US20200105469A1 - Multilayer capacitor for improved bending strength characteristics - Google Patents
Multilayer capacitor for improved bending strength characteristics Download PDFInfo
- Publication number
- US20200105469A1 US20200105469A1 US16/189,779 US201816189779A US2020105469A1 US 20200105469 A1 US20200105469 A1 US 20200105469A1 US 201816189779 A US201816189779 A US 201816189779A US 2020105469 A1 US2020105469 A1 US 2020105469A1
- Authority
- US
- United States
- Prior art keywords
- portions
- internal electrodes
- extending
- multilayer capacitor
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 52
- 238000005452 bending Methods 0.000 title description 18
- 239000011347 resin Substances 0.000 claims abstract description 20
- 229920005989 resin Polymers 0.000 claims abstract description 20
- 238000007747 plating Methods 0.000 claims description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000002950 deficient Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910002113 barium titanate Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910009650 Ti1-yZry Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- -1 or the like Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/012—Form of non-self-supporting electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
- H01G4/232—Terminals electrically connecting two or more layers of a stacked or rolled capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
- H01G4/232—Terminals electrically connecting two or more layers of a stacked or rolled capacitor
- H01G4/2325—Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
- H01G4/0085—Fried electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present disclosure relates to a multilayer capacitor.
- Multilayer capacitors are used as components in various electronic devices as they may be implemented to have a small size and high capacity.
- An aspect of the present disclosure may provide a multilayer capacitor capable of implementing excellent bending strength characteristics.
- a multilayer capacitor may include a body including dielectric layers and a plurality of first and second internal electrodes having an average thickness less than 1 ⁇ m; and first and second external electrodes each including first and second conductive layers including first and second head portions disposed on opposing surfaces of the body and connected to exposed portions of the first and second internal electrodes and first and second band portions extending from the first and second head portions to portions of a mounting surface and opposite side surfaces of the body, and first and second conductive resin layers each covering the first and second conductive layers.
- An average thickness of the dielectric layers can be greater than the average thickness of the first and second internal electrodes, and portions of the first and second internal electrodes overlapping an end of the first or second band portion in a width direction of the body can be formed as first and second extending portions having a width relatively greater than those of other portions of the first and second internal electrodes, respectively.
- the first extending portion may be disposed at the portion overlapping the end of the second band portion in the width direction of the body, and the second extending portion may be disposed at the portion overlapping the end of the first band portion in the width direction of the body.
- the first extending portion may be disposed at the end of the first internal electrode, and the second extending portion may be disposed at the end of the second internal electrode.
- the first extending portion may be disposed at the portion overlapping the end of the first band portion in the width direction of the body, and the second extending portion may be disposed at the portion overlapping the end of the second band portion in the width direction of the body.
- the first and second extending portions may be formed in a rectangular shape or an oval shape.
- We/Wm may be 0.3 or more, in which We is a length of one side of the first extending portion in the width direction of the body and Wm is a margin of one side of the body in the width direction of the body.
- We/Wm may satisfy 0.5 ⁇ We/Wm ⁇ 0.6.
- the average thickness of the dielectric layers may be two or more times the average thickness of the first and second internal electrodes.
- the first and second internal electrodes may be formed by sintering.
- a distance from one end surface of the body to an end of the first or second band portion of the first or second conductive layer adjacent to the one end surface of the body may be shorter than a distance from the one end surface of the body to an end of the first or second conductive resin layer adjacent to the one end surface of the body.
- the body may include first and second surfaces opposing each other, third and fourth surfaces connected to the first and second surfaces and opposing each other, and fifth and sixth surfaces connected to the first and second surfaces, connected to the third and fourth surfaces, and opposing each other, and includes a plurality of dielectric layers and the plurality of first and second internal electrodes alternately disposed in a direction connecting the first and second surfaces to each other while having the dielectric layer interposed therebetween, and one end of each of the first and second internal electrodes may be exposed through each of the third and fourth surfaces of the body.
- the first and second conductive layers may include the first and second head portions disposed on the third and fourth surfaces of the body, respectively, and the first and second band portions may extend to portions of the first, fifth, and sixth surfaces of the body from the first and second head portions.
- the multilayer capacitor may further include first and second plating layers covering the first and second external electrodes, respectively.
- the first and second plating layers may include first and second nickel plating layers covering the first and second conductive resin layers, respectively, and first and second tin plating layers covering the first and second nickel plating layers, respectively.
- a multilayer capacitor may include a body including dielectric layers and a plurality of internal electrodes; and external electrodes each including a conductive layer and a conductive resin layer covering the conductive layer.
- the conductive layer may include a head portion disposed on an end surface of the body and electrically connected to the plurality of internal electrodes and a band portion extending, in a length direction of the body, from the head portion to portions of a mounting surface and opposite side surfaces of the body.
- An average thickness of the dielectric layers can be greater than the average thickness of the plurality of internal electrodes.
- Each of the plurality of internal electrodes may include a first extending portion overlapping an end of the band portion in a width direction of the body and protruding from opposing sides of each of the plurality of internal electrodes in the width direction by a predetermined length, and the first extending portion may be disposed at a farther side from a portion electrically connected to the external electrodes.
- FIG. 1 is a perspective view illustrating a multilayer capacitor according to an exemplary embodiment in the present disclosure
- FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1 ;
- FIGS. 3A and 3B are cross-sectional views illustrating a structure of each of first and second internal electrodes in FIG. 1 ;
- FIGS. 4A and 4B are cross-sectional views illustrating another example of each of the first and second internal electrodes
- FIGS. 5A and 5B are cross-sectional views illustrating another example of each of the first and second internal electrodes
- FIGS. 6A and 6B are cross-sectional views illustrating another example of each of the first and second internal electrodes.
- FIG. 7 is a cross-sectional view illustrating a case in which plating layers are further formed in FIG. 2 .
- X, Y and Z in the drawings refer to a length direction, a width direction, and a thickness direction of a multilayer capacitor, respectively.
- the Z direction refers to a stacked direction in which dielectric layers are stacked in the present exemplary embodiment.
- FIG. 1 is a perspective view illustrating a multilayer capacitor according to an exemplary embodiment in the present disclosure and FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1 .
- a multilayer capacitor 100 may include a body 110 and first and second external electrodes 130 and 140 .
- the body 110 may be formed by stacking a plurality of dielectric layers 111 in a Z direction of the body 110 and then sintering the plurality of dielectric layers 111 .
- the dielectric layers 111 adjacent to each other of the body 110 of the capacitor may be integrated with each other so that boundaries therebetween are not readily apparent without using a scanning electron microscope (SEM).
- the body 110 may include the plurality of dielectric layers 111 , and first and second internal electrodes 121 and 122 having different polarities alternately disposed in the Z direction of the body 110 while having the dielectric layers 111 interposed therebetween.
- the body 110 may include an active region as a portion contributing to forming a capacitance of the capacitor, and cover regions 112 and 113 provided on both side surfaces of the body 110 of the capacitor in a Y direction of the body 110 and upper and lower surfaces of the active region in the Z direction as margin portions.
- a shape of the body 110 is not particularly limited, but may be a hexahedron shape.
- the body 110 may have first and second surfaces 1 and 2 opposing each other in the Z direction of the body 110 , third and fourth surfaces 3 and 4 connected to the first and second surfaces 1 and 2 and opposing each other in the X direction of the body 110 , and fifth and sixth surfaces 5 and 6 connected to the first and second surfaces 1 and 2 , connected to the third and fourth surfaces 3 and 4 , and opposing each other in the Y direction of the body 110 .
- the dielectric layer 111 may include a ceramic powder, for example, a BaTiO 3 based ceramic powder or the like.
- barium titanate (BaTiO 3 ) based ceramic powder may include (Ba 1-x Ca x )TiO 3 , Ba(Ti 1-y Ca y )O 3 , (Ba 1-x Ca x ) (Ti 1-y Zr y )O 3 , Ba(Ti 1-y Zr y )O 3 , and the like, in which Ca, Zr, or the like, is partially dissolved in BaTiO 3 , but is not limited thereto.
- the dielectric layer 111 may further include a ceramic additive, an organic solvent, a plasticizer, a binder, a dispersant, and the like, in addition to the ceramic powder.
- the ceramic additive may include, for example, a transition metal oxide or carbide, a rare earth element, magnesium (Mg), aluminum (Al), or the like.
- an average thickness of the dielectric layers 111 may be greater than an average thickness of the first and second internal electrodes 121 and 122 .
- the average thickness of the dielectric layers 111 may be twice or more than the average thickness of the first and second internal electrodes 121 and 122 .
- the first and second internal electrodes 121 and 122 which are electrodes to which different polarities are applied, may be disposed on the dielectric layer 111 to be stacked in the Z direction of the body 110 , and may be alternately disposed in the body 110 so as to opposite to each other in the Z direction of the body 110 while having one dielectric layer 111 interposed therebetween.
- first and second internal electrodes 121 and 122 may be electrically insulated from each other by the dielectric layer 111 disposed therebetween.
- One end portion of each of the first and second internal electrodes 121 and 122 may be exposed through the third and fourth surfaces 3 and 4 of the body 110 , respectively.
- the end portions of the first and second internal electrodes 121 and 122 alternately exposed through the third and fourth surfaces 3 and 4 of the body 110 may be electrically connected to the first and second external electrodes 130 and 140 disposed on the opposite end surfaces of the body 110 in the X direction of the body 110 , respectively, to be described below.
- a capacitance of the multilayer capacitor 100 may be in proportional to an overlapping area of the first and second internal electrodes 121 and 122 overlapping each other in the Z direction of the body 110 in the active region.
- a material forming the first and second internal electrodes 121 and 122 is not particularly limited, but may be a conductive paste formed of one or more of, for example, a noble metal material such as platinum (Pt), palladium (Pd), a palladium-silver (Pd—Ag) alloy, or the like, nickel (Ni), and copper (Cu).
- a noble metal material such as platinum (Pt), palladium (Pd), a palladium-silver (Pd—Ag) alloy, or the like, nickel (Ni), and copper (Cu).
- a method of printing the conductive paste may be a screen printing method, a gravure printing method, or the like, but is not limited thereto.
- the average thickness of the first and second internal electrodes 121 and 122 may be less than 1 ⁇ m.
- a portion of the first internal electrode 121 overlapping an end of a first or second band portion 131 b or 141 b in the Y direction of the body 110 may be formed as a first extending portion 121 a having a width that is relatively greater than those of other portions of the first internal electrode 121 .
- the first extending portion 121 a may be disposed in a location overlapping in the Y direction of the body 110 with the end of the second band portion 141 b positioned on the opposite side of an end portion to which the first internal electrode 121 is exposed.
- the first extending portion 121 a may be disposed at the end of the first internal electrode 121 in the X direction of the body 110 .
- a portion of the second internal electrode 122 overlapping the end of the first or second band portion 131 b or 141 b in the Y direction of the body 110 may be formed as a second extending portion 122 a having a width that is relatively greater than those of other portions of the second internal electrode 122 .
- the second extending portion 122 a may be disposed in a location overlapping in the Y direction of the body 110 with the end of the first band portion 131 b positioned on the opposite side of an end portion to which the second internal electrode 122 is exposed.
- the second extending portion 122 a may be disposed at the end of the second internal electrode 122 in the X direction of the body 110 .
- We/Wm may be 0.3 or more, in which We is a length of one side of the first and second extending portions 121 a and 122 a in the Y direction of the body 110 , and Wm is a margin of one side of the body 110 in the Y direction of the body 110 . In the case in which We/Wm is 0.3 or more, a bending strength of 6 mm may be ensured.
- We/Wm may be 0.5 or more. In the case in which We/Wm is 0.5 or more, bending strength characteristics are further improved and as a result, the bending strength of 8 mm may also be ensured.
- We/Wm may be 0.6 or less. The reason is because a cutting defective rate may exceed 10% in a process of manufacturing the multilayer capacitor when We/Wm exceeds 0.6.
- FIGS. 3A and 3B illustrate that the first and second extending portions 121 a and 122 a are substantially formed in a rectangular shape, but the shape of the first and second extending portions 121 a and 122 a is not limited thereto.
- first and second extending portions 121 a ′ and 122 a ′ may be substantially formed in an oval shape as illustrated in FIGS. 4A and 4B .
- a first extending portion 121 b may be disposed at the portion overlapping the end of the first band portion 131 b in the Y direction of the body 110 .
- FIG. 5A illustrates that each of the first extending portions 121 a and 121 b is disposed at each of the portions overlapping the ends of the first and second band portions 131 b and 141 b in the Y direction of the body 110 , but the first extending portions 121 a and 121 b are not limited thereto.
- the first extending portion 121 b may be disposed only at the portion overlapping the end of the first band portion 131 b in the Y direction of the body 110 .
- a second extending portion 122 b may be disposed at the portion overlapping the end of the second band portion 141 b in the Y direction of the body 110 .
- FIG. 5B illustrates that each of the second extending portions 122 a and 122 b is disposed at each of the portions overlapping the ends of the first and second band portions 131 b and 141 b in the Y direction of the body 110 , but the second extending portions 122 a and 122 b are not limited thereto.
- the second extending portion 122 b may be disposed only at the portion overlapping the end of the second band portion 141 b in the Y direction of the body 110 .
- FIGS. 5A and 5B illustrate that the first extending portions 121 a and 121 b and the second extending portions 122 a and 122 b are substantially formed in a rectangular shape, but the shape of the first and second extending portions is not limited thereto.
- first extending portions 121 a ′ and 121 b ′ and second extending portions 121 a ′ and 122 a ′ may be substantially formed in an oval shape as illustrated in FIGS. 6A and 6B .
- Voltages having different polarities may be provided to the first and second external electrodes 130 and 140 , and the first and second external electrodes 130 and 140 may be disposed on the opposite end surfaces of the body 110 in the X direction of the body 110 , and may be electrically connected to the exposed end portions of the first and second internal electrodes 121 and 122 , respectively.
- the first external electrode 130 may include a first conductive layer 131 and a first conductive resin layer 132 .
- the first conductive layer 131 may be disposed on a surface of the body 110 and may be connected to the exposed end portion of the first internal electrode 121 .
- the first conductive layer 131 may be formed by sintering.
- Such a first conductive layer 131 may include a first head portion 131 a and a first band portion 131 b.
- the first head portion 131 a may be disposed on the third surface 3 of the body 110 , and may be in contact with the end portion of the first internal electrode 121 exposed to the outside through the third surface 3 of the body 110 to serve to electrically connect the first internal electrode 121 and the first external electrode 130 to each other.
- the first band portion 131 b may be a portion extending from the first head portion 131 a to portions of the first, fifth, and sixth surfaces 1 , 5 , and 6 of the body 110 to improve fixing strength.
- the first band portion 131 b may extend to a portion of the second surface 2 of the body 110 from the first head portion 131 a , if necessary.
- the first conductive resin layer 132 may cover the first conductive layer 131 .
- a distance from the third surface 3 of the body 110 to an end of the first band portion 131 b of the first conductive layer 131 in the X direction of the body 110 may be shorter than a distance from the third surface 3 of the body 110 to an end of the first conductive resin layer 132 in the X direction of the body 110 .
- the second external electrode 140 may include a second conductive layer 141 and a second conductive resin layer 142 .
- the second conductive layer 141 may be disposed on the surface of the body 110 and may be connected to the exposed end portion of the second internal electrode 122 .
- the second conductive layer 141 may be formed by sintering.
- Such a second conductive layer 141 may include a second head portion 141 a and a second band portion 141 b.
- the second head portion 141 a may be disposed on the fourth surface 4 of the body 110 , and may be in contact with the end portion of the second internal electrode 122 exposed to the outside through the fourth surface 4 of the body 110 to serve to electrically connect the second internal electrode 122 and the second external electrode 140 to each other.
- the second band portion 141 b may be a portion extending from the second head portion 141 a to portions of the first, fifth, and sixth surfaces 1 , 5 , and 6 of the body 110 to improve fixing strength.
- the second band portion 141 b may extend to a portion of the second surface 2 of the body 110 from the second head portion 141 a , if necessary.
- the second conductive resin layer 142 may cover the second conductive layer 141 .
- a distance from the fourth surface 4 of the body 110 to an end of the second band portion 141 b of the second conductive layer 141 in the X direction of the body 110 may be shorter than a distance from the fourth surface 4 of the body 110 to an end of the second conductive resin layer 142 in the X direction of the body 110 .
- the first external electrode 130 may further include a first plating layer 133 .
- the first plating layer 133 may cover the first conductive resin layer 132 .
- Such a first plating layer 133 may include a first nickel (Ni) plating layer 133 a covering the first conductive resin layer 132 , and a first tin (Sn) plating layer 133 b covering the first nickel plating layer 133 a.
- the second external electrode 140 may further include a second plating layer 143 .
- the second plating layer 143 may cover the second conductive resin layer 142 .
- Such a second plating layer 143 may include a second nickel plating layer 143 a covering the second conductive resin layer 142 , and a second tin plating layer 143 b covering the second nickel plating layer 143 a.
- a bending crack mainly occurs at the ends of the band portions of the external electrodes.
- the conventional multilayer capacitor implements bending strength characteristics by sufficiently securing the number of stacked internal electrodes that affect a capacitance implementation and the number of stacked patterns in the same direction which do not affect the capacitance implementation.
- the bending strength characteristics intend to be implemented by simply securing the number of stacked internal electrodes or patterns, as the stacked number is increased, production efficiency may be lowered.
- the portion of the internal electrode overlapping the end of the band portion of the external electrode may be formed as the extending portion having the width relatively greater than those of other portions of the internal electrode.
- Table 1 illustrates an occurrence frequency of a bending crack according to a ratio of a length of an extending portion in the Y direction of the body 110 to a margin of the body 110 in the Y direction thereof.
- the multilayer capacitor used in the present experiment is manufactured so as to have a length in the X direction of 3.2 mm, a length in the Y direction of 1.6 mm, and electrical characteristics of 1 ⁇ F.
- a multilayer capacitor which has been subjected to a temperature cycle of 100 times from ⁇ 55° C. to 125° C. is mounted on a substrate, and then a surface of the substrate on which the multilayer capacitor is mounted faces downwardly.
- the opposite surface of the surface of the substrate on which the multilayer capacitor is mounted is repeatedly pressed until the substrate is deformed by a distance of 4 mm, 5 mm, 6 mm, 7 mm, and 8 mm, respectively, to check whether a crack occurs in the multilayer capacitor or a current value rapidly increases.
- a length of one side of the first extending portion in the Y direction of the body 110 is defined as We
- a margin of one side of the body 110 in the Y direction thereof is defined as Wm
- 60 samples having We/Wm of 0, 0.5, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, are prepared, and a bending crack test is performed.
- Table 2 illustrates a cutting defective rate in a process of manufacturing the multilayer capacitor according to a ratio of a length of an extending portion in the Y direction of the body 110 to a margin of the body 110 in the Y direction thereof.
- a value of We/Wm may be 0.6 or less.
- the tensile strength of the multilayer capacitor may be improved to improve the bending strength.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Abstract
Description
- This application claims the benefit of priority to Korean Patent Application No. 10-2018-0115497 filed on Sep. 28, 2018 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
- The present disclosure relates to a multilayer capacitor.
- Multilayer capacitors are used as components in various electronic devices as they may be implemented to have a small size and high capacity.
- In recent years, as interest in autonomous driving and electric vehicles has increased, power driving systems in automobiles have increased, and accordingly, demand for the multilayer capacitors required for automobiles has also increased.
- In order to use the multilayer capacitors as the component for automobiles, a high level of electrical reliability and impact resistance are required.
- In particular, after the multilayer capacitor is mounted on a substrate, strong resistance to deformation of the substrate is required.
- An aspect of the present disclosure may provide a multilayer capacitor capable of implementing excellent bending strength characteristics.
- According to an aspect of the present disclosure, a multilayer capacitor may include a body including dielectric layers and a plurality of first and second internal electrodes having an average thickness less than 1 μm; and first and second external electrodes each including first and second conductive layers including first and second head portions disposed on opposing surfaces of the body and connected to exposed portions of the first and second internal electrodes and first and second band portions extending from the first and second head portions to portions of a mounting surface and opposite side surfaces of the body, and first and second conductive resin layers each covering the first and second conductive layers. An average thickness of the dielectric layers can be greater than the average thickness of the first and second internal electrodes, and portions of the first and second internal electrodes overlapping an end of the first or second band portion in a width direction of the body can be formed as first and second extending portions having a width relatively greater than those of other portions of the first and second internal electrodes, respectively.
- The first extending portion may be disposed at the portion overlapping the end of the second band portion in the width direction of the body, and the second extending portion may be disposed at the portion overlapping the end of the first band portion in the width direction of the body.
- The first extending portion may be disposed at the end of the first internal electrode, and the second extending portion may be disposed at the end of the second internal electrode.
- The first extending portion may be disposed at the portion overlapping the end of the first band portion in the width direction of the body, and the second extending portion may be disposed at the portion overlapping the end of the second band portion in the width direction of the body.
- The first and second extending portions may be formed in a rectangular shape or an oval shape.
- We/Wm may be 0.3 or more, in which We is a length of one side of the first extending portion in the width direction of the body and Wm is a margin of one side of the body in the width direction of the body.
- We/Wm may satisfy 0.5≤We/Wm≤0.6.
- The average thickness of the dielectric layers may be two or more times the average thickness of the first and second internal electrodes.
- The first and second internal electrodes may be formed by sintering.
- A distance from one end surface of the body to an end of the first or second band portion of the first or second conductive layer adjacent to the one end surface of the body may be shorter than a distance from the one end surface of the body to an end of the first or second conductive resin layer adjacent to the one end surface of the body.
- The body may include first and second surfaces opposing each other, third and fourth surfaces connected to the first and second surfaces and opposing each other, and fifth and sixth surfaces connected to the first and second surfaces, connected to the third and fourth surfaces, and opposing each other, and includes a plurality of dielectric layers and the plurality of first and second internal electrodes alternately disposed in a direction connecting the first and second surfaces to each other while having the dielectric layer interposed therebetween, and one end of each of the first and second internal electrodes may be exposed through each of the third and fourth surfaces of the body.
- The first and second conductive layers may include the first and second head portions disposed on the third and fourth surfaces of the body, respectively, and the first and second band portions may extend to portions of the first, fifth, and sixth surfaces of the body from the first and second head portions.
- The multilayer capacitor may further include first and second plating layers covering the first and second external electrodes, respectively.
- The first and second plating layers may include first and second nickel plating layers covering the first and second conductive resin layers, respectively, and first and second tin plating layers covering the first and second nickel plating layers, respectively.
- According to another aspect of the present disclosure, a multilayer capacitor may include a body including dielectric layers and a plurality of internal electrodes; and external electrodes each including a conductive layer and a conductive resin layer covering the conductive layer. The conductive layer may include a head portion disposed on an end surface of the body and electrically connected to the plurality of internal electrodes and a band portion extending, in a length direction of the body, from the head portion to portions of a mounting surface and opposite side surfaces of the body. An average thickness of the dielectric layers can be greater than the average thickness of the plurality of internal electrodes. Each of the plurality of internal electrodes may include a first extending portion overlapping an end of the band portion in a width direction of the body and protruding from opposing sides of each of the plurality of internal electrodes in the width direction by a predetermined length, and the first extending portion may be disposed at a farther side from a portion electrically connected to the external electrodes.
- The above and other aspects, features and other advantages of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
-
FIG. 1 is a perspective view illustrating a multilayer capacitor according to an exemplary embodiment in the present disclosure; -
FIG. 2 is a cross-sectional view taken along line I-I′ ofFIG. 1 ; -
FIGS. 3A and 3B are cross-sectional views illustrating a structure of each of first and second internal electrodes inFIG. 1 ; -
FIGS. 4A and 4B are cross-sectional views illustrating another example of each of the first and second internal electrodes; -
FIGS. 5A and 5B are cross-sectional views illustrating another example of each of the first and second internal electrodes; -
FIGS. 6A and 6B are cross-sectional views illustrating another example of each of the first and second internal electrodes; and -
FIG. 7 is a cross-sectional view illustrating a case in which plating layers are further formed inFIG. 2 . - Hereinafter, exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings.
- Directions will be defined in order to clearly describe exemplary embodiments in the present disclosure. X, Y and Z in the drawings refer to a length direction, a width direction, and a thickness direction of a multilayer capacitor, respectively.
- Here, the Z direction refers to a stacked direction in which dielectric layers are stacked in the present exemplary embodiment.
-
FIG. 1 is a perspective view illustrating a multilayer capacitor according to an exemplary embodiment in the present disclosure andFIG. 2 is a cross-sectional view taken along line I-I′ ofFIG. 1 . - Referring to
FIGS. 1 and 2 , amultilayer capacitor 100 according to the present exemplary embodiment may include abody 110 and first and secondexternal electrodes - The
body 110 may be formed by stacking a plurality ofdielectric layers 111 in a Z direction of thebody 110 and then sintering the plurality ofdielectric layers 111. Thedielectric layers 111 adjacent to each other of thebody 110 of the capacitor may be integrated with each other so that boundaries therebetween are not readily apparent without using a scanning electron microscope (SEM). - In addition, the
body 110 may include the plurality ofdielectric layers 111, and first and secondinternal electrodes body 110 while having thedielectric layers 111 interposed therebetween. - In addition, the
body 110 may include an active region as a portion contributing to forming a capacitance of the capacitor, andcover regions body 110 of the capacitor in a Y direction of thebody 110 and upper and lower surfaces of the active region in the Z direction as margin portions. - A shape of the
body 110 is not particularly limited, but may be a hexahedron shape. Thebody 110 may have first andsecond surfaces 1 and 2 opposing each other in the Z direction of thebody 110, third andfourth surfaces second surfaces 1 and 2 and opposing each other in the X direction of thebody 110, and fifth andsixth surfaces 5 and 6 connected to the first andsecond surfaces 1 and 2, connected to the third andfourth surfaces body 110. - The
dielectric layer 111 may include a ceramic powder, for example, a BaTiO3 based ceramic powder or the like. - An example of the barium titanate (BaTiO3) based ceramic powder may include (Ba1-xCax)TiO3, Ba(Ti1-yCay)O3, (Ba1-xCax) (Ti1-yZry)O3, Ba(Ti1-yZry)O3, and the like, in which Ca, Zr, or the like, is partially dissolved in BaTiO3, but is not limited thereto.
- In addition, the
dielectric layer 111 may further include a ceramic additive, an organic solvent, a plasticizer, a binder, a dispersant, and the like, in addition to the ceramic powder. - The ceramic additive may include, for example, a transition metal oxide or carbide, a rare earth element, magnesium (Mg), aluminum (Al), or the like.
- In addition, an average thickness of the
dielectric layers 111 may be greater than an average thickness of the first and secondinternal electrodes - In this case, the average thickness of the
dielectric layers 111 may be twice or more than the average thickness of the first and secondinternal electrodes - The first and second
internal electrodes dielectric layer 111 to be stacked in the Z direction of thebody 110, and may be alternately disposed in thebody 110 so as to opposite to each other in the Z direction of thebody 110 while having onedielectric layer 111 interposed therebetween. - In this case, the first and second
internal electrodes dielectric layer 111 disposed therebetween. - One end portion of each of the first and second
internal electrodes fourth surfaces body 110, respectively. - The end portions of the first and second
internal electrodes fourth surfaces body 110 may be electrically connected to the first and secondexternal electrodes body 110 in the X direction of thebody 110, respectively, to be described below. - According to the configuration as described above, when a predetermined voltage is applied to the first and second
external electrodes internal electrodes - In this case, a capacitance of the
multilayer capacitor 100 may be in proportional to an overlapping area of the first and secondinternal electrodes body 110 in the active region. - In addition, a material forming the first and second
internal electrodes - At this time, a method of printing the conductive paste may be a screen printing method, a gravure printing method, or the like, but is not limited thereto.
- In addition, the average thickness of the first and second
internal electrodes - Referring to
FIG. 3A , a portion of the firstinternal electrode 121 overlapping an end of a first orsecond band portion body 110 may be formed as a first extendingportion 121 a having a width that is relatively greater than those of other portions of the firstinternal electrode 121. - In the present exemplary embodiment, the first extending
portion 121 a may be disposed in a location overlapping in the Y direction of thebody 110 with the end of thesecond band portion 141 b positioned on the opposite side of an end portion to which the firstinternal electrode 121 is exposed. - In this case, the first extending
portion 121 a may be disposed at the end of the firstinternal electrode 121 in the X direction of thebody 110. - Referring to
FIG. 3B , a portion of the secondinternal electrode 122 overlapping the end of the first orsecond band portion body 110 may be formed as a second extendingportion 122 a having a width that is relatively greater than those of other portions of the secondinternal electrode 122. - In the present exemplary embodiment, the second extending
portion 122 a may be disposed in a location overlapping in the Y direction of thebody 110 with the end of thefirst band portion 131 b positioned on the opposite side of an end portion to which the secondinternal electrode 122 is exposed. - In this case, the second extending
portion 122 a may be disposed at the end of the secondinternal electrode 122 in the X direction of thebody 110. - In addition, We/Wm may be 0.3 or more, in which We is a length of one side of the first and second extending
portions body 110, and Wm is a margin of one side of thebody 110 in the Y direction of thebody 110. In the case in which We/Wm is 0.3 or more, a bending strength of 6 mm may be ensured. - In addition, We/Wm may be 0.5 or more. In the case in which We/Wm is 0.5 or more, bending strength characteristics are further improved and as a result, the bending strength of 8 mm may also be ensured.
- Meanwhile, We/Wm may be 0.6 or less. The reason is because a cutting defective rate may exceed 10% in a process of manufacturing the multilayer capacitor when We/Wm exceeds 0.6.
- Meanwhile,
FIGS. 3A and 3B illustrate that the first and second extendingportions portions portions 121 a′ and 122 a′ may be substantially formed in an oval shape as illustrated inFIGS. 4A and 4B . - As illustrated in
FIG. 5A , a first extendingportion 121 b may be disposed at the portion overlapping the end of thefirst band portion 131 b in the Y direction of thebody 110. - In this case,
FIG. 5A illustrates that each of the first extendingportions second band portions body 110, but the first extendingportions portion 121 b may be disposed only at the portion overlapping the end of thefirst band portion 131 b in the Y direction of thebody 110. - Referring to
FIG. 5B , a second extendingportion 122 b may be disposed at the portion overlapping the end of thesecond band portion 141 b in the Y direction of thebody 110. - In this case,
FIG. 5B illustrates that each of the second extendingportions second band portions body 110, but the second extendingportions portion 122 b may be disposed only at the portion overlapping the end of thesecond band portion 141 b in the Y direction of thebody 110. - Meanwhile,
FIGS. 5A and 5B illustrate that the first extendingportions portions portions 121 a′ and 121 b′ and second extendingportions 121 a′ and 122 a′ may be substantially formed in an oval shape as illustrated inFIGS. 6A and 6B . - Voltages having different polarities may be provided to the first and second
external electrodes external electrodes body 110 in the X direction of thebody 110, and may be electrically connected to the exposed end portions of the first and secondinternal electrodes - The first
external electrode 130 may include a firstconductive layer 131 and a firstconductive resin layer 132. - The first
conductive layer 131 may be disposed on a surface of thebody 110 and may be connected to the exposed end portion of the firstinternal electrode 121. - In addition, the first
conductive layer 131 may be formed by sintering. - Such a first
conductive layer 131 may include afirst head portion 131 a and afirst band portion 131 b. - The
first head portion 131 a may be disposed on thethird surface 3 of thebody 110, and may be in contact with the end portion of the firstinternal electrode 121 exposed to the outside through thethird surface 3 of thebody 110 to serve to electrically connect the firstinternal electrode 121 and the firstexternal electrode 130 to each other. - The
first band portion 131 b may be a portion extending from thefirst head portion 131 a to portions of the first, fifth, andsixth surfaces 1, 5, and 6 of thebody 110 to improve fixing strength. - In this case, the
first band portion 131 b may extend to a portion of thesecond surface 2 of thebody 110 from thefirst head portion 131 a, if necessary. - The first
conductive resin layer 132 may cover the firstconductive layer 131. - In this case, a distance from the
third surface 3 of thebody 110 to an end of thefirst band portion 131 b of the firstconductive layer 131 in the X direction of thebody 110 may be shorter than a distance from thethird surface 3 of thebody 110 to an end of the firstconductive resin layer 132 in the X direction of thebody 110. - The second
external electrode 140 may include a secondconductive layer 141 and a secondconductive resin layer 142. - The second
conductive layer 141 may be disposed on the surface of thebody 110 and may be connected to the exposed end portion of the secondinternal electrode 122. - In addition, the second
conductive layer 141 may be formed by sintering. - Such a second
conductive layer 141 may include asecond head portion 141 a and asecond band portion 141 b. - The
second head portion 141 a may be disposed on thefourth surface 4 of thebody 110, and may be in contact with the end portion of the secondinternal electrode 122 exposed to the outside through thefourth surface 4 of thebody 110 to serve to electrically connect the secondinternal electrode 122 and the secondexternal electrode 140 to each other. - The
second band portion 141 b may be a portion extending from thesecond head portion 141 a to portions of the first, fifth, andsixth surfaces 1, 5, and 6 of thebody 110 to improve fixing strength. - In this case, the
second band portion 141 b may extend to a portion of thesecond surface 2 of thebody 110 from thesecond head portion 141 a, if necessary. - The second
conductive resin layer 142 may cover the secondconductive layer 141. - In this case, a distance from the
fourth surface 4 of thebody 110 to an end of thesecond band portion 141 b of the secondconductive layer 141 in the X direction of thebody 110 may be shorter than a distance from thefourth surface 4 of thebody 110 to an end of the secondconductive resin layer 142 in the X direction of thebody 110. - Referring to
FIG. 7 , the firstexternal electrode 130 may further include afirst plating layer 133. - The
first plating layer 133 may cover the firstconductive resin layer 132. - Such a
first plating layer 133 may include a first nickel (Ni)plating layer 133 a covering the firstconductive resin layer 132, and a first tin (Sn)plating layer 133 b covering the firstnickel plating layer 133 a. - The second
external electrode 140 may further include asecond plating layer 143. - The
second plating layer 143 may cover the secondconductive resin layer 142. - Such a
second plating layer 143 may include a secondnickel plating layer 143 a covering the secondconductive resin layer 142, and a secondtin plating layer 143 b covering the secondnickel plating layer 143 a. - In the multilayer capacitor, a bending crack mainly occurs at the ends of the band portions of the external electrodes.
- In order to prevent such a bending crack, the conventional multilayer capacitor implements bending strength characteristics by sufficiently securing the number of stacked internal electrodes that affect a capacitance implementation and the number of stacked patterns in the same direction which do not affect the capacitance implementation. However, in a case in which the bending strength characteristics intend to be implemented by simply securing the number of stacked internal electrodes or patterns, as the stacked number is increased, production efficiency may be lowered.
- In the multilayer capacitor according to the present exemplary embodiment, the portion of the internal electrode overlapping the end of the band portion of the external electrode may be formed as the extending portion having the width relatively greater than those of other portions of the internal electrode.
- As a result, since an area of the portion of the internal electrode overlapping the end of the band portion is relatively larger, tensile strength of the portion of the body susceptible to a bending crack can be increased to improve the bending strength characteristics of the multilayered capacitor.
- Table 1 below illustrates an occurrence frequency of a bending crack according to a ratio of a length of an extending portion in the Y direction of the
body 110 to a margin of thebody 110 in the Y direction thereof. - The multilayer capacitor used in the present experiment is manufactured so as to have a length in the X direction of 3.2 mm, a length in the Y direction of 1.6 mm, and electrical characteristics of 1 ρF.
- In the present experiment, a multilayer capacitor which has been subjected to a temperature cycle of 100 times from −55° C. to 125° C. is mounted on a substrate, and then a surface of the substrate on which the multilayer capacitor is mounted faces downwardly.
- In addition, after supports are positioned at positions spaced apart from both sides of the multilayer capacitor by a predetermined distance, the opposite surface of the surface of the substrate on which the multilayer capacitor is mounted is repeatedly pressed until the substrate is deformed by a distance of 4 mm, 5 mm, 6 mm, 7 mm, and 8 mm, respectively, to check whether a crack occurs in the multilayer capacitor or a current value rapidly increases.
- In this case, a length of one side of the first extending portion in the Y direction of the
body 110 is defined as We, a margin of one side of thebody 110 in the Y direction thereof is defined as Wm, 60 samples having We/Wm of 0, 0.5, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, are prepared, and a bending crack test is performed. -
TABLE 1 Occurrence Frequency of Bending Crack (EA) # We/ Wm 4 mm 5 mm 6 mm 7 mm 8 mm 1 0 1/60 1/60 3/60 4/60 7/60 2 0.05 0/60 1/60 1/60 3/60 4/60 3 0.1 0/60 0/60 1/60 0/60 1/60 4 0.2 0/60 0/60 1/60 1/60 0/60 5 0.3 0/60 0/60 0/60 1/60 1/60 6 0.4 0/60 0/60 0/60 1/60 0/60 7 0.5 0/60 0/60 0/60 0/60 0/60 - Referring to Table 1, in the case of Sample 1 to 4 having We/Wm which is less than 0.3, defect was found in a bending strength test of 6 mm.
- In addition, in the case of
Sample 5 having We/Wm of 0.3, no defect was founded in the bending strength test of 6 mm. As a result, it may be seen in the present exemplary embodiment that a preferable value of We/Wm is 0.3 or more. - In addition, in the case of Sample 7 having We/Wm of 0.5, no defect was also founded in a bending strength test of 8 mm. As a result, it may be seen in the present exemplary embodiment that a more preferable value of We/Wm is 0.5 or more.
- Table 2 below illustrates a cutting defective rate in a process of manufacturing the multilayer capacitor according to a ratio of a length of an extending portion in the Y direction of the
body 110 to a margin of thebody 110 in the Y direction thereof. - In the present experiment, a multilayer capacitor having the same specification as that of the multilayer capacitor of Table 1 was used.
-
TABLE 2 Cutting Defective # We/Wm Rate (%) 8 0.25 0.26 9 0.35 0.78 10 0.45 1.70 11 0.55 5.60 12 0.60 9.18 13 0.65 11.18 - Referring to Table 2, in the case of Samples 8 to 12 having We/Wm of 0.6 or less, the cutting defective rate was 10% or less.
- Therefore, in the present exemplary embodiment, when a tolerance of the cutting defective rate is 10% or less, a value of We/Wm may be 0.6 or less.
- As set forth above, according to the exemplary embodiment in the present disclosure, the tensile strength of the multilayer capacitor may be improved to improve the bending strength.
- While exemplary embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present invention as defined by the appended claims.
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180115497A KR102133392B1 (en) | 2018-09-28 | 2018-09-28 | Multilayerd capacitor |
KR10-2018-00115497 | 2018-09-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200105469A1 true US20200105469A1 (en) | 2020-04-02 |
US10614956B1 US10614956B1 (en) | 2020-04-07 |
Family
ID=68421244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/189,779 Active US10614956B1 (en) | 2018-09-28 | 2018-11-13 | Multilayer capacitor for improved bending strength characteristics |
Country Status (3)
Country | Link |
---|---|
US (1) | US10614956B1 (en) |
KR (1) | KR102133392B1 (en) |
CN (1) | CN110970217B (en) |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02312217A (en) * | 1989-05-26 | 1990-12-27 | Murata Mfg Co Ltd | Laminated capacitor |
JPH05135990A (en) * | 1991-11-14 | 1993-06-01 | Mitsubishi Materials Corp | Laminated porcelain capacitor |
JPH10284343A (en) * | 1997-04-11 | 1998-10-23 | Mitsubishi Materials Corp | Chip type electronic component |
JP2003282350A (en) * | 2002-03-22 | 2003-10-03 | Taiyo Yuden Co Ltd | Laminated ceramic electronic component and manufacturing method thereof |
JP2003318059A (en) * | 2002-04-25 | 2003-11-07 | Kyocera Corp | Layered ceramic capacitor |
WO2006022060A1 (en) * | 2004-08-27 | 2006-03-02 | Murata Manufacturing Co., Ltd. | Multilayer ceramic capacitor and method for adjusting equivalent series resistance thereof |
JP2006190774A (en) * | 2005-01-05 | 2006-07-20 | Murata Mfg Co Ltd | Laminated ceramic electronic component |
KR101053329B1 (en) * | 2009-07-09 | 2011-08-01 | 삼성전기주식회사 | Ceramic electronic components |
JP5035319B2 (en) * | 2009-10-23 | 2012-09-26 | Tdk株式会社 | Multilayer capacitor |
JP2011238724A (en) * | 2010-05-10 | 2011-11-24 | Murata Mfg Co Ltd | Electronic component |
KR101153686B1 (en) * | 2010-12-21 | 2012-06-18 | 삼성전기주식회사 | Fabricating method for multi layer ceramic electronic device and multi layer ceramic electronic device using thereof |
KR101832490B1 (en) * | 2011-05-31 | 2018-02-27 | 삼성전기주식회사 | Multilayer ceramic capacitor |
KR101971912B1 (en) | 2012-03-05 | 2019-04-25 | 삼성전기주식회사 | Multi-Layered Ceramic Electronic Component and Manufacturing Method of the Same |
KR101452057B1 (en) * | 2012-12-04 | 2014-10-22 | 삼성전기주식회사 | Multi-layered ceramic capacitor and board for mounting the same |
JP2015026784A (en) * | 2013-07-29 | 2015-02-05 | Tdk株式会社 | Multilayer capacitor |
KR20160004655A (en) * | 2014-07-03 | 2016-01-13 | 삼성전기주식회사 | Multi-layered ceramic capacitor and board having the same mounted thereon |
KR20160051309A (en) * | 2014-11-03 | 2016-05-11 | 삼성전기주식회사 | Multi-layered ceramic electronic components and board having the same mounted thereon |
JP2015046644A (en) * | 2014-12-11 | 2015-03-12 | 株式会社村田製作所 | Multilayer ceramic electronic component |
-
2018
- 2018-09-28 KR KR1020180115497A patent/KR102133392B1/en active IP Right Grant
- 2018-11-13 US US16/189,779 patent/US10614956B1/en active Active
-
2019
- 2019-03-05 CN CN201910163114.0A patent/CN110970217B/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20190121183A (en) | 2019-10-25 |
CN110970217B (en) | 2023-03-24 |
US10614956B1 (en) | 2020-04-07 |
CN110970217A (en) | 2020-04-07 |
KR102133392B1 (en) | 2020-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9024199B2 (en) | Multilayer ceramic electronic component and board for mounting the same | |
US11929206B2 (en) | Multilayer electronic component having improved high temperature load life and moisture resistance reliability | |
US10984954B2 (en) | Capacitor array | |
US9049798B2 (en) | Multilayered ceramic electronic component and board for mounting the same | |
US11728095B2 (en) | Electronic component | |
US10529496B1 (en) | Electronic component including a capacitor array | |
US10614956B1 (en) | Multilayer capacitor for improved bending strength characteristics | |
US10840019B2 (en) | Electronic component | |
US10861648B2 (en) | Electronic component | |
US10854389B2 (en) | Electronic component | |
KR102426203B1 (en) | Multilayerd capacitor | |
US11715598B2 (en) | Multilayer capacitor and board having the same | |
CN111199832B (en) | Electronic assembly | |
US10971304B2 (en) | Electronic component having metal frames | |
CN110875134B (en) | Electronic assembly and mounting frame including capacitor array | |
US20230207218A1 (en) | Multilayerr electronic component | |
US10879007B2 (en) | Electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JEONG, DO YOUNG;KIM, JE JUNG;KIM, DO YEON;REEL/FRAME:047490/0536 Effective date: 20181106 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |