US20210045912A1 - Cooling cup applicators with contoured heads and liner assemblies - Google Patents
Cooling cup applicators with contoured heads and liner assemblies Download PDFInfo
- Publication number
- US20210045912A1 US20210045912A1 US16/945,789 US202016945789A US2021045912A1 US 20210045912 A1 US20210045912 A1 US 20210045912A1 US 202016945789 A US202016945789 A US 202016945789A US 2021045912 A1 US2021045912 A1 US 2021045912A1
- Authority
- US
- United States
- Prior art keywords
- tissue
- base unit
- liner
- receiving cavity
- applicator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001816 cooling Methods 0.000 title description 79
- 230000000712 assembly Effects 0.000 title description 17
- 238000000429 assembly Methods 0.000 title description 17
- 238000011282 treatment Methods 0.000 claims abstract description 108
- 238000007789 sealing Methods 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims description 65
- 150000002632 lipids Chemical class 0.000 claims description 36
- 239000012530 fluid Substances 0.000 claims description 29
- 238000007920 subcutaneous administration Methods 0.000 claims description 28
- 239000000853 adhesive Substances 0.000 claims description 18
- 230000001070 adhesive effect Effects 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 15
- 210000001519 tissue Anatomy 0.000 description 139
- 210000004027 cell Anatomy 0.000 description 61
- 210000003491 skin Anatomy 0.000 description 43
- 238000005516 engineering process Methods 0.000 description 32
- 210000000577 adipose tissue Anatomy 0.000 description 18
- 239000002577 cryoprotective agent Substances 0.000 description 17
- 239000010410 layer Substances 0.000 description 13
- 230000006378 damage Effects 0.000 description 12
- 239000000499 gel Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000002826 coolant Substances 0.000 description 10
- 210000001015 abdomen Anatomy 0.000 description 9
- 230000006907 apoptotic process Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 230000017531 blood circulation Effects 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 7
- 239000005060 rubber Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 210000001789 adipocyte Anatomy 0.000 description 6
- 239000002537 cosmetic Substances 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 208000034656 Contusions Diseases 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 230000030833 cell death Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 210000004207 dermis Anatomy 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000002615 epidermis Anatomy 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 208000014674 injury Diseases 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 206010033675 panniculitis Diseases 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000001640 apoptogenic effect Effects 0.000 description 4
- 210000001217 buttock Anatomy 0.000 description 4
- 238000012864 cross contamination Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 210000004003 subcutaneous fat Anatomy 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 210000000689 upper leg Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000000315 cryotherapy Methods 0.000 description 3
- 210000001624 hip Anatomy 0.000 description 3
- 210000002414 leg Anatomy 0.000 description 3
- 230000004130 lipolysis Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000004927 skin cell Anatomy 0.000 description 3
- 210000004304 subcutaneous tissue Anatomy 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 206010047139 Vasoconstriction Diseases 0.000 description 2
- 210000003423 ankle Anatomy 0.000 description 2
- 239000000883 anti-obesity agent Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000009746 freeze damage Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 238000007443 liposuction Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000003351 stiffener Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000003860 topical agent Substances 0.000 description 2
- 230000025033 vasoconstriction Effects 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 208000023184 Body fat disease Diseases 0.000 description 1
- NFWSQSCIDYBUOU-UHFFFAOYSA-N CC1=CC=CC1 Chemical compound CC1=CC=CC1 NFWSQSCIDYBUOU-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 208000008454 Hyperhidrosis Diseases 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 206010040954 Skin wrinkling Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000009925 apoptotic mechanism Effects 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000010428 chromatin condensation Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002681 cryosurgery Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000001916 dieting Nutrition 0.000 description 1
- 230000037228 dieting effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000037315 hyperhidrosis Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 210000005010 torso Anatomy 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 230000003966 vascular damage Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0054—Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
- A61F2007/0075—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating using a Peltier element, e.g. near the spot to be heated or cooled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0093—Heating or cooling appliances for medical or therapeutic treatment of the human body programmed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
- A61F2007/0225—Compresses or poultices for effecting heating or cooling connected to the body or a part thereof
- A61F2007/0239—Compresses or poultices for effecting heating or cooling connected to the body or a part thereof using vacuum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
- A61F2007/0282—Compresses or poultices for effecting heating or cooling for particular medical treatments or effects
- A61F2007/029—Fat cell removal or destruction by non-ablative heat treatment
Definitions
- the present disclosure relates generally to treatment systems and contoured applicators with cooling cups.
- Several embodiments are directed to cooling cup applicators with contoured heads and/or liner assemblies.
- Excess body fat, or adipose tissue may be present at various locations of a subject's body and may detract from personal appearance.
- Aesthetic improvement of the human body often involves the selective removal of adipose tissue located at the abdomen, thighs, buttocks, knees, submental region, face and arms, as well as other locations.
- Invasive procedures e.g., liposuction
- Injection of drugs for reducing adipose tissue can cause significant swelling, bruising, pain, numbness, and/or induration.
- non-invasive treatments for reducing adipose tissue often include regular exercise, application of topical agents, use of weight-loss drugs, dieting, or a combination of these treatments.
- One drawback of these non-invasive treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option.
- Topical agents and orally administered weight-loss drugs are not an option if, as another example, they cause an undesirable reaction, such as an allergic or negative reaction.
- non-invasive treatments may be ineffective for selectively reducing specific regions of adiposity, such as localized adipose tissue along the hips, abdomen, thighs, or the like.
- FIG. 1 is a partially schematic, isometric view of a treatment system for non-invasively affecting target regions of a subject in accordance with an embodiment of the technology.
- FIG. 2 is a cross-sectional view of an applicator taken along line 2 - 2 of FIG. 1 .
- FIG. 3 is a cross-sectional view of a connector taken along line 3 - 3 of FIG. 1 .
- FIG. 4 is an isometric view of an applicator suitable for use with the system of FIG. 1 in accordance with an embodiment of the technology.
- FIG. 5 is an exploded isometric view of the applicator of FIG. 4 .
- FIG. 6 is a top view of a base unit of an applicator in accordance with an embodiment of the technology.
- FIG. 7 is a cross-sectional view of the base unit taken along line 7 - 7 of FIG. 6 in accordance with an embodiment of the technology.
- FIG. 8 is an isometric view of a contoured head in accordance with an embodiment of the technology.
- FIG. 9 is a side view of the head of FIG. 8 .
- FIG. 10 is a top view of the head of FIG. 8 .
- FIG. 11 is an exploded isometric view of a contoured head in accordance with an embodiment of the technology.
- FIG. 12 is a side view of a contoured head, a liner assembly, and a base unit ready for assembly in accordance with an embodiment of the technology.
- FIG. 13 is a side view of the head and liner assembly placed on the base unit in an unlocked configuration.
- FIG. 14 is a side view of the installed head and liner assembly with the base unit in a locked configuration.
- FIG. 15 is an exploded isometric view of a liner assembly in accordance with an embodiment of the technology.
- FIG. 16 is a bottom view of the liner assembly of FIG. 15 .
- FIGS. 17A-17F show stages of a method for assembling an applicator in accordance with an embodiment of the technology.
- FIG. 18 is an exploded isometric view of an applicator in accordance with another embodiment of the disclosed technology.
- FIG. 19 is an isometric view of the applicator of FIG. 18 .
- FIG. 20 is an isometric view of an applicator in accordance with another embodiment of the disclosed technology.
- FIG. 21 is an exploded isometric view of an applicator in accordance with another embodiment of the disclosed technology.
- FIGS. 22 and 23 are exploded isometric views of multi-piece components in accordance with embodiments of the disclosed technology.
- FIG. 24 is a flowchart of a method for treating a subject in accordance with embodiments of the disclosed technology.
- FIG. 25 is a schematic block diagram illustrating subcomponents of a controller in accordance with an embodiment of the technology.
- the present disclosure describes treatment systems, applicators, and methods for affecting targeted sites.
- Several embodiments are directed to non-invasive systems that cool/heat specific regions or volumes of tissue.
- the non-invasive systems can include applicators with thermally-conductive cooling cups for cooling the skin surface of a retained volume of tissue.
- the applicators can be reconfigurable to enable treatment at various sites.
- Systems for treating a subject's tissue can include a cooling cup applicator with a base unit having a tissue-receiving cavity.
- a contoured head can be coupled to the base unit to provide a suitable interface for sealing with the subject's skin.
- a sealing member can be disposed between the base unit and the contoured head to create and maintain a vacuum seal therebetween. Once the contoured head is pressed against the subject's skin, a vacuum can be drawn to pull tissue through the head into the tissue-receiving cavity.
- a temperature-controlled surface of the cooling cup can then conductively cool/heat the skin.
- Different contoured heads can be alternatively attached to the base unit and sealing member to create various sizes of applicators to be able to treat various treatment sites, specific volumes of tissue, or the like.
- Sealing members can be located at various locations to provide sealing (e.g., liquid-tight sealing, air-tight sealing, etc.) between components of the applicators. The seals can be maintained throughout treatment.
- a disposable liner assembly can optionally be coupled to or integrated with the applicator to provide a sanitary patient-contact surface.
- the applicator can securely hold the liner assembly to allow repositioning of the applicator along the patient.
- the liner assembly can be replaced with another linear assembly to perform procedures on another patient to, for example, prevent cross-contamination between patients.
- the liner assembly can include a liner which is attached to the sealing member, with the liner extending across the tissue receiving cavity of the base unit.
- contoured heads, liner assemblies, and/or patient contact elements can be replaced to avoid cross-contamination between patients. Accordingly, most or all of the surfaces of the applicator that contact the patient can be replaced at any time.
- the applicator can have one or more vacuum ports used to draw the liner assembly and/or tissue into the tissue-receiving cavity.
- the liner assembly has an adhesive surface for adhering to the cooling cup and can be perforated to allow air flow therethrough.
- the liner assembly can be made, in whole or in part, of plastic, rubber, or other suitable material and can include, without limitation, one or more sealing members, sensors, release liners, carriers, alignment features, or the like.
- Tissue can be pulled into the applicator such that the tissue fills most or substantially all of the tissue-receiving cavity.
- a vacuum can be drawn to pull the skin against a relatively large area of the cup, thereby providing a relatively large skin-cup interface for heat transfer.
- a temperature-controlled conductive surface of the cooling cup can extend continuously along spaced apart sidewalls and bottom of the cooling cup and can thermally contact an area of the subject's skin that is equal to or less than about 20 cm 2 , 40 cm 2 , 80 cm 2 , 100 cm 2 , 140 cm 2 , 160 cm 2 , 180 cm 2 , 200 cm 2 , 300 cm 2 , or other suitable area.
- the temperature-controlled conductive surface can be cooled to a temperature equal to or less than a selected temperature (e.g., 5° C., 0° C., ⁇ 2° C., ⁇ 5° C., ⁇ 7° C., ⁇ 10° C., ⁇ 15° C., ⁇ 20° C., ⁇ 25° C., etc.) to cool most of the skin surface of the retained tissue.
- a selected temperature e.g., 5° C., 0° C., ⁇ 2° C., ⁇ 5° C., ⁇ 7° C., ⁇ 10° C., ⁇ 15° C., ⁇ 20° C., ⁇ 25° C., etc.
- most of a heat-exchanging surface of the cup can be cooled to a temperature equal to or less than about 0° C., ⁇ 2° C. ⁇ 5° C., ⁇ 10° C., or ⁇ 15° C.
- the temperature-controlled surface area of the cooling cup can be, for example, equal to or less than 20 cm 2 , 40 cm 2 , 80 cm 2 , 100 cm 2 , 140 cm 2 , 160 cm 2 , 180 cm 2 , 200 cm 2 , 300 cm 2 , or another suitable area.
- an apparatus for treating a subject's tissue includes an applicator configured to cool targeted tissue and a controller.
- the applicator includes a base unit, a head, a sealing member, and optionally a liner.
- the base unit has a temperature-controlled cup with a conductive heat-exchanging surface defining a tissue-receiving cavity.
- the head is removably coupleable to the base unit and includes a mounting body and a contoured mouth.
- the mounting body is configured to be coupled to the base unit to position an opening defined by the contoured mouth with respect to an entrance of the tissue-receiving cavity.
- the sealing member is disposed between the base unit and the head to create a vacuum seal therebetween.
- a liner assembly can include the sealing member and the liner.
- the sealing member is positionable between the mounting body of the head and the base unit such that the liner extends across the entrance of the tissue-receiving cavity.
- the liner can be drawn into the tissue-receiving cavity until the liner lines the conductive surface.
- a majority or the entire liner can be located within the apparatus when the liner lines the conductive surface.
- the controller can be programmed to command the applicator to draw a vacuum in the tissue-receiving cavity to pull the liner against the conductive heat-exchanging surface.
- an apparatus for treating a subject's tissue comprises a base unit, a head, and a sealing member.
- the base unit includes a temperature-controlled cup having a conductive surface defining a tissue-receiving cavity.
- the head includes a mounting body and a contoured mouth.
- the mounting body is configured to be coupled to the base unit to position an opening defined by the contoured mouth with respect to an entrance of the tissue-receiving cavity.
- the sealing member is between the base unit and the head to create a seal (e.g., a vacuum seal or other desired seal) therebetween.
- a liner assembly can include the sealing member and a liner.
- the sealing member is positionable between the mounting body of the head and the base unit such that the liner extends across the entrance of the tissue-receiving cavity.
- the liner assembly can be drawn through the tissue-receiving cavity and against at least a portion of the conductive surface of the cup. Sealing members can be installed at other locations to inhibit or prevent leakage (e.g., air leakage into or out of the applicator).
- a contoured head can be configured to clamp onto a base unit via the sealing member to form an applicator.
- the applicator can be applied to treatment sites while the sealing member remains secured to the applicator, and one can release the sealing member and separate the contoured head from the base unit so as to install another contoured head and sealing member to the base unit.
- a liner assembly can be sandwiched between the base unit and contoured head of the applicator.
- the liner assemblies can be located at suitable joints to limit or reduce deformation, movement, etc. of the liner assembly.
- a contoured head is positioned over a liner assembly, which is positioned on a base unit, to clamp together components of the applicator.
- the liner assembly can be sucked against the entire cup surface for heating/cooling tissue such that the liner adheres to the cup.
- the liner assembly can be adhered to sidewalls, bottom, or another portion of the cup.
- One or more holes can be formed (e.g., punched) along the liner assembly to establish vacuum pathways through the liner assembly. Filters, gel traps, and/or other features can be inserted into the holes to inhibit or prevent substances (e.g., cryoprotectants) from being sucked into components of the base unit.
- the vacuum can be reduced or stopped to place to place the applicator on a subject and then tissue can be suck into the applicator.
- Temperature sensors, contact sensors, and/or other sensors can be used to monitor, for example, temperatures (e.g., tissue temperatures, cup temperatures, etc.), the presence of tissue, tissue draw (e.g., movement of tissue, amount of tissue in the applicator, etc.), tissue retention, applicator operation, and so forth.
- At least some methods for treating a subject's tissue include positioning one or more sealing members between a head and a base unit of an applicator.
- a liner assembly can be used that includes a liner that extends across an entrance of a tissue-receiving cavity of the applicator.
- a vacuum can be drawn in the tissue-receiving cavity to move an adhesive surface of the liner into physical contact with a conductive surface of the temperature-controlled cup.
- the liner assembly can be perforated to establish fluid communication between at least one vacuum port of the applicator and the tissue-receiving cavity. This allows tissue to be pulled into the applicator via a vacuum.
- Some of the embodiments disclosed herein can be for cosmetically beneficial alterations of target regions.
- Some cosmetic procedures may be for the sole purpose of altering a target region to conform to a cosmetically desirable look, feel, size, shape and/or other desirable cosmetic characteristic or feature. Accordingly, at least some embodiments of the cosmetic procedures can be performed without providing an appreciable therapeutic effect (e.g., no therapeutic effect). For example, some cosmetic procedures may not include restoration of health, physical integrity, or the physical well-being of a subject.
- the cosmetic methods can target subcutaneous regions to change a subject's appearance and can include, for example, procedures performed on subject's submental region, abdomen, hips, legs, face, neck, ankle region, or the like. In other embodiments, however, cosmetically desirable treatments may have therapeutic outcomes (whether intended or not), such as psychological benefits, alteration of body hormones levels (by the reduction of adipose tissue), etc.
- FIG. 1 and the following discussion provide a brief, general description of a treatment system 100 in accordance with some embodiments of the technology.
- the treatment system 100 can be a temperature-controlled system for exchanging heat with a subject 101 and can include a non-invasive tissue-cooling apparatus in the form of a cooling cup applicator 102 (“applicator 102 ”) configured to selectively cool/heat tissue to reduce and/or eliminate targeted tissue, structures, or the like.
- the illustrated applicator 102 is positioned along a subject's hip and can be reconfigured to treat various sites.
- applicator 102 has disposable or reusable components for contacting tissue, facilitating tissue draw into a base unit 103 of the applicator 102 , preventing cross-contamination between patients, aiding in patient comfort, and/or affecting treatment by, for example, enhancing heat transfer, achieving desired temperature profiles, and so forth.
- the treatment system 100 can perform medical treatments to provide therapeutic effects and/or cosmetic procedures for cosmetically beneficial effects.
- selective effects of cooling are believed to result in, for example, membrane disruption, cell shrinkage, disabling, disrupting, damaging, destroying, removing, killing and/or other methods of lipid-rich cell alteration.
- Such alteration is believed to stem from one or more mechanisms acting alone or in combination. It is thought that such mechanism(s) trigger an apoptotic cascade, which is believed to be the dominant form of lipid-rich cell death by non-invasive cooling.
- the effect of tissue cooling can be the selectively reduction of lipid-rich cells by a desired mechanism of action, such as apoptosis, lipolysis, or the like.
- the applicator 102 can cool the skin surface and/or targeted tissue to cooling temperature in a range of from about ⁇ 25° C. to about 20° C.
- the cooling temperatures can be from about ⁇ 20° C. to about 10° C., from about ⁇ 18° C. to about 5° C., from about ⁇ 15° C. to about 5° C., or from about ⁇ 15° C. to about 0° C.
- the cooling temperatures can be equal to or less than ⁇ 5° C., ⁇ 10° C., ⁇ 15° C., or in yet another embodiment, from about ⁇ 15° C. to about ⁇ 25° C.
- Other cooling temperatures and temperature ranges can be used.
- Apoptosis also referred to as “programmed cell death” is a genetically-induced death mechanism by which cells self-destruct without incurring damage to surrounding tissues.
- An ordered series of biochemical events induce cells to morphologically change. These changes include cellular blebbing, loss of cell membrane asymmetry and attachment, cell shrinkage, chromatin condensation and chromosomal DNA fragmentation.
- Injury via an external stimulus, such as cold exposure is one mechanism that can induce cellular apoptosis in cells. Nagle, W. A., Soloff, B. L., Moss, A. J. Jr., Henle, K. J. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures” Cryobiology 27, 439-451 (1990).
- apoptosis in contrast to cellular necrosis (a traumatic form of cell death causing local inflammation), is that apoptotic cells express and display phagocytic markers on the surface of the cell membrane, thus marking the cells for phagocytosis by macrophages.
- phagocytes can engulf and remove the dying cells (e.g., the lipid-rich cells) without eliciting an immune response.
- Temperatures that elicit these apoptotic events in lipid-rich cells may contribute to long-lasting and/or permanent reduction and reshaping of subcutaneous adipose tissue.
- apoptotic lipid-rich cell death by cooling is believed to involve localized crystallization of lipids within the adipocytes at temperatures that do not induce crystallization in non-lipid-rich cells.
- the crystallized lipids selectively may injure these cells, inducing apoptosis (and may also induce necrotic death if the crystallized lipids damage or rupture the bi-lipid membrane of the adipocyte).
- Another mechanism of injury involves the lipid phase transition of those lipids within the cell's bi-lipid membrane, which results in membrane disruption or dysfunction, thereby inducing apoptosis. This mechanism is well-documented for many cell types and may be active when adipocytes, or lipid-rich cells, are cooled.
- the targeted adipose tissue may experience a restriction in blood supply and thus be starved of oxygen due to isolation as a result of applied pressure, cooling which may affect vasoconstriction in the cooled tissue, or the like.
- cooling which may affect vasoconstriction in the cooled tissue, or the like.
- restoration of blood flow after cooling treatment may additionally produce reperfusion injury to the adipocytes due to inflammation and oxidative damage that is known to occur when oxygenated blood is restored to tissue that has undergone a period of ischemia.
- This type of injury may be accelerated by exposing the adipocytes to an energy source (via, e.g., thermal, electrical, chemical, mechanical, acoustic, or other means) or otherwise increasing the blood flow rate in connection with or after cooling treatment as described herein.
- an energy source via, e.g., thermal, electrical, chemical, mechanical, acoustic, or other means
- Increasing vasoconstriction in such adipose tissue by, e.g., various mechanical means (e.g., application of pressure or massage), chemical means or certain cooling conditions, as well as the local introduction of oxygen radical-forming compounds to stimulate inflammation and/or leukocyte activity in adipose tissue may also contribute to accelerating injury to such cells.
- Other yet-to-be understood mechanisms of injury may exist.
- lipid-rich cells in the target region can be reduced generally without collateral damage to non-lipid-rich cells in the same region.
- lipid-rich cells can be affected at low temperatures that do not affect non-lipid-rich cells.
- lipid-rich cells such as those associated with highly localized adiposity (e.g., adiposity along the abdomen, submental adiposity, submandibular adiposity, facial adiposity, etc.), can be affected while non-lipid-rich cells (e.g., myocytes) in the same generally region are not damaged.
- the unaffected non-lipid-rich cells can be located underneath lipid-rich cells (e.g., cells deeper than a subcutaneous layer of fat), in the dermis, in the epidermis, and/or at other locations.
- the treatment system 100 can remove heat from underlying tissue through the upper layers of tissue and create a thermal gradient with the coldest temperatures near the cooling surface, or surfaces, of the applicator 102 (i.e., the temperature of the upper layer(s) of the skin can be lower than that of the targeted underlying target cells). It may be challenging to reduce the temperature of the targeted cells low enough to be destructive to these target cells (e.g., induce apoptosis, cell death, etc.) while also maintaining the temperature of the upper and surface skin cells high enough so as to be protective (e.g., non-destructive). The temperature difference between these two thresholds can be small (e.g., approximately, 5° C.
- Protection of the overlying cells may include improving the freeze tolerance and/or freeze avoidance of these skin cells by using, for example, cryoprotectants for inhibiting or preventing such freeze damage.
- Tissue can be rapidly rewarmed as soon as practicable after a freeze event has occurred to limit, reduce, or prevent damage and adverse side effects associated with the freeze event.
- tissue can be rapidly warmed as soon as possible to minimize or limit damage to tissue, such as the epidermis.
- tissue is partially or completely frozen for a predetermined period of time and then warmed.
- an applicator can warm shallow tissue using, for example, thermoelectric elements in the device.
- Thermoelectric elements can include Peltier devices capable of operating to establish a desired temperature (or temperature profile) along the surface.
- the applicator outputs energy to warm tissue.
- the applicator has electrodes that output radiofrequency energy for warming tissue.
- the applicator can be warmed at a rate of about 1° C./s, 2° C./s, 2.5° C./s, 3° C./s, 5° C./s, or other rate selected to thaw frozen tissue after the tissue has been partially or completely frozen for about 10 seconds, 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, or other suitable length of time.
- FIG. 2 is a cross-sectional view of the applicator 102 taken along line 2 - 2 of FIG. 1 .
- the applicator 102 includes a contoured head 92 (“head 92 ”) and a liner assembly 117 .
- the head 92 can conform closely to contours of the subject's body to sealingly engage a skin surface 93 .
- the dashed line 97 shows the position of the tissue before being drawn (indicated by arrows) into a tissue-receiving cavity 81 of the applicator 102 .
- An assortment of contoured heads can be used with the base unit 103 , and each contoured head can correspond to a specific application and tissue size.
- the contoured heads can have different sizes and shapes to fit different body shapes. Accordingly, the single base unit 103 can be used with a set of contoured heads to perform treatments various sites along the subject.
- the liner assembly 117 is configured to line a temperature-controlled three-dimensional conductive cup 95 (“cup 95 ”), which conductively cools tissue occupying a tissue-receiving cavity 91 .
- the liner assembly 117 can include a flexible liner 119 that lines the cup 95 .
- a vacuum can be drawn through an opening 122 in the liner 119 to draw tissue into and securely hold tissue in the tissue-receiving cavity 91 .
- the base unit 103 can cool/heat the retained tissue.
- the applicator 102 can release the tissue (e.g., by reducing or stopping the vacuum) and can be used at another treatment site.
- the vacuum can be used to apply a generally uniform pressure to the subject's skin in the cavity 91 .
- the tissue can contact a relative large contact area of the cup 95 to efficiently cool the entire volume of retained tissue.
- a vacuum can be sufficient to keep the tissue in contact with the bottom of the cup 95 so as to keep the cavity 81 filled with tissue while limiting or minimizing pooling of blood, vascular damage (e.g., rupturing of blood vessels), bruising, and other complications with folding tissue.
- the base unit 103 can include cooling units 121 in thermal communication with a temperature-controlled heat-exchanging surface 161 of the cup 95 .
- the cooling units 121 can include, without limitation, one or more thermoelectric elements 127 (e.g., Peltier-type elements), fluid-cooled elements 129 , heat-exchanging units, or combinations thereof.
- a fluid-cooled element 129 can cool the backside of the thermoelectric elements 127 to keep the thermoelectric elements 127 at or below a target temperature.
- the fluid-cooled element 129 can heat the backside of the thermoelectric elements 127 to keep the thermoelectric elements 127 at or above a target temperature.
- the cooling units 121 include only fluid-cooled elements or only non-fluid cooled thermoelectric elements.
- the cooling unit 121 can be coupled to, incorporated into, or part of the cup 95 .
- the thermoelectric elements 121 can be embedded or otherwise disposed in the cup 95 to reduce the distance from the tissue to the thermoelectric elements.
- thermoelectric elements 121 can have any desired number of thermoelectric elements.
- the number, positions, and operating temperatures of the cooling units 121 can be selected based on cooling/heating suitable for treatment.
- the configurations and components of the cooling units 121 can be selected based on the desired power consumption and target temperatures.
- FIG. 3 is a cross-sectional view of the connector 104 taken along line 3 - 3 of FIG. 1 and shows the connector 104 including a main body 179 , a supply fluid line or lumen 180 a (“supply fluid line 180 a ”), and a return fluid line or lumen 180 b (“return fluid line 180 b ”).
- supply fluid line 180 a supply fluid line 180 a
- return fluid line 180 b return fluid line 180 b
- the main body 179 may be configured (via one or more adjustable joints) to “set” in place for the treatment of the subject 101 .
- the supply and return fluid lines 180 a , 180 b can be conduits comprising, in whole or in part, polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate circulating coolant, such as water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and/or any other suitable heat conducting fluid for passing through fluid-cooled element, such as the fluid-cooled elements 129 of FIG. 2 or other components.
- each fluid line 180 a , 180 b can be a flexible hose surrounded by the main body 179 .
- the connector 104 can also include one or more electrical lines 112 for providing power to the applicator 102 and one or more control lines 116 for providing communication between the control module 106 ( FIG. 1 ) and the applicator 102 ( FIGS. 1 and 2 ).
- the electrical lines 112 can provide power to the thermoelectric elements (e.g., thermoelectric elements 127 of FIG. 2 ), sensors, and so forth.
- the connector 104 can include one or more vacuum lines 125 .
- the connector 104 can include a bundle of fluid conduits, a bundle of power lines, wired connections, vacuum lines, and other bundled and/or unbundled components selected to provide ergonomic comfort, minimize unwanted motion (and thus potential inefficient removal of heat from the subject), and/or to provide an aesthetic appearance to the treatment system 100 .
- the control module 106 can include a fluid system 105 (illustrated in phantom line), a power supply 110 (illustrated in phantom line), and a controller 114 carried by a housing 124 with wheels 126 .
- the fluid system 105 can include a fluid chamber and a refrigeration unit, a cooling tower, a thermoelectric chiller, heaters, or any other device capable of controlling the temperature of coolant in the fluid chamber.
- the coolant can be continuously or intermittently delivered to the applicator 102 via the supply fluid line 180 a ( FIG. 3 ) and can circulate through the applicator 102 to absorb heat.
- the coolant, which has absorbed heat can flow from the applicator 102 back to the control module 106 via the return fluid line 180 b ( FIG.
- control module 106 can heat the coolant that is circulated through the applicator 102 .
- a municipal water supply e.g., tap water
- tap water can be used in place of or in conjunction with the control module 106 .
- a pressurization device 123 can provide suction to the applicator 102 via the vacuum line 125 ( FIG. 3 ) and can include one or more vacuum sources (e.g., pumps). Air pressure can be controlled by a regulator located between the pressurization device 123 and the applicator 102 .
- the control module 106 can control the vacuum level to, for example, install the liner assembly and/or draw tissue into the applicator 102 while maintaining a desired level of comfort. If the vacuum level is too low, a liner assembly, tissue, etc. may not be drawn adequately (or at all) into and/or held within the applicator 102 . If the vacuum level is too high when preparing the applicator, liner assembly can break (e.g., rupture, tear, etc.).
- vacuum level is too high during treatment, the patient can experience discomfort, bruising, or other complications.
- approximately 0.5 inch Hg, 1 inch Hg, 2 inches Hg, 3 inches Hg, 5 inches Hg, 7 inches Hg, 8 inches Hg, 10 inches Hg, or 12 inches Hg vacuum is applied draw or hold the liner assembly 117 , tissue, etc.
- Other vacuum levels can be selected based on the characteristics of the tissue, desired level of comfort, and vacuum leakage rates. Vacuum leak rates of the applicator 102 can be equal to or less than about 0.2, 0.5 LPM, 1 LPM, or 2 LPM at the pressure levels disclosed herein.
- the vacuum leak rate can be equal to or less than about 0.2 LPM at 8 inches Hg, 0.5 LPM at 8 inches Hg, 1 LPM at 8 inches Hg, or 2 LPM at 8 inches Hg.
- the configuration of the pressurization device 123 and the applicator 102 can be selected based on the desired vacuum levels, leakage rates, and other operating parameters.
- the power supply 110 can provide a direct current voltage for powering electrical elements of the applicator 102 via the line 112 ( FIG. 3 ).
- the electrical elements can be thermal devices, sensors, actuators, controllers (e.g., a controller integrated into the applicator 102 ), or the like.
- An operator can use an input/output device in the form of a screen 118 (“input/output device 118 ”) of the controller 114 to control operation of the treatment system 100 , and the input/output device 118 can display the state of operation of the treatment system 100 and/or progress of a treatment protocol.
- the controller 114 can exchange data with the applicator 102 via the line (e.g., link 116 of FIG.
- the controller 114 can contain instructions to perform the treatment profiles and/or patient-specific treatment plans, which can include one or more segments, and each segment can include temperature profiles, vacuum levels, and/or specified durations (e.g., 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, 2 hours, etc.).
- a treatment profile can include specific profiles for each applicator to concurrently or sequentially treat multiple treatment sites, including, but not limited to, sites along the subject's torso, abdomen, legs, buttock, legs, face and/or neck (e.g., submental sites, submandibular sites, etc.), knees, back, arms, ankle region, or other treatment sites.
- the controller 114 can be incorporated into the applicator 102 or another component of the treatment system 100 .
- FIG. 4 is an isometric view of an applicator 102 ready to treat a subject.
- FIG. 5 is an exploded isometric view of the applicator 102 of FIG. 4 with the liner assembly 117 in a generally flat configuration.
- the base unit 103 includes latches 140 a , 140 b (collectively “latches 140 ”) that can clamp the contoured head 92 to the base unit 103 .
- latches 140 a , 140 b collectively “latches 140 ”
- the liner assembly 117 can be securely held between the contoured head 92 and the base unit 103 .
- the base unit 103 , line assembly 117 , and contoured head 92 can sealing engage one another.
- FIGS. 6-17F Various embodiments of the applicator 102 are discussed in connection with FIGS. 6-17F .
- FIG. 6 is a top view of the base unit 103 with the cup 95 capable of cooling from all directions to uniformly cool targeted tissue.
- the temperature-controlled heat-exchanging surface 161 (“surface 161 ”) can be a smooth contoured surface that extends continuously along at least most of the cavity 91 . When tissue is drawn against the surface 161 , the tissue can be slightly stretched to reduce the thickness of the skin to increase heat transfer between targeted tissue and the surface 161 .
- the cup 95 can comprise one or more thermally conductive materials, including, without limitation, metal (e.g., aluminum, stainless steel, pure copper, copper alloys, etc.) or other rigid or flexible high heat transfer materials, such as thermally conductive plastics.
- the thermally conductive material of the cup 95 at room temperature has a thermal conductivity equal to or greater than about 25 W/(mK), 50 W/(mK), 100 W/(mK), 200 W/(mK), 300 W/(mK), 350 W/(mK), and ranges encompassing such thermal conductivities.
- the cup 95 can have a multi-piece construction with various pieces made of materials selected to provide different amounts of heat flow at different locations.
- the cup 95 has a unitary construction and is made of a single material, such as metal.
- the cup 95 can include sidewalls 260 a , 260 b and a bottom 262 .
- a positive draft angle of the sidewalls 260 a , 260 b can be increased or decreased to decrease or increase, respectively, the vacuum level needed to fill the cavity 91 with tissue.
- the bottom 262 can define a curved longitudinal profile shape in a longitudinal direction (e.g., a direction parallel to the axis 264 in FIG. 6 ), and the bottom of the cavity 91 can define a curved transverse profile shape in a transverse direction, as shown in FIG. 2 .
- Tissue-receiving cavities disclosed herein can have substantially U-shaped cross sections (see cavity 91 cross section shown in FIG.
- the thermal properties, shape, and/or configuration of the cup 95 can be selected based on, for example, target treatment temperatures and/or volume of the targeted tissue.
- the cavity 91 can have a substantially uniform depth along most of longitudinal axis (e.g., longitudinal axis 264 of FIG. 6 ).
- Embodiments of the base unit 103 for treating large volumes of tissue e.g., adipose tissue along the abdomen, hips, buttock, etc.
- Embodiments of the base unit 203 for treating small volumes e.g., a small volume of submental tissue
- the maximum depth of the cup cavity 91 can be selected based on, for example, the volume of targeted tissue, characteristics of the targeted tissue, and/or desired level of patient comfort.
- the cup 95 can include one or more vacuum ports in fluid communication with the cavity 91 .
- Vacuum ports can be positioned along the sidewalls 260 , bottom 262 , or other suitable location along the cup 95 .
- an elongated vacuum port 122 e.g., a slot vacuum port
- the number and locations of the vacuum ports can be selected based on, for example, considerations of patient comfort, desired vacuum levels, and/or other treatment parameters.
- Sensors 268 can be temperature sensors, such as thermistors, positioned to detect temperature changes associated with warm tissue being drawn into and/or located in the cup 95 .
- a control module e.g., control module 106 of FIG. 1
- the sensors 268 measure heat flux and/or pressure (e.g., contact pressure) with the skin of the patient and can be positioned along the sidewalls 260 , bottom 262 , or other suitable locations.
- the sensors 268 can be tissue impedance sensors, contact sensors, or other sensors used to determine the presence of tissue and/or whether tissue has been adequately drawn into the applicator so as to completely fill the cavity 91 to achieve a suitable level of thermal contact, limit or reduce voids or gaps, and/or hold tissue while limiting or reducing, for example, pooling of blood, discomfort, and so forth.
- Sensor feedback can be collected in real-time and used in concert with treatment administration to efficaciously target specific tissue.
- the sensor measurements can also indicate other changes or anomalies that can occur during treatment administration.
- an increase in temperature detected by the sensors 268 can indicate either a freezing event at the skin or movement of the applicator 102 .
- An operator can inspect the subject's skin and/or applicator 102 in response to a detected increase in temperature. Methods and systems for collection of feedback data and monitoring of temperature measurements are described in commonly assigned U.S. Pat. No. 8,285,390.
- FIG. 7 is a cross-sectional view of the base unit 103 taken along the line 7 - 7 of FIG. 6 in accordance with one embodiment.
- the cooling units 220 can include one or more thermal devices 225 , fluid cooled devices 230 , and connection assemblies 240 .
- the thermal devices 225 can include, without limitation, one or more thermoelectric elements (e.g., Peltier-type elements), fluid-cooled elements, heat-exchanging units, or combinations thereof.
- the applicator 102 includes only fluid-cooled elements or only non-fluid cooled thermoelectric elements.
- connection assemblies 240 can include circuitry, a circuit board, fittings (e.g., inlet ports, outlet ports, etc.), or the like and can be connected to lines 252 , 254 .
- the lines 252 , 254 can deliver coolant to and from the fluid cooled devices 230 .
- Other configurations and components of the applicator 102 can be selected to achieve suitable power consumption and cooling/heating capability.
- the base unit 103 can also include an integrated controller with an input/output device 271 (e.g., a U/I touchpad) used by an operator to control operation the applicator 102 .
- the input/output device 271 can include buttons, switches, screens, or the like and display information.
- the displayed information can include treatment plan information, sensor readings (e.g., skin temperatures, cup temperatures, etc.), vacuum level, and so forth.
- FIGS. 8, 9, and 10 are an isometric view, a side view, and a top view of the contoured head 92 .
- the head 92 can include a mounting body or frame 150 and a contoured mouth 152 .
- the mounting body 150 is configured to surround an entrance of the tissue-receiving cavity (e.g., cavity in FIG. 91 ) and defines an opening 160 with a shape complementary to the underlying tissue-receiving cavity.
- the mounting body 150 can include one or more alignment features 162 configured to engage corresponding alignment features (e.g., alignment features 164 in FIG. 5 ) along the base unit 103 .
- the alignment features 162 can be, for example, pins, apertures, recesses, dimples, magnets, ferrous elements (e.g., elements comprising ferrous material), and the alignment features 164 ( FIG. 5 ) can be openings, protrusions, pins, and magnets.
- the number, types, and positions of the alignment features can be selected to achieve the desired positioning of the head 92 to limit or minimize offset edges on, for example, the inside of the cup 95 .
- Multiple alignment features can cooperate to ensure that the applicator can withstand pressure and applied torques when applied to the subject.
- contoured heads can be attached to the base unit 103 and/or liner assembly 117 via pins, clamps, magnets, screws, or other coupling means.
- Coupling features of the head 92 can extend through or into the liner assembly to inhibit or limit movement of the liner assembly with respect to, for example, the base unit 103 and/or the contoured head 95 .
- coupling features can couple the contoured head 92 directly to the base unit.
- the mouth 152 can include a contoured lip 270 and a body 272 .
- the lip 270 can define an entrance 274 and can be configured to sealingly engage, for example, the subject's skin.
- the lip 270 can have a rounded or curved cross-sectional shape for forming airtight seals with the subject's skin and can be made, in whole or in part, of silicon, rubber, soft plastic, or other suitable highly compliant materials.
- the mechanical properties, thermal properties, shape, and/or dimensions of the contoured lip 270 can be selected based on, for example, whether the contoured lip 270 contacts the subject's skin, liner assembly, a cryoprotectant gel pad, or the like.
- the body 272 is coupled to the frame 150 and can comprise a compliant material to allow the contoured mouth 252 expand or contract.
- a vacuum is initially drawn into the mouth 252
- the body 272 can deform inwardly due to the vacuum.
- the body 272 can deflect outwardly.
- the frame 150 can be made, in whole or in part, of metal, plastic, rubber, combinations thereof, or the like.
- the frame 150 comprises plastic and metal stiffeners (e.g., a steel rim) and is shaped to overlie a mounting region of the cup.
- FIG. 11 is an exploded isometric view of the head 92 in accordance with one embodiment.
- the head 92 can include one or more sensing assemblies 300 a , 300 b (collectively “sensing assemblies 300 ”) configured to provide information to, for example, the base unit, the treatment system 100 , or other component, and/or to any entity having a communication link with the base unit, treatment system or other component.
- sensing assemblies 300 are shown assembled, and the sensing assembly 300 b is shown exploded.
- the system 100 can determine, for example, the presence and/or type of contoured head.
- Each sensing assembly 300 can include a cap 302 and a magnetic element 304 .
- the magnetic element 304 can be sensed by the base unit 103 to obtain information about the presence of the head 92 , position of the head 92 , information about the head 92 (e.g., type of head) and so forth.
- Information about the type of head being used can be communicated by the treatment system 100 to its manufacturer so the manufacturer can track usage of various heads and track any failures or treatment malfunctions or treatment parameters and treatment results associated with any head to better track and improve product performance.
- one or more sensors, detectors, readers of the base unit can determine the position of the magnetic element 304 , which can correspond and communicate the type of head being used and optionally other information associated with or regarding the head being used.
- the head 92 can include, without limitation, labels, barcodes, tags (e.g., radio frequency identification tags), or other devices capable of being read by, for example, a label reader, a barcode reader, communication device (e.g., sensing assemblies, transmitters, tags, etc.), or other component of the applicator 102 .
- labels e.g., radio frequency identification tags
- tags e.g., radio frequency identification tags
- communication device e.g., sensing assemblies, transmitters, tags, etc.
- FIG. 12 is a side view of the contoured head 92 ready to be installed on a portion of the base unit 103 .
- FIG. 13 is a side view of the base unit 103 in an unlocked configuration after the head 92 and liner assembly 117 have been placed on the base unit 103 .
- FIG. 14 is a side view of the base unit 103 in a locked configuration.
- the base unit 103 has rotatable latches 140 a , 140 b positioned to allow installation of the head 92 and liner assembly 117 .
- the latches 140 a , 140 b can be used to hold various types of contoured heads with, for example, geometrically congruent mounting bodies or frames.
- the latches 140 a , 140 b can include, without limitation, one or more biasing members (e.g., springs), stops, alignment guides, or the like.
- the configuration and operation of the latches can be selected based on the desired ease of installing and removing components.
- the latches 140 a , 140 b can be operated to pull the frame 150 of the head 92 toward the base unit 103 as the latches 140 a , 140 b are moved to locked positions.
- FIG. 14 shows the latches 310 a , 310 b in locked positions.
- the latches 140 a , 140 b can apply sufficient compressive forces to the contoured head 92 to establish sealing (e.g., hermetic sealing) between mated components.
- sealing e.g., hermetic sealing
- contoured heads, line assemblies, and other components can be quickly replaced any number of times.
- Other types of heads, contours, and engagement features can be attached to the base unit 103 .
- contour elements disclosed in U.S. Publication 2010/0280582 can be used with the base unit 103 , which may have magnets or other alignment features and can provide desired sealing, including generally air-tight seal cincturing.
- U.S. Publication 2010/0280582 is incorporated by reference in its entirety.
- FIG. 15 is an exploded isometric view of the liner assembly 117 in accordance with one embodiment of the technology.
- FIG. 16 is a bottom view of the liner assembly 117 .
- the liner assembly 117 can include the liner 119 , sealing member or gasket 320 , a release liner 322 , and a carrier 340 .
- the liner 119 can be a flexible sheet or film made, in whole or in part, of urethane, nylon, rubber, silicon, TegadermTM, or the like and can include tabs 182 (one identified).
- the liner 119 is a transparent sheet that provides viewing of the underlying cup.
- the liner 119 can be air permeable to allow air to reach the skin while allowing moisture (e.g. moisture vapor) to escape.
- Such liner 119 can optionally be impermeable to substances (e.g., cryoprotectant gels, thermal coupling gels, etc.) used during therapy to keep the applied substances from clogging vacuum lines.
- the liner 119 has a patient-contact surface 350 ( FIG. 15 ) suitable for contacting the subject's skin and an opposing cup-contact surface 352 ( FIG. 16 ).
- the cup-contact surface 352 can be an adhesive surface comprising, in whole or in part, acrylic adhesive, pressure-sensitive adhesive, butyl rubber, silicone rubber, and/or other adhesives.
- the liner 119 comprises a flexible polymer layer and an adhesive layer formed by applying adhesive via spraying, dipping process, or other suitable techniques. The number and compositions of the layers can be selected based on the desired characteristics of the liner 119 .
- the liner 119 can be a monolayer sheet that is adhered to the cup by an adhesive which has been applied to the cup.
- the sealing member 320 can include compliant members 330 , 332 and an intermediate layer 334 .
- the compliant members 330 , 332 can comprise, in whole or in part, foam (e.g., closed cell foam), rubber, silicon, or combinations thereof.
- the intermediate layer 334 can couple together the compliant members 330 , 332 .
- the sealing member 320 can be a monolayer gasket made, in whole or in part, of urethane, rubber, silicon, or combinations thereof suitable for forming seals (e.g., air-tight seals or other desired seals).
- the sealing member 320 can include, without limitation, one or more stiffeners to help maintain the shape of the liner assembly during, for example, installation.
- the intermediate layer 334 can be a rigid metal or plastic layer.
- the sealing member 320 can be relatively stiff compared to the liner 119 to, for example, help install the liner 119 .
- the frame 150 can be relative stiff compared to the compliant members 330 , 332 such that the sealing member 320 is sufficiently compliant for forming vacuum seals maintained during and/or after tissue draw.
- FIGS. 17A-17F show stages of a method for preparing an applicator in accordance with an embodiment of the disclosed technology.
- FIG. 17A is a cross-sectional schematic view of the liner assembly 117 ready to be installed.
- An adhesive 370 couples the liner 119 and the gasket 320 .
- the release liner 322 can be removed from the liner 119 to expose the adhesive cup-contact surface 352 (“adhesive surface 352 ”).
- FIG. 17B shows the release liner 322 spaced apart from the adhesive surface 352 .
- the release liner 322 can be discarded, and the liner assembly 117 can be placed on the base unit 103 .
- FIG. 17C shows the gasket 320 positioned in a receiving feature 380 in the base unit 103 .
- the receiving feature 380 can be a trench, a recess, a channel, or other feature suitable for receiving at least a portion of the liner assembly 117 .
- Other arrangements can be used to position the gasket 320 with respect to the base unit 103 , as well as limiting movement of the liner assembly 117 with respect to the base unit 103 during use.
- FIG. 17D shows a portion of the frame 150 ready to be placed on the liner assembly 117 , illustrated schematically.
- the frame 150 can include an engagement member 390 with a protrusion 392 that cooperates with ridges 398 a , 398 b (collectively “ridges 398 ”) to provide desired sealing.
- the protrusion 392 can have a curved or semi-circular cross section, and the ridges 398 can have V-shaped cross sections, U-shaped cross sections, or other suitable configuration.
- the frame 150 can be moved downwardly, as indicated by arrow 396 , to compress a section 397 of the gasket 320 located between ridges 398 a , 398 b of the receiving feature 380 .
- Other arrangements can be used to achieve the desired sealing capability.
- FIG. 17E shows the contoured head 92 and liner assembly 117 installed on the base unit 103 such that the liner 119 extends across a tissue-receiving cavity 91 to form a closed chamber.
- the base unit 103 can be operated to clamp onto the liner assembly 117 .
- the base unit 103 can pull the head 92 against the liner assembly 117 to form and maintain a seal 401 (e.g., a hermetic seal) between, for example, the liner assembly 117 and the base unit 103 , a seal 403 between the liner assembly 117 and the contoured head 92 , a seal 405 between the head 92 and the base unit 103 , and/or additional seals.
- a seal 401 e.g., a hermetic seal
- the base unit 103 can suck the liner 119 into the cavity 91 (indicated by arrow 407 ) and then against the conductive surface 161 . Because the liner 119 is positioned directly over the cavity 91 , it deforms less than liners or sleeved applied to the outside of applicators. As shown in FIGS. 17E and 17F , the liner 119 does not need to contact and conform to the lip of the mouth, so that liner assembly 117 can be used independent of the configuration of contoured head.
- FIG. 17F shows the liner 119 after the adhesive surface 352 has been pulled against the conductive surface 161 .
- the head 92 holds the periphery of the linear assembly 117 to keep the liner 119 aligned with the cup 95 .
- a user can manually press the liner 119 against the surface 161 to remove trapped air, close gaps or voids, or otherwise apply the liner 119 .
- Various techniques can be used to line the temperature-controlled cup 95 with the liner 119 .
- the liner 119 can overlie most or substantially the entire thermally conductive surface 161 . In some procedures, the liner 119 covers all of the exposed surfaces of the cup 95 to prevent any contact between the patient and the cup 95 .
- the liner 119 can be perforated to establish fluid communication between the base unit 103 and the tissue cavity 91 . For example, one or more holes (e.g., opening 122 shown in FIG. 2 ) can be formed in the liner 119 using an instrument. In other embodiments, pre-formed portions of the liner 119 can be removed to form openings.
- the liner 119 can remain securely coupled to the cup 95 throughout one or more treatment protocols, which may include repeatedly drawing tissue into the applicator, applying the applicator to multiple treatment sites, etc.
- Liner assemblies can include films, sheets, sleeves, or other components suitable for defining an interface surface to prevent direct contact between surfaces of the applicator and the subject's skin to reduce the likelihood of cross-contamination between patients, minimize cleaning requirements, etc.
- Exemplary protective liners can be sheets, sleeves, or other components constructed from latex, rubber, nylon, Kevlar®, or other substantially impermeable or semi-permeable material.
- the liner 119 can be a latex sheet coated with a pressure-sensitive adhesive. Further details regarding a patient protection device may be found in U.S. Patent Publication No.
- a liner or protective sleeve may be positioned between an absorbent and the applicator to shield the applicator and to provide a sanitary barrier that is, in some embodiments, inexpensive and thus disposable.
- gel traps, filters, valves, and other components can be installed to keep applied substances (e.g., coupling gels, cryoprotectants, etc.) from being sucked into and/or through the base unit 103 .
- the liner 119 is configured to allow air to pass when drawing a vacuum and to restrict passage of a gel.
- FIGS. 18-21 show applicators in accordance with various embodiments of the present technology.
- the description of the applicators in connection with FIGS. 1-17F applies equally to the applicators of FIGS. 18-21 unless indicated otherwise.
- liner assemblies discussed in connection with FIG. 1-17F can be used with the applicators of FIG. 18-21 .
- the liner assemblies can be eliminated by, for example, incorporating sealing members (e.g., gaskets) into contoured heads or using separate sealing members.
- FIG. 18 is an exploded isometric view of an applicator 450 with a base unit 452 and a contoured head 454 .
- FIG. 19 shows the contoured head 454 installed on the base unit 452 .
- the applicator 450 can be used with or without a liner assembly.
- the head 454 can include a mounting base or frame 460 and a contoured mouth 462 .
- the contoured mouth 462 can have a generally rounded rectangular shape (as viewed from above) generally similar to the shape of an entrance 470 of a tissue-receiving cavity 472 .
- the contoured mouth 462 has a generally uniform height for application to a generally flat treatment site (e.g., along a subject's back, flat abdomen section, etc.). In other embodiments, the contoured mouth 462 has a lip that is curved with respect to the length of the lip or a varying height for application to non-planar treatment sites.
- FIG. 20 is isometric view of an applicator 500 with a contoured head 502 for treating a highly contoured treatment site.
- the contoured head 502 has a flexible mouth 510 with curved lips 512 suitable for circumferentially surrounding a patient's thigh, hip, etc.
- the curvature of the flexible mouth 510 can be selected to closely match the curvature of the treatment site.
- FIG. 21 is an exploded isometric view of an applicator 560 with a contoured head 564 and a base unit 566 .
- the contoured head 564 can be applied to a treatment site having a curvature less than the curvature at treatment sites suitable for the contoured head 502 of FIG. 20 .
- the geometries of the contoured heads can be selected to conform to a contour of a cutaneous layer.
- the sides, waistline, and other features of the contoured heads can be selected to facilitate conformation of heads to the contours of individual target areas.
- the shape of a typical human torso may vary between having a relative large radius of curvature, e.g., on the stomach or back, and having a relatively small radius of curvature, e.g., on the abdominal sides.
- the size of a head having an approximately consistent curvature may vary. Accordingly, an advantage of the present disclosure is the capability to provide flexible contour regions, lips, non-planar frames, etc.
- the heads may be fitted to individual lipid-rich cell deposits to achieve an approximately air-tight seal, achieve the vacuum pressure for drawing tissue into an interior cavity for treatment, maintain suction to hold the tissue, massage tissue (e.g., by altering pressure levels), and use little or no force to maintain contact between an applicator and a patient.
- Attaching heads to base units creates specific contours to approximately fit tissue to be treated.
- the heads can be attached and detached in a plurality of combinations to achieve a desired contour for a treatment.
- a single base unit and/or umbilical cable may be combined with a set of interchangeable heads to form a wide variety of contours for treating different lipid-rich cell deposits in a cost effective manner.
- a practitioner performing the treatment can demonstrate their expertise to the patient by tailoring the applicator contour to the specific body parts being treated. In this manner, the patient understands that their treatment is customized to their body for better comfort and for better treatment results.
- FIG. 22 is an exploded isometric view of a liner assembly 600 in accordance with embodiments of the present technology.
- the description of the linear assemblies discussed in connection with FIGS. 1-17F applies equally to the linear assembly 600 unless indicated otherwise.
- the liner assembly 600 can include a monolayer or multilayer liner 602 and a gasket 604 .
- an adhesive e.g., flowable adhesive, adhesive sheet, etc.
- the liner assembly 600 can then be installed on the base unit.
- adhesive can be applied directly to the liner 602 before, during, and/or after installation of the liner assembly 600 .
- the gasket 604 can be welded (e.g., sonically welded), bonded, adhered, or otherwise coupled to the liner 602 .
- FIG. 23 is an isometric view of a sealing member 620 that can include a gasket 622 , an adhesive layer 624 , and a gasket 626 .
- the gasket 622 can be a mono or multilayer structure permanently or temporarily coupled to the gasket 626 via the adhesive layer 624 .
- the sealing member 620 can be used to provide sealing capability.
- a separate liner or patient protection device can with an application having the sealing member 620 .
- the liners disclosed herein can be eliminated to provide sealing members (or gaskets) capable of forming seals between various components.
- Embodiments according to the present disclosure may provide one or more additional advantages.
- the size, shapes, and other physical properties of the base units, liner assemblies, sealing members, gaskets, contoured heads, and components of the applicators may be selected to accommodate a heat removal sources (e.g., thermal devices, cooling devices, etc.) that may be used/reused with individual applicators.
- a heat removal sources e.g., thermal devices, cooling devices, etc.
- Modifications to flexible portions of individual applicators may enable the use of a standard heat removal source and accommodate different contours of individual cutaneous layers. In turn, this may make it possible to reuse base units, sealing members, liners, and/or contoured heads for different treatments.
- the rigid portions of the applicators (e.g., edge or mounting region of base unit), which are relatively stiff with respect to the flexible portions, provide an attachment point for heat removal sources that may resist bowing into the interior cavity and possibly separating from the heat removal sources when a vacuum (including a partial vacuum) is drawn in the applicators.
- Disposing temperature sensors inside the applicators, along temperature-controlled surfaces, within contoured heads, along liner assemblies, etc. may more accurately measure the temperature of skin surface, subcutaneous tissue, and so forth.
- the flexible portions of the applicator (e.g., flexible mouth) also allows some compliance to different subject body contours or geometries.
- FIG. 24 is a flowchart of a method 700 for treating a subject in accordance with embodiments of the disclosed technology.
- an applicator can be configured by installing a head, sealing member, or other components on a base unit. The applicator can then be applied to the treatment site to cool/heat targeted tissue.
- the sealing member can be a standalone component or part of a liner assembly. Details of the method 700 are discussed in connection the embodiments shown in FIGS. 1-17F .
- the contoured head 92 and/or liner assembly 117 can be installed. As discussed in connection with FIGS. 12-14 , the liner assembly 117 can be clamped between the frame 150 and base unit 103 .
- the base unit 103 can obtain information about the contoured head 92 to determine, for example, treatment protocols.
- the base unit 103 can obtain information via the sensors 300 a , 300 b ( FIG. 11 ) functioning as communication devices that communicate information.
- the information can be provided to the manufacturer so that the manufacturer can track usage of various heads and track any failures or treatment malfunctions or treatment parameters and treatment results associated with any head to better track and improve product performance.
- the liner 119 can be applied to the conductive surface 161 of the cup 95 as discussed in connection with FIGS. 17A-17F . As shown in FIG. 17E , the liner 119 can extend across the entrance of the tissue-receiving cavity 91 to from a closed chamber. A vacuum can be drawn in closed chamber to pull the liner 119 against the cup 95 .
- the liner 119 can be adhered to the conductive surface 161 and perforated to allow a vacuum to be drawn in the tissue-receiving cavity 91 . Once the liner 119 overlays the cup 95 , the applicator 102 can be applied to the treatment site.
- the mouth 152 can be held against the subject while the pressurization device 123 ( FIG. 1 ) operates to urge tissue into the applicator 102 .
- the mouth 152 ( FIG. 8 ) and sidewalls 260 a , 260 b ( FIG. 6 ) can be splayed out to conformably suck tissue into the tissue-receiving cavity 91 .
- the pressure level can be selected to partially or completely fill the tissue-receiving cavity 91 with tissue. If the vacuum level is too low, tissue will not be drawn adequately into the cavity 91 .
- the vacuum level can be increase to reduce or eliminate gaps between the skin surface and the liner 119 . If the pressure level is too high, undesirable discomfort to the patient and/or tissue damage could occur.
- the vacuum level can be selected to comfortably pull the tissue into contact with the desired area of the applicator 102 , and the skin and underlying tissue can be pulled away from the subject's body which can assist in cooling underlying tissue by, e.g., lengthening the distance between targeted subcutaneous fat and the muscle tissue.
- tissue can be drawn into the tissue-receiving cavity 91 such that substantially all of the skin surface within the cavity 91 overlies the conductive surface 161 .
- tissue can be drawn into the tissue-receiving cavity 91 such that substantially all of the skin surface within the cavity 91 overlies the conductive surface 161 .
- 90%, 95%, 95%, or more of the surface area of the skin located in the cavity 91 can overlie the conductive surface 161 .
- the size of the vacuum ports can be increased or decreased to decrease or increase the area of the conductive surface 161 .
- the tissue is cooled/heated.
- the pressure level e.g., vacuum level
- the pressure level can be controlled to comfortably hold the tissue within the applicator 102 .
- the tissue can fill substantially the entire cavity 91 .
- the tissue can occupy at least 70%, 80%, 90%, or 95% of the volume of the cavity 91 to avoid or minimize air pockets that may impair heat transfer.
- Blood flow through the dermis and subcutaneous layer of the tissue is a heat source that counteracts the cooling of the targeted tissue (e.g., sub-dermal fat).
- the conductive surface 161 can thermally contact an area of the subject's skin equal to or less than about 20 cm 2 , 40 cm 2 , 80 cm 2 , 100 cm 2 , 140 cm 2 , 160 cm 2 , 180 cm 2 , 200 cm 2 , 300 cm 2 , or other suitable area.
- the temperature-controlled surface area of the cooling cup 95 can be, for example, equal to or less than 20 cm 2 , 40 cm 2 , 80 cm 2 , 100 cm 2 , 140 cm 2 , 160 cm 2 , 180 cm 2 , 200 cm 2 , 300 cm 2 , or another suitable area.
- the temperature-controlled conductive surface 161 can be cooled to a temperature equal to or less than a selected temperature (e.g., 5° C., 0° C., ⁇ 2° C., ⁇ 5° C., ⁇ 7° C., ⁇ 10° C., ⁇ 15° C., ⁇ 20° C., ⁇ 25° C., etc.) to cool most of the skin surface of the retained tissue.
- a selected temperature e.g., 5° C., 0° C., ⁇ 2° C., ⁇ 5° C., ⁇ 7° C., ⁇ 10° C., ⁇ 15° C., ⁇ 20° C., ⁇ 25° C., etc.
- most of a heat-exchanging surface 161 can be cooled to a temperature equal to or less than about 0° C., ⁇ 2° C. ⁇ 5° C., ⁇ 10° C., or ⁇ 15° C.
- the applicator 102 can hold the tissue in thermal contact with the liner assembly 117 and cup 95 .
- Heat from the tissue can be conductively transferred through the liner assembly 117 to the cooled surface 161 such that heat flows across substantially all of the applicator/skin interface.
- the cup 95 can be designed for rapid cooling and/or heating to, for example, reduce treatment times and/or produce generally flat temperature profiles over the heat-exchanging surface 161 or a portion thereof. Because the subject's body heat can be rapidly conducted to the cup 95 , the cooled skin can be kept at a generally flat temperature profile (e.g., ⁇ 3° C. of a target temperature) even though regions of the skin, or underlying tissue, may experience different amounts of blood flow.
- a generally flat temperature profile e.g., ⁇ 3° C. of a target temperature
- subcutaneous lipid-rich cells can be injured selectively while maintaining the non-lipid-rich cells (e.g., non-lipid-rich cells in the dermis and epidermis). Accordingly, subcutaneous lipid-rich cells in a subcutaneous layer can be cooled an amount sufficient to be biologically effective in affecting (e.g., damaging and/or reducing) such lipid-rich cells without affecting non-target cells to the same or greater extent.
- each of the sidewalls 260 a , 260 b and bottom 262 can conductively cool tissue to produce a desired temperature in target tissue without bruising, pain, or other problems caused by injections and perfusion of injected fluid.
- perfusion of injected fluid can affect the thermal characteristics of the treatment site and result in undesired temperature profiles.
- the non-invasive conductive cooling provided by the applicator 102 can be more accurate than invasive procedures that rely on injecting fluids.
- Targeted tissue can be cooled from about ⁇ 20° C. to about 10° C., from about 0° C. to about 20° C., from about ⁇ 15° C.
- liner 117 can be kept at a temperature less than about 0° C. to extract heat from subcutaneous lipid-rich cells such that those cells are selectively reduced or damaged.
- applicators can also be positioned to treat tissue at the thighs, buttock, abdomen, submandibular region, neck region, or other target regions.
- the applicator 102 can reduce localized adipose tissue along the abdomen, hips, submental region, or the like.
- the applicator 102 can sized and then aligned with and placed generally at the submental region (i.e., the submental triangle). It will be appreciated that the applicator 102 can be placed at other locations along the patient's body and the orientation of the applicator 102 can be selected to facilitate a relatively close fit.
- the control module 106 can automatically perform various acts. For example, upon installation of the head, the control module 106 can automatically select a pressurization level suitable for drawing the liner into the base unit. Once the liner has been applied to the conductive cup, the control module 106 can notify a user to, for example, inspect the liner, apply the applicator, or perform another task.
- the control module 106 ( FIG. 1 ) can then command the pressurization device 123 to draw tissue into the applicator 102 .
- the control module 106 can notify the operator that the applicator 102 is ready for treatment based on sensor reading.
- the operator can inspect the applicator 102 and can begin treatment using the control module 106 .
- region of the body may be close but not equal to the target temperature, e.g., because of the body's natural heating and cooling variations.
- the applicator 102 may attempt to heat or cool the target tissue to the target temperature or to provide a target heat flux
- the sensors 268 FIG. 6
- operation of the cooling unit can be adjusted to change the heat flux to maintain the target temperature or “set-point” selectively to affect targeted tissue.
- the prescribed segment duration expires, the next treatment profile segment can be performed.
- the treatment procedures disclosed herein can also involve use of cryoprotectant between the applicator and skin.
- the cryoprotectant can be a freezing point temperature depressant that may additionally include a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives.
- the temperature depressant may include, for example, polypropylene glycol (PPG), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO), or other suitable alcohol compounds.
- a cryoprotectant may include about 30% polypropylene glycol, about 30% glycerin (a humectant), and about 40% ethanol.
- a cryoprotectant may include about 40% propylene glycol, about 0.8% hydroxyethylcellulose (a thickening agent), and about 59.2% water.
- a cryoprotectant may include about 50% polypropylene glycol, about 40% glycerin, and about 10% ethanol.
- Other cryoprotectants or agents can also be used and can be carried by a cotton pad or other element.
- U.S. application Ser. No. 14/610,807 is incorporated by reference in its entirety and discloses various compositions that can be used as cryoprotectants.
- adipocytes may take a few days to a few weeks, or longer, for the adipocytes to break down and be absorbed. A significant decrease in fat thickness may occur gradually over 1-3 months following treatment. Additional treatments can be performed until a desired result is achieved. For example, one or more treatments can be performed to substantially reduce (e.g., visibly reduce) or eliminate targeted tissue.
- FIG. 25 is a schematic block diagram illustrating subcomponents of a controller in accordance with an embodiment of the disclosure.
- the controller can be part of the control module 106 ( FIG. 1 ).
- the controller 790 can be the controller 114 of FIG. 1 or can be incorporated into the applicators or other components disclosed herein.
- the controller 790 can include a computing device 800 having a processor 801 , a memory 802 , input/output devices 803 , and/or subsystems and other components 804 .
- the computing device 800 can perform any of a wide variety of computing processing, storage, sensing, imaging, and/or other functions.
- Components of the computing device 800 may be housed in a single unit or distributed over multiple, interconnected units (e.g., though a communications network).
- the components of the computing device 800 can accordingly include local and/or remote memory storage devices and any of a wide variety of computer-readable media.
- the processor 801 can include a plurality of functional modules 806 , such as software modules, for execution by the processor 801 .
- the various implementations of source code i.e., in a conventional programming language
- the modules 806 of the processor can include an input module 808 , a database module 810 , a process module 812 , an output module 814 , and, optionally, a display module 816 .
- the input module 808 accepts an operator input 819 via the one or more input devices, and communicates the accepted information or selections to other components for further processing.
- the database module 810 organizes records, including patient records, treatment data sets, treatment profiles and operating records and other operator activities, and facilitates storing and retrieving of these records to and from a data storage device (e.g., internal memory 802 , an external database, etc.). Any type of database organization can be utilized, including a flat file system, hierarchical database, relational database, distributed database, etc.
- the process module 812 can generate control variables based on sensor readings 818 from sensors and/or other data sources, and the output module 814 can communicate operator input to external computing devices and control variables to the controller.
- the display module 816 can be configured to convert and transmit processing parameters, sensor readings 818 , output signals 820 , input data, treatment profiles and prescribed operational parameters through one or more connected display devices, such as a display screen 118 ( FIG. 1 ), printer, speaker system, etc.
- the processor 801 can be a standard central processing unit or a secure processor.
- Secure processors can be special-purpose processors (e.g., reduced instruction set processor) that can withstand sophisticated attacks that attempt to extract data or programming logic.
- the secure processors may not have debugging pins that enable an external debugger to monitor the secure processor's execution or registers.
- the system may employ a secure field programmable gate array, a smartcard, or other secure devices.
- the memory 802 can be standard memory, secure memory, or a combination of both memory types. By employing a secure processor and/or secure memory, the system can ensure that data and instructions are both highly secure and sensitive operations such as decryption are shielded from observation.
- the memory 802 can be flash memory, secure serial EEPROM, secure field programmable gate array, or secure application-specific integrated circuit.
- the memory 802 can store instructions for causing the applicators to cool/heat tissue, pressurization devices to draw a vacuum, or other acts disclosed herein.
- the memory 802 stores instructions executable by the controller 790 for the thermal device to sufficiently cool conductive cups disclosed herein such that submental vacuum applicators non-invasively cool the subcutaneous lipid-rich cells to a desired temperature, such as a temperature less than about 0° C.
- the memory 802 can contain liner installation or draw instructions for causing the liner to drawn into a conductive cup, tissue draw instructions for causing the applicator to draw tissue into the applicator, treatment instructions for heating/cooling tissue, tissue release instructions for releasing tissue, and instructions for monitoring treatment.
- the liner installation or draw instructions can be executed by the controller 790 to command the pressurization device 123 to suck the liner against a conductive surface of the conductive cup.
- the input/output device 118 can include, without limitation, a touchscreen, a keyboard, a mouse, a stylus, a push button, a switch, a potentiometer, a scanner, an audio component such as a microphone, or any other device suitable for accepting user input and can also include one or more video monitor, a medium reader, an audio device such as a speaker, any combination thereof, and any other device or devices suitable for providing user feedback. For example, if an applicator moves an undesirable amount during a treatment session, the input/output device 803 can alert the subject and/or operator via an audible alarm.
- the input/output device 118 can be a touch screen that functions as both an input device and an output device.
- the control panel can include visual indicator devices or controls (e.g., indicator lights, numerical displays, etc.) and/or audio indicator devices or controls.
- the control panel may be a component separate from the input/output device 118 and/or output device 120 , may be integrated applicators, may be partially integrated with one or more of the devices, may be in another location, and so on.
- the controller 114 can be contained in, attached to, or integrated with the applicators. Further details with respect to components and/or operation of applicators, control modules (e.g., treatment units), and other components may be found in commonly-assigned U.S. Patent Publication No. 2008/0287839.
- the controller 790 can include any processor, Programmable Logic Controller, Distributed Control System, secure processor, and the like.
- a secure processor can be implemented as an integrated circuit with access-controlled physical interfaces; tamper resistant containment; means of detecting and responding to physical tampering; secure storage; and shielded execution of computer-executable instructions. Some secure processors also provide cryptographic accelerator circuitry. Suitable computing environments and other computing devices and user interfaces are described in commonly assigned U.S. Pat. No. 8,275,442, entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS,” which is incorporated herein in its entirety by reference.
- the treatment systems, applicators, and methods of treatment can be used reduce adipose tissue or treat subcutaneous tissue, acne, hyperhidrosis, wrinkles, structures (e.g., structures in the epidermis, dermis, subcutaneous fat, muscle, nerve tissue, etc.), and so on.
- structures e.g., structures in the epidermis, dermis, subcutaneous fat, muscle, nerve tissue, etc.
- Systems, components, and techniques for reducing subcutaneous adipose tissue are disclosed in U.S. Pat. No. 7,367,341 titled “METHODS AND DEVICES FOR SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al., U.S. Patent Publication No.
- Vacuum applicators can stretch, stress, and/or mechanically alter skin to increase damage and fibrosis in the skin, affect glands, control freeze events (including initiating freeze events), etc.
- Methods for cooling tissue and related devices and systems in accordance with embodiments of the present invention can at least partially address one or more problems associated with conventional technologies as discussed above and/or other problems whether or not such problems are stated herein.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
Abstract
Systems for treating a subject's tissue can include a thermally conductive cup, a sealing member, and/or a liner assembly. The systems can include an applicator capable of being reconfigured for a particular treatment site. Components of the applicator can be replaced to achieve a desired configuration. The replaceable components can include contoured heads, liners, and/or sensors. The applicator can draw a vacuum to install various components and/or draw tissue into the applicator. The applicator can cool and/or heat the tissue to affect targeted tissue.
Description
- The present application is a continuation of U.S. patent application Ser. No. 15/435,179, filed Feb. 16, 2017, now pending, which claims the benefit of and priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/297,054, filed Feb. 18, 2016, both of which are incorporated herein by reference in their entireties.
- The following commonly assigned U.S. patent applications and U.S. patents are incorporated herein by reference in their entireties:
- U.S. Patent Publication No. 2008/0287839 entitled “METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND TREATMENT APPARATUS HAVING AN ACTUATOR”;
- U.S. Pat. No. 6,032,675 entitled “FREEZING METHOD FOR CONTROLLED REMOVAL OF FATTY TISSUE BY LIPOSUCTION”;
- U.S. Patent Publication No. 2007/0255362 entitled “CRYOPROTECTANT FOR USE WITH A TREATMENT DEVICE FOR IMPROVED COOLING OF SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Pat. No. 7,854,754 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Pat. No. 8,337,539 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Patent Publication No. 2008/0077201 entitled “COOLING DEVICES WITH FLEXIBLE SENSORS”;
- U.S. Pat. No. 9,132,031 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE”;
- U.S. Patent Publication No. 2009/0118722, filed Oct. 31, 2007, entitled “METHOD AND APPARATUS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS OR TISSUE”;
- U.S. Patent Publication No. 2009/0018624 entitled “LIMITING USE OF DISPOSABLE SYSTEM PATIENT PROTECTION DEVICES”;
- U.S. Pat. No. 8,523,927 entitled “SYSTEM FOR TREATING LIPID-RICH REGIONS”;
- U.S. Patent Publication No. 2009/0018625 entitled “MANAGING SYSTEM TEMPERATURE TO REMOVE HEAT FROM LIPID-RICH REGIONS”;
- U.S. Patent Publication No. 2009/0018627 entitled “SECURE SYSTEM FOR REMOVING HEAT FROM LIPID-RICH REGIONS”;
- U.S. Patent Publication No. 2009/0018626 entitled “USER INTERFACES FOR A SYSTEM THAT REMOVES HEAT FROM LIPID-RICH REGIONS”;
- U.S. Pat. No. 6,041,787 entitled “USE OF CRYOPROTECTIVE AGENT COMPOUNDS DURING CRYOSURGERY”;
- U.S. Pat. No. 8,285,390 entitled “MONITORING THE COOLING OF SUBCUTANEOUS LIPID-RICH CELLS, SUCH AS THE COOLING OF ADIPOSE TISSUE”;
- U.S. Pat. No. 8,275,442 entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS”;
- U.S. patent application Ser. No. 12/275,002 entitled “APPARATUS WITH HYDROPHILIC RESERVOIRS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. patent application Ser. No. 12/275,014 entitled “APPARATUS WITH HYDROPHOBIC FILTERS FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. patent application Ser. No. 15/400,885 entitled “TEMPERATURE-DEPENDENT ADHESION BETWEEN APPLICATOR AND SKIN DURING COOLING OF TISSUE”;
- U.S. Pat. No. 8,603,073 entitled “SYSTEMS AND METHODS WITH INTERRUPT/RESUME CAPABILITIES FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Pat. No. 8,192,474 entitled “TISSUE TREATMENT METHODS”;
- U.S. Pat. No. 8,702,774 entitled “DEVICE, SYSTEM AND METHOD FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Pat. No. 8,676,338 entitled “COMBINED MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR BODY CONTOURING APPLICATIONS”;
- U.S. Pat. No. 9,314,368 entitled “HOME-USE APPLICATORS FOR NON-INVASIVELY REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS VIA PHASE CHANGE COOLANTS, AND ASSOCIATED DEVICES, SYSTEMS AND METHODS”;
- U.S. Publication No. 2011/0238051 entitled “HOME-USE APPLICATORS FOR NON-INVASIVELY REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS VIA PHASE CHANGE COOLANTS, AND ASSOCIATED DEVICES, SYSTEMS AND METHODS”;
- U.S. Publication No. 2012/0239123 entitled “DEVICES, APPLICATION SYSTEMS AND METHODS WITH LOCALIZED HEAT FLUX ZONES FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Pat. No. 9,545,523 entitled “MULTI-MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR ALTERING SUBCUTANEOUS LIPID-RICH TISSUE”;
- U.S. Patent Publication No. 2014/0277302 entitled “TREATMENT SYSTEMS WITH FLUID MIXING SYSTEMS AND FLUID-COOLED APPLICATORS AND METHODS OF USING THE SAME”;
- U.S. Pat. No. 9,132,031 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE;”
- U.S. Pat. No. 8,285,390 entitled “MONITORING THE COOLING OF SUBCUTANEOUS LIPID-RICH CELLS, SUCH AS THE COOLING OF ADIPOSE TISSUE;” and
- U.S. Patent Publication No. 2016/0054101 entitled “TREATMENT SYSTEMS, SMALL VOLUME APPLICATORS, AND METHODS FOR TREATING SUBMENTAL TISSUE.”
- The present disclosure relates generally to treatment systems and contoured applicators with cooling cups. Several embodiments are directed to cooling cup applicators with contoured heads and/or liner assemblies.
- Excess body fat, or adipose tissue, may be present at various locations of a subject's body and may detract from personal appearance. Aesthetic improvement of the human body often involves the selective removal of adipose tissue located at the abdomen, thighs, buttocks, knees, submental region, face and arms, as well as other locations. Invasive procedures (e.g., liposuction), however, tend to be associated with relative high costs, long recovery times, and increased risk of complications. Injection of drugs for reducing adipose tissue can cause significant swelling, bruising, pain, numbness, and/or induration.
- Conventional non-invasive treatments for reducing adipose tissue often include regular exercise, application of topical agents, use of weight-loss drugs, dieting, or a combination of these treatments. One drawback of these non-invasive treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option. Topical agents and orally administered weight-loss drugs are not an option if, as another example, they cause an undesirable reaction, such as an allergic or negative reaction. Additionally, non-invasive treatments may be ineffective for selectively reducing specific regions of adiposity, such as localized adipose tissue along the hips, abdomen, thighs, or the like.
- Conventional non-invasive vacuum cooling devices suck a fold of skin between two spaced apart cooled plates that are generally parallel to one another. The cooling device can cool and thermally damage targeted tissue. Unfortunately, only opposites sides of the skin fold contact the cooled plates, which limits the cooling capabilities of the cooling devices. Additionally, the end of the tissue fold located in a gap between the plates may experience pooling of blood. A vacuum may cause rupturing of blood vessels and lead to bruising of the skin located in the gap. Accordingly, conventional invasive and non-invasive treatments are not suitable for many subjects and cannot effectively target certain regions of tissue.
- In the drawings, identical reference numbers identify similar elements or acts.
-
FIG. 1 is a partially schematic, isometric view of a treatment system for non-invasively affecting target regions of a subject in accordance with an embodiment of the technology. -
FIG. 2 is a cross-sectional view of an applicator taken along line 2-2 ofFIG. 1 . -
FIG. 3 is a cross-sectional view of a connector taken along line 3-3 ofFIG. 1 . -
FIG. 4 is an isometric view of an applicator suitable for use with the system ofFIG. 1 in accordance with an embodiment of the technology. -
FIG. 5 is an exploded isometric view of the applicator ofFIG. 4 . -
FIG. 6 is a top view of a base unit of an applicator in accordance with an embodiment of the technology. -
FIG. 7 is a cross-sectional view of the base unit taken along line 7-7 ofFIG. 6 in accordance with an embodiment of the technology. -
FIG. 8 is an isometric view of a contoured head in accordance with an embodiment of the technology. -
FIG. 9 is a side view of the head ofFIG. 8 . -
FIG. 10 is a top view of the head ofFIG. 8 . -
FIG. 11 is an exploded isometric view of a contoured head in accordance with an embodiment of the technology. -
FIG. 12 is a side view of a contoured head, a liner assembly, and a base unit ready for assembly in accordance with an embodiment of the technology. -
FIG. 13 is a side view of the head and liner assembly placed on the base unit in an unlocked configuration. -
FIG. 14 is a side view of the installed head and liner assembly with the base unit in a locked configuration. -
FIG. 15 is an exploded isometric view of a liner assembly in accordance with an embodiment of the technology. -
FIG. 16 is a bottom view of the liner assembly ofFIG. 15 . -
FIGS. 17A-17F show stages of a method for assembling an applicator in accordance with an embodiment of the technology. -
FIG. 18 is an exploded isometric view of an applicator in accordance with another embodiment of the disclosed technology. -
FIG. 19 is an isometric view of the applicator ofFIG. 18 . -
FIG. 20 is an isometric view of an applicator in accordance with another embodiment of the disclosed technology. -
FIG. 21 is an exploded isometric view of an applicator in accordance with another embodiment of the disclosed technology. -
FIGS. 22 and 23 are exploded isometric views of multi-piece components in accordance with embodiments of the disclosed technology. -
FIG. 24 is a flowchart of a method for treating a subject in accordance with embodiments of the disclosed technology. -
FIG. 25 is a schematic block diagram illustrating subcomponents of a controller in accordance with an embodiment of the technology. - The present disclosure describes treatment systems, applicators, and methods for affecting targeted sites. Several embodiments are directed to non-invasive systems that cool/heat specific regions or volumes of tissue. The non-invasive systems can include applicators with thermally-conductive cooling cups for cooling the skin surface of a retained volume of tissue. The applicators can be reconfigurable to enable treatment at various sites. Several of the details set forth below are provided to describe the following examples and methods in a manner sufficient to enable a person skilled in the relevant art to practice, make, and use them. Several of the details and advantages described below, however, may not be necessary to practice certain examples and methods of the technology. Additionally, the technology may include other examples and methods that are within the scope of the technology but are not described in detail.
- Systems for treating a subject's tissue can include a cooling cup applicator with a base unit having a tissue-receiving cavity. A contoured head can be coupled to the base unit to provide a suitable interface for sealing with the subject's skin. A sealing member can be disposed between the base unit and the contoured head to create and maintain a vacuum seal therebetween. Once the contoured head is pressed against the subject's skin, a vacuum can be drawn to pull tissue through the head into the tissue-receiving cavity. A temperature-controlled surface of the cooling cup can then conductively cool/heat the skin. Different contoured heads can be alternatively attached to the base unit and sealing member to create various sizes of applicators to be able to treat various treatment sites, specific volumes of tissue, or the like. Sealing members can be located at various locations to provide sealing (e.g., liquid-tight sealing, air-tight sealing, etc.) between components of the applicators. The seals can be maintained throughout treatment.
- A disposable liner assembly can optionally be coupled to or integrated with the applicator to provide a sanitary patient-contact surface. The applicator can securely hold the liner assembly to allow repositioning of the applicator along the patient. The liner assembly can be replaced with another linear assembly to perform procedures on another patient to, for example, prevent cross-contamination between patients. The liner assembly can include a liner which is attached to the sealing member, with the liner extending across the tissue receiving cavity of the base unit. In some treatments, contoured heads, liner assemblies, and/or patient contact elements can be replaced to avoid cross-contamination between patients. Accordingly, most or all of the surfaces of the applicator that contact the patient can be replaced at any time.
- The applicator can have one or more vacuum ports used to draw the liner assembly and/or tissue into the tissue-receiving cavity. In some embodiments, the liner assembly has an adhesive surface for adhering to the cooling cup and can be perforated to allow air flow therethrough. The liner assembly can be made, in whole or in part, of plastic, rubber, or other suitable material and can include, without limitation, one or more sealing members, sensors, release liners, carriers, alignment features, or the like.
- Tissue can be pulled into the applicator such that the tissue fills most or substantially all of the tissue-receiving cavity. In some embodiments, a vacuum can be drawn to pull the skin against a relatively large area of the cup, thereby providing a relatively large skin-cup interface for heat transfer. A temperature-controlled conductive surface of the cooling cup can extend continuously along spaced apart sidewalls and bottom of the cooling cup and can thermally contact an area of the subject's skin that is equal to or less than about 20 cm2, 40 cm2, 80 cm2, 100 cm2, 140 cm2, 160 cm2, 180 cm2, 200 cm2, 300 cm2, or other suitable area. In some embodiments, the temperature-controlled conductive surface can be cooled to a temperature equal to or less than a selected temperature (e.g., 5° C., 0° C., −2° C., −5° C., −7° C., −10° C., −15° C., −20° C., −25° C., etc.) to cool most of the skin surface of the retained tissue. In some embodiments, most of a heat-exchanging surface of the cup can be cooled to a temperature equal to or less than about 0° C., −2° C. −5° C., −10° C., or −15° C. The temperature-controlled surface area of the cooling cup can be, for example, equal to or less than 20 cm2, 40 cm2, 80 cm2, 100 cm2, 140 cm2, 160 cm2, 180 cm2, 200 cm2, 300 cm2, or another suitable area.
- In some embodiments, an apparatus for treating a subject's tissue includes an applicator configured to cool targeted tissue and a controller. The applicator includes a base unit, a head, a sealing member, and optionally a liner. The base unit has a temperature-controlled cup with a conductive heat-exchanging surface defining a tissue-receiving cavity. The head is removably coupleable to the base unit and includes a mounting body and a contoured mouth. The mounting body is configured to be coupled to the base unit to position an opening defined by the contoured mouth with respect to an entrance of the tissue-receiving cavity. The sealing member is disposed between the base unit and the head to create a vacuum seal therebetween. When the liner is used, a liner assembly can include the sealing member and the liner. The sealing member is positionable between the mounting body of the head and the base unit such that the liner extends across the entrance of the tissue-receiving cavity. The liner can be drawn into the tissue-receiving cavity until the liner lines the conductive surface. A majority or the entire liner can be located within the apparatus when the liner lines the conductive surface. The controller can be programmed to command the applicator to draw a vacuum in the tissue-receiving cavity to pull the liner against the conductive heat-exchanging surface.
- In another embodiment, an apparatus for treating a subject's tissue comprises a base unit, a head, and a sealing member. The base unit includes a temperature-controlled cup having a conductive surface defining a tissue-receiving cavity. The head includes a mounting body and a contoured mouth. The mounting body is configured to be coupled to the base unit to position an opening defined by the contoured mouth with respect to an entrance of the tissue-receiving cavity. The sealing member is between the base unit and the head to create a seal (e.g., a vacuum seal or other desired seal) therebetween. A liner assembly can include the sealing member and a liner. The sealing member is positionable between the mounting body of the head and the base unit such that the liner extends across the entrance of the tissue-receiving cavity. The liner assembly can be drawn through the tissue-receiving cavity and against at least a portion of the conductive surface of the cup. Sealing members can be installed at other locations to inhibit or prevent leakage (e.g., air leakage into or out of the applicator).
- In some embodiments, a contoured head can be configured to clamp onto a base unit via the sealing member to form an applicator. The applicator can be applied to treatment sites while the sealing member remains secured to the applicator, and one can release the sealing member and separate the contoured head from the base unit so as to install another contoured head and sealing member to the base unit. In some embodiments, a liner assembly can be sandwiched between the base unit and contoured head of the applicator. The liner assemblies can be located at suitable joints to limit or reduce deformation, movement, etc. of the liner assembly.
- In some procedures, a contoured head is positioned over a liner assembly, which is positioned on a base unit, to clamp together components of the applicator. The liner assembly can be sucked against the entire cup surface for heating/cooling tissue such that the liner adheres to the cup. For example, the liner assembly can be adhered to sidewalls, bottom, or another portion of the cup. One or more holes can be formed (e.g., punched) along the liner assembly to establish vacuum pathways through the liner assembly. Filters, gel traps, and/or other features can be inserted into the holes to inhibit or prevent substances (e.g., cryoprotectants) from being sucked into components of the base unit. The vacuum can be reduced or stopped to place to place the applicator on a subject and then tissue can be suck into the applicator. Temperature sensors, contact sensors, and/or other sensors can be used to monitor, for example, temperatures (e.g., tissue temperatures, cup temperatures, etc.), the presence of tissue, tissue draw (e.g., movement of tissue, amount of tissue in the applicator, etc.), tissue retention, applicator operation, and so forth.
- At least some methods for treating a subject's tissue include positioning one or more sealing members between a head and a base unit of an applicator. Optionally a liner assembly can be used that includes a liner that extends across an entrance of a tissue-receiving cavity of the applicator. A vacuum can be drawn in the tissue-receiving cavity to move an adhesive surface of the liner into physical contact with a conductive surface of the temperature-controlled cup. After adhering the liner to the conductive surface, the liner assembly can be perforated to establish fluid communication between at least one vacuum port of the applicator and the tissue-receiving cavity. This allows tissue to be pulled into the applicator via a vacuum.
- Some of the embodiments disclosed herein can be for cosmetically beneficial alterations of target regions. Some cosmetic procedures may be for the sole purpose of altering a target region to conform to a cosmetically desirable look, feel, size, shape and/or other desirable cosmetic characteristic or feature. Accordingly, at least some embodiments of the cosmetic procedures can be performed without providing an appreciable therapeutic effect (e.g., no therapeutic effect). For example, some cosmetic procedures may not include restoration of health, physical integrity, or the physical well-being of a subject. The cosmetic methods can target subcutaneous regions to change a subject's appearance and can include, for example, procedures performed on subject's submental region, abdomen, hips, legs, face, neck, ankle region, or the like. In other embodiments, however, cosmetically desirable treatments may have therapeutic outcomes (whether intended or not), such as psychological benefits, alteration of body hormones levels (by the reduction of adipose tissue), etc.
- Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, stages, or characteristics may be combined in any suitable manner in one or more examples of the technology. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the technology.
-
FIG. 1 and the following discussion provide a brief, general description of atreatment system 100 in accordance with some embodiments of the technology. Thetreatment system 100 can be a temperature-controlled system for exchanging heat with a subject 101 and can include a non-invasive tissue-cooling apparatus in the form of a cooling cup applicator 102 (“applicator 102”) configured to selectively cool/heat tissue to reduce and/or eliminate targeted tissue, structures, or the like. The illustratedapplicator 102 is positioned along a subject's hip and can be reconfigured to treat various sites. In some embodiments,applicator 102 has disposable or reusable components for contacting tissue, facilitating tissue draw into abase unit 103 of theapplicator 102, preventing cross-contamination between patients, aiding in patient comfort, and/or affecting treatment by, for example, enhancing heat transfer, achieving desired temperature profiles, and so forth. - The
treatment system 100 can perform medical treatments to provide therapeutic effects and/or cosmetic procedures for cosmetically beneficial effects. Without being bound by theory, selective effects of cooling are believed to result in, for example, membrane disruption, cell shrinkage, disabling, disrupting, damaging, destroying, removing, killing and/or other methods of lipid-rich cell alteration. Such alteration is believed to stem from one or more mechanisms acting alone or in combination. It is thought that such mechanism(s) trigger an apoptotic cascade, which is believed to be the dominant form of lipid-rich cell death by non-invasive cooling. In any of these embodiments, the effect of tissue cooling can be the selectively reduction of lipid-rich cells by a desired mechanism of action, such as apoptosis, lipolysis, or the like. In some procedures, theapplicator 102 can cool the skin surface and/or targeted tissue to cooling temperature in a range of from about −25° C. to about 20° C. In other embodiments, the cooling temperatures can be from about −20° C. to about 10° C., from about −18° C. to about 5° C., from about −15° C. to about 5° C., or from about −15° C. to about 0° C. In further embodiments, the cooling temperatures can be equal to or less than −5° C., −10° C., −15° C., or in yet another embodiment, from about −15° C. to about −25° C. Other cooling temperatures and temperature ranges can be used. - Apoptosis, also referred to as “programmed cell death”, is a genetically-induced death mechanism by which cells self-destruct without incurring damage to surrounding tissues. An ordered series of biochemical events induce cells to morphologically change. These changes include cellular blebbing, loss of cell membrane asymmetry and attachment, cell shrinkage, chromatin condensation and chromosomal DNA fragmentation. Injury via an external stimulus, such as cold exposure, is one mechanism that can induce cellular apoptosis in cells. Nagle, W. A., Soloff, B. L., Moss, A. J. Jr., Henle, K. J. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures” Cryobiology 27, 439-451 (1990).
- One aspect of apoptosis, in contrast to cellular necrosis (a traumatic form of cell death causing local inflammation), is that apoptotic cells express and display phagocytic markers on the surface of the cell membrane, thus marking the cells for phagocytosis by macrophages. As a result, phagocytes can engulf and remove the dying cells (e.g., the lipid-rich cells) without eliciting an immune response. Temperatures that elicit these apoptotic events in lipid-rich cells may contribute to long-lasting and/or permanent reduction and reshaping of subcutaneous adipose tissue.
- One mechanism of apoptotic lipid-rich cell death by cooling is believed to involve localized crystallization of lipids within the adipocytes at temperatures that do not induce crystallization in non-lipid-rich cells. The crystallized lipids selectively may injure these cells, inducing apoptosis (and may also induce necrotic death if the crystallized lipids damage or rupture the bi-lipid membrane of the adipocyte). Another mechanism of injury involves the lipid phase transition of those lipids within the cell's bi-lipid membrane, which results in membrane disruption or dysfunction, thereby inducing apoptosis. This mechanism is well-documented for many cell types and may be active when adipocytes, or lipid-rich cells, are cooled. Mazur, P., “Cryobiology: the Freezing of Biological Systems” Science, 68: 939-949 (1970); Quinn, P. J., “A Lipid Phase Separation Model of Low Temperature Damage to Biological Membranes” Cryobiology, 22: 128-147 (1985); Rubinsky, B., “Principles of Low Temperature Preservation” Heart Failure Reviews, 8, 277-284 (2003). Other possible mechanisms of adipocyte damage, described in U.S. Pat. No. 8,192,474, relate to ischemia/reperfusion injury that may occur under certain conditions when such cells are cooled as described herein. For instance, during treatment by cooling as described herein, the targeted adipose tissue may experience a restriction in blood supply and thus be starved of oxygen due to isolation as a result of applied pressure, cooling which may affect vasoconstriction in the cooled tissue, or the like. In addition to the ischemic damage caused by oxygen starvation and the buildup of metabolic waste products in the tissue during the period of restricted blood flow, restoration of blood flow after cooling treatment may additionally produce reperfusion injury to the adipocytes due to inflammation and oxidative damage that is known to occur when oxygenated blood is restored to tissue that has undergone a period of ischemia. This type of injury may be accelerated by exposing the adipocytes to an energy source (via, e.g., thermal, electrical, chemical, mechanical, acoustic, or other means) or otherwise increasing the blood flow rate in connection with or after cooling treatment as described herein. Increasing vasoconstriction in such adipose tissue by, e.g., various mechanical means (e.g., application of pressure or massage), chemical means or certain cooling conditions, as well as the local introduction of oxygen radical-forming compounds to stimulate inflammation and/or leukocyte activity in adipose tissue may also contribute to accelerating injury to such cells. Other yet-to-be understood mechanisms of injury may exist.
- In addition to the apoptotic mechanisms involved in lipid-rich cell death, local cold exposure is also believed to induce lipolysis (i.e., fat metabolism) of lipid-rich cells and has been shown to enhance existing lipolysis which serves to further increase the reduction in subcutaneous lipid-rich cells. Vallerand, A. L., Zamecnik. J., Jones, P. J. H., Jacobs, I. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans” Aviation, Space and Environmental Medicine 70, 42-50 (1999).
- One expected advantage of the foregoing techniques is that the subcutaneous lipid-rich cells in the target region can be reduced generally without collateral damage to non-lipid-rich cells in the same region. In general, lipid-rich cells can be affected at low temperatures that do not affect non-lipid-rich cells. As a result, lipid-rich cells, such as those associated with highly localized adiposity (e.g., adiposity along the abdomen, submental adiposity, submandibular adiposity, facial adiposity, etc.), can be affected while non-lipid-rich cells (e.g., myocytes) in the same generally region are not damaged. The unaffected non-lipid-rich cells can be located underneath lipid-rich cells (e.g., cells deeper than a subcutaneous layer of fat), in the dermis, in the epidermis, and/or at other locations.
- In some procedures, the
treatment system 100 can remove heat from underlying tissue through the upper layers of tissue and create a thermal gradient with the coldest temperatures near the cooling surface, or surfaces, of the applicator 102 (i.e., the temperature of the upper layer(s) of the skin can be lower than that of the targeted underlying target cells). It may be challenging to reduce the temperature of the targeted cells low enough to be destructive to these target cells (e.g., induce apoptosis, cell death, etc.) while also maintaining the temperature of the upper and surface skin cells high enough so as to be protective (e.g., non-destructive). The temperature difference between these two thresholds can be small (e.g., approximately, 5° C. to about 10° C., less than 10° C., less than 15° C., etc.). Protection of the overlying cells (e.g., typically water-rich dermal and epidermal skin cells) from freeze damage during dermatological and related aesthetic procedures that involve sustained exposure to cold temperatures may include improving the freeze tolerance and/or freeze avoidance of these skin cells by using, for example, cryoprotectants for inhibiting or preventing such freeze damage. - Tissue can be rapidly rewarmed as soon as practicable after a freeze event has occurred to limit, reduce, or prevent damage and adverse side effects associated with the freeze event. After freezing begins, tissue can be rapidly warmed as soon as possible to minimize or limit damage to tissue, such as the epidermis. In some procedures, tissue is partially or completely frozen for a predetermined period of time and then warmed. According to one embodiment, an applicator can warm shallow tissue using, for example, thermoelectric elements in the device. Thermoelectric elements can include Peltier devices capable of operating to establish a desired temperature (or temperature profile) along the surface. In other embodiments, the applicator outputs energy to warm tissue. For example, the applicator has electrodes that output radiofrequency energy for warming tissue. In some procedures, the applicator can be warmed at a rate of about 1° C./s, 2° C./s, 2.5° C./s, 3° C./s, 5° C./s, or other rate selected to thaw frozen tissue after the tissue has been partially or completely frozen for about 10 seconds, 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, or other suitable length of time.
-
FIG. 2 is a cross-sectional view of theapplicator 102 taken along line 2-2 ofFIG. 1 . Theapplicator 102 includes a contoured head 92 (“head 92”) and aliner assembly 117. Thehead 92 can conform closely to contours of the subject's body to sealingly engage askin surface 93. The dashedline 97 shows the position of the tissue before being drawn (indicated by arrows) into a tissue-receivingcavity 81 of theapplicator 102. An assortment of contoured heads can be used with thebase unit 103, and each contoured head can correspond to a specific application and tissue size. The contoured heads can have different sizes and shapes to fit different body shapes. Accordingly, thesingle base unit 103 can be used with a set of contoured heads to perform treatments various sites along the subject. - The
liner assembly 117 is configured to line a temperature-controlled three-dimensional conductive cup 95 (“cup 95”), which conductively cools tissue occupying a tissue-receivingcavity 91. Theliner assembly 117 can include aflexible liner 119 that lines thecup 95. A vacuum can be drawn through anopening 122 in theliner 119 to draw tissue into and securely hold tissue in the tissue-receivingcavity 91. After establishing thermal contact between the tissue and thecup 95, thebase unit 103 can cool/heat the retained tissue. Upon completion of the cryotherapy procedure, theapplicator 102 can release the tissue (e.g., by reducing or stopping the vacuum) and can be used at another treatment site. - Most or substantially all of the skin surface of the volume of tissue in a
cavity 91 is in thermal contact with thecup 95. The vacuum can be used to apply a generally uniform pressure to the subject's skin in thecavity 91. In some procedures, the tissue can contact a relative large contact area of thecup 95 to efficiently cool the entire volume of retained tissue. A vacuum can be sufficient to keep the tissue in contact with the bottom of thecup 95 so as to keep thecavity 81 filled with tissue while limiting or minimizing pooling of blood, vascular damage (e.g., rupturing of blood vessels), bruising, and other complications with folding tissue. - The
base unit 103 can include coolingunits 121 in thermal communication with a temperature-controlled heat-exchangingsurface 161 of thecup 95. The coolingunits 121 can include, without limitation, one or more thermoelectric elements 127 (e.g., Peltier-type elements), fluid-cooledelements 129, heat-exchanging units, or combinations thereof. In a cooling mode, a fluid-cooledelement 129 can cool the backside of thethermoelectric elements 127 to keep thethermoelectric elements 127 at or below a target temperature. In a heating mode, the fluid-cooledelement 129 can heat the backside of thethermoelectric elements 127 to keep thethermoelectric elements 127 at or above a target temperature. In some embodiments, the coolingunits 121 include only fluid-cooled elements or only non-fluid cooled thermoelectric elements. Thecooling unit 121 can be coupled to, incorporated into, or part of thecup 95. In some embodiments, thethermoelectric elements 121 can be embedded or otherwise disposed in thecup 95 to reduce the distance from the tissue to the thermoelectric elements. - Although the illustrated embodiment has two
thermoelectric elements 121, it can have any desired number of thermoelectric elements. The number, positions, and operating temperatures of the coolingunits 121 can be selected based on cooling/heating suitable for treatment. The configurations and components of the coolingunits 121 can be selected based on the desired power consumption and target temperatures. - Referring again to
FIG. 1 , theconnector 104 extends from thecontrol module 106 to theapplicator 102 and can provide suction for drawing tissue into theapplicator 102 and energy (e.g., electrical energy) and fluid (e.g., coolant) from thecontrol module 106 to theapplicator 102.FIG. 3 is a cross-sectional view of theconnector 104 taken along line 3-3 ofFIG. 1 and shows theconnector 104 including amain body 179, a supply fluid line orlumen 180 a (“supply fluid line 180 a”), and a return fluid line orlumen 180 b (“returnfluid line 180 b”). Themain body 179 may be configured (via one or more adjustable joints) to “set” in place for the treatment of the subject 101. The supply and returnfluid lines elements 129 ofFIG. 2 or other components. In one embodiment, eachfluid line main body 179. - The
connector 104 can also include one or moreelectrical lines 112 for providing power to theapplicator 102 and one ormore control lines 116 for providing communication between the control module 106 (FIG. 1 ) and the applicator 102 (FIGS. 1 and 2 ). Theelectrical lines 112 can provide power to the thermoelectric elements (e.g.,thermoelectric elements 127 ofFIG. 2 ), sensors, and so forth. To provide suction, theconnector 104 can include one or more vacuum lines 125. In various embodiments, theconnector 104 can include a bundle of fluid conduits, a bundle of power lines, wired connections, vacuum lines, and other bundled and/or unbundled components selected to provide ergonomic comfort, minimize unwanted motion (and thus potential inefficient removal of heat from the subject), and/or to provide an aesthetic appearance to thetreatment system 100. - The
control module 106 can include a fluid system 105 (illustrated in phantom line), a power supply 110 (illustrated in phantom line), and acontroller 114 carried by ahousing 124 withwheels 126. Thefluid system 105 can include a fluid chamber and a refrigeration unit, a cooling tower, a thermoelectric chiller, heaters, or any other device capable of controlling the temperature of coolant in the fluid chamber. The coolant can be continuously or intermittently delivered to theapplicator 102 via thesupply fluid line 180 a (FIG. 3 ) and can circulate through theapplicator 102 to absorb heat. The coolant, which has absorbed heat, can flow from theapplicator 102 back to thecontrol module 106 via thereturn fluid line 180 b (FIG. 3 ). For warming periods, thecontrol module 106 can heat the coolant that is circulated through theapplicator 102. Alternatively, a municipal water supply (e.g., tap water) can be used in place of or in conjunction with thecontrol module 106. - A
pressurization device 123 can provide suction to theapplicator 102 via the vacuum line 125 (FIG. 3 ) and can include one or more vacuum sources (e.g., pumps). Air pressure can be controlled by a regulator located between thepressurization device 123 and theapplicator 102. Thecontrol module 106 can control the vacuum level to, for example, install the liner assembly and/or draw tissue into theapplicator 102 while maintaining a desired level of comfort. If the vacuum level is too low, a liner assembly, tissue, etc. may not be drawn adequately (or at all) into and/or held within theapplicator 102. If the vacuum level is too high when preparing the applicator, liner assembly can break (e.g., rupture, tear, etc.). If the vacuum level is too high during treatment, the patient can experience discomfort, bruising, or other complications. According to certain embodiments, approximately 0.5 inch Hg, 1 inch Hg, 2 inches Hg, 3 inches Hg, 5 inches Hg, 7 inches Hg, 8 inches Hg, 10 inches Hg, or 12 inches Hg vacuum is applied draw or hold theliner assembly 117, tissue, etc. Other vacuum levels can be selected based on the characteristics of the tissue, desired level of comfort, and vacuum leakage rates. Vacuum leak rates of theapplicator 102 can be equal to or less than about 0.2, 0.5 LPM, 1 LPM, or 2 LPM at the pressure levels disclosed herein. For example, the vacuum leak rate can be equal to or less than about 0.2 LPM at 8 inches Hg, 0.5 LPM at 8 inches Hg, 1 LPM at 8 inches Hg, or 2 LPM at 8 inches Hg. The configuration of thepressurization device 123 and theapplicator 102 can be selected based on the desired vacuum levels, leakage rates, and other operating parameters. - The
power supply 110 can provide a direct current voltage for powering electrical elements of theapplicator 102 via the line 112 (FIG. 3 ). The electrical elements can be thermal devices, sensors, actuators, controllers (e.g., a controller integrated into the applicator 102), or the like. An operator can use an input/output device in the form of a screen 118 (“input/output device 118”) of thecontroller 114 to control operation of thetreatment system 100, and the input/output device 118 can display the state of operation of thetreatment system 100 and/or progress of a treatment protocol. In some embodiments, thecontroller 114 can exchange data with theapplicator 102 via the line (e.g., link 116 ofFIG. 3 ), a wireless communication link, or an optical communication link and can monitor and adjust treatment based on, without limitation, one or more treatment profiles and/or patient-specific treatment plans, such as those described, for example, in commonly assigned U.S. Pat. No. 8,275,442. Thecontroller 114 can contain instructions to perform the treatment profiles and/or patient-specific treatment plans, which can include one or more segments, and each segment can include temperature profiles, vacuum levels, and/or specified durations (e.g., 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, 2 hours, etc.). Additionally, if thetreatment system 100 includes multiple applicators, a treatment profile can include specific profiles for each applicator to concurrently or sequentially treat multiple treatment sites, including, but not limited to, sites along the subject's torso, abdomen, legs, buttock, legs, face and/or neck (e.g., submental sites, submandibular sites, etc.), knees, back, arms, ankle region, or other treatment sites. In some embodiments, thecontroller 114 can be incorporated into theapplicator 102 or another component of thetreatment system 100. -
FIG. 4 is an isometric view of anapplicator 102 ready to treat a subject.FIG. 5 is an exploded isometric view of theapplicator 102 ofFIG. 4 with theliner assembly 117 in a generally flat configuration. Thebase unit 103 includeslatches head 92 to thebase unit 103. When thebase unit 103 is in a locked configuration, theliner assembly 117 can be securely held between thecontoured head 92 and thebase unit 103. Thebase unit 103,line assembly 117, and contouredhead 92 can sealing engage one another. Various embodiments of theapplicator 102 are discussed in connection withFIGS. 6-17F . -
FIG. 6 is a top view of thebase unit 103 with thecup 95 capable of cooling from all directions to uniformly cool targeted tissue. The temperature-controlled heat-exchanging surface 161 (“surface 161”) can be a smooth contoured surface that extends continuously along at least most of thecavity 91. When tissue is drawn against thesurface 161, the tissue can be slightly stretched to reduce the thickness of the skin to increase heat transfer between targeted tissue and thesurface 161. Thecup 95 can comprise one or more thermally conductive materials, including, without limitation, metal (e.g., aluminum, stainless steel, pure copper, copper alloys, etc.) or other rigid or flexible high heat transfer materials, such as thermally conductive plastics. In some embodiments, the thermally conductive material of thecup 95 at room temperature has a thermal conductivity equal to or greater than about 25 W/(mK), 50 W/(mK), 100 W/(mK), 200 W/(mK), 300 W/(mK), 350 W/(mK), and ranges encompassing such thermal conductivities. Thecup 95 can have a multi-piece construction with various pieces made of materials selected to provide different amounts of heat flow at different locations. In other embodiments, thecup 95 has a unitary construction and is made of a single material, such as metal. - The
cup 95 can includesidewalls sidewalls cavity 91 with tissue. A shown inFIG. 7 , the bottom 262 can define a curved longitudinal profile shape in a longitudinal direction (e.g., a direction parallel to theaxis 264 inFIG. 6 ), and the bottom of thecavity 91 can define a curved transverse profile shape in a transverse direction, as shown inFIG. 2 . Tissue-receiving cavities disclosed herein can have substantially U-shaped cross sections (seecavity 91 cross section shown inFIG. 2 ), V-shaped cross sections, or partially circular/elliptical cross-sections, as well as or other cross sections suitable for receiving tissue. Thus, the thermal properties, shape, and/or configuration of thecup 95 can be selected based on, for example, target treatment temperatures and/or volume of the targeted tissue. - The
cavity 91 can have a substantially uniform depth along most of longitudinal axis (e.g.,longitudinal axis 264 ofFIG. 6 ). Embodiments of thebase unit 103 for treating large volumes of tissue (e.g., adipose tissue along the abdomen, hips, buttock, etc.) can have a maximum depth 266 (FIG. 7 ) equal to or less than about 2 cm, 5 cm, 10 cm, 15 cm, or 20 cm, for example. Embodiments of the base unit 203 for treating small volumes (e.g., a small volume of submental tissue) can have amaximum depth 266 equal to or less than about 0.5 cm, 2 cm, 2.5 cm, 3 cm, or 5 cm, for example. The maximum depth of thecup cavity 91 can be selected based on, for example, the volume of targeted tissue, characteristics of the targeted tissue, and/or desired level of patient comfort. - Referring again to
FIG. 6 , thecup 95 can include one or more vacuum ports in fluid communication with thecavity 91. Vacuum ports can be positioned along the sidewalls 260, bottom 262, or other suitable location along thecup 95. In some embodiments, an elongated vacuum port 122 (e.g., a slot vacuum port) is positioned near or at the bottom of thecavity 91 to comfortably draw tissue into thermal contact with thecup bottom 262, as well as the sidewalls 260. The number and locations of the vacuum ports can be selected based on, for example, considerations of patient comfort, desired vacuum levels, and/or other treatment parameters. -
Sensors 268 can be temperature sensors, such as thermistors, positioned to detect temperature changes associated with warm tissue being drawn into and/or located in thecup 95. A control module (e.g.,control module 106 ofFIG. 1 ) can interpret the detected temperature increase associated with skin contact and can monitor, for example, the depth of tissue draw, tissue, freezing, thawing, or the like. In some embodiments, thesensors 268 measure heat flux and/or pressure (e.g., contact pressure) with the skin of the patient and can be positioned along the sidewalls 260, bottom 262, or other suitable locations. In yet further embodiments, thesensors 268 can be tissue impedance sensors, contact sensors, or other sensors used to determine the presence of tissue and/or whether tissue has been adequately drawn into the applicator so as to completely fill thecavity 91 to achieve a suitable level of thermal contact, limit or reduce voids or gaps, and/or hold tissue while limiting or reducing, for example, pooling of blood, discomfort, and so forth. - Sensor feedback can be collected in real-time and used in concert with treatment administration to efficaciously target specific tissue. The sensor measurements can also indicate other changes or anomalies that can occur during treatment administration. For example, an increase in temperature detected by the
sensors 268 can indicate either a freezing event at the skin or movement of theapplicator 102. An operator can inspect the subject's skin and/orapplicator 102 in response to a detected increase in temperature. Methods and systems for collection of feedback data and monitoring of temperature measurements are described in commonly assigned U.S. Pat. No. 8,285,390. -
FIG. 7 is a cross-sectional view of thebase unit 103 taken along the line 7-7 ofFIG. 6 in accordance with one embodiment. As discussed in connection withFIG. 2 , the sides of thecup 95 can be cooled.FIG. 7 shows an embodiment with coolingunits 220 mounted directly to or incorporated into thecup 95. The coolingunits 220 can include one or morethermal devices 225, fluid cooleddevices 230, andconnection assemblies 240. Thethermal devices 225 can include, without limitation, one or more thermoelectric elements (e.g., Peltier-type elements), fluid-cooled elements, heat-exchanging units, or combinations thereof. In some embodiments, theapplicator 102 includes only fluid-cooled elements or only non-fluid cooled thermoelectric elements. Theconnection assemblies 240 can include circuitry, a circuit board, fittings (e.g., inlet ports, outlet ports, etc.), or the like and can be connected tolines lines devices 230. Other configurations and components of theapplicator 102 can be selected to achieve suitable power consumption and cooling/heating capability. - The
base unit 103 can also include an integrated controller with an input/output device 271 (e.g., a U/I touchpad) used by an operator to control operation theapplicator 102. The input/output device 271 can include buttons, switches, screens, or the like and display information. The displayed information can include treatment plan information, sensor readings (e.g., skin temperatures, cup temperatures, etc.), vacuum level, and so forth. -
FIGS. 8, 9, and 10 are an isometric view, a side view, and a top view of the contouredhead 92. Thehead 92 can include a mounting body orframe 150 and acontoured mouth 152. The mountingbody 150 is configured to surround an entrance of the tissue-receiving cavity (e.g., cavity inFIG. 91 ) and defines anopening 160 with a shape complementary to the underlying tissue-receiving cavity. The mountingbody 150 can include one or more alignment features 162 configured to engage corresponding alignment features (e.g., alignment features 164 inFIG. 5 ) along thebase unit 103. The alignment features 162 can be, for example, pins, apertures, recesses, dimples, magnets, ferrous elements (e.g., elements comprising ferrous material), and the alignment features 164 (FIG. 5 ) can be openings, protrusions, pins, and magnets. The number, types, and positions of the alignment features can be selected to achieve the desired positioning of thehead 92 to limit or minimize offset edges on, for example, the inside of thecup 95. Multiple alignment features can cooperate to ensure that the applicator can withstand pressure and applied torques when applied to the subject. In various embodiments, contoured heads can be attached to thebase unit 103 and/orliner assembly 117 via pins, clamps, magnets, screws, or other coupling means. Coupling features of thehead 92 can extend through or into the liner assembly to inhibit or limit movement of the liner assembly with respect to, for example, thebase unit 103 and/or the contouredhead 95. In other embodiments, coupling features can couple the contouredhead 92 directly to the base unit. - The
mouth 152 can include acontoured lip 270 and abody 272. Thelip 270 can define anentrance 274 and can be configured to sealingly engage, for example, the subject's skin. Thelip 270 can have a rounded or curved cross-sectional shape for forming airtight seals with the subject's skin and can be made, in whole or in part, of silicon, rubber, soft plastic, or other suitable highly compliant materials. The mechanical properties, thermal properties, shape, and/or dimensions of the contouredlip 270 can be selected based on, for example, whether the contouredlip 270 contacts the subject's skin, liner assembly, a cryoprotectant gel pad, or the like. Thebody 272 is coupled to theframe 150 and can comprise a compliant material to allow thecontoured mouth 252 expand or contract. When a vacuum is initially drawn into themouth 252, thebody 272 can deform inwardly due to the vacuum. As a tissue is pulled through themouth 252 and toward thecup 95, thebody 272 can deflect outwardly. - The
frame 150 can be made, in whole or in part, of metal, plastic, rubber, combinations thereof, or the like. In some embodiments, theframe 150 comprises plastic and metal stiffeners (e.g., a steel rim) and is shaped to overlie a mounting region of the cup. -
FIG. 11 is an exploded isometric view of thehead 92 in accordance with one embodiment. Thehead 92 can include one ormore sensing assemblies treatment system 100, or other component, and/or to any entity having a communication link with the base unit, treatment system or other component. (Thesensing assembly 300 a is shown assembled, and thesensing assembly 300 b is shown exploded.) Based on output from the sensing assemblies 300, thesystem 100 can determine, for example, the presence and/or type of contoured head. - Magnetic sensing can provide accurate detection without problems associated with mechanical sensors malfunctioning, even when used with cryotherapy gels (e.g., cryoprotectant gels, temperature-dependent substances, etc.). Each sensing assembly 300 can include a
cap 302 and amagnetic element 304. When thecap 302 is installed, its orientation with respect to theframe 150 can indicate information about thehead 92. Themagnetic element 304 can be sensed by thebase unit 103 to obtain information about the presence of thehead 92, position of thehead 92, information about the head 92 (e.g., type of head) and so forth. Information about the type of head being used can be communicated by thetreatment system 100 to its manufacturer so the manufacturer can track usage of various heads and track any failures or treatment malfunctions or treatment parameters and treatment results associated with any head to better track and improve product performance. Once the contouredhead 92 is installed, one or more sensors, detectors, readers of the base unit can determine the position of themagnetic element 304, which can correspond and communicate the type of head being used and optionally other information associated with or regarding the head being used. In various embodiments, thehead 92 can include, without limitation, labels, barcodes, tags (e.g., radio frequency identification tags), or other devices capable of being read by, for example, a label reader, a barcode reader, communication device (e.g., sensing assemblies, transmitters, tags, etc.), or other component of theapplicator 102. -
FIG. 12 is a side view of the contouredhead 92 ready to be installed on a portion of thebase unit 103.FIG. 13 is a side view of thebase unit 103 in an unlocked configuration after thehead 92 andliner assembly 117 have been placed on thebase unit 103.FIG. 14 is a side view of thebase unit 103 in a locked configuration. Referring now toFIG. 12 , thebase unit 103 has rotatable latches 140 a, 140 b positioned to allow installation of thehead 92 andliner assembly 117. Thelatches latches - Referring now to
FIG. 13 , thelatches frame 150 of thehead 92 toward thebase unit 103 as thelatches FIG. 14 shows the latches 310 a, 310 b in locked positions. Thelatches head 92 to establish sealing (e.g., hermetic sealing) between mated components. To release thehead 92 andliner assembly 117, thelatches - During a treatment session, contoured heads, line assemblies, and other components can be quickly replaced any number of times. Other types of heads, contours, and engagement features can be attached to the
base unit 103. For example, contour elements disclosed in U.S. Publication 2010/0280582 can be used with thebase unit 103, which may have magnets or other alignment features and can provide desired sealing, including generally air-tight seal cincturing. U.S. Publication 2010/0280582 is incorporated by reference in its entirety. -
FIG. 15 is an exploded isometric view of theliner assembly 117 in accordance with one embodiment of the technology.FIG. 16 is a bottom view of theliner assembly 117. Referring now toFIG. 15 , theliner assembly 117 can include theliner 119, sealing member orgasket 320, arelease liner 322, and acarrier 340. Theliner 119 can be a flexible sheet or film made, in whole or in part, of urethane, nylon, rubber, silicon, Tegaderm™, or the like and can include tabs 182 (one identified). In some embodiments, theliner 119 is a transparent sheet that provides viewing of the underlying cup. To maintain normal skin function, theliner 119 can be air permeable to allow air to reach the skin while allowing moisture (e.g. moisture vapor) to escape.Such liner 119 can optionally be impermeable to substances (e.g., cryoprotectant gels, thermal coupling gels, etc.) used during therapy to keep the applied substances from clogging vacuum lines. - The
liner 119 has a patient-contact surface 350 (FIG. 15 ) suitable for contacting the subject's skin and an opposing cup-contact surface 352 (FIG. 16 ). The cup-contact surface 352 can be an adhesive surface comprising, in whole or in part, acrylic adhesive, pressure-sensitive adhesive, butyl rubber, silicone rubber, and/or other adhesives. In multilayer embodiments, theliner 119 comprises a flexible polymer layer and an adhesive layer formed by applying adhesive via spraying, dipping process, or other suitable techniques. The number and compositions of the layers can be selected based on the desired characteristics of theliner 119. In other embodiments, theliner 119 can be a monolayer sheet that is adhered to the cup by an adhesive which has been applied to the cup. - Referring again to
FIG. 15 , the sealingmember 320 can includecompliant members intermediate layer 334. Thecompliant members intermediate layer 334 can couple together thecompliant members member 320 can be a monolayer gasket made, in whole or in part, of urethane, rubber, silicon, or combinations thereof suitable for forming seals (e.g., air-tight seals or other desired seals). In some embodiments, the sealingmember 320 can include, without limitation, one or more stiffeners to help maintain the shape of the liner assembly during, for example, installation. For example, theintermediate layer 334 can be a rigid metal or plastic layer. In some embodiments, the sealingmember 320 can be relatively stiff compared to theliner 119 to, for example, help install theliner 119. Theframe 150 can be relative stiff compared to thecompliant members member 320 is sufficiently compliant for forming vacuum seals maintained during and/or after tissue draw. -
FIGS. 17A-17F show stages of a method for preparing an applicator in accordance with an embodiment of the disclosed technology.FIG. 17A is a cross-sectional schematic view of theliner assembly 117 ready to be installed. An adhesive 370 couples theliner 119 and thegasket 320. Therelease liner 322 can be removed from theliner 119 to expose the adhesive cup-contact surface 352 (“adhesive surface 352”). -
FIG. 17B shows therelease liner 322 spaced apart from theadhesive surface 352. Therelease liner 322 can be discarded, and theliner assembly 117 can be placed on thebase unit 103. -
FIG. 17C shows thegasket 320 positioned in a receivingfeature 380 in thebase unit 103. The receivingfeature 380 can be a trench, a recess, a channel, or other feature suitable for receiving at least a portion of theliner assembly 117. Other arrangements can be used to position thegasket 320 with respect to thebase unit 103, as well as limiting movement of theliner assembly 117 with respect to thebase unit 103 during use. -
FIG. 17D shows a portion of theframe 150 ready to be placed on theliner assembly 117, illustrated schematically. Theframe 150 can include anengagement member 390 with aprotrusion 392 that cooperates withridges protrusion 392 can have a curved or semi-circular cross section, and the ridges 398 can have V-shaped cross sections, U-shaped cross sections, or other suitable configuration. Theframe 150 can be moved downwardly, as indicated byarrow 396, to compress asection 397 of thegasket 320 located betweenridges feature 380. Other arrangements can be used to achieve the desired sealing capability. -
FIG. 17E shows the contouredhead 92 andliner assembly 117 installed on thebase unit 103 such that theliner 119 extends across a tissue-receivingcavity 91 to form a closed chamber. As discussed in connection withFIGS. 12-14 , thebase unit 103 can be operated to clamp onto theliner assembly 117. Accordingly, thebase unit 103 can pull thehead 92 against theliner assembly 117 to form and maintain a seal 401 (e.g., a hermetic seal) between, for example, theliner assembly 117 and thebase unit 103, aseal 403 between theliner assembly 117 and the contouredhead 92, aseal 405 between thehead 92 and thebase unit 103, and/or additional seals. - The
base unit 103 can suck theliner 119 into the cavity 91 (indicated by arrow 407) and then against theconductive surface 161. Because theliner 119 is positioned directly over thecavity 91, it deforms less than liners or sleeved applied to the outside of applicators. As shown inFIGS. 17E and 17F , theliner 119 does not need to contact and conform to the lip of the mouth, so thatliner assembly 117 can be used independent of the configuration of contoured head. -
FIG. 17F shows theliner 119 after theadhesive surface 352 has been pulled against theconductive surface 161. Thehead 92 holds the periphery of thelinear assembly 117 to keep theliner 119 aligned with thecup 95. A user can manually press theliner 119 against thesurface 161 to remove trapped air, close gaps or voids, or otherwise apply theliner 119. Various techniques can be used to line the temperature-controlledcup 95 with theliner 119. - The
liner 119 can overlie most or substantially the entire thermallyconductive surface 161. In some procedures, theliner 119 covers all of the exposed surfaces of thecup 95 to prevent any contact between the patient and thecup 95. Theliner 119 can be perforated to establish fluid communication between thebase unit 103 and thetissue cavity 91. For example, one or more holes (e.g., opening 122 shown inFIG. 2 ) can be formed in theliner 119 using an instrument. In other embodiments, pre-formed portions of theliner 119 can be removed to form openings. - The
liner 119 can remain securely coupled to thecup 95 throughout one or more treatment protocols, which may include repeatedly drawing tissue into the applicator, applying the applicator to multiple treatment sites, etc. Liner assemblies can include films, sheets, sleeves, or other components suitable for defining an interface surface to prevent direct contact between surfaces of the applicator and the subject's skin to reduce the likelihood of cross-contamination between patients, minimize cleaning requirements, etc. Exemplary protective liners can be sheets, sleeves, or other components constructed from latex, rubber, nylon, Kevlar®, or other substantially impermeable or semi-permeable material. For example, theliner 119 can be a latex sheet coated with a pressure-sensitive adhesive. Further details regarding a patient protection device may be found in U.S. Patent Publication No. 2008/0077201. In some procedures, a liner or protective sleeve may be positioned between an absorbent and the applicator to shield the applicator and to provide a sanitary barrier that is, in some embodiments, inexpensive and thus disposable. After installing theliner assembly 117, gel traps, filters, valves, and other components can be installed to keep applied substances (e.g., coupling gels, cryoprotectants, etc.) from being sucked into and/or through thebase unit 103. In some embodiments, theliner 119 is configured to allow air to pass when drawing a vacuum and to restrict passage of a gel. -
FIGS. 18-21 show applicators in accordance with various embodiments of the present technology. The description of the applicators in connection withFIGS. 1-17F applies equally to the applicators ofFIGS. 18-21 unless indicated otherwise. For example, liner assemblies discussed in connection withFIG. 1-17F can be used with the applicators ofFIG. 18-21 . In some treatments, the liner assemblies can be eliminated by, for example, incorporating sealing members (e.g., gaskets) into contoured heads or using separate sealing members. -
FIG. 18 is an exploded isometric view of anapplicator 450 with abase unit 452 and acontoured head 454.FIG. 19 shows the contouredhead 454 installed on thebase unit 452. Theapplicator 450 can be used with or without a liner assembly. Thehead 454 can include a mounting base orframe 460 and acontoured mouth 462. Thecontoured mouth 462 can have a generally rounded rectangular shape (as viewed from above) generally similar to the shape of anentrance 470 of a tissue-receivingcavity 472. Thecontoured mouth 462 has a generally uniform height for application to a generally flat treatment site (e.g., along a subject's back, flat abdomen section, etc.). In other embodiments, thecontoured mouth 462 has a lip that is curved with respect to the length of the lip or a varying height for application to non-planar treatment sites. -
FIG. 20 is isometric view of anapplicator 500 with acontoured head 502 for treating a highly contoured treatment site. The contouredhead 502 has aflexible mouth 510 withcurved lips 512 suitable for circumferentially surrounding a patient's thigh, hip, etc. The curvature of theflexible mouth 510 can be selected to closely match the curvature of the treatment site. For example,FIG. 21 is an exploded isometric view of anapplicator 560 with acontoured head 564 and abase unit 566. The contouredhead 564 can be applied to a treatment site having a curvature less than the curvature at treatment sites suitable for the contouredhead 502 ofFIG. 20 . - The geometries of the contoured heads can be selected to conform to a contour of a cutaneous layer. The sides, waistline, and other features of the contoured heads can be selected to facilitate conformation of heads to the contours of individual target areas. For example, the shape of a typical human torso may vary between having a relative large radius of curvature, e.g., on the stomach or back, and having a relatively small radius of curvature, e.g., on the abdominal sides. Moreover, the size of a head having an approximately consistent curvature may vary. Accordingly, an advantage of the present disclosure is the capability to provide flexible contour regions, lips, non-planar frames, etc. with various geometries, e.g., shapes and sizes, to suitably conform to the cutaneous contours of individual target areas. The heads may be fitted to individual lipid-rich cell deposits to achieve an approximately air-tight seal, achieve the vacuum pressure for drawing tissue into an interior cavity for treatment, maintain suction to hold the tissue, massage tissue (e.g., by altering pressure levels), and use little or no force to maintain contact between an applicator and a patient.
- Attaching heads to base units creates specific contours to approximately fit tissue to be treated. The heads can be attached and detached in a plurality of combinations to achieve a desired contour for a treatment. Accordingly, a single base unit and/or umbilical cable may be combined with a set of interchangeable heads to form a wide variety of contours for treating different lipid-rich cell deposits in a cost effective manner. Further, a practitioner performing the treatment can demonstrate their expertise to the patient by tailoring the applicator contour to the specific body parts being treated. In this manner, the patient understands that their treatment is customized to their body for better comfort and for better treatment results.
-
FIG. 22 is an exploded isometric view of aliner assembly 600 in accordance with embodiments of the present technology. The description of the linear assemblies discussed in connection withFIGS. 1-17F applies equally to thelinear assembly 600 unless indicated otherwise. Theliner assembly 600 can include a monolayer ormultilayer liner 602 and agasket 604. In some monolayer embodiments, an adhesive (e.g., flowable adhesive, adhesive sheet, etc.) can be applied to the conductive cup. Theliner assembly 600 can then be installed on the base unit. In other embodiments, adhesive can be applied directly to theliner 602 before, during, and/or after installation of theliner assembly 600. Thegasket 604 can be welded (e.g., sonically welded), bonded, adhered, or otherwise coupled to theliner 602. -
FIG. 23 is an isometric view of a sealingmember 620 that can include agasket 622, anadhesive layer 624, and agasket 626. Thegasket 622 can be a mono or multilayer structure permanently or temporarily coupled to thegasket 626 via theadhesive layer 624. The sealingmember 620 can be used to provide sealing capability. In some embodiments, a separate liner or patient protection device can with an application having the sealingmember 620. The liners disclosed herein can be eliminated to provide sealing members (or gaskets) capable of forming seals between various components. - Embodiments according to the present disclosure may provide one or more additional advantages. For example, the size, shapes, and other physical properties of the base units, liner assemblies, sealing members, gaskets, contoured heads, and components of the applicators may be selected to accommodate a heat removal sources (e.g., thermal devices, cooling devices, etc.) that may be used/reused with individual applicators. Modifications to flexible portions of individual applicators may enable the use of a standard heat removal source and accommodate different contours of individual cutaneous layers. In turn, this may make it possible to reuse base units, sealing members, liners, and/or contoured heads for different treatments. The rigid portions of the applicators (e.g., edge or mounting region of base unit), which are relatively stiff with respect to the flexible portions, provide an attachment point for heat removal sources that may resist bowing into the interior cavity and possibly separating from the heat removal sources when a vacuum (including a partial vacuum) is drawn in the applicators. Disposing temperature sensors inside the applicators, along temperature-controlled surfaces, within contoured heads, along liner assemblies, etc. may more accurately measure the temperature of skin surface, subcutaneous tissue, and so forth. The flexible portions of the applicator (e.g., flexible mouth) also allows some compliance to different subject body contours or geometries.
-
FIG. 24 is a flowchart of amethod 700 for treating a subject in accordance with embodiments of the disclosed technology. Generally, an applicator can be configured by installing a head, sealing member, or other components on a base unit. The applicator can then be applied to the treatment site to cool/heat targeted tissue. The sealing member can be a standalone component or part of a liner assembly. Details of themethod 700 are discussed in connection the embodiments shown inFIGS. 1-17F . - At
block 702, the contouredhead 92 and/orliner assembly 117 can be installed. As discussed in connection withFIGS. 12-14 , theliner assembly 117 can be clamped between theframe 150 andbase unit 103. Thebase unit 103 can obtain information about the contouredhead 92 to determine, for example, treatment protocols. For example, thebase unit 103 can obtain information via thesensors FIG. 11 ) functioning as communication devices that communicate information. The information can be provided to the manufacturer so that the manufacturer can track usage of various heads and track any failures or treatment malfunctions or treatment parameters and treatment results associated with any head to better track and improve product performance. - At
block 704, theliner 119 can be applied to theconductive surface 161 of thecup 95 as discussed in connection withFIGS. 17A-17F . As shown inFIG. 17E , theliner 119 can extend across the entrance of the tissue-receivingcavity 91 to from a closed chamber. A vacuum can be drawn in closed chamber to pull theliner 119 against thecup 95. - At
block 706, theliner 119 can be adhered to theconductive surface 161 and perforated to allow a vacuum to be drawn in the tissue-receivingcavity 91. Once theliner 119 overlays thecup 95, theapplicator 102 can be applied to the treatment site. - At
block 708, themouth 152 can be held against the subject while the pressurization device 123 (FIG. 1 ) operates to urge tissue into theapplicator 102. The mouth 152 (FIG. 8 ) andsidewalls FIG. 6 ) can be splayed out to conformably suck tissue into the tissue-receivingcavity 91. The pressure level can be selected to partially or completely fill the tissue-receivingcavity 91 with tissue. If the vacuum level is too low, tissue will not be drawn adequately into thecavity 91. The vacuum level can be increase to reduce or eliminate gaps between the skin surface and theliner 119. If the pressure level is too high, undesirable discomfort to the patient and/or tissue damage could occur. The vacuum level can be selected to comfortably pull the tissue into contact with the desired area of theapplicator 102, and the skin and underlying tissue can be pulled away from the subject's body which can assist in cooling underlying tissue by, e.g., lengthening the distance between targeted subcutaneous fat and the muscle tissue. - In some treatments, tissue can be drawn into the tissue-receiving
cavity 91 such that substantially all of the skin surface within thecavity 91 overlies theconductive surface 161. For example, 90%, 95%, 95%, or more of the surface area of the skin located in thecavity 91 can overlie theconductive surface 161. The size of the vacuum ports can be increased or decreased to decrease or increase the area of theconductive surface 161. - After a sufficient amount of tissue fills most or all of the
cavity 91, the tissue is cooled/heated. The pressure level (e.g., vacuum level) can be controlled to comfortably hold the tissue within theapplicator 102. During cooling/heating, the tissue can fill substantially theentire cavity 91. In various embodiments, the tissue can occupy at least 70%, 80%, 90%, or 95% of the volume of thecavity 91 to avoid or minimize air pockets that may impair heat transfer. Blood flow through the dermis and subcutaneous layer of the tissue is a heat source that counteracts the cooling of the targeted tissue (e.g., sub-dermal fat). If the blood flow is not reduced, cooling the subcutaneous tissues would require not only removing the specific heat of the tissues but also that of the blood circulating through the tissues. Thus, reducing or eliminating blood flow through the tissue by increasing the vacuum can improve the efficiency of cooling and avoid excessive heat loss from the dermis and epidermis. - The
conductive surface 161 can thermally contact an area of the subject's skin equal to or less than about 20 cm2, 40 cm2, 80 cm2, 100 cm2, 140 cm2, 160 cm2, 180 cm2, 200 cm2, 300 cm2, or other suitable area. For example, the temperature-controlled surface area of the coolingcup 95 can be, for example, equal to or less than 20 cm2, 40 cm2, 80 cm2, 100 cm2, 140 cm2, 160 cm2, 180 cm2, 200 cm2, 300 cm2, or another suitable area. The temperature-controlledconductive surface 161 can be cooled to a temperature equal to or less than a selected temperature (e.g., 5° C., 0° C., −2° C., −5° C., −7° C., −10° C., −15° C., −20° C., −25° C., etc.) to cool most of the skin surface of the retained tissue. In one embodiment, most of a heat-exchangingsurface 161 can be cooled to a temperature equal to or less than about 0° C., −2° C. −5° C., −10° C., or −15° C. - At
block 710, theapplicator 102 can hold the tissue in thermal contact with theliner assembly 117 andcup 95. Heat from the tissue can be conductively transferred through theliner assembly 117 to the cooledsurface 161 such that heat flows across substantially all of the applicator/skin interface. Thecup 95 can be designed for rapid cooling and/or heating to, for example, reduce treatment times and/or produce generally flat temperature profiles over the heat-exchangingsurface 161 or a portion thereof. Because the subject's body heat can be rapidly conducted to thecup 95, the cooled skin can be kept at a generally flat temperature profile (e.g., ±3° C. of a target temperature) even though regions of the skin, or underlying tissue, may experience different amounts of blood flow. Because non-lipid-rich cells usually can withstand colder temperatures better than lipid-rich cells, the subcutaneous lipid-rich cells can be injured selectively while maintaining the non-lipid-rich cells (e.g., non-lipid-rich cells in the dermis and epidermis). Accordingly, subcutaneous lipid-rich cells in a subcutaneous layer can be cooled an amount sufficient to be biologically effective in affecting (e.g., damaging and/or reducing) such lipid-rich cells without affecting non-target cells to the same or greater extent. - In contrast to invasive procedures in which coolant is injected directly into targeted tissue, each of the
sidewalls FIG. 7 ) can conductively cool tissue to produce a desired temperature in target tissue without bruising, pain, or other problems caused by injections and perfusion of injected fluid. For example, perfusion of injected fluid can affect the thermal characteristics of the treatment site and result in undesired temperature profiles. As such, the non-invasive conductive cooling provided by theapplicator 102 can be more accurate than invasive procedures that rely on injecting fluids. Targeted tissue can be cooled from about −20° C. to about 10° C., from about 0° C. to about 20° C., from about −15° C. to about 5° C., from about −5° C. to about 15° C., or from about −10° C. to about 0° C. In one embodiment,liner 117 can be kept at a temperature less than about 0° C. to extract heat from subcutaneous lipid-rich cells such that those cells are selectively reduced or damaged. - Although the illustrated
applicator 102 ofFIG. 1 is positioned along the hips, applicators can also be positioned to treat tissue at the thighs, buttock, abdomen, submandibular region, neck region, or other target regions. Theapplicator 102 can reduce localized adipose tissue along the abdomen, hips, submental region, or the like. In procedures for reducing a double chin, theapplicator 102 can sized and then aligned with and placed generally at the submental region (i.e., the submental triangle). It will be appreciated that theapplicator 102 can be placed at other locations along the patient's body and the orientation of theapplicator 102 can be selected to facilitate a relatively close fit. - Other elements, materials, components (e.g., gel pads, absorbents, etc.) can be located between the skin and the applicators. U.S. Pub. No. 2007/0255362 and U.S. Patent Publication No. 2008/0077201 and U.S. application Ser. No. 14/610,807 disclose components, materials (e.g., coupling gels, cryoprotectants, compositions, etc.), and elements (e.g., coupling devices, liners/protective sleeves, absorbents, etc.) that can be placed between the skin and the applicator.
- The control module 106 (
FIG. 1 ) can automatically perform various acts. For example, upon installation of the head, thecontrol module 106 can automatically select a pressurization level suitable for drawing the liner into the base unit. Once the liner has been applied to the conductive cup, thecontrol module 106 can notify a user to, for example, inspect the liner, apply the applicator, or perform another task. - The control module 106 (
FIG. 1 ) can then command thepressurization device 123 to draw tissue into theapplicator 102. Thecontrol module 106 can notify the operator that theapplicator 102 is ready for treatment based on sensor reading. The operator can inspect theapplicator 102 and can begin treatment using thecontrol module 106. - It will be appreciated that while a region of the body has been cooled or heated to the target temperature, in actuality that region of the body may be close but not equal to the target temperature, e.g., because of the body's natural heating and cooling variations. Thus, although the
applicator 102 may attempt to heat or cool the target tissue to the target temperature or to provide a target heat flux, the sensors 268 (FIG. 6 ) may measure a sufficiently close temperature or heat flux. If the target temperature or heat flux has not been reached, operation of the cooling unit can be adjusted to change the heat flux to maintain the target temperature or “set-point” selectively to affect targeted tissue. When the prescribed segment duration expires, the next treatment profile segment can be performed. - The treatment procedures disclosed herein can also involve use of cryoprotectant between the applicator and skin. The cryoprotectant can be a freezing point temperature depressant that may additionally include a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives. The temperature depressant may include, for example, polypropylene glycol (PPG), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO), or other suitable alcohol compounds. In a particular embodiment, a cryoprotectant may include about 30% polypropylene glycol, about 30% glycerin (a humectant), and about 40% ethanol. In another embodiment, a cryoprotectant may include about 40% propylene glycol, about 0.8% hydroxyethylcellulose (a thickening agent), and about 59.2% water. In a further embodiment, a cryoprotectant may include about 50% polypropylene glycol, about 40% glycerin, and about 10% ethanol. Other cryoprotectants or agents can also be used and can be carried by a cotton pad or other element. U.S. application Ser. No. 14/610,807 is incorporated by reference in its entirety and discloses various compositions that can be used as cryoprotectants.
- It may take a few days to a few weeks, or longer, for the adipocytes to break down and be absorbed. A significant decrease in fat thickness may occur gradually over 1-3 months following treatment. Additional treatments can be performed until a desired result is achieved. For example, one or more treatments can be performed to substantially reduce (e.g., visibly reduce) or eliminate targeted tissue.
-
FIG. 25 is a schematic block diagram illustrating subcomponents of a controller in accordance with an embodiment of the disclosure. The controller can be part of the control module 106 (FIG. 1 ). For example, the controller 790 can be thecontroller 114 ofFIG. 1 or can be incorporated into the applicators or other components disclosed herein. The controller 790 can include acomputing device 800 having aprocessor 801, amemory 802, input/output devices 803, and/or subsystems andother components 804. Thecomputing device 800 can perform any of a wide variety of computing processing, storage, sensing, imaging, and/or other functions. Components of thecomputing device 800 may be housed in a single unit or distributed over multiple, interconnected units (e.g., though a communications network). The components of thecomputing device 800 can accordingly include local and/or remote memory storage devices and any of a wide variety of computer-readable media. - As illustrated in
FIG. 25 , theprocessor 801 can include a plurality offunctional modules 806, such as software modules, for execution by theprocessor 801. The various implementations of source code (i.e., in a conventional programming language) can be stored on a computer-readable storage medium or can be embodied on a transmission medium in a carrier wave. Themodules 806 of the processor can include aninput module 808, adatabase module 810, a process module 812, anoutput module 814, and, optionally, adisplay module 816. - In operation, the
input module 808 accepts anoperator input 819 via the one or more input devices, and communicates the accepted information or selections to other components for further processing. Thedatabase module 810 organizes records, including patient records, treatment data sets, treatment profiles and operating records and other operator activities, and facilitates storing and retrieving of these records to and from a data storage device (e.g.,internal memory 802, an external database, etc.). Any type of database organization can be utilized, including a flat file system, hierarchical database, relational database, distributed database, etc. - In the illustrated example, the process module 812 can generate control variables based on
sensor readings 818 from sensors and/or other data sources, and theoutput module 814 can communicate operator input to external computing devices and control variables to the controller. Thedisplay module 816 can be configured to convert and transmit processing parameters,sensor readings 818, output signals 820, input data, treatment profiles and prescribed operational parameters through one or more connected display devices, such as a display screen 118 (FIG. 1 ), printer, speaker system, etc. - In various embodiments, the
processor 801 can be a standard central processing unit or a secure processor. Secure processors can be special-purpose processors (e.g., reduced instruction set processor) that can withstand sophisticated attacks that attempt to extract data or programming logic. The secure processors may not have debugging pins that enable an external debugger to monitor the secure processor's execution or registers. In other embodiments, the system may employ a secure field programmable gate array, a smartcard, or other secure devices. - The
memory 802 can be standard memory, secure memory, or a combination of both memory types. By employing a secure processor and/or secure memory, the system can ensure that data and instructions are both highly secure and sensitive operations such as decryption are shielded from observation. In various embodiments, thememory 802 can be flash memory, secure serial EEPROM, secure field programmable gate array, or secure application-specific integrated circuit. Thememory 802 can store instructions for causing the applicators to cool/heat tissue, pressurization devices to draw a vacuum, or other acts disclosed herein. In one embodiment, thememory 802 stores instructions executable by the controller 790 for the thermal device to sufficiently cool conductive cups disclosed herein such that submental vacuum applicators non-invasively cool the subcutaneous lipid-rich cells to a desired temperature, such as a temperature less than about 0° C. In some embodiments, thememory 802 can contain liner installation or draw instructions for causing the liner to drawn into a conductive cup, tissue draw instructions for causing the applicator to draw tissue into the applicator, treatment instructions for heating/cooling tissue, tissue release instructions for releasing tissue, and instructions for monitoring treatment. For example, the liner installation or draw instructions can be executed by the controller 790 to command thepressurization device 123 to suck the liner against a conductive surface of the conductive cup. - The input/
output device 118 can include, without limitation, a touchscreen, a keyboard, a mouse, a stylus, a push button, a switch, a potentiometer, a scanner, an audio component such as a microphone, or any other device suitable for accepting user input and can also include one or more video monitor, a medium reader, an audio device such as a speaker, any combination thereof, and any other device or devices suitable for providing user feedback. For example, if an applicator moves an undesirable amount during a treatment session, the input/output device 803 can alert the subject and/or operator via an audible alarm. The input/output device 118 can be a touch screen that functions as both an input device and an output device. The control panel can include visual indicator devices or controls (e.g., indicator lights, numerical displays, etc.) and/or audio indicator devices or controls. The control panel may be a component separate from the input/output device 118 and/or output device 120, may be integrated applicators, may be partially integrated with one or more of the devices, may be in another location, and so on. In alternative embodiments, thecontroller 114 can be contained in, attached to, or integrated with the applicators. Further details with respect to components and/or operation of applicators, control modules (e.g., treatment units), and other components may be found in commonly-assigned U.S. Patent Publication No. 2008/0287839. - The controller 790 can include any processor, Programmable Logic Controller, Distributed Control System, secure processor, and the like. A secure processor can be implemented as an integrated circuit with access-controlled physical interfaces; tamper resistant containment; means of detecting and responding to physical tampering; secure storage; and shielded execution of computer-executable instructions. Some secure processors also provide cryptographic accelerator circuitry. Suitable computing environments and other computing devices and user interfaces are described in commonly assigned U.S. Pat. No. 8,275,442, entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS,” which is incorporated herein in its entirety by reference.
- The treatment systems, applicators, and methods of treatment can be used reduce adipose tissue or treat subcutaneous tissue, acne, hyperhidrosis, wrinkles, structures (e.g., structures in the epidermis, dermis, subcutaneous fat, muscle, nerve tissue, etc.), and so on. Systems, components, and techniques for reducing subcutaneous adipose tissue are disclosed in U.S. Pat. No. 7,367,341 titled “METHODS AND DEVICES FOR SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al., U.S. Patent Publication No. US 2005/0251120 titled “METHODS AND DEVICES FOR DETECTION AND CONTROL OF SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al., and U.S. Patent Publication No. 2007/0255362 titled “CRYOPROTECTANT FOR USE WITH A TREATMENT DEVICE FOR IMPROVED COOLING OF SUBCUTANEOUS LIPID-RICH CELLS,” the disclosures of which are incorporated herein by reference in their entireties. Vacuum applicators can stretch, stress, and/or mechanically alter skin to increase damage and fibrosis in the skin, affect glands, control freeze events (including initiating freeze events), etc. Methods for cooling tissue and related devices and systems in accordance with embodiments of the present invention can at least partially address one or more problems associated with conventional technologies as discussed above and/or other problems whether or not such problems are stated herein.
- Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Use of the word “or” in reference to a list of two or more items covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list. Furthermore, the phrase “at least one of A, B, and C, etc.” is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).
- Any patents, applications and other references, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the described technology can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments. These and other changes can be made in light of the above Detailed Description. While the above description details certain embodiments and describes the best mode contemplated, no matter how detailed, various changes can be made. Implementation details may vary considerably, while still being encompassed by the technology disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the technology should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the technology with which that terminology is associated.
Claims (18)
1-20. (canceled)
21. An apparatus for treating a subject's tissue, comprising:
a base unit including a temperature-controlled cup having a conductive surface defining a tissue-receiving cavity with opposing sides and a bottom;
a head removably coupleable to the base unit, the head including
a contoured mouth defining an opening,
a mounting body configured to be coupled to the base unit to position the opening with respect to an entrance of the tissue-receiving cavity;
a sealing member being positionable between the mounting body of the head and the base unit to create a vacuum seal therebetween; and
a flexible liner having a patient-contact surface and an adhesive cup-contact surface, wherein the adhesive cup-contact surface has adhesive positioned to adhered to the bottom and the opposing sides of the tissue-receiving cavity.
22. The apparatus of claim 21 , further comprising a liner assembly that includes a liner and the sealing member such that wherein the liner is configured to extend across the entrance of the tissue-receiving cavity when the sealing member is positioned between the base unit and the head, and the liner being configured to be drawn into the tissue-receiving cavity.
23. The apparatus of claim 22 , wherein the liner is sufficiently deformable to be drawn against regions of the entire conductive surface when the base unit draws a vacuum in the tissue-receiving cavity.
24. The apparatus of claim 22 , wherein the entire liner is configured to be located within the tissue-receiving cavity when the liner lines the conductive surface.
25. The apparatus of claim 22 , wherein the base unit includes at least one vacuum port in fluid communication with the tissue-receiving cavity and positioned to draw a vacuum in the tissue-receiving cavity to pull the liner against the conductive surface.
26. The apparatus of claim 22 , wherein the liner is perforated, the tissue-receiving cavity being shallow enough to allow the subject's tissue to occupy substantially the entire tissue-receiving cavity when the vacuum is drawn through the perforated liner.
27. The apparatus of claim 22 , further comprising:
a pressurization device in fluid communication with the tissue-receiving cavity via a vacuum port in the base unit; and
a controller programmed to cause the liner to be drawn against the conductive surface and programmed to cause the applicator to hold the tissue in the tissue-receiving cavity using suction provided by the pressurization device while the temperature-controlled cup conductively cools the tissue.
28. The apparatus of claim 21 , wherein the base unit has a locked configuration for clamping the sealing member between the mounting body and the base unit and an unlocked configuration for releasing the sealing member.
29. The apparatus of claim 21 , wherein the sealing member hermetically seals the head to the base unit when the sealing member is clamped between the mounting body and the base unit.
30. The apparatus of claim 21 , further comprising at least one thermal device operable to cool spaced apart sidewalls and a bottom of the temperature-controlled cup to non-invasively cool tissue in the tissue-receiving cavity an amount sufficient to be biologically effective in damaging and/or reducing subcutaneous lipid-rich cells in the tissue.
31. The apparatus of claim 21 , further comprising a communication device in or on the head to communicate to a treatment system what type of head is coupled to the base unit.
32. The apparatus of claim 21 , further comprising a controller programmed to cause a thermal device of the base unit to cool the temperature-controlled cup to non-invasively cool subcutaneous lipid-rich cells to a temperature less than about 0° C., the controller being programmed to control the applicator to cool most of the area of the conductive surface to a temperature less than 0° C.
33. The apparatus of claim 21 , further comprising a vacuum source fluidically coupled to the base unit and operable to draw the tissue to a bottom of the tissue-receiving cavity to bring the tissue into thermal contact with a concave conductive surface at the bottom of the tissue-receiving cavity.
34. A method for treating a subject's tissue, comprising:
installing a head and a sealing member on a base unit of a vacuum-cup applicator such that the sealing member is positioned in a trench of the base unit;
rotating latches to pull opposite ends of the head toward the base unit to compress the sealing member between the head and the base unit; and
drawing a vacuum in the tissue-receiving cavity to draw the tissue against a conductive surface of a temperature-controlled cup of the base unit while the latches pull the head to maintain a vacuum seal between the sealing member and the base unit.
35. The method of claim 34 , wherein a flexible liner assembly extends across an entrance of the tissue-receiving cavity of the vacuum-cup applicator, and the method further comprising:
adhering the liner assembly to the conductive surface, then perforating the liner assembly to establish fluid communication between at least one vacuum port of the vacuum-cup applicator and the tissue-receiving cavity,
drawing the subject's tissue through a contoured mouth of the head, through the tissue-receiving cavity, and into thermal contact with the conductive surface; and
conductively extracting heat from the tissue via the conductive surface to cool the tissue an amount sufficient to be biologically effective in selectively damaging and/or reducing subcutaneous lipid-rich cells.
36. The method of claim 34 , further comprising drawing tissue into the tissue-receiving cavity such that substantially all of the skin surface of the subject's tissue within the tissue-receiving cavity overlays the conductive surface.
37. The method of claim 34 , wherein at least 95% of the surface area of the skin surface in the tissue-receiving cavity overlays the conductive surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/945,789 US20210045912A1 (en) | 2016-02-18 | 2020-07-31 | Cooling cup applicators with contoured heads and liner assemblies |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662297054P | 2016-02-18 | 2016-02-18 | |
US15/435,179 US10765552B2 (en) | 2016-02-18 | 2017-02-16 | Cooling cup applicators with contoured heads and liner assemblies |
US16/945,789 US20210045912A1 (en) | 2016-02-18 | 2020-07-31 | Cooling cup applicators with contoured heads and liner assemblies |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/435,179 Continuation US10765552B2 (en) | 2016-02-18 | 2017-02-16 | Cooling cup applicators with contoured heads and liner assemblies |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210045912A1 true US20210045912A1 (en) | 2021-02-18 |
Family
ID=59630721
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/435,179 Active 2038-06-05 US10765552B2 (en) | 2016-02-18 | 2017-02-16 | Cooling cup applicators with contoured heads and liner assemblies |
US16/945,789 Abandoned US20210045912A1 (en) | 2016-02-18 | 2020-07-31 | Cooling cup applicators with contoured heads and liner assemblies |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/435,179 Active 2038-06-05 US10765552B2 (en) | 2016-02-18 | 2017-02-16 | Cooling cup applicators with contoured heads and liner assemblies |
Country Status (1)
Country | Link |
---|---|
US (2) | US10765552B2 (en) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103948468A (en) | 2006-04-28 | 2014-07-30 | 斯尔替克美学股份有限公司 | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US20080077201A1 (en) | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Cooling devices with flexible sensors |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US20080287839A1 (en) | 2007-05-18 | 2008-11-20 | Juniper Medical, Inc. | Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator |
WO2009026471A1 (en) | 2007-08-21 | 2009-02-26 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
BRPI1014623B1 (en) | 2009-04-30 | 2020-01-07 | Zeltiq Aesthetics, Inc. | SYSTEM FOR TREATING SUBCUTANEOUS CELLS RICH IN LIPIDS IN A TARGET AREA |
US10722395B2 (en) | 2011-01-25 | 2020-07-28 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
DE102012013534B3 (en) | 2012-07-05 | 2013-09-19 | Tobias Sokolowski | Apparatus for repetitive nerve stimulation for the degradation of adipose tissue by means of inductive magnetic fields |
US20150216719A1 (en) | 2014-01-31 | 2015-08-06 | Zeltiq Aesthetics, Inc | Treatment systems and methods for treating cellulite and for providing other treatments |
US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
US11491342B2 (en) | 2015-07-01 | 2022-11-08 | Btl Medical Solutions A.S. | Magnetic stimulation methods and devices for therapeutic treatments |
US10709894B2 (en) | 2015-07-01 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10695576B2 (en) | 2015-07-01 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US20180001107A1 (en) | 2016-07-01 | 2018-01-04 | Btl Holdings Limited | Aesthetic method of biological structure treatment by magnetic field |
US10471269B1 (en) | 2015-07-01 | 2019-11-12 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US11266850B2 (en) | 2015-07-01 | 2022-03-08 | Btl Healthcare Technologies A.S. | High power time varying magnetic field therapy |
US10478633B2 (en) | 2015-07-01 | 2019-11-19 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10695575B1 (en) | 2016-05-10 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10821295B1 (en) | 2015-07-01 | 2020-11-03 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
ES2892598T3 (en) | 2015-10-19 | 2022-02-04 | Zeltiq Aesthetics Inc | Vascular treatment methods to cool vascular structures |
US11253717B2 (en) | 2015-10-29 | 2022-02-22 | Btl Healthcare Technologies A.S. | Aesthetic method of biological structure treatment by magnetic field |
BR112018013919A2 (en) | 2016-01-07 | 2018-12-11 | Zeltiq Aesthetics Inc | temperature dependent adhesion between applicator and skin during tissue cooling |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
US11247039B2 (en) | 2016-05-03 | 2022-02-15 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11464993B2 (en) | 2016-05-03 | 2022-10-11 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US11534619B2 (en) | 2016-05-10 | 2022-12-27 | Btl Medical Solutions A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10709895B2 (en) | 2016-05-10 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10583287B2 (en) | 2016-05-23 | 2020-03-10 | Btl Medical Technologies S.R.O. | Systems and methods for tissue treatment |
US10556122B1 (en) | 2016-07-01 | 2020-02-11 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US20180271767A1 (en) | 2017-03-21 | 2018-09-27 | Zeltiq Aesthetics, Inc. | Use of saccharides for cryoprotection and related technology |
US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
GB2563890B (en) * | 2017-06-28 | 2020-01-08 | 4D Pharma Leon S L U | Method of lining a chamber |
CN112789013A (en) | 2018-07-31 | 2021-05-11 | 斯尔替克美学股份有限公司 | Method, device and system for improving skin |
CN109620527B (en) * | 2018-12-12 | 2021-05-04 | 刘彦直 | Physical cooling cap |
PL3721939T3 (en) | 2019-04-11 | 2022-12-12 | Btl Medical Solutions A.S. | Device for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
US12156689B2 (en) | 2019-04-11 | 2024-12-03 | Btl Medical Solutions A.S. | Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
USD1028258S1 (en) * | 2019-11-20 | 2024-05-21 | Zeltiq Aesthetics, Inc. | Applicator for a therapeutic device |
US11878167B2 (en) | 2020-05-04 | 2024-01-23 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
EP3906901A1 (en) * | 2020-05-04 | 2021-11-10 | High Technology Products, SL | Pads and systems for treatment of a subject |
KR200498115Y1 (en) | 2020-05-04 | 2024-07-03 | 비티엘 헬쓰케어 테크놀로지스 에이.에스. | Device for cosmetic procedures on patients |
CN113855374A (en) * | 2020-06-30 | 2021-12-31 | 微创医美科技(嘉兴)有限公司 | Fat-reducing therapeutic device and freezing fat-reducing instrument |
EP4178671A1 (en) * | 2020-07-10 | 2023-05-17 | Dymedso Inc. | Acoustic gastroenterology therapy |
EP4415812A1 (en) | 2021-10-13 | 2024-08-21 | BTL Medical Solutions a.s. | Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
US11896816B2 (en) | 2021-11-03 | 2024-02-13 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060188832A1 (en) * | 2005-02-22 | 2006-08-24 | Woodlane Environmental Technology, Inc. | Gel fuel log set |
US20070255362A1 (en) * | 2006-04-28 | 2007-11-01 | Juniper Medical, Inc. | Cryoprotectant for use with a cooling device for improved cooling of subcutaneous lipid-rich cells |
US20100280582A1 (en) * | 2009-04-30 | 2010-11-04 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
US20130035680A1 (en) * | 2011-08-01 | 2013-02-07 | Yoav Ben-Haim | Applicator and Tissue Interface Module for Dermatological Device |
Family Cites Families (655)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US681806A (en) | 1901-05-25 | 1901-09-03 | Armand Mignault | Lung-protector. |
US889810A (en) | 1908-01-04 | 1908-06-02 | Henry Robinson | Medicating and massaging appliance. |
DE532976C (en) | 1930-07-29 | 1931-09-11 | Lorenz Akt Ges C | Transmitter device for spring writers, in which the transmission rails are moved in the direction of movement of the transmission buttons |
GB387960A (en) | 1932-09-17 | 1933-02-16 | William Hipon Horsfield | Electro-therapeutic massaging appliance |
FR854937A (en) | 1939-05-19 | 1940-04-27 | Suction massage device | |
US2516491A (en) | 1945-10-08 | 1950-07-25 | Henry A Swastek | Massage and shampoo device |
US2521780A (en) | 1947-06-12 | 1950-09-12 | Bertha A Dodd | Cushion or receptacle |
US2726658A (en) | 1953-04-27 | 1955-12-13 | Donald E Chessey | Therapeutic cooling devices for domestic and hospital use |
NL177982B (en) | 1953-04-29 | Siemens Ag | INFUSION DEVICE. | |
US2766619A (en) | 1953-06-26 | 1956-10-16 | Tribus Myron | Ice detecting apparatus |
CH333982A (en) | 1954-06-11 | 1958-11-15 | Usag Ultraschall Ag | Ultrasonic irradiation device |
US3093135A (en) | 1962-01-29 | 1963-06-11 | Max L Hirschhorn | Cooled surgical instrument |
US3133539A (en) | 1962-08-06 | 1964-05-19 | Eidus William | Thermoelectric medical instrument |
US3132688A (en) | 1963-04-08 | 1964-05-12 | Welville B Nowak | Electronic cold and/or hot compress device |
US3282267A (en) | 1964-05-05 | 1966-11-01 | Eidus William | Thermoelectric hypothermia instrument |
US3502080A (en) | 1965-06-28 | 1970-03-24 | Max L Hirschhorn | Thermoelectrically cooled surgical instrument |
US3591645A (en) | 1968-05-20 | 1971-07-06 | Gulf Research Development Co | Process for preparing a halogenated aromatic |
US3566871A (en) | 1968-06-11 | 1971-03-02 | American Cyanamid Co | Hydrophilic medical sponge and method of using same |
US3703897A (en) | 1969-10-09 | 1972-11-28 | Kendall & Co | Hydrophobic non-adherent wound dressing |
US3587577A (en) | 1970-05-09 | 1971-06-28 | Oleg Alexandrovich Smirnov | Device for applying selective and general hypothermy to and reheating of human body through the common integuments thereof |
US3710784A (en) | 1972-04-03 | 1973-01-16 | C Taylor | Massaging device |
US4002221A (en) | 1972-09-19 | 1977-01-11 | Gilbert Buchalter | Method of transmitting ultrasonic impulses to surface using transducer coupling agent |
US3827436A (en) | 1972-11-10 | 1974-08-06 | Frigitronics Of Conn Inc | Multipurpose cryosurgical probe |
US3786814A (en) | 1972-12-15 | 1974-01-22 | T Armao | Method of preventing cryoadhesion of cryosurgical instruments and cryosurgical instruments |
US3942519A (en) | 1972-12-26 | 1976-03-09 | Ultrasonic Systems, Inc. | Method of ultrasonic cryogenic cataract removal |
DE2343910C3 (en) | 1973-08-31 | 1979-02-15 | Draegerwerk Ag, 2400 Luebeck | Cryomedical facility |
US4269068A (en) | 1974-02-21 | 1981-05-26 | Rockwell International Corporation | Ultrasonic couplant compositions and method for employing same |
SU532976A1 (en) | 1974-05-05 | 1978-11-05 | Киевский Государственный Институт Усовершенстовования Врачей Министерства Здравоохранения Ссср | Apparatus for local refrigeration of tissue |
US3986385A (en) | 1974-08-05 | 1976-10-19 | Rosemount Engineering Company Limited | Apparatus for determining the freezing point of a liquid |
US3993053A (en) | 1974-08-05 | 1976-11-23 | Murray Grossan | Pulsating massage system |
JPS5417360B2 (en) | 1974-08-15 | 1979-06-29 | ||
US4026299A (en) | 1975-09-26 | 1977-05-31 | Vari-Temp Manufacturing Co. | Cooling and heating apparatus |
US4202336A (en) | 1976-05-14 | 1980-05-13 | Erbe Elektromedizin Kg | Cauterizing probes for cryosurgery |
US4140130A (en) | 1977-05-31 | 1979-02-20 | Storm Iii Frederick K | Electrode structure for radio frequency localized heating of tumor bearing tissue |
US4149529A (en) | 1977-09-16 | 1979-04-17 | Jobst Institute, Inc. | Portable thermo-hydraulic physiotherapy device |
US4178429A (en) | 1978-11-17 | 1979-12-11 | Scheffer Karl D | Catalyst for curing resins |
DE2851602A1 (en) | 1978-11-29 | 1980-06-12 | Messerschmitt Boelkow Blohm | Medical cooling device for localised inflammation - with Peltier element between heat conductive block and cooling pad applied to patient's skin |
US4381009A (en) | 1980-01-28 | 1983-04-26 | Bon F Del | Hand-held device for the local heat-treatment of the skin |
US4428368A (en) | 1980-09-29 | 1984-01-31 | Masakatsu Torii | Massage device |
US4470263A (en) | 1980-10-14 | 1984-09-11 | Kurt Lehovec | Peltier-cooled garment |
US4396011A (en) | 1981-01-09 | 1983-08-02 | Clairol Incorporated | Heating pad |
US4459854A (en) | 1981-07-24 | 1984-07-17 | National Research Development Corporation | Ultrasonic transducer coupling member |
US4528979A (en) | 1982-03-18 | 1985-07-16 | Kievsky Nauchno-Issledovatelsky Institut Otolaringologii Imeni Professora A.S. Kolomiiobenka | Cryo-ultrasonic surgical instrument |
JPS58187454A (en) | 1982-04-27 | 1983-11-01 | Nippon Kayaku Co Ltd | Anthraquinone compound |
US4555313A (en) | 1982-10-21 | 1985-11-26 | The United States Of America As Represented By The United States Department Of Energy | Method of forming a continuous polymeric skin on a cellular foam material |
US4548212A (en) | 1982-10-29 | 1985-10-22 | Leung Frank K | Apparatus for thermographic examinations |
US4483341A (en) | 1982-12-09 | 1984-11-20 | Atlantic Richfield Company | Therapeutic hypothermia instrument |
US4644955A (en) | 1982-12-27 | 1987-02-24 | Rdm International, Inc. | Circuit apparatus and method for electrothermal treatment of cancer eye |
US4531524A (en) | 1982-12-27 | 1985-07-30 | Rdm International, Inc. | Circuit apparatus and method for electrothermal treatment of cancer eye |
US4961422A (en) | 1983-01-21 | 1990-10-09 | Marchosky J Alexander | Method and apparatus for volumetric interstitial conductive hyperthermia |
DE3308553C2 (en) | 1983-03-10 | 1986-04-10 | Udo Prof. Dr.med. 4130 Moers Smidt | Means for reducing the human body weight |
US4614191A (en) | 1983-09-02 | 1986-09-30 | Perler Robert F | Skin-cooling probe |
EP0160703B1 (en) | 1983-10-26 | 1990-05-02 | Nihonkenkozoshinkenkyukai Co. Ltd. | Magnetic field generating therapeutic appliance |
JPS6094113U (en) | 1983-12-06 | 1985-06-27 | 瀧川株式会社 | beauty facial machine |
US5158070A (en) | 1983-12-14 | 1992-10-27 | Edap International, S.A. | Method for the localized destruction of soft structures using negative pressure elastic waves |
AU3881685A (en) | 1984-01-18 | 1985-08-09 | Bailey David Franklin | Multi-layer disposable medical thermal blanket |
US4603076A (en) | 1985-03-04 | 1986-07-29 | Norwood Industries, Inc. | Hydrophilic foam |
US4869250A (en) | 1985-03-07 | 1989-09-26 | Thermacor Technology, Inc. | Localized cooling apparatus |
US4664110A (en) | 1985-03-18 | 1987-05-12 | University Of Southern California | Controlled rate freezing for cryorefractive surgery |
US4585002A (en) | 1985-04-22 | 1986-04-29 | Igor Kissin | Method and apparatus for treatment of pain by frequently alternating temperature stimulation |
US4700701A (en) | 1985-10-23 | 1987-10-20 | Montaldi David H | Sterilization method and apparatus |
JPH0765230B2 (en) | 1986-09-19 | 1995-07-12 | 三菱マテリアル株式会社 | Method for forming porous layer on metal surface |
ATE66360T1 (en) | 1986-05-16 | 1991-09-15 | Termac Sa | THERAPEUTIC DEVICE WITH A MASS OF THERMALLY ACTIVE MATERIAL. |
SU1563684A1 (en) | 1986-05-26 | 1990-05-15 | Томский государственный медицинский институт | Cryosurgical scalpel |
GB8620227D0 (en) | 1986-08-20 | 1986-10-01 | Smith & Nephew Ass | Wound dressing |
US4880564A (en) | 1986-09-29 | 1989-11-14 | Ciba-Geigy Corporation | Antifoams for aqueous systems and their use |
US4741338A (en) | 1986-10-06 | 1988-05-03 | Toshiaki Miyamae | Thermoelectric physical remedy apparatus |
US5018521A (en) | 1986-10-24 | 1991-05-28 | Campbell William P | Method of and apparatus for increased transfer of heat into or out of the body |
US4764463A (en) | 1986-10-30 | 1988-08-16 | The University Of Tennessee Research Corporation | Platelet cyropreservation |
US4906463A (en) | 1986-12-22 | 1990-03-06 | Cygnus Research Corporation | Transdermal drug-delivery composition |
CN86200604U (en) | 1987-01-10 | 1987-10-14 | Zhichang Yang | Apparatus for freezing freckle and treating some skin diseases with freezing |
US4846176A (en) | 1987-02-24 | 1989-07-11 | Golden Theodore A | Thermal bandage |
US4962761A (en) | 1987-02-24 | 1990-10-16 | Golden Theodore A | Thermal bandage |
GB8706141D0 (en) | 1987-03-16 | 1987-04-23 | Thorner D | Treatment of damaged limb |
US4935345A (en) | 1987-04-07 | 1990-06-19 | Arizona Board Of Regents | Implantable microelectronic biochemical sensor incorporating thin film thermopile |
US4802475A (en) | 1987-06-22 | 1989-02-07 | Weshahy Ahmed H A G | Methods and apparatus of applying intra-lesional cryotherapy |
US5084671A (en) | 1987-09-02 | 1992-01-28 | Tokyo Electron Limited | Electric probing-test machine having a cooling system |
US5143063A (en) | 1988-02-09 | 1992-09-01 | Fellner Donald G | Method of removing adipose tissue from the body |
JPH01223961A (en) | 1988-03-02 | 1989-09-07 | Kineshio:Kk | Method for improvement of muscle subcutaneous tissue and subcutaneous tissue activating device |
US5065752A (en) | 1988-03-29 | 1991-11-19 | Ferris Mfg. Co. | Hydrophilic foam compositions |
DK161260C (en) | 1988-05-06 | 1991-12-30 | Paul Verner Nielsen | flow measurement |
US4930317A (en) | 1988-05-20 | 1990-06-05 | Temperature Research Corporation | Apparatus for localized heat and cold therapy |
DE3821219C1 (en) | 1988-06-23 | 1989-08-24 | Phywe Systeme Gmbh, 3400 Goettingen, De | |
US5108390A (en) | 1988-11-14 | 1992-04-28 | Frigitronics, Inc. | Flexible cryoprobe |
US4905697A (en) | 1989-02-14 | 1990-03-06 | Cook Pacemaker Corporation | Temperature-controlled cardiac pacemaker responsive to body motion |
US5024650A (en) | 1989-02-15 | 1991-06-18 | Matsushita Electric Works, Ltd. | Stress dissolving refreshment system |
DE8905769U1 (en) | 1989-05-09 | 1989-07-13 | Schulte, Franz-Josef, Dipl.-Ing., 59939 Olsberg | Device for generating cold and heat |
US5200170A (en) | 1989-07-18 | 1993-04-06 | Mcdow Ronald A | Medical process--use of dichlorodifluoromethane (CCl2 F2) and chlorodifluoromethane (CHClF2) as cryogens for treating skin lesions |
US5516505A (en) | 1989-07-18 | 1996-05-14 | Mcdow; Ronald A. | Method for using cryogenic agents for treating skin lesions |
JP2625548B2 (en) | 1989-07-19 | 1997-07-02 | 沖電気工業株式会社 | Image generation method and image generation device |
US5160312A (en) | 1990-02-09 | 1992-11-03 | W. R. Grace & Co.-Conn. | Cryopreservation process for direct transfer of embryos |
US5817149A (en) | 1990-02-26 | 1998-10-06 | Vesture Corporation | Heat application method |
US5575812A (en) | 1990-02-26 | 1996-11-19 | Vesture Corporation | Cooling pad method |
US5339541A (en) | 1990-02-26 | 1994-08-23 | Vesture Corporation | Footwear with therapeutic pad |
JPH03259975A (en) | 1990-03-09 | 1991-11-20 | Matsushita Refrig Co Ltd | Water-repellent coating composition and heat exchanger coated therewith |
FR2659851A1 (en) | 1990-03-20 | 1991-09-27 | Karagozian Serge | MASSAGE APPARATUS. |
JP3065657B2 (en) | 1990-06-08 | 2000-07-17 | 株式会社リコー | Dry type electrophotographic toner |
US5362966A (en) | 1990-06-27 | 1994-11-08 | Rosenthal Robert D | Measurement of finger temperature in near-infrared quantitative measurement instrument |
US5148804A (en) | 1990-06-28 | 1992-09-22 | Hill Dennis M | Device, system, and methods for applying cryotherapy |
JPH0493597A (en) | 1990-08-08 | 1992-03-26 | Matsushita Refrig Co Ltd | Water repellent coating composition and heat exchanger coated with water repellant coating composition |
US5336616A (en) | 1990-09-12 | 1994-08-09 | Lifecell Corporation | Method for processing and preserving collagen-based tissues for transplantation |
GB2248183A (en) | 1990-09-25 | 1992-04-01 | Lin Ju Nin | Facial sauna apparatus |
US5221726A (en) | 1990-10-09 | 1993-06-22 | Mcneil-Ppc, Inc. | Hydrophilic materials useful in preparing fluid-absorbent products |
US5342617A (en) | 1990-12-03 | 1994-08-30 | Medical Polymers, Inc. | Water-based human tissue lubricant |
US5139496A (en) | 1990-12-20 | 1992-08-18 | Hed Aharon Z | Ultrasonic freeze ablation catheters and probes |
JP3217386B2 (en) | 1991-04-24 | 2001-10-09 | オリンパス光学工業株式会社 | Diagnostic system |
US5358467A (en) | 1991-05-05 | 1994-10-25 | Anatole Milstein | Method for vacuum mechanothermal stimulation of the body surface |
US5207674A (en) | 1991-05-13 | 1993-05-04 | Hamilton Archie C | Electronic cryogenic surgical probe apparatus and method |
AU2309692A (en) | 1991-07-03 | 1993-02-11 | Cryolife, Inc. | Method for stabilization of biomaterials |
US20010031459A1 (en) | 1991-07-08 | 2001-10-18 | The American National Red Cross | Method of preparing tissues for vitrification |
DE4125463A1 (en) | 1991-08-01 | 1993-02-04 | Deutsches Inst Lebensmitteltec | METHOD AND DEVICE FOR CONTINUOUS, CONTROLLED STRUCTURING, IN PARTICULAR CRYSTALLIZATION OF SUBSTANCE SYSTEMS IN A FLOWABLE CONDITION, PARTICULARLY FATTY MEASURES, LIKE CHOCOLATE MATERIAL |
US5352711A (en) | 1991-08-12 | 1994-10-04 | The Proctor & Gamble Company | Method for hydrophilizing absorbent foam materials |
US5169384A (en) | 1991-08-16 | 1992-12-08 | Bosniak Stephen L | Apparatus for facilitating post-traumatic, post-surgical, and/or post-inflammatory healing of tissue |
US5514105A (en) | 1992-01-03 | 1996-05-07 | The Procter & Gamble Company | Resilient plastic web exhibiting reduced skin contact area and enhanced fluid transfer properties |
US5531742A (en) | 1992-01-15 | 1996-07-02 | Barken; Israel | Apparatus and method for computer controlled cryosurgery |
GB9201940D0 (en) | 1992-01-28 | 1992-03-18 | S I Ind Limited | Cooling or heating arrangement |
IT1259424B (en) | 1992-03-11 | 1996-03-18 | CONTAINMENT AND COOLING ELEMENT TO APPLY TO ARTS AFFECTED BY TRAUMAS | |
WO1993019705A1 (en) | 1992-03-31 | 1993-10-14 | Massachusetts Institute Of Technology | Apparatus and method for acoustic heat generation and hyperthermia |
US5954680A (en) | 1992-06-19 | 1999-09-21 | Augustine Medical, Inc. | Near hyperthermic heater wound covering |
DE4224595A1 (en) | 1992-07-23 | 1994-01-27 | Steindorf Susanne Ruth | Surgical instrument for treating diseased tissue esp. prostate - has heating system located in probe within body opening and-or diseased organs adjacent to body openings |
AU5008293A (en) | 1992-08-17 | 1994-03-15 | Thomas L. Mehl | Hand-held, multi-purpose portable steamer |
US5327886A (en) | 1992-08-18 | 1994-07-12 | Chiu Cheng Pang | Electronic massage device with cold/hot compress function |
DE59309311D1 (en) | 1992-10-02 | 1999-02-25 | Beiersdorf Ag | HYDROPHILIC POLYURETHANE FOAMS, ESPECIALLY FOR THE TREATMENT OF DEEP Wounds, Wound Dressings Based On HYDROPHILIC POLYURETHANE FOAMS AND METHOD FOR THE PRODUCTION THEREOF |
GB9222335D0 (en) | 1992-10-23 | 1992-12-09 | Unilever Plc | Acyl lactylates as skin elasticity enhancing agents |
US5314423A (en) | 1992-11-03 | 1994-05-24 | Seney John S | Cold electrode pain alleviating tissue treatment assembly |
DE4238291A1 (en) | 1992-11-13 | 1994-05-19 | Diehl Gmbh & Co | Cryo-therapy system for small areal freezing of surfaces esp. for skin alterations - has cold probe and heat exchanger which are connected heat-conducting with each other by Peltier elements having heat contact surfaces |
US5333460A (en) | 1992-12-21 | 1994-08-02 | Carrier Corporation | Compact and serviceable packaging of a self-contained cryocooler system |
US5277030A (en) | 1993-01-22 | 1994-01-11 | Welch Allyn, Inc. | Preconditioning stand for cooling probe |
US5386837A (en) | 1993-02-01 | 1995-02-07 | Mmtc, Inc. | Method for enhancing delivery of chemotherapy employing high-frequency force fields |
US6620188B1 (en) | 1998-08-24 | 2003-09-16 | Radiant Medical, Inc. | Methods and apparatus for regional and whole body temperature modification |
US5902256A (en) | 1993-02-12 | 1999-05-11 | Jb Research, Inc. | Massage unit with replaceable hot and cold packs |
US5433717A (en) | 1993-03-23 | 1995-07-18 | The Regents Of The University Of California | Magnetic resonance imaging assisted cryosurgery |
JPH06282977A (en) | 1993-03-30 | 1994-10-07 | Ricoh Co Ltd | Information recording/reproducing device |
US5456703A (en) | 1993-04-28 | 1995-10-10 | Therabite Corporation | Apparatus for application of heat/cold to target regions of the human anatomy |
WO1994026216A1 (en) | 1993-05-12 | 1994-11-24 | Yablon Jeffrey S | Portable therapeutic device |
RU2047298C1 (en) | 1993-05-27 | 1995-11-10 | Специализированное конструкторско-технологическое бюро "Норд" | Device for cryomassage |
DK0701455T3 (en) | 1993-06-04 | 2001-06-18 | Biotime Inc | Plasma-like solution |
US5411541A (en) | 1993-08-05 | 1995-05-02 | Oansh Designs Ltd. | Portable fluid therapy device |
US5372608A (en) | 1993-08-12 | 1994-12-13 | Johnson; Bertrand L. | Circulating chilled-fluid therapeutic device |
US5334131A (en) | 1993-08-20 | 1994-08-02 | Omandam Ismael C | Strap-on massager with vibratory unbalanced weight |
US5891617A (en) | 1993-09-15 | 1999-04-06 | Organogenesis Inc. | Cryopreservation of harvested skin and cultured skin or cornea equivalents by slow freezing |
US5871526A (en) | 1993-10-13 | 1999-02-16 | Gibbs; Roselle | Portable temperature control system |
GB2283678B (en) | 1993-11-09 | 1998-06-03 | Spembly Medical Ltd | Cryosurgical catheter probe |
US5885211A (en) | 1993-11-15 | 1999-03-23 | Spectrix, Inc. | Microporation of human skin for monitoring the concentration of an analyte |
JPH07194666A (en) | 1993-12-30 | 1995-08-01 | Daisee Kogyo Kk | Massaging appliance and method |
US5472416A (en) | 1994-01-10 | 1995-12-05 | Very Inventive Physicians, Inc. | Tumescent lipoplastic method and apparatus |
RU2036667C1 (en) | 1994-01-24 | 1995-06-09 | Олег Алексеевич Машков | Method for treating disseminated psoriasis |
US5497596A (en) | 1994-01-27 | 1996-03-12 | E. I. Du Pont De Nemours And Company | Method for reducing penetration of liquid through nonwoven film-fibril sheets pierced by fastening elements |
GB2286660A (en) | 1994-02-01 | 1995-08-23 | David Thorner | Peltier effect cooling apparatus for treating diseased or injured tissue |
US5647868A (en) | 1994-02-02 | 1997-07-15 | Chinn; Douglas Owen | Cryosurgical integrated control and monitoring system and method |
US5725483A (en) | 1994-02-22 | 1998-03-10 | Podolsky; Grigory | Massaging device |
US5363347A (en) | 1994-02-24 | 1994-11-08 | Hap Nguyen | Vending tanning timer |
US5833685A (en) | 1994-03-15 | 1998-11-10 | Tortal; Proserfina R. | Cryosurgical technique and devices |
US5505726A (en) | 1994-03-21 | 1996-04-09 | Dusa Pharmaceuticals, Inc. | Article of manufacture for the photodynamic therapy of dermal lesion |
US5507790A (en) | 1994-03-21 | 1996-04-16 | Weiss; William V. | Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism |
JPH07268274A (en) | 1994-04-01 | 1995-10-17 | Kansai Paint Co Ltd | Composition and method for imparting hydrophilicity |
JP3263275B2 (en) | 1994-04-05 | 2002-03-04 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Apparatus for laser treatment of living tissue and laser treatment apparatus for flame-like nevus |
US6230501B1 (en) | 1994-04-14 | 2001-05-15 | Promxd Technology, Inc. | Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control |
US5792080A (en) | 1994-05-18 | 1998-08-11 | Matsushita Electric Works, Ltd. | Massaging apparatus having self-adjusting constant strength and non-adjust strength modes |
US5672172A (en) | 1994-06-23 | 1997-09-30 | Vros Corporation | Surgical instrument with ultrasound pulse generator |
US5505730A (en) | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
IL110176A (en) | 1994-06-30 | 1999-12-31 | Israel State | Multiprobe surgical cryogenic apparatus |
US5529067A (en) | 1994-08-19 | 1996-06-25 | Novoste Corporation | Methods for procedures related to the electrophysiology of the heart |
US5967976A (en) | 1994-08-19 | 1999-10-19 | Novoste Corporation | Apparatus and methods for procedures related to the electrophysiology of the heart |
US5514170A (en) | 1994-08-25 | 1996-05-07 | Mauch; Rose M. | Cold pack device |
US5486207A (en) | 1994-09-20 | 1996-01-23 | Mahawili; Imad | Thermal pad for portable body heating/cooling system and method of use |
US5895418A (en) | 1994-09-30 | 1999-04-20 | Saringer Research Inc. | Device for producing cold therapy |
US5628769A (en) | 1994-09-30 | 1997-05-13 | Saringer Research, Inc. | Method and devices for producing somatosensory stimulation using temperature |
DK0790767T3 (en) | 1994-11-09 | 2002-02-04 | Celadon Science Llc | Compounds for healing wounds and methods for their preservation |
DE4445627A1 (en) | 1994-12-21 | 1996-06-27 | Holland Letz Horst | Heat exchanger for thermal therapy pad |
US6426445B1 (en) | 1995-01-10 | 2002-07-30 | The Procter & Gamble Company | Absorbent members comprising an agglomerate of hydrogel-forming absorbent polymer and particulate hydrophilic foam |
US5735844A (en) | 1995-02-01 | 1998-04-07 | The General Hospital Corporation | Hair removal using optical pulses |
US5647051A (en) | 1995-02-22 | 1997-07-08 | Seabrook Medical Systems, Inc. | Cold therapy system with intermittent fluid pumping for temperature control |
US5635162A (en) | 1995-02-23 | 1997-06-03 | Ultradent Products, Inc. | Hemostatic composition for treating gingival area |
US5980561A (en) | 1995-03-01 | 1999-11-09 | Kolen; Paul T. | Applying thermal therapy to living tissue |
IES66404B2 (en) | 1995-03-01 | 1995-12-27 | Shannon Cool Limited | Cold therapy apparatus |
US5580714A (en) | 1995-03-08 | 1996-12-03 | Celox Laboratories, Inc. | Cryopreservation solution |
ATE250894T1 (en) | 1995-04-28 | 2003-10-15 | Endocare Inc | INTEGRATED CRYO-SURGICAL CONTROL AND MONITORING SYSTEM |
US6241753B1 (en) | 1995-05-05 | 2001-06-05 | Thermage, Inc. | Method for scar collagen formation and contraction |
US6470216B1 (en) | 1995-05-05 | 2002-10-22 | Thermage, Inc. | Method for smoothing contour irregularities of skin surface |
US5660836A (en) | 1995-05-05 | 1997-08-26 | Knowlton; Edward W. | Method and apparatus for controlled contraction of collagen tissue |
US5755753A (en) | 1995-05-05 | 1998-05-26 | Thermage, Inc. | Method for controlled contraction of collagen tissue |
US6425912B1 (en) | 1995-05-05 | 2002-07-30 | Thermage, Inc. | Method and apparatus for modifying skin surface and soft tissue structure |
US5634890A (en) | 1995-05-09 | 1997-06-03 | Aquasage, Inc. | Water massage therapy device and method for using the same |
US5901707A (en) | 1995-05-19 | 1999-05-11 | Hpl Biomedical, Inc. | Silicone mask for cryosurgery and method |
US5741248A (en) | 1995-06-07 | 1998-04-21 | Temple University-Of The Commonwealth System Of Higher Education | Fluorochemical liquid augmented cryosurgery |
US5769879A (en) | 1995-06-07 | 1998-06-23 | Medical Contouring Corporation | Microwave applicator and method of operation |
US5965438A (en) | 1995-06-07 | 1999-10-12 | Phyton, Inc. | Cryopreservation of plant cells |
CA2200984A1 (en) | 1995-07-25 | 1997-02-13 | Samir S. Mitragotri | Enhanced transdermal transfer using ultrasound |
US5746736A (en) | 1995-08-09 | 1998-05-05 | Lumedics, Ltd. | Cryogenic laser lithotripsy with enhanced light absorption |
US5964749A (en) | 1995-09-15 | 1999-10-12 | Esc Medical Systems Ltd. | Method and apparatus for skin rejuvenation and wrinkle smoothing |
US5654546A (en) | 1995-11-07 | 1997-08-05 | Molecular Imaging Corporation | Variable temperature scanning probe microscope based on a peltier device |
US5733280A (en) | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
US5634940A (en) | 1995-12-13 | 1997-06-03 | Panyard; Albert A. | Therapeutic structure and methods |
US5755755A (en) | 1995-12-13 | 1998-05-26 | Panyard; Albert A. | Therapeutic structure and method |
JPH09164163A (en) | 1995-12-15 | 1997-06-24 | Matsushita Electric Ind Co Ltd | Local part cooler-heater |
WO1997022262A2 (en) | 1995-12-19 | 1997-06-26 | Jie Hao | Soft ice |
WO1997024088A1 (en) | 1995-12-29 | 1997-07-10 | Life Resuscitation Technologies, Inc. | Total body cooling system |
US7229436B2 (en) | 1996-01-05 | 2007-06-12 | Thermage, Inc. | Method and kit for treatment of tissue |
US7189230B2 (en) | 1996-01-05 | 2007-03-13 | Thermage, Inc. | Method for treating skin and underlying tissue |
US6350276B1 (en) | 1996-01-05 | 2002-02-26 | Thermage, Inc. | Tissue remodeling apparatus containing cooling fluid |
US7473251B2 (en) | 1996-01-05 | 2009-01-06 | Thermage, Inc. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US7115123B2 (en) | 1996-01-05 | 2006-10-03 | Thermage, Inc. | Handpiece with electrode and non-volatile memory |
US7267675B2 (en) | 1996-01-05 | 2007-09-11 | Thermage, Inc. | RF device with thermo-electric cooler |
US7006874B2 (en) | 1996-01-05 | 2006-02-28 | Thermage, Inc. | Treatment apparatus with electromagnetic energy delivery device and non-volatile memory |
US6413255B1 (en) | 1999-03-09 | 2002-07-02 | Thermage, Inc. | Apparatus and method for treatment of tissue |
US7141049B2 (en) | 1999-03-09 | 2006-11-28 | Thermage, Inc. | Handpiece for treatment of tissue |
US7022121B2 (en) | 1999-03-09 | 2006-04-04 | Thermage, Inc. | Handpiece for treatment of tissue |
EP0880840A4 (en) | 1996-01-11 | 2002-10-23 | Mrj Inc | System for controlling access and distribution of digital property |
US5651773A (en) | 1996-01-19 | 1997-07-29 | Perry; Larry C. | Skin protector for ultrasonic-assisted liposuction and accessories |
US5650450A (en) | 1996-01-25 | 1997-07-22 | Foamex L.P. | Hydrophilic urethane foam |
FR2744358B1 (en) | 1996-02-01 | 1998-05-07 | Biogenie Beaute Concept | MASSAGE HEAD COMBINING SUCTION MASSAGE AND ELECTROTHERAPY |
FR2745935B1 (en) | 1996-03-11 | 1998-05-22 | Ygk Holding S A | AUTOMATED TANNING EQUIPMENT |
US5654279A (en) | 1996-03-29 | 1997-08-05 | The Regents Of The University Of California | Tissue destruction in cryosurgery by use of thermal hysteresis |
US6180867B1 (en) | 1996-04-17 | 2001-01-30 | General Electric Company | Thermal sensor array and methods of fabrication and use |
SE510531C2 (en) | 1996-05-02 | 1999-05-31 | Sca Hygiene Prod Ab | Hollow-casing layer for absorbing articles, as well as ways of making the casing layer |
EP0914178B1 (en) | 1996-06-18 | 2003-03-12 | Alza Corporation | Device for enhancing transdermal agent delivery or sampling |
WO1998004184A2 (en) | 1996-07-25 | 1998-02-05 | Light Medicine, Inc. | Photodynamic therapy apparatus and methods |
US5976123A (en) | 1996-07-30 | 1999-11-02 | Laser Aesthetics, Inc. | Heart stabilization |
US5966763A (en) | 1996-08-02 | 1999-10-19 | Hill-Rom, Inc. | Surface pad system for a surgical table |
US6102885A (en) | 1996-08-08 | 2000-08-15 | Bass; Lawrence S. | Device for suction-assisted lipectomy and method of using same |
US5840080A (en) | 1996-08-15 | 1998-11-24 | Der Ovanesian; Mary | Hot or cold applicator with inner element |
US5665053A (en) | 1996-09-27 | 1997-09-09 | Jacobs; Robert A. | Apparatus for performing endermology with ultrasound |
US5941825A (en) | 1996-10-21 | 1999-08-24 | Philipp Lang | Measurement of body fat using ultrasound methods and devices |
BE1010730A7 (en) | 1996-11-04 | 1998-12-01 | Pira Luc Louis Marie Francis | Cryoprobe based on peltier module. |
US5800490A (en) | 1996-11-07 | 1998-09-01 | Patz; Herbert Samuel | Lightweight portable cooling or heating device with multiple applications |
US8182473B2 (en) | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
US20060149343A1 (en) | 1996-12-02 | 2006-07-06 | Palomar Medical Technologies, Inc. | Cooling system for a photocosmetic device |
US7204832B2 (en) | 1996-12-02 | 2007-04-17 | Pálomar Medical Technologies, Inc. | Cooling system for a photo cosmetic device |
US6517532B1 (en) | 1997-05-15 | 2003-02-11 | Palomar Medical Technologies, Inc. | Light energy delivery head |
US5964092A (en) | 1996-12-13 | 1999-10-12 | Nippon Sigmax, Co., Ltd. | Electronic cooling apparatus |
EP1314400B1 (en) | 1996-12-31 | 2007-06-20 | Altea Therapeutics Corporation | Microporation of tissue for delivery of bioactive agents |
US6102875A (en) | 1997-01-16 | 2000-08-15 | Jones; Rick E. | Apparatus for combined application of massage, accupressure and biomagnetic therapy |
US5830208A (en) | 1997-01-31 | 1998-11-03 | Laserlite, Llc | Peltier cooled apparatus and methods for dermatological treatment |
JPH10216169A (en) | 1997-02-05 | 1998-08-18 | Kanae Kagawa:Kk | Cold-feeling/cooling sheet |
JPH10223961A (en) | 1997-02-10 | 1998-08-21 | Furukawa Electric Co Ltd:The | Optical amplifier |
US5925026A (en) | 1997-03-10 | 1999-07-20 | Kimberly-Clark Worldwide, Inc. | Apertured absorbent pads for use in absorbent articles |
US6041787A (en) | 1997-03-17 | 2000-03-28 | Rubinsky; Boris | Use of cryoprotective agent compounds during cryosurgery |
US6032675A (en) | 1997-03-17 | 2000-03-07 | Rubinsky; Boris | Freezing method for controlled removal of fatty tissue by liposuction |
GB2323659A (en) | 1997-03-25 | 1998-09-30 | Paul Weatherstone | Hand directable chilled air blower |
NL1007696C1 (en) | 1997-05-01 | 1998-11-03 | Inst Voor Agrotech Onderzoek | Controlled-release coated substance. |
AU7568698A (en) | 1997-05-15 | 1998-12-08 | General Hospital Corporation, The | Method and apparatus for dermatology treatment |
US5817050A (en) | 1997-05-29 | 1998-10-06 | Klein; Jeffrey A. | Liposuction cannula |
US6475211B2 (en) | 1997-06-17 | 2002-11-05 | Cool Laser Optics, Inc. | Method and apparatus for temperature control of biologic tissue with simultaneous irradiation |
US6104959A (en) | 1997-07-31 | 2000-08-15 | Microwave Medical Corp. | Method and apparatus for treating subcutaneous histological features |
WO1999008598A1 (en) | 1997-08-19 | 1999-02-25 | Mendlein John D | Ultrasonic transmission films and devices, particularly for hygienic transducer surfaces |
US6023932A (en) | 1997-08-25 | 2000-02-15 | Johnston; Robert | Topical cooling device |
FR2767476B1 (en) | 1997-08-25 | 1999-10-15 | Juliette Dubois | PHYSIOTHERAPEUTIC DEVICE FOR THE TREATMENT OF THE SKIN BY VACUUM AND ULTRASOUND SUCTION |
US6113558A (en) | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
US6623430B1 (en) | 1997-10-14 | 2003-09-23 | Guided Therapy Systems, Inc. | Method and apparatus for safety delivering medicants to a region of tissue using imaging, therapy and temperature monitoring ultrasonic system |
US6071239A (en) | 1997-10-27 | 2000-06-06 | Cribbs; Robert W. | Method and apparatus for lipolytic therapy using ultrasound energy |
GB9724186D0 (en) | 1997-11-14 | 1998-01-14 | British Tech Group | Low temperature coatings |
US6113559A (en) | 1997-12-29 | 2000-09-05 | Klopotek; Peter J. | Method and apparatus for therapeutic treatment of skin with ultrasound |
US6104952A (en) | 1998-01-07 | 2000-08-15 | Tu; Lily Chen | Devices for treating canker sores, tissues and methods thereof |
DE19800416C2 (en) | 1998-01-08 | 2002-09-19 | Storz Karl Gmbh & Co Kg | Device for the treatment of body tissue, in particular soft tissue close to the surface, by means of ultrasound |
US6251129B1 (en) | 1998-03-24 | 2001-06-26 | Innercool Therapies, Inc. | Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control |
IL126783A0 (en) | 1998-03-05 | 1999-08-17 | M T R E Advanced Technology Lt | System and method for heat control of a living body |
US6047215A (en) | 1998-03-06 | 2000-04-04 | Sonique Surgical Systems, Inc. | Method and apparatus for electromagnetically assisted liposuction |
WO1999046005A1 (en) | 1998-03-12 | 1999-09-16 | Palomar Medical Technologies, Inc. | System for electromagnetic radiation of the skin |
US6551349B2 (en) | 1998-03-24 | 2003-04-22 | Innercool Therapies, Inc. | Selective organ cooling apparatus |
ES2640937T3 (en) | 1998-03-27 | 2017-11-07 | The General Hospital Corporation | Procedure for selective targeting of sebaceous glands |
FR2776920B3 (en) | 1998-04-03 | 2000-04-28 | Elie Piana | VACUUM MASSAGE DEVICE |
US6569189B1 (en) | 1998-04-06 | 2003-05-27 | Augustine Medical, Inc. | Tissue treatment apparatus including a bandpass filter transparent to selected wavelengths of IR electromagnetic spectrum |
US6264649B1 (en) | 1998-04-09 | 2001-07-24 | Ian Andrew Whitcroft | Laser treatment cooling head |
US5997530A (en) | 1998-04-13 | 1999-12-07 | The Regents Of The University Of California | Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations |
US6354297B1 (en) | 1998-04-16 | 2002-03-12 | The Uniformed Services University Of The Health Sciences | Method and device for destroying fat cells by induction of programmed cell death |
US6113626A (en) | 1998-04-23 | 2000-09-05 | The Board Of Regents Of The University Of Texas System | Heat transfer blanket for controlling a patient's temperature |
DE69939866D1 (en) | 1998-04-23 | 2008-12-18 | Univ Texas | HEAT CEILING AND METHOD FOR CONTROLLING PATIENT TEMPERATURE |
US6375673B1 (en) | 1998-04-23 | 2002-04-23 | The Board Of Regents Of The University Of Texas System | Heat transfer blanket for and method of controlling a patient's temperature |
US6151735A (en) | 1998-05-05 | 2000-11-28 | Imak Corporation | Zone inflatable orthopedic pillow |
US6015390A (en) | 1998-06-12 | 2000-01-18 | D. Krag Llc | System and method for stabilizing and removing tissue |
US6039694A (en) | 1998-06-25 | 2000-03-21 | Sonotech, Inc. | Coupling sheath for ultrasound transducers |
US6312453B1 (en) | 1998-07-16 | 2001-11-06 | Olympic Medical Corp. | Device for cooling infant's brain |
US6673098B1 (en) | 1998-08-24 | 2004-01-06 | Radiant Medical, Inc. | Disposable cassette for intravascular heat exchange catheter |
US6620189B1 (en) | 2000-02-28 | 2003-09-16 | Radiant Medical, Inc. | Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter |
US6093230A (en) | 1998-10-12 | 2000-07-25 | Allegiance Corporation | Filter assembly comprising two filter elements separated by a hydrophobic foam |
TW514521B (en) | 1998-10-16 | 2002-12-21 | Coolsystems Inc | Compliant heat exchange splint and control unit |
US6059820A (en) | 1998-10-16 | 2000-05-09 | Paradigm Medical Corporation | Tissue cooling rod for laser surgery |
US6150148A (en) | 1998-10-21 | 2000-11-21 | Genetronics, Inc. | Electroporation apparatus for control of temperature during the process |
IL126723A0 (en) | 1998-10-22 | 1999-08-17 | Medoc Ltd | Vaginal probe and method |
US6120519A (en) | 1998-12-02 | 2000-09-19 | Weber; Paul J. | Advanced fulcrum liposuction device |
US7785359B2 (en) | 1998-12-18 | 2010-08-31 | Traumatec, Inc. | Therapeutic cooling devices |
US6183773B1 (en) | 1999-01-04 | 2001-02-06 | The General Hospital Corporation | Targeting of sebaceous follicles as a treatment of sebaceous gland disorders |
CA2356993C (en) | 1999-01-04 | 2009-06-23 | Medivance, Inc. | Improved cooling/heating pad and system |
US6306119B1 (en) | 1999-01-20 | 2001-10-23 | Pearl Technology Holdings, Llc | Skin resurfacing and treatment using biocompatible materials |
US6635053B1 (en) | 1999-01-25 | 2003-10-21 | Cryocath Technologies Inc. | Cooling system |
US6592577B2 (en) | 1999-01-25 | 2003-07-15 | Cryocath Technologies Inc. | Cooling system |
SI1031346T1 (en) | 1999-01-27 | 2002-08-31 | Idea Ag | Noninvasive vaccination through the skin |
AU3286299A (en) | 1999-01-29 | 2000-08-18 | Gerard Hassler | Lowering skin temperature |
US6200308B1 (en) | 1999-01-29 | 2001-03-13 | Candela Corporation | Dynamic cooling of tissue for radiation treatment |
FR2789893B1 (en) | 1999-02-24 | 2001-05-11 | Serge Karagozian | COMBINATION DERMOTONY AND MAGNETOTHERAPY MASSAGE APPARATUS |
US6468297B1 (en) | 1999-02-24 | 2002-10-22 | Cryovascular Systems, Inc. | Cryogenically enhanced intravascular interventions |
US6678558B1 (en) | 1999-03-25 | 2004-01-13 | Genetronics, Inc. | Method and apparatus for reducing electroporation-mediated muscle reaction and pain response |
DE60021183T2 (en) | 1999-04-22 | 2006-04-27 | Veridicom, Inc. | HIGH-SECURITY BIOMETRIC AUTHENTICATION BY PRIVATE AND PUBLIC KEY PAIRS |
US20040009936A1 (en) | 1999-05-03 | 2004-01-15 | Tang De-Chu C. | Vaccine and drug delivery by topical application of vectors and vector extracts |
WO2000067685A1 (en) | 1999-05-12 | 2000-11-16 | Burns Terrence R | Thermoregulation systems |
US20020198518A1 (en) | 1999-05-26 | 2002-12-26 | Mikus Paul W. | Entry position grid for computer guided cryosurgery |
US6643535B2 (en) | 1999-05-26 | 2003-11-04 | Endocare, Inc. | System for providing computer guided ablation of tissue |
US6139544A (en) | 1999-05-26 | 2000-10-31 | Endocare, Inc. | Computer guided cryosurgery |
US6694170B1 (en) | 1999-05-26 | 2004-02-17 | Endocare, Inc. | Computer guided surgery for prostatic nerve sparing |
US6357907B1 (en) | 1999-06-15 | 2002-03-19 | V & P Scientific, Inc. | Magnetic levitation stirring devices and machines for mixing in vessels |
JP2005512671A (en) | 1999-06-30 | 2005-05-12 | サーメイジ インコーポレイテッド | Fluid dosing device |
KR200173222Y1 (en) | 1999-07-19 | 2000-03-15 | 이강민 | Supersonic skin massager |
EP1207807A4 (en) | 1999-08-02 | 2005-12-28 | Lance B Becker | Method for inducing hypothermia |
JP2001046416A (en) | 1999-08-10 | 2001-02-20 | Try Company:Kk | Body cooling apparatus |
US6548728B1 (en) | 1999-08-11 | 2003-04-15 | Medical Products, Inc. | Wound dressing garment |
US6290713B1 (en) | 1999-08-24 | 2001-09-18 | Thomas A. Russell | Flexible illuminators for phototherapy |
US7113821B1 (en) | 1999-08-25 | 2006-09-26 | Johnson & Johnson Consumer Companies, Inc. | Tissue electroperforation for enhanced drug delivery |
IL131834A0 (en) | 1999-09-09 | 2001-03-19 | M T R E Advanced Technology Lt | Method and system for improving cardiac output of a patient |
US6471693B1 (en) | 1999-09-10 | 2002-10-29 | Cryocath Technologies Inc. | Catheter and system for monitoring tissue contact |
US6226996B1 (en) | 1999-10-06 | 2001-05-08 | Paul J. Weber | Device for controlled cooling of a surface |
GB9923804D0 (en) | 1999-10-08 | 1999-12-08 | Hewlett Packard Co | Electronic commerce system |
WO2001032114A1 (en) | 1999-11-02 | 2001-05-10 | Wizcare Ltd. | Skin-gripper |
GB2356145B (en) | 1999-11-10 | 2004-07-28 | Mas Mfg Ltd | Dressing |
US6743222B2 (en) | 1999-12-10 | 2004-06-01 | Candela Corporation | Method of treating disorders associated with sebaceous follicles |
US6402775B1 (en) | 1999-12-14 | 2002-06-11 | Augustine Medical, Inc. | High-efficiency cooling pads, mattresses, and sleeves |
JP2004159666A (en) | 1999-12-21 | 2004-06-10 | Ya Man Ltd | Laser epilation device |
JP4723707B2 (en) | 1999-12-22 | 2011-07-13 | パナソニック電工株式会社 | Slimming equipment |
US6699237B2 (en) | 1999-12-30 | 2004-03-02 | Pearl Technology Holdings, Llc | Tissue-lifting device |
JP2001190586A (en) | 2000-01-11 | 2001-07-17 | Ohiro Seisakusho:Kk | Facial treatment implement |
US6840955B2 (en) | 2000-01-27 | 2005-01-11 | Robert J. Ein | Therapeutic apparatus |
FR2805989B1 (en) | 2000-03-10 | 2003-02-07 | Prod Ella Bache Laboratoire Su | PROCESS FOR TREATING INESTHETISMS OF SILHOUETTE OF THE HUMAN BODY AND DEVICE FOR IMPLEMENTING THE METHOD |
US6951712B2 (en) | 2000-03-14 | 2005-10-04 | Alnis Biosciences, Inc. | Cryoprotective system comprising polymeric nano- or micro-particles |
KR100367639B1 (en) | 2000-03-20 | 2003-01-14 | 안문휘 | Cryogenic stimulating device of acupuncture points |
US6311497B1 (en) | 2000-03-22 | 2001-11-06 | Young-Chun Chung | Device for cold and warm formentations |
US20020188478A1 (en) | 2000-03-24 | 2002-12-12 | Joe Breeland | Health-care systems and methods |
US6354099B1 (en) | 2000-04-11 | 2002-03-12 | Augustine Medical, Inc. | Cooling devices with high-efficiency cooling features |
AU5713601A (en) | 2000-04-20 | 2001-11-07 | Univ Leland Stanford Junior | Methods and devices for cooling body core |
US20020151830A1 (en) | 2000-04-28 | 2002-10-17 | Rocky Kahn | Hydrotherapy system with water pervious body support |
US6494844B1 (en) | 2000-06-21 | 2002-12-17 | Sanarus Medical, Inc. | Device for biopsy and treatment of breast tumors |
WO2002005736A2 (en) | 2000-07-13 | 2002-01-24 | Medtronic, Inc. | Non-invasive carotid cooler brain hypothermia medical device |
US6905492B2 (en) | 2000-07-31 | 2005-06-14 | Galil Medical Ltd. | Planning and facilitation systems and methods for cryosurgery |
US6795728B2 (en) | 2001-08-17 | 2004-09-21 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation |
US6892099B2 (en) | 2001-02-08 | 2005-05-10 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation |
US8251986B2 (en) | 2000-08-17 | 2012-08-28 | Angiodynamics, Inc. | Method of destroying tissue cells by eletroporation |
AU2001286515A1 (en) | 2000-08-17 | 2002-02-25 | Robert L. Campbell | Heat exchange element with hydrophilic evaporator surface |
US6697670B2 (en) | 2001-08-17 | 2004-02-24 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients |
US6458888B1 (en) | 2000-09-15 | 2002-10-01 | Isp Investments Inc. | Rheology modifier for use in aqueous compositions |
US6527765B2 (en) | 2000-10-06 | 2003-03-04 | Charles D. Kelman | Cryogenic surgical system and method of use in removal of tissue |
US6579281B2 (en) | 2000-10-11 | 2003-06-17 | Popcab, Llc | Instrument stabilizer for through-a-port surgery |
US6540694B1 (en) | 2000-10-16 | 2003-04-01 | Sanarus Medical, Inc. | Device for biopsy tumors |
JP3655820B2 (en) | 2000-10-23 | 2005-06-02 | 繁雄 小林 | Head cooling and heating device |
EP1201266A1 (en) | 2000-10-26 | 2002-05-02 | Compex SA | Method for programming stimulation data into a stimulation device |
DE10056242A1 (en) | 2000-11-14 | 2002-05-23 | Alstom Switzerland Ltd | Condensation heat exchanger has heat exchanger surfaces having a coating consisting of a alternating sequence of layers made up of a hard layer with amorphous carbon or a plasma polymer |
US6821274B2 (en) | 2001-03-07 | 2004-11-23 | Gendel Ltd. | Ultrasound therapy for selective cell ablation |
US7549987B2 (en) | 2000-12-09 | 2009-06-23 | Tsunami Medtech, Llc | Thermotherapy device |
US6626854B2 (en) | 2000-12-27 | 2003-09-30 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US6645162B2 (en) | 2000-12-27 | 2003-11-11 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
JP2005502385A (en) | 2000-12-28 | 2005-01-27 | パロマー・メディカル・テクノロジーズ・インコーポレーテッド | Method and apparatus for performing skin therapy EMR treatment |
AU2002217412B2 (en) | 2001-01-03 | 2006-09-14 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
US6607498B2 (en) | 2001-01-03 | 2003-08-19 | Uitra Shape, Inc. | Method and apparatus for non-invasive body contouring by lysing adipose tissue |
US7347855B2 (en) | 2001-10-29 | 2008-03-25 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
US6551348B1 (en) | 2001-01-26 | 2003-04-22 | Deroyal Industries, Inc. | Temperature controlled fluid therapy system |
JP2002224051A (en) | 2001-01-30 | 2002-08-13 | Yamaguchi Prefecture | Nonrestraint life monitor |
US20050145372A1 (en) | 2004-01-02 | 2005-07-07 | Noel Thomas P. | Method and thermally active multi-phase heat transfer apparatus and method for abstracting heat using liquid bi-phase heat exchanging composition |
US6904956B2 (en) | 2002-10-18 | 2005-06-14 | Thomas P. Noel | Method and thermally active convection apparatus and method for abstracting heat with circulation intermediate three dimensional-parity heat transfer elements in bi-phase heat exchanging composition |
JP4027049B2 (en) | 2001-02-28 | 2007-12-26 | 株式会社ニデック | Laser therapy device |
US6948903B2 (en) | 2001-03-15 | 2005-09-27 | Maxon Lift Corporation | Unitary liftgate |
JP4938177B2 (en) | 2001-03-22 | 2012-05-23 | 小林製薬株式会社 | Cold / warm pad |
JP2002290397A (en) | 2001-03-23 | 2002-10-04 | Iryo Joho Syst Kaihatsu Center | Secure communication method |
US7083580B2 (en) | 2001-04-06 | 2006-08-01 | Mattioli Engineering Ltd. | Method and apparatus for skin absorption enhancement and transdermal drug delivery |
CA2382928A1 (en) | 2001-04-23 | 2002-10-23 | Stephen Cheung | Thermal control suit |
WO2002087700A1 (en) | 2001-04-26 | 2002-11-07 | The Procter & Gamble Company | Method, kit and device for the treatment of cosmetic skin conditions |
US6438954B1 (en) | 2001-04-27 | 2002-08-27 | 3M Innovative Properties Company | Multi-directional thermal actuator |
FR2823973B1 (en) | 2001-04-27 | 2003-12-26 | Alain Meunier | MASSAGE APPARATUS FOR PERFORMING "PRESS-PRESS-TIRE" MASSAGE |
US6430956B1 (en) | 2001-05-15 | 2002-08-13 | Cimex Biotech Lc | Hand-held, heat sink cryoprobe, system for heat extraction thereof, and method therefore |
GB0111986D0 (en) | 2001-05-16 | 2001-07-04 | Optomed As | Cryosurgical apparatus and methods |
CN2514795Y (en) | 2001-05-18 | 2002-10-09 | 郑晓丹 | Multi-contact freezing beauty pencil |
US7192426B2 (en) | 2001-05-31 | 2007-03-20 | Endocare, Inc. | Cryogenic system |
US20020188286A1 (en) | 2001-06-06 | 2002-12-12 | Quijano Rodolfo C. | Methods for treating vulnerable plaque |
US6551341B2 (en) | 2001-06-14 | 2003-04-22 | Advanced Cardiovascular Systems, Inc. | Devices configured from strain hardened Ni Ti tubing |
FR2826107A1 (en) | 2001-06-19 | 2002-12-20 | M D I C | Cold pack useful for cryotherapy or food preservation comprises sealed flexible casing containing aqueous composition, hydrocolloid thickener and freezing point depressant |
TW476644B (en) | 2001-06-28 | 2002-02-21 | Wen-Hu Liau | Portable first-aid cold hot compress pack |
JP3393128B1 (en) | 2001-07-18 | 2003-04-07 | 正雄 酒井 | Female wearing condom |
CN2514811Y (en) | 2001-07-31 | 2002-10-09 | 尹旭光 | Electrothermal device for heatig foot |
US20040260210A1 (en) | 2003-06-23 | 2004-12-23 | Engii (2001) Ltd. | System and method for face and body treatment |
US20030032900A1 (en) | 2001-08-08 | 2003-02-13 | Engii (2001) Ltd. | System and method for facial treatment |
US20040260209A1 (en) | 2003-06-23 | 2004-12-23 | Engli (2001) Ltd. | System and method for face and body treatment |
US6438964B1 (en) | 2001-09-10 | 2002-08-27 | Percy Giblin | Thermoelectric heat pump appliance with carbon foam heat sink |
US6572450B2 (en) | 2001-09-21 | 2003-06-03 | Iphotonics, Inc. | Roll format polishing process for optical devices |
US20030062040A1 (en) | 2001-09-28 | 2003-04-03 | Lurie Keith G. | Face mask ventilation/perfusion systems and method |
US20030114885A1 (en) | 2001-10-02 | 2003-06-19 | Nova Richard C. | System and device for implementing an integrated medical device component package |
WO2003031482A1 (en) | 2001-10-05 | 2003-04-17 | Basf Aktiengesellschaft | Method for crosslinking hydrogels with morpholine-2,3-diones |
US6699267B2 (en) | 2001-10-11 | 2004-03-02 | Medivance Incorporated | Patient temperature control system with fluid temperature response |
US6660027B2 (en) | 2001-10-11 | 2003-12-09 | Medivance Incorporated | Patient temperature control system with fluid preconditioning |
US7112340B2 (en) | 2001-10-19 | 2006-09-26 | Baxter International Inc. | Compositions of and method for preparing stable particles in a frozen aqueous matrix |
US20030125649A1 (en) | 2001-10-31 | 2003-07-03 | Mcintosh Laura Janet | Method and system apparatus using temperature and pressure for treating medical disorders |
KR100994666B1 (en) | 2001-11-20 | 2010-11-16 | 웨스턴 디지털 테크놀로지스, 인코포레이티드 | Access and control system for network based devices |
US6889090B2 (en) | 2001-11-20 | 2005-05-03 | Syneron Medical Ltd. | System and method for skin treatment using electrical current |
US6648904B2 (en) | 2001-11-29 | 2003-11-18 | Palomar Medical Technologies, Inc. | Method and apparatus for controlling the temperature of a surface |
US6849075B2 (en) | 2001-12-04 | 2005-02-01 | Estech, Inc. | Cardiac ablation devices and methods |
US20030109910A1 (en) | 2001-12-08 | 2003-06-12 | Lachenbruch Charles A. | Heating or cooling pad or glove with phase change material |
US6755852B2 (en) | 2001-12-08 | 2004-06-29 | Charles A. Lachenbruch | Cooling body wrap with phase change material |
US6699266B2 (en) | 2001-12-08 | 2004-03-02 | Charles A. Lachenbruch | Support surface with phase change material or heat tubes |
EP1627662B1 (en) | 2004-06-10 | 2011-03-02 | Candela Corporation | Apparatus for vacuum-assisted light-based treatments of the skin |
US7762965B2 (en) | 2001-12-10 | 2010-07-27 | Candela Corporation | Method and apparatus for vacuum-assisted light-based treatments of the skin |
JP2003190201A (en) | 2001-12-26 | 2003-07-08 | Lion Corp | Body cooler and body warmer |
CA2476873A1 (en) | 2002-02-20 | 2003-08-28 | Liposonix, Inc. | Ultrasonic treatment and imaging of adipose tissue |
US6523354B1 (en) | 2002-03-08 | 2003-02-25 | Deborah Ann Tolbert | Cooling blanket |
ES2390598T3 (en) | 2002-03-15 | 2012-11-14 | The General Hospital Corporation | Devices for selective disintegration of adipose tissue by controlled cooling |
US8840608B2 (en) | 2002-03-15 | 2014-09-23 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
US6662054B2 (en) | 2002-03-26 | 2003-12-09 | Syneron Medical Ltd. | Method and system for treating skin |
US20030236487A1 (en) | 2002-04-29 | 2003-12-25 | Knowlton Edward W. | Method for treatment of tissue with feedback |
US20040176667A1 (en) | 2002-04-30 | 2004-09-09 | Mihai Dan M. | Method and system for medical device connectivity |
US20030220594A1 (en) | 2002-05-24 | 2003-11-27 | United States Manufacturing Company, Inc. | Torso orthosis apparatus and method |
US6746474B2 (en) | 2002-05-31 | 2004-06-08 | Vahid Saadat | Apparatus and methods for cooling a region within the body |
JP3786055B2 (en) | 2002-06-07 | 2006-06-14 | ソニー株式会社 | Data processing system, data processing apparatus and method, and computer program |
CN1675879A (en) | 2002-06-07 | 2005-09-28 | 索尼株式会社 | Data processing system, data processing device, data processing method, and computer program |
WO2004000150A1 (en) | 2002-06-19 | 2003-12-31 | Palomar Medical Technologies, Inc. | Method and apparatus for photothermal treatment of tissue at depth |
US7276058B2 (en) | 2002-06-19 | 2007-10-02 | Palomar Medical Technologies, Inc. | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
JP2004073812A (en) | 2002-06-20 | 2004-03-11 | Ya Man Ltd | Massager |
EP1538980B1 (en) | 2002-06-25 | 2017-01-18 | Ultrashape Ltd. | Device for body aesthetics |
US6820961B2 (en) | 2002-06-28 | 2004-11-23 | Lexmark International, Inc. | Stationary ink mist chimney for ink jet printer |
US6969399B2 (en) | 2002-07-11 | 2005-11-29 | Life Recovery Systems Hd, Llc | Apparatus for altering the body temperature of a patient |
US7250047B2 (en) | 2002-08-16 | 2007-07-31 | Lumenis Ltd. | System and method for treating tissue |
US6860896B2 (en) | 2002-09-03 | 2005-03-01 | Jeffrey T. Samson | Therapeutic method and apparatus |
US6789545B2 (en) | 2002-10-04 | 2004-09-14 | Sanarus Medical, Inc. | Method and system for cryoablating fibroadenomas |
CA2500961A1 (en) | 2002-10-07 | 2004-04-22 | Palomar Medical Technologies, Inc. | Apparatus for performing photobiostimulation |
US8226698B2 (en) | 2002-10-08 | 2012-07-24 | Vitalwear, Inc. | Therapeutic cranial wrap for a contrast therapy system |
US6994151B2 (en) | 2002-10-22 | 2006-02-07 | Cooligy, Inc. | Vapor escape microchannel heat exchanger |
CN1708261B (en) | 2002-10-23 | 2012-07-04 | 帕洛玛医疗技术公司 | Phototreatment device for use with coolants and topical substances |
US20040082886A1 (en) | 2002-10-24 | 2004-04-29 | Timpson Sandra Tee | Therapeutic device for relieving pain and stress |
GB2396109B (en) | 2002-12-12 | 2006-04-19 | Johnson & Johnson Medical Ltd | Absorbent multilayer hydrogel wound dressings |
CN1511503A (en) | 2002-12-30 | 2004-07-14 | 中国科学院理化技术研究所 | Slimming device that alternately stimulates cold and heat on the skin |
US7976519B2 (en) | 2002-12-31 | 2011-07-12 | Kci Licensing, Inc. | Externally-applied patient interface system and method |
US7410484B2 (en) | 2003-01-15 | 2008-08-12 | Cryodynamics, Llc | Cryotherapy probe |
US7083612B2 (en) | 2003-01-15 | 2006-08-01 | Cryodynamics, Llc | Cryotherapy system |
US7273479B2 (en) | 2003-01-15 | 2007-09-25 | Cryodynamics, Llc | Methods and systems for cryogenic cooling |
US20050143781A1 (en) | 2003-01-31 | 2005-06-30 | Rafael Carbunaru | Methods and systems for patient adjustment of parameters for an implanted stimulator |
US20060234899A1 (en) | 2003-03-05 | 2006-10-19 | H.H. Brown Shoe Technologies Inc. D/B/A Dicon Technologies | Hydrophilic polyurethane foam articles comprising an antimicrobial compound |
EP1624787A4 (en) | 2003-03-06 | 2010-12-15 | Tria Beauty Inc | Method and device for sensing skin contact |
US7037326B2 (en) | 2003-03-14 | 2006-05-02 | Hee-Young Lee | Skin cooling device using thermoelectric element |
DE10314138A1 (en) | 2003-03-25 | 2004-10-07 | Krüger & Gothe GmbH | Heating / cooling device |
US9149322B2 (en) | 2003-03-31 | 2015-10-06 | Edward Wells Knowlton | Method for treatment of tissue |
US20040206365A1 (en) | 2003-03-31 | 2004-10-21 | Knowlton Edward Wells | Method for treatment of tissue |
GB0307963D0 (en) | 2003-04-05 | 2003-05-14 | Eastman Kodak Co | A foamed material and a method of making thereof |
US7220778B2 (en) | 2003-04-15 | 2007-05-22 | The General Hospital Corporation | Methods and devices for epithelial protection during photodynamic therapy |
US7659301B2 (en) | 2003-04-15 | 2010-02-09 | The General Hospital Corporation | Methods and devices for epithelial protection during photodynamic therapy |
US20040210287A1 (en) | 2003-04-21 | 2004-10-21 | Greene Judy L. | Portable cooling or heating device for applying cryotherapy |
KR20040094508A (en) | 2003-05-02 | 2004-11-10 | 김창선 | Apparatus for Skin Treatment Using Ultra-sonic And Cold-Hot |
US20040249427A1 (en) | 2003-06-06 | 2004-12-09 | Yunes Nabilsi | Medical cooler device |
US7147610B2 (en) | 2003-06-19 | 2006-12-12 | Tarek Maalouf | Multiple combination heat/massage devices |
JP4504099B2 (en) | 2003-06-25 | 2010-07-14 | 株式会社リコー | Digital certificate management system, digital certificate management apparatus, digital certificate management method, update procedure determination method and program |
US7479104B2 (en) | 2003-07-08 | 2009-01-20 | Maquet Cardiovascular, Llc | Organ manipulator apparatus |
US8100956B2 (en) | 2006-05-09 | 2012-01-24 | Thermotek, Inc. | Method of and system for thermally augmented wound care oxygenation |
EP1646351B1 (en) | 2003-07-18 | 2011-03-30 | Thermotek, Inc. | Thermal system for a blanket |
US20050043723A1 (en) | 2003-08-19 | 2005-02-24 | Schering-Plough Healthcare Products, Inc. | Cryosurgery device |
JP2005065984A (en) | 2003-08-25 | 2005-03-17 | Nikon Corp | Massage machine |
US20050049526A1 (en) | 2003-09-03 | 2005-03-03 | Baer Mark P. | Massage devices and methods thereof |
US20050049661A1 (en) | 2003-09-03 | 2005-03-03 | Koffroth Shirley B. | Ice belt to reduce body temperature |
CA2441489A1 (en) | 2003-09-12 | 2005-03-12 | Jocelyn Tortal | Inducing and contouring ice formation |
US7077858B2 (en) | 2003-09-22 | 2006-07-18 | Coolhead Technologies, Inc. | Flexible heat exchangers for medical cooling and warming applications |
KR101056676B1 (en) | 2003-09-30 | 2011-08-22 | 소니 주식회사 | How to get content |
JP2005110755A (en) | 2003-10-03 | 2005-04-28 | Shinko Denshi Kk | Heating/cooling apparatus for reducing muscular fatigue |
US7282036B2 (en) | 2003-10-24 | 2007-10-16 | Masatoshi Masuda | Cosmetic device having vibrator |
EP1527760A1 (en) | 2003-10-29 | 2005-05-04 | Normand, Jacques | Thermal pad and its use |
US7613523B2 (en) | 2003-12-11 | 2009-11-03 | Apsara Medical Corporation | Aesthetic thermal sculpting of skin |
KR20060113930A (en) | 2003-12-30 | 2006-11-03 | 리포소닉스 인코포레이티드 | Systems and devices for the destruction of adipose tissue |
US7857773B2 (en) | 2003-12-30 | 2010-12-28 | Medicis Technologies Corporation | Apparatus and methods for the destruction of adipose tissue |
CN1901837B (en) | 2003-12-30 | 2010-05-12 | 利普索尼克斯股份有限公司 | Component ultrasound transducer |
WO2005065407A2 (en) | 2003-12-30 | 2005-07-21 | Liposonix, Inc. | Position tracking device |
KR101188930B1 (en) | 2003-12-30 | 2012-10-08 | 메디시스 테크놀로지스 코포레이션 | Ultrasound therapy head with movement control |
US20050149153A1 (en) | 2004-01-07 | 2005-07-07 | Kazuo Nakase | Body temperature adjuster |
US20070141265A1 (en) | 2004-02-02 | 2007-06-21 | Timothy Thomson | Process for controlling the density, conformation and composition of the hydrophilic layer of a polyurethane composite |
JP2005237908A (en) | 2004-02-12 | 2005-09-08 | Tamotsu Nishizaki | Cryosurgical unit using heat exchanger |
JP4109640B2 (en) | 2004-02-25 | 2008-07-02 | 株式会社エム・アイ・ラボ | Automatic excitation massager |
US7052167B2 (en) | 2004-02-25 | 2006-05-30 | Vanderschuit Carl R | Therapeutic devices and methods for applying therapy |
US20060035380A1 (en) | 2004-03-12 | 2006-02-16 | L'oreal | Fake-proof marking of a composition |
JP2005312950A (en) | 2004-03-31 | 2005-11-10 | Terumo Corp | Medical tool for energy irradiation and medical energy irradiation device |
JP4971133B2 (en) | 2004-04-01 | 2012-07-11 | ザ ジェネラル ホスピタル コーポレイション | Equipment for dermatological treatment |
EP2343021A1 (en) | 2004-04-01 | 2011-07-13 | The General Hospital Corporation | Method and apparatus for dermatological treatment and tissue reshaping |
US8571648B2 (en) | 2004-05-07 | 2013-10-29 | Aesthera | Apparatus and method to apply substances to tissue |
US7842029B2 (en) | 2004-05-07 | 2010-11-30 | Aesthera | Apparatus and method having a cooling material and reduced pressure to treat biological external tissue |
US20050251117A1 (en) | 2004-05-07 | 2005-11-10 | Anderson Robert S | Apparatus and method for treating biological external tissue |
US20070179482A1 (en) | 2004-05-07 | 2007-08-02 | Anderson Robert S | Apparatuses and methods to treat biological external tissue |
JP2005323716A (en) | 2004-05-13 | 2005-11-24 | Takeshi Shimizu | Cold spot stimulation device |
US20050277859A1 (en) | 2004-05-27 | 2005-12-15 | Carlsmith Bruce S | Joint protection device |
US7959657B1 (en) | 2004-07-07 | 2011-06-14 | Harsy Douglas R | Portable thermal therapeutic apparatus and method |
JP4579603B2 (en) | 2004-07-14 | 2010-11-10 | 株式会社リブドゥコーポレーション | Non-woven fabric for skin cleaning |
US20060036300A1 (en) | 2004-08-16 | 2006-02-16 | Syneron Medical Ltd. | Method for lypolisis |
US7171508B2 (en) | 2004-08-23 | 2007-01-30 | Micron Technology, Inc. | Dual port memory with asymmetric inputs and outputs, device, system and method |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
KR20170012594A (en) | 2004-10-06 | 2017-02-02 | 가이디드 테라피 시스템스, 엘.엘.씨. | Ultrasound treatment system |
US20060111744A1 (en) | 2004-10-13 | 2006-05-25 | Guided Therapy Systems, L.L.C. | Method and system for treatment of sweat glands |
KR101328103B1 (en) | 2004-10-06 | 2013-11-13 | 가이디드 테라피 시스템스, 엘.엘.씨. | Method and system for noninvasive cosmetic enhancement |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US8663112B2 (en) | 2004-10-06 | 2014-03-04 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
US8690779B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Noninvasive aesthetic treatment for tightening tissue |
US20120046547A1 (en) | 2004-10-06 | 2012-02-23 | Guided Therapy Systems, Llc | System and method for cosmetic treatment |
US20060094988A1 (en) | 2004-10-28 | 2006-05-04 | Tosaya Carol A | Ultrasonic apparatus and method for treating obesity or fat-deposits or for delivering cosmetic or other bodily therapy |
JP4324673B2 (en) | 2004-11-05 | 2009-09-02 | 国立大学法人東北大学 | Cryotherapy device with Peltier module |
US20060122509A1 (en) | 2004-11-24 | 2006-06-08 | Liposonix, Inc. | System and methods for destroying adipose tissue |
US7828831B1 (en) | 2004-12-06 | 2010-11-09 | Deroyal Industries, Inc. | Hot and cold fluid therapy system |
US7780656B2 (en) | 2004-12-10 | 2010-08-24 | Reliant Technologies, Inc. | Patterned thermal treatment using patterned cryogen spray and irradiation by light |
GB2422109B (en) | 2005-01-13 | 2007-02-21 | Richard Mills | Apparatus for providing a heating and cooling effect |
WO2006077572A2 (en) | 2005-01-24 | 2006-07-27 | Yuval Avni | Devices and method for applying vibrations to joints |
WO2006086513A2 (en) | 2005-02-08 | 2006-08-17 | Carewave, Inc. | Apparatus and method for using a portable thermal device to reduce accommodation of nerve receptors |
AU2006222547A1 (en) | 2005-03-09 | 2006-09-14 | Ronald Allan Greenberg | An apparatus and method of body contouring and skin conditioning |
US20060206040A1 (en) | 2005-03-09 | 2006-09-14 | Greenberg Ronald A | aparatus and method of body contouring and skin conditioning using a mobile suction device |
US20090047607A1 (en) | 2005-03-31 | 2009-02-19 | Hiroyuki Nagasaka | Exposure method, exposure apparatus and device fabricating methods |
US7975702B2 (en) | 2005-04-05 | 2011-07-12 | El.En. S.P.A. | System and method for laser lipolysis |
EP1885306B1 (en) | 2005-04-27 | 2016-06-22 | ZOLL Circulation, Inc. | Apparatus and method for providing enhanced heat transfer from a body |
US7217265B2 (en) | 2005-05-18 | 2007-05-15 | Cooltouch Incorporated | Treatment of cellulite with mid-infrared radiation |
US7713266B2 (en) | 2005-05-20 | 2010-05-11 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US7850683B2 (en) | 2005-05-20 | 2010-12-14 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20090326621A1 (en) | 2005-05-24 | 2009-12-31 | Rizk El-Galley | Surgical delivery devices and methods |
CN2843367Y (en) | 2005-07-01 | 2006-12-06 | 李铁军 | The refrigerating plant that is used for the treatment of skin vegetations |
WO2007012083A2 (en) | 2005-07-20 | 2007-01-25 | Verimatrix, Inc. | Network user authentication system and method |
US7955262B2 (en) | 2005-07-26 | 2011-06-07 | Syneron Medical Ltd. | Method and apparatus for treatment of skin using RF and ultrasound energies |
US20070032561A1 (en) | 2005-08-05 | 2007-02-08 | I-Sioun Lin | Modified hydrophilic polyurethane memory foam, application and manufacturing method thereof |
US20070055173A1 (en) | 2005-08-23 | 2007-03-08 | Sanarus Medical, Inc. | Rotational core biopsy device with liquid cryogen adhesion probe |
CN2850584Y (en) | 2005-09-05 | 2006-12-27 | 李钟俊 | Freezing skin-softening cosmetic instrument |
CN2850585Y (en) | 2005-09-05 | 2006-12-27 | 李钟俊 | Novel freezing skin-softening cosmetic instrument with magnetic field |
US8518069B2 (en) | 2005-09-07 | 2013-08-27 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US7967763B2 (en) | 2005-09-07 | 2011-06-28 | Cabochon Aesthetics, Inc. | Method for treating subcutaneous tissues |
GB2431108A (en) | 2005-09-07 | 2007-04-18 | Mohammed Firoz Hussein | Applicator for dispensing cryogenic fluid |
US9028469B2 (en) | 2005-09-28 | 2015-05-12 | Candela Corporation | Method of treating cellulite |
US20070078502A1 (en) | 2005-10-05 | 2007-04-05 | Thermage, Inc. | Method and apparatus for estimating a local impedance factor |
US7572268B2 (en) | 2005-10-13 | 2009-08-11 | Bacoustics, Llc | Apparatus and methods for the selective removal of tissue using combinations of ultrasonic energy and cryogenic energy |
US7729773B2 (en) | 2005-10-19 | 2010-06-01 | Advanced Neuromodualation Systems, Inc. | Neural stimulation and optical monitoring systems and methods |
US8108047B2 (en) | 2005-11-08 | 2012-01-31 | Newlife Sciences Llc | Device and method for the treatment of pain with electrical energy |
US9248317B2 (en) | 2005-12-02 | 2016-02-02 | Ulthera, Inc. | Devices and methods for selectively lysing cells |
US20080014627A1 (en) | 2005-12-02 | 2008-01-17 | Cabochon Aesthetics, Inc. | Devices and methods for selectively lysing cells |
US20070135876A1 (en) | 2005-12-08 | 2007-06-14 | Weber Paul J | Acne and skin defect treatment via non-radiofrequency electrical current controlled power delivery device and methods |
US7799018B2 (en) | 2006-01-06 | 2010-09-21 | Olga Goulko | Cryogenic applicator for rejuvenating human skin and related method |
US20090312676A1 (en) | 2006-02-02 | 2009-12-17 | Tylerton International Inc. | Metabolic Sink |
CN100362067C (en) | 2006-02-08 | 2008-01-16 | 舒宏纪 | Interface paint with high hydrophobicity, heat conductivity and adhesion |
US7824437B1 (en) | 2006-02-13 | 2010-11-02 | Gina Saunders | Multi-functional abdominal cramp reducing device and associated method |
US8133191B2 (en) | 2006-02-16 | 2012-03-13 | Syneron Medical Ltd. | Method and apparatus for treatment of adipose tissue |
US7854754B2 (en) | 2006-02-22 | 2010-12-21 | Zeltiq Aesthetics, Inc. | Cooling device for removing heat from subcutaneous lipid-rich cells |
JP4903471B2 (en) | 2006-03-30 | 2012-03-28 | 東急建設株式会社 | Building wall material and wireless transmission system |
US20070249519A1 (en) | 2006-04-20 | 2007-10-25 | Kalypsys, Inc. | Methods for the upregulation of glut4 via modulation of ppar delta in adipose tissue and for the treatment of disease |
US20070255187A1 (en) | 2006-04-26 | 2007-11-01 | Branch Alan P | Vibrating therapy device |
US7615036B2 (en) | 2006-05-11 | 2009-11-10 | Kalypto Medical, Inc. | Device and method for wound therapy |
US20070282318A1 (en) | 2006-05-16 | 2007-12-06 | Spooner Gregory J | Subcutaneous thermolipolysis using radiofrequency energy |
US20070270925A1 (en) | 2006-05-17 | 2007-11-22 | Juniper Medical, Inc. | Method and apparatus for non-invasively removing heat from subcutaneous lipid-rich cells including a coolant having a phase transition temperature |
KR100746322B1 (en) | 2006-06-12 | 2007-08-06 | 주식회사 바이오스마트 | Loaded skin care device for cryotherapy and care |
KR100746323B1 (en) | 2006-06-12 | 2007-08-06 | 주식회사 바이오스마트 | Roller skin care device for cryotherapy and care |
US8246611B2 (en) | 2006-06-14 | 2012-08-21 | Candela Corporation | Treatment of skin by spatial modulation of thermal heating |
US8460352B2 (en) | 2006-07-05 | 2013-06-11 | Kaz Usa, Inc. | Site-specific pad with notch |
US20080046047A1 (en) | 2006-08-21 | 2008-02-21 | Daniel Jacobs | Hot and cold therapy device |
EP2059215B1 (en) | 2006-08-28 | 2015-12-02 | Gerard Hassler | Improved preparation for reducing and/or preventing body fat and respective uses, in particular together with a dressing material |
US20090171253A1 (en) | 2006-09-06 | 2009-07-02 | Cutera, Inc. | System and method for dermatological treatment using ultrasound |
ATE489048T1 (en) | 2006-09-08 | 2010-12-15 | Arbel Medical Ltd | DEVICE FOR COMBINED TREATMENT |
US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US20080077201A1 (en) | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Cooling devices with flexible sensors |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
WO2008055243A2 (en) | 2006-10-31 | 2008-05-08 | Zeltiq Aesthetics, Inc. | Method and apparatus for cooling subcutaneous lipid-rich cells or tissue |
CN200970265Y (en) | 2006-11-09 | 2007-11-07 | 韩秀玲 | Freezing therapeutic device |
US20080140371A1 (en) | 2006-11-15 | 2008-06-12 | General Electric Company | System and method for treating a patient |
EP2097133A1 (en) | 2006-12-18 | 2009-09-09 | Koninklijke Philips Electronics N.V. | Cell lysis or electroporation device comprising at least one pyroelectric material |
US20080161892A1 (en) | 2006-12-28 | 2008-07-03 | John Anthony Mercuro | Facial Cold -Pack Holder |
US8414631B2 (en) | 2007-02-13 | 2013-04-09 | Thermotek, Inc. | System and method for cooled airflow for dermatological applications |
JP2010534076A (en) | 2007-02-16 | 2010-11-04 | ケー. パール,ポール | An apparatus and method that applies non-invasive ultrasound to shape the body using skin contact cooling. |
CN101259329A (en) | 2007-03-08 | 2008-09-10 | 德切勒·克里斯托夫·迪亚特曼 | Warming device for plush toy |
EP2532320A3 (en) | 2007-04-19 | 2013-04-03 | Miramar Labs, Inc. | Apparatus for reducing sweat production |
RU2523620C2 (en) | 2007-04-19 | 2014-07-20 | Мирамар Лэбс,Инк. | Systems and methods for generating exposure on target tissue with using microwave energy |
US9241763B2 (en) | 2007-04-19 | 2016-01-26 | Miramar Labs, Inc. | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
US20080287839A1 (en) | 2007-05-18 | 2008-11-20 | Juniper Medical, Inc. | Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator |
KR20100041753A (en) | 2007-06-08 | 2010-04-22 | 싸이노슈어, 인코포레이티드 | Coaxial suction system for laser lipolysis |
US20080312651A1 (en) | 2007-06-15 | 2008-12-18 | Karl Pope | Apparatus and methods for selective heating of tissue |
US20090012434A1 (en) | 2007-07-03 | 2009-01-08 | Anderson Robert S | Apparatus, method, and system to treat a volume of skin |
KR20090000258U (en) | 2007-07-06 | 2009-01-09 | 주식회사 바이오스마트 | Roller skin care device for cryotherapy and care |
US20090018625A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Managing system temperature to remove heat from lipid-rich regions |
US20090018624A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Limiting use of disposable system patient protection devices |
WO2009011708A1 (en) | 2007-07-13 | 2009-01-22 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
US20090018626A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | User interfaces for a system that removes heat from lipid-rich regions |
US8523927B2 (en) | 2007-07-13 | 2013-09-03 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
US20090018627A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Secure systems for removing heat from lipid-rich regions |
WO2009026471A1 (en) | 2007-08-21 | 2009-02-26 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
US8433400B2 (en) | 2007-10-24 | 2013-04-30 | Marina Prushinskaya | Method and portable device for treating skin disorders |
US20090149930A1 (en) | 2007-12-07 | 2009-06-11 | Thermage, Inc. | Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue |
JP5545668B2 (en) | 2007-12-12 | 2014-07-09 | ミラマー ラブズ, インコーポレイテッド | System, apparatus method, and procedure for non-invasive tissue treatment using microwave energy |
KR101654863B1 (en) | 2007-12-12 | 2016-09-22 | 미라마 랩스 인코포레이티드 | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
WO2009095894A2 (en) | 2008-02-01 | 2009-08-06 | Alma Lasers Ltd. | Apparatus and method for selective ultrasonic damage of adipocytes |
JP2009189757A (en) | 2008-02-15 | 2009-08-27 | Akira Hirai | Fever relieving device |
EP2280675B1 (en) | 2008-04-30 | 2014-04-23 | Eric William Brader | Apparatus for preventing brain damage during cardiac arrest, cpr, or severe shock |
WO2009137699A2 (en) | 2008-05-07 | 2009-11-12 | Sanuwave, Inc. | Medical treatment system including an ancillary medical treatment apparatus with an associated data storage medium |
US20180104094A9 (en) | 2008-05-16 | 2018-04-19 | Seth A. Biser | Thermal eye compress systems and methods of use |
US20090299234A1 (en) | 2008-05-28 | 2009-12-03 | Nuga Medical Co., Ltd | Fat remover |
HUE027536T2 (en) | 2008-06-06 | 2016-10-28 | Ulthera Inc | System for cosmetic treatment and imaging |
US20090306749A1 (en) | 2008-06-07 | 2009-12-10 | Damalie Mulindwa | Therapeutic hot and cold water belt |
US20090312693A1 (en) | 2008-06-13 | 2009-12-17 | Vytronus, Inc. | System and method for delivering energy to tissue |
JP2011530349A (en) | 2008-08-07 | 2011-12-22 | ザ ジェネラル ホスピタル コーポレーション | Method and apparatus for skin hypopigmentation |
WO2010017556A1 (en) | 2008-08-08 | 2010-02-11 | Palomar Medical Technologies, Inc | Method and apparatus for fractional deformation and treatment of cutaneous and subcutaneous tissue |
US8672931B2 (en) | 2008-08-18 | 2014-03-18 | 3JT Enterprises, LLC | Cryosurgical device with metered dose |
US9149386B2 (en) | 2008-08-19 | 2015-10-06 | Niveus Medical, Inc. | Devices and systems for stimulation of tissues |
CA2736221C (en) | 2008-09-03 | 2016-01-05 | John M. Baust | A cryogenic system and method of use |
US8409184B2 (en) | 2009-09-09 | 2013-04-02 | Cpsi Holdings Llc | Cryo-medical injection device and method of use |
EP2346428B1 (en) | 2008-09-25 | 2019-11-06 | Zeltiq Aesthetics, Inc. | Treatment planning systems and methods for body contouring applications |
US20100087806A1 (en) | 2008-10-07 | 2010-04-08 | Vandolay, Inc. | Automated Cryogenic Skin Treatment |
US8603073B2 (en) | 2008-12-17 | 2013-12-10 | Zeltiq Aesthetics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
JP5620403B2 (en) | 2008-12-22 | 2014-11-05 | ミオサイエンス インコーポレーティッド | Method of skin protection for subcutaneous cryogenic remodeling for cosmetic and other treatments |
US20100168726A1 (en) | 2008-12-31 | 2010-07-01 | Marc Arthur Brookman | Cryogenic Dispensing System and Method for Treatment of Dermatological Conditions |
US8882758B2 (en) | 2009-01-09 | 2014-11-11 | Solta Medical, Inc. | Tissue treatment apparatus and systems with pain mitigation and methods for mitigating pain during tissue treatments |
US8372130B2 (en) | 2009-01-23 | 2013-02-12 | Forever Young International, Inc. | Temperature controlled facial mask with area-specific treatments |
EP2398552B1 (en) | 2009-02-20 | 2019-05-22 | Sage Products, LLC | Systems of powered muscle stimulation using an energy guidance field |
WO2010096840A2 (en) | 2009-02-23 | 2010-08-26 | Miramar Labs, Inc. | Tissue interface system and method |
DE102009014976B3 (en) | 2009-03-30 | 2010-06-02 | Jutta Munz | Applicator device for applying e.g. cream on eye portion of human body, has activator device provided in upper housing part, and producing heat or coldness that is transmitted to substance contained in substance chamber |
DE112010001833T5 (en) | 2009-04-30 | 2012-08-30 | Alma Lasers Ltd. | Establishment and method of dermatological treatment |
FR2946845B1 (en) | 2009-06-18 | 2011-08-19 | Oreal | DEVICE FOR TREATING HUMAN KERATINIC MATERIALS |
US9919168B2 (en) | 2009-07-23 | 2018-03-20 | Palomar Medical Technologies, Inc. | Method for improvement of cellulite appearance |
US8523791B2 (en) | 2009-08-11 | 2013-09-03 | Laboratoire Naturel Paris, Llc | Multi-modal drug delivery system |
US7946986B2 (en) | 2009-09-29 | 2011-05-24 | Medicis Technologies Corporation | Cartridge for use with an ultrasound therapy head |
US20110112520A1 (en) | 2009-11-11 | 2011-05-12 | Invasix Corporation | Method and device for fat treatment |
US20110300079A1 (en) | 2010-01-21 | 2011-12-08 | Zeltiq Aesthetics, Inc. | Compositions for use with a system for improved cooling of subcutaneous lipid-rich tissue |
KR20120107529A (en) | 2010-01-25 | 2012-10-02 | 이난타 파마슈티칼스, 인코포레이티드 | Hepatitis c virus inhibitors |
JP2013517897A (en) | 2010-01-25 | 2013-05-20 | ゼルティック エステティックス インコーポレイテッド | Home applicator and associated devices, systems and methods for non-invasively removing heat from subcutaneous multilipid cells via phase change coolant |
DE102010007177B4 (en) | 2010-02-08 | 2017-06-22 | Siemens Healthcare Gmbh | Display method for an image of the interior of a vessel located in front of a widening device and display device corresponding thereto |
US20110196438A1 (en) | 2010-02-10 | 2011-08-11 | Lukas Mnozil | Therapy device and method for treating underlying tissue using electrical and acoustic energies |
US20110202048A1 (en) | 2010-02-12 | 2011-08-18 | Solta Medical, Inc. | Methods for pain reduction with functional thermal stimulation and tissue treatment systems |
WO2011100692A1 (en) | 2010-02-15 | 2011-08-18 | The General Hospital Corporation | Methods and devices for selective disruption of visceral fat by controlled cooling |
US20110257642A1 (en) | 2010-04-16 | 2011-10-20 | Griggs Iii Charles Sherman | Method for producing a permanent or nearly permanent skin image, design or tattoo by freezing the skin |
WO2011163264A2 (en) | 2010-06-21 | 2011-12-29 | Candela Corporation | Driving microneedle arrays into skin and delivering rf energy |
US8676338B2 (en) | 2010-07-20 | 2014-03-18 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
FR2967893B1 (en) | 2010-11-25 | 2013-10-18 | Zadeh David Khorassani | MASSAGE APPARATUS COMPRISING A SUCTION SYSTEM |
NZ596830A (en) | 2010-12-01 | 2013-06-28 | Gold Rythmn Pty Ltd | Cryogenic freezing of skin folds or wrinkles on merino sheep to tighten or contract the skin to reduce flystrike and infestation |
WO2012094426A2 (en) | 2011-01-04 | 2012-07-12 | Schwartz Alan N | Gel-based seals and fixation devices and associated systems and methods |
US10722395B2 (en) | 2011-01-25 | 2020-07-28 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
US20120209363A1 (en) | 2011-02-10 | 2012-08-16 | R2T2 Solutions Llc | Hot and cold therapy device |
US9021614B2 (en) | 2011-02-18 | 2015-05-05 | Medical Techology, Inc. | Leg protector for sports activities |
US9038640B2 (en) | 2011-03-31 | 2015-05-26 | Viora Ltd. | System and method for fractional treatment of skin |
US20120310232A1 (en) | 2011-06-06 | 2012-12-06 | Danny Erez | System and method for treating a tissue using multiple energy types |
US8603096B2 (en) | 2011-06-10 | 2013-12-10 | Globus Medical, Inc. | Biomaterial dispensing device |
US20140222121A1 (en) | 2011-07-20 | 2014-08-07 | Scr Inc. | Athletic cooling and heating systems, devices and methods |
US9532832B2 (en) | 2011-09-05 | 2017-01-03 | Venus Concept Ltd. | Esthetic device for beautifying skin and methods thereof |
US20130073017A1 (en) | 2011-09-15 | 2013-03-21 | Fong Yu Liu | Thermal vacuum therapy and apparatus thereof |
KR20130043299A (en) | 2011-10-20 | 2013-04-30 | 김기태 | Medical skin beauty care apparatus for heating and stimulating skin using thermoelectric module and ultra-sonic vibrator |
EP3649973A1 (en) | 2011-11-16 | 2020-05-13 | The General Hospital Corporation | Method and apparatus for cryogenic treatment of skin tissue |
KR102251171B1 (en) | 2011-11-16 | 2021-05-13 | 더 제너럴 하스피탈 코포레이션 | Method and apparatus for cryogenic treatment of skin tissue |
US8397518B1 (en) | 2012-02-20 | 2013-03-19 | Dhama Innovations PVT. Ltd. | Apparel with integral heating and cooling device |
US20130331914A1 (en) | 2012-06-11 | 2013-12-12 | Martin Lee | Thermal therapy system and method of use |
GB2505289A (en) | 2012-06-22 | 2014-02-26 | Physiolab Technologies Ltd | Thermal and/or pressure regulation control system for a thermoregulation assembly |
KR20140038165A (en) | 2012-09-20 | 2014-03-28 | (주)휴톤 | Multi function apparatus for treating skin |
KR20140092121A (en) | 2013-01-15 | 2014-07-23 | 삼성전자주식회사 | Method for cooling ultrasound treatment apparatus, ultrasound treatment apparatus by using the same |
US9710607B2 (en) | 2013-01-15 | 2017-07-18 | Itrace Biomedical Inc. | Portable electronic therapy device and the method thereof |
US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
US20160128894A1 (en) | 2013-05-30 | 2016-05-12 | Koninklijke Philips N.V. | Non-invasive device for rejuvenation of skin tissue using treatment pressure below ambient pressure |
US8764693B1 (en) | 2013-11-20 | 2014-07-01 | Richard A. Graham | Systems and methods for decompression and elliptical traction of the cervical and thoracic spine |
WO2015106180A1 (en) | 2014-01-10 | 2015-07-16 | Marcio Marc Abreu | Devices to monitor and provide treatment at an abreu brain tunnel |
US20150216719A1 (en) | 2014-01-31 | 2015-08-06 | Zeltiq Aesthetics, Inc | Treatment systems and methods for treating cellulite and for providing other treatments |
WO2015117005A1 (en) | 2014-01-31 | 2015-08-06 | The General Hospital Corporation | Cooling device to disrupt function sebaceous glands |
ES2733641T3 (en) | 2014-02-12 | 2019-12-02 | Massachusetts Gen Hospital | Procedure and apparatus to affect the pigmentation of a tissue |
US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
WO2016048721A1 (en) | 2014-09-25 | 2016-03-31 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for altering the appearance of skin |
WO2017053324A1 (en) | 2015-09-21 | 2017-03-30 | Zeltiq Aesthetics, Inc. | Transcutaneous treatment systems and cooling devices |
ES2892598T3 (en) | 2015-10-19 | 2022-02-04 | Zeltiq Aesthetics Inc | Vascular treatment methods to cool vascular structures |
BR112018013919A2 (en) | 2016-01-07 | 2018-12-11 | Zeltiq Aesthetics Inc | temperature dependent adhesion between applicator and skin during tissue cooling |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US20170326346A1 (en) | 2016-05-10 | 2017-11-16 | Zeltiq Aesthetics, Inc. | Permeation enhancers and methods of cryotherapy |
-
2017
- 2017-02-16 US US15/435,179 patent/US10765552B2/en active Active
-
2020
- 2020-07-31 US US16/945,789 patent/US20210045912A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060188832A1 (en) * | 2005-02-22 | 2006-08-24 | Woodlane Environmental Technology, Inc. | Gel fuel log set |
US20070255362A1 (en) * | 2006-04-28 | 2007-11-01 | Juniper Medical, Inc. | Cryoprotectant for use with a cooling device for improved cooling of subcutaneous lipid-rich cells |
US20100280582A1 (en) * | 2009-04-30 | 2010-11-04 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
US20130035680A1 (en) * | 2011-08-01 | 2013-02-07 | Yoav Ben-Haim | Applicator and Tissue Interface Module for Dermatological Device |
Also Published As
Publication number | Publication date |
---|---|
US20170239079A1 (en) | 2017-08-24 |
US10765552B2 (en) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210045912A1 (en) | Cooling cup applicators with contoured heads and liner assemblies | |
US20220039818A1 (en) | Shallow surface cryotherapy applicators and related technology | |
US20230320894A1 (en) | Treatment systems, small volume applicators, and methods for treating submental tissue | |
US11452634B2 (en) | Device, system and method of removing heat from subcutaneous lipid-rich cells | |
US20180263677A1 (en) | Adhesive liners for cryotherapy | |
AU2014203094B2 (en) | Device, system and method of removing heat from subcutaneous lipid-rich cells | |
US20220047315A1 (en) | Multi-applicator system and method for body contouring | |
US10952891B1 (en) | Treatment systems with adjustable gap applicators and methods for cooling tissue | |
US10675176B1 (en) | Treatment systems, devices, and methods for cooling targeted tissue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ZELTIQ AESTHETICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROOT, AUSTIN;PENNYBACKER, WILLIAM;FRANGINEAS, GEORGE, JR.;AND OTHERS;SIGNING DATES FROM 20170222 TO 20170223;REEL/FRAME:054328/0819 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |