US20210267956A1 - Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde - Google Patents
Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde Download PDFInfo
- Publication number
- US20210267956A1 US20210267956A1 US17/326,045 US202117326045A US2021267956A1 US 20210267956 A1 US20210267956 A1 US 20210267956A1 US 202117326045 A US202117326045 A US 202117326045A US 2021267956 A1 US2021267956 A1 US 2021267956A1
- Authority
- US
- United States
- Prior art keywords
- compound
- radiation
- day
- ray powder
- powder diffraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- FWCVZAQENIZVMY-UHFFFAOYSA-N CC(C)N1N=CC=C1C1=NC=CC=C1COC1=CC=CC(O)=C1C=O Chemical compound CC(C)N1N=CC=C1C1=NC=CC=C1COC1=CC=CC(O)=C1C=O FWCVZAQENIZVMY-UHFFFAOYSA-N 0.000 description 2
- KUIBXXFELCCYMP-UHFFFAOYSA-N CC1=C(C=O)C(OCC2=CC=CN=C2C2=CC=NN2C(C)C)=CC=C1 Chemical compound CC1=C(C=O)C(OCC2=CC=CN=C2C2=CC=NN2C(C)C)=CC=C1 KUIBXXFELCCYMP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4858—Organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4866—Organic macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
Definitions
- such treatment may comprise administering to a subject, or preparing for administration to such subject, 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)-methoxy)benzaldehyde, or a polymorph thereof, in certain dosing regimens.
- a capsule dosage form comprising high drug loads of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde or a polymorph thereof.
- Hemoglobin is a tetrameric protein in red blood cells that transports up to four oxygen molecules from the lungs to various tissues and organs throughout the body.
- Hemoglobin binds and releases oxygen through conformational changes, and is in the tense (T) state when it is unbound to oxygen and in the relaxed (R) state when it is bound to oxygen.
- T tense
- R relaxed
- Natural compounds such as 2,3-bisphosphoglycerate (2,3-BPG), protons, and carbon dioxide stabilize hemoglobin in its de-oxygenated T state, while oxygen stabilizes hemoglobin in its oxygenated R state.
- Other relaxed R states have also been found, however their role in allosteric regulation has not been fully elucidated.
- Sickle cell disease is a prevalent disease particularly among those of African and Mediterranean descent.
- Sickle hemoglobin (HbS) contains a point mutation where glutamic acid is replaced with valine, allowing the T state to become susceptible to polymerization to give the HbS containing red blood cells their characteristic sickle shape.
- the sickled cells are also more rigid than normal red blood cells, and their lack of flexibility can lead to blockage of blood vessels.
- Certain synthetic aldehydes have been found to shift the equilibrium from the polymer forming T state to the non-polymer forming R state (Nnamani et al., Chemistry & Biodiversity Vol. 5, 2008 pp. 1762-1769) by acting as allosteric modulators to stabilize the R state through formation of a Schiff base with an amino group on hemoglobin.
- U.S. Pat. No. 7,160,910 discloses 2-furfuraldehydes and related compounds that are also allosteric modulators of hemoglobin.
- One particular compound, 5-hydroxymethyl-2-furfuraldehyde (5HMF) was found to be a potent hemoglobin modulator both in vitro and in vivo.
- 5HMF is currently in clinical trials for treatment of sickle cell disease.
- 5HMF requires 4 times daily dosing of 1,000 mg (see, e.g., ClinicalTrials.gov; NCT01987908). This requirement for frequent dosing at relatively high amounts can present problems with patient compliance and high treatment costs.
- Compound 1 disclosed herein is therapeutically effective in the treatment of sickle cell disease (SCD) at low doses, in spite of the large concentration of hemoglobin in red cells (5 nM in red cells).
- SCD sickle cell disease
- provided herein are methods for treating sickle cell disease in a patient comprising administering to the patient Compound 1:
- Compound 1 is administered in a dose of from about 500 mg/day to about 1500 mg/day.
- Compound 1 is administered in a dose of about 1100, about 1200, about 1300, about 1400, or about 1500 mg/day.
- Compound 1 is administered in a dose of about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day.
- the compound is administered in a dose of about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, about 1000, about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day.
- the compound is administered in a dose of from about 500 mg/day to about 1000 mg/day.
- the compound is administered in a dose of about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, or about 1000 mg/day.
- the compound is administered in a dose of about 600, about 650, about 700, about 750, about 800, about 850, or about 900 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of from about 500 mg/day to about 900 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of from about 600 mg/day to about 900 mg/day. In yet another embodiment of the first aspect the compound is administered in a dose of about 700 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of about 600 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of about 900 mg/day.
- the compound is administered in a dose of about 1200 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of about 1500 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of 900 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of 1200 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of 1500 mg/day. In yet another embodiment of the first aspect and embodiments contained therein, the patient is in need to treatment.
- the compound is administered once daily.
- the dose is administered in a capsule or tablet.
- the dose in one subembodiment, is administered in a 100 mg or a 300 mg capsule.
- the dose is administered in a 300 mg capsule.
- Compound 1 is a crystalline ansolvate form.
- the crystalline ansolvate is Form II characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form IT is characterized by X-ray powder diffraction peaks (Cu K ⁇ radiation) of 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by X-ray powder diffraction peaks (Cu K ⁇ radiation) of 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the crystalline ansolvate is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the crystalline ansolvate form of Compound 1 is substantially free of Form I and/or Form N.
- Form I of Compound 1 is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) at 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2 ⁇ (each ⁇ 0.2°2 ⁇ ); and Form N of Compound 1 is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) at 11.65°, 11.85°, 12.08°, 16.70°, 19.65° and 23.48°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- a method of treating interstitial pulmonary fibrosis in a patient comprising administering to the patient about 1100 mg/day to about 1500 mg/day of Compound 1 optionally in combination with an anti-fibrotic agent.
- the anti-fibrotic agent is selected from pirfenidone, nintenabib, and systemic corticosteroids.
- Compound 1 is administered in a dose of about 1100, about 1200, about 1300, about 1400, or about 1500 mg/day. In another embodiment of the second aspect, Compound 1 is administered in a dose of about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day. In another embodiment of the second aspect, the compound is administered in a dose of about 1200 mg/day. In another embodiment of the second aspect, the compound is administered in a dose of about 1500 mg/day. In another embodiment of the second aspect, the compound is administered in a dose of 1200 mg/day. In another embodiment of the second aspect, the compound is administered in a dose of 1500 mg/day. In yet another embodiment of the second aspect and embodiments contained therein, the patient is in need to treatment.
- the compound is administered once daily.
- the compound is administered in a capsule or tablet.
- the compound in one subembodiment, is administered in a 100 mg or a 300 mg capsule.
- the compound in another subembodiment, is administered in a 300 mg capsule.
- Compound 1 is a crystalline ansolvate form.
- the crystalline ansolvate is Form II characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each f0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by X-ray powder diffraction peaks (Cu K ⁇ radiation) of 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by X-ray powder diffraction peaks (Cu K ⁇ radiation) of 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the crystalline ansolvate is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- a capsule dosage form comprising:
- w/w is relative to the total weight of the formulation (excluding the weight of the capsule).
- “about” means ⁇ 1°% of a given range or value.
- the capsule dosage form further comprises from about 2% to about 10% a disintegrant.
- the capsule dosage form further comprises from about 2% to about 10% a disintegrant and about 2% to 35% a filler.
- a capsule dosage form comprising:
- w/w is relative to the total weight of the formulation (excluding the weight of the capsule).
- “about” means ⁇ 1°% of a given range or value.
- the capsule dosage form comprises:
- the capsule dosage form comprises:
- the capsule dosage form comprises:
- Compound 1 is Form II substantially free of Form I and/or N;
- the binder is hypromellose
- the insoluble filler is microcrystalline cellulose
- the soluble filler is lactose monohydrate
- the disintregrant is croscarmellose sodium
- the lubricant is magnesium stearate.
- the capsule contains 300 mg of Compound 1 Form II substantially free of Form I and/or N.
- Compound 1 is a crystalline ansolvate form.
- the crystalline ansolvate is Form II characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form IT is characterized by X-ray powder diffraction peaks (Cu K ⁇ radiation) of 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by X-ray powder diffraction peaks (Cu K ⁇ radiation) of 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the crystalline ansolvate is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the capsule contains 300 mg ⁇ 5% of Compound 1, wherein compound 1 is a crystalline ansolvate form that is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ); wherein the crystalline ansolvate form is substantially free of Form I and/or N; wherein Form I is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2 ⁇ (each ⁇ 0.2°2 ⁇ ); and wherein Form N is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 11.65°, 11.85°, 12.08°, 16.70°, 19.65° and 23.48°2 ⁇ (each ⁇ 0.2
- the capsule formulation Due to the high drug loading, higher doses of Compound 1 can be delivered with minimal number of dosing units making it practical from a convenience, compliance and marketing perspective. Additionally, in spite of high drug loading, the capsule formulation displays superior physical properties due to the appropriate ratio of the binder to the wet granulation process parameters. Further, the combination of soluble and insoluble fillers gives granule strength, flow properties and disintegration that provides the desired therapeutic effect.
- FIG. 1 is a XRPD profile and contemplated indexing for the free base Form II anhydrous crystal of Compound 1.
- FIG. 2 illustrates whole blood concentration at steady state for two doses (500 mg, 700 mg) of Compound 1.
- FIG. 3 illustrates representative oxygen equilibrium curves for two doses (500 mg, 700 mg) of Compound 1, with comparison to placebo.
- FIG. 4 illustrates change in hemoglobin (g/dL) over time for two doses (500 mg, 700 mg) of Compound 1, with comparison to placebo.
- FIG. 5 illustrates percent (%) change in reticulocytes over time for two doses (500 mg, 700 mg) of Compound 1, with comparison to placebo.
- FIG. 6 illustrates percent (%) sickle cells over time for two doses (500 mg, 700 mg) of Compound 1, with comparison to placebo.
- FIGS. 7A-7B provide representative images of sickle cells from subject treated with 700 mg of Compound 1, over a period of one day as shown in FIG. 7A ; and twenty-eight (28) days as shown in FIG. 7B .
- FIG. 8 illustrates the percent (%) change in reticulocytes to day 28 versus whole blood concentration of Compound 1.
- FIGS. 9A-9D illustrate the linear relationship between Compound 1 whole blood concentrations and effect on hemolytic measures: FIG. 9A shows percent (%) change in absolute reticulocytes; FIG. 9B shows percent (%) change in unconjugated bilirubin; FIG. 9C shows percent (%) change in LDH; and FIG. 9D shows percent (%) change in hemoglobin.
- the term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. With regards to the dose, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 50%, 30%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.05% of a given dose.
- the term “about” or “approximately” means within 50%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.05% of a dose. In certain embodiments, the term “about” or “approximately” means within 0.5% to 1% of a given dose.
- administration refers to introducing an agent into a patient.
- a therapeutic amount can be administered, which can be determined by the treating physician or the like.
- An oral route of administration is preferred.
- the related terms and phrases administering” and “administration of”, when used in connection with a compound or pharmaceutical composition (and grammatical equivalents), refer both to direct administration, which may be administration to a patient by a medical professional or by self-administration by the patient, and/or to indirect administration, which may be the act of prescribing a drug.
- direct administration which may be administration to a patient by a medical professional or by self-administration by the patient
- indirect administration which may be the act of prescribing a drug.
- a physician who instructs a patient to self-administer a drug and/or provides a patient with a prescription for a drug is administering the drug to the patient.
- administration entails delivery to the patient of the drug.
- the “crystalline ansolvate” of Compound 1 is a crystalline solid form of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde, such as, e.g., crystalline Form I, Form II or Material N as disclosed in International Publication No. WO 2015/120133 A1 (see, e.g., pages 3-9 and pages 51-54), the disclosure of which is incorporated herein by reference in its entirety.
- “Characterization” refers to obtaining data which may be used to identify a solid form of a compound, for example, to identify whether the solid form is amorphous or crystalline and whether it is unsolvated or solvated.
- the process by which solid forms are characterized involves analyzing data collected on the polymorphic forms so as to allow one of ordinary skill in the art to distinguish one solid form from other solid forms containing the same material.
- Chemical identity of solid forms can often be determined with solution-state techniques such as 3 C NMR or 1 H NMR. While these may help identify a material, and a solvent molecule for a solvate, such solution-state techniques themselves may not provide information about the solid state.
- solid-state analytical techniques that can be used to provide information about solid-state structure and differentiate among polymorphic solid forms, such as single crystal X-ray diffraction, X-ray powder diffraction (XRPD), solid state nuclear magnetic resonance (SS-NMR), and infrared and Raman spectroscopy, and thermal techniques such as differential scanning calorimetry (DSC), solid state 3 C-NMR, thermogravimetry (TG), melting point, and hot stage microscopy.
- XRPD X-ray powder diffraction
- SS-NMR solid state nuclear magnetic resonance
- Raman spectroscopy infrared and Raman spectroscopy
- thermal techniques such as differential scanning calorimetry (DSC), solid state 3 C-NMR, thermogravimetry (TG), melting point, and hot stage microscopy.
- a solid form of a compound one may, for example, collect XRPD data on solid forms of the compound and compare the XRPD peaks of the forms.
- the collection of peaks which distinguish e.g., Form II from the other known forms is a collection of peaks which may be used to characterize Form IT.
- peaks which may be used to characterize Form IT.
- Additional peaks could also be used, but are not necessary, to characterize the form up to and including an entire diffraction pattern. Although all the peaks within an entire XRPD pattern may be used to characterize such a form, a subset of that data may, and typically is, used to characterize the form.
- An XRPD pattern is an x-y graph with diffraction angle (typically °2 ⁇ ) on the x-axis and intensity on the y-axis.
- the peaks within this pattern may be used to characterize a crystalline solid form.
- the data are often represented solely by the diffraction angle of the peaks rather than including the intensity of the peaks because peak intensity can be particularly sensitive to sample preparation (for example, particle size, moisture content, solvent content, and preferred orientation effects influence the sensitivity), so samples of the same material prepared under different conditions may yield slightly different patterns; this variability is usually greater than the variability in diffraction angles. Diffraction angle variability may also be sensitive to sample preparation.
- compositions and methods include the recited elements, but not exclude others.
- Consisting essentially of when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude other materials or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention.
- Consisting of shall mean excluding more than trace elements of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this invention.
- dose refers to the total amount of active material (e.g., Compound 1 disclosed herein) administered to a patient in a single day (24-hour period).
- the desired dose may be administered once daily, for example, as a single bolus.
- the desired dose may be administered in one, two, three, four or more subdoses at appropriate intervals throughout the day, where the cumulative amount of the subdoses equals the amount of the desired dose administered in a single day.
- dose and dosage are used interchangeably herein.
- dosage form refers to physically discrete units, each unit containing a predetermined amount of active material (e.g., Compound 1 disclosed herein) in association with the required excipients.
- Suitable dosage forms include, for example, tablets, capsules, pills, and the like.
- the capsule of the present disclosure comprises excipients such as a pharmaceutically acceptable binder, filler (also known as diluent), disintegrant, and lubricant.
- Excipients can have two or more functions in a pharmaceutical composition. Characterization herein of a particular excipient as having a certain function, e.g., filler, disintegrant, etc., should not be read as limiting to that function. Further information on excipients can be found in standard reference works such as Handbook of Pharmaceutical Excipients, 3rd ed. (Kibbe, ed. (2000), Washington: American Pharmaceutical Association).
- a “disintegrant” as used herein refers to an excipient that can breakup or disintegrate the formulation when it comes in contact with, for example, the gastrointestinal fluid.
- Suitable disintegrants include, either individually or in combination, starches including pregelatinized starch and sodium starch glycolate; clays; magnesium aluminum silicate; cellulose-based disintegrants such as powdered cellulose, microcrystalline cellulose, methylcellulose, low-substituted hydroxypropylcellulose, carmellose, carmellose calcium, carmellose sodium and croscarmellose sodium; alginates; povidone; crospovidone; polacrilin potassium; gums such as agar, guar, locust bean, karaya, pectin and tragacanth gums; colloidal silicon dioxide; and the like.
- the disintegrant is carmellose sodium. In one embodiment, the disintegrant is powdered cellulose, microcrystalline cellulose, methylcellulose, or low-substituted hydroxypropylcellulose, or a combination thereof. In one embodiment, the disintegrant is carmellose, carmellose calcium, carmellose sodium or croscarmellose sodium, or a combination thereof. In one embodiment, the disintegrant is croscarmellose sodium.
- Lubricants as used herein refers to an excipient that reduces friction between the mixture and equipment during granulation process.
- Exemplary lubricants include, either individually or in combination, glyceryl behenate; stearic acid and salts thereof, including magnesium, calcium and sodium stearates; hydrogenated vegetable oils; glyceryl palmitostearate; talc; waxes; sodium benzoate; sodium acetate; sodium fumarate; sodium stearyl fumarate; PEGs (e.g., PEG 4000 and PEG 6000); poloxamers; polyvinyl alcohol; sodium oleate; sodium lauryl sulfate; magnesium lauryl sulfate; and the like.
- the lubricant is stearic acid. In one embodiment, the lubricant is magnesium stearate. In one embodiment, the lubricant is magnesium stearate present in the amount of from about 0.5% to about 1.5% by weight of the formulation. In one embodiment, the lubricant is magnesium stearate.
- the lubricant is present at an amount of about: 0.5%, 0.75%, 1%, 1.25%, or 1.5 w/w. In another embodiment, the lubricant is present at an amount at an amount of about 0.5% w/w. In another embodiment, the lubricant is present at an amount at an amount of 0.5% w/w ( ⁇ 0.1%). In one embodiment, the lubricant is present at an amount of 0.5% w/w ( ⁇ 0.2%). In such embodiments, the lubricant can be magnesium stearate.
- Binding agents or adhesives as used herein refer to an excipient which imparts sufficient cohesion to the blend to allow for normal processing operations such as sizing, lubrication, compression and packaging, but still allow the formulation to disintegrate and the composition to be absorbed upon ingestion.
- Exemplary binding agents and adhesives include, individually or in combination, acacia; tragacanth; glucose; polydextrose; starch including pregelatinized starch; gelatin; modified celluloses including methylcellulose, carmellose sodium, hydroxypropylmethylcellulose (HPMC or hypromellose), hydroxypropylcellulose, hydroxyethylcellulose and ethylcellulose; dextrins including maltodextrin; zein; alginic acid and salts of alginic acid, for example sodium alginate; magnesium aluminum silicate; bentonite; polyethylene glycol (PEG); polyethylene oxide; guar gum; polysaccharide acids; and the like.
- modified celluloses including methylcellulose, carmellose sodium, hydroxypropylmethylcellulose (HPMC or hypromellose), hydroxypropylcellulose, hydroxyethylcellulose and ethylcellulose
- dextrins including maltodextrin
- zein alginic acid and
- the binding agent(s) is present from about 2% to about 6%, by weight of the formulation. In one embodiment, the binding agent(s), is about 2%, 3%, 4%, 5%, or 6 w/w. In another embodiment, the binder is present at about 4% w/w of the formulation. In yet another embodiment, the binder is hypromellose.
- Filler as used herein means an excipient that are used to dilute the compound of interest prior to delivery. Fillers can also be used to stabilize compounds because they can provide a more stable environment. Salts dissolved in buffered solutions (which also can provide pH control or maintenance) are utilized as diluents in the art, including, but not limited to a phosphate buffered saline solution. Fillers increase bulk of the composition to facilitate compression or create sufficient bulk for homogenous blend for capsule filling.
- Representative fillers include e.g., lactose, starch, mannitol, sorbitol, dextrose, microcrystalline cellulose such as Avicel®; dibasic calcium phosphate, dicalcium phosphate dihydrate; tricalcium phosphate, calcium phosphate; anhydrous lactose, spray-dried lactose; pregelatinized starch, compressible sugar, such as Di-Pac®(Amstar); hydroxypropylmethylcellulose, hydroxypropylmethylcellulose acetate stearate, sucrose-based diluents, confectioner's sugar; monobasic calcium sulfate monohydrate, calcium sulfate dihydrate; calcium lactate trihydrate, dextrates; hydrolyzed cereal solids, amylose; powdered cellulose, calcium carbonate; glycine, kaolin; mannitol, sodium chloride; inositol, bentonite, and the like.
- lactose starch, mann
- the filler(s) is present from about 6% to about 25%, by weight of the formulation.
- the filler agent(s) is about 6%, 7%, 8%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, or 25% w/w.
- the composition comprises about 3.5% w/w or insoluble filler and about 2.5% w/w of soluble filler.
- the insoluble filler is microcrystalline cellulose and the soluble filler is lactose.
- hemoglobin refers to any hemoglobin protein, including normal hemoglobin (Hb) and sickle hemoglobin (HbS).
- Sickle cell diseases refers to one or more diseases mediated by sickle hemoglobin (HbS) that results from a single point mutation in the hemoglobin (Hb).
- Sickle cell diseases includes sickle cell anemia, sickle-hemoglobin C disease (HbSC), sickle beta-plus-thalassaemia (HbS/ ⁇ ) and sickle beta-zero-thalassaemia (HbS/ ⁇ 0).
- “Substantially free” as used herein refers to ansolvate Form II of Compound 1 associated with ⁇ 10% or Form I and/or Form N, preferably ⁇ 5% Form I and/or Form N; and most preferably it shall refer to ⁇ 2% Form I and/or Form N.
- Form I of Compound 1 is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) at 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2 ⁇ (each ⁇ 0.2°2 ⁇ ); and Form N of Compound 1 is characterized by at least three X-ray powder diffraction peaks (Cu Kat radiation) at 11.65°, 11.85°, 12.08°, 16.70°, 19.650 and 23.48°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- “Therapeutically effective amount” or “therapeutic amount” refers to an amount of a drug or an agent that when administered to a patient suffering from a condition, will have the intended therapeutic effect, e.g., alleviation, amelioration, palliation or elimination of one or more manifestations of the condition in the patient.
- the full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses and can be administered in one dose form or multiples thereof.
- 600 mg of the drug can be administered in a single 600 mg capsule or two 300 mg capsules.
- a therapeutically effective amount may be administered in one or more administrations.
- a therapeutically effective amount of an agent in the context of treating disorders related to hemoglobin S, refers to an amount of the agent that alleviates, ameliorates, palliates, or eliminates one or more manifestations of the disorders related to hemoglobin S in the patient.
- pharmaceutically acceptable refers to generally safe and non-toxic for in vivo, preferably human, administration.
- Subject or “patient” refers to human.
- Treatment covers the treatment of a human patient, and includes: (a) reducing the risk of occurrence of the condition in a patient determined to be predisposed to the disease but not yet diagnosed as having the condition, (b) impeding the development of the condition, and/or (c) relieving the condition, i.e., causing regression of the condition and/or relieving one or more symptoms of the condition.
- beneficial or desired clinical results include, but are not limited to, multilineage hematologic improvement, decrease in the number of required blood transfusions, decrease in infections, decreased bleeding, and the like.
- beneficial or desired clinical results include, but are not limited to, reduction in hypoxia, reduction in fibrosis, and the like.
- Compound 1 is 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde, having the formula:
- Compound 1 (hereinafter “Compound 1” or GBT440, where the terms are used interchangeably), or a tautomer thereof.
- Compound 1 can be prepared according to the methods described in, for example, International Publication Nos. WO 2015/031285 A1 (see, e.g., pages 14-17) and WO 2015/120133 A1 (see, e.g., pages 32-35), the disclosures of which are incorporated herein by reference in their entireties.
- the free base of Compound 1 can be obtained as one or more crystalline forms, such as those described in, for example, International Publication Nos. WO 2015/031285 A1 (see, e.g., pages 19-24) and WO 2015/120133 A1 (see, e.g., pages 3-9 and 51-54), including Form II described below.
- the crystalline Compound 1 is characterized by an endothermic peak at (97 ⁇ 2)° C. as measured by differential scanning calorimetry.
- the crystalline Form II of the free base of crystalline Compound 1 is characterized by the substantial absence of thermal events at temperatures below the endothermic peak at (97 ⁇ 2)° C. as measured by differential scanning calorimetry.
- the crystalline Form II of the free base of crystalline Compound 1 is characterized by an X-ray powder diffraction peak (Cu K ⁇ radiation at one or more of 13.37°, 14.37°, 19.95° or 23.92°2 ⁇ .
- the crystalline ansolvate of the free base of crystalline Compound 1 is characterized by an X-ray powder diffraction peak (Cu K ⁇ radiation at one or more of 13.37°, 14.37°, 19.95° or 23.92°2 ⁇ .
- the crystalline Form IT of the free base of crystalline Compound 1 is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the crystalline ansolvate of the free base of crystalline Compound 1 is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the crystalline Form II of the free base of crystalline Compound 1 is characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline Form II of the free base of crystalline Compound 1 is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline Form II of the free base of crystalline Compound 1 is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate of the free base of crystalline Compound 1 is characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate of the free base of crystalline Compound 1 is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate of the free base of crystalline Compound 1 is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate of the free base of crystalline Compound 1 is substantially free of Form I and/or Form N; wherein Form I is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2 ⁇ (each ⁇ 0.2°2 ⁇ ); and wherein Form N is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 11.65°, 11.85°, 12.08°, 16.70°, 19.65° and 23.48°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form I is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2 ⁇ (each ⁇ 0.2°2 ⁇ )
- Form N is characterized
- Form II is characterized by 1, 2, 3, 4, or more peaks as shown in Table 1 below.
- Compound 1 is used in the treatment of sickle cell disease, as described herein.
- a polymorph of Compound 1, as described in any of the embodiments provided herein is used in the treatment of sickle cell disease.
- a polymorph of the free base of crystalline Compound 1, as described in any of the embodiments provided herein is used in the treatment of sickle cell disease.
- the crystalline Form II of the free base of crystalline Compound 1, as described in any of the embodiments provided herein is used in the treatment of sickle cell disease.
- the treatment is according to any of the pharmaceutical formulations, dosage forms, and/or dosage regimens as described herein.
- such treatment comprises administering to a subject or preparing for administration to such subject, 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)-methoxy)benzaldehyde, or a polymorph thereof, as described herein.
- the compound is administered in a dose of from about 500 mg/day to about 1500 mg/day. In certain embodiments, the compound is administered in a dose of from about 600 mg/day to about 900 mg/day. In certain embodiments, the compound is administered in a dose of about 600 mg/day. In certain embodiments, the compound is administered in a dose of about 900 mg/day, or about 1200 mg/day, or about 1500 mg/day. In certain embodiments, the compound is administered in a dose of 600 mg/day. In certain embodiments, the compound is administered in a dose of 900 mg/day, 1200 mg/day or 1500 mg/day. In certain embodiments, the compound is administered once daily. In certain embodiments, the compound is a crystalline ansolvate form of Compound 1 as described in any of the embodiments provided herein.
- Compound 1 for use in the treatment of sickle cell disease.
- about 900 mg/day to about 1500 mg/day of the compound is used for treatment.
- about 900 mg/day, about 1200 mg/day, or about 1500 mg/day of the compound is used for treatment.
- 900 mg/day, 1200 mg/day, or 1500 mg/day of the compound is used for treatment.
- the compound is used for treatment as a single dose.
- the compound is a crystalline ansolvate form of Compound 1 as described in any of the embodiments provided herein.
- the compound is prepared for use as a medicament, for example, a pharmaceutical formulation or dosage form, as described herein.
- Compound 1 is administered in a pharmaceutical formulation.
- pharmaceutical formulations comprising a pharmaceutically acceptable excipient and a compound disclosed herein.
- the pharmaceutical formations comprise the crystalline free base ansolvate of Compound 1, including, for example, crystalline Form II.
- suitable formulations are those described in, for example, International Publication No. WO WO 2015/031284 A1 (see, e.g., pages 18-21 and 28-29), the disclosure of which is incorporated herein by reference in its entirety.
- Such formulations can be prepared for different routes of administration.
- Suitable dosage forms for administering any of the compounds described herein include tablets, capsules, pills, powders, parenterals, and oral liquids, including suspensions, solutions and emulsions. Sustained release dosage forms may also be used. All dosage forms may be prepared using methods that are standard in the art (see, e.g., Remington's Pharmaceutical Sciences, 16th ed., A. Oslo editor, Easton Pa. 1980). Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit forms.
- compositions are generally non-toxic, aid administration, and do not adversely affect the therapeutic benefit of Compound 1.
- excipients may be any solid, liquid, semi-solid or, in the case of an aerosol composition, gaseous excipient that is generally available to one of skill in the art.
- the pharmaceutical compositions disclosed herein are prepared by conventional means using methods known in the art.
- compositions disclosed herein may be used in conjunction with any of the vehicles and excipients commonly employed in pharmaceutical preparations, e.g., talc, gum arabic, lactose, starch, magnesium stearate, cocoa butter, aqueous or non-aqueous solvents, oils, paraffin derivatives, glycols, etc. Coloring and flavoring agents may also be added to preparations, particularly to those for oral administration. Solutions can be prepared using water or physiologically compatible organic solvents such as ethanol, 1,2-propylene glycol, polyglycols, dimethylsulfoxide, fatty alcohols, triglycerides, partial esters of glycerin and the like.
- Solid pharmaceutical excipients include starch, cellulose, hydroxypropyl cellulose, talc, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, dried skim milk and the like.
- Liquid and semisolid excipients may be selected from glycerol, propylene glycol, water, ethanol and various oils, including those of petroleum, animal, vegetable or synthetic origin, e.g., peanut oil, soybean oil, mineral oil, sesame oil, etc.
- the compositions provided herein comprises one or more of ⁇ -tocopherol, gum arabic, and/or hydroxypropyl cellulose.
- the dosage forms provided herein comprise Compound 1 in an amount of about 10, about 20, about 30, about 40, about 50, about 100, about 150, about 200, about 250, about 300, about 400, or about 500 mg.
- the dosage forms provided herein comprise Compound 1 in an amount of about: 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, or 1500 mg.
- the dosage forms provided herein comprise Compound 1 in an amount of about: 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, or 1500 mg. In certain embodiments, the dosage forms provided herein comprise Compound 1 in an amount of about 50, about 100, or about 300 mg. In certain embodiments, the dosage forms provided herein comprise Compound 1 in an amount of about 300, about 600, about 900, about 1200, or about 1500 mg. In certain embodiments, the dosage forms provided herein comprise Compound 1 in an amount of 300 mg ⁇ 10%. In certain embodiments, the dosage forms provided herein comprise Compound 1 in an amount of 300 mg ⁇ 5%.
- a capsule dosage form described in the Summary above (and embodiments thereof).
- the formulation in the capsule is prepared by wet granulation process as described below.
- All the ingredients except the lubricant is screened through a 20-mesh screen to remove any agglomerates.
- the lubricant is screened through a 40-mesh screen.
- All the ingredients screened in the dispensing step except for the lubricant are added in a predefined order to the wet granulation bowl.
- the ingredients are mixed in the granulation bowl using the impellor only for a predetermined time to form a homogenous dry mixture.
- water is used as a binding solution at a predetermined rate and amount while mixing using a high shear force with impellor and chopper at predetermined speeds.
- the wet granulation in kneaded or wet massed using both the impellor and chopper at predetermined speed and time.
- the wet granulation obtained is then transferred to the fluid bed dryer for drying.
- the granulation is dried until the desired dryness level is achieved measured by loss on drying (LOD)
- the dried granulation from the HSWG and FBD step is then sized using a co-mill with a predetermined screen size and speed.
- a co-mill is used as a sizing step to ensure deagglomeration of large granule agglomerates and help achieve a uniform particle size distribution.
- the dried granules are then blended for a predetermined time in a V-blender along with the lubricant until a homogenous uniform blend is obtained.
- the final blend is then transferred to the encapsulation process.
- the final granulation blend is filled into capsules using either a semi-automatic/manual encapsulator or an automatic encapsulator depending on the scale and availability.
- a target weight of 350 mg of the granulation (containing 300 mg of API) is filled into each empty capsule to make 300 mg strength capsules. Filled capsules are polished followed by weight check and visual inspection for appearance to remove any defective capsules.
- Capsules are then packaged into 100 cc high-density polyethylene (HDPE) bottles at 30 capsules per bottle.
- the HDPE bottles are closed with child-resistant polypropylene (PP) screw caps with liner. Appropriate labels are applied over the HDPE bottles as per the regional regulations.
- PP child-resistant polypropylene
- the capsule dosage form comprises:
- w/w is relative to the total weight of the formulation (excluding the weight of the capsule).
- “about” means ⁇ 10% of a given range or value.
- the capsule dosage form further comprises from about 2% to about 10% a disintegrant.
- the capsule dosage form further comprises from about 2% to about 10% a disintegrant and about 2% to 35% a filler.
- the capsule dosage form comprises:
- w/w is relative to the total weight of the formulation (excluding the weight of the capsule).
- “about” means ⁇ 10% of a given range or value.
- the capsule dosage form comprises:
- the capsule dosage form comprises:
- the capsule dosage form comprises:
- Compound 1 is Form II substantially free of Form I and/or N;
- the binder is hypromellose
- the insoluble filler is microcrystalline cellulose
- the soluble filler is lactose monohydrate
- the disintregrant is croscarmellose sodium
- the lubricant is magnesium stearate.
- the capsule contains 300 mg of Compound 1 Form IT substantially free of Form I and/or N.
- Compound 1 is a crystalline ansolvate form.
- the crystalline ansolvate is Form II characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each f0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least one X-ray powder diffraction peak (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least two X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by X-ray powder diffraction peaks (Cu K ⁇ radiation) of 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- the crystalline ansolvate is characterized by X-ray powder diffraction peaks (Cu K ⁇ radiation) of 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Form II is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the crystalline ansolvate is characterized by an X-ray powder diffraction pattern (Cu K ⁇ radiation) substantially similar to that of FIG. 1 .
- the capsule contains 300 mg ⁇ 5% of Compound 1, wherein compound 1 is a crystalline ansolvate form that is characterized by at least two X-ray powder diffraction peaks (Cu Ku radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2 ⁇ (each ⁇ 0.2°2 ⁇ ); wherein the crystalline ansolvate form is substantially free of Form I and/or N; wherein Form I is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2 ⁇ (each ⁇ 0.2°2 ⁇ ); and wherein Form N is characterized by at least three X-ray powder diffraction peaks (Cu K ⁇ radiation) selected from 11.65°, 11.85°, 12.08°, 16.70°, 19.65° and 23.48°2 ⁇ (each ⁇ 0.2°2 ⁇ ).
- Cu Ku radiation X-ray powder dif
- the dose of the compounds disclosed herein to be administered to a patient can be subject to the judgment of a health-care practitioner. Doses of the compounds disclosed herein vary depending on factors such as: specific indication to be treated, prevented, or managed; age and condition of a patient; and amount of second active agent used, if any.
- the compound (e.g., Compound 1) is administered in a dose of from about 500 mg/day to about 1500 mg/day. In one embodiment the compound is administered in a dose of about 1100, about 1200, about 1300, about 1400, or about 1500 mg/day. In certain embodiments, the compound is administered in a dose of about is administered in a dose of about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, about 1000, about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day.
- the compound is administered in a dose of about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day. In certain embodiments, the compound is administered in a dose of about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, or about 1000 mg/day. In certain embodiments, the compound is administered in a dose of about 600, about 650, about 700, about 750, about 800, about 850, or about 900 mg/day. In certain embodiments, the compound is administered in a dose of from about 500 mg/day to about 900 mg/day.
- the compound is administered in a dose of from about 600 mg/day to about 900 mg/day. In certain embodiments, the compound is administered in a dose of about 700 mg/day. In certain embodiments, the compound is administered in a dose of about 600 mg/day. In certain embodiments, the compound is administered in a dose of about 900 mg/day. In certain embodiments, the compound is administered in a dose of about 1200 mg/day. In certain embodiments, the compound is administered in a dose of about 1500 mg/day.
- the compound is administered as mg/Kg body weight of the patient, for example, from about 5 to about 50 mg/Kg body weight of the patient being treated/day, from about 10 to about 40 mg/Kg/day, from about 15 to about 30 mg/Kg/day, from about 15 to about 25 mg/Kg/day, about 5 to about 10 mg/Kg/day, about 10 to about 15 mg/Kg/day, about 15 to about 20 mg/Kg/day, about 20 to about 25 mg/Kg/day, about 25 to about 30 mg/Kg/day, about 30 to about 40 mg/Kg/day, or about 40 to about 50 mg/Kg/day.
- mg/Kg body weight of the patient for example, from about 5 to about 50 mg/Kg body weight of the patient being treated/day, from about 10 to about 40 mg/Kg/day, from about 15 to about 30 mg/Kg/day, from about 15 to about 25 mg/Kg/day, about 5 to about 10 mg/Kg/day, about 10 to about 15 mg/
- the dose may be administered as a single bolus, or in one, two, three, four or more subdoses at appropriate intervals throughout the day.
- the dose to be administered is 900 or 1500 mg/day
- the entire 900 or 1500 mg, respectively may be administered at the same time.
- the 900 mg dose may be administered as, for example, three separate subdoses of 300 mg, where the first subdose is administered in the morning, the second subdose is administered in the afternoon of the same day, and the third subdose is administered in the evening of the same day, such that the cumulative amount administered for the day is 900 mg.
- the following example presents a Phase I randomised, placebo-controlled, double-blind, single and multiple ascending dose study of the tolerability and pharmacokinetics of Compound 1 (GBT440) in healthy subjects and patients with Sickle Cell Disease.
- Placebo Comparator Placebo
- Compound 1 oral capsules at 2 strengths (50 and 100 mg) are Compound 1 oral capsules at 2 strengths (50 and 100 mg).
- Doses may also be used: 900, 1200, or 1500 mg/day.
- LCMS a Sciex API 4000 LC-MS-MS was equipped with an HPLC column.
- the peak area of the m/z 338.1 ⁇ 158.1 GBT440 product ion was measured against the peak area of the m/z 345.2 ⁇ 159.1 GBT1592 (GBT440-D7) internal standard product ion.
- Terminal half-life and other pharmacokinetic parameters were calculated using Phoenix WinNonlin software.
- Apparent terminal half-life (t 1/2 ) values were calculated as ln(2)/k, where k is the terminal elimination rate constant which is obtained by performing a linear regression on the terminal phase of a plot of the natural logarithm (ln) of concentration versus time.
- RBC:Plasma ratio was calculated using the equation below.
- RBC is the concentration of GBT440 in the red blood cells
- PL is the concentration of GBT440 in plasma obtained by analysis of plasma sample
- BL is the concentration of GBT440 in whole blood obtained by analysis of whole blood sample
- Hct is the hematocrit value.
- FIG. 2 illustrates representative whole blood concentrations at steady state for two doses (500 mg, 700 mg) of Compound 1 (GBT440).
- GBT440 A dose proportional increase in GBT440 was observed following single and multiple dosing. From these pharmacokinetic studies, the half-life of GBT440 in whole blood was determined to be approximately 3 days in healthy subjects, and 1.6 days in SCD subjects. In the tested subjects, the GBT440 RBC:plasma ratio was observed to be approximately 75:1. These pharmacokinetic results support once daily dosing.
- OEC Oxygen Equilibrium Curve
- FIG. 3 illustrates representative oxygen equilibrium curves for two doses (500 mg, 700 mg) of Compound 1 (GBT440), with comparison to placebo.
- administration of Compound 1 results in a left shift of the oxygen equilibrium curve: SCD subjects are right shifted; p50 shifts to normal range.
- hemoglobin modification is proportional to dose.
- FIG. 4 illustrates the change in hemoglobin (g/dL) over time for two doses (500 mg, 700 mg) of Compound 1 (GBT440), with comparison to placebo.
- GBT 440 treatment led to a rapid and progressive rise in hemoglobin levels. The decline in later time points may be related to removal of dense cells and not related to return of hemolysis.
- the higher GBT440 dose level (700 mg) showed a trend for a better response compared to 500 mg.
- FIG. 5 illustrates the percent (%) change in reticulocytes over time for two doses (500 mg, 700 mg) of Compound 1 (GBT440), with comparison to placebo.
- GBT 440 treatment led to a profound decline in reticulocytes, which is consistent with a reduction in hemolysis.
- the reduction in reticulocyte counts suggests improvement of red blood cell life span.
- FIG. 6 illustrates percent (%) sickle cells over time for two doses (500 mg, 700 mg) of Compound 1 (GBT440), with comparison to placebo.
- baseline sickle cell counts were variable (1.1 to 19.4%).
- GBT440 treatment reduced sickle cells in the peripheral blood which was sustained during the 28 day dosing period.
- This example also provides results showing a change in circulating sickle cells (e.g., percent change in circulating sickle cells) over time following dosing with Compound 1 (GBT440), from the study as described in Example 1.
- a change in circulating sickle cells e.g., percent change in circulating sickle cells
- ISCs irreversibly sickled cells
- Morphological criteria for sickle cells included the following categories: (1) non-discoid irregular shaped cells with irregular or pointed edges; (2) elliptocytes with length more than twice the width and with irregular or pointed edges; and (3) irregular shaped elliptocytes.
- FIGS. 7A and 7B provide representative images from a subject treated with 700 mg of Compound 1 (GBT440), over a period of one day as shown in FIG. 7A ; and twenty-eight (28) days as shown in FIG. 7B . As shown in the figure, there is a marked reduction in sickle cells in peripheral blood smears.
- FIG. 8 illustrates the percent (%) change in reticulocytes to day 28 versus whole blood concentration of Compound 1 (GBT440) (PK data from 500 and 700 mg dose levels; R 2 ⁇ 0.56). As shown in the figure, higher GBT440 exposures resulted in more profound reduction in reticulocyte counts.
- a PK/PD model was developed using PK and PD data from subjects with SCD, corresponding to Cohorts 11 (700 mg QD ⁇ 28 days), 12 (500 mg QD ⁇ 28 days) and 14 (500 mg BID ⁇ 28 days) who participated in the study described in Example 1 above.
- the PK/PD model was developed to characterize the relationship between Compound 1 (GBT440) exposures, placebo and hemolysis measures (e.g., reticulocyte count, hemoglobin, unconjugated bilirubin and LDH).
- the drug effect was characterized using an indirect response model of drug/dose or concentration-dependent inhibition (e.g., bilirubin, reticulocytes, and LDH) or drug/dose or concentration-dependent stimulation (e.g., hemoglobin).
- Equation 2 A(1) represents the amount of biomarker of interest; Sl represents the slope of the drug effect; WBC GBT440 is the whole blood concentration of GBT440; and k in and k out are the production rate and the disappearance rate constant, respectively, of each biomarker.
- the ratio of k in and k out represents the baseline of the biomarker at steady state, as shown in the equation below.
- FIGS. 9A-9B illustrate the linear relationship between Compound 1 whole blood concentrations and effect on hemolytic measures: FIG. 9A shows percent (%) change in absolute reticulocytes; FIG. 9B shows percent (%) change in unconjugated bilirubin; FIG. 9C shows percent (%) change in LDH; and FIG. 9D shows percent (%) change in hemoglobin.
- hemolysis measures e.g., bilirubin, reticulocyte count, LDH and hemoglobin
- the dashed line represents predicted change for a typical patient
- the grey shaded area represents 95% CI (uncertainty in relationship)
- the dotted lines represent 2.5 th and 97.5 th percentiles of the 600 mg and the 900 mg dose.
- the drug-related efficacy is a function of blood pharmacokinetics and the PD effects for the hemolysis measures disappear after dosing is stopped. A linear concentration-effect relationship was observed over the range of doses evaluated (500 mg to 1000 mg).
- the following example presents Hb occupancy analysis of Compound 1 (GBT440) based on population PK modeling.
- the following examples also presents simulated SCD measures outcomes.
- a population PK model was developed for Compound 1 (GBT440) based on data from healthy subjects and patients participating in the study as described in Example 1.
- the population PK model was developed to determine which doses would achieve Hb occupancy from 20% to 30%, which is the target range for therapeutic efficacy with Compound 1.
- the target range of 20% to 30% Hb modification is supported by treatment response data from the study. Participants who achieved >20% Hb occupancy showed an improved hematologic response compared to those who did not who achieve >20% Hb occupancy.
- Population PK models were developed for Compound 1 measured in plasma and in whole blood. Separate models were developed for patients and healthy subjects, as these populations appeared to show substantial differences in Compound 1 PK, due to the nature of SCD.
- the percent Hb modification was calculated according to Equations 5 and 6 below, where whole blood and plasma concentrations were derived from the population PK model, and hematocrit values (Hct) values were uniformly sampled from the range available in the database. A constant of 0.3374 was used in Equation 5 to convert RBC concentration from ⁇ g/mL into ⁇ M.
- % occupancy was defined as the concentrations of Compound 1 in RBC (in ⁇ M) divided by the concentration of Hb in RBC (5000 ⁇ M).
- the models were used to evaluate the potential of several Compound 1 doses (e.g., 900 mg, 1200 and 1500 mg) to achieve the occupancy target of 20% to 30%.
- Hb Occupancy Target for Compound 1 at doses of 900 mg and 1500 mg Dose of GBT440 Estimated Hb Occupancy 900 mg 1500 mg Median % occupancy 16 (7-31) 26 (12-52) based on C min (2.5 th to 97.5 th percentiles) % Subjects with >20% 24.6% 75.5% occupancy based on C min Values based on modeling of PK/PD data derived from the study as described in Example 1 and further simulations of such data. Linear pharmacokinetics has been assumed for simulations of 1500 mg dose.
- E max model was used to fit the hemolysis measures data.
- the E max model provided a similar fit to the bilirubin, reticulocytes and LDH data as the linear model, however it required E max value to be fixed to 100%, (these measures are decreasing over time). Since hemoglobin increases over time, the E max model was less robust than the linear model ( ⁇ OFV >25). Therefore predictions were not attempted for hemoglobin outside of the observed dose range (e.g. >1000 mg).
- CB Common Blend
- the CB capsule formulation at 300 mg strength was scaled up to 4.8 kg batch size and run under GMP conditions to manufacture clinical trial capsules of Form II of Compound 1 (GBT440).
- GMP440 clinical trial capsules of Form II of Compound 1
- 4.114 kg of Form II of Compound 1 and the corresponding quantities of intragranular excipients excluding magnesium stearate were passed through a 20 mesh screen and added to a high shear granulator and blended for 5 minutes with impellor speed at 300 rpm.
- the premix was granulated by adding water at 60 g/min while mixing at high shear using impellor at 300 rpm and chopper at 1200 rpm.
- the wet granulation was further kneaded or wet massed for 3 min using impellor at 300 rpm and chopper at 1200 rpm.
- the wet granulation was dried using a fluid bed dryer at an inlet air temperature set at 55° C. and dried until the desired LOD (loss on drying) was attained.
- the dried granulation was passed through a co-mill at 1000 rpm to ensure breaking of large agglomerates and to attain a uniform particle size distribution.
- Extragranular excipient (magnesium stearate) was passed through mesh #40 and blended with the granules for 3 minutes at 30 rpm in a V-blender.
- Capsules were filled with the final blend using either an semiautomatic or manual encapsulator.
- the capsules had a an average fill of 350 mg granulation and final capsule weight of approximately 442 mg. 100% of the filled acceptable capsules were polished, weight sorted, visually inspected for any defects and passed through metal detection prior to packaging.
- the capsules were tested by validated analytical methods meeting all product quality acceptance criteria, and released for human clinical use.
- Quantity Reference Quantity (mg/ to Standard Component (% w/w) capsule) Function or Similar Compound 1 Form II, 85.71% 300.00 Drug In-house Unmilled substance (intragranular) Hydroxypropyl 4.00% 14.00 Binder USP methylcellulose (Methocel ® E5 Premium LV) (intragranular) Microcrystalline 3.64% 12.74 Filler NF Cellulose (Avicel ® PH-101) (intragranular) Lactose Monohydrate 2.65% 9.28 Filler NF (Foremost Grade 310) (intragranular) Croscarmellose Sodium 3.50% 12.25 Disintegrant Ph.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- The present application claims the benefit of priority of U.S. Provisional Application No. 62/263,554, filed Dec. 4, 2015, and U.S. Provisional Application No. 62/375,832, filed Aug. 16, 2016, the content of each which is hereby incorporated by reference in its entirety.
- Provided herein are compounds, compositions, formulations, dosage forms and methods for the treatment of sickle cell disease. As provided herein, such treatment may comprise administering to a subject, or preparing for administration to such subject, 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)-methoxy)benzaldehyde, or a polymorph thereof, in certain dosing regimens. Also provided herein is a capsule dosage form comprising high drug loads of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde or a polymorph thereof.
- Hemoglobin (Hb) is a tetrameric protein in red blood cells that transports up to four oxygen molecules from the lungs to various tissues and organs throughout the body.
- Hemoglobin binds and releases oxygen through conformational changes, and is in the tense (T) state when it is unbound to oxygen and in the relaxed (R) state when it is bound to oxygen. The equilibrium between the two conformational states is under allosteric regulation. Natural compounds such as 2,3-bisphosphoglycerate (2,3-BPG), protons, and carbon dioxide stabilize hemoglobin in its de-oxygenated T state, while oxygen stabilizes hemoglobin in its oxygenated R state. Other relaxed R states have also been found, however their role in allosteric regulation has not been fully elucidated.
- Sickle cell disease is a prevalent disease particularly among those of African and Mediterranean descent. Sickle hemoglobin (HbS) contains a point mutation where glutamic acid is replaced with valine, allowing the T state to become susceptible to polymerization to give the HbS containing red blood cells their characteristic sickle shape. The sickled cells are also more rigid than normal red blood cells, and their lack of flexibility can lead to blockage of blood vessels. Certain synthetic aldehydes have been found to shift the equilibrium from the polymer forming T state to the non-polymer forming R state (Nnamani et al., Chemistry & Biodiversity Vol. 5, 2008 pp. 1762-1769) by acting as allosteric modulators to stabilize the R state through formation of a Schiff base with an amino group on hemoglobin.
- U.S. Pat. No. 7,160,910 discloses 2-furfuraldehydes and related compounds that are also allosteric modulators of hemoglobin. One particular compound, 5-hydroxymethyl-2-furfuraldehyde (5HMF), was found to be a potent hemoglobin modulator both in vitro and in vivo. 5HMF is currently in clinical trials for treatment of sickle cell disease. However, 5HMF requires 4 times daily dosing of 1,000 mg (see, e.g., ClinicalTrials.gov; NCT01987908). This requirement for frequent dosing at relatively high amounts can present problems with patient compliance and high treatment costs.
- Accordingly, there exists a need for effective methods of treating sickle cell disease, which use compounds that are effective when administered at lower doses.
- Applicant has unexpectedly found that Compound 1 disclosed herein is therapeutically effective in the treatment of sickle cell disease (SCD) at low doses, in spite of the large concentration of hemoglobin in red cells (5 nM in red cells).
- In one aspect, provided herein are methods for treating sickle cell disease in a patient comprising administering to the patient Compound 1:
- wherein the compound is administered in a dose of from about 500 mg/day to about 1500 mg/day. In one embodiment of the first aspect, Compound 1 is administered in a dose of about 1100, about 1200, about 1300, about 1400, or about 1500 mg/day. In another embodiment of the first aspect, Compound 1 is administered in a dose of about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day. In another embodiment of the first aspect, the compound is administered in a dose of about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, about 1000, about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day. In another embodiment of the first aspect, the compound is administered in a dose of from about 500 mg/day to about 1000 mg/day. In another embodiment of the first aspect, the compound is administered in a dose of about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, or about 1000 mg/day. In another embodiment of the first aspect, the compound is administered in a dose of about 600, about 650, about 700, about 750, about 800, about 850, or about 900 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of from about 500 mg/day to about 900 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of from about 600 mg/day to about 900 mg/day. In yet another embodiment of the first aspect the compound is administered in a dose of about 700 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of about 600 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of about 900 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of about 1200 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of about 1500 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of 900 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of 1200 mg/day. In yet another embodiment of the first aspect, the compound is administered in a dose of 1500 mg/day. In yet another embodiment of the first aspect and embodiments contained therein, the patient is in need to treatment.
- In a second embodiment of the first aspect and embodiments contained therein above, the compound is administered once daily.
- In a third embodiment of the first aspect and embodiments contained therein above (which include the second embodiment), the dose is administered in a capsule or tablet. Within the third embodiment, in one subembodiment, the dose is administered in a 100 mg or a 300 mg capsule. Within the third embodiment, in another subembodiment, the dose is administered in a 300 mg capsule.
- In a fourth embodiment of the first aspect and embodiments contained therein above (including the second and third embodiments and subembodiments contained therein),
Compound 1 is a crystalline ansolvate form. In one embodiment, the crystalline ansolvate is Form II characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In one embodiment, the crystalline ansolvate is characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In another embodiment, Form II is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In another embodiment, the crystalline ansolvate is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form II is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, the crystalline ansolvate is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form IT is characterized by X-ray powder diffraction peaks (Cu Kα radiation) of 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, the crystalline ansolvate is characterized by X-ray powder diffraction peaks (Cu Kα radiation) of 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form II is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . In yet another embodiment, the crystalline ansolvate is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . In yet another embodiment, the crystalline ansolvate form ofCompound 1 is substantially free of Form I and/or Form N. Form I ofCompound 1 is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) at 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2θ (each ±0.2°2θ); and Form N ofCompound 1 is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) at 11.65°, 11.85°, 12.08°, 16.70°, 19.65° and 23.48°2θ (each ±0.2°2θ). - In a second aspect, provided is a method of treating interstitial pulmonary fibrosis in a patient comprising administering to the patient about 1100 mg/day to about 1500 mg/day of
Compound 1 optionally in combination with an anti-fibrotic agent. In one embodiment, the anti-fibrotic agent is selected from pirfenidone, nintenabib, and systemic corticosteroids. - In one embodiment of the second aspect,
Compound 1 is administered in a dose of about 1100, about 1200, about 1300, about 1400, or about 1500 mg/day. In another embodiment of the second aspect,Compound 1 is administered in a dose of about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day. In another embodiment of the second aspect, the compound is administered in a dose of about 1200 mg/day. In another embodiment of the second aspect, the compound is administered in a dose of about 1500 mg/day. In another embodiment of the second aspect, the compound is administered in a dose of 1200 mg/day. In another embodiment of the second aspect, the compound is administered in a dose of 1500 mg/day. In yet another embodiment of the second aspect and embodiments contained therein, the patient is in need to treatment. - In a second embodiment of the second aspect and embodiments contained therein above, the compound is administered once daily.
- In a third embodiment of the second aspect and embodiments contained therein above (which include the second embodiment), the compound is administered in a capsule or tablet. Within the third embodiment, in one subembodiment, the compound is administered in a 100 mg or a 300 mg capsule. Within the third embodiment, in another subembodiment, the compound is administered in a 300 mg capsule.
- In a fourth embodiment of the second aspect and embodiments contained therein above (including the second and third embodiments and subembodiments contained therein),
Compound 1 is a crystalline ansolvate form. In one embodiment, the crystalline ansolvate is Form II characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In one embodiment, the crystalline ansolvate is characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In another embodiment, Form II is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In another embodiment, the crystalline ansolvate is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form II is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each f0.2°2θ). In yet another embodiment, the crystalline ansolvate is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form II is characterized by X-ray powder diffraction peaks (Cu Kα radiation) of 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, the crystalline ansolvate is characterized by X-ray powder diffraction peaks (Cu Kα radiation) of 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another, Form II is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . In yet another, the crystalline ansolvate is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . - In a third aspect, provided is a capsule dosage form comprising:
- (i) from about 65% to about 93% w/w of
Compound 1 or a polymorph thereof; and - (ii) from about 2% to about 10% w/w a binder;
- wherein w/w is relative to the total weight of the formulation (excluding the weight of the capsule). With regards to the capsule formulation; “about” means ±1°% of a given range or value.
- In one embodiment of the third aspect, the capsule dosage form further comprises from about 2% to about 10% a disintegrant.
- In a second embodiment of the third aspect, the capsule dosage form further comprises from about 2% to about 10% a disintegrant and about 2% to 35% a filler.
- In a fourth aspect, provided is a capsule dosage form comprising:
- (i) from about 65% to about 86% w/w of
Compound 1 or a polymorph thereof; - (ii) from about 2% to about 6% w/w a binder;
- (iii) from about 6% to about 25% w/w a filler;
- (iv) from about 2% to 6% w/w a disintegrant; and
- (iv) from about 0.5% to about 1.5% w/w a lubricant;
- wherein w/w is relative to the total weight of the formulation (excluding the weight of the capsule). With regards to the capsule formulation; “about” means ±1°% of a given range or value.
- In one embodiment of the fourth aspect, the capsule dosage form comprises:
- (i) from about 65% to about 86% w/w of
Compound 1 or a polymorph thereof; - (ii) from about 2% to about 6% w/w a binder;
- (iii) from about 3.5% to about 25% w/w an insoluble filler or 2.5% to 25% w/w of soluble filler or 2.5% to 25% of a combination of soluble or insoluble filler;
- (iv) from about 2% to 6% w/w a disintegrant; and
- (iv) from about 0.5% to about 1.5% w/w a lubricant.
- In a second embodiment of the fourth aspect, the capsule dosage form comprises:
- (i) about 86% w/w of
Compound 1 or a polymorph thereof; - (ii) about 4% w/w a binder;
- (iii) about 3.5% w/w an insoluble filler and 2.5% w/w of soluble filler;
- (iv) about 3.5% w/w a disintegrant; and
- (iv) about 0.5% w/w a lubricant.
- In a third embodiment of the fourth aspect, the capsule dosage form comprises:
- (i) 85.71% w/w of
Compound 1 or a polymorph thereof; - (ii) 4% w/w a binder;
- (iii) 3.64% w/w an insoluble filler and 2.65% w/w of soluble filler;
- (iv) 2.65% w/w a disintegrant; and
- (iv) 0.5% w/w a lubricant.
- In one embodiment of the third and fourth aspects, and embodiments contained therein:
-
Compound 1 is Form II substantially free of Form I and/or N; - the binder is hypromellose;
- the insoluble filler is microcrystalline cellulose
- the soluble filler is lactose monohydrate;
- the disintregrant is croscarmellose sodium; and
- the lubricant is magnesium stearate.
- In another embodiment of the third and fourth aspects, and embodiments contained therein, the capsule contains 300 mg of
Compound 1 Form II substantially free of Form I and/or N. - In another embodiment of the third and fourth aspects, and embodiments contained therein,
Compound 1 is a crystalline ansolvate form. In one embodiment, the crystalline ansolvate is Form II characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In one embodiment, the crystalline ansolvate is characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In another embodiment, Form II is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In another embodiment, the crystalline ansolvate is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form II is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, the crystalline ansolvate is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form IT is characterized by X-ray powder diffraction peaks (Cu Kα radiation) of 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, the crystalline ansolvate is characterized by X-ray powder diffraction peaks (Cu Kα radiation) of 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another, Form II is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . In yet another, the crystalline ansolvate is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . - In another embodiment of the third and fourth aspects, and embodiments contained therein, the capsule contains 300 mg±5% of
Compound 1, whereincompound 1 is a crystalline ansolvate form that is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ); wherein the crystalline ansolvate form is substantially free of Form I and/or N; wherein Form I is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2θ (each ±0.2°2θ); and wherein Form N is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 11.65°, 11.85°, 12.08°, 16.70°, 19.65° and 23.48°2θ (each ±0.2°2θ). - Due to the high drug loading, higher doses of
Compound 1 can be delivered with minimal number of dosing units making it practical from a convenience, compliance and marketing perspective. Additionally, in spite of high drug loading, the capsule formulation displays superior physical properties due to the appropriate ratio of the binder to the wet granulation process parameters. Further, the combination of soluble and insoluble fillers gives granule strength, flow properties and disintegration that provides the desired therapeutic effect. -
FIG. 1 is a XRPD profile and contemplated indexing for the free base Form II anhydrous crystal ofCompound 1. -
FIG. 2 illustrates whole blood concentration at steady state for two doses (500 mg, 700 mg) ofCompound 1. -
FIG. 3 illustrates representative oxygen equilibrium curves for two doses (500 mg, 700 mg) ofCompound 1, with comparison to placebo. -
FIG. 4 illustrates change in hemoglobin (g/dL) over time for two doses (500 mg, 700 mg) ofCompound 1, with comparison to placebo. -
FIG. 5 illustrates percent (%) change in reticulocytes over time for two doses (500 mg, 700 mg) ofCompound 1, with comparison to placebo. -
FIG. 6 illustrates percent (%) sickle cells over time for two doses (500 mg, 700 mg) ofCompound 1, with comparison to placebo. -
FIGS. 7A-7B provide representative images of sickle cells from subject treated with 700 mg ofCompound 1, over a period of one day as shown inFIG. 7A ; and twenty-eight (28) days as shown inFIG. 7B . -
FIG. 8 illustrates the percent (%) change in reticulocytes today 28 versus whole blood concentration ofCompound 1. -
FIGS. 9A-9D illustrate the linear relationship betweenCompound 1 whole blood concentrations and effect on hemolytic measures:FIG. 9A shows percent (%) change in absolute reticulocytes;FIG. 9B shows percent (%) change in unconjugated bilirubin;FIG. 9C shows percent (%) change in LDH; andFIG. 9D shows percent (%) change in hemoglobin. - Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. All patents, applications, published applications and other publications are incorporated by reference in their entirety. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
- As used herein, the below terms have the following meanings unless specified otherwise.
- It is noted here that as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” and the like include plural referents unless the context clearly dictates otherwise.
- The term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. With regards to the dose, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 50%, 30%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.05% of a given dose. In certain embodiments, the term “about” or “approximately” means within 50%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.05% of a dose. In certain embodiments, the term “about” or “approximately” means within 0.5% to 1% of a given dose.
- The term “administration” refers to introducing an agent into a patient. A therapeutic amount can be administered, which can be determined by the treating physician or the like. An oral route of administration is preferred. The related terms and phrases administering” and “administration of”, when used in connection with a compound or pharmaceutical composition (and grammatical equivalents), refer both to direct administration, which may be administration to a patient by a medical professional or by self-administration by the patient, and/or to indirect administration, which may be the act of prescribing a drug. For example, a physician who instructs a patient to self-administer a drug and/or provides a patient with a prescription for a drug is administering the drug to the patient. In any event, administration entails delivery to the patient of the drug.
- The “crystalline ansolvate” of
Compound 1 is a crystalline solid form of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde, such as, e.g., crystalline Form I, Form II or Material N as disclosed in International Publication No. WO 2015/120133 A1 (see, e.g., pages 3-9 and pages 51-54), the disclosure of which is incorporated herein by reference in its entirety. - “Characterization” refers to obtaining data which may be used to identify a solid form of a compound, for example, to identify whether the solid form is amorphous or crystalline and whether it is unsolvated or solvated. The process by which solid forms are characterized involves analyzing data collected on the polymorphic forms so as to allow one of ordinary skill in the art to distinguish one solid form from other solid forms containing the same material. Chemical identity of solid forms can often be determined with solution-state techniques such as 3C NMR or 1H NMR. While these may help identify a material, and a solvent molecule for a solvate, such solution-state techniques themselves may not provide information about the solid state. There are, however, solid-state analytical techniques that can be used to provide information about solid-state structure and differentiate among polymorphic solid forms, such as single crystal X-ray diffraction, X-ray powder diffraction (XRPD), solid state nuclear magnetic resonance (SS-NMR), and infrared and Raman spectroscopy, and thermal techniques such as differential scanning calorimetry (DSC), solid state 3C-NMR, thermogravimetry (TG), melting point, and hot stage microscopy.
- To “characterize” a solid form of a compound, one may, for example, collect XRPD data on solid forms of the compound and compare the XRPD peaks of the forms. For example, the collection of peaks which distinguish e.g., Form II from the other known forms is a collection of peaks which may be used to characterize Form IT. Those of ordinary skill in the art will recognize that there are often multiple ways, including multiple ways using the same analytical technique, to characterize solid forms. Additional peaks could also be used, but are not necessary, to characterize the form up to and including an entire diffraction pattern. Although all the peaks within an entire XRPD pattern may be used to characterize such a form, a subset of that data may, and typically is, used to characterize the form.
- An XRPD pattern is an x-y graph with diffraction angle (typically °2θ) on the x-axis and intensity on the y-axis. The peaks within this pattern may be used to characterize a crystalline solid form. As with any data measurement, there is variability in XRPD data. The data are often represented solely by the diffraction angle of the peaks rather than including the intensity of the peaks because peak intensity can be particularly sensitive to sample preparation (for example, particle size, moisture content, solvent content, and preferred orientation effects influence the sensitivity), so samples of the same material prepared under different conditions may yield slightly different patterns; this variability is usually greater than the variability in diffraction angles. Diffraction angle variability may also be sensitive to sample preparation. Other sources of variability come from instrument parameters and processing of the raw X-ray data: different X-ray instruments operate using different parameters and these may lead to slightly different XRPD patterns from the same solid form, and similarly different software packages process X-ray data differently and this also leads to variability. These and other sources of variability are known to those of ordinary skill in the pharmaceutical arts. Due to such sources of variability, it is usual to assign a variability of ±0.2°2θ to diffraction angles in XRPD patterns.
- “Comprising” or “comprises” is intended to mean that the compositions and methods include the recited elements, but not exclude others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude other materials or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this invention.
- The term “dose” or “dosage” refers to the total amount of active material (e.g.,
Compound 1 disclosed herein) administered to a patient in a single day (24-hour period). The desired dose may be administered once daily, for example, as a single bolus. Alternatively, the desired dose may be administered in one, two, three, four or more subdoses at appropriate intervals throughout the day, where the cumulative amount of the subdoses equals the amount of the desired dose administered in a single day. The terms “dose” and “dosage” are used interchangeably herein. - The term “dosage form” refers to physically discrete units, each unit containing a predetermined amount of active material (e.g.,
Compound 1 disclosed herein) in association with the required excipients. Suitable dosage forms include, for example, tablets, capsules, pills, and the like. - The capsule of the present disclosure comprises excipients such as a pharmaceutically acceptable binder, filler (also known as diluent), disintegrant, and lubricant. Excipients can have two or more functions in a pharmaceutical composition. Characterization herein of a particular excipient as having a certain function, e.g., filler, disintegrant, etc., should not be read as limiting to that function. Further information on excipients can be found in standard reference works such as Handbook of Pharmaceutical Excipients, 3rd ed. (Kibbe, ed. (2000), Washington: American Pharmaceutical Association).
- A “disintegrant” as used herein refers to an excipient that can breakup or disintegrate the formulation when it comes in contact with, for example, the gastrointestinal fluid. Suitable disintegrants include, either individually or in combination, starches including pregelatinized starch and sodium starch glycolate; clays; magnesium aluminum silicate; cellulose-based disintegrants such as powdered cellulose, microcrystalline cellulose, methylcellulose, low-substituted hydroxypropylcellulose, carmellose, carmellose calcium, carmellose sodium and croscarmellose sodium; alginates; povidone; crospovidone; polacrilin potassium; gums such as agar, guar, locust bean, karaya, pectin and tragacanth gums; colloidal silicon dioxide; and the like. In one embodiment, the disintegrant is carmellose sodium. In one embodiment, the disintegrant is powdered cellulose, microcrystalline cellulose, methylcellulose, or low-substituted hydroxypropylcellulose, or a combination thereof. In one embodiment, the disintegrant is carmellose, carmellose calcium, carmellose sodium or croscarmellose sodium, or a combination thereof. In one embodiment, the disintegrant is croscarmellose sodium.
- Lubricants as used herein refers to an excipient that reduces friction between the mixture and equipment during granulation process. Exemplary lubricants include, either individually or in combination, glyceryl behenate; stearic acid and salts thereof, including magnesium, calcium and sodium stearates; hydrogenated vegetable oils; glyceryl palmitostearate; talc; waxes; sodium benzoate; sodium acetate; sodium fumarate; sodium stearyl fumarate; PEGs (e.g., PEG 4000 and PEG 6000); poloxamers; polyvinyl alcohol; sodium oleate; sodium lauryl sulfate; magnesium lauryl sulfate; and the like. In one embodiment, the lubricant is stearic acid. In one embodiment, the lubricant is magnesium stearate. In one embodiment, the lubricant is magnesium stearate present in the amount of from about 0.5% to about 1.5% by weight of the formulation. In one embodiment, the lubricant is magnesium stearate.
- In one embodiment, the lubricant is present at an amount of about: 0.5%, 0.75%, 1%, 1.25%, or 1.5 w/w. In another embodiment, the lubricant is present at an amount at an amount of about 0.5% w/w. In another embodiment, the lubricant is present at an amount at an amount of 0.5% w/w (±0.1%). In one embodiment, the lubricant is present at an amount of 0.5% w/w (±0.2%). In such embodiments, the lubricant can be magnesium stearate.
- Binding agents or adhesives as used herein refer to an excipient which imparts sufficient cohesion to the blend to allow for normal processing operations such as sizing, lubrication, compression and packaging, but still allow the formulation to disintegrate and the composition to be absorbed upon ingestion. Exemplary binding agents and adhesives include, individually or in combination, acacia; tragacanth; glucose; polydextrose; starch including pregelatinized starch; gelatin; modified celluloses including methylcellulose, carmellose sodium, hydroxypropylmethylcellulose (HPMC or hypromellose), hydroxypropylcellulose, hydroxyethylcellulose and ethylcellulose; dextrins including maltodextrin; zein; alginic acid and salts of alginic acid, for example sodium alginate; magnesium aluminum silicate; bentonite; polyethylene glycol (PEG); polyethylene oxide; guar gum; polysaccharide acids; and the like.
- The binding agent(s) is present from about 2% to about 6%, by weight of the formulation. In one embodiment, the binding agent(s), is about 2%, 3%, 4%, 5%, or 6 w/w. In another embodiment, the binder is present at about 4% w/w of the formulation. In yet another embodiment, the binder is hypromellose.
- Filler as used herein means an excipient that are used to dilute the compound of interest prior to delivery. Fillers can also be used to stabilize compounds because they can provide a more stable environment. Salts dissolved in buffered solutions (which also can provide pH control or maintenance) are utilized as diluents in the art, including, but not limited to a phosphate buffered saline solution. Fillers increase bulk of the composition to facilitate compression or create sufficient bulk for homogenous blend for capsule filling. Representative fillers include e.g., lactose, starch, mannitol, sorbitol, dextrose, microcrystalline cellulose such as Avicel®; dibasic calcium phosphate, dicalcium phosphate dihydrate; tricalcium phosphate, calcium phosphate; anhydrous lactose, spray-dried lactose; pregelatinized starch, compressible sugar, such as Di-Pac®(Amstar); hydroxypropylmethylcellulose, hydroxypropylmethylcellulose acetate stearate, sucrose-based diluents, confectioner's sugar; monobasic calcium sulfate monohydrate, calcium sulfate dihydrate; calcium lactate trihydrate, dextrates; hydrolyzed cereal solids, amylose; powdered cellulose, calcium carbonate; glycine, kaolin; mannitol, sodium chloride; inositol, bentonite, and the like. The filler(s) is present from about 6% to about 25%, by weight of the formulation. In one embodiment, the filler agent(s), is about 6%, 7%, 8%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, or 25% w/w. In another embodiment, the composition comprises about 3.5% w/w or insoluble filler and about 2.5% w/w of soluble filler. In yet another embodiment, the insoluble filler is microcrystalline cellulose and the soluble filler is lactose.
- As defined herein, where the mass of a compound is specified, for example, “500 mg of compound (1),” that amount refers to the mass of compound (1) in its free base form.
- The term “hemoglobin” as used herein refers to any hemoglobin protein, including normal hemoglobin (Hb) and sickle hemoglobin (HbS).
- The term “sickle cell disease” (SCD) or “sicke cell diseases” (SCDs) refers to one or more diseases mediated by sickle hemoglobin (HbS) that results from a single point mutation in the hemoglobin (Hb). Sickle cell diseases includes sickle cell anemia, sickle-hemoglobin C disease (HbSC), sickle beta-plus-thalassaemia (HbS/β) and sickle beta-zero-thalassaemia (HbS/β0).
- “Substantially free” as used herein refers to ansolvate Form II of
Compound 1 associated with <10% or Form I and/or Form N, preferably <5% Form I and/or Form N; and most preferably it shall refer to <2% Form I and/or Form N. Form I ofCompound 1 is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) at 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2θ (each ±0.2°2θ); and Form N ofCompound 1 is characterized by at least three X-ray powder diffraction peaks (Cu Kat radiation) at 11.65°, 11.85°, 12.08°, 16.70°, 19.650 and 23.48°2θ (each ±0.2°2θ). - “Therapeutically effective amount” or “therapeutic amount” refers to an amount of a drug or an agent that when administered to a patient suffering from a condition, will have the intended therapeutic effect, e.g., alleviation, amelioration, palliation or elimination of one or more manifestations of the condition in the patient. The full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses and can be administered in one dose form or multiples thereof. For example, 600 mg of the drug can be administered in a single 600 mg capsule or two 300 mg capsules. Thus, a therapeutically effective amount may be administered in one or more administrations. For example, and without limitation, a therapeutically effective amount of an agent, in the context of treating disorders related to hemoglobin S, refers to an amount of the agent that alleviates, ameliorates, palliates, or eliminates one or more manifestations of the disorders related to hemoglobin S in the patient.
- The term “pharmaceutically acceptable” refers to generally safe and non-toxic for in vivo, preferably human, administration.
- “Subject” or “patient” refers to human.
- “Treatment”, “treating”, and “treat” are defined as acting upon a disease, disorder, or condition with an agent to reduce or ameliorate the harmful or any other undesired effects of the disease, disorder, or condition and/or its symptoms. Treatment, as used herein, covers the treatment of a human patient, and includes: (a) reducing the risk of occurrence of the condition in a patient determined to be predisposed to the disease but not yet diagnosed as having the condition, (b) impeding the development of the condition, and/or (c) relieving the condition, i.e., causing regression of the condition and/or relieving one or more symptoms of the condition. For purposes of treatment of sickle cell disease, beneficial or desired clinical results include, but are not limited to, multilineage hematologic improvement, decrease in the number of required blood transfusions, decrease in infections, decreased bleeding, and the like. For purposes of treatment of interstitial pulmonary fibrosis, beneficial or desired clinical results include, but are not limited to, reduction in hypoxia, reduction in fibrosis, and the like.
- Compound 1 is 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde, having the formula:
- (hereinafter “
Compound 1” or GBT440, where the terms are used interchangeably), or a tautomer thereof. -
Compound 1 can be prepared according to the methods described in, for example, International Publication Nos. WO 2015/031285 A1 (see, e.g., pages 14-17) and WO 2015/120133 A1 (see, e.g., pages 32-35), the disclosures of which are incorporated herein by reference in their entireties. - The free base of
Compound 1 can be obtained as one or more crystalline forms, such as those described in, for example, International Publication Nos. WO 2015/031285 A1 (see, e.g., pages 19-24) and WO 2015/120133 A1 (see, e.g., pages 3-9 and 51-54), including Form II described below. - In addition to the XRPD provided above, the
crystalline Compound 1 is characterized by an endothermic peak at (97±2)° C. as measured by differential scanning calorimetry. In certain embodiments, the crystalline Form II of the free base ofcrystalline Compound 1 is characterized by the substantial absence of thermal events at temperatures below the endothermic peak at (97±2)° C. as measured by differential scanning calorimetry. In certain embodiments, the crystalline Form II of the free base ofcrystalline Compound 1 is characterized by an X-ray powder diffraction peak (Cu Kα radiation at one or more of 13.37°, 14.37°, 19.95° or 23.92°2θ. In certain embodiments, the crystalline ansolvate of the free base ofcrystalline Compound 1 is characterized by an X-ray powder diffraction peak (Cu Kα radiation at one or more of 13.37°, 14.37°, 19.95° or 23.92°2θ. In certain embodiments, the crystalline Form IT of the free base ofcrystalline Compound 1 is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . In certain embodiments, the crystalline ansolvate of the free base ofcrystalline Compound 1 is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . - In certain embodiments, the crystalline Form II of the free base of
crystalline Compound 1 is characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In certain embodiments, the crystalline Form II of the free base ofcrystalline Compound 1 is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In certain embodiments, the crystalline Form II of the free base ofcrystalline Compound 1 is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). - In certain embodiments, the crystalline ansolvate of the free base of
crystalline Compound 1 is characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In certain embodiments, the crystalline ansolvate of the free base ofcrystalline Compound 1 is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In certain embodiments, the crystalline ansolvate of the free base ofcrystalline Compound 1 is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). - In certain embodiments, the crystalline ansolvate of the free base of
crystalline Compound 1 is substantially free of Form I and/or Form N; wherein Form I is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2θ (each ±0.2°2θ); and wherein Form N is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 11.65°, 11.85°, 12.08°, 16.70°, 19.65° and 23.48°2θ (each ±0.2°2θ). - In certain embodiments, Form II is characterized by 1, 2, 3, 4, or more peaks as shown in Table 1 below.
-
TABLE 1 Observed peaks for Form II, XRPD file 613881. Intensity °2θ d space (Å) (%) 5.62 ± 0.20 15.735 ± 0.581 24 12.85 ± 0.20 6.888 ± 0.108 22 12.97 ± 0.20 6.826 ± 0.106 21 13.37 ± 0.20 6.622 ± 0.100 100 14.37 ± 0.20 6.162 ± 0.087 56 15.31 ± 0.20 5.788 ± 0.076 21 16.09 ± 0.20 5.507 ± 0.069 23 16.45 ± 0.20 5.390 ± 0.066 69 16.75 ± 0.20 5.294 ± 0.064 32 16.96 ± 0.20 5.227 ± 0.062 53 19.95 ± 0.20 4.450 ± 0.045 39 20.22 ± 0.20 4.391 ± 0.043 20 23.18 ± 0.20 3.837 ± 0.033 38 23.92 ± 0.20 3.721 ± 0.031 41 24.40 ± 0.20 3.648 ± 0.030 44 24.73 ± 0.20 3.600 ± 0.029 22 24.99 ± 0.20 3.564 ± 0.028 50 25.12 ± 0.20 3.545 ± 0.028 28 25.39 ± 0.20 3.509 ± 0.027 51 25.70 ± 0.20 3.466 ± 0.027 21 26.19 ± 0.20 3.403 ± 0.026 27 26.72 ± 0.20 3.336 ± 0.025 30 27.02 ± 0.20 3.300 ± 0.024 25 27.34 ± 0.20 3.262 ± 0.024 23 28.44 ± 0.20 3.138 ± 0.022 20 - In certain embodiments,
Compound 1 is used in the treatment of sickle cell disease, as described herein. In certain embodiments, a polymorph ofCompound 1, as described in any of the embodiments provided herein, is used in the treatment of sickle cell disease. In certain embodiments, a polymorph of the free base ofcrystalline Compound 1, as described in any of the embodiments provided herein, is used in the treatment of sickle cell disease. In certain embodiments, the crystalline Form II of the free base ofcrystalline Compound 1, as described in any of the embodiments provided herein, is used in the treatment of sickle cell disease. In certain embodiments, the treatment is according to any of the pharmaceutical formulations, dosage forms, and/or dosage regimens as described herein. In certain embodiments, such treatment comprises administering to a subject or preparing for administration to such subject, 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)-methoxy)benzaldehyde, or a polymorph thereof, as described herein. - Accordingly, provided herein is a method for treating sickle cell disease in a patient comprising administering to the
patient Compound 1. In certain embodiments, the compound is administered in a dose of from about 500 mg/day to about 1500 mg/day. In certain embodiments, the compound is administered in a dose of from about 600 mg/day to about 900 mg/day. In certain embodiments, the compound is administered in a dose of about 600 mg/day. In certain embodiments, the compound is administered in a dose of about 900 mg/day, or about 1200 mg/day, or about 1500 mg/day. In certain embodiments, the compound is administered in a dose of 600 mg/day. In certain embodiments, the compound is administered in a dose of 900 mg/day, 1200 mg/day or 1500 mg/day. In certain embodiments, the compound is administered once daily. In certain embodiments, the compound is a crystalline ansolvate form ofCompound 1 as described in any of the embodiments provided herein. - Accordingly, also provided herein is
Compound 1 for use in the treatment of sickle cell disease. In certain embodiments, about 900 mg/day to about 1500 mg/day of the compound is used for treatment. In certain embodiments, about 900 mg/day, about 1200 mg/day, or about 1500 mg/day of the compound is used for treatment. In certain embodiments, 900 mg/day, 1200 mg/day, or 1500 mg/day of the compound is used for treatment. In certain embodiments, the compound is used for treatment as a single dose. In certain embodiments, the compound is a crystalline ansolvate form ofCompound 1 as described in any of the embodiments provided herein. In certain embodiments, the compound is prepared for use as a medicament, for example, a pharmaceutical formulation or dosage form, as described herein. - In another aspect,
Compound 1 is administered in a pharmaceutical formulation. Accordingly, provided herein are pharmaceutical formulations comprising a pharmaceutically acceptable excipient and a compound disclosed herein. In certain embodiments, the pharmaceutical formations comprise the crystalline free base ansolvate ofCompound 1, including, for example, crystalline Form II. Suitable formulations are those described in, for example, International Publication No. WO WO 2015/031284 A1 (see, e.g., pages 18-21 and 28-29), the disclosure of which is incorporated herein by reference in its entirety. - Such formulations can be prepared for different routes of administration.
- Although formulations suitable for oral delivery will probably be used most frequently, other routes that may be used include intravenous, intramuscular, intraperitoneal, intracutaneous, and subcutaneous routes. Suitable dosage forms for administering any of the compounds described herein include tablets, capsules, pills, powders, parenterals, and oral liquids, including suspensions, solutions and emulsions. Sustained release dosage forms may also be used. All dosage forms may be prepared using methods that are standard in the art (see, e.g., Remington's Pharmaceutical Sciences, 16th ed., A. Oslo editor, Easton Pa. 1980). Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit forms.
- Pharmaceutically acceptable excipients are generally non-toxic, aid administration, and do not adversely affect the therapeutic benefit of
Compound 1. Such excipients may be any solid, liquid, semi-solid or, in the case of an aerosol composition, gaseous excipient that is generally available to one of skill in the art. The pharmaceutical compositions disclosed herein are prepared by conventional means using methods known in the art. - The formulations disclosed herein may be used in conjunction with any of the vehicles and excipients commonly employed in pharmaceutical preparations, e.g., talc, gum arabic, lactose, starch, magnesium stearate, cocoa butter, aqueous or non-aqueous solvents, oils, paraffin derivatives, glycols, etc. Coloring and flavoring agents may also be added to preparations, particularly to those for oral administration. Solutions can be prepared using water or physiologically compatible organic solvents such as ethanol, 1,2-propylene glycol, polyglycols, dimethylsulfoxide, fatty alcohols, triglycerides, partial esters of glycerin and the like.
- Solid pharmaceutical excipients include starch, cellulose, hydroxypropyl cellulose, talc, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, dried skim milk and the like. Liquid and semisolid excipients may be selected from glycerol, propylene glycol, water, ethanol and various oils, including those of petroleum, animal, vegetable or synthetic origin, e.g., peanut oil, soybean oil, mineral oil, sesame oil, etc. In certain embodiments, the compositions provided herein comprises one or more of α-tocopherol, gum arabic, and/or hydroxypropyl cellulose.
- The amounts of active ingredients in a dosage form may differ depending on factors such as, but not limited to, the route by which it is to be administered to patients. In certain embodiments, the dosage forms provided herein comprise
Compound 1 in an amount of about 10, about 20, about 30, about 40, about 50, about 100, about 150, about 200, about 250, about 300, about 400, or about 500 mg. In certain embodiments, the dosage forms provided herein compriseCompound 1 in an amount of about: 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, or 1500 mg. In certain embodiments, the dosage forms provided herein compriseCompound 1 in an amount of about: 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, or 1500 mg. In certain embodiments, the dosage forms provided herein compriseCompound 1 in an amount of about 50, about 100, or about 300 mg. In certain embodiments, the dosage forms provided herein compriseCompound 1 in an amount of about 300, about 600, about 900, about 1200, or about 1500 mg. In certain embodiments, the dosage forms provided herein compriseCompound 1 in an amount of 300 mg±10%. In certain embodiments, the dosage forms provided herein compriseCompound 1 in an amount of 300 mg±5%. - In one embodiment, provided is a capsule dosage form described in the Summary above (and embodiments thereof). The formulation in the capsule is prepared by wet granulation process as described below.
- 1. Dispensing
- All the ingredients except the lubricant is screened through a 20-mesh screen to remove any agglomerates. The lubricant is screened through a 40-mesh screen.
- 2. High Shear Wet Granulation (HSWG) and Fluid Bed Drying
- All the ingredients screened in the dispensing step except for the lubricant are added in a predefined order to the wet granulation bowl. The ingredients are mixed in the granulation bowl using the impellor only for a predetermined time to form a homogenous dry mixture. To the dry mix, water is used as a binding solution at a predetermined rate and amount while mixing using a high shear force with impellor and chopper at predetermined speeds. After adding the required amount of water, the wet granulation in kneaded or wet massed using both the impellor and chopper at predetermined speed and time. The wet granulation obtained is then transferred to the fluid bed dryer for drying. The granulation is dried until the desired dryness level is achieved measured by loss on drying (LOD)
- 3. Co-Milling or Sizing and Blending
- The dried granulation from the HSWG and FBD step is then sized using a co-mill with a predetermined screen size and speed. A co-mill is used as a sizing step to ensure deagglomeration of large granule agglomerates and help achieve a uniform particle size distribution. The dried granules are then blended for a predetermined time in a V-blender along with the lubricant until a homogenous uniform blend is obtained. The final blend is then transferred to the encapsulation process.
- 4. Encapsulation, Packaging and Labeling
- The final granulation blend is filled into capsules using either a semi-automatic/manual encapsulator or an automatic encapsulator depending on the scale and availability. A target weight of 350 mg of the granulation (containing 300 mg of API) is filled into each empty capsule to make 300 mg strength capsules. Filled capsules are polished followed by weight check and visual inspection for appearance to remove any defective capsules. Capsules are then packaged into 100 cc high-density polyethylene (HDPE) bottles at 30 capsules per bottle. The HDPE bottles are closed with child-resistant polypropylene (PP) screw caps with liner. Appropriate labels are applied over the HDPE bottles as per the regional regulations.
- In certain embodiments, the capsule dosage form comprises:
- (i) from about 65% to about 93% w/w of
Compound 1 or a polymorph thereof; and - (ii) from about 2% to about 10% w/w a binder;
- wherein w/w is relative to the total weight of the formulation (excluding the weight of the capsule). With regards to the capsule formulation; “about” means ±10% of a given range or value.
- In certain embodiments, the capsule dosage form further comprises from about 2% to about 10% a disintegrant.
- In certain embodiments, the capsule dosage form further comprises from about 2% to about 10% a disintegrant and about 2% to 35% a filler.
- In certain embodiments, the capsule dosage form comprises:
- (i) from about 65% to about 86% w/w of
Compound 1 or a polymorph thereof; - (ii) from about 2% to about 6% w/w a binder;
- (iii) from about 6% to about 25% w/w a filler;
- (iv) from about 2% to 6% w/w a disintegrant; and
- (iv) from about 0.5% to about 1.5% w/w a lubricant;
- wherein w/w is relative to the total weight of the formulation (excluding the weight of the capsule). With regards to the capsule formulation; “about” means ±10% of a given range or value.
- In certain embodiments, the capsule dosage form comprises:
- (i) from about 65% to about 86% w/w of
Compound 1 or a polymorph thereof; - (ii) from about 2% to about 6% w/w a binder;
- (iii) from about 3.5% to about 25% w/w an insoluble filler or 2.5% to 25% w/w of soluble filler or 2.5% to 25% of a combination of soluble or insoluble filler;
- (iv) from about 2% to 6% w/w a disintegrant; and
- (iv) from about 0.5% to about 1.5% w/w a lubricant.
- In certain embodiments, the capsule dosage form comprises:
- (i) about 86% w/w of
Compound 1 or a polymorph thereof; - (ii) about 4% w/w a binder;
- (iii) about 3.5% w/w an insoluble filler and 2.5% w/w of soluble filler;
- (iv) about 3.5% w/w a disintegrant; and
- (iv) about 0.5% w/w a lubricant.
- In certain embodiments, the capsule dosage form comprises:
- (i) 85.71% w/w of
Compound 1 or a polymorph thereof; - (ii) 4% w/w a binder;
- (iii) 3.64% w/w an insoluble filler and 2.65% w/w of soluble filler;
- (iv) 2.65% w/w a disintegrant; and
- (iv) 0.5% w/w a lubricant.
- In certain embodiments:
-
Compound 1 is Form II substantially free of Form I and/or N; - the binder is hypromellose;
- the insoluble filler is microcrystalline cellulose
- the soluble filler is lactose monohydrate;
- the disintregrant is croscarmellose sodium; and
- the lubricant is magnesium stearate.
- In certain embodiments, the capsule contains 300 mg of
Compound 1 Form IT substantially free of Form I and/or N. - In certain embodiments,
Compound 1 is a crystalline ansolvate form. In one embodiment, the crystalline ansolvate is Form II characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each f0.2°2θ). In one embodiment, the crystalline ansolvate is characterized by at least one X-ray powder diffraction peak (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In another embodiment, Form II is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In another embodiment, the crystalline ansolvate is characterized by at least two X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form II is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, the crystalline ansolvate is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, Form II is characterized by X-ray powder diffraction peaks (Cu Kα radiation) of 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another embodiment, the crystalline ansolvate is characterized by X-ray powder diffraction peaks (Cu Kα radiation) of 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ). In yet another, Form II is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . In yet another, the crystalline ansolvate is characterized by an X-ray powder diffraction pattern (Cu Kα radiation) substantially similar to that ofFIG. 1 . - In certain embodiments, the capsule contains 300 mg±5% of
Compound 1, whereincompound 1 is a crystalline ansolvate form that is characterized by at least two X-ray powder diffraction peaks (Cu Ku radiation) selected from 13.37°, 14.37°, 19.95° and 23.92°2θ (each ±0.2°2θ); wherein the crystalline ansolvate form is substantially free of Form I and/or N; wherein Form I is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 12.82°, 15.74°, 16.03°, 16.63°, 17.60°, 25.14°, 25.82° and 26.44°2θ (each ±0.2°2θ); and wherein Form N is characterized by at least three X-ray powder diffraction peaks (Cu Kα radiation) selected from 11.65°, 11.85°, 12.08°, 16.70°, 19.65° and 23.48°2θ (each ±0.2°2θ). - The dose of the compounds disclosed herein to be administered to a patient can be subject to the judgment of a health-care practitioner. Doses of the compounds disclosed herein vary depending on factors such as: specific indication to be treated, prevented, or managed; age and condition of a patient; and amount of second active agent used, if any.
- In certain embodiments, the compound (e.g., Compound 1) is administered in a dose of from about 500 mg/day to about 1500 mg/day. In one embodiment the compound is administered in a dose of about 1100, about 1200, about 1300, about 1400, or about 1500 mg/day. In certain embodiments, the compound is administered in a dose of about is administered in a dose of about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, about 1000, about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day. In certain embodiments, the compound is administered in a dose of about 1050, about 1100, about 1150, about 1200, about 1250, about 1300, about 1350, about 1400, about 1450, or about 1500 mg/day. In certain embodiments, the compound is administered in a dose of about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, or about 1000 mg/day. In certain embodiments, the compound is administered in a dose of about 600, about 650, about 700, about 750, about 800, about 850, or about 900 mg/day. In certain embodiments, the compound is administered in a dose of from about 500 mg/day to about 900 mg/day. In certain embodiments, the compound is administered in a dose of from about 600 mg/day to about 900 mg/day. In certain embodiments, the compound is administered in a dose of about 700 mg/day. In certain embodiments, the compound is administered in a dose of about 600 mg/day. In certain embodiments, the compound is administered in a dose of about 900 mg/day. In certain embodiments, the compound is administered in a dose of about 1200 mg/day. In certain embodiments, the compound is administered in a dose of about 1500 mg/day.
- In certain embodiments, the compound (e.g., Compound 1) is administered as mg/Kg body weight of the patient, for example, from about 5 to about 50 mg/Kg body weight of the patient being treated/day, from about 10 to about 40 mg/Kg/day, from about 15 to about 30 mg/Kg/day, from about 15 to about 25 mg/Kg/day, about 5 to about 10 mg/Kg/day, about 10 to about 15 mg/Kg/day, about 15 to about 20 mg/Kg/day, about 20 to about 25 mg/Kg/day, about 25 to about 30 mg/Kg/day, about 30 to about 40 mg/Kg/day, or about 40 to about 50 mg/Kg/day.
- The dose may be administered as a single bolus, or in one, two, three, four or more subdoses at appropriate intervals throughout the day. For example, if the dose to be administered is 900 or 1500 mg/day, the entire 900 or 1500 mg, respectively, may be administered at the same time. Alternatively, the 900 mg dose may be administered as, for example, three separate subdoses of 300 mg, where the first subdose is administered in the morning, the second subdose is administered in the afternoon of the same day, and the third subdose is administered in the evening of the same day, such that the cumulative amount administered for the day is 900 mg.
- Certain embodiments disclosed herein are illustrated by the following non-limiting examples.
- The following example presents a Phase I randomised, placebo-controlled, double-blind, single and multiple ascending dose study of the tolerability and pharmacokinetics of Compound 1 (GBT440) in healthy subjects and patients with Sickle Cell Disease.
- Objectives:
- Primary Outcome Measures:
-
- Safety, as assessed by frequency and severity of adverse events (AEs), and changes in vital signs, 12-lead electrocardiograms (ECGs), and laboratory assessments as compared to baseline [Time Frame: 30 days]
- Secondary Outcome Measures:
-
- Blood and plasma area under the concentration time curve (AUC) of GBT440 [Time Frame: 30 days]
- Blood and plasma maximum concentration (Cmax) of GBT440 [Time Frame: 30 days]
- Blood and plasma time to maximum concentration (Tmax) of GBT440 [Time Frame: 30 days]
- Percentage of hemoglobin occupied or modified by GBT440 [Time Frame: 30 days]
- Change from baseline in heart rate and pulse oximetry following exercise testing in healthy volunteers [Time Frame: 30 days]
- Other Outcome Measures:
-
- Percentage of sickled cells under ex vivo conditions [Time Frame: 30 days]
- Effect of GBT440 on hemolysis as measured by LDH, direct bilirubin, hemoglobin, and reticulocyte count [Time Frame: 30 days]
- Change from baseline in pain as measured by visual analog scale [Time Frame: 30 days]
- Change from baseline in fatigue as measured by questionnaire [Time Frame: 30 days]
- Exercise capacity as measured by 6-minute walk test [Time Frame: 30 days]
- Methodology:
- Experimental: GBT440
-
- Subjects randomized 6:2 to receive daily oral dosing of GBT440 or placebo for 1 day (single dose) and up to 28 days (multiple dose)
- Placebo Comparator: Placebo
-
- Subjects randomized 6:2 to receive daily oral dosing of GBT440 or placebo for 1 day (single dose) and up to 28 days (multiple dose)
- Number of Subjects: 128
- Criteria:
- Inclusion Criteria:
-
- Healthy male or female of non-child bearing potential; 18 to 55 years old; are non-smokers and have not used nicotine products within 3 months prior to screening.
- Male or female, 18 to 60 years old, with sickle cell disease (hemoglobin SS) not requiring chronic blood transfusion therapy; without hospitalization in 30 days before screening or receiving blood transfusion within 30 days before screening; subjects are allowed concomitant use of hydroxyurea if the dose has been stable for the 3 months prior to screening.
- Exclusion Criteria:
-
- Subjects who have a clinically relevant history or presence of respiratory, gastrointestinal, renal, hepatic, haematological, lymphatic, neurological, cardiovascular, psychiatric, musculoskeletal, genitourinary, immunological, dermatological, connective tissue diseases or disorders.
- Subjects who consume more than 14 (female subjects) or 21 (male subjects) units of alcohol a week.
- Subjects who have used any investigational product in any clinical trial within 90 days of admission or who are in extended follow-up.
- Healthy subjects who have used prescription drugs within 4 weeks of first dosing or have used over the counter medication excluding routine vitamins within 7 days of first dosing.
- Subjects with sickle cell disease who smoke >10 cigarettes per day; have hemoglobin level <6 mg/dL or >10 mg/dL at screening; have aspartate aminotransferase (AST), alanine aminotransferase (ALT), or alkaline phosphatase (ALK) >3× upper limit of normal reference range (ULN) at screening; have moderate or severe renal dysfunction
- Test Product, Dose and Route of Administration:
-
Compound 1 oral capsules at 2 strengths (50 and 100 mg) - Doses: 300, 500, 600, 700, 900, or 1000 mg/day
- Alternatively, the following Doses may also be used: 900, 1200, or 1500 mg/day.
- The following example presents pharmacokinetic results from the study as described in Example 1.
- Analysis of whole blood was performed as follows. 50 μL of diluted whole blood was mixed with 20 μL of GBT1592 (GBT440-D7) solution in acetonitrile. 0.3 mL of 0.1M citrate buffer solution (pH 3) was added to the sample, and the sample mixed briefly by vortexing, followed by sonication for 10 minutes. 2.0 mL methyl tert butyl ether (MTBE) was added to the sample, and the sample was capped, and mixed thoroughly by vortexing at high speed for 20 minutes. The sample was then centrifuged at 3300 rpm at room temperature for 10 minutes. 0.2 mL of the clear organic layer of the centrifuged sample was then transferred to a clean 96-well 2-mL plate, and the solvent was evapored to dryness. The dried extract was reconstituted in 0.2 mL of a mixture of acetonitrile/methanol/water/DMSO (225:25.0:250:50.0) and mixed thoroughly. The resultant reconstituted extract was analyzed by liquid chromatography mass spectrometry (LCMS).
- For the LCMS, a Sciex API 4000 LC-MS-MS was equipped with an HPLC column. The peak area of the m/z 338.1→158.1 GBT440 product ion was measured against the peak area of the m/z 345.2→159.1 GBT1592 (GBT440-D7) internal standard product ion.
- The whole blood samples, obtained as described above, were analyzed for pharmacokinetic parameters and RBC:Plasma ratios, as follows.
- Terminal half-life and other pharmacokinetic parameters were calculated using Phoenix WinNonlin software. Apparent terminal half-life (t1/2) values were calculated as ln(2)/k, where k is the terminal elimination rate constant which is obtained by performing a linear regression on the terminal phase of a plot of the natural logarithm (ln) of concentration versus time.
- RBC:Plasma ratio was calculated using the equation below.
-
- In
Equation 1, RBC is the concentration of GBT440 in the red blood cells; PL is the concentration of GBT440 in plasma obtained by analysis of plasma sample; BL is the concentration of GBT440 in whole blood obtained by analysis of whole blood sample; and Hct is the hematocrit value. -
FIG. 2 illustrates representative whole blood concentrations at steady state for two doses (500 mg, 700 mg) of Compound 1 (GBT440). - A dose proportional increase in GBT440 was observed following single and multiple dosing. From these pharmacokinetic studies, the half-life of GBT440 in whole blood was determined to be approximately 3 days in healthy subjects, and 1.6 days in SCD subjects. In the tested subjects, the GBT440 RBC:plasma ratio was observed to be approximately 75:1. These pharmacokinetic results support once daily dosing.
- The following example presents hemoglobin oxygen equilibration results (e.g., oxygen equilibration curves) following dosing with Compound 1 (GBT440), from the study as described in Example 1.
- Whole blood hemoximetry was used to measure oxygen equilibration. Blood from healthy volunteers and sickle cell disease (SCD) patients was drawn into 1.8 mL sodium citrate tubes. These samples were stored overnight at 4° C. prior to hemoximetry measurements. Based upon the hematocrit of the blood, either 50 μL or 100 μL of blood was diluted into 5 mL of 37° C. TES buffer (30 mM TES, 130 mM NaCl, 5 mM KCl, pH 7.4 at 25° C.). Diluted sample were loaded into TCS Hemox Analyzer cuvettes and oxygenated for twenty minutes using compressed air. After oxygenation, the samples were deoxygenated using nitrogen gas until the pO2 reached 1.6 millimeters of mercury (mm Hg). Data during this deoxygenation step was collected into Oxygen Equilibrium Curve (OEC) files using the TCS Hemox Analytical Software (HAS). OEC files were then analyzed to obtain the p50 (the partial pressure of oxygen at which 50% of hemoglobin in a sample is saturated with O2) and the p20 (the partial pressure of oxygen at which 20% of hemoglobin in a sample is saturated with O2). Delta p20 values (p20predose−p20sample time) were then used to calculate the % Hb Modification.
-
FIG. 3 illustrates representative oxygen equilibrium curves for two doses (500 mg, 700 mg) of Compound 1 (GBT440), with comparison to placebo. As shown in this figure, administration ofCompound 1 results in a left shift of the oxygen equilibrium curve: SCD subjects are right shifted; p50 shifts to normal range. As also shown in this figure, hemoglobin modification is proportional to dose. - The following example presents results showing a change in hemoglobin over time following dosing with Compound 1 (GBT440), from the study as described in Example 1.
-
FIG. 4 illustrates the change in hemoglobin (g/dL) over time for two doses (500 mg, 700 mg) of Compound 1 (GBT440), with comparison to placebo. As shown in the figure, GBT 440 treatment led to a rapid and progressive rise in hemoglobin levels. The decline in later time points may be related to removal of dense cells and not related to return of hemolysis. The higher GBT440 dose level (700 mg) showed a trend for a better response compared to 500 mg. These results show that a reduction in hemolysis increases hemoglobin levels. - The following example presents results showing a change in reticulocytes (e.g., percent change in reticulocytes) over time following dosing with Compound 1 (GBT440), from the study as described in Example 1.
-
FIG. 5 illustrates the percent (%) change in reticulocytes over time for two doses (500 mg, 700 mg) of Compound 1 (GBT440), with comparison to placebo. As shown in the figure, GBT 440 treatment led to a profound decline in reticulocytes, which is consistent with a reduction in hemolysis. The reduction in reticulocyte counts suggests improvement of red blood cell life span. - The following example presents results showing a change in circulating sickle cells (e.g., percent change in circulating sickle cells) over time following dosing with Compound 1 (GBT440), from the study as described in Example 1.
-
FIG. 6 illustrates percent (%) sickle cells over time for two doses (500 mg, 700 mg) of Compound 1 (GBT440), with comparison to placebo. As shown in the figure, baseline sickle cell counts were variable (1.1 to 19.4%). As also shown in the figure, GBT440 treatment reduced sickle cells in the peripheral blood which was sustained during the 28 day dosing period. These results show that a reduction in hemolysis increases hemoglobin levels. - This example also provides results showing a change in circulating sickle cells (e.g., percent change in circulating sickle cells) over time following dosing with Compound 1 (GBT440), from the study as described in Example 1.
- To quantify irreversibly sickled cells (ISCs), six different fields were randomly selected and imaged at 40× magnification per slide. Each field contained 100 to 300 cells and >500 cells (in 3 or more fields) were counted per blood smear slide. Cells that were classically sickled shape or appeared linear (with length equal to or more than 3× the width) with irregular or pointed edges were counted as sickled. Elliptical red blood cells (also appearing linear but with length approximately twice the width) with smooth rounded edges were counted as normal. In general, isolated non-discoid cells with spiky turns were counted as sickled. Cells packed in a group that appeared non-discoid because of the packing were not counted as sickled since they demonstrate deformability by changing shape to accommodate the surrounding cells.
- Morphological criteria for sickle cells included the following categories: (1) non-discoid irregular shaped cells with irregular or pointed edges; (2) elliptocytes with length more than twice the width and with irregular or pointed edges; and (3) irregular shaped elliptocytes.
-
FIGS. 7A and 7B provide representative images from a subject treated with 700 mg of Compound 1 (GBT440), over a period of one day as shown inFIG. 7A ; and twenty-eight (28) days as shown inFIG. 7B . As shown in the figure, there is a marked reduction in sickle cells in peripheral blood smears. - The following example presents results showing a change in reticulocytes at
day 28, as a function of whole blood concentration of Compound 1 (GBT440), from the study as described in Example 1. - The strongest correlation between exposure and hematologic effect was observed with changes in reticulocyte counts (considered to be best biomarker for RBC survival).
-
FIG. 8 illustrates the percent (%) change in reticulocytes today 28 versus whole blood concentration of Compound 1 (GBT440) (PK data from 500 and 700 mg dose levels; R2˜0.56). As shown in the figure, higher GBT440 exposures resulted in more profound reduction in reticulocyte counts. - The results provided in the above Examples 1-7 for Compound 1 (GBT440) demonstrate favorable pharmacokinetic data (e.g., long terminal t %), ex vivo anti-sickling activity, ability to increase hemoglobin levels, and ability to reduce reticulocyte counts. Further, the results provided in these Examples demonstrate that GBT440 whole blood concentrations were much higher than plasma concentrations (RBC:plasma ratio ˜75:1), consistent with a high affinity and specificity of GBT440 for hemoglobin. These results supports the potential Compound 1 (GBT440) to be a beneficial therapeutic agent, suitable for once daily dosing at the disclosed doses, for the treatment of SCD.
- The following example presents response analysis of Compound 1 (GBT440) based on PK/PD modeling and hemolysis measures.
- A PK/PD model was developed using PK and PD data from subjects with SCD, corresponding to Cohorts 11 (700 mg QD×28 days), 12 (500 mg QD×28 days) and 14 (500 mg BID×28 days) who participated in the study described in Example 1 above. The PK/PD model was developed to characterize the relationship between Compound 1 (GBT440) exposures, placebo and hemolysis measures (e.g., reticulocyte count, hemoglobin, unconjugated bilirubin and LDH). The drug effect was characterized using an indirect response model of drug/dose or concentration-dependent inhibition (e.g., bilirubin, reticulocytes, and LDH) or drug/dose or concentration-dependent stimulation (e.g., hemoglobin). Linear and non-linear models (maximal effect, e.g., Emax model and sigmoidal Emax model) were explored while the PK part of the model was kept fixed (e.g., sequential analysis). The PK/PD model used for hemolytic measures is shown in the equation below.
-
- where
-
A(1)initial=Base (Equation 3) - In
Equation 2, A(1) represents the amount of biomarker of interest; Sl represents the slope of the drug effect; WBCGBT440 is the whole blood concentration of GBT440; and kin and kout are the production rate and the disappearance rate constant, respectively, of each biomarker. - The ratio of kin and kout represents the baseline of the biomarker at steady state, as shown in the equation below.
-
- The final PK/PD relationship for the hemolysis markers was best described with an indirect response model where drug-related efficacy was driven by Compound 1 (GBT440) whole blood pharmacokinetics. Linear exposure response models were sufficient to characterize the data.
- Based on this modeling, it was determined that the PD effects for the hemolysis measures (e.g., bilirubin, reticulocyte count, LDH and hemoglobin) are PK driven.
FIGS. 9A-9B illustrate the linear relationship betweenCompound 1 whole blood concentrations and effect on hemolytic measures:FIG. 9A shows percent (%) change in absolute reticulocytes;FIG. 9B shows percent (%) change in unconjugated bilirubin;FIG. 9C shows percent (%) change in LDH; andFIG. 9D shows percent (%) change in hemoglobin. In the figure, the dashed line represents predicted change for a typical patient, the grey shaded area represents 95% CI (uncertainty in relationship), and the dotted lines represent 2.5th and 97.5th percentiles of the 600 mg and the 900 mg dose. The drug-related efficacy is a function of blood pharmacokinetics and the PD effects for the hemolysis measures disappear after dosing is stopped. A linear concentration-effect relationship was observed over the range of doses evaluated (500 mg to 1000 mg). - The following example presents Hb occupancy analysis of Compound 1 (GBT440) based on population PK modeling. The following examples also presents simulated SCD measures outcomes.
- Hb Modification (% Occupancy):
- A population PK model was developed for Compound 1 (GBT440) based on data from healthy subjects and patients participating in the study as described in Example 1. The population PK model was developed to determine which doses would achieve Hb occupancy from 20% to 30%, which is the target range for therapeutic efficacy with
Compound 1. The target range of 20% to 30% Hb modification is supported by treatment response data from the study. Participants who achieved >20% Hb occupancy showed an improved hematologic response compared to those who did not who achieve >20% Hb occupancy. Population PK models were developed forCompound 1 measured in plasma and in whole blood. Separate models were developed for patients and healthy subjects, as these populations appeared to show substantial differences inCompound 1 PK, due to the nature of SCD. - The percent Hb modification (% occupancy) was calculated according to
Equations 5 and 6 below, where whole blood and plasma concentrations were derived from the population PK model, and hematocrit values (Hct) values were uniformly sampled from the range available in the database. A constant of 0.3374 was used inEquation 5 to convert RBC concentration from μg/mL into μM. In Equation 6, % occupancy was defined as the concentrations ofCompound 1 in RBC (in μM) divided by the concentration of Hb in RBC (5000 μM). The models were used to evaluate the potential ofseveral Compound 1 doses (e.g., 900 mg, 1200 and 1500 mg) to achieve the occupancy target of 20% to 30%. -
-
TABLE 2 Hb Occupancy Target for Compound 1at doses of 900 mg and 1500 mg Dose of GBT440 Estimated Hb Occupancy 900 mg 1500 mg Median % occupancy 16 (7-31) 26 (12-52) based on Cmin (2.5th to 97.5th percentiles) % Subjects with >20% 24.6% 75.5% occupancy based on Cmin Values based on modeling of PK/PD data derived from the study as described in Example 1 and further simulations of such data. Linear pharmacokinetics has been assumed for simulations of 1500 mg dose. - Additionally, determination of the estimated change from baseline in hemolysis measures for 900 mg and 1500 mg doses based on simulations (see Table 3 below) showed improvement over those observed in
Cohorts -
TABLE 3 Simulated SCD Measures Outcomes (% Change from Baseline) for Compound 1at doses of 900 mg and 1500 mg Compound 1 Doses Hemolysis Measure 900 mg 1500 mg Bilirubin (%) −47(33-62)a −66 (51-78)a Reticulocytes (%) −54(28 − 78)a −84 (61-94)a LDH (%) −30 (13-56)a −64 (37-84)a Hemoglobin (%) 11.9 (6.7 − 21.1)b d Hemoglobin (change 1.06 (0.60 − 1.9)c d from baseline) Values represent median (25th to 97.5th percentiles) aBased on Emax model. Note: An Emax model was used to fit the hemolysis measures data. The Emax model provided a similar fit to the bilirubin, reticulocytes and LDH data as the linear model, however it required Emax value to be fixed to 100%, (these measures are decreasing over time). Since hemoglobin increases over time, the Emax model was less robust than the linear model (Δ OFV >25). Therefore predictions were not attempted for hemoglobin outside of the observed dose range (e.g. >1000 mg). bBased on linear model cBased on a baseline Hb of 9 g/dL dFor hemoglobin measurements, the Emax model resulted in a less reliable fit, with more uncertain estimates of Emax and EC50 (RSE >100%), and therefore was not used to make predictions for the 1500 mg dose. The linear model was satisfactory describing the data in the observed dose range, however the linear model should not be used to extrapolate to higher doses, however, it can be assumed that treatment response of the higher dose (1500 mg) will be at least equal or higher compared to the lower dose (900 mg). -
TABLE 4 Change from Baseline to Day 28 in Response Parameters in Subjects with SCD (Cohorts 11, 12, and 14) Change from Baseline to Day 28 Median (25th, 75th percentile) GBT440 GBT440 GBT440 500 mg 700 mg 1000 mga Placebo (Cohort 12) (Cohort 11) (Cohort 14) (Pooled) Parameter n = 10 n = 12 n = 5 n = 12 Unconjugated −30.6 −42.6 −56.3 2.0 bilirubin (%) (−48.9, (−44.3, (−57.8, (−24.6, −15.4) −23.8) −47.1) 9.9) Reticulocytes −31.2 −37.0 −49.9 9.0 (%) (−48.9, (−52.6, (−64.3, (1.7, −20.8) −4.5) −34.4) 13.8) Hemoglobin 0.4 0.7 0.0 −0.1 (g/dL) (0.1, (0.5, (−0.4, (−0.3, 0.7) 1.0) 0.3) 0.4) Lactate −19.8 −11.9 −12.4 −4.8 dehydrogenase (%) (−39.0, (−30.1, (−20.2, (−13.1, 6.2) −5.7) −12.2) −2.3) Irreversibly −56.4 −45.9 −45.7 8.4 sickled cells (%) (−70.2, (−93.0, (−57.9, (−11.9, −26.2) −6.0) 5.9) 16.8) a500 mg twice daily Source: Listing lb_2 for hemoglobin and Listing lb2_2 for LDH, bilirubin, and reticulocytes for 28-day data. Sickled cells calculated internally. - The results of the modeling and simulations provided in the above Examples 8 and 9 for Compound 1 (GBT440) support the use of higher doses of Compound 1 (e.g., 900 mg, 1200 and 1500 mg) in the treatment of SCD.
- The following example describes the making of a Common Blend (CB) capsule formulation at 4.8 kg batch scale.
- The CB capsule formulation at 300 mg strength was scaled up to 4.8 kg batch size and run under GMP conditions to manufacture clinical trial capsules of Form II of Compound 1 (GBT440). Per the process described stepwise, 4.114 kg of Form II of
Compound 1 and the corresponding quantities of intragranular excipients excluding magnesium stearate were passed through a 20 mesh screen and added to a high shear granulator and blended for 5 minutes with impellor speed at 300 rpm. The premix was granulated by adding water at 60 g/min while mixing at high shear using impellor at 300 rpm and chopper at 1200 rpm. After addition of water, the wet granulation was further kneaded or wet massed for 3 min using impellor at 300 rpm and chopper at 1200 rpm. The wet granulation was dried using a fluid bed dryer at an inlet air temperature set at 55° C. and dried until the desired LOD (loss on drying) was attained. The dried granulation was passed through a co-mill at 1000 rpm to ensure breaking of large agglomerates and to attain a uniform particle size distribution. - Extragranular excipient (magnesium stearate) was passed through
mesh # 40 and blended with the granules for 3 minutes at 30 rpm in a V-blender. - Capsules were filled with the final blend using either an semiautomatic or manual encapsulator. The capsules had a an average fill of 350 mg granulation and final capsule weight of approximately 442 mg. 100% of the filled acceptable capsules were polished, weight sorted, visually inspected for any defects and passed through metal detection prior to packaging.
- The capsules were tested by validated analytical methods meeting all product quality acceptance criteria, and released for human clinical use.
- Quantitative compositions of exemplary 300 mg capsules are presented in Table 5, below.
-
TABLE 5 Quantitative Composition of Exemplary Compound 1, Form IICapsule (300 mg), indicating “Quantity” ((%w/w) and (mg/capsule)), “Function” and “Reference to Standard or Similar” for each component. Quantity Reference Quantity (mg/ to Standard Component (% w/w) capsule) Function or Similar Compound 1 Form II, 85.71% 300.00 Drug In-house Unmilled substance (intragranular) Hydroxypropyl 4.00% 14.00 Binder USP methylcellulose (Methocel ® E5 Premium LV) (intragranular) Microcrystalline 3.64% 12.74 Filler NF Cellulose (Avicel ® PH-101) (intragranular) Lactose Monohydrate 2.65% 9.28 Filler NF (Foremost Grade 310) (intragranular) Croscarmellose Sodium 3.50% 12.25 Disintegrant Ph. Eur./ (Ac-Di-Sol ®) NF (intragranular) Sterile Water N/A N/A Granulation USP for Irrigationa Liquid Magnesium Stearate 0.50% 1.75 Lubricant NF (Hyqual ®, Vegetable Source) (extragranular) Total Fill Weight 100.00% 350.02 HPMC (hydroxypropyl N/A 96.0 Capsule USP/NF, methylcellulose shell Ph.Eur. (hypromellose)), Swedish orange opaque, Vcaps ® Plus Coni-Snap, capsules, size 0Total Weight N/A 446.02 - The examples set forth above are provided to give those of ordinary skill in the art with a complete disclosure and description of how to make and use the claimed embodiments, and are not intended to limit the scope of what is disclosed herein. Modifications that are obvious to persons of skill in the art are intended to be within the scope of the following claims. All publications, patents, and patent applications cited in this specification are incorporated herein by reference as if each such publication, patent or patent application were specifically and individually indicated to be incorporated herein by reference.
Claims (30)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/326,045 US20210267956A1 (en) | 2015-12-04 | 2021-05-20 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
US17/559,156 US20220110928A1 (en) | 2015-12-04 | 2021-12-22 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
US17/881,874 US11944612B2 (en) | 2015-12-04 | 2022-08-05 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562263554P | 2015-12-04 | 2015-12-04 | |
US201662375832P | 2016-08-16 | 2016-08-16 | |
US15/368,142 US11020382B2 (en) | 2015-12-04 | 2016-12-02 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
US17/326,045 US20210267956A1 (en) | 2015-12-04 | 2021-05-20 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/368,142 Continuation US11020382B2 (en) | 2015-12-04 | 2016-12-02 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/559,156 Continuation US20220110928A1 (en) | 2015-12-04 | 2021-12-22 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210267956A1 true US20210267956A1 (en) | 2021-09-02 |
Family
ID=57570625
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/368,142 Active US11020382B2 (en) | 2015-12-04 | 2016-12-02 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
US17/326,045 Abandoned US20210267956A1 (en) | 2015-12-04 | 2021-05-20 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
US17/559,156 Abandoned US20220110928A1 (en) | 2015-12-04 | 2021-12-22 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
US17/881,874 Active US11944612B2 (en) | 2015-12-04 | 2022-08-05 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/368,142 Active US11020382B2 (en) | 2015-12-04 | 2016-12-02 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/559,156 Abandoned US20220110928A1 (en) | 2015-12-04 | 2021-12-22 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
US17/881,874 Active US11944612B2 (en) | 2015-12-04 | 2022-08-05 | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
Country Status (9)
Country | Link |
---|---|
US (4) | US11020382B2 (en) |
EP (1) | EP3383392A1 (en) |
BR (1) | BR112018011272A2 (en) |
IL (1) | IL259798A (en) |
MA (1) | MA43373A (en) |
MX (2) | MX2018006832A (en) |
SG (2) | SG11201804647TA (en) |
TW (1) | TW201731509A (en) |
WO (1) | WO2017096230A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11452720B2 (en) | 2014-02-07 | 2022-09-27 | Global Blood Therapeutics, Inc. | Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
US11530191B2 (en) | 2013-03-15 | 2022-12-20 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI3738434T3 (en) | 2011-12-28 | 2023-11-20 | Global Blood Therapeutics Inc | Intermediates to obtain substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation |
WO2013102145A1 (en) | 2011-12-28 | 2013-07-04 | Global Blood Therapeutics, Inc. | Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation |
SG11201507320QA (en) | 2013-03-15 | 2015-10-29 | Global Blood Therapeutics Inc | Compounds and uses thereof for the modulation of hemoglobin |
BR112015021986A2 (en) | 2013-03-15 | 2017-07-18 | Global Blood Therapeutics Inc | compounds and their uses for hemoglobin modulation |
US10100043B2 (en) | 2013-03-15 | 2018-10-16 | Global Blood Therapeutics, Inc. | Substituted aldehyde compounds and methods for their use in increasing tissue oxygenation |
US9458139B2 (en) | 2013-03-15 | 2016-10-04 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
US8952171B2 (en) | 2013-03-15 | 2015-02-10 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
US9422279B2 (en) | 2013-03-15 | 2016-08-23 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
US10266551B2 (en) | 2013-03-15 | 2019-04-23 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
EA202092627A1 (en) | 2013-11-18 | 2021-09-30 | Глобал Блад Терапьютикс, Инк. | COMPOUNDS AND THEIR APPLICATIONS FOR HEMOGLOBIN MODULATION |
MA41841A (en) | 2015-03-30 | 2018-02-06 | Global Blood Therapeutics Inc | ALDEHYDE COMPOUNDS FOR THE TREATMENT OF PULMONARY FIBROSIS, HYPOXIA, AND AUTOIMMUNE AND CONNECTIVE TISSUE DISEASES |
MA43373A (en) | 2015-12-04 | 2018-10-10 | Global Blood Therapeutics Inc | DOSAGE REGIMES FOR 2-HYDROXY-6 - ((2- (1-ISOPROPYL-1H-PYRAZOL-5-YL) PYRIDIN-3-YL) METHOXY) BENZALDEHYDE |
TWI825524B (en) | 2016-05-12 | 2023-12-11 | 美商全球血液治療公司 | Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1hpyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde |
TW202332423A (en) | 2016-10-12 | 2023-08-16 | 美商全球血液治療公司 | Tablets comprising 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
ES2966707T3 (en) | 2018-10-01 | 2024-04-23 | Global Blood Therapeutics Inc | Hemoglobin modulators for the treatment of sickle cell disease |
BR112021007044B1 (en) | 2018-11-19 | 2022-04-19 | Global Blood Therapeutics, Inc | Hemoglobin modulating compounds, their compositions and their uses |
TW202140452A (en) | 2018-11-29 | 2021-11-01 | 美商輝瑞股份有限公司 | Chemical compounds |
BR112022009522A2 (en) | 2019-11-19 | 2022-08-16 | Global Blood Therapeutics Inc | VOXELOTOR ADMINISTRATION METHODS |
CN112047924B (en) * | 2020-10-10 | 2023-04-18 | 山东汇海医药化工有限公司 | Preparation method of Wo Keluo polypeptide |
CA3237314A1 (en) | 2021-11-05 | 2023-05-11 | Global Blood Therapeutics, Inc. | Methods of administering voxelotor |
Family Cites Families (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE276479C (en) | ||||
DE226590C (en) | ||||
DE258226C (en) | ||||
NL105917C (en) | 1956-02-13 | 1900-01-01 | ||
BE787576A (en) | 1971-08-13 | 1973-02-14 | Hoechst Ag | BENZOFURANE DERIVATIVES AND THEIR USE AS OPTICAL BLASTERS |
BE787580A (en) | 1971-08-13 | 1973-02-14 | Hoechst Ag | FURANNE DERIVATIVE PREPARATION PROCESS |
GB1409865A (en) | 1973-02-13 | 1975-10-15 | Science Union & Cie | Dihydropyridines derivatives their preparation and pharmaceu tical compositions containing them |
GB1593417A (en) | 1976-12-22 | 1981-07-15 | Squibb & Sons Inc | Carbocyclic-fused pyrazolopyridine derivatives |
US4062858A (en) | 1976-12-22 | 1977-12-13 | E. R. Squibb & Sons, Inc. | Derivatives of 5,6-dihydrobenzo[5,6]cyclohepta[1,2-b]pyrazolo[4,3-e]pyridin-11(1H)-ones and 11(1H)-imines |
DE2964427D1 (en) | 1978-10-04 | 1983-02-03 | Ciba Geigy Ag | Process for the preparation of furanyl-benzazoles |
DE2853765A1 (en) | 1978-12-13 | 1980-06-26 | Bayer Ag | METHOD FOR PRODUCING BENZIMIDAZOLYLBENZOFURANES |
DE2904829A1 (en) | 1979-02-08 | 1980-08-14 | Bayer Ag | METHOD FOR PRODUCING BENZIMIDAZOLYLBENZOFURANE |
MW2380A1 (en) | 1979-06-29 | 1982-03-10 | Wellcome Found | Pharmaceutical ethers,preparation,use and intermediates therefor and their preparation |
EP0054924B1 (en) | 1980-12-18 | 1986-08-06 | The Wellcome Foundation Limited | Pharmaceutical compounds, their preparation and use |
JPS5929667A (en) | 1982-08-13 | 1984-02-16 | Otsuka Pharmaceut Co Ltd | Carbostyryl derivative |
US4478834A (en) | 1983-02-11 | 1984-10-23 | Usv Pharmaceutical Corporation | Dihydropyridines and their use in the treatment of asthma |
GB8402740D0 (en) | 1984-02-02 | 1984-03-07 | Scras | Furo-(3 4-c)-pyridine derivatives |
JPS6140236A (en) | 1984-08-02 | 1986-02-26 | Yamanouchi Pharmaceut Co Ltd | Hydroquinone derivative |
DE3431004A1 (en) | 1984-08-23 | 1986-03-06 | Hoechst Ag, 6230 Frankfurt | NEW 3-PYRIDYL COMPOUNDS AND METHOD FOR THEIR PRODUCTION |
GB8603475D0 (en) | 1986-02-12 | 1986-03-19 | Glaxo Group Ltd | Chemical compounds |
DK111387A (en) | 1986-03-05 | 1987-09-06 | Otsuka Pharma Co Ltd | CARBOSTYRIL DERIVATIVES AND SALTS THEREOF, MEDICINE CONTAINING SUCH DERIVATIVES AND PROCEDURES FOR THE PREPARATION OF THE DERIVATIVES |
US4831041A (en) | 1986-11-26 | 1989-05-16 | Fujisawa Pharmaceutical Co., Ltd. | Imidazopyridine compounds and processes for preparation thereof |
EP0278686A1 (en) | 1987-02-07 | 1988-08-17 | The Wellcome Foundation Limited | Pyridopyrimidines methods for their preparation and pharmaceutical formulations thereof |
JPH07121937B2 (en) | 1987-03-18 | 1995-12-25 | 大塚製薬株式会社 | Carbostyril derivative |
JPS63258463A (en) | 1987-04-14 | 1988-10-25 | Kumiai Chem Ind Co Ltd | 2-phenoxypyrimidine derivative and herbicide |
GB8711802D0 (en) | 1987-05-19 | 1987-06-24 | Fujisawa Pharmaceutical Co | Dithioacetal compounds |
GB8718940D0 (en) | 1987-08-11 | 1987-09-16 | Glaxo Group Ltd | Chemical compounds |
US4920131A (en) | 1987-11-03 | 1990-04-24 | Rorer Pharmaceutical Corp. | Quinoline derivatives and use thereof as antagonists of leukotriene D4 |
JP2650038B2 (en) | 1988-01-27 | 1997-09-03 | サントリー株式会社 | Pyrrolitidine compounds and uses thereof |
EP0336369A1 (en) | 1988-04-04 | 1989-10-11 | E.R. Squibb & Sons, Inc. | 3-Acylamino-1-[[[(substituted sulfonyl)amino]carbonyl]amino]2-azetidinones |
US4952574A (en) | 1988-09-26 | 1990-08-28 | Riker Laboratories, Inc. | Antiarrhythmic substituted N-(2-piperidylmethyl)benzamides |
IE81170B1 (en) | 1988-10-21 | 2000-05-31 | Zeneca Ltd | Pyridine derivatives |
DD276480A1 (en) | 1988-10-26 | 1990-02-28 | Fahlberg List Veb | PROCESS FOR THE PREPARATION OF NAPHTHO / 2,1-B / FUR-2-YLCHINOXALINES |
US5236917A (en) | 1989-05-04 | 1993-08-17 | Sterling Winthrop Inc. | Saccharin derivatives useful as proteolytic enzyme inhibitors and compositions and method of use thereof |
IT1230859B (en) | 1989-06-05 | 1991-11-08 | Corvi Camillo Spa | 2 ALCHYLYLPHENOLS SUBSTITUTED FOR ANTI-INFLAMMATORY ACTION, PROCEDURE FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM. |
EP0453210A3 (en) | 1990-04-19 | 1993-01-13 | Imperial Chemical Industries Plc | Pyridine derivatives |
IE912064A1 (en) | 1990-06-18 | 1991-12-18 | Merck & Co Inc | Inhibitors of hiv reverse transcriptase |
CA2051705A1 (en) | 1990-06-19 | 1991-12-20 | Kiyoaki Katano | Pyridine derivatives having angiotensin ii antagonism |
NL9001752A (en) | 1990-08-02 | 1992-03-02 | Cedona Pharm Bv | NEW 1,4-DIHYDROPYRIDINE DERIVATIVES. |
IL99731A0 (en) | 1990-10-18 | 1992-08-18 | Merck & Co Inc | Hydroxylated pyridine derivatives,their preparation and pharmaceutical compositions containing them |
JPH05301872A (en) | 1992-04-23 | 1993-11-16 | Kumiai Chem Ind Co Ltd | Picolinic acid derivativee and herbicide |
US5403816A (en) | 1990-10-25 | 1995-04-04 | Kumiai Chemical Industry Co., Ltd. | Picolinic acid derivative and herbicidal composition |
WO1992013841A1 (en) | 1991-02-08 | 1992-08-20 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Complexing agents |
JPH0641118A (en) | 1991-05-31 | 1994-02-15 | Kumiai Chem Ind Co Ltd | Picolinic acid derivative and herbicide |
US5185251A (en) | 1991-06-07 | 1993-02-09 | Merck & Co., Inc. | Microbial transformation of a substituted pyridinone using actinoplanacete sp. MA 6559 |
JP2600644B2 (en) | 1991-08-16 | 1997-04-16 | 藤沢薬品工業株式会社 | Thiazolyl benzofuran derivative |
FR2680512B1 (en) | 1991-08-20 | 1995-01-20 | Adir | NOVEL 2,4-THIAZOLIDINEDIONE DERIVATIVES, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM. |
US5202243A (en) | 1991-10-04 | 1993-04-13 | Merck & Co., Inc. | Method of hydroxylating 3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methyl-2-(1H)-pyridinone by incubation with liver slices |
GB9203798D0 (en) | 1992-02-21 | 1992-04-08 | Fujisawa Pharmaceutical Co | Quinolylbenzofuran derivatives,processes for preparation thereof and pharmaceutical composition comprising the same |
EP0648209A1 (en) | 1992-07-01 | 1995-04-19 | Byk Gulden Lomberg Chemische Fabrik GmbH | Contrast agents for mr diagnosis |
US5290941A (en) | 1992-10-14 | 1994-03-01 | Merck & Co., Inc. | Facile condensation of methylbenzoxazoles with aromatic aldehydes |
AU668818B2 (en) | 1993-04-07 | 1996-05-16 | Taiho Pharmaceutical Co., Ltd. | Thiazolidine derivative and pharmaceutical composition containing the same |
DE4318550A1 (en) | 1993-06-04 | 1994-12-08 | Boehringer Mannheim Gmbh | Arylidene-4-oxo-2-thioxo-3-thiazolidinecarboxylic acids, process for their preparation and pharmaceutical compositions containing them |
AU672699B2 (en) | 1993-06-30 | 1996-10-10 | Sankyo Company Limited | Amide and urea derivatives having anti-hypercholesteremic activity, their preparation and their therapeutic uses |
JPH0725882A (en) | 1993-07-07 | 1995-01-27 | Res Dev Corp Of Japan | Intermediate for production of acromelic acid b and e and its production |
DK0637586T3 (en) | 1993-08-05 | 1999-12-06 | Hoechst Marion Roussel Inc | 2- (Piperidin-4-yl, pyridin-4-yl and tetrahydropyridin-4-yl) -benzofuran-7-carbamate derivatives, their preparation and use |
EP0640609A1 (en) | 1993-08-24 | 1995-03-01 | Ono Pharmaceutical Co., Ltd. | Fused phenol derivatives having inhibitory activity on TXA2 synthetase, and 5-lipoxygenase and scavenging activity on oxygen species |
US5840900A (en) | 1993-10-20 | 1998-11-24 | Enzon, Inc. | High molecular weight polymer-based prodrugs |
US5880131A (en) | 1993-10-20 | 1999-03-09 | Enzon, Inc. | High molecular weight polymer-based prodrugs |
US5965566A (en) | 1993-10-20 | 1999-10-12 | Enzon, Inc. | High molecular weight polymer-based prodrugs |
US5605976A (en) | 1995-05-15 | 1997-02-25 | Enzon, Inc. | Method of preparing polyalkylene oxide carboxylic acids |
WO1995014015A1 (en) | 1993-11-19 | 1995-05-26 | Ciba-Geigy Ag | Benzothiophene derivatives possessing a methoxyimino substituent as microbicides |
EP0658559A1 (en) | 1993-12-14 | 1995-06-21 | Chemisch Pharmazeutische Forschungsgesellschaft m.b.H. | Thienothiazin derivatives, process for their preparation and their use as 5-dipoxygenase and cyclooxygenase inhibitors |
CA2183315C (en) | 1994-02-14 | 1999-08-31 | Gary A. Flynn | Novel mercaptoacetylamido 1,3,4,5-tetrahydro-benzo[c]azepin-3-one disulfide derivatives useful as inhibitors of enkephalinase and ace |
GB9420557D0 (en) | 1994-10-12 | 1994-11-30 | Zeneca Ltd | Aromatic compounds |
DE4442050A1 (en) | 1994-11-25 | 1996-05-30 | Hoechst Ag | Heterospiro compounds and their use as electroluminescent materials |
US5650408A (en) | 1995-06-07 | 1997-07-22 | Karanewsky; Donald S. | Thiazolo benzazepine containing dual action inhibitors |
TW434240B (en) | 1995-06-20 | 2001-05-16 | Zeneca Ltd | Aromatic compounds, preparation thereof and pharmaceutical composition comprising same |
JP3895404B2 (en) | 1996-05-17 | 2007-03-22 | 興和株式会社 | Chalcone derivative and pharmaceutical containing the same |
EP0923580A1 (en) | 1996-07-26 | 1999-06-23 | Dr. Reddy's Research Foundation | Thiazolidinedione compounds having antidiabetic, hypolipidaemic, antihypertensive properties, process for their preparation and pharmaceutical compositions thereof |
US6630496B1 (en) | 1996-08-26 | 2003-10-07 | Genetics Institute Llc | Inhibitors of phospholipase enzymes |
AU717430B2 (en) | 1996-08-26 | 2000-03-23 | Genetics Institute, Llc | Inhibitors of phospholipase enzymes |
AU4136197A (en) | 1996-09-09 | 1998-03-26 | Kyowa Hakko Kogyo Co. Ltd. | Pyrrolocarbazole derivatives |
US6204221B1 (en) | 1996-11-12 | 2001-03-20 | Syngenta Crop Protection, Inc. | Herbicides |
US6043389A (en) | 1997-03-11 | 2000-03-28 | Mor Research Applications, Ltd. | Hydroxy and ether-containing oxyalkylene esters and uses thereof |
US5760232A (en) | 1997-06-16 | 1998-06-02 | Schering Corporation | Synthesis of intermediates useful in preparing bromo-substituted tricyclic compounds |
US6214817B1 (en) | 1997-06-20 | 2001-04-10 | Monsanto Company | Substituted pyridino pentaazamacrocyle complexes having superoxide dismutase activity |
US6011042A (en) | 1997-10-10 | 2000-01-04 | Enzon, Inc. | Acyl polymeric derivatives of aromatic hydroxyl-containing compounds |
US6111107A (en) | 1997-11-20 | 2000-08-29 | Enzon, Inc. | High yield method for stereoselective acylation of tertiary alcohols |
BR9815170A (en) | 1997-12-12 | 2000-10-10 | Euro Celtique S A Luxembourg | "method of obtaining compound applicable in the treatment of asthma in mammals" |
TR200002445T2 (en) | 1998-02-25 | 2000-12-21 | Genetics Institute, Inc. | Phospholipase inhibitors. |
WO1999047529A1 (en) | 1998-03-18 | 1999-09-23 | Ariad Pharmaceuticals, Inc. | Heterocyclic signal transduction inhibitors, compositions containing them |
US6214879B1 (en) | 1998-03-24 | 2001-04-10 | Virginia Commonwealth University | Allosteric inhibitors of pyruvate kinase |
US6153655A (en) | 1998-04-17 | 2000-11-28 | Enzon, Inc. | Terminally-branched polymeric linkers and polymeric conjugates containing the same |
GB9810860D0 (en) | 1998-05-20 | 1998-07-22 | Hoechst Schering Agrevo Gmbh | Substituted pyridine and pyrimidines, processes for their preparation and their use as pesticides |
US6232320B1 (en) | 1998-06-04 | 2001-05-15 | Abbott Laboratories | Cell adhesion-inhibiting antiinflammatory compounds |
CA2333770A1 (en) | 1998-06-04 | 1999-12-09 | Abbott Laboratories | Cell adhesion-inhibiting antinflammatory compounds |
GB9818627D0 (en) | 1998-08-26 | 1998-10-21 | Glaxo Group Ltd | Improvements in dva vaccination |
GB9823871D0 (en) | 1998-10-30 | 1998-12-23 | Pharmacia & Upjohn Spa | 2-Amino-thiazole derivatives, process for their preparation, and their use as antitumour agents |
US20030060425A1 (en) | 1998-11-24 | 2003-03-27 | Ahlem Clarence N. | Immune modulation method using steroid compounds |
ID29066A (en) | 1998-12-14 | 2001-07-26 | Hoffmann La Roche | FENILGLISINA DOWN |
EP1150957A1 (en) | 1998-12-31 | 2001-11-07 | Aventis Pharmaceuticals Inc. | N-carboxymethyl substituted benzolactams as inhibitors of matrix metalloproteinase |
US6544980B2 (en) | 1998-12-31 | 2003-04-08 | Aventis Pharmaceuticals Inc. | N-carboxymethyl substituted benzolactams as inhibitors of matrix metalloproteinase |
EP1165515A1 (en) | 1999-03-31 | 2002-01-02 | Basf Aktiengesellschaft | Pyridine-2,3-dicarboxylic acid diamides |
US6251927B1 (en) | 1999-04-20 | 2001-06-26 | Medinox, Inc. | Methods for treatment of sickle cell anemia |
WO2000069472A2 (en) | 1999-05-14 | 2000-11-23 | Boehringer Ingelheim Pharmaceuticals, Inc. | Enzyme-activated anti-tumor prodrug compounds |
US6184228B1 (en) | 1999-05-25 | 2001-02-06 | Anadys Pharmaceuticals, Inc. | Anti-sickling agents: selection methods and effective compounds |
EP1181296A1 (en) | 1999-06-03 | 2002-02-27 | Abbott Laboratories | Cell adhesion-inhibiting antiinflammatory compounds |
AUPQ105499A0 (en) | 1999-06-18 | 1999-07-08 | Biota Scientific Management Pty Ltd | Antiviral agents |
EE04591B1 (en) | 1999-06-28 | 2006-02-15 | Janssen Pharmaceutica N.V. | Respiratory Syncytial Virus Replication Inhibitors, Method of Preparation, Use and Intermediates, Pharmaceutical Composition and Method of Preparation and Product |
DK1217001T3 (en) | 1999-09-28 | 2006-03-20 | Eisai Co Ltd | Quinuclidine compounds and drugs containing them as the active ingredient |
CA2388240C (en) | 1999-11-05 | 2010-04-20 | Emisphere Technologies, Inc. | Phenoxy carboxylic acid compounds and compositions for delivering active agents |
AUPQ407699A0 (en) | 1999-11-16 | 1999-12-09 | Fujisawa Pharmaceutical Co., Ltd. | Aminoalcohol derivatives |
EP1248869A2 (en) | 2000-01-07 | 2002-10-16 | Transform Pharmaceuticals, Inc. | High-throughput formation, identification, and analysis of diverse solid-forms |
AU2001230537A1 (en) | 2000-02-01 | 2001-08-14 | Daiichi Pharmaceutical Co., Ltd. | Pyridoxazine derivatives |
US6506755B2 (en) | 2000-02-03 | 2003-01-14 | Hoffmann-La Roche Inc. | Thiazolidinecarboxyl acids |
AUPQ585000A0 (en) | 2000-02-28 | 2000-03-16 | Fujisawa Pharmaceutical Co., Ltd. | Aminoalcohol derivatives |
EP1265840A2 (en) | 2000-03-17 | 2002-12-18 | Corixa Corporation | Novel amphipathic aldehydes and their use as adjuvants and immunoeffectors |
AUPQ841300A0 (en) | 2000-06-27 | 2000-07-20 | Fujisawa Pharmaceutical Co., Ltd. | New aminoalcohol derivatives |
JP2002022464A (en) | 2000-07-05 | 2002-01-23 | Mazda Motor Corp | Apparatus and method of processing information for moving bodies and memory medium having stored information processing programs for moving bodies |
NZ523273A (en) | 2000-07-14 | 2004-08-27 | F | N-oxides as NK1 receptor antagonist prodrugs of 4-phenyl-pyridine derivatives |
US20020142995A1 (en) | 2000-08-01 | 2002-10-03 | Nicolau Yves Claude | Ammonium salts of hemoglobin allosteric effectors, and uses thereof |
US6653313B2 (en) | 2000-08-10 | 2003-11-25 | Warner-Lambert Company Llc | 1,4-dihydropyridine compounds as bradykinin antagonists |
JP4272338B2 (en) | 2000-09-22 | 2009-06-03 | バイエル アクチェンゲゼルシャフト | Pyridine derivatives |
AUPR034000A0 (en) | 2000-09-25 | 2000-10-19 | Fujisawa Pharmaceutical Co., Ltd. | Aminoalcohol derivatives |
JP4387103B2 (en) | 2000-11-20 | 2009-12-16 | ビオヴィトルム・アクチボラゲット(プブリクト) | Piperazinyl pyrazine compounds as agonists or antagonists of serotonin 5HT-2 receptor |
WO2002051849A1 (en) | 2000-12-26 | 2002-07-04 | Daiichi Pharmaceutical Co., Ltd. | Cdk4 inhibitors |
ATE433964T1 (en) | 2000-12-28 | 2009-07-15 | Takeda Pharmaceutical | ALKANE ACID DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE |
US20030022923A1 (en) | 2001-03-01 | 2003-01-30 | Medinox, Inc. | Methods for treatment of sickle cell anemia |
US6627646B2 (en) | 2001-07-17 | 2003-09-30 | Sepracor Inc. | Norastemizole polymorphs |
JP4425628B2 (en) | 2001-07-23 | 2010-03-03 | ジョンソン・アンド・ジョンソン・コンシューマー・カンパニーズ・インコーポレイテッド | Cytoprotective compounds, pharmaceutical and cosmetic formulations and methods |
JP2003075970A (en) | 2001-08-31 | 2003-03-12 | Konica Corp | Silver halide color photographic sensitive material, color photographic sensitive material, image forming method for the same and method for creating digital image information |
KR100467313B1 (en) | 2001-11-22 | 2005-01-24 | 한국전자통신연구원 | Red organic electroluminescent compounds, method for synthesizing the same and electroluminescent devices |
GB0128499D0 (en) | 2001-11-28 | 2002-01-23 | Merck Sharp & Dohme | Therapeutic agents |
US20030187026A1 (en) | 2001-12-13 | 2003-10-02 | Qun Li | Kinase inhibitors |
AU2002360763A1 (en) | 2001-12-19 | 2003-07-09 | Atherogenics, Inc. | Chalcone derivatives and their use to treat diseases |
US20030190333A1 (en) | 2002-02-04 | 2003-10-09 | Corixa Corporation | Immunostimulant compositions comprising aminoalkyl glucosaminide phosphates and saponins |
WO2003088980A1 (en) | 2002-04-18 | 2003-10-30 | Embury Stephen H | Method and composition for preventing pain in sickle cell patients |
US6608076B1 (en) | 2002-05-16 | 2003-08-19 | Enzon, Inc. | Camptothecin derivatives and polymeric conjugates thereof |
GB0212785D0 (en) | 2002-05-31 | 2002-07-10 | Glaxo Group Ltd | Compounds |
EP1546137A1 (en) | 2002-08-08 | 2005-06-29 | SmithKline Beecham Corporation | Benzimidazol-1-yl-thiophene compounds for the treatment of cancer |
US7560558B2 (en) | 2002-08-23 | 2009-07-14 | Kirin Beer Kabushiki Kaisha | Compound having TGFβ inhibitory activity and medicinal composition containing the same |
EP1541564A1 (en) | 2002-09-10 | 2005-06-15 | Takeda Pharmaceutical Company Limited | Five-membered heterocyclic compounds |
ATE527238T1 (en) | 2002-12-04 | 2011-10-15 | Univ Virginia Commonwealth | AGENT AGAINST SICKLE CELL ANEMIA |
WO2004056727A2 (en) | 2002-12-19 | 2004-07-08 | Atherogenics, Inc. | Process of making chalcone derivatives |
WO2004058790A1 (en) | 2002-12-25 | 2004-07-15 | Kissei Pharmaceutical Co., Ltd. | Nitrogen-containing heterocycic derivatives, medicinal compositions containing the same and medicinal use thereof |
DE50303264D1 (en) | 2003-02-24 | 2006-06-08 | Randolph Riemschneider | COSMETIC COMPOSITION WITH WHITENING EFFECT, METHOD FOR THEIR PRODUCTION AND THEIR USE |
US20040186077A1 (en) | 2003-03-17 | 2004-09-23 | Medicure International Inc. | Novel heteroaryl phosphonates as cardioprotective agents |
ZA200507752B (en) | 2003-03-28 | 2007-01-31 | Threshold Pharmaceuticals Inc | Compositions and methods for treating cancer |
US7291631B2 (en) | 2003-04-11 | 2007-11-06 | Genzyme Corporation | CXCR4 chemokine receptor binding compounds |
AU2004247319A1 (en) | 2003-06-12 | 2004-12-23 | Novo Nordisk A/S | Pyridinyl carbamates as hormone-sensitive lipase inhibitors |
WO2005019220A2 (en) | 2003-08-11 | 2005-03-03 | Cellular Genomics Inc. | Substituted imidazo[1,2-a]pyrazines as modulators of kinase activity |
US7411083B2 (en) | 2003-09-25 | 2008-08-12 | Wyeth | Substituted acetic acid derivatives |
WO2005049573A1 (en) | 2003-11-05 | 2005-06-02 | F. Hoffmann-La Roche Ag | Phenyl derivatives as ppar agonists |
RU2006120084A (en) | 2003-11-10 | 2008-01-10 | Шеринг Акциенгезельшафт (De) | BENZYLETHYRAMINES USEFUL AS ANTAGONISTS CCR-5 |
CN101966183A (en) | 2003-12-02 | 2011-02-09 | 细胞基因公司 | Methods and compositions for the treatment and management of hemoglobinopathy and anemia |
US7378439B2 (en) | 2004-01-20 | 2008-05-27 | Usv, Ltd. | Process for the preparation of 4-(2-dipropylaminoethyl)-1,3-dihydro-2H-indol-2-one hydrochloride |
CA2554120A1 (en) | 2004-01-30 | 2005-08-18 | Merck & Co., Inc. | N-benzyl-3,4-dihydroxypyridine-2-carboxamide and n-benzyl-2,3-dihydroxypyridine-4-carboxamide compounds useful as hiv integras inhibitors |
GB0403038D0 (en) | 2004-02-11 | 2004-03-17 | Novartis Ag | Organic compounds |
CN1930161A (en) | 2004-03-09 | 2007-03-14 | P·安杰莱蒂分子生物学研究所 | HIV integrase inhibitors |
WO2005086951A2 (en) | 2004-03-10 | 2005-09-22 | Threshold Pharmaceuticals, Inc. | Hypoxia-activated anti-cancer agents |
DE102004015226B3 (en) | 2004-03-24 | 2005-08-25 | Siemens Ag | Plasma cleaning method suitable for interior surfaces of e.g. bulbs for discharge lamps, forms back pressure and ignites plasma only inside bulb |
US20070293698A1 (en) | 2004-04-22 | 2007-12-20 | Allos Therapeutics, Inc. | Compositions of Allosteric Hemoglobin Modifiers and Methods of Making the Same |
WO2006003923A1 (en) | 2004-06-30 | 2006-01-12 | Sankyo Company, Limited | Substituted benzene compound |
TW200606129A (en) | 2004-07-26 | 2006-02-16 | Chugai Pharmaceutical Co Ltd | Novel cyclohexane derivative, its prodrug, its salt and diabetic therapeutic agent containing the same |
GB0420722D0 (en) | 2004-09-17 | 2004-10-20 | Addex Pharmaceuticals Sa | Novel allosteric modulators |
AU2005304220A1 (en) | 2004-10-28 | 2006-05-18 | Medicure International Inc. | Dual antiplatelet/anticoagulant pyridoxine analogs |
JP2008523139A (en) | 2004-12-14 | 2008-07-03 | アストラゼネカ・アクチエボラーグ | Substituted aminopyridines and uses thereof |
US7968574B2 (en) | 2004-12-28 | 2011-06-28 | Kinex Pharmaceuticals, Llc | Biaryl compositions and methods for modulating a kinase cascade |
ATE516026T1 (en) | 2005-02-21 | 2011-07-15 | Shionogi & Co | BICYCLIC CARBAMOYLPYRIDONE DERIVATIVE WITH HIV INTEGRASE INHIBITING EFFECT |
BRPI0608714A2 (en) | 2005-03-19 | 2010-01-26 | Amorepacific Corp | compounds, isomers thereof, or pharmaceutically acceptable salts thereof as a vanilloid receptor antagonist, and pharmaceutical compositions containing them |
WO2006106711A1 (en) | 2005-03-30 | 2006-10-12 | Eisai R & D Management Co., Ltd. | Antifungal agent containing pyridine derivative |
GB0506677D0 (en) | 2005-04-01 | 2005-05-11 | Btg Int Ltd | Iron modulators |
DK2465580T3 (en) | 2005-04-28 | 2014-03-10 | Viiv Healthcare Co | POLYCYCLIC CARBAMOYL PYRIDONE DERIVATIVES WITH HIV INTEGRASE INHIBITIVE ACTIVITY |
DE102005025989A1 (en) | 2005-06-07 | 2007-01-11 | Bayer Cropscience Ag | carboxamides |
JP2006342115A (en) | 2005-06-10 | 2006-12-21 | Shionogi & Co Ltd | Polycyclic compound having hiv integrase inhibition activity |
AU2006264649A1 (en) | 2005-06-30 | 2007-01-11 | Prosidion Limited | GPCR agonists |
CN100562514C (en) | 2005-07-22 | 2009-11-25 | 中国科学院上海药物研究所 | Substituted propion amide derivatives, Preparation Method And The Use |
GB0516270D0 (en) | 2005-08-08 | 2005-09-14 | Glaxo Group Ltd | Novel compounds |
US8138360B2 (en) | 2005-10-11 | 2012-03-20 | University of Pittsburgh—of the Commonwealth System of Higher Education | Isotopically-labeled benzofuran compounds as imaging agents for amyloidogenic proteins |
WO2007049675A1 (en) | 2005-10-27 | 2007-05-03 | Shionogi & Co., Ltd. | Polycyclic carbamoylpyridone derivative having inhibitory activity on hiv integrase |
JP2009515997A (en) | 2005-11-18 | 2009-04-16 | タケダ サン ディエゴ インコーポレイテッド | Glucokinase activator |
WO2007084914A2 (en) | 2006-01-17 | 2007-07-26 | Neurocrine Biosciences, Inc. | Phenoxy-substituted pyrimidines as adenosine receptor antagonists |
WO2007095495A2 (en) | 2006-02-13 | 2007-08-23 | Pharmacopeia, Inc. | Benzodiazepine gcnf modulators for stem cell modulation |
RU2318818C1 (en) | 2006-04-12 | 2008-03-10 | Общество С Ограниченной Ответственностью "Исследовательский Институт Химического Разнообразия" | Azaheterocycles, combinatory library, focused library, pharmaceutical composition and method for preparing (variants) |
GB0614586D0 (en) | 2006-07-22 | 2006-08-30 | Pliva Istrazivacki Inst D O O | Pharmaceutical Formulation |
CN101113148A (en) | 2006-07-26 | 2008-01-30 | 中国海洋大学 | Dioxygen piperazidine compounds and preparation method and usage thereof |
JP5254228B2 (en) | 2006-07-27 | 2013-08-07 | 株式會社アモーレパシフィック | Novel compounds, isomers or pharmaceutically acceptable salts thereof as vanilloid receptor antagonists; and pharmaceutical compositions containing the same |
TW200817424A (en) | 2006-08-04 | 2008-04-16 | Daiichi Sankyo Co Ltd | Benzylphenyl glucopyranoside derivatives |
TWI389895B (en) | 2006-08-21 | 2013-03-21 | Infinity Discovery Inc | Compounds and methods for inhibiting the interaction of bcl proteins with binding partners |
EP3388417A1 (en) | 2006-09-03 | 2018-10-17 | Techfields Biochem Co. Ltd | Positively charged water-soluble prodrugs of acetaminophen and related compounds with very fast skin penetration rate |
MX2009003673A (en) | 2006-10-04 | 2009-04-22 | Pfizer Prod Inc | Pyrido[4,3-d]pyrimidin-4(3h)-one derivatives as calcium receptor antagonists. |
ATE538099T1 (en) | 2006-10-23 | 2012-01-15 | Merck Sharp & Dohme | 2-Ä1-PHENYL-5-HYDROXY-4-ALPHA-METHYL-HEXAHYDROCYCLOPENTAÄFÜINDAZOLE-5-YLÜETHYLPHENYL DERIVATIVES AS GLUCOCORTICOID RECEPTOR LIGANDS |
CA2670984A1 (en) | 2006-11-30 | 2008-06-05 | Tokyo Institute Of Technology | Novel curcumin derivative |
FR2909379B1 (en) | 2006-11-30 | 2009-01-16 | Servier Lab | NOVEL HETEROCYCLIC DERIVATIVES, PROCESS FOR PREPARING THEM AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME. |
TW200835687A (en) | 2006-11-30 | 2008-09-01 | R Tech Ueno Ltd | Thiazole derivatives and their use as VAP-1 inhibitor |
CA2677949C (en) | 2007-02-22 | 2016-02-09 | Paul Anthony Worthington | Iminipyridine derivatives and their uses as microbiocides |
TWI407960B (en) | 2007-03-23 | 2013-09-11 | Jerini Ag | Small molecule bradykinin b2 receptor modulators |
DK2149545T3 (en) | 2007-05-22 | 2017-01-02 | Sumitomo Chemical Co | PROCEDURE FOR PREPARING A BENZALDEHYD COMPOUND |
WO2009001214A2 (en) | 2007-06-28 | 2008-12-31 | Pfizer Products Inc. | Thieno[2,3-d]pyrimidin-4(3h)-one, isoxazolo[5,4-d]pyrimidin-4(5h)-one and isothiazolo[5,4-d]pyrimidin-4(5h)-one derivatives as calcium receptor antagonists |
US20090069288A1 (en) | 2007-07-16 | 2009-03-12 | Breinlinger Eric C | Novel therapeutic compounds |
CN101743226B (en) | 2007-07-17 | 2012-10-10 | 霍夫曼-拉罗奇有限公司 | Inhibitors of 11beta-hydroxysteroid dehydrogenase |
WO2009013335A1 (en) | 2007-07-26 | 2009-01-29 | Novartis Ag | Organic compounds |
TW200918521A (en) | 2007-08-31 | 2009-05-01 | Astrazeneca Ab | Heterocyclic amides and methods of use thereof |
EP2212323B1 (en) | 2007-10-17 | 2012-08-15 | Novartis AG | Imidazo [1,2-a] pyridine derivatives useful as alk inhibitors |
PL2767536T3 (en) | 2007-12-04 | 2016-01-29 | Hoffmann La Roche | Isoxazolo-pyridine derivatives |
US7776875B2 (en) | 2007-12-19 | 2010-08-17 | Hoffman-La Roche Inc. | Spiroindolinone derivatives |
JP2009203230A (en) | 2008-01-31 | 2009-09-10 | Daiichi Sankyo Co Ltd | Pharmaceutical composition containing benzyl phenyl glucopyranoside derivative |
DK2241546T3 (en) | 2008-02-14 | 2017-11-13 | Sumitomo Chemical Co | PROCEDURE FOR PREPARING A BENZALDEHYD COMPOUND |
CN102137837A (en) | 2008-04-11 | 2011-07-27 | 株式会社医药分子设计研究所 | PAI-1 inhibitor |
US8633245B2 (en) | 2008-04-11 | 2014-01-21 | Institute Of Medicinal Molecular Design, Inc. | PAI-1 inhibitor |
JP2011136906A (en) | 2008-04-18 | 2011-07-14 | Otsuka Pharmaceut Co Ltd | Heterocyclic compound |
US8119647B2 (en) | 2008-04-23 | 2012-02-21 | Glenmark Pharmaceuticals S.A. | Fused pyrimidineone compounds as TRPV3 modulators |
KR101538822B1 (en) | 2008-05-08 | 2015-07-22 | 노바 사우쓰이스턴 유니버시티 | Specific inhibitors for vascular endothelial growth factor receptors |
EP2300433A4 (en) | 2008-06-04 | 2012-03-07 | Ambrilia Biopharma Inc | Hiv integrase inhibitors from pyridoxine |
DE102008027574A1 (en) | 2008-06-10 | 2009-12-17 | Merck Patent Gmbh | New pyrrolidine derivatives as MetAP-2 inhibitors |
JP5314330B2 (en) | 2008-06-16 | 2013-10-16 | 住友化学株式会社 | Process for producing 2- (aryloxymethyl) benzaldehyde and its intermediate |
GB0811451D0 (en) | 2008-06-20 | 2008-07-30 | Syngenta Participations Ag | Novel microbiocides |
AR073304A1 (en) | 2008-09-22 | 2010-10-28 | Jerini Ag | MODULATORS OF THE BRADIQUININE B2 RECEPTOR OF SMALL MOLECULA |
US8815875B2 (en) | 2008-11-12 | 2014-08-26 | Merck Sharp & Dohme Corp. | Inhibitors of fatty acid binding protein (FABP) |
TW201033201A (en) | 2009-02-19 | 2010-09-16 | Hoffmann La Roche | Isoxazole-isoxazole and isoxazole-isothiazole derivatives |
HUE033494T2 (en) | 2009-03-31 | 2017-12-28 | Ligand Pharm Inc | A biphenylsulfonamide endothelin and angiotensin ii receptor antagonist to treat glomerulosclerosis |
ES2440000T3 (en) | 2009-05-08 | 2014-01-27 | Tetraphase Pharmaceuticals, Inc. | 8-aza-tetracycline compounds |
US8486965B2 (en) | 2009-08-26 | 2013-07-16 | Takeda Pharmaceutical Company Limited | Pyrrolo[2,3-b]pyridine derivative and use thereof for treatment of cancer |
JPWO2011025006A1 (en) | 2009-08-31 | 2013-01-31 | 日本ケミファ株式会社 | GPR119 agonist |
KR20120059626A (en) | 2009-09-21 | 2012-06-08 | 에프. 호프만-라 로슈 아게 | Heterocyclic antiviral compounds |
FI2498756T4 (en) | 2009-11-09 | 2023-03-22 | Tablet formulations of neratinib maleate | |
TW201139406A (en) | 2010-01-14 | 2011-11-16 | Glaxo Group Ltd | Voltage-gated sodium channel blockers |
KR101698153B1 (en) | 2010-04-26 | 2017-01-23 | 광주과학기술원 | Novel pyridine carboxylic acid compound as a P2X1 and P2X3 receptor antagonist, the preparation method thereof and a composition containing the same |
CN102232949A (en) | 2010-04-27 | 2011-11-09 | 孙远 | Drug dissolution increasing composition and preparation method thereof |
TWI535442B (en) | 2010-05-10 | 2016-06-01 | Kyowa Hakko Kirin Co Ltd | A nitrogen-containing heterocyclic compound having an action of inhibiting the production of canine erythritine |
US20120122928A1 (en) | 2010-08-11 | 2012-05-17 | Bayer Cropscience Ag | Heteroarylpiperidine and -Piperazine Derivatives as Fungicides |
CN102116772B (en) | 2010-09-28 | 2013-08-28 | 上海大学 | Method for screening dihydrochalcone compound |
KR20140007364A (en) | 2010-12-27 | 2014-01-17 | 다케다 야쿠힌 고교 가부시키가이샤 | Orally disintegrating tablet |
CA2832570A1 (en) | 2011-04-06 | 2012-10-11 | Teva Pharmaceutical Industries Ltd. | New intermediates and processes for preparing ticagrelor |
CN103717588B (en) | 2011-04-11 | 2016-08-03 | 绿色科技株式会社 | Pyrazole derivatives |
CN105949193A (en) | 2011-09-15 | 2016-09-21 | 德莫科斯公司 | Noribogaine salt ansolvates |
US20140308260A1 (en) | 2011-10-07 | 2014-10-16 | Radiorx, Inc. | Methods and compositions comprising a nitrite-reductase promoter for treatment of medical disorders and preservation of blood products |
FI3738434T3 (en) * | 2011-12-28 | 2023-11-20 | Global Blood Therapeutics Inc | Intermediates to obtain substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation |
WO2013102145A1 (en) | 2011-12-28 | 2013-07-04 | Global Blood Therapeutics, Inc. | Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation |
BR112015015216B1 (en) | 2012-12-27 | 2020-01-07 | Sumitomo Chemical Company, Limited | TETRAZOLINONE COMPOUND, AGENT AND PLUG CONTROL METHOD |
CA2897742A1 (en) | 2013-02-19 | 2014-08-28 | Danone, S.A. | Functional peptides for obesity disorders |
US10266551B2 (en) | 2013-03-15 | 2019-04-23 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
BR112015021986A2 (en) | 2013-03-15 | 2017-07-18 | Global Blood Therapeutics Inc | compounds and their uses for hemoglobin modulation |
WO2014150289A1 (en) | 2013-03-15 | 2014-09-25 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
KR102293060B1 (en) | 2013-03-15 | 2021-08-23 | 글로벌 블러드 테라퓨틱스, 인크. | Compounds and uses thereof for the modulation of hemoglobin |
US20150057251A1 (en) | 2013-08-26 | 2015-02-26 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
WO2014150261A1 (en) | 2013-03-15 | 2014-09-25 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulaton of hemoglobin |
WO2014150256A1 (en) * | 2013-03-15 | 2014-09-25 | Global Blood Therapeutics, Inc. | Compositions and methods for the modulation of hemoglobin (s) |
US9604999B2 (en) | 2013-03-15 | 2017-03-28 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
US10100043B2 (en) | 2013-03-15 | 2018-10-16 | Global Blood Therapeutics, Inc. | Substituted aldehyde compounds and methods for their use in increasing tissue oxygenation |
US8952171B2 (en) | 2013-03-15 | 2015-02-10 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
US20140274961A1 (en) | 2013-03-15 | 2014-09-18 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
US9422279B2 (en) | 2013-03-15 | 2016-08-23 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
SG11201507320QA (en) | 2013-03-15 | 2015-10-29 | Global Blood Therapeutics Inc | Compounds and uses thereof for the modulation of hemoglobin |
US9802900B2 (en) | 2013-03-15 | 2017-10-31 | Global Blood Therapeutics, Inc. | Bicyclic heteroaryl compounds and uses thereof for the modulation of hemoglobin |
US9458139B2 (en) | 2013-03-15 | 2016-10-04 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
US20140271591A1 (en) | 2013-03-15 | 2014-09-18 | Global Blood Therapeutics, Inc. | Compositions and methods for the modulation of hemoglobin (s) |
WO2015031284A1 (en) * | 2013-08-26 | 2015-03-05 | Global Blood Therapeutics, Inc. | Formulations comprising wetting agents and compounds for the modulation of hemoglobin (s) |
US20160207904A1 (en) | 2013-08-27 | 2016-07-21 | Global Blood Therapeutics, Inc. | Crystalline 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde ansolvate salts |
WO2015031285A1 (en) | 2013-08-27 | 2015-03-05 | Global Blood Therapeutics, Inc. | Crystalline 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde ansolvate salts |
EA202092627A1 (en) | 2013-11-18 | 2021-09-30 | Глобал Блад Терапьютикс, Инк. | COMPOUNDS AND THEIR APPLICATIONS FOR HEMOGLOBIN MODULATION |
US20150141465A1 (en) | 2013-11-18 | 2015-05-21 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
WO2015116061A1 (en) | 2014-01-29 | 2015-08-06 | Global Blood Therapeutics, Inc. | 1:1 adducts of sickle hemoglobin |
US9248199B2 (en) | 2014-01-29 | 2016-02-02 | Global Blood Therapeutics, Inc. | 1:1 adducts of sickle hemoglobin |
FI3102208T4 (en) | 2014-02-07 | 2024-09-23 | Global Blood Therapeutics Inc | Crystalline polymorph of the free base of 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
TW201613916A (en) | 2014-06-03 | 2016-04-16 | Gilead Sciences Inc | TANK-binding kinase inhibitor compounds |
WO2016043849A2 (en) | 2014-07-24 | 2016-03-24 | Global Blood Therapeutics, Inc. | Compounds for treating acute respiratory distress syndrome or a negative effect thereof |
TWI544395B (en) | 2014-09-26 | 2016-08-01 | 義隆電子股份有限公司 | Scanning method and device of single layer capacitive touch panel |
MA41841A (en) | 2015-03-30 | 2018-02-06 | Global Blood Therapeutics Inc | ALDEHYDE COMPOUNDS FOR THE TREATMENT OF PULMONARY FIBROSIS, HYPOXIA, AND AUTOIMMUNE AND CONNECTIVE TISSUE DISEASES |
MA43373A (en) | 2015-12-04 | 2018-10-10 | Global Blood Therapeutics Inc | DOSAGE REGIMES FOR 2-HYDROXY-6 - ((2- (1-ISOPROPYL-1H-PYRAZOL-5-YL) PYRIDIN-3-YL) METHOXY) BENZALDEHYDE |
TWI825524B (en) | 2016-05-12 | 2023-12-11 | 美商全球血液治療公司 | Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1hpyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde |
TW202332423A (en) | 2016-10-12 | 2023-08-16 | 美商全球血液治療公司 | Tablets comprising 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
ES2966707T3 (en) | 2018-10-01 | 2024-04-23 | Global Blood Therapeutics Inc | Hemoglobin modulators for the treatment of sickle cell disease |
BR112021007044B1 (en) | 2018-11-19 | 2022-04-19 | Global Blood Therapeutics, Inc | Hemoglobin modulating compounds, their compositions and their uses |
-
2016
- 2016-12-02 MA MA043373A patent/MA43373A/en unknown
- 2016-12-02 MX MX2018006832A patent/MX2018006832A/en unknown
- 2016-12-02 SG SG11201804647TA patent/SG11201804647TA/en unknown
- 2016-12-02 SG SG10201912511WA patent/SG10201912511WA/en unknown
- 2016-12-02 WO PCT/US2016/064723 patent/WO2017096230A1/en active Application Filing
- 2016-12-02 US US15/368,142 patent/US11020382B2/en active Active
- 2016-12-02 BR BR112018011272A patent/BR112018011272A2/en not_active Application Discontinuation
- 2016-12-02 TW TW105140019A patent/TW201731509A/en unknown
- 2016-12-02 EP EP16813299.1A patent/EP3383392A1/en active Pending
-
2018
- 2018-06-04 MX MX2021008631A patent/MX2021008631A/en unknown
- 2018-06-04 IL IL259798A patent/IL259798A/en unknown
-
2021
- 2021-05-20 US US17/326,045 patent/US20210267956A1/en not_active Abandoned
- 2021-12-22 US US17/559,156 patent/US20220110928A1/en not_active Abandoned
-
2022
- 2022-08-05 US US17/881,874 patent/US11944612B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11530191B2 (en) | 2013-03-15 | 2022-12-20 | Global Blood Therapeutics, Inc. | Compounds and uses thereof for the modulation of hemoglobin |
US11452720B2 (en) | 2014-02-07 | 2022-09-27 | Global Blood Therapeutics, Inc. | Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde |
Also Published As
Publication number | Publication date |
---|---|
US11944612B2 (en) | 2024-04-02 |
WO2017096230A1 (en) | 2017-06-08 |
US20170157101A1 (en) | 2017-06-08 |
US20220110928A1 (en) | 2022-04-14 |
US11020382B2 (en) | 2021-06-01 |
MA43373A (en) | 2018-10-10 |
EP3383392A1 (en) | 2018-10-10 |
BR112018011272A2 (en) | 2018-11-21 |
SG11201804647TA (en) | 2018-06-28 |
TW201731509A (en) | 2017-09-16 |
SG10201912511WA (en) | 2020-02-27 |
US20220378770A1 (en) | 2022-12-01 |
MX2021008631A (en) | 2021-08-19 |
MX2018006832A (en) | 2018-11-09 |
IL259798A (en) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11944612B2 (en) | Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde | |
US20210315900A1 (en) | Solid dosage forms of palbociclib | |
US20220193107A1 (en) | Compositions comprising s-adenosylmethionine and a gallic acid ester | |
DK2694037T3 (en) | Formulations comprising 2-amino-2- [2- (4-octylphenyl) ethyl] propane-1,3-diol | |
JP2013539794A (en) | Pharmaceutical composition containing a DGAT1 inhibitor | |
SG177426A1 (en) | Solid pharmaceutical fixed dose compositions comprising irbesartan and amlodipine, their preparation and their therapeutic application | |
AU2018279834B2 (en) | Liquid dosage forms to treat cancer | |
WO2013109906A2 (en) | Methods and formulations for treating sialic acid deficiencies | |
JP7225221B2 (en) | A novel formulation of gamma-aminobutyric acid | |
OA18938A (en) | Dosing regimens for 2-Hydroxy-6-((2-(1Isopropyl-1H-Pyrazol-5-Yl)Pyridin-3-Yl)Methoxy) Benzaldehyde | |
AU2021312894A1 (en) | Low dose regimen and formulation of a 5-methyl-1,2,4-oxadiazol-3-yl compound | |
CN103054830A (en) | Soft capsule for treating nerve diseases | |
Rahman | Impact of Calvimax-D on the Dissolution Profile of Rocovus | |
WO2022005926A1 (en) | Modified release formulations of modified forms of trimetazidine | |
CN117942309A (en) | Preparation method of Sha Kuba triclosartan sodium and dapagliflozin double-layer tablet | |
WO2018148313A1 (en) | Solid fosmetpantotenate formulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
AS | Assignment |
Owner name: GLOBAL BLOOD THERAPEUTICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAMOS, ELEANOR L;LEHRER-GRAIWER, JOSHUA ELI;HUTCHALEELAHA, ATHIWAT;SIGNING DATES FROM 20170206 TO 20170208;REEL/FRAME:058286/0804 Owner name: GLOBAL BLOOD THERAPEUTICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEJUGAN, NAVEEN;REEL/FRAME:058286/0798 Effective date: 20180629 |
|
AS | Assignment |
Owner name: BIOPHARMA CREDIT PLC, UNITED KINGDOM Free format text: SECOND AMENDED AND RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:GLOBAL BLOOD THERAPEUTICS, INC.;REEL/FRAME:058575/0921 Effective date: 20211222 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- INCOMPLETE APPLICATION (PRE-EXAMINATION) |
|
AS | Assignment |
Owner name: GLOBAL BLOOD THERAPEUTICS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BIOPHARMA CREDIT PLC, AS COLLATERAL AGENT;REEL/FRAME:061620/0186 Effective date: 20221005 |