[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20210160981A1 - Systems and methods for providing color management control in a lighting panel - Google Patents

Systems and methods for providing color management control in a lighting panel Download PDF

Info

Publication number
US20210160981A1
US20210160981A1 US17/168,402 US202117168402A US2021160981A1 US 20210160981 A1 US20210160981 A1 US 20210160981A1 US 202117168402 A US202117168402 A US 202117168402A US 2021160981 A1 US2021160981 A1 US 2021160981A1
Authority
US
United States
Prior art keywords
color management
solid state
state lighting
electronic display
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/168,402
Inventor
John K. Roberts
Keith J. Vadas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brightplus Ventures LLC
Original Assignee
Ideal Industries Lighting LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Industries Lighting LLC filed Critical Ideal Industries Lighting LLC
Priority to US17/168,402 priority Critical patent/US20210160981A1/en
Publication of US20210160981A1 publication Critical patent/US20210160981A1/en
Assigned to BRIGHTPLUS VENTURES LLC reassignment BRIGHTPLUS VENTURES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IDEAL INDUSTRIES LIGHTING LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/24Controlling the colour of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/28Controlling the colour of the light using temperature feedback

Definitions

  • the present invention relates to lighting, and more particularly, to controlling a solid state lighting panel.
  • Solid state lighting arrays are used for a number of lighting applications. Solid state lighting panels including arrays of solid state lamps have been used as direct illumination sources, for example, in architectural and/or accent lighting.
  • a solid state lamp may include, for example, a packaged light emitting device including one or more light emitting diodes (LEDs).
  • LEDs typically include semiconductor layers forming p-n junctions.
  • a solid state light emitting device generates light through the recombination of electronic carriers, i.e. electrons and holes, in a light emitting layer or region.
  • Solid state lighting panels are commonly used as backlights for small LCD display screens, such as LCD display screens used in portable electronic devices.
  • solid state lighting arrays for backlights of larger displays, such as LCD television displays.
  • backlight assemblies may employ white LED lamps that include a blue-emitting LED coated with a wavelength conversion phosphor that converts some of the blue light emitted by the LED into yellow light.
  • the resulting light which is a combination of blue light and yellow light, may appear white to an observer.
  • objects illuminated by such light may not appear to have a natural coloring, because of the limited spectrum of the light. For example, because the light may have little energy in the red portion of the visible spectrum, red colors in an object may not be illuminated well by such light. As a result, the object may appear to have an unnatural coloring when viewed under such a light source.
  • the color rendering index of a light source is a qualitative measure of the ability of the light generated by the source to accurately illuminate a broad range of colors.
  • the color rendering index ranges from essentially zero for monochromatic sources to nearly 100 for incandescent sources.
  • Light generated from a solid state light source may have a relatively low color rendering index, but this can be increased through use of multiple emitters of various color and/or by use of phosphor to broaden the emitted spectrum.
  • such lighting sources may typically include an array of solid state lamps including red, green and blue light emitting devices. When red, green and blue light emitting devices are energized simultaneously, the resulting combined light may appear white, or nearly white, depending on the relative intensities of the red, green and blue sources. There are many different chromaticities of light that may be considered “white.” For example, some “white” light, such as light generated by incandescent lamps, may appear more yellowish, while other “white” light, such as light generated by some fluorescent lamps, may appear more bluish in color.
  • Solid state lamps such as LED's
  • LED's are current-controlled devices in the sense that the intensity of the light emitted from an LED is related to the amount of current driven through the LED.
  • One common method for controlling the current driven through the solid state lamps to achieve desired intensity and color mixing is a Pulse Width Modulation (PWM) scheme.
  • PWM Pulse Width Modulation
  • Many PWM schemes may pulse the solid state lamps alternately to a full current “ON” state followed by a zero current “OFF” state.
  • Designing a management control system that provides accuracy, uniformity and/or responsiveness may be difficult using conventional control system methodologies. For example, while a color management control system may produce undesirable output oscillations corresponding to, for example, sensor output noise, placing a filter on a sensor output may reduce control system responsiveness and cause oscillations from filter phase lag.
  • Some embodiments of the present invention may provide methods of controlling a solid state lighting panel utilizing a microcontroller.
  • the methods may include receiving, in the microcontroller, a color management reference value corresponding to a color characteristic of the solid state lighting panel and adjusting a control mode of the microcontroller responsive to the color management reference value.
  • adjusting a control mode includes operating the microcontroller in a closed loop control mode responsive to receipt of the color management reference value until the solid state lighting panel reaches a color characteristic target value corresponding to the color management reference value and operating the microcontroller in an open loop control mode when the solid state lighting panel substantially reaches the color characteristic target value.
  • the color management reference value includes a user input value.
  • Some embodiments may include estimating a color management change value as a difference between the color management reference value and a current color management value corresponding to a current color characteristic of the lighting panel and generating, if the color management change value is greater than a threshold value, an incremental value between the color management reference value and the current color management value.
  • the color management reference value includes a value from a calibration system and/or supervisory controller.
  • Some embodiments may include periodically operating the microcontroller in a closed loop control mode to correct for color characteristic drift.
  • the color characteristic includes lighting panel luminance. In some embodiments, the color characteristic includes a lighting panel chromaticity value.
  • Some embodiments of the present invention may provide a lighting panel system.
  • Embodiments of such a system may include a lighting panel including multiple solid state lighting devices configured to be driven by multiple current drivers and a multi-mode color management system that is configured to control the lighting panel via the current drivers.
  • the multi-mode color management system may be further configured to selectively operate in a closed loop control mode responsive to a dynamic input signal value.
  • the multi-mode color management system includes a color management unit that is configured to receive sensor input from multiple lighting panel sensors.
  • the color management unit may be further configured to generate color management information to control light output of the multiple solid state lighting devices.
  • the multi-mode color management system includes a microcontroller that is configured to receive color management information from a color management unit and the dynamic input signal value from a user input, wherein the dynamic input signal value corresponds to a color characteristic of the lighting panel.
  • the color characteristic of the lighting panel includes a solid state lighting panel luminance output. In some embodiments, the color characteristic of the lighting panel includes a solid state lighting panel chromaticity output.
  • the multi-mode color management system includes a mode selection module that is configured to estimate a color management change value, compare the color management change value to a threshold value, and set a microcontroller to a closed loop control mode if the color management change value is greater than the threshold value.
  • the mode selection module is further configured to set the microcontroller to an open loop control mode if the color management change value is less than the threshold value.
  • the color management change value includes a difference between the dynamic input signal value and a current color management value.
  • Some embodiments include an increment module that is configured to estimate multiple increment values between the dynamic input signal value and a current color management value.
  • Some embodiments include a backlit display device configured to utilize the lighting panel systems described herein.
  • Some embodiments of the present invention include methods of providing a stabilized color management system in a solid state lighting panel. Some embodiments of such methods may include receiving, in a microcontroller, a color management signal corresponding to a color characteristic of the solid state lighting panel, analyzing the color management signal relative to a current color management value that corresponds to a current color characteristic, and setting a control system mode responsive to analyzing the color management signal.
  • receiving the color management signal includes receiving a color management reference value corresponding to a color characteristic of the solid state lighting panel.
  • the color management reference signal includes a user input signal.
  • analyzing the color management signal includes comparing a color management reference value to the current color management value to determine a color management change value and comparing the color management change value to a threshold value.
  • setting the control system mode includes setting the microcontroller to an open loop control system mode if the color management change value is less than the threshold value.
  • setting the control system mode further includes setting the microcontroller to a closed loop control system mode and calculating a plurality of color management change increment values configured to incrementally adjust the color characteristic from the current color management color value to the color management reference value.
  • Some embodiments may include receiving, if the microcontroller is in the closed loop control mode, a color management feedback value from a solid state lighting panel photo sensor.
  • Some embodiments may include dynamically adjusting the threshold value responsive to the current color management value, wherein if the current color management value is closer to a minimum color management value than it is to a maximum color management value then the threshold is set to a first threshold and wherein if the current color management value is closer to a maximum color management value than it is to a minimum color management value then the threshold is set to a second threshold that is higher than the first threshold.
  • FIG. 1 is a block diagram illustrating a lighting panel according to some embodiments of the invention.
  • FIG. 2 is a schematic diagram illustrating a lighting panel bar according to some embodiments of the present invention.
  • FIG. 3 is a block diagram illustrating a lighting panel system according to some embodiments of the present invention.
  • FIG. 4 is a flow diagram illustrating operations for protecting display components from adverse operating conditions according to some embodiments of the present invention.
  • FIG. 5 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • FIG. 6 is a block diagram illustrating a lighting panel system according to some embodiments of the present invention.
  • FIG. 7 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • FIG. 8 is a flow diagram illustrating operations for controlling a solid state lighting panel according to further embodiments of the present invention.
  • FIG. 9 is a flow diagram illustrating operations for controlling a solid state lighting panel according to yet further embodiments of the present invention.
  • FIG. 10 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • FIG. 11 is a flow diagram illustrating operations for providing a stabilized color management system in a solid state lighting panel according to some embodiments of the present invention.
  • FIG. 12 is a block diagram illustrating backlit display device according to some embodiments of the present invention.
  • FIG. 13 is a block diagram illustrating systems/methods for controlling a solid state backlighting panel in backlit display device according to some embodiments of the present invention.
  • first element, operation, signal, and/or value when a first element, operation, signal, and/or value is referred to as “responsive to” another element, condition, signal and/or value, the first element, condition, signal, and/or value can exist and/or operate completely responsive to or partially responsive to the other element, condition, signal, and/or value.
  • These computer program instructions may be stored or implemented in a microcontroller, microprocessor, digital signal processor (DSP), field programmable gate array (FPGA), a state machine, programmable logic controller (PLC) or other processing circuit, general purpose computer, special purpose computer, or other programmable data processing apparatus such as to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • PLC programmable logic controller
  • These computer program instructions may also be stored in a computer readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • the computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • the functions/acts noted in the blocks may occur out of the order noted in the operational illustrations. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
  • some of the diagrams include arrows on communication paths to show a primary direction of communication, it is to be understood that communication may occur in the opposite direction to the depicted arrows.
  • Some embodiments of the invention may arise from the recognition that a closed loop control system in a solid state backlight is complex based on the need for accuracy, uniformity, and/or responsiveness, that the effect of noise in a color characteristic sensor may produce unwanted fluctuations, and that filtering the sensor output may result in unwanted static oscillation around a color characteristic setpoint. Accordingly, some embodiments establish a light panel system that can set either an open loop control mode or a closed loop control mode responsive to control system demands. In this manner, unwanted control system oscillation may be reduced.
  • Some embodiments of the invention may be directed to flat-panel display applications.
  • flat-panel display applications it may be desirable to achieve high color gamut with high efficiency. Increased gamut may allow the display to render a wider range of perceivable colors. In some embodiments, this may be achieved via multiple solid-state emitters or phosphors that may emit different dominant wavelengths such as, for example, red, green, blue, cyan and/or yellow, among others.
  • FIG. 1 is a block diagram illustrating a lighting panel according to some embodiments of the invention.
  • a lighting panel 10 may include multiple lighting panel bars 20 each having multiple tiles 30 that include solid state emitters. The solid state emitters may be serially arranged in, for example, strings.
  • Each of the lighting panel bars 20 may include an interface 40 configured to provide electrical interconnection with a control system.
  • some embodiments of lighting panels 10 described herein be configured without multiple lighting panel bars 20 and/or multiple tiles 30 .
  • lighting panel may be configured to include a unitary structure that includes multiple solid state emitters.
  • a lighting panel bar 20 can include multiple strings 44 A-C that can each include multiple solid state lighting devices 42 A-C.
  • Each string 44 may be configured to be substantially the same or each one can differ in one or more ways.
  • each string 44 A-C includes solid state lighting devices 42 A-C that emit light in a different dominant wavelength.
  • solid state lighting devices 42 A can be configured to emit light having a dominant wavelength generally corresponding to the color red.
  • solid state lighting devices 42 B and 42 C can be configured to emit light having dominant wavelengths corresponding to the colors green and blue, respectively.
  • a lighting panel bar 20 of some embodiments may include one or more strings 44 having solid state lighting devices 42 of different colors.
  • a lighting panel bar 20 can include a least one string 44 having red solid state lighting devices, a least one string 44 having green solid state lighting devices, and a least one string 44 having blue solid state lighting devices.
  • the strings 44 A-C can be controlled independent of one another or as a group corresponding to the panel lighting bar 20 .
  • systems and methods herein may also be utilized in systems using solid state lighting devices configured to emit light in a single dominant wavelength.
  • systems, etc. may use solid state LED's including phosphors that, when energized, emit light having multiple wavelengths and/or that otherwise emit broad-spectrum light, such as, for example, a phosphor coated blue LED.
  • a lighting panel 10 may be a solid state backlighting panel that may include multiple solid state emitters arranged in strings.
  • the lighting panel system includes a color management unit 360 configured to receive sensor input from color sensor 340 C and generate color management information to control the light output of the strings.
  • PWM Pulse Width Modulation
  • Many PWM schemes may pulse the solid state lamps alternately to a full current “ON” state followed by a zero current noppn state.
  • the output of the string may be controlled by varying the duty cycle, which is the percent of the cycle that the string is placed in an “ON” state.
  • a change in duty cycle may vary the average current and the apparent luminosity of the string and/or emitter being pulsed in an approximately linear fashion.
  • the color management information is provided to a microcontroller 330 that uses the color management information and/or sensor inputs from temperature and other sensors 340 A-B to adjust PWM duty cycles for the strings to cause the panel 10 to emit light having a desired chromaticity and/or luminance setting.
  • the microcontroller 330 may be configured to accept user input 350 , which may also be used to adjust the PWM duty cycles of the strings.
  • the PWM duty cycle information may be used by the microcontroller 330 to switch on or off current drivers 320 , which may drive strings and/or groups of solid state emitters in the lighting panel 10 .
  • the microcontroller 330 may receive a user input 350 regarding a request for a change in a color characteristic of the lighting panel 10 .
  • the microcontroller 330 may generate PWM information responsive to the inputs received from user input 350 , the color management unit 360 , a temp sensor J40A and/or other sensors 340 B, among others.
  • a color characteristic may include, for example, a request for a change in luminance setting, which may be indicative of the total light emission of the lighting panel 10 .
  • a color characteristic may include request for a change in the lighting panel chromaticity value and/or “white point”. The chromaticity value may be controlled by varying the relative outputs of the different colored solid state emitters.
  • FIG. 4 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • Operations for controlling display components include receiving a color management reference value (block 402 ).
  • the color management reference value may be a user input signal that corresponds to a color characteristic of the solid state lighting panel.
  • the user input signal may be received by a controller and/or color management unit configured to control the solid state lighting panel.
  • the controller may be, for example, a microcontroller.
  • the controller may be a functional and/or task specific processor such as, for example, an application specific integrated circuit (ASIC). Examples of color characteristics include, for example, luminosity and/or chromaticity, among others.
  • ASIC application specific integrated circuit
  • the controller may enter a closed loop control mode (block 406 ).
  • the closed loop control mode provides for the use of feedback signals from, for example, sensors, to govern a change from a current color characteristic that corresponds to a current color management value to a color characteristic target that corresponds to the color management reference value. In this manner, a change in the color characteristic is applied via the controller (block 410 ).
  • Whether the color management target is reached is determined (block 412 ). If the color management target is not reached, then changes in the controller output are applied (block 414 ). If the color management target is reached, the controller may enter an open loop control mode (block 416 ). The open mode control may not receive feedback signals from sensors. In this manner, unwanted oscillations in the output of the controller and thus the color characteristic due to sensor noise and/or other minor perturbances may be reduced. In some embodiments, the controller may periodically enter a closed loop control mode to correct for small and/or gradual deviations in color characteristics. For example, color and/or luminance drift may be corrected on a periodic basis, including, for example, a period of one or more seconds, minutes, hours and/or days, among others. In some embodiments, the periodic interval may be as long as years. In some embodiments, the interval may be determined by a trigger such as, for example, a user input signal, an external calibration system and/or a supervisory control system, among others.
  • a trigger such as, for example, a
  • FIG. 5 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • Operations for controlling display components include receiving a color management reference value (block 502 ).
  • the color management reference value may be a user input signal that corresponds to a color characteristic of the solid state lighting panel.
  • the user input signal may be received by a controller and/or color management unit configured to control the solid state lighting panel.
  • the controller may be a functional and/or task specific processor such as, for example, an application specific integrated circuit (ASIC). Examples of color characteristics include, for example, luminosity and/or chromaticity, among others.
  • ASIC application specific integrated circuit
  • Whether a color management change value is greater than a threshold value is determined (block 504 ).
  • the color management change value may be determined by the difference, ratio and/or other relation between the received color management reference value and a current color management value that corresponds to a current color characteristic of the solid state lighting panel.
  • the threshold value may be predetermined as a fixed value.
  • the threshold value may vary as a function of the current color management value relative to, for example, a color management value minimum, maximum and/or operating range. For example, if the current color management value is near a minimum and/or at the low end of the operating range, the threshold value may be lower than if the current color management value is near a maximum and/or at the high end of the operating range.
  • incremental color management reference values may be generated (block 506 ).
  • the requested change corresponding to the color management change value may be performed in smaller discrete increments and may include delays between each incremental change.
  • a closed loop control mode may slew more consistently and thus reduce overshoot and/or oscillation. For example, a user input may request a 30% change in luminance, which may be effected through three discrete 10% changes in luminance.
  • the controller may enter a closed loop control mode to perform the requested change in color management value (block 508 ).
  • the controller may enter a closed loop control mode to perform the requested change in color management value (block 508 ). This may generally be the case for less significant changes as reflected in a lower color management change value.
  • the closed loop control mode provides for the use of feedback signals from, for example, sensors, to accomplish a change from a current color characteristic of the solid state lighting panel that corresponds to a current color management value to a color characteristic target that corresponds to the color management reference value. In this manner, a change in the color characteristic is applied via the controller (block 510 ).
  • a determination as to whether the color management target is reached may be made (block 512 ). If the color management target is not reached, then changes in the controller output are further applied (block 514 ). If the color management target is reached, the controller may enter an open loop control mode (block 516 ).
  • the open loop control mode controller may not receive and/or utilize feedback signals from sensors. In this manner, unwanted oscillations in the output of the controller and thus the color characteristic due to sensor noise and/or other minor perturbances may be reduced.
  • the controller may periodically enter a closed loop control mode to correct for small and/or gradual deviations in color characteristics. For example, color and/or luminance drift may be corrected on a periodic basis, including, for example, one or more seconds, minutes, hours and/or days, among others.
  • the periodic interval may be as long as years.
  • the interval may be determined by a trigger such as, for example, a user input signal, an external calibration system and/or a supervisory control system, among others.
  • the lighting panel system 600 may include a lighting panel 610 that includes multiple solid state lighting devices.
  • the solid state lighting devices may be configured in strings and/or clusters in a tile and/or bar arrangement.
  • the lighting panel system 600 may include a multimode color management system 620 that is configured to selectively operate in a closed loop control mode responsive to a dynamic input signal value.
  • the multimode color management system includes a color management unit that is configured to receive sensor inputs from multiple lighting panel sensors.
  • the color management unit is configured to generate color management information for controlling the light output of the multiple solid state lighting devices.
  • the multimode color management system 620 includes a color management controller that is configured to receive color management information from a color management unit.
  • the multimode color management system may be further configured to receive the dynamic input signal value from user input.
  • the dynamic input signal value corresponds to a color characteristic of the lighting panel 610 .
  • a color characteristic of the lighting panel 610 may include, for example, white point, color temperature, luminosity and/or chromaticity, among others.
  • the multimode color management system 620 includes a mode selection module that is configured estimate a color management change value and compare the color management change value to the threshold value.
  • the color management change value may be estimated as a difference between the dynamic input signal value and a current color management value corresponding to the current color characteristic of the lighting panel 610 .
  • a mode selection module may be further configured to set a color management controller to a closed loop control mode if the color management change value is greater than the threshold value.
  • the mode selection module may be configured to set a color management controller to an open loop control mode if the color management change value is less than the threshold value.
  • Some embodiments may include an increment module that is configured to estimate multiple increment values between the dynamic input signal value and the current color management value. By estimating multiple increment values, a large change may be divided into smaller discrete changes, which may be more effectively accomplished in a closed loop control mode.
  • FIG. 7 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • operations include receiving a color management reference value corresponding to a color characteristic of the solid state lighting panel into a color management controller (block 710 ).
  • the color management reference value may be received via a user input. For example, a user may adjust the color characteristic of the solid state lighting panel such as luminosity and/or chromaticity, among others.
  • Operations may also include adjusting a control mode of the color management controller responsive to receipt of the color management reference value (block 720 ).
  • adjusting the control mode may include operating a color management controller in a closed loop control mode responsive to receipt of the color management reference value (block 820 ).
  • the color management controller may be operated in the closed loop control mode until the solid state lighting panel reaches a color characteristic target value corresponding to the color management reference value.
  • adjusting the control mode may also include operating the color management controller in an open loop control mode when the solid state lighting panel reaches the color characteristic target value (block 830 ).
  • operations include receiving a color management reference value corresponding to a color characteristic of the solid state lighting panel into a color management controller (block 910 ).
  • the color management reference value may be received via a user input.
  • a user may adjust the color characteristic of the solid state lighting panel such as luminosity and/or chromaticity, among others.
  • Operations may also include adjusting a control mode of the color management controller responsive to receipt of the color management reference value (block 920 ).
  • the color management controller may be set to a closed loop control mode upon receipt of a color management reference value.
  • Some embodiments include estimating a color management change value as a difference between the color management reference value and a current color management value that corresponds to a current color characteristic of lighting panel (block 930 ). In this manner, the amount of requested change in color characteristic may be determined. If the color management change value is greater than a threshold value, an incremental value between the color management reference value and the current color management value may be generated (block 940 ). By generating an incremental value, the control system may accommodate a large change in the luminance and/or color setpoint via multiple smaller discrete changes. Additionally, in some embodiments, the smaller discrete changes may include delays therebetween to further improve control system stability. In this manner the control system may slew more consistently, which may reduce overshoot and/or oscillations.
  • FIG. 10 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • operations include receiving a color management reference value that corresponds to a color characteristic of the solid state lighting panel into a color management controller (block 1010 ).
  • the color management reference value may be received via a user input.
  • a user may adjust the color characteristic of the solid state lighting panel such as luminosity and/or chromaticity, among others.
  • Operations may also include adjusting a control mode of the color management controller responsive to receipt of the color management reference value (block 1020 ).
  • the color management controller may be set to a closed loop control mode upon receipt of a color management reference value.
  • Some embodiments include periodically operating the color management controller in a closed loop control mode (block 1030 ). For example, in the absence of a received color management reference value, the color management controller may switch to a closed loop control mode to connect color and/or luminance drift.
  • the period by which the color management controller may switch to a closed loop control mode may be defined in terms of seconds, minutes and/or hours or more.
  • the periodic interval may be as long as years.
  • the interval may be determined by a trigger such as, for example, a user input signal, an external calibration system and/or a supervisory control system, among others.
  • a supervisory control system may include a control system configured to control a facility, building, site, system and/or operation, among others.
  • FIG. 11 is a flow diagram illustrating operations for providing a stabilized color management system in a solid state lighting panel according to some embodiments of the present invention.
  • operations include receiving, into a color management controller, a color management signal corresponding to a color characteristic of the solid state lighting panel (block 1110 ).
  • receiving the color management signal may include receiving a color management reference value corresponding to a color management characteristic of the solid state lighting panel.
  • Some embodiments provide that the color management reference signal is received via a user input.
  • Embodiments may also include analyzing the color management signal relative to a current color management value that corresponds to a current color characteristic of the solid state lighting panel (block 1120 ). Embodiments may also include setting a control system mode responsive to analyzing the color management signal (block 1130 ).
  • analyzing the color management signal includes comparing a color management reference value to the current color management value to determine a color management change value. Analyzing the color management signal may also include comparing the color management change value to a threshold value. In some embodiments, setting a control system mode may include setting the color management controller to an open loop control system mode if the color management change value is less than a threshold value.
  • setting the control system mode may include setting the color management controller to a closed loop control system mode. In such embodiments, multiple color management change increment values may also be calculated. In some embodiments, if the color management controller is in the closed loop control mode, a color management feedback value from a solid state lighting panel photo sensor may be received. Color management change increment values may be utilized to incrementally adjust the color characteristic from the current color management color value to the color management reference value. In this manner, a color characteristic may be gradually adjusted with reduced undesirable control system effects such as overshoot and/or oscillation.
  • Some embodiments may further include dynamically adjusting the threshold value responsive to the current color management value. For example, if the current color management value is closer to a minimum color management value than it is to a maximum color management value then the threshold may be set to a lower threshold value. In contrast, if the current color management value is closer to a maximum color management value than it is to a minimum color management value than the threshold may be set to a higher threshold value.
  • a control system may be more resistant to unwanted static oscillation which may tend to occur more often and/or be more noticeable at low luminance settings, for example.
  • a display device 1200 may include an LCD panel 1210 , including a two-dimensional arrangement of liquid crystal shutters, that is controlled by an LCD controller 1230 .
  • the LCD controller 1230 may control the output image 1260 by varying states of the LCD shutters corresponding to different pixels.
  • the LCD panel 1210 relies on light transmission to control an output image 1260 .
  • the display device 1200 may also include a lighting panel 1220 configured to provide light to be selectively transmitted through the shutters of the LCD panel 1210 .
  • a lighting panel 1220 may include multiple strings of solid state lighting emitters that can be controlled to achieve a desired chromaticity, saturation, and/or luminance. Varying the output of the string may be accomplished, for example, by turning the string on for a portion of a period, which may be controlled by a backlight controller 1240 .
  • oscillations of one or more color characteristics the solid state backlight panel 1220 may be reduced by varying the control mode of the backlight controller between open loop and closed loop as a function of received color management value references signals. In this manner, display device 1200 may exhibit a desirable level of accuracy, uniformity, responsiveness with improved control system stability.
  • FIG. 13 is a block diagram illustrating systems/methods for controlling components in a backlit display device by controlling a lighting panel according to some embodiments of the present invention.
  • An LCD panel 1310 is controlled by a display controller 1330 , which refreshes the pixels and the LCD panel 1310 at a predetermined refresh rate.
  • a lighting panel 1320 may also be included for providing luminance through the LCD panel 1310 .
  • the lighting panel 1320 may be controlled by a backlight controller 1340 that can drive multiple strings of solid state light emitters using a current driver 1360 .
  • the output of the lighting panel 1320 may be controlled by turning the emitters on for specific portions of a period.
  • oscillations of one or more color characteristics the lighting panel 1320 may be reduced by varying the control mode of the backlight controller between open loop and closed loop as a function of received color management value reference signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

Provided are systems and methods for providing a stabilized color management system in a solid state lighting panel. Methods according to some embodiments include receiving, in the microcontroller, a color management reference value corresponding to a color characteristic of the solid state lighting panel and adjusting a control mode of the microcontroller responsive to the color management reference value.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority under 35 U.S.C. § 120 as a continuation of U.S. patent application Ser. No. 14/464,760, filed Aug. 21, 2014 which is a continuation application of U.S. patent application Ser. No. 11/958,721, filed Dec. 18, 2007, now U.S. Pat. No. 8,823,630. The entire content of the above application is incorporated herein by reference as if set forth in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to lighting, and more particularly, to controlling a solid state lighting panel.
  • BACKGROUND
  • Solid state lighting arrays are used for a number of lighting applications. Solid state lighting panels including arrays of solid state lamps have been used as direct illumination sources, for example, in architectural and/or accent lighting. A solid state lamp may include, for example, a packaged light emitting device including one or more light emitting diodes (LEDs). Inorganic LEDs typically include semiconductor layers forming p-n junctions. Organic LEDs (OLEDs), which include organic light emission layers, represent another type of solid state light emitting device. Typically, a solid state light emitting device generates light through the recombination of electronic carriers, i.e. electrons and holes, in a light emitting layer or region.
  • Solid state lighting panels are commonly used as backlights for small LCD display screens, such as LCD display screens used in portable electronic devices. In addition, there has been increased interest in the use of solid state lighting arrays for backlights of larger displays, such as LCD television displays.
  • For smaller LCD screens, backlight assemblies may employ white LED lamps that include a blue-emitting LED coated with a wavelength conversion phosphor that converts some of the blue light emitted by the LED into yellow light. The resulting light, which is a combination of blue light and yellow light, may appear white to an observer. However, while light generated by such an arrangement may appear white, objects illuminated by such light may not appear to have a natural coloring, because of the limited spectrum of the light. For example, because the light may have little energy in the red portion of the visible spectrum, red colors in an object may not be illuminated well by such light. As a result, the object may appear to have an unnatural coloring when viewed under such a light source.
  • The color rendering index of a light source is a qualitative measure of the ability of the light generated by the source to accurately illuminate a broad range of colors. The color rendering index ranges from essentially zero for monochromatic sources to nearly 100 for incandescent sources. Light generated from a solid state light source may have a relatively low color rendering index, but this can be increased through use of multiple emitters of various color and/or by use of phosphor to broaden the emitted spectrum.
  • For illumination applications, it is often desirable to provide a lighting source that generates a white light having a high color rendering index, so that objects illuminated by the lighting panel may appear more natural. Accordingly, such lighting sources may typically include an array of solid state lamps including red, green and blue light emitting devices. When red, green and blue light emitting devices are energized simultaneously, the resulting combined light may appear white, or nearly white, depending on the relative intensities of the red, green and blue sources. There are many different chromaticities of light that may be considered “white.” For example, some “white” light, such as light generated by incandescent lamps, may appear more yellowish, while other “white” light, such as light generated by some fluorescent lamps, may appear more bluish in color.
  • Solid state lamps, such as LED's, are current-controlled devices in the sense that the intensity of the light emitted from an LED is related to the amount of current driven through the LED. One common method for controlling the current driven through the solid state lamps to achieve desired intensity and color mixing is a Pulse Width Modulation (PWM) scheme. Many PWM schemes may pulse the solid state lamps alternately to a full current “ON” state followed by a zero current “OFF” state.
  • Designing a management control system that provides accuracy, uniformity and/or responsiveness may be difficult using conventional control system methodologies. For example, while a color management control system may produce undesirable output oscillations corresponding to, for example, sensor output noise, placing a filter on a sensor output may reduce control system responsiveness and cause oscillations from filter phase lag.
  • SUMMARY
  • Some embodiments of the present invention may provide methods of controlling a solid state lighting panel utilizing a microcontroller. In some embodiments, the methods may include receiving, in the microcontroller, a color management reference value corresponding to a color characteristic of the solid state lighting panel and adjusting a control mode of the microcontroller responsive to the color management reference value.
  • In some embodiments, adjusting a control mode includes operating the microcontroller in a closed loop control mode responsive to receipt of the color management reference value until the solid state lighting panel reaches a color characteristic target value corresponding to the color management reference value and operating the microcontroller in an open loop control mode when the solid state lighting panel substantially reaches the color characteristic target value. In some embodiments, the color management reference value includes a user input value.
  • Some embodiments may include estimating a color management change value as a difference between the color management reference value and a current color management value corresponding to a current color characteristic of the lighting panel and generating, if the color management change value is greater than a threshold value, an incremental value between the color management reference value and the current color management value. In some embodiments, the color management reference value includes a value from a calibration system and/or supervisory controller.
  • Some embodiments may include periodically operating the microcontroller in a closed loop control mode to correct for color characteristic drift. In some embodiments, the color characteristic includes lighting panel luminance. In some embodiments, the color characteristic includes a lighting panel chromaticity value.
  • Some embodiments of the present invention may provide a lighting panel system. Embodiments of such a system may include a lighting panel including multiple solid state lighting devices configured to be driven by multiple current drivers and a multi-mode color management system that is configured to control the lighting panel via the current drivers. The multi-mode color management system may be further configured to selectively operate in a closed loop control mode responsive to a dynamic input signal value.
  • In some embodiments, the multi-mode color management system includes a color management unit that is configured to receive sensor input from multiple lighting panel sensors. The color management unit may be further configured to generate color management information to control light output of the multiple solid state lighting devices.
  • In some embodiments, the multi-mode color management system includes a microcontroller that is configured to receive color management information from a color management unit and the dynamic input signal value from a user input, wherein the dynamic input signal value corresponds to a color characteristic of the lighting panel.
  • In some embodiments, the color characteristic of the lighting panel includes a solid state lighting panel luminance output. In some embodiments, the color characteristic of the lighting panel includes a solid state lighting panel chromaticity output.
  • In some embodiments, the multi-mode color management system includes a mode selection module that is configured to estimate a color management change value, compare the color management change value to a threshold value, and set a microcontroller to a closed loop control mode if the color management change value is greater than the threshold value. In some embodiments, the mode selection module is further configured to set the microcontroller to an open loop control mode if the color management change value is less than the threshold value.
  • In some embodiments, the color management change value includes a difference between the dynamic input signal value and a current color management value.
  • Some embodiments include an increment module that is configured to estimate multiple increment values between the dynamic input signal value and a current color management value.
  • Some embodiments include a backlit display device configured to utilize the lighting panel systems described herein.
  • Some embodiments of the present invention include methods of providing a stabilized color management system in a solid state lighting panel. Some embodiments of such methods may include receiving, in a microcontroller, a color management signal corresponding to a color characteristic of the solid state lighting panel, analyzing the color management signal relative to a current color management value that corresponds to a current color characteristic, and setting a control system mode responsive to analyzing the color management signal.
  • In some embodiments, receiving the color management signal includes receiving a color management reference value corresponding to a color characteristic of the solid state lighting panel. In some embodiments, the color management reference signal includes a user input signal.
  • In some embodiments, analyzing the color management signal includes comparing a color management reference value to the current color management value to determine a color management change value and comparing the color management change value to a threshold value. In some embodiments, setting the control system mode includes setting the microcontroller to an open loop control system mode if the color management change value is less than the threshold value.
  • In some embodiments, if the color management change value is greater than the threshold value, setting the control system mode further includes setting the microcontroller to a closed loop control system mode and calculating a plurality of color management change increment values configured to incrementally adjust the color characteristic from the current color management color value to the color management reference value. Some embodiments may include receiving, if the microcontroller is in the closed loop control mode, a color management feedback value from a solid state lighting panel photo sensor.
  • Some embodiments may include dynamically adjusting the threshold value responsive to the current color management value, wherein if the current color management value is closer to a minimum color management value than it is to a maximum color management value then the threshold is set to a first threshold and wherein if the current color management value is closer to a maximum color management value than it is to a minimum color management value then the threshold is set to a second threshold that is higher than the first threshold.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate certain embodiment(s) of the invention.
  • FIG. 1 is a block diagram illustrating a lighting panel according to some embodiments of the invention.
  • FIG. 2 is a schematic diagram illustrating a lighting panel bar according to some embodiments of the present invention.
  • FIG. 3 is a block diagram illustrating a lighting panel system according to some embodiments of the present invention.
  • FIG. 4 is a flow diagram illustrating operations for protecting display components from adverse operating conditions according to some embodiments of the present invention.
  • FIG. 5 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • FIG. 6 is a block diagram illustrating a lighting panel system according to some embodiments of the present invention.
  • FIG. 7 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • FIG. 8 is a flow diagram illustrating operations for controlling a solid state lighting panel according to further embodiments of the present invention.
  • FIG. 9 is a flow diagram illustrating operations for controlling a solid state lighting panel according to yet further embodiments of the present invention.
  • FIG. 10 is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention.
  • FIG. 11 is a flow diagram illustrating operations for providing a stabilized color management system in a solid state lighting panel according to some embodiments of the present invention.
  • FIG. 12 is a block diagram illustrating backlit display device according to some embodiments of the present invention.
  • FIG. 13 is a block diagram illustrating systems/methods for controlling a solid state backlighting panel in backlit display device according to some embodiments of the present invention.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
  • It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. It will also be understood that when a first element, operation, signal, and/or value is referred to as “responsive to” another element, condition, signal and/or value, the first element, condition, signal, and/or value can exist and/or operate completely responsive to or partially responsive to the other element, condition, signal, and/or value.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” “comprising,” “includes” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
  • The present invention is described below with reference to flowchart illustrations and/or block diagrams of methods, systems and computer program products according to embodiments of the invention. It will be understood that some blocks of the flowchart illustrations and/or block diagrams, and combinations of some blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be stored or implemented in a microcontroller, microprocessor, digital signal processor (DSP), field programmable gate array (FPGA), a state machine, programmable logic controller (PLC) or other processing circuit, general purpose computer, special purpose computer, or other programmable data processing apparatus such as to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • These computer program instructions may also be stored in a computer readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. It is to be understood that the functions/acts noted in the blocks may occur out of the order noted in the operational illustrations. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Although some of the diagrams include arrows on communication paths to show a primary direction of communication, it is to be understood that communication may occur in the opposite direction to the depicted arrows.
  • Some embodiments of the invention may arise from the recognition that a closed loop control system in a solid state backlight is complex based on the need for accuracy, uniformity, and/or responsiveness, that the effect of noise in a color characteristic sensor may produce unwanted fluctuations, and that filtering the sensor output may result in unwanted static oscillation around a color characteristic setpoint. Accordingly, some embodiments establish a light panel system that can set either an open loop control mode or a closed loop control mode responsive to control system demands. In this manner, unwanted control system oscillation may be reduced.
  • Some embodiments of the invention may be directed to flat-panel display applications. In flat-panel display applications, it may be desirable to achieve high color gamut with high efficiency. Increased gamut may allow the display to render a wider range of perceivable colors. In some embodiments, this may be achieved via multiple solid-state emitters or phosphors that may emit different dominant wavelengths such as, for example, red, green, blue, cyan and/or yellow, among others.
  • Reference is made to FIG. 1, which is a block diagram illustrating a lighting panel according to some embodiments of the invention. A lighting panel 10 may include multiple lighting panel bars 20 each having multiple tiles 30 that include solid state emitters. The solid state emitters may be serially arranged in, for example, strings. Each of the lighting panel bars 20 may include an interface 40 configured to provide electrical interconnection with a control system. Although presented in the context of a lighting panel 10 that includes multiple lighting panel bars 20, some embodiments of lighting panels 10 described herein be configured without multiple lighting panel bars 20 and/or multiple tiles 30. For example, in some embodiments, lighting panel may be configured to include a unitary structure that includes multiple solid state emitters.
  • Reference is now made to FIG. 2, which is a schematic diagram illustrating a lighting panel bar 20 according to some embodiments of the present invention. In some embodiments, a lighting panel bar 20 can include multiple strings 44A-C that can each include multiple solid state lighting devices 42A-C. Each string 44 may be configured to be substantially the same or each one can differ in one or more ways. In some embodiments, each string 44A-C includes solid state lighting devices 42A-C that emit light in a different dominant wavelength. For example, solid state lighting devices 42A can be configured to emit light having a dominant wavelength generally corresponding to the color red. Similarly, solid state lighting devices 42B and 42C can be configured to emit light having dominant wavelengths corresponding to the colors green and blue, respectively.
  • A lighting panel bar 20 of some embodiments may include one or more strings 44 having solid state lighting devices 42 of different colors. For example a lighting panel bar 20 can include a least one string 44 having red solid state lighting devices, a least one string 44 having green solid state lighting devices, and a least one string 44 having blue solid state lighting devices. In this manner, by selectively controlling the amount and/or duty cycle of current supplied to each string, the chromaticity and/or luminosity of the light emitted by the panel lighting bar 20 can be controlled. The strings 44A-C can be controlled independent of one another or as a group corresponding to the panel lighting bar 20. Although discussed with reference to solid state lighting devices configured to emit light having different dominant wavelengths, the systems and methods herein may also be utilized in systems using solid state lighting devices configured to emit light in a single dominant wavelength. Furthermore, systems, etc., may use solid state LED's including phosphors that, when energized, emit light having multiple wavelengths and/or that otherwise emit broad-spectrum light, such as, for example, a phosphor coated blue LED.
  • Reference is now made to FIG. 3, which is a block diagram illustrating a lighting panel system according to some embodiments of the present invention. A lighting panel 10 may be a solid state backlighting panel that may include multiple solid state emitters arranged in strings. In some embodiments, the lighting panel system includes a color management unit 360 configured to receive sensor input from color sensor 340C and generate color management information to control the light output of the strings.
  • One common method for controlling the current driven through the strings is a Pulse Width Modulation (PWM) scheme. Many PWM schemes may pulse the solid state lamps alternately to a full current “ON” state followed by a zero current noppn state. The output of the string may be controlled by varying the duty cycle, which is the percent of the cycle that the string is placed in an “ON” state. In some embodiments, if the pulse frequency is high enough, a change in duty cycle may vary the average current and the apparent luminosity of the string and/or emitter being pulsed in an approximately linear fashion. In some embodiments, the color management information is provided to a microcontroller 330 that uses the color management information and/or sensor inputs from temperature and other sensors 340A-B to adjust PWM duty cycles for the strings to cause the panel 10 to emit light having a desired chromaticity and/or luminance setting.
  • In some embodiments, the microcontroller 330 may be configured to accept user input 350, which may also be used to adjust the PWM duty cycles of the strings. The PWM duty cycle information may be used by the microcontroller 330 to switch on or off current drivers 320, which may drive strings and/or groups of solid state emitters in the lighting panel 10. In some embodiments, the microcontroller 330 may receive a user input 350 regarding a request for a change in a color characteristic of the lighting panel 10. The microcontroller 330 may generate PWM information responsive to the inputs received from user input 350, the color management unit 360, a temp sensor J40A and/or other sensors 340B, among others. A color characteristic may include, for example, a request for a change in luminance setting, which may be indicative of the total light emission of the lighting panel 10. In some embodiments, a color characteristic may include request for a change in the lighting panel chromaticity value and/or “white point”. The chromaticity value may be controlled by varying the relative outputs of the different colored solid state emitters.
  • Reference is now made to FIG. 4, which is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention. Operations for controlling display components include receiving a color management reference value (block 402). In some embodiments, the color management reference value may be a user input signal that corresponds to a color characteristic of the solid state lighting panel. The user input signal may be received by a controller and/or color management unit configured to control the solid state lighting panel. In some embodiments, the controller may be, for example, a microcontroller. In some embodiments, the controller may be a functional and/or task specific processor such as, for example, an application specific integrated circuit (ASIC). Examples of color characteristics include, for example, luminosity and/or chromaticity, among others.
  • Responsive to receipt of the color management reference value, the controller may enter a closed loop control mode (block 406). The closed loop control mode provides for the use of feedback signals from, for example, sensors, to govern a change from a current color characteristic that corresponds to a current color management value to a color characteristic target that corresponds to the color management reference value. In this manner, a change in the color characteristic is applied via the controller (block 410).
  • Whether the color management target is reached is determined (block 412). If the color management target is not reached, then changes in the controller output are applied (block 414). If the color management target is reached, the controller may enter an open loop control mode (block 416). The open mode control may not receive feedback signals from sensors. In this manner, unwanted oscillations in the output of the controller and thus the color characteristic due to sensor noise and/or other minor perturbances may be reduced. In some embodiments, the controller may periodically enter a closed loop control mode to correct for small and/or gradual deviations in color characteristics. For example, color and/or luminance drift may be corrected on a periodic basis, including, for example, a period of one or more seconds, minutes, hours and/or days, among others. In some embodiments, the periodic interval may be as long as years. In some embodiments, the interval may be determined by a trigger such as, for example, a user input signal, an external calibration system and/or a supervisory control system, among others.
  • Reference is now made to FIG. 5, which is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention. Operations for controlling display components include receiving a color management reference value (block 502). In some embodiments, the color management reference value may be a user input signal that corresponds to a color characteristic of the solid state lighting panel. The user input signal may be received by a controller and/or color management unit configured to control the solid state lighting panel. In some embodiments, the controller may be a functional and/or task specific processor such as, for example, an application specific integrated circuit (ASIC). Examples of color characteristics include, for example, luminosity and/or chromaticity, among others.
  • Whether a color management change value is greater than a threshold value is determined (block 504). The color management change value may be determined by the difference, ratio and/or other relation between the received color management reference value and a current color management value that corresponds to a current color characteristic of the solid state lighting panel. In some embodiments, the threshold value may be predetermined as a fixed value. In some other embodiments, the threshold value may vary as a function of the current color management value relative to, for example, a color management value minimum, maximum and/or operating range. For example, if the current color management value is near a minimum and/or at the low end of the operating range, the threshold value may be lower than if the current color management value is near a maximum and/or at the high end of the operating range.
  • If the color management change value is greater than the threshold value then incremental color management reference values may be generated (block 506). In this manner, the requested change corresponding to the color management change value may be performed in smaller discrete increments and may include delays between each incremental change. By performing a large change in color management value incrementally, a closed loop control mode may slew more consistently and thus reduce overshoot and/or oscillation. For example, a user input may request a 30% change in luminance, which may be effected through three discrete 10% changes in luminance. After generating incremental color management reference values, the controller may enter a closed loop control mode to perform the requested change in color management value (block 508).
  • If the color management change value is not greater than the threshold value then incremental reference values may not be generated and the controller may enter a closed loop control mode to perform the requested change in color management value (block 508). This may generally be the case for less significant changes as reflected in a lower color management change value. The closed loop control mode provides for the use of feedback signals from, for example, sensors, to accomplish a change from a current color characteristic of the solid state lighting panel that corresponds to a current color management value to a color characteristic target that corresponds to the color management reference value. In this manner, a change in the color characteristic is applied via the controller (block 510).
  • A determination as to whether the color management target is reached may be made (block 512). If the color management target is not reached, then changes in the controller output are further applied (block 514). If the color management target is reached, the controller may enter an open loop control mode (block 516). The open loop control mode controller may not receive and/or utilize feedback signals from sensors. In this manner, unwanted oscillations in the output of the controller and thus the color characteristic due to sensor noise and/or other minor perturbances may be reduced. In some embodiments, the controller may periodically enter a closed loop control mode to correct for small and/or gradual deviations in color characteristics. For example, color and/or luminance drift may be corrected on a periodic basis, including, for example, one or more seconds, minutes, hours and/or days, among others. In some embodiments, the periodic interval may be as long as years. In some embodiments, the interval may be determined by a trigger such as, for example, a user input signal, an external calibration system and/or a supervisory control system, among others.
  • Reference is now made to FIG. 6, which is a block diagram illustrating a lighting panel system according to some embodiments of the present invention. The lighting panel system 600 may include a lighting panel 610 that includes multiple solid state lighting devices. In some embodiments, the solid state lighting devices may be configured in strings and/or clusters in a tile and/or bar arrangement. The lighting panel system 600 may include a multimode color management system 620 that is configured to selectively operate in a closed loop control mode responsive to a dynamic input signal value. In some embodiments, the multimode color management system includes a color management unit that is configured to receive sensor inputs from multiple lighting panel sensors. In some embodiments, the color management unit is configured to generate color management information for controlling the light output of the multiple solid state lighting devices.
  • In some embodiments, the multimode color management system 620 includes a color management controller that is configured to receive color management information from a color management unit. The multimode color management system may be further configured to receive the dynamic input signal value from user input. In some embodiments, the dynamic input signal value corresponds to a color characteristic of the lighting panel 610. A color characteristic of the lighting panel 610 may include, for example, white point, color temperature, luminosity and/or chromaticity, among others.
  • In some embodiments, the multimode color management system 620 includes a mode selection module that is configured estimate a color management change value and compare the color management change value to the threshold value. The color management change value may be estimated as a difference between the dynamic input signal value and a current color management value corresponding to the current color characteristic of the lighting panel 610. A mode selection module may be further configured to set a color management controller to a closed loop control mode if the color management change value is greater than the threshold value. In some embodiments, the mode selection module may be configured to set a color management controller to an open loop control mode if the color management change value is less than the threshold value.
  • Some embodiments may include an increment module that is configured to estimate multiple increment values between the dynamic input signal value and the current color management value. By estimating multiple increment values, a large change may be divided into smaller discrete changes, which may be more effectively accomplished in a closed loop control mode.
  • Reference is now made to FIG. 7, which is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention. In some embodiments, operations include receiving a color management reference value corresponding to a color characteristic of the solid state lighting panel into a color management controller (block 710). In some embodiments, the color management reference value may be received via a user input. For example, a user may adjust the color characteristic of the solid state lighting panel such as luminosity and/or chromaticity, among others. Operations may also include adjusting a control mode of the color management controller responsive to receipt of the color management reference value (block 720).
  • Referring now to FIG. 8, which is a flow diagram illustrating operations for controlling a solid state lighting panel according to further embodiments of those illustrated in FIG. 7, adjusting the control mode may include operating a color management controller in a closed loop control mode responsive to receipt of the color management reference value (block 820). In some embodiments, the color management controller may be operated in the closed loop control mode until the solid state lighting panel reaches a color characteristic target value corresponding to the color management reference value. In some embodiments, adjusting the control mode may also include operating the color management controller in an open loop control mode when the solid state lighting panel reaches the color characteristic target value (block 830).
  • Reference is now made to FIG. 9, which is a flow diagram illustrating operations for controlling a solid state lighting panel according to yet further embodiments of the present invention. In some embodiments, operations include receiving a color management reference value corresponding to a color characteristic of the solid state lighting panel into a color management controller (block 910). In some embodiments, the color management reference value may be received via a user input. For example, a user may adjust the color characteristic of the solid state lighting panel such as luminosity and/or chromaticity, among others. Operations may also include adjusting a control mode of the color management controller responsive to receipt of the color management reference value (block 920). For example, the color management controller may be set to a closed loop control mode upon receipt of a color management reference value.
  • Some embodiments include estimating a color management change value as a difference between the color management reference value and a current color management value that corresponds to a current color characteristic of lighting panel (block 930). In this manner, the amount of requested change in color characteristic may be determined. If the color management change value is greater than a threshold value, an incremental value between the color management reference value and the current color management value may be generated (block 940). By generating an incremental value, the control system may accommodate a large change in the luminance and/or color setpoint via multiple smaller discrete changes. Additionally, in some embodiments, the smaller discrete changes may include delays therebetween to further improve control system stability. In this manner the control system may slew more consistently, which may reduce overshoot and/or oscillations.
  • Reference is now made to FIG. 10, which is a flow diagram illustrating operations for controlling a solid state lighting panel according to some embodiments of the present invention. In some embodiments, operations include receiving a color management reference value that corresponds to a color characteristic of the solid state lighting panel into a color management controller (block 1010). In some embodiments, the color management reference value may be received via a user input. For example, a user may adjust the color characteristic of the solid state lighting panel such as luminosity and/or chromaticity, among others. Operations may also include adjusting a control mode of the color management controller responsive to receipt of the color management reference value (block 1020). For example, the color management controller may be set to a closed loop control mode upon receipt of a color management reference value.
  • Some embodiments include periodically operating the color management controller in a closed loop control mode (block 1030). For example, in the absence of a received color management reference value, the color management controller may switch to a closed loop control mode to connect color and/or luminance drift. The period by which the color management controller may switch to a closed loop control mode may be defined in terms of seconds, minutes and/or hours or more. In some embodiments, the periodic interval may be as long as years. In some embodiments, the interval may be determined by a trigger such as, for example, a user input signal, an external calibration system and/or a supervisory control system, among others. In some embodiments, a supervisory control system may include a control system configured to control a facility, building, site, system and/or operation, among others.
  • Reference is now made to FIG. 11, which is a flow diagram illustrating operations for providing a stabilized color management system in a solid state lighting panel according to some embodiments of the present invention. In some embodiments, operations include receiving, into a color management controller, a color management signal corresponding to a color characteristic of the solid state lighting panel (block 1110). In some embodiments, receiving the color management signal may include receiving a color management reference value corresponding to a color management characteristic of the solid state lighting panel. Some embodiments provide that the color management reference signal is received via a user input.
  • Embodiments may also include analyzing the color management signal relative to a current color management value that corresponds to a current color characteristic of the solid state lighting panel (block 1120). Embodiments may also include setting a control system mode responsive to analyzing the color management signal (block 1130).
  • In some embodiments, analyzing the color management signal includes comparing a color management reference value to the current color management value to determine a color management change value. Analyzing the color management signal may also include comparing the color management change value to a threshold value. In some embodiments, setting a control system mode may include setting the color management controller to an open loop control system mode if the color management change value is less than a threshold value.
  • In some embodiments, it if the color management change value is greater than the threshold value, setting the control system mode may include setting the color management controller to a closed loop control system mode. In such embodiments, multiple color management change increment values may also be calculated. In some embodiments, if the color management controller is in the closed loop control mode, a color management feedback value from a solid state lighting panel photo sensor may be received. Color management change increment values may be utilized to incrementally adjust the color characteristic from the current color management color value to the color management reference value. In this manner, a color characteristic may be gradually adjusted with reduced undesirable control system effects such as overshoot and/or oscillation.
  • Some embodiments may further include dynamically adjusting the threshold value responsive to the current color management value. For example, if the current color management value is closer to a minimum color management value than it is to a maximum color management value then the threshold may be set to a lower threshold value. In contrast, if the current color management value is closer to a maximum color management value than it is to a minimum color management value than the threshold may be set to a higher threshold value. By dynamically adjusting the threshold value, a control system may be more resistant to unwanted static oscillation which may tend to occur more often and/or be more noticeable at low luminance settings, for example.
  • Reference is now made to FIG. 12, which is a block diagram illustrating backlit display device according to some embodiments of the present invention. A display device 1200 may include an LCD panel 1210, including a two-dimensional arrangement of liquid crystal shutters, that is controlled by an LCD controller 1230. The LCD controller 1230 may control the output image 1260 by varying states of the LCD shutters corresponding to different pixels.
  • The LCD panel 1210 relies on light transmission to control an output image 1260. In this manner, the display device 1200 may also include a lighting panel 1220 configured to provide light to be selectively transmitted through the shutters of the LCD panel 1210. A lighting panel 1220 may include multiple strings of solid state lighting emitters that can be controlled to achieve a desired chromaticity, saturation, and/or luminance. Varying the output of the string may be accomplished, for example, by turning the string on for a portion of a period, which may be controlled by a backlight controller 1240. In some embodiments, oscillations of one or more color characteristics the solid state backlight panel 1220 may be reduced by varying the control mode of the backlight controller between open loop and closed loop as a function of received color management value references signals. In this manner, display device 1200 may exhibit a desirable level of accuracy, uniformity, responsiveness with improved control system stability.
  • Reference is now made to FIG. 13, which is a block diagram illustrating systems/methods for controlling components in a backlit display device by controlling a lighting panel according to some embodiments of the present invention. An LCD panel 1310 is controlled by a display controller 1330, which refreshes the pixels and the LCD panel 1310 at a predetermined refresh rate. A lighting panel 1320 may also be included for providing luminance through the LCD panel 1310. The lighting panel 1320 may be controlled by a backlight controller 1340 that can drive multiple strings of solid state light emitters using a current driver 1360. The output of the lighting panel 1320 may be controlled by turning the emitters on for specific portions of a period. In some embodiments, oscillations of one or more color characteristics the lighting panel 1320 may be reduced by varying the control mode of the backlight controller between open loop and closed loop as a function of received color management value reference signals.
  • Although some embodiments are described in connection with LCD backlights, embodiments of the invention may be used for other purposes, such as, for example, general lighting. In the drawings and specification, there have been disclosed typical embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims (14)

1. An electronic display device comprising:
a liquid crystal display (LCD) panel;
a backlighting panel comprising solid state lighting devices of differing color;
a color management unit configured to generate color management signals for controlling chromaticity and luminance output of the solid state lighting devices;
a microcontroller;
a driver for providing electrical current to the solid state lighting devices, wherein the color management unit provides the color management signals to the microcontroller, the microcontroller setting a control system mode responsive to analysis of the color management signals, the control system mode altering chromaticity and luminance output of the solid state lighting devices via the driver and a backlight panel controller.
2. The electronic display of claim 1, wherein the analysis comprises comparison of a current color management value corresponding to a current color characteristic of the electronic display, and a dynamic input signal value corresponding to altered color characteristic of the electronic display.
3. The electronic display of claim 2, wherein the comparison comprises a difference between the current color management value and the dynamic input signal value.
4. The electronic display of claim 2, wherein the altered color characteristic of the electronic display comprises chromaticity and luminance of the solid state lighting devices.
5. The electronic display of claim 1, wherein the control system mode alters the chromaticity and luminance of groups of the solid state lighting devices.
6. The electronic display of claim 5, wherein the groups of the solid state lighting devices are altered via pulse width modulation.
7. The electronic display of claim 6, wherein the microcontroller generates the pulse width modulation responsive to the analysis of the color management signals.
8. The electronic display of claim 5, wherein the groups of the solid state lighting devices exhibit differing chromaticity and luminance.
9. The electronic display of claim 5, wherein the groups of the solid state lighting devices comprise tiles of the solid state lighting devices.
10. The electronic display of claim 5, wherein the groups of the solid state lighting devices comprise strings of the solid state lighting devices.
11. The electronic display of claim 1, wherein the LCD panel comprises a two-dimensional arrangement of liquid crystal shutters.
12. The electronic display of claim 10, wherein an LCD controller controls an output image of the electronic display image by varying states of the LCD shutters corresponding to different pixels of the LCD panel.
13. The electronic display of claim 1, wherein the solid state lighting devices are red, blue and green.
14. The electronic display of claim 1, wherein the solid state lighting devices are light emitting diodes.
US17/168,402 2007-12-18 2021-02-05 Systems and methods for providing color management control in a lighting panel Abandoned US20210160981A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/168,402 US20210160981A1 (en) 2007-12-18 2021-02-05 Systems and methods for providing color management control in a lighting panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/958,721 US8823630B2 (en) 2007-12-18 2007-12-18 Systems and methods for providing color management control in a lighting panel
US14/464,760 US20140361712A1 (en) 2007-12-18 2014-08-21 Systems and methods for providing color management control in a lighting panel
US17/168,402 US20210160981A1 (en) 2007-12-18 2021-02-05 Systems and methods for providing color management control in a lighting panel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/464,760 Continuation US20140361712A1 (en) 2007-12-18 2014-08-21 Systems and methods for providing color management control in a lighting panel

Publications (1)

Publication Number Publication Date
US20210160981A1 true US20210160981A1 (en) 2021-05-27

Family

ID=40473480

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/958,721 Active 2030-01-21 US8823630B2 (en) 2007-12-18 2007-12-18 Systems and methods for providing color management control in a lighting panel
US14/464,760 Abandoned US20140361712A1 (en) 2007-12-18 2014-08-21 Systems and methods for providing color management control in a lighting panel
US17/168,402 Abandoned US20210160981A1 (en) 2007-12-18 2021-02-05 Systems and methods for providing color management control in a lighting panel

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/958,721 Active 2030-01-21 US8823630B2 (en) 2007-12-18 2007-12-18 Systems and methods for providing color management control in a lighting panel
US14/464,760 Abandoned US20140361712A1 (en) 2007-12-18 2014-08-21 Systems and methods for providing color management control in a lighting panel

Country Status (3)

Country Link
US (3) US8823630B2 (en)
EP (1) EP2073606B1 (en)
JP (1) JP5661996B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8514210B2 (en) 2005-11-18 2013-08-20 Cree, Inc. Systems and methods for calibrating solid state lighting panels using combined light output measurements
JP4914900B2 (en) * 2005-11-18 2012-04-11 クリー インコーポレイテッド Solid lighting panel tiles
WO2007061811A1 (en) * 2005-11-18 2007-05-31 Cree, Inc. Solid state lighting panels with variable voltage boost current sources
US8125163B2 (en) 2008-05-21 2012-02-28 Manufacturing Resources International, Inc. Backlight adjustment system
EP2769376A4 (en) 2011-09-23 2015-07-22 Mri Inc System and method for environmental adaptation of display characteristics
US9361822B2 (en) * 2011-11-09 2016-06-07 Apple Inc. Color adjustment techniques for displays
US9154153B2 (en) * 2012-05-04 2015-10-06 Koninklijke Philips N.V. Offset compensation in driving circuits
US9980343B1 (en) * 2012-08-20 2018-05-22 Peter Sussman Tunable white light box
GB2534698B (en) * 2013-10-22 2020-11-25 Daisho Denki Kk Illumination system
US10319408B2 (en) 2015-03-30 2019-06-11 Manufacturing Resources International, Inc. Monolithic display with separately controllable sections
JP6480801B2 (en) * 2015-05-01 2019-03-13 株式会社ハネロン Environmental management system
US10607520B2 (en) 2015-05-14 2020-03-31 Manufacturing Resources International, Inc. Method for environmental adaptation of display characteristics based on location
US10321549B2 (en) 2015-05-14 2019-06-11 Manufacturing Resources International, Inc. Display brightness control based on location data
US10593255B2 (en) 2015-05-14 2020-03-17 Manufacturing Resources International, Inc. Electronic display with environmental adaptation of display characteristics based on location
US10922736B2 (en) 2015-05-15 2021-02-16 Manufacturing Resources International, Inc. Smart electronic display for restaurants
US10269156B2 (en) 2015-06-05 2019-04-23 Manufacturing Resources International, Inc. System and method for blending order confirmation over menu board background
EP3203811A1 (en) * 2016-02-08 2017-08-09 Nxp B.V. Controller for a lamp
US10319271B2 (en) 2016-03-22 2019-06-11 Manufacturing Resources International, Inc. Cyclic redundancy check for electronic displays
JP2019526948A (en) 2016-05-31 2019-09-19 マニュファクチャリング・リソーシズ・インターナショナル・インコーポレーテッド Electronic display remote image confirmation system and method
WO2018009917A1 (en) 2016-07-08 2018-01-11 Manufacturing Resources International, Inc. Controlling display brightness based on image capture device data
US10510304B2 (en) 2016-08-10 2019-12-17 Manufacturing Resources International, Inc. Dynamic dimming LED backlight for LCD array
US10578658B2 (en) 2018-05-07 2020-03-03 Manufacturing Resources International, Inc. System and method for measuring power consumption of an electronic display assembly
WO2019241546A1 (en) 2018-06-14 2019-12-19 Manufacturing Resources International, Inc. System and method for detecting gas recirculation or airway occlusion
US11526044B2 (en) 2020-03-27 2022-12-13 Manufacturing Resources International, Inc. Display unit with orientation based operation
CN111935870B (en) * 2020-09-18 2021-02-12 广州市浩洋电子股份有限公司 Color unified control method for multicolor lamps
US11592710B2 (en) * 2021-02-05 2023-02-28 Brightplus Ventures Llc Image enhanced liquid crystal display devices
AU2022238796B2 (en) 2021-03-15 2024-09-19 Manufacturing Resources International, Inc. Fan control for electronic display assemblies
US12105370B2 (en) 2021-03-15 2024-10-01 Manufacturing Resources International, Inc. Fan control for electronic display assemblies
US11895362B2 (en) 2021-10-29 2024-02-06 Manufacturing Resources International, Inc. Proof of play for images displayed at electronic displays
US12027132B1 (en) 2023-06-27 2024-07-02 Manufacturing Resources International, Inc. Display units with automated power governing

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517180A (en) * 1978-07-24 1980-02-06 Handotai Kenkyu Shinkokai Light emitting diode display
US5260955A (en) * 1991-12-20 1993-11-09 Eastman Kodak Company Automatically setting a threshold current for a laser diode
US5493183A (en) * 1994-11-14 1996-02-20 Durel Corporation Open loop brightness control for EL lamp
KR100662956B1 (en) * 1996-06-26 2006-12-28 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 Light-emitting semiconductor component with luminescence conversion element
US5783909A (en) * 1997-01-10 1998-07-21 Relume Corporation Maintaining LED luminous intensity
EP0923067B1 (en) * 1997-03-12 2004-08-04 Seiko Epson Corporation Pixel circuit, display device and electronic equipment having current-driven light-emitting device
US6236331B1 (en) * 1998-02-20 2001-05-22 Newled Technologies Inc. LED traffic light intensity controller
US6095661A (en) * 1998-03-19 2000-08-01 Ppt Vision, Inc. Method and apparatus for an L.E.D. flashlight
US6127784A (en) * 1998-08-31 2000-10-03 Dialight Corporation LED driving circuitry with variable load to control output light intensity of an LED
US5959316A (en) * 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6078148A (en) * 1998-10-09 2000-06-20 Relume Corporation Transformer tap switching power supply for LED traffic signal
US6495964B1 (en) 1998-12-18 2002-12-17 Koninklijke Philips Electronics N.V. LED luminaire with electrically adjusted color balance using photodetector
US6153985A (en) * 1999-07-09 2000-11-28 Dialight Corporation LED driving circuitry with light intensity feedback to control output light intensity of an LED
US6350041B1 (en) * 1999-12-03 2002-02-26 Cree Lighting Company High output radial dispersing lamp using a solid state light source
US6285139B1 (en) * 1999-12-23 2001-09-04 Gelcore, Llc Non-linear light-emitting load current control
US6362578B1 (en) * 1999-12-23 2002-03-26 Stmicroelectronics, Inc. LED driver circuit and method
US6498440B2 (en) * 2000-03-27 2002-12-24 Gentex Corporation Lamp assembly incorporating optical feedback
GB0011053D0 (en) * 2000-05-09 2000-06-28 Hudson John O Medical device and use thereof
US6608614B1 (en) * 2000-06-22 2003-08-19 Rockwell Collins, Inc. Led-based LCD backlight with extended color space
FI109632B (en) * 2000-11-06 2002-09-13 Nokia Corp White lighting
US6441558B1 (en) * 2000-12-07 2002-08-27 Koninklijke Philips Electronics N.V. White LED luminary light control system
TW554625B (en) * 2000-12-08 2003-09-21 Silicon Graphics Inc Compact flat panel color calibration system
US6411046B1 (en) * 2000-12-27 2002-06-25 Koninklijke Philips Electronics, N. V. Effective modeling of CIE xy coordinates for a plurality of LEDs for white LED light control
AT410266B (en) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
US6510995B2 (en) * 2001-03-16 2003-01-28 Koninklijke Philips Electronics N.V. RGB LED based light driver using microprocessor controlled AC distributed power system
US6576881B2 (en) * 2001-04-06 2003-06-10 Koninklijke Philips Electronics N.V. Method and system for controlling a light source
US20020190972A1 (en) * 2001-05-17 2002-12-19 Ven De Van Antony Display screen performance or content verification methods and apparatus
US6741351B2 (en) * 2001-06-07 2004-05-25 Koninklijke Philips Electronics N.V. LED luminaire with light sensor configurations for optical feedback
US6947017B1 (en) * 2001-08-29 2005-09-20 Palm, Inc. Dynamic brightness range for portable computer displays based on ambient conditions
US6630801B2 (en) * 2001-10-22 2003-10-07 Lümileds USA Method and apparatus for sensing the color point of an RGB LED white luminary using photodiodes
US7858403B2 (en) * 2001-10-31 2010-12-28 Cree, Inc. Methods and systems for fabricating broad spectrum light emitting devices
US6841947B2 (en) * 2002-05-14 2005-01-11 Garmin At, Inc. Systems and methods for controlling brightness of an avionics display
US7023543B2 (en) * 2002-08-01 2006-04-04 Cunningham David W Method for controlling the luminous flux spectrum of a lighting fixture
JP2004193029A (en) * 2002-12-13 2004-07-08 Advanced Display Inc Light source device and display
US6936857B2 (en) * 2003-02-18 2005-08-30 Gelcore, Llc White light LED device
WO2005009085A1 (en) * 2003-07-23 2005-01-27 Tir Systems Ltd. Control system for an illumination device incorporating discrete light sources
US7019662B2 (en) * 2003-07-29 2006-03-28 Universal Lighting Technologies, Inc. LED drive for generating constant light output
US7508387B2 (en) * 2003-09-30 2009-03-24 International Business Machines Corporation On demand calibration of imaging displays
US6841804B1 (en) * 2003-10-27 2005-01-11 Formosa Epitaxy Incorporation Device of white light-emitting diode
US6894442B1 (en) * 2003-12-18 2005-05-17 Agilent Technologies, Inc. Luminary control system
US7256557B2 (en) * 2004-03-11 2007-08-14 Avago Technologies General Ip(Singapore) Pte. Ltd. System and method for producing white light using a combination of phosphor-converted white LEDs and non-phosphor-converted color LEDs
US7009343B2 (en) * 2004-03-11 2006-03-07 Kevin Len Li Lim System and method for producing white light using LEDs
US20060007206A1 (en) * 2004-06-29 2006-01-12 Damoder Reddy Device and method for operating a self-calibrating emissive pixel
US7202608B2 (en) * 2004-06-30 2007-04-10 Tir Systems Ltd. Switched constant current driving and control circuit
US7135664B2 (en) * 2004-09-08 2006-11-14 Emteq Lighting and Cabin Systems, Inc. Method of adjusting multiple light sources to compensate for variation in light output that occurs with time
DE102004047669A1 (en) * 2004-09-30 2006-04-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lighting device and method of control
US20060097978A1 (en) * 2004-10-22 2006-05-11 Ng Kee Y Field-sequential color display with feedback control
US7419839B2 (en) 2004-11-12 2008-09-02 Philips Lumileds Lighting Company, Llc Bonding an optical element to a light emitting device
JP4438722B2 (en) * 2004-11-19 2010-03-24 ソニー株式会社 Backlight driving device, backlight driving method, and liquid crystal display device
US7742032B2 (en) * 2004-12-31 2010-06-22 Intel Corporation Image adaptation phase-in
JP4612452B2 (en) 2005-03-30 2011-01-12 Necディスプレイソリューションズ株式会社 Liquid crystal display device
EP1891837A2 (en) * 2005-05-27 2008-02-27 Koninklijke Philips Electronics N.V. Controlling an arrangement of semiconductors emitting light of distinct colors
KR20080031722A (en) * 2005-06-03 2008-04-10 코닌클리즈케 필립스 일렉트로닉스 엔.브이. System and method for controlling a led luminary
EP1734502A1 (en) * 2005-06-13 2006-12-20 Sony Ericsson Mobile Communications AB Illumination in a portable communication device
US7872430B2 (en) * 2005-11-18 2011-01-18 Cree, Inc. Solid state lighting panels with variable voltage boost current sources
JP4914900B2 (en) 2005-11-18 2012-04-11 クリー インコーポレイテッド Solid lighting panel tiles
US8514210B2 (en) * 2005-11-18 2013-08-20 Cree, Inc. Systems and methods for calibrating solid state lighting panels using combined light output measurements
US7213940B1 (en) * 2005-12-21 2007-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
US7557518B2 (en) * 2006-01-24 2009-07-07 Astronautics Corporation Of America Solid-state, color-balanced backlight with wide illumination range
US7658527B2 (en) * 2006-02-14 2010-02-09 Cree, Inc. Systems and methods for adjusting light output of solid state lighting panels, and adjustable solid state lighting panels
US7777166B2 (en) * 2006-04-21 2010-08-17 Cree, Inc. Solid state luminaires for general illumination including closed loop feedback control
US8698727B2 (en) * 2007-01-05 2014-04-15 Apple Inc. Backlight and ambient light sensor system
US7812297B2 (en) * 2007-06-26 2010-10-12 Microsemi Corp. - Analog Mixed Signal Group, Ltd. Integrated synchronized optical sampling and control element
US8358263B2 (en) * 2008-02-26 2013-01-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Color control of a backlighting system
WO2009113055A2 (en) * 2008-03-13 2009-09-17 Microsemi Corp. - Analog Mixed Signal Group, Ltd. A color controller for a luminaire

Also Published As

Publication number Publication date
US8823630B2 (en) 2014-09-02
JP5661996B2 (en) 2015-01-28
EP2073606A2 (en) 2009-06-24
EP2073606A3 (en) 2011-05-11
US20140361712A1 (en) 2014-12-11
EP2073606B1 (en) 2019-01-30
US20090153450A1 (en) 2009-06-18
JP2009152198A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US20210160981A1 (en) Systems and methods for providing color management control in a lighting panel
US8829820B2 (en) Systems and methods for protecting display components from adverse operating conditions
JP4785931B2 (en) System and method for calibrating a solid state lighting panel
TWI438742B (en) Light emitting device and method for driving the same
US7256557B2 (en) System and method for producing white light using a combination of phosphor-converted white LEDs and non-phosphor-converted color LEDs
US8278846B2 (en) Systems and methods for calibrating solid state lighting panels
US8044918B2 (en) Back light apparatus and control method thereof
US7009343B2 (en) System and method for producing white light using LEDs
EP2168404B1 (en) Systems and methods for calibrating solid state lighting panels using combined light output measurements
EP2149282B1 (en) Limiting the color gamut in solid state lighting panels
US8013533B2 (en) Method and driver for determining drive values for driving a lighting device
US8994615B2 (en) Apparatus and methods for driving solid-state illumination sources
US8456388B2 (en) Systems and methods for split processor control in a solid state lighting panel
WO2009000182A1 (en) Methods and apparatus for backlight calibration
CN104849908A (en) Backlight unit and liquid crystal display device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: BRIGHTPLUS VENTURES LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IDEAL INDUSTRIES LIGHTING LLC;REEL/FRAME:059432/0213

Effective date: 20220323

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION