US20220054439A1 - Compositions for the treatment of autodigestion - Google Patents
Compositions for the treatment of autodigestion Download PDFInfo
- Publication number
- US20220054439A1 US20220054439A1 US17/460,184 US202117460184A US2022054439A1 US 20220054439 A1 US20220054439 A1 US 20220054439A1 US 202117460184 A US202117460184 A US 202117460184A US 2022054439 A1 US2022054439 A1 US 2022054439A1
- Authority
- US
- United States
- Prior art keywords
- peg
- compositions disclosed
- glucose
- tranexamic acid
- villi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 333
- 238000011282 treatment Methods 0.000 title abstract description 36
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 95
- 239000008103 glucose Substances 0.000 claims description 95
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 claims description 91
- 229960000401 tranexamic acid Drugs 0.000 claims description 91
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 77
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 72
- 229920002562 Polyethylene Glycol 3350 Polymers 0.000 claims description 65
- 239000007864 aqueous solution Substances 0.000 claims description 65
- 229920001223 polyethylene glycol Polymers 0.000 claims description 58
- 239000003792 electrolyte Substances 0.000 claims description 44
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 40
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 40
- 235000011152 sodium sulphate Nutrition 0.000 claims description 39
- 235000011164 potassium chloride Nutrition 0.000 claims description 38
- 239000001103 potassium chloride Substances 0.000 claims description 38
- 239000011780 sodium chloride Substances 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 19
- 230000000112 colonic effect Effects 0.000 claims description 16
- 230000035939 shock Effects 0.000 abstract description 53
- 206010058558 Hypoperfusion Diseases 0.000 abstract description 11
- 208000034486 Multi-organ failure Diseases 0.000 abstract description 10
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 abstract description 10
- 230000000968 intestinal effect Effects 0.000 abstract description 9
- 206010022680 Intestinal ischaemia Diseases 0.000 abstract description 5
- 238000009472 formulation Methods 0.000 description 121
- 241000700159 Rattus Species 0.000 description 101
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 40
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 24
- 238000000034 method Methods 0.000 description 21
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 20
- 235000017557 sodium bicarbonate Nutrition 0.000 description 19
- 230000006698 induction Effects 0.000 description 18
- 210000000813 small intestine Anatomy 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 208000032456 Hemorrhagic Shock Diseases 0.000 description 16
- 206010049771 Shock haemorrhagic Diseases 0.000 description 16
- 210000002175 goblet cell Anatomy 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- 230000006378 damage Effects 0.000 description 15
- 210000004369 blood Anatomy 0.000 description 13
- 239000008280 blood Substances 0.000 description 13
- -1 e.g. Polymers 0.000 description 13
- 239000000902 placebo Substances 0.000 description 13
- 229940068196 placebo Drugs 0.000 description 13
- 230000036772 blood pressure Effects 0.000 description 12
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 206010002091 Anaesthesia Diseases 0.000 description 10
- 230000037005 anaesthesia Effects 0.000 description 10
- 210000000936 intestine Anatomy 0.000 description 10
- 206010040070 Septic Shock Diseases 0.000 description 9
- 238000001356 surgical procedure Methods 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 230000036303 septic shock Effects 0.000 description 8
- 210000002784 stomach Anatomy 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 230000002526 effect on cardiovascular system Effects 0.000 description 7
- 210000001035 gastrointestinal tract Anatomy 0.000 description 7
- 208000028867 ischemia Diseases 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 6
- 206010040047 Sepsis Diseases 0.000 description 6
- 238000013130 cardiovascular surgery Methods 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 230000002008 hemorrhagic effect Effects 0.000 description 6
- 229960003299 ketamine Drugs 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 210000001015 abdomen Anatomy 0.000 description 5
- 210000001367 artery Anatomy 0.000 description 5
- 235000005911 diet Nutrition 0.000 description 5
- 230000037213 diet Effects 0.000 description 5
- 210000000713 mesentery Anatomy 0.000 description 5
- 238000003305 oral gavage Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000283984 Rodentia Species 0.000 description 4
- 206010007625 cardiogenic shock Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000001647 drug administration Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 208000010125 myocardial infarction Diseases 0.000 description 4
- 230000002685 pulmonary effect Effects 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 4
- 229960001600 xylazine Drugs 0.000 description 4
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 206010021138 Hypovolaemic shock Diseases 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 238000011887 Necropsy Methods 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 241000700157 Rattus norvegicus Species 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000003187 abdominal effect Effects 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 3
- 229940064804 betadine Drugs 0.000 description 3
- 230000004706 cardiovascular dysfunction Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 210000001105 femoral artery Anatomy 0.000 description 3
- 238000002637 fluid replacement therapy Methods 0.000 description 3
- 210000004013 groin Anatomy 0.000 description 3
- 238000012735 histological processing Methods 0.000 description 3
- 210000003405 ileum Anatomy 0.000 description 3
- 239000005414 inactive ingredient Substances 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000000302 ischemic effect Effects 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229940060946 miralax Drugs 0.000 description 3
- 230000004768 organ dysfunction Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012959 renal replacement therapy Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 206010040560 shock Diseases 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- YZYDOFGGDSDUPX-UHFFFAOYSA-M sodium;carbonic acid;chloride Chemical compound [Na+].[Cl-].OC(O)=O YZYDOFGGDSDUPX-UHFFFAOYSA-M 0.000 description 3
- 239000008227 sterile water for injection Substances 0.000 description 3
- 238000012916 structural analysis Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 206010009657 Clostridium difficile colitis Diseases 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 230000004872 arterial blood pressure Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 102000038379 digestive enzymes Human genes 0.000 description 2
- 108091007734 digestive enzymes Proteins 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 230000005980 lung dysfunction Effects 0.000 description 2
- 238000005399 mechanical ventilation Methods 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000008085 renal dysfunction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 206010002199 Anaphylactic shock Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 201000011001 Ebola Hemorrhagic Fever Diseases 0.000 description 1
- 241001115402 Ebolavirus Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 206010058119 Neurogenic shock Diseases 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 229920002560 Polyethylene Glycol 3000 Polymers 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- 208000032536 Pseudomonas Infections Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 229940124572 antihypotensive agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000013011 aqueous formulation Substances 0.000 description 1
- 201000005008 bacterial sepsis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 231100000284 endotoxic Toxicity 0.000 description 1
- 230000002346 endotoxic effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 238000002615 hemofiltration Methods 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 210000005027 intestinal barrier Anatomy 0.000 description 1
- 230000007358 intestinal barrier function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 244000309715 mini pig Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 206010034674 peritonitis Diseases 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/196—Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7004—Monosaccharides having only carbon, hydrogen and oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/765—Polymers containing oxygen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/04—Sulfur, selenium or tellurium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/14—Alkali metal chlorides; Alkaline earth metal chlorides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0087—Galenical forms not covered by A61K9/02 - A61K9/7023
- A61K9/0095—Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/06—Antiarrhythmics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- Shock is a life-threatening condition that can result from trauma, severe blood loss, heart attacks, cardiovascular dysfunction, ischemia, sepsis, and burns.
- Major classes of shock include but are not limited to cardiogenic shock, hypovolemic shock, hemorrhagic shock, anaphylactic shock, neurogenic shock, and septic (or endotoxic) shock.
- Shock can lead to multi-organ failure (also known as multi-organ dysfunction syndrome) if immediate medical treatment is not received.
- multi-organ failure also known as multi-organ dysfunction syndrome
- the intestinal barrier and walls become compromised and the digestive enzymes that are normally contained within the intestine permeate through the intestinal walls and enter the bloodstream, leading to a condition known as autodigestion, in which the body's digestive enzymes begin to digest its own tissues.
- Autodigestion is hypothesized to be a mechanism for inflammation and multi-organ failure resulting from shock.
- compositions for the treatment of shock, autodigestion, multi-organ failure, intestinal ischemia, and/or hypoperfusion comprise tranexamic acid, PEG, glucose, and one or more electrolytes.
- the PEG is PEG 3350.
- compositions disclosed herein comprise a non-colonic cleansing amount of PEG 3350.
- compositions disclosed herein comprise about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 40 g of glucose, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride.
- compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 40 g of glucose. In some embodiments, compositions disclosed herein are formulated as aqueous solutions. In certain specific embodiments, the volume of the aqueous solution is 1000 mL In some embodiments, compositions disclosed herein comprise about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 28 g of glucose, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 28 g of glucose. In some embodiments, compositions disclosed herein are formulated as aqueous solutions. In certain specific embodiments, the volume of the aqueous solution is 700 mL.
- compositions disclosed herein are administered for the treatment of shock, autodigestion, multi-organ failure, intestinal ischemia, or hypoperfusion. In certain specific embodiments, compositions disclosed herein are administered for the treatment of cardiogenic shock, hemorrhagic shock, or septic shock. In some embodiments, compositions disclosed herein are administered for the treatment of septic shock associated with or caused by sepsis. In some embodiments, compositions disclosed herein are administered for the treatment of cardiogenic shock associated with or caused by cardiovascular surgery, myocardial infarction, arrhythmia, or mechanical complications. In some embodiments, compositions disclosed herein are administered for the treatment of hemorrhagic shock associated with or caused by trauma.
- compositions disclosed herein are administered for the treatment of shock associated with or caused by a hemorrhagic virus.
- the hemorrhagic virus is an Ebola virus.
- compositions disclosed herein are administered orally, or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- kits comprising: the components tranexamic acid, PEG, glucose, and one or more electrolytes, wherein at least one of the components tranexamic acid, PEG, glucose, and one or more electrolytes is in a separate container from at least one of the other components tranexamic acid, PEG, glucose, and one or more electrolytes; and instructions to combine the components tranexamic acid, PEG, glucose, and one or more electrolytes in a single composition.
- a kit comprises tranexamic acid, PEG, and one or more electrolytes are in a first container, and glucose in a second container.
- a kit comprises instructions to reconstitute the components with water to provide an aqueous formulation.
- a kit comprises a first container comprising about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, and a second container comprising about 40 g of glucose.
- a kit comprises a first container comprising about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, a second container comprising about 40 g of glucose, and instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 1000 mL.
- a kit comprises a first container comprising about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, and a second container comprising about 28 g of glucose.
- a kit comprises a first container comprising about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, a second container comprising about 28 g of glucose, and instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 700 mL.
- a kit comprises instructions to administer the combined components orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- FIG. 1 shows a representative cross section of the small intestine from a rat treated with an enteral formulation and superior mesentery artery occlusion (SMAO). Healthy villi are marked with n and damaged villi are marked with d.
- SMAO superior mesentery artery occlusion
- FIGS. 2A and 2B show the cross sections of the small intestines of rats following treatment with Representative Formulation 1 and Comparative Formulation 1, respectively.
- FIG. 2A shows that rat intestinal villi appear healthy and structurally intact and that the entire length of the villi is visible and completely covered in goblet cells, following administration of Representative Formulation 1 and shock induction according to Example 2.
- FIG. 2B shows that rat intestinal villi are structurally damaged, with missing villi tips and atypical goblet cell staining, following administration of Comparative Formulation 1 and shock induction according to Example 2.
- FIG. 3 illustrates the percentage of villi that were structurally intact with intact epithelial lining in all rats treated in Example 2.
- FIGS. 4A and 4B show the cross section of the small intestine from a rat treated with Representative Formulation 2 and Comparative Formulation 2, respectively.
- FIG. 4A shows that villi appear healthy and structurally intact and that the entire length of the villi is visible and completely covered in goblet cells, following administration of Representative Formulation 2 and shock induction according to Example 3.
- FIG. 4B shows that rat villi are structurally damaged, with missing villi tips and atypical goblet cell staining, following administration of Comparative Formulation 2 and shock induction according to Example 3.
- FIG. 5 illustrates the percentage of villi that were structurally intact with intact epithelial lining in all rats treated in Example 3.
- Representative Formulation 2 preserved on average 83.4% of villi, while Comparative Formulation 2 preserved on average 51.3% of the villi.
- FIGS. 6A and 6B show the cross section of the small intestine from a rat treated with Representative Formulation 3 and Comparative Formulation 3, respectively.
- FIG. 6A shows that villi appear healthy and structurally intact and that the entire length of the villi is visible and completely covered in goblet cells, following administration of Representative Formulation 3 and hemorrhagic shock induction according to Example 4.
- FIG. 6B shows that rat villi are structurally damaged following administration of Comparative Formulation 3 and hemorrhagic shock induction according to Example 4.
- FIG. 7 illustrates the percentage of villi that were structurally intact with intact epithelial lining in all rats treated in Example 4, Representative.
- treat and its grammatical variants (e.g., “to treat,” “treating,” and “treatment”) refer to administration of an active pharmaceutical ingredient to a patient with the purpose of ameliorating or reducing the incidence of one or more symptoms of a condition or disease state in the patient. In some embodiments, such symptoms are chronic or acute, and such amelioration are partial or complete for some instances.
- treatment entails administering a pharmaceutical composition described herein to a patient via a route of administration disclosed herein.
- PEG refers to a polyethylene glycol polymer.
- the numerical value defines the average molecular weight of the polyethylene glycol polymer.
- PEG 3350 refers to a polyethylene glycol polymer that has an average molecular weight of 3,350 Da.
- non-colonic cleansing amount refers to an amount of a substance that does not cause significant or substantially all removal of feces and toxins from the colon and intestinal tract when administered to the gastrointestinal tract.
- Electrolytes include, but are not limited to, soluble salts, acids, or bases.
- wt % refers to the weight percent of a given component in a composition.
- an aqueous solution comprising 4 wt % glucose refers to an aqueous solution that comprises 4 grams of glucose per 100 grams of the solution.
- compositions for the treatment of shock, autodigestion, multi-organ failure, intestinal ischemic, or hypoperfusion comprise tranexamic acid.
- the compositions comprise about 7.0 g, about 7.1 g, about 7.2 g, about 7.3 g, about 7.4 g, about 7.5 g, about 7.6 g, about 7.7 g, about 7.8 g, about 7.9 g, about 8.0 g, about 8.1 g, about 8.2 g, about 8.3 g, about 8.4 g, about 8.5 g, or about 8.6 g of tranexamic acid.
- compositions disclosed herein comprise about 7.8 g of tranexamic acid.
- compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid.
- compositions disclosed herein comprise about 6.8 g, about 6.9 g, about 7.0 g, about 7.1 g, about 7.2 g, about 7.3 g, about 7.4 g, about 7.5 g, about 7.6 g, about 7.7 g, about 7.8 g, about 7.9 g, about 8.0 g, about 8.1 g, about 8.2 or about 8.3 g of tranexamic acid.
- compositions disclosed herein comprise about 7.5 g of tranexamic acid.
- compositions disclosed herein comprise about 6.8 g to about 8.3 g of tranexamic acid.
- compositions disclosed herein comprise a non-colonic cleansing amount of PEG. In certain specific embodiments, compositions disclosed herein comprise a non-colonic cleansing amount of PEG 2000, PEG 3000, PEG 3350, or PEG 4000. In a specific embodiment, compositions disclosed herein comprise a non-colonic cleansing amount of PEG 3350.
- a non-colonic cleansing amount of PEG is about 33.9 g, about 34.0 g, about 34.1 g, about 34.2 g, about 34.3 g, about 34.4 g, about 34.5 g, about 34.6 g, about 34.7 g, about 34.8 g, about 34.9 g, about 35.0 g, about 35.1 g, about 35.2 g, about 35.3 g, about 35.4 g, about 35.5 g, about 35.6 g, about 35.7 g, about 35.8 g, about 35.9 g, about 36.0 g, about 36.1 g, about 36.2 g, about 36.3 g, about 36.4 g, about 36.5 g, about 36.6 g, about 36.7 g, about 36.8 g, about 36.9 g, about 37.0 g, about 37.1 g, about 37.2 g, about 37.3 g, about 37.4 g, about 37.5 g
- a non-colonic cleansing amount of PEG, e.g., PEG 3350 is about 50.3 g. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 45.2 g to about 55.3 g. In a specific embodiment, a non-colonic cleansing amount of PEG, e.g., PEG 3350 is about 37.7 g. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 33.9 g to about 41.5 g. In a specific embodiment, a non-colonic cleansing amount of PEG, e.g., PEG 3350 is about 40.2 g. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 36.2 g to about 44.2 g.
- a non-colonic cleansing amount of PEG is about 29.3 g, about 29.4 g, about 29.5 g, about 29.6 g, about 29.7 g, about 29.8 g, about 29.9 g, about 30.0 g, about 30.1 g, about 30.2 g, about 30.3 g, about 30.4 g, about 30.5 g, about 30.6 g, about 30.7 g, about 30.8 g, about 30.9 g, about 31.0 g, about 31.1 g, about 31.2 g, about 31.3 g, about 31.4 g, about 31.5 g, about 31.6 g, about 31.7 g, about 31.8 g, about 31.9 g, about 32.0 g, about 32.1 g, about 32.2 g, about 32.3 g, about 32.4 g, about 32.5 g, about 32.6 g, about 32.7 g, about 32.8 g, about 32.9 g, about 32.0 g, about 32.1 g, about 3
- a non-colonic cleansing amount of PEG e.g., PEG 3350 is about 32.5 g. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 29.3 g to about 35.8 g.
- compositions disclosed herein are formulated as aqueous solutions comprising about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, about 5.1 wt %, about 5.2 wt %, about 5.3 wt %, about 5.4 wt %, or about 5.5 wt % of PEG.
- compositions disclosed herein are formulated as aqueous solutions comprising about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, about 5.1 wt %, about 5.2 wt %, about 5.3 wt %, about 5.4 wt %, or about 5.5 wt % of PEG 3350.
- compositions disclosed herein are formulated as aqueous solutions comprising about 5.0 wt % of PEG.
- compositions disclosed herein are formulated as aqueous solutions comprising about 4.5 wt % to about 5.5 wt % of PEG. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 5.0 wt % of PEG 3350. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.5 wt % to about 5.5 wt % of PEG 3350.
- compositions disclosed herein are formulated as aqueous solutions comprising about 4.2 wt %, about 4.3 wt %, about 4.4 wt %, about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, or about 5.1 wt % of PEG.
- compositions disclosed herein are formulated as aqueous solutions comprising about 4.2 wt %, about 4.3 wt %, about 4.4 wt %, about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, or about 5.1 wt % of PEG 3350.
- compositions disclosed herein are formulated as aqueous solutions comprising about 4.6 wt % of PEG.
- compositions disclosed herein are formulated as aqueous solutions comprising about 4.2 wt % to about 5.1 wt % of PEG. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 4.6 wt % of PEG 3350. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.2 wt % to about 5.1 wt % of PEG 3350.
- compositions disclosed herein comprise glucose. In some embodiments, compositions disclosed herein comprise about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, about 30 g, about 31 g, about 32 g, about 33 g, about 34 g, about 35 g, about 36 g, about 37 g, about 38 g, about 39 g, about 40 g, about 41 g, about 42 g, about 43 g, about 44 g, about 45 g, about 46 g, about 47 g, about 48 g, about 49 g, about 50 g, about 51 g, about 52 g, about 53 g, about 54 g, about 55 g, about 56 g, about 57 g, about 58 g, about 59 g, or about 60 g of glucose.
- compositions disclosed herein comprise about 40 g of glucose. In certain embodiments, compositions disclosed herein comprise about 25 g to about 60 g of glucose, or about 25 g to about 50 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 30 g of glucose. In certain embodiments, compositions disclosed herein comprise about 19 g to about 45 g of glucose, or about 19 g to about 38 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 32 g of glucose. In certain embodiments, compositions disclosed herein comprise about 20 g to about 48 g of glucose, or about 20 g to about 40 g of glucose.
- compositions disclosed herein comprise about 25 g, about about 27 g, about 28 g, about 29 g, about 30 g, or about 31 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 28 g of glucose. In certain embodiments, compositions disclosed herein comprise about 25 g to about 31 g of glucose
- compositions disclosed herein are formulated as aqueous solutions comprising about 2.5 wt %, about 2.6 wt %, about 2.7 wt %, about 2.8 wt %, about 2.9 wt %, about 3.0 wt %, about 3.1 wt %, about 3.2 wt %, about 3.3 wt %, about 3.4 wt %, about 3.5 wt %, about 3.6 wt %, about 3.7 wt %, about 3.8 wt %, about 3.9 wt %, about 4.0 wt %, about 4.1 wt %, about 4.2 wt %, about 4.3 wt %, about 4.4 wt %, about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, about
- compositions disclosed herein are formulated as aqueous solutions comprising about 4 wt % of glucose. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 2.5 wt % to about 6.0 wt % of glucose, or about 2.5 wt % to about 5.0 wt % of glucose.
- compositions disclosed herein are formulated as aqueous solutions comprising about 3.6 wt %, about 3.7 wt %, about 3.8 wt %, about 3.9 wt %, about 4.0 wt %, about 4.1 wt %, about 4.2 wt %, about 4.3 wt %, or about 4.4 wt % of glucose.
- compositions disclosed herein are formulated as aqueous solutions comprising about 4 wt % of glucose.
- compositions disclosed herein are formulated as aqueous solutions comprising about 3.6 wt % to about 4.4 wt % of glucose.
- compositions disclosed herein comprise one or more electrolytes.
- the one or more electrolytes comprise sodium chloride (NaCl).
- compositions disclosed herein comprise about 1.0 g, about 1.1 g, about 1.2 g, about 1.3 g, about 1.4 g, about 1.5 g, about 1.6 g, or about 1.7 of sodium chloride.
- compositions disclosed herein comprise about 1.5 g of sodium chloride.
- compositions disclosed herein comprise about 1.3 g to about 1.7 g of sodium chloride.
- compositions disclosed herein comprise about 1.1 g of sodium chloride.
- compositions disclosed herein comprise about 1.0 g to about 1.2 g of sodium chloride. In a specific embodiment, compositions disclosed herein comprise about 1.2 g of sodium chloride. In some embodiments, compositions disclosed herein comprise about 1.1 g to about 1.3 g of sodium chloride.
- compositions disclosed herein comprise about 0.9 g, about 1.0 g, or about 1.1 g of sodium chloride. In a specific embodiment, compositions disclosed herein comprise about 1.0 g of sodium chloride. In some embodiments, compositions disclosed herein comprise about 0.9 g to about 1.1 g of sodium chloride.
- compositions disclosed herein are formulated as aqueous solutions comprising about 0.13 wt %, about 0.14 wt %, about 0.15 wt %, about 0.16 wt %, about 0.17 wt % of sodium chloride. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.15 wt % of sodium chloride. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.13 wt % to about 0.17 wt % of sodium chloride.
- the one or more electrolytes comprise sodium sulfate (Na 2 SO 4 ),
- compositions disclosed herein comprise about 3.9 g, about 4.0 g, about 4.1 g, about 4.2 g, about 4.3 g, about 4.4 g, about 4.5 g, about 4.6 g, about 4.7 g, about 4.8 g, about 4.9 g, about 5.0 g, about 5.1 g, about 5.2 g, about 5.3 g, about 5.4 g, about 5.5 g, about 5.6 g, about 5.7 g, about 5.8 g, about 5.9 g, about 6.0 g, about 6.1 g, about 6.2 or about 6.3 g of sodium sulfate.
- compositions disclosed herein comprise about 5.7 g of sodium sulfate. In some embodiments, compositions disclosed herein comprise about 5.1 g to about 6.3 g of sodium sulfate. In a specific embodiment, compositions disclosed herein comprise about 4.3 g of sodium sulfate. In some embodiments, compositions disclosed herein comprise about 3.9 g to about 4.7 g of sodium sulfate. In a specific embodiment, compositions disclosed herein comprise about 4.6 g of sodium sulfate. In some embodiments, compositions disclosed herein comprise about 4.1 g to about 5.1 g of sodium sulfate.
- compositions disclosed herein comprise about 3.6 g, about 3.7 g, about 3.8 g, about 3.9 g, about 4.0 g, about 4.1 g, about 4.2 g, about 4.3 g, or about 4.4 g of sodium sulfate.
- compositions disclosed herein comprise about 4.0 g of sodium sulfate.
- compositions disclosed herein comprise about 3.6 g to about 4.4 g of sodium sulfate.
- compositions disclosed herein are formulated as aqueous solutions comprising sodium sulfate.
- the compositions disclosed herein are formulated as aqueous solutions comprising about 0.51 wt %, about 0.52 wt %, about 0.53 wt %, about 0.54 wt %, about 0.55 wt %, about 0.56 wt %, about 0.57 wt %, about 0.58 wt %, about 0.59 wt %, about 0.60 wt %, about 0.61 wt %, about 0.62 wt %, or about 0.63 wt % of sodium sulfate.
- compositions disclosed herein are formulated as aqueous solutions comprising about 0.57 wt % of sodium sulfate. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.51 wt % to about 0.63 wt % of sodium sulfate.
- the one or more electrolytes comprise sodium bicarbonate (NaHCO 3 ).
- compositions disclosed herein comprise about 1.2 g, about 1.3 g, about 1.4 g, about 1.5 g, about 1.6 g, about 1.7 g, about 1.8 g, or about 1.9 g of sodium bicarbonate.
- compositions disclosed herein comprise about 1.7 g of sodium bicarbonate.
- compositions disclosed herein comprise about 1.5 g to about 1.9 g of sodium bicarbonate.
- compositions disclosed herein comprise about 1.3 g of sodium bicarbonate.
- compositions disclosed herein comprise about 1.2 g to about 1.4 g of sodium bicarbonate.
- compositions disclosed herein comprise about 1.4 g of sodium bicarbonate.
- compositions disclosed herein comprise about 1.3 g to about 1.5 g of sodium bicarbonate.
- compositions disclosed herein comprise about 1.1 g, about 1.2 g, or about 1.3 g of sodium bicarbonate. In a specific embodiment, compositions disclosed herein comprise about 1.2 g of sodium bicarbonate. In some embodiments, compositions disclosed herein comprise about 1.1 g to about 1.3 g of sodium bicarbonate.
- compositions disclosed herein are formulated as aqueous solutions comprising about 0.15 wt %, about 0.16 wt %, about 0.17 wt %, about 0.18 wt %, or about 0.19 wt % of sodium bicarbonate. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.117 wt % of sodium bicarbonate. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.15 wt % to about 0.19 wt % of sodium bicarbonate.
- compositions disclosed herein are formulated as aqueous solutions comprising about (116 wt %, about 0.17 wt %, about 0.18 wt %, or about 0.19 wt % of sodium bicarbonate. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.17 wt % of sodium bicarbonate. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.16 wt % to about 0.19 wt % of sodium bicarbonate.
- the one or more electrolytes comprise potassium chloride (KCl).
- compositions disclosed herein comprise about 0.4 g, about 0.5 g, about 0.6 g, about 0.7 g or about 0.8 g of potassium chloride. In a specific embodiment, compositions disclosed herein comprise about 0.7 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 0.6 g to about 0.8 g of potassium chloride. In a specific embodiment, compositions disclosed herein comprise about 0.5 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 0.4 g to about 0.6 g of potassium chloride. In a specific embodiment, compositions disclosed herein comprise about 0.6 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 0.5 g to about 0.7 g of potassium chloride.
- compositions disclosed herein are formulated as aqueous solutions comprising about 0.06 wt %, about 0.07 wt %, or about 0.08 wt % of potassium chloride. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.07 wt % of potassium chloride. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.06 wt % to about 0.08 wt % of potassium chloride.
- compositions disclosed herein are formulated as aqueous solutions comprising about 0.06 wt %, about 0.07 wt %, about 0.08 wt %, or about 0.09% wt of potassium chloride. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.07 wt % of potassium chloride. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.06 wt % to about 0.09 wt % of potassium chloride.
- compositions disclosed herein are formulated into any suitable dosage form, including but not limited to solutions, dispersions, self-emulsifying dispersions, solid solutions, liposomal dispersions, liquids, gels, syrups, elixirs, lyophilized formulations, powders, or multiparticulate formulations.
- Such formulations are optionally manufactured in a conventional manner, such as, by way of example only, conventional mixing, dissolving, emulsifying, and the like.
- compositions disclosed herein are formulated as a powder for reconstitution.
- compositions disclosed herein are formulated as an aqueous solution.
- compositions disclosed herein are formulated as a solution, e.g., an aqueous solution.
- compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 500 mL, about 510 mL, about 520 mL, about 530 mL, about 540 mL, about 550 ML, about 560 mL, about 570 mL, about 580 mL, about 590 mL, about 600 mL, about 610 mL, about 620 mL, about 630 mL, about 640 mL, about 650 mL, about 660 mL, about 670 mL, about 680 mL, about 690 mL, about 700 mL, about 710 mL, about 720 mL, about 730 mL, about 740 mL, about 750 mL, about 760 mL, about 770
- compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 500 mL to about 1000 mL. In some embodiments, compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 750 mL to about 1000 mL.
- compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 630 mL, about 640 mL, about 650 mL, about 660 mL, about 670 mL, about 680 mL, about 690 mL, about 700 mL, about 710 mL, about 720 mL, about 730 mL, about 740 mL, about 750 mL, about 760 mL, or about 770 mL.
- compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 700 mL.
- compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 630 mL to about 770 rail.
- compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 25 g to about 60 g of glucose. In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 25 g to about 50 g of glucose.
- compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, about 30 g, about 31 g, about 32 g, about 33 g, about 34 g, about 35 g, about 36 g, about 37 g, about 38 g, about 39 g, about 40 g, about 41 g, about 42 g, about 43 g, about 44 g, about 45 g, about 46 g, about 47 g, about 48 g, about 49 g, about 50 g, about 51 g, about 52 g, about 53 g, about 54 g, about 55 g, about 56 g, about 57 g, about 58 g, about 59 g, or about 60 g of glucose.
- compositions disclosed herein comprise about 7.
- compositions disclosed herein comprise about 6.8 g to about 8.3 g of tranexamic acid and about 25 g to about 31 g of glucose. In certain specific embodiments, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, about 30 g, or about 31 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 28 g of glucose.
- compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 45.2 g to about 55.3 g of PEG 3350. In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 33.9 g to about 41.5 g of PEG 3350. In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 36.2 g to about 44.2 g of PEG 3350.
- compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 33.9 g, about 34.0 g, about 34.1 g, about 34.2 g, about 34.3 g, about 34.4 g, about 34.5 g, about 34.6 g, about 34.7 g, about 34.8 g, about 34.9 g, about 35.0 g, about 35.1 g, about 35.2 g, about 35.3 g, about 35.4 g, about 35.5 g, about 35.6 g, about 35.7 g, about 35.8 g, about 35.9 g, about 36.0 g, about 36.1 g, about 36.2 g, about 36.3 g, about 36.4 g, about 36.5 g, about 36.6 g, about 36.7 g, about 36.8 g, about 36.9 g, about 37.0 g, about 37.1 g, about 37.2 g, about 37.3 g, about 37.4 g, about 37.5 g, about 37.
- compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 59.0 g of PEG 3350. In a specific embodiment, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 40.2 g of PEG 3350. In a specific embodiment, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 37.7 g of PEG 3350.
- compositions disclosed herein comprise about 6.8 g to about 8.3 g of tranexamic acid and about 29.3 g to about 35.8 g of PEG 3350. In certain specific embodiments, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 29.3 g, about 29.4 g, about 29.5 g, about 29.6 g, about 29.7 g, about 29.8 g, about 29.9 g, about 30.0 g, about 30.1 g, about 30.2 g, about 30.3 g, about 30.4 g, about 30.5 g, about 30.6 g, about 30.7 g, about 30.8 g, about 30.9 g, about 31.0 g, about 31.1 g, about 31.2 g, about 31.3 g, about 31.4 g, about 31.5 g, about 31.6 g, about 31.7 g, about 31.8 g, about 31.9 g, about 32.0 g, about 32.1 g, about
- compositions disclosed herein are formulated as aqueous solutions comprising about 7.0 g to about 8.6 g of tranexamic acid, about 4.5 wt % to about 5.5 wt % of PEG 3350, about 2.5 wt % to about 6 wt % of glucose, about 0.51 wt % to about 0.63 wt % of sodium sulfate, about 0.15 wt % to about 0.19 wt % of sodium bicarbonate, about 0.13 wt % to about 0.17 wt % of sodium chloride, and about 0.06 wt % to about 0.08 wt % of potassium chloride.
- compositions disclosed herein are formulated as aqueous solutions comprising about 7.0 g to about 8.6 g of tranexamic acid, about 4.5 wt % to about 5.5 wt % of PEG 3350, about 2.5 wt % to about 5 wt % of glucose, about 0.51 wt % to about 0.63 wt % of sodium sulfate, about 0.115 wt % to about 0.19 wt % of sodium bicarbonate, about 0.13 wt % to about 0.17 wt % of sodium chloride, and about 0.06 wt % to about 0.08 wt % of potassium chloride.
- compositions disclosed herein are formulated as aqueous solutions comprising about 7.8 g of tranexamic acid, about 5.0 wt % of PEG 3350, about 4 wt % of glucose, about 0.57 wt % of sodium sulfate, about 0.17 wt % of sodium bicarbonate, about 0.15 wt % of sodium chloride, and about 0.07 wt % of potassium chloride.
- compositions disclosed herein are formulated as aqueous solutions comprising about 6.8 g to about 8.3 g of tranexamic acid, about 4.2 wt % to about 5.1 wt % of PEG 3350, about 3.6 wt % to about 4.4 wt % of glucose, about 0.51 wt % to about 0.63 wt % of sodium sulfate, about 0.16 wt % to about 0.19 wt % of sodium bicarbonate, about 0.13 wt % to about 0.17 wt % of sodium chloride, and about 0.06 wt % to about 0.09 wt % of potassium chloride.
- compositions disclosed herein are formulated as aqueous solutions comprising about 7.5 g of tranexamic acid, about 4.6 wt t, of PEG 3350, about 4 wt % of glucose, about 0.57 wt % of sodium sulfate, about 0.17 wt % of sodium bicarbonate, about 0.15 wt % of sodium chloride, and about 0.07 wt % of potassium chloride.
- compositions disclosed herein are formulated with one or more inactive ingredients or pharmaceutical excipients that provide suitable properties of the formulation.
- inactive ingredients include but are not limited to antioxidants, carriers, viscosity modulating agents, diluents, flavoring agents, preservatives, solubilizers, stabilizers, suspending agents, and surfactants. Any suitable amounts of such inactive ingredients are determined according to the particular properties desired.
- compositions disclosed herein are administered for the treatment of shock, autodigestion, multi-organ failure, ischemia, or hypoperfusion.
- compositions disclosed herein are administered for the treatment of cardiogenic shock, hemorrhagic shock, or septic shock.
- ischemia is intestinal ischemia.
- compositions disclosed herein are administered for the treatment of septic shock associated with or caused by sepsis.
- compositions disclosed herein are administered for the treatment of cardiovascular shock associated with or caused by cardiovascular surgery, myocardial infarction, arrhythmia, or mechanical complications.
- a mechanical complication is a cardiovascular mechanical complication.
- compositions disclosed herein are administered for the treatment of cardiovascular shock associated with or caused by myocardial infarction or mechanical complications. In some embodiments, compositions disclosed herein are administered for the treatment of hemorrhagic or hypovolemic shock associated with or caused by trauma. In some embodiments, compositions disclosed herein may be administered for the treatment of hemorrhagic or hypovolemic shock associated with or caused by Ebola Virus Disease or other hemorrhagic virus. In some embodiments, compositions disclosed herein are administered for the treatment of intestinal ischemia or hypoperfusion that result in shock.
- compositions disclosed herein may be administered for the treatment of Inflammatory Bowel Disease or Crohn's Disease, or complications arising from Inflammatory Bowel Disease or Crohn's Disease. In some embodiments, compositions disclosed herein may be administered for the treatment of Clostridium difficile colitis, or complications that arise from Clostridium difficile colitis.
- compositions disclosed herein are administered to a subject, e.g., a human, by multiple administration routes, either alone or concurrently, including but not limited to oral, nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy administration or other enteral routes.
- compositions disclosed herein are administered directly to the gastrointestinal tract.
- compositions disclosed herein are administered to the stomach.
- compositions disclosed herein are administered to the small intestine.
- compositions disclosed herein are administered via a nasogastic, orogastic, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- compositions disclosed herein are delivered orally or by direct injection.
- compositions are administered by a single route of administration.
- compositions are administered by multiple routes of administration.
- kits wherein one or more of the components are contained in separate packages or containers along with instructions to combine the components in a single composition.
- a kit comprises instructions to reconstitute the components in a liquid carrier, such as water, to produce a liquid, e.g., aqueous, formulation comprising the components.
- the components of the compositions disclosed herein are provided in a single package or container with instructions to reconstitute them in a liquid carrier, such as water, to produce a liquid, e.g., aqueous, formulation.
- the components of the compositions disclosed herein are provided in kits wherein one or more of the components are contained in separate packages or containers, and wherein a liquid carrier, such as water, is also provided in a separate package or container in the kit, along with instructions to combine the components and liquid carrier in a single composition to produce a liquid, e.g., aqueous, formulation.
- a liquid carrier such as water
- a kit comprises instructions to administer a composition or formulation disclosed herein orally or via a nasogastic, orogastic, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter to a subject, e.g., a human, to treat shock, autodigestion, multi-organ failure, ischemia, or hypoperfusion.
- a kit comprises tranexamic acid and glucose packaged in separate containers.
- a kit comprises tranexamic acid, polyethylene glycol, and one or more electrolytes in a first container and glucose in a second container.
- a kit comprises tranexamic acid and polyethylene glycol in a first container and glucose and one or more electrolytes in a second container.
- a kit comprises tranexamic acid and electrolytes in a first container and glucose and polyethylene glycol in a second container.
- a kit comprises tranexamic acid in a first container and glucose, polyethylene glycol, and electrolytes in a second container.
- the containers are made of any suitable packaging material and in any form suitable for the distribution of pharmaceutical products.
- kits comprising: the components tranexamic acid, PEG, glucose, and one or more electrolytes, wherein at least one of the components tranexamic acid, PEG, glucose, and one or more electrolytes is in a separate container from at least one of the other components tranexamic acid, PEG, glucose, and one or more electrolytes; and instructions to combine the components tranexamic acid, PEG, glucose, and one or more electrolytes in a single composition.
- a kit comprises tranexamic acid, PEG, and one or more electrolytes are in a first container, and glucose in a second container.
- a kit comprises instructions to combine the tranexamic acid, PEG, one or more electrolytes, and glucose, and reconstitute them in water.
- a kit comprises a first container comprising about 7.8 g of tranexamic acid, about 503 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, and a second container comprising about 40 g of glucose.
- a kit comprises a first container comprising about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, a second container comprising about 40 g of glucose, and instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 1000 mL.
- a kit comprises a first container comprising about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, and a second container comprising about 28 g of glucose.
- a kit comprises a first container comprising about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, a second container comprising about 28 g of glucose, and instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 700 mL.
- a kit comprises instructions to administer the combined components orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- compositions disclosed herein are tested in animal models that are indicative of efficacy in the treatment of shock, autodigestion, mufti-organ failure, trauma, sepsis, and ischemia.
- animal models include but are not limited to the minipig hemorrhagic shock model, rat hemorrhagic shock, rat superior mesentery artery occlusion shock, rodent peritonitis shock by placement of cecal material into the peritoneum, rodent endotoxin shock models, and rodent models of bacterial sepsis established through a Pseudomonas infection.
- Example 1 Exemplary Compositions
- compositions are described in Tables 1 and 2.
- the compositions according to the instant disclosure are prepared as a dry powder formulation and reconstituted as shown.
- Table 1 shows a composition for reconstitution in water to 1000 mL.
- Table 2 shows a composition for reconstitution in water to 700 mL.
- compositions upon reconstitution, are administered to a patient in need thereof, e.g., orally or directly to the gastrointestinal tract via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- the SMAO model was used to assess the ability of a representative composition comprising PEG 3350 (Representative Formulation 1) and a comparative composition without PEG 3350 (Comparative Formulation 1) to preserve the structural integrity of the gastrointestinal tract under ischemic conditions when administered by oral gavage.
- Example 3 The materials used to prepare the formulations and their sources are shown in Table 3. All materials used were USP grade. As shown in Table 3, Representative Formulation 1 comprises tranexamic acid, electrolytes, PEG 3350, and glucose, and Comparative Formulation 1 comprises tranexamic acid, electrolytes, and glucose.
- Formulation 1 Source Tranexamic acid 0.043 g 0.043 g Daiichi Sankyo PEG 3350 0.287 g 0.0 g OTC clinical grade Miralax Sodium Sulfate 0.033 g 0.033 g Sigma-Aldrich (Anhydrous) Sodium 0.010 g 0.010 g Sigma-Aldrich Bicarbonate Sodium Chloride 0.009 g 0.009 g Sigma-Aldrich Potassium 0.004 g 0.004 g Sigma-Aldrich Chloride Glucose 0.229 g 0.229 g Sigma-Aldrich Water 3.629 g 3.629 g Sterile water for injection Total Solution 4.000 mL 4.000 mL 4.000 mL
- Rats had ad lib access to drinking water while in the home cage the evening prior to surgery.
- rats were restrained and given 4 mL of Representative Formulation 1 or Comparative Formulation 1 by oral gavage. After administration of the test formulations, rats were returned to their home cage and given ad lib access to water, After a 3 hour period, the rats were prepared to undergo experimentally induced shock.
- Rats were secured in a supine position to a temperature controlled (water circulating heat pump) operating table. The animals were maintained at 37° C. throughout the procedures.
- the superior mesentery artery was located and tied off (occluded) to prevent blood flow to the intestine and initiate a 30 minute shock/hypoperfusion period.
- the surgical site was covered with moistened sterile gauze during the entire SMAO shock period. After the 30 minute period, the SMAO was untied (occlusion removed). Perfusion was resumed for a period of 2 hours, followed by sacrifice of the animals.
- the intestines were then harvested by tying off both ends, injecting a 10% neutral buffered formalin solution with a 30 gauge needle, and storing the intestine in a jar filled with 10% neutral buffered formalin.
- the Photoshop Text tool was used to place an n (for no damage) or a d (for damage) in proximity to each individual villi for each tissue cross section. Where a determination of damage was inconclusive, the villi were excluded from the analysis. These inconclusive villi were less than 5% of the total villi analyzed.
- An image demonstrating the identification methodology is in FIG. 1 , which shows a cross section of the small intestine from a rat treated with an enteral formulation. Healthy villi are marked with n and damaged villi are marked with d.
- FIGS. 2A and 2B show representative micrographs of the villi after administration of the formulations and shock induction.
- FIG. 2A shows a cross section of the small intestine of a rat treated with Representative Formulation 1.
- the villi in FIG. 2A appear healthy and structurally intact as the entire length of the villi are visible and completely covered in goblet cells.
- FIG. 2B shows a cross section of the small intestine of a rat treated with Comparative Formulation 1.
- T villi in FIG. 2B appear to be structurally damaged with missing villi tips and atypical goblet cell staining.
- Tables 4 and 5 and FIG. 3 Quantification of villi that were structurally intact after administration of the formulations and shock induction are shown in Tables 4 and 5 and FIG. 3 .
- Table 4 shows the individual rat data for the quantification of the structurally intact villi.
- Table 5 summarizes the total intact villi and damaged villi observed after administration of the formulations and shock induction.
- FIG. 3 shows the mean percentage of villi intact per rat after administration of the formulations and shock induction. 92.6% of villi were intact across all rats that received Representative Formulation 1, whereas only 52.8% of the villi were intact across all rats that received. Comparative Formulation 1. These results are consistent with the mean values calculated from the total villi observed in Table 5.
- the SMAO model was used to assess the ability of a representative composition comprising glucose (Representative Formulation 2) and a comparative composition without glucose (Comparative Formulation 2) to preserve the structural integrity of the gastrointestinal tract under ischemic conditions when administered by direct enteral injection.
- the materials used to prepare the formulations and their sources are shown in Table 6. All materials used were USP grade. As shown in Table 6, the Representative Formulation 2 comprises tranexamic acid, electrolytes, PEG 3350, and glucose, and Comparative Formulation 2 comprises tranexamic acid, electrolytes, and PEG 3350.
- Rats Food was removed from the cage the evening prior to surgery. Rats had ad lib access to drinking water while in the home cage the evening prior to surgery. Following anesthesia, an incision was made in the midline of the abdomen for isolation of the small intestine. Rats were administered 17 mL of either Representative Formulation 2 or Comparative Formulation 2 via direct injection into the intestine using a 30 gauge needle. Following formulation administration, the rats were subjected to experimentally induced shock via the SMAO procedure.
- Rats were secured in a supine position to a temperature controlled (water circulating heat pump) operating table. The animals were maintained at 37° C. throughout the procedures.
- the superior mesentery artery was located and tied off (occluded) to prevent blood flow to the intestine and initiate a 30 minute shock/hypoperfusion period.
- the surgical site was covered with moistened sterile gauze during the entire SMAO shock period. After the 30 minute period, the SMAO was untied (occlusion removed). Perfusion was resumed for a period of 2 hours, followed by sacrifice of the animals.
- the intestines were then harvested by tying off both ends, injecting a 10% neutral buffered formalin solution with a 30 gauge needle, and storing the intestines in a jar filled with 10% neutral buffered formalin.
- the Photoshop Text tool was used to place an n (for no damage) or a d (for damage) in proximity to each individual villi for each tissue cross section. Where a determination of damage was inconclusive, the villi were excluded from the analysis. These inconclusive villi were less than 5% of the total villi analyzed.
- An image demonstrating the identification methodology is in FIG. 1 , which shows a cross section of the small intestine from a rat treated with an enteral formulation. Healthy villi are marked with n and damaged villi are marked with d.
- FIGS. 4A and 4B show representative micrographs of the villi after administration of the formulations and shock induction.
- FIG. 4A shows a cross section of the small intestine of a rat treated with Representative Formulation 2.
- the villi in FIG. 4A appear healthy and structurally intact as the entire length of the villi are visible and completely covered in goblet cells.
- FIG. 4B shows a cross section of the small intestine of a rat treated with Comparative Formulation 2.
- the villi in FIG. 4B appear to be structurally damaged with missing villi tips and atypical goblet cell staining.
- Tables 7 and 8 and FIG. 5 Quantification of villi that are structurally intact after administration of the formulations and shock induction are shown in Tables 7 and 8 and FIG. 5 .
- Table 7 shows the individual rat data for the quantification of the structurally intact villi.
- Table 8 summarizes the total intact villi and damaged villi observed after administration of the formulations and shock induction.
- FIG. 5 shows the mean percentage of villi intact per rat after administration of the formulations and shock induction. 83.4% of villi were intact across all rats that received Representative Formulation 2, whereas only 51.3% of the villi were intact across all rats that received Comparative Formulation 2. These results are consistent with the mean values calculated from the total villi observed in Table 8.
- the hemorrhagic shock model was used to assess the ability of a representative composition comprising PEG 3350 (Representative Formulation 3) and a comparative composition without PEG 3350 (Comparative Formulation 3) to preserve the structural integrity of the gastrointestinal tract under hemorrhagic conditions when administered by direct stomach injection.
- the materials used to prepare the formulations and their sources are shown in Table 9. All materials used were USP grade. As shown in Table 9, the Representative Formulation 3 comprises tranexamic acid, electrolytes, PEG 3350, and glucose, and Comparative Formulation 3 comprises tranexamic acid, electrolytes, and glucose.
- Male WISTAR rats with a weight of 320-400 grams were purchased from Charles River Laboratories, located in Wilmington, Mass. All rats were maintained on Charles River Laboratories feed and provided water ad libitum throughout the study period.
- Rats were secured in a supine position to a temperature controlled (water circulating heat pump) operating table. The animals were maintained at 37° C. throughout the procedures. Vital signs (systemic blood pressure or respiratory rate, body temperature) were monitored throughout the procedures.
- ketamine 75 mg/kg, I.M.
- Abdominal and inguinal regions were shaved and disinfected with alcohol.
- the right femoral artery was cannulated.
- the surgical site was covered with moistened sterile gauze during entire hemorrhagic shock period.
- Hemorrhagic shock was initiated by reduction of blood volume (about 40% of whole blood volume based on 6% body weight) to achieve a blood pressure of 35 mmHg (47.58 cm H 2 O) for a period of 2 hours.
- each rat was heparinized with minimal concentrations of sodium heparin (0.5 USP units/ml of blood volume estimated as 6% body weight) to prevent blood coagulation during the procedure.
- the right femoral artery was connected with a 10 cc syringe. About 6 ml of blood was withdrawn from the femoral artery over a period of about 5-10 minutes. The syringe was then placed at 47.58 cm high above the rat body level. The syringe served as a blood reservoir that regulated blood pressure at 47.58 cm H 2 O (35 mm Hg) automatically. If the blood pressure was above 47.58 cm H2O, blood flowed into the blood reservoir. If the blood pressure was under 47.58 cm H 2 O, the blood from the blood reservoir was infused into blood stream circulation. Once mean arterial pressure (MAP) was stabilized, either Representative Formulation 3 or Comparative Formulation 3 was injected into the middle of the stomach.
- MAP mean arterial pressure
- the intestines were then harvested by tying off both ends, injecting a 10% neutral buffered formalin solution with a 30 gauge needle, and storing the intestines in a jar filled with 10% neutral buffered formalin.
- the Photoshop Text tool was used to place an n (for no damage) or a d (for damage) in proximity to each individual villi for each tissue cross section. Where a determination of damage was inconclusive, the villi were excluded from the analysis. These inconclusive villi were less than 5% of the total villi analyzed.
- An image demonstrating the identification methodology is in FIG. 1 , which shows a cross section of the small intestine from a rat treated with an enteral formulation. Healthy villi are marked with n and damaged villi are marked with d.
- FIGS. 6A and 6B Representative micrographs of the villi after administration of the formulations and shock induction are shown in FIGS. 6A and 6B .
- FIG. 6A shows a cross section of the small intestine of a rat treated with Representative Formulation 3.
- the villi in FIG. 6A appear healthy and structurally intact as the entire length of the villi are visible and completely covered in goblet cells
- FIG. 6B shows a cross section of the small intestine of a rat treated with Comparative Formulation 3.
- the villi it FIG. 6B appear to be structurally damaged.
- Tables 10 and 11 and FIG. 7 Quantification of villi that are structurally intact after administration of the formulations and shock induction are shown in Tables 10 and 11 and FIG. 7 .
- Table 10 shows the individual rat data for the quantification of the structurally intact villi.
- Table 11 summarizes the total intact villi and damaged villi observed after administration of the formulations and shock induction.
- FIG. 7 shows the mean percentage of villi intact per rat after administration of the formulations and shock induction, 88.8% of villi were intact across all rats that received Representative Formulation 3, whereas only 64.1% of the villi were intact across all rats that received Comparative Formulation 3. These results are consistent with the mean values calculated from the total villi observed in Table 11.
- the secondary safety objective of this study is to assess safety and tolerability of experimental composition in patients with septic shock.
- the study is composed of four periods:
- All randomized patients will be divided between the two treatment arms in a 1:1 ratio stratified by highest total SOFA score during the screening period (known at the time of randomization); and then by percent change in serum lactate between the first and subsequent lactate measurements (separated by at least 4 hours to be used to qualify for randomization).
- a total of 250 patients are enrolled.
- the 700 mL aqueous solution formulation shown in Table 2 is administered orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter to patients in the experimental arm.
- Patients in the placebo arm of the study receive 700 mL, of a placebo solution that does not comprise tranexamic acid orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- Daily treatment is administered continuously or intermittently spread over an 8 to 24 hour period.
- 700 mL of experimental product or placebo is administered every 24 hours.
- Treatment is administered daily on Study Days 1-8, barring death or hospital discharge. Depending on the start time of the initial administration (infusion) on Study Day 1, the final
- the primary efficacy endpoint is the number of days alive without cardiovascular, renal, or pulmonary organ support through Day 28. Patients are classified as having organ support if organ support is required through the use of:
- the secondary efficacy endpoint is mortality rate: Date of death will be recorded for all patients who have died on or before Study Day 90. The 7-day, 28-day, and 90-day mortality and survival rates will be evaluated.
- the aqueous solution formulation shown in Table 2 is safe and well-tolerated by patients in the experimental arm.
- Patients in the experimental arm exhibit an increase in the number of days without cardiovascular, renal, or pulmonary support through Day 28 of the study as compared to patients in the placebo arm,
- Patients in the experimental arm exhibit a decrease in the rates of mortality on day 90 of the study as compared to mortality rates of patients in the placebo arm.
- the study is composed of four periods:
- a total of 100 patients are enrolled.
- the 700 mL aqueous solution formulation shown in Table 2 or a Placebo that does not comprise tranexamic acid is administered orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter to patients on Days 0-7. If a patient continues to demonstrate organ dysfunction, the physician will continue treatment for a maximum of 10 days for some cases. Patients, investigators, persons performing the assessments, and data analysts remain blinded to the identity of the treatment from time of randomization until database lock.
- the primary efficacy endpoint is the number of days alive without cardiovascular, renal or pulmonary organ support through Day 14. Patients are classified as requiring organ support if organ support is provided through the use of:
- the secondary efficacy endpoint is mortality rate: date of death will be recorded for all patients who have died on or before Study Day 28 and Day 90. The 28-day and 90-day mortality and survival rates will be evaluated.
- the aqueous solution formulation shown in Table 2 is safe and well-tolerated by patients in the experimental arm.
- Patients in the experimental arm exhibit an increase in the number of days alive without cardiovascular, renal, or pulmonary dysfunction through Day 14 compared to Placebo.
- Patients in the experimental arm exhibit a decrease in the rates of mortality on day 90 of the study as compared to mortality rates of patients in the placebo arm.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biochemistry (AREA)
- Physiology (AREA)
- Nutrition Science (AREA)
- Dermatology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Virology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Vascular Medicine (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Compositions for the treatment of shock, autodigestion, multi-organ failure, intestinal ischemia, or intestinal hypoperfusion are provided.
Description
- This application claims the benefit of U.S. Provisional Application No. 61/970,247, filed Mar. 25, 2014, and U.S. Provisional Application No. 62/019,007, filed Jun. 30, 2014, each of which is incorporated herein by reference in its entirety.
- Shock is a life-threatening condition that can result from trauma, severe blood loss, heart attacks, cardiovascular dysfunction, ischemia, sepsis, and burns. Major classes of shock include but are not limited to cardiogenic shock, hypovolemic shock, hemorrhagic shock, anaphylactic shock, neurogenic shock, and septic (or endotoxic) shock. Shock can lead to multi-organ failure (also known as multi-organ dysfunction syndrome) if immediate medical treatment is not received. Under the conditions of shock, the intestinal barrier and walls become compromised and the digestive enzymes that are normally contained within the intestine permeate through the intestinal walls and enter the bloodstream, leading to a condition known as autodigestion, in which the body's digestive enzymes begin to digest its own tissues. Autodigestion is hypothesized to be a mechanism for inflammation and multi-organ failure resulting from shock.
- Despite the severity of shock, autodigestion, multi-organ failure, ischemia, and hypoperfusion, few therapies are available. Most efforts have focused on the modulation of individual inflammatory mediators of shock, e.g., cytokines, nitric oxide, and endotoxin, to mitigate the effects of shock. However, therapies that target particular inflammatory mediators have proven largely ineffective due to the multifaceted nature of the mediators. Thus, a need exists for therapeutics to treat shock, autodigestion, multi-organ failure, ischemia, and hypoperfusion, particularly therapeutics that preserve or help reestablish the integrity of the intestinal wall.
- Disclosed herein are compositions for the treatment of shock, autodigestion, multi-organ failure, intestinal ischemia, and/or hypoperfusion. In some embodiments, compositions disclosed herein comprise tranexamic acid, PEG, glucose, and one or more electrolytes. In some embodiments, the PEG is PEG 3350. In certain embodiments, compositions disclosed herein comprise a non-colonic cleansing amount of PEG 3350. In some embodiments, compositions disclosed herein comprise about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 40 g of glucose, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 40 g of glucose. In some embodiments, compositions disclosed herein are formulated as aqueous solutions. In certain specific embodiments, the volume of the aqueous solution is 1000 mL In some embodiments, compositions disclosed herein comprise about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 28 g of glucose, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 28 g of glucose. In some embodiments, compositions disclosed herein are formulated as aqueous solutions. In certain specific embodiments, the volume of the aqueous solution is 700 mL.
- In some embodiments, compositions disclosed herein are administered for the treatment of shock, autodigestion, multi-organ failure, intestinal ischemia, or hypoperfusion. In certain specific embodiments, compositions disclosed herein are administered for the treatment of cardiogenic shock, hemorrhagic shock, or septic shock. In some embodiments, compositions disclosed herein are administered for the treatment of septic shock associated with or caused by sepsis. In some embodiments, compositions disclosed herein are administered for the treatment of cardiogenic shock associated with or caused by cardiovascular surgery, myocardial infarction, arrhythmia, or mechanical complications. In some embodiments, compositions disclosed herein are administered for the treatment of hemorrhagic shock associated with or caused by trauma. In some embodiments, compositions disclosed herein are administered for the treatment of shock associated with or caused by a hemorrhagic virus. In some embodiments, the hemorrhagic virus is an Ebola virus. In some embodiments, compositions disclosed herein are administered orally, or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- In some embodiments, disclosed herein is a kit comprising: the components tranexamic acid, PEG, glucose, and one or more electrolytes, wherein at least one of the components tranexamic acid, PEG, glucose, and one or more electrolytes is in a separate container from at least one of the other components tranexamic acid, PEG, glucose, and one or more electrolytes; and instructions to combine the components tranexamic acid, PEG, glucose, and one or more electrolytes in a single composition. In some embodiments, a kit comprises tranexamic acid, PEG, and one or more electrolytes are in a first container, and glucose in a second container. In some embodiments, a kit comprises instructions to reconstitute the components with water to provide an aqueous formulation. In some embodiments, a kit comprises a first container comprising about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, and a second container comprising about 40 g of glucose. In some embodiments, a kit comprises a first container comprising about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, a second container comprising about 40 g of glucose, and instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 1000 mL. In some embodiments, a kit comprises a first container comprising about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, and a second container comprising about 28 g of glucose. In some embodiments, a kit comprises a first container comprising about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, a second container comprising about 28 g of glucose, and instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 700 mL. In some embodiments, a kit comprises instructions to administer the combined components orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
-
FIG. 1 shows a representative cross section of the small intestine from a rat treated with an enteral formulation and superior mesentery artery occlusion (SMAO). Healthy villi are marked with n and damaged villi are marked with d. -
FIGS. 2A and 2B show the cross sections of the small intestines of rats following treatment withRepresentative Formulation 1 andComparative Formulation 1, respectively.FIG. 2A shows that rat intestinal villi appear healthy and structurally intact and that the entire length of the villi is visible and completely covered in goblet cells, following administration ofRepresentative Formulation 1 and shock induction according to Example 2.FIG. 2B shows that rat intestinal villi are structurally damaged, with missing villi tips and atypical goblet cell staining, following administration ofComparative Formulation 1 and shock induction according to Example 2. -
FIG. 3 illustrates the percentage of villi that were structurally intact with intact epithelial lining in all rats treated in Example 2.Representative Formulation 1 preserved on average 92.6% of villi, whileComparative Formulation 1 preserved on average 52.8% of the Data are averages ±SEM; n=4 rats in each group; *=p<0.01 compared to respective treated group, ANOVA. -
FIGS. 4A and 4B show the cross section of the small intestine from a rat treated withRepresentative Formulation 2 andComparative Formulation 2, respectively.FIG. 4A shows that villi appear healthy and structurally intact and that the entire length of the villi is visible and completely covered in goblet cells, following administration ofRepresentative Formulation 2 and shock induction according to Example 3.FIG. 4B shows that rat villi are structurally damaged, with missing villi tips and atypical goblet cell staining, following administration ofComparative Formulation 2 and shock induction according to Example 3. -
FIG. 5 illustrates the percentage of villi that were structurally intact with intact epithelial lining in all rats treated in Example 3.Representative Formulation 2 preserved on average 83.4% of villi, whileComparative Formulation 2 preserved on average 51.3% of the villi. Data are averages±SEM; n=4 rats in each group; *=p<0.01 compared to respective treated group, ANOVA. -
FIGS. 6A and 6B show the cross section of the small intestine from a rat treated withRepresentative Formulation 3 andComparative Formulation 3, respectively.FIG. 6A shows that villi appear healthy and structurally intact and that the entire length of the villi is visible and completely covered in goblet cells, following administration ofRepresentative Formulation 3 and hemorrhagic shock induction according to Example 4.FIG. 6B shows that rat villi are structurally damaged following administration ofComparative Formulation 3 and hemorrhagic shock induction according to Example 4. -
FIG. 7 illustrates the percentage of villi that were structurally intact with intact epithelial lining in all rats treated in Example 4, Representative.Formulation 3 preserved on average 88.8% of villi, whileComparative Formulation 3 preserved on average 64.1% of the Data are averages ±SEM; n=4 rats in each group; *=p<0.01 compared to respective treated group, ANOVA. - Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of skill in the art to which the inventions described herein belong. All publications, patents, and patent applications mentioned in this specification are hereby incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
- When the term “about” is present before a numerical value herein, it means±10% of the numerical value. For example, as used herein, the term “about 10 g” means an amount from 9 g to 11 g.
- As used herein, the terms “comprising,” “including,” “such as,” and “for example” (or “e.g.”) are used in their open, non-limiting sense.
- The term “treat” and its grammatical variants (e.g., “to treat,” “treating,” and “treatment”) refer to administration of an active pharmaceutical ingredient to a patient with the purpose of ameliorating or reducing the incidence of one or more symptoms of a condition or disease state in the patient. In some embodiments, such symptoms are chronic or acute, and such amelioration are partial or complete for some instances. In the present context, treatment entails administering a pharmaceutical composition described herein to a patient via a route of administration disclosed herein.
- As used herein, “PEG” refers to a polyethylene glycol polymer. When “PEG” is used in combination with a numerical value, the numerical value defines the average molecular weight of the polyethylene glycol polymer. For an example PEG 3350 refers to a polyethylene glycol polymer that has an average molecular weight of 3,350 Da.
- As used herein, the term “non-colonic cleansing amount” refers to an amount of a substance that does not cause significant or substantially all removal of feces and toxins from the colon and intestinal tract when administered to the gastrointestinal tract.
- As used herein, the terms “electrolyte” and “electrolytes” are used to describe any substances that ionize when dissolved in an ionizing solvent, such as water. Electrolytes include, but are not limited to, soluble salts, acids, or bases.
- As used herein, the term “wt %” refers to the weight percent of a given component in a composition. For example, as used herein, an aqueous solution comprising 4 wt % glucose refers to an aqueous solution that comprises 4 grams of glucose per 100 grams of the solution.
- Compositions
- Disclosed herein are compositions for the treatment of shock, autodigestion, multi-organ failure, intestinal ischemic, or hypoperfusion. In some embodiments, compositions disclosed herein comprise tranexamic acid. In some embodiments, the compositions comprise about 7.0 g, about 7.1 g, about 7.2 g, about 7.3 g, about 7.4 g, about 7.5 g, about 7.6 g, about 7.7 g, about 7.8 g, about 7.9 g, about 8.0 g, about 8.1 g, about 8.2 g, about 8.3 g, about 8.4 g, about 8.5 g, or about 8.6 g of tranexamic acid. In a specific embodiment, compositions disclosed herein comprise about 7.8 g of tranexamic acid. In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid.
- In some embodiments, the compositions disclosed herein comprise about 6.8 g, about 6.9 g, about 7.0 g, about 7.1 g, about 7.2 g, about 7.3 g, about 7.4 g, about 7.5 g, about 7.6 g, about 7.7 g, about 7.8 g, about 7.9 g, about 8.0 g, about 8.1 g, about 8.2 or about 8.3 g of tranexamic acid. In a specific embodiment, compositions disclosed herein comprise about 7.5 g of tranexamic acid. In some embodiments, compositions disclosed herein comprise about 6.8 g to about 8.3 g of tranexamic acid.
- In some embodiments, compositions disclosed herein comprise a non-colonic cleansing amount of PEG. In certain specific embodiments, compositions disclosed herein comprise a non-colonic cleansing amount of PEG 2000, PEG 3000, PEG 3350, or PEG 4000. In a specific embodiment, compositions disclosed herein comprise a non-colonic cleansing amount of PEG 3350. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 33.9 g, about 34.0 g, about 34.1 g, about 34.2 g, about 34.3 g, about 34.4 g, about 34.5 g, about 34.6 g, about 34.7 g, about 34.8 g, about 34.9 g, about 35.0 g, about 35.1 g, about 35.2 g, about 35.3 g, about 35.4 g, about 35.5 g, about 35.6 g, about 35.7 g, about 35.8 g, about 35.9 g, about 36.0 g, about 36.1 g, about 36.2 g, about 36.3 g, about 36.4 g, about 36.5 g, about 36.6 g, about 36.7 g, about 36.8 g, about 36.9 g, about 37.0 g, about 37.1 g, about 37.2 g, about 37.3 g, about 37.4 g, about 37.5 g, about 37.6 g, about 37.7 g, about 37.8 g, about 37.9 g, about 38.0 g, about 38.1 g, about 38.2 g, about 38.3 g, about 38.4 g, about 38.5 g, about 38.6 g, about 38.7 g, about 38.8 g, about 38.9 g, about 39.0 g, about 39.1 g, about 39.2 g, about 39.3 g, about 39.4 g, about 39.5 g, about 39.6 g, about 39.7 g, about 39.8 g, about 39.9 g, about 40.0 g, about 40.1 g, about 40.2 g, about 40.3 g, about 40.4 g, about 40.5 g, about 40.6 g, about 40.7 g, about 40.8 g, about 40.9 g, about 41.0 g, about 41.1 g, about 41.2, about 41.3 g, about 41.4 g, about 41.5 g, about 41.6 g, about 41.7 g, about 41.8 g, about 41.9 g, about 42.0 g, about 42.1 g, about 42.2 g, about 42.3 g, about 42.4 g, about 42.5 g, about 42.6 g, about 42.7 g, about 42.8 g, about 42.9 g, about 43.0 g, about 43.1 g, about 43.2 g, about 43.3 g, about 43.4 g, about 43.5 g, about 43.6 g, about 43.7 g, about 43.8 g, about 43.9 g, about 44.0 g, about 44.1 g, about 44.2 g, about 44.3 g, about 44.4 g, about 44.5 g, about 44.6 g, about 44.7 g, about 44.8 g, about 44.9 g, about 45.0 g, about 45.1 g, about 45.2 g, about 45.3 g, about 45.4 g, about 45.5 g, about 45.6 g, about 45.7 g, about 45.8 g, about 45.9 g, about 46.0 g, about 46.1 g, about 46.2 g, about 46.3 g, about 46.4 g, about 46.5 g, about 46.6 g, about 46.7 g, about 46.8 g, about 46.9 g, about 47.0 g, about 47.1 g, about 47.2 g, about 47.3 g, about 47.4 g, about 47.5 g, about 47.6 g, about 47.7 g, about 47.8 g, about 47.9 g, about 48.0 g, about 48.1 g, about 48.2 g, about 48.3 g, about 48.4 g, about 48.5 g, about 48.6 g, about 48.7 g, about 48.8 g, about 48.9 g, about 49.0 g, about 49.1 g, about 49.2 g, about 49.3 g, about 49.4 g, about 49.5 g, about 49.6 g, about 49.7 g, about 49.8 g, about 49.9 g, about 50.0 g, about 50.1 g, about 50.2 g, about 50.3 g, about 50.4 g, about 50.5 g, about 50.6 g, about 50.7 g, about 50.8 g, about 50.9 g, about 51.0 g, about 51.1 g, about 51.2 g, about 51.3 g, about 51.4 g, about 51.5 g, about 51.6 g, about 51.7 g, about 51.8 g, about 51.9 g, about 52.0 g, about 52.1 g, about 52.2 g, about 52.3 g, about 52.4 g, about 52.5 g, about 52.6 g, about 52.7 g, about 52.8 g, about 52.9 g, about 53.0 g, about 53.1 g, about 53.2 g, about 53.3 g, about 53.4 g, about 53.5 g, about 53.6 g, about 53.7 g, about 53.8 g, about 53.9 g, about 54.0 g, about 54.1 g, about 54.2 g, about 54.3 g, about 54.4 g, about 54.5 g, about 54.6 g, about 54.7 g, about 54.8 g, about 54.9 g, about 55.0 g, about 55.1 g, about 55.2 g, or about 55.3 g. In a specific embodiment, a non-colonic cleansing amount of PEG, e.g., PEG 3350 is about 50.3 g. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 45.2 g to about 55.3 g. In a specific embodiment, a non-colonic cleansing amount of PEG, e.g., PEG 3350 is about 37.7 g. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 33.9 g to about 41.5 g. In a specific embodiment, a non-colonic cleansing amount of PEG, e.g., PEG 3350 is about 40.2 g. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 36.2 g to about 44.2 g.
- In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 29.3 g, about 29.4 g, about 29.5 g, about 29.6 g, about 29.7 g, about 29.8 g, about 29.9 g, about 30.0 g, about 30.1 g, about 30.2 g, about 30.3 g, about 30.4 g, about 30.5 g, about 30.6 g, about 30.7 g, about 30.8 g, about 30.9 g, about 31.0 g, about 31.1 g, about 31.2 g, about 31.3 g, about 31.4 g, about 31.5 g, about 31.6 g, about 31.7 g, about 31.8 g, about 31.9 g, about 32.0 g, about 32.1 g, about 32.2 g, about 32.3 g, about 32.4 g, about 32.5 g, about 32.6 g, about 32.7 g, about 32.8 g, about 32.9 g, about 33.0 g, about 33.1 g, about 33.2 g, about 33.3 g, about 33.4 g, about 33.5 g, about 33.6 g, about 33.7 g, about 33.8 g, about 33.9 g, about 34.0 g, about 34.1 g, about 34.2 g, about 34.3 g, about 34.4 g, about 34.5 g, about 34.6 g, about 34.7 g, about 34.8 g, about 34.9 g, about 35.0 g, about 35.1 g, about 35.2 g, about 35.3 g, about 35.4 g, about 35.5 g, about 35.6 g, about 35.7 g, or about 35.8 g. In a specific embodiment, a non-colonic cleansing amount of PEG, e.g., PEG 3350 is about 32.5 g. In some embodiments, a non-colonic cleansing amount of PEG, e.g., PEG 3350, is about 29.3 g to about 35.8 g.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, about 5.1 wt %, about 5.2 wt %, about 5.3 wt %, about 5.4 wt %, or about 5.5 wt % of PEG. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, about 5.1 wt %, about 5.2 wt %, about 5.3 wt %, about 5.4 wt %, or about 5.5 wt % of PEG 3350. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 5.0 wt % of PEG. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.5 wt % to about 5.5 wt % of PEG. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 5.0 wt % of PEG 3350. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.5 wt % to about 5.5 wt % of PEG 3350.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.2 wt %, about 4.3 wt %, about 4.4 wt %, about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, or about 5.1 wt % of PEG. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.2 wt %, about 4.3 wt %, about 4.4 wt %, about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, or about 5.1 wt % of PEG 3350. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 4.6 wt % of PEG. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.2 wt % to about 5.1 wt % of PEG. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 4.6 wt % of PEG 3350. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 4.2 wt % to about 5.1 wt % of PEG 3350.
- In some embodiments, compositions disclosed herein comprise glucose. In some embodiments, compositions disclosed herein comprise about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, about 30 g, about 31 g, about 32 g, about 33 g, about 34 g, about 35 g, about 36 g, about 37 g, about 38 g, about 39 g, about 40 g, about 41 g, about 42 g, about 43 g, about 44 g, about 45 g, about 46 g, about 47 g, about 48 g, about 49 g, about 50 g, about 51 g, about 52 g, about 53 g, about 54 g, about 55 g, about 56 g, about 57 g, about 58 g, about 59 g, or about 60 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 40 g of glucose. In certain embodiments, compositions disclosed herein comprise about 25 g to about 60 g of glucose, or about 25 g to about 50 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 30 g of glucose. In certain embodiments, compositions disclosed herein comprise about 19 g to about 45 g of glucose, or about 19 g to about 38 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 32 g of glucose. In certain embodiments, compositions disclosed herein comprise about 20 g to about 48 g of glucose, or about 20 g to about 40 g of glucose.
- In some embodiments, compositions disclosed herein comprise about 25 g, about about 27 g, about 28 g, about 29 g, about 30 g, or about 31 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 28 g of glucose. In certain embodiments, compositions disclosed herein comprise about 25 g to about 31 g of glucose
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 2.5 wt %, about 2.6 wt %, about 2.7 wt %, about 2.8 wt %, about 2.9 wt %, about 3.0 wt %, about 3.1 wt %, about 3.2 wt %, about 3.3 wt %, about 3.4 wt %, about 3.5 wt %, about 3.6 wt %, about 3.7 wt %, about 3.8 wt %, about 3.9 wt %, about 4.0 wt %, about 4.1 wt %, about 4.2 wt %, about 4.3 wt %, about 4.4 wt %, about 4.5 wt %, about 4.6 wt %, about 4.7 wt %, about 4.8 wt %, about 4.9 wt %, about 5.0 wt %, about 5.1 wt %, about 5.2 wt %, about 5.3 wt %, about 5.4 wt %, about 5.5 wt %, about 5.6 wt %, about 5.7 wt %, about 5.8 wt %, about 5.9 wt % or about 6.0 wt % of glucose. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 4 wt % of glucose. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 2.5 wt % to about 6.0 wt % of glucose, or about 2.5 wt % to about 5.0 wt % of glucose.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 3.6 wt %, about 3.7 wt %, about 3.8 wt %, about 3.9 wt %, about 4.0 wt %, about 4.1 wt %, about 4.2 wt %, about 4.3 wt %, or about 4.4 wt % of glucose. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 4 wt % of glucose. In certain embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 3.6 wt % to about 4.4 wt % of glucose.
- In some embodiments, compositions disclosed herein comprise one or more electrolytes. In certain embodiments, the one or more electrolytes comprise sodium chloride (NaCl). In some embodiments, compositions disclosed herein comprise about 1.0 g, about 1.1 g, about 1.2 g, about 1.3 g, about 1.4 g, about 1.5 g, about 1.6 g, or about 1.7 of sodium chloride. In a specific embodiment, compositions disclosed herein comprise about 1.5 g of sodium chloride. In some embodiments, compositions disclosed herein comprise about 1.3 g to about 1.7 g of sodium chloride. In a specific embodiment, compositions disclosed herein comprise about 1.1 g of sodium chloride. In some embodiments, compositions disclosed herein comprise about 1.0 g to about 1.2 g of sodium chloride. In a specific embodiment, compositions disclosed herein comprise about 1.2 g of sodium chloride. In some embodiments, compositions disclosed herein comprise about 1.1 g to about 1.3 g of sodium chloride.
- In some embodiments, compositions disclosed herein comprise about 0.9 g, about 1.0 g, or about 1.1 g of sodium chloride. In a specific embodiment, compositions disclosed herein comprise about 1.0 g of sodium chloride. In some embodiments, compositions disclosed herein comprise about 0.9 g to about 1.1 g of sodium chloride.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.13 wt %, about 0.14 wt %, about 0.15 wt %, about 0.16 wt %, about 0.17 wt % of sodium chloride. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.15 wt % of sodium chloride. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.13 wt % to about 0.17 wt % of sodium chloride.
- In some embodiments, the one or more electrolytes comprise sodium sulfate (Na2SO4), In some embodiments, compositions disclosed herein comprise about 3.9 g, about 4.0 g, about 4.1 g, about 4.2 g, about 4.3 g, about 4.4 g, about 4.5 g, about 4.6 g, about 4.7 g, about 4.8 g, about 4.9 g, about 5.0 g, about 5.1 g, about 5.2 g, about 5.3 g, about 5.4 g, about 5.5 g, about 5.6 g, about 5.7 g, about 5.8 g, about 5.9 g, about 6.0 g, about 6.1 g, about 6.2 or about 6.3 g of sodium sulfate. In a specific embodiment, compositions disclosed herein comprise about 5.7 g of sodium sulfate. In some embodiments, compositions disclosed herein comprise about 5.1 g to about 6.3 g of sodium sulfate. In a specific embodiment, compositions disclosed herein comprise about 4.3 g of sodium sulfate. In some embodiments, compositions disclosed herein comprise about 3.9 g to about 4.7 g of sodium sulfate. In a specific embodiment, compositions disclosed herein comprise about 4.6 g of sodium sulfate. In some embodiments, compositions disclosed herein comprise about 4.1 g to about 5.1 g of sodium sulfate.
- In some embodiments, compositions disclosed herein comprise about 3.6 g, about 3.7 g, about 3.8 g, about 3.9 g, about 4.0 g, about 4.1 g, about 4.2 g, about 4.3 g, or about 4.4 g of sodium sulfate. In a specific embodiment, compositions disclosed herein comprise about 4.0 g of sodium sulfate. In some embodiments, compositions disclosed herein comprise about 3.6 g to about 4.4 g of sodium sulfate.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising sodium sulfate. In some embodiments, the compositions disclosed herein are formulated as aqueous solutions comprising about 0.51 wt %, about 0.52 wt %, about 0.53 wt %, about 0.54 wt %, about 0.55 wt %, about 0.56 wt %, about 0.57 wt %, about 0.58 wt %, about 0.59 wt %, about 0.60 wt %, about 0.61 wt %, about 0.62 wt %, or about 0.63 wt % of sodium sulfate. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.57 wt % of sodium sulfate. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.51 wt % to about 0.63 wt % of sodium sulfate.
- In some embodiments, the one or more electrolytes comprise sodium bicarbonate (NaHCO3). In some embodiments, compositions disclosed herein comprise about 1.2 g, about 1.3 g, about 1.4 g, about 1.5 g, about 1.6 g, about 1.7 g, about 1.8 g, or about 1.9 g of sodium bicarbonate. In a specific embodiment, compositions disclosed herein comprise about 1.7 g of sodium bicarbonate. In some embodiments, compositions disclosed herein comprise about 1.5 g to about 1.9 g of sodium bicarbonate. In a specific embodiment, compositions disclosed herein comprise about 1.3 g of sodium bicarbonate. In some embodiments, compositions disclosed herein comprise about 1.2 g to about 1.4 g of sodium bicarbonate. In a specific embodiment, compositions disclosed herein comprise about 1.4 g of sodium bicarbonate. In some embodiments, compositions disclosed herein comprise about 1.3 g to about 1.5 g of sodium bicarbonate.
- In some embodiments, compositions disclosed herein comprise about 1.1 g, about 1.2 g, or about 1.3 g of sodium bicarbonate. In a specific embodiment, compositions disclosed herein comprise about 1.2 g of sodium bicarbonate. In some embodiments, compositions disclosed herein comprise about 1.1 g to about 1.3 g of sodium bicarbonate.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.15 wt %, about 0.16 wt %, about 0.17 wt %, about 0.18 wt %, or about 0.19 wt % of sodium bicarbonate. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.117 wt % of sodium bicarbonate. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.15 wt % to about 0.19 wt % of sodium bicarbonate.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about (116 wt %, about 0.17 wt %, about 0.18 wt %, or about 0.19 wt % of sodium bicarbonate. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.17 wt % of sodium bicarbonate. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.16 wt % to about 0.19 wt % of sodium bicarbonate.
- In some embodiments, the one or more electrolytes comprise potassium chloride (KCl). In some embodiments, compositions disclosed herein comprise about 0.4 g, about 0.5 g, about 0.6 g, about 0.7 g or about 0.8 g of potassium chloride. In a specific embodiment, compositions disclosed herein comprise about 0.7 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 0.6 g to about 0.8 g of potassium chloride. In a specific embodiment, compositions disclosed herein comprise about 0.5 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 0.4 g to about 0.6 g of potassium chloride. In a specific embodiment, compositions disclosed herein comprise about 0.6 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 0.5 g to about 0.7 g of potassium chloride.
- In some embodiments, compositions disclosed herein comprise about 0.4 g, about 0.5 g, or about 0.6 g of potassium chloride. In a specific embodiment, compositions disclosed herein comprise about 0.5 g of potassium chloride. In some embodiments, compositions disclosed herein comprise about 0.4 g to about 0.6 g of potassium chloride.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.06 wt %, about 0.07 wt %, or about 0.08 wt % of potassium chloride. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.07 wt % of potassium chloride. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.06 wt % to about 0.08 wt % of potassium chloride.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.06 wt %, about 0.07 wt %, about 0.08 wt %, or about 0.09% wt of potassium chloride. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 0.07 wt % of potassium chloride. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 0.06 wt % to about 0.09 wt % of potassium chloride.
- In some embodiments, the compositions disclosed herein are formulated into any suitable dosage form, including but not limited to solutions, dispersions, self-emulsifying dispersions, solid solutions, liposomal dispersions, liquids, gels, syrups, elixirs, lyophilized formulations, powders, or multiparticulate formulations. Such formulations are optionally manufactured in a conventional manner, such as, by way of example only, conventional mixing, dissolving, emulsifying, and the like. In some embodiments, compositions disclosed herein are formulated as a powder for reconstitution. In some embodiments, compositions disclosed herein are formulated as an aqueous solution.
- In certain embodiments, compositions disclosed herein are formulated as a solution, e.g., an aqueous solution. In some embodiments, compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 500 mL, about 510 mL, about 520 mL, about 530 mL, about 540 mL, about 550 ML, about 560 mL, about 570 mL, about 580 mL, about 590 mL, about 600 mL, about 610 mL, about 620 mL, about 630 mL, about 640 mL, about 650 mL, about 660 mL, about 670 mL, about 680 mL, about 690 mL, about 700 mL, about 710 mL, about 720 mL, about 730 mL, about 740 mL, about 750 mL, about 760 mL, about 770 mL, about 780 mL, about 790 mL, about 800 mL, about 810 mL, about 820 mL, about 830 mL, about 840 mL, about 850 mL, about 860 mL, about 870 mL, about 880 mL, about 890 mL, about 900 mL, about 910 mL, about 920 mL, about 930 mL, about 940 mL, about 950 mL, about 960 mL, about 970 mL, about 980 mL, about 990 mL, or about 1000 mL. In some embodiments, compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 500 mL to about 1000 mL. In some embodiments, compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 750 mL to about 1000 mL.
- In some embodiments, compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 630 mL, about 640 mL, about 650 mL, about 660 mL, about 670 mL, about 680 mL, about 690 mL, about 700 mL, about 710 mL, about 720 mL, about 730 mL, about 740 mL, about 750 mL, about 760 mL, or about 770 mL. In a specific embodiment, compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 700 mL. In some embodiments, compositions disclosed herein are formulated as a solution, e.g., an aqueous solution, having a volume of about 630 mL to about 770 rail.
- In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 25 g to about 60 g of glucose. In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 25 g to about 50 g of glucose. In certain specific embodiments, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, about 30 g, about 31 g, about 32 g, about 33 g, about 34 g, about 35 g, about 36 g, about 37 g, about 38 g, about 39 g, about 40 g, about 41 g, about 42 g, about 43 g, about 44 g, about 45 g, about 46 g, about 47 g, about 48 g, about 49 g, about 50 g, about 51 g, about 52 g, about 53 g, about 54 g, about 55 g, about 56 g, about 57 g, about 58 g, about 59 g, or about 60 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 40 g of glucose.
- In some embodiments, compositions disclosed herein comprise about 6.8 g to about 8.3 g of tranexamic acid and about 25 g to about 31 g of glucose. In certain specific embodiments, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, about 30 g, or about 31 g of glucose. In a specific embodiment, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 28 g of glucose.
- In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 45.2 g to about 55.3 g of PEG 3350. In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 33.9 g to about 41.5 g of PEG 3350. In some embodiments, compositions disclosed herein comprise about 7.0 g to about 8.6 g of tranexamic acid and about 36.2 g to about 44.2 g of PEG 3350. In certain specific embodiments, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 33.9 g, about 34.0 g, about 34.1 g, about 34.2 g, about 34.3 g, about 34.4 g, about 34.5 g, about 34.6 g, about 34.7 g, about 34.8 g, about 34.9 g, about 35.0 g, about 35.1 g, about 35.2 g, about 35.3 g, about 35.4 g, about 35.5 g, about 35.6 g, about 35.7 g, about 35.8 g, about 35.9 g, about 36.0 g, about 36.1 g, about 36.2 g, about 36.3 g, about 36.4 g, about 36.5 g, about 36.6 g, about 36.7 g, about 36.8 g, about 36.9 g, about 37.0 g, about 37.1 g, about 37.2 g, about 37.3 g, about 37.4 g, about 37.5 g, about 37.6 g, about 37.7 g, about 37.8 g, about 37.9 g, about 38.0 g, about 38.1 g, about 38.2 g, about 38.3 g, about 38.4 g, about 38.5 g, about 38.6 g, about 38.7 g, about 38.8 g, about 38.9 g, about 39.0 g, about 39.1 g, about 39.2 g, about 39.3 g, about 39.4 g, about 39.5 g, about 39.6 g, about 39.7 g, about 39.8 g, about 39.9 g, about 40.0 g, about 40.1 g, about 40.2 g, about 40.3 g, about 40.4 g, about 40.5 g, about 40.6 g, about 40.7 g, about 40.8 g, about 40.9 g, about 41.0 g, about 41.1 g, about 41.2, about 41.3 g, about 41.4 g, about 41.5 g, about 41.6 g, about 41.7 g, about 41.8 g, about 411.9 g, about 42.0 g, about 42.1 g, about 42.2 g, about 42.3 g, about 42.4 g, about 42.5 g, about 42.6 g, about 42.7 g, about 42.8 g, about 42.9 g, about 43.0 g, about 43.1 g, about 43.2 g, about 43.3 g, about 43.4 g, about 43.5 g, about 43.6 g, about 43.7 g, about 43.8 g, about 43.9 g, about 44.0 g, about 44.1 g, about 44.2 g, about 44.3 g, about 44.4 g, about 44.5 g, about 44.6 g, about 44.7 g, about 44.8 g, about 44.9 g, about 45.0 g, about 45.1 g, about 45.2 g, about 45.3 g, about 45.4 g, about 45.5 g, about 45.6 g, about 45.7 g, about 45.8 g, about 45.9 g, about 46.0 g, about 46.1 g, about 46.2 g, about 46.3 g, about 46.4 g, about 46.5 g, about 46.6 g, about 46.7 g, about 46.8 g, about 46.9 g, about 47.0 g, about 47.1 g, about 47.2 g, about 47.3 g, about 47.4 g, about 47.5 g, about 47.6 g, about 47.7 g, about 47.8 g, about 47.9 g, about 48.0 g, about 48.1 g, about 48.2 g, about 48.3 g, about 48.4 g, about 48.5 g, about 48.6 g, about 48.7 g, about 48.8 g, about 48.9 g, about 49.0 g, about 49.1 g, about 49.2 g, about 49.3 g, about 49.4 g, about 49.5 g, about 49.6 g, about 49.7 g, about 49.8 g, about 49.9 g, about 50.0 g, about 50.1 g, about 50.2 g, about 50.3 g, about 50.4 g, about 50.5 g, about 50.6 g, about 50.7 g, about 50.8 g, about 50.9 g, about 51.0 g, about 51.1 g, about 51.2 g, about 51.3 g, about 51.4 g, about 51.5 g, about 51.6 g, about 511.7 g, about 51.8 g, about 51.9 g, about 52.0 g, about 52.1 g, about 52.2 g, about 52.3 g, about 52.4 g, about 52.5 g, about 52.6 g, about 52.7 g, about 52.8 g, about 52.9 g, about 53.0 g, about 53.1 g, about 53.2 g, about 53.3 g, about 53.4 g, about 53.5 g, about 53.6 g, about 53.7 g, about 53.8 g, about 53.9 g, about 54.0 g, about 54.1 g, about 54.2 g, about 54.3 g, about 54.4 g, about 54.5 g, about 54.6 g, about 54.7 g, about 54.8 g, about 54.9 g, about 55.0 g, about 55.1 g, about 55.2 g, or about 55.3 g of PEG 3350. In a specific embodiment, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 59.0 g of PEG 3350. In a specific embodiment, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 40.2 g of PEG 3350. In a specific embodiment, compositions disclosed herein comprise about 7.8 g of tranexamic acid and about 37.7 g of PEG 3350.
- In some embodiments, compositions disclosed herein comprise about 6.8 g to about 8.3 g of tranexamic acid and about 29.3 g to about 35.8 g of PEG 3350. In certain specific embodiments, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 29.3 g, about 29.4 g, about 29.5 g, about 29.6 g, about 29.7 g, about 29.8 g, about 29.9 g, about 30.0 g, about 30.1 g, about 30.2 g, about 30.3 g, about 30.4 g, about 30.5 g, about 30.6 g, about 30.7 g, about 30.8 g, about 30.9 g, about 31.0 g, about 31.1 g, about 31.2 g, about 31.3 g, about 31.4 g, about 31.5 g, about 31.6 g, about 31.7 g, about 31.8 g, about 31.9 g, about 32.0 g, about 32.1 g, about 32.2 g, about 32.3 g, about 32.4 g, about 32.5 g, about 32.6 g, about 32.7 g, about 32.8 g, about 32.9 g, about 33.0 g, about 33.1 g, about 33.2 g, about 33.3 g, about 33.4 g, about 33.5 g, about 33.6 g, about 33.7 g, about 33.8 g, about 33.9 g, about 34.0 g, about 34.1 g, about 34.2 g, about 34.3 g, about 34.4 g, about 34.5 g, about 34.6 g, about 34.7 g, about 34.8 g, about 34.9 g, about 35.0 g, about 35.1 g, about 35.2 g, about 35.3 g, about 35.4 g, about 35.5 g, about 35.6 g, about 35.7 g, or about 35.8 g of PEG 3350. In a specific embodiment, compositions disclosed herein comprise about 7.5 g of tranexamic acid and about 32.5 g of PEG 3350.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 7.0 g to about 8.6 g of tranexamic acid, about 4.5 wt % to about 5.5 wt % of PEG 3350, about 2.5 wt % to about 6 wt % of glucose, about 0.51 wt % to about 0.63 wt % of sodium sulfate, about 0.15 wt % to about 0.19 wt % of sodium bicarbonate, about 0.13 wt % to about 0.17 wt % of sodium chloride, and about 0.06 wt % to about 0.08 wt % of potassium chloride. In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 7.0 g to about 8.6 g of tranexamic acid, about 4.5 wt % to about 5.5 wt % of PEG 3350, about 2.5 wt % to about 5 wt % of glucose, about 0.51 wt % to about 0.63 wt % of sodium sulfate, about 0.115 wt % to about 0.19 wt % of sodium bicarbonate, about 0.13 wt % to about 0.17 wt % of sodium chloride, and about 0.06 wt % to about 0.08 wt % of potassium chloride. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 7.8 g of tranexamic acid, about 5.0 wt % of PEG 3350, about 4 wt % of glucose, about 0.57 wt % of sodium sulfate, about 0.17 wt % of sodium bicarbonate, about 0.15 wt % of sodium chloride, and about 0.07 wt % of potassium chloride.
- In some embodiments, compositions disclosed herein are formulated as aqueous solutions comprising about 6.8 g to about 8.3 g of tranexamic acid, about 4.2 wt % to about 5.1 wt % of PEG 3350, about 3.6 wt % to about 4.4 wt % of glucose, about 0.51 wt % to about 0.63 wt % of sodium sulfate, about 0.16 wt % to about 0.19 wt % of sodium bicarbonate, about 0.13 wt % to about 0.17 wt % of sodium chloride, and about 0.06 wt % to about 0.09 wt % of potassium chloride. In a specific embodiment, compositions disclosed herein are formulated as aqueous solutions comprising about 7.5 g of tranexamic acid, about 4.6 wt t, of PEG 3350, about 4 wt % of glucose, about 0.57 wt % of sodium sulfate, about 0.17 wt % of sodium bicarbonate, about 0.15 wt % of sodium chloride, and about 0.07 wt % of potassium chloride.
- In some embodiments, the compositions disclosed herein are formulated with one or more inactive ingredients or pharmaceutical excipients that provide suitable properties of the formulation. Such inactive ingredients include but are not limited to antioxidants, carriers, viscosity modulating agents, diluents, flavoring agents, preservatives, solubilizers, stabilizers, suspending agents, and surfactants. Any suitable amounts of such inactive ingredients are determined according to the particular properties desired.
- Methods of Treatment
- In some embodiments, the compositions disclosed herein are administered for the treatment of shock, autodigestion, multi-organ failure, ischemia, or hypoperfusion. In certain specific embodiments, compositions disclosed herein are administered for the treatment of cardiogenic shock, hemorrhagic shock, or septic shock. In some embodiments, ischemia is intestinal ischemia. In some embodiments, compositions disclosed herein are administered for the treatment of septic shock associated with or caused by sepsis. In some embodiments, compositions disclosed herein are administered for the treatment of cardiovascular shock associated with or caused by cardiovascular surgery, myocardial infarction, arrhythmia, or mechanical complications. In some embodiments, a mechanical complication is a cardiovascular mechanical complication. In some embodiments, compositions disclosed herein are administered for the treatment of cardiovascular shock associated with or caused by myocardial infarction or mechanical complications. In some embodiments, compositions disclosed herein are administered for the treatment of hemorrhagic or hypovolemic shock associated with or caused by trauma. In some embodiments, compositions disclosed herein may be administered for the treatment of hemorrhagic or hypovolemic shock associated with or caused by Ebola Virus Disease or other hemorrhagic virus. In some embodiments, compositions disclosed herein are administered for the treatment of intestinal ischemia or hypoperfusion that result in shock. In some embodiments, compositions disclosed herein may be administered for the treatment of Inflammatory Bowel Disease or Crohn's Disease, or complications arising from Inflammatory Bowel Disease or Crohn's Disease. In some embodiments, compositions disclosed herein may be administered for the treatment of Clostridium difficile colitis, or complications that arise from Clostridium difficile colitis.
- In some embodiments, the compositions disclosed herein are administered to a subject, e.g., a human, by multiple administration routes, either alone or concurrently, including but not limited to oral, nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy administration or other enteral routes. In some embodiments, compositions disclosed herein are administered directly to the gastrointestinal tract. In some embodiments, compositions disclosed herein are administered to the stomach. In some embodiments, compositions disclosed herein are administered to the small intestine. In certain embodiments, compositions disclosed herein are administered via a nasogastic, orogastic, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter. In some embodiments, compositions disclosed herein are delivered orally or by direct injection. In some embodiments of the methods disclosed herein, compositions are administered by a single route of administration. In some embodiments of the methods disclosed herein, compositions are administered by multiple routes of administration.
- Kits
- In some embodiments, the components of the compositions disclosed herein are provided in kits wherein one or more of the components are contained in separate packages or containers along with instructions to combine the components in a single composition. In some embodiments, a kit comprises instructions to reconstitute the components in a liquid carrier, such as water, to produce a liquid, e.g., aqueous, formulation comprising the components. In some instances, the components of the compositions disclosed herein are provided in a single package or container with instructions to reconstitute them in a liquid carrier, such as water, to produce a liquid, e.g., aqueous, formulation. In some embodiments, the components of the compositions disclosed herein are provided in kits wherein one or more of the components are contained in separate packages or containers, and wherein a liquid carrier, such as water, is also provided in a separate package or container in the kit, along with instructions to combine the components and liquid carrier in a single composition to produce a liquid, e.g., aqueous, formulation. In some embodiments, a kit comprises instructions to administer a composition or formulation disclosed herein orally or via a nasogastic, orogastic, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter to a subject, e.g., a human, to treat shock, autodigestion, multi-organ failure, ischemia, or hypoperfusion.
- In certain specific embodiments, a kit comprises tranexamic acid and glucose packaged in separate containers. In some embodiments, a kit comprises tranexamic acid, polyethylene glycol, and one or more electrolytes in a first container and glucose in a second container. In some embodiments, a kit comprises tranexamic acid and polyethylene glycol in a first container and glucose and one or more electrolytes in a second container. In some embodiments, a kit comprises tranexamic acid and electrolytes in a first container and glucose and polyethylene glycol in a second container. In some embodiments, a kit comprises tranexamic acid in a first container and glucose, polyethylene glycol, and electrolytes in a second container. In some instances, the containers are made of any suitable packaging material and in any form suitable for the distribution of pharmaceutical products.
- In some embodiments, disclosed herein is a kit comprising: the components tranexamic acid, PEG, glucose, and one or more electrolytes, wherein at least one of the components tranexamic acid, PEG, glucose, and one or more electrolytes is in a separate container from at least one of the other components tranexamic acid, PEG, glucose, and one or more electrolytes; and instructions to combine the components tranexamic acid, PEG, glucose, and one or more electrolytes in a single composition. In some embodiments, a kit comprises tranexamic acid, PEG, and one or more electrolytes are in a first container, and glucose in a second container. In some embodiments, a kit comprises instructions to combine the tranexamic acid, PEG, one or more electrolytes, and glucose, and reconstitute them in water. In some embodiments, a kit comprises a first container comprising about 7.8 g of tranexamic acid, about 503 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, and a second container comprising about 40 g of glucose. In some embodiments, a kit comprises a first container comprising about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, a second container comprising about 40 g of glucose, and instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 1000 mL. In some embodiments, a kit comprises a first container comprising about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, and a second container comprising about 28 g of glucose. In some embodiments, a kit comprises a first container comprising about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, a second container comprising about 28 g of glucose, and instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 700 mL. In some embodiments, a kit comprises instructions to administer the combined components orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
- Testing
- In some embodiments, the compositions disclosed herein are tested in animal models that are indicative of efficacy in the treatment of shock, autodigestion, mufti-organ failure, trauma, sepsis, and ischemia. Such animal models include but are not limited to the minipig hemorrhagic shock model, rat hemorrhagic shock, rat superior mesentery artery occlusion shock, rodent peritonitis shock by placement of cecal material into the peritoneum, rodent endotoxin shock models, and rodent models of bacterial sepsis established through a Pseudomonas infection.
- Exemplary compositions are described in Tables 1 and 2. In some embodiments, the compositions according to the instant disclosure are prepared as a dry powder formulation and reconstituted as shown. Table 1 shows a composition for reconstitution in water to 1000 mL. Table 2 shows a composition for reconstitution in water to 700 mL. In some instances, upon reconstitution, compositions are administered to a patient in need thereof, e.g., orally or directly to the gastrointestinal tract via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
-
TABLE 1 Amount (g) Concentration (wt %) in Component for 1000 mL solution 1000 mL aqueous solution Tranexamic acid 7.8 ± 10% 0.78 ± 10% PEG 3350 50.3 ± 10% 5.03 ± 10% Sodium Sulfate 5.7 ± 10% 0.57 ± 10% Sodium Bicarbonate 1.7 ± 10% 0.17 ± 10% Sodium Chloride 1.5 ± 10% 0.15 ± 10% Potassium Chloride 0.7 ± 10% 0.07 ± 10 % Glucose 40 ± 10% 4.0 ± 10% -
TABLE 2 Amount (g) Concentration (wt %) in Component for 700 mL solution 700 mL aqueous solution Tranexamic acid 7.5 ± 10% 1.1 ± 10% PEG 3350 32.5 ± 10% 4.6 ± 10% Sodium Sulfate 4.0 ± 10% 0.57 ± 10% Sodium Bicarbonate 1.2 ± 10% 0.17 ± 10% Sodium Chloride 1.0 ± 10% 0.15 ± 10% Potassium Chloride 0.5 ± 10% 0.07 ± 10% Glucose 28 ± 10% 4.0 ± 10% - The SMAO model was used to assess the ability of a representative composition comprising PEG 3350 (Representative Formulation 1) and a comparative composition without PEG 3350 (Comparative Formulation 1) to preserve the structural integrity of the gastrointestinal tract under ischemic conditions when administered by oral gavage.
- The materials used to prepare the formulations and their sources are shown in Table 3. All materials used were USP grade. As shown in Table 3,
Representative Formulation 1 comprises tranexamic acid, electrolytes, PEG 3350, and glucose, andComparative Formulation 1 comprises tranexamic acid, electrolytes, and glucose. -
TABLE 3 Representative Comparative Component Formulation 1 Formulation 1Source Tranexamic acid 0.043 g 0.043 g Daiichi Sankyo PEG 3350 0.287 g 0.0 g OTC clinical grade Miralax Sodium Sulfate 0.033 g 0.033 g Sigma-Aldrich (Anhydrous) Sodium 0.010 g 0.010 g Sigma-Aldrich Bicarbonate Sodium Chloride 0.009 g 0.009 g Sigma-Aldrich Potassium 0.004 g 0.004 g Sigma-Aldrich Chloride Glucose 0.229 g 0.229 g Sigma-Aldrich Water 3.629 g 3.629 g Sterile water for injection Total Solution 4.000 mL 4.000 mL - Male WISTAR rats with a weight of 360-400 grams were purchased from Charles River Laboratories, located in Wilmington, Mass. All rats were maintained on a 2018 Teklad Global 18% Protein Rodent Diet (Harlan, San Diego, Calif., USA) and water throughout the study period.
- Food was removed from the cage the evening prior to surgery. Rats had ad lib access to drinking water while in the home cage the evening prior to surgery. During administration of the formulations, rats were restrained and given 4 mL of
Representative Formulation 1 orComparative Formulation 1 by oral gavage. After administration of the test formulations, rats were returned to their home cage and given ad lib access to water, After a 3 hour period, the rats were prepared to undergo experimentally induced shock. - Animals were anesthetized with ketamine/xylazine (75/4 mg/kg, MI.). Supplemental anesthesia (ketamine/xylazine 10% initial close, I.M.) was administered as indicated following response to tail/toe pinch. Anesthesia was maintained throughout the experimental shock period.
- Rats were secured in a supine position to a temperature controlled (water circulating heat pump) operating table. The animals were maintained at 37° C. throughout the procedures.
- All surgical procedures were performed using aseptic techniques. Sterile drapes, heat sterilized instruments, and surgical apparel (gown, face mask, and gloves) were used. The surgical sites on the abdomen and left groin were shaved and cleaned with betadine followed by 70% alcohol.
- Following anesthetization, the superior mesentery artery was located and tied off (occluded) to prevent blood flow to the intestine and initiate a 30 minute shock/hypoperfusion period. The surgical site was covered with moistened sterile gauze during the entire SMAO shock period. After the 30 minute period, the SMAO was untied (occlusion removed). Perfusion was resumed for a period of 2 hours, followed by sacrifice of the animals.
- The intestines were then harvested by tying off both ends, injecting a 10% neutral buffered formalin solution with a 30 gauge needle, and storing the intestine in a jar filled with 10% neutral buffered formalin.
- Following at least 24 hours of incubation in formalin, an approximate 5 cm by 5 cm section of the ileum (at approximately ⅚ the length of the small intestine) was excised for structural analysis. The tissue sample was adhered to a cardboard backing and mounted for sectioning. Intestinal cross sections of 15-20 microns thickness were created on a Vibratome Series 3000 sectioning system. Free floating sections were washed overnight in water to remove formalin. Sections were then free floating stained with Alcian blue (pH 2.5) (Diagnostic BioSystems, Catalog No. KT 003) and mounted on slides for analysis.
- A
Leitz Wetzlar Dialux 20 microscope (Wetzlar, West Germany) and 20× objective was used to image tissue sections, Still images of the tissue were captured with a Spot Insight Gigabit Camera, Model No. 35.2, Diagnostic instruments, Inc. (Sterling Heights, Mich.) and included software. Images were stored as TIFF files with no compression used. Images were loaded into Photoshop Elements 13 and enhanced to sharpen the contours of the villi. To quantify the extent of damage to the villi, villi were classified as damaged when either of the following criteria was met: -
- 1) Villi tips were broken away or structural damage to any portion of the villi; or
- 2) Goblet cells (normally stained blue) were practically non-existent (≤3 goblet cells with no stain) from the base to the viii tip
- The Photoshop Text tool was used to place an n (for no damage) or a d (for damage) in proximity to each individual villi for each tissue cross section. Where a determination of damage was inconclusive, the villi were excluded from the analysis. These inconclusive villi were less than 5% of the total villi analyzed. An image demonstrating the identification methodology is in
FIG. 1 , which shows a cross section of the small intestine from a rat treated with an enteral formulation. Healthy villi are marked with n and damaged villi are marked with d. - A total of eight rats were tested. Four received
Representative Formulation 1 by oral gavage, and four rats receivedComparative Formulation 1 by oral gavage. Representative micrographs of the villi after administration of the formulations and shock induction are shown inFIGS. 2A and 2B .FIG. 2A shows a cross section of the small intestine of a rat treated withRepresentative Formulation 1. The villi inFIG. 2A appear healthy and structurally intact as the entire length of the villi are visible and completely covered in goblet cells.FIG. 2B shows a cross section of the small intestine of a rat treated withComparative Formulation 1. T villi inFIG. 2B appear to be structurally damaged with missing villi tips and atypical goblet cell staining. - Quantification of villi that were structurally intact after administration of the formulations and shock induction are shown in Tables 4 and 5 and
FIG. 3 . Table 4 shows the individual rat data for the quantification of the structurally intact villi. Table 5 summarizes the total intact villi and damaged villi observed after administration of the formulations and shock induction. FIG. 3 shows the mean percentage of villi intact per rat after administration of the formulations and shock induction. 92.6% of villi were intact across all rats that receivedRepresentative Formulation 1, whereas only 52.8% of the villi were intact across all rats that received.Comparative Formulation 1. These results are consistent with the mean values calculated from the total villi observed in Table 5. -
TABLE 4 Rats Treated with Rats Treated with Representative Comparative Formulation 1 % Intact Villi Formulation 1 % Intact Villi Rat #11 90.9% Rat #12 50.9% Rat #13 90.2% Rat #15 48.9% Rat #14 91.3% Rat #16 48.8% Rat #18 97.9% Rat #17 62.5% Mean 92.6% Mean 52.8% SEM (+/−) 1.8% SEM (+/−) 3.3% -
TABLE 5 Rats Treated with Rats Treated with Representative Comparative Formulation 1 Formulation 1Number of Intact Villi 176 94 Number of Damaged Villi 14 85 Total Villi 190 179 % Intact 92.6% 52.5% - The SMAO model was used to assess the ability of a representative composition comprising glucose (Representative Formulation 2) and a comparative composition without glucose (Comparative Formulation 2) to preserve the structural integrity of the gastrointestinal tract under ischemic conditions when administered by direct enteral injection.
- The materials used to prepare the formulations and their sources are shown in Table 6. All materials used were USP grade. As shown in Table 6, the
Representative Formulation 2 comprises tranexamic acid, electrolytes, PEG 3350, and glucose, andComparative Formulation 2 comprises tranexamic acid, electrolytes, and PEG 3350. -
TABLE 6 Representative Comparative Component Formulation 2 Formulation 2Source Tranexamic acid 0.182 g 0.182 g Daiichi Sankyo PEG 3350 1.222 g 1.222 g OTC clinical grade Miralax Sodium Sulfate 0.138 g 0.138 g Sigma-Aldrich (Anhydrous) Sodium 0.041 g 0.041 g Sigma-Aldrich Bicarbonate Sodium Chloride 0.036 g 0.036 g Sigma-Aldrich Potassium 0.017 g 0.017 g Sigma-Aldrich Chloride Glucose 0.971 g 0.0 g Sigma-Aldrich Water 15.421 g 15.421 g Sterile water for injection Total Solution 17.000 mL 17.000 mL - Male WISTAR rats with a weight of 360-400 grams were purchased from Charles River Laboratories, located in Wilmington, Mass. All rats were maintained on a 2018 Teklad Global 18% Protein Rodent Diet (Harlan, San Diego, Calif., USA) and water throughout the study period.
- Food was removed from the cage the evening prior to surgery. Rats had ad lib access to drinking water while in the home cage the evening prior to surgery. Following anesthesia, an incision was made in the midline of the abdomen for isolation of the small intestine. Rats were administered 17 mL of either
Representative Formulation 2 orComparative Formulation 2 via direct injection into the intestine using a 30 gauge needle. Following formulation administration, the rats were subjected to experimentally induced shock via the SMAO procedure. - Animals were anesthetized with ketamine/xylazine (75/4 mg/kg, I.M.). Supplemental anesthesia (ketamine/xylazine 10% initial dose, I.M.) was administered as indicated following response to tail/toe pinch. Anesthesia was maintained throughout the experimental shock period.
- Rats were secured in a supine position to a temperature controlled (water circulating heat pump) operating table. The animals were maintained at 37° C. throughout the procedures.
- All surgical procedures were performed using aseptic techniques. Sterile drapes, heat sterilized instruments, and surgical apparel (gown, face mask, and gloves) were used. The surgical sites on the abdomen and left groin were shaved and cleaned with betadine followed by 70% alcohol.
- To initiate the model, following anesthesia the superior mesentery artery was located and tied off (occluded) to prevent blood flow to the intestine and initiate a 30 minute shock/hypoperfusion period. The surgical site was covered with moistened sterile gauze during the entire SMAO shock period. After the 30 minute period, the SMAO was untied (occlusion removed). Perfusion was resumed for a period of 2 hours, followed by sacrifice of the animals.
- The intestines were then harvested by tying off both ends, injecting a 10% neutral buffered formalin solution with a 30 gauge needle, and storing the intestines in a jar filled with 10% neutral buffered formalin.
- Following at least 24 hours of incubation in formalin, an approximate 5 cm by 5 cm section of the ileum (at approximately ⅚ the length of the small intestine) was excised for structural analysis. The tissue sample was adhered to a cardboard backing and mounted for sectioning. Intestinal cross sections of 15-20 microns thickness were created on a Vibratome Series 3000 sectioning system. Free floating sections were washed overnight in water to remove formalin. Sections were then free floating stained with Alcian blue (pH 2.5) (Diagnostic BioSystems, Catalog No, KT 003) and mounted on slides for analysis.
- A
Leitz Wetzlar Dialux 20 microscope (Wetzlar, West Germany) and 20× objective was used to image tissue sections. Still images of the tissue were captured with a Spot Insight Gigabit Camera, Model No. 35.2, Diagnostic instruments, Inc. (Sterling Heights, Mich.) and included software. Images were stored as TIFF files with no compression used, Images were loaded into Photoshop Elements 13 and enhanced to sharpen the contours of the villi. To quantify the extent of damage to the villi, villi were classified as damaged when either of the following criteria were met: -
- 1) Villi tips were broken away or structural damage to any portion of the villi; or
- 2) Goblet cells (normally stained blue) were practically non-existent (≤3 goblet cells with no stain) from the base to the villi tip
- The Photoshop Text tool was used to place an n (for no damage) or a d (for damage) in proximity to each individual villi for each tissue cross section. Where a determination of damage was inconclusive, the villi were excluded from the analysis. These inconclusive villi were less than 5% of the total villi analyzed. An image demonstrating the identification methodology is in
FIG. 1 , which shows a cross section of the small intestine from a rat treated with an enteral formulation. Healthy villi are marked with n and damaged villi are marked with d. - A total of eight rats were tested. Four rats received
Representative Formulation 2 by direct enteral injection, and four rats receivedComparative Formulation 2 by direct enteral injection. Representative micrographs of the villi after administration of the formulations and shock induction are shown inFIGS. 4A and 4B .FIG. 4A shows a cross section of the small intestine of a rat treated withRepresentative Formulation 2. The villi inFIG. 4A appear healthy and structurally intact as the entire length of the villi are visible and completely covered in goblet cells.FIG. 4B shows a cross section of the small intestine of a rat treated withComparative Formulation 2. The villi inFIG. 4B appear to be structurally damaged with missing villi tips and atypical goblet cell staining. - Quantification of villi that are structurally intact after administration of the formulations and shock induction are shown in Tables 7 and 8 and
FIG. 5 . Table 7 shows the individual rat data for the quantification of the structurally intact villi. Table 8 summarizes the total intact villi and damaged villi observed after administration of the formulations and shock induction.FIG. 5 shows the mean percentage of villi intact per rat after administration of the formulations and shock induction. 83.4% of villi were intact across all rats that receivedRepresentative Formulation 2, whereas only 51.3% of the villi were intact across all rats that receivedComparative Formulation 2. These results are consistent with the mean values calculated from the total villi observed in Table 8. -
TABLE 7 Rats Treated with Rats Treated with Representative Comparative Formulation 2 % Intact Villi Formulation 2 % Intact Villi Rat # 1 85.3 % Rat # 2 46.3% Rat #4 88.2 % Rat # 3 54.1% Rat #6 76.0% Rat #5 51.3% Rat #8 84.2% Rat #7 53.7% Mean 83.4% Mean 51.3% SEM (+/−) 2.6% SEM (+/−) 1.8% -
TABLE 8 Rats Treated with Rats Treated with Representative Comparative Formulation 2 Formulation 2Number of Intact Villi 110 106 Number of Damaged Villi 21 102 Total Villi 131 208 % Intact 84.0% 51.0% - The hemorrhagic shock model was used to assess the ability of a representative composition comprising PEG 3350 (Representative Formulation 3) and a comparative composition without PEG 3350 (Comparative Formulation 3) to preserve the structural integrity of the gastrointestinal tract under hemorrhagic conditions when administered by direct stomach injection.
- The materials used to prepare the formulations and their sources are shown in Table 9. All materials used were USP grade. As shown in Table 9, the
Representative Formulation 3 comprises tranexamic acid, electrolytes, PEG 3350, and glucose, andComparative Formulation 3 comprises tranexamic acid, electrolytes, and glucose. -
TABLE 9 Representative Comparative Component Formulation 3 Formulation 3Source Tranexamic acid 0.043 g 0.043 g Daiichi Sankyo PEG 3350 0.287 g 0.0 g OTC clinical grade Miralax Sodium Sulfate 0.033 g 0.033 g Sigma-Aldrich (Anhydrous) Sodium 0.010 g 0.010 g Sigma-Aldrich Bicarbonate Sodium Chloride 0.009 g 0.009 g Sigma-Aldrich Potassium 0.004 g 0.004 g Sigma-Aldrich Chloride Glucose 0.229 g 0.229 g Sigma-Aldrich Water 3.629 g 3.629 g Sterile water for injection Total Solution 4.000 mL 4.000 mL - Male WISTAR rats with a weight of 320-400 grams were purchased from Charles River Laboratories, located in Wilmington, Mass. All rats were maintained on Charles River Laboratories feed and provided water ad libitum throughout the study period.
- Food was removed from the cage the evening prior to surgery. After placement of catheters, a small skin incision in the abdomen was made for isolation of the stomach. Following stabilization after experimentally induced shock via the hemorrhagic shock procedure, rats were administered 4 mL of either
Representative Formulation 3 orComparative Formulation 3 via a direct injection into the middle of the stomach. - Animals were anesthetized with ketamine (75 mg/kg, I.M.). Anesthesia was maintained throughout the experimental shock period.
- Rats were secured in a supine position to a temperature controlled (water circulating heat pump) operating table. The animals were maintained at 37° C. throughout the procedures. Vital signs (systemic blood pressure or respiratory rate, body temperature) were monitored throughout the procedures.
- All surgical procedures were performed using aseptic techniques. Sterile drapes, heat sterilized instruments, and surgical apparel (gown, face mask, and gloves) were used. The surgical sites on the abdomen and left groin were shaved and cleaned with betadine followed by 70% alcohol.
- To initiate the model, rats were anesthetized with ketamine (75 mg/kg, I.M.). Abdominal and inguinal regions were shaved and disinfected with alcohol. The right femoral artery was cannulated. The surgical site was covered with moistened sterile gauze during entire hemorrhagic shock period. Hemorrhagic shock was initiated by reduction of blood volume (about 40% of whole blood volume based on 6% body weight) to achieve a blood pressure of 35 mmHg (47.58 cm H2O) for a period of 2 hours. Briefly, each rat was heparinized with minimal concentrations of sodium heparin (0.5 USP units/ml of blood volume estimated as 6% body weight) to prevent blood coagulation during the procedure. The right femoral artery was connected with a 10 cc syringe. About 6 ml of blood was withdrawn from the femoral artery over a period of about 5-10 minutes. The syringe was then placed at 47.58 cm high above the rat body level. The syringe served as a blood reservoir that regulated blood pressure at 47.58 cm H2O (35 mm Hg) automatically. If the blood pressure was above 47.58 cm H2O, blood flowed into the blood reservoir. If the blood pressure was under 47.58 cm H2O, the blood from the blood reservoir was infused into blood stream circulation. Once mean arterial pressure (MAP) was stabilized, either
Representative Formulation 3 orComparative Formulation 3 was injected into the middle of the stomach. - The intestines were then harvested by tying off both ends, injecting a 10% neutral buffered formalin solution with a 30 gauge needle, and storing the intestines in a jar filled with 10% neutral buffered formalin.
- Following at least 24 hours of incubation in formalin, an approximate 5 cm by 5 cm section of the ileum (at approximately ⅚ the length of the small intestine) was excised for structural analysis. The tissue sample was adhered to a cardboard backing and mounted for sectioning. Intestinal cross sections of 15-20 microns thickness were created on a Vibratome Series 3000 sectioning system. Free floating sections were washed overnight in water to remove formalin. Sections were then free floating stained with Alcian blue (
pH 2,5) (Diagnostic BioSystems, Catalog No. IST 003) and mounted on slides for analysis. - A
Leitz Wetzlar Dialux 20 microscope (Wetzlar, West Germany) and 20× objective was used to image tissue sections. Still images of the tissue were captured with a Spot Insight Gigabit Camera, Model No. 35.2, Diagnostic Instruments, Inc. (Sterling Heights, Mich.) and included software. Images were stored as TIFF files with no compression used. Images were loaded into Photoshop Elements 13 and enhanced to sharpen the contours of the villi. To quantify the extent of damage to the villi, villi were classified as damaged when either of the following criteria were met: -
- 1) Villi tips were broken away or structural damage to any portion of the villi; or
- 2) Goblet cells (normally stained blue) were practically non-existent (≤3 goblet cells with no stain) from the base to the villi tip
- The Photoshop Text tool was used to place an n (for no damage) or a d (for damage) in proximity to each individual villi for each tissue cross section. Where a determination of damage was inconclusive, the villi were excluded from the analysis. These inconclusive villi were less than 5% of the total villi analyzed. An image demonstrating the identification methodology is in
FIG. 1 , which shows a cross section of the small intestine from a rat treated with an enteral formulation. Healthy villi are marked with n and damaged villi are marked with d. - A total of eight rats were tested. Four rats received
Representative Formulation 3 by direct stomach injection, and four rats received.Comparative Formulation 3 by direct stomach injection. Representative micrographs of the villi after administration of the formulations and shock induction are shown inFIGS. 6A and 6B .FIG. 6A shows a cross section of the small intestine of a rat treated withRepresentative Formulation 3. The villi inFIG. 6A appear healthy and structurally intact as the entire length of the villi are visible and completely covered in goblet cells,FIG. 6B shows a cross section of the small intestine of a rat treated withComparative Formulation 3. The villi itFIG. 6B appear to be structurally damaged. - Quantification of villi that are structurally intact after administration of the formulations and shock induction are shown in Tables 10 and 11 and
FIG. 7 . Table 10 shows the individual rat data for the quantification of the structurally intact villi. Table 11 summarizes the total intact villi and damaged villi observed after administration of the formulations and shock induction.FIG. 7 shows the mean percentage of villi intact per rat after administration of the formulations and shock induction, 88.8% of villi were intact across all rats that receivedRepresentative Formulation 3, whereas only 64.1% of the villi were intact across all rats that receivedComparative Formulation 3. These results are consistent with the mean values calculated from the total villi observed in Table 11. -
TABLE 10 Rats Treated with Rats Treated with Representative Comparative Formulation 3 % Intact Villi Formulation 3 % Intact Villi Rat #701 90.7% Rat #802 65.6% Rat #704 83.3% Rat #805 66.7% Rat #705 91.1% Rat #806 62.7% Rat #706 90.0% Rat #807 61.5% Mean 88.8% Mean 64.1% SEM (+/−) 1.8% SEM (+/−) 1.2% -
TABLE 11 Rats Treated with Rats Treated with Representative Comparative Formulation 3 Formulation 3Number of Intact Villi 171 105 Number of Damaged Villi 23 59 Total Villi 194 164 % Intact 88.1% 64.0% - This is a multicenter, randomized, double-blind, parallel, placebo-controlled
Phase 2 clinical study of septic shock patients to determine whether enteral administration of a formulation comprising tranexamic acid, PEG, glucose, and one or more electrolytes increases the number of days alive without cardiovascular, pulmonary, or renal replacement therapy through Day 28 compared to Placebo, - The secondary safety objective of this study is to assess safety and tolerability of experimental composition in patients with septic shock.
-
-
- 1. First episode of documented or suspected sepsis of peritoneal/abdominal, soft tissue, blood, or community acquired lung origin.
- 2. Must have septic shock requiring vasopressors despite adequate fluid resuscitation of 30 mL/kg crystalloid or colloid equivalent, for either an SBP≤90 mmHg or a MAP≤65 mmHg (i.e. must have been unable to maintain adequate blood pressure despite adequate fluid resuscitation),
- 3. Age 18 to 75 years
- The study is composed of four periods:
-
- Screening: This period begins when the patient has documented or suspected sepsis of peritoneal/abdominal, soft tissue, blood, or community acquired lung origin and is unable to maintain adequate blood pressure (BP, systolic BP [SBP]>90 mmHg or a mean arterial pressure [MAP]>65 without vasopressor support) despite intravenous fluid resuscitation. Enteral study drug administration must start within 4 hours of randomization and no later than 24 hours after the onset of shock.
- Intervention: This period begins with the first administration of the test formulation or placebo and continues throughout treatment duration, up to 8 days pending patient refusal to take study drug, exit from hospital or death. There are no food or fluid restrictions. However, during the first 48 hours following enrollment, physicians are encouraged to delay enteral nutrition. If a patient is moved from ICU and still in the hospital, study drug administration should continue until 8 doses have been administered.
- Post-Intervention: This period begins after study drug administration is complete and continues through Study Day 28 or until the patient is discharged from the hospital (if before Day 28). If a patient has been discharged from the study hospital before Study Day 28, site personnel will contact the patient or surrogate, caregiver, family member, physician, or healthcare facility to obtain the patient's survival status, organ support and functional outcome assessment.
- Follow-up: Site personnel will contact the patient, surrogate, caregiver, family member, or patient's other healthcare providers to determine survival status on Day 90.
- All randomized patients will be divided between the two treatment arms in a 1:1 ratio stratified by highest total SOFA score during the screening period (known at the time of randomization); and then by percent change in serum lactate between the first and subsequent lactate measurements (separated by at least 4 hours to be used to qualify for randomization).
- A total of 250 patients are enrolled. The 700 mL aqueous solution formulation shown in Table 2 is administered orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter to patients in the experimental arm. Patients in the placebo arm of the study receive 700 mL, of a placebo solution that does not comprise tranexamic acid orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter. Daily treatment is administered continuously or intermittently spread over an 8 to 24 hour period. 700 mL of experimental product or placebo is administered every 24 hours. Treatment is administered daily on Study Days 1-8, barring death or hospital discharge. Depending on the start time of the initial administration (infusion) on
Study Day 1, the final administration extends into Study Day 9. - The primary efficacy endpoint is the number of days alive without cardiovascular, renal, or pulmonary organ support through Day 28. Patients are classified as having organ support if organ support is required through the use of:
-
- Mechanical ventilation;
- Vasopressors to maintain adequate BP, or
- Renal replacement therapy.
- The secondary efficacy endpoint is mortality rate: Date of death will be recorded for all patients who have died on or before Study Day 90. The 7-day, 28-day, and 90-day mortality and survival rates will be evaluated.
- The aqueous solution formulation shown in Table 2 is safe and well-tolerated by patients in the experimental arm. Patients in the experimental arm exhibit an increase in the number of days without cardiovascular, renal, or pulmonary support through Day 28 of the study as compared to patients in the placebo arm, Patients in the experimental arm exhibit a decrease in the rates of mortality on day 90 of the study as compared to mortality rates of patients in the placebo arm.
- This is a multicenter, randomized, double-blind, parallel, placebo-controlled,
Phase 2 clinical study to determine whether enteral administration of a formulation comprising tranexamic acid, PEG, glucose, and one or more electrolytes prior to high risk cardiovascular surgery increases the number of days alive without cardiovascular, renal, or pulmonary dysfunction through Day 14 compared to Placebo. - All high risk cardiovascular surgery randomized patients will be divided between the 2 treatment groups in a 1:1 ratio stratified by:
-
- Age (≤64 or ≥65 years of age);
- STS Cardiac Score, and
- Procedure.
- The study is composed of four periods:
-
- Screening and randomization (not to exceed 4 weeks): prior to cardiovascular surgery.
- Intervention: will begin with the first enteral administration of study drug 6-12 hours prior to surgery (Day 0). Treatment should continue for a minimum of 7 days (pending patient refusal to take study drug, exit from hospital, or mortality). In some cases, patients with continued organ dysfunction remain on study drug for up to 10 days as long as organ dysfunction persists.
- Post-intervention in-hospital: will start after study drug administration is stopped (Day 8) and will continue through Day 14 or until the patient is discharged from the hospital.
- Follow-up: the patient will be contacted by phone to assess functional outcomes at Day 28.
- A total of 100 patients are enrolled. The 700 mL aqueous solution formulation shown in Table 2 or a Placebo that does not comprise tranexamic acid is administered orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter to patients on Days 0-7. If a patient continues to demonstrate organ dysfunction, the physician will continue treatment for a maximum of 10 days for some cases. Patients, investigators, persons performing the assessments, and data analysts remain blinded to the identity of the treatment from time of randomization until database lock.
- The primary efficacy endpoint is the number of days alive without cardiovascular, renal or pulmonary organ support through Day 14. Patients are classified as requiring organ support if organ support is provided through the use of:
-
- Mechanical ventilation;
- Vasopressors to maintain adequate blood pressure (BP); or
- Renal replacement therapy (hemodialysis, peritoneal dialysis or continuous venous hemofiltration).
- The secondary efficacy endpoint is mortality rate: date of death will be recorded for all patients who have died on or before Study Day 28 and Day 90. The 28-day and 90-day mortality and survival rates will be evaluated.
- The aqueous solution formulation shown in Table 2 is safe and well-tolerated by patients in the experimental arm. Patients in the experimental arm exhibit an increase in the number of days alive without cardiovascular, renal, or pulmonary dysfunction through Day 14 compared to Placebo. Patients in the experimental arm exhibit a decrease in the rates of mortality on day 90 of the study as compared to mortality rates of patients in the placebo arm.
- While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein are employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Claims (19)
1. A composition comprising tranexamic acid, PEG, glucose, and one or more electrolytes.
2. The composition of claim 1 , wherein the PEG is PEG 3350.
3. The composition of claim 2 , wherein the composition comprises a non-colonic cleansing amount of PEG 3350.
4. The composition of claim 2 , wherein the composition comprises about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 40 g of glucose, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride.
5. The composition of claim 2 , wherein the composition comprises about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 28 g of glucose, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride.
6. The composition of claim 1 , wherein the composition comprises about 7.8 g of tranexamic acid and about 40 g of glucose.
7. The composition of claim 1 , wherein the composition comprises about 7.5 g of tranexamic acid and about 28 g of glucose.
8. The composition of claim 1 , wherein the composition is formulated as an aqueous solution.
9. The composition of claim 4 , wherein the composition is formulated as a 1000 mL aqueous solution.
10. The composition of claim 5 , wherein the composition is formulated as a 700 mL aqueous solution.
11-22. (canceled)
23. A kit comprising: the components tranexamic acid, PEG, glucose, and one or more electrolytes, wherein at least one of the components tranexamic acid, PEG, glucose, and one or more electrolytes is in a separate container from at least one of the other components tranexamic acid, PEG, glucose, and one or more electrolytes; and instructions to combine the components tranexamic acid, PEG, glucose, and one or more electrolytes in a single composition.
24. The kit of claim 23 , wherein the tranexamic acid, PEG, and one or more electrolytes are in a first container, and the glucose is in a second container.
25. The kit of claim 23 , wherein the kit further comprises instructions to reconstitute the components in water.
26. The kit of claim 24 , wherein the first container comprises about 7.8 g of tranexamic acid, about 50.3 g of PEG 3350, about 5.7 g of sodium sulfate, about 1.7 g of sodium bicarbonate, about 1.5 g of sodium chloride, and about 0.7 g of potassium chloride, and wherein the second container comprises about 40 g of glucose.
27. The kit of claim 24 , wherein the first container comprises about 7.5 g of tranexamic acid, about 32.5 g of PEG 3350, about 4.0 g of sodium sulfate, about 1.2 g of sodium bicarbonate, about 1.0 g of sodium chloride, and about 0.5 g of potassium chloride, and wherein the second container comprises about 28 g of glucose.
28. The kit of claim 26 , wherein the kit further comprises instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 1000 mL.
29. The kit of claim 27 , wherein the kit further comprises instructions to reconstitute the tranexamic acid, PEG, glucose, and one or more electrolytes with water to 700 mL.
30. The kit of claim 24 , wherein the kit comprises instructions to administer the combined components orally or via a nasogastric, orogastric, nasojejunal, orojejunal, nasoduodenal, or percutaneous endoscopic gastrostomy tube or catheter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/460,184 US20220054439A1 (en) | 2014-03-25 | 2021-08-28 | Compositions for the treatment of autodigestion |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461970247P | 2014-03-25 | 2014-03-25 | |
US201462019007P | 2014-06-30 | 2014-06-30 | |
US14/666,926 US9314442B2 (en) | 2014-03-25 | 2015-03-24 | Compositions for the treatment of autodigestion |
US15/069,860 US9775821B2 (en) | 2014-03-25 | 2016-03-14 | Compositions for the treatment of autodigestion |
US15/707,943 US11123317B2 (en) | 2014-03-25 | 2017-09-18 | Compositions for the treatment of autodigestion |
US17/460,184 US20220054439A1 (en) | 2014-03-25 | 2021-08-28 | Compositions for the treatment of autodigestion |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/707,943 Continuation US11123317B2 (en) | 2014-03-25 | 2017-09-18 | Compositions for the treatment of autodigestion |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220054439A1 true US20220054439A1 (en) | 2022-02-24 |
Family
ID=54188811
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/666,926 Active US9314442B2 (en) | 2014-03-25 | 2015-03-24 | Compositions for the treatment of autodigestion |
US15/069,860 Active US9775821B2 (en) | 2014-03-25 | 2016-03-14 | Compositions for the treatment of autodigestion |
US15/707,943 Active US11123317B2 (en) | 2014-03-25 | 2017-09-18 | Compositions for the treatment of autodigestion |
US17/460,184 Abandoned US20220054439A1 (en) | 2014-03-25 | 2021-08-28 | Compositions for the treatment of autodigestion |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/666,926 Active US9314442B2 (en) | 2014-03-25 | 2015-03-24 | Compositions for the treatment of autodigestion |
US15/069,860 Active US9775821B2 (en) | 2014-03-25 | 2016-03-14 | Compositions for the treatment of autodigestion |
US15/707,943 Active US11123317B2 (en) | 2014-03-25 | 2017-09-18 | Compositions for the treatment of autodigestion |
Country Status (14)
Country | Link |
---|---|
US (4) | US9314442B2 (en) |
EP (1) | EP3122349B1 (en) |
JP (1) | JP6648106B2 (en) |
KR (2) | KR102397379B1 (en) |
CN (3) | CN106572987B (en) |
AU (1) | AU2015236283B2 (en) |
CA (1) | CA2942358C (en) |
DK (1) | DK3122349T3 (en) |
ES (1) | ES2906262T3 (en) |
MX (1) | MX376176B (en) |
PL (1) | PL3122349T3 (en) |
PT (1) | PT3122349T (en) |
TW (2) | TWI554269B (en) |
WO (1) | WO2015148474A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2951828T3 (en) | 2010-09-23 | 2023-10-25 | Leading Biosciences Inc | Administration of serine protease inhibitors to the stomach |
US9314442B2 (en) | 2014-03-25 | 2016-04-19 | Leading BioSciences, Inc. | Compositions for the treatment of autodigestion |
CA3010986A1 (en) * | 2016-01-11 | 2017-07-20 | Leading BioSciences, Inc. | Compositions and methods for treating and preventing adhesions and ileus |
WO2019084186A1 (en) * | 2017-10-24 | 2019-05-02 | Leading BioSciences, Inc. | Compositions and methods for glucose control |
US11666532B2 (en) | 2018-01-19 | 2023-06-06 | Hyloris Developments Sa | Tranexamic acid oral solution |
CN110730413A (en) * | 2018-06-29 | 2020-01-24 | 阿里巴巴集团控股有限公司 | Terminal positioning method and device |
US10980757B2 (en) | 2018-09-06 | 2021-04-20 | RTU Pharma SA | Ready-to-use tranexamic acid intravenous solution |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56158707A (en) | 1980-04-08 | 1981-12-07 | Lion Corp | Composition for oral use |
JP3496158B2 (en) | 1993-01-26 | 2004-02-09 | 東洋カプセル株式会社 | Gelatin capsule preparation containing tranexamic acid |
US5578568A (en) | 1994-04-22 | 1996-11-26 | Xoma Corporation | Method of treating conditions associated with intestinal ischemia/reperfusion |
DE19617369A1 (en) | 1996-04-30 | 1997-11-06 | Immuno Ag | Storage-stable fibrinogen preparations |
JP3940209B2 (en) | 1996-11-14 | 2007-07-04 | 株式会社資生堂 | Solubilized cosmetics |
US6121232A (en) | 1997-01-31 | 2000-09-19 | Omrix Biopharmaceuticals Sa | Stabilized mixture comprising fibrinogen |
CA2301921A1 (en) | 1997-08-20 | 1999-02-25 | John Graham Goddard | Compositions containing polyethylene glycol and uses thereof |
TWI243687B (en) | 1998-04-21 | 2005-11-21 | Teijin Ltd | Pharmaceutical composition for application to mucosa |
DE10025001A1 (en) | 2000-05-22 | 2001-11-29 | Aventis Behring Gmbh | Tissue glue with improved anti-adhesive properties |
US7276235B2 (en) | 1998-11-18 | 2007-10-02 | Zlb Behring Gmbh | Tissue glue with improved antiadhesive properties |
US6534283B1 (en) | 1999-11-24 | 2003-03-18 | The Regents Of The University Of California | Method for treatment and prevention of physiological shock |
US6708822B1 (en) * | 1999-11-30 | 2004-03-23 | Cutispharma, Inc. | Compositions and kits for compounding pharmaceuticals |
US20030144212A1 (en) | 2000-07-06 | 2003-07-31 | Hoffman Keith B | Use of serine protease inhibitors to inhibit pathophysiology and neuropathology in a host |
JP4044748B2 (en) | 2001-10-17 | 2008-02-06 | サンスター株式会社 | Oral liquid composition |
US20040018984A1 (en) | 2002-07-17 | 2004-01-29 | Mizuo Miyazaki | Methods for preventing adhesion formation using protease inhibitors |
GB0224909D0 (en) | 2002-10-25 | 2002-12-04 | Norgine Europe Bv | Colon cleansing compositions |
BR0215954A (en) | 2002-11-26 | 2005-09-13 | Uc Tech | Methods of reducing the possibility of mortality in an animal, virulent expression in an intestinal pathogen, and adhesin / lectin pa-i expression in a bacterial cell, inhibiting adhesin / lectin pa-i expression in an intestinal pathogen, intestine-induced activation of adhesin / lectin pa-i, c4-hsl-induced morphological change of an intestinal pathogen, and bacterial cell adhesion in a mammalian intestine, improvement of intestinal pathogenesis, disease prevention or abnormal condition, skin and respiratory infection, sexually transmitted disease, digestive tract disorder, loss of lactating capacity in an animal, and development of a microbe-mediated epithelial disorder in a nursing-age animal, irrigation of at least a portion of the urinary tract, and for monitoring the administration of poly (ethylene glycol) (peg) to an animal, composition pharmaceuticals, kits for the prevention or therapeutic treatment of bowel-derived sepsis, and for monitoring the administration of poly (ethylene glycol), and, condoms |
US20050025825A1 (en) | 2003-07-31 | 2005-02-03 | Xanodyne Pharmacal, Inc. | Tranexamic acid formulations with reduced adverse effects |
JP2005068076A (en) | 2003-08-25 | 2005-03-17 | Tendou Seiyaku Kk | External liquid preparation containing tranexamic acids and cleaning agent |
US20090215898A1 (en) | 2004-03-04 | 2009-08-27 | Xanodyne Pharmaceuticals, Inc. | Tranexamic acid formulations |
RU2006140784A (en) | 2004-04-20 | 2008-05-27 | Дзе Юниверсити Оф Чикаго (Us) | THERAPEUTIC DELIVERY SYSTEM CONTAINING A HIGH-MOLECULAR PEG-LIKE COMPOUND |
WO2007053194A2 (en) | 2005-06-03 | 2007-05-10 | The University Of Chicago | Modulation of cell barrier dysfunction |
US20080194611A1 (en) | 2005-06-03 | 2008-08-14 | Alverdy John C | Modulation of Cell Barrier Dysfunction |
EP1906838A4 (en) | 2005-06-03 | 2008-10-08 | Univ Chicago | INTERACTION MODULATION OF MICROBIAL PATHOGENS-HOST CELLS |
US20090186949A1 (en) | 2006-02-28 | 2009-07-23 | The University Of Chicago | Method for Treating Endothelial and Epithelial Cell Disorders by Administering High Molecular Weight PEG-Like Compounds |
JP5465824B2 (en) | 2006-03-24 | 2014-04-09 | 第一三共ヘルスケア株式会社 | Pharmaceutical preparation and method for producing the same |
US20100179091A1 (en) | 2007-02-20 | 2010-07-15 | The Regents Of The University Of California | Treatment of Conditions Related to Shock |
JP5093841B2 (en) | 2007-07-12 | 2012-12-12 | 株式会社 資生堂 | Nonwoven impregnated cosmetics |
WO2009045543A1 (en) | 2007-10-04 | 2009-04-09 | The Regents Of The University Of California | Treatment of conditions related to shock |
WO2010087874A1 (en) | 2009-01-28 | 2010-08-05 | Anazyme, Llc | Compositions and methods for diagnosis of shock |
US8541371B2 (en) | 2008-04-22 | 2013-09-24 | The Regents Of The University Of California | Treatment of conditions related to cecal ligation shock |
DK2294012T3 (en) | 2008-05-07 | 2014-10-06 | Salix Pharmaceuticals Ltd | Administration of a bowel cleanser and an antibiotic for the treatment of bowel disease |
US7635707B1 (en) * | 2008-11-10 | 2009-12-22 | Intermune, Inc. | Pirfenidone treatment for patients with atypical liver function |
ZA201107285B (en) | 2009-03-06 | 2012-12-27 | Delivtx Inc | Microencapsulated bioactive agents for oral delivery and methods of the thereof |
MX2011009988A (en) | 2009-03-23 | 2011-11-18 | Univ Chicago | Methods for preventing and treating radiation-induced epithelial disorders. |
WO2011018743A1 (en) * | 2009-08-12 | 2011-02-17 | Koninklijke Philips Electronics N.V. | Medicine reservoir for drug delivery device |
WO2011028234A1 (en) | 2009-09-04 | 2011-03-10 | Xenoport, Inc. | Uses of acyloxyalkyl carbamate prodrugs of tranexamic acid |
GB2490084A (en) | 2010-02-22 | 2012-10-17 | Edge Therapeutics Inc | Methods and compositions to treat hemorrhagic conditions of the brain |
ES2951828T3 (en) * | 2010-09-23 | 2023-10-25 | Leading Biosciences Inc | Administration of serine protease inhibitors to the stomach |
CN103237558A (en) | 2010-10-02 | 2013-08-07 | 加利福尼亚大学董事会 | Minimizing intestinal dysfunction |
JP6148454B2 (en) * | 2011-11-11 | 2017-06-14 | ロート製薬株式会社 | Composition for external and internal use containing tranexamic acid |
ES2375784B1 (en) | 2011-12-22 | 2013-01-24 | Laboratorios Kin S.A. | Tranexamic acid gel |
CN103565743B (en) * | 2012-07-23 | 2016-06-22 | 上海市徐汇区中心医院 | Tranexamic acid external preparation for skin nanometer formulation and its production and use |
US9937199B2 (en) | 2012-08-17 | 2018-04-10 | The University Of Chicago | Materials and methods for preventing and treating anastomotic leaks |
CN103054861A (en) * | 2012-12-29 | 2013-04-24 | 北京阜康仁生物制药科技有限公司 | Compound solid preparation containing tranexamic acid |
US20140271923A1 (en) | 2013-03-14 | 2014-09-18 | Christopher Brian Reid | Compositions & formulations for preventing and treating chronic diseases that cluster in patients such as cardiovascular disease, diabetes, obesity, polycystic ovary syndrome, hyperlipidemia and hypertension, as well as for preventing and treating other diseases and conditions |
US9314442B2 (en) | 2014-03-25 | 2016-04-19 | Leading BioSciences, Inc. | Compositions for the treatment of autodigestion |
US20150297619A1 (en) | 2014-04-17 | 2015-10-22 | The Regents Of The University Of California | Methods and compositions for preserving the mucosal barrier |
-
2015
- 2015-03-24 US US14/666,926 patent/US9314442B2/en active Active
- 2015-03-24 CN CN201580020501.9A patent/CN106572987B/en active Active
- 2015-03-24 CA CA2942358A patent/CA2942358C/en active Active
- 2015-03-24 KR KR1020167027915A patent/KR102397379B1/en active Active
- 2015-03-24 JP JP2017502766A patent/JP6648106B2/en active Active
- 2015-03-24 CN CN202110088870.9A patent/CN112641771B/en active Active
- 2015-03-24 EP EP15767838.4A patent/EP3122349B1/en active Active
- 2015-03-24 CN CN202110088873.2A patent/CN112807325A/en active Pending
- 2015-03-24 DK DK15767838.4T patent/DK3122349T3/en active
- 2015-03-24 WO PCT/US2015/022198 patent/WO2015148474A1/en active Application Filing
- 2015-03-24 PL PL15767838T patent/PL3122349T3/en unknown
- 2015-03-24 PT PT157678384T patent/PT3122349T/en unknown
- 2015-03-24 AU AU2015236283A patent/AU2015236283B2/en not_active Ceased
- 2015-03-24 KR KR1020227015575A patent/KR20220068266A/en not_active Ceased
- 2015-03-24 ES ES15767838T patent/ES2906262T3/en active Active
- 2015-03-24 MX MX2016012248A patent/MX376176B/en active IP Right Grant
- 2015-03-25 TW TW104109588A patent/TWI554269B/en active
- 2015-03-25 TW TW105125832A patent/TWI669114B/en not_active IP Right Cessation
-
2016
- 2016-03-14 US US15/069,860 patent/US9775821B2/en active Active
-
2017
- 2017-09-18 US US15/707,943 patent/US11123317B2/en active Active
-
2021
- 2021-08-28 US US17/460,184 patent/US20220054439A1/en not_active Abandoned
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220054439A1 (en) | Compositions for the treatment of autodigestion | |
AU2022204450B2 (en) | Uses of oxygenated cholesterol sulfates (OCS) | |
HK40049334B (en) | Compositions for the treatment of autodigestion | |
HK40049334A (en) | Compositions for the treatment of autodigestion | |
HK40051381A (en) | Compositions for the treatment of autodigestion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |