[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20210031562A1 - Run-Flat Tire - Google Patents

Run-Flat Tire Download PDF

Info

Publication number
US20210031562A1
US20210031562A1 US16/981,683 US201916981683A US2021031562A1 US 20210031562 A1 US20210031562 A1 US 20210031562A1 US 201916981683 A US201916981683 A US 201916981683A US 2021031562 A1 US2021031562 A1 US 2021031562A1
Authority
US
United States
Prior art keywords
rubber
undertread
tire
gauge
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/981,683
Inventor
Shunya Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Assigned to THE YOKOHAMA RUBBER CO., LTD. reassignment THE YOKOHAMA RUBBER CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARADA, Shunya
Publication of US20210031562A1 publication Critical patent/US20210031562A1/en
Assigned to THE YOKOHAMA RUBBER CO., LTD. reassignment THE YOKOHAMA RUBBER CO., LTD. CHANGE OF ADDRESS FOR ASSIGNEE Assignors: THE YOKOHAMA RUBBER CO., LTD.
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • B60C11/0075Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers with different base rubber layers in the axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2009Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords comprising plies of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/1835Rubber strips or cushions at the belt edges
    • B60C2009/1857Rubber strips or cushions at the belt edges radially above the belt plies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0033Thickness of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0355Circumferential grooves characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C2017/0081Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising special reinforcing means in the crown area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present technology relates to a run-flat tire.
  • Pneumatic tires are mounted on rims, inflated with air, and mounted on a vehicle. Internal air pressure bears the load when the vehicle is traveling. When a pneumatic tire is punctured, air escapes and the internal air pressure becomes low. In this state, bearing a load is problematic. Specifically, a load supported by the air pressure comes to be supported by the sidewall portions, causing the sidewall portions to greatly deform. As a result, travel is impeded.
  • Pneumatic tires are known that are run-flat tires capable of run-flat travel in which a vehicle travels with air having escaped from the tires due to a puncture or the like (for example, Japan Patent No. 4671319).
  • a run-flat tire is a tire provided with a reinforcing rubber layer on the inner side of the sidewall portions and of which bending rigidity of the sidewall portions has been improved. In other words, deformation of the sidewall portions of such pneumatic tires is suppressed, allowing the pneumatic tire to travel even in a state in which air inside the pneumatic tire has escaped and a large load is borne by the sidewall portions.
  • run-flat tires even if driving performance on icy road surfaces in a low air pressure state is improved, decreasing the driving performance on icy road surfaces in a normal air pressure state is not preferable.
  • the run-flat tire described in Japan Patent No. 4671319 above can be enhanced in terms of providing both driving performance on icy road surfaces in a low pressure state and driving performance on icy road surfaces in a normal air pressure state in a compatible manner.
  • the present technology provides a run-flat tire that can provide both driving performance on icy road surfaces in a low pressure state and driving performance on icy road surfaces in a normal air pressure state.
  • a run-flat tire according to an aspect of the present technology is a run-flat tire, including a reinforcing rubber layer having a roughly crescent-shaped meridian cross-section and being disposed in sidewall portions at both sides in a tire width direction.
  • the tread portion is provided formed of a tread rubber that includes a cap tread rubber and an undertread rubber, the undertread rubber being disposed on an inner side of the cap tread rubber in a tire radial direction and having a higher hardness than the cap tread rubber.
  • a gauge of the undertread rubber on a shoulder land portion on an outer side of an outermost main groove located furthest outward in the tire width direction is thicker than a gauge of the undertread rubber of a center land portion closest to a tire equatorial plane.
  • a gauge Ga_ce of the undertread rubber at the center land portion and a gauge Ga_sh of the undertread rubber at the shoulder land portion have a relationship Ga_ce ⁇ Ga_sh; and the gauge of the undertread rubber gradually decreases from the outermost main groove toward the tire equatorial plane.
  • a ratio W 1 /Wg of a width W 1 in the tire width direction of a portion of the undertread rubber where the gauge of the undertread rubber gradually decreases from the outermost main groove toward the tire equatorial plane to a groove width Wg of the outermost main groove is from 1.0 to 3.0.
  • a ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber at the center land portion to a groove depth GD of the outermost main groove is from 0.2 to 0.4; and a ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber at the shoulder land portion to the groove depth GD of the outermost main groove is from 0.4 to 0.7.
  • a gauge H of the undertread rubber on the tire equatorial plane side of the outermost main groove is larger than a gauge Ga_ce and smaller than or equal to a gauge Ga_sh; and a ratio H/GD of the gauge H to the groove depth GD of the outermost main groove is from 0.3 to 0.7.
  • the undertread rubber includes an undertread center rubber of the center land portion, and an undertread shoulder rubber disposed on an outer side of the undertread center rubber in the tire width direction; and a hardness of the undertread shoulder rubber is higher than a hardness of the undertread center rubber.
  • a gauge of the undertread shoulder rubber gradually decreases from the outermost main groove toward the tire equatorial plane.
  • a boundary surface between the undertread center rubber and the undertread shoulder rubber is inclined with respect to the tire width direction.
  • a ratio D 1 /D 2 of a distance D 1 in the tire width direction from an outer end of the undertread rubber in the tire width direction to an outermost end portion of the reinforcing rubber layer in the tire radial direction to a distance D 2 in the tire width direction from an outer edge of the outermost main groove to an outer end of the undertread rubber in the tire width direction is from 0.3 to 0.7.
  • a run-flat tire according to another aspect of the present technology is a run-flat tire, including a reinforcing rubber layer having a roughly crescent-shaped meridian cross-section and being disposed in sidewall portions at both sides in a tire width direction.
  • a tread portion is provided formed of a tread rubber that comprises a cap tread rubber and an undertread rubber, the undertread rubber being disposed on an inner side of the cap tread rubber in a tire radial direction and having a higher hardness than the cap tread rubber.
  • the undertread rubber includes an undertread center rubber of a center land portion, and an undertread shoulder rubber disposed on an outer side of the undertread center rubber in the tire width direction.
  • a hardness of the undertread shoulder rubber is higher than a hardness of the undertread center rubber.
  • a gauge of the undertread shoulder rubber gradually decreases from an outermost main groove located furthest outward in the tire width direction toward a tire equatorial plane.
  • a gauge of the undertread center rubber gradually increases from the outermost main groove toward the tire equatorial plane.
  • both driving performance on icy road surfaces in a low air pressure state and driving performance on icy road surfaces in a normal air pressure state can be provided in a compatible manner.
  • FIG. 1 is a meridian cross-sectional view of a run-flat tire according to the present embodiment.
  • FIG. 2 is an enlarged view illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1 .
  • FIG. 3 is an enlarged view illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1 .
  • FIG. 4 is an enlarged view illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1 .
  • FIG. 5 is an enlarged view illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1 .
  • FIG. 6 is a diagram illustrating a contact patch shape of an example in which the internal pressure of the run-flat tire is 250 kPa.
  • FIG. 7 is a diagram illustrating a contact patch shape of an example in which the internal pressure of the run-flat tire is 0 kPa.
  • FIG. 8 is a diagram illustrating a run-flat tire according to a modified example of the present embodiment.
  • FIG. 9 is a diagram illustrating a run-flat tire according to a modified example of the present embodiment.
  • FIG. 1 is a meridian cross-sectional view of a run-flat tire according to the present embodiment.
  • FIGS. 2 to 5 are enlarged views illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1 .
  • one side of an equatorial plane CL in the tire width direction is illustrated in a meridian cross-section.
  • tire radial direction refers to a direction orthogonal to a rotation axis (not illustrated in the drawings) of a run-flat tire 1 .
  • Inner side in the tire radial direction refers to the side toward the rotation axis in the tire radial direction.
  • Outer side in the tire radial direction refers to the side away from the axis of rotation in the tire radial direction.
  • Tire circumferential direction refers to the circumferential direction with the rotation axis as the center axis.
  • tire width direction refers to a direction parallel with the rotation axis P.
  • Inner side in the tire width direction refers to a side toward a tire equatorial plane (tire equator line) CL in the tire width direction.
  • Outer side in the tire width direction refers to a side away from the tire equatorial plane CL in the tire width direction.
  • Titer equatorial plane CL refers to a plane orthogonal to the rotation axis of the run-flat tire 1 that passes through the center of the tire width of the run-flat tire 1 .
  • Tire width is the width in the tire width direction between components located on outer sides in the tire width direction, or in other words, the distance between the components that are the most distant from the tire equatorial plane CL in the tire width direction.
  • Tire equator line refers to the line in the tire circumferential direction of the pneumatic tire 1 that lies on the tire equatorial plane CL. Note that in the present embodiment, the tire equator line and the tire equatorial plane are denoted by the same reference sign CL.
  • the run-flat tire 1 (also referred to simply as tire 1 below) of the present embodiment includes a tread portion 2 , shoulder portions 3 on opposite sides of the tread portion 2 , and sidewall portions 4 and bead portions 5 continuing on from the shoulder portions 3 in that order.
  • the tire 1 also includes a carcass layer 6 , a belt layer 7 , a belt reinforcing layer 8 , an innerliner layer 9 , and reinforcing rubber layers 10 a and 10 b.
  • the tread portion 2 is made of a tread rubber and is exposed on the outermost side of the tire 1 in the tire radial direction, with the surface thereof constituting the contour of the tire 1 .
  • a tread surface 21 is formed on an outer circumferential surface of the tread portion 2 , in other words, on a road contact surface that comes into contact with a road surface when running.
  • the tread surface 21 is provided with a plurality (four in the present embodiment) of main grooves 22 that extend in the tire circumferential direction parallel with the tire equator line CL.
  • a plurality of rib-like land portions 23 that extend in the tire circumferential direction are formed in the tread surface 21 by the plurality of main grooves 22 .
  • the plurality of land portions 23 include the land portion 23 referred to as a center land portion 23 C located closest to the tire equator line CL. Also, the plurality of land portions 23 include the land portion 23 referred to as a shoulder land portion 23 S located on an outer side of the main groove 22 (also referred to as the outermost main groove) located furthest outward in the tire width direction. The plurality of land portions 23 also include the land portion 23 referred to as a middle land portion 23 M located between the center land portion 23 C and the shoulder land portion 23 S.
  • Each land portion 23 may include a plurality of blocks. Furthermore, the plurality of blocks may each include a plurality of sipes extending roughly in the width direction.
  • the tread portion 2 can function as the tread portion of a studless tire as long as it includes a plurality of blocks and the plurality of blocks each include a plurality of sipes extending roughly in the width direction.
  • the main grooves 22 may extend in the tire circumferential direction in a bending or curving manner.
  • “Main groove” refers to a groove on which a wear indicator must be provided as specified by JATMA (The Japan Automobile Tyre Manufacturers Association, Inc.) and typically has a groove width of 3.0 mm or greater and a groove depth of 6.5 mm or greater.
  • “Lug groove” refers to a lateral groove extending in a tire width direction and typically having a groove width of 1.0 mm or greater and a groove depth of 3.0 mm or greater.
  • the outermost main groove 22 has a groove depth of from 8.0 mm to 11.0 mm.
  • the groove width is the maximum distance between the left and right groove walls at the groove opening portion and is measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state.
  • the groove width is measured with reference to the intersection points where the tread contact surface and extension lines of the groove walls meet, in a cross-sectional view normal to the groove length direction.
  • the groove width is measured with reference to the center line of the amplitude of the groove walls.
  • the groove depth is the maximum distance from the tread contact surface to the groove bottom and is measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state. Additionally, in a configuration in which the grooves include an uneven portion or sipes on the groove bottom, the groove depth is measured excluding these portions.
  • lug grooves that extend in a direction that intersects the tire circumferential direction may be provided in the land portions 23 of the tread portion 2 . Both ends of the lug grooves may meet the main grooves 22 , forming the land portion 23 into a plurality of block-like land portions divided in the tire circumferential direction. Note that the lug grooves may extend inclined with respect to the tire width direction in a bending or curving manner.
  • the shoulder portions 3 are portions of the tread portion 2 located on both outer sides in the tire width direction. In other words, the shoulder portions 3 are made of the tread rubber. Additionally, the sidewall portions 4 are exposed on the outermost sides of the tire 1 in the tire width direction. The sidewall portions 4 are each made of side rubber 4 A.
  • the bead portions 5 each include a bead core 51 and a bead filler 52 .
  • the bead core 51 is formed by winding a bead wire, which is a steel wire, into an annular shape.
  • the bead filler 52 is a rubber material that is disposed in the space formed by an end portion of the carcass layer 6 in the tire width direction being folded back at the position of the bead core 51 .
  • the bead portions 5 each include a rim cushion rubber 5 A that is outwardly exposed and comes into contact with the rim (not illustrated).
  • the rim cushion rubber 5 A constitutes the outer periphery of the bead portion 5 .
  • the rim cushion rubber 5 A extends from the tire inner side of the bead portion 5 around the lower end portion thereof to a position (sidewall portion 4 ) covering the bead filler 52 on the tire outer side.
  • the end portions of the carcass layer 6 in the tire width direction are folded back around the pair of bead cores 51 from an inner side to an outer side in the tire width direction, and the carcass layer 6 is stretched in a toroidal shape in the tire circumferential direction to form the framework of the tire.
  • the carcass layer 6 is made of a plurality of coating rubber-covered carcass cords (not illustrated) disposed side by side with an angle with respect to the tire circumferential direction along the tire meridian direction at an angle with respect to the tire circumferential direction.
  • the carcass cords are made of organic fibers (e.g., polyester, rayon, nylon, and the like).
  • the carcass layer 6 is provided with at least one layer, and in the present embodiment, two layers are provided. As illustrated in FIG.
  • the end portion of the inner layer of the two carcass layers 6 extends to the sidewall portion 4 covering all of the bead filler 52 , whereas the end portion of the outer layer extends to a position at which the bead filler 52 is only partially covered.
  • the belt layer 7 has a multilayer structure in which at least two belts 71 , 72 are layered.
  • the belt layer 7 is disposed on the outer side of the carcass layer 6 in the tire radial direction, i.e. on the outer circumference thereof, and covers the carcass layer 6 in the tire circumferential direction.
  • the belts 71 , 72 are made of coating rubber-covered cords (not illustrated) disposed side by side at a predetermined angle with respect to the tire circumferential direction (for example, from 20° to 30°).
  • the cords are made of steel or organic fibers (polyester, rayon, nylon, or the like).
  • the belts 71 , 72 overlap each other and are disposed so that the direction of the cords of the respective belts intersect each other.
  • the belt reinforcing layer 8 is disposed on the outer side of the belt layer 7 in the tire radial direction, i.e. on the outer circumference thereof, and covers the belt layer 7 in the tire circumferential direction.
  • the belt reinforcing layer 8 is made of coating rubber-covered cords (not illustrated) disposed side by side in the tire width direction and substantially parallel ( ⁇ 5°) to the tire circumferential direction.
  • the cords are made of steel or organic fibers (polyester, rayon, nylon, or the like).
  • the belt reinforcing layer 8 illustrated in FIG. 1 includes one layer covering all of the belt layer 7 and one layer covering the end portions of the belt layer 7 in the tire width direction.
  • the configuration of the belt reinforcing layer 8 is not limited to that described above.
  • a configuration may be used in which, for example, the two layers are disposed covering all of the belt layer 7 , or the two layers are disposed covering only the end portions of the belt layer 7 in the tire width direction.
  • a configuration of the belt reinforcing layer 8 may be used in which, for example, one layer is disposed covering all of the belt layer 7 , or one layer is disposed covering only the end portions of the belt layer 7 in the tire width direction.
  • the belt reinforcing layer 8 overlaps with at least the end portion of the belt layer 7 in the tire width direction.
  • the belt reinforcing layer 8 is configured by winding a band-like (e.g. with a width of 10 mm) strip material in the tire circumferential direction.
  • the innerliner layer 9 is the tire inner surface, i.e. the inner circumferential surface of the carcass layer 6 , and reaches the bead cores 51 of the pair of bead portions 5 at both end portions in the tire width direction and extends in the tire circumferential direction in a toroidal shape.
  • the innerliner layer 9 prevents air molecules from escaping from the tire. Note that, as illustrated in FIG. 1 , the innerliner layer 9 may be disposed extending on an inner side of the bead portion 5 . However, the innerliner layer 9 may be disposed extending to the lower portion (inner side in the tire radial direction) of the bead core 51 .
  • the reinforcing rubber layers 10 a and 10 b are disposed within the sidewall portion 4 and not exposed on an inner side or an outer side.
  • the reinforcing rubber layer 10 a is provided between the carcass layer 6 and the innerliner layer 9 corresponding to the tire inner side of the carcass layer 6 , and has a roughly crescent-shaped meridian cross-section.
  • the reinforcing rubber layer 10 b is provided between the carcass layer 6 and the side rubber 4 A and/or the rim cushion rubber 5 A corresponding to the tire outer side of the carcass layer 6 , and has a roughly crescent-shaped meridian cross-section.
  • the reinforcing rubber layers 10 a and 10 b are formed of rubber material that has a strength greater than that of the rim cushion rubber 5 A of the bead portions 5 or that of the side rubber 4 A of the sidewall portions 4 . Additionally, the reinforcing rubber layers 10 a and 10 b may be formed from different rubber materials. Note that the reinforcing rubber layers 10 a and 10 b are also referred to as run-flat liners.
  • the pneumatic tire 1 with such a configuration is mounted on a vehicle (not illustrated) with the bead portions 5 assembled on the rim and inflated to a predetermined air pressure.
  • the tread surface 21 comes into contact with the road surface while the tire 1 rotates.
  • a load including the weight of the vehicle is borne by the tread surface 21 .
  • the tire 1 elastically deforms in a manner governed by the nature of the load and hardness of the parts of the tire, and the air the tire is inflated with acts on the inside of the tire to expand the tire in an outward direction.
  • This biasing force due to the air the tire is inflated with prevents excessive deformation of the tire 1 , even when the tread surface 21 bears a load. Accordingly, the tire 1 can rotate while bearing a load, thus allowing the vehicle to travel.
  • the tire 1 does not readily deform due to the pressure of the air the tire is inflated with, while the vehicle is traveling, a foreign material may pierce the tread surface 21 and cause a puncture, for example, thus causing air from inside the tire 1 to escape.
  • the biasing force due to the air acting on the inside of the tire 1 to expand the tire 1 in an outward direction decreases in strength.
  • the tire-radial-direction load is borne by the sidewall portions 4 .
  • the sidewall portions 4 are susceptible to elastic deformation in the tire radial direction.
  • these sidewall portions 4 are provided with the reinforcing rubber layers 10 a and 10 b .
  • the reinforcing rubber layers 10 a and 10 b are formed of rubber material with a strength greater than that of the side rubber 4 A of the sidewall portions 4 . Accordingly, the reinforcing rubber layers 10 a and 10 b suppress deformation of the sidewall portions 4 in the tire radial direction when the sidewall portions 4 bear a tire-radial-direction load.
  • the tire 1 by virtue of the reinforcing rubber layers 10 a and 10 b suppressing deformation of the sidewall portions 4 in the tire radial direction, enables travel of the vehicle or run-flat travel (travel with the tire 1 in a deflated state).
  • “regular rim” refers to a “standard rim” defined by the Japan Automobile Tyre Manufacturers Association Inc. (JATMA), a “Design Rim” defined by the Tire and Rim Association, Inc. (TRA), or a “Measuring Rim” defined by the European Tyre and Rim Technical Organisation (ETRTO).
  • “Regular internal pressure” refers to a “maximum air pressure” defined by JATMA, the maximum value in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO.
  • Regular load refers to a “maximum load capacity” defined by JATMA, the maximum value in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “LOAD CAPACITY” defined by ETRTO.
  • the tread rubber that forms the tread portion 2 includes a cap tread rubber CA and an undertread rubber UT.
  • the undertread rubber UT is disposed on an inner side of the cap tread rubber CA in the tire radial direction.
  • the gauge of the undertread rubber UT at the shoulder land portion 23 S is thicker than the gauge of the undertread rubber UT at the center land portion 23 C.
  • the undertread rubber UT has a hardness higher than the hardness of the cap tread rubber CA.
  • the hardness of the undertread rubber UT is defined as the JIS (Japanese Industrial Standard) hardness at 20° C. and is from 55 to 85. The same applies to that described below.
  • the hardness of the undertread rubber UT is preferably higher than the hardness of the cap tread rubber CA and/or the hardness of the reinforcing rubber layer 10 a .
  • the gauge of the undertread rubber UT is determined by measuring the groove bottom of the main grooves 22 using an imaginary line L as a reference, and finding the average gauge within the land portion 23 or a block, excluding the portion of the main grooves 22 .
  • a gauge Ga_ce of the undertread rubber UT at the center land portion 23 C and a gauge Ga_sh of the undertread rubber UT at the shoulder land portion 23 S, illustrated in FIG. 2 have the relationship Ga_ce ⁇ Ga_sh.
  • a gauge H of the undertread rubber UT gradually decreases from the outermost main groove 22 towards the tire equatorial plane CL. By the gauge H gradually decreasing, block rigidity can be made appropriate and performance on ice can be improved.
  • the gauge H may gradually decrease in a straight line or may gradually decrease in a curved line as seen in a meridian cross-section. Preferably, the gauge H gradually decreases in a curved line that protrudes to the outer side in the tire radial direction.
  • the ratio W 1 /Wg of a width W 1 in the tire width direction of the portion of the undertread rubber UT where the gauge H of the undertread rubber UT gradually decreases from the outermost main groove 22 to the tire equatorial plane CL to a groove width Wg of the outermost main groove 22 is preferably from 1.0 to 3.0.
  • the ratio W 1 /Wg is less than 1.0, the block rigidity is too low, and the effect of suppressing buckling in a low pressure state is small, which is not preferable.
  • the ratio W 1 /Wg is greater than 3.0, the block rigidity is too high, and the performance on ice is difficult to ensure, which is not preferable.
  • the ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber UT at the center land portion 23 C to a groove depth GD of the outermost main groove 22 is preferably from 0.2 to 0.4, and the ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber UT at the shoulder land portion 23 S to the groove depth GD of the outermost main groove 22 is preferably from 0.4 to 0.7.
  • the gauge Ga_ce and the gauge Ga_sh of the undertread rubber UT are average values of the maximum gauges in the land portions 23 C, 23 S or in each block. The same applies to that described below.
  • the depth of a groove with a wear indicator is used as the groove depth GD. The same applies to that described below.
  • the gauge H of the undertread rubber UT on the tire equatorial plane CL side of the outermost main groove 22 is larger than the gauge Ga_ce and smaller than or equal to the gauge Ga_sh.
  • the ratio H/GD of the gauge H to the groove depth GD of the outermost main groove 22 is preferably from 0.3 to 0.7.
  • the ratio D 1 /D 2 of a distance D 1 in the tire width direction from an outer end of the undertread rubber UT in the tire width direction to an outermost end portion of the reinforcing rubber layer 10 a in the tire radial direction to a distance D 2 in the tire width direction from an outer edge of the outermost main groove 22 to an outer end of the undertread rubber UT in the tire width direction is preferably from 0.3 to 0.7.
  • the ratio D 1 /D 2 is less than 0.3, the reinforcing rubber layer 10 a is not tucked under enough and load durability is decreased, which is not preferable.
  • the ratio D 1 /D 2 is greater than 0.7, the reinforcing rubber layer 10 a is tucked under too much and the effect of suppressing buckling in a low pressure state is small, which is not preferable.
  • FIG. 3 is a diagram illustrating a run-flat tire according to another example of the present embodiment.
  • the undertread rubber UT is provided with a portion with a different hardness.
  • the undertread rubber UT includes an undertread center rubber UTce of the center land portion 23 C and an undertread shoulder rubber UTsh provided on the outer side of the undertread center rubber UTce in the tire width direction. Additionally, the hardness of the undertread shoulder rubber UTsh is higher than the hardness of the undertread center rubber UTce.
  • the hardness of the undertread center rubber UTce is defined as the JIS hardness at 20° C. and is preferably from 60 to 70.
  • the hardness of the undertread shoulder rubber UTsh is defined as the JIS hardness at 20° C. and is preferably from 70 to 80.
  • the undertread center rubber UTce and the undertread shoulder rubber UTsh preferably have a hardness higher than the hardness of the reinforcing rubber layer 10 a .
  • the hardness of the undertread center rubber UTce is lower than the hardness of the undertread shoulder rubber UTsh. In this manner, rigidity at the center land portion 23 C can be decreased and performance on ice can be improved. Furthermore, because the hardness of the undertread center rubber UTce is lower than the hardness of the undertread shoulder rubber UTsh, buckling at the shoulder land portion 23 S can be prevented, the ground contact area can be increased, and performance on ice can be improved.
  • the gauge H of the undertread shoulder rubber UTsh gradually decreases from the outermost main groove 22 toward the tire equatorial plane CL.
  • the ratio Ga_sh/GD of the gauge Ga_sh of the undertread shoulder rubber UTsh to the groove depth GD of the outermost main groove 22 is preferably from 0.3 to 0.7.
  • the ratio Ga_sh/GD is less than 0.3, the rigidity of the shoulder land portion 23 S is too low, and the effect of suppressing buckling in a low pressure state is small.
  • the ratio Ga_sh/GD is greater than 0.7, the rigidity of the shoulder land portion 23 S is too high, and the performance on ice is difficult to ensure.
  • a boundary surface K 1 between the undertread center rubber UTce and the undertread shoulder rubber UTsh may be a straight line or a curved line. Note that, preferably, the boundary surface K 1 is a curved line that protrudes to the outer side in the tire radial direction.
  • the boundary surface K 1 is inclined with respect to the tire width direction.
  • the boundary surface K 1 is continuously inclined with respect to the tire width direction. In this way, the hardness of the entire undertread rubber UT is gradually decreased, giving the land portions 23 or the blocks gradual changes in rigidity as opposed to dramatic change. This allows uneven wear to be suppressed.
  • the undertread center rubber UTce and the undertread shoulder rubber UTsh overlap one another at the boundary surface K 1 .
  • the undertread center rubber UTce is disposed on an outer side of the boundary surface K 1 in the tire radial direction and the undertread shoulder rubber UTsh is disposed on an inner side of the boundary surface K 1 in the tire radial direction.
  • the ratio W 1 a /W 1 of a width W 1 a in the tire width direction of the boundary surface K 1 to the width W 1 in the tire width direction of the portion of the undertread rubber UT where the gauge H gradually decreases is preferably from 0.3 to 1.0.
  • either the undertread center rubber UTce or the undertread shoulder rubber UTsh may be disposed on the outer side of the boundary surface K 1 in the tire radial direction.
  • FIG. 4 illustrates an example in which the undertread center rubber UTce is disposed on the inner side in the tire radial direction and the undertread shoulder rubber UTsh is disposed on the outer side in the tire radial direction.
  • the undertread center rubber UTce and the undertread shoulder rubber UTsh overlap one another at a boundary surface K 2 .
  • the inclination direction of the boundary surface K 2 with respect to the tire width direction is different from that in FIG. 3 .
  • the ratio W 1 b /W 1 of a width W 1 b in the tire width direction of the boundary surface K 2 to the width W 1 in the tire width direction of the portion of the undertread rubber UT where the gauge H gradually decreases is preferably from 0.3 to 0.8.
  • the rigidity of the center land portion 23 C can be decreased, which is advantageous in improving performance on ice.
  • FIG. 5 is a diagram illustrating in a meridian cross-section a run-flat tire according to another example of the present embodiment.
  • the rubber is pressed by protrusion portions of a mold (not illustrated) toward the inner side in the tire radial direction to form the main grooves 22 in the tread portion 2 .
  • the cap tread rubber CA may remain on the inner side of the groove bottom portion of the main grooves 22 in the tire radial direction.
  • FIGS. 3 and 4 illustrate examples in which the cap tread rubber CA remains.
  • a thickness Gb of the cap tread rubber CA remaining on the inner side of the groove bottom portion of the main grooves 22 in the tire radial direction is small.
  • the remaining cap tread rubber CA can be ignored, and it can be considered that the cap tread rubber CA and the undertread rubber UT is not present in the groove bottom portion of the main grooves 22 .
  • FIG. 6 is a diagram illustrating a contact patch shape 100 of an example in which the internal pressure of the run-flat tire is 250 kPa.
  • FIG. 7 is a diagram illustrating a contact patch shape 100 a of an example in which the internal pressure of the run-flat tire is 0 kPa.
  • the ground contact pressure increases at both end portions in the tire width direction.
  • the ground contact area takes the shape illustrated in FIG. 7 with less ground contact area than the shape illustrated in FIG. 6 .
  • the ground contact area of a portion 101 corresponding to the outermost main grooves 22 is greatly reduced.
  • FIGS. 8 and 9 are diagrams illustrating a run-flat tire according to modified examples of the present embodiment.
  • the undertread rubber UT includes an undertread center rubber UTce of the center land portion 23 C and an undertread shoulder rubber UTsh provided on the outer side of the undertread center rubber UTce in the tire width direction. Additionally, the hardness of the undertread shoulder rubber UTsh is higher than the hardness of the undertread center rubber UTce. Because the hardness of the undertread shoulder rubber UTsh of the shoulder portion 3 is higher than the hardness of the undertread center rubber UTce, buckling in a low pressure state can be suppressed.
  • the hardness of the undertread center rubber UTce is defined as the JIS hardness at 20° C. and is preferably from 60 to 70.
  • the hardness of the undertread shoulder rubber UTsh is defined as the JIS hardness at 20° C. and is preferably from 70 to 80.
  • the undertread center rubber UTce and the undertread shoulder rubber UTsh preferably have a hardness higher than the hardness of the reinforcing rubber layer 10 a .
  • the hardness of the undertread center rubber UTce is lower than the hardness of the undertread shoulder rubber UTsh. In this manner, rigidity at the center land portion 23 C can be decreased and performance on ice can be improved. Furthermore, because the hardness of the undertread center rubber UTce is lower than the hardness of the undertread shoulder rubber UTsh, buckling at the shoulder land portion 23 S can be prevented, the ground contact area can be increased, and performance on ice can be improved.
  • the gauge H of the undertread shoulder rubber UTsh gradually decreases from the outermost main groove 22 toward the tire equatorial plane CL.
  • the ratio Ga_sh/GD of the gauge Ga_sh of the undertread shoulder rubber UTsh to the groove depth GD of the outermost main groove 22 is preferably from 0.3 to 0.7.
  • the ratio Ga_sh/GD is less than 0.3, the rigidity of the shoulder land portion 23 S is too low, and the effect of suppressing buckling in a low pressure state is small.
  • the ratio Ga_sh/GD is greater than 0.7, the rigidity of the shoulder land portion 23 S is too high, and the performance on ice is difficult to ensure.
  • the boundary surface K 1 between the undertread center rubber UTce and the undertread shoulder rubber UTsh may be a straight line or a curved line. Note that, preferably, the boundary surface K 1 is a curved line that protrudes to the outer side in the tire radial direction.
  • the boundary surface K 1 is inclined with respect to the tire width direction. In other words, the boundary surface K 1 is continuously inclined with respect to the tire width direction. In this way, the hardness of the entire undertread rubber UT is gradually decreased, giving the land portions 23 or the blocks gradual changes in rigidity as opposed to dramatic change. This allows uneven wear to be suppressed.
  • the ratio W 2 /Wg of a width W 2 in the tire width direction of the boundary surface K 1 where the gauge H of the undertread rubber UT gradually decreases from the outermost main groove 22 to the tire equatorial plane CL to a groove width Wg of the outermost main groove 22 is preferably from 1.0 to 3.0.
  • the ratio W 2 /Wg is less than 1.0, the block rigidity is too low, and the effect of suppressing buckling in a low pressure state is small, which is not preferable.
  • the ratio W 2 /Wg is greater than 3.0, the block rigidity is too high, and the performance on ice is difficult to ensure, which is not preferable.
  • either the undertread center rubber UTce or the undertread shoulder rubber UTsh may be disposed on the outer side of the boundary surface K 1 in the tire radial direction.
  • FIG. 9 illustrates an example in which the undertread center rubber UTce is disposed on the inner side in the tire radial direction and the undertread shoulder rubber UTsh is disposed on the outer side in the tire radial direction.
  • the undertread center rubber UTce and the undertread shoulder rubber UTsh overlap one another at the boundary surface K 2 .
  • the inclination direction of the boundary surface K 2 with respect to the tire width direction is different from that in FIG. 8 .
  • the ratio W 2 /Wg of a width W 2 in the tire width direction of the boundary surface K 2 where the gauge H of the undertread rubber UT gradually decreases from the outermost main groove 22 to the tire equatorial plane CL to a groove width Wg of the outermost main groove 22 is preferably from 1.0 to 3.0.
  • the ratio W 2 /Wg is less than 1.0, the block rigidity is too low, and the effect of suppressing buckling in a low pressure state is small, which is not preferable.
  • the ratio W 2 /Wg is greater than 3.0, the block rigidity is too high, and the performance on ice is difficult to ensure, which is not preferable.
  • the run-flat tires 1 described with reference to FIGS. 8 and 9 are run-flat tires that include in the sidewall portions 4 at both sides in the tire width direction reinforcing rubber layers 10 a with a roughly crescent-shaped meridian cross-section.
  • the run-flat tires 1 also include the tread portion 2 including the cap tread rubber CA and the undertread rubber UT disposed on the inner side of the cap tread rubber CA in the tire radial direction, the undertread rubber UT having a higher hardness than the cap tread rubber CA.
  • the undertread rubber UT includes the undertread center rubber UTce disposed in the center land portion 23 C and the undertread shoulder rubber UTsh disposed on the outer side of the undertread center rubber UTce in the tire width direction.
  • the hardness of the undertread shoulder rubber UTsh is higher than the hardness of the undertread center rubber UTce. Furthermore, the gauge Ga_sh of the undertread shoulder rubber UTsh gradually decreases from the outermost main groove 22 toward the tire equatorial plane CL, and the gauge Ga_ce of the undertread center rubber UTce gradually increases from the outermost main groove 22 toward the tire equatorial plane CL. Because the hardness of the undertread rubber UT is set as described above, buckling at the shoulder land portion 23 S can be prevented, the ground contact area can be increased, and performance on ice can be improved.
  • the gauge of the undertread rubber UT is increased or the hardness of the undertread rubber UT is increased in the outer portion of the outermost main groove 22 located furthest outward in the tire width direction compared to the portion closest to the tire equatorial plane CL.
  • buckling in a low pressure state at the shoulder land portion 23 S can be prevented, the ground contact area can be increased, and performance on ice can be improved.
  • testing of performance on ice was performed on a plurality of types of test tires of different conditions (see Tables 1 to 3).
  • tires having a tire size of 245/50RF19105Q were mounted on a rim and mounted on a test vehicle. Rim size is 19 ⁇ 7.5 J. In the performance tests, the tires were evaluated at an air pressure of 250 kPa and 0 kPa.
  • the test vehicle is a 2000 cc four wheel drive passenger vehicle.
  • the tires were given a score using sensory evaluation by a test driver after the test vehicle was driven on a test course with an icy road surface.
  • the scores are expressed as index values and evaluated against the score of the tire of a Conventional Example used as a reference ( 100 ). For the evaluation results, larger values indicate superior performance on ice.
  • the gauge of the undertread rubber UT of the center land portion closest to the tire equatorial plane and the gauge of the undertread rubber UT of the shoulder land portion located on the outer side of the outermost main groove located furthest outward in the tire width direction are undifferentiated, the gauge of the undertread rubber UT does not gradually decrease, and the ratio D 1 /D 2 of the distance D 1 in the tire width direction from the outer end of the undertread rubber UT in the tire width direction to the outermost end portion of the reinforcing rubber layer in the tire radial direction to the distance D 2 in the tire width direction from the outer edge of the outermost main groove to the outer end of the undertread rubber UT in the tire width direction is 0.3.
  • the gauge of the undertread rubber UT of the center land portion closest to the tire equatorial plane is larger than the gauge of the undertread rubber UT of the shoulder land portion located on an outer side of the outermost main groove located furthest outward in the tire width direction, the gauge of the undertread rubber UT does not gradually decrease
  • the ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber UT at the center land portion to the groove depth GD of the outermost main groove is 0.6
  • the ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber UT at the shoulder land portion to the groove depth GD of the outermost main groove is 0.4
  • the gauge H of the undertread rubber UT on the tire equatorial plane side of the outermost main groove is smaller than the gauge Ga_ce and larger than the gauge Ga_sh
  • the ratio H/GD of the gauge H to the groove depth GD of the outermost main groove is 0.4
  • the undertread rubber UT includes the undertread center rubber UTce of the center land portion and the undertread shoulder rubber UTsh disposed on the outer side of the undertread center rubber UTce in the tire width direction and the hardness of the undertread shoulder rubber is higher than the hardness of the undertread center rubber, in examples in which, in a meridian cross-section, the gauge of the undertread shoulder rubber UTsh gradually decreases from the outermost main groove toward the tire equatorial plane, in examples in which, in a meridian cross-section, the boundary surface between the undertread center rubber UTce and the undertread shoulder rubber UTsh is inclined with respect to the tire width direction, and in examples in which the ratio D 1 /D 2 of the distance D 1 in the tire width direction from the outer end of the undertread rubber UT in the tire width direction to the outermost end portion of the reinforcing rubber layer
  • Example 2 Example 3
  • Example 4 Example 5 UT gauge of center Thin Thin Thin Thin Thin Thin UT gauge of shoulder Thick Thick Thick Thick UT rubber gauge Diagonal Diagonal (curved Diagonal (curved Diagonal (curved gradually decreases (straight line) line protruding to line protruding to line protruding to inner side in radial outer side in radial outer side in radial direction) direction) direction) Gradually decreasing 1.0 1.0 0.5 4.0 range of width W1/wg Ga_ce/GD 0.4 0.4 0.4 0.4 Ga_sh/GD 0.6 0.6 0.6 0.6 Relationship between Ga_ce ⁇ H ⁇ Ga_ce ⁇ H ⁇ Ga_ce ⁇ H ⁇ Ga_ce ⁇ H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh Ga_sh H/GD 0.5 0.5 0.5 0.5 0.5 Two types of UT rubber No No No No Relationship between — — — — — rubber hard
  • Example 6 UT gauge of center Thin Thin Thin Thin UT gauge of shoulder Thick Thick Thick UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved gradually decreases line protruding to line protruding to line protruding to outer side in radial outer side in radial outer side in radial direction) direction) direction) Gradually decreasing 3.0 2.0 1.0 range of width W1/wg Ga_ce/GD 0.4 0.4 0.4 Ga_sh/GD 0.6 0.6 0.6 0.6 Relationship between Ga_ce ⁇ H ⁇ Ga_ce ⁇ H ⁇ Ga_ce ⁇ H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh H/GD 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
  • Example 12 UT gauge of center Thin Thin Thin Thin Thin UT gauge of shoulder Thick Thick Thick Thick UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved Diagonal (curved gradually decreases line protruding to line protruding to line protruding to outer side in radial outer side in radial outer side in radial outer side in radial outer side in radial direction) direction) direction) direction) direction) Gradually decreasing 1.0 1.0 1.0 1.0 range of width W1/wg Ga_ce/GD 0.8 0.1 0.2 0.4 Ga_sh/GD 0.4 0.3 0.4 0.5 Relationship between Ga_ce ⁇ H ⁇ Ga_ce ⁇ H ⁇ Ga_ce ⁇ H ⁇ Ga_ce ⁇ H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh H/GD 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
  • Example 18 UT gauge of center Thin Thin Thin Thin UT gauge of shoulder Thick Thick Thick UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved gradually decreases line protruding to line protruding to line protruding to outer side in radial outer side in radial outer side in radial direction) direction) direction) Gradually decreasing 1.0 1.0 2.0 range of width W1/wg Ga_ce/GD 0.4 0.4 0.4 Ga_sh/GD 0.6 0.6 0.6 0.6 Relationship between Ga_ce ⁇ H ⁇ Ga_ce ⁇ Ga_sh ⁇ Ga_ce ⁇ H ⁇ H, Ga_ce, Ga_sh Ga_sh H Ga_sh H/GD 0.5 0.5 0.3 Two types of UT rubber Yes No No Relationship between UTce ⁇ UTsh — — rubber hardnesses UTsh rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved gradually decreases line protruding to line protrud
  • Example 19 Example 20
  • Example 21 Example 22 UT gauge of center Thin Thin Thin Thin Thin Thin UT gauge of shoulder Thick Thick Thick Thick UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved Diagonal (curved gradually decreases line protruding to line protruding to line protruding to outer side in radial outer side in radial outer side in radial outer side in radial outer side in radial outer side in radial direction) direction) direction) direction) Gradually decreasing 2.0 2.0 2.0 2.0 2.0 2.0 range of width W1/wg Ga_ce/GD 0.4 0.4 0.4 0.4 Ga_sh/GD 0.7 0.7 0.7 0.7 0.7 Relationship between Ga_ce ⁇ H ⁇ Ga_ce ⁇ H ⁇ Ga_ce ⁇ H ⁇ Ga_ce ⁇ H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh H/GD 0.6 0.7 0.6 0.6 Two types of UT rubber No No Yes Yes Relationship between
  • Example 24 Example 25 UT gauge of center Thin Thin Thin Thin UT gauge of shoulder Thick Thick Thick UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved gradually decreases line protruding to line protruding to line protruding to outer side in radial outer side in radial outer side in radial direction) direction) direction) Gradually decreasing 2.0 2.0 2.0 range of width W1/wg Ga_ce/GD 0.4 0.4 0.4 Ga_sh/GD 0.7 0.7 0.7 Relationship between Ga_ce ⁇ H ⁇ Ga_sh Ga_ce ⁇ H ⁇ Ga_sh Ga_ce ⁇ H ⁇ Ga_sh H, Ga_ce, Ga_sh H/GD 0.6 0.6 0.6 Two types of UT rubber No No Yes Relationship between — — UTce ⁇ UTsh rubber hardnesses UTsh rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved gradually decreases line protruding to line protrud) direction)
  • Example 27 Example 28 UT gauge of center UT gauge UT gauge UT gauge UT gauge UT gauge of shoulder undifferentiated undifferentiated undifferentiated UT rubber gauge No No No gradually decreases Gradually decreasing — — — range of width W1/wg Ga_ce/GD 0.2 0.4 0.4 Ga_sh/GD 0.4 0.7 0.7 Relationship between Ga_ce ⁇ H ⁇ Ga_sh Ga_ce ⁇ H ⁇ Ga_sh Ga_ce ⁇ H ⁇ Ga_sh H, Ga_ce, Ga_sh H/GD 0.6 0.6 0.6 0.6
  • Diagonal Diagonal (curved Diagonal (curved gradually decreases (straight line) line protruding to line protruding to inner side in radial outer side in radial direction) direction) D1/D

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A run-flat tire includes a reinforcing rubber layer with a roughly crescent-shaped meridian cross-section disposed in sidewall portions at both sides in a tire width direction. The tread portion is provided formed of a tread rubber that includes a cap tread rubber and an undertread rubber disposed on an inner side of the cap tread rubber in a tire radial direction and having a higher hardness than the cap tread rubber. In a meridian cross-section, a gauge of the undertread rubber on a shoulder land portion on an outer side of an outermost main groove located furthest outward in the tire width direction is thicker than a gauge of the undertread rubber of a center land portion closest to a tire equatorial plane.

Description

    TECHNICAL FIELD
  • The present technology relates to a run-flat tire.
  • BACKGROUND ART
  • Pneumatic tires are mounted on rims, inflated with air, and mounted on a vehicle. Internal air pressure bears the load when the vehicle is traveling. When a pneumatic tire is punctured, air escapes and the internal air pressure becomes low. In this state, bearing a load is problematic. Specifically, a load supported by the air pressure comes to be supported by the sidewall portions, causing the sidewall portions to greatly deform. As a result, travel is impeded.
  • Pneumatic tires are known that are run-flat tires capable of run-flat travel in which a vehicle travels with air having escaped from the tires due to a puncture or the like (for example, Japan Patent No. 4671319). A run-flat tire is a tire provided with a reinforcing rubber layer on the inner side of the sidewall portions and of which bending rigidity of the sidewall portions has been improved. In other words, deformation of the sidewall portions of such pneumatic tires is suppressed, allowing the pneumatic tire to travel even in a state in which air inside the pneumatic tire has escaped and a large load is borne by the sidewall portions.
  • In a run-flat tire, the vehicle load is supported by the hard rubber on both the left and right sides. Thus, when a tire is punctured, the tread portion buckles and the ground contact area decreases. This may lead to a decrease in driving performance if traveling on a road surface with low friction. In particular, in tires designed to have a low tread rigidity like studless tires, this tendency is remarkably pronounced, and the tire spinning on icy road surfaces becomes an issue.
  • Additionally, for run-flat tires, even if driving performance on icy road surfaces in a low air pressure state is improved, decreasing the driving performance on icy road surfaces in a normal air pressure state is not preferable. The run-flat tire described in Japan Patent No. 4671319 above can be enhanced in terms of providing both driving performance on icy road surfaces in a low pressure state and driving performance on icy road surfaces in a normal air pressure state in a compatible manner.
  • SUMMARY
  • The present technology provides a run-flat tire that can provide both driving performance on icy road surfaces in a low pressure state and driving performance on icy road surfaces in a normal air pressure state.
  • A run-flat tire according to an aspect of the present technology is a run-flat tire, including a reinforcing rubber layer having a roughly crescent-shaped meridian cross-section and being disposed in sidewall portions at both sides in a tire width direction. The tread portion is provided formed of a tread rubber that includes a cap tread rubber and an undertread rubber, the undertread rubber being disposed on an inner side of the cap tread rubber in a tire radial direction and having a higher hardness than the cap tread rubber. In a meridian cross-section, a gauge of the undertread rubber on a shoulder land portion on an outer side of an outermost main groove located furthest outward in the tire width direction is thicker than a gauge of the undertread rubber of a center land portion closest to a tire equatorial plane.
  • Preferably, a gauge Ga_ce of the undertread rubber at the center land portion and a gauge Ga_sh of the undertread rubber at the shoulder land portion have a relationship Ga_ce<Ga_sh; and the gauge of the undertread rubber gradually decreases from the outermost main groove toward the tire equatorial plane.
  • Preferably, a ratio W1/Wg of a width W1 in the tire width direction of a portion of the undertread rubber where the gauge of the undertread rubber gradually decreases from the outermost main groove toward the tire equatorial plane to a groove width Wg of the outermost main groove is from 1.0 to 3.0.
  • Preferably, a ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber at the center land portion to a groove depth GD of the outermost main groove is from 0.2 to 0.4; and a ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber at the shoulder land portion to the groove depth GD of the outermost main groove is from 0.4 to 0.7.
  • Preferably, a gauge H of the undertread rubber on the tire equatorial plane side of the outermost main groove is larger than a gauge Ga_ce and smaller than or equal to a gauge Ga_sh; and a ratio H/GD of the gauge H to the groove depth GD of the outermost main groove is from 0.3 to 0.7.
  • Preferably, the undertread rubber includes an undertread center rubber of the center land portion, and an undertread shoulder rubber disposed on an outer side of the undertread center rubber in the tire width direction; and a hardness of the undertread shoulder rubber is higher than a hardness of the undertread center rubber.
  • Preferably, in a meridian cross-section, a gauge of the undertread shoulder rubber gradually decreases from the outermost main groove toward the tire equatorial plane.
  • Preferably, in a meridian cross-section, a boundary surface between the undertread center rubber and the undertread shoulder rubber is inclined with respect to the tire width direction.
  • Preferably, a ratio D1/D2 of a distance D1 in the tire width direction from an outer end of the undertread rubber in the tire width direction to an outermost end portion of the reinforcing rubber layer in the tire radial direction to a distance D2 in the tire width direction from an outer edge of the outermost main groove to an outer end of the undertread rubber in the tire width direction is from 0.3 to 0.7.
  • A run-flat tire according to another aspect of the present technology is a run-flat tire, including a reinforcing rubber layer having a roughly crescent-shaped meridian cross-section and being disposed in sidewall portions at both sides in a tire width direction. A tread portion is provided formed of a tread rubber that comprises a cap tread rubber and an undertread rubber, the undertread rubber being disposed on an inner side of the cap tread rubber in a tire radial direction and having a higher hardness than the cap tread rubber. The undertread rubber includes an undertread center rubber of a center land portion, and an undertread shoulder rubber disposed on an outer side of the undertread center rubber in the tire width direction. A hardness of the undertread shoulder rubber is higher than a hardness of the undertread center rubber. A gauge of the undertread shoulder rubber gradually decreases from an outermost main groove located furthest outward in the tire width direction toward a tire equatorial plane. A gauge of the undertread center rubber gradually increases from the outermost main groove toward the tire equatorial plane.
  • According to the present technology, both driving performance on icy road surfaces in a low air pressure state and driving performance on icy road surfaces in a normal air pressure state can be provided in a compatible manner.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a meridian cross-sectional view of a run-flat tire according to the present embodiment.
  • FIG. 2 is an enlarged view illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1.
  • FIG. 3 is an enlarged view illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1.
  • FIG. 4 is an enlarged view illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1.
  • FIG. 5 is an enlarged view illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1.
  • FIG. 6 is a diagram illustrating a contact patch shape of an example in which the internal pressure of the run-flat tire is 250 kPa.
  • FIG. 7 is a diagram illustrating a contact patch shape of an example in which the internal pressure of the run-flat tire is 0 kPa.
  • FIG. 8 is a diagram illustrating a run-flat tire according to a modified example of the present embodiment.
  • FIG. 9 is a diagram illustrating a run-flat tire according to a modified example of the present embodiment.
  • DETAILED DESCRIPTION
  • Embodiments of the present technology are described in detail below with reference to the drawings. In the embodiments described below, identical or substantially similar components to those of other embodiments have the same reference signs, and descriptions of those components are either simplified or omitted. The present technology is not limited by the embodiment. Constituents of the embodiments include elements that are essentially identical or that can be substituted or easily conceived by one skilled in the art. Note that it is possible to combine the configurations described below as desired. Moreover, various omissions, substitutions, and changes to the configurations can be carried out within the scope of the present technology.
  • FIG. 1 is a meridian cross-sectional view of a run-flat tire according to the present embodiment. FIGS. 2 to 5 are enlarged views illustrating a portion of the meridian cross-section of the run-flat tire of FIG. 1. In FIGS. 2 to 5, one side of an equatorial plane CL in the tire width direction is illustrated in a meridian cross-section.
  • Herein, “tire radial direction” refers to a direction orthogonal to a rotation axis (not illustrated in the drawings) of a run-flat tire 1. “Inner side in the tire radial direction” refers to the side toward the rotation axis in the tire radial direction. “Outer side in the tire radial direction” refers to the side away from the axis of rotation in the tire radial direction. “Tire circumferential direction” refers to the circumferential direction with the rotation axis as the center axis. Additionally, “tire width direction” refers to a direction parallel with the rotation axis P. “Inner side in the tire width direction” refers to a side toward a tire equatorial plane (tire equator line) CL in the tire width direction. “Outer side in the tire width direction” refers to a side away from the tire equatorial plane CL in the tire width direction. “Tire equatorial plane CL” refers to a plane orthogonal to the rotation axis of the run-flat tire 1 that passes through the center of the tire width of the run-flat tire 1. “Tire width” is the width in the tire width direction between components located on outer sides in the tire width direction, or in other words, the distance between the components that are the most distant from the tire equatorial plane CL in the tire width direction. “Tire equator line” refers to the line in the tire circumferential direction of the pneumatic tire 1 that lies on the tire equatorial plane CL. Note that in the present embodiment, the tire equator line and the tire equatorial plane are denoted by the same reference sign CL.
  • As illustrated in FIG. 1, the run-flat tire 1 (also referred to simply as tire 1 below) of the present embodiment includes a tread portion 2, shoulder portions 3 on opposite sides of the tread portion 2, and sidewall portions 4 and bead portions 5 continuing on from the shoulder portions 3 in that order. The tire 1 also includes a carcass layer 6, a belt layer 7, a belt reinforcing layer 8, an innerliner layer 9, and reinforcing rubber layers 10 a and 10 b.
  • The tread portion 2 is made of a tread rubber and is exposed on the outermost side of the tire 1 in the tire radial direction, with the surface thereof constituting the contour of the tire 1. A tread surface 21 is formed on an outer circumferential surface of the tread portion 2, in other words, on a road contact surface that comes into contact with a road surface when running. The tread surface 21 is provided with a plurality (four in the present embodiment) of main grooves 22 that extend in the tire circumferential direction parallel with the tire equator line CL. Moreover, a plurality of rib-like land portions 23 that extend in the tire circumferential direction are formed in the tread surface 21 by the plurality of main grooves 22. The plurality of land portions 23 include the land portion 23 referred to as a center land portion 23C located closest to the tire equator line CL. Also, the plurality of land portions 23 include the land portion 23 referred to as a shoulder land portion 23S located on an outer side of the main groove 22 (also referred to as the outermost main groove) located furthest outward in the tire width direction. The plurality of land portions 23 also include the land portion 23 referred to as a middle land portion 23M located between the center land portion 23C and the shoulder land portion 23S.
  • Each land portion 23 may include a plurality of blocks. Furthermore, the plurality of blocks may each include a plurality of sipes extending roughly in the width direction. The tread portion 2 can function as the tread portion of a studless tire as long as it includes a plurality of blocks and the plurality of blocks each include a plurality of sipes extending roughly in the width direction.
  • The main grooves 22 may extend in the tire circumferential direction in a bending or curving manner. “Main groove” refers to a groove on which a wear indicator must be provided as specified by JATMA (The Japan Automobile Tyre Manufacturers Association, Inc.) and typically has a groove width of 3.0 mm or greater and a groove depth of 6.5 mm or greater. “Lug groove” refers to a lateral groove extending in a tire width direction and typically having a groove width of 1.0 mm or greater and a groove depth of 3.0 mm or greater. Here, the outermost main groove 22 has a groove depth of from 8.0 mm to 11.0 mm.
  • The groove width is the maximum distance between the left and right groove walls at the groove opening portion and is measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state. In configurations in which the land portions include notch portions or chamfered portions on the edge portions thereof, the groove width is measured with reference to the intersection points where the tread contact surface and extension lines of the groove walls meet, in a cross-sectional view normal to the groove length direction. Additionally, in a configuration in which the grooves extend in a zigzag-like or wave-like manner in the tire circumferential direction, the groove width is measured with reference to the center line of the amplitude of the groove walls. The groove depth is the maximum distance from the tread contact surface to the groove bottom and is measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state. Additionally, in a configuration in which the grooves include an uneven portion or sipes on the groove bottom, the groove depth is measured excluding these portions.
  • Additionally, lug grooves that extend in a direction that intersects the tire circumferential direction may be provided in the land portions 23 of the tread portion 2. Both ends of the lug grooves may meet the main grooves 22, forming the land portion 23 into a plurality of block-like land portions divided in the tire circumferential direction. Note that the lug grooves may extend inclined with respect to the tire width direction in a bending or curving manner.
  • The shoulder portions 3 are portions of the tread portion 2 located on both outer sides in the tire width direction. In other words, the shoulder portions 3 are made of the tread rubber. Additionally, the sidewall portions 4 are exposed on the outermost sides of the tire 1 in the tire width direction. The sidewall portions 4 are each made of side rubber 4A. The bead portions 5 each include a bead core 51 and a bead filler 52. The bead core 51 is formed by winding a bead wire, which is a steel wire, into an annular shape. The bead filler 52 is a rubber material that is disposed in the space formed by an end portion of the carcass layer 6 in the tire width direction being folded back at the position of the bead core 51. The bead portions 5 each include a rim cushion rubber 5A that is outwardly exposed and comes into contact with the rim (not illustrated). The rim cushion rubber 5A constitutes the outer periphery of the bead portion 5. The rim cushion rubber 5A extends from the tire inner side of the bead portion 5 around the lower end portion thereof to a position (sidewall portion 4) covering the bead filler 52 on the tire outer side.
  • The end portions of the carcass layer 6 in the tire width direction are folded back around the pair of bead cores 51 from an inner side to an outer side in the tire width direction, and the carcass layer 6 is stretched in a toroidal shape in the tire circumferential direction to form the framework of the tire. The carcass layer 6 is made of a plurality of coating rubber-covered carcass cords (not illustrated) disposed side by side with an angle with respect to the tire circumferential direction along the tire meridian direction at an angle with respect to the tire circumferential direction. The carcass cords are made of organic fibers (e.g., polyester, rayon, nylon, and the like). The carcass layer 6 is provided with at least one layer, and in the present embodiment, two layers are provided. As illustrated in FIG. 1, the end portion of the inner layer of the two carcass layers 6 extends to the sidewall portion 4 covering all of the bead filler 52, whereas the end portion of the outer layer extends to a position at which the bead filler 52 is only partially covered.
  • The belt layer 7 has a multilayer structure in which at least two belts 71, 72 are layered. In the tread portion 2, the belt layer 7 is disposed on the outer side of the carcass layer 6 in the tire radial direction, i.e. on the outer circumference thereof, and covers the carcass layer 6 in the tire circumferential direction. The belts 71, 72 are made of coating rubber-covered cords (not illustrated) disposed side by side at a predetermined angle with respect to the tire circumferential direction (for example, from 20° to 30°). The cords are made of steel or organic fibers (polyester, rayon, nylon, or the like). Moreover, the belts 71, 72 overlap each other and are disposed so that the direction of the cords of the respective belts intersect each other.
  • The belt reinforcing layer 8 is disposed on the outer side of the belt layer 7 in the tire radial direction, i.e. on the outer circumference thereof, and covers the belt layer 7 in the tire circumferential direction. The belt reinforcing layer 8 is made of coating rubber-covered cords (not illustrated) disposed side by side in the tire width direction and substantially parallel (±5°) to the tire circumferential direction. The cords are made of steel or organic fibers (polyester, rayon, nylon, or the like). The belt reinforcing layer 8 illustrated in FIG. 1 includes one layer covering all of the belt layer 7 and one layer covering the end portions of the belt layer 7 in the tire width direction. The configuration of the belt reinforcing layer 8 is not limited to that described above. While not illustrated in the drawings, a configuration may be used in which, for example, the two layers are disposed covering all of the belt layer 7, or the two layers are disposed covering only the end portions of the belt layer 7 in the tire width direction. In addition, while not illustrated in the drawings, a configuration of the belt reinforcing layer 8 may be used in which, for example, one layer is disposed covering all of the belt layer 7, or one layer is disposed covering only the end portions of the belt layer 7 in the tire width direction. In other words, the belt reinforcing layer 8 overlaps with at least the end portion of the belt layer 7 in the tire width direction. Additionally, the belt reinforcing layer 8 is configured by winding a band-like (e.g. with a width of 10 mm) strip material in the tire circumferential direction.
  • The innerliner layer 9 is the tire inner surface, i.e. the inner circumferential surface of the carcass layer 6, and reaches the bead cores 51 of the pair of bead portions 5 at both end portions in the tire width direction and extends in the tire circumferential direction in a toroidal shape. The innerliner layer 9 prevents air molecules from escaping from the tire. Note that, as illustrated in FIG. 1, the innerliner layer 9 may be disposed extending on an inner side of the bead portion 5. However, the innerliner layer 9 may be disposed extending to the lower portion (inner side in the tire radial direction) of the bead core 51.
  • The reinforcing rubber layers 10 a and 10 b are disposed within the sidewall portion 4 and not exposed on an inner side or an outer side. The reinforcing rubber layer 10 a is provided between the carcass layer 6 and the innerliner layer 9 corresponding to the tire inner side of the carcass layer 6, and has a roughly crescent-shaped meridian cross-section. The reinforcing rubber layer 10 b is provided between the carcass layer 6 and the side rubber 4A and/or the rim cushion rubber 5A corresponding to the tire outer side of the carcass layer 6, and has a roughly crescent-shaped meridian cross-section. The reinforcing rubber layers 10 a and 10 b are formed of rubber material that has a strength greater than that of the rim cushion rubber 5A of the bead portions 5 or that of the side rubber 4A of the sidewall portions 4. Additionally, the reinforcing rubber layers 10 a and 10 b may be formed from different rubber materials. Note that the reinforcing rubber layers 10 a and 10 b are also referred to as run-flat liners.
  • The pneumatic tire 1 with such a configuration is mounted on a vehicle (not illustrated) with the bead portions 5 assembled on the rim and inflated to a predetermined air pressure. When the vehicle travels, the tread surface 21 comes into contact with the road surface while the tire 1 rotates. When the vehicle is traveling, because the tread surface 21 comes into contact with the road surface as described above, a load including the weight of the vehicle is borne by the tread surface 21. In the case of the tread surface 21 bearing such a load, the tire 1 elastically deforms in a manner governed by the nature of the load and hardness of the parts of the tire, and the air the tire is inflated with acts on the inside of the tire to expand the tire in an outward direction. This biasing force due to the air the tire is inflated with prevents excessive deformation of the tire 1, even when the tread surface 21 bears a load. Accordingly, the tire 1 can rotate while bearing a load, thus allowing the vehicle to travel.
  • Though the tire 1 does not readily deform due to the pressure of the air the tire is inflated with, while the vehicle is traveling, a foreign material may pierce the tread surface 21 and cause a puncture, for example, thus causing air from inside the tire 1 to escape. When air from inside the tire 1 escapes, the biasing force due to the air acting on the inside of the tire 1 to expand the tire 1 in an outward direction decreases in strength. When a load is borne by the tread surface 21 of the deflated tire 1, the tire-radial-direction load is borne by the sidewall portions 4. As a result, the sidewall portions 4 are susceptible to elastic deformation in the tire radial direction. However, these sidewall portions 4 are provided with the reinforcing rubber layers 10 a and 10 b. As described above, the reinforcing rubber layers 10 a and 10 b are formed of rubber material with a strength greater than that of the side rubber 4A of the sidewall portions 4. Accordingly, the reinforcing rubber layers 10 a and 10 b suppress deformation of the sidewall portions 4 in the tire radial direction when the sidewall portions 4 bear a tire-radial-direction load. As a result, the tire 1, by virtue of the reinforcing rubber layers 10 a and 10 b suppressing deformation of the sidewall portions 4 in the tire radial direction, enables travel of the vehicle or run-flat travel (travel with the tire 1 in a deflated state).
  • Note that the “regular rim” refers to a “standard rim” defined by the Japan Automobile Tyre Manufacturers Association Inc. (JATMA), a “Design Rim” defined by the Tire and Rim Association, Inc. (TRA), or a “Measuring Rim” defined by the European Tyre and Rim Technical Organisation (ETRTO). “Regular internal pressure” refers to a “maximum air pressure” defined by JATMA, the maximum value in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO. “Regular load” refers to a “maximum load capacity” defined by JATMA, the maximum value in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “LOAD CAPACITY” defined by ETRTO.
  • Rubber Gauge
  • As illustrated in FIGS. 1 and 2, the tread rubber that forms the tread portion 2 includes a cap tread rubber CA and an undertread rubber UT. The undertread rubber UT is disposed on an inner side of the cap tread rubber CA in the tire radial direction. The gauge of the undertread rubber UT at the shoulder land portion 23S is thicker than the gauge of the undertread rubber UT at the center land portion 23C. By increasing the gauge of the undertread rubber UT at the shoulder land portion 23S, which is prone to buckling in a low pressure state, buckling in a low pressure state can be suppressed.
  • Also, the undertread rubber UT has a hardness higher than the hardness of the cap tread rubber CA. The hardness of the undertread rubber UT is defined as the JIS (Japanese Industrial Standard) hardness at 20° C. and is from 55 to 85. The same applies to that described below. The hardness of the undertread rubber UT is preferably higher than the hardness of the cap tread rubber CA and/or the hardness of the reinforcing rubber layer 10 a. Note that the gauge of the undertread rubber UT is determined by measuring the groove bottom of the main grooves 22 using an imaginary line L as a reference, and finding the average gauge within the land portion 23 or a block, excluding the portion of the main grooves 22.
  • A gauge Ga_ce of the undertread rubber UT at the center land portion 23C and a gauge Ga_sh of the undertread rubber UT at the shoulder land portion 23S, illustrated in FIG. 2, have the relationship Ga_ce<Ga_sh. Also, a gauge H of the undertread rubber UT gradually decreases from the outermost main groove 22 towards the tire equatorial plane CL. By the gauge H gradually decreasing, block rigidity can be made appropriate and performance on ice can be improved. The gauge H may gradually decrease in a straight line or may gradually decrease in a curved line as seen in a meridian cross-section. Preferably, the gauge H gradually decreases in a curved line that protrudes to the outer side in the tire radial direction.
  • As illustrated in FIG. 2, the ratio W1/Wg of a width W1 in the tire width direction of the portion of the undertread rubber UT where the gauge H of the undertread rubber UT gradually decreases from the outermost main groove 22 to the tire equatorial plane CL to a groove width Wg of the outermost main groove 22 is preferably from 1.0 to 3.0. When the ratio W1/Wg is less than 1.0, the block rigidity is too low, and the effect of suppressing buckling in a low pressure state is small, which is not preferable. When the ratio W1/Wg is greater than 3.0, the block rigidity is too high, and the performance on ice is difficult to ensure, which is not preferable.
  • As illustrated in FIG. 2, the ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber UT at the center land portion 23C to a groove depth GD of the outermost main groove 22 is preferably from 0.2 to 0.4, and the ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber UT at the shoulder land portion 23S to the groove depth GD of the outermost main groove 22 is preferably from 0.4 to 0.7. By increasing the gauge Ga_sh of the undertread rubber UT at the shoulder land portion 23S, which is prone to buckling in a low pressure state, buckling in a low pressure state can be suppressed. The gauge Ga_ce and the gauge Ga_sh of the undertread rubber UT are average values of the maximum gauges in the land portions 23C, 23S or in each block. The same applies to that described below. In the case in which many V-shaped main grooves are provided and no main grooves that extend in the tire circumferential direction are provided in the tread portion 2, the depth of a groove with a wear indicator is used as the groove depth GD. The same applies to that described below.
  • As illustrated in FIG. 2, the gauge H of the undertread rubber UT on the tire equatorial plane CL side of the outermost main groove 22 is larger than the gauge Ga_ce and smaller than or equal to the gauge Ga_sh. Also, the ratio H/GD of the gauge H to the groove depth GD of the outermost main groove 22 is preferably from 0.3 to 0.7. By increasing the gauge Ga_sh of the undertread rubber UT at the shoulder land portion 23S, which is prone to buckling in a low pressure state, buckling in a low pressure state can be suppressed.
  • Relationship with the Reinforcing Rubber Layer
  • The ratio D1/D2 of a distance D1 in the tire width direction from an outer end of the undertread rubber UT in the tire width direction to an outermost end portion of the reinforcing rubber layer 10 a in the tire radial direction to a distance D2 in the tire width direction from an outer edge of the outermost main groove 22 to an outer end of the undertread rubber UT in the tire width direction is preferably from 0.3 to 0.7. When the ratio D1/D2 is less than 0.3, the reinforcing rubber layer 10 a is not tucked under enough and load durability is decreased, which is not preferable. When the ratio D1/D2 is greater than 0.7, the reinforcing rubber layer 10 a is tucked under too much and the effect of suppressing buckling in a low pressure state is small, which is not preferable.
  • Other Examples
  • FIG. 3 is a diagram illustrating a run-flat tire according to another example of the present embodiment. In this example, the undertread rubber UT is provided with a portion with a different hardness. In FIG. 3, the undertread rubber UT includes an undertread center rubber UTce of the center land portion 23C and an undertread shoulder rubber UTsh provided on the outer side of the undertread center rubber UTce in the tire width direction. Additionally, the hardness of the undertread shoulder rubber UTsh is higher than the hardness of the undertread center rubber UTce.
  • The hardness of the undertread center rubber UTce is defined as the JIS hardness at 20° C. and is preferably from 60 to 70. The hardness of the undertread shoulder rubber UTsh is defined as the JIS hardness at 20° C. and is preferably from 70 to 80. The undertread center rubber UTce and the undertread shoulder rubber UTsh preferably have a hardness higher than the hardness of the reinforcing rubber layer 10 a. By disposing the undertread shoulder rubber UTsh with high hardness covering the outermost main groove 22, which is prone to buckling particularly in a low pressure state, buckling in a low pressure state can be suppressed.
  • Additionally, the hardness of the undertread center rubber UTce is lower than the hardness of the undertread shoulder rubber UTsh. In this manner, rigidity at the center land portion 23C can be decreased and performance on ice can be improved. Furthermore, because the hardness of the undertread center rubber UTce is lower than the hardness of the undertread shoulder rubber UTsh, buckling at the shoulder land portion 23S can be prevented, the ground contact area can be increased, and performance on ice can be improved.
  • Referring to FIG. 3, in a meridian cross-section, the gauge H of the undertread shoulder rubber UTsh gradually decreases from the outermost main groove 22 toward the tire equatorial plane CL. The ratio Ga_sh/GD of the gauge Ga_sh of the undertread shoulder rubber UTsh to the groove depth GD of the outermost main groove 22 is preferably from 0.3 to 0.7. When the ratio Ga_sh/GD is less than 0.3, the rigidity of the shoulder land portion 23S is too low, and the effect of suppressing buckling in a low pressure state is small. When the ratio Ga_sh/GD is greater than 0.7, the rigidity of the shoulder land portion 23S is too high, and the performance on ice is difficult to ensure. A boundary surface K1 between the undertread center rubber UTce and the undertread shoulder rubber UTsh may be a straight line or a curved line. Note that, preferably, the boundary surface K1 is a curved line that protrudes to the outer side in the tire radial direction.
  • Furthermore, in a meridian cross-section, the boundary surface K1 is inclined with respect to the tire width direction. In other words, the boundary surface K1 is continuously inclined with respect to the tire width direction. In this way, the hardness of the entire undertread rubber UT is gradually decreased, giving the land portions 23 or the blocks gradual changes in rigidity as opposed to dramatic change. This allows uneven wear to be suppressed.
  • The undertread center rubber UTce and the undertread shoulder rubber UTsh overlap one another at the boundary surface K1. The undertread center rubber UTce is disposed on an outer side of the boundary surface K1 in the tire radial direction and the undertread shoulder rubber UTsh is disposed on an inner side of the boundary surface K1 in the tire radial direction. The ratio W1 a/W1 of a width W1 a in the tire width direction of the boundary surface K1 to the width W1 in the tire width direction of the portion of the undertread rubber UT where the gauge H gradually decreases is preferably from 0.3 to 1.0.
  • Also, either the undertread center rubber UTce or the undertread shoulder rubber UTsh may be disposed on the outer side of the boundary surface K1 in the tire radial direction. FIG. 4 illustrates an example in which the undertread center rubber UTce is disposed on the inner side in the tire radial direction and the undertread shoulder rubber UTsh is disposed on the outer side in the tire radial direction. The undertread center rubber UTce and the undertread shoulder rubber UTsh overlap one another at a boundary surface K2. However, the inclination direction of the boundary surface K2 with respect to the tire width direction is different from that in FIG. 3. The ratio W1 b/W1 of a width W1 b in the tire width direction of the boundary surface K2 to the width W1 in the tire width direction of the portion of the undertread rubber UT where the gauge H gradually decreases is preferably from 0.3 to 0.8.
  • As illustrated in FIG. 3, in the case in which the undertread center rubber UTce is disposed on the outer side in the tire radial direction and the undertread shoulder rubber UTsh is disposed on the inner side in the tire radial direction, compared to the opposite configuration, the rigidity of the center land portion 23C can be decreased, which is advantageous in improving performance on ice.
  • Example of Groove Bottom Portion of Main Groove
  • FIG. 5 is a diagram illustrating in a meridian cross-section a run-flat tire according to another example of the present embodiment. During vulcanization molding, the rubber is pressed by protrusion portions of a mold (not illustrated) toward the inner side in the tire radial direction to form the main grooves 22 in the tread portion 2. At this time, the cap tread rubber CA may remain on the inner side of the groove bottom portion of the main grooves 22 in the tire radial direction. FIGS. 3 and 4 illustrate examples in which the cap tread rubber CA remains.
  • A thickness Gb of the cap tread rubber CA remaining on the inner side of the groove bottom portion of the main grooves 22 in the tire radial direction is small. Thus, the remaining cap tread rubber CA can be ignored, and it can be considered that the cap tread rubber CA and the undertread rubber UT is not present in the groove bottom portion of the main grooves 22. The same applies to the examples illustrated in FIGS. 3 and 4 described above.
  • Examples of Contact Patch Shape
  • Examples of contact patch shapes of run-flat tires without the undertread rubber UT described above will be described. FIG. 6 is a diagram illustrating a contact patch shape 100 of an example in which the internal pressure of the run-flat tire is 250 kPa. FIG. 7 is a diagram illustrating a contact patch shape 100 a of an example in which the internal pressure of the run-flat tire is 0 kPa. In FIG. 7, when the internal pressure of the tire is 0 kPa, the ground contact pressure increases at both end portions in the tire width direction. In this case, when buckling occurs in which the tread portion is recessed to the inner side in the tire circumferential direction, the ground contact area takes the shape illustrated in FIG. 7 with less ground contact area than the shape illustrated in FIG. 6. In particular, the ground contact area of a portion 101 corresponding to the outermost main grooves 22 is greatly reduced.
  • In a run-flat tire provided with the undertread rubber UT as described above, buckling can be suppressed even if the internal pressure of the tire is 0 kPa, and a large decrease in ground contact area can be prevented. Thus, performance on ice in a low pressure state can be improved.
  • Modified Examples
  • FIGS. 8 and 9 are diagrams illustrating a run-flat tire according to modified examples of the present embodiment. In FIG. 8, the undertread rubber UT includes an undertread center rubber UTce of the center land portion 23C and an undertread shoulder rubber UTsh provided on the outer side of the undertread center rubber UTce in the tire width direction. Additionally, the hardness of the undertread shoulder rubber UTsh is higher than the hardness of the undertread center rubber UTce. Because the hardness of the undertread shoulder rubber UTsh of the shoulder portion 3 is higher than the hardness of the undertread center rubber UTce, buckling in a low pressure state can be suppressed.
  • The hardness of the undertread center rubber UTce is defined as the JIS hardness at 20° C. and is preferably from 60 to 70. The hardness of the undertread shoulder rubber UTsh is defined as the JIS hardness at 20° C. and is preferably from 70 to 80. The undertread center rubber UTce and the undertread shoulder rubber UTsh preferably have a hardness higher than the hardness of the reinforcing rubber layer 10 a. By disposing the undertread shoulder rubber UTsh with high hardness covering the outermost main groove 22, which is prone to buckling particularly in a low pressure state, buckling in a low pressure state can be suppressed.
  • Additionally, the hardness of the undertread center rubber UTce is lower than the hardness of the undertread shoulder rubber UTsh. In this manner, rigidity at the center land portion 23C can be decreased and performance on ice can be improved. Furthermore, because the hardness of the undertread center rubber UTce is lower than the hardness of the undertread shoulder rubber UTsh, buckling at the shoulder land portion 23S can be prevented, the ground contact area can be increased, and performance on ice can be improved.
  • Referring to FIG. 8, in a meridian cross-section, the gauge H of the undertread shoulder rubber UTsh gradually decreases from the outermost main groove 22 toward the tire equatorial plane CL. The ratio Ga_sh/GD of the gauge Ga_sh of the undertread shoulder rubber UTsh to the groove depth GD of the outermost main groove 22 is preferably from 0.3 to 0.7. When the ratio Ga_sh/GD is less than 0.3, the rigidity of the shoulder land portion 23S is too low, and the effect of suppressing buckling in a low pressure state is small. When the ratio Ga_sh/GD is greater than 0.7, the rigidity of the shoulder land portion 23S is too high, and the performance on ice is difficult to ensure. The boundary surface K1 between the undertread center rubber UTce and the undertread shoulder rubber UTsh may be a straight line or a curved line. Note that, preferably, the boundary surface K1 is a curved line that protrudes to the outer side in the tire radial direction.
  • Furthermore, in a meridian cross-section, the boundary surface K1 is inclined with respect to the tire width direction. In other words, the boundary surface K1 is continuously inclined with respect to the tire width direction. In this way, the hardness of the entire undertread rubber UT is gradually decreased, giving the land portions 23 or the blocks gradual changes in rigidity as opposed to dramatic change. This allows uneven wear to be suppressed. As illustrated in FIG. 8, the ratio W2/Wg of a width W2 in the tire width direction of the boundary surface K1 where the gauge H of the undertread rubber UT gradually decreases from the outermost main groove 22 to the tire equatorial plane CL to a groove width Wg of the outermost main groove 22 is preferably from 1.0 to 3.0. When the ratio W2/Wg is less than 1.0, the block rigidity is too low, and the effect of suppressing buckling in a low pressure state is small, which is not preferable. When the ratio W2/Wg is greater than 3.0, the block rigidity is too high, and the performance on ice is difficult to ensure, which is not preferable.
  • Also, either the undertread center rubber UTce or the undertread shoulder rubber UTsh may be disposed on the outer side of the boundary surface K1 in the tire radial direction. FIG. 9 illustrates an example in which the undertread center rubber UTce is disposed on the inner side in the tire radial direction and the undertread shoulder rubber UTsh is disposed on the outer side in the tire radial direction. The undertread center rubber UTce and the undertread shoulder rubber UTsh overlap one another at the boundary surface K2. However, the inclination direction of the boundary surface K2 with respect to the tire width direction is different from that in FIG. 8.
  • The ratio W2/Wg of a width W2 in the tire width direction of the boundary surface K2 where the gauge H of the undertread rubber UT gradually decreases from the outermost main groove 22 to the tire equatorial plane CL to a groove width Wg of the outermost main groove 22 is preferably from 1.0 to 3.0. When the ratio W2/Wg is less than 1.0, the block rigidity is too low, and the effect of suppressing buckling in a low pressure state is small, which is not preferable. When the ratio W2/Wg is greater than 3.0, the block rigidity is too high, and the performance on ice is difficult to ensure, which is not preferable.
  • The run-flat tires 1 described with reference to FIGS. 8 and 9 are run-flat tires that include in the sidewall portions 4 at both sides in the tire width direction reinforcing rubber layers 10 a with a roughly crescent-shaped meridian cross-section. The run-flat tires 1 also include the tread portion 2 including the cap tread rubber CA and the undertread rubber UT disposed on the inner side of the cap tread rubber CA in the tire radial direction, the undertread rubber UT having a higher hardness than the cap tread rubber CA. Also, the undertread rubber UT includes the undertread center rubber UTce disposed in the center land portion 23C and the undertread shoulder rubber UTsh disposed on the outer side of the undertread center rubber UTce in the tire width direction. The hardness of the undertread shoulder rubber UTsh is higher than the hardness of the undertread center rubber UTce. Furthermore, the gauge Ga_sh of the undertread shoulder rubber UTsh gradually decreases from the outermost main groove 22 toward the tire equatorial plane CL, and the gauge Ga_ce of the undertread center rubber UTce gradually increases from the outermost main groove 22 toward the tire equatorial plane CL. Because the hardness of the undertread rubber UT is set as described above, buckling at the shoulder land portion 23S can be prevented, the ground contact area can be increased, and performance on ice can be improved.
  • As described above, in the run-flat tire 1 of the present embodiment, the gauge of the undertread rubber UT is increased or the hardness of the undertread rubber UT is increased in the outer portion of the outermost main groove 22 located furthest outward in the tire width direction compared to the portion closest to the tire equatorial plane CL. Thus, buckling in a low pressure state at the shoulder land portion 23S can be prevented, the ground contact area can be increased, and performance on ice can be improved.
  • Example 1
  • In the examples, testing of performance on ice was performed on a plurality of types of test tires of different conditions (see Tables 1 to 3).
  • In the performance tests, tires having a tire size of 245/50RF19105Q were mounted on a rim and mounted on a test vehicle. Rim size is 19×7.5 J. In the performance tests, the tires were evaluated at an air pressure of 250 kPa and 0 kPa. The test vehicle is a 2000 cc four wheel drive passenger vehicle.
  • In the performance tests for performance on ice, the tires were given a score using sensory evaluation by a test driver after the test vehicle was driven on a test course with an icy road surface. The scores are expressed as index values and evaluated against the score of the tire of a Conventional Example used as a reference (100). For the evaluation results, larger values indicate superior performance on ice.
  • As indicated in Table 1, in the tire of the Conventional Example, the gauge of the undertread rubber UT of the center land portion closest to the tire equatorial plane and the gauge of the undertread rubber UT of the shoulder land portion located on the outer side of the outermost main groove located furthest outward in the tire width direction are undifferentiated, the gauge of the undertread rubber UT does not gradually decrease, and the ratio D1/D2 of the distance D1 in the tire width direction from the outer end of the undertread rubber UT in the tire width direction to the outermost end portion of the reinforcing rubber layer in the tire radial direction to the distance D2 in the tire width direction from the outer edge of the outermost main groove to the outer end of the undertread rubber UT in the tire width direction is 0.3.
  • As indicated in Table 1, in the tire of the Comparative Example, the gauge of the undertread rubber UT of the center land portion closest to the tire equatorial plane is larger than the gauge of the undertread rubber UT of the shoulder land portion located on an outer side of the outermost main groove located furthest outward in the tire width direction, the gauge of the undertread rubber UT does not gradually decrease, the ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber UT at the center land portion to the groove depth GD of the outermost main groove is 0.6, the ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber UT at the shoulder land portion to the groove depth GD of the outermost main groove is 0.4, the gauge H of the undertread rubber UT on the tire equatorial plane side of the outermost main groove is smaller than the gauge Ga_ce and larger than the gauge Ga_sh, the ratio H/GD of the gauge H to the groove depth GD of the outermost main groove is 0.4, the hardness of the undertread rubber UT of the center land portion and the hardness of the undertread shoulder rubber disposed on the outer side of the undertread rubber UT in the tire width direction are the same, and the ratio D1/D2 of the distance D1 in the tire width direction from the outer end of the undertread rubber UT in the tire width direction to the outermost end portion of the reinforcing rubber layer in the tire radial direction to the distance D2 in the tire width direction from the outer edge of the outermost main groove to the outer end of the undertread rubber UT in the tire width direction is 0.3.
  • Referring to Examples 1 to 28 in Tables 1 to 3, it can be seen that a good result is obtained in examples in which the gauge of the undertread rubber UT of the shoulder land portion located on the outer side of the outermost main groove located furthest outward in the tire width direction is larger than the gauge of the undertread rubber UT of the center land portion closest to the tire equatorial plane.
  • Also, referring to Examples 1 to 28 in Tables 1 to 3, it can be seen that a good result is obtained in examples in which the gauge Ga_ce of the undertread rubber UT at the center land portion and the gauge Ga_sh of the undertread rubber UT at the shoulder land portion 23S have the relationship Ga_ce<Ga_sh, the gauge of the undertread rubber UT gradually decreases from the outermost main groove towards the tire equatorial plane, and the ratio W1/Wg of the width W1 in the tire width direction of the portion of the undertread rubber UT where the gauge gradually decreases from the outermost main groove toward the tire equatorial plane to the groove width Wg of the outermost main groove is from 1.0 to 3.0, in examples in which the ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber UT at the center land portion to the groove depth GD of the outermost main groove is from 0.2 to 0.4 and the ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber UT at the shoulder land portion to the groove depth GD of the outermost main groove is from 0.4 to 0.7, and in examples in which the gauge H of the undertread rubber UT on the tire equatorial plane side of the outermost main groove is larger than the gauge Ga_ce and smaller than or equal to the gauge Ga_sh and the ratio H/GD of the gauge H to the groove depth GD of the outermost main groove is from 0.3 to 0.7.
  • Furthermore, referring to Examples 1 to 28, it can be seen that a good result is obtained in examples in which the undertread rubber UT includes the undertread center rubber UTce of the center land portion and the undertread shoulder rubber UTsh disposed on the outer side of the undertread center rubber UTce in the tire width direction and the hardness of the undertread shoulder rubber is higher than the hardness of the undertread center rubber, in examples in which, in a meridian cross-section, the gauge of the undertread shoulder rubber UTsh gradually decreases from the outermost main groove toward the tire equatorial plane, in examples in which, in a meridian cross-section, the boundary surface between the undertread center rubber UTce and the undertread shoulder rubber UTsh is inclined with respect to the tire width direction, and in examples in which the ratio D1/D2 of the distance D1 in the tire width direction from the outer end of the undertread rubber UT in the tire width direction to the outermost end portion of the reinforcing rubber layer in the tire radial direction to the distance D2 in the tire width direction from the outer edge of the outermost main groove to the outer end of the undertread rubber UT in the tire width direction is from 0.3 to 0.7.
  • Also, referring to Examples 1 to 28 in Tables 1 to 3, it can be seen that a good result is obtained in examples in which the gauge of the undertread rubber UT of the center land portion closest to the tire equatorial plane and the gauge of the undertread rubber UT of the shoulder land portion located on the outer side of the outermost main groove located furthest outward in the tire width direction are undifferentiated, the ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber UT in the center land portion to the groove depth GD of the outermost main groove is from 0.2 to 0.4, and the ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber UT in the shoulder land portion to the groove depth GD of the outermost main groove is from 0.4 to 0.7, and in examples in which the gauge H of the undertread rubber UT on the tire equatorial plane side of the outermost main groove is larger than the gauge Ga_ce and smaller than or equal to the gauge Ga_sh and the ratio H/GD of the gauge H to the groove depth GD of the outermost main groove is from 0.3 to 0.7.
  • TABLE 1-1
    Conventional Comparative
    Example Example Example 1
    UT gauge of center UT gauge Thick Thin
    UT gauge of shoulder undifferentiated Thin Thick
    UT rubber gauge No No Perpendicular to
    gradually decreases tread surface
    Gradually decreasing 1.0
    range of width W1/wg
    Ga_ce/GD 0.6 0.4
    Ga_sh/GD 0.4 0.6
    Relationship between Ga_ce > H > Ga_ce < H ≤
    H, Ga_ce, Ga_sh Ga_sh Ga_sh
    H/GD 0.4 0.5
    Two types of UT rubber No No No
    Relationship between
    rubber hardnesses
    UTsh rubber gauge
    gradually decreases
    D1/D2 0.3 0.3 0.3
    Driving performance on 100 98   101
    ice in a normal internal
    pressure state (index value)
    Driving performance on 100 98   102
    ice in a low pressure
    state (index value)
  • TABLE 1-2
    Example 2 Example 3 Example 4 Example 5
    UT gauge of center Thin Thin Thin Thin
    UT gauge of shoulder Thick Thick Thick Thick
    UT rubber gauge Diagonal Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases (straight line) line protruding to line protruding to line protruding to
    inner side in radial outer side in radial outer side in radial
    direction) direction) direction)
    Gradually decreasing 1.0 1.0 0.5 4.0
    range of width W1/wg
    Ga_ce/GD 0.4 0.4 0.4 0.4
    Ga_sh/GD 0.6 0.6 0.6 0.6
    Relationship between Ga_ce < H ≤ Ga_ce < H ≤ Ga_ce < H ≤ Ga_ce < H ≤
    H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh Ga_sh
    H/GD 0.5 0.5 0.5 0.5
    Two types of UT rubber No No No No
    Relationship between
    rubber hardnesses
    UTsh rubber gauge
    gradually decreases
    D1/D2 0.3 0.3 0.3 0.3
    Driving performance on 103 104 102 101
    ice in a normal internal
    pressure state (index value)
    Driving performance on 103 102 101 107
    ice in a low pressure
    state (index value)
  • TABLE 1-3
    Example 6 Example 7 Example 8
    UT gauge of center Thin Thin Thin
    UT gauge of shoulder Thick Thick Thick
    UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial
    direction) direction) direction)
    Gradually decreasing 3.0 2.0 1.0
    range of width W1/wg
    Ga_ce/GD 0.4 0.4 0.4
    Ga_sh/GD 0.6 0.6 0.6
    Relationship between Ga_ce < H ≤ Ga_ce < H ≤ Ga_ce < H ≤
    H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh
    H/GD 0.5 0.5 0.5
    Two types of UT rubber No No No
    Relationship between
    rubber hardnesses
    UTsh rubber gauge
    gradually decreases
    D1/D2 0.3 0.3 0.3
    Driving performance on 102 103 103
    ice in a normal internal
    pressure state (index value)
    Driving performance on 106 105 104
    ice in a low pressure
    state (index value)
  • TABLE 2-1
    Example 9 Example 10 Example 11 Example 12
    UT gauge of center Thin Thin Thin Thin
    UT gauge of shoulder Thick Thick Thick Thick
    UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial outer side in radial
    direction) direction) direction) direction)
    Gradually decreasing 1.0 1.0 1.0 1.0
    range of width W1/wg
    Ga_ce/GD 0.8 0.1 0.2 0.4
    Ga_sh/GD 0.4 0.3 0.4 0.5
    Relationship between Ga_ce < H ≤ Ga_ce < H ≤ Ga_ce < H ≤ Ga_ce < H ≤
    H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh Ga_sh
    H/GD 0.5 0.5 0.5 0.5
    Two types of UT rubber No No No Yes
    Relationship between UTce > UTsh
    rubber hardnesses
    UTsh rubber gauge Perpendicular to
    gradually decreases tread surface
    D1/D2 0.3 0.3 0.3 0.3
    Driving performance on 102 101 102 101
    ice in a normal internal
    pressure state (index value)
    Driving performance on 106 102 103 102
    ice in a low pressure
    state (index value)
  • TABLE 2-2
    Example 13 Example 14 Example 15
    UT gauge of center Thin Thin Thin
    UT gauge of shoulder Thick Thick Thick
    UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial
    direction) direction) direction)
    Gradually decreasing 1.0 1.0 1.0
    range of width W1/wg
    Ga_ce/GD 0.4 0.4 0.4
    Ga_sh/GD 0.5 0.5 0.5
    Relationship between Ga_ce < H ≤ Ga_ce < H ≤ Ga_ce < H ≤
    H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh
    H/GD 0.5 0.5 0.5
    Two types of UT rubber Yes Yes Yes
    Relationship between UTce > UTsh UTce > UTsh UTce > UTsh
    rubber hardnesses
    UTsh rubber gauge Diagonal Diagonal (curved Diagonal (curved
    gradually decreases (straight line) line protruding to line protruding to
    inner side in radial outer side in radial
    direction) direction)
    D1/D2 0.3 0.3 0.3
    Driving performance on 102 101 103
    ice in a normal internal
    pressure state (index value)
    Driving performance on 103 104 104
    ice in a low pressure
    state (index value)
  • TABLE 2-3
    Example 16 Example 17 Example 18
    UT gauge of center Thin Thin Thin
    UT gauge of shoulder Thick Thick Thick
    UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial
    direction) direction) direction)
    Gradually decreasing 1.0 1.0 2.0
    range of width W1/wg
    Ga_ce/GD 0.4 0.4 0.4
    Ga_sh/GD 0.6 0.6 0.6
    Relationship between Ga_ce < H ≤ Ga_ce < Ga_sh < Ga_ce < H ≤
    H, Ga_ce, Ga_sh Ga_sh H Ga_sh
    H/GD 0.5 0.5 0.3
    Two types of UT rubber Yes No No
    Relationship between UTce < UTsh
    rubber hardnesses
    UTsh rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial
    direction) direction) direction)
    D1/D2 0.3 0.3 0.3
    Driving performance on 105 104 106
    ice in a normal internal
    pressure state (index value)
    Driving performance on 106 105 105
    ice in a low pressure
    state (index value)
  • TABLE 3-1
    Example 19 Example 20 Example 21 Example 22
    UT gauge of center Thin Thin Thin Thin
    UT gauge of shoulder Thick Thick Thick Thick
    UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial outer side in radial
    direction) direction) direction) direction)
    Gradually decreasing 2.0 2.0 2.0 2.0
    range of width W1/wg
    Ga_ce/GD 0.4 0.4 0.4 0.4
    Ga_sh/GD 0.7 0.7 0.7 0.7
    Relationship between Ga_ce < H ≤ Ga_ce < H ≤ Ga_ce < H ≤ Ga_ce < H ≤
    H, Ga_ce, Ga_sh Ga_sh Ga_sh Ga_sh Ga_sh
    H/GD 0.6 0.7 0.6 0.6
    Two types of UT rubber No No Yes Yes
    Relationship between UTce < UTsh UTce < UTsh
    rubber hardnesses
    UTsh rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial outer side in radial
    direction) direction) direction) direction)
    D1/D2 0.3 0.3 0.3 0.7
    Driving performance on 106 105 106 109
    ice in a normal internal
    pressure state (index value)
    Driving performance on 106 107 108 106
    ice in a low pressure
    state (index value)
  • TABLE 3-2
    Example 23 Example 24 Example 25
    UT gauge of center Thin Thin Thin
    UT gauge of shoulder Thick Thick Thick
    UT rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial
    direction) direction) direction)
    Gradually decreasing 2.0 2.0 2.0
    range of width W1/wg
    Ga_ce/GD 0.4 0.4 0.4
    Ga_sh/GD 0.7 0.7 0.7
    Relationship between Ga_ce < H ≤ Ga_sh Ga_ce < H ≤ Ga_sh Ga_ce < H ≤ Ga_sh
    H, Ga_ce, Ga_sh
    H/GD 0.6 0.6 0.6
    Two types of UT rubber No No Yes
    Relationship between UTce < UTsh
    rubber hardnesses
    UTsh rubber gauge Diagonal (curved Diagonal (curved Diagonal (curved
    gradually decreases line protruding to line protruding to line protruding to
    outer side in radial outer side in radial outer side in radial
    direction) direction) direction)
    D1/D2 0.5 0.7 0.5
    Driving performance on 108 109 109
    ice in a normal internal
    pressure state (index value)
    Driving performance on 106 105 107
    ice in a low pressure
    state (index value)
  • TABLE 3-3
    Example 26 Example 27 Example 28
    UT gauge of center UT gauge UT gauge UT gauge
    UT gauge of shoulder undifferentiated undifferentiated undifferentiated
    UT rubber gauge No No No
    gradually decreases
    Gradually decreasing
    range of width W1/wg
    Ga_ce/GD 0.2 0.4 0.4
    Ga_sh/GD 0.4 0.7 0.7
    Relationship between Ga_ce < H ≤ Ga_sh Ga_ce < H ≤ Ga_sh Ga_ce < H ≤ Ga_sh
    H, Ga_ce, Ga_sh
    H/GD 0.6 0.6 0.6
    Two types of UT rubber Yes Yes Yes
    Relationship between UTce < UTsh UTce < UTsh UTce < UTsh
    rubber hardnesses
    UTsh rubber gauge Diagonal Diagonal (curved Diagonal (curved
    gradually decreases (straight line) line protruding to line protruding to
    inner side in radial outer side in radial
    direction) direction)
    D1/D2 0.3 0.3 0.7
    Driving performance on 103 103 102
    ice in a normal internal
    pressure state (index value)
    Driving performance on 103 104 105
    ice in a low pressure
    state (index value)

Claims (16)

1. A run-flat tire, comprising:
a reinforcing rubber layer having a roughly crescent-shaped meridian cross-section and being disposed in sidewall portions at both sides in a tire width direction,
a tread portion being provided formed of a tread rubber that comprises a cap tread rubber and an undertread rubber, the undertread rubber being disposed on an inner side of the cap tread rubber in a tire radial direction and having a higher hardness than the cap tread rubber, and
in a meridian cross-section, a gauge of the undertread rubber on a shoulder land portion on an outer side of an outermost main groove located furthest outward in the tire width direction being thicker than a gauge of the undertread rubber of a center land portion closest to a tire equatorial plane.
2. The run-flat tire according to claim 1, wherein
a gauge Ga_ce of the undertread rubber at the center land portion and a gauge Ga_sh of the undertread rubber at the shoulder land portion have a relationship Ga_ce<Ga_sh, and
the gauge of the undertread rubber gradually decreases from the outermost main groove toward the tire equatorial plane.
3. The run-flat tire according to claim 2, wherein
a ratio W1/Wg of a width W1 in the tire width direction of a portion of the undertread rubber where the gauge of the undertread rubber gradually decreases from the outermost main groove toward the tire equatorial plane to a groove width Wg of the outermost main groove is from 1.0 to 3.0.
4. The run-flat tire according to claim 1, wherein
a ratio Ga_ce/GD of a gauge Ga_ce of the undertread rubber at the center land portion to a groove depth GD of the outermost main groove is from 0.2 to 0.4, and
a ratio Ga_sh/GD of a gauge Ga_sh of the undertread rubber at the shoulder land portion to the groove depth GD of the outermost main groove is from 0.4 to 0.7.
5. The run-flat tire according to claim 1, wherein
a gauge H of the undertread rubber on a tire equatorial plane side of the outermost main groove is larger than a gauge Ga_ce and smaller than or equal to a gauge Ga_sh, and
a ratio H/GD of the gauge H to a groove depth GD of the outermost main groove is from 0.3 to 0.7.
6. The run-flat tire according to claim 1, wherein
the undertread rubber comprises an undertread center rubber of the center land portion, and an undertread shoulder rubber disposed on an outer side of the undertread center rubber in the tire width direction, and
a hardness of the undertread shoulder rubber is higher than a hardness of the undertread center rubber.
7. The run-flat tire according to claim 6, wherein
in a meridian cross-section, a gauge of the undertread shoulder rubber gradually decreases from the outermost main groove toward the tire equatorial plane.
8. The run-flat tire according to claim 6, wherein
in a meridian cross-section, a boundary surface between the undertread center rubber and the undertread shoulder rubber is inclined with respect to the tire width direction.
9. The run-flat tire according to claim 1, wherein
a ratio D1/D2 of a distance D1 in the tire width direction from an outer end of the undertread rubber in the tire width direction to an outermost end portion of the reinforcing rubber layer in the tire radial direction to a distance D2 in the tire width direction from an outer edge of the outermost main groove to an outer end of the undertread rubber in the tire width direction is from 0.3 to 0.7.
10. A run-flat tire, comprising:
a reinforcing rubber layer having a roughly crescent-shaped meridian cross-section and being disposed in sidewall portions at both sides in a tire width direction,
a tread portion being provided formed of a tread rubber that comprises a cap tread rubber and an undertread rubber, the undertread rubber being disposed on an inner side of the cap tread rubber in a tire radial direction and having a higher hardness than the cap tread rubber,
the undertread rubber comprising an undertread center rubber of a center land portion, and an undertread shoulder rubber disposed on an outer side of the undertread center rubber in the tire width direction,
a hardness of the undertread shoulder rubber being higher than a hardness of the undertread center rubber,
a gauge of the undertread shoulder rubber gradually decreasing from an outermost main groove located furthest outward in the tire width direction toward a tire equatorial plane, and
a gauge of the undertread center rubber gradually increasing from the outermost main groove toward the tire equatorial plane.
11. The run-flat tire according to claim 3, wherein
a ratio Ga_ce/GD of the gauge Ga_ce of the undertread rubber at the center land portion to a groove depth GD of the outermost main groove is from 0.2 to 0.4, and
a ratio Ga_sh/GD of the gauge Ga_sh of the undertread rubber at the shoulder land portion to the groove depth GD of the outermost main groove is from 0.4 to 0.7.
12. The run-flat tire according to claim 11, wherein
a gauge H of the undertread rubber on a tire equatorial plane side of the outermost main groove is larger than a gauge Ga_ce and smaller than or equal to a gauge Ga_sh, and
a ratio H/GD of the gauge H to the groove depth GD of the outermost main groove is from 0.3 to 0.7.
13. The run-flat tire according to claim 12, wherein
the undertread rubber comprises an undertread center rubber of the center land portion, and an undertread shoulder rubber disposed on an outer side of the undertread center rubber in the tire width direction, and
a hardness of the undertread shoulder rubber is higher than a hardness of the undertread center rubber.
14. The run-flat tire according to claim 13, wherein
in a meridian cross-section, a gauge of the undertread shoulder rubber gradually decreases from the outermost main groove toward the tire equatorial plane.
15. The run-flat tire according to claim 14, wherein
in a meridian cross-section, a boundary surface between the undertread center rubber and the undertread shoulder rubber is inclined with respect to the tire width direction.
16. The run-flat tire according to claim 15, wherein
a ratio D1/D2 of a distance D1 in the tire width direction from an outer end of the undertread rubber in the tire width direction to an outermost end portion of the reinforcing rubber layer in the tire radial direction to a distance D2 in the tire width direction from an outer edge of the outermost main groove to an outer end of the undertread rubber in the tire width direction is from 0.3 to 0.7.
US16/981,683 2018-03-16 2019-02-15 Run-Flat Tire Pending US20210031562A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-050172 2018-03-16
JP2018050172A JP7031397B2 (en) 2018-03-16 2018-03-16 Run flat tire
PCT/JP2019/005713 WO2019176445A1 (en) 2018-03-16 2019-02-15 Runflat tire

Publications (1)

Publication Number Publication Date
US20210031562A1 true US20210031562A1 (en) 2021-02-04

Family

ID=67907658

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/981,683 Pending US20210031562A1 (en) 2018-03-16 2019-02-15 Run-Flat Tire

Country Status (7)

Country Link
US (1) US20210031562A1 (en)
EP (1) EP3766705B1 (en)
JP (1) JP7031397B2 (en)
CN (1) CN111867854B (en)
FI (1) FI3766705T3 (en)
RU (1) RU2745302C1 (en)
WO (1) WO2019176445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230271452A1 (en) * 2020-11-20 2023-08-31 Bridgestone Corporation Tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127705B2 (en) * 2021-01-08 2022-08-30 横浜ゴム株式会社 pneumatic tire

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097787A2 (en) * 1982-06-26 1984-01-11 Continental Aktiengesellschaft Pneumatic tyre
US4838330A (en) * 1987-03-23 1989-06-13 Bridgestone Corporation Pneumatic tire
US5355922A (en) * 1991-04-11 1994-10-18 The Yokohama Rubber Co., Ltd. Pneumatic radial tire for passenger caps
JP2001010308A (en) * 1999-06-24 2001-01-16 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP2005239067A (en) * 2004-02-27 2005-09-08 Bridgestone Corp Pneumatic radial tire
US20070102083A1 (en) * 2005-11-09 2007-05-10 Sumitomo Rubber Industries, Ltd. Tire for motorcycle and method for manufacturing the same
US20070131329A1 (en) * 2005-12-13 2007-06-14 Sumitomo Rubber Industries, Ltd. Runflat tire
US20100065174A1 (en) * 2006-11-06 2010-03-18 The Yokohama Rubber Co., Ltd. Pneumatic tire
US20120132332A1 (en) * 2010-11-10 2012-05-31 Junling Zhao Passenger Tire Having Low Rolling Resistance With Improved Wet Traction And Treadwear
US20120285590A1 (en) * 2011-05-09 2012-11-15 Paul Harry Sandstrom Tire with tread having base layer comprised of diverse zoned rubber compositions
EP2944479A1 (en) * 2014-05-14 2015-11-18 Continental Reifen Deutschland GmbH Pneumatic tyres for a vehicle
JP2015227087A (en) * 2014-05-30 2015-12-17 東洋ゴム工業株式会社 Run-flat tire

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT376401B (en) * 1982-10-20 1984-11-26 Semperit Ag VEHICLE AIR TIRE WITH A RADIAL CARCASE, METHOD FOR THE PRODUCTION OF SUCH A TIRE AND METHOD AND DEVICE FOR THE PRODUCTION OF A TIRE PART FOR SUCH A TIRE
JPH08332806A (en) * 1995-06-07 1996-12-17 Bridgestone Corp Pneumatic radial tire
JP3958380B2 (en) * 1995-10-11 2007-08-15 株式会社ブリヂストン Unvulcanized tread rubber material for pneumatic tire and method for manufacturing pneumatic tire
CN1146509C (en) * 1998-10-28 2004-04-21 倍耐力轮胎公司 Tyre and method of making same
DE19860362A1 (en) * 1998-12-24 2000-06-29 Dunlop Gmbh Pneumatic vehicle tires
JP4671319B2 (en) * 2001-05-08 2011-04-13 東洋ゴム工業株式会社 Run flat tire
JP4000276B2 (en) * 2002-04-18 2007-10-31 株式会社ブリヂストン Pneumatic tire
JP4552571B2 (en) * 2004-09-16 2010-09-29 日産自動車株式会社 Pneumatic tire
BRPI0621885B1 (en) * 2006-07-20 2019-02-19 Pirelli Tyre S.P.A. Tire comprising at least one structural member including a cross-linked elastomeric material
JP4744392B2 (en) * 2006-08-11 2011-08-10 株式会社ブリヂストン Pneumatic radial tire for motorcycles
JP5160835B2 (en) * 2007-08-08 2013-03-13 株式会社ブリヂストン Precured tread for retreaded tires and retreaded tires
JP2009096419A (en) * 2007-10-19 2009-05-07 Bridgestone Corp Pneumatic tire for two-wheel vehicle
BRPI1007486A2 (en) * 2009-01-29 2016-02-16 Bridgestone Corp pneumatic
DE102009043991A1 (en) * 2009-09-14 2011-03-17 Continental Reifen Deutschland Gmbh Vehicle tires
JP4611451B1 (en) * 2010-06-09 2011-01-12 東洋ゴム工業株式会社 Pneumatic tire
JP5623864B2 (en) * 2010-10-19 2014-11-12 株式会社ブリヂストン Pneumatic tire
JP5897254B2 (en) * 2010-10-28 2016-03-30 横浜ゴム株式会社 Pneumatic tire
BRPI1106827A2 (en) * 2010-11-10 2014-08-19 Goodyear Tire & Rubber PNEUMATIC PNEUMATIC PERSONS HAVING LOW DRAWING RESISTANCE WITH WET TRACTION AND WHEEL WEAR
JP2013233866A (en) * 2012-05-09 2013-11-21 Yokohama Rubber Co Ltd:The Run-flat tire
FR2999116B1 (en) * 2012-12-10 2015-01-16 Michelin & Cie PNEUMATIC COMPRISING A TREAD TAPE CONSISTING OF SEVERAL ELASTOMERIC MIXTURES
JP6111134B2 (en) * 2013-04-23 2017-04-05 横浜ゴム株式会社 Pneumatic tire
CN107284146A (en) * 2017-07-05 2017-10-24 江苏通用科技股份有限公司 A kind of multi-functional tyre surface goes out type structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097787A2 (en) * 1982-06-26 1984-01-11 Continental Aktiengesellschaft Pneumatic tyre
US4838330A (en) * 1987-03-23 1989-06-13 Bridgestone Corporation Pneumatic tire
US5355922A (en) * 1991-04-11 1994-10-18 The Yokohama Rubber Co., Ltd. Pneumatic radial tire for passenger caps
JP2001010308A (en) * 1999-06-24 2001-01-16 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP2005239067A (en) * 2004-02-27 2005-09-08 Bridgestone Corp Pneumatic radial tire
US20070102083A1 (en) * 2005-11-09 2007-05-10 Sumitomo Rubber Industries, Ltd. Tire for motorcycle and method for manufacturing the same
US20070131329A1 (en) * 2005-12-13 2007-06-14 Sumitomo Rubber Industries, Ltd. Runflat tire
US20100065174A1 (en) * 2006-11-06 2010-03-18 The Yokohama Rubber Co., Ltd. Pneumatic tire
US20120132332A1 (en) * 2010-11-10 2012-05-31 Junling Zhao Passenger Tire Having Low Rolling Resistance With Improved Wet Traction And Treadwear
US20120285590A1 (en) * 2011-05-09 2012-11-15 Paul Harry Sandstrom Tire with tread having base layer comprised of diverse zoned rubber compositions
EP2944479A1 (en) * 2014-05-14 2015-11-18 Continental Reifen Deutschland GmbH Pneumatic tyres for a vehicle
JP2015227087A (en) * 2014-05-30 2015-12-17 東洋ゴム工業株式会社 Run-flat tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230271452A1 (en) * 2020-11-20 2023-08-31 Bridgestone Corporation Tire

Also Published As

Publication number Publication date
CN111867854B (en) 2022-11-11
RU2745302C1 (en) 2021-03-23
EP3766705A4 (en) 2021-12-08
JP7031397B2 (en) 2022-03-08
CN111867854A (en) 2020-10-30
EP3766705B1 (en) 2023-07-19
EP3766705A1 (en) 2021-01-20
JP2019156372A (en) 2019-09-19
FI3766705T3 (en) 2023-10-16
WO2019176445A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US10226966B2 (en) Pneumatic radial tire for passenger vehicle, method for using the tire, and tire-rim assembly including the tire
US11331963B2 (en) Run-flat tire
US10183531B2 (en) Pneumatic tire
US20040211501A1 (en) Pneumatic tire
US20150165822A1 (en) Pneumatic Tire
US9302545B2 (en) Tire for motorcycle
US10870318B2 (en) Pneumatic tire
CN108473004B (en) Pneumatic tire
US20220063341A1 (en) Pneumatic tire
US20210221177A1 (en) Pneumatic Tire
US20210031570A1 (en) Pneumatic Tire
US8875756B2 (en) Pneumatic tire
US11254167B2 (en) Pneumatic tyre
US20180222255A1 (en) Heavy duty tire and method for manufacturing the same
CN112055663B (en) Pneumatic tire
US20210260926A1 (en) Pneumatic Tire and Method for Manufacturing Pneumatic Tire
EP3766705B1 (en) Runflat tire
US20190009616A1 (en) Pneumatic tire
US11400768B2 (en) Pneumatic tire
US11760130B2 (en) Run-flat tire
US20220258540A1 (en) Tire
US20210291595A1 (en) Pneumatic Tire
US20230009135A1 (en) Tire
US20230241923A1 (en) Tire and method for using the same
EP3978275B1 (en) Pneumatic tire

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE YOKOHAMA RUBBER CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARADA, SHUNYA;REEL/FRAME:053795/0263

Effective date: 20200819

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: THE YOKOHAMA RUBBER CO., LTD., JAPAN

Free format text: CHANGE OF ADDRESS FOR ASSIGNEE;ASSIGNOR:THE YOKOHAMA RUBBER CO., LTD.;REEL/FRAME:065626/0740

Effective date: 20231025

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED