[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20200326350A1 - Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject - Google Patents

Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject Download PDF

Info

Publication number
US20200326350A1
US20200326350A1 US16/719,507 US201916719507A US2020326350A1 US 20200326350 A1 US20200326350 A1 US 20200326350A1 US 201916719507 A US201916719507 A US 201916719507A US 2020326350 A1 US2020326350 A1 US 2020326350A1
Authority
US
United States
Prior art keywords
neurotensin
pro
fragments
level
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/719,507
Inventor
Andreas Bergmann
Olle Melander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sphingotec GmbH
Original Assignee
Sphingotec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sphingotec GmbH filed Critical Sphingotec GmbH
Priority to US16/719,507 priority Critical patent/US20200326350A1/en
Assigned to SPHINGOTEC GMBH reassignment SPHINGOTEC GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MELANDER, OLLE, BERGMANN, ANDREAS
Publication of US20200326350A1 publication Critical patent/US20200326350A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4703Regulators; Modulating activity
    • G01N2333/4706Regulators; Modulating activity stimulating, promoting or activating activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism

Definitions

  • Subject of the present invention is a method for predicting the risk of getting a cardiovascular event in a female subject comprising:
  • elevated level means a level above a certain threshold level.
  • Neurotensin is a 13-amino acid neuropeptide derived from the prepro-neurotensin precursor and stochiometrically released together with the stable 117-amino acid peptide pro-neurotensin (P-NT) and the mature hormone binds to three different receptors, neurotensin receptor 1 and 2 (Ntsr1 and Ntsr2), which are G-protein coupled receptors and neurotensin receptor 3 (Ntsr3) which is non-G-protein coupled and also known as Sortillin-1 (SORT1).
  • Neurotensin is released peripherally from the small intestine as well as centrally from the hypothalamus.
  • the peripheral secretion of neurotensin is stimulated by food-intake, especially by fat, and is known to regulate gastrointestinal motility and pancreatic and biliary secretion.
  • neurotensin is implicated in appetite control as an anorectic hormone as it acutely reduces food intake following both central (intracerebroventricular) and peripheral (intraperitoneal) injection in rats, an effect which seems mainly mediated through the neurotensin-1 receptor (Ntsr1).
  • NTSR1 neurotensin receptor 1
  • vasoactive peptides for prediction of cancer risks in males has been reported by belting et al, Cancer, Epidemiology, Biomarkes & Prevention.
  • MR-pro-ANP, MR-pro-ADM and copeptin was measured in the fasting plasma from participants of the Malmö Diet and Cancer Study that were free from cancer prior to the baseline exam in 1991 to 1994 (1768 males and 2293 females) The Authors stated that among females, there was no relationship between biomarkers and cancer incidence.
  • CRP and Pro-BNP are known predictors of cardiovascular events in the population (Melander et. Al, JAMA. 2009; 302(1):49-57). There is now information about any gender difference of the predictive power CRP and Pro-BNP for CVD endpoints.
  • a subject of the present invention was to investigate the prognostic and diagnostic power of NT for predicting the risk of getting a cardiovascular event in a subject to address this issue, we measured stable fragments of pro-neurotensin in fasting plasma in said Swedish prospective cohort study (Malmö Diet and Cancer Study, see Melander et. al, JAMA. 2009; 302(1):49-57) and related baseline level of this biomarker to cardiovascular events during 15 years of follow-up.
  • neurotensin is a powerful and highly significant biomarker for woman for predicting the risk of getting a cardiovascular event
  • subject of the present invention is a method for predicting the risk of getting a cardiovascular event in a female subject comprising:
  • said cardiovascular event is an acute cardiovascular event selected from the group comprising myocardial infarction, stroke, acute heart failure and cardiovascular death related to myocardial infarction, stroke or acute heart failure.
  • said cardiovascular event is an acute cardiovascular event selected from the group comprising myocardial infarction, stroke, acute heart failure and cardiovascular death related to myocardial infarction, stroke or acute heart failure.
  • the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a bodily fluid obtained from said female subject that is predictive for the risk of getting a cardiovascular event in said female subject may is released from the small intestine.
  • the release of neurotensin from the small intestine is stimulated by food intake, especially by fat, and is known to regulate gastrointestinal motility and pancreatic and biliary secretion.
  • Pro-neurotensin 1-117 and fragments thereof or pro-neurotensin 1-117 comprising peptides are used as a surrogate marker for the released neurotensin as neurotensin and pro-neurotensin 1-117 and fragments thereof or pro-neurotensin 1-117 comprising peptides are released in equimolar amounts from pro-neurotensin.
  • peripheral secretion of neurotensin/pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides is indicative for the susceptibility of a female subject to get a cardiovascular event.
  • dietary measures as reduction of fat uptake may lower said risk in said female subject.
  • subject refers to a living human or non-human organism.
  • the subject is a human subject.
  • the correlation between the level of pro-neurotensin or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a bodily fluid obtained from said female subject and the risk of getting a cardiovascular event is continuous, i.e. the higher the level the higher the risk. This can be seen from the data e.g. in Table 17. In comparison to the first quartile the second, third and forth quartile exhibits higher Hazard Risks respectively.
  • threshold(s) For the sake of practicability the person skilled in the art may use threshold(s).
  • the term “elevated level” may mean a level above a threshold level.
  • the level of pro-neurotensin or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a bodily fluid is the fasting level of pro-neurotensin or fragments thereof of at least 5 amino acid or pro-neurotensin 1-117 comprising peptides.
  • Fasting level means no food uptake 12 h prior blood sampling.
  • a bodily fluid may be selected from the group comprising blood, serum, plasma, urine, cerebro spinal liquid (csf), and saliva.
  • said female subject has no history of diagnosis of an acute cardiovascular event at the time the sample of bodily fluid is taken from said female subject.
  • said female subject has been diagnosed as having at a cardiovascular disease or diabetes wherein at the time the sample of bodily fluid is taken from said female subject.
  • said cardiovascular disease at the time the sample of bodily fluid is taken from said female subject may be selected from the group comprising heart failure, atherosclerosis, and hypertension.
  • the present data suggest a strong correlation between the level of pro-neurotensin or fragments thereof with a cardiovascular event in woman with no prevalent diabetes, no prevalent breast cancer and no prevalent cardiovascular disease.
  • the present data also suggest a strong correlation between the level of pro-neurotensin or fragments thereof with a cardiovascular event in hypertensive woman, which is a common high-risk group for cardiovascular disease.
  • the present data also suggest a strong correlation between the level of pro-neurotensin or fragments thereof with a cardiovascular event in normotensive woman. Further, the present data suggest a strong correlation between the level of pro-neurotensin or fragments thereof with a cardiovascular event in diabetic woman.
  • the prediction of a first adverse event in a subject or the identification of a subject having an enhanced risk for getting a first adverse event is improved by additionally determining and using the level of at least one further marker selected from the group comprising: CRP, LpLA2, Cystatin C and natriuretic peptides of the A- and the B-type as well as their precursors and fragments thereof including ANP, proANP, NT-proANP, MR-proANP, BNP, proBNP, NT-proBNP triglycerides, HDL cholesterol or subfractions thereof, LDL cholesterol or subfractions thereof, GDF15, ST2.
  • pro-neurotensin or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides the level of the following marker is determined and used: proBNP or fragments or precursors thereof having at least 12 amino acids and/or CRP.
  • At least one clinical parameter is determined selected from the group comprising: age, systolic blood pressure, diastolic blood pressure, antihypertensive treatment, body mass index, presence of diabetes mellitus, current smoking.
  • Cardiovascular events were defined as coronary events or fatal or nonfatal stroke. Events were identified through linkage of the 10-digit personal identification number of each Swedish citizen with 3 registries: the Swedish Hospital Discharge Register, the Swedish Cause of Death Register, and the Stroke in Malmo register. Myocardial infarction was defined on the basis of International Classification of Diseases, 9th and 10th revisions (ICD-9 and ICD-10) codes 410 and 121, respectively. Fatal or nonfatal stroke was defined using codes 430, 431, 434, and 436 (ICD-9) and 160, 161, 163, and 164 (ICD-10).
  • HBP normotensive/high blood pressure
  • Subjects having normal blood pressure (BP) are all other subjects, i.e subjects with Systolic BP ⁇ 140 mmHg or Diastolic BP ⁇ 90 mmHg or not being on antihypertensive medications.
  • Fragments of pro-neurotensin that may be determined in a bodily fluid may be e.g. selected from the group of the following fragments:
  • SEQ ID NO: 1 (pro-neurotensin 1-147) SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLT IYQLHKICHS RAFQHWELIQ EDILDTGNDK NGKEEVIKRK IPYILKRQLY ENKPRRPYIL KRDSYYY SEQ ID NO: 2 (pro-neurotensin 1-125 (large neuromedin N)) SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLT IYQLHKICHS RAFQHWELIQ EDILDTGNDK NGKEEVI KR KIPYIL SEQ ID NO: 3 (neuromedin N:) KIPYIL SEQ ID NO: 4 (neurotensin) pyroQLYENKPRRP
  • the level of pro-neurotensin 1-117 is determined.
  • the level of pro-neurotensin is measured with an immunoassay. More specifically an immunoassay is used as described in Ernst et al. Peptides 27 (2006) 1787-1793.
  • An immunoassay that may be useful for determining the level of pro-neurotensin or fragments thereof of at least 5 amino acids may comprise the steps as outlined in Example 2. All thresholds and values have to be seen in correlation to the test and the calibration used according to Example 2. A person skilled in the art may know that the absolute value of a threshold might be influenced by the calibration used. This means that all values and thresholds given herein are to be understood in context of the calibration used in herein (Example 2).
  • a human P-NT-calibrator is available by ICI-Diagnostics, Berlin, Germany.
  • the assay may also be calibrated by synthetic or recombinant P-NT 1-117 or fragments thereof (see also Ernst et. al, 2006).
  • the threshold for determining the risk of getting a cardiovascular event in a female subject is above 78 pmol/l PNT, preferred 100 pmol/l, more preferred 150 pmol/l. In a specific embodiment said threshold is about 100 pmol/l. These thresholds are related to the above mentioned calibration method. A P-NT value above said threshold means that the subject has an enhanced risk of getting a cardiovascular event.
  • the prediction of the risk of the subject for contracting cardiovascular events is improved by additionally determining and using the level of at least one laboratory parameter or further marker selected from the group comprising fasting blood or plasma glucose, triglycerides, HDL cholesterol or subfractions thereof, LDL cholesterol or subfractions thereof, Cystatin C, Insulin, CRP, vasopressin or its precursors or fragments thereof and BNP or its precursors or fragments thereof.
  • at least one laboratory parameter or further marker selected from the group comprising fasting blood or plasma glucose, triglycerides, HDL cholesterol or subfractions thereof, LDL cholesterol or subfractions thereof, Cystatin C, Insulin, CRP, vasopressin or its precursors or fragments thereof and BNP or its precursors or fragments thereof.
  • At least one clinical parameter is determined selected from the group comprising age, gender, systolic blood pressure, diastolic blood pressure, antihypertensive treatment (AHT), body mass index, waist circumference, waist-hip-ratio, current smoker, diabetes heredity and previous cardiovascular disease (CVD).
  • Subject matter of the present invention is further a method for predicting the risk of getting a cardiovascular event in a subject or identifying a subject having an enhanced risk for getting a cardiovascular event according to the invention, wherein the level of pro-neurotensin or fragments thereof of at least 5 amino acids either alone or in conjunction with other prognostically useful laboratory or clinical parameters is used for the prediction of a subject's risk for getting a cardiovascular event by a method which may be selected from the following alternatives:
  • said a method is performed more than once in order to monitor the risk of getting a cardiovascular event in a female subject.
  • said monitoring is performed in order to evaluate the response of said female subject to preventive and/or therapeutic measures taken.
  • the method is used to stratify said female subjects into risk groups.
  • Also encompassed by the present invention is a point-of-care device for performing a method according to the invention.
  • Also encompassed by the present invention is an assay and/or kit for performing a method according to the invention.
  • Subject matter of the invention is also a binder to neurotensin or to a neurotensin receptor, for the use in prevention or therapy of a cardiovascular event in a female subject.
  • the binder reduces the bioactivity of neurotensin to 70% or less.
  • the binder to neurotensin is selected from the group consisting of antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including Fab minibodies, single chain Fab antibody, monovalent Fab antibody with epitope tags, e.g. Fab-V5Sx2; bivalent Fab (mini-antibody) dimerized with the CH3 domain; bivalent Fab or multivalent Fab, e.g. formed via multimerization with the aid of a heterologous domain, e.g.
  • dHLX domains e.g. Fab-dHLX-FSx2; F(ab′)2-fragments, scFv-fragments, multimerized multivalent or/and multispecific scFv-fragments, bivalent and/or bispecific diabodies, BITE® (bispecific T-cell engager), trifunctional antibodies, polyvalent antibodies, e.g. from a different class than G; single-domain antibodies, e.g. nanobodies derived from camelid or fish immunoglobulines.
  • the binder to a neurotensin receptor is selected from the group consisting of antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including Fab minibodies, single chain Fab antibody, monovalent Fab antibody with epitope tags, e.g. Fab-V5Sx2; bivalent Fab (mini-antibody) dimerized with the CH3 domain; bivalent Fab or multivalent Fab, e.g. formed via multimerization with the aid of a heterologous domain, e.g.
  • antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including
  • dHLX domains e.g. Fab-dHLX-FSx2; F(ab′)2-fragments, scFv-fragments, multimerized multivalent or/and multispecific scFv-fragments, bivalent and/or bispecific diabodies, BITE® (bispecific T-cell engager), trifunctional antibodies, polyvalent antibodies, e.g. from a different class than G; single-domain antibodies, e.g. nanobodies derived from camelid or fish immunoglobulines, or a peptide antagonist e.g. [D-Trp 11 ]-Neurotensin, [Tyr(Me) 11 ]-Neurotensin (e.g.
  • a non-peptide antagonist e.g. Levocabastine, SR-48692 (NTS1 selective), SR-142948 (unselective), SR-142948A, CP 96345, [3H]SR-48692, SR 48692, SR-48527 and SR-49711, or a binder scaffold e.g. tetranectin-based non-Ig scaffolds (e.g. described in US 2010/0028995), fibronectin scaffolds (e.g. described in EP 1266 025; lipocalin-based scaffolds ((e.g. described in WO 2011/154420); ubiquitin scaffolds (e.g.
  • transferring scaffolds e.g. described in US 2004/0023334
  • protein A scaffolds e.g. described in EP 2231860
  • ankyrin repeat based scaffolds e.g. described in WO 2010/060748
  • microproteins preferably microproteins forming a cystine knot e.g. described in EP 2314308
  • Fyn SH3 domain based scaffolds e.g. described in WO 2011/023685
  • EGFR-A-domain based scaffolds e.g. described in WO 2005/040229
  • Kunitz domain based scaffolds e.g. described in EP 1941867).
  • Peptides for immunization were synthesized (JPT Technologies, Berlin, Germany) with an additional N-terminal Cystein residue for conjugation of the peptides to Bovine Serum Albumin (BSA).
  • BSA Bovine Serum Albumin
  • the peptides were covalently linked to BSA by using Sulfo-SMCC (Perbio-science, Bonn, Germany) The coupling procedure was performed according to the manual of Perbio.
  • LA Labelled antibody
  • SPA Solid phase antibody
  • the antibodies were generated according to the following method:
  • a BALB/c mouse were immunized with 100 ⁇ g Peptide-BSA-Conjugate at day 0 and 14 (emulsified in 100 ⁇ l complete Freund's adjuvant) and 50 ⁇ g at day 21 and 28 (in 100 ⁇ l incomplete Freund's adjuvant).
  • the animal received 50 ⁇ g of the conjugate dissolved in 100 ⁇ l saline, given as one intraperitoneal and one intra venous injection.
  • Splenocytes from the immunized mouse and cells of the myeloma cell line SP2/0 were fused with 1 ml 50% polyethylene glycol for 30 s at 37° C. After washing, the cells were seeded in 96-well cell culture plates. Hybrid clones were selected by growing in HAT medium [RPMI 1640 culture medium supplemented with 20% fetal calf serum and HAT-Supplement]. After two weeks the HAT medium is replaced with HT Medium for three passages followed by returning to the normal cell culture medium.
  • the cell culture supernatants were primary screened for antigen specific IgG antibodies three weeks after fusion.
  • the positive tested microcultures were transferred into 24-well plates for propagation. After retesting the selected cultures were cloned and recloned using the limiting-dilution technique and the isotypes were determined.
  • Monoclonal antibody production Antibodies were produced via standard antibody production methods (Marx et al, Monoclonal Antibody Production, ATLA 25, 121, 1997,) and purified via Protein A-chromatography. The antibody purities were >95% based on SDS gel electrophoresis analysis.
  • the technology used was a sandwich coated tube luminescence immunoassay, based on Akridinium ester labelling.
  • Labelled compound 100 ug (100 ul) LA (1 mg/ml in PBS, pH 7.4, was mixed with 10 ul Akridinium NHS-ester (1 mg/ml in acetonitrile, InVent GmbH, Germany) (EP 0353971) and incubated for 20 min at room temperature.
  • Labelled LA was purified by Gel-filtration HPLC on Bio-Sil SEC 400-5 (Bio-Rad Laboratories, Inc., USA) The purified LA was diluted in (300 mmol/l potassiumphosphate, 100 mmol/l NaCl, 10 mmol/l Na-EDTA, 5 g/l Bovine Serum Albumin, pH 7.0). The final concentration was approx.
  • Solid phase Polystyrene tubes (Greiner Bio-One International AG, Austria) were coated (18 h at room temperature) with SPA ((1.5 ⁇ g SPA/0.3 ml 100 mmol/l NaCl, 50 mmol/l tris/HCl, pH 7.8). After blocking with 5% bovine serum albumine, the tubes were washed with PBS, pH 7.4 and vakuum dried.
  • SPA (1.5 ⁇ g SPA/0.3 ml 100 mmol/l NaCl, 50 mmol/l tris/HCl, pH 7.8). After blocking with 5% bovine serum albumine, the tubes were washed with PBS, pH 7.4 and vakuum dried.
  • the assay was calibrated, using dilutions of P-NT-containing human serum.
  • a pool of human sera with high P-NT-immunoreactivity (InVent Diagostika, Hennigsdorf, Germany) was diluted with horse serum (Biochrom AG, Germany) (assay standards).
  • the standards were calibrated by use of the human P-NT-calibrator (ICI-Diagnostics, Berlin, Germany).
  • the assay may be calibrated by synthetic or recombinant P-NT 1-117 or fragments thereof (see also Ernst et. al, 2006).
  • FIG. 1 shows a typical P-NT dose/signal curve.
  • N-BNP and P-NT further improved the predictive power for CVD in females from 33% HR per 1SD (P-NT alone to 34.8% per 1SD (p ⁇ 0.001) (combination of P-NT and N-BNP.
  • FIG. 1 shows a typical P-NT dose/signal curve
  • FIG. 2B is another graph illustrating cumulative events

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Diabetes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Subject of the present invention is a method for predicting the risk of getting a cardiovascular event in a female subject comprising determining the level of pro-neurotensin or fragments thereof of at least 5 amino acids in a bodily fluid obtained from said female subject; and correlating said level of pro-neurotensin or fragments thereof with the a risk for getting a cardiovascular event, wherein an elevated level is predictive for an enhanced risk of getting a cardiovascular event.

Description

    SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 15, 2020, is named Boehmerp-0240-C01_SL.txt and is 8,172 bytes in size.
  • Subject of the present invention is a method for predicting the risk of getting a cardiovascular event in a female subject comprising:
      • determining the level of pro-neurotensin or fragments thereof of at least 5 amino acids in a bodily fluid obtained from said female subject; and
      • correlating said level of pro-neurotensin or fragments thereof with the a risk for getting a cardiovascular event, wherein an elevated level is predictive for an enhanced risk of getting a cardiovascular event.
  • The term “elevated level” means a level above a certain threshold level.
  • Neurotensin is a 13-amino acid neuropeptide derived from the prepro-neurotensin precursor and stochiometrically released together with the stable 117-amino acid peptide pro-neurotensin (P-NT) and the mature hormone binds to three different receptors, neurotensin receptor 1 and 2 (Ntsr1 and Ntsr2), which are G-protein coupled receptors and neurotensin receptor 3 (Ntsr3) which is non-G-protein coupled and also known as Sortillin-1 (SORT1).
  • Neurotensin is released peripherally from the small intestine as well as centrally from the hypothalamus. The peripheral secretion of neurotensin is stimulated by food-intake, especially by fat, and is known to regulate gastrointestinal motility and pancreatic and biliary secretion. Interestingly, neurotensin is implicated in appetite control as an anorectic hormone as it acutely reduces food intake following both central (intracerebroventricular) and peripheral (intraperitoneal) injection in rats, an effect which seems mainly mediated through the neurotensin-1 receptor (Ntsr1). In obese as compared to normal-weight human subjects, postprandial plasma neurotensin concentration was reduced following a liquid fatty meal (Widen et al 1992, Reg peptides; Plasma concentrations of regulatory peptides in obesity following modified sham feeding (MSF) and a liquid test meal), suggesting regulation of neurotensin secretion is disturbed in obesity. However, no large study has investigated if and how neurotensin is related to measures of obesity. Interestingly, P-NT significantly increases after gastric by-pass (Roux-en-Y), an operation shown to lead to normoglycemia in the majority of obese type 2 diabetes patients, but it is not known whether neurotensin is implicated in the development diabetes mellitus in general. Furthermore, the neurotensin system has been implicated in development of coronary artery disease and myocardial infarction as variation of the Ntsr3 (SORT1) gene is one of the strongest common coronary artery diseases susceptibility genes known in humans.
  • The mechanistic link between obesity and cancer is largely unknown, however, one of the dominating theories is that excess of fat deposits leads to increased peripheral aromatization of androgens and thus elevated circulating estrogen levels. In addition, one of the hallmarks of obesity, hyperinsulinemia, has been shown to inhibit hepatic production of Sexual Hormone Binding Globulin (SHBG), thus increasing bioavailable levels of both estrogens and androgens suggesting ways through which obesity may increase the risk of common forms of sex-hormone driven forms of cancer such as breast and prostate cancer. Interestingly, both neurotensin and Ntsr1 expression is common in malignant ductal breast cancer tumors and experimentally pharmacological blockade or RNA silencing of the NTSR1 reduces tumour growth in mice.
  • The level of expression of neurotensin receptor 1 (NTSR1) in breast cancer cells has been used for determining the prognosis of a subject suffering from breast cancer (US 2011/0305633). Further, it is stated in by the same authors that no clear correlation has been described today between circulating neurotensin and the stages of pancreas, prostate, or medullar thyroid tumors probably due to rapid clearance by the liver. Interestingly, it was found that in a series of 51 patients with invasive ductal breast cancer 91% of all tumors were positive for neurotensin receptor 1 (NTSR1) but only 31% of all tumors were positive for neurotensin in said tissue (Souaze et. Al. Cancer Research 2006; 66: (12) pages 6243-6249.
  • There is some evidence that neurotensin and neurotensin receptors participate in cancer growth, in particular in lung cancer, pancreatic cancer and colon cancer (Carraway et al.; Peptides 27 (2006) 2445-2460). It has been reported that levels of NT in sera of patients with pancreatic cancer were significantly enhanced (Picheon et al, Anticancer Research 1999; 19; 1445-50). Interestingly this group found that NT levels fell with progression of the disease for both prostate an pancreatic cancer. In contrast, thereto, Meggiato et al; Tumori 1996; 82; 592-5; found that plasma levels of NT were normal in pancreatic cancer but elevated in case where pancreatitis was diagnosed.
  • The use of vasoactive peptides for prediction of cancer risks in males has been reported by belting et al, Cancer, Epidemiology, Biomarkes & Prevention. MR-pro-ANP, MR-pro-ADM and copeptin was measured in the fasting plasma from participants of the Malmö Diet and Cancer Study that were free from cancer prior to the baseline exam in 1991 to 1994 (1768 males and 2293 females) The Authors stated that among females, there was no relationship between biomarkers and cancer incidence.
  • CRP and Pro-BNP are known predictors of cardiovascular events in the population (Melander et. Al, JAMA. 2009; 302(1):49-57). There is now information about any gender difference of the predictive power CRP and Pro-BNP for CVD endpoints.
  • A subject of the present invention was to investigate the prognostic and diagnostic power of NT for predicting the risk of getting a cardiovascular event in a subject to address this issue, we measured stable fragments of pro-neurotensin in fasting plasma in said Swedish prospective cohort study (Malmö Diet and Cancer Study, see Melander et. al, JAMA. 2009; 302(1):49-57) and related baseline level of this biomarker to cardiovascular events during 15 years of follow-up.
  • Surprisingly, it has been shown that neurotensin is a powerful and highly significant biomarker for woman for predicting the risk of getting a cardiovascular event
  • Thus, subject of the present invention is a method for predicting the risk of getting a cardiovascular event in a female subject comprising:
      • determining the level of pro-neurotensin or fragments thereof of at least 5 amino acids in a bodily fluid obtained from said female subject; and
      • correlating said level of pro-neurotensin or fragments thereof with the a risk for getting a cardiovascular event, wherein an elevated level is predictive for an enhanced risk of getting a cardiovascular event.
  • In a specific embodiment of the invention said cardiovascular event is an acute cardiovascular event selected from the group comprising myocardial infarction, stroke, acute heart failure and cardiovascular death related to myocardial infarction, stroke or acute heart failure.
  • In a specific embodiment of the invention subject matter of the invention is a method for predicting the risk of getting a cardiovascular event in a female subject comprising:
      • determining the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a bodily fluid obtained from said female subject; and
      • correlating said level of pro-neurotensin 1-117 or fragments thereof or pro-neurotensin 1-117 comprising peptides with the a risk for getting a cardiovascular event, wherein an elevated level is predictive for an enhanced risk of getting a cardiovascular event.
  • And wherein said cardiovascular event is an acute cardiovascular event selected from the group comprising myocardial infarction, stroke, acute heart failure and cardiovascular death related to myocardial infarction, stroke or acute heart failure.
  • The level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a bodily fluid obtained from said female subject that is predictive for the risk of getting a cardiovascular event in said female subject may is released from the small intestine. The release of neurotensin from the small intestine is stimulated by food intake, especially by fat, and is known to regulate gastrointestinal motility and pancreatic and biliary secretion. Pro-neurotensin 1-117 and fragments thereof or pro-neurotensin 1-117 comprising peptides are used as a surrogate marker for the released neurotensin as neurotensin and pro-neurotensin 1-117 and fragments thereof or pro-neurotensin 1-117 comprising peptides are released in equimolar amounts from pro-neurotensin.
  • It is the surprising finding of the present invention that the peripheral secretion of neurotensin/pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides is indicative for the susceptibility of a female subject to get a cardiovascular event. Thus, dietary measures as reduction of fat uptake may lower said risk in said female subject.
  • Data obtained in present study revealed also a correlation between the risk of getting a cardiovascular event in male subjects with the level of pro-neurotensin or fragments thereof of at least 5 amino acids in a bodily fluid obtained from said male subject; this correlation however, was not that significant for the present data. Thus, we assume that there is a value for the method according to the invention also for male subjects but the observed effect was not that strong for males in the present study.
  • The term “subject” as used herein refers to a living human or non-human organism. Preferably herein the subject is a human subject.
  • The correlation between the level of pro-neurotensin or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a bodily fluid obtained from said female subject and the risk of getting a cardiovascular event is continuous, i.e. the higher the level the higher the risk. This can be seen from the data e.g. in Table 17. In comparison to the first quartile the second, third and forth quartile exhibits higher Hazard Risks respectively.
  • For the sake of practicability the person skilled in the art may use threshold(s).
  • Thus, the term “elevated level” may mean a level above a threshold level.
  • In one embodiment of the invention the level of pro-neurotensin or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a bodily fluid is the fasting level of pro-neurotensin or fragments thereof of at least 5 amino acid or pro-neurotensin 1-117 comprising peptides. Fasting level means no food uptake 12 h prior blood sampling.
  • A bodily fluid may be selected from the group comprising blood, serum, plasma, urine, cerebro spinal liquid (csf), and saliva.
  • In one embodiment of a method according to the present invention said female subject has no history of diagnosis of an acute cardiovascular event at the time the sample of bodily fluid is taken from said female subject.
  • In another embodiment of a method according to the present invention said female subject has been diagnosed as having at a cardiovascular disease or diabetes wherein at the time the sample of bodily fluid is taken from said female subject.
  • In a specific embodiment said cardiovascular disease at the time the sample of bodily fluid is taken from said female subject may be selected from the group comprising heart failure, atherosclerosis, and hypertension.
  • The present data suggest a strong correlation between the level of pro-neurotensin or fragments thereof with a cardiovascular event in woman with no prevalent diabetes, no prevalent breast cancer and no prevalent cardiovascular disease.
  • The present data also suggest a strong correlation between the level of pro-neurotensin or fragments thereof with a cardiovascular event in hypertensive woman, which is a common high-risk group for cardiovascular disease.
  • Furthermore, the present data also suggest a strong correlation between the level of pro-neurotensin or fragments thereof with a cardiovascular event in normotensive woman. Further, the present data suggest a strong correlation between the level of pro-neurotensin or fragments thereof with a cardiovascular event in diabetic woman.
  • In another specific embodiment of the invention at the time the sample of bodily fluid is taken from said female subject, said female subject has been diagnosed as having at diabetes Typ II. In a specific embodiment of the invention the prediction of a first adverse event in a subject or the identification of a subject having an enhanced risk for getting a first adverse event is improved by additionally determining and using the level of at least one further marker selected from the group comprising: CRP, LpLA2, Cystatin C and natriuretic peptides of the A- and the B-type as well as their precursors and fragments thereof including ANP, proANP, NT-proANP, MR-proANP, BNP, proBNP, NT-proBNP triglycerides, HDL cholesterol or subfractions thereof, LDL cholesterol or subfractions thereof, GDF15, ST2.
  • In a very specific embodiment of the method according to the invention in addition to the level of pro-neurotensin or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides the level of the following marker is determined and used: proBNP or fragments or precursors thereof having at least 12 amino acids and/or CRP.
  • In another specific embodiment of the invention additionally at least one clinical parameter is determined selected from the group comprising: age, systolic blood pressure, diastolic blood pressure, antihypertensive treatment, body mass index, presence of diabetes mellitus, current smoking.
  • Cardiovascular events (CVD) were defined as coronary events or fatal or nonfatal stroke. Events were identified through linkage of the 10-digit personal identification number of each Swedish citizen with 3 registries: the Swedish Hospital Discharge Register, the Swedish Cause of Death Register, and the Stroke in Malmo register. Myocardial infarction was defined on the basis of International Classification of Diseases, 9th and 10th revisions (ICD-9 and ICD-10) codes 410 and 121, respectively. Fatal or nonfatal stroke was defined using codes 430, 431, 434, and 436 (ICD-9) and 160, 161, 163, and 164 (ICD-10).
  • The definition of diabetes is as follows: a history of physician diagnosis or being on anti-diabetic medication or having a fasting whole blood glucose>1=6.1 mmol/l (note this is =7.0 mmol/l in plasma) at the baseline examination.
  • The definition of normotensive/high blood pressure (HBP) is as follows:
  • HBP: Systolic BP>/=140 mmHg Diastolic BP>/=90 mmHg or being on antihypertensive medications. Subjects having normal blood pressure (BP) are all other subjects, i.e subjects with Systolic BP<140 mmHg or Diastolic BP<90 mmHg or not being on antihypertensive medications.
  • Fragments of pro-neurotensin that may be determined in a bodily fluid may be e.g. selected from the group of the following fragments:
  • SEQ ID NO: 1 (pro-neurotensin 1-147)
    SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS
    LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLT
    IYQLHKICHS RAFQHWELIQ EDILDTGNDK NGKEEVIKRK
    IPYILKRQLY ENKPRRPYIL KRDSYYY
    SEQ ID NO: 2 (pro-neurotensin 1-125 
    (large neuromedin N))
    SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS
    LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLT
    IYQLHKICHS RAFQHWELIQ EDILDTGNDK NGKEEVI KR
    KIPYIL
    SEQ ID NO: 3 (neuromedin N:)
    KIPYIL
    SEQ ID NO: 4 (neurotensin)
    pyroQLYENKPRRP YIL
    SEQ ID NO: 5 (pro-neurotensin 1-117)
    SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS
    LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLT
    IYQLHKICHS RAFQHWELIQ EDILDTGNDK NGKEEVI
    SEQ ID NO: 6 (pro-neurotensin 1-132)
    SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS
    LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLT
    IYQLHKICHS RAFQHWELIQ EDILDTGNDK NGKEEVIKRK
    IPYILKRQLY EN
    Seq ID No 7: (pro-neurotensin 1-125)
    SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS
    LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLT
    IYQLHKICHS RAFQHWELIQ EDILDTGNDK NGKEEVIKRK
    IPYIL
    SEQ ID NO: 8 (pro-neurotensin 120-140)
    KIPYILKRQL YENKPRRPYI L
    SEQ ID NO: 9 (pro-neurotensin 120-147)
    KIPYILKRQL YENKPRRPYIL KRDSYYY
    SEQ ID NO: 10 (pro-neurotensin 128-147)
    QLYENKPRRP YILKRDSYYY
  • In a more specific embodiment of the method according to the present invention the level of pro-neurotensin 1-117 is determined.
  • In a specific embodiment the level of pro-neurotensin is measured with an immunoassay. More specifically an immunoassay is used as described in Ernst et al. Peptides 27 (2006) 1787-1793. An immunoassay that may be useful for determining the level of pro-neurotensin or fragments thereof of at least 5 amino acids may comprise the steps as outlined in Example 2. All thresholds and values have to be seen in correlation to the test and the calibration used according to Example 2. A person skilled in the art may know that the absolute value of a threshold might be influenced by the calibration used. This means that all values and thresholds given herein are to be understood in context of the calibration used in herein (Example 2). A human P-NT-calibrator is available by ICI-Diagnostics, Berlin, Germany. Alternatively, the assay may also be calibrated by synthetic or recombinant P-NT 1-117 or fragments thereof (see also Ernst et. al, 2006).
  • The threshold for determining the risk of getting a cardiovascular event in a female subject according to the methods of the present invention is above 78 pmol/l PNT, preferred 100 pmol/l, more preferred 150 pmol/l. In a specific embodiment said threshold is about 100 pmol/l. These thresholds are related to the above mentioned calibration method. A P-NT value above said threshold means that the subject has an enhanced risk of getting a cardiovascular event.
  • In a specific embodiment of the method according to the invention the prediction of the risk of the subject for contracting cardiovascular events is improved by additionally determining and using the level of at least one laboratory parameter or further marker selected from the group comprising fasting blood or plasma glucose, triglycerides, HDL cholesterol or subfractions thereof, LDL cholesterol or subfractions thereof, Cystatin C, Insulin, CRP, vasopressin or its precursors or fragments thereof and BNP or its precursors or fragments thereof.
  • In a specific embodiment of the method according to the invention additionally at least one clinical parameter is determined selected from the group comprising age, gender, systolic blood pressure, diastolic blood pressure, antihypertensive treatment (AHT), body mass index, waist circumference, waist-hip-ratio, current smoker, diabetes heredity and previous cardiovascular disease (CVD).
  • Subject matter of the present invention is further a method for predicting the risk of getting a cardiovascular event in a subject or identifying a subject having an enhanced risk for getting a cardiovascular event according to the invention, wherein the level of pro-neurotensin or fragments thereof of at least 5 amino acids either alone or in conjunction with other prognostically useful laboratory or clinical parameters is used for the prediction of a subject's risk for getting a cardiovascular event by a method which may be selected from the following alternatives:
      • Comparison with the median of the level of pro-neurotensin or fragments thereof or pro-neurotensin 1-117 comprising peptides in an ensemble of pre-determined samples in a population of “healthy” or “apparently healthy” subjects,
      • Comparison with a quantile of the level of pro-neurotensin or fragments thereof or pro-neurotensin 1-117 comprising peptides in an ensemble of pre-determined samples in a population of “healthy” or “apparently healthy” subjects,
      • Calculation based on Cox Proportional Hazards analysis or by using Risk index calculations such as the NRI (Net Reclassification Index) or the IDI (Integrated Discrimination Index).
  • In one embodiment of the method according to the invention said a method is performed more than once in order to monitor the risk of getting a cardiovascular event in a female subject.
  • In another embodiment of the method according to the invention said monitoring is performed in order to evaluate the response of said female subject to preventive and/or therapeutic measures taken.
  • In another embodiment of the method according to the in order invention the method is used to stratify said female subjects into risk groups.
  • Also encompassed by the present invention is a point-of-care device for performing a method according to the invention.
  • Also encompassed by the present invention is an assay and/or kit for performing a method according to the invention.
  • Subject matter of the invention is also a binder to neurotensin or to a neurotensin receptor, for the use in prevention or therapy of a cardiovascular event in a female subject.
  • In one embodiment of the invention the binder reduces the bioactivity of neurotensin to 70% or less.
  • According to the invention the binder to neurotensin is selected from the group consisting of antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including Fab minibodies, single chain Fab antibody, monovalent Fab antibody with epitope tags, e.g. Fab-V5Sx2; bivalent Fab (mini-antibody) dimerized with the CH3 domain; bivalent Fab or multivalent Fab, e.g. formed via multimerization with the aid of a heterologous domain, e.g. via dimerization of dHLX domains, e.g. Fab-dHLX-FSx2; F(ab′)2-fragments, scFv-fragments, multimerized multivalent or/and multispecific scFv-fragments, bivalent and/or bispecific diabodies, BITE® (bispecific T-cell engager), trifunctional antibodies, polyvalent antibodies, e.g. from a different class than G; single-domain antibodies, e.g. nanobodies derived from camelid or fish immunoglobulines.
  • According to the invention the binder to a neurotensin receptor is selected from the group consisting of antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including Fab minibodies, single chain Fab antibody, monovalent Fab antibody with epitope tags, e.g. Fab-V5Sx2; bivalent Fab (mini-antibody) dimerized with the CH3 domain; bivalent Fab or multivalent Fab, e.g. formed via multimerization with the aid of a heterologous domain, e.g. via dimerization of dHLX domains, e.g. Fab-dHLX-FSx2; F(ab′)2-fragments, scFv-fragments, multimerized multivalent or/and multispecific scFv-fragments, bivalent and/or bispecific diabodies, BITE® (bispecific T-cell engager), trifunctional antibodies, polyvalent antibodies, e.g. from a different class than G; single-domain antibodies, e.g. nanobodies derived from camelid or fish immunoglobulines, or a peptide antagonist e.g. [D-Trp11]-Neurotensin, [Tyr(Me)11]-Neurotensin (e.g. described by Quiron et al.), or a non-peptide antagonist, e.g. Levocabastine, SR-48692 (NTS1 selective), SR-142948 (unselective), SR-142948A, CP 96345, [3H]SR-48692, SR 48692, SR-48527 and SR-49711, or a binder scaffold e.g. tetranectin-based non-Ig scaffolds (e.g. described in US 2010/0028995), fibronectin scaffolds (e.g. described in EP 1266 025; lipocalin-based scaffolds ((e.g. described in WO 2011/154420); ubiquitin scaffolds (e.g. described in WO 2011/073214), transferring scaffolds (e.g. described in US 2004/0023334), protein A scaffolds (e.g. described in EP 2231860), ankyrin repeat based scaffolds (e.g. described in WO 2010/060748), microproteins preferably microproteins forming a cystine knot) scaffolds (e.g. described in EP 2314308), Fyn SH3 domain based scaffolds (e.g. described in WO 2011/023685) EGFR-A-domain based scaffolds (e.g. described in WO 2005/040229) and Kunitz domain based scaffolds (e.g. described in EP 1941867).
  • EXAMPLES Example 1
  • Development of Antibodies
  • Peptides/Conjugates for Immunization:
  • Peptides for immunization were synthesized (JPT Technologies, Berlin, Germany) with an additional N-terminal Cystein residue for conjugation of the peptides to Bovine Serum Albumin (BSA). The peptides were covalently linked to BSA by using Sulfo-SMCC (Perbio-science, Bonn, Germany) The coupling procedure was performed according to the manual of Perbio.
  • Labelled antibody (LA) peptide (P-NT 1-19):
    (SEQ ID NO: 11)
    H-CSDSEEEMKALEADFLTNMH-NH2
    Solid phase antibody (SPA) peptide (P-NT 44-62):
    (SEQ ID NO: 12)
    H-CNLNSPAEETGEVHEEELVA-NH2
  • The antibodies were generated according to the following method:
  • A BALB/c mouse were immunized with 100 μg Peptide-BSA-Conjugate at day 0 and 14 (emulsified in 100 μl complete Freund's adjuvant) and 50 μg at day 21 and 28 (in 100 μl incomplete Freund's adjuvant). Three days before the fusion experiment was performed, the animal received 50 μg of the conjugate dissolved in 100 μl saline, given as one intraperitoneal and one intra venous injection.
  • Splenocytes from the immunized mouse and cells of the myeloma cell line SP2/0 were fused with 1 ml 50% polyethylene glycol for 30 s at 37° C. After washing, the cells were seeded in 96-well cell culture plates. Hybrid clones were selected by growing in HAT medium [RPMI 1640 culture medium supplemented with 20% fetal calf serum and HAT-Supplement]. After two weeks the HAT medium is replaced with HT Medium for three passages followed by returning to the normal cell culture medium.
  • The cell culture supernatants were primary screened for antigen specific IgG antibodies three weeks after fusion. The positive tested microcultures were transferred into 24-well plates for propagation. After retesting the selected cultures were cloned and recloned using the limiting-dilution technique and the isotypes were determined.
  • (Lane, R. D. “A short-duration polyethylene glycol fusion technique for increasing production of monoclonal antibody-secreting hybridomas”, J. Immunol. Meth. 81: 223-228; (1985), Ziegler, B. et al. “Glutamate decarboxylase (GAD) is not detectable on the surface of rat islet cells examined by cytofluorometry and complement-dependent antibody-mediated cytotoxicity of monoclonal GAD antibodies”, Horm. Metab. Res. 28: 11-15, (1996)).
  • Monoclonal antibody production Antibodies were produced via standard antibody production methods (Marx et al, Monoclonal Antibody Production, ATLA 25, 121, 1997,) and purified via Protein A-chromatography. The antibody purities were >95% based on SDS gel electrophoresis analysis.
  • Example 2
  • Immunoassay for the Quantification of Human Pro-Neurotensin
  • The technology used was a sandwich coated tube luminescence immunoassay, based on Akridinium ester labelling.
  • Labelled compound (tracer): 100 ug (100 ul) LA (1 mg/ml in PBS, pH 7.4, was mixed with 10 ul Akridinium NHS-ester (1 mg/ml in acetonitrile, InVent GmbH, Germany) (EP 0353971) and incubated for 20 min at room temperature. Labelled LA was purified by Gel-filtration HPLC on Bio-Sil SEC 400-5 (Bio-Rad Laboratories, Inc., USA) The purified LA was diluted in (300 mmol/l potassiumphosphate, 100 mmol/l NaCl, 10 mmol/l Na-EDTA, 5 g/l Bovine Serum Albumin, pH 7.0). The final concentration was approx. 800.000 relative light units (RLU) of labelled compound (approx. 20 ng labeled antibody) per 200 Akridiniumester chemiluminescence was measured by using an AutoLumat LB 953 (Berthold Technologies GmbH & Co. KG,( ).
  • Solid phase: Polystyrene tubes (Greiner Bio-One International AG, Austria) were coated (18 h at room temperature) with SPA ((1.5 μg SPA/0.3 ml 100 mmol/l NaCl, 50 mmol/l tris/HCl, pH 7.8). After blocking with 5% bovine serum albumine, the tubes were washed with PBS, pH 7.4 and vakuum dried.
  • Calibration:
  • The assay was calibrated, using dilutions of P-NT-containing human serum. A pool of human sera with high P-NT-immunoreactivity (InVent Diagostika, Hennigsdorf, Germany) was diluted with horse serum (Biochrom AG, Deutschland) (assay standards).
  • The standards were calibrated by use of the human P-NT-calibrator (ICI-Diagnostics, Berlin, Germany). Alternatively, the assay may be calibrated by synthetic or recombinant P-NT 1-117 or fragments thereof (see also Ernst et. al, 2006).
  • P-NT Immunoassay:
  • 50 μl of sample (or calibrator) was pipetted into SPA coated tubes, after adding labelled LA (200 μl), the tubes were incubated for 16-22 h at 18-25° C. Unbound tracer was removed by washing 5 times (each 1 ml) with washing solution (20 mM PBS, pH 7.4, 0.1% Triton X-100). Tube-bound LA was measured by using the LB 953
  • FIG. 1 shows a typical P-NT dose/signal curve.
  • Example 3: Population Study
  • Methods
  • We measured P-NT in fasting plasma from 4362 participants of the population based Malmo Diet and Cancer Study baseline exam in 1991-1994 (men age 58±6 years and 59% females). We used multivariable adjusted (all traditional cardiovascular risk factors, diabetes risk factors and in analyses of cancer also heredity for cancer) Cox proportional hazards models to relate baseline P-NT (hazard ratio per each standard deviation increase of log-transformed P-NT) to the time to the first event of each of the studied endpoints during a median follow-up time of more than 12 years. Endpoints were retrieved through the Swedish National Hospital Discharge Registry, the Swedish Myocardial Infarction Registry, the Stroke in Malmo Registry and the Swedish Cancer Registry. Retrieval of endpoints through these registries has been validated and found to be accurate.
  • Clinical Characteristics of the Total Study Population
  • TABLE 1
    Descriptive Statistics
    Std.
    N Mean Deviation
    Age at MDCS screening 4362 57.643 5.9797
    Systolic blood pressure (mmHg) 4362 141.91 19.158
    Diastolic blood presure (mmHg) 4362 87.02 9.501
    body-mass-index (weight/kgxkg) 4362 25.7642 3.91173
    WAIST (cm) 4361 83.56 12.791
    Glucose (mmol/l) 4362 5.1826 1.33736
    Triglycerides (mmol/l) 4362 1.3142 .63660
    High density lipoprotein (mmol/l) 4362 1.3908 .37068
    Low density lipoprotein (mmol/l) 4362 4.1632 .98774
    P-INSULIN 4280 7.889 7.6975
    PNT (pmol/l) 4362 123.01743 76.746549
    Valid N (listwise) 4279
  • TABLE 2
    gender
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid male 1803 41.3 41.3 41.3
    woman 2559 58.7 58.7 100.0
    Total 4362 100.0 100.0
  • TABLE 3
    Q + Diary: Anti Hypertension Treatment (C02, C03, C07,
    C08, C09) at baseline according to questionnaire or diary book
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid No 3684 84.5 84.5 84.5
    Yes 678 15.5 15.5 100.0
    Total 4362 100.0 100.0
  • TABLE 4
    DIAB MELL (fb >6.0 or pos Q DM)
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid no 3993 91.5 91.5 91.5
    yes 369 8.5 8.5 100.0
    Total 4362 100.0 100.0
  • TABLE 5
    current_smoker0
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid  .00 3212 73.6 73.6 73.6
    1.00 1150 26.4 26.4 100.0
    Total 4362 100.0 100.0
  • TABLE 6
    Clinical characteristics of females in the study
    Descriptive Statistics
    N Mean Std. Deviation
    Age at MDCS screening 2559 57.554 5.9403
    Systolic blood pressure (mm Hg) 2559 140.50 19.311
    Diastolic blood pressure (mm Hg) 2559 85.65 9.117
    body-mass-index (weight/kgxkg) 2559 25.5196 4.19083
    WAIST (cm) 2559 76.99 10.245
    Glucose (mmol/l) 2559 5.0418 1.21798
    Triglycerides (mmol/l) 2559 1.2245 .58404
    High density lipoprotein (mmol/l) 2559 1.5123 .36949
    Low density lipoprotein (mmol/l) 2559 4.2016 1.04762
    P-INSULIN 2512 7.223 5.4223
    PNT (pmol/L) 2559 125.60633 77.681673
    Valid N (listwise) 2512
  • TABLE 7
    Q + Diary: Anti Hypertension Treatment (C02, C03, C07,
    C08, C09) at baseline according to questionnaire or diary book
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid No 2173 84.9 84.9 84.9
    Yes 386 15.1 15.1 100.0
    Total 2559 100.0 100.0
  • TABLE 8
    DIAB MELL (fb >6.0 or pos Q DM)
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid no 2396 93.6 93.6 93.6
    yes 163 6.4 6.4 100.0
    Total 2559 100.0 100.0
  • TABLE 9
    current_smoker0
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid  .00 1906 74.5 74.5 74.5
    1.00 653 25.5 25.5 100.0
    Total 2559 100.0 100.0
  • TABLE 10
    Clinical characteristics of males in the study
    Descriptive Statistics
    N Mean Std. Deviation
    Age at MDCS screening 1803 57.769 6.0345
    Systolic blood pressure (mmHg) 1803 143.90 18.766
    Diastolic blood pressure (mmHg) 1803 88.95 9.698
    body-mass-index (weight/kgxkg) 1803 26.1113 3.44882
    WAIST (cm) 1802 92.89 9.932
    Glucose (mmol/l) 1803 5.3825 1.46780
    Triglycerides (mmol/l) 1803 1.4416 .68477
    High density lipoprotein (mmol/l) 1803 1.2183 .29669
    Low density lipoprotein (mmol/l) 1803 4.1087 .89336
    P-INSULIN 1768 8.835 10.0090
    PNT (pmol/l) 1803 119.34300 75.268054
    Valid N (listwise) 1767
  • TABLE 11
    Q + Diary: Anti Hypertension Treatment (C02, C03, C07,
    C08, C09) at baseline according to questionnaire or diary book
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid No 1511 83.8 83.8 83.8
    Yes 292 16.2 16.2 100.0
    Total 1803 100.0 100.0
  • TABLE 12
    DIAB MELL (fb >6.0 or pos Q DM)
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid no 1597 88.6 88.6 88.6
    yes 206 11.4 11.4 100.0
    Total 1803 100.0 100.0
  • TABLE 13
    current_smoker0
    Cumulative
    Frequency Percent Valid Percent Percent
    Valid  .00 1306 72.4 72.4 72.4
    1.00 497 27.6 27.6 100.0
    Total 1803 100.0 100.0
  • Results
  • Cross Sectional Relationship Between Cardiometabolic Risk Factors and P-NT The baseline characteristics of the study population are shown in Table 1. Women had slightly but significantly higher P-NT [median (interquartile range)] than men [109 (79-150) versus 99 (71-144) pmol/l] (P<0.001). The cross sectional relationship between P-NT and measures of obesity, cardiovascular risk factors and diabetes risk factors was generally weak with the strongest correlation being that with fasting insulin concentration in both gender (Supplementary Table 1). In a linear regression model with backward elimination and a retention P-value of 0.10, significant independent determinants of P-NT were smoking and fasting concentrations of insulin, glucose, and HDL (all positive) in women and smoking and fasting concentrations of insulin and HDL (positively related) and age and LDL (negatively related) in men (Table 2).
  • TABLE 14
    QUARTILES OF PNT IN ALL:
    PNT (pmol/l)
    Percentile Group
    of PNTpmolL N Median Minimum Maximum
    1 1091 60.22000 3.270 75.740
    2 1090 89.29000 75.790 104.600
    3 1092 122.67000 104.640 147.610
    4 1089 190.03000 147.660 1154.520
    Total 4362 104.62000 3.270 1154.520
  • TABLE 15
    QUARTILES OF PNT IN WOMEN:
    PNT (pmol/l)
    Percentile Group
    of PNTpmolL N Median Minimum Maximum
    1 639 62.37000 5.100 78.580
    2 639 92.07000 78.610 108.770
    3 641 125.07000 108.960 150.000
    4 640 194.38500 150.050 1154.520
    Total 2559 108.96000 5.100 1154.520
  • TABLE 16
    QUARTILES OF PNT IN MEN:
    PNT (pmol/l)
    Percentile Group
    of PNTpmolL N Median Minimum Maximum
    1 450 58.02000 3.270 70.800
    2 451 85.88000 70.970 98.820
    3 451 118.18000 98.880 143.940
    4 451 186.39000 144.180 1057.360
    Total 1803 98.88000 3.270 1057.360
  • TABLE 17
    HR per Quartile Quartile Quartile Quartile P for
    1 SD P-value 1 2 3 4 trend
    CARDIOVASCULAR DISEASE
    All 1.17 <0.001 1.0 (ref) 1.09 1.39 1.37 0.003
    (4362/519) (1.07-1.27) (0.84-1.42) (1.09-1.78) (1.07-1.75)
    Women 1.33 <0.001 1.0 (ref) 0.91 1.58 1.65 0.001
    (2559/224) (1.17-1.51) (0.59-1.41) (1.08-2.30) (1.13-2.41)
    Men 1.06   0.310 1.0 (ref) 1.25 1.26 1.21 0.278
    (1803/295) (0.95-1.19) (0.90-1.74) (0.90-1.76) (0.87-1.69)
    CARDIOVASCULAR MORTALITY
    All 1.29   0.001 1.0 (ref) 0.95 1.41 1.73 0.003
    (4362/174) (1.12-1.49) (0.59-1.53) (0.91-2.17) (1.14-2.61)
    Women 1.50 <0.001 1.0 (ref) 1.02 1.53 2.18 0.008
    (2559/75) (1.21-1.87) (0.47-2.22) (0.76-3.08) (1.13-4.20)
    Men 1.16   0.132 1.0 (ref) 1.06 1.36 1.43 0.147
    (1803/99) (0.96-1.41) (0.58-1.93) (0.76-2.42) (0.82-2.51)
  • P-NT and Prediction of Cardiovascular Disease, Cardiovascular Mortality and all-Cause Mortality
  • Among subjects without cardiovascular disease prior to the baseline exam, 519 suffered a first cardiovascular disease event during 14.4±4.4 years of follow-up. After full adjustment for baseline levels of cardiovascular risk factors (age, gender, antihypertensive treatment, systolic blood pressure, body mass index, diabetes mellitus, HDL, LDL and smoking) each SD increase of P-NT was associated with 17% increased risk of incident cardiovascular disease (Table 3). There was a strong interaction between P-NT and female gender (P<0.001) and gender stratified analyses revealed that each SD increase of baseline P-NT was strongly associated with a 33% increased risk of incident cardiovascular disease in women, whereas there was no significant relationship among men (Table 3). Quartile analyses revealed that the top versus the bottom quartile was associated with a 37% increased risk for incident cardiovascular disease in the total population and 65% increased risk in women (Table 3). Additional adjustment for fasting insulin concentration, i.e. the strongest cross-sectional correlate of P-NT, did not affect the results (not shown).
  • We then assessed the relationship between total and cardiovascular mortality in the entire population as well as in men and women separately in models fully adjusted for all cardiovascular risk factors. Each SD increase of P-NT was associated with a significant 8% increase in the risk of all-cause mortality in the total population and a 13% risk of all-cause mortality among women whereas there was no such increased risk related to P-NT in men (Table 3). The excess risk of death in appeared to be mainly accounted for by cardiovascular deaths with 29% per SD increase in the risk of cardiovascular death in the total population and 50% excess risk in females. Female subjects belonging to the top as compared to the bottom quartile of P-NT had a more than 2-fold increased risk of suffering cardiovascular death (Table 3).
  • Multivariate Cox proportional Hazards models for baseline P-NT versus incidence of cardiovascular disease, all-cause- and cardiovascular mortality
  • Head-to-Head Comparison Between P-NT, N—BNP and CRP
  • In order to compare the statistical strength and the effect estimates on the studied endpoints between P-NT and established plasma biomarkers, we entered P-NT simultaneously with N-BNP and CRP in fully adjusted models (CRP and N-BNP was measured as described by Melander et al., JAMA. 2009; 302(1):49-57). As seen below, P-NT performed equally well as N-BNP and CRP for most endpoints in the total population and in females P-NT performed clearly better than N-BNP and CRP (CRP alone was not significant in females). Combining (see Melander et al., JAMA. 2009; 302(1):49-57) N-BNP and P-NT further improved the predictive power for CVD in females from 33% HR per 1SD (P-NT alone to 34.8% per 1SD (p<0.001) (combination of P-NT and N-BNP.
  • TABLE 18
    Incident CVD-ALL SUBJECTS
    Variables in the Equation
    95.0% CI for
    Exp(B)
    B SE Wald df Sig. Exp(B) Lower Upper
    AGE .079 .010 68.888 1 .000 1.082 1.062 1.103
    SEX −.476 .106 20.042 1 .000 .621 .505 .765
    AHT_B .231 .116 3.991 1 .046 1.260 1.004 1.581
    SBP_B .015 .003 35.264 1 .000 1.015 1.010 1.020
    BMI_B −.012 .014 .775 1 .379 .988 .962 1.015
    DM_B .544 .130 17.618 1 .000 1.723 1.336 2.221
    HDL_B −.851 .169 25.479 1 .000 .427 .307 .594
    LDL_B .152 .048 9.800 1 .002 1.164 1.058 1.280
    current_smoker .495 .106 21.876 1 .000 1.640 1.333 2.017
    0
    ZLN_PNT .133 .046 8.336 1 .004 1.142 1.044 1.250
    ZLN_BNP .132 .049 7.168 1 .007 1.141 1.036 1.257
    ZLN_CRP .147 .050 8.523 1 .004 1.158 1.049 1.278
  • TABLE 19
    INCIDENT CVD-FEMALE SUBJECTS
    Variables in the Equation
    95.0% CI for
    Exp(B)
    B SE Wald df Sig. Exp(B) Lower Upper
    AGE .080 .015 28.703 1 .000 1.084 1.052 1.116
    SEX 0a
    AHT_B .466 .168 7.664 1 .006 1.593 1.146 2.215
    SBP_B .014 .004 13.454 1 .000 1.014 1.007 1.022
    BMI_B −.038 .019 3.908 1 .048 .962 .927 1.000
    DM_B .925 .202 21.035 1 .000 2.522 1.699 3.745
    HDL_B −.926 .231 16.088 1 .000 .396 .252 .623
    LDL_B .116 .069 2.801 1 .094 1.123 .980 1.286
    current_smoker .740 .155 22.725 1 .000 2.095 1.546 2.840
    0
    Z_LNBNP .154 .071 4.755 1 .029 1.167 1.016 1.340
    ZLN_CRP .112 .077 2.123 1 .145 1.119 .962 1.301
    ZLN_PNT .224 .070 10.217 1 .001 1.251 1.091 1.435
  • FIG. 2: Kaplan Meier Graph for illustrating the cumulative CVD-events in women, cut off><median=109 pmol/l P-NT.
  • The prediction of CVD-events by baseline P-NT was given for the complete observation period.
  • Subgroup Analysis
  • Using the same variables in the equation, we investigated different subgroups for prediction of CVD, mortality, CVD mortality. Subjects with precious CVD-events were excluded.
  • TABLE 20
    Prediction of CVD events
    No of No of Hazard risk Significance
    Subgroup subjects events per 1SD PNT (p-value)
    all 4361 519 16.5% <0.001
    women 2559 224 33.2% <0.001
    male 1802 295   6%    0.31 (n.s.)
    Diabetic 163 40 42.9% 0.05
    women
    nonDiabetic 2396 184 33.6% <0.001
    women
    HBP women 1545 178 30.6% <0.001
    Normal BP 1014 46 40.8%  0.014
    Women
    Women w/o 2022 144 30.6%  0.001
    history of
    cancer,
    diabetes and
    CVD events
  • Prediction of CVD events was only related to females. The predictive power of P-NT was similar in completely healthy and in high risk subgroups like diabetic women or HBP women.
  • TABLE 21
    Prediction of CVD events
    No of No of Hazard risk Significance
    Subgroup subjects events per 1SD PNT (p-value)
    all 4361 174 28.7% 0.001
    women 2559 75 50% <0.001 
    male 1803 99 16%   0.132 (n.s.)
    Diabetic 163 14  141% 0.006
    women
    non 2396 61 39.6% 0.006
    Diabetic
    women)
    HBP women 1545 63 35.1% 0.016
    Normal BP 1014 12 125.7%  0.001
    Women
    Women w/o 2022 48 36% 0.025
    history of
    cancer,
    diabetes and
    CVD events
  • Prediction of CVD mortality by P-NT was strong in women and not significant in male. The predictive power of P-NT was given in healthy women and in high risk women (diabetic or HBP).
  • Reclassification of Woman into Risk Groups
  • Methods:
  • We calculated model c-statistics and reclassification across 10-year predicted risk categories for the different events (<5%, >=5-10%, >=10-20% and >=20%, respectively) with Net Reclassification Improvement (NRI) for models with and without P-NT.30-32 All analyses were performed with Stata software version 11 (StataCorp, College Station, Tex.). A two-sided P-value of <0.05 was considered statistically significant.
  • For cardiovascular mortality, there was a borderline significant increase of the over-all NRI of 11%. P-NT correctly reclassified 19% of females who actually suffered cardiovascular death to a higher category of risk but only reclassified 5% of women who did not suffer cardiovascular death to a lower category of risk (Table 5). Among women at intermediate (10-20%) 10-year risk, i.e. the group in which biomarker support has been suggested to be particularly important for clinical decision making regarding initiation of primary preventive therapy (and reclassification thus referred to as “clinical NRI”), 38 addition of P-NT to traditional cardiovascular risk factors resulted in a significant clinical NRI of 40% for cardiovascular mortality, with reclassification of 21% women who died a cardiovascular death to a higher category of risk and 30% of women who did not suffer cardiovascular death to a lower category of risk.
  • LITERATURE
    • Pencina M J, D'Agostino R B. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med. Jul. 15, 2004; 23(13):2109-2123.
    • Pencina M J, D'Agostino R B, Sr., D'Agostino R B, Jr., Vasan R S. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. Jan. 30, 2008; 27(2):157-172; discussion 207-112.
    • Ridker P M, Buring J E, Rifai N, Cook N R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. Jama. Feb. 14, 2007; 297(6):611-619.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a typical P-NT dose/signal curve
  • FIG. 2A Kaplan Meier Graph for illustrating the cumulative CVD-events in women, cut off><median=109 pmol/l P-NT
  • FIG. 2B is another graph illustrating cumulative events

Claims (25)

1.-18. (canceled)
19. A method comprising contacting a sample of a bodily fluid from a fasting non-diabetic subject with a level pro-neurotensin 1-117 of 78 pmol/l or above with a binder that binds to pro-neurotensin 1-117.
20. A method according to claim 19, wherein said binder is an antibody that is full-length immunoglobulin, or fragments therein containing at least the F-variable domain of heavy and/or light chain.
21. A method of claim 20 which comprises the additional step of producing a complex of pro-neurotensin 1-117 and said antibody in an amount of 78 pmol/l or above.
22. A method of claim 21 which comprises the additional step of determining the level of complex of pro-neurotensin 1-117 and said antibody by detecting binding between pro-neurotensin 1-117 and said antibody.
23. A method of claim 19, wherein the sample of bodily fluid is selected from the group consisting of a blood sample, a plasma sample, a cerebrospinal fluid sample, a serum sample, a urine sample or an extract of the aforementioned samples.
24. A method according to claim 19, wherein the sample of bodily fluid is from a subject which is a fasting non-diabetic and non-prediabetic (non-IFG) subject.
25. A method according to claim 19, wherein the blood sample has a blood glucose level of less than 6.1 mmol/l but more than 5.4 mmol/l or a blood glucose level of less than 5.4 mmol/l.
26. A method according to claim 19, wherein the level of pro-neurotensin 1-117 in the bodily fluid is between 78-150 pmol/l.
27. A method according to claim 19 wherein the level of pro-neurotensin 1-117 in the bodily fluid is 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149 or 150 pmol/l.
28. A method comprising:
A) determining the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a sample of bodily fluid obtained from a fasting non-diabetic subject; and
B) determining whether the fasting non-diabetic subject has an enhanced risk of contracting diabetes mellitus and/or metabolic syndrome based on the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or proneurotensin 1-117 comprising peptides determined in the bodily fluid obtained from said fasting non-diabetic subject, wherein a level of pro-neurotensin 1-117 or fragments thereof or pro-neurotensin 1-117 comprising peptides above a threshold level of 78 pmol/L is predictive for an enhanced risk of contracting diabetes mellitus and/or metabolic syndrome.
29. A method of claim 28 wherein the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in said sample of bodily fluid is determined by a) contacting said sample with an antibody that binds to pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides and b) detecting binding between the antibody and pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides.
30. A method of claim 28 comprising the additional step of recording when a sample of bodily fluid obtained from said fasting non-diabetic subject has a fasting level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or proneurotensin 1-117 comprising peptides that is elevated over a threshold level of 78 pmol/l.
31. A method according to claim 28, comprising the additional step of measuring the blood glucose level of a fasting non-diabetic subject, wherein the fasting non-diabetic subject selected has a blood glucose of a) less than 6.1 mmol/l but more than 5.4 mmol/l or b) less than 5.4 mmol/l.
32. A method according to claim 28, comprising the additional step of determining at least one clinical parameter selected from the group consisting of age, gender, systolic blood pressure, diastolic blood pressure, antihypertensive treatment (AHT), body mass index, waist circumference, waist-hip-ratio, smoker status, diabetes heredity and previous cardiovascular disease (CVD).
33. A method according to claim 28, comprising the additional step of
determining the level of at least one further marker selected from triglycerides, HDL cholesterol or subfractions thereof, LDL cholesterol or subfractions thereof, Cystatin C, insulin, CRP, vasopressin or its precursors or fragments thereof, or BNP or its precursors or fragments thereof, in a sample of bodily fluid obtained from a fasting non-diabetic subject; and
determining whether the fasting non-diabetic subject has an enhanced risk of contracting diabetes mellitus and/or metabolic syndrome based on
a) the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides determined in the bodily fluid obtained from said fasting non-diabetic subject, and
b) the level of at least one further marker selected from triglycerides, HDL cholesterol or subfractions thereof, LDL cholesterol or subfractions thereof, Cystatin C, insulin, CRP, vasopressin or its precursors or fragments thereof, or BNP or its precursors or fragments thereof.
34. A method according to claim 28, wherein the level of pro-neurotensin 1-117 is determined.
35. A method for identifying a fasting non-diabetic subject at risk for contracting diabetes mellitus, a metabolic syndrome, or both; the improvement comprising: determining the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids in a bodily fluid of said fasting non-diabetic subject.
36. A method of monitoring the course of treatment of a subject treated with preventive and/or therapeutic measures for diabetes mellitus and/or metabolic syndrome, said method comprising
A) determining the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a sample of bodily fluid obtained from a subject to be treated with preventive and/or therapeutic measures for diabetes mellitus and/or metabolic syndrome;
B) determining the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides in a sample of bodily fluid obtained from a subject after treatment with preventive and/or therapeutic measures for diabetes mellitus and/or metabolic syndrome; and
C) evaluating the response of said subject to preventive and/or therapeutic measures based on the difference in the level of pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides determined in steps A and B.
37. A method according to claim 36, wherein an increase in pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides determined in Step B indicates a poor response of said subject to preventive and/or therapeutic measures and a decrease in pro-neurotensin 1-117 or fragments thereof of at least 5 amino acids or pro-neurotensin 1-117 comprising peptides determined in Step B indicates a favorable response of said subject to preventive and/or therapeutic measures.
38. A method for stratifying subjects into risk groups for getting diabetes mellitus and/or metabolic syndrome comprising performing the method according to claim 28 on more than one fasting non-diabetic subject.
39. A method of prevention or treatment of diabetes mellitus and/or metabolic syndrome in a subject comprising administering to said subject a binder to neurotensin or a neurotensin receptor which reduces the bioactivity of neurotensin to 70% or less.
40. The method according to claim 39, wherein the binder to neurotensin is selected from the group consisting of antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including Fab minibodies, single chain Fab antibody, monovalent Fab antibody with epitope tags, e.g. Fab-V5Sx2; bivalent Fab (mini-antibody) dimerized with the CH3 domain; bivalent Fab or multivalent Fab, e.g. formed via multimerization with the aid of a heterologous domain, e.g. via dimerization of dHLX domains, e.g. Fab-dHLX-FSx2; F(ab′)2-fragments, scFv-fragments, multimerized multivalent or/and multi specific scFv-fragments, bivalent and/or bispecific diabodies, BITE® (bispecific T-cell engager), trifunctional antibodies, polyvalent antibodies, e.g. from a different class than G; single-domain antibodies, e.g. nanobodies derived from camelid or fish immunoglobulines.
41. The method according to claim 39, wherein the binder to a neurotensin receptor is selected from the group consisting of antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including Fab minibodies, single chain Fab antibody, monovalent Fab antibody with epitope tags, e.g. Fab-V5Sx2; bivalent Fab (mini-antibody) dimerized with the CH3 domain; bivalent Fab or multivalent Fab, e.g. formed via multimerization with the aid of a heterologous domain, e.g. via dimerization of dHLX domains, e.g. Fab-dHLX-FSx2; F(ab′)2-fragments, scFv-fragments, multimerized multivalent or/and multi specific scFv-fragments, bivalent and/or bispecific diabodies, BITE® (bispecific T-cell engager), trifunctional antibodies, polyvalent antibodies, e.g. from a different class than G; single-domain antibodies, e.g. nanobodies derived from camelid or fish immunoglobulines, or a peptide antagonist e.g. [D-Trp11]-Neurotensin, [Tyr(Me)11]-Neurotensin, or a non-peptide antagonist, e.g. Levocabastine, SR-48692 (NTS1 selective), SR-142948 (unselective), SR-142948A, CP 96345, [3H]SR-48692, SR-48527 and SR-49711, or a binder scaffold e.g. tetranectin-based non-Ig scaffolds, fibronectin scaffolds, lipocalin-based scaffolds, ubiquitin scaffolds, transferring scaffolds, protein A scaffolds, ankyrin repeat based scaffolds, microproteins, preferably microproteins forming a cystine knot scaffolds, Fyn SH3 domain based scaffolds, EGFR-A-domain based scaffolds and Kunitz domain based scaffolds.
42. A point-of-care device for performing a method according to claim 28.
US16/719,507 2012-03-08 2019-12-18 Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject Abandoned US20200326350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/719,507 US20200326350A1 (en) 2012-03-08 2019-12-18 Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201261608350P 2012-03-08 2012-03-08
EP12158680 2012-03-08
EP12158680.4 2012-03-08
EP12165062.6 2012-04-20
EP12165062 2012-04-20
PCT/EP2013/054801 WO2013132090A1 (en) 2012-03-08 2013-03-08 A method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject
US201414383422A 2014-09-05 2014-09-05
US16/719,507 US20200326350A1 (en) 2012-03-08 2019-12-18 Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US14/383,422 Continuation US10520512B2 (en) 2012-03-08 2013-03-08 Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject
PCT/EP2013/054801 Continuation WO2013132090A1 (en) 2012-03-08 2013-03-08 A method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject

Publications (1)

Publication Number Publication Date
US20200326350A1 true US20200326350A1 (en) 2020-10-15

Family

ID=49115970

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/383,422 Active US10520512B2 (en) 2012-03-08 2013-03-08 Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject
US16/719,507 Abandoned US20200326350A1 (en) 2012-03-08 2019-12-18 Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/383,422 Active US10520512B2 (en) 2012-03-08 2013-03-08 Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject

Country Status (9)

Country Link
US (2) US10520512B2 (en)
EP (1) EP2823316B1 (en)
JP (1) JP6262669B2 (en)
CN (1) CN103308670B (en)
ES (1) ES2684512T3 (en)
IN (1) IN2014MN01937A (en)
RU (1) RU2685713C2 (en)
TR (1) TR201811201T4 (en)
WO (1) WO2013132090A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308689B (en) * 2012-03-08 2017-04-12 思芬构技术有限公司 A method for predicting the risk of getting cancer or diagnosing cancer in a female subject
US20160097781A1 (en) * 2014-10-01 2016-04-07 Sphingotec Gmbh Method for stratifying a female subject for hormone replacement therapy
WO2016066862A2 (en) 2015-02-27 2016-05-06 Sphingotec Gmbh A method for predicting the risk of obesity in a subject
US10473670B2 (en) 2016-02-25 2019-11-12 University Of Kentucky Research Foundation Method of predicting obesity comprising measuring neurotensin
WO2022203533A1 (en) * 2021-03-25 2022-09-29 Владимир Валерьевич ВОЛОБУЕВ Method for assessing predisposition to different forms of type ii diabetes mellitus

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8709871D0 (en) * 1987-04-27 1987-06-03 Turner R C Peptides
AU634716B2 (en) 1988-08-01 1993-03-04 Ciba Corning Diagnostics Corp. Method for detection of an analyte using acridinium esters and liposomes
US5430047A (en) * 1994-04-07 1995-07-04 Warner-Lambert Company Neurotensin antagonists
WO1995033474A1 (en) * 1994-06-03 1995-12-14 Tsumura & Co. Medicinal composition
NZ506839A (en) * 1998-03-09 2003-05-30 Zealand Pharma As Pharmacologically active peptide conjugates having a reduced tendency towards enzymatic hydrolysis
US6248527B1 (en) * 1998-10-21 2001-06-19 Millennium Pharmaceuticals, Inc. Method of detecting risk of type II diabetes based on mutations found in carboxypeptidase E
US6818418B1 (en) 1998-12-10 2004-11-16 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
IL142707A0 (en) * 2000-04-27 2002-03-10 Pfizer Prod Inc Methods of treating obesity using a neurotensin receptor ligand
WO2003000712A1 (en) * 2001-06-20 2003-01-03 Kissei Pharmaceutical Co., Ltd. Nitrogenous heterocyclic derivative, medicinal composition containing the same, medicinal use thereof, and intermediate therefor
ATE490969T1 (en) 2001-08-30 2010-12-15 Biorexis Pharmaceutical Corp MODIFIED TRANSFERRIN FUSION PROTEINS
WO2003103475A2 (en) 2002-06-07 2003-12-18 Dyax Corp. Prevention and reduction of blood loss
CA2543360A1 (en) 2003-10-24 2005-05-06 Joost A. Kolkman Ldl receptor class a and egf domain monomers and multimers
US20100028995A1 (en) 2004-02-23 2010-02-04 Anaphore, Inc. Tetranectin Trimerizing Polypeptides
EP1793847A2 (en) 2004-09-21 2007-06-13 NascaCell IP GmbH Use of microproteins as tryptase inhibitors
DE102005003687A1 (en) * 2005-01-26 2006-07-27 Sphingo Tec Gmbh Immunodiagnostic determination of neurotensin in mammal blood, comprises injecting immune active N-terminal mammal proneurotensin in to the serum- or plasma- sample
EP1872138A1 (en) * 2005-04-11 2008-01-02 AstraZeneca AB A method and a kit for diagnosing type 2 diabetes, metabolic syndrome, sub clinical atherosclerosis, myocardial infarct, stroke or clinical manifestations of diabetes.
US8119358B2 (en) * 2005-10-11 2012-02-21 Tethys Bioscience, Inc. Diabetes-related biomarkers and methods of use thereof
ATE527353T1 (en) 2007-12-19 2011-10-15 Affibody Ab PDGF-BINDING POLYPEPTIDE FROM PROTEIN A
DK2358746T3 (en) 2008-11-03 2020-12-21 Molecular Partners Ag BINDING PROTEINS TO INHIBIT THE VEGF-A RECEPTOR INTERACTION
CA2745524C (en) * 2008-12-05 2020-06-09 Angiochem Inc. Conjugates of neurotensin or neurotensin analogs and uses thereof
US8586043B2 (en) 2009-01-07 2013-11-19 Inserm ( Institut National De La Sante Et De La Recherche Medicale) Methods for treating breast cancer with inhibitors of neurotensin activation of NTSR1
CN102869678A (en) 2009-08-27 2013-01-09 科瓦根股份公司 Il-17 binding compounds and medical uses thereof
WO2011059721A1 (en) * 2009-10-29 2011-05-19 Tethys Bioscience, Inc. Protein and lipid biomarkers providing consistent improvement to the prediction of type 2 diabetes
US20120301393A1 (en) 2009-12-14 2012-11-29 Scil Proteins Gmbh Modified ubiquitin proteins having a specific binding activity for the extradomain b of fibronectin
UA58612U (en) * 2010-06-04 2011-04-26 Высшее Государственное Учебное Заведение «Украинская Медицинская Стоматологическая Академия» method for diagnosis of insulin resistance in patients with metabolic syndrome and type 2 diabetes
EP2580236B1 (en) 2010-06-08 2019-04-03 Pieris Pharmaceuticals GmbH Tear lipocalin muteins binding il-4 r alpha
WO2016066862A2 (en) * 2015-02-27 2016-05-06 Sphingotec Gmbh A method for predicting the risk of obesity in a subject

Also Published As

Publication number Publication date
CN103308670B (en) 2017-06-09
US10520512B2 (en) 2019-12-31
RU2014140427A (en) 2016-04-27
CN103308670A (en) 2013-09-18
EP2823316B1 (en) 2018-05-23
RU2685713C2 (en) 2019-04-23
JP6262669B2 (en) 2018-01-17
ES2684512T3 (en) 2018-10-03
EP2823316A1 (en) 2015-01-14
US20150056203A1 (en) 2015-02-26
WO2013132090A1 (en) 2013-09-12
IN2014MN01937A (en) 2015-07-10
JP2015512048A (en) 2015-04-23
TR201811201T4 (en) 2018-09-21

Similar Documents

Publication Publication Date Title
US20200326350A1 (en) Method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject
US20210109102A1 (en) Method for predicting the risk of getting cancer or diagnosing cancer in a female subject
EP2823318B1 (en) A method for predicting the risk of getting a cardiovascular event in a female subject
US20230147663A1 (en) Method for predicting the risk of getting cancer or diagnosing cancer in a female subject
US20200049721A1 (en) Fasting levels of growth hormone as a predictive marker of cardiovascular risk
EP2943792B1 (en) A method for predicting the risk of getting cancer or diagnosing cancer in a subject

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPHINGOTEC GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERGMANN, ANDREAS;MELANDER, OLLE;SIGNING DATES FROM 20140919 TO 20140925;REEL/FRAME:052155/0904

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION