US20210330647A1 - Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease - Google Patents
Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease Download PDFInfo
- Publication number
- US20210330647A1 US20210330647A1 US17/183,342 US202117183342A US2021330647A1 US 20210330647 A1 US20210330647 A1 US 20210330647A1 US 202117183342 A US202117183342 A US 202117183342A US 2021330647 A1 US2021330647 A1 US 2021330647A1
- Authority
- US
- United States
- Prior art keywords
- oxadiazol
- fluorophenyl
- benzoic acid
- crystal form
- disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- OOUGLTULBSNHNF-UHFFFAOYSA-N 3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2N=C(ON=2)C=2C(=CC=CC=2)F)=C1 OOUGLTULBSNHNF-UHFFFAOYSA-N 0.000 title abstract description 74
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title abstract description 19
- 201000010099 disease Diseases 0.000 title abstract description 17
- 238000011282 treatment Methods 0.000 title abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 62
- 239000013078 crystal Substances 0.000 claims description 54
- 230000005855 radiation Effects 0.000 claims description 12
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 7
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 6
- 238000001757 thermogravimetry curve Methods 0.000 claims description 6
- 238000004482 13C cross polarization magic angle spinning Methods 0.000 claims description 3
- 239000004471 Glycine Substances 0.000 claims description 3
- 208000015439 Lysosomal storage disease Diseases 0.000 claims description 3
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 claims description 2
- 238000002411 thermogravimetry Methods 0.000 claims description 2
- 238000013519 translation Methods 0.000 abstract description 13
- 239000002552 dosage form Substances 0.000 abstract description 12
- 230000001404 mediated effect Effects 0.000 abstract description 12
- 108020004999 messenger RNA Proteins 0.000 abstract description 12
- 230000002028 premature Effects 0.000 abstract description 12
- 230000001668 ameliorated effect Effects 0.000 abstract description 8
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 7
- 230000002265 prevention Effects 0.000 abstract description 7
- 239000002904 solvent Substances 0.000 description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 21
- 238000004458 analytical method Methods 0.000 description 20
- 239000007787 solid Substances 0.000 description 20
- 206010028980 Neoplasm Diseases 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 15
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 201000011510 cancer Diseases 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 208000026350 Inborn Genetic disease Diseases 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 9
- 238000004090 dissolution Methods 0.000 description 9
- 208000016361 genetic disease Diseases 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 229940126534 drug product Drugs 0.000 description 7
- 238000012856 packing Methods 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 239000000825 pharmaceutical preparation Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 5
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 238000000386 microscopy Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000000859 sublimation Methods 0.000 description 5
- 230000008022 sublimation Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 4
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 208000015114 central nervous system disease Diseases 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000004467 single crystal X-ray diffraction Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 3
- 208000019838 Blood disease Diseases 0.000 description 3
- 208000027932 Collagen disease Diseases 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 108020004485 Nonsense Codon Proteins 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 3
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 238000002050 diffraction method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 208000014951 hematologic disease Diseases 0.000 description 3
- 208000018706 hematopoietic system disease Diseases 0.000 description 3
- 208000027866 inflammatory disease Diseases 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 3
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 3
- 108700025694 p53 Genes Proteins 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102100026735 Coagulation factor VIII Human genes 0.000 description 2
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 2
- 206010014989 Epidermolysis bullosa Diseases 0.000 description 2
- 201000003542 Factor VIII deficiency Diseases 0.000 description 2
- 208000009292 Hemophilia A Diseases 0.000 description 2
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 2
- 208000000913 Kidney Calculi Diseases 0.000 description 2
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 2
- 206010029148 Nephrolithiasis Diseases 0.000 description 2
- 208000003019 Neurofibromatosis 1 Diseases 0.000 description 2
- 208000024834 Neurofibromatosis type 1 Diseases 0.000 description 2
- 208000002537 Neuronal Ceroid-Lipofuscinoses Diseases 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 208000032978 Structural Congenital Myopathies Diseases 0.000 description 2
- 208000022292 Tay-Sachs disease Diseases 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 229940011051 isopropyl acetate Drugs 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 2
- 208000025014 late infantile neuronal ceroid lipofuscinosis Diseases 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- OFXSXYCSPVKZPF-UHFFFAOYSA-N methoxyperoxymethane Chemical compound COOOC OFXSXYCSPVKZPF-UHFFFAOYSA-N 0.000 description 2
- 201000006938 muscular dystrophy Diseases 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 208000002761 neurofibromatosis 2 Diseases 0.000 description 2
- 208000022032 neurofibromatosis type 2 Diseases 0.000 description 2
- 230000037434 nonsense mutation Effects 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 150000005071 1,2,4-oxadiazoles Chemical class 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000004922 13C solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 208000005452 Acute intermittent porphyria Diseases 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 206010000890 Acute myelomonocytic leukaemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 208000034431 Adrenal hypoplasia congenita Diseases 0.000 description 1
- 201000011452 Adrenoleukodystrophy Diseases 0.000 description 1
- 201000011374 Alagille syndrome Diseases 0.000 description 1
- 208000005875 Alternating hemiplegia of childhood Diseases 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 201000010717 Bruton-type agammaglobulinemia Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 201000003728 Centronuclear myopathy Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 208000001353 Coffin-Lowry syndrome Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 102000012437 Copper-Transporting ATPases Human genes 0.000 description 1
- 208000012609 Cowden disease Diseases 0.000 description 1
- 201000002847 Cowden syndrome Diseases 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 102000009508 Cyclin-Dependent Kinase Inhibitor p16 Human genes 0.000 description 1
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 206010011891 Deafness neurosensory Diseases 0.000 description 1
- 208000024940 Dent disease Diseases 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- 208000014094 Dystonic disease Diseases 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 208000010255 Familial Hypoadrenocorticism Diseases 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 208000007698 Gyrate Atrophy Diseases 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 1
- 208000006933 Hermanski-Pudlak Syndrome Diseases 0.000 description 1
- 206010071775 Hermansky-Pudlak syndrome Diseases 0.000 description 1
- 101001125939 Homo sapiens Plakophilin-1 Proteins 0.000 description 1
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 1
- 206010020850 Hyperthyroidism Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 201000001934 Leri-Weill dyschondrosteosis Diseases 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 229910015834 MSH1 Inorganic materials 0.000 description 1
- 208000000916 Mandibulofacial dysostosis Diseases 0.000 description 1
- 208000001826 Marfan syndrome Diseases 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 208000035490 Megakaryoblastic Acute Leukemia Diseases 0.000 description 1
- 102000009030 Member 1 Subfamily D ATP Binding Cassette Transporter Human genes 0.000 description 1
- 108010049137 Member 1 Subfamily D ATP Binding Cassette Transporter Proteins 0.000 description 1
- 208000008948 Menkes Kinky Hair Syndrome Diseases 0.000 description 1
- 208000012583 Menkes disease Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000035489 Monocytic Acute Leukemia Diseases 0.000 description 1
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 1
- 206010056886 Mucopolysaccharidosis I Diseases 0.000 description 1
- 208000008770 Multiple Hamartoma Syndrome Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 208000033835 Myelomonocytic Acute Leukemia Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000014060 Niemann-Pick disease Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 206010031243 Osteogenesis imperfecta Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 201000011252 Phenylketonuria Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 102100029331 Plakophilin-1 Human genes 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 206010036182 Porphyria acute Diseases 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 208000002009 Pyruvate Dehydrogenase Complex Deficiency Disease Diseases 0.000 description 1
- 108700014121 Pyruvate Kinase Deficiency of Red Cells Proteins 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 208000006289 Rett Syndrome Diseases 0.000 description 1
- 208000008938 Rhabdoid tumor Diseases 0.000 description 1
- 206010073334 Rhabdoid tumour Diseases 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 208000009966 Sensorineural Hearing Loss Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 208000002903 Thalassemia Diseases 0.000 description 1
- 208000010641 Tooth disease Diseases 0.000 description 1
- 201000003379 Townes-Brocks syndrome Diseases 0.000 description 1
- 201000003199 Treacher Collins syndrome Diseases 0.000 description 1
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 1
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 208000027276 Von Willebrand disease Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- 201000010869 X-linked adrenal hypoplasia congenita Diseases 0.000 description 1
- 208000016349 X-linked agammaglobulinemia Diseases 0.000 description 1
- 208000025033 X-linked centronuclear myopathy Diseases 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000037831 acute erythroleukemic leukemia Diseases 0.000 description 1
- 208000037832 acute lymphoblastic B-cell leukemia Diseases 0.000 description 1
- 208000037833 acute lymphoblastic T-cell leukemia Diseases 0.000 description 1
- 208000013593 acute megakaryoblastic leukemia Diseases 0.000 description 1
- 208000020700 acute megakaryocytic leukemia Diseases 0.000 description 1
- 208000011912 acute myelomonocytic leukemia M4 Diseases 0.000 description 1
- 208000036676 acute undifferentiated leukemia Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 238000004164 analytical calibration Methods 0.000 description 1
- 208000008303 aniridia Diseases 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SNGNHEIIYFNIIL-UHFFFAOYSA-N benzoic acid;1,2,4-oxadiazole Chemical class C=1N=CON=1.OC(=O)C1=CC=CC=C1 SNGNHEIIYFNIIL-UHFFFAOYSA-N 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- -1 but not limited to Substances 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 208000013896 centronuclear myopathy X-linked Diseases 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 208000017568 chondrodysplasia Diseases 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000003869 coulometry Methods 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007416 differential thermogravimetric analysis Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 208000010118 dystonia Diseases 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 208000009429 hemophilia B Diseases 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 101150093855 msh1 gene Proteins 0.000 description 1
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 208000014380 ornithine aminotransferase deficiency Diseases 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 239000006201 parenteral dosage form Substances 0.000 description 1
- 238000010951 particle size reduction Methods 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 201000006473 pyruvate decarboxylase deficiency Diseases 0.000 description 1
- 208000015445 pyruvate dehydrogenase deficiency Diseases 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 208000007442 rickets Diseases 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 208000023573 sensorineural hearing loss disease Diseases 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000010996 solid-state NMR spectroscopy Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 208000002320 spinal muscular atrophy Diseases 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 208000009999 tuberous sclerosis Diseases 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 208000012137 von Willebrand disease (hereditary or acquired) Diseases 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D271/00—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
- C07D271/02—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
- C07D271/06—1,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4245—Oxadiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
- A61P5/16—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4 for decreasing, blocking or antagonising the activity of the thyroid hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- the present invention relates to crystalline forms of the compound 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid., pharmaceutical dosage forms and compositions comprising the crystalline forms, methods of making the crystalline forms and methods for their use for the treatment, prevention and management of diseases ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay.
- 1,2,4-oxadiazole compounds useful for the treatment, prevention or management of diseases ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay as described in U.S. Pat. No. 6,992,096 B2, issued Jan. 31, 2006, which is incorporated herein by reference in its entirety.
- One such compound is 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- Solid forms such as salts, crystal forms, e.g., polymorphic forms of a compound are known in the pharmaceutical art to affect, for example, the solubility, stability, flowability, fractability, and compressibility of the compound as well as the safety and efficacy of drug products based on the compound, (see, e.g., Knapman, K. Modern Drug Discoveries, 2000:53). So critical are the potential effects of solid forms in a single drug product on the safety and efficacy of the respective drug product that the United States Food and Drug Administration requires the identification and control of solid forms, e.g., crystalline forms of each compound used in each drug product marketed in the United States.
- new crystalline forms of 1,2,4-oxadiazole benzoic acids can further the development of formulations for the treatment, prevention or management of disease ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay.
- the present invention provides such novel crystalline forms, for example, crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- the invention provides novel crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, which has the following chemical structure (I):
- crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid are useful for the treatment, prevention or management of diseases ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay, said diseases being described in U.S. Pat. No. 6,992,096 B2, issued Jan. 31, 2006, which is incorporated herein by reference in its entirety.
- the present provides a crystalline form of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid which is substantially pure, i.e., its purity greater than about 90%.
- Certain embodiments of the invention provide pharmaceutical dosage forms and compositions comprising a crystalline form of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid and a pharmaceutically-acceptable diluent, excipient or carrier.
- the invention further provides methods of their use for the treatment, prevention or management of diseases ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay.
- the invention provides methods of making, isolating and/or characterizing the crystalline forms of the invention.
- the crystalline forms of the invention are useful as active pharmaceutical ingredients for the preparation of formulations for use in animals or humans.
- the present invention encompasses the use of these crystalline forms as a final drug product.
- the crystalline forms and final drug products of the invention are useful, for example, for the treatment, prevent or management of the diseases described herein.
- FIG. 1 provides an X-ray powder diffraction (XRPD) pattern of a sample comprising Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- XRPD X-ray powder diffraction
- FIG. 2 provides differential scanning calorimetry (DSC) and thermogravimentric analysis (TGA) thermograms of a sample comprising Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- DSC differential scanning calorimetry
- TGA thermogravimentric analysis
- FIG. 3 provides a dynamic vapor sorption (DVS) isotherm of a sample comprising Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- DVD dynamic vapor sorption
- FIG. 4 provides a solid-state 13 C NMR spectrum of a sample comprising Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- FIG. 5 provides a XRPD pattern of a sample comprising Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- FIG. 6 provides DSC and TGA thermograms of a sample comprising Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- FIG. 7 provides a DVS isotherm of a sample comprising Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- FIG. 8 provides an overlay of experimental XRPD patterns showing a characteristic peak set of Form A (Top) with respect to several samples comprising Form B (second from top to bottom) of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, illustrating peak shift among certain Form B samples.
- FIG. 9 provides crystal packing diagram of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, viewed down the crystallographic b axis and showing an outline of the unit cell.
- FIG. 10 provides a XRPD pattern of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid simulated from a single-crystal X-ray diffraction crystal structure obtained from a representative single crystal of Form A.
- FIG. 11 provides a ORTEP plot of the asymmetric unit of the single-crystal XRD crystal structure of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. Atoms are represented by 50% probability anisotropic thermal ellipsoids.
- Crystalline forms equivalent to the crystalline forms described below and claimed herein may demonstrate similar, yet non-identical, analytical characteristics within a reasonable range of error, depending on test conditions, purity, equipment and other common variables known to those skilled in the art or reported in the literature.
- the term “crystalline” and related terms used herein, when used to describe a substance, component or product, means that the substance, component or product is substantially crystalline as determined by X-ray diffraction, microscopy, polarized microscopy, or other known analytical procedure known to those skilled in the art. See, e.g., Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa., 173 (1990); The United States Pharmacopeia, 23rd ed., 1843-1844 (1995).
- the crystalline forms of the instant invention can be characterized using Single Crystal Data, Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). It is to be understood that numerical values described and claimed herein are approximate. Variation within the values may be attributed to equipment calibration, equipment errors, purity of the materials, crystals size, and sample size, among other factors. In addition, variation may be possible while still obtaining the same result. For example, X-ray diffraction values are generally accurate to within .+ ⁇ .0.2 degrees and intensities (including relative intensities) in an X-ray diffraction pattern may fluctuate depending upon measurement conditions employed. Similarly, DSC results are typically accurate to within about 2° C.
- the crystalline forms of the instant invention are not limited to the crystalline forms that provide characterization patterns (i.e., one or more of the PXRD, DSC, and TGA) completely identical to the characterization patterns depicted in the accompanying Figures disclosed herein. Any crystalline forms that provide characterization patterns substantially the same as those described in the accompanying Figures fall within the scope of the present invention. The ability to ascertain substantially the same characterization patterns is within the purview of one of ordinary skill in the art.
- the present invention provides the Form A crystal form of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- Form A can be obtained by crystallization from various solvents, including, but not limited to, methanol, tertiary-butyl alcohol (t-BuOH), 1-butyl alcohol (1-BuOH), acetonitrile, isopropyl alcohol (IPA), isopropyl ether, dimethyl formamide, heptane, isopropyl acetate (IPOAc), toluene and/or water.
- FIG. 1 A representative XRPD pattern of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided in FIG. 1 .
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid has an XRPD pattern which is substantially similar to the pattern displayed in FIG. 1 .
- FIG. 2 Representative thermal characteristics of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid are shown in FIG. 2 .
- a representative DSC thermogram, presented in FIG. 2 exhibits an endothermic event with a peak temperature at about 244° C.
- a representative TGA thermogram, also presented in FIG. 2 exhibits a mass loss of less than about 1% of the total mass of the sample upon heating from about 33° C. to about 205° C.
- These thermal data indicate that Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid does not contain substantial amounts of either water or solvent in the crystal lattice.
- Form A exhibits a TGA weight loss event commencing at about 212° C. which corresponds to sublimation prior to melting.
- a single-crystal X-ray diffraction (XRD) crystal structure was obtained from a representative single crystal of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- FIG. 9 A crystal packing diagram from the single-crystal XRD structure of Form A, viewed down the crystallographic b axis, is provided as FIG. 9 .
- a simulated XRPD pattern was generated for Cu radiation using PowderCell 2.3 (PowderCell for Windows Version 2.3 Kraus, W.; Nolze, G. Federal Institute for Materials Research and Testing, Berlin Germany, E U, 1999) and the atomic coordinates, space group, and unit cell parameters from the single crystal data.
- a simulated XRPD pattern of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided as FIG. 10 .
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is characterized by its physical stability when subjected to certain processing conditions.
- Form A is physically stable when stored for 6 days at one or more of the following relative humidity (RH) conditions: 53% RH at 40° C.; 75% RH at 40° C.; 50% RH at 60° C.; and 79% RH at 60° C.
- RH relative humidity
- Form A is physically stable when milled at ambient and at sub-ambient temperatures.
- Form A is physically stable when slurried at one or more of the following conditions: in 1-BuOH for 4 days at ambient temperature; in chloroform for 2 days at 50° C.; and in dichloromethane for 2 days at 50° C.
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was evaluated for hygroscopicity.
- Dynamic vapor sorption (DVS) analysis of moisture uptake and moisture release as a function of relative humidity (RH) were obtained upon cycling between 5% and 95% RH.
- the maximum uptake was about 0.06% of the total mass of the sample, as demonstrated in the representative Form A DVS isotherm in FIG. 3 . Accordingly, in certain embodiments, Form A is non-hygroscopic.
- FIG. 4 A representative 13 C solid-state NMR spectrum of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided in FIG. 4 .
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is characterized by 13 C CP/MAS solid-state NMR signals located at one or more of the following approximate positions: 172.6, 167.0, 131.3, 128.4; and 117.1 ppm, when externally referenced to glycine at 176.5 ppm.
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid exhibits desirable characteristics for the processing and/or manufacture of drug product containing 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid has a relatively high melting point, which is an important characteristic for, inter alia, processing and manufacturing.
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was found to be substantially non-hygroscopic.
- a non-hygroscopic solid form is desirable for a variety of reasons including, for example, for processing and storage concerns.
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was found to be physically and chemically stable upon micronization, a method of particle size reduction. Physical stability is an important property of pharmaceutical materials during manufacture, processing, and storage.
- the present invention provides the Form B crystal form of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- Form B can be obtained by crystallization from various solvents, including, but not limited to, tetrahydrofuran (THF), hexane, isopropyl alcohol (IPA) ethyl acetate (EtOAc), acetic acid, 1-butyl acetate, acetone, dimethyl ether, diethyl ether, dioxane, water, methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK), nitromethane and or water.
- solvents including, but not limited to, tetrahydrofuran (THF), hexane, isopropyl alcohol (IPA) ethyl acetate (EtOAc), acetic acid, 1-butyl acetate, acetone, dimethyl
- Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid has solvent in the crystal lattice in an amount which depends upon one or more conditions such as, but not limited to, crystallization, treatment, processing, formulation, manufacturing or storage.
- Form B has solvent in the crystal lattice.
- Form B is essentially free of solvent in the crystal lattice.
- the maximum combined molar equivalents of solvent per mole of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid in a sample of Form B is less than 6, less than 5, less than 4, less than 3, less than 2, less than 1.5, less than 1, less than 0.75, less than 0.5, or less than 0.25 molar equivalents.
- the characteristic variably in the solvent content of Form B arises from the existence of a lattice channel which can accommodate different types and/or amounts of solvent, and which permits the addition and/or removal of solvents depending upon the particular conditions.
- the structure of Form B represents the basis for an isostructural family of crystal forms.
- Form B is a desolvated solvate crystal form.
- Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided in FIG. 5 .
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is characterized by XRPD peaks located at one or more of the following positions: about 6.4, about 8.0, about 14.1, about 15.9, about 17.2 and about 20.1 degrees 2 ⁇ .
- Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided which is characterized by an XRPD pattern substantially similar to the pattern displayed in FIG. 5 .
- Form B exhibits a XRPD pattern substantially similar to the pattern displayed in FIG. 5 but exhibits small shifts in peak positions resulting from the presence or absence of specific solvents or water in the crystal lattice.
- Certain representative XRPD patterns of Form B are compared to Form A (top) of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid in FIG. 8 .
- Form B has a XRPD pattern substantially similar to one or more of the XRPD patterns displayed in FIG. 8 .
- FIG. 6 Thermal characteristics of a sample of Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid crystallized from a 2.5:1 THF:hexane mixture are shown in FIG. 6 .
- a TGA thermogram of this Form B sample, presented in FIG. 6 exhibits two mass loss events: one mass loss event of about 5% of the total mass of the sample upon heating from about 25° C. to about 165° C., and a second mass loss event commencing at about 220° C.
- Hotstage microscopy revealed that the first mass loss event resulted from the loss of solvent and/or water from the crystal lattice, and the second mass loss event resulted from the sublimation of Form B.
- the thermal characteristics of Form B will exhibit certain variation.
- samples of Form B which are essentially free of water and solvent do not exhibit a substantial TGA mass loss or DSC thermal event below about 220° C. Because Form B sublimes and crystallizes as Form A, thus in FIG. 6 , the heat of fusion for the endotherm is after the sample has converted to Form A.
- a Form B sample which crystallized from IPA had about 0.1 molar equivalents of IPA and about 1 molar equivalents of water per mole of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, based upon analysis using TGA and 1 H NMR.
- a Form B sample which possesses approximately 1 molar equivalent of water per molar equivalent of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is termed a monohydrate.
- the Form B characteristics which are dependent upon the quantity and/or identity of the solvent and/or water in the crystal lattice will exhibit variation with respect to the total quantity or identity of solvent and/or water in the crystal lattice.
- the XRPD pattern of Form B will exhibit peaks characteristic of Form B as described supra, but with minor peak shifting arising from differences in quantity and/or identity of the solvent and/or water in the Form B crystal lattice. Representative XRPD patterns illustrating peak shifting among certain Form B samples are overlaid in FIG. 8 (second from top to bottom).
- Form B upon milling at ambient or sub-ambient temperatures, conversion from Form B to Form A is observed.
- Form B is physically stable upon storage for 6 days at one of the following relative humidity (RH) conditions: 53% RH at 40° C.; 75% RH at 40° C.; and 50% RH at 60° C.
- RH relative humidity
- Form B is substantially non-hygroscopic, as illustrated by the representative Form B DVS isotherm in FIG. 7 .
- Form B exhibited partial conversion to Form A upon storage for 6 days at the condition of 79% RH at 60° C.
- Form B is physically stable under compression alone and under compression in the presence of a 1:1 mixture of t-BuOH and water. In other embodiments of the invention, Form B is physically stable when slurried for 1 day at ambient temperature in a 1:1 mixture of THE and heptane. In other embodiments, conversion of Form B to Form A is observed upon slurrying Form B in either methyl isobutyl ketone or a 1:1 mixture of dioxane and water.
- kits for treating, preventing and managing diseases or disorders ameliorated by the suppression of premature translation termination and/or nonsense-mediated mRNA decay in a patient which comprise administering to a patient in need thereof an effective amount of a solid form of 3-[5-(2-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- provided herein are methods for the treatment, prevention or management of any disease that is associated with a gene exhibiting premature translation termination and/or nonsense-mediated mRNA decay.
- the disease is due, in part, to the lack of expression of the gene resulting from a premature stop codon.
- Specific examples of genes which may exhibit premature translation termination and/or nonsense-mediated mRNA decay and diseases associated with premature translation termination and/or nonsense-mediated mRNA decay are found in U.S. Patent Application Publication No. 2005-0233327, titled: Methods For Identifying Small Molecules That Modulate Premature Translation Termination And Nonsense Mediated mRNA Decay, which is incorporated herein by reference in its entirety.
- Diseases or disorders associated with or ameliorated by the suppression of premature translation termination and/or nonsense-mediated mRNA decay include, but are not limited to: a genetic disease, cancer, an autoimmune disease, a blood disease, a collagen disease, diabetes, a neurodegenerative disease, a proliferative disease, a cardiovascular disease, a pulmonary disease, an inflammatory disease or central nervous system disease.
- Specific genetic diseases within the scope of the methods of the invention include, but are not limited to, multiple endocrine neoplasia (type 1, 2 and 3), amyloidosis, mucopolysaccharidosis (type I and III), congenital adrenal hypoplasia, adenomatous poliposis coli , Von Hippel Landau Disease, Menkes Syndrome, hemophilia A, hemophilia B, collagen VII, Alagille Syndrome, Townes-Brocks Syndrome, rhabdoid tumor, epidermolysis bullosa, Hurler's Syndrome, Coffin-Lowry Syndrome, aniridia, Charcot-Maria-Tooth Disease, myotubular myopathy, X-linked myotubular myopathy, X-linked chondrodysplasia, X-linked agammaglobulinemia, polycystic kidney disease, spinal muscular atrophy, familial adenomatous poliposis, pyruvate dehydrogenase deficiency
- the genetic disease is an autoimmune disease.
- the autoimmune disease is rheumatoid arthritis or graft versus host disease.
- the genetic disease is a blood disease.
- the blood disease is hemophilia A, Von Willebrand disease (type 3), ataxia-telangiectasia, b-thalassemia or kidney stones.
- the genetic disease is a collagen disease.
- the collagen disease is osteogenesis imperfecta or cirrhosis.
- the genetic disease is diabetes.
- the genetic disease is an inflammatory disease.
- the inflammatory disease is arthritis.
- the genetic disease is a central nervous system disease.
- the central nervous system disease is a neurodegenerative disease.
- the central nervous system disease is multiple sclerosis, muscular dystrophy, Duchenne muscular dystrophy, Alzheimer's disease, Tay Sachs disease, late infantile neuronal ceroid lipofuscinosis (LINCL) or Parkinson's disease.
- the genetic disease is cancer.
- the cancer is of the head and neck, eye, skin, mouth, throat, esophagus, chest, bone, lung, colon, sigmoid, rectum, stomach, prostate, breast, ovaries, kidney, liver, pancreas, brain, intestine, heart or adrenals.
- the cancer can be primary or metastatic. Cancers include solid tumors, hematological cancers and other neoplasias.
- the cancer is associated with tumor suppressor genes (see e.g. Garinis et al. 2002, Hum Gen 111:115-117; Meyers et al. 1998, Proc. Natl. Acad. Sci. USA, 95: 15587-15591; Kung et al. 2000, Nature Medicine 6(12): 1335-1340.
- tumor suppressor genes include, but are not limited to, APC, ATM, BRAC1, BRAC2, MSH1, pTEN, Rb, CDKN2, NF1, NF2, WT1, and p53.
- the tumor suppressor gene is the p53 gene.
- Nonsense mutations have been identified in the p53 gene and have been implicated in cancer.
- Several nonsense mutations in the p53 gene have been identified (see, e.g., Masuda et al., 2000, Tokai J Exp Clin Med. 25(2):69-77; Oh et al., 2000, Mol Cells 10(3):275-80; Li et al., 2000, Lab Invest. 80(4):493-9; Yang et al., 1999, Zhonghua Zhong Liu Za Zhi 21(2):114-8; Finkelstein et al., 1998, Mol Diagn.
- diseases to be treated, prevented or managed by administering to a patient in need thereof an effective amount of a solid form of 3-[5-(2-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid include, but are not limited to, solid tumor, sarcoma, carcinomas, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebac
- compositions and single unit dosage forms comprising a compound of the invention, or a pharmaceutically acceptable polymorph, prodrug, salt, solvate, hydrate, or clathrate thereof, are also encompassed by the invention.
- Individual dosage forms of the invention may be suitable for oral, mucosal (including sublingual, buccal, rectal, nasal, or vaginal), parenteral (including subcutaneous, intramuscular, bolus injection, intraarterial, or intravenous), transdermal, or topical administration.
- Single unit dosage forms of the invention are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), or transdermal administration to a patient.
- mucosal e.g., nasal, sublingual, vaginal, buccal, or rectal
- parenteral e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial
- transdermal administration to a patient.
- composition, shape, and type of dosage forms of the invention will typically vary depending on their use. These and other ways in which specific dosage forms encompassed by this invention will vary from one another will be readily apparent to those skilled in the art. See, e.g., Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa. (1995).
- Typical pharmaceutical compositions and dosage forms comprise one or more carriers, excipients or diluents.
- Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage form will be administered to a patient.
- oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms. The suitability of a particular excipient may also depend on the specific active ingredients in the dosage form.
- the 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained from the synthesis described supra may be crystallized or recrystallized in a number of ways to yield the solid forms of the invention. Provided below are several non-limiting examples.
- the 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained as described herein was crystallized as Form A by the method of slow evaporation from the each one of the following solvents: acetonitrile; t-butanol; isopropyl alcohol; and isopropyl ether.
- a solution of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was prepared in the indicated solvent and sonicated between aliquot additions to assist in dissolution. Once a mixture reached complete dissolution, as judged by visual observation, the solution was filtered through a 0.2- ⁇ m filter.
- the filtered solution was allowed to evaporate at a temperature of 60° C. (50° C. in the case of t-butanol), in a vial covered with aluminum foil containing pinhole(s).
- the solids that formed were isolated and characterized by XRPD as Form A.
- the 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained as described herein was crystallized as Form A by the method of fast evaporation from each one of the following solvents or solvent systems: 1-butanol; dimethoxyether; t-butanol; a mixture of dimethyl formamide and water; isopropyl ether; and a mixture of t-butanol:water (in a 3:2 ratio), 1 molar equivalent methanol and 1 molar equivalent sodium chloride. Solutions were prepared in the indicated solvent or solvent system and sonicated between aliquot additions to assist in dissolution.
- the solution was filtered through a 0.2- ⁇ m filter.
- the filtered solution was allowed to evaporate at a temperature of 60° C. (50° C. in the cases of t-butanol and isopropyl ether; 81° C. in the case of the t-butanol/water/methanol/NaCl system) in an open vial.
- the solids that formed were isolated and characterized by XRPD as Form A.
- a slurry was prepared by adding enough Form B solids to a given solvent so that excess solids were present. The mixture was then agitated in a sealed vial at a temperature of 60° C. After 2 days, the solids were isolated by vacuum filtration and characterized by XRPD as Form A with a minor amount of Form B.
- Form B was sublimed at 160-208° C., under vacuum, for 35 minutes to yield white needles which were characterized by XRPD as Form A.
- Form B was melted at 255° C., followed by direct placement into liquid nitrogen to yield crystalline material which was characterized by XRPD as Form A.
- Form B was melted at 255° C. and then cooled slowly to yield crystalline material which was characterized by XRPD as Form A.
- the 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained as described herein was crystallized as Form B by the method of slow evaporation from each one of the following solvents: acetone; dimethyl ether; and methyl ethyl ketone.
- a solution of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was prepared in the indicated solvent and sonicated between aliquot additions to assist in dissolution. Once a mixture reached complete dissolution, as judged by visual observation, the solution was filtered through a 0.2- ⁇ m filter. The filtered solution was allowed to evaporate at a temperature of 50° C. (60° C. in the case of methyl ethyl ketone), in a vial covered with aluminum foil containing pinhole(s).
- 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was dissolved in dimethoxyether.
- the solution was into a clean vial.
- the vial was filtered through a 0.2- ⁇ m filter covered with aluminum foil perforated with pinhole(s) and the solvent allowed to evaporate.
- the solids that formed were isolated and characterized by XRPD as Form B. XRPD analysis is illustrated in Table 8 (P.O.)
- the 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained as described herein was crystallized as Form B by the method of fast evaporation from each one of the following solvents or solvent systems: acetone, acetic acid, 1-butyl acetate; dimethyl ether; THF and diethyl ether; dioxane; methyl ethyl ketone; nitromethane; methyl iso-butyl ketone; THF:hexane (2.5:1); and dioxane:water (3:2). Solutions were prepared in the indicated solvent or solvent system and sonicated between aliquot additions to assist in dissolution.
- the solution was filtered through a 0.2- ⁇ m filter.
- the filtered solution was allowed to evaporate at an elevated temperature in an open vial.
- the solids that formed were isolated and characterized by XRPD as Form B.
- 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was slurried on an orbit shaker in 1-butyl acetate (13 mL) at room temperature for 3 days. After three days the solvent was removed by pipette, dried and characterized by XRPD as Form B (Table 5)
- XRPD analysis as form B is illustrated in Table 4.
- Certain XRPD analyses were performed using a Shimadzu XRD-6000 X-ray powder diffractometer using Cu K ⁇ radiation.
- the instrument is equipped with a long fine focus X-ray tube.
- the tube voltage and amperage were set to 40 kV and 40 mA, respectively.
- the divergence and scattering slits were set at 1° and the receiving slit was set at 0.15 mm.
- Diffracted radiation was detected by a NaI scintillation detector.
- a ⁇ -2 ⁇ continuous scan at 3°/min (0.4 sec/0.02° step) from 2.5 to 40° 2 ⁇ was used.
- a silicon standard was analyzed to check the instrument alignment. Data were collected and analyzed using XRD-6100/7000 v. 5.0. Samples were prepared for analysis by placing them in a sample holder.
- Certain XRPD analyses were performed using an Inel XRG-3000 diffractometer equipped with a CPS (Curved Position Sensitive) detector with a 2 ⁇ range of 120°. Real time data were collected using Cu-K ⁇ radiation at a resolution of 0.03° 2 ⁇ . The tube voltage and amperage were set to 40 kV and 30 mA, respectively. The monochromator slit was set at 5 mm by 160 ⁇ m. The pattern is displayed from 2.5-40° 2 ⁇ . An aluminum sample holder with silicon insert was used/or/Samples were prepared for analysis by packing them into thin-walled glass capillaries. Each capillary was mounted onto a goniometer head that is motorized to permit spinning of the capillary during data acquisition. The samples were analyzed for 300 sec. Instrument calibration was performed using a silicon reference standard.
- Certain XRPD patterns were collected with a Bruker D-8 Discover diffractometer and Bruker's General Area Diffraction Detection System (GADDS, v. 4.1.20).
- An incident beam of Cu K ⁇ radiation was produced using a fine-focus tube (40 kV, 40 mA), a Göbel mirror, and a 0.5 mm double-pinhole collimator.
- a specimen of the sample was packed in a capillary and secured to a translation stage.
- a video camera and laser were used to position the area of interest to intersect the incident beam in transmission geometry.
- the incident beam was scanned to optimize orientation statistics.
- a beam-stop was used to minimize air scatter from the incident beam at low angles.
- Diffraction patterns were collected using a Hi-Star area detector located 15 cm from the sample and processed using GADDS.
- the intensity in the GADDS image of the diffraction pattern was integrated using a step size of 0.04° 2 ⁇ .
- the integrated patterns display diffraction intensity as a function of 20. Prior to the analysis a silicon standard was analyzed to verify the Si 111 peak position.
- Certain XRPD files generated from Inel XRPD instruments were converted to Shimadzu .raw file using File Monkey version 3.0.4.
- the Shimadzu .raw file was processed by the Shimadzu XRD-6000 version 2.6 software to automatically find peak positions.
- the “peak position” means the maximum intensity of a peaked intensity profile. Parameters used in peak selection are shown in the lower half of each parameter set of the data.
- the following processes were used with the Shimadzu XRD-6000 “Basic Process” version 2.6 algorithm:
- DSC Differential scanning calorimetry
- Thermogravimetric (TG) analyses were performed using a TA Instruments 2950 thermogravimetric analyzer. Each sample was placed in an aluminum sample pan and inserted into the TG furnace. The furnace was (first equilibrated at 35° C., then) heated under nitrogen at a rate of 10° C./min, up to a final temperature of 350° C. Nickel and AlumelTM were used as the calibration standards.
- Moisture sorption/desorption data were collected on a VTI SGA-100 Vapor Sorption Analyzer. Sorption and desorption data were collected over a range of 5% to 95% relative humidity (RH) at 10% RH intervals under a nitrogen purge. Samples were not dried prior to analysis. Equilibrium criteria used for analysis were less than 0.0100% weight change in 5 minutes, with a maximum equilibration time of 3 hours if the weight criterion was not met. Data were not corrected for the initial moisture content of the samples. NaCl and PVP were used as calibration standards.
- Hotstage microscopy was performed using a Linkam FTIR 600 hotstage with a TMS93 controller mounted on a Leica DM LP microscope equipped with a Spot Insight color camera for acquiring images. Images are acquired using Spot Advanced software version 4.5.9 build date Jun. 9, 2005, unless noted. The camera was white balanced prior to use. Samples were observed and acquired using a 20 ⁇ 0.40 N.A. long working distance objective with crossed polars and first order red compensator. Samples were placed on a coverslip. Another coverslip was then placed over the sample. Each sample was visually observed as the stage was heated. The hotstage was calibrated using USP melting point standards.
- Samples were prepared for solid-state NMR spectroscopy by packing them into 4 mm PENCIL type zirconia rotors. Scans were collected at ambient temperature with a relaxation delay of 120.000 s, a pulse width of 2.2 ⁇ s (90.0 deg), an acquisition time of 0.030 s, and a spectral width of 44994.4 Hz (447.520 ppm). A total of 100 scans were collected. Cross polarization was achieved with using 13 C as the observed nucleus and 1 H as the decoupled nucleus with a contact time of 10.0 ms. A magic angle spinning rate of 12000 Hz was used. Spectra are externally referenced to glycine at 176.5 ppm.
- the crystals utilized for Form A structure determination were prepared by sublimation of the Form A. The crystals were removed from the cold finger after the sample was heated between 155-206° C. for approximately 90 minutes. (Table 3 Experimental)
- a colorless needle of C 15 H 9 FN 2 O 3 having approximate dimensions of 0.44 ⁇ 0.13 ⁇ 0.03 mm, was mounted on a glass fiber in random orientation. Preliminary examination and data collection were performed with Mo K ⁇ radiation (k 0.71073 ⁇ ) on a Nonius KappaCCD diffractometer. Refinements were performed on an LINUX PC using SHELX97 (Sheldrick, G. M. SHELX97 , A Program for Crystal Structure Refinement , University of Gottingen, Germany, 1997).
- Cell constants and an orientation matrix for data collection were obtained from least-squares refinement using the setting angles of 13862 reflections in the range 2° ⁇ 24°.
- the refined mosaicity from DENZO/SCALEPACK (Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307) was 0.33° indicating good crystal quality.
- the data were collected to a maximum 20 value of 2469°, at a temperature of 150 ⁇ 1 K.
- the structure was solved by direct methods using SIR2004 (Burla, M. C., et al., J. Appl. Cryst. 2005, 38, 381). The remaining atoms were located in succeeding difference Fourier syntheses. Hydrogen atoms were included in the refinement but restrained to ride on the atom to which they are bonded. The structure was refined in full-matrix least-squares by minimizing the function:
- the standard deviation of an observation of unit weight was 1.01.
- the highest peak in the final difference Fourier had a height of 0.64 e/ ⁇ 3 .
- the minimum negative peak had a height of ⁇ 0.33 e/ ⁇ 3 .
- a calculated XRPD pattern was generated for Cu radiation using PowderCell 2.3 (PowderCell for Windows Version 2.3 Kraus, W.; Nolze, G. Federal Institute for Materials Research and Testing, Berlin Germany, E U, 1999) and the atomic coordinates, space group, and unit cell parameters from the single crystal data.
- PowderCell 2.3 PowderCell for Windows Version 2.3 Kraus, W.; Nolze, G. Federal Institute for Materials Research and Testing, Berlin Germany, E U, 1999
- ORTEP diagram was prepared using ORTEP III (Johnson, C. K. ORTEPIII, Report ORNL-6895, Oak Ridge National Laboratory, Tenn., U.S.A. 1996, and OPTEP-3 for Windows V1.05, Farrugia, L. J., J. Appl. Cryst. 1997, 30, 565). Atoms are represented by 50% probability anisotropic thermal ellipsoids. Packing diagrams were prepared using CAMERON (Watkin, D. J. et al., CAMERON, Chemical Crystallography Laboratory, University of Oxford, Oxford, 1996) modeling.
- the space group was determined to be P2 1 /n (no. 14), which is an achiral space group.
- the quality of the structure obtained is high to moderate, as indicated by the R-value of 0.062 (6.2%). Usually R-values in the range of 0.02 to 0.06 are quoted for the most reliably determined structures. While the quality of the crystal structure is slightly outside the accepted range for most reliably determined structures, the data is of sufficient quality to ensure to location of the atomic positions in the molecular structure is correct.
- FIG. 11 An ORTEP drawing of Form A is shown in FIG. 11 .
- the asymmetric unit shown in contains a dimer of two molecules arranged to form a possible hydrogen bond through the adjacent carboxylic acid groups. Since the acid protons were not located from the Fourier map it is assumed the molecules are neutral.
- a packing diagram of Form A, viewed down the crystallographic b axis, is shown in FIG. 9 .
- the simulated XRPD pattern of Form A shown in FIG. 10 , was generated from the single crystal data, and is in good agreement with the experimental XRPD pattern of Form A (see, e.g., FIG. 1 ). Differences in intensities can arise from preferred orientation. Preferred orientation is the tendency for crystals, usually plates or needles, to align themselves with some degree of order. Preferred orientation can affect peak intensities, but not peak positions, in XRPD patterns. Slight shifts in peak location can arise from the fact that the experimental powder pattern was collected at ambient temperature, and the single crystal data was collected at 150 K. Low temperatures are used in single crystal analysis to improve the quality of the structure.
- Table 1 shows the fractional atomic coordinates for the asymmetric unit of Form A.
- Hydrogen atoms are included in calculation of structure factors but not refined
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Diabetes (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Physical Education & Sports Medicine (AREA)
- Obesity (AREA)
- Rheumatology (AREA)
- Endocrinology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Urology & Nephrology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Oncology (AREA)
- Child & Adolescent Psychology (AREA)
- Psychology (AREA)
- Ophthalmology & Optometry (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Pain & Pain Management (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 16/921,934, filed Jul. 7, 2020, which is a continuation of U.S. application Ser. No. 16/380,218, filed Apr. 10, 2019, currently allowed, which is a continuation of U.S. application Ser. No. 16/015,389, filed Jun. 22, 2018, now U.S. Pat. No. 10,300,047, issued May 28, 2019, which is a continuation of U.S. application Ser. No. 15/068,792, filed Mar. 14, 2016, now U.S. Pat. No. 10,028,939, issued Jul. 24, 2018, which is a continuation of U.S. application Ser. No. 14/261,774, filed Apr. 25, 2014, now U.S. Pat. No. 9,309,206, issued Apr. 12, 2016, which is a continuation of U.S. application Ser. No. 13/764,807, filed Feb. 12, 2013, now U.S. Pat. No. 8,748,625, issued Jun. 10, 2014, which is a continuation of U.S. application Ser. No. 12/913,213, filed Oct. 27, 2010, now U.S. Pat. No. 8,394,966, issued Mar. 12, 2013, which is a division of U.S. application Ser. No. 11/904,005, filed Sep. 24, 2007, now U.S. Pat. No. 7,863,456, issued Jan. 4, 2011, which claims the benefit of U.S. provisional application No. 60/847,326, filed Sep. 25, 2006, each of which is incorporated by reference herein in its entirety.
- The present invention relates to crystalline forms of the compound 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid., pharmaceutical dosage forms and compositions comprising the crystalline forms, methods of making the crystalline forms and methods for their use for the treatment, prevention and management of diseases ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay.
- 1,2,4-oxadiazole compounds useful for the treatment, prevention or management of diseases ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay as described in U.S. Pat. No. 6,992,096 B2, issued Jan. 31, 2006, which is incorporated herein by reference in its entirety. One such compound is 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- Solid forms such as salts, crystal forms, e.g., polymorphic forms of a compound are known in the pharmaceutical art to affect, for example, the solubility, stability, flowability, fractability, and compressibility of the compound as well as the safety and efficacy of drug products based on the compound, (see, e.g., Knapman, K. Modern Drug Discoveries, 2000:53). So critical are the potential effects of solid forms in a single drug product on the safety and efficacy of the respective drug product that the United States Food and Drug Administration requires the identification and control of solid forms, e.g., crystalline forms of each compound used in each drug product marketed in the United States. Accordingly, new crystalline forms of 1,2,4-oxadiazole benzoic acids can further the development of formulations for the treatment, prevention or management of disease ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay. The present invention provides such novel crystalline forms, for example, crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- Citation of any reference in
Section 2 of this application is not to be construed as an admission that such reference is prior art to the present application. - The invention provides novel crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, which has the following chemical structure (I):
- In particular, crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid are useful for the treatment, prevention or management of diseases ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay, said diseases being described in U.S. Pat. No. 6,992,096 B2, issued Jan. 31, 2006, which is incorporated herein by reference in its entirety. In addition, the present provides a crystalline form of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid which is substantially pure, i.e., its purity greater than about 90%.
- Certain embodiments of the invention provide pharmaceutical dosage forms and compositions comprising a crystalline form of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid and a pharmaceutically-acceptable diluent, excipient or carrier. The invention further provides methods of their use for the treatment, prevention or management of diseases ameliorated by modulation of premature translation termination or nonsense-mediated mRNA decay. In certain embodiments, the invention provides methods of making, isolating and/or characterizing the crystalline forms of the invention. The crystalline forms of the invention are useful as active pharmaceutical ingredients for the preparation of formulations for use in animals or humans. Thus, the present invention encompasses the use of these crystalline forms as a final drug product. The crystalline forms and final drug products of the invention are useful, for example, for the treatment, prevent or management of the diseases described herein.
-
FIG. 1 provides an X-ray powder diffraction (XRPD) pattern of a sample comprising Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. -
FIG. 2 provides differential scanning calorimetry (DSC) and thermogravimentric analysis (TGA) thermograms of a sample comprising Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. -
FIG. 3 provides a dynamic vapor sorption (DVS) isotherm of a sample comprising Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. -
FIG. 4 provides a solid-state 13C NMR spectrum of a sample comprising Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. -
FIG. 5 provides a XRPD pattern of a sample comprising Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. -
FIG. 6 provides DSC and TGA thermograms of a sample comprising Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. -
FIG. 7 provides a DVS isotherm of a sample comprising Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. -
FIG. 8 provides an overlay of experimental XRPD patterns showing a characteristic peak set of Form A (Top) with respect to several samples comprising Form B (second from top to bottom) of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, illustrating peak shift among certain Form B samples. -
FIG. 9 provides crystal packing diagram of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, viewed down the crystallographic b axis and showing an outline of the unit cell. -
FIG. 10 provides a XRPD pattern of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid simulated from a single-crystal X-ray diffraction crystal structure obtained from a representative single crystal of Form A. -
FIG. 11 provides a ORTEP plot of the asymmetric unit of the single-crystal XRD crystal structure of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. Atoms are represented by 50% probability anisotropic thermal ellipsoids. - Crystalline forms equivalent to the crystalline forms described below and claimed herein may demonstrate similar, yet non-identical, analytical characteristics within a reasonable range of error, depending on test conditions, purity, equipment and other common variables known to those skilled in the art or reported in the literature. The term “crystalline” and related terms used herein, when used to describe a substance, component or product, means that the substance, component or product is substantially crystalline as determined by X-ray diffraction, microscopy, polarized microscopy, or other known analytical procedure known to those skilled in the art. See, e.g., Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa., 173 (1990); The United States Pharmacopeia, 23rd ed., 1843-1844 (1995).
- Accordingly, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope and spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Applicants intend that the specification and examples be considered as exemplary, but not limiting in scope.
- The crystalline forms of the instant invention can be characterized using Single Crystal Data, Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). It is to be understood that numerical values described and claimed herein are approximate. Variation within the values may be attributed to equipment calibration, equipment errors, purity of the materials, crystals size, and sample size, among other factors. In addition, variation may be possible while still obtaining the same result. For example, X-ray diffraction values are generally accurate to within .+−.0.2 degrees and intensities (including relative intensities) in an X-ray diffraction pattern may fluctuate depending upon measurement conditions employed. Similarly, DSC results are typically accurate to within about 2° C. Consequently, it is to be understood that the crystalline forms of the instant invention are not limited to the crystalline forms that provide characterization patterns (i.e., one or more of the PXRD, DSC, and TGA) completely identical to the characterization patterns depicted in the accompanying Figures disclosed herein. Any crystalline forms that provide characterization patterns substantially the same as those described in the accompanying Figures fall within the scope of the present invention. The ability to ascertain substantially the same characterization patterns is within the purview of one of ordinary skill in the art.
- The embodiments provided herein can be understood more fully by reference to the following detailed description and illustrative examples, which are intended to exemplify non-limiting embodiments.
- Processes for the preparation of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid are described in U.S. Pat. No. 6,992,096 B2, issued Jan. 31, 2006, and U.S. patent application Ser. No. 11/899,813, filed Sep. 9, 2007, both of which are incorporated by reference in their entirety.
- In one embodiment, the present invention provides the Form A crystal form of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. In certain embodiments, Form A can be obtained by crystallization from various solvents, including, but not limited to, methanol, tertiary-butyl alcohol (t-BuOH), 1-butyl alcohol (1-BuOH), acetonitrile, isopropyl alcohol (IPA), isopropyl ether, dimethyl formamide, heptane, isopropyl acetate (IPOAc), toluene and/or water. A representative XRPD pattern of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided in
FIG. 1 . In certain embodiments, Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid has an XRPD pattern which is substantially similar to the pattern displayed inFIG. 1 . - Representative thermal characteristics of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid are shown in
FIG. 2 . A representative DSC thermogram, presented inFIG. 2 , exhibits an endothermic event with a peak temperature at about 244° C. A representative TGA thermogram, also presented inFIG. 2 , exhibits a mass loss of less than about 1% of the total mass of the sample upon heating from about 33° C. to about 205° C. These thermal data indicate that Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid does not contain substantial amounts of either water or solvent in the crystal lattice. In certain embodiments, Form A exhibits a TGA weight loss event commencing at about 212° C. which corresponds to sublimation prior to melting. - A single-crystal X-ray diffraction (XRD) crystal structure was obtained from a representative single crystal of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. Using XRD data collected at about 150 K, the following unit cell parameters were obtained: a=24.2240(10) Å; b=3.74640(10) Å; c=27.4678(13) Å; a=90°; p=92.9938(15°); 7=90°; V=2489.38(17) Å3. A crystal packing diagram from the single-crystal XRD structure of Form A, viewed down the crystallographic b axis, is provided as
FIG. 9 . A simulated XRPD pattern was generated for Cu radiation using PowderCell 2.3 (PowderCell for Windows Version 2.3 Kraus, W.; Nolze, G. Federal Institute for Materials Research and Testing, Berlin Germany, E U, 1999) and the atomic coordinates, space group, and unit cell parameters from the single crystal data. A simulated XRPD pattern of Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided asFIG. 10 . - In certain embodiments, Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is characterized by its physical stability when subjected to certain processing conditions. In certain embodiments, Form A is physically stable when stored for 6 days at one or more of the following relative humidity (RH) conditions: 53% RH at 40° C.; 75% RH at 40° C.; 50% RH at 60° C.; and 79% RH at 60° C. In other embodiments, Form A is physically stable when milled at ambient and at sub-ambient temperatures. In other embodiments, Form A is physically stable when slurried at one or more of the following conditions: in 1-BuOH for 4 days at ambient temperature; in chloroform for 2 days at 50° C.; and in dichloromethane for 2 days at 50° C.
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was evaluated for hygroscopicity. Dynamic vapor sorption (DVS) analysis of moisture uptake and moisture release as a function of relative humidity (RH) were obtained upon cycling between 5% and 95% RH. The maximum uptake was about 0.06% of the total mass of the sample, as demonstrated in the representative Form A DVS isotherm in
FIG. 3 . Accordingly, in certain embodiments, Form A is non-hygroscopic. - A representative 13C solid-state NMR spectrum of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided in
FIG. 4 . In certain embodiments, Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is characterized by 13C CP/MAS solid-state NMR signals located at one or more of the following approximate positions: 172.6, 167.0, 131.3, 128.4; and 117.1 ppm, when externally referenced to glycine at 176.5 ppm. - In certain embodiments, Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid exhibits desirable characteristics for the processing and/or manufacture of drug product containing 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. For example, in certain embodiments, Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid has a relatively high melting point, which is an important characteristic for, inter alia, processing and manufacturing. Moreover, in certain embodiments, Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was found to be substantially non-hygroscopic. A non-hygroscopic solid form is desirable for a variety of reasons including, for example, for processing and storage concerns. Moreover, in certain embodiments, Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was found to be physically and chemically stable upon micronization, a method of particle size reduction. Physical stability is an important property of pharmaceutical materials during manufacture, processing, and storage.
- In one embodiment, the present invention provides the Form B crystal form of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid. In certain embodiments, Form B can be obtained by crystallization from various solvents, including, but not limited to, tetrahydrofuran (THF), hexane, isopropyl alcohol (IPA) ethyl acetate (EtOAc), acetic acid, 1-butyl acetate, acetone, dimethyl ether, diethyl ether, dioxane, water, methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK), nitromethane and or water.
- In certain embodiments of the invention, Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid has solvent in the crystal lattice in an amount which depends upon one or more conditions such as, but not limited to, crystallization, treatment, processing, formulation, manufacturing or storage. In certain embodiments of the invention, Form B has solvent in the crystal lattice. In certain embodiments, Form B is essentially free of solvent in the crystal lattice. In certain embodiments, the maximum combined molar equivalents of solvent per mole of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid in a sample of Form B is less than 6, less than 5, less than 4, less than 3, less than 2, less than 1.5, less than 1, less than 0.75, less than 0.5, or less than 0.25 molar equivalents. Without intending to be limited by theory, it is believed that the characteristic variably in the solvent content of Form B arises from the existence of a lattice channel which can accommodate different types and/or amounts of solvent, and which permits the addition and/or removal of solvents depending upon the particular conditions. In certain embodiments, the structure of Form B represents the basis for an isostructural family of crystal forms. In certain embodiments, Form B is a desolvated solvate crystal form.
- A representative XRPD pattern of Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided in
FIG. 5 . In certain embodiments, Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is characterized by XRPD peaks located at one or more of the following positions: about 6.4, about 8.0, about 14.1, about 15.9, about 17.2 and about 20.1 degrees 2θ. It is understood by one of skill in the art that when solvents and/or water are added or removed from a crystal lattice, the lattice will slightly expands or contract, resulting in minor shifts in the position of XRPD peaks. In certain embodiments of the present invention, Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is provided which is characterized by an XRPD pattern substantially similar to the pattern displayed inFIG. 5 . In certain embodiments, Form B exhibits a XRPD pattern substantially similar to the pattern displayed inFIG. 5 but exhibits small shifts in peak positions resulting from the presence or absence of specific solvents or water in the crystal lattice. Certain representative XRPD patterns of Form B (second from top to bottom) are compared to Form A (top) of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid inFIG. 8 . In certain embodiments, Form B has a XRPD pattern substantially similar to one or more of the XRPD patterns displayed inFIG. 8 . - Thermal characteristics of a sample of Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid crystallized from a 2.5:1 THF:hexane mixture are shown in
FIG. 6 . A TGA thermogram of this Form B sample, presented inFIG. 6 , exhibits two mass loss events: one mass loss event of about 5% of the total mass of the sample upon heating from about 25° C. to about 165° C., and a second mass loss event commencing at about 220° C. Hotstage microscopy revealed that the first mass loss event resulted from the loss of solvent and/or water from the crystal lattice, and the second mass loss event resulted from the sublimation of Form B. XRPD analysis of the resulting sublimate indicated that Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid had formed. A DSC thermogram of this Form B sample, presented inFIG. 6 , exhibits a sharp endothermic event with a peak temperature at about 243° C., corresponding to the melt of the Form A sublimate. The DSC of this Form B sample also exhibits at least one other event at a temperature below about 220° C. These thermal data indicate that this sample of Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid contained water and/or solvent in the crystal lattice. On account of the variable water and/or solvent content of certain samples of Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, in certain embodiments of the invention the thermal characteristics of Form B will exhibit certain variation. For example, in specific embodiments of the invention, samples of Form B which are essentially free of water and solvent do not exhibit a substantial TGA mass loss or DSC thermal event below about 220° C. Because Form B sublimes and crystallizes as Form A, thus inFIG. 6 , the heat of fusion for the endotherm is after the sample has converted to Form A. - In one embodiment of the invention, a Form B sample which crystallized from IPA had about 0.1 molar equivalents of IPA and about 1 molar equivalents of water per mole of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, based upon analysis using TGA and 1H NMR. In specific embodiments of the invention, a Form B sample which possesses approximately 1 molar equivalent of water per molar equivalent of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid is termed a monohydrate. In another embodiment of the invention, a Form B sample which was treated by vacuum drying at 105° C. for 10 min exhibited a total weight loss of 2% of the mass of the sample when subsequently analyzed by TGA from about 25 to about 185° C. In certain embodiments, the Form B characteristics which are dependent upon the quantity and/or identity of the solvent and/or water in the crystal lattice (e.g., mass loss upon heating or drying) will exhibit variation with respect to the total quantity or identity of solvent and/or water in the crystal lattice. In certain embodiments, regardless of the quantity and/or identity of solvent and/or water in the crystal lattice, the XRPD pattern of Form B will exhibit peaks characteristic of Form B as described supra, but with minor peak shifting arising from differences in quantity and/or identity of the solvent and/or water in the Form B crystal lattice. Representative XRPD patterns illustrating peak shifting among certain Form B samples are overlaid in
FIG. 8 (second from top to bottom). - In certain embodiments of the invention, upon milling at ambient or sub-ambient temperatures, conversion from Form B to Form A is observed. In other embodiments of the invention, Form B is physically stable upon storage for 6 days at one of the following relative humidity (RH) conditions: 53% RH at 40° C.; 75% RH at 40° C.; and 50% RH at 60° C. In other embodiments of the invention, Form B is substantially non-hygroscopic, as illustrated by the representative Form B DVS isotherm in
FIG. 7 . In other embodiments of the invention, Form B exhibited partial conversion to Form A upon storage for 6 days at the condition of 79% RH at 60° C. In other embodiments of the invention, Form B is physically stable under compression alone and under compression in the presence of a 1:1 mixture of t-BuOH and water. In other embodiments of the invention, Form B is physically stable when slurried for 1 day at ambient temperature in a 1:1 mixture of THE and heptane. In other embodiments, conversion of Form B to Form A is observed upon slurrying Form B in either methyl isobutyl ketone or a 1:1 mixture of dioxane and water. - Provided herein are methods of treating, preventing and managing diseases or disorders ameliorated by the suppression of premature translation termination and/or nonsense-mediated mRNA decay in a patient which comprise administering to a patient in need thereof an effective amount of a solid form of 3-[5-(2-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid.
- In one embodiment, provided herein are methods for the treatment, prevention or management of any disease that is associated with a gene exhibiting premature translation termination and/or nonsense-mediated mRNA decay. In one embodiment, the disease is due, in part, to the lack of expression of the gene resulting from a premature stop codon. Specific examples of genes which may exhibit premature translation termination and/or nonsense-mediated mRNA decay and diseases associated with premature translation termination and/or nonsense-mediated mRNA decay are found in U.S. Patent Application Publication No. 2005-0233327, titled: Methods For Identifying Small Molecules That Modulate Premature Translation Termination And Nonsense Mediated mRNA Decay, which is incorporated herein by reference in its entirety.
- Diseases or disorders associated with or ameliorated by the suppression of premature translation termination and/or nonsense-mediated mRNA decay include, but are not limited to: a genetic disease, cancer, an autoimmune disease, a blood disease, a collagen disease, diabetes, a neurodegenerative disease, a proliferative disease, a cardiovascular disease, a pulmonary disease, an inflammatory disease or central nervous system disease.
- Specific genetic diseases within the scope of the methods of the invention include, but are not limited to, multiple endocrine neoplasia (type 1, 2 and 3), amyloidosis, mucopolysaccharidosis (type I and III), congenital adrenal hypoplasia, adenomatous poliposis coli, Von Hippel Landau Disease, Menkes Syndrome, hemophilia A, hemophilia B, collagen VII, Alagille Syndrome, Townes-Brocks Syndrome, rhabdoid tumor, epidermolysis bullosa, Hurler's Syndrome, Coffin-Lowry Syndrome, aniridia, Charcot-Maria-Tooth Disease, myotubular myopathy, X-linked myotubular myopathy, X-linked chondrodysplasia, X-linked agammaglobulinemia, polycystic kidney disease, spinal muscular atrophy, familial adenomatous poliposis, pyruvate dehydrogenase deficiency, phenylketonuria, neurofibromatosis 1, neurofibromatosis 2, Alzheimer's disease, Tay Sachs disease, Rett Syndrome, Hermansky-Pudlak Syndrome, ectodermal dysplasia/skin fragility syndrome, Leri-Weill dyschondrosteosis, rickets, hypophosphataemic, adrenoleukodystrophy, gyrate atrophy, atherosclerosis, sensorineural deafness, dystonia, Dent Disease, acute intermittent porphyria, Cowden Disease, Herlitz epidermolysis bullosa, Wilson Disease, Treacher-Collins Syndrome, pyruvate kinase deficiency, giantism, dwarfism, hypothyroidism, hyperthyroidism, aging, obesity, Parkinson's disease, Niemann Pick's disease C, Cystic Fibrosis, muscular dystrophy, heart disease, kidney stones, ataxia-telangiectasia, familial hypercholesterolemia, retinitis pigmentosa, lysosomal storage disease, tuberous sclerosis, Duchenne Muscular Dystrophy, and Marfan Syndrome.
- In another embodiment, the genetic disease is an autoimmune disease. In a preferred embodiment, the autoimmune disease is rheumatoid arthritis or graft versus host disease.
- In another embodiment, the genetic disease is a blood disease. In a particular embodiment, the blood disease is hemophilia A, Von Willebrand disease (type 3), ataxia-telangiectasia, b-thalassemia or kidney stones.
- In another embodiment, the genetic disease is a collagen disease. In a particular embodiment, the collagen disease is osteogenesis imperfecta or cirrhosis.
- In another embodiment, the genetic disease is diabetes.
- In another embodiment, the genetic disease is an inflammatory disease. In a particular embodiment, the inflammatory disease is arthritis.
- In another embodiment, the genetic disease is a central nervous system disease. In one embodiment the central nervous system disease is a neurodegenerative disease. In a particular embodiment, the central nervous system disease is multiple sclerosis, muscular dystrophy, Duchenne muscular dystrophy, Alzheimer's disease, Tay Sachs disease, late infantile neuronal ceroid lipofuscinosis (LINCL) or Parkinson's disease.
- In another embodiment, the genetic disease is cancer. In a particular embodiment, the cancer is of the head and neck, eye, skin, mouth, throat, esophagus, chest, bone, lung, colon, sigmoid, rectum, stomach, prostate, breast, ovaries, kidney, liver, pancreas, brain, intestine, heart or adrenals. The cancer can be primary or metastatic. Cancers include solid tumors, hematological cancers and other neoplasias.
- In another particular embodiment, the cancer is associated with tumor suppressor genes (see e.g. Garinis et al. 2002, Hum Gen 111:115-117; Meyers et al. 1998, Proc. Natl. Acad. Sci. USA, 95: 15587-15591; Kung et al. 2000, Nature Medicine 6(12): 1335-1340. Such tumor suppressor genes include, but are not limited to, APC, ATM, BRAC1, BRAC2, MSH1, pTEN, Rb, CDKN2, NF1, NF2, WT1, and p53.
- In a particularly preferred embodiment, the tumor suppressor gene is the p53 gene. Nonsense mutations have been identified in the p53 gene and have been implicated in cancer. Several nonsense mutations in the p53 gene have been identified (see, e.g., Masuda et al., 2000, Tokai J Exp Clin Med. 25(2):69-77; Oh et al., 2000, Mol Cells 10(3):275-80; Li et al., 2000, Lab Invest. 80(4):493-9; Yang et al., 1999, Zhonghua Zhong Liu Za Zhi 21(2):114-8; Finkelstein et al., 1998, Mol Diagn. 3(1):37-41; Kajiyama et al., 1998, Dis Esophagus. 11(4):279-83; Kawamura et al., 1999, Leuk Res. 23(2):115-26; Radig et al., 1998, Hum Pathol. 29(11):1310-6; Schuyer et al., 1998, Int J Cancer 76(3):299-303; Wang-Gohrke et al., 1998, Oncol Rep. 5(1):65-8; Fulop et al., 1998, J Reprod Med. 43(2):119-27; Ninomiya et al., 1997, J Dermatol Sci. 14(3):173-8; Hsieh et al., 1996, Cancer Lett. 100(1-2):107-13; Rall et al., 1996, Pancreas. 12(1):10-7; Fukutomi et al., 1995, Nippon Rinsho. 53(11):2764-8; Frebourg et al., 1995, Am J Hum Genet. 56(3):608-15; Dove et al., 1995, Cancer Surv. 25:335-55; Adamson et al., 1995, Br J Haematol. 89(1):61-6; Grayson et al., 1994, Am J Pediatr Hematol Oncol. 16(4):341-7; Lepelley et al., 1994, Leukemia. 8(8):1342-9; McIntyre et al., 1994, J Clin Oncol. 12(5):925-30; Horio et al., 1994, Oncogene. 9(4):1231-5; Nakamura et al., 1992, Jpn J Cancer Res. 83(12):1293-8; Davidoff et al., 1992, Oncogene. 7(1):127-33; and Ishioka et al., 1991, Biochem Biophys Res Commun. 177(3):901-6; the disclosures of which are hereby incorporated by reference in their entireties).
- In other embodiments, diseases to be treated, prevented or managed by administering to a patient in need thereof an effective amount of a solid form of 3-[5-(2-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid include, but are not limited to, solid tumor, sarcoma, carcinomas, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, Kaposi's sarcoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, retinoblastoma, a blood-born tumor, acute lymphoblastic leukemia, acute lymphoblastic B-cell leukemia, acute lymphoblastic T-cell leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute monoblastic leukemia, acute erythroleukemic leukemia, acute megakaryoblastic leukemia, acute myelomonocytic leukemia, acute nonlymphocyctic leukemia, acute undifferentiated leukemia, chronic myelocytic leukemia, chronic lymphocytic leukemia, hairy cell leukemia, or multiple myeloma. See e.g., Harrison's Principles of Internal Medicine, Eugene Braunwald et al., eds., pp. 491-762 (15th ed. 2001).
- Pharmaceutical compositions and single unit dosage forms comprising a compound of the invention, or a pharmaceutically acceptable polymorph, prodrug, salt, solvate, hydrate, or clathrate thereof, are also encompassed by the invention. Individual dosage forms of the invention may be suitable for oral, mucosal (including sublingual, buccal, rectal, nasal, or vaginal), parenteral (including subcutaneous, intramuscular, bolus injection, intraarterial, or intravenous), transdermal, or topical administration.
- Single unit dosage forms of the invention are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), or transdermal administration to a patient.
- The composition, shape, and type of dosage forms of the invention will typically vary depending on their use. These and other ways in which specific dosage forms encompassed by this invention will vary from one another will be readily apparent to those skilled in the art. See, e.g., Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa. (1995).
- Typical pharmaceutical compositions and dosage forms comprise one or more carriers, excipients or diluents. Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage form will be administered to a patient. For example, oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms. The suitability of a particular excipient may also depend on the specific active ingredients in the dosage form.
- The 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained from the synthesis described supra may be crystallized or recrystallized in a number of ways to yield the solid forms of the invention. Provided below are several non-limiting examples.
- The 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained as described herein was crystallized as Form A by the method of slow evaporation from the each one of the following solvents: acetonitrile; t-butanol; isopropyl alcohol; and isopropyl ether. A solution of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was prepared in the indicated solvent and sonicated between aliquot additions to assist in dissolution. Once a mixture reached complete dissolution, as judged by visual observation, the solution was filtered through a 0.2-μm filter. The filtered solution was allowed to evaporate at a temperature of 60° C. (50° C. in the case of t-butanol), in a vial covered with aluminum foil containing pinhole(s). The solids that formed were isolated and characterized by XRPD as Form A.
- The 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained as described herein was crystallized as Form A by the method of fast evaporation from each one of the following solvents or solvent systems: 1-butanol; dimethoxyether; t-butanol; a mixture of dimethyl formamide and water; isopropyl ether; and a mixture of t-butanol:water (in a 3:2 ratio), 1 molar equivalent methanol and 1 molar equivalent sodium chloride. Solutions were prepared in the indicated solvent or solvent system and sonicated between aliquot additions to assist in dissolution. Once a mixture reached complete dissolution, as judged by visual observation, the solution was filtered through a 0.2-μm filter. The filtered solution was allowed to evaporate at a temperature of 60° C. (50° C. in the cases of t-butanol and isopropyl ether; 81° C. in the case of the t-butanol/water/methanol/NaCl system) in an open vial. The solids that formed were isolated and characterized by XRPD as Form A.
- Form B of the free acid of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, obtained as described herein, was converted to Form A by the method of slurrying in the solvent system 1:1 dioxane:water. A slurry was prepared by adding enough Form B solids to a given solvent so that excess solids were present. The mixture was then agitated in a sealed vial at a temperature of 60° C. After 2 days, the solids were isolated by vacuum filtration and characterized by XRPD as Form A with a minor amount of Form B.
- Form B of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, obtained as described herein, was converted to Form A by the methods of sublimation and heating. In one experiment, Form B was sublimed at 160-208° C., under vacuum, for 35 minutes to yield white needles which were characterized by XRPD as Form A. In another experiment, Form B was melted at 255° C., followed by direct placement into liquid nitrogen to yield crystalline material which was characterized by XRPD as Form A. In another experiment, Form B was melted at 255° C. and then cooled slowly to yield crystalline material which was characterized by XRPD as Form A.
- The 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained as described herein was crystallized as Form B by the method of slow evaporation from each one of the following solvents: acetone; dimethyl ether; and methyl ethyl ketone. A solution of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was prepared in the indicated solvent and sonicated between aliquot additions to assist in dissolution. Once a mixture reached complete dissolution, as judged by visual observation, the solution was filtered through a 0.2-μm filter. The filtered solution was allowed to evaporate at a temperature of 50° C. (60° C. in the case of methyl ethyl ketone), in a vial covered with aluminum foil containing pinhole(s).
- In one embodiment, 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was dissolved in dimethoxyether. The solution was into a clean vial. The vial was filtered through a 0.2-μm filter covered with aluminum foil perforated with pinhole(s) and the solvent allowed to evaporate. The solids that formed were isolated and characterized by XRPD as Form B. XRPD analysis is illustrated in Table 8 (P.O.)
- The 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid product obtained as described herein was crystallized as Form B by the method of fast evaporation from each one of the following solvents or solvent systems: acetone, acetic acid, 1-butyl acetate; dimethyl ether; THF and diethyl ether; dioxane; methyl ethyl ketone; nitromethane; methyl iso-butyl ketone; THF:hexane (2.5:1); and dioxane:water (3:2). Solutions were prepared in the indicated solvent or solvent system and sonicated between aliquot additions to assist in dissolution. Once a mixture reached complete dissolution, as judged by visual observation, the solution was filtered through a 0.2-μm filter. The filtered solution was allowed to evaporate at an elevated temperature in an open vial. The solids that formed were isolated and characterized by XRPD as Form B.
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, obtained as described herein, was converted to Form B by the method of slurrying in each one of the following solvents: acetic acid; 1-butyl acetate; and nitromethane. In one embodiment, 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid was slurried on an orbit shaker in 1-butyl acetate (13 mL) at room temperature for 3 days. After three days the solvent was removed by pipette, dried and characterized by XRPD as Form B (Table 5)
- Form A of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid, obtained as described herein, was converted to Form B by heating on an orbit shaker in 1-propanol (10 mL) at 60° C. for 1 day on an orbit shaker. The resulting solution was through 0.2 μm nylon filter into a clean vial. After 1 day, the solvent was decanted and the sample dried under nitrogen. XRPD analysis as form B is illustrated in Table 4.
- 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid (20 mg, Form B) was slurried in a mixture of tetrahydrofuran/
heptane 1/1 (2 mL) at ambient temperature for 1 day. After 1 day, the slurry was seeded with Form A (10 mg) and Form B (9 mg) and slurried for an additional day, after which time additional Form A (30 mg) was added. After slurrying the sample a total of 7 days additional Form A was added (30 mg) and the temperature increased to 50° C. Solids were collected after slurrying at 50° C. for one day. The solids that formed were isolated and characterized by XRPD as Form B. XRPD analysis is illustrated in Table 6. - 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid (UNMEASURED QUANTITY; FORM B) was stressed in 75% relative humidity at 40° C. for six days. The solids that formed were isolated and characterized by XRPD as Form B. XRPD analysis is illustrated in Table 7.
- The following methods of solid-state analysis provide examples of how the solid forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid of the present invention may be characterized. The specific methods described below were employed to obtain the solid-state characterization data described herein.
- Certain XRPD analyses were performed using a Shimadzu XRD-6000 X-ray powder diffractometer using Cu Kα radiation. The instrument is equipped with a long fine focus X-ray tube. The tube voltage and amperage were set to 40 kV and 40 mA, respectively. The divergence and scattering slits were set at 1° and the receiving slit was set at 0.15 mm. Diffracted radiation was detected by a NaI scintillation detector. A θ-2θ continuous scan at 3°/min (0.4 sec/0.02° step) from 2.5 to 40° 2θ was used. A silicon standard was analyzed to check the instrument alignment. Data were collected and analyzed using XRD-6100/7000 v. 5.0. Samples were prepared for analysis by placing them in a sample holder.
- Certain XRPD analyses were performed using an Inel XRG-3000 diffractometer equipped with a CPS (Curved Position Sensitive) detector with a 2θ range of 120°. Real time data were collected using Cu-Kα radiation at a resolution of 0.03° 2θ. The tube voltage and amperage were set to 40 kV and 30 mA, respectively. The monochromator slit was set at 5 mm by 160 μm. The pattern is displayed from 2.5-40° 2θ. An aluminum sample holder with silicon insert was used/or/Samples were prepared for analysis by packing them into thin-walled glass capillaries. Each capillary was mounted onto a goniometer head that is motorized to permit spinning of the capillary during data acquisition. The samples were analyzed for 300 sec. Instrument calibration was performed using a silicon reference standard.
- Certain XRPD patterns were collected with a Bruker D-8 Discover diffractometer and Bruker's General Area Diffraction Detection System (GADDS, v. 4.1.20). An incident beam of Cu Kα radiation was produced using a fine-focus tube (40 kV, 40 mA), a Göbel mirror, and a 0.5 mm double-pinhole collimator. A specimen of the sample was packed in a capillary and secured to a translation stage. A video camera and laser were used to position the area of interest to intersect the incident beam in transmission geometry. The incident beam was scanned to optimize orientation statistics. A beam-stop was used to minimize air scatter from the incident beam at low angles. Diffraction patterns were collected using a Hi-Star area detector located 15 cm from the sample and processed using GADDS. The intensity in the GADDS image of the diffraction pattern was integrated using a step size of 0.04° 2θ. The integrated patterns display diffraction intensity as a function of 20. Prior to the analysis a silicon standard was analyzed to verify the Si 111 peak position.
- Certain XRPD files generated from Inel XRPD instruments were converted to Shimadzu .raw file using File Monkey version 3.0.4. The Shimadzu .raw file was processed by the Shimadzu XRD-6000 version 2.6 software to automatically find peak positions. The “peak position” means the maximum intensity of a peaked intensity profile. Parameters used in peak selection are shown in the lower half of each parameter set of the data. The following processes were used with the Shimadzu XRD-6000 “Basic Process” version 2.6 algorithm:
-
- Smoothing was done on all patterns.
- The background was subtracted to find the net, relative intensity of the peaks.
- A peak from Cu K alpha2 (1.5444 Å) wavelength was subtracted from the peak generated by Cu K alpha1 (1.5406 Å) peak at 50% intensity for all patterns.
- Differential scanning calorimetry (DSC) was performed using a TA Instruments differential scanning calorimeter 2920. The sample was placed into an aluminum DSC pan, and the weight accurately recorded. The pan was covered with a lid and then crimped. The sample cell was equilibrated at 25° C. and heated under a nitrogen purge at a rate of 10° C./min, up to a final temperature of 350° C. Indium metal was used as the calibration standard. Reported temperatures are at the transition maxima.
- Thermogravimetric (TG) analyses were performed using a TA Instruments 2950 thermogravimetric analyzer. Each sample was placed in an aluminum sample pan and inserted into the TG furnace. The furnace was (first equilibrated at 35° C., then) heated under nitrogen at a rate of 10° C./min, up to a final temperature of 350° C. Nickel and Alumel™ were used as the calibration standards.
- Moisture sorption/desorption data were collected on a VTI SGA-100 Vapor Sorption Analyzer. Sorption and desorption data were collected over a range of 5% to 95% relative humidity (RH) at 10% RH intervals under a nitrogen purge. Samples were not dried prior to analysis. Equilibrium criteria used for analysis were less than 0.0100% weight change in 5 minutes, with a maximum equilibration time of 3 hours if the weight criterion was not met. Data were not corrected for the initial moisture content of the samples. NaCl and PVP were used as calibration standards.
- Coulometric Karl Fischer (KF) analysis for water determination was performed using a Mettler Toledo DL39 Karl Fischer titrator. Approximately 21 mg of sample was placed in the KF titration vessel containing Hydranal—Coulomat AD and mixed for 42-50 seconds to ensure dissolution. The sample was then titrated by means of a generator electrode which produces iodine by electrochemical oxidation: 2 I−=>I2+2e. Three replicates were obtained to ensure reproducibility.
- Hotstage microscopy was performed using a Linkam FTIR 600 hotstage with a TMS93 controller mounted on a Leica DM LP microscope equipped with a Spot Insight color camera for acquiring images. Images are acquired using Spot Advanced software version 4.5.9 build date Jun. 9, 2005, unless noted. The camera was white balanced prior to use. Samples were observed and acquired using a 20×0.40 N.A. long working distance objective with crossed polars and first order red compensator. Samples were placed on a coverslip. Another coverslip was then placed over the sample. Each sample was visually observed as the stage was heated. The hotstage was calibrated using USP melting point standards.
- Samples were prepared for solid-state NMR spectroscopy by packing them into 4 mm PENCIL type zirconia rotors. Scans were collected at ambient temperature with a relaxation delay of 120.000 s, a pulse width of 2.2 μs (90.0 deg), an acquisition time of 0.030 s, and a spectral width of 44994.4 Hz (447.520 ppm). A total of 100 scans were collected. Cross polarization was achieved with using 13C as the observed nucleus and 1H as the decoupled nucleus with a contact time of 10.0 ms. A magic angle spinning rate of 12000 Hz was used. Spectra are externally referenced to glycine at 176.5 ppm.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims. All publications, patents and patent applications mentioned in this specification are herein incorporated by reference into the specification to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference.
- Sample Preparation
- The crystals utilized for Form A structure determination were prepared by sublimation of the Form A. The crystals were removed from the cold finger after the sample was heated between 155-206° C. for approximately 90 minutes. (Table 3 Experimental)
- Data Collection
- A colorless needle of C15H9FN2O3 having approximate dimensions of 0.44×0.13×0.03 mm, was mounted on a glass fiber in random orientation. Preliminary examination and data collection were performed with Mo Kα radiation (k=0.71073 Å) on a Nonius KappaCCD diffractometer. Refinements were performed on an LINUX PC using SHELX97 (Sheldrick, G. M. SHELX97, A Program for Crystal Structure Refinement, University of Gottingen, Germany, 1997).
- Cell constants and an orientation matrix for data collection were obtained from least-squares refinement using the setting angles of 13862 reflections in the
range 2°<θ<24°. The refined mosaicity from DENZO/SCALEPACK (Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307) was 0.33° indicating good crystal quality. The space group was determined by the program XPREP (Bruker, XPREP in SHELXTL v. 6.12., Bruker AXS Inc., Madison, Wis., USE, 2002). From the systematic presence of the following conditions: h0l h+l=2n; 0k0 k=2n, and from subsequent least-squares refinement, the space group was determined to be P21/n (no. 14). - The data were collected to a maximum 20 value of 2469°, at a temperature of 150±1 K.
- Data Reduction
- Frames were integrated with DENZO-SMN (Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307). A total of 13862 reflections were collected, of which 3201 were unique. Lorentz and polarization corrections were applied to the data. The linear absorption coefficient is 0.110 mm−1 for Mo Kα radiation. An empirical absorption correction using SCALEPACK (Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307) was applied. Transmission coefficients ranged from 0.951 to 0.997. A secondary extinction correction was applied (Sheldrick, G. M. SHELX97, A Program for Crystal Structure Refinement, University of Gottingen, Germany, 1997). The final coefficient, refined in least-squares, was 0.0046 (in absolute units). Intensities of equivalent reflections were averaged. The agreement factor for the averaging was 10.1% based on intensity.
- Structure Solution and Refinement
- The structure was solved by direct methods using SIR2004 (Burla, M. C., et al., J. Appl. Cryst. 2005, 38, 381). The remaining atoms were located in succeeding difference Fourier syntheses. Hydrogen atoms were included in the refinement but restrained to ride on the atom to which they are bonded. The structure was refined in full-matrix least-squares by minimizing the function:
-
Σw(|F o|2 −|F c|2)2 - The weight w is defined as 1/[σ2(Fo 2)+(0.0975P)2+(0.0000P)], where P=(Fo 2+2Fc 2)/3.
- Scattering factors were taken from the “International Tables for Crystallography” (International Tables for Crystallography, Vol. C, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992, Tables 4.2.6.8 and 6.1.1.4). Of the 3201 reflections used in the refinements, only the reflections with Fo 2>2σ(Fo 2) were used in calculating R. A total of 2010 reflections were used in the calculation. The final cycle of refinement included 382 variable parameters and converged (largest parameter shift was <0.01 times its estimated standard deviation) with unweighted and weighted agreement factors of:
-
- The standard deviation of an observation of unit weight was 1.01. The highest peak in the final difference Fourier had a height of 0.64 e/Å3. The minimum negative peak had a height of −0.33 e/Å3.
- Calculated X-Ray Powder Diffraction (XRPD) Pattern
- A calculated XRPD pattern was generated for Cu radiation using PowderCell 2.3 (PowderCell for Windows Version 2.3 Kraus, W.; Nolze, G. Federal Institute for Materials Research and Testing, Berlin Germany, E U, 1999) and the atomic coordinates, space group, and unit cell parameters from the single crystal data.
- ORTEP and Packing Diagrams
- The ORTEP diagram was prepared using ORTEP III (Johnson, C. K. ORTEPIII, Report ORNL-6895, Oak Ridge National Laboratory, Tenn., U.S.A. 1996, and OPTEP-3 for Windows V1.05, Farrugia, L. J., J. Appl. Cryst. 1997, 30, 565). Atoms are represented by 50% probability anisotropic thermal ellipsoids. Packing diagrams were prepared using CAMERON (Watkin, D. J. et al., CAMERON, Chemical Crystallography Laboratory, University of Oxford, Oxford, 1996) modeling.
- Results and Discussion
- The monoclinic cell parameters and calculated volume of Form A are: a=24.2240(10) Å, b=3.74640(10) Å, c=27.4678(13) Å, α□=□90.00°, □β=92.9938(15)°, γ=90.00°, V=2489.38(17) Å3. The molecular weight is 284.25 g/mol−1 and Z=8 (where Z is the number of drug molecules per asymmetric unit) resulting in a calculated density (dcalc, g cm−3) of 1.517 g cm−3 for this crystal structure. The space group was determined to be P21/n (no. 14), which is an achiral space group. A summary of the crystal data and crystallographic data collection parameters are provided as follows:
-
formula C15H9FN2O3 formula weight 284.25 space group P 1 21/n 1 (No. 14) a, Å 24.2240(10) b, Å 3.74640(10) c, Å 27.4678(13) b, deg 92.9938(15) V, Å3 2489.38(17) Z 8 dcalc, g cm−3 1.517 crystal dimensions, mm 0.44 × 0.13 × 0.03 temperature, K 150. radiation (wavelength, Å) Mo Ka (0.71073) monochromator graphite linear abs coef, mm−1 0.110 absorption correction applied empirical transmission factors: min, max 0.951 to 0.997 diffractometer Nonius KappaCCD h, k, l range 0 to 28 0 to 4 −32 to 32 2q range, deg 4.45-49.38 mosaicity, deg 0.33 programs used SHELXTL F000 1168.0 weighting 1/[s2(Fo 2) + (0.0975P)2 + 0.000P] where P = (Fo 2 + 2Fc 2)/3 data collected 13862 unique data 3201 Rint 0.101 data used in refinement 3201 cutoff used in R-factor calculations Fo 2 > 2.0s(Fo 2) data with I > 2.0s(I) 2010 refined extinction coef 0.0046 number of variables 382 largest shift/esd in final cycle 0.00 R(Fo) 0.062 Rw(Fo 2) 0.152 goodness of fit 1.006 - The quality of the structure obtained is high to moderate, as indicated by the R-value of 0.062 (6.2%). Usually R-values in the range of 0.02 to 0.06 are quoted for the most reliably determined structures. While the quality of the crystal structure is slightly outside the accepted range for most reliably determined structures, the data is of sufficient quality to ensure to location of the atomic positions in the molecular structure is correct.
- An ORTEP drawing of Form A is shown in
FIG. 11 . The asymmetric unit shown in contains a dimer of two molecules arranged to form a possible hydrogen bond through the adjacent carboxylic acid groups. Since the acid protons were not located from the Fourier map it is assumed the molecules are neutral. A packing diagram of Form A, viewed down the crystallographic b axis, is shown inFIG. 9 . - The simulated XRPD pattern of Form A, shown in
FIG. 10 , was generated from the single crystal data, and is in good agreement with the experimental XRPD pattern of Form A (see, e.g.,FIG. 1 ). Differences in intensities can arise from preferred orientation. Preferred orientation is the tendency for crystals, usually plates or needles, to align themselves with some degree of order. Preferred orientation can affect peak intensities, but not peak positions, in XRPD patterns. Slight shifts in peak location can arise from the fact that the experimental powder pattern was collected at ambient temperature, and the single crystal data was collected at 150 K. Low temperatures are used in single crystal analysis to improve the quality of the structure. - Table 1 shows the fractional atomic coordinates for the asymmetric unit of Form A.
-
TABLE 1 Positional Parameters and Their Estimated Standard Deviations for Form A Atom x y z U(Å2) F(122) 0.43198(12) 0.7655(8) −0.17546(10) 0.0487(10) F(222) −0.20343(15) 0.7129(10) 0.06378(14) 0.0781(14) O(13) 0.42977(13) 0.4875(8) −0.08927(11) 0.0324(10) O(23) −0.12941(13) 0.4507(9) 0.12653(12) 0.0402(10) O(151) 0.25519(13) 0.4795(9) 0.10765(12) 0.0382(10) O(152) 0.29215(13) 0.2155(9) 0.17515(12) 0.0403(10) O(251) 0.16226(13) 0.4813(9) 0.15012(12) 0.0385(10) O(252) 0.19645(13) 0.1939(9) 0.21659(12) 0.0393(10) N(11) 0.35817(15) 0.5856(9) −0.04386(14) 0.0279(10) N(14) 0.44373(16) 0.3409(10) −0.04263(14) 0.0327(12) N(21) −0.04134(16) 0.5165(9) 0.11065(14) 0.0305(12) N(24) −0.09772(17) 0.3201(11) 0.16787(15) 0.0388(14) C(12) 0.37827(18) 0.6256(11) −0.08637(17) 0.0266(14) C(15) 0.40019(19) 0.4091(11) −0.01823(17) 0.0261(14) C(22) −0.0926(2) 0.5601(12) 0.09502(18) 0.0319(15) C(25) −0.0471(2) 0.3690(11) 0.15580(17) 0.0302(15) C(121) 0.35225(19) 0.7961(11) −0.12930(17) 0.0291(14) C(122) 0.3784(2) 0.8567(12) −0.17244(18) 0.0345(15) C(123) 0.3519(2) 1.0117(12) −0.21257(19) 0.0407(17) C(124) 0.2973(2) 1.1101(13) −0.21014(19) 0.0416(17) C(125) 0.2694(2) 1.0543(12) −0.1677(2) 0.0409(17) C(126) 0.2966(2) 0.8996(12) −0.12784(18) 0.0349(15) C(151) 0.39702(19) 0.3013(11) 0.03319(16) 0.0260(14) C(152) 0.34897(19) 0.3623(11) 0.05704(16) 0.0261(15) C(153) 0.34631(18) 0.2594(11) 0.10554(16) 0.0253(14) C(154) 0.39150(19) 0.0970(11) 0.13029(17) 0.0279(14) C(155) 0.43977(19) 0.0412(11) 0.10614(17) 0.0291(15) C(156) 0.44250(19) 0.1421(11) 0.05765(17) 0.0292(15) C(157) 0.2955(2) 0.3188(12) 0.13209(18) 0.0312(15) C(221) −0.1109(2) 0.7083(12) 0.04727(19) 0.0388(17) C(222) −0.1643(3) 0.7823(15) 0.0331(2) 0.053(2) C(223) −0.1825(3) 0.9272(15) −0.0122(3) 0.064(2) C(224) −0.1415(4) 0.9930(16) −0.0433(3) 0.068(3) C(225) −0.0870(3) 0.9202(15) −0.0316(2) 0.066(2) C(226) −0.0678(3) 0.7766(12) 0.01365(17) 0.0543(19) C(251) 0.00110(19) 0.2695(11) 0.18877(17) 0.0300(15) C(252) 0.05426(19) 0.3352(11) 0.17481(17) 0.0289(15) C(253) 0.09949(19) 0.2449(11) 0.20524(17) 0.0277(15) C(254) 0.0919(2) 0.0940(11) 0.25087(17) 0.0296(15) C(255) 0.0389(2) 0.0335(11) 0.26491(17) 0.0300(15) C(256) −0.0064(2) 0.1185(12) 0.23430(17) 0.0322(15) C(257) 0.1559(2) 0.3165(12) 0.18902(17) 0.0305(15) H(123) 0.371 1.050 −0.241 0.048 H(124) 0.278 1.217 −0.238 0.050 H(125) 0.232 1.123 −0.166 0.049 H(126) 0.278 0.862 −0.099 0.042 H(151) 0.227 0.491 0.125 0.057 H(152) 0.318 0.473 0.041 0.031 H(154) 0.389 0.025 0.163 0.033 H(155) 0.471 −0.066 0.123 0.035 H(156) 0.475 0.103 0.041 0.035 H(223) −0.220 0.975 −0.020 0.077 H(224) −0.151 1.094 −0.074 0.082 H(225) −0.061 0.969 −0.055 0.080 H(226) −0.030 0.729 0.021 0.065 H(252) 0.226 0.213 0.202 0.059 H(254) 0.123 0.034 0.272 0.035 H(255) 0.033 −0.068 0.296 0.036 H(256) −0.043 0.074 0.244 0.039 H(25A) 0.060 0.443 0.144 0.035 Ueq = (⅓)ΣιΣj Uija*ia*jai.ajj - Hydrogen atoms are included in calculation of structure factors but not refined
-
TABLE 2 Peak Positions of Form A from Calculated XRPD Pattern Generated from Single Crystal Data Position (°2θ)a d-spacing I/Ioc 4.74 18.63 3.24 4.99 17.69 20.99 6.44 13.72 4.46 7.30 12.10 6.46 10.15 8.70 32.47 10.51 8.41 1.90 11.27 7.85 6.14 11.59 7.63 13.97 12.90 6.86 15.05 14.25 6.21 100.00 14.50 6.10 8.25 14.64 6.05 75.70 15.17 5.84 65.12 15.69 5.64 47.56 16.31 5.43 8.61 16.37 5.41 8.11 16.74 5.29 14.82 18.44 4.81 2.04 18.78 4.72 3.13 19.04 4.66 4.05 19.07 4.65 3.81 19.40 4.57 2.85 20.03 4.43 11.28 20.06 4.42 5.41 20.30 4.37 1.92 20.39 4.35 10.87 21.11 4.20 21.30 21.20 4.19 7.07 22.03 4.03 4.07 22.64 3.92 4.72 23.16 3.84 4.71 23.86 3.73 2.64 23.95 3.71 9.76 24.21 3.67 12.14 24.27 3.67 32.98 24.61 3.61 61.89 24.84 3.58 3.05 24.86 3.58 8.00 24.94 3.57 7.15 25.00 3.56 2.17 25.02 3.56 2.09 25.13 3.54 10.36 25.61 3.48 1.67 25.79 3.45 3.04 25.87 3.44 25.14 26.02 3.42 15.19 26.20 3.40 3.41 26.48 3.36 10.64 26.87 3.31 3.11 26.87 3.32 5.65 27.08 3.29 5.60 27.10 3.29 33.71 27.16 3.28 93.68 27.26 3.27 82.52 27.45 3.25 4.42 27.92 3.19 5.61 28.05 3.18 3.96 28.20 3.16 59.41 28.28 3.15 3.04 28.53 3.13 6.29 28.83 3.09 13.36 28.93 3.08 15.74 28.96 3.08 6.42 29.05 3.07 3.93 29.18 3.06 2.42 29.24 3.05 2.10 29.42 3.03 2.64 29.52 3.02 2.19 29.57 3.02 15.65 29.94 2.98 2.66 30.00 2.98 4.98 30.43 2.94 1.68 30.58 2.92 1.21 30.79 2.90 1.79 30.93 2.89 1.07 31.07 2.88 3.23 31.18 2.87 7.65 31.42 2.84 2.68 31.97 2.80 2.16 32.46 2.76 1.99 32.65 2.74 1.23 32.88 2.72 1.02 33.13 2.70 2.89 33.17 2.70 4.30 33.40 2.68 2.97 33.64 2.66 2.39 33.90 2.64 1.46 34.25 2.62 2.54 34.74 2.58 1.40 35.18 2.55 1.60 35.59 2.52 1.21 35.96 2.50 1.50 36.64 2.45 7.44 aI/Io = relative intensity b Peaks having I/Io = relative intensity less than 1 and peak positions greater than 36.6 °2θ are not displayed -
TABLE 3 Peak Positions of Form A Experimental XRPD Pattern Position (°2θ)a d-spacing I I/Ioc 4.96 17.79 59 4 6.39 13.83 52 4 10.10 8.75 417 31 11.54 7.66 144 11 12.62 7.01 101 7 12.81 6.91 341 25 13.92 6.36 197 14 14.16 6.25 737 54 14.55 6.08 621 46 14.88 5.95 379 28 15.07 5.87 1364 100 15.58 5.68 223 16 16.27 5.44 288 21 16.61 5.33 405 30 18.74 4.73 52 4 18.94 4.68 84 6 19.28 4.60 115 8 19.94 4.45 248 18 20.27 4.38 240 18 20.74 4.28 131 10 20.97 4.23 602 44 21.22 4.18 126 9 21.93 4.05 44 3 22.58 3.93 60 4 22.80 3.90 88 6 23.00 3.86 146 11 23.79 3.74 173 13 24.14 3.68 161 12 24.46 3.64 61 4 25.44 3.50 104 8 25.64 3.47 87 6 26.07 3.42 111 8 26.34 3.38 100 7 26.74 3.33 559 41 27.06 3.29 55 4 27.79 3.21 173 13 28.42 3.14 154 11 29.09 3.07 63 5 30.48 2.93 55 4 aI/Io = relative intensity b Bold denotes characteristic peak set (no peaks within 0.2 °2θ relative to PTC124 Form B files 169490, 172972, 172173, 170901, 169284, and 168717. -
TABLE 4 Peak Positions of Form B XRPD Pattern (file 169490) Position (°2θ)a d-spacing I I/Ioc 6.14 14.38 73 7 6.39 13.82 386 35 6.96 12.70 57 5 7.92 11.16 171 15 10.78 8.20 163 15 12.44 7.11 66 6 12.61 7.01 163 15 12.88 6.87 41 4 13.52 6.54 261 23 13.78 6.42 351 31 13.97 6.33 1115 100 14.30 6.19 35 3 15.46 5.73 46 4 15.68 5.65 227 20 15.89 5.57 754 68 16.33 5.42 204 18 16.76 5.29 105 9 17.03 5.20 485 43 20.10 4.41 603 54 21.03 4.22 110 10 23.34 3.81 42 4 23.86 3.73 199 18 24.18 3.68 294 26 24.42 3.64 120 11 24.64 3.61 49 4 26.62 3.35 121 11 26.96 3.30 134 12 27.29 3.27 949 85 27.64 3.22 155 14 27.96 3.19 93 8 28.81 3.10 101 9 31.05 2.88 55 5 32.38 2.76 43 4 32.58 2.75 39 3 36.23 2.48 89 8 37.81 2.38 38 3 38.28 2.35 53 5 38.44 2.34 83 7 39.16 2.30 45 4 aI/Io = relative intensity. b Bold denotes characteristic peak set compared to Form A. -
TABLE 5 Peak Positions of Form B (shifted 1) XRPD Pattern (file 168717) Position (°2θ)a d-spacing I I/Ioc 6.42 13.75 214 34 7.00 12.63 23 4 7.89 11.20 98 15 10.85 8.15 97 15 12.61 7.01 117 18 12.92 6.85 29 5 13.47 6.57 208 33 13.97 6.33 558 88 15.81 5.60 635 100 16.45 5.38 143 23 17.12 5.18 320 50 20.05 4.42 544 86 21.05 4.22 66 10 23.92 3.72 110 17 24.28 3.66 21 3 27.00 3.30 48 8 27.39 3.25 126 20 27.84 3.20 32 5 28.04 3.18 68 11 28.94 3.08 90 14 31.10 2.87 35 6 32.58 2.75 42 7 36.11 2.49 89 14 37.71 2.38 19 3 38.15 2.36 20 3 38.61 2.33 52 8 aI/Io = relative intensity b Bold denotes characteristic peak set compared to Form A. -
TABLE 6 Peak Positions of Form B (shifted 2) XRPD Pattern (file 172972) Position (°2θ)a d-spacing I I/Ioc 6.10 14.48 155 3 6.38 13.84 1068 23 6.54 13.50 1371 29 7.10 12.44 270 6 8.02 11.02 653 14 10.91 8.11 376 8 12.71 6.96 195 4 13.50 6.55 601 13 13.62 6.50 404 9 13.86 6.38 702 15 14.10 6.27 4633 99 15.56 5.69 158 3 15.70 5.64 402 9 15.91 5.57 3422 73 16.55 5.35 673 14 16.96 5.22 283 6 17.22 5.15 1639 35 17.50 5.06 150 3 19.82 4.48 242 5 20.08 4.42 1950 42 20.34 4.36 209 4 21.15 4.20 718 15 23.78 3.74 208 4 23.93 3.72 508 11 24.38 3.65 412 9 24.56 3.62 184 4 26.88 3.31 198 4 27.16 3.28 219 5 27.48 3.24 4657 100 27.88 3.20 231 5 28.04 3.18 183 4 28.78 3.10 353 8 29.02 3.07 948 20 32.71 2.74 233 5 36.01 2.49 639 14 38.10 2.36 253 5 38.56 2.33 216 5 39.38 2.29 179 4 aI/Io = relative intensity b Bold denotes characteristic peak set compared to Form A. -
TABLE 7 Peak Positions of Form B (shifted 3) XRPD Pattern (file 172173) Position (°2θ)a d-spacing I I/Ioc 1.79 49.38 398 3 2.30 38.42 1002 9 2.57 34.38 1008 9 2.78 31.78 974 8 3.29 26.85 786 7 3.59 24.61 739 6 3.89 22.71 634 5 4.07 21.71 617 5 4.34 20.35 553 5 4.49 19.67 476 4 4.76 18.56 415 4 5.06 17.46 347 3 6.47 13.66 9496 82 6.91 12.79 1606 14 7.96 11.09 2771 24 10.89 8.12 3389 29 12.87 6.87 2022 18 13.58 6.52 381 3 13.99 6.32 4752 41 15.97 5.55 1724 15 16.48 5.38 752 7 17.10 5.18 1790 16 20.00 4.44 505 4 20.36 4.36 1069 9 21.04 4.22 501 4 23.40 3.80 906 8 24.29 3.66 6591 57 24.89 3.57 522 5 26.87 3.32 1823 16 27.49 3.24 11543 100 27.80 3.21 1924 17 28.07 3.18 353 3 29.08 3.07 434 4 38.61 2.33 376 3 aI/Io = relative intensity. b Bold denotes characteristic peak set compared to Form A. -
TABLE 8 Peak Positions of Form B (PO) XRPD Pattern (file 170901) Position (°2θ)a d-spacing I I/Ioc 6.22 14.20 356 8 6.51 13.57 1332 30 7.13 12.39 171 4 8.17 10.81 727 17 10.91 8.11 484 11 12.87 6.87 355 8 13.80 6.41 930 21 14.12 6.27 4251 97 14.28 6.20 2569 59 15.78 5.61 172 4 16.23 5.46 4368 100 16.54 5.36 684 16 17.15 5.17 1377 32 20.33 4.36 1057 24 21.22 4.18 475 11 21.36 4.16 290 7 23.94 3.71 578 13 24.30 3.66 201 5 27.30 3.26 217 5 27.58 3.23 303 7 28.00 3.18 262 6 28.74 3.10 239 5 28.96 3.08 327 7 32.70 2.74 224 5 36.74 2.44 265 6 38.18 2.36 175 4 38.38 2.34 227 5 38.52 2.34 160 4 39.31 2.29 142 3 aI/Io = relative intensity. b Bold denotes characteristic peak set compared to Form A. -
TABLE 9 Peak Positions of Form B shifted XRPD Pattern (file 169284) Position (°2θ)a d-spacing I I/Ioc 6.04 14.62 102 5 6.49 13.61 2151 100 7.91 11.17 240 11 10.92 8.10 252 12 12.61 7.01 304 14 12.92 6.85 263 12 13.10 6.75 71 3 13.42 6.59 103 5 13.82 6.40 177 8 13.99 6.32 565 26 15.40 5.75 99 5 15.76 5.62 1580 73 16.51 5.37 516 24 17.15 5.17 334 16 19.92 4.45 606 28 20.04 4.43 624 29 21.01 4.23 101 5 23.92 3.72 80 4 24.28 3.66 285 13 24.48 3.63 81 4 26.77 3.33 161 7 27.14 3.28 259 12 27.40 3.25 1413 66 27.74 3.21 175 8 28.09 3.17 122 6 28.82 3.10 165 8 28.99 3.08 488 23 31.03 2.88 118 5 32.58 2.75 271 13 35.64 2.52 155 7 35.85 2.50 329 15 37.48 2.40 72 3 37.66 2.39 89 4 38.62 2.33 84 4 aI/Io = relative intensity. b Bold denotes characteristic peak set compared to Form A.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/183,342 US20210330647A1 (en) | 2006-09-25 | 2021-02-24 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84732606P | 2006-09-25 | 2006-09-25 | |
US11/904,005 US7863456B2 (en) | 2006-09-25 | 2007-09-24 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-YL]-benzoic acid |
US12/913,213 US8394966B2 (en) | 2006-09-25 | 2010-10-27 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid |
US13/764,807 US8748625B2 (en) | 2006-09-25 | 2013-02-12 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid |
US14/261,774 US9309206B2 (en) | 2006-09-25 | 2014-04-25 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4] oxadiazol-3-yl]-benzoic acid |
US15/068,792 US10028939B2 (en) | 2006-09-25 | 2016-03-14 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/015,389 US10300047B2 (en) | 2006-09-25 | 2018-06-22 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/380,218 US10959988B2 (en) | 2006-09-25 | 2019-04-10 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/921,934 US20200330440A1 (en) | 2006-09-25 | 2020-07-07 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US17/183,342 US20210330647A1 (en) | 2006-09-25 | 2021-02-24 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/921,934 Continuation US20200330440A1 (en) | 2006-09-25 | 2020-07-07 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210330647A1 true US20210330647A1 (en) | 2021-10-28 |
Family
ID=39123850
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/904,005 Active 2027-12-24 US7863456B2 (en) | 2006-09-25 | 2007-09-24 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-YL]-benzoic acid |
US12/913,213 Active 2027-10-22 US8394966B2 (en) | 2006-09-25 | 2010-10-27 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid |
US13/764,807 Active US8748625B2 (en) | 2006-09-25 | 2013-02-12 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid |
US14/261,774 Active US9309206B2 (en) | 2006-09-25 | 2014-04-25 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4] oxadiazol-3-yl]-benzoic acid |
US15/068,792 Active US10028939B2 (en) | 2006-09-25 | 2016-03-14 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/015,389 Active US10300047B2 (en) | 2006-09-25 | 2018-06-22 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/380,218 Active US10959988B2 (en) | 2006-09-25 | 2019-04-10 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/921,934 Abandoned US20200330440A1 (en) | 2006-09-25 | 2020-07-07 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US17/183,342 Abandoned US20210330647A1 (en) | 2006-09-25 | 2021-02-24 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US17/490,725 Abandoned US20220023268A1 (en) | 2006-09-25 | 2021-09-30 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
Family Applications Before (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/904,005 Active 2027-12-24 US7863456B2 (en) | 2006-09-25 | 2007-09-24 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-YL]-benzoic acid |
US12/913,213 Active 2027-10-22 US8394966B2 (en) | 2006-09-25 | 2010-10-27 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid |
US13/764,807 Active US8748625B2 (en) | 2006-09-25 | 2013-02-12 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid |
US14/261,774 Active US9309206B2 (en) | 2006-09-25 | 2014-04-25 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4] oxadiazol-3-yl]-benzoic acid |
US15/068,792 Active US10028939B2 (en) | 2006-09-25 | 2016-03-14 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/015,389 Active US10300047B2 (en) | 2006-09-25 | 2018-06-22 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/380,218 Active US10959988B2 (en) | 2006-09-25 | 2019-04-10 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
US16/921,934 Abandoned US20200330440A1 (en) | 2006-09-25 | 2020-07-07 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/490,725 Abandoned US20220023268A1 (en) | 2006-09-25 | 2021-09-30 | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
Country Status (29)
Country | Link |
---|---|
US (10) | US7863456B2 (en) |
EP (2) | EP2076501B8 (en) |
JP (6) | JP5714228B2 (en) |
KR (1) | KR101430144B1 (en) |
CN (3) | CN104341371A (en) |
AR (2) | AR062963A1 (en) |
AU (1) | AU2007300542B2 (en) |
BR (1) | BRPI0717107A2 (en) |
CA (1) | CA2663574C (en) |
CL (1) | CL2007002743A1 (en) |
DK (1) | DK2076501T3 (en) |
ES (2) | ES2563958T3 (en) |
HK (1) | HK1207070A1 (en) |
HU (1) | HUE028503T2 (en) |
IL (1) | IL197717A (en) |
LT (1) | LTC2076501I2 (en) |
MX (2) | MX344418B (en) |
MY (1) | MY191209A (en) |
NO (1) | NO341858B1 (en) |
NZ (1) | NZ575795A (en) |
PE (3) | PE20120768A1 (en) |
PL (2) | PL2076501T3 (en) |
PT (1) | PT2076501E (en) |
SG (2) | SG185979A1 (en) |
SI (1) | SI2076501T1 (en) |
TW (2) | TWI452038B (en) |
UA (1) | UA99600C2 (en) |
WO (1) | WO2008039431A2 (en) |
ZA (1) | ZA200901949B (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3103800T3 (en) | 2003-04-11 | 2018-11-30 | Ptc Therapeutics, Inc. | 1,2,4-oxadiazole benzoic acid compound and its use for nonsense suppression and the treatment of disease |
US8716321B2 (en) * | 2005-04-08 | 2014-05-06 | Ptc Therapeutics, Inc. | Methods for dosing an orally active 1,2,4-oxadiazole |
BRPI0710213A2 (en) | 2006-03-30 | 2011-04-12 | Ptc Therapeutics Inc | methods for producing an effective amount of a functional transleeding protein encoded by a nucleic acid sequence comprising a nonsense mutation and for treating, controlling and / or preventing disease |
MX344418B (en) | 2006-09-25 | 2016-12-15 | Ptc Therapeutics Inc | Crystalline forms of 3-[5-(2-fhjorophenyl)-[1,2,4]oxadiazol-3-yl] -benzoic acid. |
CN103211766B (en) | 2006-10-12 | 2015-03-11 | Ptc医疗公司 | Methods for dosing an orally active 1,2,4-oxadiazole for nonsense mutation suppression therapy |
KR101846136B1 (en) | 2010-03-12 | 2018-04-05 | 오메로스 코포레이션 | Pde10 inhibitors and related compositions and methods |
WO2014153643A1 (en) * | 2013-03-26 | 2014-10-02 | The University Of British Columbia | Compositions and methods for use thereof in the treatment of aniridia |
EP2981597A1 (en) | 2013-04-03 | 2016-02-10 | GFO Oil LLC | Methods and systems for generating aldehydes from organic seed oils |
HUE048874T2 (en) | 2013-09-06 | 2020-08-28 | Aurigene Discovery Tech Ltd | 1,2,4-oxadiazole derivatives as immunomodulators |
KR102497273B1 (en) | 2014-03-06 | 2023-02-07 | 피티씨 테라퓨틱스, 인크. | Pharmaceutical compositions and salts of a 1,2,4-oxadiazole benzoic acid |
NZ716462A (en) | 2014-04-28 | 2017-11-24 | Omeros Corp | Optically active pde10 inhibitor |
NZ630810A (en) | 2014-04-28 | 2016-03-31 | Omeros Corp | Processes and intermediates for the preparation of a pde10 inhibitor |
KR101703137B1 (en) | 2014-05-30 | 2017-02-07 | 선문대학교 산학협력단 | Glucose-attached aminoglycoside compounds, manufacturing method thereof and pharmaceutical compositions containing them as active ingredients |
CN105461650B (en) * | 2014-09-12 | 2018-04-13 | 杭州普晒医药科技有限公司 | Solvate of Yi Zhong oxadiazole compounds and preparation method thereof |
RS62960B1 (en) | 2015-03-10 | 2022-03-31 | Aurigene Discovery Tech Ltd | 1,2,4-oxadiazole and thiadiazole compounds as immunomodulators |
AU2016250843A1 (en) | 2015-04-24 | 2017-10-12 | Omeros Corporation | PDE10 inhibitors and related compositions and methods |
WO2017075312A1 (en) | 2015-10-30 | 2017-05-04 | Ptc Therapeutics, Inc. | Methods for treating epilepsy |
US9920045B2 (en) | 2015-11-04 | 2018-03-20 | Omeros Corporation | Solid state forms of a PDE10 inhibitor |
WO2017181193A2 (en) * | 2016-04-15 | 2017-10-19 | The Uab Research Foundation | Methods and compounds for stimulating read-through of premature termination codons |
EP3512516A1 (en) * | 2016-09-13 | 2019-07-24 | Marco Cipolli | Method of treatment of shwachman-diamond syndrome |
WO2019061324A1 (en) | 2017-09-29 | 2019-04-04 | Curis Inc. | Crystal forms of immunomodulators |
KR20240151258A (en) | 2017-10-11 | 2024-10-17 | 오리진 온콜로지 리미티드 | Crystalline forms of 3-substituted 1,2,4-oxadiazole |
CA3080098A1 (en) | 2017-11-03 | 2019-05-09 | Aurigene Discovery Technologies Limited | Dual inhibitors of tim-3 and pd-1 pathways |
CN111386128A (en) | 2017-11-06 | 2020-07-07 | 奥瑞基尼探索技术有限公司 | Combination therapy for immunomodulation |
JP7339900B2 (en) * | 2020-02-26 | 2023-09-06 | 新 井上 | Visual field abnormality diagnostic method, visual field abnormality diagnostic device |
KR102665711B1 (en) * | 2021-12-21 | 2024-05-14 | 재단법인 아산사회복지재단 | Biomarker composition for predicting susceptibility to therapeutic agent for neurofibromatosis using Ras activity and Pharmaceutical composition for preventing or treating neurofibromatosis comprising inhibitor of Ras activity |
CN118178408A (en) * | 2024-03-22 | 2024-06-14 | 核工业总医院 | Application of PTC124 in preparation of medicine for treating thrombocytopenia |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9309206B2 (en) * | 2006-09-25 | 2016-04-12 | Ptc Therapeutics, Inc. | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4] oxadiazol-3-yl]-benzoic acid |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW264475B (en) | 1991-09-20 | 1995-12-01 | Takeda Pharm Industry Co Ltd | |
US6660753B2 (en) | 1999-08-19 | 2003-12-09 | Nps Pharmaceuticals, Inc. | Heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists |
US7041685B2 (en) | 2001-06-08 | 2006-05-09 | Cytovia, Inc. | Substituted 3-aryl-5-aryl-[1,2,4]-oxadiazoles and analogs as activators of caspases and inducers of apoptosis and the use thereof |
MY151199A (en) | 2001-11-02 | 2014-04-30 | Rigel Pharmaceuticals Inc | Substituted diphenyl heterocycles useful for treating hcv infection |
WO2004001010A2 (en) * | 2002-06-21 | 2003-12-31 | Ptc Therapeutics, Inc. | METHODS FOR IDENTIFYING SMALL MOLECULES THAT MODULATE PREMATURE TRANSLATION TERMINATION AND NONSENSE MEDIATED mRNA DECAY |
US6889231B1 (en) * | 2002-08-01 | 2005-05-03 | Oracle International Corporation | Asynchronous information sharing system |
BR0313266A (en) | 2002-08-09 | 2005-06-21 | Astrazeneca Ab | Compounds, their preparation and use processes, pharmaceutical formulation and methods for preventing and / or treating a mglur5 receptor mediated disorder and inhibiting mglur5 receptor activation |
GB0303503D0 (en) | 2003-02-14 | 2003-03-19 | Novartis Ag | Organic compounds |
US7135575B2 (en) * | 2003-03-03 | 2006-11-14 | Array Biopharma, Inc. | P38 inhibitors and methods of use thereof |
PL3103800T3 (en) | 2003-04-11 | 2018-11-30 | Ptc Therapeutics, Inc. | 1,2,4-oxadiazole benzoic acid compound and its use for nonsense suppression and the treatment of disease |
US20050075375A1 (en) | 2003-05-14 | 2005-04-07 | Anadys Pharmaceuticals, Inc. | Heterocyclic compounds for treating hepatitis C virus |
WO2006044682A1 (en) * | 2004-10-13 | 2006-04-27 | Ptc Therapeutics, Inc. | Compounds for nonsense suppression, and methods for their use |
CA2588994A1 (en) * | 2004-12-08 | 2006-06-15 | Biomarin Pharmaceutical Inc. | Methods and compositions for the treatment of pulmonary hypertension of the newborn |
US8716321B2 (en) | 2005-04-08 | 2014-05-06 | Ptc Therapeutics, Inc. | Methods for dosing an orally active 1,2,4-oxadiazole |
US7678922B2 (en) | 2006-09-08 | 2010-03-16 | Ptc Therapeutics, Inc. | Processes for the preparation of 1,2,4-oxadiazole benzoic acids |
KR102497273B1 (en) * | 2014-03-06 | 2023-02-07 | 피티씨 테라퓨틱스, 인크. | Pharmaceutical compositions and salts of a 1,2,4-oxadiazole benzoic acid |
-
2007
- 2007-09-24 MX MX2011007120A patent/MX344418B/en unknown
- 2007-09-24 EP EP07838770.1A patent/EP2076501B8/en active Active
- 2007-09-24 PL PL07838770T patent/PL2076501T3/en unknown
- 2007-09-24 JP JP2009529270A patent/JP5714228B2/en active Active
- 2007-09-24 NZ NZ575795A patent/NZ575795A/en unknown
- 2007-09-24 DK DK07838770.1T patent/DK2076501T3/en active
- 2007-09-24 KR KR1020097008202A patent/KR101430144B1/en active IP Right Grant
- 2007-09-24 ES ES07838770.1T patent/ES2563958T3/en active Active
- 2007-09-24 ES ES12185448.3T patent/ES2655338T3/en active Active
- 2007-09-24 MY MYPI20091186A patent/MY191209A/en unknown
- 2007-09-24 SI SI200731750A patent/SI2076501T1/en unknown
- 2007-09-24 AR ARP070104212A patent/AR062963A1/en not_active Application Discontinuation
- 2007-09-24 WO PCT/US2007/020633 patent/WO2008039431A2/en active Application Filing
- 2007-09-24 SG SG2012082715A patent/SG185979A1/en unknown
- 2007-09-24 HU HUE07838770A patent/HUE028503T2/en unknown
- 2007-09-24 ZA ZA200901949A patent/ZA200901949B/en unknown
- 2007-09-24 CN CN201410561812.3A patent/CN104341371A/en active Pending
- 2007-09-24 SG SG10201609581TA patent/SG10201609581TA/en unknown
- 2007-09-24 AU AU2007300542A patent/AU2007300542B2/en active Active
- 2007-09-24 MX MX2009003160A patent/MX2009003160A/en active IP Right Grant
- 2007-09-24 CL CL200702743A patent/CL2007002743A1/en unknown
- 2007-09-24 PT PT78387701T patent/PT2076501E/en unknown
- 2007-09-24 UA UAA200904012A patent/UA99600C2/en unknown
- 2007-09-24 PL PL12185448T patent/PL2559689T3/en unknown
- 2007-09-24 US US11/904,005 patent/US7863456B2/en active Active
- 2007-09-24 EP EP12185448.3A patent/EP2559689B1/en active Active
- 2007-09-24 BR BRPI0717107-2A patent/BRPI0717107A2/en not_active Application Discontinuation
- 2007-09-24 CN CNA200780043582XA patent/CN101541770A/en active Pending
- 2007-09-24 CA CA2663574A patent/CA2663574C/en active Active
- 2007-09-24 CN CN201110283329.XA patent/CN102382075B/en active Active
- 2007-09-25 PE PE2011001746A patent/PE20120768A1/en not_active Application Discontinuation
- 2007-09-25 PE PE2007001290A patent/PE20081225A1/en not_active Application Discontinuation
- 2007-09-25 PE PE2015001242A patent/PE20151445A1/en not_active Application Discontinuation
- 2007-09-26 TW TW096135785A patent/TWI452038B/en active
- 2007-09-26 TW TW103104823A patent/TWI496775B/en active
-
2009
- 2009-03-19 IL IL197717A patent/IL197717A/en active IP Right Grant
- 2009-04-16 NO NO20091488A patent/NO341858B1/en unknown
-
2010
- 2010-10-27 US US12/913,213 patent/US8394966B2/en active Active
-
2013
- 2013-02-12 US US13/764,807 patent/US8748625B2/en active Active
-
2014
- 2014-04-25 US US14/261,774 patent/US9309206B2/en active Active
-
2015
- 2015-01-09 JP JP2015003265A patent/JP6407733B2/en active Active
- 2015-08-10 HK HK15107681.2A patent/HK1207070A1/en unknown
-
2016
- 2016-03-14 US US15/068,792 patent/US10028939B2/en active Active
- 2016-04-22 LT LTPA2016012C patent/LTC2076501I2/en unknown
-
2017
- 2017-05-29 JP JP2017106030A patent/JP6495375B2/en active Active
- 2017-08-07 AR ARP170102217A patent/AR109300A2/en unknown
-
2018
- 2018-06-22 US US16/015,389 patent/US10300047B2/en active Active
-
2019
- 2019-03-06 JP JP2019040137A patent/JP2019104752A/en not_active Withdrawn
- 2019-04-10 US US16/380,218 patent/US10959988B2/en active Active
-
2020
- 2020-07-07 US US16/921,934 patent/US20200330440A1/en not_active Abandoned
-
2021
- 2021-02-24 US US17/183,342 patent/US20210330647A1/en not_active Abandoned
- 2021-05-31 JP JP2021090763A patent/JP7245868B2/en active Active
- 2021-09-30 US US17/490,725 patent/US20220023268A1/en not_active Abandoned
-
2023
- 2023-03-13 JP JP2023038770A patent/JP2023078271A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9309206B2 (en) * | 2006-09-25 | 2016-04-12 | Ptc Therapeutics, Inc. | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4] oxadiazol-3-yl]-benzoic acid |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210330647A1 (en) | Crystalline forms of 3-[5-(2-fluorophenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid for the treatment of disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:PTC THERAPEUTICS, INC.;REEL/FRAME:061803/0878 Effective date: 20221027 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: PTC THERAPEUTICS, INC., NEW JERSEY Free format text: TERMINATION AND RELEASE OF PATENT SECURITY AGREEMENT @ REEL 061803 AND FRAME 0878;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT;REEL/FRAME:065303/0163 Effective date: 20231018 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |