US20190319720A1 - Apparatus and methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment - Google Patents
Apparatus and methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment Download PDFInfo
- Publication number
- US20190319720A1 US20190319720A1 US16/453,675 US201916453675A US2019319720A1 US 20190319720 A1 US20190319720 A1 US 20190319720A1 US 201916453675 A US201916453675 A US 201916453675A US 2019319720 A1 US2019319720 A1 US 2019319720A1
- Authority
- US
- United States
- Prior art keywords
- power amplifier
- power
- gain
- signal
- envelope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 230000006835 compression Effects 0.000 claims abstract description 68
- 238000007906 compression Methods 0.000 claims abstract description 68
- 238000007493 shaping process Methods 0.000 claims abstract description 68
- 238000012544 monitoring process Methods 0.000 claims abstract 3
- 230000001965 increasing effect Effects 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 9
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 16
- 230000003247 decreasing effect Effects 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/13—Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0222—Continuous control by using a signal derived from the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0222—Continuous control by using a signal derived from the input signal
- H03F1/0227—Continuous control by using a signal derived from the input signal using supply converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0244—Stepped control
- H03F1/025—Stepped control by using a signal derived from the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
- H03F1/301—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/68—Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/72—Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3036—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3036—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
- H03G3/3042—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/102—A non-specified detector of a signal envelope being used in an amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/108—A coil being added in the drain circuit of a FET amplifier stage, e.g. for noise reducing purposes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/111—Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/15—Indexing scheme relating to amplifiers the supply or bias voltage or current at the drain side of a FET being continuously controlled by a controlling signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/405—Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising more than three power stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/429—Two or more amplifiers or one amplifier with filters for different frequency bands are coupled in parallel at the input or output
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/462—Indexing scheme relating to amplifiers the current being sensed
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/465—Power sensing
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/471—Indexing scheme relating to amplifiers the voltage being sensed
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/507—A switch being used for switching on or off a supply or supplying circuit in an IC-block amplifier circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/511—Many discrete supply voltages or currents or voltage levels can be chosen by a control signal in an IC-block amplifier circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F2203/211—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
- H03F2203/21106—An input signal being distributed in parallel over the inputs of a plurality of power amplifiers
Definitions
- Embodiments of the invention relate to electronic systems, and in particular, to radio frequency (RF) electronics.
- RF radio frequency
- Power amplifiers can be included in mobile phones to amplify a RF signal for transmission.
- TDMA time division multiple access
- GSM Global System for Mobile Communications
- CDMA code division multiple access
- W-CDMA wideband code division multiple access
- a power amplifier can be used to amplify a RF signal for transmission via an antenna. It can be important manage the amplification of a RF signal, as a desired transmitted power level can depend on how far the user is away from a base station and/or the mobile environment.
- Power amplifiers can also be employed to aid in regulating the power level of the RF signal over time, so as to prevent signal interference from transmission during an assigned receive time slot.
- the power efficiency of a power amplifier at a particular input power level can be a function of a variety of factors, including circuit component and layout, power amplifier load, and/or power amplifier supply voltage.
- a technique known as envelope tracking can be used, in which the voltage level of the power supply of the power amplifier is changed in relation to the envelope of the RF signal.
- envelope tracking can be used, in which the voltage level of the power supply of the power amplifier is changed in relation to the envelope of the RF signal.
- the present disclosure relates to a method of calibrating an envelope tracking system.
- the method includes generating a supply voltage for a power amplifier using an envelope tracker, the envelope tracker having an envelope shaping table generated at a desired gain compression of the power amplifier.
- the method further includes operating the supply voltage of the power amplifier at a first voltage level, the first voltage level associated with substantially no gain compression of the power amplifier.
- the method further includes measuring an output power of the power amplifier at the first voltage level, decreasing a voltage level of the supply voltage one or more times and measuring the output power at each voltage level, determining a second voltage level of the power amplifier associated with a gain compression equal to about that of the desired gain compression, and calibrating the envelope tracker based on the determination.
- the method further includes scaling an amplitude of an envelope signal to generate a scaled envelope signal, the supply voltage generated at least in part based on the scaled envelope signal.
- the envelope shaping table includes shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of supply voltage levels.
- the method further includes generating the supply voltage from a battery voltage using the shaping data and the scaled envelope signal.
- the shaping data is in a digital format
- the method further includes converting the shaping data into an analog format.
- decreasing the voltage level of the supply voltage includes changing calibration data of the envelope tracker to reduce the supply voltage.
- calibrating the envelope tracker based on the determination includes selecting a value of the calibration data equal to about a value of the calibration data corresponding to the second voltage level.
- scaling the amplitude of the envelope signal includes multiplying the envelope signal by a scaling factor determined at least in part by the calibration data.
- the scaling factor is further determined by a power control signal from a transceiver.
- measuring the output power of the power amplifier at the first voltage level includes measuring the output power using a directional coupler and a power detector electrically coupled to the output of the power amplifier.
- the first voltage level is equal to about a maximum supply voltage of the power amplifier.
- decreasing the voltage level of the supply voltage one or more times includes decreasing the voltage level in discrete steps.
- decreasing the voltage level of the supply voltage one or more times and measuring the output power at each voltage level includes decreasing the voltage level continuously and measuring the output power at a plurality of discrete voltage levels.
- the present disclosure relates to a computer-readable storage medium including instructions that when executed by a processor perform a method of calibrating an envelope tracking system.
- the method includes generating a supply voltage for a power amplifier using an envelope tracker, the envelope tracker having an envelope shaping table generated at a desired gain compression of the power amplifier.
- the method further includes operating the supply voltage of the power amplifier at a first voltage level, the first voltage level associated with substantially no gain compression of the power amplifier.
- the method further includes measuring an output power of the power amplifier at the first voltage level, decreasing a voltage level of the supply voltage one or more times and measuring the output power at each voltage level, determining a second voltage level of the power amplifier associated with a gain compression equal to about that of the desired gain compression, and calibrating the envelope tracker based on the determination.
- the present disclosure relates to a power amplifier system including a power amplifier and an envelope tracker configured to generate a supply voltage for the power amplifier.
- the envelope tracker includes a shaping module having an envelope shaping table generated at a desired gain compression of the power amplifier and a scaling module configured to scale an amplitude of an envelope signal and to provide the scaled envelope signal amplitude to the shaping module.
- the power amplifier system further includes a directional coupler electrically connected to an output of the power amplifier, a power detector electrically connected to the directional coupler and configured to measure the output power of the power amplifier using the directional coupler, and a calibration module configured to provide calibration data to the scaling module so as to change the scaled envelope signal amplitude generated by the scaling module.
- the calibration module is configured to set the calibration data to a first value corresponding to a voltage level of the supply voltage associated with substantially no gain compression, and to reduce the voltage level of the supply voltage by changing the calibration data until the power detector indicates that the gain compression of the power amplifier is equal to about the desired gain compression.
- the envelope shaping table includes shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of supply voltage levels.
- the power amplifier system further includes a modulator configured to generate the supply voltage from a battery voltage using the shaping data.
- the power amplifier system further includes a digital-to-analog converter for converting the shaping data to analog data for use by the modulator.
- the power amplifier system further includes a power control module electrically connected to the power detector.
- the scaling module is further configured to receive a power control signal from the power control module and to change the scaled envelope signal amplitude using the power control signal.
- the scaling module is configured to multiply the calibration data by the power control signal to generate a scaling factor, and to multiply the amplitude of the envelope signal by the scaling factor to generate the scaled envelope signal amplitude.
- the first value of the calibration data corresponds to about a maximum supply voltage of the power amplifier.
- the power amplifier system further includes a duplexer having an input electrically connected to an output of the power amplifier and to the directional coupler and an output electrically connected to an antenna.
- the present disclosure relates to a method of calibrating a power amplifier system.
- the method includes generating a supply voltage for a power amplifier using an envelope tracker, the envelope tracker having an envelope shaping table generated at a desired gain compression of the power amplifier.
- the method further includes operating the supply voltage of the power amplifier at a first voltage level and a first input power level associated with a target power of the power amplifier.
- the method further includes measuring an output power of the power amplifier at the first input power level to determine a power gain, increasing the input power of the power amplifier one or more times and measuring the output power at each input power level, determining a second input power level corresponding to a gain compression of the power amplifier equal to about the desired gain compression, and calibrating the power amplifier system based on the determination.
- the method further includes using calibration data to change a gain of a variable gain amplifier configured to drive an input of the power amplifier.
- increasing the input power of the power amplifier one or more times includes changing the calibration data so as to increase a gain of the variable gain amplifier one or more times.
- calibrating the power amplifier system based on the determination includes selecting a value of the calibration data equal to about a value of the calibration data corresponding to the second input power level.
- the method further includes using a power control signal from a transceiver to further control the gain of the variable gain amplifier.
- the method further includes controlling the gain of the variable gain amplifier by multiplying the calibration data by the power control signal.
- measuring the output power of the power amplifier at the first input power level to determine the power gain includes measuring the output power using a directional coupler and a power detector electrically coupled to the output of the power amplifier.
- the present disclosure relates to a computer-readable storage medium including instructions that when executed by a processor perform a method of calibrating a power amplifier system.
- the method includes generating a supply voltage for a power amplifier using an envelope tracker, the envelope tracker having an envelope shaping table generated at a desired gain compression of the power amplifier.
- the method further includes operating the supply voltage of the power amplifier at a first voltage level and a first input power level associated with a target power of the power amplifier.
- the method further includes measuring an output power of the power amplifier at the first input power level to determine a power gain, increasing the input power of the power amplifier one or more times and measuring the output power at each input power level, determining a second input power level corresponding to a gain compression of the power amplifier equal to about the desired gain compression, and calibrating the power amplifier system based on the determination.
- the present disclosure relates to a power amplifier system including a power amplifier, a variable gain amplifier configured to drive an input of the power amplifier, and an envelope tracker configured to generate a supply voltage for the power amplifier.
- the envelope tracker includes an envelope shaping table generated at a desired gain compression of the power amplifier.
- the power amplifier system further includes a directional coupler electrically connected to an output of the power amplifier, a power detector electrically connected to the directional coupler and configured to measure the output power of the power amplifier using the directional coupler, and a calibration module configured to provide calibration data to the variable gain amplifier so as to control the input power of the power amplifier.
- the calibration module is configured to set the calibration data to a first value corresponding to a voltage level of the supply voltage and input power of the power amplifier associated with a target power of the power amplifier, and to increase the input power of the power amplifier by changing the calibration data until the power detector indicates that the gain compression of the power amplifier is equal to about the desired gain compression.
- the power amplifier system further includes a power control module electrically connected to the power detector.
- the power control module is configured to generate a power control signal for controlling the gain of the variable gain amplifier.
- the power amplifier system includes a multiplier for multiplying the calibration data by the power control signal to generate a gain control signal for controlling the gain of the variable gain amplifier.
- the power amplifier system further includes a duplexer having an input electrically connected to an output of the power amplifier and to the directional coupler and an output electrically connected to an antenna.
- FIG. 1 is a schematic block diagram of an example wireless device that can include one or more power amplifier modules.
- FIG. 2 is a schematic block diagram of one example of a power amplifier system having an envelope tracker.
- FIGS. 3A-3B show two examples of a power supply voltage versus time.
- FIG. 4 is a schematic block diagram of another example of a power amplifier system having an envelope tracker.
- FIG. 5 is a plot illustrating one example of supply voltage and gain versus input power.
- FIG. 6 is a schematic block diagram of a power amplifier system in accordance with one embodiment.
- FIG. 7 is a schematic block diagram of a power amplifier system in accordance with another embodiment.
- FIG. 8 is a flow chart illustrating a method of calibrating a power amplifier system in accordance with one embodiment.
- FIG. 9 is a flow chart illustrating a method of calibrating a power amplifier system in accordance with another embodiment.
- part-to-part component variation within the system can produce a misalignment between an envelope voltage and an associated power supply voltage generated by the envelope tracker, thereby making it difficult to maintain a relatively constant gain compression when tracking an envelope signal over a wide dynamic range.
- a power amplifier can be calibrated to try to compensate for the error, the calibration can be complicated by variations in DC offset voltage, insertion loss and/or gain in the envelope and signal paths.
- FIG. 1 is a schematic block diagram of an example wireless device 11 that can include one or more power amplifier modules.
- the wireless device 11 can include power amplifiers implementing one or more features of the present disclosure.
- the example wireless device 11 depicted in FIG. 1 can represent a multi-band and/or multi-mode device such as a multi-band/multi-mode mobile phone.
- GSM Global System for Mobile
- GSM communication standard is a mode of digital cellular communication that is utilized in many parts of the world.
- GSM mode mobile phones can operate at one or more of four frequency bands: 850 MHz (approximately 824-849 MHz for Tx, 869-894 MHz for Rx), 900 MHz (approximately 880-915 MHz for Tx, 925-960 MHz for Rx), 1800 MHz (approximately 1710-1785 MHz for Tx, 1805-1880 MHz for Rx), and 1900 MHz (approximately 1850-1910 MHz for Tx, 1930-1990 MHz for Rx). Variations and/or regional/national implementations of the GSM bands are also utilized in different parts of the world.
- CDMA Code division multiple access
- WCDMA and LTE Long Term Evolution
- One or more features of the present disclosure can be implemented in the foregoing example modes and/or bands, and in other communication standards.
- 3G, 4G, LTE and Advanced LTE are non-limiting examples of such standards.
- the wireless device 11 can include a duplexer 12 , a transceiver 13 , an antenna 14 , power amplifiers 17 , a control component 18 , a computer readable medium 19 , a processor 20 , a battery 21 , and an envelope tracker 22 .
- the transceiver 13 can generate RF signals for transmission via the antenna 14 . Furthermore, the transceiver 13 can receive incoming RF signals from the antenna 14 .
- various functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in FIG. 1 as the transceiver 13 .
- transmitting and receiving functionalities can be provided by separate components.
- various antenna functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in FIG. 1 as the antenna 14 .
- a single antenna can be configured to provide both transmitting and receiving functionalities.
- transmitting and receiving functionalities can be provided by separate antennas.
- different bands associated with the wireless device 11 can be provided with one or more antennas.
- one or more output signals from the transceiver 13 are depicted as being provided to the antenna 14 via one or more transmission paths 15 .
- different transmission paths 15 can represent output paths associated with different bands and/or different power outputs.
- two example power amplifiers 17 shown can represent amplifications associated with different power output configurations (e.g., low power output and high power output), and/or amplifications associated with different bands.
- FIG. 1 illustrates the wireless device 11 as including two transmission paths 15 , the wireless device 11 can be adapted to include more or fewer transmission paths 15 .
- one or more detected signals from the antenna 14 are depicted as being provided to the transceiver 13 via one or more receiving paths 16 .
- different receiving paths 16 can represent paths associated with different bands.
- the four example paths 16 shown can represent quad-band capability that some wireless devices are provided with.
- FIG. 1 illustrates the wireless device 11 as including four receiving paths 16 , the wireless device 11 can be adapted to include more or fewer receiving paths 16 .
- the duplexer 12 can be configured to electrically connect the antenna 14 to a selected transmit or receive path.
- the duplexer 12 can provide a number of switching functionalities associated with an operation of the wireless device 11 .
- the duplexer 12 can include a number of switches configured to provide functionalities associated with, for example, switching between different bands, switching between different power modes, switching between transmission and receiving modes, or some combination thereof.
- the duplexer 12 can also be configured to provide additional functionality, including filtering of signals.
- FIG. 1 shows that in certain embodiments, a control component 18 can be provided, and such a component can be configured to provide various control functionalities associated with operations of the duplexer 12 , the power amplifiers 17 , the envelope tracker 22 , and/or other operating component(s).
- a control component 18 can be provided, and such a component can be configured to provide various control functionalities associated with operations of the duplexer 12 , the power amplifiers 17 , the envelope tracker 22 , and/or other operating component(s).
- Non-limiting examples of the control component 18 are described herein in greater detail.
- a processor 20 can be configured to facilitate implementation of various processes described herein.
- embodiments of the present disclosure may also be described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the acts specified in the flowchart and/or block diagram block or blocks.
- these computer program instructions may also be stored in a computer-readable memory 19 that can direct a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the acts specified in the flowchart and/or block diagram block or blocks.
- the computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operations to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the acts specified in the flowchart and/or block diagram block or blocks.
- the illustrated wireless device 11 also includes the envelope tracker 22 , which can be used to provide a power supply voltage to one or more of the power amplifiers 17 .
- the envelope tracker 22 can be configured to control the supply voltage provided to the power amplifiers 17 based upon an envelope of the RF signal to be amplified.
- the envelope tracker 22 can be electrically connected to a battery 21 , and the envelope tracker 22 can be configured to vary or change the voltage provided to the power amplifiers 17 based on an envelope of the RF signal to be amplified.
- the battery 21 can be any suitable battery for use in the wireless device 11 , including, for example, a lithium-ion battery. As will be described in detail further below, by controlling the voltage provided to the power amplifiers, the power consumption of the battery 21 can be reduced, thereby improving performance of the wireless device 11 .
- the envelope signal can be provided to the envelope tracker 22 from the transceiver 13 . However, the envelope signal can be determined in other ways. For example, the envelope signal can be determined by detecting the envelope of the RF signal using any suitable envelope detector.
- FIG. 2 is a schematic block diagram of one example of a power amplifier system 50 having an envelope tracker.
- the illustrated power amplifier system 50 includes the battery 21 , a power amplifier 32 , a multi-level supply module 51 , a supply voltage selection module 52 , and a supply voltage adjustment module 54 .
- the multi-level supply module 51 , the supply voltage selection module 52 , and the supply voltage adjustment module 54 can collectively operate as an envelope tracker configured to vary or change a power supply voltage V CC in relation to the envelope signal.
- the power amplifier 32 includes an input configured to receive an RF signal RF IN and an output configured to generate an amplified RF signal RF OUT . Additionally, the power amplifier 32 is electrically powered using the power supply voltage V CC .
- the multi-level supply module 51 can generate a plurality of power supplies from the battery 21 .
- the multi-level supply module 51 can be used to generate n supplies from the battery 21 , where n is an integer.
- Each of the supplies generated by the multi-level supply module 51 can have a voltage level that is greater than, less than, or equal to the battery voltage.
- the multi-level supply module 51 includes a buck-boost converter.
- the supply voltage selection module 52 can receive the envelope of the RF signal RF IN , and can select amongst the supplies generated by the multi-level supply module 51 to provide the supply voltage adjustment module 54 with a supply voltage level that is most appropriate to use to track the envelope signal. For example, the supply voltage selection module 52 can provide the supply voltage adjustment module 54 a supply voltage that is greater than the envelope voltage by a relatively small amount. Thereafter, the supply voltage adjustment module 54 can provide relatively fine-tuned adjustment of the supply voltage to generate the envelope tracking power supply voltage V CC .
- the multi-level supply module 51 By including the multi-level supply module 51 , the supply voltage selection module 52 , and the voltage adjustment module 54 , constraints on the design of the envelope tracking system can be reduced, thereby permitting a system with greater flexibility and improved power efficiency relative to a scheme employing only a single tracking or selection module.
- the supply voltage adjustment module 54 can be electrically connected in a feedback arrangement to aid in enhancing the tracking of the power supply V CC relative to the envelope of the RF signal.
- the supply voltage adjustment module 54 can include one or more amplifiers configured to provide linear tracking of the envelope signal to generate the power supply voltage V CC .
- one or more amplifiers can be electrically connected with one or more summers to aid in aid in generating an error signal, which can be added to the supply voltage selected by the supply voltage selection module 52 .
- FIG. 2 illustrates a feedback configuration in which the power supply voltage V CC is provided as an input back into the supply voltage adjustment module 54 , in certain implementations, a feedforward arrangement can be used.
- the power amplifier system 50 can include a delay block to compensate for delays in generating the power supply voltage V CC .
- a delay block can be included between the RF signal RF IN and the input of the power amplifier 32 to aid in aligning the signal amplified by the power amplifier 32 with the power supply voltage V CC .
- FIGS. 3A-3B show two examples of power supply voltage versus time.
- a graph 47 illustrates the voltage of an RF signal 41 and a power amplifier supply 43 versus time.
- the RF signal 41 has an envelope 42 .
- the power supply 43 of a power amplifier can be configured to have a voltage greater than that of the RF signal 41 .
- providing a supply voltage to a power amplifier having a voltage magnitude less than that of the RF signal 41 can clip the RF signal, thereby creating signal distortion and/or other problems.
- the power supply 43 can be selected to have a voltage magnitude that is greater than that of the envelope 42 of the RF signal 41 .
- it can be desirable to reduce a difference in voltage between the power supply 43 and the envelope 42 of the RF signal 41 as the area between the power amplifier supply 43 and the envelope 42 of the RF signal 41 can represent lost energy, which can reduce battery life and increase heat generated in a mobile device.
- a graph 48 illustrates the voltage of an RF signal 41 and a power amplifier supply 44 versus time.
- the power amplifier supply 44 of FIG. 3B changes in relation to the envelope 42 of the RF signal 41 .
- the area between the power amplifier supply 44 and the envelope 42 of the RF signal 41 in FIG. 3B is less than the area between the power amplifier supply 43 and the envelope 42 of the RF signal 41 in FIG. 3A , and thus the graph 48 of FIG. 3B can be associated with a power amplifier system having greater energy efficiency.
- FIG. 3B can represent the output of one example of an envelope tracking system, such as the envelope tracking systems described herein.
- FIG. 4 is a schematic block diagram of another example of a power amplifier system 60 having an envelope tracker 22 .
- the illustrated power amplifier system 60 includes the envelope tracker 22 , a power amplifier 32 , an inductor 62 , a bypass capacitor 63 , an impedance matching block 64 , the duplexer 12 , and the antenna 14 .
- the power amplifier 32 can receive a RF signal RF IN and generate an amplified RF signal RF OUT .
- the envelope tracker 22 can receive an envelope of the RF signal RF IN and can generate a power amplifier supply voltage V CC for the power amplifier 32 that tracks the envelope signal.
- the illustrated power amplifier 32 includes a bipolar transistor 61 having an emitter, a base, and a collector.
- the emitter of the bipolar transistor 61 can be electrically connected to a first voltage supply V 1 , which can be, for example, a ground supply or node.
- the RF signal RF IN can be provided to the base of the bipolar transistor 61 .
- the bipolar transistor 61 can amplify the RF signal RF IN to generate the amplified RF signal RF OUT at the collector.
- the bipolar transistor 61 can be any suitable device.
- the bipolar transistor 61 is a heterojunction bipolar transistor (HBT).
- the power amplifier 32 can be configured to provide the amplified RF signal RF OUT to the duplexer 12 .
- the impedance matching block 64 can be used to aid in terminating the electrical connected between the power amplifier 32 and the duplexer 12 .
- the impedance matching block 64 can be used to increase power transfer and/or reduce reflections of the amplified RF signal RF OUT .
- the inductor 62 can be configured to operate as part of the impedance matching block 64 .
- the inductor 62 can be included to aid in biasing the power amplifier 32 with the power amplifier supply voltage V CC generated by the envelope tracker 22 .
- the inductor 62 can include a first end electrically connected to the envelope tracker 22 , and a second end electrically connected to the collector of the bipolar transistor 61 .
- the bypass capacitor 63 can have a first end electrically connected to the power supply V CC and a second end electrically connected to the first voltage supply V 1 , and can perform a wide variety of functions. For example, including the bypass capacitor 63 can reduce noise of the supply voltage V CC and/or stabilize the output of the power amplifier 32 . Additionally, the bypass capacitor 63 can be used to provide an RF and/or AC ground for the inductor 62 .
- FIG. 4 illustrates one implementation of the power amplifier 32
- the teachings described herein can be applied to a variety of power amplifier structures, including, for example, multi-stage power amplifier structures and power amplifiers employing other transistor structures.
- the bipolar transistor 61 can be omitted in favor of employing a field-effect transistor (FET), such as a silicon FET, a gallium arsenide (GaAs) high electron mobility transistor (HEMT), or a laterally diffused metal oxide semiconductor (LDMOS) transistor.
- FET field-effect transistor
- HEMT gallium arsenide
- LDMOS laterally diffused metal oxide semiconductor
- FIG. 5 is a plot 70 illustrating one example of supply voltage and gain versus input power.
- the plot 70 includes a first curve 71 illustrating a power amplifier's power supply voltage in volts versus input power in dBm.
- the plot 70 further includes a second curve 72 illustrating power amplifier gain in dB versus power amplifier input power in dBm for the power amplifier.
- the first and second curves 71 , 72 illustrate that the gain of a power amplifier can be maintained relatively constant as input power increases by increasing a power supply voltage level of a power amplifier in relation to the input power.
- the gain shown in the second curve 72 has been maintained relatively constant at a magnitude of about 13.25 dB by increasing the power supply voltage from about 1 V to about 6 V when increasing the input power level from about ⁇ 15 dBm to about 22 dBm.
- an envelope tracker can include an envelope shaping table generated at a target gain compression that includes data relating a plurality of desired voltage supply amplitudes to a plurality of envelope signal amplitudes.
- part-to-part variations of components within the power amplifier system can introduce variation that can create a misalignment between the generated power supply voltage and the actual input power.
- offset voltages, power amplifier gain errors, and/or a variety of other factors can lead to a misalignment between the amplitude of the power supply and the input power of the envelope signal.
- the power amplifier can include a duplexer electrically connected between the output of the power amplifier and the antenna, and variation in insertion loss of the duplexer can make it difficult to correlate power measurements at the antenna to the power supply voltage of the power amplifier.
- duplexer loss uncertainty and/or other losses between the power amplifier output and the antenna can complicate calibration.
- a power amplifier system can be designed to include margin to account for the envelope amplitude misalignment error.
- gain compression can exist near a maximum output power level of an amplifier and can introduce distortion in the RF signal, and a power amplifier can be operated with an increased power supply voltage to provide additional headroom against distortion.
- increasing the power supply voltage can reduce the efficiency of the power amplifier.
- FIG. 6 is a schematic block diagram of a power amplifier system 98 in accordance with one embodiment.
- the power amplifier system 98 includes a duplexer 12 , a transceiver 13 , an antenna 14 , a battery 21 , an envelope tracker 22 , a power amplifier input stage or variable gain amplifier (VGA) 31 , a power amplifier 32 , and a directional coupler 88 .
- VGA variable gain amplifier
- the illustrated envelope tracker 22 includes a calibration module 80 , a scaling module 81 , a shaping table module 82 , a digital-to-analog converter 83 , a modulator 84 , and a multiplier 87 .
- the illustrated transceiver 13 includes a power control module 85 and a power detector 86 .
- the calibration module 80 of the envelope tracker 22 can be used to calibrate the envelope tracker 22 to accommodate for envelope amplitude misalignment.
- the illustrated transceiver 13 is configured to provide an envelope signal to the envelope tracker 22 and an RF signal RF IN to the VGA 31 .
- the transceiver 13 includes the power control module 85 , which can be used to adjust a power level of the power amplifier system 98 .
- the power control module 85 can provide a first power control signal or gain control level (GCL) to the VGA 31 , which can be used to control a gain of the VGA 31 .
- GCL gain control level
- PCL power control signal or power control level
- the power control module 85 can be used to control the power level of the power amplifier system 98 over a variety of power modes and/or other power settings and to compensate for various system and/or operational parameters that can impact power performance.
- the transceiver 13 can include the power detector 86 .
- the power detector 86 can be electrically coupled to a directional coupler 88 positioned at the output of the power amplifier 32 so as to improve output power measurement accuracy.
- the directional coupler 88 can be positioned between the output of the power amplifier 32 and the input of the duplexer 12 , thereby allowing the power detector 86 to generate a power measurement that does not include an insertion loss of the duplexer 12 .
- the directional coupler 88 need not be positioned directly at the output of the power amplifier 32 .
- FIG. 6 has illustrated in dashed lines an alternative location for the directional coupler 88 between the duplexer 12 and the antenna 14 .
- the scaling module 81 can receive the power control level (PCL) from the power control module 85 , and can use the PCL to scale an amplitude of the envelope signal.
- the scaled or amplified envelope signal can be provided to the shaping table module 82 , which can include a shaping table having shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of target supply voltage levels.
- the shaping table can be generated at a particular target gain compression, as was described above with reference to FIG. 5 .
- the shaping table module 82 can generate a signal including data indicating a desired supply voltage level, and provide the signal to a modulator 84 .
- the signal is a digital format, such as in configurations in which the signal corresponds to an entry from the shaping table
- the digital-to-analog converter 83 can be used to convert the signal to an analog format.
- the modulator 84 can be electrically connected to the battery 21 , and can use the data relating to the target supply voltage level from the shaping table module 82 to generate the power supply voltage V CC for the power amplifier 32 .
- the envelope tracker 22 includes the calibration module 80 , which includes calibration data that can be set to a variety of values.
- the calibration data can be provided to the scaling module 81 , which can use the calibration data to scale the amplitude of the envelope signal before providing the scaled amplitude signal to the shaping table module 82 .
- the multiplier 87 can be configured to multiply the calibration data from the calibration module 80 by the power control level (PCL) from the power control module 85 and by the envelope signal to generate a scaled envelope signal.
- PCL power control level
- the scaling module 81 can use the calibration data to scale the envelope signal in any suitable way.
- the calibration module 80 can use the calibration data to calibrate the envelope tracker 22 to correct for envelope amplitude misalignment using a multi-step calibration process.
- the calibration module 80 can begin by setting the calibration data to a value that scales the envelope signal value by a relatively large amount, thereby directing the shaping table module 82 to set the power supply voltage V CC to a relatively high value, such as a maximum power supply voltage of the power amplifier.
- the relatively high voltage of the power supply can correspond to substantially no gain compression of the power amplifier 32 .
- the power detector 86 can be configured to measure the output power of the power amplifier 32 . Thereafter, the calibration module 80 can change the state or value of the calibration data so as to direct the target supply voltage generated by the shaping table module 82 downward. For example, the scaling module 81 can use the calibration data to reduce the scaling factor, thereby causing the shaping table module 82 to decrease the target power supply voltage.
- the power detector 86 can measure the output power, and provide the output power measurement to the power control module 85 .
- the calibration module 80 or any other suitable module can determine when the value of the calibration data corresponds to a gain compression equal to about that used to generate the shaping table of the shaping table module 82 .
- the calibration module 80 can determine when the output power measured by the power detector 86 is about 2 dB less than the output power measured when the power amplifier system was configured in a state having substantially no gain compression.
- the calibration data associated with a power amplifier gain compression equal to that used to generate the shaping table of the shaping table module 82 can be stored in the power amplifier system, such as in a memory of the envelope tracker 22 .
- the calibration data can be used to compensate for an envelope amplitude misalignment of the power amplifier system.
- the calibration scheme described above can be relatively low cost, take a relatively short amount of time, and can be used to account for envelope amplitude misalignment errors from a variety of sources. Additionally, using the power detector 86 for power measurements avoids a need of using external test equipment to support the calibration.
- the calibration module 80 can be used to perform a factory-level calibration of the envelope tracker 22 during manufacture. However, in other implementations, the calibration module 80 can periodically calibrate the envelope tracker 22 during real-time operation, thereby accounting for dynamic errors from temperature or other environmental factors and/or operating conditions that can vary the envelope amplitude misalignment error dynamically over time. The calibration can be performed during any suitable time window, such as certain time instances when the power amplifier system is not transmitting a signal over the antenna 14 .
- FIG. 7 is a schematic block diagram of a power amplifier system 99 in accordance with another embodiment.
- the power amplifier system 99 includes a duplexer 12 , a transceiver 13 , an antenna 14 , a battery 21 , an envelope tracker 22 , a VGA 31 , a power amplifier 32 , and a directional coupler 88 .
- the illustrated envelope tracker 22 includes a scaling module 81 , a shaping table module 82 , a digital-to-analog converter 83 , and a modulator 84 .
- the power amplifier system of FIG. 7 can be similar to the power amplifier system of FIG. 6 described above. However, in contrast to the power amplifier system 98 illustrated in FIG. 6 , the power amplifier system 99 illustrated in FIG. 7 includes a calibration module 90 and a multiplier 91 for controlling a gain of the VGA 31 .
- the calibration module 90 includes calibration data that can be set to a variety of values.
- the calibration data can be used to select the gain of the VGA 31 , thereby controlling the input power provided to the power amplifier stage 32 .
- the calibration module 32 can be used to correct an envelope amplitude misalignment of the envelope tracker, as will be described below.
- the calibration module 90 can use the calibration data to calibrate the envelope tracker 22 to correct for envelope amplitude misalignment using a multi-step calibration process.
- the calibration module 90 can begin by setting the gain of the VGA 31 to a maximum power control level, while the envelope tracker 22 can be configured to generate a power supply voltage that is of a nominal value and consistent with a target power of the power amplifier system.
- the calibration module 90 can change the state of the calibration data so as to direct the gain of the VGA 31 upward, thereby increasing the input power of the power amplifier 32 .
- the power detector 86 can measure the output power, and provide the measurement to the power control module 85 .
- the calibration module 90 or any other suitable component of the power amplifier system can determine when the value of the calibration data corresponds to a gain compression equal to about that used to generate the shaping table of the shaping table module 82 . For example, when the gain of the power amplifier falls below that associated with the target power due to an increase in input power, the power amplifier system has exceeded the gain compression point of the power amplifier system.
- the calibration data corresponding to when the power amplifier gain compression is equal to about the gain compression used to generate the shaping table can be stored in the power amplifier system, such as in a memory of the envelope tracker 22 or of the transceiver 13 .
- the calibration data can be used to compensate for an envelope amplitude misalignment of the power amplifier system 99 .
- the multiplier 91 can be included so that both the calibration module 90 and the power control module 85 can control the gain of the VGA 31 .
- the multiplier 91 can be replaced with other components, such as an adder, or omitted.
- FIG. 8 is a flow chart illustrating a method 100 of calibrating a power amplifier system in accordance with one embodiment. It will be understood that the methods discussed herein may include greater or fewer operations and the operations may be performed in any order, as necessary.
- the method 100 can be used to calibrate, for example, the power amplifier system 98 illustrated in FIG. 6 .
- the method 100 starts at a block 102 .
- a supply voltage for a power amplifier is generated using an envelope tracker that includes a shaping table generated at a desired gain compression.
- Gain compression in a power amplifier can refer to a reduction in differential gain caused by overdriving the power amplifier beyond a linear region.
- a shaping table can be calibrated at a desired gain compression that is determined to be an acceptable level of gain compression for the design, and the envelope shaping table can map envelope signal amplitude to a power supply voltage level that corresponds to the desired gain compression.
- the shaping table can include shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of target power supply voltage levels.
- the supply voltage of a power amplifier is operated at a first voltage level associated with substantially no gain compression of the PA.
- the power amplifier can be operated at a maximum power supply voltage so as to provide maximum headroom for the amplified signal and substantially no gain compression.
- the method 100 of FIG. 8 continues at a block 108 , in which the output power of the power amplifier is measured at the first voltage level.
- a power detector can be used to measure the output power.
- measuring output power can consist of measuring a current, voltage, and/or another parameter computationally related to power, and calculating power therefrom.
- a voltage level of the supply voltage can be decreased one or more times, and the output power can be measured at each voltage level.
- the voltage level can be decreased discretely, with power measurements made after each decrease. However, in certain implementations the voltage level can be decreased continuously, and measurements can be made at discrete points or continuously.
- the power measurements can be made using a power detector or any other suitable component.
- the supply voltage is decreased by changing calibration data in a calibration module of the power amplifier system.
- the method 100 continues at a block 112 , in which a second voltage level of the power supply is determined that corresponds to a gain compression equal to about the gain compression used to generate the envelope shaping table.
- the voltage level can be decreased until the measured output power falls below the output power at the first supply voltage by an amount equal to about the gain compression of the envelope shaping table.
- the envelope tracker is calibrated based on the determination. For example, a calibration data corresponding to the state of the system at the second voltage level can be stored and used to calibrate the power amplifier system.
- the method 100 ends at 116 .
- FIG. 9 is a flow chart illustrating a method of calibrating a power amplifier system in accordance with another embodiment. It will be understood that the methods discussed herein may include greater or fewer operations and the operations may be performed in any order, as necessary.
- the method 150 can be used to calibrate, for example, the power amplifier system 99 illustrated in FIG. 7 .
- a supply voltage for a power amplifier is generated using an envelope tracker includes a shaping table generated at a desired gain compression point.
- the shaping table can include shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of desired supply voltage levels.
- the supply voltage of a power amplifier is operated at a first voltage level and a first input power level associated with the target power.
- the power amplifier can be operated at a supply voltage level below the maximum and at a relatively low input power consistent with the target power.
- the method 150 of FIG. 9 continues at a block 158 , in which the output power of the power amplifier is measured at the first voltage level and the first input power level to determine a power gain.
- a power detector can be used to measure the output power.
- an input power of the power amplifier is increased one or more times, and the output power can be measured at each voltage level.
- the input power can be increased in any suitable way, such as by changing the gain of a variable gain amplifier configured to drive the input of a power amplifier.
- the method 150 continues at a block 162 , in which a second input power level of the power supply is determined that corresponds to a gain compression equal to about the gain compression used to generate the envelope shaping table. For example, the input power can be decreased until the gain begins to decrease, thereby indicating that the gain compression has exceeded the gain compression used to determine the envelope shaping table.
- the envelope tracker is calibrated based on the determination. For example, a calibration data corresponding to the state of the system at the second input power level can be stored and used to calibrate the power amplifier system.
- the method 150 ends at 166 .
- Such power amplifier systems can be implemented in various electronic devices.
- Examples of the electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products, electronic test equipment, etc.
- Examples of the electronic devices can also include, but are not limited to, memory chips, memory modules, circuits of optical networks or other communication networks, and disk driver circuits.
- the consumer electronic products can include, but are not limited to, a mobile phone, a telephone, a television, a computer monitor, a computer, a hand-held computer, a personal digital assistant (PDA), a microwave, a refrigerator, an automobile, a stereo system, a cassette recorder or player, a DVD player, a CD player, a VCR, an MP3 player, a radio, a camcorder, a camera, a digital camera, a portable memory chip, a washer, a dryer, a washer/dryer, a copier, a facsimile machine, a scanner, a multi functional peripheral device, a wrist watch, a clock, etc. Further, the electronic devices can include unfinished products.
- the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.”
- the word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements.
- the word “connected”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements.
- the words “herein,” “above,” “below,” and words of similar import when used in this application, shall refer to this application as a whole and not to any particular portions of this application.
- words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively.
- conditional language used herein such as, among others, “can,” “could,” “might,” “can,” “e.g.,” “for example,” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states.
- conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
- Control Of Amplification And Gain Control (AREA)
Abstract
Apparatus and methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment are provided. In certain configurations, a method of calibrating a power amplifier system includes generating a supply voltage of a power amplifier using an envelope tracker based on shaping a scaled envelope signal using shaping data generated at a target gain compression, controlling a variable gain of a variable gain amplifier based on a gain control level signal, changing the variable gain by adjusting the gain control level signal using a calibration module, monitoring an output of the power amplifier to determine an amount of variable gain at which a detected gain compression of the power amplifier corresponds to the target gain compression of the shaping data, and calibrating the power amplifier system to compensate for envelope amplitude misalignment based on the determined amount of variable gain.
Description
- This application is a divisional of U.S. patent application Ser. No. 15/377,755, filed Dec. 13, 2016, titled “METHODS OF CALIBRATING A POWER AMPLIFIER SYSTEM TO COMPENSATE FOR ENVELOPE AMPLITUDE MISALIGNMENT,” which is a continuation of U.S. patent application Ser. No. 14/964,375, filed Dec. 9, 2015, titled “APPARATUS AND METHODS FOR CALIBRATION OF ENVELOPE TRACKERS”, which is a continuation of U.S. patent application Ser. No. 14/581,630, filed Dec. 23, 2014, titled “APPARATUS AND METHODS FOR CALIBRATING ENVELOPE TRACKERS”, which is a continuation of U.S. patent application Ser. No. 13/367,190, filed Feb. 6, 2012, titled “APPARATUS AND METHODS FOR ENVELOPE TRACKING CALIBRATION”, which claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/440,291, filed Feb. 7, 2011, titled “APPARATUS AND METHODS FOR ENVELOPE TRACKING CALIBRATION”, each of which are herein incorporated by reference in their entireties.
- Embodiments of the invention relate to electronic systems, and in particular, to radio frequency (RF) electronics.
- Power amplifiers can be included in mobile phones to amplify a RF signal for transmission. For example, in mobile phones having a time division multiple access (TDMA) architecture, such as those found in Global System for Mobile Communications (GSM), code division multiple access (CDMA), and wideband code division multiple access (W-CDMA) systems, a power amplifier can be used to amplify a RF signal for transmission via an antenna. It can be important manage the amplification of a RF signal, as a desired transmitted power level can depend on how far the user is away from a base station and/or the mobile environment. Power amplifiers can also be employed to aid in regulating the power level of the RF signal over time, so as to prevent signal interference from transmission during an assigned receive time slot.
- The power efficiency of a power amplifier at a particular input power level can be a function of a variety of factors, including circuit component and layout, power amplifier load, and/or power amplifier supply voltage. To aid in improving the efficiency of a power amplifier, a technique known as envelope tracking can be used, in which the voltage level of the power supply of the power amplifier is changed in relation to the envelope of the RF signal. Thus, when the envelope of the RF signal increases, the voltage supplied to the power amplifier can be increased. Likewise, when the envelope of the RF signal decreases, the voltage supplied to the power amplifier can be decreased to reduce power consumption.
- In certain embodiments, the present disclosure relates to a method of calibrating an envelope tracking system. The method includes generating a supply voltage for a power amplifier using an envelope tracker, the envelope tracker having an envelope shaping table generated at a desired gain compression of the power amplifier. The method further includes operating the supply voltage of the power amplifier at a first voltage level, the first voltage level associated with substantially no gain compression of the power amplifier. The method further includes measuring an output power of the power amplifier at the first voltage level, decreasing a voltage level of the supply voltage one or more times and measuring the output power at each voltage level, determining a second voltage level of the power amplifier associated with a gain compression equal to about that of the desired gain compression, and calibrating the envelope tracker based on the determination.
- In various embodiments, the method further includes scaling an amplitude of an envelope signal to generate a scaled envelope signal, the supply voltage generated at least in part based on the scaled envelope signal.
- In some embodiments, the envelope shaping table includes shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of supply voltage levels.
- In a number of embodiments, the method further includes generating the supply voltage from a battery voltage using the shaping data and the scaled envelope signal.
- In accordance with several embodiments, the shaping data is in a digital format, and the method further includes converting the shaping data into an analog format.
- In certain embodiments, decreasing the voltage level of the supply voltage includes changing calibration data of the envelope tracker to reduce the supply voltage.
- In some embodiments, calibrating the envelope tracker based on the determination includes selecting a value of the calibration data equal to about a value of the calibration data corresponding to the second voltage level.
- According to a number of embodiments, scaling the amplitude of the envelope signal includes multiplying the envelope signal by a scaling factor determined at least in part by the calibration data.
- In various embodiments, the scaling factor is further determined by a power control signal from a transceiver.
- In some embodiments, measuring the output power of the power amplifier at the first voltage level includes measuring the output power using a directional coupler and a power detector electrically coupled to the output of the power amplifier.
- In a number of embodiments, the first voltage level is equal to about a maximum supply voltage of the power amplifier.
- In accordance with several embodiments, decreasing the voltage level of the supply voltage one or more times includes decreasing the voltage level in discrete steps.
- In various embodiments, decreasing the voltage level of the supply voltage one or more times and measuring the output power at each voltage level includes decreasing the voltage level continuously and measuring the output power at a plurality of discrete voltage levels.
- In certain embodiments, the present disclosure relates to a computer-readable storage medium including instructions that when executed by a processor perform a method of calibrating an envelope tracking system. The method includes generating a supply voltage for a power amplifier using an envelope tracker, the envelope tracker having an envelope shaping table generated at a desired gain compression of the power amplifier. The method further includes operating the supply voltage of the power amplifier at a first voltage level, the first voltage level associated with substantially no gain compression of the power amplifier. The method further includes measuring an output power of the power amplifier at the first voltage level, decreasing a voltage level of the supply voltage one or more times and measuring the output power at each voltage level, determining a second voltage level of the power amplifier associated with a gain compression equal to about that of the desired gain compression, and calibrating the envelope tracker based on the determination.
- In certain embodiments, the present disclosure relates to a power amplifier system including a power amplifier and an envelope tracker configured to generate a supply voltage for the power amplifier. The envelope tracker includes a shaping module having an envelope shaping table generated at a desired gain compression of the power amplifier and a scaling module configured to scale an amplitude of an envelope signal and to provide the scaled envelope signal amplitude to the shaping module. The power amplifier system further includes a directional coupler electrically connected to an output of the power amplifier, a power detector electrically connected to the directional coupler and configured to measure the output power of the power amplifier using the directional coupler, and a calibration module configured to provide calibration data to the scaling module so as to change the scaled envelope signal amplitude generated by the scaling module. The calibration module is configured to set the calibration data to a first value corresponding to a voltage level of the supply voltage associated with substantially no gain compression, and to reduce the voltage level of the supply voltage by changing the calibration data until the power detector indicates that the gain compression of the power amplifier is equal to about the desired gain compression.
- In various embodiments, the envelope shaping table includes shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of supply voltage levels.
- In some embodiments, the power amplifier system further includes a modulator configured to generate the supply voltage from a battery voltage using the shaping data.
- In a number of embodiments, the power amplifier system further includes a digital-to-analog converter for converting the shaping data to analog data for use by the modulator.
- In accordance with several embodiments, the power amplifier system further includes a power control module electrically connected to the power detector.
- In certain embodiments, the scaling module is further configured to receive a power control signal from the power control module and to change the scaled envelope signal amplitude using the power control signal.
- In some embodiments, the scaling module is configured to multiply the calibration data by the power control signal to generate a scaling factor, and to multiply the amplitude of the envelope signal by the scaling factor to generate the scaled envelope signal amplitude.
- In various embodiments, the first value of the calibration data corresponds to about a maximum supply voltage of the power amplifier.
- In some embodiments, the power amplifier system further includes a duplexer having an input electrically connected to an output of the power amplifier and to the directional coupler and an output electrically connected to an antenna.
- In certain embodiments, the present disclosure relates to a method of calibrating a power amplifier system. The method includes generating a supply voltage for a power amplifier using an envelope tracker, the envelope tracker having an envelope shaping table generated at a desired gain compression of the power amplifier. The method further includes operating the supply voltage of the power amplifier at a first voltage level and a first input power level associated with a target power of the power amplifier. The method further includes measuring an output power of the power amplifier at the first input power level to determine a power gain, increasing the input power of the power amplifier one or more times and measuring the output power at each input power level, determining a second input power level corresponding to a gain compression of the power amplifier equal to about the desired gain compression, and calibrating the power amplifier system based on the determination.
- In various embodiments, the method further includes using calibration data to change a gain of a variable gain amplifier configured to drive an input of the power amplifier.
- In some embodiments, increasing the input power of the power amplifier one or more times includes changing the calibration data so as to increase a gain of the variable gain amplifier one or more times.
- In a number of embodiments, calibrating the power amplifier system based on the determination includes selecting a value of the calibration data equal to about a value of the calibration data corresponding to the second input power level.
- In certain embodiments, the method further includes using a power control signal from a transceiver to further control the gain of the variable gain amplifier.
- According to a number of embodiments, the method further includes controlling the gain of the variable gain amplifier by multiplying the calibration data by the power control signal.
- In several embodiments, measuring the output power of the power amplifier at the first input power level to determine the power gain includes measuring the output power using a directional coupler and a power detector electrically coupled to the output of the power amplifier.
- In certain embodiments, the present disclosure relates to a computer-readable storage medium including instructions that when executed by a processor perform a method of calibrating a power amplifier system. The method includes generating a supply voltage for a power amplifier using an envelope tracker, the envelope tracker having an envelope shaping table generated at a desired gain compression of the power amplifier. The method further includes operating the supply voltage of the power amplifier at a first voltage level and a first input power level associated with a target power of the power amplifier. The method further includes measuring an output power of the power amplifier at the first input power level to determine a power gain, increasing the input power of the power amplifier one or more times and measuring the output power at each input power level, determining a second input power level corresponding to a gain compression of the power amplifier equal to about the desired gain compression, and calibrating the power amplifier system based on the determination.
- In certain embodiments, the present disclosure relates to a power amplifier system including a power amplifier, a variable gain amplifier configured to drive an input of the power amplifier, and an envelope tracker configured to generate a supply voltage for the power amplifier. The envelope tracker includes an envelope shaping table generated at a desired gain compression of the power amplifier. The power amplifier system further includes a directional coupler electrically connected to an output of the power amplifier, a power detector electrically connected to the directional coupler and configured to measure the output power of the power amplifier using the directional coupler, and a calibration module configured to provide calibration data to the variable gain amplifier so as to control the input power of the power amplifier. The calibration module is configured to set the calibration data to a first value corresponding to a voltage level of the supply voltage and input power of the power amplifier associated with a target power of the power amplifier, and to increase the input power of the power amplifier by changing the calibration data until the power detector indicates that the gain compression of the power amplifier is equal to about the desired gain compression.
- In various embodiments, the power amplifier system further includes a power control module electrically connected to the power detector.
- In some embodiments, the power control module is configured to generate a power control signal for controlling the gain of the variable gain amplifier.
- In a number of embodiments, the power amplifier system includes a multiplier for multiplying the calibration data by the power control signal to generate a gain control signal for controlling the gain of the variable gain amplifier.
- In accordance with certain embodiments, the power amplifier system further includes a duplexer having an input electrically connected to an output of the power amplifier and to the directional coupler and an output electrically connected to an antenna.
-
FIG. 1 is a schematic block diagram of an example wireless device that can include one or more power amplifier modules. -
FIG. 2 is a schematic block diagram of one example of a power amplifier system having an envelope tracker. -
FIGS. 3A-3B show two examples of a power supply voltage versus time. -
FIG. 4 is a schematic block diagram of another example of a power amplifier system having an envelope tracker. -
FIG. 5 is a plot illustrating one example of supply voltage and gain versus input power. -
FIG. 6 is a schematic block diagram of a power amplifier system in accordance with one embodiment. -
FIG. 7 is a schematic block diagram of a power amplifier system in accordance with another embodiment. -
FIG. 8 is a flow chart illustrating a method of calibrating a power amplifier system in accordance with one embodiment. -
FIG. 9 is a flow chart illustrating a method of calibrating a power amplifier system in accordance with another embodiment. - The headings provided herein, if any, are for convenience only and do not necessarily affect the scope or meaning of the claimed invention.
- It can be difficult to maintain certain performance characteristics of a power amplifier when varying the power amplifier supply voltage in relation to the envelope of the RF signal. For example, part-to-part component variation within the system can produce a misalignment between an envelope voltage and an associated power supply voltage generated by the envelope tracker, thereby making it difficult to maintain a relatively constant gain compression when tracking an envelope signal over a wide dynamic range. Although a power amplifier can be calibrated to try to compensate for the error, the calibration can be complicated by variations in DC offset voltage, insertion loss and/or gain in the envelope and signal paths.
- There is a need for improved power amplifiers. Furthermore, there is a need for improved apparatus and methods for envelope tracking calibration.
-
FIG. 1 is a schematic block diagram of anexample wireless device 11 that can include one or more power amplifier modules. Thewireless device 11 can include power amplifiers implementing one or more features of the present disclosure. - The
example wireless device 11 depicted inFIG. 1 can represent a multi-band and/or multi-mode device such as a multi-band/multi-mode mobile phone. By way of examples, Global System for Mobile (GSM) communication standard is a mode of digital cellular communication that is utilized in many parts of the world. GSM mode mobile phones can operate at one or more of four frequency bands: 850 MHz (approximately 824-849 MHz for Tx, 869-894 MHz for Rx), 900 MHz (approximately 880-915 MHz for Tx, 925-960 MHz for Rx), 1800 MHz (approximately 1710-1785 MHz for Tx, 1805-1880 MHz for Rx), and 1900 MHz (approximately 1850-1910 MHz for Tx, 1930-1990 MHz for Rx). Variations and/or regional/national implementations of the GSM bands are also utilized in different parts of the world. - Code division multiple access (CDMA) is another standard that can be implemented in mobile phone devices. In certain implementations, CDMA devices can operate in one or more of 800 MHz, 900 MHz, 1800 MHz and 1900 MHz bands, while certain WCDMA and Long Term Evolution (LTE) devices can operate over, for example, about 22 radio frequency spectrum bands.
- One or more features of the present disclosure can be implemented in the foregoing example modes and/or bands, and in other communication standards. For example, 3G, 4G, LTE and Advanced LTE are non-limiting examples of such standards.
- In certain embodiments, the
wireless device 11 can include aduplexer 12, atransceiver 13, anantenna 14,power amplifiers 17, acontrol component 18, a computerreadable medium 19, aprocessor 20, abattery 21, and anenvelope tracker 22. - The
transceiver 13 can generate RF signals for transmission via theantenna 14. Furthermore, thetransceiver 13 can receive incoming RF signals from theantenna 14. - It will be understood that various functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in
FIG. 1 as thetransceiver 13. For example, transmitting and receiving functionalities can be provided by separate components. - Similarly, it will be understood that various antenna functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in
FIG. 1 as theantenna 14. For example, a single antenna can be configured to provide both transmitting and receiving functionalities. In another example, transmitting and receiving functionalities can be provided by separate antennas. In yet another example, different bands associated with thewireless device 11 can be provided with one or more antennas. - In
FIG. 1 , one or more output signals from thetransceiver 13 are depicted as being provided to theantenna 14 via one ormore transmission paths 15. In the example shown,different transmission paths 15 can represent output paths associated with different bands and/or different power outputs. For example, twoexample power amplifiers 17 shown can represent amplifications associated with different power output configurations (e.g., low power output and high power output), and/or amplifications associated with different bands. AlthoughFIG. 1 illustrates thewireless device 11 as including twotransmission paths 15, thewireless device 11 can be adapted to include more orfewer transmission paths 15. - In
FIG. 1 , one or more detected signals from theantenna 14 are depicted as being provided to thetransceiver 13 via one or more receiving paths 16. In the example shown, different receiving paths 16 can represent paths associated with different bands. For example, the four example paths 16 shown can represent quad-band capability that some wireless devices are provided with. AlthoughFIG. 1 illustrates thewireless device 11 as including four receiving paths 16, thewireless device 11 can be adapted to include more or fewer receiving paths 16. - To facilitate switching between receive and transmit paths, the
duplexer 12 can be configured to electrically connect theantenna 14 to a selected transmit or receive path. Thus, theduplexer 12 can provide a number of switching functionalities associated with an operation of thewireless device 11. In certain embodiments, theduplexer 12 can include a number of switches configured to provide functionalities associated with, for example, switching between different bands, switching between different power modes, switching between transmission and receiving modes, or some combination thereof. Theduplexer 12 can also be configured to provide additional functionality, including filtering of signals. -
FIG. 1 shows that in certain embodiments, acontrol component 18 can be provided, and such a component can be configured to provide various control functionalities associated with operations of theduplexer 12, thepower amplifiers 17, theenvelope tracker 22, and/or other operating component(s). Non-limiting examples of thecontrol component 18 are described herein in greater detail. - In certain embodiments, a
processor 20 can be configured to facilitate implementation of various processes described herein. For the purpose of description, embodiments of the present disclosure may also be described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the acts specified in the flowchart and/or block diagram block or blocks. - In certain embodiments, these computer program instructions may also be stored in a computer-
readable memory 19 that can direct a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the acts specified in the flowchart and/or block diagram block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operations to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the acts specified in the flowchart and/or block diagram block or blocks. - The illustrated
wireless device 11 also includes theenvelope tracker 22, which can be used to provide a power supply voltage to one or more of thepower amplifiers 17. For example, theenvelope tracker 22 can be configured to control the supply voltage provided to thepower amplifiers 17 based upon an envelope of the RF signal to be amplified. - The
envelope tracker 22 can be electrically connected to abattery 21, and theenvelope tracker 22 can be configured to vary or change the voltage provided to thepower amplifiers 17 based on an envelope of the RF signal to be amplified. Thebattery 21 can be any suitable battery for use in thewireless device 11, including, for example, a lithium-ion battery. As will be described in detail further below, by controlling the voltage provided to the power amplifiers, the power consumption of thebattery 21 can be reduced, thereby improving performance of thewireless device 11. The envelope signal can be provided to theenvelope tracker 22 from thetransceiver 13. However, the envelope signal can be determined in other ways. For example, the envelope signal can be determined by detecting the envelope of the RF signal using any suitable envelope detector. -
FIG. 2 is a schematic block diagram of one example of apower amplifier system 50 having an envelope tracker. The illustratedpower amplifier system 50 includes thebattery 21, apower amplifier 32, amulti-level supply module 51, a supplyvoltage selection module 52, and a supplyvoltage adjustment module 54. As will be described below, themulti-level supply module 51, the supplyvoltage selection module 52, and the supplyvoltage adjustment module 54 can collectively operate as an envelope tracker configured to vary or change a power supply voltage VCC in relation to the envelope signal. - The
power amplifier 32 includes an input configured to receive an RF signal RFIN and an output configured to generate an amplified RF signal RFOUT. Additionally, thepower amplifier 32 is electrically powered using the power supply voltage VCC. - The
multi-level supply module 51 can generate a plurality of power supplies from thebattery 21. For example, themulti-level supply module 51 can be used to generate n supplies from thebattery 21, where n is an integer. Each of the supplies generated by themulti-level supply module 51 can have a voltage level that is greater than, less than, or equal to the battery voltage. In one implementation, themulti-level supply module 51 includes a buck-boost converter. - The supply
voltage selection module 52 can receive the envelope of the RF signal RFIN, and can select amongst the supplies generated by themulti-level supply module 51 to provide the supplyvoltage adjustment module 54 with a supply voltage level that is most appropriate to use to track the envelope signal. For example, the supplyvoltage selection module 52 can provide the supply voltage adjustment module 54 a supply voltage that is greater than the envelope voltage by a relatively small amount. Thereafter, the supplyvoltage adjustment module 54 can provide relatively fine-tuned adjustment of the supply voltage to generate the envelope tracking power supply voltage VCC. By including themulti-level supply module 51, the supplyvoltage selection module 52, and thevoltage adjustment module 54, constraints on the design of the envelope tracking system can be reduced, thereby permitting a system with greater flexibility and improved power efficiency relative to a scheme employing only a single tracking or selection module. - As illustrated in
FIG. 2 , the supplyvoltage adjustment module 54 can be electrically connected in a feedback arrangement to aid in enhancing the tracking of the power supply VCC relative to the envelope of the RF signal. The supplyvoltage adjustment module 54 can include one or more amplifiers configured to provide linear tracking of the envelope signal to generate the power supply voltage VCC. In certain implementations, one or more amplifiers can be electrically connected with one or more summers to aid in aid in generating an error signal, which can be added to the supply voltage selected by the supplyvoltage selection module 52. AlthoughFIG. 2 illustrates a feedback configuration in which the power supply voltage VCC is provided as an input back into the supplyvoltage adjustment module 54, in certain implementations, a feedforward arrangement can be used. - Although not illustrated in
FIG. 2 , thepower amplifier system 50 can include a delay block to compensate for delays in generating the power supply voltage VCC. For example, a delay block can be included between the RF signal RFIN and the input of thepower amplifier 32 to aid in aligning the signal amplified by thepower amplifier 32 with the power supply voltage VCC. -
FIGS. 3A-3B show two examples of power supply voltage versus time. - In
FIG. 3A , agraph 47 illustrates the voltage of anRF signal 41 and apower amplifier supply 43 versus time. TheRF signal 41 has anenvelope 42. - The
power supply 43 of a power amplifier can be configured to have a voltage greater than that of theRF signal 41. For example, providing a supply voltage to a power amplifier having a voltage magnitude less than that of theRF signal 41 can clip the RF signal, thereby creating signal distortion and/or other problems. Thus, thepower supply 43 can be selected to have a voltage magnitude that is greater than that of theenvelope 42 of theRF signal 41. However, it can be desirable to reduce a difference in voltage between thepower supply 43 and theenvelope 42 of theRF signal 41, as the area between thepower amplifier supply 43 and theenvelope 42 of theRF signal 41 can represent lost energy, which can reduce battery life and increase heat generated in a mobile device. - In
FIG. 3B , agraph 48 illustrates the voltage of anRF signal 41 and apower amplifier supply 44 versus time. In contrast to thepower amplifier supply 43 ofFIG. 3A , thepower amplifier supply 44 ofFIG. 3B changes in relation to theenvelope 42 of theRF signal 41. The area between thepower amplifier supply 44 and theenvelope 42 of theRF signal 41 inFIG. 3B is less than the area between thepower amplifier supply 43 and theenvelope 42 of theRF signal 41 inFIG. 3A , and thus thegraph 48 ofFIG. 3B can be associated with a power amplifier system having greater energy efficiency.FIG. 3B can represent the output of one example of an envelope tracking system, such as the envelope tracking systems described herein. -
FIG. 4 is a schematic block diagram of another example of a power amplifier system 60 having anenvelope tracker 22. The illustrated power amplifier system 60 includes theenvelope tracker 22, apower amplifier 32, aninductor 62, abypass capacitor 63, an impedance matching block 64, theduplexer 12, and theantenna 14. - The
power amplifier 32 can receive a RF signal RFIN and generate an amplified RF signal RFOUT. Theenvelope tracker 22 can receive an envelope of the RF signal RFIN and can generate a power amplifier supply voltage VCC for thepower amplifier 32 that tracks the envelope signal. - The illustrated
power amplifier 32 includes abipolar transistor 61 having an emitter, a base, and a collector. The emitter of thebipolar transistor 61 can be electrically connected to a first voltage supply V1, which can be, for example, a ground supply or node. Additionally, the RF signal RFIN can be provided to the base of thebipolar transistor 61. Thebipolar transistor 61 can amplify the RF signal RFIN to generate the amplified RF signal RFOUT at the collector. Thebipolar transistor 61 can be any suitable device. In one implementation, thebipolar transistor 61 is a heterojunction bipolar transistor (HBT). - The
power amplifier 32 can be configured to provide the amplified RF signal RFOUT to theduplexer 12. The impedance matching block 64 can be used to aid in terminating the electrical connected between thepower amplifier 32 and theduplexer 12. For example, the impedance matching block 64 can be used to increase power transfer and/or reduce reflections of the amplified RF signal RFOUT. In certain implementations, theinductor 62 can be configured to operate as part of the impedance matching block 64. - The
inductor 62 can be included to aid in biasing thepower amplifier 32 with the power amplifier supply voltage VCC generated by theenvelope tracker 22. Theinductor 62 can include a first end electrically connected to theenvelope tracker 22, and a second end electrically connected to the collector of thebipolar transistor 61. Thebypass capacitor 63 can have a first end electrically connected to the power supply VCC and a second end electrically connected to the first voltage supply V1, and can perform a wide variety of functions. For example, including thebypass capacitor 63 can reduce noise of the supply voltage VCC and/or stabilize the output of thepower amplifier 32. Additionally, thebypass capacitor 63 can be used to provide an RF and/or AC ground for theinductor 62. - Although
FIG. 4 illustrates one implementation of thepower amplifier 32, skilled artisans will appreciate that the teachings described herein can be applied to a variety of power amplifier structures, including, for example, multi-stage power amplifier structures and power amplifiers employing other transistor structures. For example, in some implementations thebipolar transistor 61 can be omitted in favor of employing a field-effect transistor (FET), such as a silicon FET, a gallium arsenide (GaAs) high electron mobility transistor (HEMT), or a laterally diffused metal oxide semiconductor (LDMOS) transistor. -
FIG. 5 is aplot 70 illustrating one example of supply voltage and gain versus input power. Theplot 70 includes afirst curve 71 illustrating a power amplifier's power supply voltage in volts versus input power in dBm. Theplot 70 further includes asecond curve 72 illustrating power amplifier gain in dB versus power amplifier input power in dBm for the power amplifier. - The first and
second curves second curve 72 has been maintained relatively constant at a magnitude of about 13.25 dB by increasing the power supply voltage from about 1 V to about 6 V when increasing the input power level from about −15 dBm to about 22 dBm. - When performing envelope tracking, a relatively constant gain compression of the power amplifier can be maintained by controlling the difference between the power supply voltage level and the input power of the envelope signal. To aid in controlling the amplitude of the power supply voltage relative to the amplitude of the envelope signal, an envelope tracker can include an envelope shaping table generated at a target gain compression that includes data relating a plurality of desired voltage supply amplitudes to a plurality of envelope signal amplitudes.
- When using an envelope shaping table, part-to-part variations of components within the power amplifier system can introduce variation that can create a misalignment between the generated power supply voltage and the actual input power. For example, offset voltages, power amplifier gain errors, and/or a variety of other factors can lead to a misalignment between the amplitude of the power supply and the input power of the envelope signal. It can be difficult to compensate for these errors using conventional calibration techniques for a variety of reasons. For example, the power amplifier can include a duplexer electrically connected between the output of the power amplifier and the antenna, and variation in insertion loss of the duplexer can make it difficult to correlate power measurements at the antenna to the power supply voltage of the power amplifier. Thus, duplexer loss uncertainty and/or other losses between the power amplifier output and the antenna can complicate calibration.
- To accommodate for part-to-part variations and/or other contributing factors to envelope amplitude misalignment, a power amplifier system can be designed to include margin to account for the envelope amplitude misalignment error. For example, gain compression can exist near a maximum output power level of an amplifier and can introduce distortion in the RF signal, and a power amplifier can be operated with an increased power supply voltage to provide additional headroom against distortion. However, increasing the power supply voltage can reduce the efficiency of the power amplifier.
- There is a need for improving the calibration of a power amplifier system so as to increase power amplifier efficiency and to avoid distortion of an amplified RF signal due to envelope amplitude misalignment. Furthermore, there is a need for a calibration schemes that have a relatively fast calibration time so as to reduce calibration cost in a factory setting and/or to permit the use of the calibration method dynamically in a mobile device operating environment. Moreover, there is a need for improved calibration systems that can account for duplexer loss uncertainty and/or losses between the output of a power amplifier and an antenna.
-
FIG. 6 is a schematic block diagram of apower amplifier system 98 in accordance with one embodiment. Thepower amplifier system 98 includes aduplexer 12, atransceiver 13, anantenna 14, abattery 21, anenvelope tracker 22, a power amplifier input stage or variable gain amplifier (VGA) 31, apower amplifier 32, and adirectional coupler 88. - The illustrated
envelope tracker 22 includes a calibration module 80, ascaling module 81, ashaping table module 82, a digital-to-analog converter 83, amodulator 84, and amultiplier 87. The illustratedtransceiver 13 includes apower control module 85 and apower detector 86. As will be described in detail below, the calibration module 80 of theenvelope tracker 22 can be used to calibrate theenvelope tracker 22 to accommodate for envelope amplitude misalignment. - The illustrated
transceiver 13 is configured to provide an envelope signal to theenvelope tracker 22 and an RF signal RFIN to theVGA 31. Thetransceiver 13 includes thepower control module 85, which can be used to adjust a power level of thepower amplifier system 98. For example, thepower control module 85 can provide a first power control signal or gain control level (GCL) to theVGA 31, which can be used to control a gain of theVGA 31. Additionally, thepower control module 85 can provide a second power control signal or power control level (PCL) to theenvelope tracker 22, which can be used to scale the amplitude of the envelope signal. Thepower control module 85 can be used to control the power level of thepower amplifier system 98 over a variety of power modes and/or other power settings and to compensate for various system and/or operational parameters that can impact power performance. - To aid in enhancing the accuracy of the
power control module 85, thetransceiver 13 can include thepower detector 86. Thepower detector 86 can be electrically coupled to adirectional coupler 88 positioned at the output of thepower amplifier 32 so as to improve output power measurement accuracy. For example, thedirectional coupler 88 can be positioned between the output of thepower amplifier 32 and the input of theduplexer 12, thereby allowing thepower detector 86 to generate a power measurement that does not include an insertion loss of theduplexer 12. However, in certain implementations, thedirectional coupler 88 need not be positioned directly at the output of thepower amplifier 32. For example,FIG. 6 has illustrated in dashed lines an alternative location for thedirectional coupler 88 between theduplexer 12 and theantenna 14. - The
scaling module 81 can receive the power control level (PCL) from thepower control module 85, and can use the PCL to scale an amplitude of the envelope signal. The scaled or amplified envelope signal can be provided to theshaping table module 82, which can include a shaping table having shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of target supply voltage levels. The shaping table can be generated at a particular target gain compression, as was described above with reference toFIG. 5 . - The
shaping table module 82 can generate a signal including data indicating a desired supply voltage level, and provide the signal to amodulator 84. In implementations in which the signal is a digital format, such as in configurations in which the signal corresponds to an entry from the shaping table, the digital-to-analog converter 83 can be used to convert the signal to an analog format. Themodulator 84 can be electrically connected to thebattery 21, and can use the data relating to the target supply voltage level from theshaping table module 82 to generate the power supply voltage VCC for thepower amplifier 32. - The
envelope tracker 22 includes the calibration module 80, which includes calibration data that can be set to a variety of values. The calibration data can be provided to thescaling module 81, which can use the calibration data to scale the amplitude of the envelope signal before providing the scaled amplitude signal to theshaping table module 82. For example, as illustrated inFIG. 6 , themultiplier 87 can be configured to multiply the calibration data from the calibration module 80 by the power control level (PCL) from thepower control module 85 and by the envelope signal to generate a scaled envelope signal. However, thescaling module 81 can use the calibration data to scale the envelope signal in any suitable way. - The calibration module 80 can use the calibration data to calibrate the
envelope tracker 22 to correct for envelope amplitude misalignment using a multi-step calibration process. For example, the calibration module 80 can begin by setting the calibration data to a value that scales the envelope signal value by a relatively large amount, thereby directing theshaping table module 82 to set the power supply voltage VCC to a relatively high value, such as a maximum power supply voltage of the power amplifier. The relatively high voltage of the power supply can correspond to substantially no gain compression of thepower amplifier 32. - When the power amplifier system is configured to have substantially no gain compression as was described above, the
power detector 86 can be configured to measure the output power of thepower amplifier 32. Thereafter, the calibration module 80 can change the state or value of the calibration data so as to direct the target supply voltage generated by theshaping table module 82 downward. For example, thescaling module 81 can use the calibration data to reduce the scaling factor, thereby causing theshaping table module 82 to decrease the target power supply voltage. - For each decrease of power supply voltage, the
power detector 86 can measure the output power, and provide the output power measurement to thepower control module 85. Using the information, the calibration module 80 or any other suitable module can determine when the value of the calibration data corresponds to a gain compression equal to about that used to generate the shaping table of theshaping table module 82. For example, when the shaping table of theshaping table module 82 is generated at a 2 dB gain compression, the calibration module 80 can determine when the output power measured by thepower detector 86 is about 2 dB less than the output power measured when the power amplifier system was configured in a state having substantially no gain compression. - The calibration data associated with a power amplifier gain compression equal to that used to generate the shaping table of the
shaping table module 82 can be stored in the power amplifier system, such as in a memory of theenvelope tracker 22. The calibration data can be used to compensate for an envelope amplitude misalignment of the power amplifier system. - The calibration scheme described above can be relatively low cost, take a relatively short amount of time, and can be used to account for envelope amplitude misalignment errors from a variety of sources. Additionally, using the
power detector 86 for power measurements avoids a need of using external test equipment to support the calibration. - In certain implementations, the calibration module 80 can be used to perform a factory-level calibration of the
envelope tracker 22 during manufacture. However, in other implementations, the calibration module 80 can periodically calibrate theenvelope tracker 22 during real-time operation, thereby accounting for dynamic errors from temperature or other environmental factors and/or operating conditions that can vary the envelope amplitude misalignment error dynamically over time. The calibration can be performed during any suitable time window, such as certain time instances when the power amplifier system is not transmitting a signal over theantenna 14. -
FIG. 7 is a schematic block diagram of apower amplifier system 99 in accordance with another embodiment. Thepower amplifier system 99 includes aduplexer 12, atransceiver 13, anantenna 14, abattery 21, anenvelope tracker 22, aVGA 31, apower amplifier 32, and adirectional coupler 88. - The illustrated
envelope tracker 22 includes ascaling module 81, ashaping table module 82, a digital-to-analog converter 83, and amodulator 84. The power amplifier system ofFIG. 7 can be similar to the power amplifier system ofFIG. 6 described above. However, in contrast to thepower amplifier system 98 illustrated inFIG. 6 , thepower amplifier system 99 illustrated inFIG. 7 includes acalibration module 90 and amultiplier 91 for controlling a gain of theVGA 31. - The
calibration module 90 includes calibration data that can be set to a variety of values. The calibration data can be used to select the gain of theVGA 31, thereby controlling the input power provided to thepower amplifier stage 32. Thecalibration module 32 can be used to correct an envelope amplitude misalignment of the envelope tracker, as will be described below. - The
calibration module 90 can use the calibration data to calibrate theenvelope tracker 22 to correct for envelope amplitude misalignment using a multi-step calibration process. For example, thecalibration module 90 can begin by setting the gain of theVGA 31 to a maximum power control level, while theenvelope tracker 22 can be configured to generate a power supply voltage that is of a nominal value and consistent with a target power of the power amplifier system. - When the power amplifier system is configured to have the target power, the
calibration module 90 can change the state of the calibration data so as to direct the gain of theVGA 31 upward, thereby increasing the input power of thepower amplifier 32. - For each increase of input power, the
power detector 86 can measure the output power, and provide the measurement to thepower control module 85. Using the information, thecalibration module 90 or any other suitable component of the power amplifier system can determine when the value of the calibration data corresponds to a gain compression equal to about that used to generate the shaping table of theshaping table module 82. For example, when the gain of the power amplifier falls below that associated with the target power due to an increase in input power, the power amplifier system has exceeded the gain compression point of the power amplifier system. - The calibration data corresponding to when the power amplifier gain compression is equal to about the gain compression used to generate the shaping table can be stored in the power amplifier system, such as in a memory of the
envelope tracker 22 or of thetransceiver 13. The calibration data can be used to compensate for an envelope amplitude misalignment of thepower amplifier system 99. To permit thepower control module 85 to also change the gain of theVGA 31, themultiplier 91 can be included so that both thecalibration module 90 and thepower control module 85 can control the gain of theVGA 31. However, in certain implementations, themultiplier 91 can be replaced with other components, such as an adder, or omitted. -
FIG. 8 is a flow chart illustrating amethod 100 of calibrating a power amplifier system in accordance with one embodiment. It will be understood that the methods discussed herein may include greater or fewer operations and the operations may be performed in any order, as necessary. Themethod 100 can be used to calibrate, for example, thepower amplifier system 98 illustrated inFIG. 6 . - The
method 100 starts at ablock 102. In an ensuingblock 104, a supply voltage for a power amplifier is generated using an envelope tracker that includes a shaping table generated at a desired gain compression. Gain compression in a power amplifier can refer to a reduction in differential gain caused by overdriving the power amplifier beyond a linear region. Thus, a shaping table can be calibrated at a desired gain compression that is determined to be an acceptable level of gain compression for the design, and the envelope shaping table can map envelope signal amplitude to a power supply voltage level that corresponds to the desired gain compression. The shaping table can include shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of target power supply voltage levels. - In an ensuing
block 106, the supply voltage of a power amplifier is operated at a first voltage level associated with substantially no gain compression of the PA. For example, the power amplifier can be operated at a maximum power supply voltage so as to provide maximum headroom for the amplified signal and substantially no gain compression. - The
method 100 ofFIG. 8 continues at ablock 108, in which the output power of the power amplifier is measured at the first voltage level. For example, a power detector can be used to measure the output power. Persons having ordinary skill in the art will appreciate that measuring output power can consist of measuring a current, voltage, and/or another parameter computationally related to power, and calculating power therefrom. - In an ensuing
block 110, a voltage level of the supply voltage can be decreased one or more times, and the output power can be measured at each voltage level. The voltage level can be decreased discretely, with power measurements made after each decrease. However, in certain implementations the voltage level can be decreased continuously, and measurements can be made at discrete points or continuously. The power measurements can be made using a power detector or any other suitable component. In one embodiment, the supply voltage is decreased by changing calibration data in a calibration module of the power amplifier system. - The
method 100 continues at ablock 112, in which a second voltage level of the power supply is determined that corresponds to a gain compression equal to about the gain compression used to generate the envelope shaping table. For example, the voltage level can be decreased until the measured output power falls below the output power at the first supply voltage by an amount equal to about the gain compression of the envelope shaping table. - In an ensuing
block 114, the envelope tracker is calibrated based on the determination. For example, a calibration data corresponding to the state of the system at the second voltage level can be stored and used to calibrate the power amplifier system. Themethod 100 ends at 116. -
FIG. 9 is a flow chart illustrating a method of calibrating a power amplifier system in accordance with another embodiment. It will be understood that the methods discussed herein may include greater or fewer operations and the operations may be performed in any order, as necessary. Themethod 150 can be used to calibrate, for example, thepower amplifier system 99 illustrated inFIG. 7 . - The
method 150 starts at ablock 152. In an ensuingblock 154, a supply voltage for a power amplifier is generated using an envelope tracker includes a shaping table generated at a desired gain compression point. The shaping table can include shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of desired supply voltage levels. - In an ensuing
block 156, the supply voltage of a power amplifier is operated at a first voltage level and a first input power level associated with the target power. For example, the power amplifier can be operated at a supply voltage level below the maximum and at a relatively low input power consistent with the target power. - The
method 150 ofFIG. 9 continues at ablock 158, in which the output power of the power amplifier is measured at the first voltage level and the first input power level to determine a power gain. For example, a power detector can be used to measure the output power. - In an ensuing
block 160, an input power of the power amplifier is increased one or more times, and the output power can be measured at each voltage level. The input power can be increased in any suitable way, such as by changing the gain of a variable gain amplifier configured to drive the input of a power amplifier. - The
method 150 continues at ablock 162, in which a second input power level of the power supply is determined that corresponds to a gain compression equal to about the gain compression used to generate the envelope shaping table. For example, the input power can be decreased until the gain begins to decrease, thereby indicating that the gain compression has exceeded the gain compression used to determine the envelope shaping table. - In an ensuing
block 164, the envelope tracker is calibrated based on the determination. For example, a calibration data corresponding to the state of the system at the second input power level can be stored and used to calibrate the power amplifier system. Themethod 150 ends at 166. - Some of the embodiments described above have provided examples in connection with mobile phones. However, the principles and advantages of the embodiments can be used for any other systems or apparatus that have needs for power amplifier systems.
- Such power amplifier systems can be implemented in various electronic devices. Examples of the electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products, electronic test equipment, etc. Examples of the electronic devices can also include, but are not limited to, memory chips, memory modules, circuits of optical networks or other communication networks, and disk driver circuits. The consumer electronic products can include, but are not limited to, a mobile phone, a telephone, a television, a computer monitor, a computer, a hand-held computer, a personal digital assistant (PDA), a microwave, a refrigerator, an automobile, a stereo system, a cassette recorder or player, a DVD player, a CD player, a VCR, an MP3 player, a radio, a camcorder, a camera, a digital camera, a portable memory chip, a washer, a dryer, a washer/dryer, a copier, a facsimile machine, a scanner, a multi functional peripheral device, a wrist watch, a clock, etc. Further, the electronic devices can include unfinished products.
- Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Likewise, the word “connected”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
- Moreover, conditional language used herein, such as, among others, “can,” “could,” “might,” “can,” “e.g.,” “for example,” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
- The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.
- The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.
- While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
Claims (20)
1. A method of calibrating for envelope amplitude misalignment, the method comprising:
amplifying a radio frequency signal from a transceiver using a variable gain amplifier and a power amplifier of a power amplifier system;
generating a supply voltage of the power amplifier using an envelope tracker of the power amplifier system, including generating a scaled envelope signal based on a power control level signal and an envelope signal from the transceiver, and shaping the scaled envelope signal using shaping data generated at a target gain compression;
controlling a variable gain of the variable gain amplifier based on a gain control level signal from the transceiver, and changing the variable gain by adjusting the gain control level signal using a calibration module;
monitoring an output of the power amplifier to determine an amount of variable gain at which a detected gain compression of the power amplifier corresponds to the target gain compression of the shaping data; and
calibrating the power amplifier system to compensate for envelope amplitude misalignment based on the determined amount of variable gain.
2. The method of claim 1 wherein changing the variable gain includes controlling the variable gain to a first gain level associated with substantially no gain compression of the power amplifier.
3. The method of claim 2 wherein changing the variable gain further includes increasing the variable gain to a second gain level at which the detected gain compression of the power amplifier is about equal to the target gain compression of the shaping data.
4. The method of claim 1 wherein calibrating the power amplifier system includes compensating for a variation in insertion loss of a duplexer that is connected to the output of the power amplifier.
5. The method of claim 1 wherein changing the variable gain including multiplying the gain control level signal and an output signal of the calibration module.
6. The method of claim 1 wherein generating the supply voltage includes controlling the voltage level of the supply voltage based on the shaping data, the shaping data relating a plurality of scaled envelope signal amplitudes to a plurality of supply voltage levels.
7. The method of claim 6 wherein generating the supply voltage further includes using a modulator to generate the supply voltage from a battery voltage based on the shaping data.
8. The method of claim 7 wherein generating the supply voltage further includes generating an analog input signal of the modulator based on the shaping data using a digital-to-analog converter.
9. The method of claim 1 wherein monitoring the output of the power amplifier includes sensing a radio frequency output signal from the output of the power amplifier using a directional coupler, and generating a power measurement from the sensed radio frequency output signal using a power detector.
10. The method of claim 9 further comprising sensing the radio frequency output signal along a signal path between the output of the power amplifier and an input to a duplexer.
11. A power amplifier system with calibration for envelope amplitude misalignment, the power amplifier system comprising:
a variable gain amplifier and a power amplifier configured to amplify a radio frequency signal;
an envelope tracker configured to generate a supply voltage of the power amplifier, the envelope tracker configured to generate a scaled envelope signal based on a power control level signal and an envelope signal, and to shape the scaled envelope signal based on shaping data generated at a target gain compression;
a transceiver configured to generate the radio frequency signal, the power control level signal, the envelope signal, and a gain control level signal that controls a variable gain of the variable gain amplifier, the transceiver configured to monitor an output of the power amplifier to determine an amount of variable gain of the gain control level signal at which a detected gain compression of the power amplifier corresponds to the target gain compression; and
a calibration module configured to change the variable gain by adjusting the gain control level signal, and to compensate for envelope amplitude misalignment based on the determined amount of variable gain at which the detected gain compression corresponds to the target gain compression.
12. The power amplifier system of claim 11 wherein the calibration module is further configured to control the variable gain to a first gain level associated with substantially no gain compression of the power amplifier.
13. The power amplifier system of claim 12 wherein the calibration module is further configured to increase the variable gain to a second gain level at which the detected gain compression is about equal to the target gain compression.
14. The power amplifier system of claim 11 further including a multiplier configured to multiply the gain control level signal and an output signal of the calibration module.
15. The power amplifier system of claim 11 wherein the shaping data relates a plurality of scaled envelope signal amplitudes to a plurality of supply voltage levels.
16. The power amplifier system of claim 11 wherein the envelope tracker further includes a modulator configured to generate the supply voltage from a battery voltage based on the shaping data.
17. The power amplifier system of claim 16 wherein the envelope tracker further includes a digital-to-analog converter configured to generating an analog input signal of the modulator based on the shaping data.
18. The power amplifier system of claim 11 further comprising a directional coupler configured to generate a sensed signal based on sensing the output of the power amplifier.
19. The power amplifier system of claim 18 wherein the transceiver includes a power detector configured to detect an output power of the power amplifier based on the sensed signal.
20. The power amplifier system of claim 18 further comprising a duplexer including an input electrically connected to the output of the power amplifier, the directional coupler configured to sense a radio frequency output signal provided from the output of the power amplifier to the input of the duplexer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/453,675 US20190319720A1 (en) | 2011-02-07 | 2019-06-26 | Apparatus and methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161440291P | 2011-02-07 | 2011-02-07 | |
US13/367,190 US8989682B2 (en) | 2011-02-07 | 2012-02-06 | Apparatus and methods for envelope tracking calibration |
US14/581,630 US9294043B2 (en) | 2011-02-07 | 2014-12-23 | Apparatus and methods for calibrating envelope trackers |
US14/964,375 US9571152B2 (en) | 2011-02-07 | 2015-12-09 | Apparatus and methods for calibration of envelope trackers |
US15/377,755 US10382147B2 (en) | 2011-02-07 | 2016-12-13 | Methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment |
US16/453,675 US20190319720A1 (en) | 2011-02-07 | 2019-06-26 | Apparatus and methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/377,755 Division US10382147B2 (en) | 2011-02-07 | 2016-12-13 | Methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190319720A1 true US20190319720A1 (en) | 2019-10-17 |
Family
ID=46600256
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/367,190 Active 2032-05-16 US8989682B2 (en) | 2011-02-07 | 2012-02-06 | Apparatus and methods for envelope tracking calibration |
US14/581,630 Active US9294043B2 (en) | 2011-02-07 | 2014-12-23 | Apparatus and methods for calibrating envelope trackers |
US14/964,375 Active US9571152B2 (en) | 2011-02-07 | 2015-12-09 | Apparatus and methods for calibration of envelope trackers |
US15/377,755 Active 2032-03-25 US10382147B2 (en) | 2011-02-07 | 2016-12-13 | Methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment |
US16/453,675 Abandoned US20190319720A1 (en) | 2011-02-07 | 2019-06-26 | Apparatus and methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/367,190 Active 2032-05-16 US8989682B2 (en) | 2011-02-07 | 2012-02-06 | Apparatus and methods for envelope tracking calibration |
US14/581,630 Active US9294043B2 (en) | 2011-02-07 | 2014-12-23 | Apparatus and methods for calibrating envelope trackers |
US14/964,375 Active US9571152B2 (en) | 2011-02-07 | 2015-12-09 | Apparatus and methods for calibration of envelope trackers |
US15/377,755 Active 2032-03-25 US10382147B2 (en) | 2011-02-07 | 2016-12-13 | Methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment |
Country Status (6)
Country | Link |
---|---|
US (5) | US8989682B2 (en) |
EP (1) | EP2673881B1 (en) |
JP (4) | JP5996559B2 (en) |
KR (3) | KR101577879B1 (en) |
CN (1) | CN103493368B (en) |
WO (1) | WO2012109161A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11082021B2 (en) | 2019-03-06 | 2021-08-03 | Skyworks Solutions, Inc. | Advanced gain shaping for envelope tracking power amplifiers |
US11239800B2 (en) | 2019-09-27 | 2022-02-01 | Skyworks Solutions, Inc. | Power amplifier bias modulation for low bandwidth envelope tracking |
US11303255B2 (en) | 2019-07-22 | 2022-04-12 | Skyworks Solutions, Inc. | Apparatus and methods for adaptive power amplifier biasing |
US11482975B2 (en) | 2020-06-05 | 2022-10-25 | Skyworks Solutions, Inc. | Power amplifiers with adaptive bias for envelope tracking applications |
US11855595B2 (en) | 2020-06-05 | 2023-12-26 | Skyworks Solutions, Inc. | Composite cascode power amplifiers for envelope tracking applications |
US12057811B2 (en) | 2021-01-13 | 2024-08-06 | Samsung Electronics Co., Ltd. | Supply modulator providing multi-level supply voltage and operating method thereof |
US12126307B2 (en) | 2020-08-26 | 2024-10-22 | Skyworks Solutions, Inc. | Power amplifier modules with controllable envelope tracking noise filters |
US12149218B2 (en) | 2023-04-28 | 2024-11-19 | Skyworks Solutions, Inc. | Power amplifiers with adaptive bias for envelope tracking applications |
Families Citing this family (170)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9112452B1 (en) | 2009-07-14 | 2015-08-18 | Rf Micro Devices, Inc. | High-efficiency power supply for a modulated load |
US9099961B2 (en) | 2010-04-19 | 2015-08-04 | Rf Micro Devices, Inc. | Output impedance compensation of a pseudo-envelope follower power management system |
US9431974B2 (en) | 2010-04-19 | 2016-08-30 | Qorvo Us, Inc. | Pseudo-envelope following feedback delay compensation |
EP3376667B1 (en) | 2010-04-19 | 2021-07-28 | Qorvo US, Inc. | Pseudo-envelope following power management system |
US8981848B2 (en) | 2010-04-19 | 2015-03-17 | Rf Micro Devices, Inc. | Programmable delay circuitry |
US9954436B2 (en) | 2010-09-29 | 2018-04-24 | Qorvo Us, Inc. | Single μC-buckboost converter with multiple regulated supply outputs |
US8782107B2 (en) | 2010-11-16 | 2014-07-15 | Rf Micro Devices, Inc. | Digital fast CORDIC for envelope tracking generation |
US8942313B2 (en) | 2011-02-07 | 2015-01-27 | Rf Micro Devices, Inc. | Group delay calibration method for power amplifier envelope tracking |
KR101577879B1 (en) | 2011-02-07 | 2015-12-15 | 스카이워크스 솔루션즈, 인코포레이티드 | Apparatus and methods for envelope tracking calibration |
US8538354B2 (en) * | 2011-04-04 | 2013-09-17 | Intel IP Corporation | Method and system for controlling signal transmission of a wireless communication device |
US9246460B2 (en) | 2011-05-05 | 2016-01-26 | Rf Micro Devices, Inc. | Power management architecture for modulated and constant supply operation |
US9247496B2 (en) | 2011-05-05 | 2016-01-26 | Rf Micro Devices, Inc. | Power loop control based envelope tracking |
US9379667B2 (en) | 2011-05-05 | 2016-06-28 | Rf Micro Devices, Inc. | Multiple power supply input parallel amplifier based envelope tracking |
CN103748794B (en) | 2011-05-31 | 2015-09-16 | 射频小型装置公司 | A kind of method and apparatus of the complex gain for measuring transmission path |
US9019011B2 (en) * | 2011-06-01 | 2015-04-28 | Rf Micro Devices, Inc. | Method of power amplifier calibration for an envelope tracking system |
US8952710B2 (en) | 2011-07-15 | 2015-02-10 | Rf Micro Devices, Inc. | Pulsed behavior modeling with steady state average conditions |
US9263996B2 (en) | 2011-07-20 | 2016-02-16 | Rf Micro Devices, Inc. | Quasi iso-gain supply voltage function for envelope tracking systems |
US8942652B2 (en) | 2011-09-02 | 2015-01-27 | Rf Micro Devices, Inc. | Split VCC and common VCC power management architecture for envelope tracking |
US8957728B2 (en) | 2011-10-06 | 2015-02-17 | Rf Micro Devices, Inc. | Combined filter and transconductance amplifier |
WO2013063387A2 (en) | 2011-10-26 | 2013-05-02 | Rf Micro Devices, Inc. | Inductance based parallel amplifier phase compensation |
US9484797B2 (en) | 2011-10-26 | 2016-11-01 | Qorvo Us, Inc. | RF switching converter with ripple correction |
US9024688B2 (en) | 2011-10-26 | 2015-05-05 | Rf Micro Devices, Inc. | Dual parallel amplifier based DC-DC converter |
US9294041B2 (en) | 2011-10-26 | 2016-03-22 | Rf Micro Devices, Inc. | Average frequency control of switcher for envelope tracking |
US9250643B2 (en) | 2011-11-30 | 2016-02-02 | Rf Micro Devices, Inc. | Using a switching signal delay to reduce noise from a switching power supply |
US8975959B2 (en) | 2011-11-30 | 2015-03-10 | Rf Micro Devices, Inc. | Monotonic conversion of RF power amplifier calibration data |
US9515621B2 (en) | 2011-11-30 | 2016-12-06 | Qorvo Us, Inc. | Multimode RF amplifier system |
US9256234B2 (en) | 2011-12-01 | 2016-02-09 | Rf Micro Devices, Inc. | Voltage offset loop for a switching controller |
US9280163B2 (en) | 2011-12-01 | 2016-03-08 | Rf Micro Devices, Inc. | Average power tracking controller |
US8947161B2 (en) | 2011-12-01 | 2015-02-03 | Rf Micro Devices, Inc. | Linear amplifier power supply modulation for envelope tracking |
US9041365B2 (en) | 2011-12-01 | 2015-05-26 | Rf Micro Devices, Inc. | Multiple mode RF power converter |
US9494962B2 (en) | 2011-12-02 | 2016-11-15 | Rf Micro Devices, Inc. | Phase reconfigurable switching power supply |
US9813036B2 (en) | 2011-12-16 | 2017-11-07 | Qorvo Us, Inc. | Dynamic loadline power amplifier with baseband linearization |
US9298198B2 (en) | 2011-12-28 | 2016-03-29 | Rf Micro Devices, Inc. | Noise reduction for envelope tracking |
WO2013134026A2 (en) | 2012-03-04 | 2013-09-12 | Quantance, Inc. | Envelope tracking power amplifier system with delay calibration |
US8981839B2 (en) | 2012-06-11 | 2015-03-17 | Rf Micro Devices, Inc. | Power source multiplexer |
CN104662792B (en) | 2012-07-26 | 2017-08-08 | Qorvo美国公司 | Programmable RF notch filters for envelope-tracking |
US9094067B2 (en) * | 2012-09-12 | 2015-07-28 | Mediatek Singapore Pte. Ltd. | Method and apparatus for calibrating an envelope tracking system |
US9225231B2 (en) | 2012-09-14 | 2015-12-29 | Rf Micro Devices, Inc. | Open loop ripple cancellation circuit in a DC-DC converter |
US9197256B2 (en) | 2012-10-08 | 2015-11-24 | Rf Micro Devices, Inc. | Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal |
US9207692B2 (en) | 2012-10-18 | 2015-12-08 | Rf Micro Devices, Inc. | Transitioning from envelope tracking to average power tracking |
US9627975B2 (en) | 2012-11-16 | 2017-04-18 | Qorvo Us, Inc. | Modulated power supply system and method with automatic transition between buck and boost modes |
US9042848B2 (en) * | 2012-12-19 | 2015-05-26 | Mediatek Singapore Pte. Ltd. | Method and apparatus for calibrating an envelope tracking system |
US9680434B2 (en) * | 2012-12-28 | 2017-06-13 | Mediatek, Inc. | Method and apparatus for calibrating an envelope tracking system |
US20140199949A1 (en) * | 2013-01-16 | 2014-07-17 | Motorola Mobility Llc | Method for improving tx gain in envelope tracking systems |
WO2014116933A2 (en) | 2013-01-24 | 2014-07-31 | Rf Micro Devices, Inc | Communications based adjustments of an envelope tracking power supply |
US8824981B2 (en) | 2013-01-31 | 2014-09-02 | Intel Mobile Communications GmbH | Recalibration of envelope tracking transfer function during active transmission |
US9178472B2 (en) | 2013-02-08 | 2015-11-03 | Rf Micro Devices, Inc. | Bi-directional power supply signal based linear amplifier |
US8737940B1 (en) | 2013-02-28 | 2014-05-27 | Intel Mobile Communications GmbH | Envelope tracking system and method for calibrating a supply voltage of an envelope tracking power amplifier |
WO2014152903A2 (en) | 2013-03-14 | 2014-09-25 | Rf Micro Devices, Inc | Envelope tracking power supply voltage dynamic range reduction |
CN105027429B (en) * | 2013-03-14 | 2018-03-30 | 匡坦斯公司 | Envelope-tracking system with noise adjustment |
US9203353B2 (en) | 2013-03-14 | 2015-12-01 | Rf Micro Devices, Inc. | Noise conversion gain limited RF power amplifier |
US9270239B2 (en) | 2013-03-15 | 2016-02-23 | Quantance, Inc. | Envelope tracking system with internal power amplifier characterization |
US9479118B2 (en) | 2013-04-16 | 2016-10-25 | Rf Micro Devices, Inc. | Dual instantaneous envelope tracking |
KR101738730B1 (en) * | 2013-04-23 | 2017-05-22 | 스카이워크스 솔루션즈, 인코포레이티드 | Apparatus and methods for envelope shaping in power amplifier systems |
WO2014176739A1 (en) * | 2013-04-28 | 2014-11-06 | 华为技术有限公司 | Voltage adjusting power source and method for controlling output voltage |
US8873677B1 (en) * | 2013-05-01 | 2014-10-28 | Samsung Electronics Co., Ltd. | Apparatus and method for enveloping tracking calibration |
GB201309235D0 (en) * | 2013-05-22 | 2013-07-03 | Nujira Ltd | Transfer function regulation |
US9837962B2 (en) | 2013-06-06 | 2017-12-05 | Qualcomm Incorporated | Envelope tracker with variable boosted supply voltage |
US8909180B1 (en) | 2013-06-26 | 2014-12-09 | Motorola Solutions, Inc. | Method and apparatus for power supply modulation of a radio frequency signal |
US9374005B2 (en) | 2013-08-13 | 2016-06-21 | Rf Micro Devices, Inc. | Expanded range DC-DC converter |
JP6264778B2 (en) * | 2013-08-15 | 2018-01-24 | 富士通株式会社 | Wireless communication circuit and wireless communication device |
US9172330B2 (en) * | 2013-12-02 | 2015-10-27 | Futurewei Technologies, Inc. | Nonlinear load pre-distortion for open loop envelope tracking |
US9362868B2 (en) * | 2013-12-02 | 2016-06-07 | Futurewei Technologies, Inc. | Reduced power amplifier load impact for open loop envelope tracking |
DE102014104372A1 (en) * | 2014-03-28 | 2015-10-01 | Intel IP Corporation | An apparatus and method for amplifying a transmission signal |
US9794006B2 (en) * | 2014-05-08 | 2017-10-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Envelope tracking RF transmitter calibration |
US10333474B2 (en) | 2014-05-19 | 2019-06-25 | Skyworks Solutions, Inc. | RF transceiver front end module with improved linearity |
WO2015184174A1 (en) * | 2014-05-30 | 2015-12-03 | Skyworks Solutions, Inc. | Rf transceiver front end module with improved linearity |
US9614476B2 (en) | 2014-07-01 | 2017-04-04 | Qorvo Us, Inc. | Group delay calibration of RF envelope tracking |
US9445371B2 (en) * | 2014-08-13 | 2016-09-13 | Skyworks Solutions, Inc. | Apparatus and methods for wideband envelope tracking systems |
US9595981B2 (en) | 2014-08-26 | 2017-03-14 | Qorvo Us, Inc. | Reduced bandwidth envelope tracking |
US9537519B2 (en) | 2014-09-08 | 2017-01-03 | Apple Inc. | Systems and methods for performing power amplifier bias calibration |
US9654154B2 (en) | 2014-09-08 | 2017-05-16 | Apple Inc. | Radio frequency adaptive voltage shaping power amplifier systems and methods |
US9602056B2 (en) * | 2014-09-19 | 2017-03-21 | Skyworks Solutions, Inc. | Amplifier with base current reuse |
US9584071B2 (en) * | 2014-10-03 | 2017-02-28 | Qorvo Us, Inc. | Envelope tracking with reduced dynamic range |
US9998241B2 (en) * | 2015-02-19 | 2018-06-12 | Mediatek Inc. | Envelope tracking (ET) closed-loop on-the-fly calibration |
EP3070842A1 (en) | 2015-03-17 | 2016-09-21 | Nokia Technologies OY | Method and apparatus for supplying power to an amplifier |
US9979496B2 (en) * | 2015-05-19 | 2018-05-22 | ETS- Lindgren Inc. | System and method for calibration and monitoring of an anechoic boundary array RF environment simulator |
DE102015212149A1 (en) * | 2015-06-30 | 2017-01-05 | TRUMPF Hüttinger GmbH + Co. KG | A power supply system and method for adjusting an output of the amplifier stage of a power supply system |
US9912297B2 (en) | 2015-07-01 | 2018-03-06 | Qorvo Us, Inc. | Envelope tracking power converter circuitry |
US9948240B2 (en) | 2015-07-01 | 2018-04-17 | Qorvo Us, Inc. | Dual-output asynchronous power converter circuitry |
KR102140191B1 (en) * | 2015-07-14 | 2020-08-03 | 삼성전기주식회사 | Power supplying apparatus for power amplifier |
US10103693B2 (en) | 2015-09-30 | 2018-10-16 | Skyworks Solutions, Inc. | Power amplifier linearization system and method |
KR101691077B1 (en) * | 2015-10-07 | 2016-12-29 | 포항공과대학교 산학협력단 | Envelope tracking power amplifier using power source voltage of multi-level |
US10716080B2 (en) * | 2016-02-09 | 2020-07-14 | Apple Inc. | Calibration techniques for envelope tracking power amplifiers |
US9973147B2 (en) | 2016-05-10 | 2018-05-15 | Qorvo Us, Inc. | Envelope tracking power management circuit |
US10110169B2 (en) | 2016-09-14 | 2018-10-23 | Skyworks Solutions, Inc. | Apparatus and methods for envelope tracking systems with automatic mode selection |
CN106849878A (en) * | 2016-11-01 | 2017-06-13 | 努比亚技术有限公司 | The adjusting method of power amplifier system and power cost of power amplifier |
US9755579B1 (en) * | 2016-12-09 | 2017-09-05 | Nxp Usa, Inc. | Amplifier devices with envelope signal shaping for gate bias modulation |
CN108540098B (en) * | 2017-03-06 | 2021-04-06 | 中兴通讯股份有限公司 | Envelope tracking method and mobile terminal |
US10181826B2 (en) | 2017-04-25 | 2019-01-15 | Qorvo Us, Inc. | Envelope tracking amplifier circuit |
US10439558B2 (en) | 2017-04-28 | 2019-10-08 | Skyworks Solutions, Inc. | Apparatus and methods for power amplifiers with positive envelope feedback |
US10236831B2 (en) * | 2017-05-12 | 2019-03-19 | Skyworks Solutions, Inc. | Envelope trackers providing compensation for power amplifier output load variation |
US10448328B2 (en) | 2017-06-16 | 2019-10-15 | Apple Inc. | Wireless communications systems with envelope tracking capabilities |
US10615757B2 (en) | 2017-06-21 | 2020-04-07 | Skyworks Solutions, Inc. | Wide bandwidth envelope trackers |
US10516368B2 (en) | 2017-06-21 | 2019-12-24 | Skyworks Solutions, Inc. | Fast envelope tracking systems for power amplifiers |
US10158329B1 (en) | 2017-07-17 | 2018-12-18 | Qorvo Us, Inc. | Envelope tracking power amplifier circuit |
US10158330B1 (en) | 2017-07-17 | 2018-12-18 | Qorvo Us, Inc. | Multi-mode envelope tracking amplifier circuit |
WO2019036060A1 (en) | 2017-08-18 | 2019-02-21 | Intel Corporation | Cable modem system management of passive optical networks (pons) |
US10326490B2 (en) | 2017-08-31 | 2019-06-18 | Qorvo Us, Inc. | Multi radio access technology power management circuit |
US10530305B2 (en) | 2017-10-06 | 2020-01-07 | Qorvo Us, Inc. | Nonlinear bandwidth compression circuitry |
US10555269B2 (en) | 2017-11-24 | 2020-02-04 | Mediatek Inc. | Amplifier circuit having controllable output stage |
US10291184B1 (en) | 2018-01-10 | 2019-05-14 | Intel IP Corporation | Control of envelope tracker PMIC |
US10439557B2 (en) | 2018-01-15 | 2019-10-08 | Qorvo Us, Inc. | Envelope tracking power management circuit |
US10637408B2 (en) | 2018-01-18 | 2020-04-28 | Qorvo Us, Inc. | Envelope tracking voltage tracker circuit and related power management circuit |
US10742170B2 (en) | 2018-02-01 | 2020-08-11 | Qorvo Us, Inc. | Envelope tracking circuit and related power amplifier system |
CN111602341B (en) | 2018-03-01 | 2022-07-26 | 株式会社村田制作所 | High-frequency module and communication device |
US10476437B2 (en) | 2018-03-15 | 2019-11-12 | Qorvo Us, Inc. | Multimode voltage tracker circuit |
CN109564250B (en) * | 2018-06-06 | 2021-02-12 | 深圳市汇顶科技股份有限公司 | Valley detection for supply voltage modulation in power amplification circuits |
US10763790B2 (en) | 2018-06-06 | 2020-09-01 | Shenzhen GOODIX Technology Co., Ltd. | Valley detection for supply voltage modulation in power amplifier circuits |
US10944365B2 (en) | 2018-06-28 | 2021-03-09 | Qorvo Us, Inc. | Envelope tracking amplifier circuit |
KR102069634B1 (en) * | 2018-07-05 | 2020-01-23 | 삼성전기주식회사 | Multi stage power amplifier having linearity compensating function |
US10797650B2 (en) | 2018-07-24 | 2020-10-06 | Qorvo Us, Inc. | Envelope tracking amplifier apparatus |
KR20210041599A (en) * | 2018-08-13 | 2021-04-15 | 에이펙스 마이크로테크놀로지, 인코포레이티드 | Power amplifier with tracking power supply |
US11108363B2 (en) | 2018-09-04 | 2021-08-31 | Qorvo Us, Inc. | Envelope tracking circuit and related power amplifier apparatus |
US11088618B2 (en) | 2018-09-05 | 2021-08-10 | Qorvo Us, Inc. | PWM DC-DC converter with linear voltage regulator for DC assist |
US10652065B2 (en) | 2018-09-19 | 2020-05-12 | Apple Inc. | Systems and methods for compression distortion compensation for wireless signals |
US10911001B2 (en) | 2018-10-02 | 2021-02-02 | Qorvo Us, Inc. | Envelope tracking amplifier circuit |
US10819287B2 (en) | 2018-10-19 | 2020-10-27 | Qorvo Us, Inc. | Multi-voltage generation circuit and related envelope tracking amplifier apparatus |
US10903796B2 (en) | 2018-10-19 | 2021-01-26 | Qorvo Us, Inc. | Voltage generation circuit and related envelope tracking amplifier apparatus |
US10630375B1 (en) * | 2018-10-19 | 2020-04-21 | Qorvo Us, Inc. | Envelope tracking amplifier apparatus |
US11108359B2 (en) | 2018-10-19 | 2021-08-31 | Qorvo Us, Inc. | Multi-amplifier envelope tracking circuit and related apparatus |
US10931248B2 (en) | 2018-10-19 | 2021-02-23 | Qorvo Us, Inc. | Distributed envelope tracking amplifier circuit and related apparatus |
US11018638B2 (en) | 2018-10-31 | 2021-05-25 | Qorvo Us, Inc. | Multimode envelope tracking circuit and related apparatus |
US10985702B2 (en) | 2018-10-31 | 2021-04-20 | Qorvo Us, Inc. | Envelope tracking system |
US10938351B2 (en) | 2018-10-31 | 2021-03-02 | Qorvo Us, Inc. | Envelope tracking system |
US10680556B2 (en) | 2018-11-05 | 2020-06-09 | Qorvo Us, Inc. | Radio frequency front-end circuit |
US11031909B2 (en) | 2018-12-04 | 2021-06-08 | Qorvo Us, Inc. | Group delay optimization circuit and related apparatus |
US11082007B2 (en) | 2018-12-19 | 2021-08-03 | Qorvo Us, Inc. | Envelope tracking integrated circuit and related apparatus |
EP3675355B1 (en) | 2018-12-27 | 2023-07-05 | INTEL Corporation | Digital envelop tracker for power amplifier |
US11146213B2 (en) | 2019-01-15 | 2021-10-12 | Qorvo Us, Inc. | Multi-radio access technology envelope tracking amplifier apparatus |
US10998859B2 (en) | 2019-02-07 | 2021-05-04 | Qorvo Us, Inc. | Dual-input envelope tracking integrated circuit and related apparatus |
US11025458B2 (en) | 2019-02-07 | 2021-06-01 | Qorvo Us, Inc. | Adaptive frequency equalizer for wide modulation bandwidth envelope tracking |
US11233481B2 (en) | 2019-02-18 | 2022-01-25 | Qorvo Us, Inc. | Modulated power apparatus |
US11088658B2 (en) | 2019-03-13 | 2021-08-10 | Qorvo Us, Inc. | Envelope tracking amplifier apparatus |
US10938350B2 (en) | 2019-03-13 | 2021-03-02 | Qorvo Us, Inc. | Multi-mode envelope tracking target voltage circuit and related apparatus |
US10992264B2 (en) | 2019-03-13 | 2021-04-27 | Qorvo Us, Inc. | Envelope tracking circuit and related apparatus |
US11374482B2 (en) | 2019-04-02 | 2022-06-28 | Qorvo Us, Inc. | Dual-modulation power management circuit |
US11082009B2 (en) | 2019-04-12 | 2021-08-03 | Qorvo Us, Inc. | Envelope tracking power amplifier apparatus |
US11018627B2 (en) | 2019-04-17 | 2021-05-25 | Qorvo Us, Inc. | Multi-bandwidth envelope tracking integrated circuit and related apparatus |
US11424719B2 (en) | 2019-04-18 | 2022-08-23 | Qorvo Us, Inc. | Multi-bandwidth envelope tracking integrated circuit |
US11139780B2 (en) | 2019-04-24 | 2021-10-05 | Qorvo Us, Inc. | Envelope tracking apparatus |
US11031911B2 (en) | 2019-05-02 | 2021-06-08 | Qorvo Us, Inc. | Envelope tracking integrated circuit and related apparatus |
US11038464B2 (en) | 2019-05-30 | 2021-06-15 | Qorvo Us, Inc. | Envelope tracking amplifier apparatus |
US11349436B2 (en) | 2019-05-30 | 2022-05-31 | Qorvo Us, Inc. | Envelope tracking integrated circuit |
US11323075B2 (en) | 2019-05-30 | 2022-05-03 | Qorvo Us, Inc. | Envelope tracking amplifier apparatus |
US11431357B2 (en) | 2019-07-09 | 2022-08-30 | Skyworks Solutions, Inc. | Envelope controlled radio frequency switches |
US11165514B2 (en) | 2019-07-09 | 2021-11-02 | Skyworks Solutions, Inc. | Envelope alignment calibration in radio frequency systems |
US11539289B2 (en) | 2019-08-02 | 2022-12-27 | Qorvo Us, Inc. | Multi-level charge pump circuit |
US11476805B2 (en) * | 2019-12-05 | 2022-10-18 | Cirrus Logic, Inc. | Amplifier systems |
GB2591856B (en) | 2019-12-05 | 2022-03-30 | Cirrus Logic Int Semiconductor Ltd | Cancelling the coupling of power supply artefacts in amplifiers |
CN112995079B (en) * | 2019-12-13 | 2022-03-11 | 华为技术有限公司 | Signal processing method and related equipment |
US11309922B2 (en) | 2019-12-13 | 2022-04-19 | Qorvo Us, Inc. | Multi-mode power management integrated circuit in a small formfactor wireless apparatus |
US11349513B2 (en) | 2019-12-20 | 2022-05-31 | Qorvo Us, Inc. | Envelope tracking system |
US11539330B2 (en) | 2020-01-17 | 2022-12-27 | Qorvo Us, Inc. | Envelope tracking integrated circuit supporting multiple types of power amplifiers |
US11716057B2 (en) | 2020-01-28 | 2023-08-01 | Qorvo Us, Inc. | Envelope tracking circuitry |
US11728774B2 (en) | 2020-02-26 | 2023-08-15 | Qorvo Us, Inc. | Average power tracking power management integrated circuit |
US11196392B2 (en) | 2020-03-30 | 2021-12-07 | Qorvo Us, Inc. | Device and device protection system |
WO2021241474A1 (en) * | 2020-05-25 | 2021-12-02 | 株式会社村田製作所 | Tracker module, power amplification module, high frequency module, and communication device |
KR20220005891A (en) | 2020-07-07 | 2022-01-14 | 삼성전자주식회사 | Communication appratus for supporting envelope tracking modulation and envelope delay optimization method |
US11588449B2 (en) | 2020-09-25 | 2023-02-21 | Qorvo Us, Inc. | Envelope tracking power amplifier apparatus |
US11728796B2 (en) | 2020-10-14 | 2023-08-15 | Qorvo Us, Inc. | Inverted group delay circuit |
US11909385B2 (en) | 2020-10-19 | 2024-02-20 | Qorvo Us, Inc. | Fast-switching power management circuit and related apparatus |
DE102020132210B4 (en) * | 2020-12-03 | 2022-08-25 | Nkt Photonics Gmbh | Device and method for digitizing an optical signal and for spatially resolved measurement of temperature and strain using Brillouin scattering |
US12101063B2 (en) | 2021-02-19 | 2024-09-24 | Qorvo Us, Inc. | Distributed power management apparatus |
US12068720B2 (en) | 2021-02-26 | 2024-08-20 | Qorvo Us, Inc. | Barely Doherty dual envelope tracking (BD2E) circuit |
US12126305B2 (en) | 2021-05-27 | 2024-10-22 | Qorvo Us, Inc. | Radio frequency (RF) equalizer in an envelope tracking (ET) circuit |
US12063018B2 (en) | 2021-06-10 | 2024-08-13 | Qorvo Us, Inc. | Envelope tracking integrated circuit operable with multiple types of power amplifiers |
FR3126271B1 (en) * | 2021-08-19 | 2024-01-12 | St Microelectronics Grenoble 2 | Envelope detection |
US11906992B2 (en) | 2021-09-16 | 2024-02-20 | Qorvo Us, Inc. | Distributed power management circuit |
CN113809997B (en) * | 2021-09-24 | 2024-07-23 | 维沃移动通信有限公司 | Power amplifier protection circuit, method and device and electronic equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090176464A1 (en) * | 2008-01-08 | 2009-07-09 | Matsushita Electric Industrial Co., Ltd. | Multiple-mode modulator to process baseband signals |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5264752A (en) | 1992-06-01 | 1993-11-23 | At&T Bell Laboratories | Amplifier for driving large capacitive loads |
JPH10285059A (en) * | 1997-04-08 | 1998-10-23 | Sharp Corp | Level control circuit and communication equipment |
US6256483B1 (en) * | 1998-10-28 | 2001-07-03 | Tachyon, Inc. | Method and apparatus for calibration of a wireless transmitter |
US6366177B1 (en) | 2000-02-02 | 2002-04-02 | Tropian Inc. | High-efficiency power modulators |
US6825726B2 (en) | 2000-07-12 | 2004-11-30 | Indigo Manufacturing Inc. | Power amplifier with multiple power supplies |
US6600369B2 (en) | 2001-12-07 | 2003-07-29 | Motorola, Inc. | Wideband linear amplifier with predistortion error correction |
US6614309B1 (en) | 2002-02-21 | 2003-09-02 | Ericsson Inc. | Dynamic bias controller for power amplifier circuits |
US7551688B2 (en) * | 2002-04-18 | 2009-06-23 | Nokia Corporation | Waveforms for envelope tracking transmitter |
US6725021B1 (en) * | 2002-06-20 | 2004-04-20 | Motorola, Inc. | Method for tuning an envelope tracking amplification system |
JP2004147191A (en) * | 2002-10-25 | 2004-05-20 | Alps Electric Co Ltd | Transmitter-receiver for high output multimode mobile communication |
GB2398648B (en) | 2003-02-19 | 2005-11-09 | Nujira Ltd | Power supply stage for an amplifier |
US7421254B2 (en) * | 2003-10-23 | 2008-09-02 | Broadcom Corporation | High linearity, high efficiency power amplifier with DSP assisted linearity optimization |
EP1526636A1 (en) | 2003-10-23 | 2005-04-27 | Broadcom Corporation | High linearity, high efficiency power amplifier with DSP assisted linearity optimization |
GB2426392B (en) | 2003-12-09 | 2007-05-30 | Nujira Ltd | Transformer based voltage supply |
JP2005197870A (en) | 2004-01-05 | 2005-07-21 | Fujitsu Ltd | Distortion compensation power amplifier |
EP1713176A4 (en) * | 2004-02-06 | 2008-12-24 | Mitsubishi Electric Corp | Power amplifier unit, communication terminal and control method of power amplifier unit |
GB2411062B (en) | 2004-02-11 | 2007-11-28 | Nujira Ltd | Resonance suppression for power amplifier output network |
JP2005269440A (en) | 2004-03-19 | 2005-09-29 | Matsushita Electric Ind Co Ltd | Polar modulation transmitter and polar modulation method |
GB0418991D0 (en) | 2004-08-25 | 2004-09-29 | Nujira Ltd | High efficiency variable voltage supply |
JP4652974B2 (en) | 2005-12-27 | 2011-03-16 | 富士通株式会社 | Timing adjustment apparatus and timing adjustment method |
US7933570B2 (en) | 2006-02-03 | 2011-04-26 | Quantance, Inc. | Power amplifier controller circuit |
CN101401261B (en) * | 2006-02-03 | 2012-11-21 | 匡坦斯公司 | Power amplifier controller circuit |
US7761065B2 (en) | 2006-02-03 | 2010-07-20 | Quantance, Inc. | RF power amplifier controller circuit with compensation for output impedance mismatch |
US7522676B2 (en) * | 2006-02-06 | 2009-04-21 | Nokia Corporation | Method and system for transmitter envelope delay calibration |
GB2438457B (en) | 2006-03-17 | 2011-09-14 | Nujira Ltd | Joint optimisation of supply and bias modulation |
WO2007129118A1 (en) | 2006-05-05 | 2007-11-15 | Astrium Limited | Rf power amplifiers |
WO2007149346A2 (en) | 2006-06-16 | 2007-12-27 | Pulsewave Rf, Inc. | Radio frequency power amplifier and method using a controlled supply |
US7940859B2 (en) | 2006-08-04 | 2011-05-10 | Panasonic Corporation | Transmission circuit and communication device |
JP2008061231A (en) * | 2006-08-04 | 2008-03-13 | Matsushita Electric Ind Co Ltd | Transmission circuit and communication device |
US20100189193A1 (en) | 2006-08-23 | 2010-07-29 | Panasonic Corporation | Polar modulation transmitter and polar modulation transmission method |
FI20065783A0 (en) * | 2006-12-08 | 2006-12-08 | Nokia Corp | Signal pre-distortion in radio transmitters |
CN101578763B (en) | 2007-01-12 | 2012-01-04 | 松下电器产业株式会社 | Transmission power control method and transmission device |
GB2457764B (en) | 2008-02-28 | 2013-01-23 | Nujira Ltd | Improved control loop for amplification stage |
GB2457940B (en) | 2008-02-29 | 2013-05-01 | Nujira Ltd | Improved filter for switched mode power supply |
GB2457766B (en) | 2008-02-29 | 2012-12-19 | Nujira Ltd | Transformer based voltage combiner with inductive shunt |
GB2459304B (en) | 2008-04-18 | 2013-02-20 | Nujira Ltd | Improved pulse width modulation |
GB2459894A (en) | 2008-05-09 | 2009-11-11 | Nujira Ltd | Switched supply stage with feedback |
GB2460072B (en) | 2008-05-15 | 2013-01-23 | Nujira Ltd | Multiple voltage level supply stage |
GB2460124A (en) | 2008-05-21 | 2009-11-25 | Nujira Ltd | Printed circuit board with co-planar plate |
US7808323B2 (en) | 2008-05-23 | 2010-10-05 | Panasonic Corporation | High-efficiency envelope tracking systems and methods for radio frequency power amplifiers |
US8135361B2 (en) * | 2008-08-04 | 2012-03-13 | Panasonic Corporation | Polar modulation transmission apparatus |
JP2010045507A (en) | 2008-08-11 | 2010-02-25 | Sumitomo Electric Ind Ltd | Amplifier circuit and wireless communication apparatus |
US9088260B2 (en) | 2008-12-03 | 2015-07-21 | Freescale Semiconductor, Inc. | Operating parameter control for a power amplifier |
JP5206526B2 (en) * | 2009-03-19 | 2013-06-12 | 富士通株式会社 | Amplifying device and transmitting device |
JP2010278992A (en) * | 2009-06-01 | 2010-12-09 | Panasonic Corp | Rf amplification apparatus |
US8731496B2 (en) | 2009-12-18 | 2014-05-20 | Quantance, Inc. | Power amplifier power controller |
US8183917B2 (en) | 2010-06-04 | 2012-05-22 | Quantance, Inc. | RF power amplifier circuit with mismatch tolerance |
KR101577879B1 (en) | 2011-02-07 | 2015-12-15 | 스카이워크스 솔루션즈, 인코포레이티드 | Apparatus and methods for envelope tracking calibration |
-
2012
- 2012-02-06 KR KR1020137023479A patent/KR101577879B1/en active IP Right Grant
- 2012-02-06 KR KR1020157034691A patent/KR101772789B1/en active IP Right Grant
- 2012-02-06 CN CN201280015347.2A patent/CN103493368B/en active Active
- 2012-02-06 US US13/367,190 patent/US8989682B2/en active Active
- 2012-02-06 EP EP12744479.2A patent/EP2673881B1/en active Active
- 2012-02-06 JP JP2013553480A patent/JP5996559B2/en active Active
- 2012-02-06 KR KR1020177023446A patent/KR101982956B1/en active IP Right Grant
- 2012-02-06 WO PCT/US2012/024019 patent/WO2012109161A2/en active Application Filing
-
2014
- 2014-12-23 US US14/581,630 patent/US9294043B2/en active Active
-
2015
- 2015-12-09 US US14/964,375 patent/US9571152B2/en active Active
-
2016
- 2016-08-24 JP JP2016163226A patent/JP2017017729A/en active Pending
- 2016-08-24 JP JP2016163227A patent/JP6084331B2/en active Active
- 2016-12-13 US US15/377,755 patent/US10382147B2/en active Active
-
2017
- 2017-10-12 JP JP2017198522A patent/JP6595554B2/en active Active
-
2019
- 2019-06-26 US US16/453,675 patent/US20190319720A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090176464A1 (en) * | 2008-01-08 | 2009-07-09 | Matsushita Electric Industrial Co., Ltd. | Multiple-mode modulator to process baseband signals |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11705877B2 (en) | 2019-03-06 | 2023-07-18 | Skyworks Solutions, Inc. | Advanced gain shaping for envelope tracking power amplifiers |
US11082021B2 (en) | 2019-03-06 | 2021-08-03 | Skyworks Solutions, Inc. | Advanced gain shaping for envelope tracking power amplifiers |
US11942910B2 (en) | 2019-07-22 | 2024-03-26 | Skyworks Solutions, Inc. | Apparatus and methods for adaptive power amplifier biasing |
US11303255B2 (en) | 2019-07-22 | 2022-04-12 | Skyworks Solutions, Inc. | Apparatus and methods for adaptive power amplifier biasing |
US11444576B2 (en) | 2019-09-27 | 2022-09-13 | Skyworks Solutions, Inc. | Power amplifier bias modulation for multi-level supply envelope tracking |
US11683013B2 (en) | 2019-09-27 | 2023-06-20 | Skyworks Solutions, Inc. | Power amplifier bias modulation for low bandwidth envelope tracking |
US11239800B2 (en) | 2019-09-27 | 2022-02-01 | Skyworks Solutions, Inc. | Power amplifier bias modulation for low bandwidth envelope tracking |
US11677368B2 (en) | 2020-06-05 | 2023-06-13 | Skyworks Solutions, Inc. | Power amplifiers with adaptive bias for envelope tracking applications |
US11482975B2 (en) | 2020-06-05 | 2022-10-25 | Skyworks Solutions, Inc. | Power amplifiers with adaptive bias for envelope tracking applications |
US11855595B2 (en) | 2020-06-05 | 2023-12-26 | Skyworks Solutions, Inc. | Composite cascode power amplifiers for envelope tracking applications |
US12126307B2 (en) | 2020-08-26 | 2024-10-22 | Skyworks Solutions, Inc. | Power amplifier modules with controllable envelope tracking noise filters |
US12057811B2 (en) | 2021-01-13 | 2024-08-06 | Samsung Electronics Co., Ltd. | Supply modulator providing multi-level supply voltage and operating method thereof |
US12149218B2 (en) | 2023-04-28 | 2024-11-19 | Skyworks Solutions, Inc. | Power amplifiers with adaptive bias for envelope tracking applications |
Also Published As
Publication number | Publication date |
---|---|
KR20150143884A (en) | 2015-12-23 |
JP2014505449A (en) | 2014-02-27 |
EP2673881A4 (en) | 2014-11-12 |
US20160099742A1 (en) | 2016-04-07 |
US20120200354A1 (en) | 2012-08-09 |
US9571152B2 (en) | 2017-02-14 |
KR101772789B1 (en) | 2017-08-29 |
KR101577879B1 (en) | 2015-12-15 |
JP5996559B2 (en) | 2016-09-21 |
JP2017017729A (en) | 2017-01-19 |
US9294043B2 (en) | 2016-03-22 |
CN103493368B (en) | 2017-09-12 |
US8989682B2 (en) | 2015-03-24 |
US10382147B2 (en) | 2019-08-13 |
JP6084331B2 (en) | 2017-02-22 |
US20150155834A1 (en) | 2015-06-04 |
US20170093505A1 (en) | 2017-03-30 |
JP6595554B2 (en) | 2019-10-23 |
KR101982956B1 (en) | 2019-05-27 |
JP2018026868A (en) | 2018-02-15 |
WO2012109161A3 (en) | 2012-11-15 |
EP2673881A2 (en) | 2013-12-18 |
KR20170100059A (en) | 2017-09-01 |
JP2016220244A (en) | 2016-12-22 |
WO2012109161A2 (en) | 2012-08-16 |
CN103493368A (en) | 2014-01-01 |
KR20140000321A (en) | 2014-01-02 |
EP2673881B1 (en) | 2019-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10382147B2 (en) | Methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment | |
TWI583132B (en) | Apparatus and methods for envelope shaping in power amplifier systems | |
US10812026B2 (en) | Power amplifier linearization system and method | |
US9118277B2 (en) | Apparatus and methods for envelope tracking in radio frequency systems | |
US8587377B2 (en) | Apparatus and methods for biasing a power amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |