[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20200139233A1 - System and method for playing an interactive game - Google Patents

System and method for playing an interactive game Download PDF

Info

Publication number
US20200139233A1
US20200139233A1 US16/670,708 US201916670708A US2020139233A1 US 20200139233 A1 US20200139233 A1 US 20200139233A1 US 201916670708 A US201916670708 A US 201916670708A US 2020139233 A1 US2020139233 A1 US 2020139233A1
Authority
US
United States
Prior art keywords
game
play
gaming
item
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/670,708
Inventor
Denise Chapman Weston
Jonathan A. Barney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MQ Gaming LLC
Original Assignee
MQ Gaming LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32233178&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20200139233(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MQ Gaming LLC filed Critical MQ Gaming LLC
Priority to US16/670,708 priority Critical patent/US20200139233A1/en
Publication of US20200139233A1 publication Critical patent/US20200139233A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • A63F13/245Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/23Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console
    • A63F13/235Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console using a wireless connection, e.g. infrared or piconet
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/45Controlling the progress of the video game
    • A63F13/48Starting a game, e.g. activating a game device or waiting for other players to join a multiplayer session
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/70Game security or game management aspects
    • A63F13/71Game security or game management aspects using secure communication between game devices and game servers, e.g. by encrypting game data or authenticating players
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/70Game security or game management aspects
    • A63F13/73Authorising game programs or game devices, e.g. checking authenticity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/80Special adaptations for executing a specific game genre or game mode
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/90Constructional details or arrangements of video game devices not provided for in groups A63F13/20 or A63F13/25, e.g. housing, wiring, connections or cabinets
    • A63F13/95Storage media specially adapted for storing game information, e.g. video game cartridges
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/20Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterised by details of the game platform
    • A63F2300/201Playing authorisation given at platform level
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/20Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterised by details of the game platform
    • A63F2300/206Game information storage, e.g. cartridges, CD ROM's, DVD's, smart cards
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/63Methods for processing data by generating or executing the game program for controlling the execution of the game in time
    • A63F2300/636Methods for processing data by generating or executing the game program for controlling the execution of the game in time involving process of starting or resuming a game
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/80Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game
    • A63F2300/807Role playing or strategy games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F3/00Board games; Raffle games
    • A63F3/00003Types of board games
    • A63F3/00145Board games concerning treasure-hunting, fishing, hunting

Definitions

  • the present invention relates to children's games and, in particular, to a live-action interactive adventure game and play system utilizing radio frequency transponders and transceivers to provide a unique interactive game play experience.
  • Games, play structures and other similar entertainment systems are well known for providing play and interaction among children and adults.
  • a wide variety of commercially available play toys and games are also known for providing valuable learning and entertainment opportunities for children, such as role playing, reading, memory stimulation, tactile coordination and the like.
  • the present invention provides a unique system and method of multi-media game play carried out utilizing an interactive “wand” and/or other tracking/actuation device to allow play participants to electronically and “magically” interact with their surrounding play environment(s).
  • the play environment may either be real or imaginary (i.e. computer/TV generated), and either local or remote, as desired.
  • multiple play participants, each provided with a suitable “wand” and/or tracking device may play and interact together, either within or outside one or more play environments, to achieve desired goals or produce desired effects within the play environment.
  • the present invention provides an interactive play system and wand toy for enabling a trained user to electronically send and receive information to and from other wand toys and/or to and from various transceivers distributed throughout a play facility and/or connected to a master control system.
  • the toy wand or other seemingly magical object is configured to use a send/receive radio frequency communication protocol which provides a basic foundation for a complex, interactive entertainment system to create a seemingly magic interactive play experience for play participants who possess and learn to use the magical wand toy.
  • the present invention provides an interactive play structure in the theme of a “magic” training center for would-be wizards in accordance with the popular characters and storylines of the children's' book series “Harry Potter” by J. K. Rowling.
  • play participants learn to use a “magic wand” and/or other tracking/actuation device.
  • the wand allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment.
  • Various receivers or transceivers are distributed throughout the play structure to facilitate such interaction via wireless communications.
  • the present invention provides a wand actuator device for actuating various interactive play effects within an RFID-compatible play environment.
  • the wand comprises an elongated hollow pipe or tube having a proximal end or handle portion and a distal end or transmitting portion.
  • An internal cavity may be provided to receive one or more batteries to power optional lighting, laser or sound effects and/or to power long-range transmissions such as via an infrared LED transmitter device or RF transmitter device.
  • the distal end of the wand is fitted with an RFID (radio frequency identification device) transponder that is operable to provide relatively short-range RF communications ( ⁇ 60 cm) with one or more receivers or transceivers distributed throughout a play environment.
  • the handle portion of the wand is fitted with optional combination wheels having various symbols and/or images thereon which may be rotated to produce a desired pattern of symbols required to operate the wand or achieve one or more special effects.
  • the present invention provides an RFID card or badge intended to be affixed or adhered to the front of a shirt or blouse worn by a play participant while visiting an RF equipped play facility.
  • the badge comprises a paper, cardboard or plastic substrate having a front side and a back side.
  • the front side may be imprinted with graphics, photos, or any other information desired.
  • the front side may include any number of other designs or information pertinent to its application.
  • the obverse side of the badge contains certain electronics comprising a radio frequency tag pre-programmed with a unique person identifier number (“UPIN”).
  • UPIN unique person identifier number
  • the UPIN may be used to identify and track individual play participants within the play facility.
  • each tag may also include a unique group identifier number (“UGIN”) which may be used to match a defined group of individuals having a predetermined relationship.
  • the present invention provides an electronic treasure hunt game.
  • Game participants receive a card, map and/or identification badge configured with an RFID tag, bar-code or a magnetic “swipe” strip or the like.
  • the RFID tag or other identifying device is used to store certain information identifying each play participant and/or describing certain powers or abilities possessed by of an imaginary role-play character that the card represents.
  • Players advance in the game by finding clues and solving various puzzles presented.
  • Players may also gain (or lose) certain attributes, such as magic skills, magic strength, fighting ability, various spell-casting abilities, etc.
  • All of this information is preferably stored on the RFID tag or card so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.
  • FIG. 1 is a perspective view of a play participant holding an interactive wand for playing an interactive adventure game in accordance the present invention
  • FIG. 2 is a perspective view of a play participant learning to use the interactive wand of FIG. 1 using a computer game and a training manual;
  • FIG. 3 is a perspective view of an adventure game center provided within a movie theatre configured to facilitate interactive game play in accordance with the present invention
  • FIG. 4 is a perspective view illustrating how play participants can use the wand of FIG. 1 to create an interactive experience within a movie theatre;
  • FIG. 5 is a perspective view of a play participant playing an interactive adventure game using a computer and the wand device of FIG. 1 ;
  • FIG. 6 is a perspective view of an interactive adventure game center having features of the present invention.
  • FIG. 7 is a perspective view of a play participant playing an interactive adventure game in accordance with the present invention, and illustrating the use of an extrinsic clue or information source;
  • FIG. 8 is a perspective view of a retail store facility having an interactive adventure game center in accordance with the present invention.
  • FIG. 9 is a perspective view of an alternative embodiment of an interactive adventure game center provided within the retail store of FIG. 8 and having features of the present invention.
  • FIG. 10 is a perspective view of an interactive adventure game carried out using a computer game console and one or more wand devices;
  • FIG. 11 is a perspective view of another alternative embodiment of an interactive adventure game center or play structure such as may be provided within a family entertainment center or theme park;
  • FIG. 12 is a perspective view of a play participant within an interactive adventure game center casting “magical” spells using the wand device of FIG. 1 ;
  • FIG. 13 is an alternative perspective view of the interactive adventure game center of FIG. 11 ;
  • FIG. 14 is a perspective view of an RFID-enabled interactive game device or console having features of the present invention.
  • FIG. 15 is a perspective view of an RFID-enabled interactive game device, ride or console having features of the present invention.
  • FIG. 16 is a perspective view of two play participants playing an interactive game using multiple computers communicating via the internet;
  • FIG. 17A is a perspective view of a magic wand toy for use with an interactive adventure game having features and advantages in accordance with the present invention
  • FIG. 17B is a partially exploded detail view of the proximal end or handle portion of the magic wand toy of FIG. 17A , illustrating the optional provision of combination wheels having features and advantages in accordance with the present invention
  • FIG. 17C is a partial cross-section detail view of the distal end or transmitting portion of the magic wand toy of FIG. 17A , illustrating the provision of an RF transponder device therein;
  • FIG. 18 is a simplified schematic diagram of an RF reader and master control system for use with the magic wand toy actuator of FIG. 17A having features and advantages in accordance with the present invention
  • FIGS. 19A and 19B are front and rear views, respectively, of an optional RFID tracking badge or card for use within an interactive adventure game paving features and advantages in accordance with the present invention
  • FIGS. 20A and 20B are schematic diagrams illustrating typical operation of the RFID tracking badge of FIG. 19 ;
  • FIG. 21 is a simplified schematic diagram of an RFID read/write system for use with the RFID tracking badge of FIG. 19 having features and advantages in accordance with the present invention
  • FIG. 22 is a simplified block diagram illustrating the basic organization and function of the electronic circuitry comprising the RFID tag device of FIG. 19B ;
  • FIGS. 23A and 23B are schematic block diagrams illustrating how an interactive adventure game in accordance with the present invention can be implemented simultaneously and seamlessly within multiple play environments and entertainment mediums.
  • the invention provides a system and method of multi-media game play carried out using one or more interactive “wands” and/or other tracking/actuation devices which allow play participants to electronically and “magically” interact with their surrounding play environment(s).
  • the play environment may either be real or imaginary (i.e. computer/TV generated), and either local or remote, as desired.
  • multiple play participants, each provided with a suitable “wand” and/or tracking device may play and interact together, either within or outside one or more play environments, to achieve desired goals or produce desired effects within the play environment.
  • the invention may be carried out as an electronic treasure hunt game.
  • Game participants receive a card, map and/or identification badge configured with an RFID tag, bar-code or a magnetic “swipe” strip or the like.
  • the RFID tag or other identifying device is used to store certain information identifying each play participant and/or describing certain powers or abilities possessed by of an imaginary role-play character that the card represents.
  • Players advance in the game by finding clues and solving various puzzles presented.
  • Players may also gain (or lose) certain attributes, such as magic skills, magic strength, fighting ability, various spell-casting abilities, etc.
  • All relevant game information is preferably stored (or addressably identified) on the RFID tag or card so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, the game is able to seamlessly transcend from one play or entertainment medium the next.
  • FIG. 1 illustrates one embodiment of an interactive treasure hunt game having features and advantages of the present invention.
  • the particular game illustrated takes on the theme of the popular characters and storylines of the children's' book series “Harry Potter” by J. K. Rowling.
  • play participants 105 learn to use a “magic “wand” 200 and/or other tracking/actuation device.
  • the wand 200 (described in more detail later) allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment.
  • FIG. 1 shows a play participant 105 receiving a wand 200 and game directions as a gift, for example.
  • the play participant becomes generally familiar with the wand 200 and the game, he or she can preferably access a web site through the world wide web in order to register the wand and play the first interactive treasure hunt game (see, e.g., FIG. 2 ).
  • this is a relatively simple game intended to provide a basic training session.
  • the player learns how to use the wand to cast spells, levitate objects, open and close doors, etc. within an interactive computer-gaming environment provided by an ordinary home computer 110 .
  • the player also learns how to discover important clues needed to advance in the game and to solve various puzzles or challenges presented by the game.
  • FIG. 3 illustrates play participants entering a movie theater to enjoy a newly released HARRY POTTER_movie.
  • play participants 105 take their wands 200 into one or more movie venues 125 in order to score points, learn clues and advance in the game.
  • a special check-in booth 127 may be provided within the movie venue for allowing play participants to use their wands 200 to receive clues, special powers and/or points. While watching the movie (see, e.g., FIG.
  • the movie storyline itself may reveal additional clues mat will help carefully observant players to advance in the game later.
  • Various clues may also be hidden within otherwise unnoticeable backgrounds, scenery, characters, movie credits, etc.
  • play participants may need to view a movie multiple times to glean all of the available clues needed to complete the game.
  • at certain points in the movie play participants may be able to use their wands 200 or other similar devices to help direct the story-line progression, change to alternate plots, endings, etc. This may be conveniently achieved using any one or more suitable RFID communications protocols and interactive digital DVD technologies (described in more detail later).
  • play participants 105 may use their wand 200 to continue playing the adventure game within one or more available on-line gaming environments (see, e.g., FIG. 5 ).
  • Various books 130 aids, instructions and other similar materials may be provided to help play participants complete the adventure, while preferably learning valuable knowledge and skills. For example, part of the game play may require play participants to conduct independent research in a particular area or to become proficient in a chosen skill to advance in the game (e.g., FIG. 7 ).
  • FIG. 6 illustrates a local HARRY POTTER game adventure center created within a local book store, toy store, restaurant, or the like (e.g., FIG. 8 ).
  • the game center preferably provides additional clues, assistance and/or opportunities for social interaction, information sharing and/or strategic cooperation among multiple game players. In a particularly preferred embodiment, cooperation among multiple play participants is required to allow cooperating players to advance in the game.
  • the game center also preferably provides a distribution center for related products such as computer games, video games, wands 200 and the like (e.g. FIGS. 9, 10 ). Purchased video games may be played at home (e.g., FIG. 10 ) using conventional game controllers and/or a specially configured controller (not shown) adapted to communicate wirelessly with wand 200 or a similar device.
  • game play preferably extends from the home, to television, to internet, to theatre, and/or to one or more local family entertainment centers (“FEC”), games centers, family restaurants, and the like (see, e.g., FIGS. 23A and 23B ).
  • FEC local family entertainment centers
  • FIGS. 11-15 illustrate an entertainment center configured for interactive game play in accordance with the present invention.
  • the particular entertainment center 250 illustrated takes on the theme of a “magic” training center for would-be wizards in accordance with the popular characters and storylines of the children's' book series “Harry Potter” by J. K. Rowling.
  • the wand 200 preferably allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment.
  • various wireless receivers or transceivers 300 may be distributed throughout the play center 250 to facilitate such interaction via wireless communications. Depending upon the degree of game complexity desired and the amount of information sharing required, the transceivers 300 may or may not be connected to a master system or central server (not shown).
  • receivers or transceivers 300 are stand-alone devices that do not require communications with an external server or network. In one particularly preferred embodiment this may be achieved by storing any information required to be shared on the wand 200 and/or on an associated radio frequency tracking card or badge worn or carried by the play participant (described later).
  • a suitable play media such as foam or rubber balls or similar objects, may be provided for use throughout the play center to provide convenient objects for clue sources, tools, trading currency and/or tactile interactive play.
  • thousands of soft foam balls may be provided as an interactive play medium (e.g., FIG. 13 ). These may be manipulated by play participants using various interactive play elements to create desired effects. Balls may range in size from approximately 1′′ to 12′′ in diameter or larger, as desired, and are preferable about 21 ⁇ 2′′ in diameter. Preferably, the objects are not so small as to present a choking hazard for young children. The majority of the objects may be the same size, or a mixture of sizes may be utilized, as desired. Certain play elements within the play center may require the use of certain objects in order to complete a required task. For example, various play objects may identified using one or more embedded or affixed RFID tags which may be electronically read by the various game consoles 275 within the play center 250 .
  • suitable play media may include, without limitation, foam, plastic or rubber balls and similarly formed articles such as cubes, plates, discs, tubes, cones, rubber or foam bullets/arrows, the present invention not being limited to any particular preferred play media. These may be used alone or in combination with one another. For instance, flying discs, such as FrisbeesTM, may be flung from one location within the play center 250 while other play participants shoot at the discs using foam balls or suction-cup arrows. Wet or semi-wet play mediums, such as slime-like materials, snow, mud, squirt guns and/or water balloons may also be used, as desired, to cool and entertain play participants.
  • Durable plastic or rubber play media are preferable in an outdoor play structure where environmental exposure may prematurely destroy or degrade the quality of certain play mediums such as foam balls.
  • the particular play media used is not particularly important for purposes of carrying out the invention and, optionally, may be omitted altogether, if desired.
  • Various interactive play elements and games 275 , 280 are preferably provided within the play center 250 to allow play participants 105 to create desired “magical” effects, as illustrated in FIGS. 14 and 15 .
  • These may include interactive elements such as video games, coin-operated rides, and the like. These may be actuated manually by play participants or, more desirably, “magically” electronically by appropriately using the wand 200 in conjunction with one or more transceivers 300 .
  • Some interactive play elements may have simple immediate effects, while others may have complex and/or delayed effects. Some play elements may produce local effects while others may produce remote effects.
  • Each play participant 105 or sometimes a group of play participants working together, preferably must experiment with the various play elements and using their magic wands in order to discover how to create the desired effect(s).
  • Repeated play on a particular play element can increase the participants' skills in accurately using the wand 200 to produce desired effects or increasing the size or range of such effects.
  • play participants can compete with one another using the various play elements to see which participant or group of participants can create bigger, longer, more accurate or more spectacular effects.
  • a suitable play environment may comprise a simple themed play area, or even a multi-purpose area such as a restaurant dining facility, family room, bedroom or the like.
  • Internet e.g., FIG. 16
  • video games, computer games, television, movies and radio can also be used to provide all or part of the overall game experience in accordance with the present invention.
  • the wand preferably 200 allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment.
  • Use of the wand 200 may be as simple as touching it to a particular surface or “magical” item within a suitably configured play environment or it may be as complex as shaking or twisting the wand a predetermined number of times in a particular manner and/or pointing it accurately at a certain target desired to be “magically” transformed or otherwise affected.
  • play participants play and interact within each play environment they learn more about the “magical” powers possessed by the wand 200 and become more adept at using the wand to achieve desired goals or desired play effects.
  • play participants may collect points or earn additional magic levels or ranks for each play effect or task they successfully achieve. In this manner, play participants 105 may compete with one another to see who can score more points and/or achieve the highest magic level.
  • FIG. 17 illustrates the basic construction of one preferred embodiment of a “magic” wand 200 having features and advantages in accordance with one preferred embodiment of the invention.
  • the wand 200 basically comprises an elongated hollow pipe or tube 310 having a proximal end or handle portion 315 and a distal end or transmitting portion 320 .
  • an internal cavity may be provided to receive one or more batteries to power optional lighting, laser or sound effects and/or to power longer-range transmissions such as via an infrared LED transmitter device or RF transmitter device.
  • An optional button 325 may also be provided, if desired, to enable particular desired functions, such as sound or lighting effects or longer-range transmissions.
  • FIG. 17B is a partially exploded detail view of the proximal end 315 of the magic wand toy 200 of FIG. 17A .
  • the handle portion 315 is fitted with optional combination wheels having various symbols and/or images thereon.
  • certain wand functions may require that these wheels be rotated to produce a predetermined pattern of symbols such as three owls, or an owl, a broom and a moon symbol.
  • the combination wheels may be configured to actuate electrical contacts and/or other circuitry within the wand 200 in order to provide the desired functionality.
  • the combination wheels may provide a simple security measure to prevent unauthorized users from actuating the wand.
  • the wheels may provide a simple encoder/decoder mechanism for encoding, decoding, interpreting and/or transforming secret codes or passwords used during game play.
  • FIG. 170 is a partial cross-section detail view of the distal end of magic wand toy 200 of FIG. 17A .
  • the distal end 320 is fitted with an RFID (radio frequency identification device) transponder 335 that is operable to provide relatively short-range RF communications ( ⁇ 60 cm) with one or more of the receivers or transceivers 300 distributed throughout a play environment (e.g., FIGS. 11, 12 ).
  • RFID radio frequency identification device
  • RFID radio frequency identification device
  • RFID radio frequency identification device
  • RFID transponder is the 134.2 kHz/123.2 kHz, 23 mm Glass Transponder available from Texas Instruments, Inc. (http://www.tiris.com, Product No. RI-TRP-WRHP).
  • This transponder basically comprises a passive (non-battery-operated) RF transmitter/receiver chip 340 and an antenna 345 provided within an hermetically sealed vial 350 .
  • a protective silicon sheathing 355 is preferably inserted around the sealed vial 350 between the vial and the inner wall of the tube 310 to insulate the transponder from shock and vibration.
  • FIG. 18 is a simplified schematic diagram of one embodiment of an RF transceiver 300 and optional master control system 375 for use with the magic wand toy actuator of FIG. 17A .
  • the transceiver 300 basically comprises an RF Module 380 , a Control Module 385 and an antenna 390 .
  • the transponder antenna 345 FIG. 17C ) becomes excited and impresses a voltage upon the RF transmitter/receiver chip 340 disposed within transponder 335 at the distal end of the wand 200 .
  • the RF transmitter/receiver ship 340 causes transponder antenna 345 to broadcast certain information stored within the transponder 335 comprising 80 bits of read/write memory.
  • This information typically includes the user's unique ID number, magic level or rank and/or certain other information pertinent to the user or the user's play experiences.
  • RF Module 380 This information is initially received by RF Module 380 , which can then transfer the information through standard interfaces to an optional Host Computer 375 , Control Module 385 , printer, or programmable logic controller for storage or action. If appropriate, Control Module 385 provides certain outputs to activate or control one or more associated play effects, such as lighting, sound, various mechanical or pneumatic actuators or the like.
  • Optional Host Computer 375 processes the information and/or communicates it to other transceivers 300 , as may be required by the game. If suitably configured, RF Module 380 may also broadcast or “write” certain information back to the transponder 335 to change or update one of more of the 80 read/write bits in its memory.
  • the wand 200 may be used in this “short range” or “passive” mode to actuate various “magical” effects throughout the play structure 100 by simply touching or bringing the tip of the wand 200 into relatively close proximity with a particular transceiver 300 .
  • certain transceivers 300 may be provided as hidden clue stations within a play environment so that they must be discovered by discovered by play participants 105 . The locations of hidden transceivers and/or other clue stations may be changed from time to time to keep the game fresh and exciting.
  • the wand 200 may also be configured for long range communications with one or more of the transceivers 300 (or other receivers) disposed within a play environment.
  • one or more transceivers 300 may be located on a roof or ceiling surface, on an inaccessible theming element, or other area out of reach of play participants.
  • Such long-rage wand operation may be readily achieved using an auxiliary battery powered RF transponder, such as available from Axcess, Inc., Dallas, Tex.
  • a battery-operated infrared LED transmitter and receiver of the type employed in television remote control may be used, as those skilled in the art will readily appreciate.
  • a wide variety of other wireless communications devices, as well as various sound and lighting effects may also be provided, as desired. Any one or more of these may be actuated via button 325 , as desirable or convenient.
  • Additional optional circuitry and/or position sensors may be added, if desired, to allow the “magic wand” 200 to be operated by waving, shaking, stroking and/or tapping it in a particular manner. If provided, these operational aspects would need to be learned by play participants as they train in the various play environments. One goal, for example, may be to become a “grand wizard” or master of the wand. This means that the play participant 105 has learned and mastered every aspect of operating the wand to produce desired effects within each play environment. Of course, additional effects and operational nuances can (and preferably are) always added over time in order to keep the interactive experience fresh and continually changing.
  • the wand 200 may be configured such that it is able to display 50 or more characters on a LTD or LCD screen. The wand may also be configured to respond to other signals, such as light, sound, or voice commands as will be readily apparent to those skilled in the art. This could be useful, for example for generating, storing and retrieving secret pass words, informational clues and the like.
  • FIGS. 19A and 19B are front and rear views, respectively, of an optional or alternative RFID tracking badge or card 400 for use within the interactive game described above. This may be used instead of or in addition to the wand 200 , described above.
  • the particular badge 400 illustrated is intended to be affixed or adhered to the front of a shirt or blouse worn by a play participant during their visit to suitably equipped play or entertainment facilities.
  • the badge preferably comprises a paper, cardboard or plastic substrate having a front side 404 and a back side 410 .
  • the front 405 of each card/badge 400 may be imprinted with graphics, photos, treasure maps or any other information desired.
  • the front 405 contains an image of HARRY POTTER in keeping with the overall theme of the game described above.
  • the front 405 of the badge 400 may include any number of other designs or information pertinent to its application.
  • the guest's name 430 , and group 435 may be indicated for convenient reference.
  • a unique tag ID Number 440 may also be displayed for convenient reference and is particularly preferred where the badge 400 is to be reused by other play participants.
  • the obverse side 410 of the badge 400 contains the badge electronics comprising a radio frequency tag 420 pre-programmed with a unique person identifier number (“UPIN”).
  • the tag 420 generally comprises a spiral wound antenna 450 , a radio frequency transmitter clip 460 and various electrical leads and terminals 470 connecting the chip 460 to the antenna.
  • the UPIN may be used to identify and track individual play participants within the play facility.
  • each tag 420 may also include a unique group identifier number (“UGIN”) which may be used to match a defined group of individuals having a predetermined relationship—either pre-existing or contrived for purposes of game play.
  • UGIN unique group identifier number
  • the tag 420 may be covered with an adhesive paper label (not shown) or, alternatively, may be molded directly into a plastic sheet substrate comprising the card 400 .
  • the UPIN and UGIN information can be conveniently read and provided to an associated master control system, display system or other tracking, recording or display device for purposes of creating a record of each play participant's experience within the play facility.
  • This information may be used for purposes of calculating individual or team scores, tracking and/or locating lost children, verifying whether or not a child is inside a facility, photo capture & retrieval, and many other useful purposes as will be readily obvious and apparent to those skilled in the art.
  • the tag 420 is passive (requires no batteries) so that it is inexpensive to purchase and maintain.
  • tags and various associated readers and other accessories are commercially available in a wide variety of configurations, sizes and read ranges.
  • RFID tags having a read range of between about 10 cm to about 100 cm are particularly preferred, although shorter or longer read ranges may also be acceptable.
  • the particular tag illustrated is the 13.56 mHz tag sold under the brand name TaggitTM available from Texas Instruments, Inc. (http://www.tiris.com, Product No. RI-103-110A).
  • the tag 420 has a useful read/write range of about 25 cm and contains 256-bits of on-board memory arranged in 8 ⁇ 32-bit blocks which may be programmed (written) and read by a suitably configured read/write device.
  • Such tag device is useful for storing and retrieving desired user-specific information such as UPIN, UGIN, first and/or last name, age, rank or level, total points accumulated, tasks completed, facilities visited, etc. If a longer read/write range and/or more memory is desired, optional battery-powered tags may be used instead, such as available from ACXESS, Inc. and/or various other vendors known to those skilled in the art.
  • FIGS. 20 and 21 are simplified schematic illustrations of tag and reader operation.
  • the tag 420 is initially activated by a radio frequency signal broadcast by an antenna 510 of an adjacent reader or activation device 500 .
  • the signal impresses a voltage upon the antenna 450 by inductive coupling which is then used to power the chip 460 (see, e.g., FIG. 20A ).
  • the chip 460 transmits via radio frequency a unique identification number preferably corresponding to the UPIN and/or UGIN described above (see, e.g., FIG. 20B ).
  • the signal may be transmitted either by inductive coupling or, more preferably, by propagation coupling over a distance “d” determined by the range of the tag/reader combination.
  • the RFID card or badge 400 may also be configured for read/write communications with an associated reader/writer.
  • the unique tag identifier number UPIN or UGIN
  • UGIN unique tag identifier number
  • communication of data between a tag and a reader is by wireless communication.
  • transmitting such data is always subject to the vagaries and influences of the media or channels through which the data has to pass, including the air interface.
  • Noise, interference and distortion are the primary sources of data corruption that may arise.
  • the readers are placed at least 30-60 cm away from any metal objects, power lines or other potential interference sources.
  • the write range of the tag/reader combination is typically somewhat less ( ⁇ 10-15% less) than the read range “d” and, thus, this should also be taken into account in determining optimal placement and positioning of each reader device 500 .
  • Typical RFID data communication is asynchronous or unsynchronized in nature and, thus, particular attention should be given in considering the form in which the data is to be communicated. Structuring the bit stream to accommodate these needs, such as via a channel encoding scheme, is preferred in order to provide reliable system performance.
  • Various suitable channel encoding schemes such as amplitude shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK) and spread spectrum modulation (SSM), are well known to those skilled in the art and will not be further discussed herein.
  • the choice of carrier wave frequency is also important in determining data transfer rates. Generally speaking the higher the frequency the higher the data transfer or throughput rates that can be achieved. This is intimately linked to bandwidth or range available within the frequency spectrum for the communication process.
  • the channel bandwidth is selected to be at least twice the bit rate required for the particular game application.
  • FIG. 22 is a simplified block diagram illustrating the basic organization and function of the electronic circuitry comprising the radio frequency transmitter chip 460 of the RFID tag device 420 of FIG. 19B .
  • the chip 460 basically comprises a central processor 530 , Analogue Circuitry 535 , Digital Circuitry 540 and on-board memory 545 .
  • On-board memory 545 is divided into read-only memory (ROM) 550 , random access memory (RAM) 555 and non-volatile programmable memory 560 , which is available for data storage.
  • the ROM-based memory 550 is used to accommodate security data and the tag operating system instructions which, in conjunction with the processor 530 and processing logic deals with the internal “house-keeping” functions such as response delay timing, data flow control and power supply switching.
  • the RAM-based memory 555 is used to facilitate temporary data storage during transponder interrogation and response.
  • the non-volatile programmable memory 560 may take various forms, electrically erasable programmable read only memory (EEPROM) being typical. It is used to store the transponder data and is preferably non-volatile to ensure that the data is retained when the device is in its quiescent or power-saving “sleep” state.
  • EEPROM electrically erasable programmable read only memory
  • Analog Circuitry 535 provides the facility to direct and accommodate the interrogation field energy for powering purposes in passive transponders and triggering of the transponder response. Analog Circuitry also provides the facility to accept the programming or “write” data modulated signal and to perform the necessary demodulation and data transfer processes. Digital Circuitry 540 provides certain control logic, security logic and internal microprocessor logic required to operate central processor 530 .
  • the RFID card 400 illustrated and described above is used, in accordance with the afore-mentioned preferred embodiment, to identify and track individual play participants and/or groups of play participants within a play facility.
  • the same card 400 and/or a similarly configured RFID or a magnetic “swipe” card or the like may be used to store certain powers or abilities of an imaginary role-play character that the card 400 represents.
  • card 400 may represent the HARRY POTTER character.
  • the HARRY POTTER character represented by the card 400 gains (or loses) certain attributes, such as magic skill level, magic strength, flight ability, various spell-casting abilities, etc. All of this information is preferably stored on the card 400 so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.
  • character attributes developed during a play participant's visit to a local HARRY POTTER/HOGWART magic facility are stored on the card 400 .
  • all of the attributes of his character are “remembered” on the card so that the play participant is able to continue playing with and developing the same role-play character.
  • various video games, home game consoles, and/or hand-held game units can be and preferably are configured to communicate with the card 400 in a similar manner as described above and/or using other well-known information storage and communication techniques. In this manner, a play participant can use the character card 400 and the role play character he or she has developed with specific associated attributes in a favorite video action game, role-play computer game or the like.
  • the transceivers 300 may or may not be connected to a master control system or central server 375 ( FIG. 18 ). If a master system is utilized, preferably each wand 200 and/or RFID card 400 , 600 is configured to electronically send and receive information to and from various receivers or transceivers 300 distributed throughout a play facility using a send receive radio frequency (“SRRF”) communication protocol.
  • SRRF send receive radio frequency
  • a user may electronically send and receive information to and from other wands and/or to and from a master control system located within and/or associated with any of a number of play environments, such as a family entertainment facility, restaurant play structure, television/video/radio programs, computer software program, game console, web site, etc.
  • a master control system located within and/or associated with any of a number of play environments, such as a family entertainment facility, restaurant play structure, television/video/radio programs, computer software program, game console, web site, etc.
  • SRRF may generally be described as an RF-based communications technology and protocol that allows pertinent information and messages to be sent and received to and from two or more SRRF compatible devices or systems. While the specific embodiments described herein are specific to RF-based communication systems, those skilled in the art will readily appreciate that the broader interactive play concepts taught herein may be realized using any number of commercially available 2-way and/or 1-way medium range wireless communication devices and communication protocols such as, without limitation, infrared-, digital-, analog, AM/FM-, laser-, visual-, audio-, and/or ultrasonic-based systems, as desired or expedient.
  • the SRRF system can preferably send and receive signals (up to 40 feet) between tokens and fixed transceivers.
  • the system is preferably able to associate a token with a particular zone as defined by a token activation area approximately 10-15 feet in diameter.
  • Different transceiver and antenna configurations can be utilized depending on the SRRF requirements for each play station.
  • the SRRF facility tokens and transceivers are networked throughout the facility. These devices can be hidden in or integrated into the facility's infrastructure, such as walls, floors, ceilings and play station equipment. Therefore, the size and packaging of these transceivers is not particularly critical.
  • an entire entertainment facility may be configured with SRRF technology to provide a master control system for an interactive entertainment play environment using SRRF-compatible magic wands and/or tracking devices.
  • a typical entertainment facility provided with SRRF technology may allow 300-400 or more users to more-or-less simultaneously send and receive electronic transmissions to and from the master control system using a magic wand or other SRRF-compatible tracking device.
  • the SRRF system uses a software program and data-base that can track the locations and activities of up to a hundred more users. This information is then used to adjust the play experience for the user based on “knowing” where the user/player has been, what objectives that player has accomplished and how many points or levels have been reached.
  • the system can then send messages to the user throughout the play experience. For example, the system can allow or deny access to a user into a new play area based on how many points or levels reached by that user and/or based on what objectives that user has accomplished or helped accomplish. It can also indicate, via sending a message to the user the amount of points or specific play objectives necessary to complete a “mission” or enter the next level of play.
  • the master control system can also send messages to the user from other users.
  • the system is preferably sophisticated enough that it can allow multiple users to interact with each other adjusting the game instantly.
  • the master system can also preferably interface with digital imaging and/or video capture so that the users' activities can be visually tracked. Any user can locate another user either through the video capturing system or by sending a message to another device. At the end of a visit, users are informed of their activities and the system interfaces with printout capabilities.
  • the SRRF system is preferably capable of sending and receiving signals up to 100 feet. Transmitter devices can also be hidden in walls or other structures in order to provide additional interactivity and excitement for play participants.
  • Suitable embodiments of the SRRF technology described above may be obtained from a number of suitable sources, such as AXCESS, Inc. and, in particular, the AXCESS active RFID network system for asset and people tacking applications.
  • the system comprises a network of transceivers 300 installed at specific points throughout a facility.
  • Players are outfitted or provided with a reusable “token”—a standard AXCESS personnel tag clipped to their clothing in the upper chest area.
  • a reusable “token” a standard AXCESS personnel tag clipped to their clothing in the upper chest area.
  • ZID zone identification number
  • the token responds to this signal by transmitting both its unique token identification number (TID) along with the ZID, thus identifying and associating the player with a particular zone.
  • TID unique token identification number
  • the token's transmitted signal is received by a transceiver 300 attached to a data network built into the facility. Using the data network, the transceiver forwards the TID/ZID data to a host computer system.
  • the host system uses the SRRF information to log/track the guest's progress through the facility while interfacing with other interactive systems within the venue. For example, upon receipt of a TID/ZID message received from Zone 1, the host system may trigger a digital camera focused on that area, thus capturing a digital image of the player which can now be associated with both their TID and the ZID at a specific time.
  • the SRRF technology allows the master control system to uniquely identity and track people as they interact with various games and activities in a semi-controlled play environment.
  • the system may be configured for two-way messaging to enable more complex interactive gaming concepts.
  • the SRRF technology can be used in the home.
  • a small SRRF module is preferably incorporated into one or more portable toys or objects that may be as small as a beeper.
  • the SRRF module supports two-way communications with a small home transceiver, as well as with other SRRF objects.
  • a Magic wand 200 can communicate with another Magic wand 200 .
  • the toy wand or other object 200 may also include the ability to produce light, vibration or other sound effects based on signals received through the SRRF module.
  • the magical object may be configured such that it is able to display pre-programmed messages of up to 50 characters on a LCD screen when triggered by user action (e.g., button) or via signals received through the SRRF module.
  • This device is also preferably capable of displaying short text messages transmitted over the SRRF wireless link from another SRRF-compatible device.
  • the SRRF transceiver 300 is capable of supporting medium-to-long range (10-40 feet) two-way communications between SRRF objects and a host system, such as a PC running SRRF-compatible software.
  • This transceiver 300 has an integral antenna and interfaces to the host computer through a dedicated communication port using industry standard RS232 serial communications.
  • the SRRF transmission method be flexible such that it can be embedded in television or radio signals, videotapes, DVDs, video games and other programs media, stripped out and re-transmitted using low cost components.
  • each SRRF transceiver may also incorporate a global positioning (“GPS”) device to track the exact location of each play participant within one or more play environments.
  • GPS global positioning
  • a SRRF module can be provided in “chip” form to be incorporated with other electronics, or designed as a packaged module suitable for the consumer market.
  • the antenna can be embedded in the module, or integrated into the toy and attached to the module. Different modules and antennas may be required depending on the function, intelligence and interfaces required for different devices.
  • a consumer grade rechargeable or user replaceable battery may also be used to power both the SRRF module and associated toy electronics.
  • An overall interactive gaming experience and entertainment system is provided (called the “Magic” experience), which tells a fantastic story that engages children and families in a never-ending adventure based on a mysterious treasure box filled with magical objects.
  • the play environments may be physically represented, such as via an actual existing play structure or family entertainment center, and/or it may be visually/aurally represented via computer animation, television radio and/or other entertainment venue or source.
  • the magical objects use the SRRF communications system allowing for messages and information to be received and sent to and from any other object or system.
  • these may be programmed and linked to the master SRRF system.
  • the “magic wand” 200 is configured to receive messages from any computer software, game console, web site, and entertainment facility, television program that carries the SRRF system.
  • the magic wand can also preferably send messages to any SRRF compatible system thus allowing for the “wand” to be tracked and used within each play environment where the wand is presented.
  • the toy or wand 200 also preferably enables the user to interact with either a Master system located within a Magic entertainment facility and/or a home-based system using common consumer electronic devices such as a personal computer, VCR or video game system.
  • the master control system for a Magic entertainment facility generally comprises: (1) a “token” (gag, toy, wand 200 or other device) carried by the user 105 , (2) a plurality of receivers or transceivers 300 installed throughout the facility, (3) a standard LAN communications system (optional), and (4) a master computer system interfaced to the transceiver network (optional).
  • a Master computer system preferably the software program running on the Master computer is capable of tracking the total experience for hundreds of users substantially in real time. The information is used to adjust the play for each user based on knowing the age of the user, where the user has played or is playing, points accumulated, levels reached and specific objectives accomplished. Based on real-time information obtained from the network, the system can also send messages to the user as they interact throughout the Magic experience.
  • the Master system can quickly authorize user access to a new play station area or “zone” based on points or levels reached. It can also preferably indicate, via sending a message to the user, the points needed or play activities necessary to complete a “mission.” The Master system can also send messages to the user from other users. The system is preferably sophisticated enough to allow multiple users to interact with each other while enjoying the game in real-time.
  • the Master system can interface with digital imaging and video capture so that the users' activities can be visually tracked. Users can locate another user either through the video capturing system or by sending a message to another device. At the end of a visit, users are shown photos of their activities related to the Magic experience via display or printout.
  • the Master system may be omitted in order to save costs.
  • any game-related information required to be shared with other receivers or transceivers may be communicated via an RS-232 hub network, Ethernet, or wireless network, or such information may be stored on the wand itself and/or an associated RFID card or badge carried by the play participant (discussed later).
  • any information required to be shared by the game system is preferably stored on the wand or other RFID device(s) carried by the play participants.
  • any number of commercially available wireless networks may be provided without requiring rewiring of existing infrastructure.
  • Game participants are immersed in a treasure hunt adventure that combines old fashioned storytelling, live entertainment, hands-on play and interactive gaming together in a seamless experience.
  • the game is carried out in multiple venues and using multiple entertainment mediums so that cross-media promotion and traffic is encouraged and provided by the game (see, e.g., FIGS. 23A and 23B ).
  • the treasure hunt is brought to life through a live-action story and interactive game using the RFID tag technology.
  • Play participants receive points (optionally redeemable for one or more prizes) for searching and successfully finding clues and other items and for solving various puzzles and the final mystery of the whereabouts of a lost treasure located at Stone Mountain, Ga.
  • Guests are awarded points for finding 18-20 hidden and not-so hidden items such as a framed letter, a painting on the wall, bottle of elixir buried amongst props, etc.
  • These clues and other items are preferably distributed throughout a park facility and in various retail, restaurant and entertainment buildings for which the park desires to generate additional walk-in traffic.
  • Each item found is worth a certain number of points and/or reveals to the player one or more clue(s) needed to advance in the game.
  • Clues may be the location of other hidden items, tools or clues.
  • the clues are revealed in an appropriately themed manner, such as a local newspaper account, programmed and staff-led storytelling, signage, performances, and various interactive game consoles. The story is eventually revealed as follows:
  • clues and other necessary items are preferably hidden within various retail stores and designated entertainment areas giving kids and adults fun and alluring reasons to go inside buildings and seek out new experiences they might have otherwise overlooked.
  • the “reward” for successfully completing the game could be, for example, a small prize, recognition certificate, a sweepstakes entry to win a large prize.
  • Game participants are immersed in a worldwide treasure hunt adventure to locate a large, unknown amount or money stashed away in one or more Swiss bank accounts (the money and the accounts can be real or “made-up”).
  • Willy Wonkers a reclusive/eccentric billionaire, was unsure which of his many would-be heirs was worthy to receive his vast fortunes. So he provided in his will that upon his demise his entire estate was to be liquidated and all of the proceeds placed in a number of anonymous Swiss bank accounts (under secret passwords known only to Willy) to be distributed “to only such heir(s) who prove themselves worthy of inheriting my vast fortunes by successfully completing the Wonkers Worldwide Worthiness Challenge”—a series of intellectual, physical and moral challenges devised by Willy.
  • Willy employed a team of a thousand of the world's top scientists, psychologists, teachers, musicians, engineers, doctors, etc. The goal was to develop a number of probative tests/challenges that would ultimately reveal the worthy recipient(s) of Willy's vast fortunes.
  • the challenges were very carefully and meticulously designed to ensure that only persons of the highest character and pureness of heart/mind could ever succeed in completing all of the necessary challenges and thereby obtain Willy's fortunes.
  • Willy was especially vigilant to thwart the possible feigning efforts of unscrupulous persons who might attempt to gain access to his fortunes by cheating, trickery or other deceptive devices. Above all, he was determined to prevent any part of his vast estate and fortune from ever falling into the hands of persons who were lazy, unaware or wicked of heart.
  • Iggy's plan (such as it was) was to lay low and wait for Willy's estate to be liquidated and transferred into the various secret Swiss accounts in accordance with Willy's final wishes. But, before any genuinely worthy recipient would have a chance to successfully complete all of the challenges and rightfully claim the Wonkers fortunes, Iggy would secretly divert all of the funds in each of the secret Swiss accounts to his own secret accounts whereupon he would enjoy the good-life forever thereafter.
  • Game participants are invited to a reading of the will where they are identified as a potential heir to the Wonkers family fortune. Each participant is challenged to complete the Wonkers Worldwide Worthiness test and to thereby obtain the secret Swiss account number(s)/passwords and the Wonkers fortunes before Iggy does. The first participant who successfully completes the challenge gets all the loot. However, the failure to complete any single challenge results in immediate and permanent disinheritance.
  • the challenges are arranged so that only those who are smart, diligent and who are pure of heart and mind (etc., etc. . . . ) will be able to successfully complete the worthiness challenge. Thus, participants must faithfully carry out and complete each challenge in the exact manner specified. Any changes or deviations will result in failure.
  • the game is also set up to provide many temptations along the way to cut corners, cheat or trick ones way through the various challenges. Players must not succumb to these temptations, lest they be immediately and permanently disinherited. Players must also be careful not to reveal any helpful information to Iggy or his posse of greedy co-conspirators, lest they get to the loot first.
  • Each game participant receives a card, token, key chain, or other gaming implement (“game token”).
  • This token contains a unique identification number (preferably an RFID tag, mag-strip card, bar-coded card, or the like) which is used to uniquely identify each player throughout the game play.
  • a user-selected password is associated with each token so that it can only be used or activated by its proper owner.
  • the token allows players to interact with one or more game enabled readers/stations and/or other compatible devices distributed throughout a selected geographic region (e.g., book stores, theme parks, family entertainment centers, movie theaters, fast-food venues, internet, arcades, etc.).
  • each token represents a specific character in the treasure hunt game.
  • possible characters may include Eddy the Electrician, Abe the Accountant. Martha the Musician, Doctor Dave, Nurse Betty, policeman Paul, etc.
  • Each character would come with a unique story about who they are, how they were related to Willy and, most importantly, a touching little vignette about Willy that no one else knows.
  • Hidden within each story is one or more unique clues that are necessary to solve the various challenges the players will soon face.
  • the game is preferably arranged and set up so that clues can only be successfully used by the particular character(s) who legitimately possesses them. If any other character illegitimately obtains these secret clues and tries to use them in the game, he or she will fail the challenge.
  • any sharing of information must be conducted within the rules of the game to be “legitimate” and recognized by the game.
  • players cannot advance in the game simply by getting the relevant clue info from the Internet or by asking other players.
  • both players of the Betty and Paul characters must present their tokens together to an enabled token reader (e.g., at a local game center or theme park) and request that the information be shared between the characters.
  • an enabled token reader e.g., at a local game center or theme park
  • the information Once the information is legitimately exchanged within the context of the game, it then can be used by each player/character to solve further challenges and to thereby advance in the game.
  • the player if a player guesses the answer (even correctly) or if the clue information is obtained illegitimately, then the player preferably loses the quest and must purchase a new token.
  • players may need to acquire or learn some special skill or knowledge that is necessary to interpret a clue. For example, one player may get a clue in a strange foreign language and another player happens to be (or chooses to become within the context of the game) an international language expert who can interpret the foreign-language clue. Both players need to somehow find and cooperate with one another in order to advance in the game. Players can (and preferably must) also obtain certain information or clues from other extrinsic sources in order to further advance in the game. These can be simple extrinsic sources like a dictionary, encyclopedia, a local library or museum, or a secret code word printed on a participating retail store purchase receipt.
  • the game is self-policing. That is, it “knows” when an exchange of information and/or other help is legitimately given (i.e. conducted within the rules of the game) and can react accordingly.
  • the game may require both players (or multiple players, if more than two are involved) to simultaneously present their tokens to an enabled reader/device. The reader would then be able to verify the identities of each character/player, extract relevant info, token ID, user password, etc., and write the relevant new info to each player's token. Once the transaction is completed, each player would then legitimately possess and be able to use the information stored on his or her token to advance further in the game using any other gaming device that can read the token.
  • the same sequence can be followed as described above, except that the token is used only to verify character and player identities (e.g. an RFID read only tag). All other relevant information is stored on in a local and/or central database.
  • the data-base keeps track of each individual player's progress, what information/clues they have learned, who they have interacted with, points accumulated, etc.
  • game play can proceed on any device that can communicate via the internet, such as a home computer, game console, internet appliance, etc.
  • an authenticating password may be used in conjunction with each RFID identifying token.
  • each player When two or more players present their tokens to an enabled reader device as in the examples described above, each player is given an authenticating password, which the player(s) then can enter into any other gaming platform.
  • the password may be an alpha-numeric code that is mathematically derived from the unique ID numbers of each participating player involved in the sharing transaction. Thus, it is unique to the specific players involved in the authorized exchange transaction and cannot be used by other players (even if they copy or seal the password).
  • the game software can reverse the mathematical algorithm using the players unique ID (previously entered at the beginning of the game) and thereby determine and/or validate the event(s) that generated the authenticating password.
  • Existing public-key/private-key encryption algorithms and/or the like could be used for encoding and decoding the authenticating passwords.
  • each authenticating password could have a “shelf life” of any desired length of time such that it must be used within an hour, a day, a week, a month, etc. This might help move the game along by keeping players on their toes.
  • Authenticating passwords could be easily printed and dispensed on special tickets or stickers, which can be collected. Alternatively, and/or in addition, authenticating passwords can be readily printed on any ordinary cash register receipt as part of any purchase transaction (e.g. at a fast food or other retail establishment).
  • the treasure hunt game may be continual in its progression or it may be orchestrated in “real time” via the internet or any other mass distribution/communication medium, such as TV commercials, mini-gameboy installments, computer-animated MPEG videos.
  • each game might last several days/weeks/months, and may be launched in conjunction with a promotional/advertising campaign for a complementing movie or the like.
  • players would preferably sign up in advance to receive their tokens to play the game or they can purchase one or more tokens at any participating gaming outlet before or during the game.
  • RFID trading card 400 and card game is not limited to cards depicting fantasy characters or objects, but may be implemented in a wide variety of alternative embodiments, including sporting cards, baseball, football and hockey cards, movie character cards, dinosaur cards, educational cards and the like. If desired, any number of other suitable collectible/tradable tokens or trinkets may also be provided with a similar RFID tag device in accordance with the teachings of the present invention as dictated by consumer tastes and market demand.
  • Game participants are immersed in a “whodunit” murder mystery.
  • this interactive adventure game could be based on the popular board game. “C1ueTM.”
  • Players learn that a murder has been committed and they must figure out who did it, in what room, with what weapon, etc.
  • the game is preferably live-action interactive with simulated live-news casts, letters, telephone calls, etc.
  • Mayonnaise is found dead in his palatial mansion of an apparent massive coronary. However, clues at the crime scene indicate that this was in fact a carefully planned murder. Based on the indisputable physical evidence, the murder could only have been committed by one of eight possible suspects.
  • Game play is essentially as described above in connection with Example 3.
  • Players receive game tokens, cards, bands or the like uniquely identifying each player.
  • each token represents one of the eight suspect characters in the Whodunit game.
  • each character would preferably have a unique story about who they are, where they were on the night of the murder, and why they dislike Mayonnaise.
  • Hidden within the collective stories are the unique clues necessary to solve the murder mystery challenge.
  • Players cooperate by exchanging clues and other information needed to solve the mystery.
  • the game is preferably set up and organized so that relevant clues can only be successfully used by the particular character(s) who legitimately possess them. Any player who tries to cheat will preferably be disqualified or otherwise prevented from advancing in the game.
  • Game participants are immersed in a magical computer adventure game.
  • this Interactive adventure game could be based on the popular “Harry PotterTM” series of children's books by J. K. Rowling and licensed computer games by Electronic Arts. Players learn basic magic skills as they progress through an adventure game and solve one or more challenges/puzzles.
  • Game play is essentially as described above in connection with Examples 3 and 4.
  • Players preferably receive game tokens, cards, bands and/or the like uniquely identifying each player.
  • Each token provides a unique identifier for the player and preferably can store his or her progress in the game.
  • Each player begins the adventure with essentially the same magic powers, skills and abilities.
  • Each player may also receive a magic wand or other similar device which the players must learn to use to accomplish certain goals set out in the game.
  • the game is preferably organized so that relevant clues can only be successfully used by the particular character(s) who legitimately possess them. Any player who tries to cheat will preferably be disqualified or otherwise prevented from advancing in the game.
  • An authenticating password system is preferably used to verify or authenticate game events and to thereby discourage cheating.
  • These secret codes or pass words may be obtained from any participating game venue (e.g., fast food venues, toy store, theme parks, etc.) or other sources that will become obvious once the game is implemented.
  • a secret password Once a secret password is obtained, players can enter it into a specially enabled home computer game, arcade game, portable gaming device, or other device, to get secret powers and/or to find secret parts of the game otherwise unobtainable without the secret code. For example, a player may buy a meal from a fast-food vendor and as part of the meal package would receive a token and/or a secret code.
  • the secret code preferably may be used to access a secret portion or level of a popular computer adventure game.
  • authenticating passwords are unique or semi-unique to the player(s) who possess them.
  • each password may be an alpha-numeric code that is mathematically derived from a unique ID number stored on each participating players token or from a password the player selects.
  • the secret code is more-or-less unique to the specific player(s) involved in an authenticated game event and preferably cannot be used by other players (even if they copy or steal the secret code).
  • the game software can reverse the mathematical algorithm using the players unique ID or user-selected password (this may or may not be previously entered at the beginning of the game) and thereby determine and/or validate the game event(s) that generated the authenticating password.
  • Existing public-key/private-key encryption algorithms and/or the like could be used for encoding and decoding the authenticating passwords.
  • each authenticating password could have a “shelf life” of any desired length of time such that it must be used within an hour, a day, a week, a month, etc. This might help move the game along by keeping players on their toes.
  • Authenticating passwords could be easily printed and dispensed on special tickets or stickers, which can be collected.
  • authenticating passwords can be readily printed on any ordinary cash register receipt as part of any purchase transaction (e.g. at a fast food or other retail establishment).
  • the token device may optionally include one or more entry buttons and an LCD display.
  • the secret code(s) are downloaded automatically to the token device and can be displayed on the LCD screen.
  • the token thus becomes a secret encoder/decoder device that allows players to electronically transport and send/receive secret messages and codes to each other that can only be read by players/devices that possess the correct authenticating code.
  • An optional communication port may allow secret codes to be downloaded directly to a computer game, portable game unit or other devices using, for example, a standard USB communication port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Toys (AREA)

Abstract

An interactive treasure hunt game is provided. Game participants receive a card, map and/or identification badge configured with an RFID tag, bar-code or a magnetic “swipe” strip or the like. The RFID tag or other identifying device is used to store certain information identifying each play participant and/or describing certain powers or abilities possessed by an imaginary character that the card may represent. Players advance in the game by finding clues and solving various puzzles presented by the game. Players may also gain (or lose) certain attributes, such as magic skills, magic strength, fighting ability, various spell-casting abilities, etc. All of this information is preferably stored on the RFID tag or card so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, the game can seamlessly transcend from one play environment and/or entertainment medium to the next.

Description

    RELATED APPLICATIONS
  • This application is a continuation of and claims benefit of priority under 35 U.S.C. § 120 of U.S. patent application Ser. No. 15/995,633, filed Jun. 1, 2018, which is a continuation of and claims benefit of priority under 35 U.S.C. § 120 of U.S. patent application Ser. No. 15/255,691, filed Sep. 2, 2016, now U.S. Pat. No. 10,010,790, issued Jul. 3, 2018, which is a continuation of and claims benefit of priority under 35 U.S.C. § 120 of U.S. patent application Ser. No. 15/009,555, filed Jan. 28, 2016, now U.S. Pat. No. 9,463,380, issued Oct. 11, 2016, which is a continuation of and claims benefit of priority under 35 U.S.C. § 120 of U.S. patent application Ser. No. 13/944,773, filed Jul. 17, 2013, now U.S. Pat. No. 9,272,206, issued Mar. 1, 2016, which is a continuation of and claims benefit of priority under 35 U.S.C. § 120 of U.S. patent application Ser. No. 11/183,592, filed Jul. 18, 2005, now U.S. Pat. No. 8,608,535, issued Dec. 17, 2013, which is a continuation of and claims benefit of priority under 35 U.S.C. § 120 of U.S. patent application Ser. No. 10/410,583, filed Apr. 7, 2003, now U.S. Pat. No. 6,967,566, issued Nov. 22, 2005, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 60/370,568, filed Apr. 5, 2002, all of which are hereby incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to children's games and, in particular, to a live-action interactive adventure game and play system utilizing radio frequency transponders and transceivers to provide a unique interactive game play experience.
  • Description of the Related Art
  • Games, play structures and other similar entertainment systems are well known for providing play and interaction among children and adults. A wide variety of commercially available play toys and games are also known for providing valuable learning and entertainment opportunities for children, such as role playing, reading, memory stimulation, tactile coordination and the like.
  • However, there is always a demand for more exciting and entertaining games and toys that increase the learning and entertainment opportunities for children and stimulate creativity and imagination.
  • SUMMARY OF THE INVENTION
  • The present invention provides a unique system and method of multi-media game play carried out utilizing an interactive “wand” and/or other tracking/actuation device to allow play participants to electronically and “magically” interact with their surrounding play environment(s). The play environment may either be real or imaginary (i.e. computer/TV generated), and either local or remote, as desired. Optionally, multiple play participants, each provided with a suitable “wand” and/or tracking device, may play and interact together, either within or outside one or more play environments, to achieve desired goals or produce desired effects within the play environment.
  • In accordance with one embodiment the present invention provides an interactive play system and wand toy for enabling a trained user to electronically send and receive information to and from other wand toys and/or to and from various transceivers distributed throughout a play facility and/or connected to a master control system. The toy wand or other seemingly magical object is configured to use a send/receive radio frequency communication protocol which provides a basic foundation for a complex, interactive entertainment system to create a seemingly magic interactive play experience for play participants who possess and learn to use the magical wand toy.
  • In accordance with another embodiment the present invention provides an interactive play structure in the theme of a “magic” training center for would-be wizards in accordance with the popular characters and storylines of the children's' book series “Harry Potter” by J. K. Rowling. Within the play structure, play participants learn to use a “magic wand” and/or other tracking/actuation device. The wand allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment. Various receivers or transceivers are distributed throughout the play structure to facilitate such interaction via wireless communications.
  • In accordance with another embodiment the present invention provides a wand actuator device for actuating various interactive play effects within an RFID-compatible play environment. The wand comprises an elongated hollow pipe or tube having a proximal end or handle portion and a distal end or transmitting portion. An internal cavity may be provided to receive one or more batteries to power optional lighting, laser or sound effects and/or to power long-range transmissions such as via an infrared LED transmitter device or RF transmitter device. The distal end of the wand is fitted with an RFID (radio frequency identification device) transponder that is operable to provide relatively short-range RF communications (<60 cm) with one or more receivers or transceivers distributed throughout a play environment. The handle portion of the wand is fitted with optional combination wheels having various symbols and/or images thereon which may be rotated to produce a desired pattern of symbols required to operate the wand or achieve one or more special effects.
  • In accordance with another embodiment the present invention provides an RFID card or badge intended to be affixed or adhered to the front of a shirt or blouse worn by a play participant while visiting an RF equipped play facility. The badge comprises a paper, cardboard or plastic substrate having a front side and a back side. The front side may be imprinted with graphics, photos, or any other information desired. The front side may include any number of other designs or information pertinent to its application. The obverse side of the badge contains certain electronics comprising a radio frequency tag pre-programmed with a unique person identifier number (“UPIN”). The UPIN may be used to identify and track individual play participants within the play facility. Optionally, each tag may also include a unique group identifier number (“UGIN”) which may be used to match a defined group of individuals having a predetermined relationship.
  • In accordance with another embodiment the present invention provides an electronic treasure hunt game. Game participants receive a card, map and/or identification badge configured with an RFID tag, bar-code or a magnetic “swipe” strip or the like. The RFID tag or other identifying device is used to store certain information identifying each play participant and/or describing certain powers or abilities possessed by of an imaginary role-play character that the card represents. Players advance in the game by finding clues and solving various puzzles presented. Players may also gain (or lose) certain attributes, such as magic skills, magic strength, fighting ability, various spell-casting abilities, etc. All of this information is preferably stored on the RFID tag or card so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.
  • For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention have been described herein above. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
  • All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Having thus summarized the general nature of the invention and its essential features and advantages, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:
  • FIG. 1 is a perspective view of a play participant holding an interactive wand for playing an interactive adventure game in accordance the present invention;
  • FIG. 2 is a perspective view of a play participant learning to use the interactive wand of FIG. 1 using a computer game and a training manual;
  • FIG. 3 is a perspective view of an adventure game center provided within a movie theatre configured to facilitate interactive game play in accordance with the present invention;
  • FIG. 4 is a perspective view illustrating how play participants can use the wand of FIG. 1 to create an interactive experience within a movie theatre;
  • FIG. 5 is a perspective view of a play participant playing an interactive adventure game using a computer and the wand device of FIG. 1;
  • FIG. 6 is a perspective view of an interactive adventure game center having features of the present invention;
  • FIG. 7 is a perspective view of a play participant playing an interactive adventure game in accordance with the present invention, and illustrating the use of an extrinsic clue or information source;
  • FIG. 8 is a perspective view of a retail store facility having an interactive adventure game center in accordance with the present invention;
  • FIG. 9 is a perspective view of an alternative embodiment of an interactive adventure game center provided within the retail store of FIG. 8 and having features of the present invention;
  • FIG. 10 is a perspective view of an interactive adventure game carried out using a computer game console and one or more wand devices;
  • FIG. 11 is a perspective view of another alternative embodiment of an interactive adventure game center or play structure such as may be provided within a family entertainment center or theme park;
  • FIG. 12 is a perspective view of a play participant within an interactive adventure game center casting “magical” spells using the wand device of FIG. 1;
  • FIG. 13 is an alternative perspective view of the interactive adventure game center of FIG. 11;
  • FIG. 14 is a perspective view of an RFID-enabled interactive game device or console having features of the present invention;
  • FIG. 15 is a perspective view of an RFID-enabled interactive game device, ride or console having features of the present invention;
  • FIG. 16 is a perspective view of two play participants playing an interactive game using multiple computers communicating via the internet;
  • FIG. 17A is a perspective view of a magic wand toy for use with an interactive adventure game having features and advantages in accordance with the present invention;
  • FIG. 17B is a partially exploded detail view of the proximal end or handle portion of the magic wand toy of FIG. 17A, illustrating the optional provision of combination wheels having features and advantages in accordance with the present invention;
  • FIG. 17C is a partial cross-section detail view of the distal end or transmitting portion of the magic wand toy of FIG. 17A, illustrating the provision of an RF transponder device therein;
  • FIG. 18 is a simplified schematic diagram of an RF reader and master control system for use with the magic wand toy actuator of FIG. 17A having features and advantages in accordance with the present invention;
  • FIGS. 19A and 19B are front and rear views, respectively, of an optional RFID tracking badge or card for use within an interactive adventure game paving features and advantages in accordance with the present invention;
  • FIGS. 20A and 20B are schematic diagrams illustrating typical operation of the RFID tracking badge of FIG. 19;
  • FIG. 21 is a simplified schematic diagram of an RFID read/write system for use with the RFID tracking badge of FIG. 19 having features and advantages in accordance with the present invention;
  • FIG. 22 is a simplified block diagram illustrating the basic organization and function of the electronic circuitry comprising the RFID tag device of FIG. 19B; and
  • FIGS. 23A and 23B are schematic block diagrams illustrating how an interactive adventure game in accordance with the present invention can be implemented simultaneously and seamlessly within multiple play environments and entertainment mediums.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Basic Game Play
  • In one preferred embodiment the invention provides a system and method of multi-media game play carried out using one or more interactive “wands” and/or other tracking/actuation devices which allow play participants to electronically and “magically” interact with their surrounding play environment(s). The play environment may either be real or imaginary (i.e. computer/TV generated), and either local or remote, as desired. Optionally, multiple play participants, each provided with a suitable “wand” and/or tracking device, may play and interact together, either within or outside one or more play environments, to achieve desired goals or produce desired effects within the play environment.
  • For example, the invention may be carried out as an electronic treasure hunt game. Game participants receive a card, map and/or identification badge configured with an RFID tag, bar-code or a magnetic “swipe” strip or the like. The RFID tag or other identifying device is used to store certain information identifying each play participant and/or describing certain powers or abilities possessed by of an imaginary role-play character that the card represents. Players advance in the game by finding clues and solving various puzzles presented. Players may also gain (or lose) certain attributes, such as magic skills, magic strength, fighting ability, various spell-casting abilities, etc. All relevant game information is preferably stored (or addressably identified) on the RFID tag or card so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, the game is able to seamlessly transcend from one play or entertainment medium the next.
  • FIG. 1 illustrates one embodiment of an interactive treasure hunt game having features and advantages of the present invention. The particular game illustrated takes on the theme of the popular characters and storylines of the children's' book series “Harry Potter” by J. K. Rowling. Within the game, play participants 105 learn to use a “magic “wand” 200 and/or other tracking/actuation device. The wand 200 (described in more detail later) allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment. FIG. 1 shows a play participant 105 receiving a wand 200 and game directions as a gift, for example.
  • Once the play participant becomes generally familiar with the wand 200 and the game, he or she can preferably access a web site through the world wide web in order to register the wand and play the first interactive treasure hunt game (see, e.g., FIG. 2). Preferably this is a relatively simple game intended to provide a basic training session. In this on-line game session, the player learns how to use the wand to cast spells, levitate objects, open and close doors, etc. within an interactive computer-gaming environment provided by an ordinary home computer 110. The player also learns how to discover important clues needed to advance in the game and to solve various puzzles or challenges presented by the game.
  • Once the play participant 105 has mastered the basic game and successfully completed the various training sessions, he or she is ready to join other players in a world-wide multi-media gaming adventure. The adventure may begin with a new movie release. For example, FIG. 3 illustrates play participants entering a movie theater to enjoy a newly released HARRY POTTER_movie. Preferably, play participants 105 take their wands 200 into one or more movie venues 125 in order to score points, learn clues and advance in the game. For example, a special check-in booth 127 may be provided within the movie venue for allowing play participants to use their wands 200 to receive clues, special powers and/or points. While watching the movie (see, e.g., FIG. 4), the movie storyline itself may reveal additional clues mat will help carefully observant players to advance in the game later. Various clues may also be hidden within otherwise unnoticeable backgrounds, scenery, characters, movie credits, etc. Thus, play participants may need to view a movie multiple times to glean all of the available clues needed to complete the game. Optionally, at certain points in the movie play participants may be able to use their wands 200 or other similar devices to help direct the story-line progression, change to alternate plots, endings, etc. This may be conveniently achieved using any one or more suitable RFID communications protocols and interactive digital DVD technologies (described in more detail later).
  • Back at home, play participants 105 may use their wand 200 to continue playing the adventure game within one or more available on-line gaming environments (see, e.g., FIG. 5). Various books 130, aids, instructions and other similar materials may be provided to help play participants complete the adventure, while preferably learning valuable knowledge and skills. For example, part of the game play may require play participants to conduct independent research in a particular area or to become proficient in a chosen skill to advance in the game (e.g., FIG. 7).
  • The game continues within various participating retail environments. Thus, for example, FIG. 6 illustrates a local HARRY POTTER game adventure center created within a local book store, toy store, restaurant, or the like (e.g., FIG. 8). The game center preferably provides additional clues, assistance and/or opportunities for social interaction, information sharing and/or strategic cooperation among multiple game players. In a particularly preferred embodiment, cooperation among multiple play participants is required to allow cooperating players to advance in the game. The game center also preferably provides a distribution center for related products such as computer games, video games, wands 200 and the like (e.g. FIGS. 9, 10). Purchased video games may be played at home (e.g., FIG. 10) using conventional game controllers and/or a specially configured controller (not shown) adapted to communicate wirelessly with wand 200 or a similar device.
  • Advantageously, in this manner the game is able to transcend seamlessly from one entertainment medium to another using the wand 200 or other similar RFID-capable device as a means to store, transport and communicate character development and game progress between different entertainment mediums and play environments. Thus, game play preferably extends from the home, to television, to internet, to theatre, and/or to one or more local family entertainment centers (“FEC”), games centers, family restaurants, and the like (see, e.g., FIGS. 23A and 23B). For example, FIGS. 11-15 illustrate an entertainment center configured for interactive game play in accordance with the present invention. The particular entertainment center 250 illustrated takes on the theme of a “magic” training center for would-be wizards in accordance with the popular characters and storylines of the children's' book series “Harry Potter” by J. K. Rowling.
  • Within this family entertainment center 250, play participants 105 learn to use their magic wands 200 and/or other tracking/actuation devices. The wand 200 preferably allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment. For example, various wireless receivers or transceivers 300 may be distributed throughout the play center 250 to facilitate such interaction via wireless communications. Depending upon the degree of game complexity desired and the amount of information sharing required, the transceivers 300 may or may not be connected to a master system or central server (not shown). Preferably, most, if not all, of the receivers or transceivers 300 are stand-alone devices that do not require communications with an external server or network. In one particularly preferred embodiment this may be achieved by storing any information required to be shared on the wand 200 and/or on an associated radio frequency tracking card or badge worn or carried by the play participant (described later).
  • If desired, a suitable play media, such as foam or rubber balls or similar objects, may be provided for use throughout the play center to provide convenient objects for clue sources, tools, trading currency and/or tactile interactive play. For example, thousands of soft foam balls may be provided as an interactive play medium (e.g., FIG. 13). These may be manipulated by play participants using various interactive play elements to create desired effects. Balls may range in size from approximately 1″ to 12″ in diameter or larger, as desired, and are preferable about 2½″ in diameter. Preferably, the objects are not so small as to present a choking hazard for young children. The majority of the objects may be the same size, or a mixture of sizes may be utilized, as desired. Certain play elements within the play center may require the use of certain objects in order to complete a required task. For example, various play objects may identified using one or more embedded or affixed RFID tags which may be electronically read by the various game consoles 275 within the play center 250.
  • Other suitable play media may include, without limitation, foam, plastic or rubber balls and similarly formed articles such as cubes, plates, discs, tubes, cones, rubber or foam bullets/arrows, the present invention not being limited to any particular preferred play media. These may be used alone or in combination with one another. For instance, flying discs, such as Frisbees™, may be flung from one location within the play center 250 while other play participants shoot at the discs using foam balls or suction-cup arrows. Wet or semi-wet play mediums, such as slime-like materials, snow, mud, squirt guns and/or water balloons may also be used, as desired, to cool and entertain play participants. Durable plastic or rubber play media are preferable in an outdoor play structure where environmental exposure may prematurely destroy or degrade the quality of certain play mediums such as foam balls. The particular play media used is not particularly important for purposes of carrying out the invention and, optionally, may be omitted altogether, if desired.
  • Various interactive play elements and games 275, 280 are preferably provided within the play center 250 to allow play participants 105 to create desired “magical” effects, as illustrated in FIGS. 14 and 15. These may include interactive elements such as video games, coin-operated rides, and the like. These may be actuated manually by play participants or, more desirably, “magically” electronically by appropriately using the wand 200 in conjunction with one or more transceivers 300. Some interactive play elements may have simple immediate effects, while others may have complex and/or delayed effects. Some play elements may produce local effects while others may produce remote effects. Each play participant 105, or sometimes a group of play participants working together, preferably must experiment with the various play elements and using their magic wands in order to discover how to create the desired effect(s). Once one play participant figures it out, he or she can use the resulting play effect to surprise and entertain other play participants. Yet other play participants will observe the activity and will attempt to also figure it out in order to turn the tables on the next group. Repeated play on a particular play element can increase the participants' skills in accurately using the wand 200 to produce desired effects or increasing the size or range of such effects. Optionally, play participants can compete with one another using the various play elements to see which participant or group of participants can create bigger, longer, more accurate or more spectacular effects.
  • While several particularly preferred play environments have been described, it will be readily apparent to those skilled in the art that a wide variety of other possible play environments and other entertainment mediums may be used to carry out the invention. Alternatively, a suitable play environment may comprise a simple themed play area, or even a multi-purpose area such as a restaurant dining facility, family room, bedroom or the like. Internet (e.g., FIG. 16), video games, computer games, television, movies and radio can also be used to provide all or part of the overall game experience in accordance with the present invention.
  • Magic Wand
  • As indicated above, play participants 105 learn to use a “magic wand” 200 and/or other tracking/actuation device. The wand preferably 200 allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment. Use of the wand 200 may be as simple as touching it to a particular surface or “magical” item within a suitably configured play environment or it may be as complex as shaking or twisting the wand a predetermined number of times in a particular manner and/or pointing it accurately at a certain target desired to be “magically” transformed or otherwise affected. As play participants play and interact within each play environment they learn more about the “magical” powers possessed by the wand 200 and become more adept at using the wand to achieve desired goals or desired play effects. Optionally, play participants may collect points or earn additional magic levels or ranks for each play effect or task they successfully achieve. In this manner, play participants 105 may compete with one another to see who can score more points and/or achieve the highest magic level.
  • FIG. 17 illustrates the basic construction of one preferred embodiment of a “magic” wand 200 having features and advantages in accordance with one preferred embodiment of the invention. As illustrated in FIG. 17A the wand 200 basically comprises an elongated hollow pipe or tube 310 having a proximal end or handle portion 315 and a distal end or transmitting portion 320. If desired, an internal cavity may be provided to receive one or more batteries to power optional lighting, laser or sound effects and/or to power longer-range transmissions such as via an infrared LED transmitter device or RF transmitter device. An optional button 325 may also be provided, if desired, to enable particular desired functions, such as sound or lighting effects or longer-range transmissions.
  • FIG. 17B is a partially exploded detail view of the proximal end 315 of the magic wand toy 200 of FIG. 17A. As illustrated, the handle portion 315 is fitted with optional combination wheels having various symbols and/or images thereon. Preferably, certain wand functions may require that these wheels be rotated to produce a predetermined pattern of symbols such as three owls, or an owl, a broom and a moon symbol. Those skilled in the art will readily appreciate that the combination wheels may be configured to actuate electrical contacts and/or other circuitry within the wand 200 in order to provide the desired functionality. Alternatively, the combination wheels may provide a simple security measure to prevent unauthorized users from actuating the wand. Alternatively, the wheels may provide a simple encoder/decoder mechanism for encoding, decoding, interpreting and/or transforming secret codes or passwords used during game play.
  • FIG. 170 is a partial cross-section detail view of the distal end of magic wand toy 200 of FIG. 17A. As illustrated, the distal end 320 is fitted with an RFID (radio frequency identification device) transponder 335 that is operable to provide relatively short-range RF communications (<60 cm) with one or more of the receivers or transceivers 300 distributed throughout a play environment (e.g., FIGS. 11, 12). At its most basic level, RFID provides a wireless link to uniquely identify objects or people. It is sometimes called dedicated short range communication (DSRC). RFID systems include electronic devices called transponders or tags, and reader electronics to communicate with the tags. These systems communicate via radio signals that carry data either uni-directionally (read only) or, more preferably, bi-directionally (read/write). One suitable RFID transponder is the 134.2 kHz/123.2 kHz, 23 mm Glass Transponder available from Texas Instruments, Inc. (http://www.tiris.com, Product No. RI-TRP-WRHP). This transponder basically comprises a passive (non-battery-operated) RF transmitter/receiver chip 340 and an antenna 345 provided within an hermetically sealed vial 350. A protective silicon sheathing 355 is preferably inserted around the sealed vial 350 between the vial and the inner wall of the tube 310 to insulate the transponder from shock and vibration.
  • FIG. 18 is a simplified schematic diagram of one embodiment of an RF transceiver 300 and optional master control system 375 for use with the magic wand toy actuator of FIG. 17A. As illustrated, the transceiver 300 basically comprises an RF Module 380, a Control Module 385 and an antenna 390. When the distal end of wand 200 comes within a predetermined range of antenna 390 (˜20-60 cm) the transponder antenna 345 (FIG. 17C) becomes excited and impresses a voltage upon the RF transmitter/receiver chip 340 disposed within transponder 335 at the distal end of the wand 200. In response, the RF transmitter/receiver ship 340 causes transponder antenna 345 to broadcast certain information stored within the transponder 335 comprising 80 bits of read/write memory. This information typically includes the user's unique ID number, magic level or rank and/or certain other information pertinent to the user or the user's play experiences.
  • This information is initially received by RF Module 380, which can then transfer the information through standard interfaces to an optional Host Computer 375, Control Module 385, printer, or programmable logic controller for storage or action. If appropriate, Control Module 385 provides certain outputs to activate or control one or more associated play effects, such as lighting, sound, various mechanical or pneumatic actuators or the like. Optional Host Computer 375 processes the information and/or communicates it to other transceivers 300, as may be required by the game. If suitably configured, RF Module 380 may also broadcast or “write” certain information back to the transponder 335 to change or update one of more of the 80 read/write bits in its memory. This exchange of communications occurs very rapidly (˜70 ms) and so from the user's perspective it appears to be instantaneous. Thus, the wand 200 may be used in this “short range” or “passive” mode to actuate various “magical” effects throughout the play structure 100 by simply touching or bringing the tip of the wand 200 into relatively close proximity with a particular transceiver 300. To provide added mystery and fun, certain transceivers 300 may be provided as hidden clue stations within a play environment so that they must be discovered by discovered by play participants 105. The locations of hidden transceivers and/or other clue stations may be changed from time to time to keep the game fresh and exciting.
  • If desired, the wand 200 may also be configured for long range communications with one or more of the transceivers 300 (or other receivers) disposed within a play environment. For example, one or more transceivers 300 may be located on a roof or ceiling surface, on an inaccessible theming element, or other area out of reach of play participants. Such long-rage wand operation may be readily achieved using an auxiliary battery powered RF transponder, such as available from Axcess, Inc., Dallas, Tex. If line of sight or directional actuation is desired, a battery-operated infrared LED transmitter and receiver of the type employed in television remote control may be used, as those skilled in the art will readily appreciate. Of course, a wide variety of other wireless communications devices, as well as various sound and lighting effects may also be provided, as desired. Any one or more of these may be actuated via button 325, as desirable or convenient.
  • Additional optional circuitry and/or position sensors may be added, if desired, to allow the “magic wand” 200 to be operated by waving, shaking, stroking and/or tapping it in a particular manner. If provided, these operational aspects would need to be learned by play participants as they train in the various play environments. One goal, for example, may be to become a “grand wizard” or master of the wand. This means that the play participant 105 has learned and mastered every aspect of operating the wand to produce desired effects within each play environment. Of course, additional effects and operational nuances can (and preferably are) always added over time in order to keep the interactive experience fresh and continually changing. Optionally, the wand 200 may be configured such that it is able to display 50 or more characters on a LTD or LCD screen. The wand may also be configured to respond to other signals, such as light, sound, or voice commands as will be readily apparent to those skilled in the art. This could be useful, for example for generating, storing and retrieving secret pass words, informational clues and the like.
  • RFID Tracking Card/Badge
  • FIGS. 19A and 19B are front and rear views, respectively, of an optional or alternative RFID tracking badge or card 400 for use within the interactive game described above. This may be used instead of or in addition to the wand 200, described above. The particular badge 400 illustrated is intended to be affixed or adhered to the front of a shirt or blouse worn by a play participant during their visit to suitably equipped play or entertainment facilities. The badge preferably comprises a paper, cardboard or plastic substrate having a front side 404 and a back side 410. The front 405 of each card/badge 400 may be imprinted with graphics, photos, treasure maps or any other information desired. In the particular embodiment illustrated, the front 405 contains an image of HARRY POTTER in keeping with the overall theme of the game described above. In addition, the front 405 of the badge 400 may include any number of other designs or information pertinent to its application. For example, the guest's name 430, and group 435 may be indicated for convenient reference. A unique tag ID Number 440 may also be displayed for convenient reference and is particularly preferred where the badge 400 is to be reused by other play participants.
  • The obverse side 410 of the badge 400 contains the badge electronics comprising a radio frequency tag 420 pre-programmed with a unique person identifier number (“UPIN”). The tag 420 generally comprises a spiral wound antenna 450, a radio frequency transmitter clip 460 and various electrical leads and terminals 470 connecting the chip 460 to the antenna. Advantageously, the UPIN may be used to identify and track individual play participants within the play facility. Optionally, each tag 420 may also include a unique group identifier number (“UGIN”) which may be used to match a defined group of individuals having a predetermined relationship—either pre-existing or contrived for purposes of game play. If desired, the tag 420 may be covered with an adhesive paper label (not shown) or, alternatively, may be molded directly into a plastic sheet substrate comprising the card 400.
  • Various readers distributed throughout a park or entertainment facility are able to read the RFID tags 420. Thus, the UPIN and UGIN information can be conveniently read and provided to an associated master control system, display system or other tracking, recording or display device for purposes of creating a record of each play participant's experience within the play facility. This information may be used for purposes of calculating individual or team scores, tracking and/or locating lost children, verifying whether or not a child is inside a facility, photo capture & retrieval, and many other useful purposes as will be readily obvious and apparent to those skilled in the art.
  • Preferably, the tag 420 is passive (requires no batteries) so that it is inexpensive to purchase and maintain. Such tags and various associated readers and other accessories are commercially available in a wide variety of configurations, sizes and read ranges. RFID tags having a read range of between about 10 cm to about 100 cm are particularly preferred, although shorter or longer read ranges may also be acceptable. The particular tag illustrated is the 13.56 mHz tag sold under the brand name Taggit™ available from Texas Instruments, Inc. (http://www.tiris.com, Product No. RI-103-110A). The tag 420 has a useful read/write range of about 25 cm and contains 256-bits of on-board memory arranged in 8×32-bit blocks which may be programmed (written) and read by a suitably configured read/write device. Such tag device is useful for storing and retrieving desired user-specific information such as UPIN, UGIN, first and/or last name, age, rank or level, total points accumulated, tasks completed, facilities visited, etc. If a longer read/write range and/or more memory is desired, optional battery-powered tags may be used instead, such as available from ACXESS, Inc. and/or various other vendors known to those skilled in the art.
  • FIGS. 20 and 21 are simplified schematic illustrations of tag and reader operation. The tag 420 is initially activated by a radio frequency signal broadcast by an antenna 510 of an adjacent reader or activation device 500. The signal impresses a voltage upon the antenna 450 by inductive coupling which is then used to power the chip 460 (see, e.g., FIG. 20A). When activated, the chip 460 transmits via radio frequency a unique identification number preferably corresponding to the UPIN and/or UGIN described above (see, e.g., FIG. 20B). The signal may be transmitted either by inductive coupling or, more preferably, by propagation coupling over a distance “d” determined by the range of the tag/reader combination. This signal is then received and processed by the associated reader 500 as described above. If desired, the RFID card or badge 400 may also be configured for read/write communications with an associated reader/writer. Thus, the unique tag identifier number (UPIN or UGIN) can be changed or other information may be added.
  • As indicated above, communication of data between a tag and a reader is by wireless communication. As a result, transmitting such data is always subject to the vagaries and influences of the media or channels through which the data has to pass, including the air interface. Noise, interference and distortion are the primary sources of data corruption that may arise. Thus, those skilled in the art will recognize that a certain degree of care should be taken in the placement and orientation of readers 500 so as to minimize the probability of such data transmission errors. Preferably, the readers are placed at least 30-60 cm away from any metal objects, power lines or other potential interference sources. Those skilled in the art will also recognize that the write range of the tag/reader combination is typically somewhat less (˜10-15% less) than the read range “d” and, thus, this should also be taken into account in determining optimal placement and positioning of each reader device 500.
  • Typical RFID data communication is asynchronous or unsynchronized in nature and, thus, particular attention should be given in considering the form in which the data is to be communicated. Structuring the bit stream to accommodate these needs, such as via a channel encoding scheme, is preferred in order to provide reliable system performance. Various suitable channel encoding schemes, such as amplitude shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK) and spread spectrum modulation (SSM), are well known to those skilled in the art and will not be further discussed herein. The choice of carrier wave frequency is also important in determining data transfer rates. Generally speaking the higher the frequency the higher the data transfer or throughput rates that can be achieved. This is intimately linked to bandwidth or range available within the frequency spectrum for the communication process. Preferably, the channel bandwidth is selected to be at least twice the bit rate required for the particular game application.
  • FIG. 22 is a simplified block diagram illustrating the basic organization and function of the electronic circuitry comprising the radio frequency transmitter chip 460 of the RFID tag device 420 of FIG. 19B. The chip 460 basically comprises a central processor 530, Analogue Circuitry 535, Digital Circuitry 540 and on-board memory 545. On-board memory 545 is divided into read-only memory (ROM) 550, random access memory (RAM) 555 and non-volatile programmable memory 560, which is available for data storage. The ROM-based memory 550 is used to accommodate security data and the tag operating system instructions which, in conjunction with the processor 530 and processing logic deals with the internal “house-keeping” functions such as response delay timing, data flow control and power supply switching. The RAM-based memory 555 is used to facilitate temporary data storage during transponder interrogation and response. The non-volatile programmable memory 560 may take various forms, electrically erasable programmable read only memory (EEPROM) being typical. It is used to store the transponder data and is preferably non-volatile to ensure that the data is retained when the device is in its quiescent or power-saving “sleep” state.
  • Various data buffers or further memory components (not shown), may be provided to temporarily hold incoming data following demodulation and outgoing data for modulation and interface with the transponder antenna 450. Analog Circuitry 535 provides the facility to direct and accommodate the interrogation field energy for powering purposes in passive transponders and triggering of the transponder response. Analog Circuitry also provides the facility to accept the programming or “write” data modulated signal and to perform the necessary demodulation and data transfer processes. Digital Circuitry 540 provides certain control logic, security logic and internal microprocessor logic required to operate central processor 530.
  • Role Play Character Cards
  • The RFID card 400 illustrated and described above is used, in accordance with the afore-mentioned preferred embodiment, to identify and track individual play participants and/or groups of play participants within a play facility. However, in another preferred embodiment, the same card 400 and/or a similarly configured RFID or a magnetic “swipe” card or the like may be used to store certain powers or abilities of an imaginary role-play character that the card 400 represents.
  • For example, card 400 may represent the HARRY POTTER character. As each play participant uses his or her favorite character card in various HARRY POTTER play facilities the HARRY POTTER character represented by the card 400 gains (or loses) certain attributes, such as magic skill level, magic strength, flight ability, various spell-casting abilities, etc. All of this information is preferably stored on the card 400 so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.
  • For example, character attributes developed during a play participant's visit to a local HARRY POTTER/HOGWART magic facility are stored on the card 400. When the play participant then revisits the same or another HARRY POTTER play facility, all of the attributes of his character are “remembered” on the card so that the play participant is able to continue playing with and developing the same role-play character. Similarly, various video games, home game consoles, and/or hand-held game units can be and preferably are configured to communicate with the card 400 in a similar manner as described above and/or using other well-known information storage and communication techniques. In this manner, a play participant can use the character card 400 and the role play character he or she has developed with specific associated attributes in a favorite video action game, role-play computer game or the like.
  • Master Control System
  • Depending upon the degree of game complexity desired and the amount of information sharing required, the transceivers 300 may or may not be connected to a master control system or central server 375 (FIG. 18). If a master system is utilized, preferably each wand 200 and/or RFID card 400, 600 is configured to electronically send and receive information to and from various receivers or transceivers 300 distributed throughout a play facility using a send receive radio frequency (“SRRF”) communication protocol. This communications protocol provides the basic foundation for a complex, interactive entertainment system which creates a seemingly magic interactive play experience for play participants who possess and learn to use the magical wand. In its most refined embodiments, a user may electronically send and receive information to and from other wands and/or to and from a master control system located within and/or associated with any of a number of play environments, such as a family entertainment facility, restaurant play structure, television/video/radio programs, computer software program, game console, web site, etc. This newly created network of SRRF-compatible play and entertainment environments provides a complex, interactive play and entertainment system that creates a seamless magical interactive play experience that transcends conventional physical and temporal boundaries.
  • SRRF may generally be described as an RF-based communications technology and protocol that allows pertinent information and messages to be sent and received to and from two or more SRRF compatible devices or systems. While the specific embodiments described herein are specific to RF-based communication systems, those skilled in the art will readily appreciate that the broader interactive play concepts taught herein may be realized using any number of commercially available 2-way and/or 1-way medium range wireless communication devices and communication protocols such as, without limitation, infrared-, digital-, analog, AM/FM-, laser-, visual-, audio-, and/or ultrasonic-based systems, as desired or expedient.
  • The SRRF system can preferably send and receive signals (up to 40 feet) between tokens and fixed transceivers. The system is preferably able to associate a token with a particular zone as defined by a token activation area approximately 10-15 feet in diameter. Different transceiver and antenna configurations can be utilized depending on the SRRF requirements for each play station. The SRRF facility tokens and transceivers are networked throughout the facility. These devices can be hidden in or integrated into the facility's infrastructure, such as walls, floors, ceilings and play station equipment. Therefore, the size and packaging of these transceivers is not particularly critical.
  • In a preferred embodiment, an entire entertainment facility may be configured with SRRF technology to provide a master control system for an interactive entertainment play environment using SRRF-compatible magic wands and/or tracking devices. A typical entertainment facility provided with SRRF technology may allow 300-400 or more users to more-or-less simultaneously send and receive electronic transmissions to and from the master control system using a magic wand or other SRRF-compatible tracking device.
  • In particular, the SRRF system uses a software program and data-base that can track the locations and activities of up to a hundred more users. This information is then used to adjust the play experience for the user based on “knowing” where the user/player has been, what objectives that player has accomplished and how many points or levels have been reached. The system can then send messages to the user throughout the play experience. For example, the system can allow or deny access to a user into a new play area based on how many points or levels reached by that user and/or based on what objectives that user has accomplished or helped accomplish. It can also indicate, via sending a message to the user the amount of points or specific play objectives necessary to complete a “mission” or enter the next level of play. The master control system can also send messages to the user from other users.
  • The system is preferably sophisticated enough that it can allow multiple users to interact with each other adjusting the game instantly. The master system can also preferably interface with digital imaging and/or video capture so that the users' activities can be visually tracked. Any user can locate another user either through the video capturing system or by sending a message to another device. At the end of a visit, users are informed of their activities and the system interfaces with printout capabilities. The SRRF system is preferably capable of sending and receiving signals up to 100 feet. Transmitter devices can also be hidden in walls or other structures in order to provide additional interactivity and excitement for play participants.
  • Suitable embodiments of the SRRF technology described above may be obtained from a number of suitable sources, such as AXCESS, Inc. and, in particular, the AXCESS active RFID network system for asset and people tacking applications. In another preferred embodiment the system comprises a network of transceivers 300 installed at specific points throughout a facility. Players are outfitted or provided with a reusable “token”—a standard AXCESS personnel tag clipped to their clothing in the upper chest area. As each player enters a specific interactive play area or “game zone” within the facility, the player's token receives a low frequency activation signal containing a zone identification number (ZID). The token then responds to this signal by transmitting both its unique token identification number (TID) along with the ZID, thus identifying and associating the player with a particular zone.
  • The token's transmitted signal is received by a transceiver 300 attached to a data network built into the facility. Using the data network, the transceiver forwards the TID/ZID data to a host computer system. The host system uses the SRRF information to log/track the guest's progress through the facility while interfacing with other interactive systems within the venue. For example, upon receipt of a TID/ZID message received from Zone 1, the host system may trigger a digital camera focused on that area, thus capturing a digital image of the player which can now be associated with both their TID and the ZID at a specific time. In this manner, the SRRF technology allows the master control system to uniquely identity and track people as they interact with various games and activities in a semi-controlled play environment. Optionally, the system may be configured for two-way messaging to enable more complex interactive gaming concepts.
  • In another embodiment, the SRRF technology can be used in the home. For enabling Magic at the home, a small SRRF module is preferably incorporated into one or more portable toys or objects that may be as small as a beeper. The SRRF module supports two-way communications with a small home transceiver, as well as with other SRRF objects. For example, a Magic wand 200 can communicate with another Magic wand 200.
  • The toy wand or other object 200 may also include the ability to produce light, vibration or other sound effects based on signals received through the SRRF module. In a more advanced implementation, the magical object may be configured such that it is able to display pre-programmed messages of up to 50 characters on a LCD screen when triggered by user action (e.g., button) or via signals received through the SRRF module. This device is also preferably capable of displaying short text messages transmitted over the SRRF wireless link from another SRRF-compatible device.
  • Preferably, the SRRF transceiver 300 is capable of supporting medium-to-long range (10-40 feet) two-way communications between SRRF objects and a host system, such as a PC running SRRF-compatible software. This transceiver 300 has an integral antenna and interfaces to the host computer through a dedicated communication port using industry standard RS232 serial communications. It is also desirable that the SRRF transmission method be flexible such that it can be embedded in television or radio signals, videotapes, DVDs, video games and other programs media, stripped out and re-transmitted using low cost components. The exact method for transposing these signals, as well as the explicit interface between the home transceiver and common consumer electronics (i.e., TVs, radios, VCRs, DVD players, A/V receivers, etc.) is not particularly important, so long as the basic functionality as described above is achieved. The various components needed to assemble such an SRRF system suitable for use with the present invention are commercially available and their assembly to achieve the desired functionality described above can be readily determined by persons of ordinary skill in the art. If desired, each SRRF transceiver may also incorporate a global positioning (“GPS”) device to track the exact location of each play participant within one or more play environments.
  • Most desirably, a SRRF module can be provided in “chip” form to be incorporated with other electronics, or designed as a packaged module suitable for the consumer market. If desired, the antenna can be embedded in the module, or integrated into the toy and attached to the module. Different modules and antennas may be required depending on the function, intelligence and interfaces required for different devices. A consumer grade rechargeable or user replaceable battery may also be used to power both the SRRF module and associated toy electronics.
  • Interactive Game Play
  • The present invention may be carried out using a wide variety of suitable game play environments, storylines and characters, as will be readily apparent to those skilled in the art. The following specific game play examples are provided for purposes of illustration and for better understanding of the invention and should not be taken as limiting the invention in any way:
  • EXAMPLE 1
  • An overall interactive gaming experience and entertainment system is provided (called the “Magic” experience), which tells a fantastic story that engages children and families in a never-ending adventure based on a mysterious treasure box filled with magical objects. Through a number of entertainment venues such as entertainment facilities, computer games, television, publications, web sites, and the like, children learn about and/or are trained to use these magical objects to become powerful “wizards” within one or more defined “Magic” play environments. The play environments may be physically represented, such as via an actual existing play structure or family entertainment center, and/or it may be visually/aurally represented via computer animation, television radio and/or other entertainment venue or source.
  • The magical objects use the SRRF communications system allowing for messages and information to be received and sent to and from any other object or system. Optionally, these may be programmed and linked to the master SRRF system. Most preferably, the “magic wand” 200 is configured to receive messages from any computer software, game console, web site, and entertainment facility, television program that carries the SRRF system. In addition, the magic wand can also preferably send messages to any SRRF compatible system thus allowing for the “wand” to be tracked and used within each play environment where the wand is presented. The toy or wand 200 also preferably enables the user to interact with either a Master system located within a Magic entertainment facility and/or a home-based system using common consumer electronic devices such as a personal computer, VCR or video game system.
  • The master control system for a Magic entertainment facility generally comprises: (1) a “token” (gag, toy, wand 200 or other device) carried by the user 105, (2) a plurality of receivers or transceivers 300 installed throughout the facility, (3) a standard LAN communications system (optional), and (4) a master computer system interfaced to the transceiver network (optional). If a Master computer system is used, preferably the software program running on the Master computer is capable of tracking the total experience for hundreds of users substantially in real time. The information is used to adjust the play for each user based on knowing the age of the user, where the user has played or is playing, points accumulated, levels reached and specific objectives accomplished. Based on real-time information obtained from the network, the system can also send messages to the user as they interact throughout the Magic experience.
  • The Master system can quickly authorize user access to a new play station area or “zone” based on points or levels reached. It can also preferably indicate, via sending a message to the user, the points needed or play activities necessary to complete a “mission.” The Master system can also send messages to the user from other users. The system is preferably sophisticated enough to allow multiple users to interact with each other while enjoying the game in real-time.
  • Optionally, the Master system can interface with digital imaging and video capture so that the users' activities can be visually tracked. Users can locate another user either through the video capturing system or by sending a message to another device. At the end of a visit, users are shown photos of their activities related to the Magic experience via display or printout.
  • For relatively simple interactive games, the Master system may be omitted in order to save costs. In that case, any game-related information required to be shared with other receivers or transceivers may be communicated via an RS-232 hub network, Ethernet, or wireless network, or such information may be stored on the wand itself and/or an associated RFID card or badge carried by the play participant (discussed later). For retrofit applications, it is strongly preferred to provide substantially all stand-alone receivers or transceivers that do not communicate to a master system or network. This is to avoid the expense of re-wiring existing infrastructure. For these applications, any information required to be shared by the game system is preferably stored on the wand or other RFID device(s) carried by the play participants. Alternatively, if a more complex game experience is demanded, any number of commercially available wireless networks may be provided without requiring rewiring of existing infrastructure.
  • EXAMPLE 2
  • Game participants are immersed in a treasure hunt adventure that combines old fashioned storytelling, live entertainment, hands-on play and interactive gaming together in a seamless experience. The game is carried out in multiple venues and using multiple entertainment mediums so that cross-media promotion and traffic is encouraged and provided by the game (see, e.g., FIGS. 23A and 23B).
  • The treasure hunt is brought to life through a live-action story and interactive game using the RFID tag technology. Play participants receive points (optionally redeemable for one or more prizes) for searching and successfully finding clues and other items and for solving various puzzles and the final mystery of the whereabouts of a lost treasure located at Stone Mountain, Ga. Guests are awarded points for finding 18-20 hidden and not-so hidden items such as a framed letter, a painting on the wall, bottle of elixir buried amongst props, etc. These clues and other items are preferably distributed throughout a park facility and in various retail, restaurant and entertainment buildings for which the park desires to generate additional walk-in traffic.
  • Each item found is worth a certain number of points and/or reveals to the player one or more clue(s) needed to advance in the game. Clues may be the location of other hidden items, tools or clues. Preferably the clues are revealed in an appropriately themed manner, such as a local newspaper account, programmed and staff-led storytelling, signage, performances, and various interactive game consoles. The story is eventually revealed as follows:
  • Sample Storvline
  • In 1790 Alexander Mcgillivray, son of a Scottish solider and Muskogee Indian Princess, became an important friend of both the Indians and the United States government. He met with several important men at Stone Mountain to put together a peace treaty between the Indians and the government. George Washington invited him to meet with him in New York where they agreed to the Treaty of New York. For his efforts. Alexander was made a “ingather General in the army with a pension. It is believed that he was also given $100,000 gold coins.
  • This treasure of gold coins was passed down several generations and it is reported to be buried at Stone Mountain. Many in the town believe the story is legend, but two unrelenting men believe that it is true. A famous Historian by the name of Andrew Johnson, and an adventurer by the name of Tom Willingham, are convinced that the treasure exists and have spent the last 10 years searching for the gold. The last living relative to Mcgillivray buried the treasure but wanted the search to be difficult and has left important and revealing clues throughout the town of Crossroads. The two men's journey is coming to an exciting conclusion in that they have discovered that the final clue is buried under the fountain/mine/bust of Alexander Mcgillivray near the center of town. As they dig in “present” day for their final clue, they tell the story of their hunt for the treasure over the last decade. One and all are invited to retrace their steps in their search for the gold and become a part of the grand adventure when the final clue is revealed to where the treasure is buried.
  • Game Play
  • By participating in the game players receive valuable points for each level of accomplishment they make in finding these clues and items which could either give them high point rankings and/or earn them a prize or chance at a large prize in the future (e.g. part of a real treasure). Advantageously, clues and other necessary items are preferably hidden within various retail stores and designated entertainment areas giving kids and adults fun and alluring reasons to go inside buildings and seek out new experiences they might have otherwise overlooked.
  • Once a player completes the game, her or she will have collected enough points, clues and other information that will give them the knowledge they need to discover and/or solve the final clue of where the treasure is buried. The “reward” for successfully completing the game could be, for example, a small prize, recognition certificate, a sweepstakes entry to win a large prize.
  • EXAMPLE 3
  • Game participants are immersed in a worldwide treasure hunt adventure to locate a large, unknown amount or money stashed away in one or more Swiss bank accounts (the money and the accounts can be real or “made-up”).
  • Sample Storyline
  • Willy Wonkers, a reclusive/eccentric billionaire, was unsure which of his many would-be heirs was worthy to receive his vast fortunes. So he provided in his will that upon his demise his entire estate was to be liquidated and all of the proceeds placed in a number of anonymous Swiss bank accounts (under secret passwords known only to Willy) to be distributed “to only such heir(s) who prove themselves worthy of inheriting my vast fortunes by successfully completing the Wonkers Worldwide Worthiness Challenge”—a series of intellectual, physical and moral challenges devised by Willy.
  • To create the ultimate “worthiness” challenge, Willy employed a team of a thousand of the world's top scientists, psychologists, teachers, musicians, engineers, doctors, etc. The goal was to develop a number of probative tests/challenges that would ultimately reveal the worthy recipient(s) of Willy's vast fortunes. Per Willy's instructions the challenges were very carefully and meticulously designed to ensure that only persons of the highest character and pureness of heart/mind could ever succeed in completing all of the necessary challenges and thereby obtain Willy's fortunes. Willy was especially vigilant to thwart the possible feigning efforts of unscrupulous persons who might attempt to gain access to his fortunes by cheating, trickery or other deceptive devices. Above all, he was determined to prevent any part of his vast estate and fortune from ever falling into the hands of persons who were lazy, ignorant or wicked of heart.
  • While Willy was a prodigiously brilliant and gifted man, he was also surprisingly naive. Willy soon met his demise at the bottom of a boiling vat of chocolate via the hands of his greedy nephew and would-be heir, Ignomeous (“Iggy”) Ignoramus. When Iggy learned of his uncle's plan, he abducted Willy late one night outside his office and forced him at gunpoint to reveal the secret passwords which only Willy knew (it was easy for Willy to remember because the passwords were his favorite candies). While nervously holding the gun to Willy's head, Iggy frantically inscribed the secret account numbers and passwords on the back of a chocolate bar (there being no paper hand at the time). He then bound and gagged Willy and threw him into the boiling vat of chocolate whereupon Willy was found dead the next morning.
  • Iggy's plan (such as it was) was to lay low and wait for Willy's estate to be liquidated and transferred into the various secret Swiss accounts in accordance with Willy's final wishes. But, before any genuinely worthy recipient would have a chance to successfully complete all of the challenges and rightfully claim the Wonkers fortunes, Iggy would secretly divert all of the funds in each of the secret Swiss accounts to his own secret accounts whereupon he would enjoy the good-life forever thereafter.
  • Unfortunately, Iggy failed to consider the extreme heat radiated by the boiling vat of chocolate. By the time Iggy had gagged, bound, dragged and threw Willy into the boiling vat of chocolate and watched him as he slowly sank deeper and deeper into the molten chocolate to his demise, Iggy realized he was sweating like a pig. It was at that time that he also noticed the chocolate bar—upon which he had inscribed the secret Swiss account numbers and passwords—had all but melted away in his shirt pocket. Frantically, Iggy tried to preserve the rapidly melting chocolate bar, but it was too late. He was only able to salvage a few incomplete numbers and passwords before the candy bar was no more.
  • Iggy tried mentally to recreate the missing information, but he was not good at remembering much of anything, let alone numbers and obscure passwords. Thus, he could only recreate a few bits and pieces of the critical information. On the brighter side, Iggy did manage to salvage some of the information and he figured, given enough time, he would probably be able to break the secret passwords and ultimately get the loot before anyone else does. His cousin, Malcolm Malcontent, and several other greedy would-be heirs agreed to help him in exchange for a cut of the loot.
  • Game participants are invited to a reading of the will where they are identified as a potential heir to the Wonkers family fortune. Each participant is challenged to complete the Wonkers Worldwide Worthiness test and to thereby obtain the secret Swiss account number(s)/passwords and the Wonkers fortunes before Iggy does. The first participant who successfully completes the challenge gets all the loot. However, the failure to complete any single challenge results in immediate and permanent disinheritance.
  • The challenges are arranged so that only those who are smart, diligent and who are pure of heart and mind (etc., etc. . . . ) will be able to successfully complete the worthiness challenge. Thus, participants must faithfully carry out and complete each challenge in the exact manner specified. Any changes or deviations will result in failure. The game is also set up to provide many temptations along the way to cut corners, cheat or trick ones way through the various challenges. Players must not succumb to these temptations, lest they be immediately and permanently disinherited. Players must also be careful not to reveal any helpful information to Iggy or his posse of greedy co-conspirators, lest they get to the loot first.
  • Game Play
  • Each game participant receives a card, token, key chain, or other gaming implement (“game token”). This token contains a unique identification number (preferably an RFID tag, mag-strip card, bar-coded card, or the like) which is used to uniquely identify each player throughout the game play. Optionally, a user-selected password is associated with each token so that it can only be used or activated by its proper owner. The token allows players to interact with one or more game enabled readers/stations and/or other compatible devices distributed throughout a selected geographic region (e.g., book stores, theme parks, family entertainment centers, movie theaters, fast-food venues, internet, arcades, etc.).
  • Preferably, each token represents a specific character in the treasure hunt game. Thus, play participants would preferably select which character he or she would like to play. For example, possible characters may include Eddy the Electrician, Abe the Accountant. Martha the Musician, Doctor Dave, Nurse Betty, Policeman Paul, etc. Each character would come with a unique story about who they are, how they were related to Willy and, most importantly, a touching little vignette about Willy that no one else knows. Hidden within each story is one or more unique clues that are necessary to solve the various challenges the players will soon face. The game is preferably arranged and set up so that clues can only be successfully used by the particular character(s) who legitimately possesses them. If any other character illegitimately obtains these secret clues and tries to use them in the game, he or she will fail the challenge.
  • Preferably all of the clues (and possibly other, extrinsic clues) are required to complete the quest. Thus, players will preferably need to cooperate with other players in order to receive and exchange clues and/or other specified assistance “legitimately” to enable each player to advance in the game. For example, assume that Policeman Paul knows that Willy detests white chocolate. Nurse Betty knows that Willy can't stand licorice. In the course of game play, Betty and Paul independently determine that one of the secret passwords must be either: (1) Jelly Bean; (2) White Chocolate; or (3) Licorice. Neither Betty or Paul, alone, knows the correct answer (they can try to “trick” the game by guessing, but then they will lose the quest). But, together they can solve the challenge. Betty can share her information with Paul and Paul can share his information with Betty.
  • Preferably, any sharing of information must be conducted within the rules of the game to be “legitimate” and recognized by the game. Thus, preferably, players cannot advance in the game simply by getting the relevant clue info from the Internet or by asking other players. To be legitimate and, therefore, recognized by the game, both players of the Betty and Paul characters must present their tokens together to an enabled token reader (e.g., at a local game center or theme park) and request that the information be shared between the characters. Once the information is legitimately exchanged within the context of the game, it then can be used by each player/character to solve further challenges and to thereby advance in the game. However, if a player guesses the answer (even correctly) or if the clue information is obtained illegitimately, then the player preferably loses the quest and must purchase a new token.
  • More complex sharing scenarios could also be developed. For example, certain unique clue information could be revealed only during the course of game play and only to certain characters. Other characters would need this clue information to advance in the game and would have to figure out which other character(s) have the information they need. They would then need to find and contact another player (a friend, acquaintance, classmate, etc.) who has the appropriate character token and who has successfully found the clue information they need. Then they would need to meet in order to make the necessary exchange transaction.
  • For instance, assume in the above example that Paul had information to help Betty, but Betty did not have the information needed to help Paul. Betty had information to help Martha and Martha had the information to help Paul. Now, the players must somehow negotiate a mutual three-way exchange that works for everyone's interest. The resulting transactions could be simple bartering (information in exchange for information/help) and/or there could be some kind of currency involved, such as bonus points or the like, whereby players could negotiate and accumulate points each time they help other players. One goal of the game is to encourage playful interaction among the players by requiring them to work with (and possibly negotiate against) other players to see who can get the information and points they need to advance in the game.
  • Alternatively, players may need to acquire or learn some special skill or knowledge that is necessary to interpret a clue. For example, one player may get a clue in a strange foreign language and another player happens to be (or chooses to become within the context of the game) an international language expert who can interpret the foreign-language clue. Both players need to somehow find and cooperate with one another in order to advance in the game. Players can (and preferably must) also obtain certain information or clues from other extrinsic sources in order to further advance in the game. These can be simple extrinsic sources like a dictionary, encyclopedia, a local library or museum, or a secret code word printed on a participating retail store purchase receipt.
  • Preferably, the game is self-policing. That is, it “knows” when an exchange of information and/or other help is legitimately given (i.e. conducted within the rules of the game) and can react accordingly. For example, the game may require both players (or multiple players, if more than two are involved) to simultaneously present their tokens to an enabled reader/device. The reader would then be able to verify the identities of each character/player, extract relevant info, token ID, user password, etc., and write the relevant new info to each player's token. Once the transaction is completed, each player would then legitimately possess and be able to use the information stored on his or her token to advance further in the game using any other gaming device that can read the token.
  • Alternatively, the same sequence can be followed as described above, except that the token is used only to verify character and player identities (e.g. an RFID read only tag). All other relevant information is stored on in a local and/or central database. The data-base keeps track of each individual player's progress, what information/clues they have learned, who they have interacted with, points accumulated, etc. Thus, game play can proceed on any device that can communicate via the internet, such as a home computer, game console, internet appliance, etc.
  • Alternatively, an authenticating password may be used in conjunction with each RFID identifying token. When two or more players present their tokens to an enabled reader device as in the examples described above, each player is given an authenticating password, which the player(s) then can enter into any other gaming platform. The password may be an alpha-numeric code that is mathematically derived from the unique ID numbers of each participating player involved in the sharing transaction. Thus, it is unique to the specific players involved in the authorized exchange transaction and cannot be used by other players (even if they copy or seal the password). When the alpha-numeric number is subsequently re-entered into another device (e.g., a home game console or home computer) by the authorized player, the game software can reverse the mathematical algorithm using the players unique ID (previously entered at the beginning of the game) and thereby determine and/or validate the event(s) that generated the authenticating password. Existing public-key/private-key encryption algorithms and/or the like could be used for encoding and decoding the authenticating passwords. Optionally, each authenticating password could have a “shelf life” of any desired length of time such that it must be used within an hour, a day, a week, a month, etc. This might help move the game along by keeping players on their toes. Authenticating passwords could be easily printed and dispensed on special tickets or stickers, which can be collected. Alternatively, and/or in addition, authenticating passwords can be readily printed on any ordinary cash register receipt as part of any purchase transaction (e.g. at a fast food or other retail establishment).
  • The treasure hunt game may be continual in its progression or it may be orchestrated in “real time” via the internet or any other mass distribution/communication medium, such as TV commercials, mini-gameboy installments, computer-animated MPEG videos. For example, each game might last several days/weeks/months, and may be launched in conjunction with a promotional/advertising campaign for a complementing movie or the like. In that event, players would preferably sign up in advance to receive their tokens to play the game or they can purchase one or more tokens at any participating gaming outlet before or during the game.
  • Of course, those skilled in the art will readily appreciate that the underlying concept of an RFID trading card 400 and card game is not limited to cards depicting fantasy characters or objects, but may be implemented in a wide variety of alternative embodiments, including sporting cards, baseball, football and hockey cards, movie character cards, dinosaur cards, educational cards and the like. If desired, any number of other suitable collectible/tradable tokens or trinkets may also be provided with a similar RFID tag device in accordance with the teachings of the present invention as dictated by consumer tastes and market demand.
  • Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
  • EXAMPLE 4
  • Game participants are immersed in a “whodunit” murder mystery. For example, this interactive adventure game could be based on the popular board game. “C1ue™.” Players learn that a murder has been committed and they must figure out who did it, in what room, with what weapon, etc. The game is preferably live-action interactive with simulated live-news casts, letters, telephone calls, etc.
  • Sample Storyline
  • Major Mayonnaise is found dead in his palatial mansion of an apparent massive coronary. However, clues at the crime scene indicate that this was in fact a carefully planned murder. Based on the indisputable physical evidence, the murder could only have been committed by one of eight possible suspects.
  • It is common knowledge that each player hated Mayonnaise and, thus, each player has been identified as a suspect in the murder. Thus, the mission is to figure out WHODUNIT! and how.
  • Game Play
  • Game play is essentially as described above in connection with Example 3. Players receive game tokens, cards, bands or the like uniquely identifying each player. Preferably, each token represents one of the eight suspect characters in the Whodunit game. As in Example 3, above, each character would preferably have a unique story about who they are, where they were on the night of the murder, and why they dislike Mayonnaise. Hidden within the collective stories are the unique clues necessary to solve the murder mystery challenge. Players cooperate by exchanging clues and other information needed to solve the mystery. As in Example 3, the game is preferably set up and organized so that relevant clues can only be successfully used by the particular character(s) who legitimately possess them. Any player who tries to cheat will preferably be disqualified or otherwise prevented from advancing in the game.
  • EXAMPLE 5
  • Game participants are immersed in a magical computer adventure game. For example, this Interactive adventure game could be based on the popular “Harry Potter™” series of children's books by J. K. Rowling and licensed computer games by Electronic Arts. Players learn basic magic skills as they progress through an adventure game and solve one or more challenges/puzzles.
  • Sample Storyline
  • Players are students enrolled at the Hogwart school of witchery where they are learning witchcraft, spell casting, secret messaging and the like. But something terrible and evil has happened and it is up to each player and their fellow classmates to solve the mystery and ferret out the evil-doer and save the school.
  • Game Play
  • Game play is essentially as described above in connection with Examples 3 and 4. Players preferably receive game tokens, cards, bands and/or the like uniquely identifying each player. Each token provides a unique identifier for the player and preferably can store his or her progress in the game. Each player begins the adventure with essentially the same magic powers, skills and abilities. Each player may also receive a magic wand or other similar device which the players must learn to use to accomplish certain goals set out in the game.
  • Players cooperate by exchanging clues and other information needed to solve the mystery. As in Examples 3 and 4, the game is preferably organized so that relevant clues can only be successfully used by the particular character(s) who legitimately possess them. Any player who tries to cheat will preferably be disqualified or otherwise prevented from advancing in the game.
  • An authenticating password system is preferably used to verify or authenticate game events and to thereby discourage cheating. These secret codes or pass words may be obtained from any participating game venue (e.g., fast food venues, toy store, theme parks, etc.) or other sources that will become obvious once the game is implemented. Once a secret password is obtained, players can enter it into a specially enabled home computer game, arcade game, portable gaming device, or other device, to get secret powers and/or to find secret parts of the game otherwise unobtainable without the secret code. For example, a player may buy a meal from a fast-food vendor and as part of the meal package would receive a token and/or a secret code. The secret code preferably may be used to access a secret portion or level of a popular computer adventure game.
  • Most preferably (although not required) authenticating passwords are unique or semi-unique to the player(s) who possess them. For example, each password may be an alpha-numeric code that is mathematically derived from a unique ID number stored on each participating players token or from a password the player selects. Thus, the secret code is more-or-less unique to the specific player(s) involved in an authenticated game event and preferably cannot be used by other players (even if they copy or steal the secret code). When the alpha-numeric number is subsequently re-entered into another device (e.g., a home game console or home computer) by the authorized player, the game software can reverse the mathematical algorithm using the players unique ID or user-selected password (this may or may not be previously entered at the beginning of the game) and thereby determine and/or validate the game event(s) that generated the authenticating password. Existing public-key/private-key encryption algorithms and/or the like could be used for encoding and decoding the authenticating passwords.
  • Optionally, each authenticating password could have a “shelf life” of any desired length of time such that it must be used within an hour, a day, a week, a month, etc. This might help move the game along by keeping players on their toes. Authenticating passwords could be easily printed and dispensed on special tickets or stickers, which can be collected. Alternatively, and/or in addition, authenticating passwords can be readily printed on any ordinary cash register receipt as part of any purchase transaction (e.g. at a fast food or other retail establishment).
  • To make the password system more convenient, the token device may optionally include one or more entry buttons and an LCD display. When players insert the token into an enabled reader, the secret code(s) are downloaded automatically to the token device and can be displayed on the LCD screen. The token thus becomes a secret encoder/decoder device that allows players to electronically transport and send/receive secret messages and codes to each other that can only be read by players/devices that possess the correct authenticating code. An optional communication port may allow secret codes to be downloaded directly to a computer game, portable game unit or other devices using, for example, a standard USB communication port.

Claims (21)

1.-20. (canceled)
21. A gaming item for accessing selected features or portions of a game carried out on a compatible gaming platform, said gaming item comprising:
a radio frequency identification (RFID) tag that provides two-way wireless communications with a compatible RFID reader device;
non-volatile memory having stored therein information associated with said gaming item;
said information comprising at least one item of encrypted information that can be decoded or authenticated using a first encryption key, and wherein said encrypted information, when decoded or authenticated and communicated to said compatible gaming platform, enables a game participant to access one or more features or portions of said game; and
wherein said first encryption key is associated with said gaming item and is ascertainable from said information stored in said non-volatile memory.
22. The gaming item of claim 21, wherein said gaming item embodies a toy depicting or representing a person or character relevant to said game.
23. The gaming item of claim 21, wherein said first encryption key is ascertainable from an identification number stored in said non-volatile memory.
24. The gaming item of claim 21, wherein said encrypted information can only be decoded or authenticated using said first encryption key and a second encryption key that is different from said first encryption key.
25. The gaming item of claim 21, in combination with said RFID reader device, and wherein said RFID reader device configured to provide two-way wireless communications with said RFID tag over a limited communication range less than 60 cm and wherein said two-way wireless communications are facilitated at least in part through inductive coupling between said RFID reader device and said RFID tag, and wherein said RFID reader device ascertains said information from said gaming item and communicates said information to said compatible gaming platform to thereby enable said game participant to access said one or more features or portions of said game.
26. The combination of claim 25, further comprising a second gaming item comprising a second RFID tag configured to provide two-way wireless communications with said RFID reader device and a second non-volatile memory storing second information associated with said second gaming item.
27. The combination of claim 25, further comprising game software comprising program instructions stored in a non-transitory medium that causes said compatible gaming platform to generate a first game play experience in accordance with a first portion of said game and a second game play experience in accordance with a second portion of said game and to use said encrypted information and said first encryption key to control said game participant's access to at least said second game play experience.
28. A gaming item for playing a game on a compatible gaming device, said gaming item comprising:
a portable body that can be selectively moved or positioned by a game participant while playing said game; and
a radio frequency identification (RFID) tag disposed within said portable body and comprising: non-volatile memory storing an identification number, and at least one item of encrypted information that can be decoded or authenticated using a first encryption key, and wherein said encrypted information, when decoded or authenticated and communicated to said compatible gaming platform, enables said game participant to play and progress in said game; and
wherein said first encryption key is associated with said gaming item and is ascertainable from said identification number.
29. The gaming item of claim 28, wherein said portable body comprises a toy depicting or representing a character relevant to said game.
30. The gaming item of claim 28, wherein said encrypted information can only be decoded or authenticated using said first encryption key and a second encryption key that is different from said first encryption key.
31. The gaming item of claim 28, in combination with an RFID reader, wherein said RFID reader is configured to provide two-way wireless communications with said RFID tag over a limited communication range less than 60 cm and wherein said RFID reader ascertains said identification number and said encrypted information from said gaming item and communicates it to said compatible gaming platform to thereby enable said game participant to play and progress in said game.
32. The combination of claim 31, further comprising game software comprising program instructions stored in a non-transitory medium that decodes or authenticates said encrypted information using said first encryption key and, based thereon, permits or prevents said game participant from playing or progressing in said game.
33. The combination of claim 32, further comprising a second gaming item comprising a second RFID tag configured to provide two-way wireless communications with said RFID reader and a second non-volatile memory storing a second identification number and a second item of encrypted information.
34. A gaming item for playing a game on a compatible gaming platform, said gaming item comprising:
a radio frequency identification (RFID) tag that provides two-way wireless communications with a compatible RFID reader device;
non-volatile memory having stored therein information associated with said gaming item;
said information comprising at least one item of encrypted information that can be decoded or authenticated using an encryption key, and wherein said encrypted information, when decoded or authenticated and communicated to said compatible gaming platform, enables a game participant to play and progress in said game; and
wherein said encryption key is ascertainable from said information stored in said non-volatile memory.
35. The gaming item of claim 34, wherein said gaming item embodies a toy depicting or representing a person or character relevant to said game.
36. The gaming item of claim 34, wherein said encryption key is ascertainable from an identification number stored in said non-volatile memory.
37. The gaming item of claim 34, wherein said encrypted information can only be decoded or authenticated using said encryption key and a second encryption key that is different from said encryption key.
38. The gaming item of claim 34, in combination with said RFID reader device, wherein said RFID reader device is configured to provide two-way wireless communications with said RFID tag over a limited communication range less than 60 cm and wherein said two-way wireless communications are facilitated at least in part through inductive coupling between said RFID reader device and said RFID tag, and wherein said RFID reader device ascertains said information from said gaming item and communicates said information to said compatible gaming platform to thereby enable said game participant to play and progress in said game.
39. The combination of claim 38, further comprising a second gaming item comprising a second RFID tag configured to provide two-way wireless communications with said RFID reader device and a second non-volatile memory storing a second information associated with said second gaming item.
40. The combination of claim 38, further comprising game software comprising program instructions stored in a non-transitory medium that decodes or authenticates said encrypted information using said encryption key and, based thereon, permits or prevents said game participant from playing or progressing in said game.
US16/670,708 2002-04-05 2019-10-31 System and method for playing an interactive game Abandoned US20200139233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/670,708 US20200139233A1 (en) 2002-04-05 2019-10-31 System and method for playing an interactive game

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US37056802P 2002-04-05 2002-04-05
US10/410,583 US6967566B2 (en) 2002-04-05 2003-04-07 Live-action interactive adventure game
US11/183,592 US8608535B2 (en) 2002-04-05 2005-07-18 Systems and methods for providing an interactive game
US13/944,773 US9272206B2 (en) 2002-04-05 2013-07-17 System and method for playing an interactive game
US15/009,555 US9463380B2 (en) 2002-04-05 2016-01-28 System and method for playing an interactive game
US15/255,691 US10010790B2 (en) 2002-04-05 2016-09-02 System and method for playing an interactive game
US15/995,633 US10507387B2 (en) 2002-04-05 2018-06-01 System and method for playing an interactive game
US16/670,708 US20200139233A1 (en) 2002-04-05 2019-10-31 System and method for playing an interactive game

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/995,633 Continuation US10507387B2 (en) 2002-04-05 2018-06-01 System and method for playing an interactive game

Publications (1)

Publication Number Publication Date
US20200139233A1 true US20200139233A1 (en) 2020-05-07

Family

ID=32233178

Family Applications (7)

Application Number Title Priority Date Filing Date
US10/410,583 Expired - Lifetime US6967566B2 (en) 2002-04-05 2003-04-07 Live-action interactive adventure game
US11/183,592 Active 2025-08-12 US8608535B2 (en) 2002-04-05 2005-07-18 Systems and methods for providing an interactive game
US13/944,773 Expired - Fee Related US9272206B2 (en) 2002-04-05 2013-07-17 System and method for playing an interactive game
US15/009,555 Expired - Fee Related US9463380B2 (en) 2002-04-05 2016-01-28 System and method for playing an interactive game
US15/255,691 Expired - Lifetime US10010790B2 (en) 2002-04-05 2016-09-02 System and method for playing an interactive game
US15/995,633 Expired - Fee Related US10507387B2 (en) 2002-04-05 2018-06-01 System and method for playing an interactive game
US16/670,708 Abandoned US20200139233A1 (en) 2002-04-05 2019-10-31 System and method for playing an interactive game

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US10/410,583 Expired - Lifetime US6967566B2 (en) 2002-04-05 2003-04-07 Live-action interactive adventure game
US11/183,592 Active 2025-08-12 US8608535B2 (en) 2002-04-05 2005-07-18 Systems and methods for providing an interactive game
US13/944,773 Expired - Fee Related US9272206B2 (en) 2002-04-05 2013-07-17 System and method for playing an interactive game
US15/009,555 Expired - Fee Related US9463380B2 (en) 2002-04-05 2016-01-28 System and method for playing an interactive game
US15/255,691 Expired - Lifetime US10010790B2 (en) 2002-04-05 2016-09-02 System and method for playing an interactive game
US15/995,633 Expired - Fee Related US10507387B2 (en) 2002-04-05 2018-06-01 System and method for playing an interactive game

Country Status (1)

Country Link
US (7) US6967566B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052309B2 (en) 2003-03-25 2021-07-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US11278796B2 (en) 2002-04-05 2022-03-22 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment

Families Citing this family (313)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US5818438A (en) 1995-04-25 1998-10-06 Bellsouth Corporation System and method for providing television services
US8574074B2 (en) 2005-09-30 2013-11-05 Sony Computer Entertainment America Llc Advertising impression determination
US7895076B2 (en) 1995-06-30 2011-02-22 Sony Computer Entertainment Inc. Advertisement insertion, profiling, impression, and feedback
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US7749089B1 (en) 1999-02-26 2010-07-06 Creative Kingdoms, Llc Multi-media interactive play system
WO2007130681A2 (en) 2006-05-05 2007-11-15 Sony Computer Entertainment America Inc. Advertisement rotation
US7500917B2 (en) * 2000-02-22 2009-03-10 Creative Kingdoms, Llc Magical wand and interactive play experience
US6761637B2 (en) 2000-02-22 2004-07-13 Creative Kingdoms, Llc Method of game play using RFID tracking device
US7445550B2 (en) * 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
US7066781B2 (en) 2000-10-20 2006-06-27 Denise Chapman Weston Children's toy with wireless tag/transponder
US8751310B2 (en) 2005-09-30 2014-06-10 Sony Computer Entertainment America Llc Monitoring advertisement impressions
US9454872B2 (en) * 2001-09-28 2016-09-27 Igt Adventure sequence activities
US7892097B2 (en) * 2001-09-28 2011-02-22 Igt Adventure sequence activities
US7614958B2 (en) * 2001-11-16 2009-11-10 Creative Kingdoms, Llc Interactive quest game
US20030130912A1 (en) 2002-01-04 2003-07-10 Davis Tommy Lee Equipment management system
US20040033833A1 (en) * 2002-03-25 2004-02-19 Briggs Rick A. Interactive redemption game
US6967566B2 (en) 2002-04-05 2005-11-22 Creative Kingdoms, Llc Live-action interactive adventure game
US7674184B2 (en) 2002-08-01 2010-03-09 Creative Kingdoms, Llc Interactive water attraction and quest game
US7029400B2 (en) * 2002-08-01 2006-04-18 Creative Kingdoms, Llc Interactive water attraction and quest game
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
WO2004111819A1 (en) * 2003-06-09 2004-12-23 Immersion Corporation Interactive gaming systems with haptic feedback
US8418196B2 (en) * 2003-06-30 2013-04-09 At&T Intellectual Property I, L.P. Interactive content with enhanced network operator control
US8635643B2 (en) 2003-06-30 2014-01-21 At&T Intellectual Property I, L.P. System and method for providing interactive media content over a network
US7862428B2 (en) * 2003-07-02 2011-01-04 Ganz Interactive action figures for gaming systems
US20050067784A1 (en) * 2003-07-22 2005-03-31 Delorme Joel N. Card game device
KR20050015531A (en) * 2003-08-06 2005-02-21 삼성전자주식회사 Apparatus and method for managing phonebook of mobile terminal equipment
US20050098955A1 (en) * 2003-11-10 2005-05-12 Stu Rasmussen Interactive knowledge based game system
US7387559B2 (en) * 2003-11-17 2008-06-17 Mattel, Inc. Toy vehicles and play sets with contactless identification
US8286203B2 (en) 2003-12-19 2012-10-09 At&T Intellectual Property I, L.P. System and method for enhanced hot key delivery
US7534157B2 (en) 2003-12-31 2009-05-19 Ganz System and method for toy adoption and marketing
US7677948B2 (en) 2003-12-31 2010-03-16 Ganz System and method for toy adoption and marketing
GB2410590B (en) * 2004-01-30 2007-02-14 Hewlett Packard Development Co Physical object with memory tag and apparatus for use with such objects
GB0402035D0 (en) * 2004-01-30 2004-03-03 Hewlett Packard Development Co Physical object with memory tags and apparatus for writing and using such objects
US7637810B2 (en) 2005-08-09 2009-12-29 Cfph, Llc System and method for wireless gaming system with alerts
US8092303B2 (en) 2004-02-25 2012-01-10 Cfph, Llc System and method for convenience gaming
US7811172B2 (en) * 2005-10-21 2010-10-12 Cfph, Llc System and method for wireless lottery
US20070060358A1 (en) 2005-08-10 2007-03-15 Amaitis Lee M System and method for wireless gaming with location determination
US7534169B2 (en) 2005-07-08 2009-05-19 Cfph, Llc System and method for wireless gaming system with user profiles
US8616967B2 (en) 2004-02-25 2013-12-31 Cfph, Llc System and method for convenience gaming
US20050273553A1 (en) * 2004-04-13 2005-12-08 John Boucard System, apparatus, and method for content management
US20050272497A1 (en) * 2004-05-10 2005-12-08 Nintendo Of America Inc. Sports videogame including user customized playing areas earned through gameplay
GB0411577D0 (en) 2004-05-24 2004-06-23 Ivf Ltd Identification of biological samples
JP3968093B2 (en) * 2004-07-12 2007-08-29 富士通株式会社 Virtual object acquisition game system
US20080297308A1 (en) * 2004-08-05 2008-12-04 Mario Dino Di Floriano System for Detection of an Interpersonal Communication Between Members of a Community and Relative Method
US8763157B2 (en) 2004-08-23 2014-06-24 Sony Computer Entertainment America Llc Statutory license restricted digital media playback on portable devices
US7704135B2 (en) * 2004-08-23 2010-04-27 Harrison Jr Shelton E Integrated game system, method, and device
US20060054679A1 (en) * 2004-09-10 2006-03-16 Karl Ruping Method and system for interactive character gaming
US7464001B1 (en) * 2004-09-11 2008-12-09 French Creek Production, Inc. Method of identifying and recording inspection information on personal protective equipment
CA2583442A1 (en) * 2004-09-27 2006-04-06 Stonelore Expeditions, Llc Trading card games and methods of play
US20060077253A1 (en) * 2004-10-13 2006-04-13 Honeywell International, Inc. System and method for enhanced situation awareness
FI20041335A (en) * 2004-10-14 2006-05-09 Lappset Group Oy Interactive playground, playground equipment, control station and method for collecting and processing information on a playground
GB0424472D0 (en) * 2004-11-04 2004-12-08 Skybluepink Interaction Design A computer implemented teaching aid
EP3422306A1 (en) 2004-11-17 2019-01-02 Arthur J. Zito, Jr. User-specific dispensing system
US7398921B2 (en) 2004-11-17 2008-07-15 Zito Jr Arthur J User-specific dispensing system
TWI258093B (en) * 2004-12-10 2006-07-11 Inst Information Industry Judgment system and method
US7670227B2 (en) * 2004-12-30 2010-03-02 Microsoft Corporation Changeable console face plate
US7478110B2 (en) * 2005-01-24 2009-01-13 Microsoft Corporation Game-powered search engine
US20060166173A1 (en) * 2005-01-27 2006-07-27 Ellis Michael B Educational method and device
US20080305874A1 (en) * 2005-01-28 2008-12-11 Robert Wilm Methods For The Unambiguous Association Of At Least One Autonomous Storage Unit With At Least One Player In A Score Keeping Device
US9910341B2 (en) 2005-01-31 2018-03-06 The Invention Science Fund I, Llc Shared image device designation
US20060192340A1 (en) * 2005-02-11 2006-08-31 Nancy Vaughan Educational game and method of playing the same
US20060183549A1 (en) * 2005-02-17 2006-08-17 Chow Timothy Y Codeword matching game using a mass media network
US8564414B2 (en) * 2005-03-08 2013-10-22 Koninklijke Philips N.V. Using tags to modify program behavior
WO2006101880A2 (en) * 2005-03-17 2006-09-28 Creative Kingdoms, Llc Interactive challenge game systems and methods
US20090144391A1 (en) * 2007-11-30 2009-06-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Audio sharing
US10003762B2 (en) 2005-04-26 2018-06-19 Invention Science Fund I, Llc Shared image devices
US9942511B2 (en) 2005-10-31 2018-04-10 Invention Science Fund I, Llc Preservation/degradation of video/audio aspects of a data stream
US20070222865A1 (en) 2006-03-15 2007-09-27 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Enhanced video/still image correlation
US20060288362A1 (en) * 2005-06-16 2006-12-21 Pulton Theodore R Jr Technique for providing advertisements over a communications network delivering interactive narratives
US7396281B2 (en) * 2005-06-24 2008-07-08 Disney Enterprises, Inc. Participant interaction with entertainment in real and virtual environments
US10510214B2 (en) 2005-07-08 2019-12-17 Cfph, Llc System and method for peer-to-peer wireless gaming
US8070604B2 (en) 2005-08-09 2011-12-06 Cfph, Llc System and method for providing wireless gaming as a service application
US20070050880A1 (en) * 2005-08-17 2007-03-08 Edoc Apparel Llc System and method for interpretive garments
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8313379B2 (en) 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP4805633B2 (en) 2005-08-22 2011-11-02 任天堂株式会社 Game operation device
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
JP4262726B2 (en) 2005-08-24 2009-05-13 任天堂株式会社 Game controller and game system
US8308563B2 (en) 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US7586413B2 (en) * 2005-09-01 2009-09-08 Assa Abloy Ab Human feedback using parasitic power harvesting of RFID tags
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
US20070093293A1 (en) * 2005-09-12 2007-04-26 Jeffrey Osnato Video game controllers
US7883420B2 (en) 2005-09-12 2011-02-08 Mattel, Inc. Video game systems
ATE543153T1 (en) * 2005-09-23 2012-02-15 Ipico Innovation Inc DEVICE SYSTEMS FOR RADIO FREQUENCY IDENTIFICATIONS
US20070070034A1 (en) * 2005-09-29 2007-03-29 Fanning Michael S Interactive entertainment system
TWI273456B (en) * 2005-09-30 2007-02-11 Inventec Corp Open type network gaming system and method thereof
US8626584B2 (en) 2005-09-30 2014-01-07 Sony Computer Entertainment America Llc Population of an advertisement reference list
US7470126B2 (en) * 2005-10-12 2008-12-30 Susan Kano Methods and systems for education and cognitive-skills training
US11004089B2 (en) 2005-10-25 2021-05-11 Sony Interactive Entertainment LLC Associating media content files with advertisements
US8676900B2 (en) 2005-10-25 2014-03-18 Sony Computer Entertainment America Llc Asynchronous advertising placement based on metadata
US10657538B2 (en) 2005-10-25 2020-05-19 Sony Interactive Entertainment LLC Resolution of advertising rules
US20070118425A1 (en) 2005-10-25 2007-05-24 Podbridge, Inc. User device agent for asynchronous advertising in time and space shifted media network
US7874918B2 (en) * 2005-11-04 2011-01-25 Mattel Inc. Game unit with motion and orientation sensing controller
US8317618B2 (en) * 2005-12-15 2012-11-27 At&T Intellectual Property I, Lp System, method and computer program for enabling an interactive game
US20070167224A1 (en) * 2006-01-06 2007-07-19 Peter Sprogis Game using transponders to provide player awards
US8161412B2 (en) 2006-01-13 2012-04-17 At&T Intellectual Property I, L.P. Systems, methods, and computer program products for providing interactive content
US20070259594A1 (en) * 2006-02-07 2007-11-08 Scott Galbiati Voice-Activated Toy Wand and Method of Play
US8402503B2 (en) 2006-02-08 2013-03-19 At& T Intellectual Property I, L.P. Interactive program manager and methods for presenting program content
WO2007093003A1 (en) * 2006-02-16 2007-08-23 Moose Enterprise Pty Ltd Game apparatus
US8065710B2 (en) 2006-03-02 2011-11-22 At& T Intellectual Property I, L.P. Apparatuses and methods for interactive communication concerning multimedia content
WO2011017393A1 (en) 2009-08-04 2011-02-10 Eyecue Vision Technologies Ltd. System and method for object extraction
US7572191B2 (en) 2006-04-14 2009-08-11 Creative Kingdoms, Llc Interactive water play apparatus and methods
US7644861B2 (en) 2006-04-18 2010-01-12 Bgc Partners, Inc. Systems and methods for providing access to wireless gaming devices
US7549576B2 (en) 2006-05-05 2009-06-23 Cfph, L.L.C. Systems and methods for providing access to wireless gaming devices
US8939359B2 (en) 2006-05-05 2015-01-27 Cfph, Llc Game access device with time varying signal
US20080061502A1 (en) * 2006-06-22 2008-03-13 Steven Cunliffe Method and apparatus for improvisational interaction in role playing events
US9280871B2 (en) * 2006-07-07 2016-03-08 Emc Corporation Gaming systems with authentication token support
US9205329B2 (en) * 2006-07-25 2015-12-08 Mga Entertainment, Inc. Virtual world electronic game
WO2008016656A2 (en) * 2006-08-02 2008-02-07 Martin Reiner Methods and system for game playability and expectation wager payout
US8043156B2 (en) * 2006-08-11 2011-10-25 Disney Enterprises, Inc. Interactive installation for interactive gaming
US8668585B2 (en) * 2006-08-11 2014-03-11 Disney Enterprises, Inc. Location based gaming system
US8221220B2 (en) * 2006-08-11 2012-07-17 Disney Enterprises, Inc. Method and/or system for adaptive gaming experience
US8814689B2 (en) * 2006-08-11 2014-08-26 Disney Enterprises, Inc. Method and/or system for mobile interactive gaming
GB0616107D0 (en) * 2006-08-15 2006-09-20 Iti Scotland Ltd Games-based learning
US8292741B2 (en) 2006-10-26 2012-10-23 Cfph, Llc Apparatus, processes and articles for facilitating mobile gaming
US9306952B2 (en) 2006-10-26 2016-04-05 Cfph, Llc System and method for wireless gaming with location determination
US8645709B2 (en) 2006-11-14 2014-02-04 Cfph, Llc Biometric access data encryption
US9411944B2 (en) 2006-11-15 2016-08-09 Cfph, Llc Biometric access sensitivity
US8510567B2 (en) 2006-11-14 2013-08-13 Cfph, Llc Conditional biometric access in a gaming environment
GB0623942D0 (en) * 2006-11-30 2007-01-10 Iti Scotland Ltd User profiles
GB0624033D0 (en) * 2006-12-01 2007-01-10 Iti Scotland Ltd Dynamic intervention with software applications
NZ564006A (en) 2006-12-06 2009-03-31 2121200 Ontario Inc System and method for product marketing using feature codes
US20080183678A1 (en) * 2006-12-29 2008-07-31 Denise Chapman Weston Systems and methods for personalizing responses to user requests
US20080188277A1 (en) 2007-02-01 2008-08-07 Ritter Janice E Electronic Game Device And Method Of Using The Same
US20080195724A1 (en) * 2007-02-14 2008-08-14 Gopinath B Methods for interactive multi-agent audio-visual platforms
US9183693B2 (en) 2007-03-08 2015-11-10 Cfph, Llc Game access device
US8319601B2 (en) 2007-03-14 2012-11-27 Cfph, Llc Game account access device
US8581721B2 (en) 2007-03-08 2013-11-12 Cfph, Llc Game access device with privileges
EP2146789A4 (en) * 2007-04-27 2013-01-23 Mattel Inc Computer fashion game with machine-readable trading cards
US9138636B2 (en) 2007-05-16 2015-09-22 Eyecue Vision Technologies Ltd. System and method for calculating values in tile games
US8239487B1 (en) 2007-05-30 2012-08-07 Rocketon, Inc. Method and apparatus for promoting desired on-line activities using on-line games
EP2017688B1 (en) * 2007-06-16 2012-06-06 RAFI GmbH & Co. KG Device for creating electrically evaluable control signals
US8330587B2 (en) * 2007-07-05 2012-12-11 Tod Anthony Kupstas Method and system for the implementation of identification data devices in theme parks
US20190050882A1 (en) * 2007-08-14 2019-02-14 Robert Cohen Mobile networked communication game
WO2009029063A1 (en) * 2007-08-24 2009-03-05 Tc Digital Games Llc System and methods for multi-platform trading card game
US8416247B2 (en) 2007-10-09 2013-04-09 Sony Computer Entertaiment America Inc. Increasing the number of advertising impressions in an interactive environment
US20090111584A1 (en) * 2007-10-31 2009-04-30 Koplar Interactive Systems International, L.L.C. Method and system for encoded information processing
US20090143126A1 (en) * 2007-11-29 2009-06-04 Mystery Competition, Llc. Computer-implemented deductive reasoning game
AU2007249109A1 (en) * 2007-12-19 2009-07-09 Toral Coarasa, Juan Pablo Mr Educational profession-oriented role-play game
US20090186694A1 (en) * 2008-01-17 2009-07-23 Microsoft Corporation Virtual world platform games constructed from digital imagery
US9545571B2 (en) * 2008-01-25 2017-01-17 Nintendo Co., Ltd. Methods and apparatus for a video game magic system
US20090197675A1 (en) * 2008-01-28 2009-08-06 Paul Son Interactive gaming platform
US8769558B2 (en) 2008-02-12 2014-07-01 Sony Computer Entertainment America Llc Discovery and analytics for episodic downloaded media
US8755919B2 (en) * 2008-03-13 2014-06-17 Microsoft Corporation Pushbutton radio frequency identification tag for media content delivery
US20090267728A1 (en) * 2008-04-23 2009-10-29 Yves Mayrand Method of visiting a site
AU2009201510A1 (en) 2008-04-24 2009-11-12 Aristocrat Technologies Australia Pty Limited A player tracking method and a player tracking system
US8899474B2 (en) * 2008-06-02 2014-12-02 Disney Enterprises, Inc. Interactive document reader
US8253542B2 (en) * 2008-09-04 2012-08-28 Disney Enterprises, Inc. Method and system for performing affinity transactions
US20100052916A1 (en) * 2008-09-04 2010-03-04 Disney Enterprises, Inc Identification band with secured association to wearer
US8644511B2 (en) * 2008-11-05 2014-02-04 Comcast Cable Communications, LLC. System and method for providing digital content
US8622795B2 (en) 2008-12-04 2014-01-07 Home Box Office, Inc. System and method for gathering and analyzing objective motion data
US20100144442A1 (en) * 2008-12-04 2010-06-10 Anthony Yanow Integrated entertainment arrangement and methods thereof
US8092287B2 (en) * 2008-12-04 2012-01-10 Disney Enterprises, Inc. System and method for providing a real-time interactive surface
EP2198939A1 (en) * 2008-12-18 2010-06-23 Koninklijke Philips Electronics N.V. Torch
US8469819B2 (en) * 2009-06-04 2013-06-25 Michael Parker McMain Game apparatus and game control method for controlling and representing magical ability and power of a player character in an action power control program
FR2947463B1 (en) 2009-07-01 2011-08-05 Bernard Romuald Trouvilliez INTERACTIVE SOUND AND VISUAL SEARCH SIMULATION OF TRESORS MAY INCLUDE TREASURY DISPLAY, SIMULATION OF HALL CREATION AND LOT DISTRIBUTION
US8939840B2 (en) 2009-07-29 2015-01-27 Disney Enterprises, Inc. System and method for playsets using tracked objects and corresponding virtual worlds
US9595108B2 (en) 2009-08-04 2017-03-14 Eyecue Vision Technologies Ltd. System and method for object extraction
US8763090B2 (en) 2009-08-11 2014-06-24 Sony Computer Entertainment America Llc Management of ancillary content delivery and presentation
KR101210280B1 (en) * 2009-09-02 2012-12-10 한국전자통신연구원 Sensor-based teaching aid assembly
US20110060978A1 (en) * 2009-09-09 2011-03-10 Gross Roy D Kit For Interactive Static And Online Learning
US20110060990A1 (en) * 2009-09-09 2011-03-10 Gross Roy D Method and System for Storytelling
US8990854B2 (en) 2009-09-14 2015-03-24 Broadcom Corporation System and method in a television for providing user-selection of objects in a television program
US8864589B2 (en) * 2009-10-27 2014-10-21 Activision Publishing, Inc. Video game with representative physical object related content
US9744462B2 (en) 2009-11-20 2017-08-29 Disney Enterprises, Inc. Location based reward distribution system
US20110183654A1 (en) * 2010-01-25 2011-07-28 Brian Lanier Concurrent Use of Multiple User Interface Devices
US20110181780A1 (en) * 2010-01-25 2011-07-28 Barton James M Displaying Content on Detected Devices
US8836719B2 (en) 2010-04-23 2014-09-16 Ganz Crafting system in a virtual environment
US10852069B2 (en) 2010-05-04 2020-12-01 Fractal Heatsink Technologies, LLC System and method for maintaining efficiency of a fractal heat sink
US8956231B2 (en) 2010-08-13 2015-02-17 Cfph, Llc Multi-process communication regarding gaming information
US8974302B2 (en) 2010-08-13 2015-03-10 Cfph, Llc Multi-process communication regarding gaming information
FR2969437A1 (en) * 2010-12-16 2012-06-22 France Telecom METHOD FOR AUTHENTICATING A USER OF A TERMINAL FROM A SERVICE PROVIDER
US9480913B2 (en) 2011-01-26 2016-11-01 WhitewaterWest Industries Ltd. Interactive entertainment using a mobile device with object tagging and/or hyperlinking
US8663014B2 (en) * 2011-01-31 2014-03-04 Zynga Inc. Apparatus and method with physical location check-in that triggers a status change in a virtual game
US8671019B1 (en) 2011-03-03 2014-03-11 Wms Gaming, Inc. Controlling and rewarding gaming socialization
USD662949S1 (en) 2011-05-17 2012-07-03 Joby-Rome Otero Video game peripheral detection device
US10315119B2 (en) 2011-05-17 2019-06-11 Activision Publishing, Inc. Video game with concurrent processing of game-related physical objects
US9180378B2 (en) 2011-05-17 2015-11-10 Activision Publishing, Inc. Conditional access to areas in a video game
US9381430B2 (en) 2011-05-17 2016-07-05 Activision Publishing, Inc. Interactive video game using game-related physical objects for conducting gameplay
US10238977B2 (en) 2011-05-17 2019-03-26 Activision Publishing, Inc. Collection of marketing information developed during video game play
US20120315967A1 (en) * 2011-06-08 2012-12-13 Nxp B.V. Multimedia memory game
JP5911221B2 (en) * 2011-07-01 2016-04-27 株式会社スクウェア・エニックス Content related information display system
US20130035981A1 (en) * 2011-08-05 2013-02-07 Disney Enterprises, Inc. Social networks games configured to elicit research data as part of game play
US9352225B2 (en) 2011-08-18 2016-05-31 Game Nation, Inc. System and method for providing a multi-player game experience
US9155964B2 (en) 2011-09-14 2015-10-13 Steelseries Aps Apparatus for adapting virtual gaming with real world information
US20130090158A1 (en) 2011-09-30 2013-04-11 Wms Gaming Inc. System and Method for Assessing and Providing Location-Based Benefits
US20130132959A1 (en) * 2011-11-23 2013-05-23 Yahoo! Inc. System for generating or using quests
US8678905B2 (en) * 2012-02-28 2014-03-25 Intralot S.A.—Integrated Lottery Systems and Services Methods and systems for conducting lottery games with portable devices enabled for near field communication (NFC)
US9649565B2 (en) * 2012-05-01 2017-05-16 Activision Publishing, Inc. Server based interactive video game with toys
US9589418B2 (en) 2012-07-19 2017-03-07 Philip Paul Givant Specialized slot machine for conducting a wagering game using real time or live action event content
US11557179B2 (en) 2012-07-19 2023-01-17 Philip Paul Givant Specialized slot machine for conducting a wagering fantasy sports tournament
US20140195285A1 (en) * 2012-07-20 2014-07-10 Abbas Aghakhani System and method for creating cultural heritage tour program and historical environment for tourists
GB2507073B (en) 2012-10-17 2017-02-01 China Ind Ltd Interactive toy
US9978178B1 (en) * 2012-10-25 2018-05-22 Amazon Technologies, Inc. Hand-based interaction in virtually shared workspaces
US8668201B1 (en) * 2012-11-08 2014-03-11 Ludovic Roudy Temporary tattoo game piece for a fighting game and method of play
US8790185B1 (en) 2012-12-04 2014-07-29 Kabam, Inc. Incentivized task completion using chance-based awards
US8972369B2 (en) 2012-12-26 2015-03-03 Disney Enterprises, Inc. Providing a common virtual item repository in a virtual space
US8986115B2 (en) 2012-12-26 2015-03-24 Disney Enterprises, Inc. Facilitating customization of a virtual space based on accessible virtual items
US8726172B1 (en) 2012-12-26 2014-05-13 Disney Enterprises, Inc. Managing an environment of a virtual space based on characters made accessible responsive to corresponding tokens being detected
EP2749329A1 (en) * 2012-12-26 2014-07-02 Disney Enterprises, Inc. Linking token detection at a single computing platform with a user identification to unlock content and/or effectuate modifications in virtual space instances presented via multiple computing platforms
US9327200B2 (en) 2012-12-26 2016-05-03 Disney Enterprises, Inc. Managing a theme of a virtual space based on characters made accessible responsive to corresponding tokens being detected
US8909920B2 (en) 2012-12-26 2014-12-09 Disney Enterprises, Inc. Linking token detection at a single computing platform with a user identification to effectuate modifications in virtual space instances presented via multiple computing platforms
US9517404B2 (en) 2012-12-26 2016-12-13 Disney Enterprises, Inc. Apparatus, system, and method for effectuating modifications to a virtual space responsive to token detection
US9457263B2 (en) 2012-12-26 2016-10-04 Disney Enterprises, Inc. Unlocking virtual items in a virtual space responsive to physical token detection
US9387407B2 (en) 2012-12-26 2016-07-12 Disney Enterprises, Inc. Managing objectives associated with a virtual space based on characters made accessible responsive to corresponding tokens being detected
USD748199S1 (en) 2013-01-15 2016-01-26 Disney Enterprises, Inc. Multi-sided power disk
USD748200S1 (en) 2013-01-15 2016-01-26 Disney Enterprises, Inc. Power disk reader
US9931566B2 (en) 2014-01-29 2018-04-03 Eddie's Social Club, LLC Game system with interactive show control
KR20150110592A (en) 2013-01-29 2015-10-02 에디스 소셜 클럽 엘엘씨 Game system with interactive show control
US10134267B2 (en) 2013-02-22 2018-11-20 Universal City Studios Llc System and method for tracking a passive wand and actuating an effect based on a detected wand path
US9662564B1 (en) * 2013-03-11 2017-05-30 Google Inc. Systems and methods for generating three-dimensional image models using game-based image acquisition
US8904298B2 (en) 2013-03-15 2014-12-02 Disney Enterprises, Inc. Effectuating modifications within an instance of a virtual space presented via multiple disparate client computing platforms responsive to detection of a token associated with a single client computing platform
US8831758B1 (en) 2013-03-20 2014-09-09 Kabam, Inc. Interface-based game-space contest generation
US9069509B2 (en) 2013-03-20 2015-06-30 Hewlett-Packard Development Company, L.P. System and method for printing relevant content via a cloud print service
US9007189B1 (en) 2013-04-11 2015-04-14 Kabam, Inc. Providing leaderboard based upon in-game events
US9626475B1 (en) 2013-04-18 2017-04-18 Kabam, Inc. Event-based currency
US9613179B1 (en) 2013-04-18 2017-04-04 Kabam, Inc. Method and system for providing an event space associated with a primary virtual space
US9776071B2 (en) 2013-05-09 2017-10-03 Mattel, Inc. Resonant coils for use with games and toys
US8961319B1 (en) 2013-05-16 2015-02-24 Kabam, Inc. System and method for providing dynamic and static contest prize allocation based on in-game achievement of a user
US9463376B1 (en) 2013-06-14 2016-10-11 Kabam, Inc. Method and system for temporarily incentivizing user participation in a game space
US9799163B1 (en) 2013-09-16 2017-10-24 Aftershock Services, Inc. System and method for providing a currency multiplier item in an online game with a value based on a user's assets
US11058954B1 (en) 2013-10-01 2021-07-13 Electronic Arts Inc. System and method for implementing a secondary game within an online game
US10282739B1 (en) 2013-10-28 2019-05-07 Kabam, Inc. Comparative item price testing
US10482713B1 (en) 2013-12-31 2019-11-19 Kabam, Inc. System and method for facilitating a secondary game
US9508222B1 (en) 2014-01-24 2016-11-29 Kabam, Inc. Customized chance-based items
US9741201B2 (en) 2014-01-28 2017-08-22 Gamblit Gaming, Llc Connected interleaved wagering system
US9805552B2 (en) * 2014-01-28 2017-10-31 Gamblit Gaming, Llc Multi-state opportunity interleaved wagering system
US10226691B1 (en) 2014-01-30 2019-03-12 Electronic Arts Inc. Automation of in-game purchases
US9873040B1 (en) 2014-01-31 2018-01-23 Aftershock Services, Inc. Facilitating an event across multiple online games
US9795885B1 (en) 2014-03-11 2017-10-24 Aftershock Services, Inc. Providing virtual containers across online games
US9517405B1 (en) 2014-03-12 2016-12-13 Kabam, Inc. Facilitating content access across online games
US9610503B2 (en) 2014-03-31 2017-04-04 Kabam, Inc. Placeholder items that can be exchanged for an item of value based on user performance
US9744445B1 (en) 2014-05-15 2017-08-29 Kabam, Inc. System and method for providing awards to players of a game
US9744446B2 (en) 2014-05-20 2017-08-29 Kabam, Inc. Mystery boxes that adjust due to past spending behavior
US10307666B2 (en) 2014-06-05 2019-06-04 Kabam, Inc. System and method for rotating drop rates in a mystery box
US9600999B2 (en) 2014-05-21 2017-03-21 Universal City Studios Llc Amusement park element tracking system
US10025990B2 (en) 2014-05-21 2018-07-17 Universal City Studios Llc System and method for tracking vehicles in parking structures and intersections
US9433870B2 (en) 2014-05-21 2016-09-06 Universal City Studios Llc Ride vehicle tracking and control system using passive tracking elements
US10207193B2 (en) 2014-05-21 2019-02-19 Universal City Studios Llc Optical tracking system for automation of amusement park elements
US9429398B2 (en) 2014-05-21 2016-08-30 Universal City Studios Llc Optical tracking for controlling pyrotechnic show elements
US9616350B2 (en) 2014-05-21 2017-04-11 Universal City Studios Llc Enhanced interactivity in an amusement park environment using passive tracking elements
US10061058B2 (en) 2014-05-21 2018-08-28 Universal City Studios Llc Tracking system and method for use in surveying amusement park equipment
US10264320B2 (en) 2014-06-10 2019-04-16 Microsoft Technology Licensing, Llc Enabling user interactions with video segments
US9717986B1 (en) 2014-06-19 2017-08-01 Kabam, Inc. System and method for providing a quest from a probability item bundle in an online game
US9452356B1 (en) 2014-06-30 2016-09-27 Kabam, Inc. System and method for providing virtual items to users of a virtual space
US9539502B1 (en) 2014-06-30 2017-01-10 Kabam, Inc. Method and system for facilitating chance-based payment for items in a game
US9579564B1 (en) * 2014-06-30 2017-02-28 Kabam, Inc. Double or nothing virtual containers
US10463968B1 (en) 2014-09-24 2019-11-05 Kabam, Inc. Systems and methods for incentivizing participation in gameplay events in an online game
US10238979B2 (en) 2014-09-26 2019-03-26 Universal City Sudios LLC Video game ride
CA3133305A1 (en) 2014-11-17 2016-05-17 Whitewater West Industries Ltd. Interactive play center with interactive elements and consequence elements
US9656174B1 (en) 2014-11-20 2017-05-23 Afterschock Services, Inc. Purchasable tournament multipliers
US9666026B1 (en) 2014-11-20 2017-05-30 Aftershock Services, Inc. Systems and methods for providing offers within a game space that decrease in value based on previous acceptances of the offers
US20160151709A1 (en) * 2014-12-02 2016-06-02 Andrew D. Ausonio Interactive Multi-Party Game
US9827499B2 (en) 2015-02-12 2017-11-28 Kabam, Inc. System and method for providing limited-time events to users in an online game
US10762743B2 (en) 2015-02-26 2020-09-01 Sg Gaming, Inc. Tracking and utilizing data and information across a plurality of technological paradigms
US10102674B2 (en) * 2015-03-09 2018-10-16 Google Llc Virtual reality headset connected to a mobile computing device
US9779554B2 (en) 2015-04-10 2017-10-03 Sony Interactive Entertainment Inc. Filtering and parental control methods for restricting visual activity on a head mounted display
JP6860965B2 (en) * 2015-06-12 2021-04-21 任天堂株式会社 Information processing equipment, information processing system, information processing program and information processing method
CA3131536A1 (en) * 2015-08-07 2017-02-16 Fairwayiq, Inc. System and method for managing and interacting with patrons at an activity venue
US10349250B2 (en) * 2015-09-23 2019-07-09 Activision Publishing, Inc. System and method for creating physical objects used with videogames
CA2951493A1 (en) * 2015-12-31 2017-06-30 Wal-Mart Stores, Inc. Interactive gaming systems and methods
CN109076678B (en) * 2016-03-22 2020-06-30 飞利浦照明控股有限公司 Illumination for video games
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
US20180085673A1 (en) * 2016-08-31 2018-03-29 Ole Birkedal Vest and Motion Sensitive Wand for Interactive Game Play
US11113982B2 (en) * 2016-09-16 2021-09-07 Kyle Muir Programmable education device
US10576388B2 (en) 2016-11-14 2020-03-03 Whitewater West Industries Ltd. Play center using structural monoliths for water delivery capabilities
US10846779B2 (en) 2016-11-23 2020-11-24 Sony Interactive Entertainment LLC Custom product categorization of digital media content
US10216830B2 (en) 2016-12-08 2019-02-26 Bank Of America Corporation Multicomputer processing of client device request data using centralized event orchestrator and link discovery engine
US10440102B2 (en) 2016-12-08 2019-10-08 Bank Of America Corporation Multicomputer processing of client device request data using centralized event orchestrator and dynamic endpoint engine
US10310712B2 (en) 2016-12-08 2019-06-04 Bank Of America Corporation Multicomputer processing of client device request data with centralized event orchestration
US10217087B2 (en) 2016-12-08 2019-02-26 Bank Of America Corporation Multicomputer processing of client device request data using centralized event orchestrator
US10296882B2 (en) 2016-12-08 2019-05-21 Bank Of America Corporation Multicomputer processing of client device request data using centralized event orchestrator and link discovery engine
US10264056B2 (en) 2016-12-08 2019-04-16 Bank Of America Corporation Multicomputer processing of an event request from an event origination device with centralized event orchestration
US10303335B2 (en) 2016-12-08 2019-05-28 Bank Of America Corporation Multicomputer processing of client device request data with centralized event orchestration
US10298575B2 (en) 2016-12-08 2019-05-21 Bank Of America Corporation Multicomputer processing of an event authentication request with centralized event orchestration
US10860987B2 (en) 2016-12-19 2020-12-08 Sony Interactive Entertainment LLC Personalized calendar for digital media content-related events
US10929572B2 (en) * 2017-04-10 2021-02-23 Nyquist Semiconductor Limited Secure data storage device with security function implemented in a data security bridge
US10974135B2 (en) 2017-09-28 2021-04-13 James Andrew Aman Interactive game theater with secret message imaging system
US11433302B2 (en) * 2017-10-16 2022-09-06 Lego A/S Interactive play apparatus
US10970725B2 (en) 2017-11-29 2021-04-06 Universal Studios LLC System and method for crowd management and maintenance operations
US10773381B2 (en) * 2017-11-30 2020-09-15 Skygrid, Llc Secure distributed system using blockchain for self-policing of autonomous agents
US10916059B2 (en) 2017-12-06 2021-02-09 Universal City Studios Llc Interactive video game system having an augmented virtual representation
US10653957B2 (en) 2017-12-06 2020-05-19 Universal City Studios Llc Interactive video game system
CA3020322A1 (en) 2017-12-13 2019-06-13 Matthew Usi Systems and methods for threshold detection of a wireless device
US10603564B2 (en) 2018-01-03 2020-03-31 Universal City Studios Llc Interactive component for an amusement park
US10931991B2 (en) 2018-01-04 2021-02-23 Sony Interactive Entertainment LLC Methods and systems for selectively skipping through media content
US10699084B2 (en) 2018-01-15 2020-06-30 Universal City Studios Llc Local interaction systems and methods
US10818152B2 (en) 2018-01-15 2020-10-27 Universal City Studios Llc Interactive systems and methods with feedback devices
US10360419B1 (en) 2018-01-15 2019-07-23 Universal City Studios Llc Interactive systems and methods with tracking devices
US10614271B2 (en) 2018-01-15 2020-04-07 Universal City Studios Llc Interactive systems and methods
US10537803B2 (en) 2018-01-18 2020-01-21 Universal City Studios Llc Interactive gaming system
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
US10845975B2 (en) 2018-03-29 2020-11-24 Universal City Studios Llc Interactive animated character head systems and methods
WO2020009935A1 (en) * 2018-07-05 2020-01-09 Themissionzone, Inc. Systems and methods for manipulating the shape and behavior of a physical space
US11090567B2 (en) * 2018-09-11 2021-08-17 Activision Publishing, Inc. Individualized game data augmented displays
US10912995B2 (en) * 2018-10-09 2021-02-09 Ivan Mauricio Buritica Suarez System and method for emulating an electronic game to play in a physical gaming environment
WO2020081967A1 (en) * 2018-10-19 2020-04-23 Infinite Kingdoms Llc System for providing an immersive experience using multi-platform smart technology, content streaming, and special effects systems
US10857456B2 (en) * 2018-12-18 2020-12-08 Wesley John Boudville Linket, esports and a theme park
US12121827B2 (en) * 2019-01-31 2024-10-22 Lego A/S Toy construction system with interactive function construction elements
US11875372B2 (en) * 2019-03-29 2024-01-16 Fortunito, Inc. Systems and methods for an interactive online platform
US12070682B2 (en) * 2019-03-29 2024-08-27 Snap Inc. 3D avatar plugin for third-party games
US11452942B2 (en) * 2019-07-15 2022-09-27 Universal City Studios Llc Dynamic quest-based narrative for amusement park
US20210056272A1 (en) 2019-08-23 2021-02-25 KEFI Holdings, Inc Object detection-based control of projected content
US11389735B2 (en) 2019-10-23 2022-07-19 Ganz Virtual pet system
US20210170279A1 (en) * 2019-12-09 2021-06-10 Jeremy Noah Anderson Game player created object and video game play
US11358059B2 (en) 2020-05-27 2022-06-14 Ganz Live toy system
CN112600914B (en) * 2020-12-07 2022-04-01 腾讯科技(深圳)有限公司 Data processing method and device, computer readable medium and electronic equipment
US11870511B2 (en) * 2021-03-18 2024-01-09 Nxp B.V. Near-field interface device
US20230131242A1 (en) * 2021-10-26 2023-04-27 Mattel, Inc. Interactive Toy System
US11712620B2 (en) 2021-11-09 2023-08-01 Reuven Bakalash Relocatable location-based gamified applications
KR20240119952A (en) 2023-01-30 2024-08-07 주식회사 플레이더월드 A method for producing tourism experience-type interactive contents, and a computer-readable recording medium thereof
US12073696B1 (en) * 2023-08-31 2024-08-27 Zivin Park Machine and method for increasing interactions and sales with customers

Family Cites Families (1361)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US973105A (en) 1910-01-07 1910-10-18 Benjamin Franklin Mcconnell Amusement apparatus.
US1661058A (en) 1924-12-08 1928-02-28 Firm Of M J Goldberg Und Sohne Method of and apparatus for the generation of sounds
US1789680A (en) 1928-10-01 1931-01-20 James E Gwinnett Amusement device
US2001366A (en) 1933-02-23 1935-05-14 Benjamin E Mittelman Game
US2752725A (en) 1952-10-28 1956-07-03 Kentworth Corp Fluid filled container with movable objects therein
US2902023A (en) 1958-05-09 1959-09-01 George J Waller Ball and throwing stick
US3135512A (en) 1963-06-04 1964-06-02 Beverly W Taylor Marble tube toy
US3468533A (en) 1964-07-06 1969-09-23 Walter J House Jr Rotatable platform having rider supports enclosed in an optical chamber for simulating a space ride
US3336030A (en) 1966-01-17 1967-08-15 Internat Exhibits Inc Gun and target with inflatable indicator
US3395920A (en) 1966-06-27 1968-08-06 Ideal Toy Corp Aerial projectile game comprising a target having means responsive to not being hit
US3474241A (en) 1966-10-06 1969-10-21 Jack Kuipers Coordinate transformer
US3454920A (en) 1967-03-10 1969-07-08 Measurement Systems Inc Isometric control device
US3456134A (en) 1967-10-05 1969-07-15 Us Health Education & Welfare Piezoelectric energy converter for electronic implants
US3572712A (en) 1968-07-23 1971-03-30 Ance M Vick Moving target and water gun with indicating mechanism
US3660648A (en) 1969-10-15 1972-05-02 Northrop Corp Angular rate coordinate transformer
US3633904A (en) 1970-01-13 1972-01-11 Sanseiyusoki Co Ltd Rotary elevator observation tower
US3660926A (en) 1970-05-15 1972-05-09 Hasbro Industries Inc Magnetically coupled toy assembly
US3707055A (en) 1971-02-25 1972-12-26 Woodrow W Pearce Illuminated magic wand
US3949364A (en) 1972-07-07 1976-04-06 Diebold, Incorporated Automatic remote banking system and equipment
US3795805A (en) 1973-05-18 1974-03-05 Xerox Corp Apparatus for testing a credit card
US3843127A (en) 1973-08-13 1974-10-22 J Lack Water guns and water emitting target
AU7733075A (en) 1974-01-29 1976-07-15 Dreamland Electrical Appliance Heat detecting apparatus
ZA742501B (en) 1974-04-19 1976-02-25 M Snyman Improvements in or relating to accelerometers
US3978481A (en) 1974-06-17 1976-08-31 Merlin A. Pierson Anti-collision vehicular radar system
US3949679A (en) 1974-10-04 1976-04-13 Venture Ride Mfg., Inc. Amusement ride
US3997156A (en) 1975-01-22 1976-12-14 Marvin Glass & Associates Magic hat
US4443866A (en) 1975-08-27 1984-04-17 Corning Glass Works Automatic device selection circuit
US4063111A (en) 1975-11-03 1977-12-13 Steve Dobler Solid state touch switch
US4296929A (en) 1976-02-19 1981-10-27 Marvin Glass & Associates Electric eye actuated gun arcade
US4038876A (en) 1976-03-04 1977-08-02 Systron Donner Corporation Acceleration error compensated attitude sensing and control apparatus and method
DE2613435A1 (en) 1976-03-30 1977-10-20 Itt Ind Gmbh Deutsche TELEVISION RECEIVER WITH ADDITIONAL DEVICE FOR DISPLAYING GAME SYMBOLS ON THE SCREEN
US4055341A (en) 1976-08-13 1977-10-25 Gilbert Sacks Enterprises, Inc. Tilting maze race game
US4175665A (en) 1977-02-07 1979-11-27 P. Ferrero & C. S.P.A. Display container for rounded articles
US4166406A (en) 1977-09-06 1979-09-04 Litton Systems, Inc. Self-aligning pitch and azimuth reference unit
US4321678A (en) 1977-09-14 1982-03-23 Bodenseewerk Geratetechnik Gmbh Apparatus for the automatic determination of a vehicle position
US4205785A (en) 1977-09-23 1980-06-03 Wham-O Mfg. Co. Water play toy with elevatable crown portion
US4171737A (en) 1977-10-03 1979-10-23 Docutel Corporation Entry control device
US4231077A (en) 1977-12-27 1980-10-28 Joyce James E Light toy
US4240638A (en) 1978-01-06 1980-12-23 Marvin Glass & Associates Microprocessor controlled game apparatus
US4153250A (en) 1978-03-13 1979-05-08 Zacharias Anthony Gravity-type racing game
DE2920147A1 (en) 1979-05-18 1980-12-11 Volkswagenwerk Ag ARRANGEMENT WITH AN ELECTRODYNAMIC ACCELERATION SENSOR AND AN EVALUATION
NL7905061A (en) 1979-06-29 1980-12-31 Hollandse Signaalapparaten Bv METHOD AND APPARATUS FOR AUTOMATIC MEASUREMENT OF AIMING ERRORS AND IMPROVING GUIDE VALUES IN SHOOTING AND AIMING BALLISTIC WEAPONS AGAINST MOVING TARGETS.
US4282681A (en) 1979-11-30 1981-08-11 Mccaslin Robert E Electronic wand
US4318245A (en) 1980-01-22 1982-03-09 The Quaker Oats Company Vocalizing apparatus
US4337948A (en) 1980-02-08 1982-07-06 Marvin Glass & Associates Game apparatus
US4303978A (en) 1980-04-18 1981-12-01 The Boeing Company Integrated-strapdown-air-data sensor system
US4342985A (en) 1980-10-03 1982-08-03 Firecom, Inc. Remote sensing and control system
US4325199A (en) 1980-10-14 1982-04-20 Mcedwards Timothy K Engine sound simulator
DE3103467A1 (en) 1981-02-02 1982-08-26 Teldix Gmbh, 6900 Heidelberg COURSE ROTORS
DE3216286A1 (en) 1981-06-30 1983-01-13 Siemens AG, 1000 Berlin und 8000 München ELECTRONIC CONTROL UNIT
FR2510900A1 (en) 1981-08-07 1983-02-11 Thomson Brandt JOYSTICK
US4412205A (en) 1981-08-24 1983-10-25 Guilden Development Corp. Switch construction responsive to motions of a wearer
US4450325A (en) 1981-10-08 1984-05-22 Luque Tom R Electro-mechanical hand controller
JPS5871657U (en) 1981-11-11 1983-05-14 昭和アルミニウム株式会社 pergola
US4425488A (en) 1982-06-04 1984-01-10 Moskin Jeffrey M Pistol grip controller
US4678450A (en) 1982-12-27 1987-07-07 Life Light Systems Toy light sword
GB8301653D0 (en) 1983-01-21 1989-07-05 Secr Defence Improvements in or relating to gun laying
US4546551A (en) 1983-03-24 1985-10-15 Prince Corporation Electrical control system
US4578674A (en) 1983-04-20 1986-03-25 International Business Machines Corporation Method and apparatus for wireless cursor position control
FR2547093B1 (en) 1983-06-03 1986-01-24 Girves Jean ELECTRONIC MUSICAL SET
US4695953A (en) 1983-08-25 1987-09-22 Blair Preston E TV animation interactively controlled by the viewer
USRE33662E (en) 1983-08-25 1991-08-13 TV animation interactively controlled by the viewer
US4540176A (en) 1983-08-25 1985-09-10 Sanders Associates, Inc. Microprocessor interface device
US4514600A (en) 1983-11-14 1985-04-30 North American Philips Corporation Video game hand controller
JPS60143330A (en) 1983-12-29 1985-07-29 Matsushita Electric Ind Co Ltd Photographic device
US4695058A (en) 1984-01-31 1987-09-22 Photon Marketing Limited Simulated shooting game with continuous transmission of target identification signals
US4699379A (en) 1984-02-03 1987-10-13 Robert E. Chateau Athletic monitoring device
US4561299A (en) 1984-02-13 1985-12-31 Fmc Corporation Apparatus for detecting changes in inclination or acceleration
US4575621A (en) 1984-03-07 1986-03-11 Corpra Research, Inc. Portable electronic transaction device and system therefor
US4623887A (en) 1984-05-15 1986-11-18 General Electric Company Reconfigurable remote control
JPS6154422A (en) 1984-08-24 1986-03-18 Nippon Telegr & Teleph Corp <Ntt> Method and instrument for measuring mode field diameter of optical fiber
JPS6190144A (en) 1984-10-09 1986-05-08 Nippon Kogaku Kk <Nikon> Magnet driving device for camera
US4761540A (en) 1984-12-24 1988-08-02 Robertshaw Controls Company Electrically operated appliance controls and methods of making the same
US4918293A (en) 1984-12-24 1990-04-17 Robertshaw Controls Company Electrically operated appliance controls and methods of making the same
US4627620A (en) 1984-12-26 1986-12-09 Yang John P Electronic athlete trainer for improving skills in reflex, speed and accuracy
US4595369A (en) 1985-03-08 1986-06-17 Downs Arthur R Educational and amusement device
US4645458A (en) 1985-04-15 1987-02-24 Harald Phillip Athletic evaluation and training apparatus
US4672374A (en) 1985-06-20 1987-06-09 Firecom, Inc. System for bilateral communication of a command station with remotely located sensors and actuators
US4819182A (en) 1985-06-21 1989-04-04 Westland Plc Method and apparatus for reducing vibration of a helicopter fuselage
US4849655A (en) 1985-07-04 1989-07-18 Hayman-Reese Party, Limited Accelerometer or decelerometer for vehicle brake control system
US5835576A (en) 1985-07-10 1998-11-10 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface lottery device
JPS6214527A (en) 1985-07-12 1987-01-23 Sony Corp Bit expanding circuit
JPH0677387B2 (en) 1985-07-27 1994-09-28 ソニー株式会社 Video signal recording / reproducing device
SE8504705D0 (en) 1985-10-11 1985-10-11 Istvan Foth WATER PLAY SCHEME
DE3539236A1 (en) 1985-11-05 1987-05-07 Kosmedico Vertrieb Kosmetische DEVICE FOR MEASURING UV RADIATION
US4843568A (en) 1986-04-11 1989-06-27 Krueger Myron W Real time perception of and response to the actions of an unencumbered participant/user
US4787051A (en) 1986-05-16 1988-11-22 Tektronix, Inc. Inertial mouse system
US4776253A (en) 1986-05-30 1988-10-11 Downes Patrick G Control apparatus for electronic musical instrument
US5369889A (en) 1986-07-07 1994-12-06 Honeywell Inc. Single gyro northfinder
US4729751A (en) 1986-08-11 1988-03-08 Schiavo Cynthia G Doll with attachment means
IL79736A0 (en) 1986-08-15 1986-11-30 Kibbutz Ein Shemer Body motion controller for toy system
DE3634023A1 (en) 1986-10-07 1988-04-21 Bodenseewerk Geraetetech INTEGRATED, REDUNDANT REFERENCE SYSTEM FOR FLIGHT CONTROL AND FOR GENERATING COURSE AND LOCATION INFORMATION
EP0264782B1 (en) 1986-10-14 1994-12-14 Yamaha Corporation Musical tone control apparatus using a detector
US5290964A (en) 1986-10-14 1994-03-01 Yamaha Corporation Musical tone control apparatus using a detector
JPH07107573B2 (en) 1986-10-28 1995-11-15 東レ株式会社 Optical fiber bundles made of plastic
US4739128A (en) 1986-11-10 1988-04-19 American Telephone And Telegraph Company, At&T Bell Laboratories Thumb-controlled, hand-held joystick
JPH0732819B2 (en) 1987-01-12 1995-04-12 株式会社ナナオ Fishing game machine
US5177311A (en) 1987-01-14 1993-01-05 Yamaha Corporation Musical tone control apparatus
US4700501A (en) 1987-02-18 1987-10-20 George Bryan Combined fishing rod and fishing line vibrator
US4988981B1 (en) 1987-03-17 1999-05-18 Vpl Newco Inc Computer data entry and manipulation apparatus and method
JPH02167133A (en) 1987-03-28 1990-06-27 Toyo Medical Kk Method for measuring waveform of cornea potential chart
US4839838A (en) 1987-03-30 1989-06-13 Labiche Mitchell Spatial input apparatus
BR8807486A (en) 1987-04-29 1990-05-15 Helmut Huberti DEVICE FOR BODY ORGAN LOAD CONTROL
US4817950A (en) 1987-05-08 1989-04-04 Goo Paul E Video game control unit and attitude sensor
JPS63186687U (en) 1987-05-25 1988-11-30
US4858390A (en) 1987-06-04 1989-08-22 Nisan Kenig Belt grinder attachment for powered rotary tools
US4837568A (en) 1987-07-08 1989-06-06 Snaper Alvin A Remote access personnel identification and tracking system
US4816810A (en) 1987-08-28 1989-03-28 Moore Robert F Remote acceptance switch for computer mouse
DE3850831T2 (en) 1987-09-21 1994-11-10 Seiko Epson Corp Electronic analog clock.
US5363120A (en) 1987-10-14 1994-11-08 Wang Laboratories, Inc. Computer input device using orientation sensor
US5068645A (en) 1987-10-14 1991-11-26 Wang Laboratories, Inc. Computer input device using an orientation sensor
US4807031A (en) 1987-10-20 1989-02-21 Interactive Systems, Incorporated Interactive video method and apparatus
JPH0443702Y2 (en) 1987-12-18 1992-10-15
US5170002A (en) 1987-12-24 1992-12-08 Yamaha Corporation Motion-controlled musical tone control apparatus
US5005460A (en) 1987-12-24 1991-04-09 Yamaha Corporation Musical tone control apparatus
US4862165A (en) 1988-02-12 1989-08-29 Samuel Gart Ergonomically-shaped hand controller
NZ228230A (en) 1988-03-11 1990-11-27 Venture Technologies Inc Electronic puzzle: lamps change colour in response to manipulation of puzzle body
US4904222A (en) 1988-04-27 1990-02-27 Pennwalt Corporation Synchronized sound producing amusement device
JP2663503B2 (en) 1988-04-28 1997-10-15 ヤマハ株式会社 Music control device
US4910677A (en) * 1988-05-18 1990-03-20 Joseph W. Remedio Golf score recording system and network
US4858930A (en) 1988-06-07 1989-08-22 Namco, Ltd. Game system
DE68915661T2 (en) 1988-06-22 1994-09-15 Fujitsu Ltd Device with small dimensions for measuring and recording the acceleration.
JPH07115690B2 (en) 1988-06-24 1995-12-13 株式会社東京自働機械製作所 Carton assembly machine cylinder printing mechanism
US4932917A (en) 1988-07-01 1990-06-12 Discovery Toys, Inc. Start gate marble race toy
JPH0744315Y2 (en) 1988-08-16 1995-10-11 シンガー日鋼株式会社 Belt guard on the back of the sewing machine
US4924358A (en) 1988-09-12 1990-05-08 Inventech Licensing Co. Safety-sparkler wand w/chemiluminescent or electric-light illumination
US4891032A (en) 1988-09-12 1990-01-02 Davis David C Flexible toy wand
JPH0299994A (en) 1988-10-06 1990-04-11 Yamaha Corp Musical sound controller
US4967321A (en) 1988-11-14 1990-10-30 I & K Trading Company Flashlight wand
US5045843B1 (en) 1988-12-06 1996-07-16 Selectech Ltd Optical pointing device
US4994795A (en) 1988-12-08 1991-02-19 Mackenzie Kirk F Position indicating device for a digital computer
US5184830A (en) 1989-01-10 1993-02-09 Nintendo Company Limited Compact hand-held video game system
WO1990007961A1 (en) 1989-01-23 1990-07-26 Elliot Rudell Game and ball with water-releasing device
US4964837B1 (en) 1989-02-16 1993-09-14 B. Collier Harry Radio controlled model vehicle having coordinated sound effects system
USD320624S (en) 1989-05-26 1991-10-08 Atari Corporation Hand-held electronic game apparatus housing
US4969647A (en) 1989-06-02 1990-11-13 Atari Corporation Invertible hand-held electronic game apparatus
USD325225S (en) 1989-06-19 1992-04-07 Nintendo Company Limited Hand held controller for a video game machine
GB8915819D0 (en) 1989-07-11 1989-08-31 Domino Printing Sciences Plc Continuous ink jet printer
DE3930581A1 (en) 1989-09-13 1991-03-21 Asea Brown Boveri Work station for process control personnel - has display fields with windows accessed by mouse selection
US5076584A (en) 1989-09-15 1991-12-31 Openiano Renato M Computer game controller with user-selectable actuation
JPH0728591Y2 (en) 1989-09-20 1995-06-28 三洋電機株式会社 Video tape recorder
US5011161A (en) 1989-09-25 1991-04-30 Galphin Marion C Water amusement game
JPH0632700B2 (en) 1989-09-29 1994-05-02 株式会社ナムコ Amusement device
JP3115297B2 (en) 1989-10-09 2000-12-04 キヤノン株式会社 Control device for automatic equipment
US5543672A (en) 1989-10-18 1996-08-06 Yazaki Corporation Rotation detecting device with magnet brake
EP0360624B1 (en) 1989-10-25 1992-05-20 Saitek Limited Improvements in and relating to electronic game apparatus
US4960275A (en) 1989-11-06 1990-10-02 Imrych Magon Water immersion amusement apparatus
US5820471A (en) 1989-11-20 1998-10-13 Briggs; Rick A. Participatory water play system
USD330579S (en) * 1989-11-20 1992-10-27 Briggs Rick A Playground structure
US5378197A (en) * 1989-11-20 1995-01-03 Briggs; Rick A. Waterslide play apparatus
US5649867A (en) 1989-11-20 1997-07-22 Briggs; Rick A. Portable waterplay structure
US5853332A (en) 1995-08-21 1998-12-29 Briggs; Rick A. Participatory play structure having discrete play articles
US5662525A (en) 1989-11-20 1997-09-02 Briggs; Rick A. Participatory water play apparatus
JPH0650758Y2 (en) 1989-11-24 1994-12-21 合同製鐵株式会社 Jig device for bending test of rod-shaped material
USD322242S (en) 1989-11-27 1991-12-10 Nintendo Of America, Inc. Remote control transmitter
US5166502A (en) 1990-01-05 1992-11-24 Trend Plastics, Inc. Gaming chip with implanted programmable identifier means and process for fabricating same
JPH03210622A (en) 1990-01-16 1991-09-13 Fujitsu Ltd Data input system
US5929782A (en) 1990-02-21 1999-07-27 Stark; John G. Communication system for an instrumented orthopedic restraining device and method therefor
US4980519A (en) 1990-03-02 1990-12-25 The Board Of Trustees Of The Leland Stanford Jr. Univ. Three dimensional baton and gesture sensor
US5440326A (en) 1990-03-21 1995-08-08 Gyration, Inc. Gyroscopic pointer
US5138154A (en) 1990-04-04 1992-08-11 Gyration Inc. Shaft angle encoder with rotating off-axis interference pattern
US5059958A (en) 1990-04-10 1991-10-22 Jacobs Jordan S Manually held tilt sensitive non-joystick control box
US5128671A (en) 1990-04-12 1992-07-07 Ltv Aerospace And Defense Company Control device having multiple degrees of freedom
US5247651A (en) 1990-04-17 1993-09-21 At&T Bell Laboratories Interactive computer program specification and simulation system
GB2244546A (en) 1990-05-10 1991-12-04 Primax Electronics Ltd Computer input device
US5202844A (en) 1990-05-22 1993-04-13 Kabushiki Kaisha Toshiba Computer having integral type hand writing input/display device and keyboard
US5114155A (en) 1990-06-15 1992-05-19 Arachnid, Inc. System for automatic collection and distribution of player statistics for electronic dart games
US5357267A (en) 1990-06-27 1994-10-18 Canon Kabushiki Kaisha Image information control apparatus and display system
US5124938A (en) 1990-07-23 1992-06-23 Recon/Optical, Inc. Gyroless platform stabilization techniques
USD331058S (en) 1990-08-08 1992-11-17 Tv Answer, Inc. TV remote control unit
JPH0442029U (en) 1990-08-09 1992-04-09
JP2938529B2 (en) 1990-08-10 1999-08-23 三信工業株式会社 Remote control device for marine propulsion
US5192082A (en) 1990-08-24 1993-03-09 Nintendo Company Limited TV game machine
US5048831A (en) * 1990-08-31 1991-09-17 Sides Jim T Electronic game apparatus and method of use
US5396265A (en) 1990-09-17 1995-03-07 Massachusetts Institute Of Technology Three-dimensional tactile computer input device
US5181181A (en) 1990-09-27 1993-01-19 Triton Technologies, Inc. Computer apparatus input device for three-dimensional information
JPH0743581B2 (en) 1990-10-31 1995-05-15 ヤマハ株式会社 Display controller
USD328463S (en) 1990-11-08 1992-08-04 Konica Technology, Inc. Remote control unit
US5785952A (en) 1990-11-09 1998-07-28 Glaxo Group Limited Aerosol medicament formulation having a surface coating of surfactant
US5329276A (en) 1990-12-19 1994-07-12 Kabushiki Kaisha Yaskawa Denki Multidimensional signal input device
US5036442A (en) 1990-12-20 1991-07-30 Brown Joseph T Illuminated wand
US5221088A (en) 1991-01-22 1993-06-22 Mcteigue Michael H Sports training system and method
JPH05170120A (en) 1991-03-20 1993-07-09 Hitachi Ltd Vehicle yaw momentum detecting device, method, and vehicle motion control device using them
US5203563A (en) 1991-03-21 1993-04-20 Atari Games Corporation Shaker control device
US5223698A (en) 1991-04-05 1993-06-29 Telecredit, Inc. Card-activated point-of-sale lottery terminal
EP0510642B1 (en) 1991-04-25 1998-07-22 Canon Kabushiki Kaisha Image super imposing system for different display aspect ratios
US5161734A (en) 1991-05-10 1992-11-10 Procter & Gamble Reclosable carton for granular materials
US5194006A (en) 1991-05-15 1993-03-16 Zaenglein Jr William Shooting simulating process and training device
US5212368A (en) 1991-06-03 1993-05-18 Epoch Company, Ltd. Toy apparatus with card reader unit and a card having game parameter data
US5178477A (en) 1991-06-06 1993-01-12 Gambaro Thomas L Ergonomic keyboard input device
US5332322A (en) 1991-06-06 1994-07-26 Gambaro Thomas L Ergonomic thumb-actuable keyboard for a hand-grippable device
US5266944A (en) 1991-06-26 1993-11-30 Bodyguard Technologies, Inc. Electronic system and method for monitoring abusers for compliance with a protective order
US6484080B2 (en) 1995-06-07 2002-11-19 Automotive Technologies International Inc. Method and apparatus for controlling a vehicular component
JP2868650B2 (en) 1991-07-24 1999-03-10 キヤノン株式会社 Display device
US6069594A (en) 1991-07-29 2000-05-30 Logitech, Inc. Computer input device with multiple switches using single line
AT400653B (en) 1991-08-14 1996-02-26 Viennatone Gmbh REMOTE CONTROL DEVICE
USD342256S (en) 1991-09-12 1993-12-14 Selectech, Ltd. Remote control unit
US5114344A (en) 1991-09-19 1992-05-19 Katherine M. Love Method of playing an educational game
US5429361A (en) * 1991-09-23 1995-07-04 Bally Gaming International, Inc. Gaming machine information, communication and display system
US5145446A (en) 1991-09-23 1992-09-08 Kuo Yi Yu Retractable toy sword with video and sound effect
CA2075122A1 (en) * 1991-09-23 1993-03-24 He Holdings, Inc. Multiple participant moving vehicle shooting gallery
US5190285A (en) 1991-09-30 1993-03-02 At&T Bell Laboratories Electronic game having intelligent game pieces
EP0606388A4 (en) 1991-10-04 1994-12-07 Micromed Systems Inc Hand held computer input apparatus and method.
USD340042S (en) 1991-10-04 1993-10-05 Micromed Systems, Inc. Handheld computer pointing device
US5262777A (en) 1991-11-16 1993-11-16 Sri International Device for generating multidimensional input signals to a computer
US5362271A (en) 1991-10-24 1994-11-08 Butt Sandra L Magnetic playthings
US5213327A (en) 1991-10-24 1993-05-25 Konami Co. Ltd. Game apparatus
US5889670A (en) 1991-10-24 1999-03-30 Immersion Corporation Method and apparatus for tactilely responsive user interface
US5220260A (en) 1991-10-24 1993-06-15 Lex Computer And Management Corporation Actuator having electronically controllable tactile responsiveness
US5279513A (en) 1991-11-27 1994-01-18 I & K Trading Corporation Illuminating toy
US5339095A (en) 1991-12-05 1994-08-16 Tv Interactive Data Corporation Multi-media pointing device
US5459489A (en) 1991-12-05 1995-10-17 Tv Interactive Data Corporation Hand held electronic remote control device
US5406300A (en) 1991-12-12 1995-04-11 Avix, Inc. Swing type aerial display system
US5901246A (en) * 1995-06-06 1999-05-04 Hoffberg; Steven M. Ergonomic man-machine interface incorporating adaptive pattern recognition based control system
US6400996B1 (en) 1999-02-01 2002-06-04 Steven M. Hoffberg Adaptive pattern recognition based control system and method
JP3181083B2 (en) 1991-12-28 2001-07-03 任天堂株式会社 Shooting game system and shooting game system control method used therefor
USD345164S (en) 1991-12-30 1994-03-15 Grae Bernard A Hand controller for multimedia video system
US5231568A (en) 1992-01-16 1993-07-27 Impact Telemedia, Inc. Promotional game method and apparatus therefor
JPH0644005A (en) 1992-01-24 1994-02-18 Seiko Instr Inc Coordinate input device
US5280744A (en) 1992-01-27 1994-01-25 Alliedsignal Inc. Method for aiming towed field artillery pieces
CA2074388C (en) 1992-01-30 2003-01-14 Jeremy E. San Programmable graphics processor having pixel to character conversion hardware for use in a video game system or the like
US5277645A (en) 1992-02-07 1994-01-11 Mattel, Inc. Doll having accessory dispenser
CN2113224U (en) 1992-02-18 1992-08-19 丁丰年 Non-power supply electronic flash device for bicycle
EP0558281B1 (en) 1992-02-28 2000-08-30 Kabushiki Kaisha Toshiba Modulating controller for controlling two operation terminals
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US6906700B1 (en) 1992-03-05 2005-06-14 Anascape 3D controller with vibration
USD338242S (en) 1992-03-12 1993-08-10 Nintendo Of America, Inc. Video game control module
US5232223A (en) 1992-03-24 1993-08-03 Larry Dornbusch Electronic game controller
US5422956A (en) 1992-04-07 1995-06-06 Yamaha Corporation Sound parameter controller for use with a microphone
GB9207909D0 (en) 1992-04-10 1992-05-27 Rolls Royce Motor Cars Vehicle electronic control apparatus
US5317394A (en) 1992-04-30 1994-05-31 Westinghouse Electric Corp. Distributed aperture imaging and tracking system
US5236200A (en) 1992-05-20 1993-08-17 Mcgregor Dennis L Card-like structure
US5359348A (en) 1992-05-21 1994-10-25 Selectech, Ltd. Pointing device having improved automatic gain control and information reporting
US5830065A (en) 1992-05-22 1998-11-03 Sitrick; David H. User image integration into audiovisual presentation system and methodology
JP3748271B2 (en) 1992-05-22 2006-02-22 株式会社ナムコ Shooting game equipment
US5517183A (en) 1992-06-19 1996-05-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Accelerometer method and apparatus for integral display and control functions
US5481957A (en) 1992-07-06 1996-01-09 Alliedsignal Inc. Aiming and pointing system for ground based weapons equipment
US5551701A (en) 1992-08-19 1996-09-03 Thrustmaster, Inc. Reconfigurable video game controller with graphical reconfiguration display
US5296871A (en) 1992-07-27 1994-03-22 Paley W Bradford Three-dimensional mouse with tactile feedback
USD350736S (en) 1992-07-28 1994-09-20 Canon Kabushiki Kaisha Track ball
US5356343A (en) 1992-07-29 1994-10-18 Lovetere Christopher J Flash magic wand
FR2694439B1 (en) 1992-07-31 1994-10-07 Sextant Avionique Device for the dynamic display of information relating to an electronic system with variable configuration and / or composition.
JP3218716B2 (en) 1992-07-31 2001-10-15 ソニー株式会社 Input device and input system
US5453758A (en) 1992-07-31 1995-09-26 Sony Corporation Input apparatus
US5259626A (en) 1992-08-07 1993-11-09 Std Electronic International Ltd. Programmable video game controller
JP2790965B2 (en) 1992-08-19 1998-08-27 富士通株式会社 Optical pointing system
US5365214A (en) 1992-08-24 1994-11-15 Dimango Products Corporation Musical wireless alerting system
JPH0677387A (en) 1992-08-27 1994-03-18 Babcock Hitachi Kk Nc programming apparatus for printed board
US5307325A (en) 1992-08-31 1994-04-26 Magnavox Electronic Systems Company Accelerometer sensor noise reduction method and means
JP3907213B2 (en) 1992-09-11 2007-04-18 伸壹 坪田 Game control device
US7098891B1 (en) 1992-09-18 2006-08-29 Pryor Timothy R Method for providing human input to a computer
US5982352A (en) 1992-09-18 1999-11-09 Pryor; Timothy R. Method for providing human input to a computer
US5354057A (en) 1992-09-28 1994-10-11 Pruitt Ralph T Simulated combat entertainment system
US5432864A (en) 1992-10-05 1995-07-11 Daozheng Lu Identification card verification system
JP3205844B2 (en) 1992-10-23 2001-09-04 株式会社石井鐵工所 A game device that passes through the cylinder
US5430435A (en) 1992-11-13 1995-07-04 Rhys Resources Adjustable athletic training system
US5299967A (en) 1992-11-16 1994-04-05 Gilbert John M Movable figure
JPH06154422A (en) 1992-11-24 1994-06-03 Namco Ltd Operation button of game device
DE69333514T2 (en) 1992-11-24 2005-05-12 Commonwealth Scientific And Industrial Research Organisation OXYGEN ABSORPORATOR INDEPENDENT OF TRANSITION METAL CATALYSTS
JP3086827B2 (en) 1992-12-28 2000-09-11 株式会社セガ・エンタープライゼス Control key device
US5292254A (en) * 1993-01-04 1994-03-08 Motorola, Inc. Method for determining minefield effects in a simulated battlefield
US5526022A (en) 1993-01-06 1996-06-11 Virtual I/O, Inc. Sourceless orientation sensor
US5325719A (en) 1993-01-25 1994-07-05 Alliedsignal Inc. Magnetically driven resonant disc pressure transducer
US6337954B1 (en) 1993-01-28 2002-01-08 Nikon Corporation Camera having a display unit including multiple display areas and a connector mounted parallel to said multiple display areas
NL9300171A (en) 1993-01-28 1994-08-16 Josephus Godefridus Wilhelmus Computer mouse based on a system of acceleration sensors disposed therein
JP3201051B2 (en) 1993-02-05 2001-08-20 ソニー株式会社 Remote control system
US5316480A (en) 1993-02-10 1994-05-31 Ellsworth Thayne N Portable multiple module simulator apparatus
US5292124A (en) * 1993-02-16 1994-03-08 Carpenter Steven A Wand game apparatus
USD351430S (en) 1993-03-08 1994-10-11 Nintendo Co., Ltd. Controller for video game machine
JPH07284166A (en) 1993-03-12 1995-10-27 Mitsubishi Electric Corp Remote controller
US5477435A (en) 1993-03-22 1995-12-19 Carmen Rapisarda Module to provide intermittent light with movement
US5541358A (en) 1993-03-26 1996-07-30 Yamaha Corporation Position-based controller for electronic musical instrument
US5822713A (en) 1993-04-05 1998-10-13 Contraves Usa Guided fire control system
US5320358A (en) 1993-04-27 1994-06-14 Rpb, Inc. Shooting game having programmable targets and course for use therewith
US5319548A (en) * 1993-04-27 1994-06-07 Germain Craig D Interactive golf game information system
US5598187A (en) 1993-05-13 1997-01-28 Kabushiki Kaisha Toshiba Spatial motion pattern input system and input method
JPH0728591A (en) 1993-05-13 1995-01-31 Toshiba Corp Space manipulation mouse system and space operation pattern input method
JPH0744315A (en) 1993-05-21 1995-02-14 Sony Corp Input device
USD350782S (en) 1993-05-24 1994-09-20 Nintendo Of America Inc. Controller for video game machine
US5373857A (en) 1993-06-18 1994-12-20 Forte Technologies, Inc. Head tracking apparatus
USD360903S (en) 1993-06-28 1995-08-01 Nintendo Company, Ltd. Controller for a video game machine
US5435569A (en) 1993-06-30 1995-07-25 Zilliox; Kent Combined water pistol and scoring target
US5453053A (en) 1993-07-15 1995-09-26 The Walt Disney Company Amusement ride having spinning passenger cars
US5734373A (en) 1993-07-16 1998-03-31 Immersion Human Interface Corporation Method and apparatus for controlling force feedback interface systems utilizing a host computer
US5805140A (en) 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
WO1995002801A1 (en) 1993-07-16 1995-01-26 Immersion Human Interface Three-dimensional mechanical mouse
US5739811A (en) 1993-07-16 1998-04-14 Immersion Human Interface Corporation Method and apparatus for controlling human-computer interface systems providing force feedback
US5421590A (en) 1993-07-23 1995-06-06 Commodore Electronics Limited Multiple linked game controllers
US6677990B1 (en) 1993-07-27 2004-01-13 Canon Kabushiki Kaisha Control device for image input apparatus
US5403238A (en) 1993-08-19 1995-04-04 The Walt Disney Company Amusement park attraction
CA2127765C (en) 1993-08-24 2000-12-12 James Gifford Evans Personalized image recording system
US5320362A (en) * 1993-09-07 1994-06-14 Thomas Bear Computer controlled amusement structure
US5393074A (en) * 1993-09-07 1995-02-28 Bear; Thomas Modular electronic gaming system
US5411269A (en) * 1993-09-15 1995-05-02 Thomas; Keith Electronic fluid sensing actuating target apparatus
US5682181A (en) 1994-04-29 1997-10-28 Proxima Corporation Method and display control system for accentuating
US5484355A (en) 1993-10-01 1996-01-16 Smith & Nephew Roylan, Inc. System for therapeutic exercise and evaluation
US5488362A (en) 1993-10-01 1996-01-30 Anaphase Unlimited, Inc. Apparatus for controlling a video game
US5498002A (en) 1993-10-07 1996-03-12 Gechter; Jerry Interactive electronic games and screen savers with multiple characters
JPH07107573A (en) 1993-10-08 1995-04-21 Sony Corp Remote controller with erroneous operation proofing function
US5563628A (en) 1993-10-12 1996-10-08 Stroop; Jeffrey A. Hand held computer cursor controller and command input device
JPH07115690A (en) 1993-10-15 1995-05-02 Sony Corp Remote operating system by remote controller
AU7933294A (en) 1993-10-27 1995-05-22 Gerhard Roth Process and device for sensory motion control
US5523800A (en) 1993-11-04 1996-06-04 Dudek; Walter J. Programmable alpha/numeric channel entry translation function for hand held video remote controls
JP2896304B2 (en) 1993-11-05 1999-05-31 ムーグ インコーポレイテッド Exercise simulator
RU2077358C1 (en) 1993-11-18 1997-04-20 Производственный кооператив "Элав" Sound signalling apparatus for toy
TW256900B (en) 1993-11-25 1995-09-11 Alps Electric Co Ltd
JP2901476B2 (en) 1993-12-27 1999-06-07 アルプス電気株式会社 Position detecting device and position detecting method
GB2317254B (en) 1993-11-25 1998-07-01 Alps Electric Co Ltd Transmitting/receiving apparatus
JP3059619B2 (en) 1993-11-25 2000-07-04 アルプス電気株式会社 Tilt detecting device and input device using the same
US5439199A (en) 1993-12-20 1995-08-08 The National Latex Products Company Water balloon filling valve
US6181253B1 (en) 1993-12-21 2001-01-30 Trimble Navigation Limited Flexible monitoring of location and motion
US5931739A (en) 1993-12-27 1999-08-03 Moog Inc. Fail-safe ride simulator
US5574479A (en) 1994-01-07 1996-11-12 Selectech, Ltd. Optical system for determining the roll orientation of a remote unit relative to a base unit
US5615132A (en) 1994-01-21 1997-03-25 Crossbow Technology, Inc. Method and apparatus for determining position and orientation of a moveable object using accelerometers
JPH07211196A (en) 1994-01-25 1995-08-11 Sega Enterp Ltd Operation equipment for game machine
US5452893A (en) 1994-01-31 1995-09-26 Faulk; John S. Competitive, multi-lane vehicle racetrack
US5632878A (en) 1994-02-01 1997-05-27 Fet Engineering, Inc. Method for manufacturing an electroforming mold
JPH07262797A (en) 1994-02-02 1995-10-13 Hitachi Ltd Semiconductor integrated circuit device
AU122125S (en) 1994-02-08 1994-12-07 Sega Enterprises Kk Video game machine
US5806849A (en) 1994-02-17 1998-09-15 Electronic Arts, Inc. Electronic game system with wireless controller
US5512892A (en) 1994-02-25 1996-04-30 International Business Machines Corporation Hand held control device
US5443261A (en) 1994-02-25 1995-08-22 C. J. Associates, Ltd. Arcade type of toy having climbing objects
KR970006419B1 (en) * 1994-02-25 1997-04-28 엘지전자 주식회사 Wireless remocon game device
DE4407064C1 (en) 1994-03-03 1995-08-10 Lucas Dipl Ing Menke Device for gas bubble flotation
JP3406046B2 (en) 1994-03-03 2003-05-12 オリンパス光学工業株式会社 Camera with shake correction
JPH07248723A (en) 1994-03-08 1995-09-26 Kochi Pref Gov Fishing simulator
US5576838A (en) 1994-03-08 1996-11-19 Renievision, Inc. Personal video capture system
US5392613A (en) 1994-03-09 1995-02-28 Carrier Corporation Air conditioner condensate outlet
RU95103479A (en) * 1994-03-11 1996-12-27 Уолкер Эссет Мэнеджмент Лимитед Партнершип (US) Game system, game computer, method for playing or drawing lottery when player participates in it
JP3091075B2 (en) 1994-03-30 2000-09-25 ローム株式会社 Gravity-sensitive imaging device
JPH07275511A (en) * 1994-04-06 1995-10-24 Sega Enterp Ltd Attraction development method for shooting game system
US5573011A (en) 1994-04-08 1996-11-12 Felsing; Gary W. System for quantifying neurological function
JPH07302157A (en) 1994-04-28 1995-11-14 Nintendo Co Ltd Operation device
US5838138A (en) 1994-05-02 1998-11-17 Henty; David L. Electronic device which is powered by actuation of manual inputs
JPH07303290A (en) 1994-05-02 1995-11-14 Wacom Co Ltd Information input device
US5770533A (en) * 1994-05-02 1998-06-23 Franchi; John Franco Open architecture casino operating system
USD375326S (en) 1994-05-02 1996-11-05 Nintendo Co., Ltd. Controller for game machine
JP3262677B2 (en) 1994-05-02 2002-03-04 株式会社ワコム Information input device
US5421575A (en) 1994-05-03 1995-06-06 Triner; Robert D. Ball game toy
US5469194A (en) 1994-05-13 1995-11-21 Apple Computer, Inc. Apparatus and method for providing different input device orientations of a computer system
US6004134A (en) 1994-05-19 1999-12-21 Exos, Inc. Interactive simulation including force feedback
GB2289756B (en) 1994-05-26 1998-11-11 Alps Electric Co Ltd Space coordinates detecting device and input apparatus using same
JP3204844B2 (en) 1994-05-26 2001-09-04 アルプス電気株式会社 Angle detecting device and input device using the same
JP3217926B2 (en) 1994-10-13 2001-10-15 アルプス電気株式会社 Spatial coordinate detector
JP3416291B2 (en) 1994-10-05 2003-06-16 アルプス電気株式会社 Spatial coordinate detector
JPH0895704A (en) 1994-09-28 1996-04-12 Alps Electric Co Ltd Spatial coordinate detecting device
JPH07313730A (en) 1994-05-27 1995-12-05 Sony Corp Device for game machine
US5466181B1 (en) 1994-05-31 1998-04-14 Mattel Inc Doll having conductive outer skin areas and internal battery supply
US5645077A (en) 1994-06-16 1997-07-08 Massachusetts Institute Of Technology Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body
US5435561A (en) 1994-06-17 1995-07-25 Conley; William P. Electronic putting trainer
US5741182A (en) 1994-06-17 1998-04-21 Sports Sciences, Inc. Sensing spatial movement
CA2128634C (en) 1994-06-22 2005-09-27 Richard Channing Garfield Trading card game components and method of play
RU2126161C1 (en) 1994-06-27 1999-02-10 Коновалов Сергей Феодосьевич Compensation accelerometer
US5581484A (en) 1994-06-27 1996-12-03 Prince; Kevin R. Finger mounted computer input device
US5524637A (en) 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
GB9413203D0 (en) 1994-06-30 1994-08-24 Rapidville Limited Amusement apparatus
US5554033A (en) 1994-07-01 1996-09-10 Massachusetts Institute Of Technology System for human trajectory learning in virtual environments
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5528265A (en) 1994-07-18 1996-06-18 Harrison; Simon J. Orientation-operated cursor control device
JP3603285B2 (en) 1994-07-21 2004-12-22 株式会社セガ Image processing device
US5624117A (en) 1994-07-28 1997-04-29 Sugiyama Electron Co., Ltd. Game machine controller
JPH10503395A (en) 1994-07-28 1998-03-31 スーパー ディメンション インコーポレイテッド Computer game board
US5629981A (en) 1994-07-29 1997-05-13 Texas Instruments Incorporated Information management and security system
US5569085A (en) 1994-07-29 1996-10-29 Namco Limited Gun game machine having a sliding gun barrel cover for simulating the impact of a fired gun
US5757305A (en) 1994-07-29 1998-05-26 Dimango Products Transmitter for wireless audible indication system
US5733131A (en) 1994-07-29 1998-03-31 Seiko Communications Holding N.V. Education and entertainment device with dynamic configuration and operation
US5820462A (en) 1994-08-02 1998-10-13 Nintendo Company Ltd. Manipulator for game machine
KR960006960A (en) 1994-08-02 1996-03-22 요시카즈 나카무라 Golf Swing Practice Device
EP0777438A4 (en) 1994-08-23 1999-05-26 Assist Advanced Tech Ltd A user controlled combination video game and exercise system
US5651049A (en) 1994-08-30 1997-07-22 Harris Corporation RF connected message recording device and method for a telephone system
JP3422383B2 (en) 1994-09-05 2003-06-30 株式会社タイトー Method and apparatus for detecting relative position between video screen and gun in shooting game machine
US5528222A (en) 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US5531443A (en) 1994-09-13 1996-07-02 Cruz; Jose L. Keypad controller for use with a video game
DE69531994T2 (en) 1994-09-15 2004-07-22 OEC Medical Systems, Inc., Boston SYSTEM FOR POSITION DETECTION BY MEANS OF A REFERENCE UNIT ATTACHED TO A PATIENT'S HEAD FOR USE IN THE MEDICAL AREA
DE69524332T2 (en) 1994-09-19 2002-06-13 Matsushita Electric Ind Co Ltd Device for three-dimensional image reproduction
JPH0888815A (en) 1994-09-19 1996-04-02 Olympus Optical Co Ltd Video display system
JPH0895539A (en) 1994-09-28 1996-04-12 Nec Corp Presentation supporting device
US5516105A (en) 1994-10-06 1996-05-14 Exergame, Inc. Acceleration activated joystick
JPH08111144A (en) 1994-10-12 1996-04-30 Nakamichi Corp Joy stick
US5655961A (en) 1994-10-12 1997-08-12 Acres Gaming, Inc. Method for operating networked gaming devices
JP3194841B2 (en) 1994-10-24 2001-08-06 アルプス電気株式会社 Tilt detecting device and input device using the same
US5572221A (en) 1994-10-26 1996-11-05 Telefonaktiebolaget Lm Ericsson Method and apparatus for detecting and predicting motion of mobile terminals
JP3707084B2 (en) 1994-10-31 2005-10-19 ソニー株式会社 Display device and display method
WO1996015517A2 (en) * 1994-11-02 1996-05-23 Visible Interactive Corporation Interactive personal interpretive device and system for retrieving information about a plurality of objects
SE506401C2 (en) 1994-11-04 1997-12-08 Ramsele Utveckling Ab Divisible ski
DE4439502C1 (en) 1994-11-08 1995-09-14 Michail Order Black jack card game practice set=up
US5540610A (en) 1994-11-08 1996-07-30 Mattel, Inc. Flying disc water toy
USD397162S (en) 1994-11-11 1998-08-18 Nintendo Of America, Inc. Controller for game machine
US5754854A (en) 1994-11-14 1998-05-19 Microsoft Corporation Method and system for providing a group of parallel resources as a proxy for a single shared resource
CN2211084Y (en) 1994-11-15 1995-10-25 郑秋豪 Split-type keyboard of television game-machine
US5502806A (en) 1994-11-17 1996-03-26 Mahoney; Timothy S. Waiting line management system
NO954684L (en) 1994-11-21 1996-05-22 Compaq Computer Corp Device and method of interactive play with a computer
US8280682B2 (en) 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
US5666138A (en) 1994-11-22 1997-09-09 Culver; Craig F. Interface control
US5685776A (en) 1994-11-23 1997-11-11 Tiger Electronics, Inc. Hand-held electronic game devices
GB2319374B (en) 1994-11-30 1998-07-01 Alps Electric Co Ltd Remote coordinate designating device
JP3273531B2 (en) 1994-11-30 2002-04-08 アルプス電気株式会社 Remote coordinate pointing device
US5751273A (en) 1994-12-05 1998-05-12 Cohen; Allen L. Game controller for infants
US5702232A (en) 1994-12-13 1997-12-30 United Technologies Corporation Cooled airfoils for a gas turbine engine
USD376826S (en) 1994-12-19 1996-12-24 Nintendo Of America, Inc. Controller for game machine
CA2159251C (en) 1994-12-19 2000-10-24 Alan Edward Kaplan Interactive pointing device
JP2766204B2 (en) 1994-12-22 1998-06-18 アルプス電気株式会社 Operation device for game machine
US5835077A (en) 1995-01-13 1998-11-10 Remec, Inc., Computer control device
JPH08191953A (en) 1995-01-18 1996-07-30 Mizuho Kinami Operating kit for game machine, computer and mechanical tool
GB2297274B (en) 1995-01-30 1997-01-08 Sega Enterprises Kk Fishing game device and a simulated fishing reel
JPH08196742A (en) 1995-01-30 1996-08-06 Sega Enterp Ltd Fishing game apparatus and false reel used therewith
JP3228845B2 (en) 1995-01-31 2001-11-12 アルプス電気株式会社 Tilt detector
USD379832S (en) 1995-01-31 1997-06-10 Nintendo Of America, Inc. Game machine
US5987402A (en) 1995-01-31 1999-11-16 Oki Electric Industry Co., Ltd. System and method for efficiently retrieving and translating source documents in different languages, and other displaying the translated documents at a client device
JPH08221187A (en) 1995-02-16 1996-08-30 Sega Enterp Ltd Input device and method for image processing, and device and method for image processing using them
US5674128A (en) 1995-02-21 1997-10-07 Oneida Indian Nation Cashless computerized video game system and method
US6280328B1 (en) 1996-09-25 2001-08-28 Oneida Indian Nation Cashless computerized video game system and method
JP2681454B2 (en) 1995-02-21 1997-11-26 コナミ株式会社 Shooting game device
US6200216B1 (en) * 1995-03-06 2001-03-13 Tyler Peppel Electronic trading card
US5542672A (en) 1995-03-17 1996-08-06 Meredith; Chris Fishing rod and reel electronic game controller
US5694340A (en) 1995-04-05 1997-12-02 Kim; Charles Hongchul Method of training physical skills using a digital motion analyzer and an accelerometer
US5841409A (en) 1995-04-18 1998-11-24 Minolta Co., Ltd. Image display apparatus
US5991085A (en) 1995-04-21 1999-11-23 I-O Display Systems Llc Head-mounted personal visual display apparatus with image generator and holder
JPH08299596A (en) 1995-05-02 1996-11-19 Sega Enterp Ltd Data utilizing game system, data preparing device to be used for the same, game device and data card
US5757360A (en) * 1995-05-03 1998-05-26 Mitsubishi Electric Information Technology Center America, Inc. Hand held computer control device
GB2300503A (en) 1995-05-05 1996-11-06 United Microelectronics Corp Video game with display of key programming process
US5550721A (en) 1995-05-08 1996-08-27 Carmen & Thomas Rapisarda Enterprises Motion sensitive light and battery assembly switched on and off by the oscillation of a helical spring
JP3307152B2 (en) 1995-05-09 2002-07-24 ヤマハ株式会社 Automatic performance control device
MX9700278A (en) 1995-05-10 1997-05-31 Nintendo Co Ltd Operating device with analog joystick.
US6241611B1 (en) 1995-05-10 2001-06-05 Nintendo Co., Ltd. Function expansion device and operating device using the function expansion device
JP2003236246A (en) 1995-05-10 2003-08-26 Nintendo Co Ltd Operating device for game machine
CA2150215C (en) 1995-05-25 2003-02-25 John Xidos Distributed gaming system
JP3091135B2 (en) 1995-05-26 2000-09-25 株式会社バンダイ Game equipment
US5913727A (en) * 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
US5691898A (en) 1995-09-27 1997-11-25 Immersion Human Interface Corp. Safe and low cost computer peripherals with force feedback for consumer applications
US5820472A (en) 1995-06-06 1998-10-13 Briggs; Rick A. Portable waterplay structure
US5798693A (en) 1995-06-07 1998-08-25 Engellenner; Thomas J. Electronic locating systems
US7408453B2 (en) 2001-02-16 2008-08-05 Automotive Technologies International, Inc. Wheel-mounted tire pumping and energy generating system and method
JP3517482B2 (en) 1995-06-08 2004-04-12 キヤノン株式会社 Coordinate detection device and method
US5580319A (en) 1995-06-14 1996-12-03 Hamilton; Charles P. Miniature golf course maze
US5603658A (en) 1995-06-27 1997-02-18 Cohen; Justin R. Computer play toy for infants and very young children
US5556339A (en) 1995-06-27 1996-09-17 Cohen; Justin R. Computer picture toy for infants and very young children
US5779549A (en) 1996-04-22 1998-07-14 Walker Assest Management Limited Parnership Database driven online distributed tournament system
JPH0934456A (en) 1995-07-14 1997-02-07 Kawai Musical Instr Mfg Co Ltd Electronic musical instrument and electronic phonation device
US5900867A (en) 1995-07-17 1999-05-04 Gateway 2000, Inc. Self identifying remote control device having a television receiver for use in a computer
US5724106A (en) 1995-07-17 1998-03-03 Gateway 2000, Inc. Hand held remote control device with trigger button
US5702323A (en) 1995-07-26 1997-12-30 Poulton; Craig K. Electronic exercise enhancer
US5803840A (en) 1995-08-08 1998-09-08 Young; Gary Sound producing baseball bat
US5771038A (en) 1995-08-09 1998-06-23 Primax Electronics Ltd. Control device for display state change on monitor
US5587740A (en) 1995-08-17 1996-12-24 Brennan; James M. Digital photo kiosk
US6264202B1 (en) * 1995-08-21 2001-07-24 Rick A. Briggs Dry interactive play structure having recirculating play media
US5667217A (en) 1995-08-29 1997-09-16 Rlt Acquisition, Inc. Roll-down arcade game
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
JP3917808B2 (en) 1995-09-07 2007-05-23 株式会社バンダイナムコゲームス Shooting game apparatus and control method thereof
US5611731A (en) 1995-09-08 1997-03-18 Thrustmaster, Inc. Video pinball machine controller having an optical accelerometer for detecting slide and tilt
US6371375B1 (en) 1995-09-25 2002-04-16 Intermec Ip Corp. Method and apparatus for associating data with a wireless memory device
US5999168A (en) 1995-09-27 1999-12-07 Immersion Corporation Haptic accelerator for force feedback computer peripherals
US5772508A (en) * 1995-09-28 1998-06-30 Amtex Co., Ltd. Game or play facilities controlled by physiological information
US6075575A (en) 1995-10-02 2000-06-13 Starsight Telecast, Inc. Remote control device and method for using television schedule information
US6732369B1 (en) 1995-10-02 2004-05-04 Starsight Telecast, Inc. Systems and methods for contextually linking television program information
US6049823A (en) 1995-10-04 2000-04-11 Hwang; Ivan Chung-Shung Multi server, interactive, video-on-demand television system utilizing a direct-access-on-demand workgroup
JP3524247B2 (en) 1995-10-09 2004-05-10 任天堂株式会社 Game machine and game machine system using the same
EP0797139B1 (en) 1995-10-09 2003-06-18 Nintendo Co., Limited Three-dimensional image processing system
JPH09167050A (en) 1995-10-09 1997-06-24 Nintendo Co Ltd Operation device and image processing system using the device
JP3544268B2 (en) 1995-10-09 2004-07-21 任天堂株式会社 Three-dimensional image processing apparatus and image processing method using the same
US6007428A (en) 1995-10-09 1999-12-28 Nintendo Co., Ltd. Operation controlling device and video processing system used therewith
US5817207A (en) 1995-10-17 1998-10-06 Leighton; Keith R. Radio frequency identification card and hot lamination process for the manufacture of radio frequency identification cards
US5850624A (en) 1995-10-18 1998-12-15 The Charles Machine Works, Inc. Electronic compass
WO1997015880A1 (en) 1995-10-23 1997-05-01 Philips Electronics N.V. Input apparatus for a data processing system
US6430997B1 (en) 1995-11-06 2002-08-13 Trazer Technologies, Inc. System and method for tracking and assessing movement skills in multidimensional space
US6098458A (en) 1995-11-06 2000-08-08 Impulse Technology, Ltd. Testing and training system for assessing movement and agility skills without a confining field
US5636994A (en) 1995-11-09 1997-06-10 Tong; Vincent M. K. Interactive computer controlled doll
GB2307133A (en) 1995-11-13 1997-05-14 Secr Defence Video camera image stabilisation system
US5833549A (en) 1995-11-14 1998-11-10 Interactive Light, Inc. Sports trainer and game
GB2307324B (en) 1995-11-15 1999-07-21 Leonard Sim Queue management system
US6100874A (en) 1995-11-17 2000-08-08 Immersion Corporation Force feedback mouse interface
US20010021669A1 (en) 1995-11-20 2001-09-13 Creator Ltd. I*doll
US5752880A (en) * 1995-11-20 1998-05-19 Creator Ltd. Interactive doll
US6368177B1 (en) * 1995-11-20 2002-04-09 Creator, Ltd. Method for using a toy to conduct sales over a network
US6331856B1 (en) 1995-11-22 2001-12-18 Nintendo Co., Ltd. Video game system with coprocessor providing high speed efficient 3D graphics and digital audio signal processing
US6267673B1 (en) 1996-09-20 2001-07-31 Nintendo Co., Ltd. Video game system with state of next world dependent upon manner of entry from previous world via a portal
US6155926A (en) 1995-11-22 2000-12-05 Nintendo Co., Ltd. Video game system and method with enhanced three-dimensional character and background control
US5672090A (en) 1995-11-22 1997-09-30 Lcd International L.L.C. Equine-shaped toy figure
US6022274A (en) 1995-11-22 2000-02-08 Nintendo Co., Ltd. Video game system using memory module
US5716281A (en) 1995-11-27 1998-02-10 Sega Enterprises, Ltd. Game apparatus using a vehicle with an optical image synthesizing system
US6127990A (en) 1995-11-28 2000-10-03 Vega Vista, Inc. Wearable display and methods for controlling same
US6184847B1 (en) 1998-09-22 2001-02-06 Vega Vista, Inc. Intuitive control of portable data displays
EP0864145A4 (en) 1995-11-30 1998-12-16 Virtual Technologies Inc Tactile feedback man-machine interface device
JPH09149915A (en) 1995-11-30 1997-06-10 Aiphone Co Ltd Visually handicapped person guidance system
JPH09152307A (en) 1995-12-01 1997-06-10 Sega Enterp Ltd Apparatus and method for detection of coordinates, and game apparatus
US5679004A (en) 1995-12-07 1997-10-21 Movit, Inc. Myoelectric feedback system
JPH09155065A (en) 1995-12-12 1997-06-17 Hudson Soft Co Ltd Match type computer game system capable of exchanging specified intrinsic data
US5676450A (en) 1995-12-14 1997-10-14 Sink; Charles Stimulus responsive sound/light amusement assembly
US6183364B1 (en) 1995-12-21 2001-02-06 Karen I. Trovato Simulated environment using procedural animation in a simulated city
US5823782A (en) 1995-12-29 1998-10-20 Tinkers & Chance Character recognition educational system
US5641288A (en) 1996-01-11 1997-06-24 Zaenglein, Jr.; William G. Shooting simulating process and training device using a virtual reality display screen
US5825298A (en) 1996-01-16 1998-10-20 Walter; Kenneth E. Radio frequency transponder method for identifying geographical locations such as survey traverse points
US5867146A (en) 1996-01-17 1999-02-02 Lg Electronics Inc. Three dimensional wireless pointing device
US5892501A (en) 1996-01-17 1999-04-06 Lg Electronics Inc, Three dimensional wireless pointing device
US5642931A (en) 1996-01-18 1997-07-01 Taxiwand Inc. Taxi wand
US5623581A (en) 1996-01-22 1997-04-22 Apbi Interactive Kiosk Systems Direct view interactive photo kiosk and image forming process for same
US5913019A (en) 1996-01-22 1999-06-15 Foto Fantasy, Inc. Direct view interactive photo kiosk and composite image forming process for same
US5703623A (en) 1996-01-24 1997-12-30 Hall; Malcolm G. Smart orientation sensing circuit for remote control
US5698784A (en) 1996-01-24 1997-12-16 Gyration, Inc. Vibratory rate gyroscope and methods of assembly and operation
US5929841A (en) 1996-02-05 1999-07-27 Sharp Kabushiki Kaisha Data input unit
US6164808A (en) 1996-02-09 2000-12-26 Murata Mfg. Co., Ltd. Three-dimensional data input device
KR100532807B1 (en) 1996-02-09 2006-06-22 마텔인코포레이티드 Remote control wand for computer video game interaction
US5702305A (en) 1996-02-15 1997-12-30 Motorola Electronic game system
JPH09274534A (en) 1996-04-04 1997-10-21 Ricoh Co Ltd Pen type input device
US5902968A (en) 1996-02-20 1999-05-11 Ricoh Company, Ltd. Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement
JP4033929B2 (en) 1996-05-27 2008-01-16 株式会社リコー Pen-type input device
US5791648A (en) 1996-02-20 1998-08-11 Hohl; G. Burnell Inductive sensory apparatus
JPH09230997A (en) 1996-02-20 1997-09-05 Ricoh Co Ltd Pen type input device
GB2310481B (en) 1996-02-22 1999-05-05 Top Game & Company Ltd Controller for a video game console
US5991693A (en) 1996-02-23 1999-11-23 Mindcraft Technologies, Inc. Wireless I/O apparatus and method of computer-assisted instruction
US5746602A (en) 1996-02-27 1998-05-05 Kikinis; Dan PC peripheral interactive doll
JP3425033B2 (en) 1996-02-27 2003-07-07 株式会社ナムコ Game facilities
JP3574264B2 (en) 1996-02-29 2004-10-06 株式会社河合楽器製作所 Electronic musical instrument
EP1332778B1 (en) 1996-03-05 2004-12-08 Sega Enterprises, Ltd. Controller and expansion unit for controller
US5825350A (en) 1996-03-13 1998-10-20 Gyration, Inc. Electronic pointing apparatus and method
US5919149A (en) 1996-03-19 1999-07-06 Allum; John H. Method and apparatus for angular position and velocity based determination of body sway for the diagnosis and rehabilitation of balance and gait disorders
US5676540A (en) 1996-03-19 1997-10-14 Aluminum Company Of America Flue walls using interlocking bricks
US5586767A (en) 1996-03-21 1996-12-24 Bohland; William Lawn game apparatus for use with a water hose
US5786626A (en) 1996-03-25 1998-07-28 Ibm Corporation Thin radio frequency transponder with leadframe antenna structure
JP3709447B2 (en) 1996-03-29 2005-10-26 株式会社セガ Tablet unit
US6015344A (en) * 1996-04-05 2000-01-18 Rlt Acquisition, Inc. Prize redemption system for games
JPH09284676A (en) 1996-04-15 1997-10-31 Sony Corp Method for processing video and audio signal synchronously with motion of body and video display device
US6110041A (en) * 1996-12-30 2000-08-29 Walker Digital, Llc Method and system for adapting gaming devices to playing preferences
US6025830A (en) 1996-04-30 2000-02-15 Cohen; Allen L. Game controller for infants
US5881366A (en) 1996-05-01 1999-03-09 Logitech, Inc. Wireless peripheral interface
US5823779A (en) 1996-05-02 1998-10-20 Advanced Interactive Systems, Inc. Electronically controlled weapons range with return fire
US6072467A (en) 1996-05-03 2000-06-06 Mitsubishi Electric Information Technology Center America, Inc. (Ita) Continuously variable control of animated on-screen characters
US5810666A (en) 1996-05-08 1998-09-22 Mero; George T. Role playing game
US6009458A (en) 1996-05-09 1999-12-28 3Do Company Networked computer game system with persistent playing objects
USD396468S (en) 1996-05-29 1998-07-28 Gateway 2000, Inc. Wireless remote with trackball
JPH09325081A (en) * 1996-06-05 1997-12-16 Casio Comput Co Ltd Motion-measuring device and electronic game device with motion-measuring device
US5821859A (en) 1996-06-07 1998-10-13 Ibm Corporation Concealed magnetic ID code and antitheft tag
US5685778A (en) 1996-06-07 1997-11-11 Universal Studios, Inc. Ride attraction having animated figures
JPH1021000A (en) 1996-06-28 1998-01-23 Sumitomo Metal Ind Ltd Signal input device
JPH1015250A (en) 1996-06-28 1998-01-20 Sega Enterp Ltd Game device
USD395464S (en) 1996-07-01 1998-06-23 Namco, Ltd. Steering wheel for a video game machine
US5971271A (en) 1996-07-01 1999-10-26 Mirage Resorts, Incorporated Gaming device communications and service system
US6018775A (en) 1996-07-02 2000-01-25 Gateway 2000, Inc. System with a remote wireless mass storage which provides identification of a particular mass storage stored in a cradle to the system
US6167353A (en) 1996-07-03 2000-12-26 Interval Research Corporation Computer method and apparatus for interacting with a physical system
AU6612296A (en) 1996-07-05 1998-02-02 Vlg Virtual Laser Games Gmbh Computerized game system
US6414589B1 (en) 1996-07-08 2002-07-02 Dimango Products Corporation Apparatus for remotely controlling auxiliary doorbell chime from doorbell push button
US6128002A (en) 1996-07-08 2000-10-03 Leiper; Thomas System for manipulation and display of medical images
US6184862B1 (en) 1996-07-08 2001-02-06 Thomas Leiper Apparatus for audio dictation and navigation of electronic images and documents
JPH1033831A (en) 1996-07-19 1998-02-10 Data East Kk Video gun game device
US6058342A (en) 1996-07-25 2000-05-02 Case Corporation Precision control of implement position/motion
US5847854A (en) 1996-08-02 1998-12-08 Trendmasters, Inc. Filtered light signal control suitable for toys
JPH1049290A (en) 1996-08-05 1998-02-20 Sony Corp Device and method for processing information
JPH1043349A (en) 1996-08-08 1998-02-17 Tokico Ltd Swing diagnostic equipment
DE19632273A1 (en) 1996-08-09 1998-02-12 Helge Zwosta Body sensors
US5785592A (en) 1996-08-12 1998-07-28 Sarcos, Inc. Interactive target game system
US5835156A (en) 1996-08-14 1998-11-10 Samsung Electroncis, Ltd. Television graphical user interface employing remote random access pointing device
US5955988A (en) 1996-08-14 1999-09-21 Samsung Electronics Co., Ltd. Graphical user interface for establishing installation location for satellite based television system
TW358321B (en) 1996-08-14 1999-05-11 Sony Corp Remote control apparatus
US6016144A (en) 1996-08-14 2000-01-18 Samsung Electronics Co., Ltd. Multi-layered television graphical user interface
US5865680A (en) 1996-08-21 1999-02-02 Briggs; Rick A. Kinetic interactive play structure
US6115028A (en) 1996-08-22 2000-09-05 Silicon Graphics, Inc. Three dimensional input system using tilt
EP1016002A4 (en) * 1996-09-04 2000-11-15 David A Goldberg Method and system for obtaining person-specific images in a public venue
JPH1091327A (en) 1996-09-11 1998-04-10 Pioneer Electron Corp Plotting device
JPH1099542A (en) 1996-09-27 1998-04-21 Mitsumi Electric Co Ltd Rear key mounting mechanism of control pad for computer game machine
JP3263012B2 (en) 1996-10-01 2002-03-04 株式会社ソニー・コンピュータエンタテインメント Operation device for game machine
US5957779A (en) 1996-10-08 1999-09-28 Larson; Walter F. Tower
USD393884S (en) 1996-10-08 1998-04-28 Matsushita Electric Industrial Co., Ltd. TV game machine
US5872887A (en) 1996-10-08 1999-02-16 Gte Laboratories Incorporated Personal video, and system and method of making same
JP3140971B2 (en) 1996-10-17 2001-03-05 株式会社ナムコ Game controller
US5745226A (en) 1996-11-04 1998-04-28 Litton Systems, Inc. Passive optical velocity measurement device and method
USD394264S (en) 1996-11-08 1998-05-12 Sharp Kabushiki Kaisha Remote controller for video projector
US5883619A (en) 1996-11-12 1999-03-16 Primax Electronics Ltd. Computer mouse for scrolling a view of an image
US6010406A (en) 1996-11-20 2000-01-04 Alps Electric Co., Ltd. Operation device for game machine
JPH10154038A (en) 1996-11-21 1998-06-09 Hudson Soft Co Ltd Pointing input device
JP3469410B2 (en) 1996-11-25 2003-11-25 三菱電機株式会社 Wellness system
US5716216A (en) 1996-11-26 1998-02-10 Lightshot Systems, Inc. System for simulating shooting sports
US6154723A (en) 1996-12-06 2000-11-28 The Board Of Trustees Of The University Of Illinois Virtual reality 3D interface system for data creation, viewing and editing
US5811896A (en) 1996-12-06 1998-09-22 Boris Grad Switching device
JPH10165642A (en) 1996-12-13 1998-06-23 Konami Co Ltd Dummy gun for shooting game machine
US6148100A (en) 1996-12-20 2000-11-14 Bechtel Bwxt Idaho, Llc 3-dimensional telepresence system for a robotic environment
USD400885S (en) 1996-12-20 1998-11-10 Sony Corporation Remote controller
US5971270A (en) 1996-12-23 1999-10-26 Computer Data Exchange, Inc. Identification code and tab system
US5741189A (en) 1996-12-23 1998-04-21 Briggs; Rick A. Retrofit water play structure and method
US6312332B1 (en) * 1998-03-31 2001-11-06 Walker Digital, Llc Method and apparatus for team play of slot machines
US6206782B1 (en) 1998-09-14 2001-03-27 Walker Digital, Llc. System and method for facilitating casino team play
US6243491B1 (en) 1996-12-31 2001-06-05 Lucent Technologies Inc. Methods and apparatus for controlling a video system with visually recognized props
US6080063A (en) 1997-01-06 2000-06-27 Khosla; Vinod Simulated real time game play with live event
US6146278A (en) 1997-01-10 2000-11-14 Konami Co., Ltd. Shooting video game machine
US5854622A (en) 1997-01-17 1998-12-29 Brannon; Daniel J. Joystick apparatus for measuring handle movement with six degrees of freedom
US5742233A (en) 1997-01-21 1998-04-21 Hoffman Resources, Llc Personal security and tracking system
WO1998032238A2 (en) 1997-01-21 1998-07-23 Koninklijke Philips Electronics N.V. Transponder communication device
US5942969A (en) * 1997-01-23 1999-08-24 Sony Corporation Treasure hunt game using pager and paging system
JP4120017B2 (en) 1997-01-30 2008-07-16 株式会社セガ INPUT DEVICE, GAME PROCESSING DEVICE, AND METHOD THEREOF
US5977951A (en) 1997-02-04 1999-11-02 Microsoft Corporation System and method for substituting an animated character when a remote control physical character is unavailable
US6302796B1 (en) 1997-02-05 2001-10-16 Toymax Inc. Player programmable, interactive toy for a shooting game
US5984788A (en) 1997-06-09 1999-11-16 Toymax Inc. Interactive toy shooting game having a target with a feelable output
US5796354A (en) 1997-02-07 1998-08-18 Reality Quest Corp. Hand-attachable controller with direction sensing
WO1998036400A1 (en) 1997-02-13 1998-08-20 Assist Advanced Technologies Ltd. Sensors for monitoring periodic movement of a human subject
JP3692683B2 (en) 1997-02-14 2005-09-07 株式会社セガ Game device
US6227966B1 (en) 1997-02-19 2001-05-08 Kabushiki Kaisha Bandai Simulation device for fostering a virtual creature
US6276353B1 (en) 1997-02-21 2001-08-21 Koala Corporation Projectile launcher
JPH10235019A (en) 1997-02-27 1998-09-08 Sony Corp Portable life game device and its data management device
US6747632B2 (en) 1997-03-06 2004-06-08 Harmonic Research, Inc. Wireless control device
JPH10254614A (en) 1997-03-06 1998-09-25 Hitachi Ltd Portable electronic processor and operation method therefor
US5875257A (en) 1997-03-07 1999-02-23 Massachusetts Institute Of Technology Apparatus for controlling continuous behavior through hand and arm gestures
JP3882287B2 (en) 1997-03-07 2007-02-14 株式会社セガ Fishing equipment
US5764224A (en) 1997-03-25 1998-06-09 Ericsson Inc. Cordless mouse-stylus-pointer
US6144367A (en) 1997-03-26 2000-11-07 International Business Machines Corporation Method and system for simultaneous operation of multiple handheld control devices in a data processing system
GB2325537B8 (en) 1997-03-31 2000-01-31 Microsoft Corp Query-based electronic program guide
US5973757A (en) 1997-03-31 1999-10-26 Aubuchon; Mark S. Contoured and balanced remote tv control device
KR20000016166A (en) 1997-04-01 2000-03-25 클라우스 포스, 게오르그 뮐러 System for operating a control device in a motor vehicle
US6012984A (en) 1997-04-11 2000-01-11 Gamesville.Com,Inc. Systems for providing large arena games over computer networks
KR100229602B1 (en) 1997-04-12 1999-11-15 윤종용 Wire/wireless input apparatus with pointing device and computer system for use with the same
US6020876A (en) 1997-04-14 2000-02-01 Immersion Corporation Force feedback interface with selective disturbance filter
US5803740A (en) 1997-04-22 1998-09-08 Board Of Trustees Of Western Michigan University Learning and assessment aid for a severely visually impaired individual
US5938200A (en) 1997-04-22 1999-08-17 Gamescape, Inc. Wagering game of chance
US5978770A (en) 1997-04-24 1999-11-02 Visible Interactive Corporation Assigning and managing patron reservations for distributed services using wireless personal communication devices
US6186902B1 (en) 1997-05-01 2001-02-13 Koala Corp. Participatory water slide play structure
AUPO674197A0 (en) 1997-05-09 1997-06-05 I.G.T. (Australia) Pty. Limited Operation of gaming machines in linked bonus prize winning mode
JPH10307574A (en) 1997-05-09 1998-11-17 Sharp Corp Computer with graphic display function
WO1998011528A1 (en) 1997-05-09 1998-03-19 Remec Inc. Computer control device
US5956035A (en) 1997-05-15 1999-09-21 Sony Corporation Menu selection with menu stem and submenu size enlargement
IL120857A (en) 1997-05-19 2003-03-12 Creator Ltd Programmable assembly toy
IL120855A0 (en) * 1997-05-19 1997-09-30 Creator Ltd Apparatus and methods for controlling household appliances
IL120856A0 (en) 1997-05-19 1997-09-30 Creator Ltd Controllable toy system operative in conjunction with a household audio entertainment player
GB2325558A (en) 1997-05-23 1998-11-25 Faith Tutton Electronic sound generating apparatus
US6077106A (en) * 1997-06-05 2000-06-20 Micron Communications, Inc. Thin profile battery mounting contact for printed circuit boards
TW356730U (en) 1997-06-14 1999-04-21 Top Game & Company Ltd Operation apparatus for game machine
US5893562A (en) 1997-06-16 1999-04-13 Spector; Donald Shooter and target water gun game
US5923317A (en) 1997-06-17 1999-07-13 Thrustmaster, Inc. Two-handed controller for video games and simulations
US5964660A (en) 1997-06-18 1999-10-12 Vr-1, Inc. Network multiplayer game
US5779240A (en) 1997-06-20 1998-07-14 Santella; Andrew W. Water fortress
IL121178A (en) 1997-06-27 2003-11-23 Nds Ltd Interactive game system
US5947868A (en) 1997-06-27 1999-09-07 Dugan; Brian M. System and method for improving fitness equipment and exercise
US6057788A (en) 1997-06-30 2000-05-02 Cummings; Thomas F. Remote control keypad unit
US6132318A (en) 1997-07-01 2000-10-17 Scs Interactive, Inc. Interactive funhouse play structure
US5947789A (en) 1997-07-28 1999-09-07 Thinkway Trading Corporation Toy sword having a variable color illuminated blade
US6217450B1 (en) 1997-10-23 2001-04-17 Christopher Meredith Computerized pool cue
US6220963B1 (en) 1997-07-30 2001-04-24 Christopher Meredith Computerized pool cue and controller
US5986644A (en) 1997-07-30 1999-11-16 Selectech, Ltd. Remote control system
US6106392A (en) 1997-07-30 2000-08-22 Meredith; Christopher Computerized pool cue and controller
US6008731A (en) 1997-07-30 1999-12-28 Union Switch & Signal, Inc. Detector for sensing motion and direction of a railway vehicle
JPH1153994A (en) 1997-07-31 1999-02-26 Sega Enterp Ltd Operation device and grip for the same
USD407761S (en) 1997-08-18 1999-04-06 Nintendo Co. Ltd. Game machine
IL121574A0 (en) * 1997-08-18 1998-02-08 Creator Ltd Techniques and apparatus for entertainment sites amusement parks and other information and/or entertainment dispensing sites
US6129549A (en) 1997-08-22 2000-10-10 Thompson; Clyde H. Computer system for trapshooting competitions
US6142876A (en) 1997-08-22 2000-11-07 Cumbers; Blake Player tracking and identification system
US20020036617A1 (en) 1998-08-21 2002-03-28 Timothy R. Pryor Novel man machine interfaces and applications
DE69828412T2 (en) 1997-08-25 2005-06-23 Beamhit L.L.C. LASER WORKING TOOLS WHICH ARE CONNECTED TO A NETWORK
US7064498B2 (en) 1997-08-26 2006-06-20 Color Kinetics Incorporated Light-emitting diode based products
IL121642A0 (en) 1997-08-27 1998-02-08 Creator Ltd Interactive talking toy
US5986570A (en) 1997-09-03 1999-11-16 Micron Communications, Inc. Method for resolving signal collisions between multiple RFID transponders in a field
US5996033A (en) 1997-09-04 1999-11-30 Chiu-Hao; Cheng Data compression device comprising input connector for connecting to game player system, output connector for connecting to memory card, and virtual memory page switch
USD410909S (en) 1997-09-23 1999-06-15 Interlink Electronics, Inc. Pointing device
JPH1199284A (en) 1997-09-30 1999-04-13 Sony Corp Controller
US6037882A (en) 1997-09-30 2000-03-14 Levy; David H. Method and apparatus for inputting data to an electronic system
US5955713A (en) 1997-10-03 1999-09-21 Circle Seal Corporation Tilt switch array for electronic orientation detection
US6518950B1 (en) * 1997-10-07 2003-02-11 Interval Research Corporation Methods and systems for providing human/computer interfaces
JPH11114223A (en) 1997-10-09 1999-04-27 Sony Corp Operating device for game machine
US5926780A (en) 1997-10-09 1999-07-20 Tweed Fox System for measuring the initial velocity vector of a ball and method of use
US5912612A (en) 1997-10-14 1999-06-15 Devolpi; Dean R. Multi-speed multi-direction analog pointing device
US5982356A (en) 1997-10-15 1999-11-09 Akiyama; Robert Ergonomic computer cursor control apparatus and mount
USD402328S (en) 1997-10-16 1998-12-08 Nintendo Co., Ltd. Magnetic disk drive for game machine
USD405071S (en) 1997-10-17 1999-02-02 Gambaro Thomas L Cursor control--data entry device
US5908996A (en) 1997-10-24 1999-06-01 Timewarp Technologies Ltd Device for controlling a musical performance
GB9722766D0 (en) 1997-10-28 1997-12-24 British Telecomm Portable computers
US6198471B1 (en) 1997-11-07 2001-03-06 Brandt A. Cook Free-floating multi-axis controller
USD412016S (en) 1997-11-12 1999-07-13 Christopher Meredith Computerized fishing rod and reel
US6342010B1 (en) 1997-11-14 2002-01-29 Russell Dale Slifer Personalized wireless video game system
US6211861B1 (en) 1998-06-23 2001-04-03 Immersion Corporation Tactile mouse device
JPH11207034A (en) 1997-11-20 1999-08-03 Nintendo Co Ltd Game system capable of playing between different kinds of game machines through use of backup data
US6059576A (en) 1997-11-21 2000-05-09 Brann; Theodore L. Training and safety device, system and method to aid in proper movement during physical activity
US6162123A (en) 1997-11-25 2000-12-19 Woolston; Thomas G. Interactive electronic sword game
JP3187758B2 (en) 1997-11-27 2001-07-11 コナミ株式会社 Ski simulation game device
JP2980579B2 (en) 1997-12-09 1999-11-22 コナミ株式会社 Fishing game system and game input device
US6254394B1 (en) * 1997-12-10 2001-07-03 Cubic Defense Systems, Inc. Area weapons effect simulation system and method
JP3861273B2 (en) 1997-12-18 2006-12-20 ソニー株式会社 Portable information terminal device and information display control method for portable information terminal device
US6210287B1 (en) 1997-12-19 2001-04-03 Koala Corporation Interactive arena play structure
USD397371S (en) 1997-12-22 1998-08-25 Radica China Limited Hand held electronic fishing game
USD397372S (en) 1997-12-22 1998-08-25 Radica China Limited Hand held electronic fishing game
USD397729S (en) 1997-12-22 1998-09-01 Radica China Limited Hand held electronic fishing game
US6181329B1 (en) 1997-12-23 2001-01-30 Ricoh Company, Ltd. Method and apparatus for tracking a hand-held writing instrument with multiple sensors that are calibrated by placing the writing instrument in predetermined positions with respect to the writing surface
US6079982A (en) 1997-12-31 2000-06-27 Meader; Gregory M Interactive simulator ride
WO1999034879A1 (en) 1998-01-07 1999-07-15 Pragmatic Designs, Inc. Electronic counting apparatus for a child's game and method therefor
US6160540A (en) 1998-01-12 2000-12-12 Xerox Company Zoomorphic computer user interface
US5987421A (en) 1998-02-05 1999-11-16 Morfun Systems, Inc. Computerized system and method for locating individual members of discrete groups and for electronically registering and holding the ' groups position in waiting lines
US6261180B1 (en) * 1998-02-06 2001-07-17 Toymax Inc. Computer programmable interactive toy for a shooting game
US6110000A (en) 1998-02-10 2000-08-29 T.L. Products Promoting Co. Doll set with unidirectional infrared communication for simulating conversation
US5936527A (en) 1998-02-10 1999-08-10 E-Tag Systems, Inc. Method and apparatus for locating and tracking documents and other objects
US5987420A (en) 1998-02-11 1999-11-16 Omron Corporation Reservation media issuing system using fuzzy logic
US6280327B1 (en) 1998-06-05 2001-08-28 Arista Interactive Llc Wireless game control units
US6878066B2 (en) 1998-02-13 2005-04-12 Freedom Wave Llc Wireless game control units
CA2248745C (en) 1998-02-13 2005-08-23 Arista Interactive Llc Wireless game control units
JPH11239670A (en) 1998-02-25 1999-09-07 Sony Corp Portable electronic equipment
US5911634A (en) 1998-03-04 1999-06-15 Nidata; Gary Tiltable platform
JP3228216B2 (en) 1998-03-05 2001-11-12 ヤマハ株式会社 Card game system
USD407071S (en) 1998-03-09 1999-03-23 General Instrument Corporation 4-in-1 remote control unit
WO1999046741A1 (en) 1998-03-09 1999-09-16 Schlumberger Systems Ic card system for a game machine
US6052083A (en) 1998-03-12 2000-04-18 Trimble Navigation Limited Method and apparatus for position identification
GB9805911D0 (en) 1998-03-19 1998-05-13 World Golf Systems Limited Identifying golf balls
JP3210622B2 (en) 1998-03-23 2001-09-17 株式会社島津機械製作所 Hand rolled sushi production equipment
US6013007A (en) 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
US6160405A (en) 1998-03-30 2000-12-12 Jovial Test Equipment, Inc. Method and apparatus for remotely changing signal characteristics of a signal generator
GB2375241B (en) 1998-03-31 2003-03-19 Exodus Electronic Ltd Control system
USD413359S (en) 1998-04-14 1999-08-31 Abc International Traders, Inc. Handheld electronic fishing game
US6160986A (en) 1998-04-16 2000-12-12 Creator Ltd Interactive toy
US6176837B1 (en) 1998-04-17 2001-01-23 Massachusetts Institute Of Technology Motion tracking system
US6538675B2 (en) 1998-04-17 2003-03-25 Canon Kabushiki Kaisha Display control apparatus and display control system for switching control of two position indication marks
JP3338777B2 (en) 1998-04-22 2002-10-28 日本電気株式会社 Mobile terminal and screen display method thereof
US6095926A (en) 1998-05-01 2000-08-01 Universal Studios, Inc. Amusement ride vehicle
US6672962B1 (en) 1998-05-13 2004-01-06 Kabushiki Kaisha Sega Enterprises Gun-shaped controller and game device
USD412940S (en) 1998-05-14 1999-08-17 Sega Enterprises, Ltd. Video game machine
JP2000033184A (en) 1998-05-14 2000-02-02 Masanobu Kujirada Whole body action input type game and event device
US6301534B1 (en) 1998-05-19 2001-10-09 The Texas A&M University System Method and system for vehicle directional control by commanding lateral acceleration
US6354945B1 (en) 1998-05-20 2002-03-12 Alps Electric Co., Ltd. Controller
DE19923032A1 (en) * 1998-05-21 1999-12-02 Cormorant Properties Ltd Laser-beam target game
US6171190B1 (en) 1998-05-27 2001-01-09 Act Labs, Ltd. Photosensitive input peripheral device in a personal computer-based video gaming platform
US6445960B1 (en) 1998-05-29 2002-09-03 Ronbotics Corporation Electric motion platform and a control system for controlling the same
US6154137A (en) 1998-06-08 2000-11-28 3M Innovative Properties Company Identification tag with enhanced security
US6882824B2 (en) 1998-06-10 2005-04-19 Leapfrog Enterprises, Inc. Interactive teaching toy
US6200219B1 (en) 1998-06-10 2001-03-13 Elliot Rudell Toy vehicles with integral motion sensitive game display
US5944533A (en) 1998-06-10 1999-08-31 Knowledge Kids Enterprises, Inc. Interactive educational toy
US6717573B1 (en) 1998-06-23 2004-04-06 Immersion Corporation Low-cost haptic mouse implementations
US6563487B2 (en) 1998-06-23 2003-05-13 Immersion Corporation Haptic feedback for directional control pads
US6024647A (en) 1998-06-24 2000-02-15 Universal Studios, Inc. Amusement ride vehicle with motion controlled seating
US6024142A (en) 1998-06-25 2000-02-15 Micron Communications, Inc. Communications system and method, fleet management system and method, and method of impeding theft of fuel
JP2000010141A (en) 1998-06-26 2000-01-14 Ricoh Co Ltd Digital camera with camera shake correction mechanism
US6496122B2 (en) 1998-06-26 2002-12-17 Sharp Laboratories Of America, Inc. Image display and remote control system capable of displaying two distinct images
US6302793B1 (en) 1998-07-02 2001-10-16 Station Casinos, Inc. Multi-property player tracking system
US5924695A (en) 1998-07-06 1999-07-20 Heykoop; Nancy Pirates treasure hunt game and method of playing same
US6220965B1 (en) 1998-07-08 2001-04-24 Universal City Studios Inc. Amusement system
US6060847A (en) 1998-07-08 2000-05-09 Universal Studios, Inc. Interactive amusement ride
US20010021950A1 (en) 1998-07-10 2001-09-13 Michael Hawley Method and apparatus for controlling access to a computer network using tangible media
US6297751B1 (en) 1998-07-10 2001-10-02 Lucent Technologies Inc. Low-voltage joystick port interface
DE69911029D1 (en) 1998-07-10 2003-10-09 Goodyear Tire & Rubber SELF-SUPPLYING TIRE SPEED DETECTOR
DE19831502A1 (en) 1998-07-14 2000-01-20 Zahnradfabrik Friedrichshafen Control method for displacement or angle setting device in automobile e.g. for continuously variable drive transmission
US5963136A (en) 1998-07-15 1999-10-05 O'brien; Charles Terrence Interactive prescription compliance and life safety system
US6512511B2 (en) 1998-07-20 2003-01-28 Alphagrip, Inc. Hand grippable combined keyboard and game controller system
US6261186B1 (en) 1998-07-24 2001-07-17 Nbgs International, Inc. Water amusement system and method
US6075443A (en) 1998-07-31 2000-06-13 Sarnoff Corporation Wireless tether
JP3685931B2 (en) 1998-07-31 2005-08-24 株式会社ソニー・コンピュータエンタテインメント Information processing apparatus startup method, storage medium, and information processing apparatus
US6583783B1 (en) 1998-08-10 2003-06-24 Deutsches Zentrum Fur Luft- Und Raumfahrt E.V. Process for performing operations using a 3D input device
US6138367A (en) 1998-08-14 2000-10-31 Trimble Navigation Limited Tilt prediction for total station
KR20000015637A (en) 1998-08-31 2000-03-15 윤종용 Device for inputting a signal of a remote controller in an image displaying apparatus
US6323614B1 (en) 1998-09-04 2001-11-27 The Texas A&M University System System and method for controlling suspension using a magnetic field
US6599194B1 (en) 1998-09-08 2003-07-29 Darren Smith Home video game system with hard disk drive and internet access capability
US6369794B1 (en) 1998-09-09 2002-04-09 Matsushita Electric Industrial Co., Ltd. Operation indication outputting device for giving operation indication according to type of user's action
AUPP702098A0 (en) 1998-11-09 1998-12-03 Silverbrook Research Pty Ltd Image creation method and apparatus (ART73)
US6745234B1 (en) 1998-09-11 2004-06-01 Digital:Convergence Corporation Method and apparatus for accessing a remote location by scanning an optical code
US6196893B1 (en) * 1998-09-11 2001-03-06 Robert Casola Toy with personalized voice message and system for remote recording of message
US6222522B1 (en) 1998-09-18 2001-04-24 Interval Research Corporation Baton and X, Y, Z, position sensor
US6328648B1 (en) 1998-09-18 2001-12-11 Walker Digital, Llc Electronic amusement device and method for propagating a performance adjustment signal
JP2969111B1 (en) 1998-09-22 1999-11-02 コナミ株式会社 VIDEO GAME DEVICE, FILTER WINDING VOLUME CALCULATING METHOD IN VIDEO GAME, AND READABLE RECORDING MEDIUM WHICH RECORDING PROGRAM FOR FILITARY BODY WINDING VOLUME IN VIDEO GAME
US6044297A (en) 1998-09-25 2000-03-28 Medtronic, Inc. Posture and device orientation and calibration for implantable medical devices
JP3054948B2 (en) 1998-09-25 2000-06-19 コナミ株式会社 Recording medium, storage device, and game device
DE19846982C2 (en) 1998-10-12 2001-05-17 Siemens Ag Method and system for monitoring a user's posture on exercise equipment
US6184863B1 (en) 1998-10-13 2001-02-06 The George Washington University Direct pointing apparatus and method therefor
JP2000116940A (en) 1998-10-15 2000-04-25 Seta Corp Bidirectional communication-type game system
US6473070B2 (en) 1998-11-03 2002-10-29 Intel Corporation Wireless tracking system
JP2000140420A (en) 1998-11-13 2000-05-23 Aruze Corp Controller for game machine
US6329648B1 (en) 1998-11-19 2001-12-11 Leroy C. Delatorre Phase locked loop fiber optic sensor system
IL127293A0 (en) 1998-11-26 1999-09-22 Creator Ltd Script development systems and methods useful therefor
FR2786899B1 (en) 1998-12-03 2006-09-29 Jean Bonnard MOVEMENT INDICATOR FOR SOFTWARE
ES2546929T3 (en) 1998-12-07 2015-09-30 Universal City Studios Llc Image correction method to compensate for image distortion from the point of view
US20030158699A1 (en) 1998-12-09 2003-08-21 Christopher P. Townsend Orientation sensor
AUPP767898A0 (en) 1998-12-14 1999-01-14 Carter (New Zealand) Limited Spinal monitor apparatus and method
JP2000176150A (en) 1998-12-15 2000-06-27 Namco Ltd Input operating device of game machine
US6149490A (en) 1998-12-15 2000-11-21 Tiger Electronics, Ltd. Interactive toy
JP3662435B2 (en) 1998-12-17 2005-06-22 コナミ株式会社 Shooting video game equipment
AU777641B2 (en) 1998-12-17 2004-10-28 Nec Tokin Corporation Orientation angle detector
US7055101B2 (en) * 1998-12-18 2006-05-30 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US6577350B1 (en) 1998-12-21 2003-06-10 Sony Corporation Method and apparatus for displaying an electronic program guide
US6198470B1 (en) 1998-12-28 2001-03-06 Uri Agam Computer input device
US6198295B1 (en) 1999-01-06 2001-03-06 Honeywell Inc. Apparatus and method for detecting electrical resistance change in connectors to a remote mounted sensor
USD429718S (en) 1999-01-07 2000-08-22 Echostar Engineering Corporation Satellite receiver remote control
US6346047B1 (en) 1999-01-08 2002-02-12 Eleven Engineering Inc Radio frequency remote game controller
US6201554B1 (en) 1999-01-12 2001-03-13 Ericsson Inc. Device control apparatus for hand-held data processing device
US6386538B1 (en) 1999-01-14 2002-05-14 Gerardo Mejia Game apparatus
JP2000208756A (en) 1999-01-14 2000-07-28 Nec Corp Semiconductor device and its manufacture
US6234803B1 (en) 1999-02-03 2001-05-22 Jacqueline T. Watkins Educational treasure hunt game
JP2000225269A (en) 1999-02-05 2000-08-15 Sente Creations:Kk Virtual fishing game toy
HK1024824A2 (en) 1999-02-05 2000-09-08 Toymax Inc Hide and find toy game
US6404409B1 (en) 1999-02-12 2002-06-11 Dennis J. Solomon Visual special effects display device
US7145551B1 (en) 1999-02-17 2006-12-05 Microsoft Corporation Two-handed computer input device with orientation sensor
US6729934B1 (en) 1999-02-22 2004-05-04 Disney Enterprises, Inc. Interactive character system
US20060287030A1 (en) 1999-02-26 2006-12-21 Briggs Rick A Systems and methods for interactive game play
US7749089B1 (en) 1999-02-26 2010-07-06 Creative Kingdoms, Llc Multi-media interactive play system
US6634949B1 (en) 1999-02-26 2003-10-21 Creative Kingdoms, Llc Multi-media interactive play system
US7102616B1 (en) 1999-03-05 2006-09-05 Microsoft Corporation Remote control device with pointing capacity
JP2000254346A (en) 1999-03-08 2000-09-19 Sente Creations:Kk Toy for simulating fishing
JP2000270237A (en) 1999-03-15 2000-09-29 Nippon Hoso Kyokai <Nhk> Selector for image display device
US6350199B1 (en) 1999-03-16 2002-02-26 International Game Technology Interactive gaming machine and method with customized game screen presentation
US6174242B1 (en) * 1999-03-26 2001-01-16 Koala Corporation Self-contained interactive play structure
US6369908B1 (en) * 1999-03-31 2002-04-09 Paul J. Frey Photo kiosk for electronically creating, storing and distributing images, audio, and textual messages
US6220171B1 (en) 1999-04-06 2001-04-24 Universal City Studios Amusement ride
JP4239317B2 (en) 1999-04-07 2009-03-18 カシオ計算機株式会社 POSITIONING DEVICE AND POSITIONING CONTROL METHOD
CA2367514A1 (en) * 1999-04-08 2000-10-19 Rick A. Briggs Multi-media interactive play system
US6254101B1 (en) 1999-04-12 2001-07-03 Interface, Inc. Floor game for team building
USD419200S (en) 1999-04-14 2000-01-18 Nintendo Of America Inc. Game machine and disk drive stack
USD442998S1 (en) 1999-04-14 2001-05-29 Nintendo Of America Inc. Magnetic disk drive for game machine
USD419199S (en) 1999-04-14 2000-01-18 Nintendo Of America Inc. Game machine and console stack
AU4248700A (en) * 1999-04-16 2000-11-02 Scs Interactive, Inc. Multi-level play slide structure
JP2000300839A (en) 1999-04-16 2000-10-31 Namco Ltd Operation input device and game apparatus
AU4473000A (en) 1999-04-20 2000-11-02 John Warren Stringer Human gestural input device with motion and pressure
DE69919509T2 (en) 1999-04-23 2005-09-01 Rolex Sa Clockwork with inertia self-winding
JP2000308756A (en) 1999-04-27 2000-11-07 Taito Corp Input controller of game device
US6374998B1 (en) 1999-04-29 2002-04-23 Advanced Sorting Technologies Llc “Acceleration conveyor”
WO2000066239A1 (en) 1999-04-30 2000-11-09 Sony Corporation Electronic pet system, network system, robot, and storage medium
WO2000067863A1 (en) 1999-05-11 2000-11-16 Mad Catz, Inc. Fishing pole accessory for a computer game
JP2000317138A (en) 1999-05-13 2000-11-21 Konami Co Ltd Video game device, character training control method for video game and readable recording medium with recorded training program
JP2000325653A (en) 1999-05-19 2000-11-28 Enix Corp Portable videogame device and storage medium with program stored therein
US7707082B1 (en) 1999-05-25 2010-04-27 Silverbrook Research Pty Ltd Method and system for bill management
US6190174B1 (en) 1999-06-03 2001-02-20 Kader Industrial Company Limited Electronic story board
US6102406A (en) 1999-06-07 2000-08-15 Steven A. Miles Internet-based advertising scheme employing scavenger hunt metaphor
JP2000350864A (en) 1999-06-10 2000-12-19 Konami Co Ltd Portable type game machine and game progress method
AU5732600A (en) 1999-06-11 2001-01-02 Creative Golf Designs, Inc. Inventory control system
JP2000355256A (en) 1999-06-11 2000-12-26 Alpine Electronics Inc Operation device for on-board electronic equipment
US6545661B1 (en) 1999-06-21 2003-04-08 Midway Amusement Games, Llc Video game system having a control unit with an accelerometer for controlling a video game
JP2001009165A (en) 1999-06-29 2001-01-16 Takashi Shimazaki Spatial race game
US6812881B1 (en) 1999-06-30 2004-11-02 International Business Machines Corp. System for remote communication with an addressable target using a generalized pointing device
JP2001009152A (en) 1999-06-30 2001-01-16 Konami Co Ltd Game system and storage medium readable by computer
GB9915331D0 (en) 1999-06-30 1999-09-01 World Golf Systems Limited Golf balls
JP2001009156A (en) 1999-06-30 2001-01-16 Square Co Ltd Recording medium readable by computer, display control method of game, and game device
US6693622B1 (en) 1999-07-01 2004-02-17 Immersion Corporation Vibrotactile haptic feedback devices
US6400480B1 (en) 1999-07-13 2002-06-04 Truett S. Thomas Battery module transceiver for extending the range of an infrared remote controller
US7005985B1 (en) 1999-07-20 2006-02-28 Axcess, Inc. Radio frequency identification system and method
US6290565B1 (en) 1999-07-21 2001-09-18 Nearlife, Inc. Interactive game apparatus with game play controlled by user-modifiable toy
JP3485500B2 (en) 1999-07-27 2004-01-13 アルプス電気株式会社 Game controller
JP2001038052A (en) 1999-07-30 2001-02-13 Hori Co Ltd User interface device for function extension of portable general purpose video game machine
US20020010021A1 (en) 1999-08-03 2002-01-24 Mccauley Jack Jean Method and device for optical gun interaction with a computer game system
US6265984B1 (en) 1999-08-09 2001-07-24 Carl Joseph Molinaroli Light emitting diode display device
US6173209B1 (en) 1999-08-10 2001-01-09 Disney Enterprises, Inc. Method and system for managing attraction admission
US6676524B1 (en) 1999-08-13 2004-01-13 Agere Systems Inc. Game enhancements via wireless piconet
US6364735B1 (en) 1999-08-13 2002-04-02 Bill Goodman Consulting Llc RF identification system for use in toys
US6361396B1 (en) 1999-08-13 2002-03-26 Bill Goodman Consulting, Llc RF identification system for use in toys
JP4269118B2 (en) 1999-08-27 2009-05-27 富士ゼロックス株式会社 Display device
US7502759B2 (en) * 1999-08-30 2009-03-10 Digimarc Corporation Digital watermarking methods and related toy and game applications
US20010010514A1 (en) 1999-09-07 2001-08-02 Yukinobu Ishino Position detector and attitude detector
US6150947A (en) 1999-09-08 2000-11-21 Shima; James Michael Programmable motion-sensitive sound effects device
US6330427B1 (en) 1999-09-08 2001-12-11 Joel B. Tabachnik Talking novelty device with book
US6609969B1 (en) 1999-09-13 2003-08-26 Sierra Design Group Apparatus and method for dispensing of awards
USD433381S (en) 1999-09-13 2000-11-07 Dazzle Multimedia Adapter and adapter stand
US6843720B2 (en) * 1999-09-13 2005-01-18 Sierra Design Group Apparatus and method for dispensing prizes
US6473713B1 (en) 1999-09-20 2002-10-29 American Gnc Corporation Processing method for motion measurement
US6554707B1 (en) 1999-09-24 2003-04-29 Nokia Corporation Interactive voice, wireless game system using predictive command input
US6452494B1 (en) 1999-09-27 2002-09-17 Intel Corporation Activating devices
US7340439B2 (en) 1999-09-28 2008-03-04 Chameleon Network Inc. Portable electronic authorization system and method
DE19947277A1 (en) 1999-09-30 2001-04-05 Heidenhain Gmbh Dr Johannes Position measuring system with integrated acceleration sensor
US6426741B1 (en) 1999-09-30 2002-07-30 Intel Corporation User input for a computer
USD435554S (en) 1999-09-30 2000-12-26 Christopher Meredith Controller
JP3847058B2 (en) 1999-10-04 2006-11-15 任天堂株式会社 GAME SYSTEM AND GAME INFORMATION STORAGE MEDIUM USED FOR THE SAME
JP2001104636A (en) 1999-10-04 2001-04-17 Shinsedai Kk Cenesthesic ball game device
JP3470071B2 (en) 1999-10-04 2003-11-25 新世代株式会社 Fishing game equipment
US6375572B1 (en) 1999-10-04 2002-04-23 Nintendo Co., Ltd. Portable game apparatus with acceleration sensor and information storage medium storing a game progam
US6315673B1 (en) 1999-10-05 2001-11-13 Midway Amusement Games Llc Motion simulator for a video game
US6811491B1 (en) 1999-10-08 2004-11-02 Gary Levenberg Interactive video game controller adapter
US6642837B1 (en) 1999-10-19 2003-11-04 Massachusetts Institute Of Technology Method and apparatus for touch-activated identification and information transfer
JP4319302B2 (en) 1999-10-20 2009-08-26 株式会社バンダイナムコゲームス GAME DEVICE AND CHARACTER OPERATION SETTING METHOD
US6749432B2 (en) 1999-10-20 2004-06-15 Impulse Technology Ltd Education system challenging a subject's physiologic and kinesthetic systems to synergistically enhance cognitive function
US6509217B1 (en) * 1999-10-22 2003-01-21 Damoder Reddy Inexpensive, reliable, planar RFID tag structure and method for making same
US6753849B1 (en) 1999-10-27 2004-06-22 Ken Curran & Associates Universal remote TV mouse
RU2168201C1 (en) 1999-11-03 2001-05-27 Супрун Антон Евгеньевич Computer data input device
US6466198B1 (en) 1999-11-05 2002-10-15 Innoventions, Inc. View navigation and magnification of a hand-held device with a display
US6736759B1 (en) 1999-11-09 2004-05-18 Paragon Solutions, Llc Exercise monitoring system and methods
JP2001137531A (en) 1999-11-10 2001-05-22 Namco Ltd Game device
US6743104B1 (en) 1999-11-18 2004-06-01 Nintendo Co., Ltd. Portable game machine
US6245014B1 (en) 1999-11-18 2001-06-12 Atlantic Limited Partnership Fitness for duty testing device and method
JP2001149653A (en) 1999-11-25 2001-06-05 Namco Ltd Game device, path selection method, and information storage medium
US6415223B1 (en) 1999-11-29 2002-07-02 American Gnc Corporation Interruption-free hand-held positioning method and system thereof
US20010024973A1 (en) 1999-12-10 2001-09-27 Christopher Meredith Laser light sword
JP2001175412A (en) 1999-12-15 2001-06-29 Shigekazu Koshiba Remote controller for electronic equipment with multi- axial integral acceleration detector
US6287200B1 (en) 1999-12-15 2001-09-11 Nokia Corporation Relative positioning and virtual objects for mobile devices
US6273425B1 (en) 1999-12-17 2001-08-14 Lise Westfall Fun hunt yard game
AU2086401A (en) 1999-12-22 2001-07-03 Axcess Inc. Method and system for operating an amusement park
US20020068500A1 (en) * 1999-12-29 2002-06-06 Oz Gabai Adaptive toy system and functionality
JP2001058484A (en) 2000-01-01 2001-03-06 Ikegami Masahisa Visiting card
GB0000105D0 (en) 2000-01-05 2000-02-23 World Golf Systems Limited Golf game
US7127370B2 (en) 2000-01-07 2006-10-24 Nocwatch International Inc. Attitude indicator and activity monitoring device
US20010031662A1 (en) 2000-01-07 2001-10-18 Isaac Larian Personal electronic game
US6238289B1 (en) * 2000-01-10 2001-05-29 Eleven Engineering Inc. Radio frequency game controller
US7183480B2 (en) 2000-01-11 2007-02-27 Yamaha Corporation Apparatus and method for detecting performer's motion to interactively control performance of music or the like
EP1257777A2 (en) 2000-01-13 2002-11-20 Beamhit, LLC Laser transmitter assembly configured for placement within a firing chamber and method of simulating firearm operation
JP2003519774A (en) 2000-01-13 2003-06-24 ビームヒット,リミティド ライアビリティー カンパニー Firearms laser training system and method utilizing an improved empty cartridge to simulate firearm operation
CA2365236A1 (en) 2000-01-21 2001-07-26 Sony Corporation Data authentication system
US6582380B2 (en) 2000-01-24 2003-06-24 Ambulatory Monitoring, Inc. System and method of monitoring and modifying human activity-based behavior
JP2001209470A (en) 2000-01-26 2001-08-03 Fujitsu Ltd Display interface method, apparatus and program recording medium
US6608563B2 (en) 2000-01-26 2003-08-19 Creative Kingdoms, Llc System for automated photo capture and retrieval
US6482067B1 (en) 2000-01-27 2002-11-19 David L. Pickens Registered pedigree stuffed animals
US6527646B1 (en) 2000-01-27 2003-03-04 Rick A. Briggs Competition water slide
US20020032067A1 (en) * 2000-01-27 2002-03-14 Barney Jonathan A. Play structure with active targeting system
US20030001016A1 (en) 2000-01-28 2003-01-02 Israel Fraier Apparatus and method for accessng multimedia content
US6757068B2 (en) 2000-01-28 2004-06-29 Intersense, Inc. Self-referenced tracking
JP2001210981A (en) 2000-01-28 2001-08-03 Nintendo Co Ltd Electronic appliance having radiating structure, and television-game machine having the radiating structure
US6273819B1 (en) 2000-01-31 2001-08-14 Radica China Limited Hand held electronic game with sensors for realistic simulation
US6377906B1 (en) 2000-02-03 2002-04-23 Independence Technology, L.L.C. Attitude estimation in tiltable body using modified quaternion data representation
US6322420B1 (en) 2000-02-03 2001-11-27 Mattel Inc. Plush toy having ear and foot movement
US6592461B1 (en) 2000-02-04 2003-07-15 Roni Raviv Multifunctional computer interactive play system
JP2001227537A (en) 2000-02-18 2001-08-24 Nsk Ltd Linear guide device
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
US6761637B2 (en) 2000-02-22 2004-07-13 Creative Kingdoms, Llc Method of game play using RFID tracking device
US7500917B2 (en) 2000-02-22 2009-03-10 Creative Kingdoms, Llc Magical wand and interactive play experience
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
US6651268B1 (en) 2000-02-24 2003-11-25 Rick A. Briggs Interactive wave pool
US6813525B2 (en) 2000-02-25 2004-11-02 Square D Company Energy management system
US7081033B1 (en) 2000-03-07 2006-07-25 Hasbro, Inc. Toy figure for use with multiple, different game systems
JP2001251324A (en) 2000-03-08 2001-09-14 Fuji Electric Co Ltd Terminal for field bus, control method for the terminal and field bus system having the terminal
CA2402680A1 (en) * 2000-03-15 2001-09-20 Richard F. Rudolph Controlled remote product internet access and distribution
US6773344B1 (en) 2000-03-16 2004-08-10 Creator Ltd. Methods and apparatus for integration of interactive toys with interactive television and cellular communication systems
JP2001265521A (en) 2000-03-21 2001-09-28 Hitachi Kokusai Electric Inc Motion capture system
GB0006672D0 (en) 2000-03-21 2000-05-10 Rice Michael J P Improvements relating to controllers
US6320495B1 (en) 2000-03-24 2001-11-20 Peter Sporgis Treasure hunt game utilizing GPS equipped wireless communications devices
US6955606B2 (en) 2000-03-30 2005-10-18 Nintendo Co., Ltd. Game information storage medium and game system using the same
US20010030667A1 (en) 2000-04-10 2001-10-18 Kelts Brett R. Interactive display interface for information objects
DE10019208A1 (en) 2000-04-17 2001-10-25 Bosch Gmbh Robert Microcontroller system control method for use in e.g. vehicle, involves permitting further changes of control by default or preset signals, after initial signal, only with authorization
US6924787B2 (en) 2000-04-17 2005-08-02 Immersion Corporation Interface for controlling a graphical image
JP3422752B2 (en) 2000-04-20 2003-06-30 株式会社コナミコンピュータエンタテインメント大阪 VIDEO GAME DEVICE, NEW PRACTICE CREATION METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING NEW PRACTICE CREATION PROGRAM
US6474159B1 (en) 2000-04-21 2002-11-05 Intersense, Inc. Motion-tracking
US7000469B2 (en) 2000-04-21 2006-02-21 Intersense, Inc. Motion-tracking
JP2002011250A (en) 2000-04-25 2002-01-15 Nintendo Co Ltd Game system and portable game machine
JP2001306245A (en) 2000-04-26 2001-11-02 Fujitsu Ltd Pointing device and pointer moving method
US7419428B2 (en) * 2000-04-28 2008-09-02 Igt Cashless transaction clearinghouse
JP2001314656A (en) 2000-05-08 2001-11-13 Bandai Co Ltd Game apparatus and game system
US6394904B1 (en) 2000-05-12 2002-05-28 Twentieth Century Fox Film Simulation system
WO2001087426A2 (en) 2000-05-15 2001-11-22 M-Dev (Proprietary) Limited Method and apparatus for monitoring exercise
US6894686B2 (en) 2000-05-16 2005-05-17 Nintendo Co., Ltd. System and method for automatically editing captured images for inclusion into 3D video game play
US6575753B2 (en) 2000-05-19 2003-06-10 Beamhit, Llc Firearm laser training system and method employing an actuable target assembly
WO2001091042A2 (en) 2000-05-24 2001-11-29 Infineon Technologies Ag Positioning unit
AUPQ771700A0 (en) 2000-05-24 2000-06-15 Bartsch, Friedrich Karl John Integrated electronic target shooting, scoring and timing system for biathlon
JP2001327754A (en) 2000-05-24 2001-11-27 Alps Electric Co Ltd Game controller
US7118482B2 (en) 2000-05-29 2006-10-10 Nintendo Co., Ltd. Game system using game cards and game machine
KR100674629B1 (en) 2000-06-09 2007-01-26 빔히트 엘엘씨 Firearm laser training system and method facilitating firearm training with various targets and visual feedback of simulated projectile impact locations
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US20030234914A1 (en) 2000-06-16 2003-12-25 Solomon Dennis J. Autostereoscopic performance wand display system
US7261690B2 (en) 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US20060122474A1 (en) 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US20020118147A1 (en) 2000-06-16 2002-08-29 Solomon Dennis J. Simplified performance wand display system
DE10029173A1 (en) 2000-06-19 2002-01-03 Deutsch Zentr Luft & Raumfahrt Method and arrangement for commanding control operations for kinematic movements of an object using a hand-operated input device
PT1292218E (en) 2000-06-23 2006-09-29 Bodymedia Inc SYSTEM FOR HEALTH, WELL-BEING AND APPROPRIATE SURVEILLANCE
JP2002007057A (en) 2000-06-23 2002-01-11 Shinsedai Kk Input device for processor
US6626728B2 (en) 2000-06-27 2003-09-30 Kenneth C. Holt Motion-sequence activated toy wand
JP3074434U (en) 2000-06-29 2001-01-19 株式会社ジュンプランニング Toy with hands-free device for mobile phone
DE60140747D1 (en) 2000-07-01 2010-01-21 Alexander V Smirnov INTERACTIVE TOYS
US6747690B2 (en) 2000-07-11 2004-06-08 Phase One A/S Digital camera with integrated accelerometers
US6494457B2 (en) 2000-07-26 2002-12-17 Shelly Conte Enhanced hide and seek game and method of playing game
JP4666808B2 (en) 2000-07-27 2011-04-06 キヤノン株式会社 Image display system, image display method, storage medium, and program
USD456854S1 (en) 2000-08-07 2002-05-07 Nintendo Co., Ltd. Operating portion of controller for electronic game machine
USD456410S1 (en) 2000-08-11 2002-04-30 Nintendo Co., Ltd. Controller for electronic game machine
JP2002058874A (en) 2000-08-15 2002-02-26 Mitsumi Electric Co Ltd Control adapter
JP4043702B2 (en) 2000-08-16 2008-02-06 日本放送協会 Display screen instruction device
US6590536B1 (en) 2000-08-18 2003-07-08 Charles A. Walton Body motion detecting system with correction for tilt of accelerometers and remote measurement of body position
US6609977B1 (en) 2000-08-23 2003-08-26 Nintendo Co., Ltd. External interfaces for a 3D graphics system
JP4618882B2 (en) 2000-08-23 2011-01-26 任天堂株式会社 Information processing system
US7002591B1 (en) 2000-08-23 2006-02-21 Nintendo Co., Ltd. Method and apparatus for interleaved processing of direct and indirect texture coordinates in a graphics system
US7184059B1 (en) 2000-08-23 2007-02-27 Nintendo Co., Ltd. Graphics system with copy out conversions between embedded frame buffer and main memory
AU777184B2 (en) 2000-08-23 2004-10-07 Nintendo Co., Ltd. Information processing apparatus, information storing medium and program
US7034828B1 (en) 2000-08-23 2006-04-25 Nintendo Co., Ltd. Recirculating shade tree blender for a graphics system
US6811489B1 (en) 2000-08-23 2004-11-02 Nintendo Co., Ltd. Controller interface for a graphics system
US6371853B1 (en) 2000-08-25 2002-04-16 Ronbotics Corporation Motion pinball game
US6725173B2 (en) 2000-09-02 2004-04-20 American Gnc Corporation Digital signal processing method and system thereof for precision orientation measurements
CA2419952A1 (en) * 2000-09-05 2002-03-14 Gap, Inc. System and method for using radio frequency identification in retail operations
WO2002020111A2 (en) * 2000-09-07 2002-03-14 Omnisky Corporation Coexistent interaction between a virtual character and the real world
JP3758957B2 (en) 2000-09-07 2006-03-22 株式会社タイトー Rod controller system
US6293684B1 (en) 2000-09-07 2001-09-25 Edward L. Riblett Wand light
JP2002082751A (en) 2000-09-08 2002-03-22 Mitsubishi Electric Corp Device for interaction with virtual space and virtual space system applied with the same
JP2002091692A (en) 2000-09-12 2002-03-29 Seiko Instruments Inc Pointing system
SG114479A1 (en) 2000-11-27 2005-09-28 Ibm Selecting a target device in a device network
US6629019B2 (en) 2000-09-18 2003-09-30 Amusement Soft, Llc Activity management system
US7182691B1 (en) 2000-09-28 2007-02-27 Immersion Corporation Directional inertial tactile feedback using rotating masses
US20020062251A1 (en) 2000-09-29 2002-05-23 Rajan Anandan System and method for wireless consumer communications
US6525660B1 (en) * 2000-09-29 2003-02-25 Nestec S.A. Interactive food packaging
US6595863B2 (en) 2000-10-03 2003-07-22 Par Action Golf, Inc. Golf simulator
US20030040347A1 (en) 2001-06-14 2003-02-27 Roach Alan P. Wirless interactive electronic toy
US6424264B1 (en) 2000-10-12 2002-07-23 Safetzone Technologies Corporation System for real-time location of people in a fixed environment
US6616607B2 (en) 2000-10-18 2003-09-09 Matsushita Electric Industrial Co., Ltd. State information acquisition system, state information acquisition apparatus, attachable terminal apparatus, and state information acquisition method
US7066781B2 (en) * 2000-10-20 2006-06-27 Denise Chapman Weston Children's toy with wireless tag/transponder
US6684062B1 (en) 2000-10-25 2004-01-27 Eleven Engineering Incorporated Wireless game control system
EP1662413B1 (en) 2000-10-27 2011-10-05 Sony Computer Entertainment Inc. Information processing system comprising a plurality of operation terminal devices and an information processing device
JP2002126375A (en) 2000-10-30 2002-05-08 Pilot Ink Co Ltd Toy changing color by electroheating
JP2002136694A (en) 2000-10-31 2002-05-14 Heiwa Corp Game machine
US6813574B1 (en) 2000-11-06 2004-11-02 Advanced Micro Devices, Inc. Topographically aligned layers and method for adjusting the relative alignment of layers and apparatus therefor
US6747562B2 (en) 2001-11-13 2004-06-08 Safetzone Technologies Corporation Identification tag for real-time location of people
WO2002047013A2 (en) 2000-11-14 2002-06-13 4Kids Entertainement Licensing, Inc. Object recognition toys and games
JP4027031B2 (en) 2000-11-16 2007-12-26 株式会社コナミデジタルエンタテインメント Competitive 3D video game device
PT1334460E (en) 2000-11-17 2005-02-28 World Golf Systems Ltd BALL IDENTIFICATION DEVICE
GB0028101D0 (en) 2000-11-17 2001-01-03 World Golf Systems Ltd Ball collection arrangement
JP3078268U (en) 2000-11-20 2001-06-29 祐也 黒木 Handy type pointing device
US6757446B1 (en) 2000-11-27 2004-06-29 Microsoft Corporation System and process for image-based relativistic rendering
USD460787S1 (en) 2000-12-04 2002-07-23 Nintendo Co., Ltd. Electronic game machine
US6852032B2 (en) 2000-12-06 2005-02-08 Nikon Corporation Game machine, method of performing game and computer-readable medium
JP3686919B2 (en) 2000-12-06 2005-08-24 株式会社ニコン技術工房 GAME DEVICE, GAME PROCESSING METHOD, AND READABLE STORAGE MEDIUM
US6377793B1 (en) 2000-12-06 2002-04-23 Xybernaut Corporation System and method of accessing and recording messages at coordinate way points
US7168089B2 (en) * 2000-12-07 2007-01-23 Igt Secured virtual network in a gaming environment
CA2328048E (en) 2000-12-11 2013-04-09 Hockeyline Inc. Electronic scorekeeping device and system therefor
IL151213A0 (en) 2000-12-15 2003-04-10 Finger System Inc Pen type optical mouse device and method of controlling the same
US20020077180A1 (en) * 2000-12-18 2002-06-20 Arthur Swanberg To interactive computer games
US20020077182A1 (en) * 2000-12-18 2002-06-20 Arthur Swanberg Interactive computer games
JP3832240B2 (en) 2000-12-22 2006-10-11 セイコーエプソン株式会社 Driving method of liquid crystal display device
US20020137567A1 (en) 2001-01-03 2002-09-26 Vision Electronics., Ltd. Wireless light beam gun
US7031875B2 (en) 2001-01-24 2006-04-18 Geo Vector Corporation Pointing systems for addressing objects
US7052391B1 (en) 2001-01-26 2006-05-30 Edge Technology Target-based wagering system and method
EP1226986B1 (en) 2001-01-29 2006-06-14 Ford Global Technologies, LLC Load estimator
JP2002224444A (en) 2001-01-31 2002-08-13 Konami Co Ltd Game controller
JP4461347B2 (en) 2001-01-31 2010-05-12 ソニー株式会社 Portable terminal device and key input method
US6932706B1 (en) 2001-02-06 2005-08-23 International Game Technology Electronic gaming unit with virtual object input device
US6567536B2 (en) 2001-02-16 2003-05-20 Golftec Enterprises Llc Method and system for physical motion analysis
US6692170B2 (en) 2001-02-21 2004-02-17 Eli Abir Method and apparatus for text input
US6903725B2 (en) 2001-02-23 2005-06-07 Sabatino Nacson Self-powered cordless mouse
USD464950S1 (en) 2001-02-28 2002-10-29 H2Eye (International) Limited Remote handset
US20020123377A1 (en) 2001-03-01 2002-09-05 Barry Shulman Computer assisted poker tournament
KR20020072367A (en) 2001-03-09 2002-09-14 삼성전자 주식회사 Information input system using bio feedback and method thereof
US6716102B2 (en) 2001-03-09 2004-04-06 Microsoft Corporation Method and apparatus for displaying information regarding stored data in a gaming system
JP2002298145A (en) 2001-04-02 2002-10-11 Nikon Gijutsu Kobo:Kk Position detector and attitude detector
US6491566B2 (en) 2001-03-26 2002-12-10 Intel Corporation Sets of toy robots adapted to act in concert, software and methods of playing with the same
DE10115548C2 (en) 2001-03-28 2003-11-06 Busch Dieter & Co Prueftech Measuring device for determining the spatial orientation of a body relative to a reference direction
JP2002296039A (en) 2001-03-30 2002-10-09 Murata Mfg Co Ltd Gyro device and electronic device using the same
CN1152237C (en) 2001-03-30 2004-06-02 清华大学 Miniature navigation system based on micro electromechanical techn.
US6724366B2 (en) 2001-04-03 2004-04-20 Peter James Crawford Thumb actuated x-y input device
US7136826B2 (en) 2001-04-04 2006-11-14 Koninklijke Philips Electronics N. V. Method for creating personality profiles using tagged physical objects
JP4489318B2 (en) 2001-04-06 2010-06-23 富士通株式会社 Transmission equipment
KR100408518B1 (en) 2001-04-12 2003-12-06 삼성전자주식회사 Pen input device and Measuring method of coordinate
US6530838B2 (en) 2001-04-18 2003-03-11 Mobilink Telecom Co., Ltd. Game pad connectable to personal portable terminal
US6929548B2 (en) 2002-04-23 2005-08-16 Xiaoling Wang Apparatus and a method for more realistic shooting video games on computers or similar devices
US6540607B2 (en) 2001-04-26 2003-04-01 Midway Games West Video game position and orientation detection system
US6650313B2 (en) 2001-04-26 2003-11-18 International Business Machines Corporation Method and adapter for performing assistive motion data processing and/or button data processing external to a computer
USD473942S1 (en) 2001-04-27 2003-04-29 Olympus Optical Co., Ltd. Remote control apparatus for industrial endoscope
FR2824132B1 (en) 2001-04-27 2007-07-13 France Etat DEVICE AND ASSOCIATED METHOD FOR DETERMINING THE DIRECTION OF A TARGET
EP1502251B1 (en) 2001-04-30 2008-12-17 The Walt Disney Company Location sensitive display device, system, and method of providing animation sequences
GB2375969A (en) 2001-05-31 2002-12-04 Nokia Corp Electronic gaming
USD464052S1 (en) 2001-06-01 2002-10-08 Mitel Knowledge Corporation Mouse controller
JP3749458B2 (en) 2001-06-06 2006-03-01 コナミ株式会社 A system with a game expansion system and a toy system
US6796908B2 (en) 2001-06-14 2004-09-28 Creative Kingdoms, Llc Interactive dark ride
GB0114543D0 (en) 2001-06-14 2001-08-08 World Golf Systems Ltd Identification device
US6530841B2 (en) 2001-06-26 2003-03-11 Cutlass, Inc. Electronic tag game
US6597443B2 (en) 2001-06-27 2003-07-22 Duane Boman Spatial tracking system
FI110549B (en) 2001-06-29 2003-02-14 Nokia Corp Method and arrangement for determining motion
US20040121834A1 (en) * 2001-07-06 2004-06-24 Libby Budd O. Animated lottery bingo game
US6620046B2 (en) 2001-07-10 2003-09-16 Igt Method and system for funding and awarding bonuses in a gaming environment
KR100412650B1 (en) 2001-07-11 2003-12-31 현대자동차주식회사 Panel clamping device of variety type vehicle
KR100446613B1 (en) 2001-07-16 2004-09-04 삼성전자주식회사 Information input method using wearable information input device
JP3611807B2 (en) 2001-07-19 2005-01-19 コナミ株式会社 Video game apparatus, pseudo camera viewpoint movement control method and program in video game
US20030022736A1 (en) 2001-07-30 2003-01-30 Cass Donald Alan Electronic football linesman
US6632142B2 (en) * 2001-07-31 2003-10-14 Christopher Keith Internet gaming with multiple web sites
US20030027634A1 (en) 2001-08-03 2003-02-06 Matthews William F. Portable wireless game device and method for influencing an application executable from a fixed-location platform
US7946917B2 (en) * 2001-08-10 2011-05-24 Igt Flexible loyalty points programs
US6847351B2 (en) 2001-08-13 2005-01-25 Siemens Information And Communication Mobile, Llc Tilt-based pointing for hand-held devices
KR100425301B1 (en) 2001-08-17 2004-03-30 삼성전자주식회사 Modular remote controller
JP3788753B2 (en) 2001-08-21 2006-06-21 株式会社スタッフ Fishing toy
JP3644915B2 (en) 2001-08-21 2005-05-11 任天堂株式会社 GAME SYSTEM AND GAME PROGRAM USED FOR THE SAME
US7253800B2 (en) 2001-08-21 2007-08-07 Xerox Corporation Manipulative user interface systems and methods
JP2003062341A (en) 2001-08-22 2003-03-04 Nintendo Co Ltd Game system, puzzle game program, and recording medium with program recorded thereon
US7086645B2 (en) 2001-08-22 2006-08-08 Mattel, Inc. Game with collectible pieces
US6544124B2 (en) 2001-08-29 2003-04-08 Radica China Ltd. Handheld steering wheel game controller
KR100464316B1 (en) 2001-09-27 2005-01-03 삼성전자주식회사 Pointing apparatus using piezoelectric film, method for producing the apparatus, apparatus and method for detecting point information therefor
US6846238B2 (en) 2001-09-28 2005-01-25 Igt Wireless game player
US20030061947A1 (en) 2001-10-01 2003-04-03 Hohberger Clive P. Method and apparatus for associating on demand certain selected media and value-adding elements
US20030064812A1 (en) 2001-10-02 2003-04-03 Ethan Rappaport Smart card enhanced toys and games
US20030069077A1 (en) 2001-10-05 2003-04-10 Gene Korienek Wave-actuated, spell-casting magic wand with sensory feedback
CA2359155C (en) 2001-10-17 2008-07-08 Wyeth G. Tracy Interactive play fountain
WO2003036452A1 (en) 2001-10-24 2003-05-01 Sony Corporation Image information displaying device
US6770863B2 (en) 2001-10-26 2004-08-03 Agilent Technologies, Inc. Apparatus and method for three-dimensional relative movement sensing
JP2003140823A (en) 2001-11-08 2003-05-16 Sony Computer Entertainment Inc Information input device and information processing program
SE524278C2 (en) 2001-11-09 2004-07-20 Leif Nyfelt Procedure for monitoring an individual's movement in and around buildings, rooms and the like.
US6816151B2 (en) 2001-11-09 2004-11-09 Terry L. Dellinger Hand-held trackball computer pointing device
JP2005509501A (en) 2001-11-14 2005-04-14 フォーキッズ エンターテイメント ライセンシング, インク. Object recognition toy and game
US20040229696A1 (en) 2003-05-14 2004-11-18 Beck Stephen C. Object recognition toys and games
US20040214642A1 (en) 2001-11-14 2004-10-28 4Kids Entertainment Licensing, Inc. Object recognition toys and games
US7614958B2 (en) 2001-11-16 2009-11-10 Creative Kingdoms, Llc Interactive quest game
US20030134679A1 (en) 2001-11-19 2003-07-17 Radica China Ltd. Electronic gaming device using coded input data
US6709336B2 (en) * 2001-11-19 2004-03-23 Radica China Ltd. Electronic gaming method using coded input data
AU2002342474A1 (en) 2001-11-20 2003-06-10 J. Marc Hutchins Facilities management system
US20030095101A1 (en) 2001-11-21 2003-05-22 Chewnpu Jou Computer peripherial pointing device with power generating means
US7180503B2 (en) 2001-12-04 2007-02-20 Intel Corporation Inductive power source for peripheral devices
AU2002362099A1 (en) 2001-12-05 2003-06-17 Walt Disney Parks And Resorts System and method of wirelessly triggering portable devices
US20030107551A1 (en) 2001-12-10 2003-06-12 Dunker Garrett Storm Tilt input device
US6682074B2 (en) 2001-12-11 2004-01-27 Creative Kingdoms, Llc Interactive treasure hunt game
JP2003187026A (en) * 2001-12-19 2003-07-04 Fujitsu Ltd Facility control support system
US6712692B2 (en) 2002-01-03 2004-03-30 International Business Machines Corporation Using existing videogames for physical training and rehabilitation
US6873406B1 (en) 2002-01-11 2005-03-29 Opti-Logic Corporation Tilt-compensated laser rangefinder
JP2003208263A (en) 2002-01-12 2003-07-25 Sega Corp Control device and picture processor having its mounting body
US6836751B2 (en) 2002-01-23 2004-12-28 Radica China Ltd. Optical controller
US6558225B1 (en) 2002-01-24 2003-05-06 Rehco, Llc Electronic figurines
US7297059B2 (en) 2002-01-24 2007-11-20 Progressive Gaming International Corporation Progressive gaming system and method having fractional progressive jackpot awards
US6572108B1 (en) 2002-01-30 2003-06-03 Radica China Ltd Game pad controller
US6932698B2 (en) * 2002-01-31 2005-08-23 Peter Sprogis Treasure hunt game utilizing wireless communications devices and location positioning technology
US6982697B2 (en) 2002-02-07 2006-01-03 Microsoft Corporation System and process for selecting objects in a ubiquitous computing environment
US6990639B2 (en) 2002-02-07 2006-01-24 Microsoft Corporation System and process for controlling electronic components in a ubiquitous computing environment using multimodal integration
US20040043806A1 (en) 2002-02-08 2004-03-04 Keith Kirby Online vehicle collection and play activity
US6812583B2 (en) 2002-02-19 2004-11-02 Rockwell Scientific Licensing, Llc Electrical generator with ferrofluid bearings
US6905411B2 (en) * 2002-02-27 2005-06-14 Igt Player authentication for cashless gaming machine instruments
US7149627B2 (en) 2002-03-01 2006-12-12 Gentex Corporation Electronic compass system
WO2003079141A2 (en) 2002-03-12 2003-09-25 Senseboard, Inc. Data input device
US20040033833A1 (en) * 2002-03-25 2004-02-19 Briggs Rick A. Interactive redemption game
GB2388418A (en) 2002-03-28 2003-11-12 Marcus James Eales Input or pointing device with a camera
US6902483B2 (en) * 2002-04-01 2005-06-07 Xiao Lin Handheld electronic game device having the shape of a gun
US6996744B2 (en) * 2002-04-04 2006-02-07 Microsoft Corporation Generating a passcode for resetting a game console
US6967566B2 (en) 2002-04-05 2005-11-22 Creative Kingdoms, Llc Live-action interactive adventure game
US20070066396A1 (en) 2002-04-05 2007-03-22 Denise Chapman Weston Retail methods for providing an interactive product to a consumer
US20030195037A1 (en) * 2002-04-11 2003-10-16 Vt Tech Corp. Video gaming machine for casino games
US7466307B2 (en) 2002-04-11 2008-12-16 Synaptics Incorporated Closed-loop sensor on a solid-state object position detector
AU2003224982A1 (en) 2002-04-12 2003-10-27 Fritz H. Obermeyer Multi-axis joystick and transducer means therefore
GB0208654D0 (en) 2002-04-16 2002-05-29 Koninkl Philips Electronics Nv Image processing for video or photographic equipment
WO2003090888A1 (en) 2002-04-24 2003-11-06 Ssd Company Limited Tennis game system
DE10219198A1 (en) 2002-04-29 2003-11-06 Univ Leipzig Cursor movement control device comprises a device that is moved in space so that sensors, such as acceleration sensors, detect the movement which is converted into a command signal that is transmitted to a computer or similar
US8386389B2 (en) 2002-04-30 2013-02-26 Hewlett-Packard Development Company, L.P. Service delivery systems and methods
US6633155B1 (en) 2002-05-06 2003-10-14 Hui-Pin Liang Wireless mouse induction power supply
US6935959B2 (en) 2002-05-16 2005-08-30 Microsoft Corporation Use of multiple player real-time voice communications on a gaming device
JP3690672B2 (en) 2002-05-17 2005-08-31 任天堂株式会社 Game system and game program
JP3910487B2 (en) 2002-05-17 2007-04-25 任天堂株式会社 Game system and game program
JP2003325972A (en) 2002-05-17 2003-11-18 Nintendo Co Ltd Game device changing sound and image in association with tilt operation, and game program therefor
JP3902508B2 (en) 2002-05-20 2007-04-11 任天堂株式会社 Game system and game program
USD474763S1 (en) 2002-05-30 2003-05-20 Pioneer Digital Technologies, Inc. Handheld remote control
US7034804B2 (en) 2002-06-04 2006-04-25 Inventec Appliances Corp. Computer pointing device employing a magnetic field source and magnetic field sensors
DE10226644A1 (en) 2002-06-14 2003-12-24 Siemens Ag Input device for a data processing system
US7359451B2 (en) * 2002-06-21 2008-04-15 Disney Enterprises, Inc. System and method for wirelessly transmitting and receiving digital tokens for use in electronic gameplay
JP5109221B2 (en) 2002-06-27 2012-12-26 新世代株式会社 Information processing device equipped with an input system using a stroboscope
US6850844B1 (en) 2002-06-28 2005-02-01 Garmin Ltd. Portable navigation device with integrated GPS and dead reckoning capabilities
US6786830B2 (en) 2002-06-28 2004-09-07 Koala Corporation Modular water play structure
JP3602519B2 (en) 2002-07-12 2004-12-15 コナミ株式会社 Video game apparatus, image processing method, and program
US7883415B2 (en) 2003-09-15 2011-02-08 Sony Computer Entertainment Inc. Method and apparatus for adjusting a view of a scene being displayed according to tracked head motion
US7107168B2 (en) 2002-07-22 2006-09-12 Raytheon Company System for measuring the effect of bearing errors in an active device
US7623115B2 (en) 2002-07-27 2009-11-24 Sony Computer Entertainment Inc. Method and apparatus for light input device
US7102615B2 (en) 2002-07-27 2006-09-05 Sony Computer Entertainment Inc. Man-machine interface using a deformable device
US8797260B2 (en) 2002-07-27 2014-08-05 Sony Computer Entertainment Inc. Inertially trackable hand-held controller
US7627139B2 (en) 2002-07-27 2009-12-01 Sony Computer Entertainment Inc. Computer image and audio processing of intensity and input devices for interfacing with a computer program
US20060282873A1 (en) 2002-07-27 2006-12-14 Sony Computer Entertainment Inc. Hand-held controller having detectable elements for tracking purposes
US7854655B2 (en) 2002-07-27 2010-12-21 Sony Computer Entertainment America Inc. Obtaining input for controlling execution of a game program
US7918733B2 (en) 2002-07-27 2011-04-05 Sony Computer Entertainment America Inc. Multi-input game control mixer
US7391409B2 (en) 2002-07-27 2008-06-24 Sony Computer Entertainment America Inc. Method and system for applying gearing effects to multi-channel mixed input
US9393487B2 (en) 2002-07-27 2016-07-19 Sony Interactive Entertainment Inc. Method for mapping movements of a hand-held controller to game commands
US8313380B2 (en) 2002-07-27 2012-11-20 Sony Computer Entertainment America Llc Scheme for translating movements of a hand-held controller into inputs for a system
US20060256081A1 (en) 2002-07-27 2006-11-16 Sony Computer Entertainment America Inc. Scheme for detecting and tracking user manipulation of a game controller body
US8686939B2 (en) 2002-07-27 2014-04-01 Sony Computer Entertainment Inc. System, method, and apparatus for three-dimensional input control
US7352359B2 (en) 2002-07-27 2008-04-01 Sony Computer Entertainment America Inc. Method and system for applying gearing effects to inertial tracking
US20060264260A1 (en) 2002-07-27 2006-11-23 Sony Computer Entertainment Inc. Detectable and trackable hand-held controller
US6856327B2 (en) 2002-07-31 2005-02-15 Domotion Ltd. Apparatus for moving display screen of mobile computer device
US6868738B2 (en) 2002-07-31 2005-03-22 Troxler Electronic Laboratories, Inc. Method and apparatus for determining the angle of gyration and/or the pressure in a gyratory compactor
USD502468S1 (en) 2002-07-31 2005-03-01 British Sky Broadcasting Ltd. Game controller
US6842991B2 (en) 2002-07-31 2005-01-18 Robert W. Levi Gyro aided magnetic compass
JP2004062774A (en) 2002-07-31 2004-02-26 Sharp Corp Presentation display device
US7674184B2 (en) 2002-08-01 2010-03-09 Creative Kingdoms, Llc Interactive water attraction and quest game
US6984208B2 (en) 2002-08-01 2006-01-10 The Hong Kong Polytechnic University Method and apparatus for sensing body gesture, posture and movement
US7029400B2 (en) 2002-08-01 2006-04-18 Creative Kingdoms, Llc Interactive water attraction and quest game
US7291014B2 (en) 2002-08-08 2007-11-06 Fats, Inc. Wireless data communication link embedded in simulated weapon systems
US7231063B2 (en) 2002-08-09 2007-06-12 Intersense, Inc. Fiducial detection system
WO2004015369A2 (en) 2002-08-09 2004-02-19 Intersense, Inc. Motion tracking system and method
JP2004085476A (en) 2002-08-28 2004-03-18 Sony Corp Head tracking method and device
JP4482269B2 (en) 2002-08-28 2010-06-16 ソニー株式会社 Electronic device apparatus, signal compensation apparatus, and signal compensation method
US6948999B2 (en) 2002-08-30 2005-09-27 Thinking Technology Inc. Wand toy and process
US6726099B2 (en) 2002-09-05 2004-04-27 Honeywell International Inc. RFID tag having multiple transceivers
US6654001B1 (en) 2002-09-05 2003-11-25 Kye Systems Corp. Hand-movement-sensing input device
US20040048666A1 (en) 2002-09-10 2004-03-11 Radica China Limited Wireless game device and method for using the same
US6957333B2 (en) 2002-09-12 2005-10-18 Symbol Technologies, Inc. System and method for encrypted communications between electronic devices
USD504298S1 (en) 2002-09-13 2005-04-26 Positec Power Tools (Suzhou) Co., Ltd. Cordless drill
US20040259651A1 (en) 2002-09-27 2004-12-23 Imego Ab Sporting equipment provided with a motion detecting arrangement
US20040063480A1 (en) 2002-09-30 2004-04-01 Xiaoling Wang Apparatus and a method for more realistic interactive video games on computers or similar devices
US6717673B1 (en) 2002-10-02 2004-04-06 3M Innovative Properties Company Method of color-matching
USD489361S1 (en) 2002-10-09 2004-05-04 Interlink Electronics, Inc. Remote control
EP1411461A1 (en) 2002-10-14 2004-04-21 STMicroelectronics S.r.l. User controlled device for sending control signals to an electric appliance, in particular user controlled pointing device such as mouse or joystick, with 3D-motion detection
US7030856B2 (en) 2002-10-15 2006-04-18 Sony Corporation Method and system for controlling a display device
US20040077975A1 (en) 2002-10-22 2004-04-22 Zimmerman Jeffrey C. Systems and methods for motion analysis and feedback
EP1567234A4 (en) * 2002-11-05 2006-01-04 Disney Entpr Inc Video actuated interactive environment
JP4115809B2 (en) 2002-11-11 2008-07-09 任天堂株式会社 GAME SYSTEM AND GAME PROGRAM
US7030765B2 (en) 2002-11-19 2006-04-18 Safetzone Technologies Inc. Message communication system and method
US20040095317A1 (en) 2002-11-20 2004-05-20 Jingxi Zhang Method and apparatus of universal remote pointing control for home entertainment system and computer
US20040174287A1 (en) 2002-11-21 2004-09-09 Deak David G. Self-contained switch
FR2847689B1 (en) 2002-11-27 2005-01-21 Commissariat Energie Atomique METHOD AND DEVICE FOR CAPTURING THE MOVEMENT OF A SOLID USING AT LEAST ONE CAMERA AND AN ANGULAR SENSOR
AU2002952977A0 (en) 2002-11-28 2002-12-12 Hi-Fi Design Pty Ltd Computer mouse with magnetic orientation features
US6933861B2 (en) 2002-11-29 2005-08-23 Alfadata Computer Corp. Key-operating device for a hand-held video game apparatus
WO2004056425A2 (en) 2002-12-19 2004-07-08 Fortescue Corporation Method and apparatus for determining orientation and position of a moveable object
US7117009B2 (en) 2002-12-20 2006-10-03 Motorola, Inc. Apparatus and method for electronic device control
DE10262063A1 (en) 2002-12-20 2004-09-16 Hewlett-Packard Co.(A Delaware Corporation), Palo Alto Interface device with a generator of electrical energy
US6746334B1 (en) * 2002-12-27 2004-06-08 Creative Kingdoms, Llc Play structure with active targeting system
US6995748B2 (en) 2003-01-07 2006-02-07 Agilent Technologies, Inc. Apparatus for controlling a screen pointer with a frame rate based on velocity
JP3553563B1 (en) 2003-01-10 2004-08-11 コナミ株式会社 GAME SYSTEM, GAME DEVICE, GAME METHOD, AND PROGRAM
US20040140954A1 (en) 2003-01-14 2004-07-22 Faeth Michael Gene Two handed computer input device
JP2004229753A (en) 2003-01-28 2004-08-19 Aruze Corp Game machine
US20040152499A1 (en) 2003-02-03 2004-08-05 Clifton Lind Method, system, and program product for conducting multiple concurrent bingo-type games
US20040152515A1 (en) 2003-02-05 2004-08-05 Logitech Europe S.A. Cordless game controller system
US7789741B1 (en) 2003-02-28 2010-09-07 Microsoft Corporation Squad vs. squad video game
USD491924S1 (en) 2003-02-28 2004-06-22 Scientific-Atlanta, Inc. Remote control housing
USD486145S1 (en) 2003-02-28 2004-02-03 Scientific-Atlanta, Inc. Remote control keypad
JP4053912B2 (en) 2003-03-19 2008-02-27 ミツミ電機株式会社 Control adapter device
US8745541B2 (en) 2003-03-25 2014-06-03 Microsoft Corporation Architecture for controlling a computer using hand gestures
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US7158116B2 (en) 2003-04-04 2007-01-02 Drb Institute Llc Rechargeable cordless input and pointing device
JP2004313429A (en) 2003-04-16 2004-11-11 Sanyo Product Co Ltd Game machine
JP3619517B2 (en) 2003-04-17 2005-02-09 株式会社ホリ Video game console controller
USD495336S1 (en) 2003-04-25 2004-08-31 Apple Computer, Inc. Docking station
US7233316B2 (en) 2003-05-01 2007-06-19 Thomson Licensing Multimedia user interface
US20040268393A1 (en) 2003-05-08 2004-12-30 Hunleth Frank A. Control framework with a zoomable graphical user interface for organizing, selecting and launching media items
US7252572B2 (en) * 2003-05-12 2007-08-07 Stupid Fun Club, Llc Figurines having interactive communication
US20040229693A1 (en) 2003-05-13 2004-11-18 Clifton Lind Multiple video display gaming machine and gaming system
JP3927921B2 (en) 2003-05-19 2007-06-13 株式会社バンダイナムコゲームス PROGRAM, INFORMATION STORAGE MEDIUM, AND GAME DEVICE
US20040236453A1 (en) 2003-05-22 2004-11-25 Gabor Szoboszlay Method and apparatus for combining and generating trajectories
WO2004111819A1 (en) 2003-06-09 2004-12-23 Immersion Corporation Interactive gaming systems with haptic feedback
US7322653B2 (en) 2003-06-13 2008-01-29 Vlad Dragusin Integrated videogaming and computer workstation
US7038661B2 (en) 2003-06-13 2006-05-02 Microsoft Corporation Pointing device and cursor for use in intelligent computing environments
KR100543701B1 (en) 2003-06-17 2006-01-20 삼성전자주식회사 Apparatus and method for inputting information spatially
US7862428B2 (en) 2003-07-02 2011-01-04 Ganz Interactive action figures for gaming systems
US20050020369A1 (en) 2003-07-22 2005-01-27 Craig Davis Golf club with embedded inertial measurement unit and processing
JP2005040493A (en) 2003-07-25 2005-02-17 Hori Co Ltd Controller for video game machine
US6836971B1 (en) 2003-07-30 2005-01-04 Honeywell International Inc. System for using a 2-axis magnetic sensor for a 3-axis compass solution
JP4276494B2 (en) 2003-08-15 2009-06-10 アルプス電気株式会社 Input device
US7421088B2 (en) 2003-08-28 2008-09-02 Motorola, Inc. Multifunction transducer
US20050054457A1 (en) 2003-09-08 2005-03-10 Smartswing, Inc. Method and system for golf swing analysis and training
USD505424S1 (en) 2003-09-09 2005-05-24 Nintendo Co., Ltd. Controller for electronic game machine
US20050058292A1 (en) 2003-09-11 2005-03-17 Impinj, Inc., A Delaware Corporation Secure two-way RFID communications
US8287373B2 (en) 2008-12-05 2012-10-16 Sony Computer Entertainment Inc. Control device for communicating visual information
US10279254B2 (en) 2005-10-26 2019-05-07 Sony Interactive Entertainment Inc. Controller having visually trackable object for interfacing with a gaming system
US7288028B2 (en) 2003-09-26 2007-10-30 Microsoft Corporation Method and apparatus for quickly joining an online game being played by a friend
US20050076161A1 (en) 2003-10-03 2005-04-07 Amro Albanna Input system and method
USD503750S1 (en) 2003-10-17 2005-04-05 Vtech Electronics Ltd. Video game console
FR2860985B1 (en) 2003-10-20 2005-12-30 Numicom ELECTRONIC LUDO-EDUCATIONAL ASSEMBLY WITH COMMUNICATING ELEMENTS WITH RADIO FREQUENCY LABEL
US7489299B2 (en) 2003-10-23 2009-02-10 Hillcrest Laboratories, Inc. User interface devices and methods employing accelerometers
US6941870B2 (en) 2003-11-04 2005-09-13 Advanced Initiation Systems, Inc. Positional blasting system
US20050116020A1 (en) * 2003-11-07 2005-06-02 Smolucha Walter E. Locating individuals and games in a gaming establishment
CA2587415A1 (en) 2003-11-12 2005-05-26 The Edugaming Corporation Dvd game remote controller
US7387559B2 (en) 2003-11-17 2008-06-17 Mattel, Inc. Toy vehicles and play sets with contactless identification
USD492285S1 (en) 2003-11-25 2004-06-29 Pioneer Digital Technologies, Inc. Input device
US6998966B2 (en) 2003-11-26 2006-02-14 Nokia Corporation Mobile communication device having a functional cover for controlling sound applications by motion
US7510477B2 (en) 2003-12-11 2009-03-31 Argentar Eric J Control apparatus for use with a computer or video game system
US7375493B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductive battery charger
US20050134555A1 (en) 2003-12-19 2005-06-23 Kye Systems Corp. Pointing device for detecting hand-movement
US20050138851A1 (en) 2003-12-30 2005-06-30 Ingraselino Joseph V. New year's ball drop
US7534157B2 (en) 2003-12-31 2009-05-19 Ganz System and method for toy adoption and marketing
US7465212B2 (en) 2003-12-31 2008-12-16 Ganz System and method for toy adoption and marketing
US20050164601A1 (en) 2004-01-22 2005-07-28 Mceachen Peter C. Educational toy
US7753788B2 (en) 2004-01-30 2010-07-13 Microsoft Corporation Game controller that converts between wireless operation and wired operation
FI117308B (en) 2004-02-06 2006-08-31 Nokia Corp gesture Control
US7362305B2 (en) 2004-02-10 2008-04-22 Senseboard Technologies Ab Data input device
JP4531415B2 (en) 2004-02-19 2010-08-25 株式会社河合楽器製作所 Automatic performance device
CN1559644A (en) 2004-02-23 2005-01-05 四川长虹电器股份有限公司 Remote control recreation device
US7335134B1 (en) 2004-02-23 2008-02-26 Lavelle Richard Exercise and game controller apparatus and method
US7398151B1 (en) 2004-02-25 2008-07-08 Garmin Ltd. Wearable electronic device
JP2005277452A (en) 2004-03-22 2005-10-06 Nec Corp Portable electronic apparatus and its display switching method
US7365736B2 (en) 2004-03-23 2008-04-29 Fujitsu Limited Customizable gesture mappings for motion controlled handheld devices
US7176886B2 (en) 2004-03-23 2007-02-13 Fujitsu Limited Spatial signatures
US7173604B2 (en) 2004-03-23 2007-02-06 Fujitsu Limited Gesture identification of controlled devices
US20050212760A1 (en) 2004-03-23 2005-09-29 Marvit David L Gesture based user interface supporting preexisting symbols
US7176887B2 (en) 2004-03-23 2007-02-13 Fujitsu Limited Environmental modeling for motion controlled handheld devices
US7301526B2 (en) 2004-03-23 2007-11-27 Fujitsu Limited Dynamic adaptation of gestures for motion controlled handheld devices
US7301529B2 (en) 2004-03-23 2007-11-27 Fujitsu Limited Context dependent gesture response
US20050212753A1 (en) 2004-03-23 2005-09-29 Marvit David L Motion controlled remote controller
US7180501B2 (en) 2004-03-23 2007-02-20 Fujitsu Limited Gesture based navigation of a handheld user interface
US7280096B2 (en) 2004-03-23 2007-10-09 Fujitsu Limited Motion sensor engagement for a handheld device
US7301527B2 (en) 2004-03-23 2007-11-27 Fujitsu Limited Feedback based user interface for motion controlled handheld devices
US7180502B2 (en) 2004-03-23 2007-02-20 Fujitsu Limited Handheld device with preferred motion selection
US7301528B2 (en) 2004-03-23 2007-11-27 Fujitsu Limited Distinguishing tilt and translation motion components in handheld devices
US7365737B2 (en) 2004-03-23 2008-04-29 Fujitsu Limited Non-uniform gesture precision
US7903084B2 (en) 2004-03-23 2011-03-08 Fujitsu Limited Selective engagement of motion input modes
US20050215295A1 (en) 2004-03-29 2005-09-29 Arneson Theodore R Ambulatory handheld electronic device
US7394459B2 (en) 2004-04-29 2008-07-01 Microsoft Corporation Interaction between objects and a virtual environment display
WO2005108119A2 (en) 2004-04-30 2005-11-17 Hillcrest Laboratories, Inc. Free space pointing devices with tilt compensation and improved usability
US7236156B2 (en) 2004-04-30 2007-06-26 Hillcrest Laboratories, Inc. Methods and devices for identifying users based on tremor
EP1743322A4 (en) 2004-04-30 2008-04-30 Hillcrest Lab Inc Methods and devices for removing unintentional movement in free space pointing devices
US7775884B1 (en) 2004-04-30 2010-08-17 Activision Publishing, Inc. Game controller steering wheel and methods therefor
KR100937572B1 (en) 2004-04-30 2010-01-19 힐크레스트 래보래토리스, 인크. Free space pointing device and method
US7040993B1 (en) 2004-04-30 2006-05-09 Bert Lovitt Amusement device with concealed images
JP2006034708A (en) 2004-06-25 2006-02-09 Aruze Corp Game system, server, and game control program
AU2005202727A1 (en) 2004-07-01 2006-01-19 Aruze Corp. Game system
US7409924B2 (en) 2004-07-15 2008-08-12 Lawrence Kates Training, management, and/or entertainment system for canines, felines, or other animals
CA2578653A1 (en) 2004-07-29 2006-02-09 Kevin Ferguson A human movement measurement system
GB2416710B (en) 2004-07-30 2009-02-11 Hewlett Packard Development Co Physical representational objects with digital memory and methods of manufacture and use thereof
US7361073B2 (en) 2004-08-10 2008-04-22 Mattel, Inc. Motion responsive toy
US7704135B2 (en) 2004-08-23 2010-04-27 Harrison Jr Shelton E Integrated game system, method, and device
US8241127B2 (en) 2004-08-27 2012-08-14 Igt Wireless operation of a game device
USD524298S1 (en) 2004-09-07 2006-07-04 Control4 Corporation Hand-held remote control
JP2006113019A (en) 2004-10-18 2006-04-27 Alps Electric Co Ltd Triaxial type electronic compass, and azimuth detecting method using same
JP3770499B1 (en) 2004-11-02 2006-04-26 任天堂株式会社 GAME DEVICE AND GAME PROGRAM
US7683883B2 (en) 2004-11-02 2010-03-23 Pierre Touma 3D mouse and game controller based on spherical coordinates system and system for use
US7331857B2 (en) 2004-11-03 2008-02-19 Mattel, Inc. Gaming system
JP2006136694A (en) 2004-11-11 2006-06-01 Akio Toshima Portable game holder
US7435179B1 (en) 2004-11-15 2008-10-14 Sprint Spectrum L.P. Location-based authorization of gaming action in wireless communication gaming devices
WO2006058129A2 (en) 2004-11-23 2006-06-01 Hillcrest Laboratories, Inc. Semantic gaming and application transformation
TW200620069A (en) 2004-12-03 2006-06-16 Ortek Technology Inc Mouse combined with a function of network telephone
US7536156B2 (en) 2004-12-15 2009-05-19 At&T Intellectual Property I, Lp Disposable, proximity-based communications systems, devices and methods
TW200625143A (en) 2005-01-04 2006-07-16 Pixart Imaging Inc Personal computer's interactive input device and game-peripheral equipment
JP5080273B2 (en) 2005-01-07 2012-11-21 クアルコム,インコーポレイテッド Tilt sensor based on optical flow
US7556563B2 (en) 2005-01-10 2009-07-07 Mattel, Inc. Internet enabled multiply interconnectable environmentally interactive character simulation module method and system
EP1693091A3 (en) 2005-01-10 2008-02-27 Radica Games Ltd. Multiply interconnectable environmentally interactive character simulation module method and system
US7864159B2 (en) 2005-01-12 2011-01-04 Thinkoptics, Inc. Handheld vision based absolute pointing system
EP1851606A1 (en) 2005-02-24 2007-11-07 Nokia Corporation Motion-input device for a computing terminal and method of its operation
US7492367B2 (en) 2005-03-10 2009-02-17 Motus Corporation Apparatus, system and method for interpreting and reproducing physical motion
US20060205507A1 (en) 2005-03-14 2006-09-14 P5 International Limited, Of Hong Kong Video game system having dual-function wireless game controller
US7568289B2 (en) 2005-03-14 2009-08-04 Robert Bosch Company Limited Handheld optical distance measurement device
WO2006101880A2 (en) 2005-03-17 2006-09-28 Creative Kingdoms, Llc Interactive challenge game systems and methods
JP2006319950A (en) 2005-04-13 2006-11-24 Hitachi Ltd Image display device
US8239162B2 (en) 2006-04-13 2012-08-07 Tanenhaus & Associates, Inc. Miniaturized inertial measurement unit and associated methods
USD534900S1 (en) 2005-04-26 2007-01-09 Ruwido Austria Gesellschaft M.B.H. Remote control
AU311634S (en) 2005-05-11 2006-11-28 Nintendo Co Ltd A base stand for an electronic game machine
USD531228S1 (en) 2005-05-11 2006-10-31 Nintendo Co., Ltd. Electronic game machine
TWM278451U (en) 2005-05-16 2005-10-21 Weistech Technology Co Ltd Controller of portable type game machine
US7548230B2 (en) 2005-05-27 2009-06-16 Sony Computer Entertainment Inc. Remote input device
US20060273907A1 (en) 2005-06-01 2006-12-07 Morad Heiman RFID-based system and toy
US7519537B2 (en) 2005-07-19 2009-04-14 Outland Research, Llc Method and apparatus for a verbo-manual gesture interface
USD559847S1 (en) 2005-08-17 2008-01-15 Nintendo Co., Ltd. Housing of controller for electronic game machine
USD556760S1 (en) 2005-08-17 2007-12-04 Nintendo Co., Ltd. Controller for electronic game machine
USD567243S1 (en) 2005-08-17 2008-04-22 Nintendo Co., Ltd. Controller for electronic game machine
JP4805633B2 (en) 2005-08-22 2011-11-02 任天堂株式会社 Game operation device
US7942745B2 (en) 2005-08-22 2011-05-17 Nintendo Co., Ltd. Game operating device
US8313379B2 (en) 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP4703509B2 (en) 2005-08-22 2011-06-15 任天堂株式会社 Game operating device and game system
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
TWD114838S1 (en) 2005-08-23 2007-01-01 松下電器產業股份有限公司 Remote controller for lcd video projector
JP4262726B2 (en) 2005-08-24 2009-05-13 任天堂株式会社 Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8308563B2 (en) 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US20070093293A1 (en) 2005-09-12 2007-04-26 Jeffrey Osnato Video game controllers
US7883420B2 (en) 2005-09-12 2011-02-08 Mattel, Inc. Video game systems
US20070087837A1 (en) 2005-09-12 2007-04-19 Jonathan Bradbury Video game consoles
US20070087838A1 (en) 2005-09-12 2007-04-19 Jonathan Bradbury Video game media
US20070082720A1 (en) 2005-09-12 2007-04-12 Jonathan Bradbury Methods of playing video games
US20070093170A1 (en) 2005-10-21 2007-04-26 Yu Zheng Interactive toy system
US8469766B2 (en) 2005-10-21 2013-06-25 Patent Category Corp. Interactive toy system
US8147332B2 (en) 2005-10-21 2012-04-03 Broadcom Corporation Method of indicating the ordinal number of a player in a wireless gaming system
US20070100696A1 (en) * 2005-10-27 2007-05-03 Automated Vending Technology, Inc. Multimedia system and method for controlling vending machines
US8217893B2 (en) 2005-12-09 2012-07-10 Thomson Licensing Inertial sensor-based pointing device with removable transceiver
US7645178B1 (en) 2005-12-20 2010-01-12 Trotto Laureen A Virtual world toy doll system
US7663509B2 (en) 2005-12-23 2010-02-16 Sony Ericsson Mobile Communications Ab Hand-held electronic equipment
JP4151982B2 (en) 2006-03-10 2008-09-17 任天堂株式会社 Motion discrimination device and motion discrimination program
JP4684147B2 (en) 2006-03-28 2011-05-18 任天堂株式会社 Inclination calculation device, inclination calculation program, game device, and game program
US7572191B2 (en) 2006-04-14 2009-08-11 Creative Kingdoms, Llc Interactive water play apparatus and methods
TWI395603B (en) 2006-04-26 2013-05-11 Pixart Imaging Inc Interactive game apparatus and game controller using in the same
JP2006216569A (en) 2006-04-26 2006-08-17 Mitsubishi Electric Corp Surface light source device and method for manufacturing the same
TWI305728B (en) 2006-04-26 2009-02-01 Pixart Imaging Inc Interactive wireless game apparatus and wireless peripheral module
US20070265075A1 (en) 2006-05-10 2007-11-15 Sony Computer Entertainment America Inc. Attachable structure for use with hand-held controller having tracking ability
JP5041728B2 (en) 2006-05-08 2012-10-03 任天堂株式会社 Game program and game system
JP4989105B2 (en) 2006-05-09 2012-08-01 任天堂株式会社 Game controller
JP5330640B2 (en) 2006-05-09 2013-10-30 任天堂株式会社 GAME PROGRAM, GAME DEVICE, GAME SYSTEM, AND GAME PROCESSING METHOD
US7775882B2 (en) 2006-06-12 2010-08-17 Kabushiki Kaisha Sega Game apparatus for changing a visual point position of a virtual camera in conjunction with an attack by and enemy character
JP5051822B2 (en) 2006-08-02 2012-10-17 任天堂株式会社 Game device with general-purpose remote control function
USD563948S1 (en) 2006-08-31 2008-03-11 Koninklijke Philips Electronics N.V. Remote control unit
US8287372B2 (en) 2006-09-28 2012-10-16 Mattel, Inc. Interactive toy and display system
US8033901B2 (en) 2006-10-09 2011-10-11 Mattel, Inc. Electronic game system with character units
US7566858B2 (en) 2006-11-07 2009-07-28 Apple Inc. Remote control systems that can distinguish stray light sources
JP5131809B2 (en) 2006-11-16 2013-01-30 任天堂株式会社 GAME DEVICE AND GAME PROGRAM
US20080183678A1 (en) 2006-12-29 2008-07-31 Denise Chapman Weston Systems and methods for personalizing responses to user requests
USD561178S1 (en) 2007-01-10 2008-02-05 Matsushita Electric Industrial Co., Ltd. Remote controller for LCD video projector
US7498682B2 (en) 2007-03-07 2009-03-03 Aaron Patrick Lemieux Electrical energy generator
EP2146789A4 (en) 2007-04-27 2013-01-23 Mattel Inc Computer fashion game with machine-readable trading cards
TWI395604B (en) 2007-05-03 2013-05-11 Pixart Imaging Inc Interactive game method and system with anti - sports injury function
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
US7727090B2 (en) 2007-06-05 2010-06-01 Richard Alva Gant Training bat with visual feedback of proper swing
US8330587B2 (en) 2007-07-05 2012-12-11 Tod Anthony Kupstas Method and system for the implementation of identification data devices in theme parks
US7662015B2 (en) 2007-08-21 2010-02-16 Man Kit Hui Interactive toy unicorn
US8545335B2 (en) 2007-09-14 2013-10-01 Tool, Inc. Toy with memory and USB ports
JP2009081576A (en) 2007-09-25 2009-04-16 Toshiba Corp Motion picture decoding apparatus and motion picture decoding method
US20090156309A1 (en) 2007-09-26 2009-06-18 Creative Kingdoms, Llc Handwear devices and methods for providing an interactive play experience
US9171454B2 (en) 2007-11-14 2015-10-27 Microsoft Technology Licensing, Llc Magic wand
US20090273560A1 (en) 2008-02-04 2009-11-05 Massachusetts Institute Of Technology Sensor-based distributed tangible user interface
US8602857B2 (en) 2008-06-03 2013-12-10 Tweedletech, Llc Intelligent board game system with visual marker based game object tracking and identification
AU2011204816B8 (en) 2010-02-03 2013-08-08 Nintendo Co., Ltd. Display device, game system, and game process method
US8550916B2 (en) 2010-06-08 2013-10-08 Ubisoft Entertainment S.A. Interactive game systems and methods including a transceiver and transponder receptor
US8547335B2 (en) 2010-07-30 2013-10-01 International Business Machines Corporation RFID-based input device
US9180378B2 (en) 2011-05-17 2015-11-10 Activision Publishing, Inc. Conditional access to areas in a video game
US20120295699A1 (en) 2011-05-17 2012-11-22 Paul Reiche Conditional access to areas in a video game
US9381430B2 (en) 2011-05-17 2016-07-05 Activision Publishing, Inc. Interactive video game using game-related physical objects for conducting gameplay
US10315119B2 (en) 2011-05-17 2019-06-11 Activision Publishing, Inc. Video game with concurrent processing of game-related physical objects
US8439757B2 (en) 2011-10-12 2013-05-14 Cepia, Llc Interactive entertainment devices interchangeably arrangable in adjacent manner
US8894462B2 (en) 2011-12-22 2014-11-25 Activision Publishing, Inc. Interactive video game with visual lighting effects
US9937417B2 (en) 2012-10-10 2018-04-10 Activision Publishing, Inc. Interactive video game with different sized toys having different abilities within the video game
US8858339B2 (en) 2012-12-11 2014-10-14 Activision Publishing, Inc. Interactive video game system comprising toys with rewritable memories
KR20140081936A (en) 2012-12-18 2014-07-02 현대자동차주식회사 Motor unit having cooling channel
US9802130B2 (en) 2013-12-20 2017-10-31 Activision Publishing, Inc. Interactive video game system comprising toys with rewritable memories
US9770653B2 (en) 2015-02-02 2017-09-26 King.Com Ltd. Controlling a user interface of a computer device
JP6154422B2 (en) 2015-03-31 2017-06-28 株式会社東海理化電機製作所 Security equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11278796B2 (en) 2002-04-05 2022-03-22 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US11052309B2 (en) 2003-03-25 2021-07-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements

Also Published As

Publication number Publication date
US10010790B2 (en) 2018-07-03
US9463380B2 (en) 2016-10-11
US20160184701A1 (en) 2016-06-30
US20170113133A1 (en) 2017-04-27
US20130303276A1 (en) 2013-11-14
US6967566B2 (en) 2005-11-22
US20190038970A1 (en) 2019-02-07
US9272206B2 (en) 2016-03-01
US20040092311A1 (en) 2004-05-13
US20050266907A1 (en) 2005-12-01
US8608535B2 (en) 2013-12-17
US10507387B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
US10507387B2 (en) System and method for playing an interactive game
US11278796B2 (en) Methods and systems for providing personalized interactive entertainment
US10188953B2 (en) Dual-range wireless interactive entertainment device
US11052309B2 (en) Wireless interactive game having both physical and virtual elements
US9993724B2 (en) Interactive gaming toy

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION