US20220032802A1 - Systems and methods for vehicle wireless charging - Google Patents
Systems and methods for vehicle wireless charging Download PDFInfo
- Publication number
- US20220032802A1 US20220032802A1 US17/504,319 US202117504319A US2022032802A1 US 20220032802 A1 US20220032802 A1 US 20220032802A1 US 202117504319 A US202117504319 A US 202117504319A US 2022032802 A1 US2022032802 A1 US 2022032802A1
- Authority
- US
- United States
- Prior art keywords
- battery charger
- vehicle battery
- vehicle
- charging
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000004891 communication Methods 0.000 claims description 18
- 230000000875 corresponding effect Effects 0.000 description 12
- 230000009471 action Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/124—Detection or removal of foreign bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/38—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/60—Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
- G01P13/02—Indicating direction only, e.g. by weather vane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
- G01P13/02—Indicating direction only, e.g. by weather vane
- G01P13/04—Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
- G01S17/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0294—Trajectory determination or predictive filtering, e.g. target tracking or Kalman filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30241—Trajectory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present disclosure generally relates to electric and hybrid vehicles and, more specifically, methods and systems for wireless charging of the batteries of electric and hybrid vehicles.
- Modern electric and hybrid vehicles must be charged routinely in order to function.
- Some vehicles may include the ability to charge the vehicle battery by plugging into a wall outlet, charging station, or other electrical power source.
- Some vehicles may also or alternatively include the ability to wirelessly charge the vehicle battery at a distance. Wireless charging may be done by positioning a charging element, charging pad, or other charging implement nearby the vehicle. The power may then be wirelessly transmitted to the vehicle battery in order to charge it.
- An example disclosed vehicle includes a wireless vehicle battery charger having a charging field, a plurality of Bluetooth antennas, and a processor.
- the processor is configured to identify a location of an object using one or more of the plurality of Bluetooth antennas, and, responsive to determining that the object is within the charging field, disable the wireless vehicle battery charger.
- An example disclosed method includes identifying, by a processor of a vehicle comprising a wireless vehicle battery charger and a plurality of Bluetooth antennas, a location of an object using one or more of the plurality of Bluetooth antennas. The method also includes, responsive to determining that the object is within a charging field of the wireless vehicle battery charger, disabling the wireless vehicle battery charger.
- FIG. 1 illustrates an example vehicle according to embodiments of the present disclosure.
- FIG. 2 illustrates an example block diagram of electronic components of the vehicle of FIG. 1
- FIG. 3 illustrates an overhead view of a vehicle according to embodiments of the present disclosure.
- FIG. 4 illustrates a plurality of vehicles in a row according to embodiments of the present disclosure.
- FIG. 5 illustrates a flowchart of an example method according to embodiments of the present disclosure.
- some vehicles may include the ability to wirelessly charge the vehicle battery.
- the vehicle may include a wireless charger on an underside of the vehicle, which may have a corresponding charging pad or plate that is placed on the ground.
- the vehicle may be driven over the charging pad, and power may be transferred wirelessly to the vehicle (e.g., via an inductive coupling). This may be particularly convenient in an owner's garage by allowing the owner to simply drive the vehicle into the garage, and charge the vehicle without needing to connect any physical wires.
- Some wireless charging systems may include the ability to detect when a metallic object is within a charging field, for example based on the amount of energy transferred to the object. These systems may then shut off once the foreign object is detected, however by that point the object may have already absorbed a significant amount of energy and damage may have occurred.
- example embodiments of the present disclosure may provide systems and methods that enable a vehicle to detect an object within the charging field, or predict that an object is likely to enter the charging field, and responsively take corrective action so that no damage occurs. This may be done via the use of one or more antennas of the vehicle. For instance, many vehicles include two or more antennas, used for communication with various devices and systems (e.g., key FOB, tire pressure sensors, road side infrastructure, Bluetooth connected devices, etc.).
- various devices and systems e.g., key FOB, tire pressure sensors, road side infrastructure, Bluetooth connected devices, etc.
- antennas may be used to detect the position or location of various objects nearby the vehicle, in order to turn off or prevent the wireless charging operation from taking place.
- Some objects may be paired with the vehicle, such as cell phones, tablets, Bluetooth enabled pet collars, key FOBs, smart devices, and other Bluetooth enabled devices. The location of these objects with respect to the vehicle may be determined based on the Bluetooth pairing of the device to the vehicle.
- the antennas may send and receive data used to determine the position of the object. Other objects may not be Bluetooth enabled. However the position of the antennas on the vehicle may enable the detection of the position of the objects none-the-less.
- the vehicle antennas may transmit and receive data between themselves, and determine the received signal strength of each signal.
- reflections off the object may change the received signal strength values.
- the position of the object may be determined. In some examples both techniques may be used. If the position of the object is within a charging field of the vehicle wireless charger, the vehicle may stop a charging operation in order to prevent energy being transmitted into the object.
- Vehicle I 00 may be a standard gasoline powered vehicle, a hybrid vehicle, an electric vehicle, a fuel cell vehicle, or any other mobility implement type of vehicle.
- Vehicle 100 may be non-autonomous, semi-autonomous, or autonomous.
- Vehicle I 00 may include parts related to mobility, such as a powertrain with an engine, a transmission, a suspension, a driveshaft, and/or wheels, etc.
- vehicle I 00 may include one or more electronic components (described below with respect to FIG. 2 ).
- vehicle 100 may include a wireless vehicle battery charger 102 , a plurality of antennas 106 , a processor 110 , and a communication system 130 .
- a wireless vehicle battery charger 102 may include a wireless vehicle battery charger 102 , a plurality of antennas 106 , a processor 110 , and a communication system 130 .
- One or more other electronic elements of vehicle 100 may be described in further detail with respect to FIG. 2 .
- Wireless vehicle battery charger 102 of vehicle 100 may be electrically coupled to a battery of vehicle I 00 .
- the battery may be a high voltage and/high capacity battery, used for vehicle traction and movement, as well as to power one or more other vehicle systems.
- the wireless vehicle battery charger 102 may be positioned on an outside of vehicle 100 . As shown in FIG. 1 , charger 102 is positioned on an underside of the vehicle toward a front of the vehicle. Other positions may include the side of the vehicle, the rear of the vehicle, and any other position on or in vehicle I 00 .
- the charger 102 may include inductive element(s) (one or more coils) configured to receive energy from a charging pad or charging plate
- the charging pad 130 may wirelessly transfer power to the vehicle battery via the charger 102 .
- the charging pad 130 may be positioned on the ground, such as in a garage, in a parking spot or a parking garage, or in some other location where a vehicle is typically parked. Charging pad 130 may emit energy over a charging field 104 . Metallic objects inside this field 104 may absorb energy, which can cause problems where the energy transfer to the object is not intended. This energy transfer can be exploited where the object in the field is charger 102 , but where the object is a person, cell phone, keys, or other object, problems may arise.
- the charging field 104 may be associated or correspond to the charger 102 as well as the charging pad 130 .
- the charger 102 may correspond to the charging pad 130 (e.g., they are paired, matched, or otherwise correspond to each other), and may have a charging field 104 in which the charger 102 must be positioned in order to charge the vehicle battery.
- a charger 102 is described herein as having a charging field, that may include the emitted field from a corresponding charging pad 130 .
- the charging field of the charger 102 may refer to an area around a charging pad 130 to which the charger 102 corresponds or is connected. For instance, if two charging pads are located in adjacent parking spots in a parking garage, a vehicle charger may have a charging field corresponding to the pad over which the vehicle is positioned, but may not correspond to the adjacent charging pad.
- the charger 102 may be operable within the charging field 104 , wherein the charging field 104 is an area surrounding a given charging pad 130 .
- the vehicle may be nearby several charging pads, but may be positioned above a single pad.
- the charging field in which the vehicle wireless battery charger 102 is operable is thus the field corresponding to the pad above which the vehicle is positioned.
- a charging field may correspond to the physical area around a given charging pad, wherein a charger placed within this physical area can receive energy and can charge.
- the charging filed may be directionally oriented, such that the charger 102 must be placed in a particular direction or orientation with respect to the pad 130 in order to receive power.
- a parking garage may include a plurality of charging stations next to each other, each having a charging plate or pad. This scenario is discussed in further detail with respect to FIG. 4 .
- Antennas 106 may be Bluetooth antennas, low frequency or high frequency antennas, used for GPS, radio, satellite, navigation, cell phone communication, infrastructure communication, and more.
- the antennas 106 may be positioned on an exterior or interior of vehicle 100 , in one or more doors or door handles, in front or rear bumpers of the vehicle, on top of the vehicle, bottom of vehicle, or any other suitable location.
- the antennas 106 may be used to pair with Bluetooth enabled devices, and may be used to determine a position of a paired Bluetooth device and/or object 120 , which may or may not be a paired Bluetooth enabled device.
- Processor 110 of vehicle 100 may be configured to carry out one or more actions or functions such as those described in herein.
- processor 110 may be configured to determine the location of an object 120 near or proximate the vehicle charger 102 , charging pad 130 , and/or charging field 104 .
- the location of the object 120 may be determined using one or more of the plurality of antennas.
- object 120 may be a Bluetooth enabled object, such as a phone, tablet, smart device, etc. In these cases, the position of the object may be determined based on a paring with the vehicle.
- the object may be paired to the vehicle 100 .
- the location of the object 120 relative to the vehicle 100 may be determined using triangulation and/or trilateration based on signals strengths of communication between the antennas 106 and the object 120 .
- a stronger signal strength value at a first antenna than a second antenna may indicate that the object 120 is closer to the first antenna than the second antenna. This information can be used to determine the location of the object.
- the signal strength may be used to determine the location.
- other techniques and data may be used, such as angle of arrival information and/or time of flight information.
- the object 120 may not be Bluetooth-enabled or may not be paired with the vehicle 100 .
- the object location may be determined based on a measured difference in the signal strength between two or more antennas 106 , or between two or more pairs of antennas 106 .
- Antennas 106 may be configured to transmit and receive data between themselves, and to determine signals strength values and other metrics associated with the signals. For instance, each antenna 106 may broadcast a signal to the other antennas of vehicle I 00 , which may receive the signal and determine a signal strength. This signal strength may be monitored over time, and when object 120 is brought nearby or proximate a given antenna, the broadcast signal may bounce off the object in a multipath scenario, causing variations in the signal strength (e.g., increased RSSI between two nearby antennas). The difference in signal strength may be mapped to or correlated with the position of the object 120 . And the RSSI values between multiple sets of antennas 106 may be compared and analyzed in order to triangulate or trilaterate a location of the object 120 , similar to those methods and techniques described above with respect to a paired Bluetooth-enabled object.
- processor 110 may be configured to determine the location of the object 120 during operation of the wireless vehicle battery charger 102 . For instance, while a charging operation is underway and energy is being actively transferred to the vehicle battery. Alternatively or in addition, processor 110 may be configured to monitor for objects and determine their location prior to a charging operation, or during a temporary pause in the charging operation. For instance, as described below, the vehicle battery charger 102 may be disabled if an object is detected in the charging field. The charger may be disabled for a short period of time (e.g., 30 seconds), and the position of the object may be monitored during this time to determine whether the object remains within the field or is moving out of the field during the temporary pause.
- a short period of time e.g. 30 seconds
- Processor 110 may also be configured to determine the location of the charging field 104 , and compare the charging field location to the location of the object. In other words, the processor 110 may be configured to determine whether the object 120 is within the charging field 104 . And responsive to this determination, (i.e., where the object is determined to be within charging field 104 ) the processor 110 may disable the vehicle battery charger 102 .
- Disabling the charger 102 may include stopping an active or ongoing charging operation. If the vehicle charger is currently operating and receiving energy from the charging pad 130 , the processor 110 may disable the charger 102 , disable the charging pad 130 , or otherwise cause the charging operation to stop. This may include transmitting a signal to the charging pad 130 and/or a computing device coupled to the charging pad 130 , such that the charging pad 130 stops providing power to the charger 102 .
- disabling the charger may include preventing the charger from turning on when it is not currently operating. Where the charger 102 is not yet receiving energy, an object entering the charging field 104 may cause the processor 110 to prevent a future charging operation from starting. This may prevent the vehicle from beginning charging when an object is detected in the charging field or is expected to enter the charging field.
- the processor 110 may be configured to disable the wireless vehicle battery charger 102 for a predetermined time in response to an object being located in the charging field. For instance, when an object is detected in the charging field, the charger 102 may be disabled for 30 seconds (or some other period of time). During that time period, and/or after that time period has elapsed, the processor 110 may determine whether or not the object has exited the charging field. Where it is determined that the object is no longer within the charging field, the processor 110 may responsively enable the wireless vehicle battery charger.
- Some of the actions above have been described as being performed responsive to determining that the object is within the charging field (e.g., disabling the charger, preventing a charging operating from beginning, disabling for a predetermined time, etc.). It should be noted that these actions may also be done responsive to determining that an object will enter the charging field in the future, or within a predetermined time (e.g., 5 seconds). For example, the processor 110 may determine that an object is located outside the charging field, and based on a trajectory or movement of the object (determined by successive location determinations over time), determine that the object will enter the charging field within a predetermined time period (e.g., 5 seconds). Based on this determination, the processor 110 may preemptively disable the charger 102 , or preemptively prevent a charging operation from beginning.
- a predetermined time e.g. 5 seconds
- Vehicle 100 may also include a communication system 130 , configured to transmit and/or receive data with one or more other vehicles and/or infrastructure in the vehicle surroundings.
- vehicle 100 may be one of several vehicles in an area, such as a parking garage.
- FIG. 4 illustrates three vehicles with corresponding chargers and communication systems.
- the processor 110 of vehicle 100 may be configured to receive, via communication system 130 , an indication that a nearby vehicle has detected an object in the corresponding charging field, and has disabled a corresponding wireless vehicle battery charger.
- the nearby vehicle may transmit an indication to vehicle 100 , which may in turn responsively disable the wireless vehicle battery charger 102 .
- One scenario in which this may occur is when an object rolls into a first charging field, and continues to move down a line of vehicles/charging fields. Vehicles down the line may preemptively disable wireless charging based on data from the vehicles rather than a detection of the object itself.
- FIG. 2 illustrates an example block diagram 200 showing electronic components of vehicle 100 , according to some embodiments.
- the electronic components 200 include the on-board computing system 210 , infotainment head unit 220 , communication system 130 , sensors 240 , electronic control unit(s) 250 , and vehicle data bus 260 .
- the on-board computing system 210 may include a microcontroller unit, controller or processor 110 and memory 212 .
- Processor 110 may be any suitable processing device or set of processing devices such as, but not limited to, a microprocessor, a microcontroller-based platform, an integrated circuit, one or more field programmable gate arrays (FPGAs), and/or one or more application-specific integrated circuits (ASICs).
- FPGAs field programmable gate arrays
- ASICs application-specific integrated circuits
- the memory 212 may be volatile memory (e.g., RAM including non-volatile RAM, magnetic RAM, ferroelectric RAM, etc.), non-volatile memory (e.g., disk memory, FLASH memory, EPROMs, EEPROMs, memristor-based non-volatile solid-state memory, etc.), unalterable memory (e.g., EPROMs), read-only memory, and/or high-capacity storage devices (e.g., hard drives, solid state drives, etc).
- the memory 212 includes multiple kinds of memory, particularly volatile memory and non-volatile memory.
- the memory 212 may be computer readable media on which one or more sets of instructions, such as the software for operating the methods of the present disclosure, can be embedded.
- the instructions may embody one or more of the methods or logic as described herein.
- the instructions reside completely, or at least partially, within any one or more of the memory 212 , the computer readable medium, and/or within the processor 110 during execution of the instructions.
- non-transitory computer-readable medium and “computer-readable medium” include a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions. Further, the terms “non-transitory computer-readable medium” and “computer-readable medium” include any tangible medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a system to perform any one or more of the methods or operations disclosed herein. As used herein, the term “computer readable medium” is expressly defined to include any type of computer readable storage device and/or storage disk and to exclude propagating signals.
- the infotainment head unit 220 may provide an interface between vehicle 100 and a user.
- the infotainment head unit 220 may include one or more input and/or output devices, such as display 222 , and user interface 224 .
- User interface 224 may include input and output devices.
- the input devices may include, for example, a control knob, an instrument panel, a digital camera for image capture and/or visual command recognition, a touch screen, an audio input device (e.g., cabin microphone), buttons, or a touchpad.
- the output devices may include instrument cluster outputs (e.g., dials, lighting devices), actuators, a heads-up display, a center console display (e.g., a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a flat panel display, a solid state display, etc.), and/or speakers.
- the infotainment head unit 220 includes hardware (e.g., a processor or controller, memory, storage, etc.) and software (e.g., an operating system, etc.) for an infotainment system (such as SYNC® and MyFord Touch® by Ford®, Entune® by Toyota®, IntelliLink® by GMC®, etc.).
- infotainment head unit 220 may share a processor with on-board computing system 210 . Additionally, the infotainment head unit 220 may display the infotainment system on, for example, a display 222 of vehicle I 00 .
- Sensors 240 may be arranged in and around the vehicle 100 in any suitable fashion.
- sensors 240 include antennas 106 , described with reference to Figure I above. Other sensors may be included as well.
- the ECUs 250 may monitor and control subsystems of vehicle 100 .
- ECUs 250 may communicate and exchange information via vehicle data bus 260 . Additionally, ECUs 250 may communicate properties (such as, status of the ECU 250 , sensor readings, control state, error and diagnostic codes, etc.) to and/or receive requests from other ECUs 250 .
- Some vehicles 100 may have seventy or more ECUs 250 located in various locations around the vehicle 100 communicatively coupled by vehicle data bus 260 .
- ECUs 250 may be discrete sets of electronics that include their own circuit(s) (such as integrated circuits, microprocessors, memory, storage, etc.) and firmware, sensors, actuators, and/or mounting hardware.
- Vehicle data bus 260 may include one or more data buses that communicatively couple the on-board computing system 210 , infotainment head unit 220 , communication system 130 , sensors 240 , ECUs 250 , and other devices or systems connected to the vehicle data bus 260 .
- vehicle data bus 260 may be implemented in accordance with the controller area network (CAN) bus protocol as defined by International Standards Organization (ISO) 11898-1.
- vehicle data bus 260 may be a Media Oriented Systems Transport (MOST) bus, or a CAN flexible data (CAN-FD) bus (ISO 11898-7).
- the CAN bus may be shared with the CAN-FD bus.
- FIG. 3 illustrates a perspective view of a vehicle 300 according to embodiments of the present disclosure.
- vehicle 300 may be similar or identical to those of vehicle 100 .
- charger 302 may be similar or identical to charger 102
- antennas 306 A-F may be similar or identical to antennas 106 described with respect to FIG. 1 .
- FIG. 3 shows a charger 302 within a charging field 304 corresponding to a charging pad (not shown), and an object 320 within the charging field 304 .
- the location of object 320 may be determined in several ways, depending on the nature of the object 320 .
- the object 320 is a Bluetooth-enabled device, paired with the vehicle 300 .
- Antennas 306 A and 306 B may be Bluetooth antennas, and communication paths 342 and 344 between the object 320 and the antennas 306 A and 306 B respectively may be used to determine the position. In some examples, additional antennas may be used as well.
- object 320 may not be a Bluetooth-enabled device, or may not be paired with the vehicle I 00 .
- antennas 306 A and 306 B may transmit and receive data with each other, shown as data path 340 .
- There may be a signal strength value associated with data path 340 also known as a received signal strength indication (RSSI).
- RSSI received signal strength indication
- a second broadcast signal may bounce off the object and reach antenna 306 B.
- the RSSI between antenna 306 A and antenna 306 B may increase when there is a second path between the antennas.
- the RSSI between other sets of antennas may also be affected by the object 320 as well. Using the difference in RSSI when there is no object 320 and when there is an object 320 present, the position of the object 320 may be determined.
- the determined position may then be compared by processor 310 to the location of the charging field 304 . If the object 320 is determined to be inside or within the charging field 304 , one or more actions may be taken, such as disabling the charger 302 , preventing a future charging operation, and more.
- FIG. 4 illustrates an example scenario in which three vehicles 400 A, 400 B, and 400 C are all positioned nearby each other.
- Vehicles 400 A, 400 B, and 400 C may be similar or identical in some ways to vehicles 100 and 300 described above.
- Vehicles 400 A, 400 B, and 400 C may include respective communication systems 430 A, 430 B, and 430 C, and have corresponding charging fields 404 A, 404 B, and 404 C.
- FIG. 4 illustrates a scenario in which an object 420 is located within a charging field 404 A corresponding to vehicle 400 A.
- a processor of vehicle 400 A may determine that a charging operation of vehicle 400 A should be disabled. The processor may also transmit to vehicles 400 B and 400 C, via the communication system 430 A, an indication of the location of object 420 . In some examples, vehicle 400 A may also or alternatively transmit an indication that the charging operation of vehicle 400 A has been disabled. Vehicles 400 B and 400 C may then receive the indication via their respective communication systems. Processors of vehicles 400 B and 400 C may then respectively determine whether or not to disable or prevent respective charging operations, based on the received indication from vehicle 400 A.
- FIG. 5 illustrates a flowchart of an example method 500 according to embodiments of the present disclosure.
- Method 500 may allow a vehicle equipped with a wireless vehicle battery charging system to automatically disable the charger if an object is detected in the charging field.
- the flowchart of FIG. 5 is representative of machine readable instructions that are stored in memory (such as memory 212 ) and may include one or more programs which, when executed by a processor (such as processor 110 ) may cause vehicle 100 and/or one or more systems or devices to carry out one or more functions described herein. While the example program is described with reference to the flowchart illustrated in FIG. 5 , many other methods for carrying out the functions described herein may alternatively be used.
- Method 500 may start at block 502 .
- method 300 may include determining that there is no object in the charging field. This determination may be done in a manner similar or identical to the manner described above. If there is no object in the charging field, method 500 may include, at block 504 , enabling the wireless vehicle battery charger. This may include beginning a wireless charging operation, and transferring power from a charging pad to the vehicle charger within a corresponding charging field.
- method 500 may include identifying the location of an object.
- the location of the object may be identified using one or more antennas or sets of antennas, as described above.
- the object location may then be compared to a location of the charging field.
- method 500 may include determining whether the location of the object is within the charging field.
- method 500 may include determining whether the object is going to enter the charging field within a predetermined time at block 512 .
- the predetermined time period may be a short time, such as 5 seconds. If the object is not predicted or expected to enter the charging field in the predetermined time, method 500 may continue back to block 506 at which point the object location is again determined and/or monitored.
- method 500 may proceed to block 510 .
- method 500 may include disabling the wireless vehicle battery charger. This may include stopping an ongoing or active charging operation or preventing a future charging operation.
- method 500 may include determining whether a predetermined time period has elapsed after the charger has been disabled. For instance, upon detecting an object within the charging field, the charger may be disabled for a short time period, such as 30 seconds. Once the time period has elapsed, method 500 may include determining whether the object is still located within the charging field at block 516 .
- method 500 may include resetting the predetermined time at block 520 , and reverting back to block 514 to determine whether the time has elapsed.
- method 500 may include enabling the wireless vehicle battery charger at block 518 . This may include starting a charging operation, or no longer preventing a charging operation from occurring. Method 500 may then end at block 522 .
- the use of the disjunctive is intended to include the conjunctive.
- the use of definite or indefinite articles is not intended to indicate cardinality.
- a reference to “the” object or “a” and “an” object is intended to denote also one of a possible plurality of such objects.
- conjunction “or” may be used to convey features that are simultaneously present instead of mutually exclusive alternatives.
- the conjunction “or” should be understood to include “and/or”.
- the terms “includes,” “including,” and “include” are inclusive and have the same scope as “comprises,” “comprising,” and “comprise” respectively.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
- This application is a continuation application of U.S. patent application Ser. No. 15/894,771, filed on Feb. 12, 2018, entitled “Systems and Methods for Vehicle Wireless Charging” the entire contents of which are incorporated herein by reference in their entirety for all purposes.
- The present disclosure generally relates to electric and hybrid vehicles and, more specifically, methods and systems for wireless charging of the batteries of electric and hybrid vehicles.
- Modern electric and hybrid vehicles must be charged routinely in order to function. Some vehicles may include the ability to charge the vehicle battery by plugging into a wall outlet, charging station, or other electrical power source. Some vehicles may also or alternatively include the ability to wirelessly charge the vehicle battery at a distance. Wireless charging may be done by positioning a charging element, charging pad, or other charging implement nearby the vehicle. The power may then be wirelessly transmitted to the vehicle battery in order to charge it.
- The appended claims define this application. The present disclosure summarizes aspects of the embodiments and should not be used to limit the claims. Other implementations are contemplated in accordance with the techniques described herein, as will be apparent to one having ordinary skill in the art upon examination of the following drawings and detailed description, and these implementations are intended to be within the scope of this application.
- Example embodiments are shown describing systems, apparatuses, and methods for wirelessly charging a vehicle, and maintaining safety during the charging process. An example disclosed vehicle includes a wireless vehicle battery charger having a charging field, a plurality of Bluetooth antennas, and a processor. The processor is configured to identify a location of an object using one or more of the plurality of Bluetooth antennas, and, responsive to determining that the object is within the charging field, disable the wireless vehicle battery charger.
- An example disclosed method includes identifying, by a processor of a vehicle comprising a wireless vehicle battery charger and a plurality of Bluetooth antennas, a location of an object using one or more of the plurality of Bluetooth antennas. The method also includes, responsive to determining that the object is within a charging field of the wireless vehicle battery charger, disabling the wireless vehicle battery charger.
- For a better understanding of the invention, reference may be made to embodiments shown in the following drawings. The components in the drawings are not necessarily to scale and related elements may be omitted, or in some instances proportions may have been exaggerated, so as to emphasize and clearly illustrate the novel features described herein. In addition, system components can be variously arranged, as known in the art. Further, in the drawings, like reference numerals designate corresponding parts throughout the several views.
-
FIG. 1 illustrates an example vehicle according to embodiments of the present disclosure. -
FIG. 2 illustrates an example block diagram of electronic components of the vehicle ofFIG. 1 -
FIG. 3 illustrates an overhead view of a vehicle according to embodiments of the present disclosure. -
FIG. 4 illustrates a plurality of vehicles in a row according to embodiments of the present disclosure. -
FIG. 5 illustrates a flowchart of an example method according to embodiments of the present disclosure. - While the invention may be embodied in various forms, there are shown in the drawings, and will hereinafter be described, some exemplary and non-limiting embodiments, with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiments illustrated.
- As noted above, some vehicles may include the ability to wirelessly charge the vehicle battery. The vehicle may include a wireless charger on an underside of the vehicle, which may have a corresponding charging pad or plate that is placed on the ground. The vehicle may be driven over the charging pad, and power may be transferred wirelessly to the vehicle (e.g., via an inductive coupling). This may be particularly convenient in an owner's garage by allowing the owner to simply drive the vehicle into the garage, and charge the vehicle without needing to connect any physical wires.
- One potential issue with wireless charging as described above is that foreign objects may enter a charging field of the wireless charger, and may interfere with the charging operation. Where the foreign object is a person or animal there are additional safety concerns about damage that may be caused to the person or animal. Metallic objects are particularly relevant because they may absorb energy during the wireless charging operation, and may emit heat which can cause issues or safety concerns.
- Some wireless charging systems may include the ability to detect when a metallic object is within a charging field, for example based on the amount of energy transferred to the object. These systems may then shut off once the foreign object is detected, however by that point the object may have already absorbed a significant amount of energy and damage may have occurred.
- With these issues in mind, example embodiments of the present disclosure may provide systems and methods that enable a vehicle to detect an object within the charging field, or predict that an object is likely to enter the charging field, and responsively take corrective action so that no damage occurs. This may be done via the use of one or more antennas of the vehicle. For instance, many vehicles include two or more antennas, used for communication with various devices and systems (e.g., key FOB, tire pressure sensors, road side infrastructure, Bluetooth connected devices, etc.).
- In some embodiments, antennas may be used to detect the position or location of various objects nearby the vehicle, in order to turn off or prevent the wireless charging operation from taking place. Some objects may be paired with the vehicle, such as cell phones, tablets, Bluetooth enabled pet collars, key FOBs, smart devices, and other Bluetooth enabled devices. The location of these objects with respect to the vehicle may be determined based on the Bluetooth pairing of the device to the vehicle. The antennas may send and receive data used to determine the position of the object. Other objects may not be Bluetooth enabled. However the position of the antennas on the vehicle may enable the detection of the position of the objects none-the-less. The vehicle antennas may transmit and receive data between themselves, and determine the received signal strength of each signal. When a non-Bluetooth-enabled object is moved toward one or more antennas, reflections off the object may change the received signal strength values. By measuring the changes in signal strength, the position of the object may be determined. In some examples both techniques may be used. If the position of the object is within a charging field of the vehicle wireless charger, the vehicle may stop a charging operation in order to prevent energy being transmitted into the object.
- Figure I illustrates an
example vehicle 100 according to embodiments of the present disclosure. Vehicle I00 may be a standard gasoline powered vehicle, a hybrid vehicle, an electric vehicle, a fuel cell vehicle, or any other mobility implement type of vehicle.Vehicle 100 may be non-autonomous, semi-autonomous, or autonomous. Vehicle I00 may include parts related to mobility, such as a powertrain with an engine, a transmission, a suspension, a driveshaft, and/or wheels, etc. In the illustrated example, vehicle I00 may include one or more electronic components (described below with respect toFIG. 2 ). - As show in
FIG. 1 ,vehicle 100 may include a wirelessvehicle battery charger 102, a plurality ofantennas 106, aprocessor 110, and acommunication system 130. One or more other electronic elements ofvehicle 100 may be described in further detail with respect toFIG. 2 . - Wireless
vehicle battery charger 102 ofvehicle 100 may be electrically coupled to a battery of vehicle I00. The battery may be a high voltage and/high capacity battery, used for vehicle traction and movement, as well as to power one or more other vehicle systems. - In some examples, the wireless
vehicle battery charger 102, or simply charger 102, may be positioned on an outside ofvehicle 100. As shown inFIG. 1 ,charger 102 is positioned on an underside of the vehicle toward a front of the vehicle. Other positions may include the side of the vehicle, the rear of the vehicle, and any other position on or in vehicle I00. - The
charger 102 may include inductive element(s) (one or more coils) configured to receive energy from a charging pad or charging plate - The
charging pad 130 may wirelessly transfer power to the vehicle battery via thecharger 102. - In some examples, the
charging pad 130 may be positioned on the ground, such as in a garage, in a parking spot or a parking garage, or in some other location where a vehicle is typically parked.Charging pad 130 may emit energy over a chargingfield 104. Metallic objects inside thisfield 104 may absorb energy, which can cause problems where the energy transfer to the object is not intended. This energy transfer can be exploited where the object in the field ischarger 102, but where the object is a person, cell phone, keys, or other object, problems may arise. - In some examples, the charging
field 104 may be associated or correspond to thecharger 102 as well as thecharging pad 130. Thecharger 102 may correspond to the charging pad 130 (e.g., they are paired, matched, or otherwise correspond to each other), and may have a chargingfield 104 in which thecharger 102 must be positioned in order to charge the vehicle battery. As such, when acharger 102 is described herein as having a charging field, that may include the emitted field from acorresponding charging pad 130. - In some examples the charging field of the
charger 102 may refer to an area around acharging pad 130 to which thecharger 102 corresponds or is connected. For instance, if two charging pads are located in adjacent parking spots in a parking garage, a vehicle charger may have a charging field corresponding to the pad over which the vehicle is positioned, but may not correspond to the adjacent charging pad. - In some examples, the
charger 102 may be operable within the chargingfield 104, wherein the chargingfield 104 is an area surrounding a givencharging pad 130. The vehicle may be nearby several charging pads, but may be positioned above a single pad. The charging field in which the vehiclewireless battery charger 102 is operable is thus the field corresponding to the pad above which the vehicle is positioned. - In general, a charging field may correspond to the physical area around a given charging pad, wherein a charger placed within this physical area can receive energy and can charge. The charging filed may be directionally oriented, such that the
charger 102 must be placed in a particular direction or orientation with respect to thepad 130 in order to receive power. - In some examples, a parking garage may include a plurality of charging stations next to each other, each having a charging plate or pad. This scenario is discussed in further detail with respect to
FIG. 4 . -
Antennas 106 may be Bluetooth antennas, low frequency or high frequency antennas, used for GPS, radio, satellite, navigation, cell phone communication, infrastructure communication, and more. Theantennas 106 may be positioned on an exterior or interior ofvehicle 100, in one or more doors or door handles, in front or rear bumpers of the vehicle, on top of the vehicle, bottom of vehicle, or any other suitable location. - The
antennas 106 may be used to pair with Bluetooth enabled devices, and may be used to determine a position of a paired Bluetooth device and/orobject 120, which may or may not be a paired Bluetooth enabled device. -
Processor 110 ofvehicle 100 may be configured to carry out one or more actions or functions such as those described in herein. In some examples,processor 110 may be configured to determine the location of anobject 120 near or proximate thevehicle charger 102, chargingpad 130, and/or chargingfield 104. The location of theobject 120 may be determined using one or more of the plurality of antennas. In some examples, object 120 may be a Bluetooth enabled object, such as a phone, tablet, smart device, etc. In these cases, the position of the object may be determined based on a paring with the vehicle. - In order to determine the location of the
object 120 where it is a Bluetooth enable object, the object may be paired to thevehicle 100. The location of theobject 120 relative to thevehicle 100 may be determined using triangulation and/or trilateration based on signals strengths of communication between theantennas 106 and theobject 120. A stronger signal strength value at a first antenna than a second antenna may indicate that theobject 120 is closer to the first antenna than the second antenna. This information can be used to determine the location of the object. - In some examples, the signal strength may be used to determine the location. However it should be noted that other techniques and data may be used, such as angle of arrival information and/or time of flight information.
- In some examples, the
object 120 may not be Bluetooth-enabled or may not be paired with thevehicle 100. In this case, the object location may be determined based on a measured difference in the signal strength between two ormore antennas 106, or between two or more pairs ofantennas 106. -
Antennas 106 may be configured to transmit and receive data between themselves, and to determine signals strength values and other metrics associated with the signals. For instance, eachantenna 106 may broadcast a signal to the other antennas of vehicle I00, which may receive the signal and determine a signal strength. This signal strength may be monitored over time, and whenobject 120 is brought nearby or proximate a given antenna, the broadcast signal may bounce off the object in a multipath scenario, causing variations in the signal strength (e.g., increased RSSI between two nearby antennas). The difference in signal strength may be mapped to or correlated with the position of theobject 120. And the RSSI values between multiple sets ofantennas 106 may be compared and analyzed in order to triangulate or trilaterate a location of theobject 120, similar to those methods and techniques described above with respect to a paired Bluetooth-enabled object. - In some examples,
processor 110 may be configured to determine the location of theobject 120 during operation of the wirelessvehicle battery charger 102. For instance, while a charging operation is underway and energy is being actively transferred to the vehicle battery. Alternatively or in addition,processor 110 may be configured to monitor for objects and determine their location prior to a charging operation, or during a temporary pause in the charging operation. For instance, as described below, thevehicle battery charger 102 may be disabled if an object is detected in the charging field. The charger may be disabled for a short period of time (e.g., 30 seconds), and the position of the object may be monitored during this time to determine whether the object remains within the field or is moving out of the field during the temporary pause. -
Processor 110 may also be configured to determine the location of the chargingfield 104, and compare the charging field location to the location of the object. In other words, theprocessor 110 may be configured to determine whether theobject 120 is within the chargingfield 104. And responsive to this determination, (i.e., where the object is determined to be within charging field 104) theprocessor 110 may disable thevehicle battery charger 102. - Disabling the
charger 102 may include stopping an active or ongoing charging operation. If the vehicle charger is currently operating and receiving energy from thecharging pad 130, theprocessor 110 may disable thecharger 102, disable thecharging pad 130, or otherwise cause the charging operation to stop. This may include transmitting a signal to thecharging pad 130 and/or a computing device coupled to thecharging pad 130, such that thecharging pad 130 stops providing power to thecharger 102. - In some examples, disabling the charger may include preventing the charger from turning on when it is not currently operating. Where the
charger 102 is not yet receiving energy, an object entering the chargingfield 104 may cause theprocessor 110 to prevent a future charging operation from starting. This may prevent the vehicle from beginning charging when an object is detected in the charging field or is expected to enter the charging field. - In some examples, the
processor 110 may be configured to disable the wirelessvehicle battery charger 102 for a predetermined time in response to an object being located in the charging field. For instance, when an object is detected in the charging field, thecharger 102 may be disabled for 30 seconds (or some other period of time). During that time period, and/or after that time period has elapsed, theprocessor 110 may determine whether or not the object has exited the charging field. Where it is determined that the object is no longer within the charging field, theprocessor 110 may responsively enable the wireless vehicle battery charger. - Some of the actions above have been described as being performed responsive to determining that the object is within the charging field (e.g., disabling the charger, preventing a charging operating from beginning, disabling for a predetermined time, etc.). It should be noted that these actions may also be done responsive to determining that an object will enter the charging field in the future, or within a predetermined time (e.g., 5 seconds). For example, the
processor 110 may determine that an object is located outside the charging field, and based on a trajectory or movement of the object (determined by successive location determinations over time), determine that the object will enter the charging field within a predetermined time period (e.g., 5 seconds). Based on this determination, theprocessor 110 may preemptively disable thecharger 102, or preemptively prevent a charging operation from beginning. -
Vehicle 100 may also include acommunication system 130, configured to transmit and/or receive data with one or more other vehicles and/or infrastructure in the vehicle surroundings. In some examples,vehicle 100 may be one of several vehicles in an area, such as a parking garage.FIG. 4 illustrates three vehicles with corresponding chargers and communication systems. - In this scenario, the
processor 110 ofvehicle 100 may be configured to receive, viacommunication system 130, an indication that a nearby vehicle has detected an object in the corresponding charging field, and has disabled a corresponding wireless vehicle battery charger. The nearby vehicle may transmit an indication tovehicle 100, which may in turn responsively disable the wirelessvehicle battery charger 102. One scenario in which this may occur is when an object rolls into a first charging field, and continues to move down a line of vehicles/charging fields. Vehicles down the line may preemptively disable wireless charging based on data from the vehicles rather than a detection of the object itself. -
FIG. 2 illustrates an example block diagram 200 showing electronic components ofvehicle 100, according to some embodiments. In the illustrated example, theelectronic components 200 include the on-board computing system 210,infotainment head unit 220,communication system 130,sensors 240, electronic control unit(s) 250, and vehicle data bus 260. - The on-
board computing system 210 may include a microcontroller unit, controller orprocessor 110 andmemory 212.Processor 110 may be any suitable processing device or set of processing devices such as, but not limited to, a microprocessor, a microcontroller-based platform, an integrated circuit, one or more field programmable gate arrays (FPGAs), and/or one or more application-specific integrated circuits (ASICs). Thememory 212 may be volatile memory (e.g., RAM including non-volatile RAM, magnetic RAM, ferroelectric RAM, etc.), non-volatile memory (e.g., disk memory, FLASH memory, EPROMs, EEPROMs, memristor-based non-volatile solid-state memory, etc.), unalterable memory (e.g., EPROMs), read-only memory, and/or high-capacity storage devices (e.g., hard drives, solid state drives, etc). In some examples, thememory 212 includes multiple kinds of memory, particularly volatile memory and non-volatile memory. - The
memory 212 may be computer readable media on which one or more sets of instructions, such as the software for operating the methods of the present disclosure, can be embedded. The instructions may embody one or more of the methods or logic as described herein. For example, the instructions reside completely, or at least partially, within any one or more of thememory 212, the computer readable medium, and/or within theprocessor 110 during execution of the instructions. - The terms “non-transitory computer-readable medium” and “computer-readable medium” include a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions. Further, the terms “non-transitory computer-readable medium” and “computer-readable medium” include any tangible medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a system to perform any one or more of the methods or operations disclosed herein. As used herein, the term “computer readable medium” is expressly defined to include any type of computer readable storage device and/or storage disk and to exclude propagating signals.
- The
infotainment head unit 220 may provide an interface betweenvehicle 100 and a user. Theinfotainment head unit 220 may include one or more input and/or output devices, such asdisplay 222, and user interface 224. User interface 224 may include input and output devices. The input devices may include, for example, a control knob, an instrument panel, a digital camera for image capture and/or visual command recognition, a touch screen, an audio input device (e.g., cabin microphone), buttons, or a touchpad. The output devices may include instrument cluster outputs (e.g., dials, lighting devices), actuators, a heads-up display, a center console display (e.g., a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a flat panel display, a solid state display, etc.), and/or speakers. In the illustrated example, theinfotainment head unit 220 includes hardware (e.g., a processor or controller, memory, storage, etc.) and software (e.g., an operating system, etc.) for an infotainment system (such as SYNC® and MyFord Touch® by Ford®, Entune® by Toyota®, IntelliLink® by GMC®, etc.). In some examples theinfotainment head unit 220 may share a processor with on-board computing system 210. Additionally, theinfotainment head unit 220 may display the infotainment system on, for example, adisplay 222 of vehicle I00. -
Sensors 240 may be arranged in and around thevehicle 100 in any suitable fashion. In the illustrated example,sensors 240 includeantennas 106, described with reference to Figure I above. Other sensors may be included as well. - The
ECUs 250 may monitor and control subsystems ofvehicle 100.ECUs 250 may communicate and exchange information via vehicle data bus 260. Additionally,ECUs 250 may communicate properties (such as, status of theECU 250, sensor readings, control state, error and diagnostic codes, etc.) to and/or receive requests fromother ECUs 250. Somevehicles 100 may have seventy or more ECUs 250 located in various locations around thevehicle 100 communicatively coupled by vehicle data bus 260.ECUs 250 may be discrete sets of electronics that include their own circuit(s) (such as integrated circuits, microprocessors, memory, storage, etc.) and firmware, sensors, actuators, and/or mounting hardware. - Vehicle data bus 260 may include one or more data buses that communicatively couple the on-
board computing system 210,infotainment head unit 220,communication system 130,sensors 240,ECUs 250, and other devices or systems connected to the vehicle data bus 260. In some examples, vehicle data bus 260 may be implemented in accordance with the controller area network (CAN) bus protocol as defined by International Standards Organization (ISO) 11898-1. Alternatively, in some examples, vehicle data bus 260 may be a Media Oriented Systems Transport (MOST) bus, or a CAN flexible data (CAN-FD) bus (ISO 11898-7). In some examples, the CAN bus may be shared with the CAN-FD bus. -
FIG. 3 illustrates a perspective view of avehicle 300 according to embodiments of the present disclosure. One or more aspects ofvehicle 300 may be similar or identical to those ofvehicle 100. For example,charger 302 may be similar or identical tocharger 102, andantennas 306A-F may be similar or identical toantennas 106 described with respect toFIG. 1 . -
FIG. 3 shows acharger 302 within a chargingfield 304 corresponding to a charging pad (not shown), and anobject 320 within the chargingfield 304. The location ofobject 320 may be determined in several ways, depending on the nature of theobject 320. In a first example, theobject 320 is a Bluetooth-enabled device, paired with thevehicle 300.Antennas communication paths object 320 and theantennas - In other examples, object 320 may not be a Bluetooth-enabled device, or may not be paired with the vehicle I00. In these examples,
antennas data path 340. There may be a signal strength value associated withdata path 340, also known as a received signal strength indication (RSSI). Whenobject 320 is moved close toantenna 306A, a second broadcast signal may bounce off the object and reachantenna 306B. The RSSI betweenantenna 306A andantenna 306B may increase when there is a second path between the antennas. The RSSI between other sets of antennas may also be affected by theobject 320 as well. Using the difference in RSSI when there is noobject 320 and when there is anobject 320 present, the position of theobject 320 may be determined. - The determined position may then be compared by
processor 310 to the location of the chargingfield 304. If theobject 320 is determined to be inside or within the chargingfield 304, one or more actions may be taken, such as disabling thecharger 302, preventing a future charging operation, and more. -
FIG. 4 illustrates an example scenario in which threevehicles 400A, 400B, and 400C are all positioned nearby each other.Vehicles 400A, 400B, and 400C may be similar or identical in some ways tovehicles Vehicles 400A, 400B, and 400C may includerespective communication systems -
FIG. 4 illustrates a scenario in which anobject 420 is located within a chargingfield 404A corresponding tovehicle 400A. A processor ofvehicle 400A may determine that a charging operation ofvehicle 400A should be disabled. The processor may also transmit to vehicles 400B and 400C, via thecommunication system 430A, an indication of the location ofobject 420. In some examples,vehicle 400A may also or alternatively transmit an indication that the charging operation ofvehicle 400A has been disabled. Vehicles 400B and 400C may then receive the indication via their respective communication systems. Processors of vehicles 400B and 400C may then respectively determine whether or not to disable or prevent respective charging operations, based on the received indication fromvehicle 400A. -
FIG. 5 illustrates a flowchart of anexample method 500 according to embodiments of the present disclosure.Method 500 may allow a vehicle equipped with a wireless vehicle battery charging system to automatically disable the charger if an object is detected in the charging field. The flowchart ofFIG. 5 is representative of machine readable instructions that are stored in memory (such as memory 212) and may include one or more programs which, when executed by a processor (such as processor 110) may causevehicle 100 and/or one or more systems or devices to carry out one or more functions described herein. While the example program is described with reference to the flowchart illustrated inFIG. 5 , many other methods for carrying out the functions described herein may alternatively be used. For example, the order of execution of the blocks may be rearranged or performed in series or parallel with each other, blocks may be changed, eliminated, and/or combined to performmethod 500. Further, becausemethod 500 is disclosed in connection with the components ofFIGS. 1-4 , some functions of those components will not be described in detail below. -
Method 500 may start atblock 502. Atblock 503,method 300 may include determining that there is no object in the charging field. This determination may be done in a manner similar or identical to the manner described above. If there is no object in the charging field,method 500 may include, atblock 504, enabling the wireless vehicle battery charger. This may include beginning a wireless charging operation, and transferring power from a charging pad to the vehicle charger within a corresponding charging field. - At
block 506,method 500 may include identifying the location of an object. The location of the object may be identified using one or more antennas or sets of antennas, as described above. The object location may then be compared to a location of the charging field. Atblock 508,method 500 may include determining whether the location of the object is within the charging field. - If the object is not within the charging field,
method 500 may include determining whether the object is going to enter the charging field within a predetermined time atblock 512. The predetermined time period may be a short time, such as 5 seconds. If the object is not predicted or expected to enter the charging field in the predetermined time,method 500 may continue back to block 506 at which point the object location is again determined and/or monitored. - But if the location of the object is within the charging field, or the object is expected to enter the charging field in the predetermined time period,
method 500 may proceed to block 510. Atblock 510,method 500 may include disabling the wireless vehicle battery charger. This may include stopping an ongoing or active charging operation or preventing a future charging operation. - At
block 514,method 500 may include determining whether a predetermined time period has elapsed after the charger has been disabled. For instance, upon detecting an object within the charging field, the charger may be disabled for a short time period, such as 30 seconds. Once the time period has elapsed,method 500 may include determining whether the object is still located within the charging field atblock 516. - If the object is still within the charging field,
method 500 may include resetting the predetermined time atblock 520, and reverting back to block 514 to determine whether the time has elapsed. - If the object is determined to no longer be within the charging field at
block 516,method 500 may include enabling the wireless vehicle battery charger atblock 518. This may include starting a charging operation, or no longer preventing a charging operation from occurring.Method 500 may then end atblock 522. - In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” and “an” object is intended to denote also one of a possible plurality of such objects.
- Further, the conjunction “or” may be used to convey features that are simultaneously present instead of mutually exclusive alternatives. In other words, the conjunction “or” should be understood to include “and/or”. The terms “includes,” “including,” and “include” are inclusive and have the same scope as “comprises,” “comprising,” and “comprise” respectively.
- The above-described embodiments, and particularly any “preferred” embodiments, are possible examples of implementations and merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) without substantially departing from the spirit and principles of the techniques described herein. All modifications are intended to be included herein within the scope of this disclosure and protected by the following claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/504,319 US20220032802A1 (en) | 2018-02-12 | 2021-10-18 | Systems and methods for vehicle wireless charging |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/894,771 US11173798B2 (en) | 2018-02-12 | 2018-02-12 | Systems and methods for vehicle wireless charging |
US17/504,319 US20220032802A1 (en) | 2018-02-12 | 2021-10-18 | Systems and methods for vehicle wireless charging |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/894,771 Continuation US11173798B2 (en) | 2018-02-12 | 2018-02-12 | Systems and methods for vehicle wireless charging |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220032802A1 true US20220032802A1 (en) | 2022-02-03 |
Family
ID=67399976
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/894,771 Active 2039-04-29 US11173798B2 (en) | 2018-02-12 | 2018-02-12 | Systems and methods for vehicle wireless charging |
US17/504,319 Abandoned US20220032802A1 (en) | 2018-02-12 | 2021-10-18 | Systems and methods for vehicle wireless charging |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/894,771 Active 2039-04-29 US11173798B2 (en) | 2018-02-12 | 2018-02-12 | Systems and methods for vehicle wireless charging |
Country Status (3)
Country | Link |
---|---|
US (2) | US11173798B2 (en) |
CN (1) | CN110154792B (en) |
DE (1) | DE102019103219A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11173798B2 (en) * | 2018-02-12 | 2021-11-16 | Ford Global Technologies, Llc | Systems and methods for vehicle wireless charging |
GB2587800A (en) * | 2019-09-26 | 2021-04-14 | Bombardier Primove Gmbh | A system and a method for determining a relative pose between a primary winding structure and a secondary winding structure of a system for inductive power |
CN111016695B (en) * | 2019-12-23 | 2024-02-27 | 内蒙古快为科技有限公司 | Wireless induction charging system and method for vehicle |
US11263787B2 (en) * | 2020-03-05 | 2022-03-01 | Rivian Ip Holdings, Llc | Augmented reality detection for locating autonomous vehicles |
US11964576B2 (en) * | 2021-11-30 | 2024-04-23 | Ford Global Technologies, Llc | Electrified vehicle wireless charging system |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110021243A1 (en) * | 2009-07-27 | 2011-01-27 | Samsung Electronics Co., Ltd. | Mobile terminal and operation method for the same |
US20110025267A1 (en) * | 2009-07-31 | 2011-02-03 | Deka Products Limited Partnership | Systems, methods and apparatus for vehicle battery charging |
US20120109409A1 (en) * | 2010-10-28 | 2012-05-03 | Smk Corporation | Information providing device, information providing server, vehicle assistance system, navigation device, and charging cable |
US20130241476A1 (en) * | 2012-03-15 | 2013-09-19 | Denso Corporation | Foreign matter sensing device and non-contact electric-power transfer system |
US20130249682A1 (en) * | 2011-10-27 | 2013-09-26 | Ford Global Technologies, Llc | Vehicle wireless charger safety system |
US20140021912A1 (en) * | 2012-07-19 | 2014-01-23 | Ford Global Technologies, Llc | Vehicle battery charging system and method |
US20140139038A1 (en) * | 2011-05-27 | 2014-05-22 | Nissan Motor Co., Ltd. | Non-contact power supply device, vehicle, and non-contact power supply system |
US20140239891A1 (en) * | 2012-07-19 | 2014-08-28 | Ford Global Technologies, Llc | Vehicle battery charging system and method |
US20150061578A1 (en) * | 2013-08-30 | 2015-03-05 | Qualcomm Incorporated | System and method for alignment and compatibility detection for a wireless power transfer system |
US20150260835A1 (en) * | 2014-03-17 | 2015-09-17 | Qualcomm Incorporated | Systems, methods, and apparatus for radar-based detection of objects in a predetermined space |
US20160001702A1 (en) * | 2014-07-07 | 2016-01-07 | Gentex Corporation | Object detection for vehicles |
US20160020634A1 (en) * | 2013-02-27 | 2016-01-21 | Dexerials Corporation | Power-receiving device, receiving power regulation method, and semiconductor device |
US20160299210A1 (en) * | 2015-04-10 | 2016-10-13 | Ossia Inc. | Techniques for imaging wireless power delivery environments and tracking objects therein |
US20160332572A1 (en) * | 2015-05-15 | 2016-11-17 | Ford Global Technologies, Llc | Imaging System for Locating a Moving Object in Relation to Another Object |
US20180152057A1 (en) * | 2016-11-30 | 2018-05-31 | Toyota Jidosha Kabushiki Kaisha | Power transfer device and power transfer system |
US20180167784A1 (en) * | 2016-12-12 | 2018-06-14 | Denso International America, Inc. | Mobile Device Location System |
US20180172798A1 (en) * | 2015-09-09 | 2018-06-21 | Cpg Technologies, Llc | Object identification system and method |
US20180248395A1 (en) * | 2017-02-24 | 2018-08-30 | Denso Ten Limited | Charging support device |
US20180248394A1 (en) * | 2017-02-24 | 2018-08-30 | Denso Ten Limited | Charging support device |
US20180316229A1 (en) * | 2017-05-01 | 2018-11-01 | Hevo Inc. | Detecting and deterring foreign objects and living objects at wireless charging stations |
US20180342907A1 (en) * | 2017-05-23 | 2018-11-29 | Qualcomm Incorporated | Wireless charging transmitter with foreign object and living object detection systems |
US20180345801A1 (en) * | 2017-06-06 | 2018-12-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Systems and methods for optimizing battery pre-charging using adjusted traffic predictions |
US20190248245A1 (en) * | 2018-02-12 | 2019-08-15 | Ford Global Technologies, Llc | Systems and methods for vehicle wireless charging |
US20190275904A1 (en) * | 2016-12-14 | 2019-09-12 | Panasonic Intellectual Property Management Co., Ltd. | Method for controlling power transmitting device, method for detecting foreign object, and power transmitting device in wireless power transmission system |
US20220212556A1 (en) * | 2019-09-26 | 2022-07-07 | Ipt Technology Gmbh | Relative Pose Determination of Primary and Secondary Winding Structures in Inductive Power Transfer System |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9505315B2 (en) * | 2014-08-04 | 2016-11-29 | Qualcomm Incorporated | Wireless charging based on selective activation of transmit antennas |
DE102014015577A1 (en) | 2014-10-15 | 2015-04-23 | Daimler Ag | Apparatus, system and method for removing an object for inductively charging a traction battery of a vehicle |
MX2018004254A (en) * | 2015-10-08 | 2018-08-23 | Voxx Int Corp | System and method for micro-locating and communicating with a portable vehicle control device. |
-
2018
- 2018-02-12 US US15/894,771 patent/US11173798B2/en active Active
-
2019
- 2019-02-08 DE DE102019103219.9A patent/DE102019103219A1/en active Pending
- 2019-02-11 CN CN201910110126.7A patent/CN110154792B/en active Active
-
2021
- 2021-10-18 US US17/504,319 patent/US20220032802A1/en not_active Abandoned
Patent Citations (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8351897B2 (en) * | 2009-07-27 | 2013-01-08 | Samsung Electronics Co., Ltd. | Mobile terminal and operation method for the same |
US20110021243A1 (en) * | 2009-07-27 | 2011-01-27 | Samsung Electronics Co., Ltd. | Mobile terminal and operation method for the same |
US20200215924A1 (en) * | 2009-07-31 | 2020-07-09 | Deka Products Limited Partnership | Systems, Methods and Apparatus for Vehicles Battery Charging |
US10556513B2 (en) * | 2009-07-31 | 2020-02-11 | Deka Products Limited Partnership | Systems, methods and apparatus for vehicle battery charging |
US20110025267A1 (en) * | 2009-07-31 | 2011-02-03 | Deka Products Limited Partnership | Systems, methods and apparatus for vehicle battery charging |
US20160236583A1 (en) * | 2009-07-31 | 2016-08-18 | Deka Products Limited Partnership | Systems, Methods and Apparatus for Vehicle Battery Charging |
US8860362B2 (en) * | 2009-07-31 | 2014-10-14 | Deka Products Limited Partnership | System for vehicle battery charging |
US20150066279A1 (en) * | 2009-07-31 | 2015-03-05 | Deka Products Limited Partnership | Systems, Methods and Apparatus for Vehicle Battery Charging |
US9321361B2 (en) * | 2009-07-31 | 2016-04-26 | Deka Products Limited Partnership | Systems, methods and apparatus for vehicle battery charging |
US20120109409A1 (en) * | 2010-10-28 | 2012-05-03 | Smk Corporation | Information providing device, information providing server, vehicle assistance system, navigation device, and charging cable |
US9233620B2 (en) * | 2010-10-28 | 2016-01-12 | Smk Corporation | Information providing device, information providing server, vehicle assistance system, navigation device, and charging cable |
US9566871B2 (en) * | 2011-05-27 | 2017-02-14 | Nissan Motor Co., Ltd. | Non-contact power supply device, vehicle, and non-contact power supply system |
US20140139038A1 (en) * | 2011-05-27 | 2014-05-22 | Nissan Motor Co., Ltd. | Non-contact power supply device, vehicle, and non-contact power supply system |
US9145110B2 (en) * | 2011-10-27 | 2015-09-29 | Ford Global Technologies, Llc | Vehicle wireless charger safety system |
US9493085B2 (en) * | 2011-10-27 | 2016-11-15 | Ford Global Technologies, Llc | Vehicular charging and protection systems |
US20150306963A1 (en) * | 2011-10-27 | 2015-10-29 | Ford Global Technologies, Llc | Vehicular charging and protection systems |
US20130249682A1 (en) * | 2011-10-27 | 2013-09-26 | Ford Global Technologies, Llc | Vehicle wireless charger safety system |
US9080988B2 (en) * | 2012-03-15 | 2015-07-14 | Denso Corporation | Foreign matter sensing device and non-contact electric-power transfer system |
US20130241476A1 (en) * | 2012-03-15 | 2013-09-19 | Denso Corporation | Foreign matter sensing device and non-contact electric-power transfer system |
US20140239891A1 (en) * | 2012-07-19 | 2014-08-28 | Ford Global Technologies, Llc | Vehicle battery charging system and method |
US20140021912A1 (en) * | 2012-07-19 | 2014-01-23 | Ford Global Technologies, Llc | Vehicle battery charging system and method |
US10773596B2 (en) * | 2012-07-19 | 2020-09-15 | Ford Global Technologies, Llc | Vehicle battery charging system and method |
US20160020634A1 (en) * | 2013-02-27 | 2016-01-21 | Dexerials Corporation | Power-receiving device, receiving power regulation method, and semiconductor device |
US9780598B2 (en) * | 2013-02-27 | 2017-10-03 | Dexerials Corporation | Power-receiving device, receiving power regulation method, and semiconductor device |
US20150061578A1 (en) * | 2013-08-30 | 2015-03-05 | Qualcomm Incorporated | System and method for alignment and compatibility detection for a wireless power transfer system |
US9438064B2 (en) * | 2013-08-30 | 2016-09-06 | Qualcomm Incorporated | System and method for alignment and compatibility detection for a wireless power transfer system |
US20150260835A1 (en) * | 2014-03-17 | 2015-09-17 | Qualcomm Incorporated | Systems, methods, and apparatus for radar-based detection of objects in a predetermined space |
US9772401B2 (en) * | 2014-03-17 | 2017-09-26 | Qualcomm Incorporated | Systems, methods, and apparatus for radar-based detection of objects in a predetermined space |
US9956911B2 (en) * | 2014-07-07 | 2018-05-01 | Gentex Corporation | Object detection for vehicles |
US20160001702A1 (en) * | 2014-07-07 | 2016-01-07 | Gentex Corporation | Object detection for vehicles |
US9971015B2 (en) * | 2015-04-10 | 2018-05-15 | Ossia Inc. | Techniques for imaging wireless power delivery environments and tracking objects therein |
US20160299210A1 (en) * | 2015-04-10 | 2016-10-13 | Ossia Inc. | Techniques for imaging wireless power delivery environments and tracking objects therein |
US20160332572A1 (en) * | 2015-05-15 | 2016-11-17 | Ford Global Technologies, Llc | Imaging System for Locating a Moving Object in Relation to Another Object |
US20180172798A1 (en) * | 2015-09-09 | 2018-06-21 | Cpg Technologies, Llc | Object identification system and method |
US10031208B2 (en) * | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10886788B2 (en) * | 2016-11-30 | 2021-01-05 | Toyota Jidosha Kabushiki Kaisha | Power transfer device and power transfer system |
US20180152057A1 (en) * | 2016-11-30 | 2018-05-31 | Toyota Jidosha Kabushiki Kaisha | Power transfer device and power transfer system |
US10051435B2 (en) * | 2016-12-12 | 2018-08-14 | Denso International America, Inc. | Mobile device location system |
US20180167784A1 (en) * | 2016-12-12 | 2018-06-14 | Denso International America, Inc. | Mobile Device Location System |
US20220080843A1 (en) * | 2016-12-14 | 2022-03-17 | Panasonic Intellectual Property Management Co., Ltd. | Method for controlling power transmitting device, method for detecting foreign object, and power transmitting device in wireless power transmission system |
US11180038B2 (en) * | 2016-12-14 | 2021-11-23 | Panasonic Intellectual Property Management Co., Ltd. | Method for controlling power transmitting device, method for detecting foreign object, and power transmitting device in wireless power transmission system |
US20190275904A1 (en) * | 2016-12-14 | 2019-09-12 | Panasonic Intellectual Property Management Co., Ltd. | Method for controlling power transmitting device, method for detecting foreign object, and power transmitting device in wireless power transmission system |
US11697351B2 (en) * | 2016-12-14 | 2023-07-11 | Panasonic Intellectual Property Management Co., Ltd. | Method for controlling power transmitting device, method for detecting foreign object, and power transmitting device in wireless power transmission system |
US10581258B2 (en) * | 2017-02-24 | 2020-03-03 | Denso Ten Limited | Charging support device |
US20190319469A1 (en) * | 2017-02-24 | 2019-10-17 | Denso Ten Limited | Charging support device |
US10461551B2 (en) * | 2017-02-24 | 2019-10-29 | Denso Ten Limited | Charging support device |
US20180248395A1 (en) * | 2017-02-24 | 2018-08-30 | Denso Ten Limited | Charging support device |
US10541547B2 (en) * | 2017-02-24 | 2020-01-21 | Denso Ten Limited | Charging support device |
US20180248394A1 (en) * | 2017-02-24 | 2018-08-30 | Denso Ten Limited | Charging support device |
US10128697B1 (en) * | 2017-05-01 | 2018-11-13 | Hevo, Inc. | Detecting and deterring foreign objects and living objects at wireless charging stations |
US20180316229A1 (en) * | 2017-05-01 | 2018-11-01 | Hevo Inc. | Detecting and deterring foreign objects and living objects at wireless charging stations |
US10476315B2 (en) * | 2017-05-23 | 2019-11-12 | Witricity Corporation | Wireless charging transmitter with foreign object and living object detection systems |
US20180342907A1 (en) * | 2017-05-23 | 2018-11-29 | Qualcomm Incorporated | Wireless charging transmitter with foreign object and living object detection systems |
US10256674B2 (en) * | 2017-05-23 | 2019-04-09 | Witricity Corporation | Wireless charging transmitter with foreign object and living object detection systems |
US20190199143A1 (en) * | 2017-05-23 | 2019-06-27 | Witricity Corporation | Wireless charging transmitter with foreign object and living object detection systems |
US20180345801A1 (en) * | 2017-06-06 | 2018-12-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Systems and methods for optimizing battery pre-charging using adjusted traffic predictions |
US11173798B2 (en) * | 2018-02-12 | 2021-11-16 | Ford Global Technologies, Llc | Systems and methods for vehicle wireless charging |
US20190248245A1 (en) * | 2018-02-12 | 2019-08-15 | Ford Global Technologies, Llc | Systems and methods for vehicle wireless charging |
US20220212556A1 (en) * | 2019-09-26 | 2022-07-07 | Ipt Technology Gmbh | Relative Pose Determination of Primary and Secondary Winding Structures in Inductive Power Transfer System |
Also Published As
Publication number | Publication date |
---|---|
CN110154792B (en) | 2024-07-02 |
US11173798B2 (en) | 2021-11-16 |
US20190248245A1 (en) | 2019-08-15 |
DE102019103219A1 (en) | 2019-08-14 |
CN110154792A (en) | 2019-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220032802A1 (en) | Systems and methods for vehicle wireless charging | |
US10583699B2 (en) | Systems and methods for vehicle TPMS localization | |
US20190001833A1 (en) | Method and system for vehicle-to-vehicle charging | |
US10685515B2 (en) | In-vehicle location uncertainty management for passive start | |
US9463706B2 (en) | Infrared triangulation method for locating vehicles for hands-free electric vehicle charging | |
US10043326B2 (en) | Driver indentification using vehicle approach vectors | |
US10640087B2 (en) | Dead zone mitigation for a passive entry system of a vehicle | |
US10578676B2 (en) | Vehicle monitoring of mobile device state-of-charge | |
US10475267B2 (en) | Vehicle finder card with a thin film battery | |
US20180058085A1 (en) | Contactless charging system, charging station, and contactless charged vehicle | |
US10173540B2 (en) | Contactless power transmission device | |
US20190123433A1 (en) | Beamforming for wireless vehicle communication | |
US9805580B2 (en) | Initiating an alert based on a mobile device being left behind | |
US20150336464A1 (en) | Ultrasonic location for electric vehicle charging system | |
KR20140085557A (en) | Signal discrimination for wireless key fobs and interacting systems | |
CN104578296A (en) | Robot charging method, device and system | |
US20150336462A1 (en) | Sonic triangulation method for locating vehicles for hands-free electric vehicle charging | |
US20200031315A1 (en) | Apparatus for determining the position of a mobile access device on the vehicle | |
US11188070B2 (en) | Mitigating key fob unavailability for remote parking assist systems | |
CN105667328A (en) | Wireless charging method for electric automobile | |
US11740318B2 (en) | Tire pressure monitoring system and tire pressure monitoring method | |
US20160236652A1 (en) | Keyless entry system | |
US11901740B2 (en) | Management system and method of managing power feed mat | |
US10611569B2 (en) | Picking system | |
US12024038B2 (en) | Parking aid system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOLGIRI, HAMID M.;MELATTI, ANTHONY;VAN HOECKE, PATRICK LAWRENCE JACKSON;AND OTHERS;SIGNING DATES FROM 20170212 TO 20180212;REEL/FRAME:058429/0958 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |