluoropropane |
US17/656,340 Pending US20220213009A1 (en) | 2015-05-21 | 2022-03-24 | Hydrofluorination of 1233xf to 244bb by sbf5 |
US18/052,391 Active US12006274B2 (en) | 2015-05-21 | 2022-11-03 | Compositions including olefin and hydrofluoroalkane |
US18/653,386 Pending US20240360055A1 (en) | 2015-05-21 | 2024-05-02 | Hydrofluorination of 1233xf to 244bb by sbf5 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/575,526 Active US10301236B2 (en) | 2015-05-21 | 2016-05-20 | Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase |
US16/423,352 Active US11008267B2 (en) | 2015-05-21 | 2019-05-28 | Hydrofluoroalkane composition |
US16/847,041 Active US10988422B2 (en) | 2015-05-21 | 2020-04-13 | Hydrofluoroalkane composition |
US17/220,427 Active US11572326B2 (en) | 2015-05-21 | 2021-04-01 | Method for preparing 1,1,1,2,2-pentafluoropropane |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/052,391 Active US12006274B2 (en) | 2015-05-21 | 2022-11-03 | Compositions including olefin and hydrofluoroalkane |
US18/653,386 Pending US20240360055A1 (en) | 2015-05-21 | 2024-05-02 | Hydrofluorination of 1233xf to 244bb by sbf5 |
Country Status (7)
Country | Link |
---|---|
US (7) | US10301236B2 (en) |
EP (2) | EP3984986A1 (en) |
JP (1) | JP6962822B2 (en) |
KR (2) | KR102699589B1 (en) |
CN (2) | CN113527036A (en) |
MX (2) | MX2017014398A (en) |
WO (1) | WO2016187507A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3847145A2 (en) * | 2018-09-07 | 2021-07-14 | The Chemours Company FC, LLC | Fluorine removal from antimony fluorohalide catalyst using chlorocarbons |
CN110343029B (en) * | 2019-07-26 | 2022-03-15 | 西安近代化学研究所 | Method for preparing 3-chloro-1, 1,1, 3-tetrafluoropropane |
JP2024515192A (en) | 2021-04-19 | 2024-04-05 | ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー | Compositions containing 3,3,3-trifluoropropene (1243ZF) and methods of making and using said compositions |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070197842A1 (en) * | 2004-04-29 | 2007-08-23 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
US20090030247A1 (en) * | 2006-01-03 | 2009-01-29 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
US20090312585A1 (en) * | 2008-06-17 | 2009-12-17 | Honeywell International Inc. | Processes for hydrofluorination of 2-chloro-3,3,3-trifluoropropene to 2-chloro-1,1,1,2-tetrafluoropropane |
US20100105967A1 (en) * | 2008-10-27 | 2010-04-29 | E. I. Du Pont De Nemours And Company | Conversion of 2-chloro-1,1,1,2-tetrafluoropropane to 2,3,3,3-tetrafluoropropene |
US7829748B1 (en) * | 2009-09-21 | 2010-11-09 | Honeywell International Inc. | Process for the manufacture of 1,3,3,3-tetrafluoropropene |
Family Cites Families (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155082A (en) | 1991-04-12 | 1992-10-13 | Allied-Signal Inc. | Catalyst for the manufacture of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons |
US5446217A (en) * | 1994-05-16 | 1995-08-29 | Alliedsignal Inc. | Processes for the preparation of fluorinated olefins and hydrofluorocarbons using fluorinated olefin |
JP3213929B2 (en) * | 1994-07-14 | 2001-10-02 | ダイキン工業株式会社 | Method for producing 1,1,1,2,3,3,3-heptafluoropropane |
JP3778298B2 (en) * | 1995-01-13 | 2006-05-24 | ダイキン工業株式会社 | Method for producing hexafluoropropene |
US6111150A (en) * | 1996-06-20 | 2000-08-29 | Central Glass Company, Limited | Method for producing 1,1,1,3,3,-pentafluoropropane |
JPH10251172A (en) * | 1997-03-07 | 1998-09-22 | Daikin Ind Ltd | Production of 1,1,1,3,3-pentafluoropropane |
EP0864554B1 (en) * | 1997-03-11 | 2002-09-18 | Central Glass Company, Limited | Method for purifying crude 1,1,1,3,3-pentafluoropropane |
EP1178950A1 (en) * | 1999-05-18 | 2002-02-13 | Ineos Fluor Holdings Limited | Production of 1,1,1,2,3,3,3-heptafluoropropane |
US8067649B2 (en) * | 2004-04-29 | 2011-11-29 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
US8058486B2 (en) | 2004-04-29 | 2011-11-15 | Honeywell International Inc. | Integrated process to produce 2,3,3,3-tetrafluoropropene |
US20090182179A1 (en) * | 2008-01-15 | 2009-07-16 | Honeywell International Inc. | Hydrofluorination of 2-chloro-3,3,3-trifluoropropene to 2-chloro-1,1,1,2-tetrafluoropropane with catalysts of sbcl3, sbcl5, sbf5, ticl4, sncl4, cr2o3 and fluorinated cr2o3 |
US9175201B2 (en) | 2004-12-21 | 2015-11-03 | Honeywell International Inc. | Stabilized iodocarbon compositions |
ES2366706T3 (en) | 2004-12-21 | 2011-10-24 | Honeywell International Inc. | STABILIZED IODOCARBON COMPOSITIONS. |
US8664455B2 (en) * | 2008-08-08 | 2014-03-04 | Honeywell International Inc. | Process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) |
US8952208B2 (en) | 2006-01-03 | 2015-02-10 | Honeywell International Inc. | Method for prolonging a catalyst's life during hydrofluorination |
US20090219136A1 (en) | 2006-08-03 | 2009-09-03 | Olivier Brunet | Secure Document, In Particular Electronic Passport With Enhanced Security |
US8034251B2 (en) | 2007-01-03 | 2011-10-11 | Honeywell International Inc. | Azeotropic compositions of 2-chloro-3,3,3-trifluoropropene (HCFC-1233xf), 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb), and hydrogen fluoride (HF) |
US9670117B2 (en) | 2007-01-03 | 2017-06-06 | Honeywell International Inc. | Process for producing 2,3,3,3-tetrafluoropropene |
PL2129709T5 (en) | 2007-03-29 | 2021-11-15 | Arkema, Inc. | Process for preparing thermosetting foams |
PL2129714T3 (en) | 2007-03-29 | 2012-04-30 | Arkema Inc | Blowing agent composition of hydrofluoropropene and hydrochlorofluoroolefin |
US8895635B2 (en) | 2007-03-29 | 2014-11-25 | Arkema Inc. | Blowing agent compositions of hydrochlorofluoroolefins |
US20100112328A1 (en) | 2007-03-29 | 2010-05-06 | Van Horn Brett L | Hydrofluoropropene blowing agents for thermoplastics |
US8772364B2 (en) | 2007-03-29 | 2014-07-08 | Arkema Inc. | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins |
US9234070B2 (en) | 2007-03-29 | 2016-01-12 | Arkema Inc. | Blowing agent composition of hydrochlorofluoroolefin |
US8563789B2 (en) | 2007-06-27 | 2013-10-22 | Arkema Inc. | Process for the manufacture of hydrofluoroolefins |
KR101550250B1 (en) | 2007-06-27 | 2015-09-04 | 알케마 인코포레이티드 | Process for the manufacture of hydrofluoroolefins |
US8846990B2 (en) | 2007-07-06 | 2014-09-30 | Honeywell International Inc. | Process for producing 2,3,3,3-tetrafluoropropene |
US9493384B2 (en) | 2007-07-06 | 2016-11-15 | Honeywell International Inc. | Process for producing 2,3,3,3-tetrafluoropropene |
US8119557B2 (en) * | 2007-12-10 | 2012-02-21 | Honeywell International Inc. | Method for making catalyst compositions of alkali metal halide-doped bivalent metal fluorides and process for making fluorinated olefins |
US7795480B2 (en) | 2007-07-25 | 2010-09-14 | Honeywell International Inc. | Method for producing 2-chloro-3,3,3,-trifluoropropene (HCFC-1233xf) |
US8070975B2 (en) | 2008-02-26 | 2011-12-06 | Honeywell International Inc. | Azeotrope-like composition of 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and hydrogen fluoride (HF) |
US8546624B2 (en) | 2008-03-06 | 2013-10-01 | Honeywell International Inc. | Azeotrope-like composition of 2-chloro-3,3,3-trifluoropropene (HCFC-1233xf) and hydrogen fluoride (HF) |
EP2098499B2 (en) | 2008-03-06 | 2017-11-22 | Honeywell International Inc. | Azeotrope-like composition of 2-chloro-3,3,3-trifluoropropene (HCFC-1233xf) and hydrogen fluoride (HF) |
KR101086215B1 (en) | 2008-03-07 | 2011-11-24 | 알케마 인코포레이티드 | Halogenated alkene heat transfer compositions with improved oil return |
EP2250144A4 (en) | 2008-03-07 | 2014-06-04 | Arkema Inc | Stable formulated systems with chloro-3,3,3-trifluoropropene |
US7803283B2 (en) | 2008-03-31 | 2010-09-28 | Honeywell Internationl Inc. | Azeotrope-like compositions of 2-chloro-3,3,3-trifluoropropene (HCFC-1233xf) and 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) |
US8845921B2 (en) | 2008-04-09 | 2014-09-30 | Honeywell International Inc. | Separation of close boiling compounds by addition of a third compound |
SG10202111316SA (en) | 2008-05-07 | 2021-11-29 | Du Pont | Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2 chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene |
US8168837B2 (en) | 2008-05-15 | 2012-05-01 | Honeywell International Inc. | Process for separating hydrogen fluoride from organic feedstocks |
WO2009148191A1 (en) | 2008-06-05 | 2009-12-10 | Daikin Industries, Ltd. | Process for producing fluorine-containing compound by rearrangement reaction |
FR2933402B1 (en) | 2008-07-03 | 2010-07-30 | Arkema France | PROCESS FOR PURIFYING 2,3,3,3-TETRAFLUORO-1-PROPENE (HFO1234YF) |
EP2300552A1 (en) | 2008-07-08 | 2011-03-30 | E. I. du Pont de Nemours and Company | Compositions comprising ionic liquids and fluoroolefins and use thereof in absorption cycle systems |
WO2010013796A1 (en) | 2008-07-30 | 2010-02-04 | Daikin Industries, Ltd. | Process for preparing 2,3,3,3-tetrafluoropropene |
WO2010013795A1 (en) | 2008-07-30 | 2010-02-04 | Daikin Industries, Ltd. | Process for production of 2,3,3,3-tetrafluoropropene |
US8975454B2 (en) | 2008-07-31 | 2015-03-10 | Honeywell International Inc. | Process for producing 2,3,3,3-tetrafluoropropene |
US8252965B2 (en) | 2008-08-22 | 2012-08-28 | Honeywell International Inc. | Method for separating halocarbons |
FR2937328B1 (en) | 2008-10-16 | 2010-11-12 | Arkema France | HEAT TRANSFER METHOD |
US8697922B2 (en) | 2008-10-27 | 2014-04-15 | E I Du Pont De Nemours And Company | Conversion of 2-chloro-1,1,1,2-tetrafluoropropane to 2,3,3,3-tetrafluoropropene |
BRPI0914365A2 (en) | 2008-10-27 | 2015-10-20 | Du Pont | '' fluoropropene production method '' |
EP2349958A2 (en) * | 2008-10-29 | 2011-08-03 | Daikin Industries, Ltd. | Process for preparing 2,3,3,3-tetrafluoropropene |
US20110226004A1 (en) | 2008-11-26 | 2011-09-22 | E. I. Du Pont De Nemours And Company | Absorption cycle system having dual absorption circuits |
US20100154419A1 (en) | 2008-12-19 | 2010-06-24 | E. I. Du Pont De Nemours And Company | Absorption power cycle system |
JP2010215622A (en) * | 2009-03-13 | 2010-09-30 | Daikin Ind Ltd | Method for producing fluorine-containing compound containing 1,1,1,3,3-pentafluoropropane |
CN102498237B (en) | 2009-09-09 | 2014-10-01 | 阿科玛股份有限公司 | Improved polyurethane foaming processes and foam properties using halogenated olefin blowing agent |
CN102573818B (en) | 2009-09-25 | 2016-08-03 | 阿科玛股份有限公司 | There is the biodegradable foam of the dimensional stability of improvement |
WO2011050017A1 (en) | 2009-10-23 | 2011-04-28 | Arkema Inc. | Tetrafluorobutene blowing agent compositions for polyurethane foams |
AR078902A1 (en) | 2009-11-03 | 2011-12-14 | Du Pont | COOLING SYSTEM IN CASCADA WITH FLUOROOLEFINE REFRIGERANT |
US8618340B2 (en) | 2009-11-03 | 2013-12-31 | Honeywell International Inc. | Integrated process for fluoro-olefin production |
WO2011059078A1 (en) | 2009-11-10 | 2011-05-19 | Daikin Industries, Ltd. | Method for purifying 2,3,3,3-tetrafluoropropene |
BR122019007817B1 (en) | 2009-12-22 | 2021-02-23 | E. I. Du Pont De Nemours And Company | composition, method for producing cooling, method for producing heat, method for forming a foam and process for producing aerosol products |
JP6141019B2 (en) | 2009-12-29 | 2017-06-07 | アーケマ・インコーポレイテッド | Method for selecting refrigerant-lubricant combination |
US20120292556A1 (en) | 2010-01-25 | 2012-11-22 | Arkema Inc. | Heat transfer composition of oxygenated lubricant with hydrofluoroolefin and hydrochlorofluoroolefin refrigerants |
US8114308B2 (en) | 2010-03-30 | 2012-02-14 | Honeywell International Inc. | Azeotrope-like composition of 2,3-dichloro-3,3-difluoropropene (HCFO-1232xf) and hydrogen fluoride (HF) |
US20110245548A1 (en) | 2010-03-31 | 2011-10-06 | Honeywell International Inc. | Catalyst life improvement in the vapor phase fluorination of chlorocarbons |
CN102858725B (en) | 2010-04-14 | 2015-09-30 | 阿科玛股份有限公司 | Manufacture the method for tetrafluoroolefin |
JP5947788B2 (en) | 2010-04-28 | 2016-07-06 | アーケマ・インコーポレイテッド | Method for improving the stability of polyurethane polyol blends containing halogenated olefin blowing agents |
US8927791B2 (en) | 2010-04-29 | 2015-01-06 | Honeywell International Inc. | Method for producing tetrafluoropropenes |
CN106634851A (en) | 2010-06-22 | 2017-05-10 | 阿科玛股份有限公司 | Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin |
CN103415587A (en) | 2010-07-06 | 2013-11-27 | 阿科玛股份有限公司 | Compositions of tetrafluoropropene and polyol ester lubricants |
WO2012009447A2 (en) | 2010-07-13 | 2012-01-19 | University Of Rochester | THE cAMP/PKA/HDAC5 PATHWAY AND USES THEREOF |
US8900417B2 (en) | 2010-07-23 | 2014-12-02 | Daikin Industries, Ltd. | Purification method of 2,3,3,3-tetrafluoropropene |
US20120043492A1 (en) | 2010-08-17 | 2012-02-23 | Honeywell International Inc. | Compositions Containing 1-Chloro-3,3,3 Trifluoropropene And 1-Fluoro-1,1 Dichloroethane |
JP4952834B2 (en) | 2010-09-07 | 2012-06-13 | ダイキン工業株式会社 | Method for removing moisture from fluorine-containing compounds |
EP2963005B1 (en) | 2010-10-27 | 2020-02-12 | Daikin Industries, Ltd. | Process for producing 2,3,3,3-tetrafluoropropene |
US20140364528A1 (en) | 2010-12-21 | 2014-12-11 | Dow Global Technologies Llc | Polyol formulations for improved cold temperature skin cure of polyurethane rigid foams |
US8680345B2 (en) | 2011-01-07 | 2014-03-25 | Honeywell International Inc. | Low temperature production of 2-chloro-3,3,3-trifluoropropene |
US9890096B2 (en) * | 2011-01-19 | 2018-02-13 | Honeywell International Inc. | Methods of making 2,3,3,3-tetrafluoro-2-propene |
JP6165061B2 (en) | 2011-01-21 | 2017-07-19 | アルケマ フランス | Gas phase catalytic fluorination |
CN103328421A (en) | 2011-01-21 | 2013-09-25 | 阿克马法国公司 | Catalytic gas phase fluorination |
US8884082B2 (en) | 2011-02-21 | 2014-11-11 | E. I. Du Pont De Nemours And Company | Selective catalytical dehydrochlorination of hydrochlorofluorocarbons |
US9012702B2 (en) | 2011-02-21 | 2015-04-21 | E. I. Du Pont De Nemours And Company | Catalytic dehydrochlorination of hydrochlorofluorocarbons |
US9724684B2 (en) | 2011-02-21 | 2017-08-08 | The Chemours Company Fc, Llc | Selective catalytical dehydrochlorination of hydrochlorofluorocarbons |
US8884083B2 (en) | 2011-02-21 | 2014-11-11 | E. I. Du Pont De Nemours And Company | Selective catalytical dehydrochlorination of hydrochlorofluorocarbons |
US8741828B2 (en) | 2011-02-23 | 2014-06-03 | Honeywell International Inc. | Azeotrope and azeotrope-like compositions useful for the production of haloolefins |
CA2829486C (en) | 2011-03-11 | 2019-03-26 | Arkema Inc. | Improved stability of polyurethane polyol blends containing halogenated olefin blowing agent |
WO2012141822A1 (en) | 2011-04-15 | 2012-10-18 | Arkema Inc. | Improved stability of polyurethane polyol blends containing halogenated olefin blowing agent |
JP6059711B2 (en) | 2011-05-19 | 2017-01-11 | アーケマ・インコーポレイテッド | Non-flammable composition of chloro-trifluoropropene |
US20120304682A1 (en) | 2011-06-02 | 2012-12-06 | E.I. Du Pont De Nemours And Company | Absorption Cycle System Having Dual Absorption Circuits |
US20120304686A1 (en) | 2011-06-02 | 2012-12-06 | E. I. Du Pont De Nemours And Company | Absorption cycle system having dual absorption circuits |
JP2013151635A (en) | 2011-06-16 | 2013-08-08 | Tosoh Corp | Raw material blending composition for manufacturing polyurethane foam |
FR2977584B1 (en) | 2011-07-08 | 2014-12-05 | Arkema France | PROCESS FOR SEPARATING AND RECOVERING 2,3,3,3-TETRAFLUOROPROPENE AND FLUORHYDRIC ACID |
CN103717560B (en) | 2011-07-26 | 2016-04-27 | 大金工业株式会社 | For the preparation of the method for 2,3,3,3-tetrafluoeopropene |
CN102989489B (en) | 2011-09-14 | 2015-04-22 | 中化蓝天集团有限公司 | 2,3,3,3-tetrafluoropropylene preparation method |
JP5867597B2 (en) | 2011-09-15 | 2016-02-24 | ダイキン工業株式会社 | Method for purifying chlorinated hydrocarbons |
FR2980474B1 (en) | 2011-09-27 | 2013-08-30 | Arkema France | PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE |
US8796493B2 (en) | 2011-09-30 | 2014-08-05 | Honeywell International Inc. | Methods to separate halogentated olefins from 2-chloro-1,1,1,2-tetrafluoropropane using a solid adsorbent |
IN2014DN02371A (en) | 2011-09-30 | 2015-05-15 | Honeywell Int Inc | |
KR20140071456A (en) | 2011-09-30 | 2014-06-11 | 허니웰 인터내셔날 인코포레이티드 | Process for producing 2,3,3,3-tetrafluoropropene |
WO2013049744A2 (en) | 2011-09-30 | 2013-04-04 | Honeywell International Inc. | Process for producing 2,3,3,3-tetrafluoropropene |
CN104080759A (en) | 2011-10-14 | 2014-10-01 | 塞尔马·贝克特什维克 | Process for producing 2,3,3, 3-tetrafluoropropene |
BR112014008018A2 (en) | 2011-10-14 | 2017-04-11 | Dow Global Technologies Llc | polyol polyester polyether, polyol blend, reaction system for producing a rigid foam and process for preparing a rigid polyurethane foam |
ES2856227T3 (en) | 2011-10-14 | 2021-09-27 | Honeywell Int Inc | Process to produce 2,3,3,3-tetrafluoropropene |
JP6223345B2 (en) | 2011-10-14 | 2017-11-01 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Method for producing 2,3,3,3-tetrafluoropropene |
KR20140079508A (en) | 2011-10-31 | 2014-06-26 | 다이킨 고교 가부시키가이샤 | Process for producing 2-chloro-3,3,3-trifluoropropene |
CN104169245B (en) | 2011-11-04 | 2016-09-21 | 塞尔马·贝克特什维克 | Process for the manufacture of 2,3,3, 3-tetrafluoropropene |
KR102052141B1 (en) | 2011-11-04 | 2019-12-04 | 허니웰 인터내셔날 인코포레이티드 | Process for producing 2,3,3,3-tetrafluoropropene |
EP2776383B1 (en) | 2011-11-10 | 2020-03-11 | The Chemours Company FC, LLC | Catalytic fluorination process of making hydrohaloalkane |
US9334208B2 (en) | 2011-12-14 | 2016-05-10 | Arkema France | Process for the preparation of 2,3,3,3 tetrafluoropropene |
FR2984886B1 (en) | 2011-12-22 | 2013-12-20 | Arkema France | PROCESS FOR THE PREPARATION OF FLUORINATED OLEFINIC COMPOUNDS |
EP2802549B1 (en) | 2012-01-09 | 2019-03-27 | The Chemours Company FC, LLC | Process for reactor passivation |
JP5888436B2 (en) | 2012-01-25 | 2016-03-22 | ダイキン工業株式会社 | Method for producing fluorine-containing olefin |
PL2809699T3 (en) | 2012-02-02 | 2020-07-13 | Arkema, Inc. | Improved shelf life of polyol blends containing halogenated olefins by encapsulation of active components |
FR2986525B1 (en) | 2012-02-03 | 2014-02-14 | Arkema France | PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE |
MX346307B (en) | 2012-02-10 | 2017-03-15 | Wang Haiyou | Improved process for the manufacture of 2,3,3,3-tetrafluoropropen e. |
KR102071701B1 (en) | 2012-02-29 | 2020-01-31 | 허니웰 인터내셔날 인코포레이티드 | Process for producing 2,3,3,3-tetrafluoropropene |
WO2013138123A1 (en) | 2012-03-13 | 2013-09-19 | Honeywell International Inc. | Stabilized iodocarbon compositions |
EP2829108A4 (en) | 2012-03-19 | 2015-04-29 | Huawei Tech Co Ltd | System and method for measurement report triggering configuration for multiple point communication measurement set management |
EP2855549B1 (en) | 2012-05-25 | 2017-10-04 | Dow Global Technologies LLC | Production of polyisocyanurate foam panels |
CN107032947A (en) | 2012-06-06 | 2017-08-11 | 科慕埃弗西有限公司 | For reducing R in fluoroolefinfThe method of CCX impurity |
FR2991598B1 (en) | 2012-06-08 | 2015-08-07 | Arkema France | CATALYST REGENERATION BY INJECTION OF HEATED GAS |
FR2991596B1 (en) | 2012-06-08 | 2015-08-07 | Arkema France | CATALYTIC REACTION WITH REVERSE FLOW REGENERATION |
CN104428273B (en) | 2012-07-10 | 2018-09-14 | 大金工业株式会社 | Method for manufacturing Fluorine containing olefine |
EP2875068B1 (en) | 2012-07-19 | 2017-09-20 | Honeywell International Inc. | Blowing agents for extruded polystyrene foam and extruded polystyrene foam and methods of foaming |
TW201413192A (en) | 2012-08-01 | 2014-04-01 | Du Pont | Use of E-1,1,1,4,4,4-hexafluoro-2-butene in heat pumps |
US9422211B2 (en) | 2012-08-08 | 2016-08-23 | Daikin Industries, Ltd. | Process for producing 2,3,3,3-tetrafluoropropene |
WO2014028574A2 (en) | 2012-08-15 | 2014-02-20 | Arkema Inc. | Adsorption systems using metal-organic frameworks |
BR112015006376B1 (en) | 2012-09-24 | 2022-01-25 | Arkema Inc | B-side polyol foam premix composition |
FR3000096B1 (en) | 2012-12-26 | 2015-02-20 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE |
CN107021868A (en) * | 2013-03-12 | 2017-08-08 | 霍尼韦尔国际公司 | For reducing method of the 1233XF hydrofluorinations for 245CB formation during 244BB |
US9394217B2 (en) * | 2013-03-13 | 2016-07-19 | Honeywell International, Inc. | Staged fluorination process and reactor system |
US9180433B2 (en) | 2013-03-14 | 2015-11-10 | Honeywell International, Inc. | Catalysts for 2-chloro-1,1,1,2-tetrafluoropropane dehydrochlorination |
US8859829B2 (en) | 2013-03-14 | 2014-10-14 | Honeywell International Inc. | Stabilizer and inhibitor for chloropropenes, such as tetrachloropropene 1,1,2,3-tetrachloropropene (1230xa), used in the manufacture of 2,3,3,3-tetrafluoropropene (1234yf) |
US9334206B2 (en) | 2013-03-15 | 2016-05-10 | Honeywell International Inc. | Integrated process to produce 2,3,3,3-tetrafluoropropene |
CN105026351A (en) | 2013-03-15 | 2015-11-04 | 霍尼韦尔国际公司 | Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product |
EP4215514A1 (en) | 2013-03-15 | 2023-07-26 | Honeywell International Inc. | Process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (hcfc-244bb) |
CN105431399B (en) | 2013-03-15 | 2017-12-26 | 得凯莫斯公司弗罗里达有限公司 | The method for reducing the alkyne impurities in fluoroolefins |
US20140275651A1 (en) | 2013-03-15 | 2014-09-18 | Honeywell International Inc. | Process for producing 2,3,3,3-tetrafluoropropene |
FR3003566B1 (en) | 2013-03-20 | 2018-07-06 | Arkema France | COMPOSITION COMPRISING HF AND E-3,3,3-TRIFLUORO-1-CHLOROPROPENE |
FR3003569B1 (en) | 2013-03-20 | 2015-12-25 | Arkema France | COMPOSITION COMPRISING HF AND 1,3,3,3-TETRAFLUOROPROPENE |
FR3003568B1 (en) | 2013-03-20 | 2018-06-29 | Arkema France | COMPOSITION COMPRISING HF AND 3,3,3-TRIFLUORO-2-CHLOROPROPENE |
FR3003567B1 (en) | 2013-03-20 | 2015-03-06 | Arkema France | COMPOSITION COMPRISING HF AND 3,3,3-TRIFLUOROPROPENE |
FR3003565B1 (en) | 2013-03-20 | 2018-06-29 | Arkema France | COMPOSITION COMPRISING HF AND 2,3,3,3-TETRAFLUOROPROPENE |
CN104140355B (en) * | 2014-08-07 | 2016-03-02 | 西安近代化学研究所 | A kind of method of synthesizing 2-chloro-1,1,1,2-tetrafluoropropane |
CN104140354A (en) * | 2014-08-07 | 2014-11-12 | 西安近代化学研究所 | Method for preparing HCFC-244bb |
GB2540426A (en) * | 2015-07-17 | 2017-01-18 | Mexichem Fluor Sa De Cv | Process |
-
2016
- 2016-05-20 WO PCT/US2016/033450 patent/WO2016187507A1/en active Application Filing
- 2016-05-20 JP JP2017560782A patent/JP6962822B2/en active Active
- 2016-05-20 KR KR1020177033144A patent/KR102699589B1/en active IP Right Grant
- 2016-05-20 KR KR1020247028255A patent/KR20240132524A/en active Search and Examination
- 2016-05-20 EP EP21212276.6A patent/EP3984986A1/en active Pending
- 2016-05-20 CN CN202110819013.1A patent/CN113527036A/en active Pending
- 2016-05-20 MX MX2017014398A patent/MX2017014398A/en unknown
- 2016-05-20 CN CN201680029373.9A patent/CN107635955A/en active Pending
- 2016-05-20 EP EP16797362.7A patent/EP3297980A4/en not_active Withdrawn
- 2016-05-20 US US15/575,526 patent/US10301236B2/en active Active
-
2017
- 2017-11-09 MX MX2022010851A patent/MX2022010851A/en unknown
-
2019
- 2019-05-28 US US16/423,352 patent/US11008267B2/en active Active
-
2020
- 2020-04-13 US US16/847,041 patent/US10988422B2/en active Active
-
2021
- 2021-04-01 US US17/220,427 patent/US11572326B2/en active Active
-
2022
- 2022-03-24 US US17/656,340 patent/US20220213009A1/en active Pending
- 2022-11-03 US US18/052,391 patent/US12006274B2/en active Active
-
2024
- 2024-05-02 US US18/653,386 patent/US20240360055A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070197842A1 (en) * | 2004-04-29 | 2007-08-23 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
US20090030247A1 (en) * | 2006-01-03 | 2009-01-29 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
US20090312585A1 (en) * | 2008-06-17 | 2009-12-17 | Honeywell International Inc. | Processes for hydrofluorination of 2-chloro-3,3,3-trifluoropropene to 2-chloro-1,1,1,2-tetrafluoropropane |
US20100105967A1 (en) * | 2008-10-27 | 2010-04-29 | E. I. Du Pont De Nemours And Company | Conversion of 2-chloro-1,1,1,2-tetrafluoropropane to 2,3,3,3-tetrafluoropropene |
US7829748B1 (en) * | 2009-09-21 | 2010-11-09 | Honeywell International Inc. | Process for the manufacture of 1,3,3,3-tetrafluoropropene |
Non-Patent Citations (1)
Title |
---|
Patent number CN104140354A, machine translation, Nov.12,2014, pages 1-4 (Year: 2014) * |
Also Published As
Publication number | Publication date |
---|---|
MX2017014398A (en) | 2018-03-23 |
US11572326B2 (en) | 2023-02-07 |
US20230075222A1 (en) | 2023-03-09 |
MX2022010851A (en) | 2022-09-27 |
JP6962822B2 (en) | 2021-11-05 |
US20200239391A1 (en) | 2020-07-30 |
EP3297980A4 (en) | 2018-12-26 |
US20190284117A1 (en) | 2019-09-19 |
KR20180000720A (en) | 2018-01-03 |
US20180127338A1 (en) | 2018-05-10 |
US20210221756A1 (en) | 2021-07-22 |
KR20240132524A (en) | 2024-09-03 |
EP3297980A1 (en) | 2018-03-28 |
WO2016187507A1 (en) | 2016-11-24 |
US12006274B2 (en) | 2024-06-11 |
US11008267B2 (en) | 2021-05-18 |
CN107635955A (en) | 2018-01-26 |
US10988422B2 (en) | 2021-04-27 |
EP3984986A1 (en) | 2022-04-20 |
US10301236B2 (en) | 2019-05-28 |
JP2018515574A (en) | 2018-06-14 |
KR102699589B1 (en) | 2024-08-28 |
US20240360055A1 (en) | 2024-10-31 |
CN113527036A (en) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12006274B2 (en) | Compositions including olefin and hydrofluoroalkane | |
US10131597B2 (en) | Process for producing 2,3,3,3-tetrafluoropropene | |
US9399609B2 (en) | Method for mitigating HFC-245cb formation during HCFO-1233xf hydrofluorination to HCFC-244bb | |
WO2017044719A1 (en) | Novel method for fluorinating chloroalkanes | |
EP2773605B1 (en) | Process for producing 2,3,3,3-tetrafluoropropene | |
US9394217B2 (en) | Staged fluorination process and reactor system | |
US10343962B2 (en) | Process for producing 2,3,3,3-tetrafluoropropene | |
US9670117B2 (en) | Process for producing 2,3,3,3-tetrafluoropropene | |
US20150225315A1 (en) | Reactor design for liquid phase fluorination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:THE CHEMOURS COMPANY FC, LLC;REEL/FRAME:063294/0692 Effective date: 20230410 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |