[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20200105469A1 - Multilayer capacitor for improved bending strength characteristics - Google Patents

Multilayer capacitor for improved bending strength characteristics Download PDF

Info

Publication number
US20200105469A1
US20200105469A1 US16/189,779 US201816189779A US2020105469A1 US 20200105469 A1 US20200105469 A1 US 20200105469A1 US 201816189779 A US201816189779 A US 201816189779A US 2020105469 A1 US2020105469 A1 US 2020105469A1
Authority
US
United States
Prior art keywords
portions
internal electrodes
extending
multilayer capacitor
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/189,779
Other versions
US10614956B1 (en
Inventor
Do Young Jeong
Je Jung KIM
Do Yeon Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Assigned to SAMSUNG ELECTRO-MECHANICS CO., LTD. reassignment SAMSUNG ELECTRO-MECHANICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JEONG, DO YOUNG, KIM, DO YEON, KIM, JE JUNG
Publication of US20200105469A1 publication Critical patent/US20200105469A1/en
Application granted granted Critical
Publication of US10614956B1 publication Critical patent/US10614956B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a multilayer capacitor.
  • Multilayer capacitors are used as components in various electronic devices as they may be implemented to have a small size and high capacity.
  • An aspect of the present disclosure may provide a multilayer capacitor capable of implementing excellent bending strength characteristics.
  • a multilayer capacitor may include a body including dielectric layers and a plurality of first and second internal electrodes having an average thickness less than 1 ⁇ m; and first and second external electrodes each including first and second conductive layers including first and second head portions disposed on opposing surfaces of the body and connected to exposed portions of the first and second internal electrodes and first and second band portions extending from the first and second head portions to portions of a mounting surface and opposite side surfaces of the body, and first and second conductive resin layers each covering the first and second conductive layers.
  • An average thickness of the dielectric layers can be greater than the average thickness of the first and second internal electrodes, and portions of the first and second internal electrodes overlapping an end of the first or second band portion in a width direction of the body can be formed as first and second extending portions having a width relatively greater than those of other portions of the first and second internal electrodes, respectively.
  • the first extending portion may be disposed at the portion overlapping the end of the second band portion in the width direction of the body, and the second extending portion may be disposed at the portion overlapping the end of the first band portion in the width direction of the body.
  • the first extending portion may be disposed at the end of the first internal electrode, and the second extending portion may be disposed at the end of the second internal electrode.
  • the first extending portion may be disposed at the portion overlapping the end of the first band portion in the width direction of the body, and the second extending portion may be disposed at the portion overlapping the end of the second band portion in the width direction of the body.
  • the first and second extending portions may be formed in a rectangular shape or an oval shape.
  • We/Wm may be 0.3 or more, in which We is a length of one side of the first extending portion in the width direction of the body and Wm is a margin of one side of the body in the width direction of the body.
  • We/Wm may satisfy 0.5 ⁇ We/Wm ⁇ 0.6.
  • the average thickness of the dielectric layers may be two or more times the average thickness of the first and second internal electrodes.
  • the first and second internal electrodes may be formed by sintering.
  • a distance from one end surface of the body to an end of the first or second band portion of the first or second conductive layer adjacent to the one end surface of the body may be shorter than a distance from the one end surface of the body to an end of the first or second conductive resin layer adjacent to the one end surface of the body.
  • the body may include first and second surfaces opposing each other, third and fourth surfaces connected to the first and second surfaces and opposing each other, and fifth and sixth surfaces connected to the first and second surfaces, connected to the third and fourth surfaces, and opposing each other, and includes a plurality of dielectric layers and the plurality of first and second internal electrodes alternately disposed in a direction connecting the first and second surfaces to each other while having the dielectric layer interposed therebetween, and one end of each of the first and second internal electrodes may be exposed through each of the third and fourth surfaces of the body.
  • the first and second conductive layers may include the first and second head portions disposed on the third and fourth surfaces of the body, respectively, and the first and second band portions may extend to portions of the first, fifth, and sixth surfaces of the body from the first and second head portions.
  • the multilayer capacitor may further include first and second plating layers covering the first and second external electrodes, respectively.
  • the first and second plating layers may include first and second nickel plating layers covering the first and second conductive resin layers, respectively, and first and second tin plating layers covering the first and second nickel plating layers, respectively.
  • a multilayer capacitor may include a body including dielectric layers and a plurality of internal electrodes; and external electrodes each including a conductive layer and a conductive resin layer covering the conductive layer.
  • the conductive layer may include a head portion disposed on an end surface of the body and electrically connected to the plurality of internal electrodes and a band portion extending, in a length direction of the body, from the head portion to portions of a mounting surface and opposite side surfaces of the body.
  • An average thickness of the dielectric layers can be greater than the average thickness of the plurality of internal electrodes.
  • Each of the plurality of internal electrodes may include a first extending portion overlapping an end of the band portion in a width direction of the body and protruding from opposing sides of each of the plurality of internal electrodes in the width direction by a predetermined length, and the first extending portion may be disposed at a farther side from a portion electrically connected to the external electrodes.
  • FIG. 1 is a perspective view illustrating a multilayer capacitor according to an exemplary embodiment in the present disclosure
  • FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1 ;
  • FIGS. 3A and 3B are cross-sectional views illustrating a structure of each of first and second internal electrodes in FIG. 1 ;
  • FIGS. 4A and 4B are cross-sectional views illustrating another example of each of the first and second internal electrodes
  • FIGS. 5A and 5B are cross-sectional views illustrating another example of each of the first and second internal electrodes
  • FIGS. 6A and 6B are cross-sectional views illustrating another example of each of the first and second internal electrodes.
  • FIG. 7 is a cross-sectional view illustrating a case in which plating layers are further formed in FIG. 2 .
  • X, Y and Z in the drawings refer to a length direction, a width direction, and a thickness direction of a multilayer capacitor, respectively.
  • the Z direction refers to a stacked direction in which dielectric layers are stacked in the present exemplary embodiment.
  • FIG. 1 is a perspective view illustrating a multilayer capacitor according to an exemplary embodiment in the present disclosure and FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1 .
  • a multilayer capacitor 100 may include a body 110 and first and second external electrodes 130 and 140 .
  • the body 110 may be formed by stacking a plurality of dielectric layers 111 in a Z direction of the body 110 and then sintering the plurality of dielectric layers 111 .
  • the dielectric layers 111 adjacent to each other of the body 110 of the capacitor may be integrated with each other so that boundaries therebetween are not readily apparent without using a scanning electron microscope (SEM).
  • the body 110 may include the plurality of dielectric layers 111 , and first and second internal electrodes 121 and 122 having different polarities alternately disposed in the Z direction of the body 110 while having the dielectric layers 111 interposed therebetween.
  • the body 110 may include an active region as a portion contributing to forming a capacitance of the capacitor, and cover regions 112 and 113 provided on both side surfaces of the body 110 of the capacitor in a Y direction of the body 110 and upper and lower surfaces of the active region in the Z direction as margin portions.
  • a shape of the body 110 is not particularly limited, but may be a hexahedron shape.
  • the body 110 may have first and second surfaces 1 and 2 opposing each other in the Z direction of the body 110 , third and fourth surfaces 3 and 4 connected to the first and second surfaces 1 and 2 and opposing each other in the X direction of the body 110 , and fifth and sixth surfaces 5 and 6 connected to the first and second surfaces 1 and 2 , connected to the third and fourth surfaces 3 and 4 , and opposing each other in the Y direction of the body 110 .
  • the dielectric layer 111 may include a ceramic powder, for example, a BaTiO 3 based ceramic powder or the like.
  • barium titanate (BaTiO 3 ) based ceramic powder may include (Ba 1-x Ca x )TiO 3 , Ba(Ti 1-y Ca y )O 3 , (Ba 1-x Ca x ) (Ti 1-y Zr y )O 3 , Ba(Ti 1-y Zr y )O 3 , and the like, in which Ca, Zr, or the like, is partially dissolved in BaTiO 3 , but is not limited thereto.
  • the dielectric layer 111 may further include a ceramic additive, an organic solvent, a plasticizer, a binder, a dispersant, and the like, in addition to the ceramic powder.
  • the ceramic additive may include, for example, a transition metal oxide or carbide, a rare earth element, magnesium (Mg), aluminum (Al), or the like.
  • an average thickness of the dielectric layers 111 may be greater than an average thickness of the first and second internal electrodes 121 and 122 .
  • the average thickness of the dielectric layers 111 may be twice or more than the average thickness of the first and second internal electrodes 121 and 122 .
  • the first and second internal electrodes 121 and 122 which are electrodes to which different polarities are applied, may be disposed on the dielectric layer 111 to be stacked in the Z direction of the body 110 , and may be alternately disposed in the body 110 so as to opposite to each other in the Z direction of the body 110 while having one dielectric layer 111 interposed therebetween.
  • first and second internal electrodes 121 and 122 may be electrically insulated from each other by the dielectric layer 111 disposed therebetween.
  • One end portion of each of the first and second internal electrodes 121 and 122 may be exposed through the third and fourth surfaces 3 and 4 of the body 110 , respectively.
  • the end portions of the first and second internal electrodes 121 and 122 alternately exposed through the third and fourth surfaces 3 and 4 of the body 110 may be electrically connected to the first and second external electrodes 130 and 140 disposed on the opposite end surfaces of the body 110 in the X direction of the body 110 , respectively, to be described below.
  • a capacitance of the multilayer capacitor 100 may be in proportional to an overlapping area of the first and second internal electrodes 121 and 122 overlapping each other in the Z direction of the body 110 in the active region.
  • a material forming the first and second internal electrodes 121 and 122 is not particularly limited, but may be a conductive paste formed of one or more of, for example, a noble metal material such as platinum (Pt), palladium (Pd), a palladium-silver (Pd—Ag) alloy, or the like, nickel (Ni), and copper (Cu).
  • a noble metal material such as platinum (Pt), palladium (Pd), a palladium-silver (Pd—Ag) alloy, or the like, nickel (Ni), and copper (Cu).
  • a method of printing the conductive paste may be a screen printing method, a gravure printing method, or the like, but is not limited thereto.
  • the average thickness of the first and second internal electrodes 121 and 122 may be less than 1 ⁇ m.
  • a portion of the first internal electrode 121 overlapping an end of a first or second band portion 131 b or 141 b in the Y direction of the body 110 may be formed as a first extending portion 121 a having a width that is relatively greater than those of other portions of the first internal electrode 121 .
  • the first extending portion 121 a may be disposed in a location overlapping in the Y direction of the body 110 with the end of the second band portion 141 b positioned on the opposite side of an end portion to which the first internal electrode 121 is exposed.
  • the first extending portion 121 a may be disposed at the end of the first internal electrode 121 in the X direction of the body 110 .
  • a portion of the second internal electrode 122 overlapping the end of the first or second band portion 131 b or 141 b in the Y direction of the body 110 may be formed as a second extending portion 122 a having a width that is relatively greater than those of other portions of the second internal electrode 122 .
  • the second extending portion 122 a may be disposed in a location overlapping in the Y direction of the body 110 with the end of the first band portion 131 b positioned on the opposite side of an end portion to which the second internal electrode 122 is exposed.
  • the second extending portion 122 a may be disposed at the end of the second internal electrode 122 in the X direction of the body 110 .
  • We/Wm may be 0.3 or more, in which We is a length of one side of the first and second extending portions 121 a and 122 a in the Y direction of the body 110 , and Wm is a margin of one side of the body 110 in the Y direction of the body 110 . In the case in which We/Wm is 0.3 or more, a bending strength of 6 mm may be ensured.
  • We/Wm may be 0.5 or more. In the case in which We/Wm is 0.5 or more, bending strength characteristics are further improved and as a result, the bending strength of 8 mm may also be ensured.
  • We/Wm may be 0.6 or less. The reason is because a cutting defective rate may exceed 10% in a process of manufacturing the multilayer capacitor when We/Wm exceeds 0.6.
  • FIGS. 3A and 3B illustrate that the first and second extending portions 121 a and 122 a are substantially formed in a rectangular shape, but the shape of the first and second extending portions 121 a and 122 a is not limited thereto.
  • first and second extending portions 121 a ′ and 122 a ′ may be substantially formed in an oval shape as illustrated in FIGS. 4A and 4B .
  • a first extending portion 121 b may be disposed at the portion overlapping the end of the first band portion 131 b in the Y direction of the body 110 .
  • FIG. 5A illustrates that each of the first extending portions 121 a and 121 b is disposed at each of the portions overlapping the ends of the first and second band portions 131 b and 141 b in the Y direction of the body 110 , but the first extending portions 121 a and 121 b are not limited thereto.
  • the first extending portion 121 b may be disposed only at the portion overlapping the end of the first band portion 131 b in the Y direction of the body 110 .
  • a second extending portion 122 b may be disposed at the portion overlapping the end of the second band portion 141 b in the Y direction of the body 110 .
  • FIG. 5B illustrates that each of the second extending portions 122 a and 122 b is disposed at each of the portions overlapping the ends of the first and second band portions 131 b and 141 b in the Y direction of the body 110 , but the second extending portions 122 a and 122 b are not limited thereto.
  • the second extending portion 122 b may be disposed only at the portion overlapping the end of the second band portion 141 b in the Y direction of the body 110 .
  • FIGS. 5A and 5B illustrate that the first extending portions 121 a and 121 b and the second extending portions 122 a and 122 b are substantially formed in a rectangular shape, but the shape of the first and second extending portions is not limited thereto.
  • first extending portions 121 a ′ and 121 b ′ and second extending portions 121 a ′ and 122 a ′ may be substantially formed in an oval shape as illustrated in FIGS. 6A and 6B .
  • Voltages having different polarities may be provided to the first and second external electrodes 130 and 140 , and the first and second external electrodes 130 and 140 may be disposed on the opposite end surfaces of the body 110 in the X direction of the body 110 , and may be electrically connected to the exposed end portions of the first and second internal electrodes 121 and 122 , respectively.
  • the first external electrode 130 may include a first conductive layer 131 and a first conductive resin layer 132 .
  • the first conductive layer 131 may be disposed on a surface of the body 110 and may be connected to the exposed end portion of the first internal electrode 121 .
  • the first conductive layer 131 may be formed by sintering.
  • Such a first conductive layer 131 may include a first head portion 131 a and a first band portion 131 b.
  • the first head portion 131 a may be disposed on the third surface 3 of the body 110 , and may be in contact with the end portion of the first internal electrode 121 exposed to the outside through the third surface 3 of the body 110 to serve to electrically connect the first internal electrode 121 and the first external electrode 130 to each other.
  • the first band portion 131 b may be a portion extending from the first head portion 131 a to portions of the first, fifth, and sixth surfaces 1 , 5 , and 6 of the body 110 to improve fixing strength.
  • the first band portion 131 b may extend to a portion of the second surface 2 of the body 110 from the first head portion 131 a , if necessary.
  • the first conductive resin layer 132 may cover the first conductive layer 131 .
  • a distance from the third surface 3 of the body 110 to an end of the first band portion 131 b of the first conductive layer 131 in the X direction of the body 110 may be shorter than a distance from the third surface 3 of the body 110 to an end of the first conductive resin layer 132 in the X direction of the body 110 .
  • the second external electrode 140 may include a second conductive layer 141 and a second conductive resin layer 142 .
  • the second conductive layer 141 may be disposed on the surface of the body 110 and may be connected to the exposed end portion of the second internal electrode 122 .
  • the second conductive layer 141 may be formed by sintering.
  • Such a second conductive layer 141 may include a second head portion 141 a and a second band portion 141 b.
  • the second head portion 141 a may be disposed on the fourth surface 4 of the body 110 , and may be in contact with the end portion of the second internal electrode 122 exposed to the outside through the fourth surface 4 of the body 110 to serve to electrically connect the second internal electrode 122 and the second external electrode 140 to each other.
  • the second band portion 141 b may be a portion extending from the second head portion 141 a to portions of the first, fifth, and sixth surfaces 1 , 5 , and 6 of the body 110 to improve fixing strength.
  • the second band portion 141 b may extend to a portion of the second surface 2 of the body 110 from the second head portion 141 a , if necessary.
  • the second conductive resin layer 142 may cover the second conductive layer 141 .
  • a distance from the fourth surface 4 of the body 110 to an end of the second band portion 141 b of the second conductive layer 141 in the X direction of the body 110 may be shorter than a distance from the fourth surface 4 of the body 110 to an end of the second conductive resin layer 142 in the X direction of the body 110 .
  • the first external electrode 130 may further include a first plating layer 133 .
  • the first plating layer 133 may cover the first conductive resin layer 132 .
  • Such a first plating layer 133 may include a first nickel (Ni) plating layer 133 a covering the first conductive resin layer 132 , and a first tin (Sn) plating layer 133 b covering the first nickel plating layer 133 a.
  • the second external electrode 140 may further include a second plating layer 143 .
  • the second plating layer 143 may cover the second conductive resin layer 142 .
  • Such a second plating layer 143 may include a second nickel plating layer 143 a covering the second conductive resin layer 142 , and a second tin plating layer 143 b covering the second nickel plating layer 143 a.
  • a bending crack mainly occurs at the ends of the band portions of the external electrodes.
  • the conventional multilayer capacitor implements bending strength characteristics by sufficiently securing the number of stacked internal electrodes that affect a capacitance implementation and the number of stacked patterns in the same direction which do not affect the capacitance implementation.
  • the bending strength characteristics intend to be implemented by simply securing the number of stacked internal electrodes or patterns, as the stacked number is increased, production efficiency may be lowered.
  • the portion of the internal electrode overlapping the end of the band portion of the external electrode may be formed as the extending portion having the width relatively greater than those of other portions of the internal electrode.
  • Table 1 illustrates an occurrence frequency of a bending crack according to a ratio of a length of an extending portion in the Y direction of the body 110 to a margin of the body 110 in the Y direction thereof.
  • the multilayer capacitor used in the present experiment is manufactured so as to have a length in the X direction of 3.2 mm, a length in the Y direction of 1.6 mm, and electrical characteristics of 1 ⁇ F.
  • a multilayer capacitor which has been subjected to a temperature cycle of 100 times from ⁇ 55° C. to 125° C. is mounted on a substrate, and then a surface of the substrate on which the multilayer capacitor is mounted faces downwardly.
  • the opposite surface of the surface of the substrate on which the multilayer capacitor is mounted is repeatedly pressed until the substrate is deformed by a distance of 4 mm, 5 mm, 6 mm, 7 mm, and 8 mm, respectively, to check whether a crack occurs in the multilayer capacitor or a current value rapidly increases.
  • a length of one side of the first extending portion in the Y direction of the body 110 is defined as We
  • a margin of one side of the body 110 in the Y direction thereof is defined as Wm
  • 60 samples having We/Wm of 0, 0.5, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, are prepared, and a bending crack test is performed.
  • Table 2 illustrates a cutting defective rate in a process of manufacturing the multilayer capacitor according to a ratio of a length of an extending portion in the Y direction of the body 110 to a margin of the body 110 in the Y direction thereof.
  • a value of We/Wm may be 0.6 or less.
  • the tensile strength of the multilayer capacitor may be improved to improve the bending strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

A multilayer capacitor includes a body including dielectric layers and a plurality of first and second internal electrodes having an average thickness less than 1 μm; and first and second external electrodes each including first and second conductive layers including first and second head portions and first and second band portions, and first and second conductive resin layers each covering the first and second conductive layers. An average thickness of the dielectric layers may be greater than the average thickness of the first and second internal electrodes, and portions of the first and second internal electrodes overlapping an end of the first or second band portion in a width direction of the body may be formed as first and second extending portions having a width relatively greater than those of other portions of the first and second internal electrodes, respectively.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application claims the benefit of priority to Korean Patent Application No. 10-2018-0115497 filed on Sep. 28, 2018 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The present disclosure relates to a multilayer capacitor.
  • BACKGROUND
  • Multilayer capacitors are used as components in various electronic devices as they may be implemented to have a small size and high capacity.
  • In recent years, as interest in autonomous driving and electric vehicles has increased, power driving systems in automobiles have increased, and accordingly, demand for the multilayer capacitors required for automobiles has also increased.
  • In order to use the multilayer capacitors as the component for automobiles, a high level of electrical reliability and impact resistance are required.
  • In particular, after the multilayer capacitor is mounted on a substrate, strong resistance to deformation of the substrate is required.
  • SUMMARY
  • An aspect of the present disclosure may provide a multilayer capacitor capable of implementing excellent bending strength characteristics.
  • According to an aspect of the present disclosure, a multilayer capacitor may include a body including dielectric layers and a plurality of first and second internal electrodes having an average thickness less than 1 μm; and first and second external electrodes each including first and second conductive layers including first and second head portions disposed on opposing surfaces of the body and connected to exposed portions of the first and second internal electrodes and first and second band portions extending from the first and second head portions to portions of a mounting surface and opposite side surfaces of the body, and first and second conductive resin layers each covering the first and second conductive layers. An average thickness of the dielectric layers can be greater than the average thickness of the first and second internal electrodes, and portions of the first and second internal electrodes overlapping an end of the first or second band portion in a width direction of the body can be formed as first and second extending portions having a width relatively greater than those of other portions of the first and second internal electrodes, respectively.
  • The first extending portion may be disposed at the portion overlapping the end of the second band portion in the width direction of the body, and the second extending portion may be disposed at the portion overlapping the end of the first band portion in the width direction of the body.
  • The first extending portion may be disposed at the end of the first internal electrode, and the second extending portion may be disposed at the end of the second internal electrode.
  • The first extending portion may be disposed at the portion overlapping the end of the first band portion in the width direction of the body, and the second extending portion may be disposed at the portion overlapping the end of the second band portion in the width direction of the body.
  • The first and second extending portions may be formed in a rectangular shape or an oval shape.
  • We/Wm may be 0.3 or more, in which We is a length of one side of the first extending portion in the width direction of the body and Wm is a margin of one side of the body in the width direction of the body.
  • We/Wm may satisfy 0.5≤We/Wm≤0.6.
  • The average thickness of the dielectric layers may be two or more times the average thickness of the first and second internal electrodes.
  • The first and second internal electrodes may be formed by sintering.
  • A distance from one end surface of the body to an end of the first or second band portion of the first or second conductive layer adjacent to the one end surface of the body may be shorter than a distance from the one end surface of the body to an end of the first or second conductive resin layer adjacent to the one end surface of the body.
  • The body may include first and second surfaces opposing each other, third and fourth surfaces connected to the first and second surfaces and opposing each other, and fifth and sixth surfaces connected to the first and second surfaces, connected to the third and fourth surfaces, and opposing each other, and includes a plurality of dielectric layers and the plurality of first and second internal electrodes alternately disposed in a direction connecting the first and second surfaces to each other while having the dielectric layer interposed therebetween, and one end of each of the first and second internal electrodes may be exposed through each of the third and fourth surfaces of the body.
  • The first and second conductive layers may include the first and second head portions disposed on the third and fourth surfaces of the body, respectively, and the first and second band portions may extend to portions of the first, fifth, and sixth surfaces of the body from the first and second head portions.
  • The multilayer capacitor may further include first and second plating layers covering the first and second external electrodes, respectively.
  • The first and second plating layers may include first and second nickel plating layers covering the first and second conductive resin layers, respectively, and first and second tin plating layers covering the first and second nickel plating layers, respectively.
  • According to another aspect of the present disclosure, a multilayer capacitor may include a body including dielectric layers and a plurality of internal electrodes; and external electrodes each including a conductive layer and a conductive resin layer covering the conductive layer. The conductive layer may include a head portion disposed on an end surface of the body and electrically connected to the plurality of internal electrodes and a band portion extending, in a length direction of the body, from the head portion to portions of a mounting surface and opposite side surfaces of the body. An average thickness of the dielectric layers can be greater than the average thickness of the plurality of internal electrodes. Each of the plurality of internal electrodes may include a first extending portion overlapping an end of the band portion in a width direction of the body and protruding from opposing sides of each of the plurality of internal electrodes in the width direction by a predetermined length, and the first extending portion may be disposed at a farther side from a portion electrically connected to the external electrodes.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The above and other aspects, features and other advantages of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a perspective view illustrating a multilayer capacitor according to an exemplary embodiment in the present disclosure;
  • FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1;
  • FIGS. 3A and 3B are cross-sectional views illustrating a structure of each of first and second internal electrodes in FIG. 1;
  • FIGS. 4A and 4B are cross-sectional views illustrating another example of each of the first and second internal electrodes;
  • FIGS. 5A and 5B are cross-sectional views illustrating another example of each of the first and second internal electrodes;
  • FIGS. 6A and 6B are cross-sectional views illustrating another example of each of the first and second internal electrodes; and
  • FIG. 7 is a cross-sectional view illustrating a case in which plating layers are further formed in FIG. 2.
  • DETAILED DESCRIPTION
  • Hereinafter, exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings.
  • Directions will be defined in order to clearly describe exemplary embodiments in the present disclosure. X, Y and Z in the drawings refer to a length direction, a width direction, and a thickness direction of a multilayer capacitor, respectively.
  • Here, the Z direction refers to a stacked direction in which dielectric layers are stacked in the present exemplary embodiment.
  • FIG. 1 is a perspective view illustrating a multilayer capacitor according to an exemplary embodiment in the present disclosure and FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1.
  • Referring to FIGS. 1 and 2, a multilayer capacitor 100 according to the present exemplary embodiment may include a body 110 and first and second external electrodes 130 and 140.
  • The body 110 may be formed by stacking a plurality of dielectric layers 111 in a Z direction of the body 110 and then sintering the plurality of dielectric layers 111. The dielectric layers 111 adjacent to each other of the body 110 of the capacitor may be integrated with each other so that boundaries therebetween are not readily apparent without using a scanning electron microscope (SEM).
  • In addition, the body 110 may include the plurality of dielectric layers 111, and first and second internal electrodes 121 and 122 having different polarities alternately disposed in the Z direction of the body 110 while having the dielectric layers 111 interposed therebetween.
  • In addition, the body 110 may include an active region as a portion contributing to forming a capacitance of the capacitor, and cover regions 112 and 113 provided on both side surfaces of the body 110 of the capacitor in a Y direction of the body 110 and upper and lower surfaces of the active region in the Z direction as margin portions.
  • A shape of the body 110 is not particularly limited, but may be a hexahedron shape. The body 110 may have first and second surfaces 1 and 2 opposing each other in the Z direction of the body 110, third and fourth surfaces 3 and 4 connected to the first and second surfaces 1 and 2 and opposing each other in the X direction of the body 110, and fifth and sixth surfaces 5 and 6 connected to the first and second surfaces 1 and 2, connected to the third and fourth surfaces 3 and 4, and opposing each other in the Y direction of the body 110.
  • The dielectric layer 111 may include a ceramic powder, for example, a BaTiO3 based ceramic powder or the like.
  • An example of the barium titanate (BaTiO3) based ceramic powder may include (Ba1-xCax)TiO3, Ba(Ti1-yCay)O3, (Ba1-xCax) (Ti1-yZry)O3, Ba(Ti1-yZry)O3, and the like, in which Ca, Zr, or the like, is partially dissolved in BaTiO3, but is not limited thereto.
  • In addition, the dielectric layer 111 may further include a ceramic additive, an organic solvent, a plasticizer, a binder, a dispersant, and the like, in addition to the ceramic powder.
  • The ceramic additive may include, for example, a transition metal oxide or carbide, a rare earth element, magnesium (Mg), aluminum (Al), or the like.
  • In addition, an average thickness of the dielectric layers 111 may be greater than an average thickness of the first and second internal electrodes 121 and 122.
  • In this case, the average thickness of the dielectric layers 111 may be twice or more than the average thickness of the first and second internal electrodes 121 and 122.
  • The first and second internal electrodes 121 and 122, which are electrodes to which different polarities are applied, may be disposed on the dielectric layer 111 to be stacked in the Z direction of the body 110, and may be alternately disposed in the body 110 so as to opposite to each other in the Z direction of the body 110 while having one dielectric layer 111 interposed therebetween.
  • In this case, the first and second internal electrodes 121 and 122 may be electrically insulated from each other by the dielectric layer 111 disposed therebetween.
  • One end portion of each of the first and second internal electrodes 121 and 122 may be exposed through the third and fourth surfaces 3 and 4 of the body 110, respectively.
  • The end portions of the first and second internal electrodes 121 and 122 alternately exposed through the third and fourth surfaces 3 and 4 of the body 110 may be electrically connected to the first and second external electrodes 130 and 140 disposed on the opposite end surfaces of the body 110 in the X direction of the body 110, respectively, to be described below.
  • According to the configuration as described above, when a predetermined voltage is applied to the first and second external electrodes 130 and 140, electric charges may be accumulated between the first and second internal electrodes 121 and 122.
  • In this case, a capacitance of the multilayer capacitor 100 may be in proportional to an overlapping area of the first and second internal electrodes 121 and 122 overlapping each other in the Z direction of the body 110 in the active region.
  • In addition, a material forming the first and second internal electrodes 121 and 122 is not particularly limited, but may be a conductive paste formed of one or more of, for example, a noble metal material such as platinum (Pt), palladium (Pd), a palladium-silver (Pd—Ag) alloy, or the like, nickel (Ni), and copper (Cu).
  • At this time, a method of printing the conductive paste may be a screen printing method, a gravure printing method, or the like, but is not limited thereto.
  • In addition, the average thickness of the first and second internal electrodes 121 and 122 may be less than 1 μm.
  • Referring to FIG. 3A, a portion of the first internal electrode 121 overlapping an end of a first or second band portion 131 b or 141 b in the Y direction of the body 110 may be formed as a first extending portion 121 a having a width that is relatively greater than those of other portions of the first internal electrode 121.
  • In the present exemplary embodiment, the first extending portion 121 a may be disposed in a location overlapping in the Y direction of the body 110 with the end of the second band portion 141 b positioned on the opposite side of an end portion to which the first internal electrode 121 is exposed.
  • In this case, the first extending portion 121 a may be disposed at the end of the first internal electrode 121 in the X direction of the body 110.
  • Referring to FIG. 3B, a portion of the second internal electrode 122 overlapping the end of the first or second band portion 131 b or 141 b in the Y direction of the body 110 may be formed as a second extending portion 122 a having a width that is relatively greater than those of other portions of the second internal electrode 122.
  • In the present exemplary embodiment, the second extending portion 122 a may be disposed in a location overlapping in the Y direction of the body 110 with the end of the first band portion 131 b positioned on the opposite side of an end portion to which the second internal electrode 122 is exposed.
  • In this case, the second extending portion 122 a may be disposed at the end of the second internal electrode 122 in the X direction of the body 110.
  • In addition, We/Wm may be 0.3 or more, in which We is a length of one side of the first and second extending portions 121 a and 122 a in the Y direction of the body 110, and Wm is a margin of one side of the body 110 in the Y direction of the body 110. In the case in which We/Wm is 0.3 or more, a bending strength of 6 mm may be ensured.
  • In addition, We/Wm may be 0.5 or more. In the case in which We/Wm is 0.5 or more, bending strength characteristics are further improved and as a result, the bending strength of 8 mm may also be ensured.
  • Meanwhile, We/Wm may be 0.6 or less. The reason is because a cutting defective rate may exceed 10% in a process of manufacturing the multilayer capacitor when We/Wm exceeds 0.6.
  • Meanwhile, FIGS. 3A and 3B illustrate that the first and second extending portions 121 a and 122 a are substantially formed in a rectangular shape, but the shape of the first and second extending portions 121 a and 122 a is not limited thereto. For example, first and second extending portions 121 a′ and 122 a′ may be substantially formed in an oval shape as illustrated in FIGS. 4A and 4B.
  • As illustrated in FIG. 5A, a first extending portion 121 b may be disposed at the portion overlapping the end of the first band portion 131 b in the Y direction of the body 110.
  • In this case, FIG. 5A illustrates that each of the first extending portions 121 a and 121 b is disposed at each of the portions overlapping the ends of the first and second band portions 131 b and 141 b in the Y direction of the body 110, but the first extending portions 121 a and 121 b are not limited thereto. For example, the first extending portion 121 b may be disposed only at the portion overlapping the end of the first band portion 131 b in the Y direction of the body 110.
  • Referring to FIG. 5B, a second extending portion 122 b may be disposed at the portion overlapping the end of the second band portion 141 b in the Y direction of the body 110.
  • In this case, FIG. 5B illustrates that each of the second extending portions 122 a and 122 b is disposed at each of the portions overlapping the ends of the first and second band portions 131 b and 141 b in the Y direction of the body 110, but the second extending portions 122 a and 122 b are not limited thereto. For example, the second extending portion 122 b may be disposed only at the portion overlapping the end of the second band portion 141 b in the Y direction of the body 110.
  • Meanwhile, FIGS. 5A and 5B illustrate that the first extending portions 121 a and 121 b and the second extending portions 122 a and 122 b are substantially formed in a rectangular shape, but the shape of the first and second extending portions is not limited thereto. For example, first extending portions 121 a′ and 121 b′ and second extending portions 121 a′ and 122 a′ may be substantially formed in an oval shape as illustrated in FIGS. 6A and 6B.
  • Voltages having different polarities may be provided to the first and second external electrodes 130 and 140, and the first and second external electrodes 130 and 140 may be disposed on the opposite end surfaces of the body 110 in the X direction of the body 110, and may be electrically connected to the exposed end portions of the first and second internal electrodes 121 and 122, respectively.
  • The first external electrode 130 may include a first conductive layer 131 and a first conductive resin layer 132.
  • The first conductive layer 131 may be disposed on a surface of the body 110 and may be connected to the exposed end portion of the first internal electrode 121.
  • In addition, the first conductive layer 131 may be formed by sintering.
  • Such a first conductive layer 131 may include a first head portion 131 a and a first band portion 131 b.
  • The first head portion 131 a may be disposed on the third surface 3 of the body 110, and may be in contact with the end portion of the first internal electrode 121 exposed to the outside through the third surface 3 of the body 110 to serve to electrically connect the first internal electrode 121 and the first external electrode 130 to each other.
  • The first band portion 131 b may be a portion extending from the first head portion 131 a to portions of the first, fifth, and sixth surfaces 1, 5, and 6 of the body 110 to improve fixing strength.
  • In this case, the first band portion 131 b may extend to a portion of the second surface 2 of the body 110 from the first head portion 131 a, if necessary.
  • The first conductive resin layer 132 may cover the first conductive layer 131.
  • In this case, a distance from the third surface 3 of the body 110 to an end of the first band portion 131 b of the first conductive layer 131 in the X direction of the body 110 may be shorter than a distance from the third surface 3 of the body 110 to an end of the first conductive resin layer 132 in the X direction of the body 110.
  • The second external electrode 140 may include a second conductive layer 141 and a second conductive resin layer 142.
  • The second conductive layer 141 may be disposed on the surface of the body 110 and may be connected to the exposed end portion of the second internal electrode 122.
  • In addition, the second conductive layer 141 may be formed by sintering.
  • Such a second conductive layer 141 may include a second head portion 141 a and a second band portion 141 b.
  • The second head portion 141 a may be disposed on the fourth surface 4 of the body 110, and may be in contact with the end portion of the second internal electrode 122 exposed to the outside through the fourth surface 4 of the body 110 to serve to electrically connect the second internal electrode 122 and the second external electrode 140 to each other.
  • The second band portion 141 b may be a portion extending from the second head portion 141 a to portions of the first, fifth, and sixth surfaces 1, 5, and 6 of the body 110 to improve fixing strength.
  • In this case, the second band portion 141 b may extend to a portion of the second surface 2 of the body 110 from the second head portion 141 a, if necessary.
  • The second conductive resin layer 142 may cover the second conductive layer 141.
  • In this case, a distance from the fourth surface 4 of the body 110 to an end of the second band portion 141 b of the second conductive layer 141 in the X direction of the body 110 may be shorter than a distance from the fourth surface 4 of the body 110 to an end of the second conductive resin layer 142 in the X direction of the body 110.
  • Referring to FIG. 7, the first external electrode 130 may further include a first plating layer 133.
  • The first plating layer 133 may cover the first conductive resin layer 132.
  • Such a first plating layer 133 may include a first nickel (Ni) plating layer 133 a covering the first conductive resin layer 132, and a first tin (Sn) plating layer 133 b covering the first nickel plating layer 133 a.
  • The second external electrode 140 may further include a second plating layer 143.
  • The second plating layer 143 may cover the second conductive resin layer 142.
  • Such a second plating layer 143 may include a second nickel plating layer 143 a covering the second conductive resin layer 142, and a second tin plating layer 143 b covering the second nickel plating layer 143 a.
  • In the multilayer capacitor, a bending crack mainly occurs at the ends of the band portions of the external electrodes.
  • In order to prevent such a bending crack, the conventional multilayer capacitor implements bending strength characteristics by sufficiently securing the number of stacked internal electrodes that affect a capacitance implementation and the number of stacked patterns in the same direction which do not affect the capacitance implementation. However, in a case in which the bending strength characteristics intend to be implemented by simply securing the number of stacked internal electrodes or patterns, as the stacked number is increased, production efficiency may be lowered.
  • In the multilayer capacitor according to the present exemplary embodiment, the portion of the internal electrode overlapping the end of the band portion of the external electrode may be formed as the extending portion having the width relatively greater than those of other portions of the internal electrode.
  • As a result, since an area of the portion of the internal electrode overlapping the end of the band portion is relatively larger, tensile strength of the portion of the body susceptible to a bending crack can be increased to improve the bending strength characteristics of the multilayered capacitor.
  • Experimental Example
  • Table 1 below illustrates an occurrence frequency of a bending crack according to a ratio of a length of an extending portion in the Y direction of the body 110 to a margin of the body 110 in the Y direction thereof.
  • The multilayer capacitor used in the present experiment is manufactured so as to have a length in the X direction of 3.2 mm, a length in the Y direction of 1.6 mm, and electrical characteristics of 1 ρF.
  • In the present experiment, a multilayer capacitor which has been subjected to a temperature cycle of 100 times from −55° C. to 125° C. is mounted on a substrate, and then a surface of the substrate on which the multilayer capacitor is mounted faces downwardly.
  • In addition, after supports are positioned at positions spaced apart from both sides of the multilayer capacitor by a predetermined distance, the opposite surface of the surface of the substrate on which the multilayer capacitor is mounted is repeatedly pressed until the substrate is deformed by a distance of 4 mm, 5 mm, 6 mm, 7 mm, and 8 mm, respectively, to check whether a crack occurs in the multilayer capacitor or a current value rapidly increases.
  • In this case, a length of one side of the first extending portion in the Y direction of the body 110 is defined as We, a margin of one side of the body 110 in the Y direction thereof is defined as Wm, 60 samples having We/Wm of 0, 0.5, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, are prepared, and a bending crack test is performed.
  • TABLE 1
    Occurrence Frequency of Bending Crack (EA)
    # We/Wm 4 mm 5 mm 6 mm 7 mm 8 mm
    1 0 1/60 1/60 3/60 4/60 7/60
    2 0.05 0/60 1/60 1/60 3/60 4/60
    3 0.1 0/60 0/60 1/60 0/60 1/60
    4 0.2 0/60 0/60 1/60 1/60 0/60
    5 0.3 0/60 0/60 0/60 1/60 1/60
    6 0.4 0/60 0/60 0/60 1/60 0/60
    7 0.5 0/60 0/60 0/60 0/60 0/60
  • Referring to Table 1, in the case of Sample 1 to 4 having We/Wm which is less than 0.3, defect was found in a bending strength test of 6 mm.
  • In addition, in the case of Sample 5 having We/Wm of 0.3, no defect was founded in the bending strength test of 6 mm. As a result, it may be seen in the present exemplary embodiment that a preferable value of We/Wm is 0.3 or more.
  • In addition, in the case of Sample 7 having We/Wm of 0.5, no defect was also founded in a bending strength test of 8 mm. As a result, it may be seen in the present exemplary embodiment that a more preferable value of We/Wm is 0.5 or more.
  • Table 2 below illustrates a cutting defective rate in a process of manufacturing the multilayer capacitor according to a ratio of a length of an extending portion in the Y direction of the body 110 to a margin of the body 110 in the Y direction thereof.
  • In the present experiment, a multilayer capacitor having the same specification as that of the multilayer capacitor of Table 1 was used.
  • TABLE 2
    Cutting Defective
    # We/Wm Rate (%)
    8 0.25 0.26
    9 0.35 0.78
    10 0.45 1.70
    11 0.55 5.60
    12 0.60 9.18
    13 0.65 11.18
  • Referring to Table 2, in the case of Samples 8 to 12 having We/Wm of 0.6 or less, the cutting defective rate was 10% or less.
  • Therefore, in the present exemplary embodiment, when a tolerance of the cutting defective rate is 10% or less, a value of We/Wm may be 0.6 or less.
  • As set forth above, according to the exemplary embodiment in the present disclosure, the tensile strength of the multilayer capacitor may be improved to improve the bending strength.
  • While exemplary embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present invention as defined by the appended claims.

Claims (21)

1. A multilayer capacitor comprising:
a body including dielectric layers and a plurality of first and second internal electrodes having an average thickness less than 1 μm; and
a first external electrode and a second external electrode respectively including first and second conductive layers and first and second conductive resin layers respectively covering the first and second conductive layers,
wherein the first and second conductive layers respectively include first and second head portions disposed on opposing surfaces of the body and electrically connected to exposed portions of the plurality of first and second internal electrodes and first and second band portions extending, in a length direction of the body, from the first and second head portions to portions of a mounting surface and opposite side surfaces of the body,
wherein an average thickness of the dielectric layers is greater than the average thickness of the plurality of first and second internal electrodes,
wherein the plurality of first and second internal electrodes each include first and second extending portions respectively overlapping each end of the first and second band portions in a width direction of the body, each of the first and second extending portions having a width relatively greater than a width of an end portion adjacent to the first or second head portion and a width of a middle portion, of the plurality of first and second internal electrodes, respectively,
wherein the first and second extending portions are arranged only in respective portions overlapping each end of the first and second band portions in the width direction, and
wherein the first and second extending portions have a constant width with each other.
2. (canceled)
3. The multilayer capacitor of claim 1, wherein the first extending portion is disposed at an end of each of the plurality of first internal electrodes, and
the second extending portion is disposed at an end of each of the plurality of second internal electrodes.
4. (canceled)
5. The multilayer capacitor of claim 1, wherein the first and second extending portions are formed in a rectangular shape or an oval shape.
6. The multilayer capacitor of claim 1, wherein We/Wm is 0.3 or more, in which “We” is a length of one side of the first extending portion in the width direction of the body and “Wm” is a margin of one side of the body in the width direction of the body.
7. The multilayer capacitor of claim 6, wherein We/Wm is 0.5 or more.
8. The multilayer capacitor of claim 7, wherein We/Wm satisfies 0.5≤We/Wm≤0.6.
9. The multilayer capacitor of claim 1, wherein the average thickness of the dielectric layers is two or more times the average thickness of the plurality of first and second internal electrodes.
10. The multilayer capacitor of claim 1, wherein the plurality of first and second internal electrodes are formed by sintering.
11. The multilayer capacitor of claim 1, wherein a distance, in the length direction, from one end surface of the body to the end of the first or second band portion of the first or second conductive layer adjacent to the one end surface of the body is shorter than a distance, in the length direction, from the one end surface of the body to an end of the first or second conductive resin layer adjacent to the one end surface of the body.
12. The multilayer capacitor of claim 1, wherein the body includes first and second surfaces opposing each other, third and fourth surfaces connected to the first and second surfaces and opposing each other, and fifth and sixth surfaces connected to the first and second surfaces, connected to the third and fourth surfaces, and opposing each other, and includes the dielectric layers and the plurality of first and second internal electrodes alternately disposed in a direction connecting the first and second surfaces to each other while having each of the dielectric layers interposed therebetween, and
one end of each of the plurality of first and second internal electrodes is exposed through the third and fourth surfaces of the body, respectively.
13. The multilayer capacitor of claim 12, wherein the first and second conductive layers include the first and second head portions disposed on the third and fourth surfaces of the body, respectively, and
the first and second band portions extend to portions of the first, fifth, and sixth surfaces of the body from the first and second head portions.
14. The multilayer capacitor of claim 1, further comprising first and second plating layers covering the first and second external electrodes, respectively.
15. The multilayer capacitor of claim 14, wherein the first and second plating layers include first and second nickel plating layers covering the first and second conductive resin layers, respectively, and first and second tin plating layers covering the first and second nickel plating layers, respectively.
16. A multilayer capacitor comprising:
a body including dielectric layers and a plurality of internal electrodes; and
external electrodes each including a conductive layer and a conductive resin layer covering the conductive layer,
wherein the conductive layer includes a head portion disposed on an end surface of the body and electrically connected to the plurality of internal electrodes and a band portion extending, in a length direct ion of the body, from the head portion to portions of a mounting surface and opposite side surfaces of the body,
wherein an average thickness of the dielectric layers is greater than the average thickness of the plurality of internal electrodes,
wherein the plurality of internal electrodes each comprise a first extending portion overlapping an end of the band portion in a width direction of the body and protruding from opposing sides of each of the plurality of internal electrodes in the width direction by a predetermined length, the first extending portion disposed at a farther side from a portion electrically connected to the external electrodes,
wherein each of the plurality of internal electrodes further comprises a second extending portion overlapping an end of the band portion in the width direction and protruding from opposing sides of each of the plurality of internal electrodes in the width direction by a predetermined length, the second extending portion disposed at a nearer side from the portion electrically connected to the external electrodes,
wherein the first and second extending portions each have a width relatively greater than a width of an end portion adjacent to the head portion and a width of a middle portion, of each of the plurality of internal electrodes,
wherein the first and second extending portions are arranged only in portions overlapping respective ends of the band portions in the width direction, and
wherein the first and second extending portions have a constant width with each other.
17. (canceled)
18. The multilayer capacitor of claim 16, wherein the first extending portion is disposed at an end portion of each of the plurality of internal electrodes, and the second extending portion is disposed at another middle portion of each of the plurality of internal electrodes between the end portion and the portion electrically connected to the external electrodes.
19. The multilayer capacitor of claim 16, wherein the first extending portion is formed in a rectangular shape or an oval shape.
20. The multilayer capacitor of claim 16, wherein We/Wm is 0.3 or more, in which “We” is the predetermined length of the first extending portion and “Wm” is a margin of one side of the body in the width direction of the body.
21. A multilayer capacitor comprising:
a body including dielectric layers and a plurality of first and second internal electrodes having an average thickness less than 1 μm; and
a first external electrode and a second external electrode respectively including first and second conductive layers and first and second conductive resin layers respectively covering the first and second conductive layers,
wherein the first and second conductive layers respectively include first and second head portions disposed on opposing surfaces of the body and electrically connected to exposed portions of the plurality of first and second internal electrodes and first and second band portions extending, in a length direction of the body, from the first and second head portions to portions of a mounting surface and opposite side surfaces of the body,
wherein an average thickness of the dielectric layers is greater than the average thickness of the plurality of first and second internal electrodes,
wherein the plurality of first and second internal electrodes each include first and second extending portions respectively overlapping each end of the first and second band portions in a width direction of the body, each of the first and second extending portions having a width relatively greater than a width of an end portion adjacent to the first or second head portion and a width of a middle portion, of the plurality of first and second internal electrodes, respectively,
wherein the first and second extending portions are arranged only in respective portions overlapping each end of the first and second band portions in the width direction, and
wherein the end portion adjacent to the first or second head portion and the middle portion of the first and second internal electrodes have a constant width with each other.
US16/189,779 2018-09-28 2018-11-13 Multilayer capacitor for improved bending strength characteristics Active US10614956B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180115497A KR102133392B1 (en) 2018-09-28 2018-09-28 Multilayerd capacitor
KR10-2018-00115497 2018-09-28

Publications (2)

Publication Number Publication Date
US20200105469A1 true US20200105469A1 (en) 2020-04-02
US10614956B1 US10614956B1 (en) 2020-04-07

Family

ID=68421244

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/189,779 Active US10614956B1 (en) 2018-09-28 2018-11-13 Multilayer capacitor for improved bending strength characteristics

Country Status (3)

Country Link
US (1) US10614956B1 (en)
KR (1) KR102133392B1 (en)
CN (1) CN110970217B (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312217A (en) * 1989-05-26 1990-12-27 Murata Mfg Co Ltd Laminated capacitor
JPH05135990A (en) * 1991-11-14 1993-06-01 Mitsubishi Materials Corp Laminated porcelain capacitor
JPH10284343A (en) * 1997-04-11 1998-10-23 Mitsubishi Materials Corp Chip type electronic component
JP2003282350A (en) * 2002-03-22 2003-10-03 Taiyo Yuden Co Ltd Laminated ceramic electronic component and manufacturing method thereof
JP2003318059A (en) * 2002-04-25 2003-11-07 Kyocera Corp Layered ceramic capacitor
WO2006022060A1 (en) * 2004-08-27 2006-03-02 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for adjusting equivalent series resistance thereof
JP2006190774A (en) * 2005-01-05 2006-07-20 Murata Mfg Co Ltd Laminated ceramic electronic component
KR101053329B1 (en) * 2009-07-09 2011-08-01 삼성전기주식회사 Ceramic electronic components
JP5035319B2 (en) * 2009-10-23 2012-09-26 Tdk株式会社 Multilayer capacitor
JP2011238724A (en) * 2010-05-10 2011-11-24 Murata Mfg Co Ltd Electronic component
KR101153686B1 (en) * 2010-12-21 2012-06-18 삼성전기주식회사 Fabricating method for multi layer ceramic electronic device and multi layer ceramic electronic device using thereof
KR101832490B1 (en) * 2011-05-31 2018-02-27 삼성전기주식회사 Multilayer ceramic capacitor
KR101971912B1 (en) 2012-03-05 2019-04-25 삼성전기주식회사 Multi-Layered Ceramic Electronic Component and Manufacturing Method of the Same
KR101452057B1 (en) * 2012-12-04 2014-10-22 삼성전기주식회사 Multi-layered ceramic capacitor and board for mounting the same
JP2015026784A (en) * 2013-07-29 2015-02-05 Tdk株式会社 Multilayer capacitor
KR20160004655A (en) * 2014-07-03 2016-01-13 삼성전기주식회사 Multi-layered ceramic capacitor and board having the same mounted thereon
KR20160051309A (en) * 2014-11-03 2016-05-11 삼성전기주식회사 Multi-layered ceramic electronic components and board having the same mounted thereon
JP2015046644A (en) * 2014-12-11 2015-03-12 株式会社村田製作所 Multilayer ceramic electronic component

Also Published As

Publication number Publication date
KR20190121183A (en) 2019-10-25
CN110970217B (en) 2023-03-24
US10614956B1 (en) 2020-04-07
CN110970217A (en) 2020-04-07
KR102133392B1 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
US9024199B2 (en) Multilayer ceramic electronic component and board for mounting the same
US11929206B2 (en) Multilayer electronic component having improved high temperature load life and moisture resistance reliability
US10984954B2 (en) Capacitor array
US9049798B2 (en) Multilayered ceramic electronic component and board for mounting the same
US11728095B2 (en) Electronic component
US10529496B1 (en) Electronic component including a capacitor array
US10614956B1 (en) Multilayer capacitor for improved bending strength characteristics
US10840019B2 (en) Electronic component
US10861648B2 (en) Electronic component
US10854389B2 (en) Electronic component
KR102426203B1 (en) Multilayerd capacitor
US11715598B2 (en) Multilayer capacitor and board having the same
CN111199832B (en) Electronic assembly
US10971304B2 (en) Electronic component having metal frames
CN110875134B (en) Electronic assembly and mounting frame including capacitor array
US20230207218A1 (en) Multilayerr electronic component
US10879007B2 (en) Electronic component

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JEONG, DO YOUNG;KIM, JE JUNG;KIM, DO YEON;REEL/FRAME:047490/0536

Effective date: 20181106

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4