US20220144971A1 - Chemically-Locked Bispecific Antibodies - Google Patents
Chemically-Locked Bispecific Antibodies Download PDFInfo
- Publication number
- US20220144971A1 US20220144971A1 US17/585,378 US202217585378A US2022144971A1 US 20220144971 A1 US20220144971 A1 US 20220144971A1 US 202217585378 A US202217585378 A US 202217585378A US 2022144971 A1 US2022144971 A1 US 2022144971A1
- Authority
- US
- United States
- Prior art keywords
- fab
- bispecific antibody
- antibody compound
- independently
- attachment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 129
- -1 cMet Proteins 0.000 claims abstract description 35
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 claims abstract description 24
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 claims abstract description 24
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 claims abstract description 21
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 claims abstract description 21
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 claims abstract description 17
- 101000922405 Homo sapiens C-X-C chemokine receptor type 5 Proteins 0.000 claims abstract description 17
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 claims abstract description 17
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 claims abstract description 17
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 claims abstract description 17
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 claims abstract description 17
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 claims abstract description 17
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 claims abstract description 17
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims abstract description 15
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims abstract description 15
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 51
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 41
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 41
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 16
- 125000001425 triazolyl group Chemical group 0.000 claims description 14
- 201000010099 disease Diseases 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 125000005842 heteroatom Chemical group 0.000 claims description 9
- 229910052705 radium Inorganic materials 0.000 claims description 9
- 229910052701 rubidium Inorganic materials 0.000 claims description 9
- 235000018417 cysteine Nutrition 0.000 claims description 7
- 125000002619 bicyclic group Chemical group 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229930195734 saturated hydrocarbon Natural products 0.000 claims 11
- 150000001945 cysteines Chemical class 0.000 claims 2
- 239000008194 pharmaceutical composition Substances 0.000 claims 2
- 238000011282 treatment Methods 0.000 abstract description 13
- 102100038028 1-phosphatidylinositol 3-phosphate 5-kinase Human genes 0.000 abstract 1
- 101100257994 Arabidopsis thaliana FAB2 gene Proteins 0.000 abstract 1
- 101001025044 Homo sapiens 1-phosphatidylinositol 3-phosphate 5-kinase Proteins 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 55
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 54
- 108090000623 proteins and genes Proteins 0.000 description 38
- 235000018102 proteins Nutrition 0.000 description 24
- 102000004169 proteins and genes Human genes 0.000 description 24
- 239000000427 antigen Substances 0.000 description 22
- 102000036639 antigens Human genes 0.000 description 21
- 108091007433 antigens Proteins 0.000 description 21
- 108060003951 Immunoglobulin Proteins 0.000 description 20
- 125000000623 heterocyclic group Chemical group 0.000 description 20
- 102000018358 immunoglobulin Human genes 0.000 description 20
- 239000000523 sample Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 239000012634 fragment Substances 0.000 description 18
- 150000001413 amino acids Chemical class 0.000 description 17
- 235000002639 sodium chloride Nutrition 0.000 description 17
- 125000003118 aryl group Chemical group 0.000 description 15
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 14
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 14
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 13
- 239000000872 buffer Substances 0.000 description 13
- 239000013598 vector Substances 0.000 description 13
- 125000004452 carbocyclyl group Chemical group 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000543 intermediate Substances 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 230000021615 conjugation Effects 0.000 description 10
- 230000029087 digestion Effects 0.000 description 10
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 9
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 125000001072 heteroaryl group Chemical group 0.000 description 9
- 238000004128 high performance liquid chromatography Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000007363 ring formation reaction Methods 0.000 description 9
- BIKSKRPHKQWJCW-UHFFFAOYSA-N 3,4-dibromopyrrole-2,5-dione Chemical compound BrC1=C(Br)C(=O)NC1=O BIKSKRPHKQWJCW-UHFFFAOYSA-N 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 125000000151 cysteine group Chemical class N[C@@H](CS)C(=O)* 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 7
- 150000001345 alkine derivatives Chemical class 0.000 description 7
- 150000001540 azides Chemical class 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 229910000162 sodium phosphate Inorganic materials 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 230000016784 immunoglobulin production Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 0 *.*.C.C.C.C.C.C.C.C.CC[1*]n1cc([2*]CC)nn1.CC[1*]n1cc([2*]CC)nn1.CC[1*]n1ccnn1.CC[1*]n1ccnn1.C[2*]CC.C[2*]CC Chemical compound *.*.C.C.C.C.C.C.C.C.CC[1*]n1cc([2*]CC)nn1.CC[1*]n1cc([2*]CC)nn1.CC[1*]n1ccnn1.CC[1*]n1ccnn1.C[2*]CC.C[2*]CC 0.000 description 5
- 206010006187 Breast cancer Diseases 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 206010060862 Prostate cancer Diseases 0.000 description 5
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 5
- 239000012980 RPMI-1640 medium Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000000855 fermentation Methods 0.000 description 5
- 230000004151 fermentation Effects 0.000 description 5
- 239000001488 sodium phosphate Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 5
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 4
- 208000003950 B-cell lymphoma Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 210000003292 kidney cell Anatomy 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000000547 substituted alkyl group Chemical group 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 3
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 description 3
- OHZGAFKSAANFAS-UHFFFAOYSA-N 1-azido-2-[2-(2-azidoethoxy)ethoxy]ethane Chemical compound [N-]=[N+]=NCCOCCOCCN=[N+]=[N-] OHZGAFKSAANFAS-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 3
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 3
- 201000005962 mycosis fungoides Diseases 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 3
- 210000001322 periplasm Anatomy 0.000 description 3
- 238000002823 phage display Methods 0.000 description 3
- 125000003367 polycyclic group Chemical group 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 125000006413 ring segment Chemical group 0.000 description 3
- 238000001542 size-exclusion chromatography Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 206010044412 transitional cell carcinoma Diseases 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XSNOBXVGQGGIPA-UHFFFAOYSA-N 1-[2-(2-azidoethoxy)ethyl]-3,4-dibromopyrrole-2,5-dione Chemical compound BrC1=C(Br)C(=O)N(CCOCCN=[N+]=[N-])C1=O XSNOBXVGQGGIPA-UHFFFAOYSA-N 0.000 description 2
- OUCMTIKCFRCBHK-UHFFFAOYSA-N 3,3-dibenzylcyclooctyne Chemical compound C1CCCCC#CC1(CC=1C=CC=CC=1)CC1=CC=CC=C1 OUCMTIKCFRCBHK-UHFFFAOYSA-N 0.000 description 2
- GEKJEMDSKURVLI-UHFFFAOYSA-N 3,4-dibromofuran-2,5-dione Chemical compound BrC1=C(Br)C(=O)OC1=O GEKJEMDSKURVLI-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- NHDZESQHWMKRPE-UHFFFAOYSA-N C.C.CCC Chemical compound C.C.CCC NHDZESQHWMKRPE-UHFFFAOYSA-N 0.000 description 2
- ZLMNFTDIQNPRAM-UHFFFAOYSA-N CC(C)C(=O)CCCOCCC(=O)NCCC(=O)C(C)C.CC(C)CCOCCC(=O)NCCC(=O)C(C)C.CC(C)CCOCCC(=O)NCCC(=O)N1Cc2ccccc2-c2nnn(CCOCCC(C)C)c2-c2ccccc21.CC(C)CCOCCC(=O)NCCOCCNC(=O)OC(C)C.CC(C)CCOCCC(C)C.CC(C)CCOCCCC(=O)C(C)C.CC(C)CCOCCNC(=O)CC(C)C.CC(C)CCOCCNC(=O)CCC(=O)C(C)C.CC(C)CCOCCn1nnc2c1CCC1C(CC2)C1OC(=O)CCCOCCCC(=O)CCC(C)C.CC(C)OC(=O)NCCOCCNC(=O)C(C)C Chemical compound CC(C)C(=O)CCCOCCC(=O)NCCC(=O)C(C)C.CC(C)CCOCCC(=O)NCCC(=O)C(C)C.CC(C)CCOCCC(=O)NCCC(=O)N1Cc2ccccc2-c2nnn(CCOCCC(C)C)c2-c2ccccc21.CC(C)CCOCCC(=O)NCCOCCNC(=O)OC(C)C.CC(C)CCOCCC(C)C.CC(C)CCOCCCC(=O)C(C)C.CC(C)CCOCCNC(=O)CC(C)C.CC(C)CCOCCNC(=O)CCC(=O)C(C)C.CC(C)CCOCCn1nnc2c1CCC1C(CC2)C1OC(=O)CCCOCCCC(=O)CCC(C)C.CC(C)OC(=O)NCCOCCNC(=O)C(C)C ZLMNFTDIQNPRAM-UHFFFAOYSA-N 0.000 description 2
- PSTISCUEZLOGTO-UHFFFAOYSA-N CC(C)C(=O)CCCOCCC(=O)NCCC(=O)C(C)C.CC(C)CCOCCC(=O)NCCC(=O)C(C)C.CC(C)CCOCCC(=O)NCCOCCNC(=O)OC(C)C.CC(C)CCOCCC(C)C.CC(C)CCOCCCC(=O)C(C)C.CC(C)CCOCCNC(=O)CC(C)C.CC(C)CCOCCNC(=O)CCC(=O)C(C)C.CC(C)OC(=O)NCCOCCNC(=O)C(C)C Chemical compound CC(C)C(=O)CCCOCCC(=O)NCCC(=O)C(C)C.CC(C)CCOCCC(=O)NCCC(=O)C(C)C.CC(C)CCOCCC(=O)NCCOCCNC(=O)OC(C)C.CC(C)CCOCCC(C)C.CC(C)CCOCCCC(=O)C(C)C.CC(C)CCOCCNC(=O)CC(C)C.CC(C)CCOCCNC(=O)CCC(=O)C(C)C.CC(C)OC(=O)NCCOCCNC(=O)C(C)C PSTISCUEZLOGTO-UHFFFAOYSA-N 0.000 description 2
- CKIOIOFPUSXOLF-UHFFFAOYSA-N CC(C)CCOCCC(=O)NCCC(=O)N1Cc2ccccc2-c2nnn(CCOCCC(C)C)c2-c2ccccc21.CC(C)CCOCCC(C)C.CC(C)CCOCCNC(=O)C(C)C.CC(C)CCOCCNC(=O)CC(C)C.CC(C)CCOCCNC(=O)CNC(=O)C(C)C.CC(C)CCOCCn1nnc2c1CCC1C(CC2)C1OC(=O)NCCOCCNC(=O)CCC(C)C Chemical compound CC(C)CCOCCC(=O)NCCC(=O)N1Cc2ccccc2-c2nnn(CCOCCC(C)C)c2-c2ccccc21.CC(C)CCOCCC(C)C.CC(C)CCOCCNC(=O)C(C)C.CC(C)CCOCCNC(=O)CC(C)C.CC(C)CCOCCNC(=O)CNC(=O)C(C)C.CC(C)CCOCCn1nnc2c1CCC1C(CC2)C1OC(=O)NCCOCCNC(=O)CCC(C)C CKIOIOFPUSXOLF-UHFFFAOYSA-N 0.000 description 2
- BIWKDKFNOLYGSW-CVVHWVHISA-N CC1C2CC[C@H](C)[C@H](C)CCC12.C[C@@H]1c2ccccc2N(C)Cc2ccccc2[C@@H]1C Chemical compound CC1C2CC[C@H](C)[C@H](C)CCC12.C[C@@H]1c2ccccc2N(C)Cc2ccccc2[C@@H]1C BIWKDKFNOLYGSW-CVVHWVHISA-N 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 101100390711 Escherichia coli (strain K12) fhuA gene Proteins 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000006137 Luria-Bertani broth Substances 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108090000526 Papain Proteins 0.000 description 2
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 241000607720 Serratia Species 0.000 description 2
- 208000002669 Sex Cord-Gonadal Stromal Tumors Diseases 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 229960003008 blinatumomab Drugs 0.000 description 2
- 229940101815 blincyto Drugs 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000022534 cell killing Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 2
- 239000006184 cosolvent Substances 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000006334 disulfide bridging Effects 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 206010016629 fibroma Diseases 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 208000025113 myeloid leukemia Diseases 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 235000019834 papain Nutrition 0.000 description 2
- 229940055729 papain Drugs 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 229950010131 puromycin Drugs 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- QFYXSLAAXZTRLG-UHFFFAOYSA-N pyrrolidine-2,3-dione Chemical compound O=C1CCNC1=O QFYXSLAAXZTRLG-UHFFFAOYSA-N 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 2
- 229940056729 sodium sulfate anhydrous Drugs 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 208000023747 urothelial carcinoma Diseases 0.000 description 2
- 125000006755 (C2-C20) alkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- AEBWATHAIVJLTA-UHFFFAOYSA-N 1,2,3,3a,4,5,6,6a-octahydropentalene Chemical compound C1CCC2CCCC21 AEBWATHAIVJLTA-UHFFFAOYSA-N 0.000 description 1
- ZCZVGQCBSJLDDS-UHFFFAOYSA-N 1,2,3,4-tetrahydro-1,8-naphthyridine Chemical compound C1=CC=C2CCCNC2=N1 ZCZVGQCBSJLDDS-UHFFFAOYSA-N 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- LGKNCSVHCNCJQG-UHFFFAOYSA-N 1-azaspiro[4.5]decane Chemical compound C1CCNC21CCCCC2 LGKNCSVHCNCJQG-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- IBXNCJKFFQIKKY-UHFFFAOYSA-N 1-pentyne Chemical compound CCCC#C IBXNCJKFFQIKKY-UHFFFAOYSA-N 0.000 description 1
- LSINSRRMMCCRFT-UHFFFAOYSA-N 10,11,12-triazatricyclo[7.3.0.04,6]dodeca-1(12),9-diene Chemical compound N1N=NC2=C1CCC1C(CC2)C1 LSINSRRMMCCRFT-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- PNJUXCNBOXMPEY-UHFFFAOYSA-N 2,4-dihydropyrrolo[2,3-d]triazole Chemical compound N1N=NC2=C1C=CN2 PNJUXCNBOXMPEY-UHFFFAOYSA-N 0.000 description 1
- JIQVRHWKIDNQLC-UHFFFAOYSA-N 2-(2-azidoethoxy)ethanamine Chemical class NCCOCCN=[N+]=[N-] JIQVRHWKIDNQLC-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- JZGZOQWXAKRKPJ-UHFFFAOYSA-N 3,4,5,13-tetrazatetracyclo[13.4.0.02,6.07,12]nonadeca-1(19),2,5,7,9,11,15,17-octaene Chemical compound N1N=NC=2C3=C(NCC4=C(C=21)C=CC=C4)C=CC=C3 JZGZOQWXAKRKPJ-UHFFFAOYSA-N 0.000 description 1
- UTRRZSDFSRMASG-UHFFFAOYSA-N 3,4-dibromopyrrole-2,5-dione azide Chemical compound [N-]=[N+]=[N-].BrC1=C(Br)C(=O)NC1=O UTRRZSDFSRMASG-UHFFFAOYSA-N 0.000 description 1
- WMFXVTTVODXHLE-UHFFFAOYSA-N 5,6,11,12-tetrahydrobenzo[c][1]benzazocine Chemical compound C1CC2=CC=CC=C2NCC2=CC=CC=C12 WMFXVTTVODXHLE-UHFFFAOYSA-N 0.000 description 1
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 1
- 208000007876 Acrospiroma Diseases 0.000 description 1
- 206010000871 Acute monocytic leukaemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 206010001233 Adenoma benign Diseases 0.000 description 1
- 208000001794 Adipose Tissue Neoplasms Diseases 0.000 description 1
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 1
- 208000037540 Alveolar soft tissue sarcoma Diseases 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 208000001446 Anaplastic Thyroid Carcinoma Diseases 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 206010002240 Anaplastic thyroid cancer Diseases 0.000 description 1
- 206010051810 Angiomyolipoma Diseases 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 101710192393 Attachment protein G3P Proteins 0.000 description 1
- 201000008271 Atypical teratoid rhabdoid tumor Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000032568 B-cell prolymphocytic leukaemia Diseases 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 206010004453 Benign salivary gland neoplasm Diseases 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 208000007690 Brenner tumor Diseases 0.000 description 1
- 206010073258 Brenner tumour Diseases 0.000 description 1
- 206010070487 Brown tumour Diseases 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N CCC Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 1
- PXSGRDFYKBUDCS-UHFFFAOYSA-N COC(=O)N1C(=O)C(Br)=C(Br)C1=O.COCl.O=C1NC(=O)C(Br)=C1Br.[C-]#[O+].[N-]=[N+]=NCCOCCN.[N-]=[N+]=NCCOCCN1C(=O)C(Br)=C(Br)C1=O Chemical compound COC(=O)N1C(=O)C(Br)=C(Br)C1=O.COCl.O=C1NC(=O)C(Br)=C1Br.[C-]#[O+].[N-]=[N+]=NCCOCCN.[N-]=[N+]=NCCOCCN1C(=O)C(Br)=C(Br)C1=O PXSGRDFYKBUDCS-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710169873 Capsid protein G8P Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 201000000274 Carcinosarcoma Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 208000007389 Cementoma Diseases 0.000 description 1
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 206010008583 Chloroma Diseases 0.000 description 1
- 201000005262 Chondroma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 208000004378 Choroid plexus papilloma Diseases 0.000 description 1
- 206010009253 Clear cell sarcoma of the kidney Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 208000008334 Dermatofibrosarcoma Diseases 0.000 description 1
- 208000008743 Desmoplastic Small Round Cell Tumor Diseases 0.000 description 1
- 206010064581 Desmoplastic small round cell tumour Diseases 0.000 description 1
- 208000007033 Dysgerminoma Diseases 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 208000001976 Endocrine Gland Neoplasms Diseases 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 208000002460 Enteropathy-Associated T-Cell Lymphoma Diseases 0.000 description 1
- 208000033832 Eosinophilic Acute Leukemia Diseases 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 206010061850 Extranodal marginal zone B-cell lymphoma (MALT type) Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- 206010016935 Follicular thyroid cancer Diseases 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 208000021309 Germ cell tumor Diseases 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 201000005409 Gliomatosis cerebri Diseases 0.000 description 1
- 206010068601 Glioneuronal tumour Diseases 0.000 description 1
- 206010018404 Glucagonoma Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 208000005234 Granulosa Cell Tumor Diseases 0.000 description 1
- 208000035773 Gynandroblastoma Diseases 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 206010066476 Haematological malignancy Diseases 0.000 description 1
- 208000006050 Hemangiopericytoma Diseases 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001024703 Homo sapiens Nck-associated protein 5 Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 208000029966 Hutchinson Melanotic Freckle Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 208000005016 Intestinal Neoplasms Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 1
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- 206010024218 Lentigo maligna Diseases 0.000 description 1
- 201000004462 Leydig Cell Tumor Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025219 Lymphangioma Diseases 0.000 description 1
- 206010025312 Lymphoma AIDS related Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 239000012515 MabSelect SuRe Substances 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 101710156564 Major tail protein Gp23 Proteins 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- 206010064281 Malignant atrophic papulosis Diseases 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- 208000009018 Medullary thyroid cancer Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 208000035490 Megakaryoblastic Acute Leukemia Diseases 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 208000035489 Monocytic Acute Leukemia Diseases 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 208000007727 Muscle Tissue Neoplasms Diseases 0.000 description 1
- 206010073137 Myxoid liposarcoma Diseases 0.000 description 1
- 208000002454 Nasopharyngeal Carcinoma Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 102100036946 Nck-associated protein 5 Human genes 0.000 description 1
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 201000004404 Neurofibroma Diseases 0.000 description 1
- 208000005890 Neuroma Diseases 0.000 description 1
- 101100407828 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ptr-3 gene Proteins 0.000 description 1
- 206010029488 Nodular melanoma Diseases 0.000 description 1
- 206010061872 Non-renal cell carcinoma of kidney Diseases 0.000 description 1
- NZKHHELOXRUAPF-UHFFFAOYSA-N O=C(CCOCCN1C(=O)C(Br)=C(Br)C1=O)NCCC(=O)N1Cc2ccccc2C#Cc2ccccc21.[N-]=[N+]=NCCOCCOCCN=[N+]=[N-].[N-]=[N+]=NCCOCCOCCn1nnc2c1-c1ccccc1CN(C(=O)CCCC(=O)CCOCCN1C(=O)C(Br)=C(Br)C1=O)c1ccccc1-2 Chemical compound O=C(CCOCCN1C(=O)C(Br)=C(Br)C1=O)NCCC(=O)N1Cc2ccccc2C#Cc2ccccc21.[N-]=[N+]=NCCOCCOCCN=[N+]=[N-].[N-]=[N+]=NCCOCCOCCn1nnc2c1-c1ccccc1CN(C(=O)CCCC(=O)CCOCCN1C(=O)C(Br)=C(Br)C1=O)c1ccccc1-2 NZKHHELOXRUAPF-UHFFFAOYSA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 206010048757 Oncocytoma Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 1
- 208000002063 Oxyphilic Adenoma Diseases 0.000 description 1
- 201000010630 Pancoast tumor Diseases 0.000 description 1
- 208000015330 Pancoast tumour Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010033701 Papillary thyroid cancer Diseases 0.000 description 1
- 208000037064 Papilloma of choroid plexus Diseases 0.000 description 1
- 241001057811 Paracoccus <mealybug> Species 0.000 description 1
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 208000031839 Peripheral nerve sheath tumour malignant Diseases 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 206010034811 Pharyngeal cancer Diseases 0.000 description 1
- 206010050487 Pinealoblastoma Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 208000021308 Pituicytoma Diseases 0.000 description 1
- 201000005746 Pituitary adenoma Diseases 0.000 description 1
- 206010061538 Pituitary tumour benign Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 208000035416 Prolymphocytic B-Cell Leukemia Diseases 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 208000034541 Rare lymphatic malformation Diseases 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 208000033889 Renal medullary carcinoma Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 208000005678 Rhabdomyoma Diseases 0.000 description 1
- 208000025316 Richter syndrome Diseases 0.000 description 1
- 239000011542 SDS running buffer Substances 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 208000006938 Schwannomatosis Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 208000003274 Sertoli cell tumor Diseases 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 208000003252 Signet Ring Cell Carcinoma Diseases 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 206010041329 Somatostatinoma Diseases 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 108090000794 Streptopain Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 208000020982 T-lymphoblastic lymphoma Diseases 0.000 description 1
- 101000588258 Taenia solium Paramyosin Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 201000000331 Testicular germ cell cancer Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 206010043515 Throat cancer Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 229940127174 UCHT1 Drugs 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000008385 Urogenital Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 201000005969 Uveal melanoma Diseases 0.000 description 1
- 101150117115 V gene Proteins 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 241000863000 Vitreoscilla Species 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 208000021146 Warthin tumor Diseases 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 208000012018 Yolk sac tumor Diseases 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 208000006336 acinar cell carcinoma Diseases 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000023445 activated T cell autonomous cell death Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 208000013593 acute megakaryoblastic leukemia Diseases 0.000 description 1
- 208000020700 acute megakaryocytic leukemia Diseases 0.000 description 1
- 208000002517 adenoid cystic carcinoma Diseases 0.000 description 1
- 208000026562 adenomatoid odontogenic tumor Diseases 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 201000008395 adenosquamous carcinoma Diseases 0.000 description 1
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 208000007128 adrenocortical carcinoma Diseases 0.000 description 1
- 201000006966 adult T-cell leukemia Diseases 0.000 description 1
- 208000015230 aggressive NK-cell leukemia Diseases 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 206010065867 alveolar rhabdomyosarcoma Diseases 0.000 description 1
- 208000008524 alveolar soft part sarcoma Diseases 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 230000002707 ameloblastic effect Effects 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 206010002449 angioimmunoblastic T-cell lymphoma Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 102000025171 antigen binding proteins Human genes 0.000 description 1
- 108091000831 antigen binding proteins Proteins 0.000 description 1
- 230000009831 antigen interaction Effects 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 208000037979 autoimmune inflammatory disease Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- JAPMJSVZDUYFKL-UHFFFAOYSA-N bicyclo[3.1.0]hexane Chemical compound C1CCC2CC21 JAPMJSVZDUYFKL-UHFFFAOYSA-N 0.000 description 1
- LPCWKMYWISGVSK-UHFFFAOYSA-N bicyclo[3.2.1]octane Chemical group C1C2CCC1CCC2 LPCWKMYWISGVSK-UHFFFAOYSA-N 0.000 description 1
- FYECUAIUGWFPJF-UHFFFAOYSA-N bicyclo[6.1.0]nonane Chemical compound C1CCCCCC2CC21 FYECUAIUGWFPJF-UHFFFAOYSA-N 0.000 description 1
- 201000009036 biliary tract cancer Diseases 0.000 description 1
- 208000020790 biliary tract neoplasm Diseases 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 201000009076 bladder urachal carcinoma Diseases 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 201000011143 bone giant cell tumor Diseases 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 208000030748 clear cell sarcoma of kidney Diseases 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- 125000004852 dihydrofuranyl group Chemical group O1C(CC=C1)* 0.000 description 1
- 125000005043 dihydropyranyl group Chemical group O1C(CCC=C1)* 0.000 description 1
- 125000004655 dihydropyridinyl group Chemical group N1(CC=CC=C1)* 0.000 description 1
- 125000005053 dihydropyrimidinyl group Chemical group N1(CN=CC=C1)* 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 201000004428 dysembryoplastic neuroepithelial tumor Diseases 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 208000001991 endodermal sinus tumor Diseases 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 201000008361 ganglioneuroma Diseases 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000003500 gene array Methods 0.000 description 1
- 201000008822 gestational choriocarcinoma Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 208000003064 gonadoblastoma Diseases 0.000 description 1
- 210000005256 gram-negative cell Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 208000006359 hepatoblastoma Diseases 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 206010066957 hepatosplenic T-cell lymphoma Diseases 0.000 description 1
- 125000005114 heteroarylalkoxy group Chemical group 0.000 description 1
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 201000004933 in situ carcinoma Diseases 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- JYGFTBXVXVMTGB-UHFFFAOYSA-N indolin-2-one Chemical compound C1=CC=C2NC(=O)CC2=C1 JYGFTBXVXVMTGB-UHFFFAOYSA-N 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 201000002313 intestinal cancer Diseases 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 208000020319 kidney medullary carcinoma Diseases 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 201000009020 malignant peripheral nerve sheath tumor Diseases 0.000 description 1
- 208000015179 malignant superior sulcus neoplasm Diseases 0.000 description 1
- 201000001117 malignant triton tumor Diseases 0.000 description 1
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 description 1
- 208000021937 marginal zone lymphoma Diseases 0.000 description 1
- 208000000516 mast-cell leukemia Diseases 0.000 description 1
- 208000029586 mediastinal germ cell tumor Diseases 0.000 description 1
- 208000030163 medullary breast carcinoma Diseases 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- YVESAOJZLFCAHI-UHFFFAOYSA-N methyl 3,4-dibromo-2,5-dioxopyrrole-1-carboxylate Chemical compound COC(=O)N1C(=O)C(Br)=C(Br)C1=O YVESAOJZLFCAHI-UHFFFAOYSA-N 0.000 description 1
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 208000022669 mucinous neoplasm Diseases 0.000 description 1
- 201000009368 muscle benign neoplasm Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 201000005987 myeloid sarcoma Diseases 0.000 description 1
- 208000009091 myxoma Diseases 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 208000014761 nasopharyngeal type undifferentiated carcinoma Diseases 0.000 description 1
- 201000011216 nasopharynx carcinoma Diseases 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 201000009494 neurilemmomatosis Diseases 0.000 description 1
- 208000027831 neuroepithelial neoplasm Diseases 0.000 description 1
- 208000029974 neurofibrosarcoma Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 201000000032 nodular malignant melanoma Diseases 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 201000008106 ocular cancer Diseases 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 206010073131 oligoastrocytoma Diseases 0.000 description 1
- 101150093139 ompT gene Proteins 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 208000027500 optic nerve neoplasm Diseases 0.000 description 1
- 201000011130 optic nerve sheath meningioma Diseases 0.000 description 1
- 208000022982 optic pathway glioma Diseases 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000005489 p-toluenesulfonic acid group Chemical class 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000007312 paraganglioma Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 201000002628 peritoneum cancer Diseases 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 206010035059 pineocytoma Diseases 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 208000021310 pituitary gland adenoma Diseases 0.000 description 1
- 208000010916 pituitary tumor Diseases 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 208000024246 polyembryoma Diseases 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000004929 pyrrolidonyl group Chemical group N1(C(CCC1)=O)* 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 229930185107 quinolinone Natural products 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 201000007416 salivary gland adenoid cystic carcinoma Diseases 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 206010039667 schwannoma Diseases 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 208000028467 sex cord-stromal tumor Diseases 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 201000008123 signet ring cell adenocarcinoma Diseases 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- ALZJERAWTOKHNO-UHFFFAOYSA-M sodium;dodecyl sulfate;3-morpholin-4-ylpropane-1-sulfonic acid Chemical compound [Na+].OS(=O)(=O)CCCN1CCOCC1.CCCCCCCCCCCCOS([O-])(=O)=O ALZJERAWTOKHNO-UHFFFAOYSA-M 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 208000037959 spinal tumor Diseases 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- PLDXRPSSERMPSV-UHFFFAOYSA-N spiro[3.6]decane Chemical compound C1CCC21CCCCCC2 PLDXRPSSERMPSV-UHFFFAOYSA-N 0.000 description 1
- CTDQAGUNKPRERK-UHFFFAOYSA-N spirodecane Chemical compound C1CCCC21CCCCC2 CTDQAGUNKPRERK-UHFFFAOYSA-N 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000004853 tetrahydropyridinyl group Chemical group N1(CCCC=C1)* 0.000 description 1
- 125000005958 tetrahydrothienyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 208000030901 thyroid gland follicular carcinoma Diseases 0.000 description 1
- 208000030045 thyroid gland papillary carcinoma Diseases 0.000 description 1
- 208000019179 thyroid gland undifferentiated (anaplastic) carcinoma Diseases 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 201000007363 trachea carcinoma Diseases 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 208000025443 tumor of adipose tissue Diseases 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 208000037964 urogenital cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 208000008662 verrucous carcinoma Diseases 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/468—Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2827—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3069—Reproductive system, e.g. ovaria, uterus, testes, prostate
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- Bispecific antibodies are antibodies or antibody-like molecules having two different binding specificities. Because of this unique feature, bispecific antibodies not only connect therapeutics (e.g., T cells and drugs) with targets (e.g., tumors), but they can also block separate pathogenic mediators. Clinical successes and impressive treatment profiles against cancer, autoimmune diseases, and inflammatory diseases have been shown. See e.g., MAbs. 2009 November-December; 1(6): 539-547. Given their expanding therapeutic potential, the need for identifying new bispecific antibodies remains.
- compositions comprising these bispecific antibody compounds, wherein, FAB 1 , FAB 2 , and —X— are as defined herein, are effective therapeutics (e.g., in the treatment of cancer. See e.g., FIGS. 9-12 .
- bispecific antibody compounds and compositions described herein can be manufactured in commercially relevant yields and quantities, utilize digestions on off-the-shelf antibodies or cells (e.g., CHO cells), undergo facile conjugation processes, and elicit the exclusive formation of heterodimers (with a high bispecific antibody assembly yield). These processes mitigate conventional requirements for extensive protein engineering of each antibody, complex genetic techniques, and laborious biochemical processing
- FIG. 1 provides a schematic illustration of the generation of a bispecific antibody compound as described herein.
- FIG. 2 illustrates an SDS-PAGE gel analysis of intermediates involved in the synthesis of an exemplary bispecific antibody.
- FIG. 3 illustrates a Hydrophobic Interaction Chromatography (HIC) analysis of bispecific antibody compound 105.
- HIC Hydrophobic Interaction Chromatography
- FIG. 4 illustrates simultaneous binding of bispecific antibody compound 105 to two antigens on Octet Red.
- FIG. 5 illustrates the SDS-PAGE analysis following digestion and purification from full length IgG1 antibody.
- FIG. 6 illustrates a Hydrophobic Interaction Chromatography (HIC) analysis of PSMA F(ab) and CD3 F(ab) following digestion and purification from full length PSMA IgG1 and full length CD3 IgG1.
- HIC Hydrophobic Interaction Chromatography
- FIG. 7 shows a general synthetic scheme for the formation of PSMA/CD3 bispecific antibody compounds 106, 107, 108, and 109.
- FIG. 8 shows the HIC analysis of aPSMA F(ab) and intermediates aPSMA F(ab)-PEG4-azide and aPSMA F(ab)-PEG8-azide prior to cyclization.
- FIG. 9 shows the HIC analysis of aCD3 F(ab) and intermediates ⁇ CD3 F(ab)-PEG4-DBCO and ⁇ CD3 F(ab)-PEG8-DBCO prior to cyclization.
- FIG. 10 shows the SDS-PAGE analysis of ⁇ PSMA/ ⁇ CD3 bispecific antibody compounds 106, 107, 108, and 109.
- FIG. 11 shows % killing vs concentration of bispecific antibody compound 108 in LnCaP and PC3 Cells.
- FIG. 12 shows % killing vs concentration of bispecific antibody compound 109 in LnCaP and PC3 Cells.
- bispecific antibody compounds having the Formula I:
- FAB 1 represents a first Fab fragment
- FAB 2 represents a second Fab fragment
- —X— represents an optionally substituted triazolyl covalently linking FAB 1 and FAB 2 together.
- antibody refers to any immunoglobulin (Ig) molecule comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains, or any functional fragment (e.g., a Fab fragment), mutant, variant, or derivation thereof (e.g., a bispecific antibody compound of Formula I). Such mutant, variant, or derivative antibody formats are known in the art.
- each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region.
- the heavy chain constant region is comprised of three domains, CH1, CH2 and CH3.
- Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region.
- the light chain constant region is comprised of one domain, CL.
- the VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
- CDR complementarity determining regions
- FR framework regions
- Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.
- the antibody is a full-length antibody.
- the antibody is a murine antibody.
- the antibody is a human antibody.
- the antibody is a humanized antibody.
- the antibody is a chimeric antibody. Chimeric and humanized antibodies may be prepared by methods well known to those of skill in the art including CDR grafting approaches (see, e.g., U.S. Pat.
- bispecific antibody refers to any immunoglobulin (Ig) molecule comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains, or any functional fragment (e.g., a Fab fragment), mutant, variant, or derivation thereof (e.g., a bispecific antibody compound of Formula I), which can bind to two different epitopes.
- the bispecific antibody binds to two different epitopes on the same antigen.
- the bispecific antibody binds to epitopes on two different antigens.
- the bispecific antibody described herein is of the Formula I, wherein FAB 1 and FAB 2 do not comprise a hinge region.
- antibody portion refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen. It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Such antibody embodiments may also be bispecific, dual specific, or multi-specific formats; specifically binding to two or more different antigens.
- binding fragments encompassed within the term “antigen-binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) an Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) and a dAb fragment (Ward et al. (1989) N ATURE 341: 544-546; and Winter et al., PCT Publication No. WO 90/05144 A1).
- Antibody fragments may be derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., J Biochem Biophys. Method. 24:107-117 (1992); and Brennan et al., Science 229:81 (1985)). Antibody fragments may also be produced directly by recombinant host cells. For example, Fab, Fv and scFv antibody fragments can all be expressed in and secreted from E. coli , thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed below. Such fragments may be conjugated as described herein.
- Fab or “FAB” or “Fab fragment”, as used interchangeably herein, refers to an antibody fragment which is a monovalent fragment having VL, VH, CL and CH1 domains. Unless otherwise specified, a Fab does not contain an Fc region or a hinge region linking the CH1 and CH2 domains of the heavy chain.
- a F(ab)2 refers to the bispecific antibody compound of Formula I.
- the terms “FAB 1 ” or “FAB 2 ” refer to a Fab fragment of an antibody. In one aspect, FAB 1 and FAB 2 do not comprise a hinge region.
- human antibody refers to a recombinant antibody having one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all of the variable and constant domains are derived from human immunoglobulin sequences (a fully human antibody).
- a human antibody may be prepared in a variety of ways, examples of which are described below, including through the immunization with an antigen of interest of a mouse that is genetically modified to express antibodies derived from human heavy and/or light chain-encoding genes.
- humanized antibody refers to an antibody comprising at least one chain comprising variable region framework residues substantially from a human antibody chain (referred to as the acceptor immunoglobulin or antibody) and at least one CDR substantially from a non-human, e.g., a mouse, antibody, (referred to as the donor immunoglobulin or antibody). See, methods of making described in Queen et al., Proc. Natl. Acad. Sci. USA 86:10029 10033 (1989), U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,761, WO 90/07861, and U.S. Pat. No. 5,225,539, each of which is incorporated by reference herein.
- the constant region(s), if present, can also be substantially or entirely from a human immunoglobulin.
- Methods of making humanized antibodies are known in the art. See, e.g., U.S. Pat. No. 7,256,273, incorporated by reference herein.
- certain amino acids in the framework and constant domains of the heavy and/or light chains of a non-human species antibody are mutated to produce the humanized antibody.
- Further examples of how to make humanized antibodies may be found in U.S. Pat. Nos. 6,054,297; 5,886,152; and 5,877,293, each of which is incorporated by reference herein.
- an “epitope”, as used herein, is the portion of a molecule that is bound by an antibody.
- an epitope can comprise non-contiguous portions of the molecule (e.g., in a polypeptide, amino acid residues that are not contiguous in the polypeptide's primary sequence but that, in the context of the polypeptide's tertiary and quaternary structure, are near enough to each other to be bound by an antigen binding protein).
- isolated refers to a molecule that is identified and separated from at least one contaminant molecule with which it is ordinarily associated in the natural source of the molecule.
- the isolated molecule is free of association with all components with which it is naturally associated.
- the antibodies described are isolated.
- substituted triazolyl refers to a triazoyl group that is substituted with one or more groups that do not substantially alter conditions which allow for the production, detection, and, in certain embodiments, the recovery, purification, and use for one or more of the bispecific antibody compounds disclosed herein
- the point of attachment can be on any substitutable position and, include, e.g., 1,2,3-triazolyl (e.g., substituted 1,4; 1,5; 4,5; and 1,4,5) and 1,2,4-triazolyl (e.g., substituted 3,4; 3,5; 4,5; and 3,4,5).
- Oxo refers to the functional group “ ⁇ O” (a substituent oxygen atom connected to another atom by a double bond).
- alkyl means saturated straight-chain or branched monovalent hydrocarbon radical.
- a “(C 2 -C 20 )alkyl” group is means a radical having from 2 to 20 carbon atoms in a linear or branched arrangement. Where defined, alkyl groups may be interrupted by one or more heteroatoms selected from O, N, and S.
- alkyne refers to an an unsaturated hydrocarbon containing at least one carbon-carbon triple bond between two carbon atoms. Terminal alkyne means that the carbon-carbon triple bond between two carbon atoms is at the end of the carbon chain e.g., as in where there is at least one hydrogen atom bonded to a triply bonded carbon atom (e.g., pent-1-yne).
- aryl refers to an aromatic monocyclic or bicyclic carbon ring system having, unless otherwise specified, a total of 6 to 14 ring members.
- aryl may be used interchangeably with the term “aryl ring”, “aryl group”, “aryl moiety,” or “aryl radical”.
- aryl is a group in which an aromatic carbon ring is fused to one or more carbocyclyl rings, e.g., tetrahydronaphthalenyl.
- aryl refers to an aromatic ring system which includes, but is not limited to, phenyl (abbreviated as “Ph”), naphthyl and the like. It will be understood that when specified, optional substituents on an aryl group (e.g., in the case of an optionally substituted aryl or aryl which is optionally substituted) may be present on any substitutable position, i.e., any ring carbon substituted with hydrogen.
- heteroaryl used alone or as part of a larger moiety as in “heteroarylalkyl”, “heteroarylalkoxy”, or “heteroarylaminoalkyl”, refers to a 5-10-membered aromatic radical containing 1-4 heteroatoms selected from N, quaternary ammonium cation, O, and S, and includes, for example, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl.
- heteroaryl may be used interchangeably with the terms “heteroaryl ring”, “heteroaryl group”, or “heteroaromatic”.
- Nonlimiting examples include indolyl, indazolyl, benzimidazolyl, benzthiazolyl, pyrrolopyridinyl, quinolyl, quinazolinyl, and quinoxalinyl. It will be understood that when specified, optional substituents on a heteroaryl group may be present on any substitutable position (carbon and nitrogen).
- Carbocyclyl as used herein, means a monocyclic, bicyclic (e.g., a bridged or spiro bicyclic ring), polycyclic (e.g., tricyclic or more), or fused hydrocarbon ring system that is completely saturated or that contains one or more units of partial unsaturation, but where there is no aromatic ring. Cycloalkyl is a completely saturated carbocycle.
- Monocyclic carbocyclyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, and cyclooctyl.
- Bridged bicyclic carbocyclyl groups include, without limitation, bicyclo[3.2.1]octane, bicyclo[2.2.1]heptane, bicyclo[3.1.0]hexane, and the like.
- Spiro bicyclic carbocyclyl groups include, e.g., spiro[3.6]decane, spiro[4.5]decane, and the like.
- Fused carbocyclyl rings include, e.g., decahydronaphthalene, octahydropentalene, and the like.
- Polycyclic carbocyclyl rings include e.g., bicyclo[6.1.0]nonane and 1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazole.
- optional substituents on a carbocyclyl may be present on any substitutable position and, include, e.g., the position at which the carbocyclyl group is attached.
- heterocyclyl means a 3-12 membered (e.g., a 4-, 5-, 6- 7- and 8-membered) saturated or partially unsaturated heterocyclic ring containing 1 to 4 heteroatoms independently selected from N, O, and S. It can be mononcyclic, bicyclic (e.g., a bridged, fused, or Spiro bicyclic ring), or polycyclic (e.g., tricyclic or more).
- heterocycle “heterocyclyl”, “heterocyclyl ring”, “heterocyclic group”, “heterocyclic moiety”, and “heterocyclic radical”, are used interchangeably herein.
- a heterocyclyl ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure.
- saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, terahydropyranyl, pyrrolidinyl, pyridinonyl, pyrrolidonyl, piperidinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, morpholinyl, dihydrofuranyl, dihydropyranyl, dihydropyridinyl, tetrahydropyridinyl, dihydropyrimidinyl, 3-azabicyclo[3.1.0]hexanyl, 2-oxa-6-azaspiro[3.3]heptanyl, 1-azaspiro[4.5]decane, and tetrahydropyrimidinyl.
- heterocyclyl also includes, e.g., unsaturated heterocyclic radicals fused to another unsaturated heterocyclic radical or aryl or heteroaryl ring, such as for example, tetrahydronaphthyridine, indolinone, dihydropyrrolotriazole, imidazopyrimidine, quinolinone, and dioxaspirodecane.
- polycyclic (e.g., tricyclic or more) heterocyclyl include, without limitation, 5,6,11,12-tetrahydrodibenzo[b,f]azocine and 8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocine.
- optional substituents on a heterocyclyl group may be present on any substitutable position and, include, e.g., the position at which the heterocyclyl is attached (e.g., in the case of an optionally substituted heterocyclyl or heterocyclyl which is optionally substituted).
- spiro refers to two rings that share one ring atom (e.g., carbon).
- fused refers to two rings that share two adjacent ring ring atoms.
- bridged refers to two rings that share at least three ring atoms.
- the moieties present on the substituted triazolyl may be further substituted or contain “optionally substituted” moieties.
- optionally substituted alkyl optionally substituted pyrazolyl, an optionally substituted carbocyclic, an optionally substituted substituted multi-cyclic heterocyclic ring system, etc.
- an “optionally substituted” group may have a suitable substituent that results in the formation of stable or chemically feasible compounds.
- stable refers to groups that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.
- suitable substituents for an optionally substituted or substituted alkyl, carbocyclyl, or heterocyclyl group are those which do not substantially diminish the yield of the bispecific antibody compound. Examples include halogen,
- the bispecific antibody compounds described herein may be present in the form of pharmaceutically acceptable salts.
- pharmaceutically acceptable salts refer to non-toxic pharmaceutically acceptable salts.
- Pharmaceutically acceptable salt forms include pharmaceutically acceptable acidic/anionic or basic/cationic salts.
- Suitable pharmaceutically acceptable acid addition salts of the compounds described herein include e.g., salts of inorganic acids (such as hydrochloric acid, hydrobromic, phosphoric, nitric, and sulfuric acids) and of organic acids (such as, acetic acid, benzenesulfonic, benzoic, methanesulfonic, and p-toluenesulfonic acids).
- Suitable pharmaceutically acceptable basic salts include e.g., ammonium salts, alkali metal salts (such as sodium and potassium salts) and alkaline earth metal salts (such as magnesium and calcium salts).
- treatment refers to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein.
- treatment may be administered after one or more symptoms have developed, i.e., therapeutic treatment.
- treatment may be administered in the absence of symptoms.
- treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors), i.e., prophylactic treatment. Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.
- subject and “patient” may be used interchangeably, and means a mammal in need of treatment, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses, sheep, goats and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like).
- companion animals e.g., dogs, cats, and the like
- farm animals e.g., cows, pigs, horses, sheep, goats and the like
- laboratory animals e.g., rats, mice, guinea pigs and the like.
- the subject is a human in need of treatment.
- the bispecific antibody compounds of Formula I are of the Formula II, IIa, III, or IIIa:
- R 1 and R 2 are each independently a substituted alkyl; ring A is a substituted carbocyclyl or substituted heterocyclyl; and R a and R b are each independently selected from
- Q, T, and V are each independently N or CH; “ ” indicates the points of attachment to FAB 1 or FAB 2 and “ ” indicates the point of attachment to R 1 or R 2 , and wherein the remaining variables and values are as described for Formula I.
- Ring A in Formula I, III, or IIIa is a substituted bicyclic or polycyclic carbocyclyl or a substituted polycyclic heterocyclyl, wherein the remaining variables and values are as described for Formula I or the first exemplary embodiment.
- Ring A is
- R 1 and R 2 in Formula I, II, IIa, III, or IIIa are each independently an optionally substituted (C 2 -C 30 )alkyl optionally interrupted with one or more heteroatoms selected from N, O, and S, wherein the remaining variables and values are as described for Formula I or the first, second, or third exemplary embodiment.
- R 1 and R 2 in Formula I, II, IIa, III, or IIIa are each independently a substituted (C 2 -C 30 )alkyl optionally interrupted with one or more heteroatoms selected from N and O, wherein the remaining variables and values are as described for Formula I or the first, second, third, or fourth exemplary embodiment.
- le and R 2 in Formula I, II, IIa, III, or IIIa are each independently a (C 2 -C 30 )alkyl interrupted with at least one O and at least one N, and substituted with at least one oxo, wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, or fifth exemplary embodiment.
- R 1 and R 2 in Formula I, II, IIa, III, or IIIa are each independently selected from
- the wavy lines indicate the points of attachment to R a or R b ; the dashed lines indicated the points of attachment to the triazolyl or ring A; and p and w independently are integers from 1 to 8, wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, or sixth exemplary embodiment.
- R 1 in Formula I, II, IIa, III, or IIIa is selected from
- R 2 in Formula I, II, IIa, III, or IIIa is selected from
- the wavy lines indicate the points of attachment to R a ; and the dashed lines indicated the points of attachment to the triazolyl or ring A, wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, sixth, seventh, or eighth exemplary embodiment.
- R a and R b in Formula I, II, IIa, III, or IIIa are bound to FAB 1 and FAB 2 through native cysteines of FAB 1 and FAB 2 , wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, sixth, seventh, eighth, or ninth exemplary embodiment.
- R a and R b in Formula I, II, IIa, III, or IIIa are bound to FAB 1 and FAB 2 through native cysteines that are responsible for forming interchain disulfide bonds of FAB 1 and FAB 2 , wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, sixth, seventh, eighth, or ninth exemplary embodiment.
- the bispecific antibody compound of Formula I is of the formula:
- FAB 1 and FAB 2 are connected to the pyrrolidine-dione through native cysteine residues.
- the bispecific antibody compound of Formula I is of the formula:
- FAB 1 and FAB 2 are connected to the pyrrolidine-dione through native cysteine residues.
- FAB 1 and FAB 2 in any one of the bispecific antibody compounds described herein are each independently selected from a Fab fragment comprising a CD3 binding region and a Fab fragment comprising a PSMA binding region.
- bispecific antibody compounds described herein can be readily prepared according to the following reaction schemes and examples, or modifications thereof, using readily available starting materials, reagents and conventional synthesis procedures.
- Bispecific antibody compounds of Formula I may be prepared according to the general reaction scheme shown in FIG. 1 .
- the Fc fragment along with hinge region of full length FAB is removed via digestion, as described, for example, in FIG. 1 (such as papain digestion).
- FAB 1 and FAB 2 are then selectively reduced to form Fab fragments.
- Functional moieties, X or Y (where one X or Y is an azide (N 3 ) and the other X or Y is an alkyne) are introduced into each Fab via a cysteine-based conjugation, leading to chemically modified Fab fragments, respectively in FIG. 1 .
- the functional moieties X and Y are preferably introduced via conjugation to cysteine residues within the constant region of each Fab fragment, i.e., the light chain CL region and heavy chain CH1 constant region.
- cysteine residues within the CH1 of the heavy chain and the CL of the light chain are reduced.
- native cysteines that form the interchain disulfide bonds are reduced and used to chemically modify the Fab fragment as described herein.
- the starting antibodies may contain modifications within the heavy and light chain constant regions (CH1 and CL, respectively) where additional cysteine residues are introduced.
- Fab fragments are then linked together through a chemical ligation between X and Y moieties, to form X—Y, which correlates to variable “—X—” in the bispecific antibody compounds of Formula I.
- the azide could be attached to R 1 and the terminal alkyne could be attached to R 2 , where ligation would occur to form the triazolyl. See Scheme 1 below.
- the azide could be attached to R 1 and the alkyne could be attached to R 2 , where ligation would occur to form the triazolyl. See Scheme 2 below.
- the FAB 1 and FAB 2 are each capable of binding two different epitopes on the same or on different antigens. In one embodiment, FAB 1 and FAB 2 bind to two different epitopes on the same antigen. In one embodiment, FAB 1 and FAB 2 bind to two different antigens.
- FAB 1 and FAB 2 are each independently IgG1 or IgG4 isotypes. In one embodiment, FAB 1 and FAB 2 are each IgG1 isotypes. In one embodiment, FAB 1 and FAB 2 are each IgG4 isotypes. In one embodiment, FAB 1 is an IgG1 isotype and FAB 2 is an IgG4 isotype. In another embodiment, FAB 2 is an IgG1 isotype and FAB 1 is an IgG4 isotype. In one embodiment, the bispecific antibody compounds described herein bind to a target molecule selected from the group consisting of CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl.
- the bispecific antibody compounds described herein bind to a pair of antigens selected from the following group: CD3-PSMA, CD3-CD19, CD3-CXCR5, CD3-CD33, PDL1-VEGFR2, PDL1-cMet, PDL1-Axl.
- the bispecific antibody compounds described herein bind to two epitopes on CD3 or binds to CD3 and another target molecule.
- the bispecific antibody compounds described herein comprise a CD3 binding region corresponding to the CD3 binding portion, e.g., a Fab fragment, of BLINCYTO (Blinatumomab; Amgen).
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies HuM291, UCHT1, or OKT3).
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies comprising a heavy chain region comprising the amino acid sequence QVQLVQSGAEVKKPGASVKVSCKASGYTFISYTMHWVRQAPGQGLEWMGYINPRSGY THYNQKLKDKATLTADKSASTAYMELSSLRSEDTAVYYCARSAYYDYDGFAYWGQGT LVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP AVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 5); or an heavy chain comprising SEQ ID NO: 5 and light chain region comprising the amino acid sequence of DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQKPGKAPKRLIYDTSKLASGVPSR FSGSGSGTDFTLTISSLQPEDFATYY
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies comprising a heavy chain variable region (HCVR) comprising the amino acid sequence QVQLVQSGAEVKKPGASVKVSCKASGYTFISYTMHWVRQAPGQGLEWMGYINPRSGY THYNQKLKDKATLTADKSASTAYMELSSLRSEDTAVYYCARSAYYDYDGFAYWGQGT LVTVSS (SEQ ID NO: 9); or an heavy chain comprising SEQ ID NO: 9 and light chain region comprising the amino acid sequence of DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQKPGKAPKRLIYDTSKLASGVPSR FSGSGTDFTLTISSLQPEDFATYYCQQWSSNPPTFGGGTKVEIKRTVAAPSVFIFPPSDE QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGSQESVTEQDSKDSTYSLSSTL
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies comprising a heavy chain region comprising the amino acid sequence EVQLVESGGGLVQPGGSLRLSCAASGYSFTGYTMetNWVRQAPGKGLEWVALINPYKG VSTYNQKFKDRFTISVDKSKNTAYLQMetNSLRAEDTAVYYCARSGYYGDSDWYFDVW GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 7); or a heavy chain region comprising SEQ ID NO: 7 and light chain region comprising the amino acid sequence of DIQMTQSPSSLSASVGDRVTITCRASQDIRNYLNWYQQKPGKAPKLLIYYTSR LESGVPSRFSGSGSGT
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies comprising a heavy chain variable region comprising the amino acid sequence EVQLVESGGGLVQPGGSLRLSCAASGYSFTGYTMetNWVRQAPGKGLEWVALINPYKG VSTYNQKFKDRFTISVDKSKNTAYLQMetNSLRAEDTAVYYCARSGYYGDSDWYFDVW GQGTLVTVSS (SEQ ID NO: 10); or an HCVR comprising SEQ ID NO: 10 and light chain region comprising the amino acid sequence of DIQMTQSPSSLSASVGDRVTITCRASQDIRNYLNWYQQKPGKAPKLLIYYTSRLESGVPS RFSGSGSGTDYTLTISSLQPEDFATYYCQQGNTLPWTFGQGTKVEIKRTVAAPSVFIFPPS DEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVT
- the bispecific antibody compounds described herein bind to two epitopes on prostate specific membrane antigen protein (PSMA) or binds to PSMA and another target molecule.
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to antibodies 3D8, 4D4, and/or 3E11, which are described in US 2007/0031438, the contents of which are incorporated by reference herein.
- the bispecific antibody compounds described herein bind to two epitopes on CD19 or binds to CD19 and another target molecule.
- the bispecific antibody compounds described herein comprise a CD19 binding region corresponding to the CD3 binding portion, e.g., a Fab fragment, of BLINCYTO (Blinatumomab; Amgen).
- the bispecific antibody compounds described herein bind to two epitopes on CXCR5 or binds to CXCR5 and another target molecule.
- the bispecific antibody compounds described herein comprises a Fab fragment(s) corresponding to anti-CXCR5 antibodies which are described in U.S. patent application Ser. No. 14/825,144 filed on Aug. 12, 2015, the contents of which are incorporated by reference herein.
- the bispecific antibody compounds described herein bind to two epitopes on CD33 or binds to CD33 and another target molecule.
- the bispecific antibody compounds described herein bind to two epitopes on PDL1 or binds to PDL1 and another target molecule.
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-PDL-1 antibodies which are described in US 2013/0323249 and WO 2013/181634, the contents of which are each incorporated by reference herein.
- the bispecific antibody compounds described herein comprise amino acid sequences corresponding to the Fab fragment of anti-PDL-1 antibody H6B1L, as described in US 2013/0323249, the contents of which are incorporated by reference herein.
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-PDL-1 antibodies comprising a heavy chain variable region comprising the amino acid sequence of QMQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAYSWVRQAPGQGLEWMGGIIPSFGTA NYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARGPIVATITPLDYWGQGTLV TVSS (SEQ ID NO: 1), or a HCVR comprising the CDR sequences described in SEQ ID NO: 1, and a light chain variable region comprising the amino acid sequence of SYELMQPPSVSVAPGKTATIACGGENIGRKTVHWYQQKPGQAPVLVIYYDSDRPSGIPE RFSGSNSGNTATLTISRVEAGDEADYYCLVWDSSSDHRIFGGGTKLTVL (SEQ ID NO: 2), or a LCVR comprising the CDR sequences described in SEQ ID NO: 2.
- the bispecific antibody compounds described herein binds to two epitopes on VEGFR2 or binds to VEGFR2 and another target molecule.
- the bispecific antibody compounds described herein comprises a Fab fragment corresponding to anti-VEGFR2 antibodies which are described in US 2014/0294827 and WO 2013/149249, the contents of which are each incorporated by reference herein.
- the bispecific antibody compounds described herein comprise amino acid sequences corresponding to the Fab fragment of anti-VEGFR2 antibody VK-B8, as described in US 2014/0294827, the contents of which are incorporated by reference herein.
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-VEGFR2 antibodies comprising a heavy chain variable region comprising the amino acid sequence of MAQVQLVQSGAEVKKPGSSVKVSCKAYGGTFGSYGVSWVRRAPGQGLEWMGRLIPIF GTRDYAQKFQGRVTLTADESTNTAYMELSSLRSEDTAVYYCARDGDYYGSGSYYGMD VWGQGTLVTVSS (SEQ ID NO: 3), or a HCVR comprising the CDR sequences described in SEQ ID NO: 3, and a light chain variable region comprising the amino acid sequence of ETTLTQSPATLSVSPGERATVSCRASQSLGSNLGWFQQKPGQAPRLLIYGASTRATGIPA RFSGSGSGTEFTLTISSLQSEDFAVYFCQQYNDWPITFGQGTRLEIK (SEQ ID NO: 4), or a LCVR comprising the CDR sequences described in SEQ ID NO: 4.
- the bispecific antibody compounds described herein bind to two epitopes on cMet or binds to cMet and another target molecule.
- the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-cMet antibodies which are described in U.S. patent application Ser. No. 13/924,492 and PCT WO 2013/192594, the contents of which are incorporated by reference herein.
- the bispecific antibody compounds described herein binds to two epitopes on Axl or binds to Axl and another target molecule.
- Fab fragments used in the bispecific antibody compounds described herein may be made using standard recombinant methods known in the art.
- full length antibodies i.e., an antibody comprising a Fab region, a hinge region and an Fc region
- Fab fragments are produced in host cells, which eliminates the need to digest a full length antibody.
- Production methods described herein are applicable to full length antibodies and fragments thereof, including Fab fragments.
- Recombinant antibody production is known in the art.
- the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression.
- DNA encoding the monoclonal antibody is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).
- Many vectors are available. The choice of vector depends in part on the host cell to be used. Generally, preferred host cells are of either prokaryotic or eukaryotic (generally mammalian) origin.
- an antibody is produced using prokaryotic cells. Sequences encoding the polypeptides are inserted into a recombinant vector capable of replicating and expressing heterologous polynucleotides in prokaryotic hosts. Many vectors that are available and known in the art can be used. Selection of an appropriate vector will depend mainly on the size of the nucleic acids to be inserted into the vector and the particular host cell to be transformed with the vector. Each vector contains various components, depending on its function (amplification or expression of heterologous polynucleotide, or both) and its compatibility with the particular host cell in which it resides. The vector components generally include, but are not limited to: an origin of replication, a selection marker gene, a promoter, a ribosome binding site (RBS), a signal sequence, the heterologous nucleic acid insert and a transcription termination sequence.
- RBS ribosome binding site
- Prokaryotic host cells suitable for expressing antibodies include Archaebacteria and Eubacteria, such as Gram-negative or Gram-positive organisms.
- useful bacteria include Escherichia (e.g., E. coli ), Bacilli (e.g., B. subtilis ), Enterobacteria, Pseudomonas species (e.g., P. aeruginosa ), Salmonella typhimurium, Serratia marcescans, Klebsiella, Proteus, Shigella, Rhizobia, Vitreoscilla , or Paracoccus .
- gram-negative cells are used.
- E. coli cells are used as hosts. Examples of E.
- coli strains include strain W3110 (Bachmann, Cellular and Molecular Biology, vol. 2 (Washington, D.C.: American Society for Microbiology, 1987), pp. 1190-1219; ATCC Deposit No. 27,325) and derivatives thereof, including strain 33D3 having genotype W3110 fhuA (tonA) ptr3 lac Iq lacL8 ompT (nmpc-fepE) degP41 kan.sup.R (U.S. Pat. No. 5,639,635).
- Other strains and derivatives thereof such as E. coli 294 (ATCC 31,446), E. coli B, E. coli 1776 (ATCC 31,537) and E.
- coli RV308 (ATCC 31,608) are also suitable. These examples are illustrative rather than limiting. Methods for constructing derivatives of any of the above-mentioned bacteria having defined genotypes are known in the art and described in, for example, Bass et al., Proteins, 8:309-314 (1990). It is generally necessary to select the appropriate bacteria taking into consideration replicability of the replicon in the cells of a bacterium. For example, E. coli, Serratia , or Salmonella species can be suitably used as the host when well-known plasmids such as pBR322, pBR325, pACYC177, or pKN410 are used to supply the replicon.
- plasmids such as pBR322, pBR325, pACYC177, or pKN410 are used to supply the replicon.
- Prokaryotic host cells are transformed with the above-described expression vectors and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. Transformation means introducing DNA into the prokaryotic host so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride is generally used for bacterial cells that contain substantial cell-wall barriers. Another method for transformation employs polyethylene glycol/DMSO. Yet another technique used is electroporation.
- Prokaryotic cells used to produce the bispecific antibody compounds described herein are grown in media known in the art and suitable for culture of the selected host cells.
- suitable media include luria broth (LB) plus necessary nutrient supplements.
- the media also contains a selection agent, chosen based on the construction of the expression vector, to selectively permit growth of prokaryotic cells containing the expression vector. For example, ampicillin is added to media for growth of cells expressing ampicillin resistant gene.
- the expressed antibody proteins described herein are secreted into and recovered from the periplasm of the host cells. Protein recovery typically involves disrupting the microorganism, generally by such means as osmotic shock, sonication or lysis. Once cells are disrupted, cell debris or whole cells may be removed by centrifugation or filtration. The proteins may be further purified, for example, by affinity resin chromatography. Alternatively, proteins can be transported into the culture media and isolated therein. Cells may be removed from the culture and the culture supernatant being filtered and concentrated for further purification of the proteins produced. The expressed polypeptides can be further isolated and identified using commonly known methods such as polyacrylamide gel electrophoresis (PAGE) and Western blot assay.
- PAGE polyacrylamide gel electrophoresis
- antibody production is conducted in large quantity by a fermentation process.
- Various large-scale fed-batch fermentation procedures are available for production of recombinant proteins.
- Large-scale fermentations have at least 1000 liters of capacity, preferably about 1,000 to 100,000 liters of capacity. These fermentors use agitator impellers to distribute oxygen and nutrients, especially glucose (the preferred carbon/energy source).
- Small scale fermentation refers generally to fermentation in a fermentor that is no more than approximately 100 liters in volumetric capacity, and can range from about 1 liter to about 100 liters.
- Antibodies may also be produced in eukaryotic host cells.
- the vector components are known in the art and generally include, but are not limited to, one or more of the following, a signal sequence, an origin of replication, one or more marker genes, and enhancer element, a promoter, and a transcription termination sequence.
- Eukaryotic host cells are transformed with expression or cloning vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
- Suitable host cells for cloning or expressing the DNA in the vectors include higher eukaryote cells described herein, including vertebrate host cells. Propagation of vertebrate cells in culture (tissue culture) has become a routine procedure.
- Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod.
- monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
- the host cells used to produce the antibodies described herein may be cultured in a variety of media.
- Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells.
- 5,122,469; WO 90/03430; WO 87/00195; or U.S. Pat. No. Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCINTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
- the culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
- the antibody produced herein is further purified to obtain preparations that are substantially homogeneous for further assays and uses.
- Standard protein purification methods known in the art can be employed. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion-exchange columns, ethanol precipitation, reverse phase HPLC, chromatography on silica or on a cation-exchange resin such as DEAE, chromatofocusing, SDS-PAGE, ammonium sulfate precipitation, and gel filtration using, for example, Sephadex G-75.
- Protein A may be used to purify a full length antibody prior to digestion to obtain Fab fragments used in the bispecific antibody compounds of Formula I.
- the suitability of Protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody.
- Protein A can be used to purify antibodies that are based on human immunoglobulins containing 1, 2, or 4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human 3 (Guss et al., EMBO J. 5:15671575 (1986)).
- Protein A immobilized on a solid phase is used for immunoaffinity purification of the full length antibody products.
- Protein A is a 41 kD cell wall protein from Staphylococcus aureas which binds with a high affinity to the Fc region of antibodies. Lindmark et al (1983) J. Immunol. Meth. 62:1-13.
- the solid phase to which Protein A is immobilized is preferably a column comprising a glass or silica surface, more preferably a controlled pore glass column or a silicic acid column. In some applications, the column has been coated with a reagent, such as glycerol, in an attempt to prevent nonspecific adherence of contaminants. The solid phase is then washed to remove contaminants non-specifically bound to the solid phase. Finally the antibody of interest is recovered from the solid phase by elution.
- the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli . Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min.
- sodium acetate pH 3.5
- EDTA EDTA
- PMSF phenylmethylsulfonylfluoride
- Cell debris can be removed by centrifugation.
- supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
- a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
- Antibodies may be identified using any number of techniques known in the art.
- the antibody is a monoclonal antibody.
- Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations and/or post-translational modifications (e.g., isomerizations, amidations) that may be present in minor amounts.
- the monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
- Monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567, and as described above.
- DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
- the hybridoma cells serve as a preferred source of such DNA.
- the DNA may be placed into expression vectors, which are then transfected into host cells such as E.
- antibodies can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries.
- the antibodies described herein may be humanized or human antibodies.
- Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
- Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementarity determining region (CDR) (HVR as used herein) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity.
- CDR complementarity determining region
- Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues.
- Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domain, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
- the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- Recombinant human antibodies can be generated using methods known in the art.
- transgenic animals e.g., mice
- transgenic animals e.g., mice
- JO gene in chimeric and germ-line mutant mice
- transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci.
- phage display technology can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. McCafferty et al., Nature 348:552-553 (1990); Hoogenboom and Winter, J. Mol. Biol. 227: 381 (1991).
- V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle.
- the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties.
- the phage mimics some of the properties of the B-cell.
- Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Curr. Opin Struct. Biol. 3:564-571 (1993).
- V-gene segments can be used for phage display.
- human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly and antibody repertoire.
- bispecific antibody compounds are provided in the EXEMPLIFICATION. Pharmaceutically acceptable salts as well as the neutral forms of these bispecific antibody compounds are included herein.
- the present disclosure provides a method of treating a patient (e.g., a human) with a disorder mediated by a therapeutic target, e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl, comprising the step of administering to the patient an effective amount of the bispecific antibody compound as described herein, or a composition thereof.
- a therapeutic target e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl
- the present disclosure provides a method of treating a subject (e.g., a human) with a disorder mediated by a therapeutic target (target molecule(s)), e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl, using a composition comprising a bispecific antibody compound described herein and a pharmaceutically acceptable carrier.
- a composition comprising a bispecific antibody compound described herein and a pharmaceutically acceptable carrier.
- the amount of bispecific antibody compound described herein in a provided composition is such that it is effective as an inhibitor or agonist in a biological sample or in a subject.
- a provided composition is formulated for administration to a subject in need of such composition.
- a provided composition is formulated for parenteral or intravenous administration to a subject.
- pharmaceutically acceptable carrier refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the antibody with which it is formulated.
- Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this disclosure include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol
- compositions described herein may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
- parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
- sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent.
- acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid are used in the preparation of injectables.
- Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, the judgment of the treating physician, and the severity of the particular disease being treated.
- the amount of a provided bispecific antibody compound in the composition will also depend upon the particular compound in the composition.
- Bispecific antibody compounds and compositions described herein are generally useful for modulating molecules to which the antibodies are specific.
- molecules which may be bound by the bispecific antibody compounds described herein include, but are not limited to, CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl, including combinations thereof.
- the bispecific antibody compounds described herein bind a pair of antigens selected from the following combinations: CD3-PSMA, CD3-CD19, CD3-CXCR5, CD3-CD33, PDL1-VEGFR2, PDL1-cMet, and PDL1-Axl.
- the present disclosure provides a method of treating disorders associated with detrimental activity of CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, or Axl, comprising administering a provided compound or composition.
- the bispecific antibody compounds described herein bind an antigen or combination of antigens selected from the following: CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl, may be used to treat a subject having a disorder selected from non-Hodgkin lymphoma (NHL), prostate cancer, B-cell lymphoma, acute myeloid leukemia (AML), colon cancer, breast cancer.
- NHL non-Hodgkin lymphoma
- AML acute myeloid leukemia
- Modulation of a target molecule(s), e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and/or Axl, of the bispecific antibody compound described herein means that a change or alternation in the activity of the target molecule(s), e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and/or Axl, has occurred from the administration of one or more of the bispecific antibody compounds described herein.
- Modulation may be an upregulation (increase) or a downregulation (decrease) in the magnitude of the activity or function of the target molecule(s), e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl.
- exemplary activities and functions include e.g., binding characteristics, enzymatic activity, cell receptor activation, transcriptional activity, and signal transduction.
- Diseases and conditions treatable according to the methods using the bispecific antibody compounds described herein include, but are not limited to, treating or ameliorating cancer or another proliferative disorder by administration of an effective amount of a bispecific antibody compound described herein to a mammal, e.g., a human in need of such treatment.
- a mammal e.g., a human in need of such treatment.
- the disease and conditions to be treated by the methods herein is cancer.
- cancers treated using the compounds and methods described herein include, but are not limited to, adrenal cancer, acinic cell carcinoma, acoustic neuroma, acral lentigious melanoma, acrospiroma, acute eosinophilic leukemia, acute erythroid leukemia, acute lymphoblastic leukemia, acute megakaryoblastic leukemia, acute monocytic leukemia, actue promyelocytic leukemia, adenocarcinoma, adenoid cystic carcinoma, adenoma, adenomatoid odontogenic tumor, adenosquamous carcinoma, adipose tissue neoplasm, adrenocortical carcinoma, adult T-cell leukemia/lymphoma, aggressive NK-cell leukemia, AIDS-related lymphoma, alveolar rhabdomyosarcoma, alveolar soft part sarcoma, ameloblastic a
- the diseases and conditions treatable by the according to the methods using the bispecific antibody compounds described herein are selected from non-Hodgkin lymphoma (NHL), prostate cancer, B-cell lymphoma, acite myeloid leukemia (AML), colon cancer, and breast cancer.
- the bispecific antibody compounds described herein are used as bispecific T cell engagers, and are able to exert action on its antigen selectively and direct the human immune system to act against a tumor cell.
- a human patient is treated with a bispecific antibody compounds described herein and a pharmaceutically acceptable carrier, adjuvant, or vehicle, wherein said bispecific antibody compound is present in an amount to treat or ameliorate one or more of the diseases and conditions recited above.
- the diseases and conditions treated or ameliorated by a bispecific antibody compound described herein include, any one of those described above.
- the diseases and conditions are selected from non-Hodgkin lymphoma (NHL), prostate cancer, B-cell lymphoma, acite myeloid leukemia (AML), colon cancer, breast cancer, in the patient.
- bispecific antibody compounds are prepared according to the following general procedures. It will be appreciated that, although the general methods depict the synthesis of certain compounds herein, the following general methods, and other methods known to one of ordinary skill in the art, can be applied to all bispecific antibody compounds and subclasses and species of each of these bispecific antibody compounds, as described herein.
- Antibodies were buffered exchange into 20 mM Sodium Phosphate (JT Baker 3827-01) and 10 mM EDTA (Aldrich E26290) and (1.0 mg) was added to 80 ⁇ L Papain Slurry (Thermo Scientific Pierce 20341) with 20 mM Cysteine (Sigma C7352) and incubated in 37° C. for 6.5 h in head to head spinner. Fc fragment and undigested IgG was then removed from the Fab using protein A purification via ⁇ KTA pure chromatography system.
- proteolytic digestion of IgG1 allowed generation of F(ab) proteins.
- SpeB cysteine protease FabULOUS (Genovis) was used to digest the hinge region of IgG1 to produce F(ab) and Fc fragments.
- a digestion procedure was adopted using 0.1-0.2 U/ ⁇ g overnight ( ⁇ 16 h) at 37° C. in Dulbecco's phosphate-buffered saline (DPBS) with 1 mM dithiothreitol (DTT). Samples were then either buffer exchanged to remove DTT or diluted to decrease DTT concentration prior to F(ab) purification.
- DPBS Dulbecco's phosphate-buffered saline
- DTT dithiothreitol
- Protein A FT contain the F(ab) fragment while the Fc and any undigested IgG1 was retained in the column.
- digestion was performed in a buffer containing 20 mM imidazole, 0.5 M NaCl, and 20 mM sodium phosphate (pH 7.4) with 0.1 mM DTT using 0.1-0.2 U/ ⁇ g overnight ( ⁇ 16 h) at 37° C. enabling tandem HisTrap FF (GE) and HiTrap MabSelect SuRe (GE) purification on an ⁇ KTA pure chromatography system. F(ab) purity was assessed by SDS-PAGE analysis and HIC HPLC. See FIG. 5 and FIG. 6 .
- SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
- All samples (2.5 ⁇ g) included NuPAGE LDS Sample Buffer and were heated to 95° C. for 5 min prior to loading. Reduced samples also contained NuPAGE Sample Reducing Agent. Mark12 Unstained Standard (10 ⁇ L) was used for estimation of molecular weights. After gel electrophoresis at 125 V for 1.5 h, gels were fixed for 5 min and stained with SYPRO Ruby Protein Gel Stain following the recommended procedures. Imaging was performed with a Bio-Rad ChemiDoc MP System and analyzed by Image Lab Software.
- the 2,3-dibromomaleimide (DBM) intermediates comprising an azide were prepared in situ by reacting the appropriate DBM-PEG-DBCO linker (e.g., for ⁇ PSMA/ ⁇ CD3 bispecific antibody compounds described below, DBM-PEG4-DBCO and DBM-PEG8-DBCO were used) with 10-15 equivalents of the appropriate azido-PEG-azide (e.g., for ⁇ PSMA/ ⁇ CD3 bispecific antibody compounds described below, azido-PEG2-azide was used) for 1 h at room temperature (RT).
- DBM-PEG-DBCO linker e.g., for ⁇ PSMA/ ⁇ CD3 bispecific antibody compounds described below, DBM-PEG4-DBCO and DBM-PEG8-DBCO were used
- 10-15 equivalents of the appropriate azido-PEG-azide e.g., for ⁇ PSMA/ ⁇ CD3 bispecific antibody compounds described below, azido-PEG2-azide was
- F(ab) proteins e.g., ⁇ PSMA, ⁇ CD3
- F(ab) proteins e.g., ⁇ PSMA, ⁇ CD3
- DTT for 1 hour at RT followed by conjugation with 10 or 15 equivalents DBM linker, respectively, and 7.5% DMSO co-solvent overnight at RT.
- Excess linker was removed by centrifugal filtration.
- Heavy chain-light chain disulfide bridging was determined to be ⁇ 85% efficient by SDS-PAGE and HIC HPLC analysis. Cyclization was initiated by mixing the FAB 1 -X intermediate and the FAB 2 -Y intermediate at 5 mg/mL for 24-48 h at either room temperature or 37° C.
- a bispecific antibody compound of Formula I, where FAB 1 is anti-PDL1 and FAB 2 is anti-VEGFR2 was prepared as follows.
- the FAB 1 (anti-PDL1 antibody) comprised variable regions having amino acid sequences corresponding to SEQ ID Nos: 1 and 2.
- the FAB 2 (anti-VEGFR2 antibody) comprised variable regions having amino acid sequences corresponding to SEQ ID Nos: 3 and 4.
- each antibody (1-10 mg) was added to separate 15 mL filter centrifuge tubes (Millipore, UFC903024) and an appropriate volume of a 50 mM sodium phosphate, 150 mM NaCl, 5 mM EDTA, pH 7.7 buffer was added to the 50 mL mark on the tube.
- the tubes were centrifuged at 3,000 RPM for 20 min at 22° C.
- the antibodies were then transferred into separate 1.5 mL plastic vials and concentrations were confirmed using Nanodrop (Fisher, ND-2000 UV-Vis Spectrophotometer). The final antibody concentrations were up to 5 mg/mL.
- anti-PDL1 was used as FAB 1 and anti-VEGFR2 was used as FAB 2 .
- TCEP (tris(2-carboxyethyl)phosphine)
- pH 8.0 PBS (1 mM EDTA) buffer
- TCEP was separated from the reduced FAB 1 using a NAP-5 (GE17-0853-02) desalting column.
- the conjugation reaction between Dibromo-DBCO and FAB 1 was conducted for 1 h at RT under mixing by carousel. This step was repeated two more times.
- the final concentration for the Dibromo-DBCO was 3 equivalents of FAB 1 .
- the Dibromo-azide (1 equivalents) in DMSO was added to the FAB 1 sample.
- Final volume of DMSO in antibody sample is about 5-9% (v/v).
- the conjugation reaction was conducted for 1 h at RT under mixing by carousel, this step was repeated for two more times with final concentration for the Dibromo-DBCO being 3 equivalents.
- each sample was placed into a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and added an appropriate volume of 1 ⁇ DPBS plus 10% DMSO (Corning, 21-031-CM, no calcium or magnesium) buffer to the 50 mL mark on the tube.
- the samples were centrifuged at 3,000 RPM for 20 min at 22° C.
- the wash step was repeated once more.
- an appropriate volume of 1 ⁇ DPBS (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube.
- the samples were centrifuged at 3,000 RPM for 20 min at 22° C. After wash, the samples was transferred into separate 1.5 mL plastic vials and placed in refrigerator (5° C.) or was used for click step.
- the final concentration for the Dibromo-DBCO was 3 equivalent of FAB 1 .
- the sample was placed into a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and added an appropriate volume of 1 ⁇ DPBS plus 10% DMSO (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube.
- the sample was centrifuged at 3,000 RPM for 20 minutes at 22° C. The wash step was repeated once more. Then an appropriate volume of 1 ⁇ DPBS (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube.
- the sample were centrifuged at 3,000 RPM for 20 minutes at 22° C. After wash, the sample was transferred into separate 1.5 mL plastic vials and placed in refrigerator (5° C.) to afford 103.
- the Dibromo-azide 102 (1 equivalents) in DMSO was added to the FAB 2 sample.
- the conjugation reaction was conducted for 1 hour at room temperature under mixing by carousel. This step was repeated two more times.
- the final concentration for the Dibromo-DBCO was 3 equivalent of FAB 2 .
- the sample was placed into a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and an appropriate volume of 1 ⁇ DPBS plus 10% DMSO (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube.
- the sample was centrifuged at 3,000 RPM for 20 minutes at 22° C.
- the wash step was repeated once more.
- an appropriate volume of 1 ⁇ DPBS (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube.
- the sample was centrifuged at 3,000 RPM for 20 minutes at 22° C. After wash, the sample was transferred into separate 1.5 mL plastic vials and placed in refrigerator (5° C.) to afford 104.
- Bispecific antibody compounds of Formula I were purified via Size-exclusion chromatography (SEC) using an Agilent 1200 HPLC using a TSK gel SuperSW3000 column (4.6 mm ID ⁇ 30 cm, 4 ⁇ m). Buffer was 0.2 M potassium phosphate, 0.25 M KCl, pH 6.2.
- ⁇ PSMA-PEG4/ ⁇ CD3-PEG4 (106), ⁇ PSMA-PEG4/ ⁇ CD3-PEG8 (107), ⁇ PSMA-PEG8/ ⁇ CD3-PEG4 (108) and ⁇ PSMA-PEG8/ ⁇ CD3-PEG8 (109) were synthesized according to the methods described above, and using the appropriate starting materials. See also FIG. 7 for a general representation of the approach.
- the azide linker was prepared in situ by reacting DBM-PEG4-DBCO and DBM-PEG8-DBCO linker with 10-15 equivalents azido-PEG2-azide for 1 h at room temperature (RT).
- F(ab) proteins (5 mg/mL) were typically reduced using 5 or 10 equivalents of DTT for 1 h at RT followed by conjugation with 10 or 15 equivalents DBM linker, respectively, and 7.5% DMSO co-solvent overnight at RT. Excess linker was removed by centrifugal filtration. Heavy chain-light chain disulfide bridging was determined to be ⁇ 85% efficient by SDS-PAGE and HIC HPLC analysis. Cyclization was initiated by mixing the ⁇ PSMA F(ab) intermediate and the ⁇ CD3 F(ab) intermediate at 5 mg/mL for 24-48 h at either room temperature or 37° C. Purity of the antibody and intermediates prior to cyclization were assessed by SDS-PAGE analysis and HIC HPLC.
- Firefly luciferase transduced prostate cancer target cell lines were used for cytotoxicity assays, LNCaP (ATCC® CRL-1740TM), PSMA+(cultured in RPMI-1640+10% non-heat-inactivated FBS+0.5 ⁇ g/mL Puromycin) and PC-3 (ATCC® CRL-1435TM), PSMA-(cultured in RPMI-1640+10% heat-inactivated FBS+1.0 ⁇ g/mL Puromycin).
- Cells were harvested with TrypLE (ThermoFisher Scientific) then resuspended in fresh RPMI-1640+10% heat-inactivated FBS and plated at 4,000 cells/well in 100 ⁇ L. After overnight incubation at 37° C.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Gynecology & Obstetrics (AREA)
- Reproductive Health (AREA)
- Pregnancy & Childbirth (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
- This application is a divisional application of U.S. patent application Ser. No. 16/388,760, filed Apr. 18, 2019, which is a continuation of U.S. patent application Ser. No. 15/353,979, filed Nov. 17, 2016, now issued as U.S. Pat. No. 10,301,395, and which claims the benefit of priority to U.S. Provisional Application No. 62/257,044, filed Nov. 18, 2015, each of which is incorporated herein by reference in its entirety.
- The instant application contains a Sequence Listing which has been submitted electronically in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 18, 2019, is named S103014 1040USC1 SL.txt and is 15,362 bytes in size.
- Bispecific antibodies are antibodies or antibody-like molecules having two different binding specificities. Because of this unique feature, bispecific antibodies not only connect therapeutics (e.g., T cells and drugs) with targets (e.g., tumors), but they can also block separate pathogenic mediators. Clinical successes and impressive treatment profiles against cancer, autoimmune diseases, and inflammatory diseases have been shown. See e.g., MAbs. 2009 November-December; 1(6): 539-547. Given their expanding therapeutic potential, the need for identifying new bispecific antibodies remains.
- It has now been found that bispecific antibody compounds having the general Formula I:
- or a pharmaceutically acceptable salt thereof, and compositions comprising these bispecific antibody compounds, wherein, FAB1, FAB2, and —X— are as defined herein, are effective therapeutics (e.g., in the treatment of cancer. See e.g.,
FIGS. 9-12 . - In addition, the bispecific antibody compounds and compositions described herein can be manufactured in commercially relevant yields and quantities, utilize digestions on off-the-shelf antibodies or cells (e.g., CHO cells), undergo facile conjugation processes, and elicit the exclusive formation of heterodimers (with a high bispecific antibody assembly yield). These processes mitigate conventional requirements for extensive protein engineering of each antibody, complex genetic techniques, and laborious biochemical processing
-
FIG. 1 provides a schematic illustration of the generation of a bispecific antibody compound as described herein. -
FIG. 2 illustrates an SDS-PAGE gel analysis of intermediates involved in the synthesis of an exemplary bispecific antibody. -
FIG. 3 illustrates a Hydrophobic Interaction Chromatography (HIC) analysis ofbispecific antibody compound 105. -
FIG. 4 illustrates simultaneous binding ofbispecific antibody compound 105 to two antigens on Octet Red. -
FIG. 5 illustrates the SDS-PAGE analysis following digestion and purification from full length IgG1 antibody. -
FIG. 6 illustrates a Hydrophobic Interaction Chromatography (HIC) analysis of PSMA F(ab) and CD3 F(ab) following digestion and purification from full length PSMA IgG1 and full length CD3 IgG1. -
FIG. 7 shows a general synthetic scheme for the formation of PSMA/CD3bispecific antibody compounds -
FIG. 8 shows the HIC analysis of aPSMA F(ab) and intermediates aPSMA F(ab)-PEG4-azide and aPSMA F(ab)-PEG8-azide prior to cyclization. -
FIG. 9 shows the HIC analysis of aCD3 F(ab) and intermediates αCD3 F(ab)-PEG4-DBCO and αCD3 F(ab)-PEG8-DBCO prior to cyclization. -
FIG. 10 shows the SDS-PAGE analysis of αPSMA/αCD3bispecific antibody compounds -
FIG. 11 shows % killing vs concentration ofbispecific antibody compound 108 in LnCaP and PC3 Cells. -
FIG. 12 shows % killing vs concentration ofbispecific antibody compound 109 in LnCaP and PC3 Cells. - Provided herein are bispecific antibody compounds having the Formula I:
- wherein, FAB1 represents a first Fab fragment; FAB2 represents a second Fab fragment; and —X— represents an optionally substituted triazolyl covalently linking FAB1 and FAB2 together.
- The term “antibody”, as used herein, refers to any immunoglobulin (Ig) molecule comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains, or any functional fragment (e.g., a Fab fragment), mutant, variant, or derivation thereof (e.g., a bispecific antibody compound of Formula I). Such mutant, variant, or derivative antibody formats are known in the art. In a full-length antibody, each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g.,
IgG 1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass. In some embodiments, the antibody is a full-length antibody. In some embodiments, the antibody is a murine antibody. In some embodiments, the antibody is a human antibody. In some embodiments, the antibody is a humanized antibody. In other embodiments, the antibody is a chimeric antibody. Chimeric and humanized antibodies may be prepared by methods well known to those of skill in the art including CDR grafting approaches (see, e.g., U.S. Pat. Nos. 5,843,708; 6,180,370; 5,693,762; 5,585,089; and 5,530,101), chain shuffling strategies (see, e.g., U.S. Pat. No. 5,565,332; Rader et al. (1998) PROC . NAT 'L. ACAD . Sci . USA 95: 8910-8915), molecular modeling strategies (U.S. Pat. No. 5,639,641)). In one embodiment, the antibodies described herein (e.g., FAB1 and FAB2) do not comprise a hinge region. - The term “bispecific antibody” refers to any immunoglobulin (Ig) molecule comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains, or any functional fragment (e.g., a Fab fragment), mutant, variant, or derivation thereof (e.g., a bispecific antibody compound of Formula I), which can bind to two different epitopes. In one embodiment, the bispecific antibody binds to two different epitopes on the same antigen. In one embodiment, the bispecific antibody binds to epitopes on two different antigens. In one embodiment, the bispecific antibody described herein is of the Formula I, wherein FAB1 and FAB2 do not comprise a hinge region.
- The term “antigen-binding portion” of an antibody (or simply “antibody portion”), as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen. It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Such antibody embodiments may also be bispecific, dual specific, or multi-specific formats; specifically binding to two or more different antigens. Examples of binding fragments encompassed within the term “antigen-binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) an Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) and a dAb fragment (Ward et al. (1989) N
ATURE 341: 544-546; and Winter et al., PCT Publication No. WO 90/05144 A1). - Various techniques are known in the art for the production of antibody fragments. Antibody fragments may be derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., J Biochem Biophys. Method. 24:107-117 (1992); and Brennan et al., Science 229:81 (1985)). Antibody fragments may also be produced directly by recombinant host cells. For example, Fab, Fv and scFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed below. Such fragments may be conjugated as described herein.
- The terms “Fab” or “FAB” or “Fab fragment”, as used interchangeably herein, refers to an antibody fragment which is a monovalent fragment having VL, VH, CL and CH1 domains. Unless otherwise specified, a Fab does not contain an Fc region or a hinge region linking the CH1 and CH2 domains of the heavy chain. A F(ab)2 refers to the bispecific antibody compound of Formula I. In one aspect, the terms “FAB1” or “FAB2” refer to a Fab fragment of an antibody. In one aspect, FAB1 and FAB2 do not comprise a hinge region.
- The term “human antibody”, as used herein, refers to a recombinant antibody having one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all of the variable and constant domains are derived from human immunoglobulin sequences (a fully human antibody). A human antibody may be prepared in a variety of ways, examples of which are described below, including through the immunization with an antigen of interest of a mouse that is genetically modified to express antibodies derived from human heavy and/or light chain-encoding genes.
- The term “humanized antibody” refers to an antibody comprising at least one chain comprising variable region framework residues substantially from a human antibody chain (referred to as the acceptor immunoglobulin or antibody) and at least one CDR substantially from a non-human, e.g., a mouse, antibody, (referred to as the donor immunoglobulin or antibody). See, methods of making described in Queen et al., Proc. Natl. Acad. Sci. USA 86:10029 10033 (1989), U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,761, WO 90/07861, and U.S. Pat. No. 5,225,539, each of which is incorporated by reference herein. The constant region(s), if present, can also be substantially or entirely from a human immunoglobulin. Methods of making humanized antibodies are known in the art. See, e.g., U.S. Pat. No. 7,256,273, incorporated by reference herein. In one embodiment, certain amino acids in the framework and constant domains of the heavy and/or light chains of a non-human species antibody are mutated to produce the humanized antibody. Further examples of how to make humanized antibodies may be found in U.S. Pat. Nos. 6,054,297; 5,886,152; and 5,877,293, each of which is incorporated by reference herein.
- An “epitope”, as used herein, is the portion of a molecule that is bound by an antibody. In one embodiment, an epitope can comprise non-contiguous portions of the molecule (e.g., in a polypeptide, amino acid residues that are not contiguous in the polypeptide's primary sequence but that, in the context of the polypeptide's tertiary and quaternary structure, are near enough to each other to be bound by an antigen binding protein).
- The term “isolated” refers to a molecule that is identified and separated from at least one contaminant molecule with which it is ordinarily associated in the natural source of the molecule. Preferably, the isolated molecule is free of association with all components with which it is naturally associated. In one aspect, the antibodies described are isolated.
- As used herein, “substituted triazolyl” refers to a triazoyl group that is substituted with one or more groups that do not substantially alter conditions which allow for the production, detection, and, in certain embodiments, the recovery, purification, and use for one or more of the bispecific antibody compounds disclosed herein The point of attachment can be on any substitutable position and, include, e.g., 1,2,3-triazolyl (e.g., substituted 1,4; 1,5; 4,5; and 1,4,5) and 1,2,4-triazolyl (e.g., substituted 3,4; 3,5; 4,5; and 3,4,5).
- Oxo refers to the functional group “═O” (a substituent oxygen atom connected to another atom by a double bond).
- The term “alkyl” means saturated straight-chain or branched monovalent hydrocarbon radical. As used herein a “(C2-C20)alkyl” group is means a radical having from 2 to 20 carbon atoms in a linear or branched arrangement. Where defined, alkyl groups may be interrupted by one or more heteroatoms selected from O, N, and S.
- The term “alkyne” refers to an an unsaturated hydrocarbon containing at least one carbon-carbon triple bond between two carbon atoms. Terminal alkyne means that the carbon-carbon triple bond between two carbon atoms is at the end of the carbon chain e.g., as in where there is at least one hydrogen atom bonded to a triply bonded carbon atom (e.g., pent-1-yne).
- The term “aryl” refers to an aromatic monocyclic or bicyclic carbon ring system having, unless otherwise specified, a total of 6 to 14 ring members. The term “aryl” may be used interchangeably with the term “aryl ring”, “aryl group”, “aryl moiety,” or “aryl radical”. Also included within the scope of the term “aryl”, as it is used herein, is a group in which an aromatic carbon ring is fused to one or more carbocyclyl rings, e.g., tetrahydronaphthalenyl. In certain embodiments of the present disclosure, “aryl” refers to an aromatic ring system which includes, but is not limited to, phenyl (abbreviated as “Ph”), naphthyl and the like. It will be understood that when specified, optional substituents on an aryl group (e.g., in the case of an optionally substituted aryl or aryl which is optionally substituted) may be present on any substitutable position, i.e., any ring carbon substituted with hydrogen.
- The term “heteroaryl” used alone or as part of a larger moiety as in “heteroarylalkyl”, “heteroarylalkoxy”, or “heteroarylaminoalkyl”, refers to a 5-10-membered aromatic radical containing 1-4 heteroatoms selected from N, quaternary ammonium cation, O, and S, and includes, for example, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl. The term “heteroaryl” may be used interchangeably with the terms “heteroaryl ring”, “heteroaryl group”, or “heteroaromatic”. Nonlimiting examples include indolyl, indazolyl, benzimidazolyl, benzthiazolyl, pyrrolopyridinyl, quinolyl, quinazolinyl, and quinoxalinyl. It will be understood that when specified, optional substituents on a heteroaryl group may be present on any substitutable position (carbon and nitrogen).
- The term “carbocyclyl” as used herein, means a monocyclic, bicyclic (e.g., a bridged or spiro bicyclic ring), polycyclic (e.g., tricyclic or more), or fused hydrocarbon ring system that is completely saturated or that contains one or more units of partial unsaturation, but where there is no aromatic ring. Cycloalkyl is a completely saturated carbocycle. Monocyclic carbocyclyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, and cyclooctyl. Bridged bicyclic carbocyclyl groups include, without limitation, bicyclo[3.2.1]octane, bicyclo[2.2.1]heptane, bicyclo[3.1.0]hexane, and the like. Spiro bicyclic carbocyclyl groups include, e.g., spiro[3.6]decane, spiro[4.5]decane, and the like. Fused carbocyclyl rings include, e.g., decahydronaphthalene, octahydropentalene, and the like. Polycyclic carbocyclyl rings include e.g., bicyclo[6.1.0]nonane and 1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazole. It will be understood that when specified, optional substituents on a carbocyclyl (e.g., in the case of an optionally substituted carbocyclyl or carbocyclyl which is substituted) may be present on any substitutable position and, include, e.g., the position at which the carbocyclyl group is attached.
- The term “heterocyclyl” means a 3-12 membered (e.g., a 4-, 5-, 6- 7- and 8-membered) saturated or partially unsaturated heterocyclic ring containing 1 to 4 heteroatoms independently selected from N, O, and S. It can be mononcyclic, bicyclic (e.g., a bridged, fused, or Spiro bicyclic ring), or polycyclic (e.g., tricyclic or more). The terms “heterocycle”, “heterocyclyl”, “heterocyclyl ring”, “heterocyclic group”, “heterocyclic moiety”, and “heterocyclic radical”, are used interchangeably herein. A heterocyclyl ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure. Examples of such saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, terahydropyranyl, pyrrolidinyl, pyridinonyl, pyrrolidonyl, piperidinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, morpholinyl, dihydrofuranyl, dihydropyranyl, dihydropyridinyl, tetrahydropyridinyl, dihydropyrimidinyl, 3-azabicyclo[3.1.0]hexanyl, 2-oxa-6-azaspiro[3.3]heptanyl, 1-azaspiro[4.5]decane, and tetrahydropyrimidinyl. The term “heterocyclyl” also includes, e.g., unsaturated heterocyclic radicals fused to another unsaturated heterocyclic radical or aryl or heteroaryl ring, such as for example, tetrahydronaphthyridine, indolinone, dihydropyrrolotriazole, imidazopyrimidine, quinolinone, and dioxaspirodecane. Examples of polycyclic (e.g., tricyclic or more) heterocyclyl include, without limitation, 5,6,11,12-tetrahydrodibenzo[b,f]azocine and 8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocine. It will also be understood that when specified, optional substituents on a heterocyclyl group may be present on any substitutable position and, include, e.g., the position at which the heterocyclyl is attached (e.g., in the case of an optionally substituted heterocyclyl or heterocyclyl which is optionally substituted).
- The term “spiro” refers to two rings that share one ring atom (e.g., carbon).
- The term “fused” refers to two rings that share two adjacent ring ring atoms.
- The term “bridged” refers to two rings that share at least three ring atoms.
- As described herein, the moieties present on the substituted triazolyl may be further substituted or contain “optionally substituted” moieties. For example, optionally substituted alkyl, optionally substituted pyrazolyl, an optionally substituted carbocyclic, an optionally substituted substituted multi-cyclic heterocyclic ring system, etc. Unless otherwise indicated, an “optionally substituted” group may have a suitable substituent that results in the formation of stable or chemically feasible compounds. The term “stable”, as used herein, refers to groups that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.
- In one aspect, suitable substituents for an optionally substituted or substituted alkyl, carbocyclyl, or heterocyclyl group are those which do not substantially diminish the yield of the bispecific antibody compound. Examples include halogen,
- CN, —ORc, —NRdRe, —S(O)iRc, —NRcS(O)2Rc, —S(O)2NRdRe, —C(═O)ORc, —OC(═O)ORc, —OC(═O)Rc, —OC(═S)Rc, —C(═S)ORc, —O(C═S)Rc, —C(═O)NRdRe, —NRcC(═O)Rc, —C(═S)NRdRe, —NRcC(═S)Rc, —NRc(C═O)ORc, —O(C═O)NRdRe, —NRc(C═S)ORc, —O(C═S)NRdRe, —NRc(C═O)NRdRe, —NRc(C═S)NRdRe, —C(═S)Rc, —C(═O)Rc, (C1-C6)alkyl, cycloalkyl, —(CH2)1-4-cycloalkyl, heterocyclyl, —(CH2)1-4-heterocyclyl, aryl, —NHC(═O)-heterocyclyl, —NHC(═O)-cycloalkyl, —(CH2)1-4-aryl, heteroaryl or —(CH2)1-4-heteroaryl, wherein each of said (C1-C6)alkyl, cycloalkyl, —(CH2)1-4-cycloalkyl, heterocyclyl, —(CH2)1-4-heterocyclyl, aryl, —(CH2)1-4-aryl, heteroaryl and —(CH2)1-4-heteroaryl are optionally substituted with halogen,
ORc, —NO2, —CN, —NRcC(═O)Rc, —NRdRe, —S(O)kRc, —C(═O)ORc, —C(═O)NRdRe, —C(═O)Rc, (C1-C3)alkyl, halo(C1-C3)alkyl, (C1-C3)alkoxy(C1-C3)alkyl, (C1-C3)alkoxy, and halo(C1-C3)alkoxy, wherein Rc is hydrogen or (C1-C6)alkyl optionally substituted with 1 to 3 halogen; Rd and Re are each independently selected from hydrogen and (C1-C6)alkyl; and k is 0, 1 or 2. Suitable substituents for optionally substituted alkyl, carbocyclyl, and heterocyclyl also include oxo (═O). - The bispecific antibody compounds described herein may be present in the form of pharmaceutically acceptable salts. For use in medicines, pharmaceutically acceptable salts refer to non-toxic pharmaceutically acceptable salts. Pharmaceutically acceptable salt forms include pharmaceutically acceptable acidic/anionic or basic/cationic salts. Suitable pharmaceutically acceptable acid addition salts of the compounds described herein include e.g., salts of inorganic acids (such as hydrochloric acid, hydrobromic, phosphoric, nitric, and sulfuric acids) and of organic acids (such as, acetic acid, benzenesulfonic, benzoic, methanesulfonic, and p-toluenesulfonic acids). Suitable pharmaceutically acceptable basic salts include e.g., ammonium salts, alkali metal salts (such as sodium and potassium salts) and alkaline earth metal salts (such as magnesium and calcium salts).
- As used herein, the terms “treatment,” “treat,” and “treating” refer to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed, i.e., therapeutic treatment. In other embodiments, treatment may be administered in the absence of symptoms. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors), i.e., prophylactic treatment. Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.
- The terms “subject” and “patient” may be used interchangeably, and means a mammal in need of treatment, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses, sheep, goats and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Typically, the subject is a human in need of treatment.
- In a first exemplary embodiment, the bispecific antibody compounds of Formula I are of the Formula II, IIa, III, or IIIa:
- wherein R1 and R2 are each independently a substituted alkyl; ring A is a substituted carbocyclyl or substituted heterocyclyl; and Ra and Rb are each independently selected from
- In a second exemplary embodiment, Ring A in Formula I, III, or IIIa is a substituted bicyclic or polycyclic carbocyclyl or a substituted polycyclic heterocyclyl, wherein the remaining variables and values are as described for Formula I or the first exemplary embodiment.
- In a third exemplary embodiment, Ring A is
- wherein the dashed bonds indicate the points of attachment to the triazolyl and the wavy bond indicates the attachment to R2, and wherein the remaining variables and values are as described for Formula I or the first or second exemplary embodiment.
- In a fourth exemplary embodiment, R1 and R2 in Formula I, II, IIa, III, or IIIa are each independently an optionally substituted (C2-C30)alkyl optionally interrupted with one or more heteroatoms selected from N, O, and S, wherein the remaining variables and values are as described for Formula I or the first, second, or third exemplary embodiment.
- In a fifth exemplary embodiment, R1 and R2 in Formula I, II, IIa, III, or IIIa are each independently a substituted (C2-C30)alkyl optionally interrupted with one or more heteroatoms selected from N and O, wherein the remaining variables and values are as described for Formula I or the first, second, third, or fourth exemplary embodiment.
- In a sixth exemplary embodiment, le and R2 in Formula I, II, IIa, III, or IIIa are each independently a (C2-C30)alkyl interrupted with at least one O and at least one N, and substituted with at least one oxo, wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, or fifth exemplary embodiment.
- In a seventh exemplary embodiment, R1 and R2 in Formula I, II, IIa, III, or IIIa are each independently selected from
- the wavy lines indicate the points of attachment to Ra or Rb; the dashed lines indicated the points of attachment to the triazolyl or ring A; and p and w independently are integers from 1 to 8, wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, or sixth exemplary embodiment.
- In an eighth exemplary embodiment, R1 in Formula I, II, IIa, III, or IIIa is selected from
- wherein the wavy lines indicate the points of attachment to Ra; and the dashed lines indicated the points of attachment to the triazolyl, and wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, sixth, or seventh exemplary embodiment.
- In a ninth exemplary embodiment, R2 in Formula I, II, IIa, III, or IIIa is selected from
- the wavy lines indicate the points of attachment to Ra; and the dashed lines indicated the points of attachment to the triazolyl or ring A, wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, sixth, seventh, or eighth exemplary embodiment.
- In a tenth exemplary embodiment, Ra and Rb in Formula I, II, IIa, III, or IIIa are bound to FAB1 and FAB2 through native cysteines of FAB1 and FAB2, wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, sixth, seventh, eighth, or ninth exemplary embodiment. Alternatively, Ra and Rb in Formula I, II, IIa, III, or IIIa are bound to FAB1 and FAB2 through native cysteines that are responsible for forming interchain disulfide bonds of FAB1 and FAB2, wherein the remaining variables and values are as described for Formula I or the first, second, third, fourth, fifth, sixth, seventh, eighth, or ninth exemplary embodiment.
- In an eleventh exemplary embodiment, the bispecific antibody compound of Formula I is of the formula:
- or a pharmaceutically acceptable salt thereof, wherein FAB1 and FAB2 are connected to the pyrrolidine-dione through native cysteine residues.
- In a thirteenth embodiment, the bispecific antibody compound of Formula I is of the formula:
- or a pharmaceutically acceptable salt thereof, wherein FAB1 and FAB2 are connected to the pyrrolidine-dione through native cysteine residues.
- In a fourteenth embodiment, FAB1 and FAB2 in any one of the bispecific antibody compounds described herein are each independently selected from a Fab fragment comprising a CD3 binding region and a Fab fragment comprising a PSMA binding region.
- The bispecific antibody compounds described herein can be readily prepared according to the following reaction schemes and examples, or modifications thereof, using readily available starting materials, reagents and conventional synthesis procedures. In addition, one can refer to the following references for suitable methods of synthesis as described in March, Advanced Organic Chemistry, 3rd edition, John Wiley & Sons, 1985, Greene and Wuts, Protective Groups in Organic Synthesis, 2nd edition, John Wiley & Sons, 1991, and Richard Larock, Comprehensive Organic Transformations, 4th edition, VCH publishers Inc., 1989
- Bispecific antibody compounds of Formula I may be prepared according to the general reaction scheme shown in
FIG. 1 . In a first process, the Fc fragment along with hinge region of full length FAB is removed via digestion, as described, for example, inFIG. 1 (such as papain digestion). FAB1 and FAB2 are then selectively reduced to form Fab fragments. Functional moieties, X or Y (where one X or Y is an azide (N3) and the other X or Y is an alkyne) are introduced into each Fab via a cysteine-based conjugation, leading to chemically modified Fab fragments, respectively inFIG. 1 . The functional moieties X and Y are preferably introduced via conjugation to cysteine residues within the constant region of each Fab fragment, i.e., the light chain CL region and heavy chain CH1 constant region. - In order to achieve the chemical linkage, cysteine residues within the CH1 of the heavy chain and the CL of the light chain are reduced. In one embodiment, native cysteines that form the interchain disulfide bonds are reduced and used to chemically modify the Fab fragment as described herein. In one embodiment, the starting antibodies may contain modifications within the heavy and light chain constant regions (CH1 and CL, respectively) where additional cysteine residues are introduced.
- Two Fab fragments are then linked together through a chemical ligation between X and Y moieties, to form X—Y, which correlates to variable “—X—” in the bispecific antibody compounds of Formula I.
- For example, in instances where the bispecific antibody compounds are represented by Formula II, the azide could be attached to R1 and the terminal alkyne could be attached to R2, where ligation would occur to form the triazolyl. See
Scheme 1 below. - It will be understood that the reverse could also be employed where the azide is attached to R2 and the terminal alkyne is on R1 to form bispecific antibody compounds represented by Formula IIa.
- In another example, in instances where the bispecific antibody compounds are represented by Formula III, the azide could be attached to R1 and the alkyne could be attached to R2, where ligation would occur to form the triazolyl. See
Scheme 2 below. - It will be understood that the reverse could also be employed where the azide is attached to R2 and the alkyne is on R1 to form bispecific antibody compounds represented by Formula IIIa.
- In one aspect, the FAB1 and FAB2 are each capable of binding two different epitopes on the same or on different antigens. In one embodiment, FAB1 and FAB2 bind to two different epitopes on the same antigen. In one embodiment, FAB1 and FAB2 bind to two different antigens.
- In one embodiment, FAB1 and FAB2 are each independently IgG1 or IgG4 isotypes. In one embodiment, FAB1 and FAB2 are each IgG1 isotypes. In one embodiment, FAB1 and FAB2 are each IgG4 isotypes. In one embodiment, FAB1 is an IgG1 isotype and FAB2 is an IgG4 isotype. In another embodiment, FAB2 is an IgG1 isotype and FAB1 is an IgG4 isotype. In one embodiment, the bispecific antibody compounds described herein bind to a target molecule selected from the group consisting of CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl. In one embodiment, the bispecific antibody compounds described herein bind to a pair of antigens selected from the following group: CD3-PSMA, CD3-CD19, CD3-CXCR5, CD3-CD33, PDL1-VEGFR2, PDL1-cMet, PDL1-Axl.
- In one embodiment, the bispecific antibody compounds described herein bind to two epitopes on CD3 or binds to CD3 and another target molecule. In one embodiment, the bispecific antibody compounds described herein comprise a CD3 binding region corresponding to the CD3 binding portion, e.g., a Fab fragment, of BLINCYTO (Blinatumomab; Amgen). In another embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies HuM291, UCHT1, or OKT3). In another embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies comprising a heavy chain region comprising the amino acid sequence QVQLVQSGAEVKKPGASVKVSCKASGYTFISYTMHWVRQAPGQGLEWMGYINPRSGY THYNQKLKDKATLTADKSASTAYMELSSLRSEDTAVYYCARSAYYDYDGFAYWGQGT LVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP AVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 5); or an heavy chain comprising SEQ ID NO: 5 and light chain region comprising the amino acid sequence of DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQKPGKAPKRLIYDTSKLASGVPSR FSGSGSGTDFTLTISSLQPEDFATYYCQQWSSNPPTFGGGTKVEIKRTVAAPSVFIFPPSDE QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 6); or a light chain region comprising SEQ ID NO: 6.
- In another embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies comprising a heavy chain variable region (HCVR) comprising the amino acid sequence QVQLVQSGAEVKKPGASVKVSCKASGYTFISYTMHWVRQAPGQGLEWMGYINPRSGY THYNQKLKDKATLTADKSASTAYMELSSLRSEDTAVYYCARSAYYDYDGFAYWGQGT LVTVSS (SEQ ID NO: 9); or an heavy chain comprising SEQ ID NO: 9 and light chain region comprising the amino acid sequence of DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQKPGKAPKRLIYDTSKLASGVPSR FSGSGSGTDFTLTISSLQPEDFATYYCQQWSSNPPTFGGGTKVEIKRTVAAPSVFIFPPSDE QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 6); or a light chain region comprising SEQ ID NO: 6. In another embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies comprising a heavy chain region comprising the amino acid sequence EVQLVESGGGLVQPGGSLRLSCAASGYSFTGYTMetNWVRQAPGKGLEWVALINPYKG VSTYNQKFKDRFTISVDKSKNTAYLQMetNSLRAEDTAVYYCARSGYYGDSDWYFDVW GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 7); or a heavy chain region comprising SEQ ID NO: 7 and light chain region comprising the amino acid sequence of DIQMTQSPSSLSASVGDRVTITCRASQDIRNYLNWYQQKPGKAPKLLIYYTSR LESGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQGNTLPWTFGQGTKVEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 8). In another embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-CD3 antibodies comprising a heavy chain variable region comprising the amino acid sequence EVQLVESGGGLVQPGGSLRLSCAASGYSFTGYTMetNWVRQAPGKGLEWVALINPYKG VSTYNQKFKDRFTISVDKSKNTAYLQMetNSLRAEDTAVYYCARSGYYGDSDWYFDVW GQGTLVTVSS (SEQ ID NO: 10); or an HCVR comprising SEQ ID NO: 10 and light chain region comprising the amino acid sequence of DIQMTQSPSSLSASVGDRVTITCRASQDIRNYLNWYQQKPGKAPKLLIYYTSRLESGVPS RFSGSGSGTDYTLTISSLQPEDFATYYCQQGNTLPWTFGQGTKVEIKRTVAAPSVFIFPPS DEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 8).
- In one embodiment, the bispecific antibody compounds described herein bind to two epitopes on prostate specific membrane antigen protein (PSMA) or binds to PSMA and another target molecule. In one embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to antibodies 3D8, 4D4, and/or 3E11, which are described in US 2007/0031438, the contents of which are incorporated by reference herein.
- In one embodiment, the bispecific antibody compounds described herein bind to two epitopes on CD19 or binds to CD19 and another target molecule. In one embodiment, the bispecific antibody compounds described herein comprise a CD19 binding region corresponding to the CD3 binding portion, e.g., a Fab fragment, of BLINCYTO (Blinatumomab; Amgen).
- In one embodiment, the bispecific antibody compounds described herein bind to two epitopes on CXCR5 or binds to CXCR5 and another target molecule. In one embodiment, the bispecific antibody compounds described herein comprises a Fab fragment(s) corresponding to anti-CXCR5 antibodies which are described in U.S. patent application Ser. No. 14/825,144 filed on Aug. 12, 2015, the contents of which are incorporated by reference herein.
- In one embodiment, the bispecific antibody compounds described herein bind to two epitopes on CD33 or binds to CD33 and another target molecule.
- In one embodiment, the bispecific antibody compounds described herein bind to two epitopes on PDL1 or binds to PDL1 and another target molecule. In one embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-PDL-1 antibodies which are described in US 2013/0323249 and WO 2013/181634, the contents of which are each incorporated by reference herein. In one embodiment, the bispecific antibody compounds described herein comprise amino acid sequences corresponding to the Fab fragment of anti-PDL-1 antibody H6B1L, as described in US 2013/0323249, the contents of which are incorporated by reference herein.
- In one embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-PDL-1 antibodies comprising a heavy chain variable region comprising the amino acid sequence of QMQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAYSWVRQAPGQGLEWMGGIIPSFGTA NYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARGPIVATITPLDYWGQGTLV TVSS (SEQ ID NO: 1), or a HCVR comprising the CDR sequences described in SEQ ID NO: 1, and a light chain variable region comprising the amino acid sequence of SYELMQPPSVSVAPGKTATIACGGENIGRKTVHWYQQKPGQAPVLVIYYDSDRPSGIPE RFSGSNSGNTATLTISRVEAGDEADYYCLVWDSSSDHRIFGGGTKLTVL (SEQ ID NO: 2), or a LCVR comprising the CDR sequences described in SEQ ID NO: 2.
- In one embodiment, the bispecific antibody compounds described herein binds to two epitopes on VEGFR2 or binds to VEGFR2 and another target molecule. In one embodiment, the bispecific antibody compounds described herein comprises a Fab fragment corresponding to anti-VEGFR2 antibodies which are described in US 2014/0294827 and WO 2013/149249, the contents of which are each incorporated by reference herein. In one embodiment, the bispecific antibody compounds described herein comprise amino acid sequences corresponding to the Fab fragment of anti-VEGFR2 antibody VK-B8, as described in US 2014/0294827, the contents of which are incorporated by reference herein.
- In one embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-VEGFR2 antibodies comprising a heavy chain variable region comprising the amino acid sequence of MAQVQLVQSGAEVKKPGSSVKVSCKAYGGTFGSYGVSWVRRAPGQGLEWMGRLIPIF GTRDYAQKFQGRVTLTADESTNTAYMELSSLRSEDTAVYYCARDGDYYGSGSYYGMD VWGQGTLVTVSS (SEQ ID NO: 3), or a HCVR comprising the CDR sequences described in SEQ ID NO: 3, and a light chain variable region comprising the amino acid sequence of ETTLTQSPATLSVSPGERATVSCRASQSLGSNLGWFQQKPGQAPRLLIYGASTRATGIPA RFSGSGSGTEFTLTISSLQSEDFAVYFCQQYNDWPITFGQGTRLEIK (SEQ ID NO: 4), or a LCVR comprising the CDR sequences described in SEQ ID NO: 4.
- In one embodiment, the bispecific antibody compounds described herein bind to two epitopes on cMet or binds to cMet and another target molecule. In one embodiment, the bispecific antibody compounds described herein comprise a Fab fragment corresponding to anti-cMet antibodies which are described in U.S. patent application Ser. No. 13/924,492 and PCT WO 2013/192594, the contents of which are incorporated by reference herein.
- In one embodiment, the bispecific antibody compounds described herein binds to two epitopes on Axl or binds to Axl and another target molecule.
- Fab fragments used in the bispecific antibody compounds described herein may be made using standard recombinant methods known in the art. In one embodiment, full length antibodies (i.e., an antibody comprising a Fab region, a hinge region and an Fc region) are produced and subsequently digested to provide Fab fragments for use in the bispecific antibody compounds described herein. Alternatively, Fab fragments are produced in host cells, which eliminates the need to digest a full length antibody.
- Production methods described herein are applicable to full length antibodies and fragments thereof, including Fab fragments.
- Recombinant antibody production is known in the art. For example, for recombinant production of an antibody, the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. DNA encoding the monoclonal antibody is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody). Many vectors are available. The choice of vector depends in part on the host cell to be used. Generally, preferred host cells are of either prokaryotic or eukaryotic (generally mammalian) origin.
- In one embodiment, an antibody is produced using prokaryotic cells. Sequences encoding the polypeptides are inserted into a recombinant vector capable of replicating and expressing heterologous polynucleotides in prokaryotic hosts. Many vectors that are available and known in the art can be used. Selection of an appropriate vector will depend mainly on the size of the nucleic acids to be inserted into the vector and the particular host cell to be transformed with the vector. Each vector contains various components, depending on its function (amplification or expression of heterologous polynucleotide, or both) and its compatibility with the particular host cell in which it resides. The vector components generally include, but are not limited to: an origin of replication, a selection marker gene, a promoter, a ribosome binding site (RBS), a signal sequence, the heterologous nucleic acid insert and a transcription termination sequence.
- Prokaryotic host cells suitable for expressing antibodies include Archaebacteria and Eubacteria, such as Gram-negative or Gram-positive organisms. Examples of useful bacteria include Escherichia (e.g., E. coli), Bacilli (e.g., B. subtilis), Enterobacteria, Pseudomonas species (e.g., P. aeruginosa), Salmonella typhimurium, Serratia marcescans, Klebsiella, Proteus, Shigella, Rhizobia, Vitreoscilla, or Paracoccus. In one embodiment, gram-negative cells are used. In one embodiment, E. coli cells are used as hosts. Examples of E. coli strains include strain W3110 (Bachmann, Cellular and Molecular Biology, vol. 2 (Washington, D.C.: American Society for Microbiology, 1987), pp. 1190-1219; ATCC Deposit No. 27,325) and derivatives thereof, including strain 33D3 having genotype W3110 fhuA (tonA) ptr3 lac Iq lacL8 ompT (nmpc-fepE) degP41 kan.sup.R (U.S. Pat. No. 5,639,635). Other strains and derivatives thereof, such as E. coli 294 (ATCC 31,446), E. coli B, E. coli 1776 (ATCC 31,537) and E. coli RV308 (ATCC 31,608) are also suitable. These examples are illustrative rather than limiting. Methods for constructing derivatives of any of the above-mentioned bacteria having defined genotypes are known in the art and described in, for example, Bass et al., Proteins, 8:309-314 (1990). It is generally necessary to select the appropriate bacteria taking into consideration replicability of the replicon in the cells of a bacterium. For example, E. coli, Serratia, or Salmonella species can be suitably used as the host when well-known plasmids such as pBR322, pBR325, pACYC177, or pKN410 are used to supply the replicon.
- Prokaryotic host cells are transformed with the above-described expression vectors and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. Transformation means introducing DNA into the prokaryotic host so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride is generally used for bacterial cells that contain substantial cell-wall barriers. Another method for transformation employs polyethylene glycol/DMSO. Yet another technique used is electroporation.
- Prokaryotic cells used to produce the bispecific antibody compounds described herein are grown in media known in the art and suitable for culture of the selected host cells. Examples of suitable media include luria broth (LB) plus necessary nutrient supplements. In some embodiments, the media also contains a selection agent, chosen based on the construction of the expression vector, to selectively permit growth of prokaryotic cells containing the expression vector. For example, ampicillin is added to media for growth of cells expressing ampicillin resistant gene.
- The expressed antibody proteins described herein are secreted into and recovered from the periplasm of the host cells. Protein recovery typically involves disrupting the microorganism, generally by such means as osmotic shock, sonication or lysis. Once cells are disrupted, cell debris or whole cells may be removed by centrifugation or filtration. The proteins may be further purified, for example, by affinity resin chromatography. Alternatively, proteins can be transported into the culture media and isolated therein. Cells may be removed from the culture and the culture supernatant being filtered and concentrated for further purification of the proteins produced. The expressed polypeptides can be further isolated and identified using commonly known methods such as polyacrylamide gel electrophoresis (PAGE) and Western blot assay.
- Alternatively, antibody production is conducted in large quantity by a fermentation process. Various large-scale fed-batch fermentation procedures are available for production of recombinant proteins. Large-scale fermentations have at least 1000 liters of capacity, preferably about 1,000 to 100,000 liters of capacity. These fermentors use agitator impellers to distribute oxygen and nutrients, especially glucose (the preferred carbon/energy source). Small scale fermentation refers generally to fermentation in a fermentor that is no more than approximately 100 liters in volumetric capacity, and can range from about 1 liter to about 100 liters.
- Antibodies may also be produced in eukaryotic host cells. For eukaryotic expression, the vector components are known in the art and generally include, but are not limited to, one or more of the following, a signal sequence, an origin of replication, one or more marker genes, and enhancer element, a promoter, and a transcription termination sequence.
- Eukaryotic host cells are transformed with expression or cloning vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. Suitable host cells for cloning or expressing the DNA in the vectors (i.e., DNA encoding an antibody) include higher eukaryote cells described herein, including vertebrate host cells. Propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982));
MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2). - The host cells used to produce the antibodies described herein may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem. 102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or U.S. Pat. No. 5,122,469; WO 90/03430; WO 87/00195; or U.S. Pat. No. Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
- One produced, the antibody produced herein is further purified to obtain preparations that are substantially homogeneous for further assays and uses. Standard protein purification methods known in the art can be employed. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion-exchange columns, ethanol precipitation, reverse phase HPLC, chromatography on silica or on a cation-exchange resin such as DEAE, chromatofocusing, SDS-PAGE, ammonium sulfate precipitation, and gel filtration using, for example, Sephadex G-75.
- In one embodiment, Protein A may be used to purify a full length antibody prior to digestion to obtain Fab fragments used in the bispecific antibody compounds of Formula I. The suitability of Protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human immunoglobulins containing 1, 2, or 4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human 3 (Guss et al., EMBO J. 5:15671575 (1986)).
- In one aspect, Protein A immobilized on a solid phase is used for immunoaffinity purification of the full length antibody products. Protein A is a 41 kD cell wall protein from Staphylococcus aureas which binds with a high affinity to the Fc region of antibodies. Lindmark et al (1983) J. Immunol. Meth. 62:1-13. The solid phase to which Protein A is immobilized is preferably a column comprising a glass or silica surface, more preferably a controlled pore glass column or a silicic acid column. In some applications, the column has been coated with a reagent, such as glycerol, in an attempt to prevent nonspecific adherence of contaminants. The solid phase is then washed to remove contaminants non-specifically bound to the solid phase. Finally the antibody of interest is recovered from the solid phase by elution.
- When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
- Antibodies may be identified using any number of techniques known in the art. Preferably, the antibody is a monoclonal antibody. Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations and/or post-translational modifications (e.g., isomerizations, amidations) that may be present in minor amounts. For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
- Monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567, and as described above. DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, in order to synthesize monoclonal antibodies in such recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Pluckthun, Immunol. Revs. 130:151-188 (1992).
- In a further embodiment, antibodies can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology, 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nucl. Acids Res., 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.
- In certain embodiment, the antibodies described herein may be humanized or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementarity determining region (CDR) (HVR as used herein) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domain, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. Jones et al., Nature 321: 522-525 (1986); Riechmann et al., Nature 332: 323-329 (1988) and Presta, Curr. Opin. Struct. Biol. 2: 593-596 (1992).
- Recombinant human antibodies can be generated using methods known in the art. For example, transgenic animals (e.g., mice) may be produced that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JO gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993); U.S. Pat. No. 5,591,669 and WO 97/17852.
- Alternatively, phage display technology can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. McCafferty et al., Nature 348:552-553 (1990); Hoogenboom and Winter, J. Mol. Biol. 227: 381 (1991). According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Curr. Opin Struct. Biol. 3:564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See also, U.S. Pat. Nos. 5,565,332 and 5,573,905.
- The techniques of Cole et al., and Boerner et al., are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol. 147(1): 86-95 (1991). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806, 5,569,825, 5,625,126, 5,633,425, 5,661,016 and in the following scientific publications: Marks et al., Bio/Technology 10: 779-783 (1992); Lonberg et al., Nature 368: 856-859 (1994); Morrison, Nature 368: 812-13 (1994), Fishwild et al., Nature Biotechnology 14: 845-51 (1996), Neuberger, Nature Biotechnology 14: 826 (1996) and Lonberg and Huszar, Intern. Rev. Immunol. 13: 65-93 (1995). Finally, human antibodies may also be generated in vitro by activated B cells (see U.S. Pat. Nos. 5,567,610 and 5,229,275).
- Specific examples of the bispecific antibody compounds are provided in the EXEMPLIFICATION. Pharmaceutically acceptable salts as well as the neutral forms of these bispecific antibody compounds are included herein.
- In certain embodiments, the present disclosure provides a method of treating a patient (e.g., a human) with a disorder mediated by a therapeutic target, e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl, comprising the step of administering to the patient an effective amount of the bispecific antibody compound as described herein, or a composition thereof.
- In certain embodiments, the present disclosure provides a method of treating a subject (e.g., a human) with a disorder mediated by a therapeutic target (target molecule(s)), e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl, using a composition comprising a bispecific antibody compound described herein and a pharmaceutically acceptable carrier. In certain embodiments, the amount of bispecific antibody compound described herein in a provided composition is such that it is effective as an inhibitor or agonist in a biological sample or in a subject. In certain embodiments, a provided composition is formulated for administration to a subject in need of such composition. In some embodiments, a provided composition is formulated for parenteral or intravenous administration to a subject.
- The term “pharmaceutically acceptable carrier” refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the antibody with which it is formulated. Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this disclosure include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
- Compositions described herein may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term “parenteral” as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
- Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.
- Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, the judgment of the treating physician, and the severity of the particular disease being treated. The amount of a provided bispecific antibody compound in the composition will also depend upon the particular compound in the composition.
- Bispecific antibody compounds and compositions described herein are generally useful for modulating molecules to which the antibodies are specific. Examples of molecules which may be bound by the bispecific antibody compounds described herein include, but are not limited to, CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl, including combinations thereof. In one embodiment, the bispecific antibody compounds described herein bind a pair of antigens selected from the following combinations: CD3-PSMA, CD3-CD19, CD3-CXCR5, CD3-CD33, PDL1-VEGFR2, PDL1-cMet, and PDL1-Axl.
- Thus, in some embodiments, the present disclosure provides a method of treating disorders associated with detrimental activity of CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, or Axl, comprising administering a provided compound or composition.
- In one embodiment, the bispecific antibody compounds described herein bind an antigen or combination of antigens selected from the following: CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl, may be used to treat a subject having a disorder selected from non-Hodgkin lymphoma (NHL), prostate cancer, B-cell lymphoma, acute myeloid leukemia (AML), colon cancer, breast cancer. Modulation of a target molecule(s), e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and/or Axl, of the bispecific antibody compound described herein means that a change or alternation in the activity of the target molecule(s), e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and/or Axl, has occurred from the administration of one or more of the bispecific antibody compounds described herein. Modulation may be an upregulation (increase) or a downregulation (decrease) in the magnitude of the activity or function of the target molecule(s), e.g., CD3, PSMA, CD19, CXCR5, CD33, PDL1, VEGFR2, cMet, and Axl. Exemplary activities and functions include e.g., binding characteristics, enzymatic activity, cell receptor activation, transcriptional activity, and signal transduction.
- Diseases and conditions treatable according to the methods using the bispecific antibody compounds described herein include, but are not limited to, treating or ameliorating cancer or another proliferative disorder by administration of an effective amount of a bispecific antibody compound described herein to a mammal, e.g., a human in need of such treatment. In some aspects, the disease and conditions to be treated by the methods herein is cancer. Examples of cancers treated using the compounds and methods described herein include, but are not limited to, adrenal cancer, acinic cell carcinoma, acoustic neuroma, acral lentigious melanoma, acrospiroma, acute eosinophilic leukemia, acute erythroid leukemia, acute lymphoblastic leukemia, acute megakaryoblastic leukemia, acute monocytic leukemia, actue promyelocytic leukemia, adenocarcinoma, adenoid cystic carcinoma, adenoma, adenomatoid odontogenic tumor, adenosquamous carcinoma, adipose tissue neoplasm, adrenocortical carcinoma, adult T-cell leukemia/lymphoma, aggressive NK-cell leukemia, AIDS-related lymphoma, alveolar rhabdomyosarcoma, alveolar soft part sarcoma, ameloblastic fibroma, anaplastic large cell lymphoma, anaplastic thyroid cancer, angioimmunoblastic T-cell lymphoma, angiomyolipoma, angiosarcoma, astrocytoma, atypical teratoid rhabdoid tumor, B-cell chronic lymphocytic leukemia, B-cell prolymphocytic leukemia, B-cell lymphoma, basal cell carcinoma, biliary tract cancer, bladder cancer, blastoma, bone cancer, Brenner tumor, Brown tumor, Burkitt's lymphoma, breast cancer, brain cancer, carcinoma, carcinoma in situ, carcinosarcoma, cartilage tumor, cementoma, myeloid sarcoma, chondroma, chordoma, choriocarcinoma, choroid plexus papilloma, clear-cell sarcoma of the kidney, craniopharyngioma, cutaneous T-cell lymphoma, cervical cancer, colorectal cancer, Degos disease, desmoplastic small round cell tumor, diffuse large B-cell lymphoma, dysembryoplastic neuroepithelial tumor, dysgerminoma, embryonal carcinoma, endocrine gland neoplasm, endodermal sinus tumor, enteropathy-associated T-cell lymphoma, esophageal cancer, fetus in fetu, fibroma, fibrosarcoma, follicular lymphoma, follicular thyroid cancer, ganglioneuroma, gastrointestinal cancer, germ cell tumor, gestational choriocarcinoma, giant cell fibroblastoma, giant cell tumor of the bone, glial tumor, glioblastoma multiforme, glioma, gliomatosis cerebri, glucagonoma, gonadoblastoma, granulosa cell tumor, gynandroblastoma, gallbladder cancer, gastric cancer, hairy cell leukemia, hemangioblastoma, head and neck cancer, hemangiopericytoma, hematological malignancy, hepatoblastoma, hepatosplenic T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, invasive lobular carcinoma, intestinal cancer, kidney cancer, laryngeal cancer, lentigo maligna, lethal midline carcinoma, leukemia, leydig cell tumor, liposarcoma, lung cancer, lymphangioma, lymphangiosarcoma, lymphoepithelioma, lymphoma, acute lymphocytic leukemia, acute myelogeous leukemia, chronic lymphocytic leukemia, liver cancer, small cell lung cancer, non-small cell lung cancer, MALT lymphoma, malignant fibrous histiocytoma, malignant peripheral nerve sheath tumor, malignant triton tumor, mantle cell lymphoma, marginal zone B-cell lymphoma, mast cell leukemia, mediastinal germ cell tumor, medullary carcinoma of the breast, medullary thyroid cancer, medulloblastoma, melanoma, meningioma, merkel cell cancer, mesothelioma, metastatic urothelial carcinoma, mixed Mullerian tumor, mucinous tumor, multiple myeloma, muscle tissue neoplasm, mycosis fungoides, myxoid liposarcoma, myxoma, myxosarcoma, nasopharyngeal carcinoma, neurinoma, neuroblastoma, neurofibroma, neuroma, nodular melanoma, ocular cancer, oligoastrocytoma, oligodendroglioma, oncocytoma, optic nerve sheath meningioma, optic nerve tumor, oral cancer, osteosarcoma, ovarian cancer, Pancoast tumor, papillary thyroid cancer, paraganglioma, pinealoblastoma, pineocytoma, pituicytoma, pituitary adenoma, pituitary tumor, plasmacytoma, polyembryoma, precursor T-lymphoblastic lymphoma, primary central nervous system lymphoma, primary effusion lymphoma, preimary peritoneal cancer, prostate cancer, pancreatic cancer, pharyngeal cancer, pseudomyxoma periotonei, renal cell carcinoma, renal medullary carcinoma, retinoblastoma, rhabdomyoma, rhabdomyosarcoma, Richter's transformation, rectal cancer, sarcoma, Schwannomatosis, seminoma, Sertoli cell tumor, sex cord-gonadal stromal tumor, signet ring cell carcinoma, skin cancer, small blue round cell tumors, small cell carcinoma, soft tissue sarcoma, somatostatinoma, soot wart, spinal tumor, splenic marginal zone lymphoma, squamous cell carcinoma, synovial sarcoma, Sezary's disease, small intestine cancer, squamous carcinoma, stomach cancer, T-cell lymphoma, testicular cancer, thecoma, thyroid cancer, transitional cell carcinoma, throat cancer, urachal cancer, urogenital cancer, urothelial carcinoma, uveal melanoma, uterine cancer, verrucous carcinoma, visual pathway glioma, vulvar cancer, vaginal cancer, Waldenstrom's macroglobulinemia, Warthin's tumor, and Wilms' tumor.
- In one aspect the diseases and conditions treatable by the according to the methods using the bispecific antibody compounds described herein are selected from non-Hodgkin lymphoma (NHL), prostate cancer, B-cell lymphoma, acite myeloid leukemia (AML), colon cancer, and breast cancer. In one embodiment, the bispecific antibody compounds described herein are used as bispecific T cell engagers, and are able to exert action on its antigen selectively and direct the human immune system to act against a tumor cell.
- In one embodiment, a human patient is treated with a bispecific antibody compounds described herein and a pharmaceutically acceptable carrier, adjuvant, or vehicle, wherein said bispecific antibody compound is present in an amount to treat or ameliorate one or more of the diseases and conditions recited above. In an alternative embodiment, the diseases and conditions treated or ameliorated by a bispecific antibody compound described herein include, any one of those described above. In one aspect, the diseases and conditions are selected from non-Hodgkin lymphoma (NHL), prostate cancer, B-cell lymphoma, acite myeloid leukemia (AML), colon cancer, breast cancer, in the patient.
- As depicted in the Examples below, in certain exemplary embodiments, bispecific antibody compounds are prepared according to the following general procedures. It will be appreciated that, although the general methods depict the synthesis of certain compounds herein, the following general methods, and other methods known to one of ordinary skill in the art, can be applied to all bispecific antibody compounds and subclasses and species of each of these bispecific antibody compounds, as described herein.
- Antibodies were buffered exchange into 20 mM Sodium Phosphate (JT Baker 3827-01) and 10 mM EDTA (Aldrich E26290) and (1.0 mg) was added to 80 μL Papain Slurry (Thermo Scientific Pierce 20341) with 20 mM Cysteine (Sigma C7352) and incubated in 37° C. for 6.5 h in head to head spinner. Fc fragment and undigested IgG was then removed from the Fab using protein A purification via ÄKTA pure chromatography system.
- In an alternative, proteolytic digestion of IgG1 allowed generation of F(ab) proteins. SpeB cysteine protease, FabULOUS (Genovis), was used to digest the hinge region of IgG1 to produce F(ab) and Fc fragments. A digestion procedure was adopted using 0.1-0.2 U/μg overnight (˜16 h) at 37° C. in Dulbecco's phosphate-buffered saline (DPBS) with 1 mM dithiothreitol (DTT). Samples were then either buffer exchanged to remove DTT or diluted to decrease DTT concentration prior to F(ab) purification. Protease was removed by Ni-NTA gravity column, then the flow-through (FT) was subjected to Protein A purification by standard methods. Protein A FT contain the F(ab) fragment while the Fc and any undigested IgG1 was retained in the column. For larger scale F(ab) preparations, digestion was performed in a buffer containing 20 mM imidazole, 0.5 M NaCl, and 20 mM sodium phosphate (pH 7.4) with 0.1 mM DTT using 0.1-0.2 U/μg overnight (˜16 h) at 37° C. enabling tandem HisTrap FF (GE) and HiTrap MabSelect SuRe (GE) purification on an ÄKTA pure chromatography system. F(ab) purity was assessed by SDS-PAGE analysis and HIC HPLC. See
FIG. 5 andFIG. 6 . - Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was employed using NuPAGE Novex 4-12% Bis-Tris Protein Gels with NuPAGE MOPS SDS Running Buffer in a XCell SureLock Mini electrophoresis system. All samples (2.5 μg) included NuPAGE LDS Sample Buffer and were heated to 95° C. for 5 min prior to loading. Reduced samples also contained NuPAGE Sample Reducing Agent. Mark12 Unstained Standard (10 μL) was used for estimation of molecular weights. After gel electrophoresis at 125 V for 1.5 h, gels were fixed for 5 min and stained with SYPRO Ruby Protein Gel Stain following the recommended procedures. Imaging was performed with a Bio-Rad ChemiDoc MP System and analyzed by Image Lab Software.
- Analysis by HIC HPLC used a TOSOH TSKgel Butyl-NPR (4.6 mm ID×10 cm, 2.5 μm) column at 40° C. on an Agilent 1260 Infinity system. Analytical runs were performed using 50 μg sample with a linear gradient of 0-60% B over 30 min: A=50 mM sodium phosphate+1 M ammonium sulfate (pH 7), B=50 mM sodium phosphate+25% isopropanol (pH 7). All data was analyzed using OpenLAB Software.
- Conjugation of FAB1 and FAB2 was enabled through reduction of the interchain disulfide bonds, followed by reaction with a 2,3-dibromomaleimide (DBM) intermediate comprising an azide or dibenzylcyclooctyne (DBCO). Cyclization was then commenced via copper-free click chemistry. See also
FIG. 7 for a general representation of the approach using αPSMA and αCD3 as an example. The 2,3-dibromomaleimide (DBM) intermediates comprising an azide were prepared in situ by reacting the appropriate DBM-PEG-DBCO linker (e.g., for αPSMA/αCD3 bispecific antibody compounds described below, DBM-PEG4-DBCO and DBM-PEG8-DBCO were used) with 10-15 equivalents of the appropriate azido-PEG-azide (e.g., for αPSMA/αCD3 bispecific antibody compounds described below, azido-PEG2-azide was used) for 1 h at room temperature (RT). F(ab) proteins (e.g., αPSMA, αCD3) at 5 mg/mL were typically reduced using 5 or 10 equivalents of DTT for 1 hour at RT followed by conjugation with 10 or 15 equivalents DBM linker, respectively, and 7.5% DMSO co-solvent overnight at RT. Excess linker was removed by centrifugal filtration. Heavy chain-light chain disulfide bridging was determined to be ˜85% efficient by SDS-PAGE and HIC HPLC analysis. Cyclization was initiated by mixing the FAB1-X intermediate and the FAB2-Y intermediate at 5 mg/mL for 24-48 h at either room temperature or 37° C. Purity of the antibody and intermediates prior to cyclization was assessed by SDS-PAGE analysis and HIC HPLC. SeeFIG. 6 ,FIG. 8 , andFIG. 9 for data pertaining to the αCD3 F(ab) and αPSMA F(ab) products. Cyclization products were usually formed with ˜65-95% yield depending on incubation temperature and time. - A bispecific antibody compound of Formula I, where FAB1 is anti-PDL1 and FAB2 is anti-VEGFR2 was prepared as follows. The FAB1 (anti-PDL1 antibody) comprised variable regions having amino acid sequences corresponding to SEQ ID Nos: 1 and 2. The FAB2 (anti-VEGFR2 antibody) comprised variable regions having amino acid sequences corresponding to SEQ ID Nos: 3 and 4.
- Following Fc removal of anti-PDL1 and anti-VEGFR2, each antibody (1-10 mg) was added to separate 15 mL filter centrifuge tubes (Millipore, UFC903024) and an appropriate volume of a 50 mM sodium phosphate, 150 mM NaCl, 5 mM EDTA, pH 7.7 buffer was added to the 50 mL mark on the tube. The tubes were centrifuged at 3,000 RPM for 20 min at 22° C. The antibodies were then transferred into separate 1.5 mL plastic vials and concentrations were confirmed using Nanodrop (Fisher, ND-2000 UV-Vis Spectrophotometer). The final antibody concentrations were up to 5 mg/mL. In this example, anti-PDL1 was used as FAB1 and anti-VEGFR2 was used as FAB2.
- A stock solution of 1 mg/mL TCEP ((tris(2-carboxyethyl)phosphine)), Sigma-Aldrich, C4706) in pH 8.0 PBS (1 mM EDTA) buffer was prepared. Five equivalents of TCEP was added to FAB1 and the mixture was shaken and incubated at room temperature for 1 h. TCEP was separated from the reduced FAB1 using a NAP-5 (GE17-0853-02) desalting column.
- A stock solution of Dibromo-DBCO (2,3-dibromomaleic anhydride; Click Chemistry Tools, A108-100) in DMSO (Sigma-Aldrich, 472301) was prepared and 1 equivalent of Dibromo-DBCO in DMSO was added to the FAB1 sample. The final volume of DMSO in the sample was about 5-9% (v/v). The conjugation reaction between Dibromo-DBCO and FAB1 was conducted for 1 h at RT under mixing by carousel. This step was repeated two more times. The final concentration for the Dibromo-DBCO was 3 equivalents of FAB1.
- The Dibromo-azide (1 equivalents) in DMSO was added to the FAB1 sample. Final volume of DMSO in antibody sample is about 5-9% (v/v). The conjugation reaction was conducted for 1 h at RT under mixing by carousel, this step was repeated for two more times with final concentration for the Dibromo-DBCO being 3 equivalents.
- Each sample was placed into a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and added an appropriate volume of 1×DPBS plus 10% DMSO (Corning, 21-031-CM, no calcium or magnesium) buffer to the 50 mL mark on the tube. The samples were centrifuged at 3,000 RPM for 20 min at 22° C. The wash step was repeated once more. Then an appropriate volume of 1×DPBS (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube. The samples were centrifuged at 3,000 RPM for 20 min at 22° C. After wash, the samples was transferred into separate 1.5 mL plastic vials and placed in refrigerator (5° C.) or was used for click step.
- For each sample to be analyzed, 20 μL at a concentration of 0.6 mg/mL is required. Follow the established protocols for running SDS-PAGE gels (RTP AD001-01 and AD002-01) See
FIG. 2 , where 1) represents FAB1—DBCO; 2) represents FAB2—azide; and 3) represents the bispecific antibody compound of Formula I (Click product from FAB1—DBCO and FAB2—azide. - Specific examples are provided below.
-
- To 2.5 g of 3,4-dibromo-1H-pyrrole-2,5-dione (10 mmol) and 1 g of NMM in 60 mL of THF, MeOCOCl (10 mmol, 940 mg in 10 ml DCM) was added dropwise, stirred for 20 min, then the reaction solution was diluted with 60 mL of DCM, washed 3 time by water, the organic phase was stirred by sodium sulfate anhydrous, concentrated, 2.65 g of
methyl 3,4-dibromo-2,5-dioxo-2H-pyrrole-1(5H)-carboxylate was obtained. To 311 mg, 1 mmol of this compound, 2-(2-azidoethoxy)ethanamine (130 mg, 1 mmol) and 5 mL DCM was added, TLC shown the reaction finished in 20 min, then extracted by DCM and brine, washed by NH4Cl solution, dried on sodium sulfate anhydrous, and then concentrated for column purification, flashed by 2:1 hexane and ethyl ethylate, 230 mg of 1-(2-(2-azidoethoxy)ethyl)-3,4-dibromo-1H-pyrrole-2,5-dione obtained. 1HNMR: 3.32 ppm (t, J=5.0 Hz, 1H), 3.40 ppm (t, J=5.0 Hz, 1H), 3.50 ppm (q, J=5.0 Hz, 1H), 3.62 ppm (t, J=5.0 Hz, 1H), 3.63-3.69 ppm (m, 3H), 3.84 ppm (t, J=5 hz, 1H). Fw: 365.9, C8H8Br2N4O3; Mass Peaks (1:2:1): 366.9, 368.9, 370.9. -
- To a solution of dibromo-maleimide-PEG2-dibenzocyclooctyne (1.0 mg, 1.0 equivalent, 100) in DMSO (0.13 mL) was added azido-PEG2-azide (1.4 mg, 5.0 equivalent, 101) in DMSO (0.7 mL). The mixture was stirred at room for 1 hr. The reaction was completed as indicated by LC/MS. Molecular weight of the resulting dibromo-maleimide-azide 102 was 961.1 g/mol.
-
- A stock solution of Dibromo-DBCO (2,3-dibromomaleic anhydride; Click Chemistry Tools, A108-100) in DMSO (Sigma-Aldrich, 472301) was prepared and 1 equivalent of Dibromo-DBCO in DMSO was added to the FAB1 sample. The final volume of DMSO in the antibody sample was about 5-9% (v/v). The conjugation reaction was conducted for 1 hour at room temperature under mixing by carousel. This step was repeated two more times. The final concentration for the Dibromo-DBCO was 3 equivalent of FAB1.
- The sample was placed into a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and added an appropriate volume of 1×DPBS plus 10% DMSO (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube. The sample was centrifuged at 3,000 RPM for 20 minutes at 22° C. The wash step was repeated once more. Then an appropriate volume of 1×DPBS (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube. The sample were centrifuged at 3,000 RPM for 20 minutes at 22° C. After wash, the sample was transferred into separate 1.5 mL plastic vials and placed in refrigerator (5° C.) to afford 103.
-
- The Dibromo-azide 102 (1 equivalents) in DMSO was added to the FAB2 sample. The final volume of DMSO in the antibody sample was about 5-9% (v/v). The conjugation reaction was conducted for 1 hour at room temperature under mixing by carousel. This step was repeated two more times. The final concentration for the Dibromo-DBCO was 3 equivalent of FAB2.
- The sample was placed into a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and an appropriate volume of 1×DPBS plus 10% DMSO (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube. The sample was centrifuged at 3,000 RPM for 20 minutes at 22° C. The wash step was repeated once more. Then an appropriate volume of 1×DPBS (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube. The sample was centrifuged at 3,000 RPM for 20 minutes at 22° C. After wash, the sample was transferred into separate 1.5 mL plastic vials and placed in refrigerator (5° C.) to afford 104.
-
- To 103 (500 μg) in PBS (5.0 mg/mL) was added 104 fragment (500 μg) in PBS (5.0 mg/mL). The reaction was conducted for overnight at room temperature under mixing by carousel. The mixture was subjected to SEC analysis.
- Agilent 1200 HPLC using a Tskgel Buytl-NPR 4.6 mm×10 cm 2.5 um was used to analyze the FAB1-DBCO, FAB2-azide and bispecific antibody compound product of Formula I. Buffer A: 50 mM NaH2PO4, 1.5M (NH4)2 SO4 pH 7.0 and Buffer B: 50 mM NaH2PO4 pH 7.0+25% IPA.
- See
FIG. 3 . MS found molecular weight of 95954.00, theoretical 95955.00 for 105. - Bispecific antibody compounds of Formula I were purified via Size-exclusion chromatography (SEC) using an Agilent 1200 HPLC using a TSK gel SuperSW3000 column (4.6 mm ID×30 cm, 4 μm). Buffer was 0.2 M potassium phosphate, 0.25 M KCl, pH 6.2.
- αPSMA-PEG4/αCD3-PEG4 (106), αPSMA-PEG4/αCD3-PEG8 (107), αPSMA-PEG8/αCD3-PEG4 (108) and αPSMA-PEG8/αCD3-PEG8 (109) were synthesized according to the methods described above, and using the appropriate starting materials. See also
FIG. 7 for a general representation of the approach. For example, the azide linker was prepared in situ by reacting DBM-PEG4-DBCO and DBM-PEG8-DBCO linker with 10-15 equivalents azido-PEG2-azide for 1 h at room temperature (RT). F(ab) proteins (5 mg/mL) were typically reduced using 5 or 10 equivalents of DTT for 1 h at RT followed by conjugation with 10 or 15 equivalents DBM linker, respectively, and 7.5% DMSO co-solvent overnight at RT. Excess linker was removed by centrifugal filtration. Heavy chain-light chain disulfide bridging was determined to be ˜85% efficient by SDS-PAGE and HIC HPLC analysis. Cyclization was initiated by mixing the αPSMA F(ab) intermediate and the αCD3 F(ab) intermediate at 5 mg/mL for 24-48 h at either room temperature or 37° C. Purity of the antibody and intermediates prior to cyclization were assessed by SDS-PAGE analysis and HIC HPLC. SeeFIG. 6 ,FIG. 8 , andFIG. 9 . The yield of the final products were ˜65-95% yield depending on incubation temperature and time. Purity ofbispecific products FIG. 10 . - Sensors AR2G were used to measure antigen interactions with 105 on the Octet Red (ForteBio, Inc.) In short, the measurement scheme was as follows: 300 seconds baseline; 300 seconds loading of 10 μg/ml Antigen A, 120 seconds baseline; 300
seconds 105; 300 seconds dissociation; 300 seconds Antigen B and 300 seconds dissociation (FIG. 4 ). Sensor hydration and baseline- and dissociation measurements were performed in PBS. As described inFIG. 4 , each Fab fragment was able to maintain antigen binding. - Firefly luciferase transduced prostate cancer target cell lines were used for cytotoxicity assays, LNCaP (ATCC® CRL-1740™), PSMA+(cultured in RPMI-1640+10% non-heat-inactivated FBS+0.5 μg/mL Puromycin) and PC-3 (ATCC® CRL-1435™), PSMA-(cultured in RPMI-1640+10% heat-inactivated FBS+1.0 μg/mL Puromycin). Cells were harvested with TrypLE (ThermoFisher Scientific) then resuspended in fresh RPMI-1640+10% heat-inactivated FBS and plated at 4,000 cells/well in 100 μL. After overnight incubation at 37° C. in a humidified 5% CO2 incubator, serial dilutions of FAB and bispecific antibody compounds of Formula I in RPMI-1640+10% heat-inactivated medium (50 μL) were added to the assay plates at the indicated concentrations. Freshly thawed peripheral blood mononuclear cells (PBMCs) were washed with media and added to the assay plates at 40,000 cells in 50 μL to obtain an effector:target ratio of 10:1. After 4 days incubation, 90 μL was removed from assay plates and 90 μL ONE Glo Luciferase Assay Reagent (Promega #E6120) was mixed with the samples and incubated at room temperature for 10 min. Samples were transferred to white 96-well flat bottom plates for luminescence measurements using a PerkinElmer EnSpire multimode plate reader. Data was analyzed using GraphPad Prism software. Cell killing was observed with
compounds
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/585,378 US20220144971A1 (en) | 2015-11-18 | 2022-01-26 | Chemically-Locked Bispecific Antibodies |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562257044P | 2015-11-18 | 2015-11-18 | |
US15/353,979 US10301395B2 (en) | 2015-11-18 | 2016-11-17 | Chemically-locked bispecific antibodies |
US16/388,760 US11267905B2 (en) | 2015-11-18 | 2019-04-18 | Chemically-locked bispecific antibodies |
US17/585,378 US20220144971A1 (en) | 2015-11-18 | 2022-01-26 | Chemically-Locked Bispecific Antibodies |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/388,760 Division US11267905B2 (en) | 2015-11-18 | 2019-04-18 | Chemically-locked bispecific antibodies |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220144971A1 true US20220144971A1 (en) | 2022-05-12 |
Family
ID=58690473
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/353,979 Active US10301395B2 (en) | 2015-11-18 | 2016-11-17 | Chemically-locked bispecific antibodies |
US16/388,760 Active 2037-08-18 US11267905B2 (en) | 2015-11-18 | 2019-04-18 | Chemically-locked bispecific antibodies |
US17/585,378 Abandoned US20220144971A1 (en) | 2015-11-18 | 2022-01-26 | Chemically-Locked Bispecific Antibodies |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/353,979 Active US10301395B2 (en) | 2015-11-18 | 2016-11-17 | Chemically-locked bispecific antibodies |
US16/388,760 Active 2037-08-18 US11267905B2 (en) | 2015-11-18 | 2019-04-18 | Chemically-locked bispecific antibodies |
Country Status (5)
Country | Link |
---|---|
US (3) | US10301395B2 (en) |
EP (1) | EP3377112A4 (en) |
CA (1) | CA3005454A1 (en) |
TW (1) | TW201726173A (en) |
WO (1) | WO2017087603A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10301395B2 (en) | 2015-11-18 | 2019-05-28 | Sorrento Therapeutics, Inc. | Chemically-locked bispecific antibodies |
TWI782930B (en) | 2016-11-16 | 2022-11-11 | 美商再生元醫藥公司 | Anti-met antibodies, bispecific antigen binding molecules that bind met, and methods of use thereof |
US10799598B2 (en) | 2017-08-01 | 2020-10-13 | Sorrento Therapeutics, Inc. | Disulfide bridging conjugates |
KR102469248B1 (en) * | 2018-02-28 | 2022-11-22 | 에이피 바이오사이언시스, 아이엔씨. | Bifunctional proteins with checkpoint inhibition for targeted therapy |
JP2022547274A (en) | 2019-09-16 | 2022-11-11 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Radiolabeled MET binding protein for immunoPET imaging |
MX2023008949A (en) | 2021-01-28 | 2023-10-23 | Regeneron Pharma | Compositions and methods for treating cytokine release syndrome. |
AU2023254191A1 (en) | 2022-04-11 | 2024-10-17 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for universal tumor cell killing |
WO2024173830A2 (en) | 2023-02-17 | 2024-08-22 | Regeneron Pharmaceuticals, Inc. | Induced nk cells responsive to cd3/taa bispecific antibodies |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10081684B2 (en) | 2011-06-28 | 2018-09-25 | Whitehead Institute For Biomedical Research | Using sortases to install click chemistry handles for protein ligation |
WO2014043403A1 (en) * | 2012-09-12 | 2014-03-20 | Agensys, Inc. | Amatoxin derivatives and cell-permeable conjugates thereof as inhibitors of rna polymerase |
CN105636612B (en) * | 2013-08-12 | 2020-01-14 | 基因泰克公司 | Antibody-drug conjugates and methods of use and treatment |
RU2016134258A (en) * | 2013-10-15 | 2018-02-28 | Сорренто Терапьютикс Инк. | MEDICINE CONJUGATE WITH A GUIDANCE MOLECULE AND TWO DIFFERENT MEDICINES |
US10435479B2 (en) * | 2014-05-10 | 2019-10-08 | Sorrento Therapeutics, Inc. | Chemically-locked bispecific antibodies |
US20160326266A1 (en) * | 2015-05-10 | 2016-11-10 | Sorrento Therapeutics, Inc. | Chemically-Locked Bispecific Antibodies |
US10301395B2 (en) | 2015-11-18 | 2019-05-28 | Sorrento Therapeutics, Inc. | Chemically-locked bispecific antibodies |
-
2016
- 2016-11-17 US US15/353,979 patent/US10301395B2/en active Active
- 2016-11-17 CA CA3005454A patent/CA3005454A1/en not_active Abandoned
- 2016-11-17 EP EP16867096.6A patent/EP3377112A4/en not_active Withdrawn
- 2016-11-17 WO PCT/US2016/062411 patent/WO2017087603A1/en active Application Filing
- 2016-11-18 TW TW105137932A patent/TW201726173A/en unknown
-
2019
- 2019-04-18 US US16/388,760 patent/US11267905B2/en active Active
-
2022
- 2022-01-26 US US17/585,378 patent/US20220144971A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP3377112A4 (en) | 2019-06-12 |
EP3377112A1 (en) | 2018-09-26 |
CA3005454A1 (en) | 2017-05-26 |
US20170137539A1 (en) | 2017-05-18 |
US20190248923A1 (en) | 2019-08-15 |
US11267905B2 (en) | 2022-03-08 |
US10301395B2 (en) | 2019-05-28 |
WO2017087603A1 (en) | 2017-05-26 |
TW201726173A (en) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220144971A1 (en) | Chemically-Locked Bispecific Antibodies | |
JP7073258B2 (en) | Mutual complementation of functional antibody fragments for a two-component system against undesired cell redirection killing | |
CN110167966B (en) | Single domain antibodies to programmed cell death (PD-1) | |
JP6392923B2 (en) | MUC1 * antibody | |
JP7058213B2 (en) | Bonded molecule with modified J chain | |
JP7438958B2 (en) | Novel antibody molecules, methods of their preparation and uses thereof | |
JP7034489B2 (en) | Multispecific Fab fusion protein and its use | |
US10077312B2 (en) | CD3 and IL-23 receptor binding bispecific constructs and their use in the treatment of various diseases | |
JP2021501120A (en) | Anti-galectin-9 antibody and its use | |
JP2023520517A (en) | Masked IL-2 cytokines and their cleavage products | |
CN107810197B (en) | Methods of identifying bacteria comprising binding polypeptides | |
KR20160005345A (en) | Trimeric antigen binding molecules | |
EP4378954A1 (en) | Anti-pvrig/anti-tigit bispecific antibody and application | |
CN110551216B (en) | Multivalent anti-OX 40 antibodies and uses thereof | |
CN117440972A (en) | UPAR antibodies and fusion proteins having the same | |
Zhong et al. | Development of a bispecific antibody targeting PD-L1 and TIGIT with optimal cytotoxicity | |
Yang et al. | A novel His-tag-binding aptamer for recombinant protein detection and T cell-based immunotherapy | |
JP2024514109A (en) | Anti-CNTN4 antibody and its use | |
KR20220148699A (en) | Anti-CNTN4 specific antibody and its use | |
Sokolova et al. | Recombinant immunotoxin 4D5scFv-PE40 for targeted therapy of HER2-positive tumors | |
JP2022506156A (en) | Method for producing double-stranded protein in prokaryotic host cell | |
WO2023232036A1 (en) | Anti-cd40 antibody, anti-pd-l1×cd40 bispecific antibody, and use thereof | |
RU2809746C2 (en) | Humanized anti-vegf monoclonal antibody | |
WO2023186100A1 (en) | Anti-ror1 antibody and use thereof | |
Adish et al. | Obtaining and investigating immunochemical properties of monoclonal antibodies against rCTLA-4 protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: JMB CAPITAL PARTNERS LENDING, LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:SORRENTO THERAPEUTICS, INC.;SCINTILLA PHARMACEUTICALS, INC.;REEL/FRAME:063283/0063 Effective date: 20230330 |
|
AS | Assignment |
Owner name: SCILEX HOLDING COMPANY, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:SORRENTO THERAPEUTICS, INC.;SCINTILLA PHARMACEUTICALS, INC.;REEL/FRAME:064441/0575 Effective date: 20230728 |
|
AS | Assignment |
Owner name: SCINTILLA PHARMACEUTICALS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JMB CAPITAL PARTNERS LENDING, LLC;REEL/FRAME:064571/0848 Effective date: 20230809 Owner name: SORRENTO THERAPEUTICS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JMB CAPITAL PARTNERS LENDING, LLC;REEL/FRAME:064571/0848 Effective date: 20230809 |
|
AS | Assignment |
Owner name: SCINTILLA PHARMACEUTICALS, INC., CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY;ASSIGNOR:SCILEX HOLDING COMPANY;REEL/FRAME:065017/0844 Effective date: 20230921 Owner name: SORRENTO THERAPEUTICS, INC., CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY;ASSIGNOR:SCILEX HOLDING COMPANY;REEL/FRAME:065017/0844 Effective date: 20230921 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |