US20210178028A1 - Methods and devices for manipulating subdermal fat - Google Patents
Methods and devices for manipulating subdermal fat Download PDFInfo
- Publication number
- US20210178028A1 US20210178028A1 US17/166,543 US202117166543A US2021178028A1 US 20210178028 A1 US20210178028 A1 US 20210178028A1 US 202117166543 A US202117166543 A US 202117166543A US 2021178028 A1 US2021178028 A1 US 2021178028A1
- Authority
- US
- United States
- Prior art keywords
- needle
- subdermal fat
- treatment area
- fat
- subdermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000011282 treatment Methods 0.000 claims abstract description 60
- 210000004207 dermis Anatomy 0.000 claims abstract description 26
- 238000003780 insertion Methods 0.000 claims abstract description 15
- 230000037431 insertion Effects 0.000 claims abstract description 15
- 210000003491 skin Anatomy 0.000 claims description 66
- 238000001816 cooling Methods 0.000 claims description 13
- 208000035484 Cellulite Diseases 0.000 claims description 10
- 206010049752 Peau d'orange Diseases 0.000 claims description 10
- 230000036232 cellulite Effects 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 230000001483 mobilizing effect Effects 0.000 claims description 9
- 206010002091 Anaesthesia Diseases 0.000 claims description 6
- 230000037005 anaesthesia Effects 0.000 claims description 6
- 210000001789 adipocyte Anatomy 0.000 claims description 5
- 239000013043 chemical agent Substances 0.000 claims description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 238000002604 ultrasonography Methods 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 description 90
- 230000002500 effect on skin Effects 0.000 description 9
- 210000000577 adipose tissue Anatomy 0.000 description 8
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 230000035876 healing Effects 0.000 description 5
- 210000004003 subcutaneous fat Anatomy 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000002537 cosmetic Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 208000032544 Cicatrix Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 238000002690 local anesthesia Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002278 reconstructive surgery Methods 0.000 description 2
- 230000003716 rejuvenation Effects 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 230000037387 scars Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- HYKGUEIYMKVUSR-NPULLEENSA-N 2-(diethylamino)-n-(2,6-dimethylphenyl)acetamide;4-[(1r)-1-hydroxy-2-(methylamino)ethyl]benzene-1,2-diol Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1.CCN(CC)CC(=O)NC1=C(C)C=CC=C1C HYKGUEIYMKVUSR-NPULLEENSA-N 0.000 description 1
- 239000010963 304 stainless steel Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 206010063560 Excessive granulation tissue Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NPGIHFRTRXVWOY-UHFFFAOYSA-N Oil red O Chemical compound Cc1ccc(C)c(c1)N=Nc1cc(C)c(cc1C)N=Nc1c(O)ccc2ccccc12 NPGIHFRTRXVWOY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000001126 granulation tissue Anatomy 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000007443 liposuction Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000010966 surgical stainless steel Substances 0.000 description 1
- 229910000811 surgical stainless steel Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- A61M1/008—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/84—Drainage tubes; Aspiration tips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/84—Drainage tubes; Aspiration tips
- A61M1/842—Drainage tubes; Aspiration tips rotating
-
- A61M1/0082—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/32053—Punch like cutting instruments, e.g. using a cylindrical or oval knife
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00792—Plastic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/08—Lipoids
Definitions
- Procedures and devices for removing fatty tissue are common and represent a significant market in the cosmetic procedures sector.
- Conventional fat-removal procedures and devices e.g., liposuction
- the invention features a method of manipulating subdermal fat in a treatment area by
- the first needle includes a hollow tip and an elongated hollow shaft, the hollow tip being inserted to a depth that results in contact between the hollow tip and the subdermal fat, and the removal of the first needle resulting in the excision of dermis and/or subdermal fat from the treatment area.
- the above methods can optionally further include inserting a second needle into the dermis proximate to the first needle (e.g., less than 5 cm, 1 cm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.5 mm, 0.1 mm or 0.05 mm from the first needle).
- a second needle into the dermis proximate to the first needle (e.g., less than 5 cm, 1 cm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.5 mm, 0.1 mm or 0.05 mm from the first needle).
- These methods can also, e.g., include injecting a liquid (e.g., saline solution) into the treatment area via the second needle at a pressure sufficient to force fat through the first needle.
- the above methods can further include the application of a suction force to the first and/or second needle while the tip is in contact with the subdermal fat.
- the suction force results in subdermal fat being drawn into the needle.
- a suction force is applied to the treatment area after the removal of the first and/or second needle.
- the suction force results in subdermal fat being extruded from the treatment area.
- the method can further include mobilizing the subdermal fat in the treatment area prior to, during, or after insertion of a needle.
- This mobilization can include, e.g., introduction of a chemical agent (e.g., a detergent) that denatures fat cells in the subdermal fat (e.g., through the first and/or second needle), application of ultrasound, heating, cooling, or repeated cycles of heating or cooling of the subdermal fat (e.g., heating or cooling the first and/or second needle and/or applying or removing heat from outside the dermis, e.g., the in immediate proximity to the first and/or second needle), mechanically manipulating the subdermal fat (e.g., applying pressure from outside the dermis or directly contacting the subdermal fat with a disruption tool), and/or the application of tumescent anesthesia.
- a chemical agent e.g., a detergent
- the invention features repeating steps a. and b. at locations throughout the treatment area (e.g., between 5 and 100 locations per square centimeter of the treatment area).
- the first and/or second needle can be, e.g., between 16 and 32 gauge (e.g., 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, or 32 guage) and the areal fraction of skin removed can be, e.g., between 5% and 80%.
- the treatment area can be, e.g., between 1 cm 2 and 50 cm 2 .
- the treatment area includes cellulite.
- the methods of the invention can, e.g., further include severing septae in the subdermal fat of the treatment area. This severing can be accomplished, e.g., by
- the first and/or second needle can optionally include a smooth hollow lumen free of protuberances or barbs.
- excision tissue portion or “excision” is meant a removed tissue, including a tissue portion from a skin region, or the act of removing tissue or one or more tissue portions from a skin region.
- an excision includes any removed tissue or tissue portion from a skin region, which can result in excised tissue portions having a particular geometry (e.g., a cylindrical geometry) and produce one or more holes (i.e., negative space created by the removal of tissue) in the skin region.
- Exemplary methods of forming excised tissue portions or excisions include use of one or more hollow needles (optionally include one or more notches, extensions, protrusions, and/or barbs), one or more microaugers, one or more microabraders, any useful tool for forming excisions, or any methods and apparatuses described herein.
- subject is meant a human or non-human animal (e.g., a mammal).
- FIG. 1 is a photograph of a micro-coring needle.
- FIG. 2 is a photograph of an area of tissue treated with a micro-coring needle.
- FIG. 3 is a photograph of a section of tissue showing cored tissue area.
- FIG. 4 is a photograph of a portion of tissue removed by a micro-coring needle.
- FIG. 5 is a photograph of subdermal fat extrusion in an area of tissue treated with a micro-coring needle.
- FIG. 6 is a schematic showing features of tissue characterized by cellulite.
- FIG. 7 is a series of schematics showing application of a needle modified to facilitate treatment of cellulite.
- the present invention features methods of manipulating subdermal fat in a treatment area.
- Such methods include inserting a needle (e.g., a micro-coring needle) through the dermis to the subdermal fat layer in order to excise a portion of tissue from the treatment area.
- a needle e.g., a micro-coring needle
- These insertions result in a portion of the dermis and a portion of subdermal fat to enter into the needle and/or enter the hole in the skin created by insertion of a needle.
- Removal of the needle results in excision of the portion of dermis and subdermal fat that entered into the needle.
- Additional subdermal fat can optionally be removed after removal of the needle via the hole left in the dermis by the tissue extraction.
- subdermal fat can be removed by applying a suction force to the needle while inserted into the skin, resulting in additional subdermal fat being drawn into and though the needle or by applying a suction force to the skin after the needle has been removed, resulting in additional subdermal fat being extruded from the treated area.
- fat may passively extrude through the openings created in the skin. Pressure may be applied to the fat layer to facilitate extrusion.
- the above methods may be supplemented by mobilization of the subdermal fat prior to, during, or after needle insertion.
- Such mobilization results in an increased propensity for subdermal fat to flow into the needle or flow through the holes left by the excision of a portion of dermis.
- mechanical disruption of the fat layer may occur by movement of the penetrating member which may further facilitate extraction or extrusion.
- the methods of the invention can be used to treat cellulite.
- Such treatments can, e.g., include the fat manipulation methods described above.
- Such treatments can further include severing of septae located with the affected tissue.
- the subdermal fat in the treatment area is mobilized prior to, during, and/or after insertion of the needle.
- Methods of subdermal fat mobilization include liquefaction/degeneration of adipose tissue located in the treatment area, resulting in increased fat extraction through the micro-cored holes in the skin.
- the adipose tissue can, for example, be liquefied by:
- a chemical agent e.g., a detergent
- the chemical agent can also be, e.g., a drug or compound that kills or otherwise disrupts fat cells.
- the agent can be injected prior to and/or after the treatment (e.g., along with the tumescent anesthesia solution) or during the treatment, using the needle (e.g., a micro-coring needle) after removal of the skin tissue contained in the needle.
- a second needle can be inserted, e.g., in close proximity the first needle.
- the second needle can be, e.g., within 5 cm (e.g., within 1 cm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, or 0.5 mm) of the first needle.
- Mechanical modification Disruption of fat tissue can be accomplished using ultrasonic energy (e.g., high-intensity focused ultrasound) prior to, during, or after the insertion of a needle.
- the treatment device can be modified by inserting a wire in the needle (e.g., micro-coring needle) or in a second needle located, e.g., in close proximity the first needle, while the needle tip is still positioned in the fat layer.
- the second needle can be, e.g., within 5 cm (e.g., within 1 cm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, or 0.5 mm) from the first needle.
- the wire movement e.g., rotation or vibration
- the wire movement can mechanically disrupt adipose tissue.
- Thermal modification Denaturation of the adipose tissue can be accomplished by application of heat or cold.
- the thermal modification can be applied by needles (e.g., by the micro-coring needles or secondary needles described above) inserted in the tissue (e.g. by heating or cooling the needles) or by another device prior to or during the treatment (e.g. laser, radio-frequency source).
- thermal modification e.g., cooling
- the second needle can be either hollow or occluded.
- the present invention relates to methods of manipulating subdermal fat in a treatment area. These methods include excision of tissue portions (e.g., dermis and subdermal fat) using a needle (e.g., a micro-coring needle).
- tissue portions e.g., dermis and subdermal fat
- a needle e.g., a micro-coring needle
- Such methods can include any part of the body, including the face (e.g., eyelid, cheeks, chin, forehead, lips, or nose), neck, chest (e.g., as in a breast lift), arms, legs, stomach, hips, buttocks, and/or back.
- the devices on the invention can be arranged or configured to be amenable to the size or geometry of different body regions.
- Such arrangements and configurations can include any useful shape (e.g., linear, curved, or stellate), size, and/or depth.
- a plurality of tissue portions are excised from a treatment area of the skin (e.g., 1 cm 2 , 5 cm 2 , 10 cm 2 , 20 cm 2 , 30 cm 2 , or 50 cm 2 ) in a subject (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, or more tissue portions, such as between about 2 and 100 tissue portions (e.g., between 2 and 10, 2 and 15, 2 and 20, 2 and 25, 2 and 30, 2 and 35, 2 and 40, 2 and 45, 2 and 50, 2 and 75, 5 and 10, 5 and 15, 5 and 20, 5 and 25, 5 and 30, 5 and 35, 5 and 40, 5 and 45, 5 and 50, 5 and 75, 5 and 100, 10 and 20, 10 and 25, 10 and 30, 10 and 35, 10 and 40, 10 and 45, 10 and 50, 10 and 75, 10 and 100, 15 and 20, 15 and 25, 15 and 30, 15 and 35, 15 and 40, 15 and 45, 15 and 50, 15 and 75, 15 and 15 and 100,
- tissue portions can be included in any useful geometric, non-geometric, or random array (e.g., such as those described herein for an array of needles). Such tissue portions can have any useful dimension that promotes wound or skin healing.
- Non-limiting dimensions of a tissue portion includes at least one dimension that is less than about 2.0 mm (e.g., less than or equal to about 1.5 mm, 1 mm, 0.75 mm, 0.5 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.075 mm, 0.05 mm, or 0.025 mm) or between about 0.025 mm and 2.0 mm (e.g., between about 0.025 mm and 1.5 mm, 0.025 mm and 1.0 mm, 0.025 mm and 0.75 mm, 0.025 mm and 0.5 mm, 0.025 mm and 0.3 mm, 0.025 mm and 0.2 mm, 0.025 mm and 0.1 mm, 0.025 mm and 0.075 mm, 0.025 mm
- the excised tissue portions forms a hole in the skin region, where the diameter or width of the hole is less than about 1.0 mm and results in a tissue portion having a diameter or width that is less than about 1.0 mm.
- the tissue portion has a diameter or width that is less than about 1.0 mm and a length of more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3 . 0 mm, or 3.5 mm).
- relatively small dimensions of the tissue portions can promote healing while minimizing the formation of scars.
- the excised tissue portions forms a slit in the skin region, where the length or width of the slit is less than about 1.0 mm and results in a tissue portion having a length or width that is less than about 1.0 mm.
- the tissue portion has a length or width that is less than about 1.0 mm and a length of more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm).
- relatively small dimensions of the tissue portions can promote healing while minimizing the formation of scars.
- the tissue portion can be of any useful shape.
- Exemplary shapes include cylinders (i.e., thereby forming round or elongated holes in the skin region), holes (e.g., microholes), slits (e.g., microslits), elongated strips (i.e., thereby forming elongated openings in the skin region), or other geometries including at least dimension that is less than about 1.0 mm (e.g., less than or equal to about 0.75 mm, about 0.5 mm, about 0.3 mm, about 0.2 mm, about 0.1 mm, or about 0.05 mm) or between about 0.05 mm and 1.0 mm (e.g., 0.05 mm and 0.75 mm, 0.05 mm and 0.5 mm, 0.05 mm and 0.3 mm, 0.05 mm and 0.2 mm, 0.05 mm and 0.1 mm, 0.1 mm and 1.0 mm, 0.1 mm and 0.75 mm, 0.1 mm and
- the excised tissue portion has an areal dimension (e.g., a cross-sectional dimension in the xy-plane, such as an areal dimension of a circle or non-circular (e.g., elliptical) shape) of less than about or equal to about 1.0 mm 2 (e.g., less than or equal to about 0.9 mm 2 , 0.8 mm 2 , 0.7 mm 2 , 0.6 mm 2 , 0.5 mm 2 , 0.4 mm 2 , 0.3 mm 2 , 0.2 mm 2 , 0.1 mm 2 , 0.07 mm 2 , 0.05 mm 2 , 0.03 mm 2 , 0.02 mm 2 , 0.01 mm 2 , 0.007 mm 2 , 0.005 mm 2 , 0.003 mm 2 , 0.002 mm 2 , or 0.001 mm 2 ) or between about 0.001 mm 2 and 1.0 mm 2 (e.g., 0.001 mm 2 and
- the shape of the hole can be circular or non-circular (e.g., elliptical).
- Exemplary shapes of tissue portions are provided in FIGS. 1A-1C and 3A-3C and its associated text of U.S. Pub. No. 2012/0041430, which are hereby incorporated by reference in its entirety
- Any beneficial areal fraction of the skin region can be removed, such as an areal fraction of less than about 70% (e.g., less than about 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 10%, or 5%) or such as between about 5% and 80% (e.g., between about 5% and 10%, 5% and 10%, 5% and 20%, 5% and 25%, 5% and 30%, 5% and 35%, 5% and 40%, 5% and 45%, 5% and 50%, 5% and 55%, 5% and 60%, 5% and 65%, 5% and 70%, 5% and 75%, 10% and 10%, 10% and 20%, 10% and 25%, 10% and 30%, 10% and 35%, 10% and 40%, 10% and 45%, 10% and 50%, 10% and 55%, 10% and 60%, 10% and 65%, 10% and 70%, 10% and 75%, 10% and 80%, 15% and 20%, 15% and 25%, 15% and 30%, 15% and 35%, 15% and 40%, 15% and 45%, 15% and 50%, 15% and 55%, 15%
- the plurality of tissue portions can be excised in any beneficial pattern within the skin region.
- Exemplary patterns within the skin region include tile patterns or fractal-like shapes, where the array of hollow tubes can be arranged, e.g., in a base, to effectuate such a pattern.
- a higher density and/or smaller spacing of tissue portions e.g., slits and/or holes
- tissue portions can be excised in the skin in center of the pattern or in thicker portions of the skin.
- the pattern within the skin can be random, staggered rows, parallel rows, a circular pattern, a spiral pattern, a square or rectangular pattern, a triangular pattern, a hexagonal pattern, a radial distribution, or a combination of one or more such patterns of the incised or excised tissue portions.
- the pattern can arise from modifications to the average length, depth, or width of an incised or excised tissue portion, as well as the density, orientation, and spacing between such incisions and/or excisions (e.g., by using an apparatus having one or more needles with differing lengths, widths, or geometries that are arranged in a particular density or spacing pattern).
- Such patterns can be optimized to promote unidirectional, non-directional, or multidirectional contraction or expansion of skin (e.g., in the x-direction, y-direction, x-direction, x-y plane, y-z plane, x-z plane, and/or xyz-plane), such as by modifying the average length, depth, width, density, orientation, and/or spacing between incisions and/or excisions.
- any useful portion of the skin can be excised.
- tissue portions can include epidermal tissue, dermal tissue, and/or cells or tissue proximal to the dermal/fatty layer boundary (e.g., stem cells).
- the excised tissue portions forms a hole in the skin region, where the depth of the hole is more than about 1.0 mm and results in a tissue portion having a length that is more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm).
- the holes can, e.g., extend up to, or into the subdermal fat region.
- the incised or excised tissue portions forms a slit in the skin region, where the depth of the slit is more than about 1.0 mm and results in a tissue portion having a length that is more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm).
- the slits can, e.g., extend up to, or into the subdermal fat region.
- the tissue portion has a length that corresponds to a typical total depth of the skin layer (e.g., epidermal and dermal layers). Based on the part of the body, the total depth of the epidermal and dermal layers can vary.
- the depth of the epidermal layer is between about 0.8 mm to 1.4 mm, and/or the depth of the dermal layer is between about 0.3 mm to 4.0 mm.
- the total depth of the skin layer is between about 1.0 mm and 5.5 mm, thereby resulting in a tissue portion having a length between about 1.0 mm and 5.5 mm (e.g., between about 1.0 mm and 1.5 mm, 1.0 mm and 2.0 mm, 1.0 mm and 2.5 mm, 1.0 mm and 3.0 mm, 1.0 mm and 3.5 mm, 1.0 mm and 4.0 mm, 1.0 mm and 4.5 mm, 1.0 mm and 5.0 mm, 1.5 mm and 2.0 mm, 1.5 mm and 2.5 mm, 1.5 mm and 3.0 mm, 1.5 mm and 3.5 mm, 1.5 mm and 4.0 mm, 1.5 mm and 4.5 mm, 1.5 mm and 5.0
- the average total depth of the tissue portion or the skin layer is about 1.5 mm. In yet other embodiments, the average total depth of the tissue portion or the skin layer (e.g., epidermal and dermal layers) is about 3 mm.
- Excisions can be performed by a micro-coring needle.
- a plurality of excised tissue portions can be achieved by use of one or more micro-coring needles characterized as hollow tubes or needles (e.g., where the inner diameter of at least one tube is less than about 0.5 mm, about 0.3 mm, or about 0.2 mm) or one or more solid tubes or needles.
- Exemplary components for performing excisions include a needle (e.g., a 16 gauge needle having an inner diameter of 1.194 mm; an 18 gauge needle having an inner diameter of 0.838 mm; a 20 gauge needle having an inner diameter of 0.564 mm; a 23 gauge needle having an inner diameter of about 0.337 mm and an outer diameter of about 0.51 mm, thereby resulting in a tissue portion having a dimension (e.g., a width or diameter) of about 0.3 mm; a 25 gauge needle having an inner diameter of about 0.26 mm or a thin-walled 25 gauge needle having an inner diameter of about 0.31 mm and an outer diameter of about 0.51 mm, thereby resulting in a tissue portion having a dimension (e.g., a width or diameter) of about 0.2 mm; a 30 gauge needle having an inner diameter of about 0.159 mm; a 32 gauge needle having an inner diameter of about 0.108 mm; or a 34 gauge needle having an inner diameter of about 0.0826 mm).
- the geometry of the one or more micro-coring needles can include at least two points (or prongs) (e.g., at least three, four, five, six, seven, eight, or more points) provided at a distal end of the tube (e.g., to facilitate separation of the tissue portions from the surrounding tissue and/or insertion of the tubes into the skin region), where an angle formed by at least one of the points is about thirty degrees.
- Exemplary micro-coring needles include those having two points (e.g., by grinding in orientations that are 180 degrees apart), three points (e.g., by grinding in orientations that are 120 degrees apart), or four points (e.g., by grinding in orientations that are 90 degrees apart).
- the points can optionally include a beveled edge (e.g., to further facilitate separation of tissue portions or insertion of tubes).
- the micro-coring needle has a longitudinal axis (i.e., along the length of the needle) and a diameter (i.e., through the cross-section of the needle), as well as a proximal end and the distal end.
- the distal end can include one or more points, where each point is characterized by angle ⁇ (i.e., the angle between each of the opposing lateral sides of the tube that forms the point and the longitudinal axis of the tube).
- angle ⁇ i.e., the angle between each of the opposing lateral sides of the tube that forms the point and the longitudinal axis of the tube.
- the angled distal end of the tube can be formed (e.g., by grinding or cutting) at angle ⁇ , e.g., to form a second bevel structure at the distal end of a tube, where this second bevel is characterized by angle ⁇ and is orthogonal to the primary point (or bevel) characterized by angle ⁇ .
- This second bevel can be provided to reduce the size or width of the point.
- Exemplary angle ⁇ and ⁇ includes less than about 20 degrees, 15 degrees, 10, degrees, or 5 degrees (e.g., about 15 degrees, 10 degrees, 6 degrees, 5 degrees, or 3 degrees). See, e.g., FIGS. 8A-8J and its associated text of U.S. Pub. No. 2011/0313429, which are hereby incorporated by reference in its entirety, for exemplary points, angle ⁇ , and angle ⁇ .
- the micro-coring needles can optionally include one or more notches within the lumen of the needle and/or extensions on the exterior surface of the needle (e.g., at the distal portion of the needle). Such notches and extensions could be useful to promote cutting of tissue surrounding the excised tissue portions.
- Exemplary needles having such notches and/or extensions include a microauger, as well as any needles provided in FIGS. 5A-5E and described its associated text of International Pub. No. WO 2012/103492, which are hereby incorporated by reference in its entirety, for apparatuses having notches and/or extensions.
- the micro-coring needles can optionally include one or more protrusions or barbs within the lumen of the needle to promote retention of fat within the needle.
- an apparatus including such needles can be inserted into the subcutaneous fat layer and then withdrawn to remove retained fat tissue. See, e.g., FIGS. 1A-1C, 2A-2C, 3A, 4, 5A-5C, 6A-6B, 7, and 8A-8C and its associated text of International Pub. No. WO 2013/013196, which are hereby incorporated by reference in its entirety, for apparatuses having protrusions or barbs.
- the micro-coring needles do not include protrusions or barbs within the lumen of the needle.
- the components for making or excisions can be provided in any useful arrangement (e.g., a linear array, a radial array, or any described herein) of one or more components (e.g., two, three, four, five, ten, thirty, fifty, hundred, or more).
- the spacing between each component can be of any useful dimension, such as between about 1 mm and 50 mm (e.g., between about 1 mm and 40 mm, 1 mm and 30 mm, 1 mm and 25 mm, 1 mm and 20 mm, 1 mm and 15 mm, 1 mm and 10 mm, 1 mm and 5 mm, 1 mm and 3 mm, 3 mm and 50 mm, 3 mm and 40 mm, 3 mm and 30 mm, 3 mm and 25 mm, 3 mm and 20 mm, 3 mm and 15 mm, 3 mm and 10 mm, 3 mm and 5 mm, 5 mm and 50 mm, 5 mm and 40 mm, 5 mm and 30 mm, 5 mm and 25 mm, 5 mm and 20 mm, 5 mm and 15 mm, 5 mm and 10 mm, 10 mm and 50 mm, 10 mm and 40 mm, 10 mm and 30 mm, 10 mm and 25 mm, 5 mm and 20 mm
- Such arrangements can include one or more needles (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, or more needles, such as between about 2 and 100 needles (e.g., between 2 and 10, 2 and 15, 2 and 20, 2 and 25, 2 and 30, 2 and 35, 2 and 40, 2 and 45, 2 and 50, 2 and 75, 5 and 10, 5 and 15, 5 and 20, 5 and 25, 5 and 30, 5 and 35, 5 and 40, 5 and 45, 5 and 50, 5 and 75, 5 and 100, 10 and 20, 10 and 25, 10 and 30, 10 and 35, 10 and 40, 10 and 45, 10 and 50, 10 and 75, 10 and 100, 15 and 20, 15 and 25, 15 and 30, 15 and 35, 15 and 40, 15 and 45, 15 and 50, 15 and 75, 15 and 100, 20 and 25, 20 and 30, 20 and 35, 20 and 40, 20 and 45, 20 and 50, 20 and 75, 20 and 100, 25 and 30, 25 and 35, 25 and 40, 25 and 45, 25 and 50, 25 and 75
- Such arrangements of components can be any of various two-dimensional or three-dimensional patterns along a base holding one or more components for making excisions.
- the base can be optionally mounted on a roller apparatus having a cylindrical body with a longitudinal rotational axis, where the one or more needles are arranged on the longitudinal surface of the cylindrical body.
- the needles extend as substantially coplanar extensions of the cylindrical body.
- rotation of the cylindrical body along the skin results in the excision of tissue portions by the needles.
- Exemplary roller apparatuses are provided in FIGS. 11A-11B and its associated text in U.S. Pub. No. 2011/0251602, in FIGS. 3A-3B and its associated text in International Pub. No. WO 2012/103492, which are hereby incorporated by reference in its entirety.
- Such components for making excisions can include one or more stop arrangements (e.g., one or more collars, which can be coupled to the outer portion of the needle and be adjusted along the long axis of the needle to control the depth of excision in the biological tissue); one or more sleeves around a portion of a needle, such that the sleeve is slidably translatable along the longitudinal axis of the needle (e.g., to excise tissue portions below the surface of the skin region); a vibrating arrangement (e.g., a piezoelectric element, a solenoid, a pneumatic element, ultrasonic element, or a hydraulic element) that mechanically couples to at least one needle (e.g., to promote insertion of one or more needles into the skin region, such as by providing an amplitude of vibration in the range of about 50-500 ⁇ m (e.g., between about 100-200 ⁇ m) or by providing a frequency of the induced vibrations to be between about 10 Hz and about 10 kHz (e
- the needles can be formed from any useful material and optionally coated or chemically treated to promote excision of a tissue portion and subdermal fat and/or to increase precision or effectiveness for treating the skin region.
- exemplary materials include metal (e.g., a stainless steel tube, 304 stainless steel, a surgical stainless steel), a biopsy needle, an epoxy, a glass, a polymer, a plastic, a resin, another structurally rigid material, or a similar structure.
- Exemplary coatings include a lubricant, a low-friction material (e.g., TeflonTM), a chromium coating (e.g., ME-92TM, such as to increase material strength), a plastic, a polymer (e.g., nylon or polyethylene), a polished metal alloy, or the like.
- a lubricant e.g., TeflonTM
- a chromium coating e.g., ME-92TM, such as to increase material strength
- a plastic e.g., nylon or polyethylene
- a polymer e.g., nylon or polyethylene
- a polished metal alloy e.g., a polished metal alloy, or the like.
- an apparatus for manipulating subdermal fat includes at least one needle including at least two points provided at a distal end thereof and an optional stop arrangement coupled to the outer portion of the tube (e.g., to control and/or limit a distance to which the one needle is inserted into a biological tissue), where the angle formed by at least one of the points is about thirty degrees, where the inner diameter of at least one needle is less than about 1 mm, and where at least one section of the needle is structured to be inserted into a biological tissue to excise at least one tissue therefrom when the tube is withdrawn from the tissue.
- the apparatus further includes a pin provided at least partially within the central lumen of a needle, where the pin is controllably translatable in a direction along a longitudinal axis of the one needle and the pin is configured to facilitate removal of at least one tissue portion (e.g., subdermal fat) from the tube.
- tissue portion e.g., subdermal fat
- the apparatus includes a substrate; a plurality of needles affixed to the substrate and configured to be at least partially inserted into a biological tissue; at least one opening provided on or in a wall of each of the needles; at least one cutting edge protruding from the wall of each of the needles proximal to the at least one opening; and a sleeve provided around at least a portion of each of the needle, where each needle is configured to be translatable along a longitudinal axis of a corresponding sleeve, and where a distance from the longitudinal axis of each neddle to an outer edge of each corresponding sleeve is at least as large as a distance from the longitudinal axis of the tube to an outer portion of the cutting edge of the tube.
- the procedures herein can include one or more optional processes that promote effective excision of tissue portions or that benefit healing or mobilize subdermal fat.
- Such optional processes include cooling, freezing, or partially freezing the skin portion prior to skin excision (e.g., by applying a cryospray or by contacting a surface of a skin region with a cooled object for an appropriate duration), where such cooling and/or freezing can, e.g., increase mechanical stability of the tissue portions and/or mobilize subdermal fat; treatment with red or near-infrared light of the skin portion to further promote healing of the tissue; and/or treatment with an optical energy source, such as any described herein (e.g., an ablative laser).
- an optical energy source such as any described herein (e.g., an ablative laser).
- the methods of the invention include applying pressure to the treatment area to facilitate fat removal.
- pressure can be applied to the treatment area prior to insertion of a needle, thereby facilitating fat entry into the needle once inserted.
- pressure can be applied while the needle is inserted (e.g., by a second needle as described above), thereby causing subdermal fat to flow into and, in some cases, through the needle.
- certain embodiments feature applying pressure after the needle is removed, thereby causing subdermal fat to escape the dermis through the holes left by the excised tissue.
- a vacuum source may be applied to the external surface of the cored region to aid in fat extrusion. Heat and other mechanical stimuli may further facilitate fat extrusion.
- FIG. 1 shows an exemplary embodiment of a micro-coring needle.
- the needle is inserted in the skin until its tip protrudes in the subcutaneous fat layer allowing tissue excision.
- FIG. 2 shows a picture of a treated area. The treatment resulted in the formation of small holes though the skin.
- FIG. 3 shows a picture of a skin section treated with a micro-coring needle one week after treatment. It shows that, where a column of epidermal and dermal tissue was removed, the removed tissue is replaced by granulation tissue.
- the removed column of skin generated herniation fat in the dermis.
- the removed column of skin (epidermis and dermis) is attached to fat cells as shown in FIG. 4 .
- the sample was stained with Oil Red O, which preferentially stains fat.
- the sample includes skin tissue attached to adipose tissue.
- Tumescent anesthesia is a local anesthesia technique requiring the infiltration of a large volume of fluid in the area to be treated.
- the injected fluid typically consists of lidocaine and epinephrine highly diluted in physiologic saline solution.
- Tumescent anesthesia prior to treatment with micro-coring needles can result in (1) local anesthesia of tissue, (2) reduction of bleeding during the treatment, (3) increased sub-cutaneous pressure, and (4) chemical modification of the sub-cutaneous fat.
- FIG. 5 shows an area of skin treated with tumescent anesthesia prior to treatment with microcoring needles. As seen in this figure, prominent strings of fat emerge from the tissue treated with micro-coring needles.
- Cellulite is characterized by dimpling or nodularity of the skin. Cellulite is thought to be formed by herniation of subcutaneous fat into the dermis. Formation of fibrotic bands (septae) between the subcutaneous tissue and the dermis and weakening of the mechanical properties of the dermis (e.g. breakdown of collagen in reticular dermis) result in the formation of nodules or dimples as illustrated in FIG. 6 .
- Modified micro-coring needles allow severing of the septae.
- the needle is inserted into the skin until its tip protrudes in the fat layer.
- the cored skin is aspirated by applying a vacuum on the needle.
- a pre-bent wire is introduced in the needle while the needle tip is still in the subcutaneous layer.
- the pre-bent wire is deployed in the fat layer. It is then rotated around the needle axis as to sever septae surrounding the needle. The wire is the retracted and the needle is removed.
- the cellulite treatment described above (1) severs the septae, (2) improves the mechanical properties of the skin, and (3) allows fat extraction through the hole in the skin.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Description
- Procedures and devices for removing fatty tissue, e.g., for cosmetic reasons, are common and represent a significant market in the cosmetic procedures sector. Conventional fat-removal procedures and devices, e.g., liposuction, can be disruptive to surrounding tissue and often include many risks such as excessive bleeding. There are relatively few procedures for removal of small amounts of fatty tissue, e.g., subcutaneous fat, for cosmetic purposes, and such procedures generally require a skilled practitioner for effective removal and can be very time-consuming and subject to complications. Accordingly, there is a need to provide a simple and safe method and apparatus for removal of subcutaneous fatty tissue.
- In one aspect, the invention features a method of manipulating subdermal fat in a treatment area by
- a. inserting a first needle (e.g., a micro-coring needle) into the dermis of the treatment area followed by
- b. removing the needle from the treatment area. In this embodiment of the invention, the first needle includes a hollow tip and an elongated hollow shaft, the hollow tip being inserted to a depth that results in contact between the hollow tip and the subdermal fat, and the removal of the first needle resulting in the excision of dermis and/or subdermal fat from the treatment area.
- The above methods can optionally further include inserting a second needle into the dermis proximate to the first needle (e.g., less than 5 cm, 1 cm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.5 mm, 0.1 mm or 0.05 mm from the first needle). These methods can also, e.g., include injecting a liquid (e.g., saline solution) into the treatment area via the second needle at a pressure sufficient to force fat through the first needle.
- The above methods can further include the application of a suction force to the first and/or second needle while the tip is in contact with the subdermal fat. Here, the suction force results in subdermal fat being drawn into the needle. Alternatively, or additionally, a suction force is applied to the treatment area after the removal of the first and/or second needle. Here, the suction force results in subdermal fat being extruded from the treatment area.
- In any of the foregoing embodiments, the method can further include mobilizing the subdermal fat in the treatment area prior to, during, or after insertion of a needle. This mobilization can include, e.g., introduction of a chemical agent (e.g., a detergent) that denatures fat cells in the subdermal fat (e.g., through the first and/or second needle), application of ultrasound, heating, cooling, or repeated cycles of heating or cooling of the subdermal fat (e.g., heating or cooling the first and/or second needle and/or applying or removing heat from outside the dermis, e.g., the in immediate proximity to the first and/or second needle), mechanically manipulating the subdermal fat (e.g., applying pressure from outside the dermis or directly contacting the subdermal fat with a disruption tool), and/or the application of tumescent anesthesia.
- In some embodiments, the invention features repeating steps a. and b. at locations throughout the treatment area (e.g., between 5 and 100 locations per square centimeter of the treatment area). In any of the foregoing embodiments, the first and/or second needle can be, e.g., between 16 and 32 gauge (e.g., 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, or 32 guage) and the areal fraction of skin removed can be, e.g., between 5% and 80%. The treatment area can be, e.g., between 1 cm2 and 50 cm2.
- In certain embodiments, the treatment area includes cellulite. In embodiments where the treatment area is, e.g., cellulite, the methods of the invention can, e.g., further include severing septae in the subdermal fat of the treatment area. This severing can be accomplished, e.g., by
-
- i) deploying a wire including a bend into and through the first and/or second needle such that the bend exits from the tip; and
- ii) rotating the wire such that the end of the wire which has exited the tip contacts and severs the septae. In this embodiment, the wire is deployed while the needle tip is in contact with the subdermal fat. A suction force can optionally be applied to the first and/or second needle after the insertion but prior to the deploying of the wire.
- In any foregoing aspects of the invention, the first and/or second needle can optionally include a smooth hollow lumen free of protuberances or barbs.
- By “excised” tissue portion or “excision” is meant a removed tissue, including a tissue portion from a skin region, or the act of removing tissue or one or more tissue portions from a skin region. For example, an excision includes any removed tissue or tissue portion from a skin region, which can result in excised tissue portions having a particular geometry (e.g., a cylindrical geometry) and produce one or more holes (i.e., negative space created by the removal of tissue) in the skin region. Exemplary methods of forming excised tissue portions or excisions include use of one or more hollow needles (optionally include one or more notches, extensions, protrusions, and/or barbs), one or more microaugers, one or more microabraders, any useful tool for forming excisions, or any methods and apparatuses described herein.
- By “subject” is meant a human or non-human animal (e.g., a mammal).
- Other features and advantages of the invention will be apparent from the following Detailed Description and the claims.
-
FIG. 1 is a photograph of a micro-coring needle. -
FIG. 2 is a photograph of an area of tissue treated with a micro-coring needle. -
FIG. 3 is a photograph of a section of tissue showing cored tissue area. -
FIG. 4 is a photograph of a portion of tissue removed by a micro-coring needle. -
FIG. 5 is a photograph of subdermal fat extrusion in an area of tissue treated with a micro-coring needle. -
FIG. 6 is a schematic showing features of tissue characterized by cellulite. -
FIG. 7 is a series of schematics showing application of a needle modified to facilitate treatment of cellulite. - In general, the present invention features methods of manipulating subdermal fat in a treatment area. Such methods include inserting a needle (e.g., a micro-coring needle) through the dermis to the subdermal fat layer in order to excise a portion of tissue from the treatment area. These insertions result in a portion of the dermis and a portion of subdermal fat to enter into the needle and/or enter the hole in the skin created by insertion of a needle. Removal of the needle results in excision of the portion of dermis and subdermal fat that entered into the needle. Additional subdermal fat can optionally be removed after removal of the needle via the hole left in the dermis by the tissue extraction. Additionally, or alternatively, subdermal fat can be removed by applying a suction force to the needle while inserted into the skin, resulting in additional subdermal fat being drawn into and though the needle or by applying a suction force to the skin after the needle has been removed, resulting in additional subdermal fat being extruded from the treated area. Additionally, fat may passively extrude through the openings created in the skin. Pressure may be applied to the fat layer to facilitate extrusion.
- Further, the above methods may be supplemented by mobilization of the subdermal fat prior to, during, or after needle insertion. Such mobilization results in an increased propensity for subdermal fat to flow into the needle or flow through the holes left by the excision of a portion of dermis. For example, mechanical disruption of the fat layer may occur by movement of the penetrating member which may further facilitate extraction or extrusion.
- In certain applications, the methods of the invention can be used to treat cellulite. Such treatments can, e.g., include the fat manipulation methods described above. Such treatments can further include severing of septae located with the affected tissue.
- Embodiments of the invention are described in more detail below.
- In certain embodiments of the invention, the subdermal fat in the treatment area is mobilized prior to, during, and/or after insertion of the needle. Methods of subdermal fat mobilization include liquefaction/degeneration of adipose tissue located in the treatment area, resulting in increased fat extraction through the micro-cored holes in the skin. The adipose tissue can, for example, be liquefied by:
- Chemical modification: A chemical agent (e.g., a detergent) can be injected that denaturates fat or the fat cells. The chemical agent can also be, e.g., a drug or compound that kills or otherwise disrupts fat cells. The agent can be injected prior to and/or after the treatment (e.g., along with the tumescent anesthesia solution) or during the treatment, using the needle (e.g., a micro-coring needle) after removal of the skin tissue contained in the needle. Alternatively, or additionally, a second needle can be inserted, e.g., in close proximity the first needle. The second needle can be, e.g., within 5 cm (e.g., within 1 cm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, or 0.5 mm) of the first needle.
Mechanical modification: Disruption of fat tissue can be accomplished using ultrasonic energy (e.g., high-intensity focused ultrasound) prior to, during, or after the insertion of a needle. Alternatively, the treatment device can be modified by inserting a wire in the needle (e.g., micro-coring needle) or in a second needle located, e.g., in close proximity the first needle, while the needle tip is still positioned in the fat layer. The second needle can be, e.g., within 5 cm (e.g., within 1 cm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, or 0.5 mm) from the first needle. The wire movement (e.g., rotation or vibration) can mechanically disrupt adipose tissue.
Thermal modification: Denaturation of the adipose tissue can be accomplished by application of heat or cold. The thermal modification can be applied by needles (e.g., by the micro-coring needles or secondary needles described above) inserted in the tissue (e.g. by heating or cooling the needles) or by another device prior to or during the treatment (e.g. laser, radio-frequency source). Furthermore, when fat mobilization is no longer desired, thermal modification (e.g., cooling) can be applied to slow or halt fat mobilization. - In cases where a second needle is used to aid in subdermal fat mobilization, the second needle can be either hollow or occluded.
- The present invention relates to methods of manipulating subdermal fat in a treatment area. These methods include excision of tissue portions (e.g., dermis and subdermal fat) using a needle (e.g., a micro-coring needle).
- Such methods can include any part of the body, including the face (e.g., eyelid, cheeks, chin, forehead, lips, or nose), neck, chest (e.g., as in a breast lift), arms, legs, stomach, hips, buttocks, and/or back. Accordingly, the devices on the invention can be arranged or configured to be amenable to the size or geometry of different body regions. Such arrangements and configurations can include any useful shape (e.g., linear, curved, or stellate), size, and/or depth.
- In one exemplary method, a plurality of tissue portions are excised from a treatment area of the skin (e.g., 1 cm2, 5 cm2, 10 cm2, 20 cm2, 30 cm2, or 50 cm2) in a subject (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, or more tissue portions, such as between about 2 and 100 tissue portions (e.g., between 2 and 10, 2 and 15, 2 and 20, 2 and 25, 2 and 30, 2 and 35, 2 and 40, 2 and 45, 2 and 50, 2 and 75, 5 and 10, 5 and 15, 5 and 20, 5 and 25, 5 and 30, 5 and 35, 5 and 40, 5 and 45, 5 and 50, 5 and 75, 5 and 100, 10 and 20, 10 and 25, 10 and 30, 10 and 35, 10 and 40, 10 and 45, 10 and 50, 10 and 75, 10 and 100, 15 and 20, 15 and 25, 15 and 30, 15 and 35, 15 and 40, 15 and 45, 15 and 50, 15 and 75, 15 and 100, 20 and 25, 20 and 30, 20 and 35, 20 and 40, 20 and 45, 20 and 50, 20 and 75, 20 and 100, 25 and 30, 25 and 35, 25 and 40, 25 and 45, 25 and 50, 25 and 75, 25 and 100, 30 and 35, 30 and 40, 30 and 45, 30 and 50, 30 and 75, 30 and 100, 35 and 40, 35 and 45, 35 and 50, 35 and 75, 35 and 100, 40 and 45, 40 and 50, 40 and 75, 40 and 100, 50 and 75, or 50 and 100)). Such tissue portions can be included in any useful geometric, non-geometric, or random array (e.g., such as those described herein for an array of needles). Such tissue portions can have any useful dimension that promotes wound or skin healing. Non-limiting dimensions of a tissue portion includes at least one dimension that is less than about 2.0 mm (e.g., less than or equal to about 1.5 mm, 1 mm, 0.75 mm, 0.5 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.075 mm, 0.05 mm, or 0.025 mm) or between about 0.025 mm and 2.0 mm (e.g., between about 0.025 mm and 1.5 mm, 0.025 mm and 1.0 mm, 0.025 mm and 0.75 mm, 0.025 mm and 0.5 mm, 0.025 mm and 0.3 mm, 0.025 mm and 0.2 mm, 0.025 mm and 0.1 mm, 0.025 mm and 0.075 mm, 0.025 mm and 0.05 mm, 0.05 mm and 2.0 mm, 0.05 mm and 1.5 mm, 0.05 mm and 1.0 mm, 0.05 mm and 0.75 mm, 0.05 mm and 0.5 mm, 0.05 mm and 0.3 mm, 0.05 mm and 0.2 mm, 0.05 mm and 0.1 mm, 0.05 mm and 0.075 mm, 0.075 mm and 2.0 mm, 0.075 mm and 1.5 mm, 0.075 mm and 1.0 mm, 0.075 mm and 0.75 mm, 0.075 mm and 0.5 mm, 0.075 mm and 0.3 mm, 0.075 mm and 0.2 mm, 0.075 mm and 0.1 mm, 0.1 mm and 2.0 mm, 0.1 mm and 1.5 mm, 0.1 mm and 1.0 mm, 0.1 mm and 0.75 mm, 0.1 mm and 0.5 mm, 0.1 mm and 0.3 mm, 0.1 mm and 0.2 mm, 0.2 mm and 2.0 mm, 0.2 mm and 1.5 mm, 0.2 mm and 1.0 mm, 0.2 mm and 0.75 mm, 0.2 mm and 0.5 mm, 0.2 mm and 0.3 mm, 0.3 mm and 2.0 mm, 0.3 mm and 1.5 mm, 0.3 mm and 1.0 mm, 0.3 mm and 0.75 mm, 0.3 mm and 0.5 mm, 0.5 mm and 2.0 mm, 0.5 mm and 1.5 mm, 0.5 mm and 1.0 mm, 0.5 mm and 0.75 mm, 0.75 mm and 2.0 mm, 0.75 mm and 1.5 mm, or 0.75 mm and 1.0 mm).
- In some embodiments, the excised tissue portions forms a hole in the skin region, where the diameter or width of the hole is less than about 1.0 mm and results in a tissue portion having a diameter or width that is less than about 1.0 mm. In further embodiments, the tissue portion has a diameter or width that is less than about 1.0 mm and a length of more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm). In particular embodiments, relatively small dimensions of the tissue portions can promote healing while minimizing the formation of scars.
- In other embodiments, the excised tissue portions forms a slit in the skin region, where the length or width of the slit is less than about 1.0 mm and results in a tissue portion having a length or width that is less than about 1.0 mm. In further embodiments, the tissue portion has a length or width that is less than about 1.0 mm and a length of more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm). In particular embodiments, relatively small dimensions of the tissue portions can promote healing while minimizing the formation of scars.
- The tissue portion can be of any useful shape. Exemplary shapes include cylinders (i.e., thereby forming round or elongated holes in the skin region), holes (e.g., microholes), slits (e.g., microslits), elongated strips (i.e., thereby forming elongated openings in the skin region), or other geometries including at least dimension that is less than about 1.0 mm (e.g., less than or equal to about 0.75 mm, about 0.5 mm, about 0.3 mm, about 0.2 mm, about 0.1 mm, or about 0.05 mm) or between about 0.05 mm and 1.0 mm (e.g., 0.05 mm and 0.75 mm, 0.05 mm and 0.5 mm, 0.05 mm and 0.3 mm, 0.05 mm and 0.2 mm, 0.05 mm and 0.1 mm, 0.1 mm and 1.0 mm, 0.1 mm and 0.75 mm, 0.1 mm and 0.5 mm, 0.1 mm and 0.3 mm, 0.1 mm and 0.2 mm, 0.2 mm and 1.0 mm, 0.2 mm and 0.75 mm, 0.2 mm and 0.5 mm, 0.2 mm and 0.3 mm, 0.3 mm and 1.0 mm, 0.3 mm and 0.75 mm, 0.3 mm and 0.5 mm, 0.4 mm and 1.0 mm, 0.4 mm and 0.75 mm, 0.4 mm and 0.5 mm, 0.5 mm and 1.0 mm, 0.5 mm and 0.75 mm, 0.6 mm and 1.0 mm, 0.6 mm and 0.75 mm, or 0.75 mm and 1.0 mm). In other embodiments, the excised tissue portion has an areal dimension (e.g., a cross-sectional dimension in the xy-plane, such as an areal dimension of a circle or non-circular (e.g., elliptical) shape) of less than about or equal to about 1.0 mm2 (e.g., less than or equal to about 0.9 mm2, 0.8 mm2, 0.7 mm2, 0.6 mm2, 0.5 mm2, 0.4 mm2, 0.3 mm2, 0.2 mm2, 0.1 mm2, 0.07 mm2, 0.05 mm2, 0.03 mm2, 0.02 mm2, 0.01 mm2, 0.007 mm2, 0.005 mm2, 0.003 mm2, 0.002 mm2, or 0.001 mm2) or between about 0.001 mm2 and 1.0 mm2 (e.g., 0.001 mm2 and 0.9 mm2, 0.001 mm2 and 0.8 mm2, 0.001 mm2 and 0.7 mm2, 0.001 mm2 and 0.6 mm2, 0.001 mm2 and 0.5 mm2, 0.001 mm2 and 0.4 mm2, 0.001 mm2 and 0.3 mm2, 0.001 mm2 and 0.2 mm2, 0.001 mm2 and 0.1 mm2, 0.001 mm2 and 0.07 mm2, 0.001 mm2 and 0.05 mm2, 0.001 mm2 and 0.03 mm2, 0.001 mm2 and 0.02 mm2, 0.001 mm2 and 0.01 mm2, 0.001 mm2 and 0.007 mm2, 0.001 mm2 and 0.005 mm2, 0.001 mm2 and 0.003 mm2, 0.001 mm2 and 0.002 mm2, 0.002 mm2 and 1.0 mm2, 0.002 mm2 and 0.9 mm2, 0.002 mm2 and 0.8 mm2, 0.002 mm2 and 0.7 mm2, 0.002 mm2 and 0.6 mm2, 0.002 mm2 and 0.5 mm2, 0.002 mm2 and 0.4 mm2, 0.002 mm2 and 0.3 mm2, 0.002 mm2 and 0.2 mm2, 0.002 mm2 and 0.1 mm2, 0.002 mm2 and 0.07 mm2, 0.002 mm2 and 0.05 mm2, 0.002 mm2 and 0.03 mm2, 0.002 mm2 and 0.02 mm2, 0.002 mm2 and 0.01 mm2, 0.002 mm2 and 0.007 mm2, 0.002 mm2 and 0.005 mm2, 0.002 mm2 and 0.003 mm2, 0.005 mm2 and 1.0 mm2, 0.005 mm2 and 0.9 mm2, 0.005 mm2 and 0.8 mm2, 0.005 mm2 and 0.7 mm2, 0.005 mm2 and 0.6 mm2, 0.005 mm2 and 0.5 mm2, 0.005 mm2 and 0.4 mm2, 0.005 mm2 and 0.3 mm2, 0.005 mm2 and 0.2 mm2, 0.005 mm2 and 0.1 mm2, 0.005 mm2 and 0.07 mm2, 0.005 mm2 and 0.05 mm2, 0.005 mm2 and 0.03 mm2, 0.005 mm2 and 0.02 mm2, 0.005 mm2 and 0.01 mm2, 0.005 mm2 and 0.007 mm2, 0.007 mm2 and 1.0 mm2, 0.007 mm2 and 0.9 mm2, 0.007 mm2 and 0.8 mm2, 0.007 mm2 and 0.7 mm2, 0.007 mm2 and 0.6 mm2, 0.007 mm2 and 0.5 mm2, 0.007 mm2 and 0.4 mm2, 0.007 mm2 and 0.3 mm2, 0.007 mm2 and 0.2 mm2, 0.007 mm2 and 0.1 mm2, 0.007 mm2 and 0.07 mm2, 0.007 mm2 and 0.05 mm2, 0.007 mm2 and 0.03 mm2, 0.007 mm2 and 0.02 mm2, 0.007 mm2 and 0.01 mm2, 0.01 mm2 and 1.0 mm2, 0.01 mm2 and 0.9 mm2, 0.01 mm2 and 0.8 mm2, 0.01 mm2 and 0.7 mm2, 0.01 mm2 and 0.6 mm2, 0.01 mm2 and 0.5 mm2, 0.01 mm2 and 0.4 mm2, 0.01 mm2 and 0.3 mm2, 0.01 mm2 and 0.2 mm2, 0.01 mm2 and 0.1 mm2, 0.01 mm2 and 0.07 mm2, 0.01 mm2 and 0.05 mm2, 0.01 mm2 and 0.03 mm2, 0.01 mm2 and 0.02 mm2, 0.03 mm2 and 1.0 mm2, 0.03 mm2 and 0.9 mm2, 0.03 mm2 and 0.8 mm2, 0.03 mm2 and 0.7 mm2, 0.03 mm2 and 0.6 mm2, 0.03 mm2 and 0.5 mm2, 0.03 mm2 and 0.4 mm2, 0.03 mm2 and 0.3 mm2, 0.03 mm2 and 0.2 mm2, 0.03 mm2 and 0.1 mm2, 0.03 mm2 and 0.07 mm2, 0.03 mm2 and 0.05 mm2, 0.07 mm2 and 1.0 mm2, 0.07 mm2 and 0.9 mm2, 0.07 mm2 and 0.8 mm2, 0.07 mm2 and 0.7 mm2, 0.07 mm2 and 0.6 mm2, 0.07 mm2 and 0.5 mm2, 0.07 mm2 and 0.4 mm2, 0.07 mm2 and 0.3 mm2, 0.07 mm2 and 0.2 mm2, 0.07 mm2 and 0.1 mm2, 0.1 mm2 and 1.0 mm2, 0.1 mm2 and 0.9 mm2, 0.1 mm2 and 0.8 mm2, 0.1 mm2 and 0.7 mm2, 0.1 mm2 and 0.6 mm2, 0.1 mm2 and 0.5 mm2, 0.1 mm2 and 0.4 mm2, 0.1 mm2 and 0.3 mm2, 0.1 mm2 and 0.2 mm2, 0.3 mm2 and 1.0 mm2, 0.3 mm2 and 0.9 mm2, 0.3 mm2 and 0.8 mm2, 0.3 mm2 and 0.7 mm2, 0.3 mm2 and 0.6 mm2, 0.3 mm2 and 0.5 mm2, 0.3 mm2 and 0.4 mm2, 0.5 mm2 and 1.0 mm2, 0.5 mm2 and 0.9 mm2, 0.5 mm2 and 0.8 mm2, 0.5 mm2 and 0.7 mm2, 0.5 mm2 and 0.6 mm2, 0.7 mm2 and 1.0 mm2, 0.7 mm2 and 0.9 mm2, or 0.7 mm2 and 0.8 mm2). When viewed from the top of the skin, the shape of the hole can be circular or non-circular (e.g., elliptical). Exemplary shapes of tissue portions are provided in
FIGS. 1A-1C and 3A-3C and its associated text of U.S. Pub. No. 2012/0041430, which are hereby incorporated by reference in its entirety - Any beneficial areal fraction of the skin region can be removed, such as an areal fraction of less than about 70% (e.g., less than about 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 10%, or 5%) or such as between about 5% and 80% (e.g., between about 5% and 10%, 5% and 10%, 5% and 20%, 5% and 25%, 5% and 30%, 5% and 35%, 5% and 40%, 5% and 45%, 5% and 50%, 5% and 55%, 5% and 60%, 5% and 65%, 5% and 70%, 5% and 75%, 10% and 10%, 10% and 20%, 10% and 25%, 10% and 30%, 10% and 35%, 10% and 40%, 10% and 45%, 10% and 50%, 10% and 55%, 10% and 60%, 10% and 65%, 10% and 70%, 10% and 75%, 10% and 80%, 15% and 20%, 15% and 25%, 15% and 30%, 15% and 35%, 15% and 40%, 15% and 45%, 15% and 50%, 15% and 55%, 15% and 60%, 15% and 65%, 15% and 70%, 15% and 75%, 15% and 80%, 20% and 25%, 20% and 30%, 20% and 35%, 20% and 40%, 20% and 45%, 20% and 50%, 20% and 55%, 20% and 60%, 20% and 65%, 20% and 70%, 20% and 75%, or 20% and 80%).
- Furthermore, the plurality of tissue portions can be excised in any beneficial pattern within the skin region. Exemplary patterns within the skin region include tile patterns or fractal-like shapes, where the array of hollow tubes can be arranged, e.g., in a base, to effectuate such a pattern. For example, a higher density and/or smaller spacing of tissue portions (e.g., slits and/or holes) can be excised in the skin in center of the pattern or in thicker portions of the skin. In another example, the pattern within the skin can be random, staggered rows, parallel rows, a circular pattern, a spiral pattern, a square or rectangular pattern, a triangular pattern, a hexagonal pattern, a radial distribution, or a combination of one or more such patterns of the incised or excised tissue portions. The pattern can arise from modifications to the average length, depth, or width of an incised or excised tissue portion, as well as the density, orientation, and spacing between such incisions and/or excisions (e.g., by using an apparatus having one or more needles with differing lengths, widths, or geometries that are arranged in a particular density or spacing pattern). Such patterns can be optimized to promote unidirectional, non-directional, or multidirectional contraction or expansion of skin (e.g., in the x-direction, y-direction, x-direction, x-y plane, y-z plane, x-z plane, and/or xyz-plane), such as by modifying the average length, depth, width, density, orientation, and/or spacing between incisions and/or excisions.
- In addition to subdermal fat, any useful portion of the skin can be excised. Such tissue portions can include epidermal tissue, dermal tissue, and/or cells or tissue proximal to the dermal/fatty layer boundary (e.g., stem cells). In particular embodiments, the excised tissue portions forms a hole in the skin region, where the depth of the hole is more than about 1.0 mm and results in a tissue portion having a length that is more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm). The holes can, e.g., extend up to, or into the subdermal fat region. In particular embodiments, the incised or excised tissue portions forms a slit in the skin region, where the depth of the slit is more than about 1.0 mm and results in a tissue portion having a length that is more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm). The slits can, e.g., extend up to, or into the subdermal fat region. In some embodiments, the tissue portion has a length that corresponds to a typical total depth of the skin layer (e.g., epidermal and dermal layers). Based on the part of the body, the total depth of the epidermal and dermal layers can vary. In some embodiments, the depth of the epidermal layer is between about 0.8 mm to 1.4 mm, and/or the depth of the dermal layer is between about 0.3 mm to 4.0 mm. In other embodiments, the total depth of the skin layer (e.g., epidermal and dermal layers) is between about 1.0 mm and 5.5 mm, thereby resulting in a tissue portion having a length between about 1.0 mm and 5.5 mm (e.g., between about 1.0 mm and 1.5 mm, 1.0 mm and 2.0 mm, 1.0 mm and 2.5 mm, 1.0 mm and 3.0 mm, 1.0 mm and 3.5 mm, 1.0 mm and 4.0 mm, 1.0 mm and 4.5 mm, 1.0 mm and 5.0 mm, 1.5 mm and 2.0 mm, 1.5 mm and 2.5 mm, 1.5 mm and 3.0 mm, 1.5 mm and 3.5 mm, 1.5 mm and 4.0 mm, 1.5 mm and 4.5 mm, 1.5 mm and 5.0 mm, 1.5 mm and 5.5 mm, 2.0 mm and 2.5 mm, 2.0 mm and 3.0 mm, 2.0 mm and 3.5 mm, 2.0 mm and 4.0 mm, 2.0 mm and 4.5 mm, 2.0 mm and 5.0 mm, 2.0 and 5.5 mm, 2.5 mm and 3.0 mm, 2.5 mm and 3.5 mm, 2.5 mm and 4.0 mm, 2.5 mm and 4.5 mm, 2.5 mm and 5.0 mm, 2.5 mm and 5.5 mm, 3.0 mm and 3.5 mm, 3.0 mm and 4.0 mm, 3.0 mm and 4.5 mm, 3.0 mm and 5.0 mm, 3.0 and 5.5 mm, 3.5 mm and 4.0 mm, 3.5 mm and 4.5 mm, 3.5 mm and 5.0 mm, 3.5 and 5.5 mm, 4.0 mm and 4.5 mm, 4.0 mm and 5.0 mm, 4.0 and 5.5 mm, 4.5 mm and 5.0 mm, 4.5 and 5.5 mm, or 5.0 mm and 5.5 mm). In yet other embodiments, the average total depth of the tissue portion or the skin layer (e.g., epidermal and dermal layers) is about 1.5 mm. In yet other embodiments, the average total depth of the tissue portion or the skin layer (e.g., epidermal and dermal layers) is about 3 mm.
- Excisions can be performed by a micro-coring needle. For example, a plurality of excised tissue portions can be achieved by use of one or more micro-coring needles characterized as hollow tubes or needles (e.g., where the inner diameter of at least one tube is less than about 0.5 mm, about 0.3 mm, or about 0.2 mm) or one or more solid tubes or needles. Exemplary components for performing excisions include a needle (e.g., a 16 gauge needle having an inner diameter of 1.194 mm; an 18 gauge needle having an inner diameter of 0.838 mm; a 20 gauge needle having an inner diameter of 0.564 mm; a 23 gauge needle having an inner diameter of about 0.337 mm and an outer diameter of about 0.51 mm, thereby resulting in a tissue portion having a dimension (e.g., a width or diameter) of about 0.3 mm; a 25 gauge needle having an inner diameter of about 0.26 mm or a thin-walled 25 gauge needle having an inner diameter of about 0.31 mm and an outer diameter of about 0.51 mm, thereby resulting in a tissue portion having a dimension (e.g., a width or diameter) of about 0.2 mm; a 30 gauge needle having an inner diameter of about 0.159 mm; a 32 gauge needle having an inner diameter of about 0.108 mm; or a 34 gauge needle having an inner diameter of about 0.0826 mm).
- The geometry of the one or more micro-coring needles can include at least two points (or prongs) (e.g., at least three, four, five, six, seven, eight, or more points) provided at a distal end of the tube (e.g., to facilitate separation of the tissue portions from the surrounding tissue and/or insertion of the tubes into the skin region), where an angle formed by at least one of the points is about thirty degrees. Exemplary micro-coring needles include those having two points (e.g., by grinding in orientations that are 180 degrees apart), three points (e.g., by grinding in orientations that are 120 degrees apart), or four points (e.g., by grinding in orientations that are 90 degrees apart). The points can optionally include a beveled edge (e.g., to further facilitate separation of tissue portions or insertion of tubes).
- The points can have any useful geometric configuration. In one example, the micro-coring needle has a longitudinal axis (i.e., along the length of the needle) and a diameter (i.e., through the cross-section of the needle), as well as a proximal end and the distal end. The distal end can include one or more points, where each point is characterized by angle α (i.e., the angle between each of the opposing lateral sides of the tube that forms the point and the longitudinal axis of the tube). When viewed from the side, the angle formed by a point is characterized by angle 2α. For example, a tip angle of about 30 degrees corresponds to an angle α of about 15 degrees. Furthermore, the angled distal end of the tube can be formed (e.g., by grinding or cutting) at angle α, e.g., to form a second bevel structure at the distal end of a tube, where this second bevel is characterized by angle β and is orthogonal to the primary point (or bevel) characterized by angle α. This second bevel can be provided to reduce the size or width of the point. Exemplary angle α and β includes less than about 20 degrees, 15 degrees, 10, degrees, or 5 degrees (e.g., about 15 degrees, 10 degrees, 6 degrees, 5 degrees, or 3 degrees). See, e.g.,
FIGS. 8A-8J and its associated text of U.S. Pub. No. 2011/0313429, which are hereby incorporated by reference in its entirety, for exemplary points, angle α, and angle β. - The micro-coring needles can optionally include one or more notches within the lumen of the needle and/or extensions on the exterior surface of the needle (e.g., at the distal portion of the needle). Such notches and extensions could be useful to promote cutting of tissue surrounding the excised tissue portions. Exemplary needles having such notches and/or extensions include a microauger, as well as any needles provided in
FIGS. 5A-5E and described its associated text of International Pub. No. WO 2012/103492, which are hereby incorporated by reference in its entirety, for apparatuses having notches and/or extensions. - The micro-coring needles can optionally include one or more protrusions or barbs within the lumen of the needle to promote retention of fat within the needle. In use, an apparatus including such needles can be inserted into the subcutaneous fat layer and then withdrawn to remove retained fat tissue. See, e.g.,
FIGS. 1A-1C, 2A-2C, 3A, 4, 5A-5C, 6A-6B, 7, and 8A-8C and its associated text of International Pub. No. WO 2013/013196, which are hereby incorporated by reference in its entirety, for apparatuses having protrusions or barbs. In certain preferred embodiments, the micro-coring needles do not include protrusions or barbs within the lumen of the needle. - The components for making or excisions can be provided in any useful arrangement (e.g., a linear array, a radial array, or any described herein) of one or more components (e.g., two, three, four, five, ten, thirty, fifty, hundred, or more). The spacing between each component (e.g., needle) can be of any useful dimension, such as between about 1 mm and 50 mm (e.g., between about 1 mm and 40 mm, 1 mm and 30 mm, 1 mm and 25 mm, 1 mm and 20 mm, 1 mm and 15 mm, 1 mm and 10 mm, 1 mm and 5 mm, 1 mm and 3 mm, 3 mm and 50 mm, 3 mm and 40 mm, 3 mm and 30 mm, 3 mm and 25 mm, 3 mm and 20 mm, 3 mm and 15 mm, 3 mm and 10 mm, 3 mm and 5 mm, 5 mm and 50 mm, 5 mm and 40 mm, 5 mm and 30 mm, 5 mm and 25 mm, 5 mm and 20 mm, 5 mm and 15 mm, 5 mm and 10 mm, 10 mm and 50 mm, 10 mm and 40 mm, 10 mm and 30 mm, 10 mm and 25 mm, 10 mm and 20 mm, 10 mm and 15 mm, 15 mm and 50 mm, 15 mm and 40 mm, 15 mm and 30 mm, 15 mm and 25 mm, 15 mm and 20 mm, 20 mm and 50 mm, 20 mm and 40 mm, 20 mm and 30 mm, 20 mm and 25 mm, 30 mm and 50 mm, 30 mm and 40 mm, or 40 mm and 50 mm). Such arrangements can include one or more needles (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, or more needles, such as between about 2 and 100 needles (e.g., between 2 and 10, 2 and 15, 2 and 20, 2 and 25, 2 and 30, 2 and 35, 2 and 40, 2 and 45, 2 and 50, 2 and 75, 5 and 10, 5 and 15, 5 and 20, 5 and 25, 5 and 30, 5 and 35, 5 and 40, 5 and 45, 5 and 50, 5 and 75, 5 and 100, 10 and 20, 10 and 25, 10 and 30, 10 and 35, 10 and 40, 10 and 45, 10 and 50, 10 and 75, 10 and 100, 15 and 20, 15 and 25, 15 and 30, 15 and 35, 15 and 40, 15 and 45, 15 and 50, 15 and 75, 15 and 100, 20 and 25, 20 and 30, 20 and 35, 20 and 40, 20 and 45, 20 and 50, 20 and 75, 20 and 100, 25 and 30, 25 and 35, 25 and 40, 25 and 45, 25 and 50, 25 and 75, 25 and 100, 30 and 35, 30 and 40, 30 and 45, 30 and 50, 30 and 75, 30 and 100, 35 and 40, 35 and 45, 35 and 50, 35 and 75, 35 and 100, 40 and 45, 40 and 50, 40 and 75, 40 and 100, 50 and 75, or 50 and 100)).
- Such arrangements of components can be any of various two-dimensional or three-dimensional patterns along a base holding one or more components for making excisions. The base can be optionally mounted on a roller apparatus having a cylindrical body with a longitudinal rotational axis, where the one or more needles are arranged on the longitudinal surface of the cylindrical body. In some embodiments, the needles extend as substantially coplanar extensions of the cylindrical body. In use, rotation of the cylindrical body along the skin results in the excision of tissue portions by the needles. Exemplary roller apparatuses are provided in
FIGS. 11A-11B and its associated text in U.S. Pub. No. 2011/0251602, inFIGS. 3A-3B and its associated text in International Pub. No. WO 2012/103492, which are hereby incorporated by reference in its entirety. - Such components for making excisions can include one or more stop arrangements (e.g., one or more collars, which can be coupled to the outer portion of the needle and be adjusted along the long axis of the needle to control the depth of excision in the biological tissue); one or more sleeves around a portion of a needle, such that the sleeve is slidably translatable along the longitudinal axis of the needle (e.g., to excise tissue portions below the surface of the skin region); a vibrating arrangement (e.g., a piezoelectric element, a solenoid, a pneumatic element, ultrasonic element, or a hydraulic element) that mechanically couples to at least one needle (e.g., to promote insertion of one or more needles into the skin region, such as by providing an amplitude of vibration in the range of about 50-500 μm (e.g., between about 100-200 μm) or by providing a frequency of the induced vibrations to be between about 10 Hz and about 10 kHz (e.g., between about 500 Hz and about 2 kHz, or even about 1 kHz)); a suction or pressure system (e.g., by squeezing a flexible bulb or deformable membrane attached thereto or by opening a valve leading from a source of elevated pressure, such as a small pump) to stabilize the surrounding skin region prior to excision and/or to facilitate removal of the skin portions and/or subdermal fat from the tube; a pin within the lumen to the tube to facilitate removal of the skin portions or subdermal fat from the tube; one or more actuators for positioning, translating, and/or rotating the one or more needles relative to the skin portion or relative to the optional one or more pins; a housing or frame to stabilize the surrounding skin region prior to excision; one or more actuators for positioning and/or translating the one or more pins relative to the skin portion or relative to one or more needles; one or more sensors (e.g., force sensors, optical sensors, laser fibers, photodetectors, and/or position sensors) in communication with one or more needles to detect the position of the needles, the presence of a tissue portion in the needle, the position of the apparatus relative to the treated skin portion; a reciprocating arrangement attached to a base or a substrate having one or more attached needles (e.g., a motor or actuator configured to repeatedly insert and/or withdrawn one or more needles); a fluid system coupled to the needles to facilitate removal of excised tissue portions or to irrigate the skin portion, e.g., with saline or a phosphate buffered solution; a heat source (e.g., a resistive heater or current) in communication with the needle to promote cauterization or ablation of tissue portions or mobilization of fat in or around the needle; an optical element (e.g., a lens, a prism, a reflector, etc.) to facilitate viewing of the skin portion beneath the apparatus, needle; and/or an abrading element optionally mounted on a rotating shaft (e.g., to promote dermabrasion).
- The needles can be formed from any useful material and optionally coated or chemically treated to promote excision of a tissue portion and subdermal fat and/or to increase precision or effectiveness for treating the skin region. Exemplary materials include metal (e.g., a stainless steel tube, 304 stainless steel, a surgical stainless steel), a biopsy needle, an epoxy, a glass, a polymer, a plastic, a resin, another structurally rigid material, or a similar structure. Exemplary coatings include a lubricant, a low-friction material (e.g., Teflon™), a chromium coating (e.g., ME-92™, such as to increase material strength), a plastic, a polymer (e.g., nylon or polyethylene), a polished metal alloy, or the like.
- In particular embodiments, an apparatus for manipulating subdermal fat includes at least one needle including at least two points provided at a distal end thereof and an optional stop arrangement coupled to the outer portion of the tube (e.g., to control and/or limit a distance to which the one needle is inserted into a biological tissue), where the angle formed by at least one of the points is about thirty degrees, where the inner diameter of at least one needle is less than about 1 mm, and where at least one section of the needle is structured to be inserted into a biological tissue to excise at least one tissue therefrom when the tube is withdrawn from the tissue. In other embodiments, the apparatus further includes a pin provided at least partially within the central lumen of a needle, where the pin is controllably translatable in a direction along a longitudinal axis of the one needle and the pin is configured to facilitate removal of at least one tissue portion (e.g., subdermal fat) from the tube. In yet other embodiments, the apparatus includes a substrate; a plurality of needles affixed to the substrate and configured to be at least partially inserted into a biological tissue; at least one opening provided on or in a wall of each of the needles; at least one cutting edge protruding from the wall of each of the needles proximal to the at least one opening; and a sleeve provided around at least a portion of each of the needle, where each needle is configured to be translatable along a longitudinal axis of a corresponding sleeve, and where a distance from the longitudinal axis of each neddle to an outer edge of each corresponding sleeve is at least as large as a distance from the longitudinal axis of the tube to an outer portion of the cutting edge of the tube.
- The procedures herein can include one or more optional processes that promote effective excision of tissue portions or that benefit healing or mobilize subdermal fat. Such optional processes include cooling, freezing, or partially freezing the skin portion prior to skin excision (e.g., by applying a cryospray or by contacting a surface of a skin region with a cooled object for an appropriate duration), where such cooling and/or freezing can, e.g., increase mechanical stability of the tissue portions and/or mobilize subdermal fat; treatment with red or near-infrared light of the skin portion to further promote healing of the tissue; and/or treatment with an optical energy source, such as any described herein (e.g., an ablative laser).
- Exemplary procedures, methods, and apparatuses are provided in U.S. Pub. Nos. 2012/0041430, 2011/0313429, 2011/0251602, 2012/0226214, 2012/0226306 and 2012/0226214; International Pub. Nos. WO 2012/103492, WO 2012/103483, WO 2012/103488, WO 2013/013199, WO 2013/013196, and WO 2012/119131; Fernandes et al., “Micro-Mechanical Fractional Skin Rejuvenation,” Plastic & Reconstructive Surgery 130(5S-1):28 (2012); and Fernandes et al., “Micro-Mechanical Fractional Skin Rejuvenation,” Plastic & Reconstructive Surgery 131(2):216-223 (2013), where each is hereby incorporated by reference in its entirety.
- In certain embodiments, the methods of the invention include applying pressure to the treatment area to facilitate fat removal. In one embodiment, pressure can be applied to the treatment area prior to insertion of a needle, thereby facilitating fat entry into the needle once inserted. In another embodiment, pressure can be applied while the needle is inserted (e.g., by a second needle as described above), thereby causing subdermal fat to flow into and, in some cases, through the needle. Finally, certain embodiments feature applying pressure after the needle is removed, thereby causing subdermal fat to escape the dermis through the holes left by the excised tissue. Alternatively, a vacuum source may be applied to the external surface of the cored region to aid in fat extrusion. Heat and other mechanical stimuli may further facilitate fat extrusion.
- Micro-coring needles allow excision of small columns of skin as described, e.g., in “Method and apparatus for dermatological treatment” from Anderson et al. (PCT Application Publication No. 2011/0313429, herein incorporated by reference).
FIG. 1 shows an exemplary embodiment of a micro-coring needle. The needle is inserted in the skin until its tip protrudes in the subcutaneous fat layer allowing tissue excision.FIG. 2 shows a picture of a treated area. The treatment resulted in the formation of small holes though the skin.FIG. 3 shows a picture of a skin section treated with a micro-coring needle one week after treatment. It shows that, where a column of epidermal and dermal tissue was removed, the removed tissue is replaced by granulation tissue. Removal of the column of skin tissue generated herniation fat in the dermis. The removed column of skin (epidermis and dermis) is attached to fat cells as shown inFIG. 4 . The sample was stained with Oil Red O, which preferentially stains fat. The sample includes skin tissue attached to adipose tissue. - Tumescent anesthesia is a local anesthesia technique requiring the infiltration of a large volume of fluid in the area to be treated. The injected fluid typically consists of lidocaine and epinephrine highly diluted in physiologic saline solution. Tumescent anesthesia prior to treatment with micro-coring needles can result in (1) local anesthesia of tissue, (2) reduction of bleeding during the treatment, (3) increased sub-cutaneous pressure, and (4) chemical modification of the sub-cutaneous fat.
-
FIG. 5 shows an area of skin treated with tumescent anesthesia prior to treatment with microcoring needles. As seen in this figure, prominent strings of fat emerge from the tissue treated with micro-coring needles. - Cellulite is characterized by dimpling or nodularity of the skin. Cellulite is thought to be formed by herniation of subcutaneous fat into the dermis. Formation of fibrotic bands (septae) between the subcutaneous tissue and the dermis and weakening of the mechanical properties of the dermis (e.g. breakdown of collagen in reticular dermis) result in the formation of nodules or dimples as illustrated in
FIG. 6 . - Modified micro-coring needles (see, e.g.,
FIG. 7 ) allow severing of the septae. The needle is inserted into the skin until its tip protrudes in the fat layer. The cored skin is aspirated by applying a vacuum on the needle. A pre-bent wire is introduced in the needle while the needle tip is still in the subcutaneous layer. The pre-bent wire is deployed in the fat layer. It is then rotated around the needle axis as to sever septae surrounding the needle. The wire is the retracted and the needle is removed. - The cellulite treatment described above: (1) severs the septae, (2) improves the mechanical properties of the skin, and (3) allows fat extraction through the hole in the skin.
- All publications, patent applications, and patents mentioned in this specification are herein incorporated by reference.
- Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific desired embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the fields of medicine, pharmacology, or related fields are intended to be within the scope of the invention.
Claims (32)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/166,543 US20210178028A1 (en) | 2013-12-19 | 2021-02-03 | Methods and devices for manipulating subdermal fat |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361918271P | 2013-12-19 | 2013-12-19 | |
PCT/US2014/071443 WO2015095675A1 (en) | 2013-12-19 | 2014-12-19 | Methods and devices for manipulating subdermal fat |
US201615106036A | 2016-06-17 | 2016-06-17 | |
US17/166,543 US20210178028A1 (en) | 2013-12-19 | 2021-02-03 | Methods and devices for manipulating subdermal fat |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/106,036 Division US10953143B2 (en) | 2013-12-19 | 2014-12-19 | Methods and devices for manipulating subdermal fat |
PCT/US2014/071443 Division WO2015095675A1 (en) | 2013-12-19 | 2014-12-19 | Methods and devices for manipulating subdermal fat |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210178028A1 true US20210178028A1 (en) | 2021-06-17 |
Family
ID=53403733
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/106,036 Active 2037-04-26 US10953143B2 (en) | 2013-12-19 | 2014-12-19 | Methods and devices for manipulating subdermal fat |
US17/166,543 Pending US20210178028A1 (en) | 2013-12-19 | 2021-02-03 | Methods and devices for manipulating subdermal fat |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/106,036 Active 2037-04-26 US10953143B2 (en) | 2013-12-19 | 2014-12-19 | Methods and devices for manipulating subdermal fat |
Country Status (3)
Country | Link |
---|---|
US (2) | US10953143B2 (en) |
EP (1) | EP3082897A4 (en) |
WO (1) | WO2015095675A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11166743B2 (en) | 2016-03-29 | 2021-11-09 | Cytrellis Biosystems, Inc. | Devices and methods for cosmetic skin resurfacing |
US11324534B2 (en) | 2014-11-14 | 2022-05-10 | Cytrellis Biosystems, Inc. | Devices and methods for ablation of the skin |
US11464954B2 (en) | 2016-09-21 | 2022-10-11 | Cytrellis Biosystems, Inc. | Devices and methods for cosmetic skin resurfacing |
US11534344B2 (en) | 2013-02-20 | 2022-12-27 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
WO2023238041A1 (en) * | 2022-06-07 | 2023-12-14 | Venus Concept Inc. | Method and device for treating cellulite |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011075676A2 (en) | 2009-12-18 | 2011-06-23 | Knowlton Edward W | A skin treatment and drug delivery device |
US10695546B2 (en) | 2010-12-17 | 2020-06-30 | Srgi Holdings, Llc | Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal |
US10661063B2 (en) | 2010-12-17 | 2020-05-26 | Srgi Holdings, Llc | Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal |
US10736653B2 (en) | 2013-12-06 | 2020-08-11 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US10485575B2 (en) | 2010-12-17 | 2019-11-26 | Srgi Holdings Llc | Pixel array medical devices and methods |
US11612410B2 (en) | 2010-12-17 | 2023-03-28 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11278309B2 (en) | 2010-12-17 | 2022-03-22 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US10368904B2 (en) | 2013-12-06 | 2019-08-06 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11000310B2 (en) | 2010-12-17 | 2021-05-11 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11103275B2 (en) | 2010-12-17 | 2021-08-31 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US10702684B2 (en) | 2010-12-17 | 2020-07-07 | Srgi Holdings, Llc | Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal |
EP2928395B1 (en) | 2012-12-06 | 2022-02-02 | SRGI Holdings LLC | Pixel array medical devices |
WO2015021434A2 (en) | 2013-08-09 | 2015-02-12 | Cytrellis Biosystems, Inc. | Methods and apparatuses for skin treatment using non-thermal tissue ablation |
ES2827049T3 (en) | 2013-10-02 | 2021-05-19 | Srgi Holdings Llc | Pixel Set Medical Devices |
BR112016007476A2 (en) | 2013-10-02 | 2017-09-12 | Srgi Holdings Llc | pixel set medical devices and methods |
US11937846B2 (en) | 2013-12-06 | 2024-03-26 | Srgi Holdings Llc | Pixel array medical systems, devices and methods |
US20170296214A1 (en) | 2013-12-06 | 2017-10-19 | Edward KNOWLTON | Pixel array medical systems, devices and methods |
US11229452B2 (en) | 2013-12-06 | 2022-01-25 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US10953143B2 (en) | 2013-12-19 | 2021-03-23 | Cytrellis Biosystems, Inc. | Methods and devices for manipulating subdermal fat |
EP3253308A4 (en) | 2015-02-05 | 2018-10-24 | SRGI Holdings LLC | Pixel array medical systems, devices and methods |
US10188777B2 (en) | 2015-08-20 | 2019-01-29 | Aurastem Llc | Liposuction device and system and use thereof |
US11980389B2 (en) | 2015-08-31 | 2024-05-14 | Srgi Holdings Llc | Handed spiral slotted scalpet array |
US11490952B2 (en) | 2015-08-31 | 2022-11-08 | Srgi Holdings, Llc | Pixel array medical devices and methods |
US11751903B2 (en) | 2015-08-31 | 2023-09-12 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11564706B2 (en) | 2019-10-28 | 2023-01-31 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
AU2017332262C1 (en) * | 2016-09-21 | 2022-11-17 | Cytrellis Biosystems, Inc. | Rapid skin treatment using microcoring |
US10820893B2 (en) * | 2017-02-15 | 2020-11-03 | Cook Medical Technologies Llc | Endoscopic tri-point biopsy needle |
US20190388068A1 (en) * | 2018-06-20 | 2019-12-26 | Boston Scientific Scimed, Inc. | Sheath for enabling needle exchange and needle-sharp safety |
CN110613517A (en) * | 2019-10-08 | 2019-12-27 | 平荧 | Three-dimensional lifting and positioning device for fat chamber |
US20210244642A1 (en) * | 2020-02-10 | 2021-08-12 | Simeon Wall, Jr. | Cellulite eradication methods |
US20210346018A1 (en) * | 2020-04-26 | 2021-11-11 | Eurothreads LLC | Ten-dimensional barbed surgical thread |
EP4312800A1 (en) * | 2021-03-22 | 2024-02-07 | The General Hospital Corporation | Injectable filler from autologous dermis without donor scarring |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5052999A (en) * | 1990-01-29 | 1991-10-01 | Klein Jeffrey A | Liposuction method and apparatus |
Family Cites Families (348)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE287651C (en) | 1915-09-25 | |||
US2426535A (en) | 1944-10-21 | 1947-08-26 | Turkel Henry | Infusion and biopsy needle |
US2496111A (en) | 1947-09-26 | 1950-01-31 | Turkel Henry | Biopsy needle |
US2881763A (en) | 1956-08-30 | 1959-04-14 | Robbins Noel | Surgical handpiece |
US3001522A (en) | 1957-12-26 | 1961-09-26 | Silverman Irving | Biopsy device |
GB885036A (en) | 1958-12-10 | 1961-12-20 | Allen & Hanburys Ltd | Improvements relating to surgical multiple puncture devices |
US3214869A (en) | 1963-09-12 | 1965-11-02 | Stryker Corp | Combined abrading and vacuum device |
US3640279A (en) | 1967-12-07 | 1972-02-08 | Warren F Brown | Skin graft cutting method and machine |
US3598108A (en) | 1969-02-28 | 1971-08-10 | Khosrow Jamshidi | Biopsy technique and biopsy device |
US3683892A (en) | 1970-07-13 | 1972-08-15 | Battelle Development Corp | Device for the extraction of core samples |
US3788320A (en) | 1972-02-25 | 1974-01-29 | Kendall & Co | Spinal needle |
US3929123A (en) | 1973-02-07 | 1975-12-30 | Khosrow Jamshidi | Muscle biopsy needle |
US4108096A (en) | 1977-05-16 | 1978-08-22 | The Singer Company | Needle bar drive stabilizing arrangement |
US4159659A (en) | 1978-05-16 | 1979-07-03 | Carol Nightingale | Electrical marking device |
US4274419A (en) | 1979-10-19 | 1981-06-23 | Quinton Instrument Co. | Skin preparation device and method used in the application of medical electrodes |
US4649918A (en) | 1980-09-03 | 1987-03-17 | Custom Medical Devices, Inc. | Bone core removing tool |
JPS57163208A (en) | 1981-03-31 | 1982-10-07 | Matsushita Electric Ind Co Ltd | Substrate for optical circuit |
US4403617A (en) | 1981-09-08 | 1983-09-13 | Waters Instruments, Inc. | Biopsy needle |
US4458678A (en) | 1981-10-26 | 1984-07-10 | Massachusetts Institute Of Technology | Cell-seeding procedures involving fibrous lattices |
US4476864A (en) | 1982-09-29 | 1984-10-16 | Jirayr Tezel | Combined multiple punch and single punch hair transplant cutting device |
DE3341117C2 (en) | 1983-11-12 | 1986-02-06 | Josef 7512 Rheinstetten Lindenberg | Biopsy cannula |
US4604346A (en) | 1984-10-09 | 1986-08-05 | Massachusetts Institute Of Technology | Skin-equivalent prepared by the use of punch biopsy |
IT1202218B (en) | 1985-05-21 | 1989-02-02 | Mario Aluigi | MULTI-NEEDLE JUNCTION PLATES FOR MESOTHERAPY USE AND RELATED POINT-SAVING CASES |
USD297375S (en) | 1985-12-30 | 1988-08-23 | Transistolite Manufacturing Limited | Shaver |
FR2612938B1 (en) | 1987-03-26 | 1989-06-23 | Cird | METHOD FOR OBTAINING A SKIN EQUIVALENT AND CORRESPONDING SKIN EQUIVALENT |
US4815462A (en) * | 1987-04-06 | 1989-03-28 | Clark Vickie J | Lipectomy device |
US4865026A (en) | 1987-04-23 | 1989-09-12 | Barrett David M | Sealing wound closure device |
US4903709A (en) | 1988-09-21 | 1990-02-27 | Skinner Bruce A J | Biopsy method |
DD287651A5 (en) | 1989-09-11 | 1991-03-07 | Martin-Luther-Universitaet Halle Wittenberg,De | BIOPSIEKANUELE |
USD323034S (en) | 1990-01-12 | 1992-01-07 | Conair Corporation | Therapeutic massager or the like |
WO1992000706A1 (en) | 1990-07-03 | 1992-01-23 | Bennett David Mervyn Penningto | Tissue grafting |
SU1801391A1 (en) | 1990-08-09 | 1993-03-15 | Arkhangelskij G Med I | Device for biopsy analysis |
USD338070S (en) | 1990-08-28 | 1993-08-03 | Sealand Industrial Co., Ltd. | Combined massager and torch |
US7384417B2 (en) | 1990-12-14 | 2008-06-10 | Cucin Robert L | Air-powered tissue-aspiration instrument system employing curved bipolar-type electro-cauterizing dual cannula assembly |
US5749895A (en) | 1991-02-13 | 1998-05-12 | Fusion Medical Technologies, Inc. | Method for bonding or fusion of biological tissue and material |
US5152763A (en) | 1991-04-02 | 1992-10-06 | Johnson Lanny L | Method for grafting bone |
US5242453A (en) | 1991-07-01 | 1993-09-07 | Gubich Stephen J | Device for puckering the flesh to facilitate injections |
DE4211889A1 (en) | 1991-08-16 | 1993-07-15 | Hans Henning Spitalny | Surgical extraction and transplant instrument |
US5462062A (en) | 1991-12-13 | 1995-10-31 | Rubinstein; Daniel B. | Bone marrow biopsy needle with cutting and/or retaining device at distal end |
USD342138S (en) | 1992-03-05 | 1993-12-07 | Hwe, Inc. | Hand-held massager |
US5306490A (en) | 1992-04-20 | 1994-04-26 | Medlogic, Inc. | Methods for retarding blister formation by use of cyanoacrylate adhesives |
WO1993022971A1 (en) | 1992-05-11 | 1993-11-25 | Boston Scientific Corporation | Multiple needle biopsy instrument |
US6342213B1 (en) | 1992-06-09 | 2002-01-29 | Medlogic Global Corporation | Methods for treating non-suturable wounds by use of cyanoacrylate adhesives |
CN2126570Y (en) | 1992-07-04 | 1993-01-20 | 中国人民解放军322医院 | Transplanting device for bone through skin |
FR2696334B1 (en) | 1992-10-01 | 1994-12-02 | Boudjema J Pascal | Device for transplanting small diameter hair grafts. |
US5331972A (en) | 1992-12-03 | 1994-07-26 | Baxter International Inc. | Bone marrow biopsy, aspiration and transplant needles |
US5324305A (en) | 1992-12-15 | 1994-06-28 | Ryder International Corporation | Bioadhesive applicator |
US5419761A (en) * | 1993-08-03 | 1995-05-30 | Misonix, Inc. | Liposuction apparatus and associated method |
US5810857A (en) | 1993-08-12 | 1998-09-22 | Mackool; Richard J. | Surgical knife for controlled lengthening of an incision |
US5885211A (en) | 1993-11-15 | 1999-03-23 | Spectrix, Inc. | Microporation of human skin for monitoring the concentration of an analyte |
NO941494L (en) | 1994-04-25 | 1995-10-26 | Olav L Aasberg | Apparatus for grafting hair roots, as well as apparatus for applying hair roots on assembly lines for use in the apparatus |
DE4414807C2 (en) | 1994-04-28 | 1996-10-02 | Willmen Hans Rainer | Electrosurgical instrument for the therapy of varices |
CN1115629A (en) | 1994-07-25 | 1996-01-31 | 萧遗生 | Miniature multiple-tuft wig planter |
US5593381A (en) | 1994-07-25 | 1997-01-14 | Neptune Pundak & Ayalon Ltd. | Skin and tissue treatment and stimulation device and method |
US5458112A (en) | 1994-08-15 | 1995-10-17 | Arrow Precision Products, Inc. | Biliary biopsy device |
US5611810A (en) | 1994-08-31 | 1997-03-18 | James E. Arnold | Hair transplantation apparatus |
US5713375A (en) | 1994-09-13 | 1998-02-03 | Mcallister; David R. | Skin-tightening device and method |
USD377404S (en) | 1994-12-19 | 1997-01-14 | Izumi Products Company | Electric shaver |
US5989273A (en) | 1995-01-18 | 1999-11-23 | Arnold; James E. | Apparatus for producing hair transplantation donor strips and methods |
US5615690A (en) | 1995-02-15 | 1997-04-01 | Symbiosis Corporation | Tissue core biopsy cannula |
US5868758A (en) | 1995-02-28 | 1999-02-09 | Markman; Barry S. | Method apparatus and kit for performing hair grafts |
US5792169A (en) | 1995-02-28 | 1998-08-11 | Markman; Barry Stephen | Method and apparatus for forming multiple cavities for placement of hair grafts |
WO1996037155A1 (en) | 1995-05-22 | 1996-11-28 | Silicon Microdevices, Inc. | Micromechanical device and method for enhancing delivery of compounds through the skin |
US5925002A (en) | 1995-09-22 | 1999-07-20 | Hwe, Inc. | Hand-held vibratory massager |
IL116282A (en) | 1995-12-07 | 2000-10-31 | L R Surgical Instr Ltd | Adjustable mesher device and a system for using the same |
CA2253549C (en) | 1996-06-18 | 2005-10-25 | Alza Corporation | Device for enhancing transdermal agent delivery or sampling |
RU2119304C1 (en) | 1996-07-01 | 1998-09-27 | Научно-исследовательский институт новых медицинских технологий Минздравмедпрома Российской Федерации | Method of puncture biopsy and needle for its embodiment |
US6733496B2 (en) | 2001-06-06 | 2004-05-11 | Oratec Interventions, Inc. | Intervertebral disc device employing flexible probe |
US6887250B1 (en) | 1996-09-12 | 2005-05-03 | Douglas B. Dority | Multiple bladed surgical knife and method of use |
WO1998026719A1 (en) | 1996-12-18 | 1998-06-25 | Vidacare International, Inc. | Wound closure strips |
USD388543S (en) | 1997-02-18 | 1997-12-30 | Matsushita Electric Works, Ltd. | Combined nose hair trimmer and top cap |
US5931855A (en) | 1997-05-21 | 1999-08-03 | Frank Hoffman | Surgical methods using one-way suture |
US6432098B1 (en) | 1997-09-04 | 2002-08-13 | The Procter & Gamble Company | Absorbent article fastening device |
US6251097B1 (en) | 1997-09-04 | 2001-06-26 | The Procter & Gamble Company | Absorbent article fastening device |
US5902319A (en) | 1997-09-25 | 1999-05-11 | Daley; Robert J. | Bioabsorbable staples |
US5922000A (en) | 1997-11-19 | 1999-07-13 | Redfield Corp. | Linear punch |
GB2335603B (en) | 1997-12-05 | 2002-12-04 | Thermolase Corp | Skin enhancement using laser light |
US6022324A (en) | 1998-01-02 | 2000-02-08 | Skinner; Bruce A. J. | Biopsy instrument |
USD425241S (en) | 1998-01-14 | 2000-05-16 | Matsushita Electric Works, Ltd. | Handheld electric face cleaner |
US6562037B2 (en) | 1998-02-12 | 2003-05-13 | Boris E. Paton | Bonding of soft biological tissues by passing high frequency electric current therethrough |
FR2776180B1 (en) | 1998-03-17 | 2000-08-11 | Pascal Boudjema | DEVICE FOR IMPLANTING SMALL DIAMETER HAIR GRAFTS |
US6669694B2 (en) | 2000-09-05 | 2003-12-30 | John H. Shadduck | Medical instruments and techniques for highly-localized thermally-mediated therapies |
JP2000139929A (en) | 1998-08-31 | 2000-05-23 | Tetsuo Ezaki | Method and device for planting hair |
USD457265S1 (en) | 1998-09-09 | 2002-05-14 | Dante International Consulting Inc. | Facial iron |
US6544239B2 (en) | 1998-10-16 | 2003-04-08 | Bio-Plexus Delaware, Inc. | Releasable locking needle assembly with optional release accessory therefor |
US6178346B1 (en) | 1998-10-23 | 2001-01-23 | David C. Amundson | Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus |
US6584102B1 (en) * | 1998-12-21 | 2003-06-24 | At&T Corp. | Communication network apparatus and method |
US6264618B1 (en) | 1999-01-28 | 2001-07-24 | Minrad, Inc. | Sampling device and method of retrieving a sample |
KR20010016936A (en) | 1999-08-05 | 2001-03-05 | 김정철 | A hair transplanter |
US6211598B1 (en) | 1999-09-13 | 2001-04-03 | Jds Uniphase Inc. | In-plane MEMS thermal actuator and associated fabrication methods |
US6835184B1 (en) | 1999-09-24 | 2004-12-28 | Becton, Dickinson And Company | Method and device for abrading skin |
EP1224949A1 (en) | 1999-10-18 | 2002-07-24 | Hisamitsu Pharmaceutical Co. Inc. | Device and electrode for electroporation |
US6241739B1 (en) | 1999-11-12 | 2001-06-05 | Altair Instruments, Inc. | Microdermabrasion device and method of treating the skin surface |
DE10054621A1 (en) | 1999-11-19 | 2001-05-23 | Leica Mikrosysteme Ag Wien | Biopsy needle has main part with inner stamp, sample-taking part, head and peripheral blade |
US6197039B1 (en) | 1999-12-09 | 2001-03-06 | Bahman Ashraf | Triple pointed micro knife |
DE19961027B4 (en) | 1999-12-16 | 2007-01-18 | Karl Storz Gmbh & Co. Kg | Medical instrument for treating tissue or bone cement in the human or animal body |
US7073510B2 (en) | 2000-02-11 | 2006-07-11 | The General Hospital Corporation | Photochemical tissue bonding |
JP5101778B2 (en) | 2000-02-11 | 2012-12-19 | ザ ジェネラル ホスピタル コーポレイション | Tissue adhesion by photochemical action |
US6241687B1 (en) | 2000-02-18 | 2001-06-05 | Ethicon Endo-Surgery, Inc. | Method of use for a biopsy instrument with breakable sample segments |
US6585746B2 (en) | 2000-04-20 | 2003-07-01 | Philip L. Gildenberg | Hair transplantation method and apparatus |
EP1294290B1 (en) | 2000-05-10 | 2005-07-27 | Canica Design Inc. | System for moving and stretching plastic tissue |
US6485503B2 (en) | 2000-05-19 | 2002-11-26 | Coapt Systems, Inc. | Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device |
US6440096B1 (en) | 2000-07-14 | 2002-08-27 | Becton, Dickinson And Co. | Microdevice and method of manufacturing a microdevice |
AU7920901A (en) | 2000-08-08 | 2002-03-04 | Bioamide Inc | Scaffolds for tissue engineered hair |
US7108681B2 (en) | 2000-10-16 | 2006-09-19 | Corium International, Inc. | Microstructures for delivering a composition cutaneously to skin |
IT1315053B1 (en) | 2000-11-10 | 2003-01-27 | Thermo Med 2000 Kft | NEEDLE-ELECTRODE WITH RADIOFREQUENCY ACTIVE FILAMENT |
US6419641B1 (en) | 2000-11-28 | 2002-07-16 | Promex, Llc | Flexible tip medical instrument |
ES2274915T3 (en) | 2000-12-28 | 2007-06-01 | Palomar Medical Technologies, Inc. | ELECTROMAGNETIC RADIATION TREATMENT DEVICE (EMR) OF THE SKIN. |
US7651507B2 (en) | 2003-03-03 | 2010-01-26 | Kci Licensing, Inc. | Tissue processing system |
US7422586B2 (en) | 2001-02-28 | 2008-09-09 | Angiodynamics, Inc. | Tissue surface treatment apparatus and method |
USD458710S1 (en) | 2001-04-24 | 2002-06-11 | Wahl Clipper Corporation | Trimmer |
WO2002096321A1 (en) | 2001-05-28 | 2002-12-05 | Hb Medicals Corporation | Hair transplant device |
US6626890B2 (en) * | 2001-06-06 | 2003-09-30 | Tony R. Brown | Fat removal device and method |
US6875613B2 (en) | 2001-06-12 | 2005-04-05 | Lifescan, Inc. | Biological fluid constituent sampling and measurement devices and methods |
DE60144014D1 (en) | 2001-07-19 | 2011-03-24 | Max Planck Gesellschaft | Chemical sensors made from nanoparticle-dendrimer composite materials |
US20030023196A1 (en) | 2001-07-24 | 2003-01-30 | Jim Liguori | Shrink wrap bandage |
US6709408B2 (en) | 2001-08-09 | 2004-03-23 | Biopsy Sciences, Llc | Dual action aspiration biopsy needle |
US6881203B2 (en) | 2001-09-05 | 2005-04-19 | 3M Innovative Properties Company | Microneedle arrays and methods of manufacturing the same |
US20040087992A1 (en) | 2002-08-09 | 2004-05-06 | Vladimir Gartstein | Microstructures for delivering a composition cutaneously to skin using rotatable structures |
US7776025B2 (en) | 2001-10-29 | 2010-08-17 | Edwards Lifesciences Corporation | Method for providing medicament to tissue |
KR100701711B1 (en) | 2001-11-05 | 2007-03-29 | 더 프록터 앤드 갬블 캄파니 | Articles comprising impregnated thermoplastic members and method of manufacturing the articles |
US20030091665A1 (en) | 2001-11-09 | 2003-05-15 | Avon Products, Inc | Topical cosmetic composition with skin rejuvenation benefits |
US6916328B2 (en) * | 2001-11-15 | 2005-07-12 | Expanding Concepts, L.L.C | Percutaneous cellulite removal system |
US7658742B2 (en) | 2001-11-21 | 2010-02-09 | Envy Medical, Inc. | Skin treatment system and method of use |
HUP0402605A2 (en) | 2001-12-20 | 2005-06-28 | Alza Corporation | Skin-piercing microprojections having piercing depth control |
US6669618B2 (en) | 2001-12-21 | 2003-12-30 | The Procter & Gamble Company | Method of dynamically pre-fastening a disposable absorbent article having a slot-and-tab fastening system |
US6908453B2 (en) | 2002-01-15 | 2005-06-21 | 3M Innovative Properties Company | Microneedle devices and methods of manufacture |
US7967816B2 (en) | 2002-01-25 | 2011-06-28 | Medtronic, Inc. | Fluid-assisted electrosurgical instrument with shapeable electrode |
US6733498B2 (en) | 2002-02-19 | 2004-05-11 | Live Tissue Connect, Inc. | System and method for control of tissue welding |
US20030158521A1 (en) | 2002-02-21 | 2003-08-21 | Ameri Darius M. | Trocar placement guide needle |
US8209006B2 (en) | 2002-03-07 | 2012-06-26 | Vgx Pharmaceuticals, Inc. | Constant current electroporation device and methods of use |
US7131951B2 (en) | 2002-03-20 | 2006-11-07 | Board Of Regents, The University Of Texas System | Biopsy needle |
EP1494572A4 (en) | 2002-03-27 | 2010-11-10 | Hadasit Med Res Service | Controlled laser treatment for non-invasive tissue alteration, treatment and diagnostics with minimal collateral damage |
US20030195625A1 (en) | 2002-04-15 | 2003-10-16 | Garcia Castro Marco A. | Biodegradable follicle hair implant |
WO2008033873A2 (en) | 2006-09-12 | 2008-03-20 | Vidacare Corporation | Medical procedures trays and related methods |
US20030233082A1 (en) | 2002-06-13 | 2003-12-18 | The Procter & Gamble Company | Highly flexible and low deformation fastening device |
US7160326B2 (en) | 2002-06-27 | 2007-01-09 | Depuy Products, Inc. | Method and apparatus for implantation of soft tissue implant |
US20040010268A1 (en) | 2002-07-11 | 2004-01-15 | Gabehart Michael A. | Dermabrasion/microdermabrasion apparatus |
US7044938B2 (en) | 2002-07-17 | 2006-05-16 | La Bianco Kerrie L | Skin treatment apparatus and methods |
ITBO20020083U1 (en) | 2002-09-09 | 2004-03-10 | Paolo Avaltroni | NEEDLE IMPROVED INSTRUMENT FOR THE COLLECTION OF BIOPTIC OSTEOMIDOLLAR SAMPLES |
FR2846221B1 (en) | 2002-10-28 | 2005-07-15 | Oreal | DEVICE FOR CARRYING OUT A SAMPLING OF DRY MATERIAL |
US6896666B2 (en) | 2002-11-08 | 2005-05-24 | Kochamba Family Trust | Cutaneous injection delivery under suction |
US20060264926A1 (en) | 2002-11-08 | 2006-11-23 | Kochamba Gary S | Cutaneous stabilization by vacuum for delivery of micro-needle array |
IL152912A0 (en) | 2002-11-18 | 2003-06-24 | Nanopass Ltd | Micro needle systems |
WO2004047625A2 (en) | 2002-11-26 | 2004-06-10 | Age Sciences Corporation, A Utah Corporation | Microdermabrasion apparatus and system |
US7343920B2 (en) | 2002-12-20 | 2008-03-18 | Toby E Bruce | Connective tissue repair system |
RU2308873C2 (en) | 2003-01-21 | 2007-10-27 | МЕТЕК С.р.Л. | Retractor for carrying out operations on rectal artery |
US7226457B2 (en) | 2003-02-19 | 2007-06-05 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Epidermal sampling apparatus and method |
US7708746B2 (en) | 2003-02-27 | 2010-05-04 | Wright Medical Technology, Inc. | Method and apparatus for processing dermal tissue |
US20040175690A1 (en) | 2003-03-03 | 2004-09-09 | Kci Licensing, Inc. | Tissue harvesting device and method |
ES2513401T3 (en) | 2003-03-27 | 2014-10-27 | The General Hospital Corporation | Device for dermatological treatment and fractional skin rejuvenation |
US7156856B2 (en) | 2003-04-29 | 2007-01-02 | Feller Alan S | Method and apparatus for follicular extraction and transplantation |
AR040037A1 (en) | 2003-05-20 | 2005-03-09 | Res Labs S A | INSTRUMENT FOR CLEANING AND REJUVENATING SKIN FOR NON-TRAUMATIC ABRASION UNDER CONTROLLED AND REGULABLE VACUUM |
AU2003902804A0 (en) | 2003-06-05 | 2003-06-19 | Eastland Medical Systems Ltd. | Tissue sampling needle |
CN1572271A (en) | 2003-06-10 | 2005-02-02 | 普莱姆·美迪泰克公司 | Skincare apparatus |
USD500391S1 (en) | 2003-07-07 | 2004-12-28 | Wahl Clipper Corporation | Hair trimmer housing |
WO2005007003A1 (en) | 2003-07-11 | 2005-01-27 | Reliant Technologies, Inc. | Method and apparatus for fractional photo therapy of skin |
AU156617S (en) | 2003-07-25 | 2004-10-08 | Lrc Products | Stimulation device |
AT413790B (en) | 2003-08-07 | 2006-06-15 | Frass Michael Dr | DEVICE FOR NEEDLE BIOPSIA |
ITMO20030230A1 (en) | 2003-08-07 | 2005-02-08 | Daniele Bonara | DEVICE FOR TRANSCUTANEOUS TISSUE BIOPSY. |
US20050043640A1 (en) | 2003-08-21 | 2005-02-24 | Chang Alexander C. | Remote electrocardiogram for early detection of coronary heart disease |
US8043614B2 (en) | 2004-03-09 | 2011-10-25 | Ahlfors Jan-Eric W | Autogenic living scaffolds and living tissue matrices: methods and uses thereof |
JP2005087520A (en) | 2003-09-18 | 2005-04-07 | Terumo Corp | Liquid medicine injector |
JP4409239B2 (en) | 2003-09-18 | 2010-02-03 | テルモ株式会社 | Chemical injection device |
US7419472B2 (en) | 2003-09-30 | 2008-09-02 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with internal specimen collection mechanism |
US20050209567A1 (en) | 2003-10-27 | 2005-09-22 | Sibbitt Wilmer L Jr | Stress-reducing medical devices |
EP1689441A1 (en) | 2003-11-05 | 2006-08-16 | PhotoBioMed Corporation | Bonding tissues and cross-linking proteins with naphthalimide compounds |
WO2005060621A2 (en) | 2003-11-21 | 2005-07-07 | The Regents Of The University Of California | Method and/or apparatus for puncturing a surface for extraction, in situ analysis, and/or substance delivery using microneedles |
RU2289332C2 (en) | 2004-01-13 | 2006-12-20 | Институт органической и физической химии им. А.Е.Арбузова Казанского научного центра РАН (ИОФХ КНЦ РАН) | Apparatus for treatment of wound surface |
US20050165329A1 (en) | 2004-01-22 | 2005-07-28 | Reflux Corporation | Multiple biopsy collection device |
US8535299B2 (en) | 2004-01-23 | 2013-09-17 | Joseph Giovannoli | Method and apparatus for skin reduction |
WO2005072181A2 (en) | 2004-01-23 | 2005-08-11 | Joseph Giovannoli | Method and apparatus for excising skin |
US20050203575A1 (en) | 2004-03-15 | 2005-09-15 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Skin microactivation system and method |
RU2325859C2 (en) | 2004-03-15 | 2008-06-10 | Марлен Андреевич Суламанидзе | Surgical suture and method of cosmetic operation performance |
EP1726317B1 (en) | 2004-03-15 | 2012-07-04 | Marlen Andreevich Sulamanidze | Surgical means for cosmetic surgery |
US7820875B2 (en) | 2004-03-29 | 2010-10-26 | The Procter & Gamble Company | Disposable absorbent articles being adaptable to wearer's anatomy |
US8568382B2 (en) | 2004-03-29 | 2013-10-29 | The Procter & Gamble Company | Disposable absorbent articles having co-elongation |
ES2424646T3 (en) | 2004-04-08 | 2013-10-07 | Hsc Development Llc | Follicular Extraction Device |
US20050245952A1 (en) | 2004-04-29 | 2005-11-03 | Feller Alan S | Apparatus and method for dermal punch and follicular unit circumferential incision |
DE202004010659U1 (en) | 2004-07-07 | 2004-10-07 | Kohr, Christine | Skin perforation device, for creating multiple perforations in the outer skin layer, comprises a needle, needle plate and needle plate guidance device which is used with a stroke drive to create multiple perforations in the skin |
DE602004008906T2 (en) | 2004-07-09 | 2008-06-19 | Johnson & Johnson Gmbh | Cosmetic composition for removing make-up and an applicator containing the composition |
US7270641B2 (en) | 2004-09-01 | 2007-09-18 | Appliance Development Corporation | Apparatus for abrading hair and exfoliating skin |
US20060064031A1 (en) | 2004-09-17 | 2006-03-23 | Miller Stuart H | Biopsy needle |
US20090146068A1 (en) | 2004-11-23 | 2009-06-11 | Koninklijke Philips Electronics, N.V. | Radiation dosimeter |
US7722549B2 (en) | 2004-11-29 | 2010-05-25 | Granit Medical Innovations, Llc | Rotating fine needle for core tissue sampling |
US20060161179A1 (en) | 2004-12-23 | 2006-07-20 | Kachenmeister Robert M | Follicular transplantation device and method |
USD538430S1 (en) | 2005-01-27 | 2007-03-13 | Matsushita Electric Works, Ltd. | Facial treatment appliance |
CA2599455A1 (en) | 2005-01-28 | 2006-08-03 | The General Hospital Corporation | Biopsy needle |
US7618809B2 (en) | 2005-03-23 | 2009-11-17 | Gebing Ronald A | Microarrayer with coaxial multiple punches |
WO2006108185A1 (en) | 2005-04-07 | 2006-10-12 | 3M Innovative Properties Company | System and method for tool feedback sensing |
JP2006289098A (en) | 2005-04-12 | 2006-10-26 | Inolase 2002 Ltd | Apparatus for vacuum-assisted light-based treatment of skin |
US20080009802A1 (en) | 2005-04-25 | 2008-01-10 | Danilo Lambino | Method of treating acne with stratum corneum piercing device |
US20060253079A1 (en) | 2005-04-25 | 2006-11-09 | Mcdonough Justin | Stratum corneum piercing device |
US7850656B2 (en) | 2005-04-29 | 2010-12-14 | Warsaw Orthopedic, Inc. | Devices and methods for delivering medical agents |
US20070010828A1 (en) | 2005-06-23 | 2007-01-11 | Michael Eknoian | Material for mechanical skin resurfacing techniques |
US8376984B2 (en) | 2005-07-14 | 2013-02-19 | Terry L. James | Apparatus, system, and method to deliver optimal elements in order to enhance the aesthetic appearance of the skin |
MX2008001803A (en) | 2005-08-01 | 2008-04-16 | Hawk Medical Technologies Ltd | Eradication of pigmentation and scar tissue. |
JP4715374B2 (en) | 2005-08-03 | 2011-07-06 | 住友電気工業株式会社 | Optical connecting component and optical connecting component connecting method |
US20070038181A1 (en) | 2005-08-09 | 2007-02-15 | Alexander Melamud | Method, system and device for delivering a substance to tissue |
US7785339B2 (en) | 2005-08-09 | 2010-08-31 | Innovia, Llc | Tool for coring portions of one or more hair follicles |
WO2007021671A2 (en) | 2005-08-10 | 2007-02-22 | Insight Instruments, Inc. | Tool for extracting vitreous samples from an eye |
WO2007024038A1 (en) | 2005-08-23 | 2007-03-01 | Konkuk University Industrial Cooperation Corp. | Electro active material actuator embedded with interdigitated electrodes |
DE602005018557D1 (en) | 2005-08-30 | 2010-02-04 | Azienda Usl 4 Prato | PREPARING EYESHADOWS FOR LASER WELDING PROCESS |
US20070060888A1 (en) | 2005-09-06 | 2007-03-15 | Kerberos Proximal Solutions, Inc. | Methods and apparatus for assisted aspiration |
US9486274B2 (en) | 2005-09-07 | 2016-11-08 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US7962192B2 (en) | 2005-09-30 | 2011-06-14 | Restoration Robotics, Inc. | Systems and methods for aligning a tool with a desired location or object |
EP2781200B1 (en) | 2005-09-30 | 2018-09-19 | Restoration Robotics, Inc. | Automated systems and methods for harvesting and implanting follicular units |
US20070078466A1 (en) | 2005-09-30 | 2007-04-05 | Restoration Robotics, Inc. | Methods for harvesting follicular units using an automated system |
JP4981291B2 (en) | 2005-09-30 | 2012-07-18 | 株式会社フジミインコーポレーテッド | Thermal spray powder and method of forming thermal spray coating |
US20070142885A1 (en) | 2005-11-29 | 2007-06-21 | Reliant Technologies, Inc. | Method and Apparatus for Micro-Needle Array Electrode Treatment of Tissue |
WO2007065013A2 (en) | 2005-12-02 | 2007-06-07 | The Johns Hopkins University | Multi imager compatible robot for image-guided interventions, automated brachytherapy seed delivery apparatus and methods and systems related thereto |
CN101336315B (en) | 2005-12-07 | 2012-12-19 | 特拉维夫大学拉莫特有限公司 | Drug-delivering composite structures |
US20070142744A1 (en) | 2005-12-16 | 2007-06-21 | Provencher Kevin M | Tissue sample needle and method of using same |
EP1962930A2 (en) | 2005-12-16 | 2008-09-03 | Access Scientific, Inc. | Needle constructed with a transparent or translucent material |
US10799285B2 (en) | 2005-12-22 | 2020-10-13 | Inmode Ltd. | Skin rejuvenation resurfacing device and method of use |
US7618429B2 (en) | 2005-12-22 | 2009-11-17 | Spamedica International Srl | Skin rejuvination resurfacing method |
US20070156161A1 (en) | 2005-12-29 | 2007-07-05 | Weadock Kevin S | Method and device for repositioning tissue |
US8163252B2 (en) | 2005-12-30 | 2012-04-24 | Healthtronics Laboratory Solutions, Inc. | Kit for taking biopsies, autopsies, excisions, and resections and methods thereof |
US7658728B2 (en) | 2006-01-10 | 2010-02-09 | Yuzhakov Vadim V | Microneedle array, patch, and applicator for transdermal drug delivery |
JP2010515469A (en) | 2006-01-12 | 2010-05-13 | ナノパス テクノロジーズ エルティディ. | Skin surface polishing equipment |
US7785333B2 (en) | 2006-02-21 | 2010-08-31 | Olympus Medical Systems Corp. | Overtube and operative procedure via bodily orifice |
US7473232B2 (en) | 2006-02-24 | 2009-01-06 | Boston Scientific Scimed, Inc. | Obtaining a tissue sample |
GB0605450D0 (en) | 2006-03-17 | 2006-04-26 | Intercytex Ltd | Cell co-culture |
US20070239260A1 (en) | 2006-03-31 | 2007-10-11 | Palanker Daniel V | Devices and methods for tissue welding |
EP2010087B1 (en) | 2006-04-07 | 2014-11-05 | The General Hospital Corporation | Apparatus for producing thermal damage within the skin |
WO2007122611A2 (en) | 2006-04-20 | 2007-11-01 | Nano Pass Technologies Ltd. | Device and methods combining vibrating micro-protrusions with phototherapy |
WO2007124411A1 (en) | 2006-04-20 | 2007-11-01 | 3M Innovative Properties Company | Device for applying a microneedle array |
US20070249960A1 (en) | 2006-04-21 | 2007-10-25 | The Cleveland Clinic Foundation | Biopsy punch |
JP2009534148A (en) | 2006-04-26 | 2009-09-24 | ノボ・ノルデイスク・エー/エス | Cannula for infusion device having tapered end and method for manufacturing the cannula |
US8246611B2 (en) | 2006-06-14 | 2012-08-21 | Candela Corporation | Treatment of skin by spatial modulation of thermal heating |
AU2007282013B2 (en) | 2006-08-03 | 2013-07-11 | The Board Of Trustees Of The Leland Stanford Junior University | Devices and bandages for the treatment or prevention of scars and/or keloids and methods and kits therefor |
US7582055B2 (en) | 2006-08-09 | 2009-09-01 | Olympus Medical Systems Corp. | Endoscope system |
CN201005966Y (en) | 2006-10-11 | 2008-01-16 | 吴江市云龙医疗器械有限公司 | Beauty massage device |
KR101421760B1 (en) | 2006-10-17 | 2014-07-22 | 브이지엑스 파머시우티컬즈, 인크. | Electroporation devices and methods of using same for electroporation of cells in mammals |
WO2008052189A2 (en) | 2006-10-26 | 2008-05-02 | Reliant Technologies, Inc. | Micropore delivery of active substances |
US20080132979A1 (en) | 2006-11-30 | 2008-06-05 | Medtronic, Inc. | Method of implanting a medical lead |
US7834232B2 (en) | 2006-12-02 | 2010-11-16 | Omnitek Partners Llc | Shape and pressure adjustable dressing |
WO2008083305A2 (en) | 2006-12-29 | 2008-07-10 | Palomar Medical Technologies, Inc. | Devices for fractional ablation of tissue |
US9283029B2 (en) | 2007-01-31 | 2016-03-15 | Alma Lasers Ltd. | Skin treatment using a multi-discharge applicator |
US8066717B2 (en) | 2007-03-19 | 2011-11-29 | Restoration Robotics, Inc. | Device and method for harvesting and implanting follicular units |
EP2142129A4 (en) | 2007-04-19 | 2011-04-20 | Miramar Labs Inc | Methods and apparatus for reducing sweat production |
TW200841866A (en) | 2007-04-25 | 2008-11-01 | Micro Base Technology Corp | Cosmetic or medical patch structure |
US20080269735A1 (en) * | 2007-04-26 | 2008-10-30 | Agustina Vila Echague | Optical array for treating biological tissue |
US8150505B2 (en) | 2007-05-03 | 2012-04-03 | Path Scientific, Llc | Method and apparatus for the formation of multiple microconduits |
WO2008148071A2 (en) | 2007-05-24 | 2008-12-04 | Nidus2, Llc | Injectable dermis |
DE102007026973A1 (en) | 2007-06-04 | 2008-12-11 | Sieber, Jens-Peter, Dr. | Surgical blade for scalpel, has rotatable base body with circulating cutting edge designed such that non-linear cutting pattern is produced in tissue when guiding blade is in straight-line over tissue |
US20080312648A1 (en) | 2007-06-12 | 2008-12-18 | Darion Peterson | Fat removal and sculpting device |
US7722550B2 (en) | 2007-07-26 | 2010-05-25 | Mcclellan W Thomas | Biopsy needle with different cross-sectional shapes and associated trap doors |
CA2696209C (en) | 2007-08-14 | 2016-10-25 | Fred Hutchinson Cancer Research Center | Needle array assembly and method for delivering therapeutic agents |
US20100121307A1 (en) | 2007-08-24 | 2010-05-13 | Microfabrica Inc. | Microneedles, Microneedle Arrays, Methods for Making, and Transdermal and/or Intradermal Applications |
GB0719037D0 (en) | 2007-09-28 | 2007-11-07 | Vitrolife Sweden Ab | Sampling needle |
US8211134B2 (en) | 2007-09-29 | 2012-07-03 | Restoration Robotics, Inc. | Systems and methods for harvesting, storing, and implanting hair grafts |
US20090093864A1 (en) | 2007-10-08 | 2009-04-09 | Anderson Robert S | Methods and devices for applying energy to tissue |
WO2009072711A2 (en) | 2007-12-07 | 2009-06-11 | Myeong In Lee | Disk needle roller |
CN101925795A (en) | 2008-01-28 | 2010-12-22 | 维斯塔斯风力系统集团公司 | Method for sensing strain in component in wind turbine, optical strain sensing system and uses thereof |
WO2009099988A2 (en) | 2008-02-01 | 2009-08-13 | The General Hospital Corporation | Method and apparatus for fat removal |
US7608049B2 (en) | 2008-03-04 | 2009-10-27 | Goldenberg Alec S | Biopsy needle |
US8382660B2 (en) | 2008-03-13 | 2013-02-26 | Olympus Medical Systems Corp. | Endoscope system having an endoscope and a tissue-collecting apparatus |
US8226664B2 (en) | 2008-03-18 | 2012-07-24 | Restoration Robotics, Inc. | Biological unit removal tools with movable retention member |
WO2009146072A1 (en) | 2008-04-01 | 2009-12-03 | The General Hospital Corporation | Method and apparatus for tissue expansion |
JP5882733B2 (en) | 2008-04-01 | 2016-03-09 | ザ ジェネラル ホスピタル コーポレイション | Tissue transplantation method and device |
KR20100135863A (en) | 2008-04-01 | 2010-12-27 | 더 제너럴 하스피탈 코포레이션 | Method and apparatus for cooling biological tissue |
JP2011519671A (en) | 2008-05-08 | 2011-07-14 | メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ | Biopsy equipment |
JP2010000210A (en) | 2008-06-20 | 2010-01-07 | Fujinon Corp | Probe |
EP2138104A1 (en) | 2008-06-25 | 2009-12-30 | Vibra Tech AB | Core biopsy arrangement |
CN101347346B (en) | 2008-06-26 | 2010-06-02 | 张震 | Pressure regulation instrument of fine needle puncture |
KR101013581B1 (en) | 2008-08-06 | 2011-02-14 | 라종주 | Electric Skin Treatment Device |
EP2320840B1 (en) | 2008-08-07 | 2020-12-16 | The General Hospital Corporation | Method and apparatus for dermatological hypopigmentation |
US20100057100A1 (en) | 2008-09-02 | 2010-03-04 | Eli Zeevi | Multiple bladed surgical knife and method of use |
WO2010027188A2 (en) | 2008-09-03 | 2010-03-11 | 주식회사 디티에스랩 | Skin stimulator |
WO2010038879A1 (en) | 2008-09-30 | 2010-04-08 | Terumo Kabushiki Kaisha | Injection needle and drug injection device |
US20100082042A1 (en) | 2008-09-30 | 2010-04-01 | Drews Michael J | Biological unit removal tool with occluding member |
IT1394690B1 (en) | 2008-10-23 | 2012-07-13 | Carli De | METHOD OF DERMOCOSMETIC TREATMENT OF THE SKIN WITH THE APPLICATION OF COMPOSITIONS CONTAINING NGF. |
US20100145373A1 (en) | 2008-12-05 | 2010-06-10 | Ruth Alon | Nail drill |
US9522269B2 (en) | 2008-12-08 | 2016-12-20 | Hui Zhu | Needle and lead and methods of use |
US20100160822A1 (en) | 2008-12-18 | 2010-06-24 | Parihar Shailendra K | Biopsy Device with Detachable Needle |
KR101060722B1 (en) | 2009-01-12 | 2011-08-31 | 이희영 | Plastic injection needle with wrinkle removal surgeon |
US8936557B2 (en) | 2009-01-19 | 2015-01-20 | King Saud University | Punch biopsy device |
WO2010095456A1 (en) | 2009-02-23 | 2010-08-26 | 株式会社メドレックス | Applicator for microneedle array |
CA2747767A1 (en) | 2009-02-25 | 2010-09-02 | Transpharma Medical Ltd. | Electrical skin rejuvenation |
WO2010114987A2 (en) | 2009-04-01 | 2010-10-07 | The General Hospital Corporation | Apparatus and method for fat removal |
WO2011006009A1 (en) | 2009-07-08 | 2011-01-13 | Edge Systems Corporation | Devices, systems and methods for treating the skin using time-release substances |
CN102665623B (en) | 2009-08-11 | 2014-12-03 | 尼欧迪纳生物科学公司 | Devices and methods for dressing applicators |
CN101670145B (en) | 2009-09-01 | 2012-06-06 | 陈德锋 | Face-beautifying instrument |
US20110092844A1 (en) | 2009-10-16 | 2011-04-21 | Bargo Paulo R | Micro-insult test and use therefor |
WO2011075676A2 (en) | 2009-12-18 | 2011-06-23 | Knowlton Edward W | A skin treatment and drug delivery device |
US8480592B2 (en) | 2009-12-23 | 2013-07-09 | C. R. Bard, Inc. | Biopsy probe mechanism having multiple echogenic features |
JP5835900B2 (en) | 2010-01-22 | 2015-12-24 | 賢雄 鄭 | Multifunctional insole |
WO2011104875A1 (en) | 2010-02-26 | 2011-09-01 | 株式会社ティー・アンド・アイ | Instrument for treating soft tissue |
AU2011223657B2 (en) | 2010-03-03 | 2016-04-14 | Lumenis Be Ltd. | System and methods of tissue microablation using fractional treatment patterns |
CA2793582A1 (en) | 2010-03-29 | 2011-10-06 | Follica, Inc. | Combination therapy |
DE102010013459B3 (en) | 2010-03-30 | 2011-06-22 | S. u. A. Martin GmbH & Co KG, 78604 | Surgical cutter for resecting of e.g. bone fragment, has transport-tooth formed in mantle, and resected chips held in mantle moved by retaining teeth of tooth strip during opening movement of upper parts of cutter |
US8500754B2 (en) | 2010-04-30 | 2013-08-06 | Johnson & Johnson Consumer Companies, Inc. | Handheld, personal skin care systems with detachable skin care elements |
KR101909645B1 (en) | 2010-05-07 | 2018-10-18 | 더 제너럴 하스피탈 코포레이션 | Method and apparatus for tissue grafting and copying |
US8491497B2 (en) | 2010-05-13 | 2013-07-23 | Ethicon Endo-Surgery, Inc. | Method and apparatus for morcellating tissue |
US8128639B2 (en) | 2010-05-20 | 2012-03-06 | Restoration Robotics, Inc. | Tools and methods for harvesting follicular units |
JP2013530739A (en) | 2010-05-21 | 2013-08-01 | サウンド サージカル テクノロジーズ エルエルシー | Tissue collection method and adipose tissue collection apparatus |
WO2011163264A2 (en) | 2010-06-21 | 2011-12-29 | Candela Corporation | Driving microneedle arrays into skin and delivering rf energy |
WO2012013601A1 (en) | 2010-07-26 | 2012-02-02 | Valeo Vision | Optical module of an illuminating and/or signalling device of a motor vehicle |
US8226663B2 (en) | 2010-09-22 | 2012-07-24 | Irina Remsburg | Microdermabrasion hand piece providing automatic limitation of skin hyperextension |
WO2012052986A2 (en) | 2010-10-17 | 2012-04-26 | Syneron Medical Ltd. | A disposable patch for personal aesthetic skin treatment |
WO2012103483A2 (en) | 2011-01-28 | 2012-08-02 | The General Hospital Corporation | Apparatus and method for tissue biopsy |
CA2825950C (en) | 2011-01-28 | 2019-06-18 | The General Hospital Corporation | Method and apparatus for skin resurfacing |
AU2012211118B2 (en) | 2011-01-28 | 2016-05-12 | The General Hospital Corporation | Method and apparatus for discontinuous dermabrasion |
KR102005918B1 (en) | 2011-02-03 | 2019-07-31 | 트리아 뷰티, 인코포레이티드 | Radiation-based dermatological devices and methods |
US9446189B2 (en) * | 2011-02-11 | 2016-09-20 | Lifecell Corporation | Tissue transfer systems |
US20120226214A1 (en) | 2011-03-03 | 2012-09-06 | Neodyne Biosciences, Inc. | Devices and methods for skin tightening |
RU2746457C2 (en) | 2011-03-23 | 2021-04-14 | ЭТИКОН ЭлЭлСи | Self-retaining suture with an adjustable loop |
US20120253333A1 (en) | 2011-04-01 | 2012-10-04 | Garden Jerome M | Combination Laser Treatment of Skin Conditions |
WO2012138668A1 (en) | 2011-04-05 | 2012-10-11 | Carticept Medical, Inc. | An injection system comprising a motion transfer cable and a container filling system |
US9468459B2 (en) | 2011-04-20 | 2016-10-18 | Kci Licensing, Inc. | Skin graft devices and methods |
CN102178616B (en) | 2011-05-06 | 2013-06-05 | 广州保税区雅兰国际化妆品有限公司 | Hyaluronic acid micro-needle adhesive film and preparation method thereof |
CN202113484U (en) | 2011-05-23 | 2012-01-18 | 苏州东邦医疗器械有限公司 | Module for skin resurfacing |
WO2013013199A2 (en) | 2011-07-21 | 2013-01-24 | The General Hospital Corporation | Method and apparatus for subsurface tissue sampling |
EP2734249B1 (en) | 2011-07-21 | 2018-09-05 | The General Hospital Corporation | Apparatus for damage and removal of fat |
US20130110026A1 (en) | 2011-07-27 | 2013-05-02 | Neodyne Biosciences, Inc. | Strained skin treatment devices and methods |
JP4987149B1 (en) | 2011-08-10 | 2012-07-25 | 株式会社トラストレックス | acupuncture |
US20140296796A1 (en) | 2011-11-02 | 2014-10-02 | Chee Yen Lim | Plastic microneedle strip |
EP2802371A1 (en) | 2012-01-10 | 2014-11-19 | Sanofi-Aventis Deutschland GmbH | Guiding assembly for intradermal injection |
US9057272B2 (en) * | 2012-06-29 | 2015-06-16 | United Technologies Corporation | Protective polishing mask |
JP6185580B2 (en) | 2012-07-06 | 2017-08-23 | ザ ジェネラル ホスピタル コーポレイション | Method and apparatus for skin treatment |
KR102560618B1 (en) | 2012-07-06 | 2023-07-26 | 더 제너럴 하스피탈 코포레이션 | Method and apparatus for dermatological treatment |
US9782574B2 (en) | 2012-10-10 | 2017-10-10 | 3M Innovative Properties Company | Force-controlled applicator for applying a microneedle device to skin |
EP2928395B1 (en) | 2012-12-06 | 2022-02-02 | SRGI Holdings LLC | Pixel array medical devices |
EP2934659B1 (en) | 2012-12-21 | 2019-03-06 | 3M Innovative Properties Company | Adhesive assemblies and microneedle injection apparatuses comprising same |
AU2014219240B2 (en) | 2013-02-20 | 2018-12-20 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
US9775645B2 (en) | 2013-03-01 | 2017-10-03 | Envy Medical, Inc. | Microdermabrasion system with ergonomic handle |
ES2936988T3 (en) | 2013-03-15 | 2023-03-23 | Hydrafacial Llc | Devices and systems for skin treatment |
US10238812B2 (en) | 2013-03-15 | 2019-03-26 | Edge Systems Llc | Skin treatment systems and methods using needles |
KR20230146109A (en) | 2013-05-03 | 2023-10-18 | 사이트렐리스 바이오시스템즈, 인크. | Microclosures and related methods for skin treatment |
ES2686362T3 (en) | 2013-05-31 | 2018-10-17 | 3M Innovative Properties Company | Microneedle injection apparatus comprising a reverse actuator |
EP3003458B1 (en) | 2013-05-31 | 2019-12-04 | 3M Innovative Properties Company | Microneedle injection apparatus comprising a dual cover |
GB2515040B (en) | 2013-06-11 | 2019-12-11 | Cilag Gmbh Int | Sliding Sleeve Attachment for an Injection Device |
WO2015009524A1 (en) | 2013-07-16 | 2015-01-22 | 3M Innovative Properties Company | Hollow microneedle with beveled tip |
WO2015021434A2 (en) | 2013-08-09 | 2015-02-12 | Cytrellis Biosystems, Inc. | Methods and apparatuses for skin treatment using non-thermal tissue ablation |
BR112016007476A2 (en) | 2013-10-02 | 2017-09-12 | Srgi Holdings Llc | pixel set medical devices and methods |
US10953143B2 (en) | 2013-12-19 | 2021-03-23 | Cytrellis Biosystems, Inc. | Methods and devices for manipulating subdermal fat |
EP3107461B1 (en) | 2014-02-18 | 2019-07-03 | Massachusetts Institute Of Technology | Tissue collection needle |
AU2015308582A1 (en) | 2014-08-29 | 2017-04-20 | Srgi Holdings, Llc | Pixel array medical devices and methods |
USD797286S1 (en) | 2014-11-14 | 2017-09-12 | Cytrellis Biosystems, Inc. | Device and device body for mechanical fractional ablation of the skin |
KR102670286B1 (en) | 2014-11-14 | 2024-05-30 | 사이트렐리스 바이오시스템즈, 인크. | Devices and methods for ablation of the skin |
EP3253308A4 (en) | 2015-02-05 | 2018-10-24 | SRGI Holdings LLC | Pixel array medical systems, devices and methods |
JP2019506235A (en) | 2016-02-11 | 2019-03-07 | エスアールジーアイ ホールディングス エルエルシーSrgi Holdings Llc | Pixel array medical system, device and method |
EP3435890A1 (en) | 2016-03-29 | 2019-02-06 | Cytrellis Biosystems, Inc. | Devices and methods for cosmetic skin resurfacing |
EP3451951A4 (en) | 2016-05-03 | 2019-12-25 | SRGI Holdings, LLC | Pixel array medical systems, devices and methods |
KR102515836B1 (en) | 2016-09-21 | 2023-03-31 | 사이트렐리스 바이오시스템즈, 인크. | Device and method for cosmetic skin resurfacing |
AU2017332262C1 (en) | 2016-09-21 | 2022-11-17 | Cytrellis Biosystems, Inc. | Rapid skin treatment using microcoring |
SG11202104632QA (en) | 2018-11-07 | 2021-06-29 | Cytrellis Biosystems Inc | Systems and methods for skin treatment |
-
2014
- 2014-12-19 US US15/106,036 patent/US10953143B2/en active Active
- 2014-12-19 EP EP14872252.3A patent/EP3082897A4/en not_active Ceased
- 2014-12-19 WO PCT/US2014/071443 patent/WO2015095675A1/en active Application Filing
-
2021
- 2021-02-03 US US17/166,543 patent/US20210178028A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5052999A (en) * | 1990-01-29 | 1991-10-01 | Klein Jeffrey A | Liposuction method and apparatus |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11534344B2 (en) | 2013-02-20 | 2022-12-27 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
US12023226B2 (en) | 2013-02-20 | 2024-07-02 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
US11324534B2 (en) | 2014-11-14 | 2022-05-10 | Cytrellis Biosystems, Inc. | Devices and methods for ablation of the skin |
US11896261B2 (en) | 2014-11-14 | 2024-02-13 | Cytrellis Biosystems, Inc. | Devices and methods for ablation of the skin |
US11166743B2 (en) | 2016-03-29 | 2021-11-09 | Cytrellis Biosystems, Inc. | Devices and methods for cosmetic skin resurfacing |
US11464954B2 (en) | 2016-09-21 | 2022-10-11 | Cytrellis Biosystems, Inc. | Devices and methods for cosmetic skin resurfacing |
WO2023238041A1 (en) * | 2022-06-07 | 2023-12-14 | Venus Concept Inc. | Method and device for treating cellulite |
WO2023238040A1 (en) * | 2022-06-07 | 2023-12-14 | Venus Concept Inc. | Method and device for treating cellulite |
Also Published As
Publication number | Publication date |
---|---|
EP3082897A1 (en) | 2016-10-26 |
EP3082897A4 (en) | 2017-07-26 |
WO2015095675A1 (en) | 2015-06-25 |
US20160317721A1 (en) | 2016-11-03 |
US10953143B2 (en) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210178028A1 (en) | Methods and devices for manipulating subdermal fat | |
US10245066B2 (en) | Method and apparatus for discontinuous dermabrasion | |
JP6746661B2 (en) | Method and device for skin treatment using non-thermal tissue ablation | |
AU2016203270B2 (en) | Method and apparatus for skin resurfacing | |
JP6035244B2 (en) | Vascular treatment apparatus and method | |
US6120519A (en) | Advanced fulcrum liposuction device | |
CA2846229A1 (en) | Method and apparatus for damage and removal of fat | |
US20150216549A1 (en) | Ultrasonic debrider probe | |
KR20160054858A (en) | Suction tip device with replaceable suction tip container structure for drug infusion, method drug infusion for skin using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: CYTRELLIS BIOSYSTEMS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GINGGEN, ALEC;LEVINSON, DOUGLAS;STONE, DAVID;SIGNING DATES FROM 20180905 TO 20180910;REEL/FRAME:059766/0761 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: D1 CAPITAL PARTNERS, L.P., NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:CYTRELLIS BIOSYSTEMS, INC.;REEL/FRAME:066259/0117 Effective date: 20240109 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |