US20190217118A1 - Upconversion of light for use in optogenetic methods - Google Patents
Upconversion of light for use in optogenetic methods Download PDFInfo
- Publication number
- US20190217118A1 US20190217118A1 US16/267,144 US201916267144A US2019217118A1 US 20190217118 A1 US20190217118 A1 US 20190217118A1 US 201916267144 A US201916267144 A US 201916267144A US 2019217118 A1 US2019217118 A1 US 2019217118A1
- Authority
- US
- United States
- Prior art keywords
- light
- responsive
- neural cell
- nanoparticles
- opsin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 80
- 239000002105 nanoparticle Substances 0.000 claims abstract description 118
- 210000000170 cell membrane Anatomy 0.000 claims abstract description 67
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 61
- 238000001228 spectrum Methods 0.000 claims abstract description 45
- 108090000623 proteins and genes Proteins 0.000 claims description 82
- 210000003061 neural cell Anatomy 0.000 claims description 80
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 76
- 102000004169 proteins and genes Human genes 0.000 claims description 71
- 230000004913 activation Effects 0.000 claims description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 26
- 108091033319 polynucleotide Proteins 0.000 claims description 26
- 102000040430 polynucleotide Human genes 0.000 claims description 26
- 239000002157 polynucleotide Substances 0.000 claims description 26
- 238000001429 visible spectrum Methods 0.000 claims description 26
- 108010083204 Proton Pumps Proteins 0.000 claims description 23
- 230000002102 hyperpolarization Effects 0.000 claims description 21
- 210000001428 peripheral nervous system Anatomy 0.000 claims description 20
- 210000003169 central nervous system Anatomy 0.000 claims description 17
- 229910052691 Erbium Inorganic materials 0.000 claims description 16
- 101000903581 Natronomonas pharaonis Halorhodopsin Proteins 0.000 claims description 14
- 229910052775 Thulium Inorganic materials 0.000 claims description 13
- 210000001009 nucleus accumben Anatomy 0.000 claims description 8
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical group [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 7
- 230000001939 inductive effect Effects 0.000 claims description 7
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 claims description 5
- 230000012241 membrane hyperpolarization Effects 0.000 claims description 4
- 102100021904 Potassium-transporting ATPase alpha chain 1 Human genes 0.000 claims 2
- 108050001704 Opsin Proteins 0.000 abstract description 110
- 102000010175 Opsin Human genes 0.000 abstract description 104
- 210000002569 neuron Anatomy 0.000 abstract description 65
- 239000000203 mixture Substances 0.000 abstract description 18
- 230000010291 membrane polarization Effects 0.000 abstract description 4
- 230000003213 activating effect Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 90
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 35
- 239000011162 core material Substances 0.000 description 27
- 230000028161 membrane depolarization Effects 0.000 description 26
- 230000032258 transport Effects 0.000 description 26
- 230000002999 depolarising effect Effects 0.000 description 23
- 239000013598 vector Substances 0.000 description 22
- 210000004556 brain Anatomy 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 20
- 108091005462 Cation channels Proteins 0.000 description 19
- 239000004176 azorubin Substances 0.000 description 19
- 239000001654 beetroot red Substances 0.000 description 18
- 239000002159 nanocrystal Substances 0.000 description 18
- 102000006823 Mutant Chimeric Proteins Human genes 0.000 description 17
- 108010086789 Mutant Chimeric Proteins Proteins 0.000 description 17
- 102100032709 Potassium-transporting ATPase alpha chain 2 Human genes 0.000 description 17
- 108020001507 fusion proteins Proteins 0.000 description 17
- 102000037865 fusion proteins Human genes 0.000 description 17
- 230000001537 neural effect Effects 0.000 description 16
- 230000003287 optical effect Effects 0.000 description 16
- 108010076504 Protein Sorting Signals Proteins 0.000 description 15
- 230000005284 excitation Effects 0.000 description 15
- 239000012528 membrane Substances 0.000 description 15
- 230000006870 function Effects 0.000 description 14
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 229910052747 lanthanoid Inorganic materials 0.000 description 14
- 210000003625 skull Anatomy 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 14
- 102000034573 Channels Human genes 0.000 description 13
- 210000004899 c-terminal region Anatomy 0.000 description 13
- 150000002602 lanthanoids Chemical class 0.000 description 13
- 230000008172 membrane trafficking Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 230000000638 stimulation Effects 0.000 description 12
- 241000700605 Viruses Species 0.000 description 11
- 150000001413 amino acids Chemical group 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 230000035772 mutation Effects 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 10
- -1 dots Substances 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 241000195585 Chlamydomonas Species 0.000 description 9
- 229910052688 Gadolinium Inorganic materials 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 210000004962 mammalian cell Anatomy 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 229910052769 Ytterbium Inorganic materials 0.000 description 7
- 239000013607 AAV vector Substances 0.000 description 6
- 241000702421 Dependoparvovirus Species 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 241000195614 Volvox carteri Species 0.000 description 6
- 210000004102 animal cell Anatomy 0.000 description 6
- 239000000560 biocompatible material Substances 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 238000002329 infrared spectrum Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 210000001032 spinal nerve Anatomy 0.000 description 6
- 230000000946 synaptic effect Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 6
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 5
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 229910052779 Neodymium Inorganic materials 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 108010082025 cyan fluorescent protein Proteins 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 108091006047 fluorescent proteins Proteins 0.000 description 5
- 102000034287 fluorescent proteins Human genes 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000005090 green fluorescent protein Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108010054624 red fluorescent protein Proteins 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- RGZSQWQPBWRIAQ-HUUCEWRRSA-N (2r)-6-methyl-2-[(1s)-4-methylcyclohex-3-en-1-yl]hept-5-en-2-ol Chemical compound CC(C)=CCC[C@@](C)(O)[C@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-HUUCEWRRSA-N 0.000 description 4
- 241000702423 Adeno-associated virus - 2 Species 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 229910052693 Europium Inorganic materials 0.000 description 4
- 229910052765 Lutetium Inorganic materials 0.000 description 4
- 241000894753 Natronomonas Species 0.000 description 4
- 102000006270 Proton Pumps Human genes 0.000 description 4
- 229910052772 Samarium Inorganic materials 0.000 description 4
- 229910052771 Terbium Inorganic materials 0.000 description 4
- 230000001713 cholinergic effect Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 4
- 210000001153 interneuron Anatomy 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- 241001655883 Adeno-associated virus - 1 Species 0.000 description 3
- 108010035848 Channelrhodopsins Proteins 0.000 description 3
- 108091006146 Channels Proteins 0.000 description 3
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 3
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- 108010050754 Halorhodopsins Proteins 0.000 description 3
- 229910052689 Holmium Inorganic materials 0.000 description 3
- 101000944277 Homo sapiens Inward rectifier potassium channel 2 Proteins 0.000 description 3
- 241000713666 Lentivirus Species 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 229910052773 Promethium Inorganic materials 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 241000125945 Protoparvovirus Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000002161 motor neuron Anatomy 0.000 description 3
- 239000002073 nanorod Substances 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 3
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 108010058699 Choline O-acetyltransferase Proteins 0.000 description 2
- 102100023460 Choline O-acetyltransferase Human genes 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 206010012335 Dependence Diseases 0.000 description 2
- 108010083687 Ion Pumps Proteins 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- 206010037742 Rabies Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 229910009520 YbF3 Inorganic materials 0.000 description 2
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 229910001423 beryllium ion Inorganic materials 0.000 description 2
- 210000005013 brain tissue Anatomy 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 229910021644 lanthanide ion Inorganic materials 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 241000202702 Adeno-associated virus - 3 Species 0.000 description 1
- 241000580270 Adeno-associated virus - 4 Species 0.000 description 1
- 241001634120 Adeno-associated virus - 5 Species 0.000 description 1
- 241000972680 Adeno-associated virus - 6 Species 0.000 description 1
- 241001164823 Adeno-associated virus - 7 Species 0.000 description 1
- 241001164825 Adeno-associated virus - 8 Species 0.000 description 1
- 241000649045 Adeno-associated virus 10 Species 0.000 description 1
- 241000649046 Adeno-associated virus 11 Species 0.000 description 1
- 241000649047 Adeno-associated virus 12 Species 0.000 description 1
- 241000300529 Adeno-associated virus 13 Species 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 101150044789 Cap gene Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 241000195633 Dunaliella salina Species 0.000 description 1
- 201000011001 Ebola Hemorrhagic Fever Diseases 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000713730 Equine infectious anemia virus Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000543558 Guillardia Species 0.000 description 1
- 241000543540 Guillardia theta Species 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 241000205062 Halobacterium Species 0.000 description 1
- 241000412298 Harma Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229910002249 LaCl3 Inorganic materials 0.000 description 1
- 229910002319 LaF3 Inorganic materials 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000228456 Leptosphaeria Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 102100021696 Syncytin-1 Human genes 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 229910009527 YF3 Inorganic materials 0.000 description 1
- 229910009372 YVO4 Inorganic materials 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 210000000588 acetabulum Anatomy 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000530 impalefection Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010189 intracellular transport Effects 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 229940069265 ophthalmic ointment Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 210000001002 parasympathetic nervous system Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- CWEFIMQKSZFZNY-UHFFFAOYSA-N pentyl 2-[4-[[4-[4-[[4-[[4-(pentoxycarbonylamino)phenyl]methyl]phenyl]carbamoyloxy]butoxycarbonylamino]phenyl]methyl]phenyl]acetate Chemical compound C1=CC(CC(=O)OCCCCC)=CC=C1CC(C=C1)=CC=C1NC(=O)OCCCCOC(=O)NC(C=C1)=CC=C1CC1=CC=C(NC(=O)OCCCCC)C=C1 CWEFIMQKSZFZNY-UHFFFAOYSA-N 0.000 description 1
- 210000002856 peripheral neuron Anatomy 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920003226 polyurethane urea Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 101150066583 rep gene Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 238000002672 stereotactic surgery Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000001030 ventral striatum Anatomy 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61D—VETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
- A61D7/00—Devices or methods for introducing solid, liquid, or gaseous remedies or other materials into or onto the bodies of animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/177—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0038—Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/008—Two-Photon or Multi-Photon PDT, e.g. with upconverting dyes or photosensitisers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0083—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the administration regime
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1611—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/062—Photodynamic therapy, i.e. excitation of an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0622—Optical stimulation for exciting neural tissue
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0659—Radiation therapy using light characterised by the wavelength of light used infrared
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0662—Visible light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0662—Visible light
- A61N2005/0663—Coloured light
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- compositions comprising lanthanide-doped nanoparticles which upconvert electromagnetic radiation from infrared or near infrared wavelengths into the visible light spectrum and methods of using lanthanide-doped nanoparticles to deliver light to activate light-responsive opsin proteins expressed in neurons and selectively alter the membrane polarization state of the neurons.
- Optogenetics is the combination of genetic and optical methods used to control specific events in targeted cells of living tissue, even within freely moving mammals and other animals, with the temporal precision (millisecond-timescale) needed to keep pace with functioning intact biological systems.
- the hallmark of optogenetics is the introduction of fast light-responsive opsin channel or pump proteins to the plasma membranes of target neuronal cells that allow temporally precise manipulation of neuronal membrane potential while maintaining cell-type resolution through the use of specific targeting mechanisms.
- microbial opsins which can be used to investigate the function of neural systems are the halorhodopsins (NpHRs), used to promote membrane hyperpolarization when illuminated, and the channel rhodopsins, used to depolarize membranes upon exposure to light.
- compositions and methods for non-invasively delivering light to neurons expressing light-responsive opsin proteins on neural plasma membranes via the use of nanoparticles capable of upshifting electromagnetic radiation from wavelengths associated with the infrared (IR) or near infrared (NIR) spectrum into wavelengths associated with visible light.
- IR infrared
- NIR near infrared
- a method to depolarize the plasma membrane of a neural cell in an individual comprising: (a) placing a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and (b) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum by the nanoparticles, and wherein a light-responsive opsin is expressed on the plasma membrane of the neural cells and activation of the opsin by the light in the visible spectrum induces the depolarization of the plasma membrane.
- IR infrared
- NIR near infrared
- a method to depolarize the plasma membrane of a neural cell in an individual comprising: (a) administering a polynucleotide encoding a light-responsive opsin to an individual, wherein the light-responsive protein is expressed on the plasma membrane of a neural cell in the individual, and the opsin is capable of inducing membrane depolarization of the neural cell when illuminated with light; (b) administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and (c) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the depolarization of the plasma membrane.
- IR infrared
- NIR near infrared
- a method to hyperpolarize the plasma membrane of a neural cell in an individual comprising: (a) placing a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and (b) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum by the nanoparticles, and wherein a light-responsive opsin is expressed on the plasma membrane and activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
- IR infrared
- NIR near infrared
- a method to hyperpolarize the plasma membrane of a neural cell in an individual comprising: (a) administering a polynucleotide encoding a light-responsive opsin to an individual, wherein the light-responsive protein is expressed on the plasma membrane of a neural cell in the individual, and the opsin is capable of inducing membrane hyperpolarization of the neural cell when illuminated with light; (b) administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and (c) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
- IR infrared
- NIR near infrared
- the present disclosure is directed to apparatuses and methods involving upconversion for deep delivery of light in vivo. Aspects of the present disclosure relate generally to delivery of light to tissue in vivo using upconversion of near infrared light to the visible light spectrum and methods relating to the applications discussed herein.
- Nanoparticles from the nanoparticle solution anchor to a target cell population that includes cells expressing light responsive channels/opsins.
- the nanoparticles are configured to respond to receipt of light of a first wavelength by emitting light of a second, different wavelength. For example, the nanoparticles can upconvert received light and thereby emit light of a higher frequency.
- Embodiments of the present disclosure are directed towards injection of a site of interest with a virus, caring an opsin gene and a nanoparticle solution.
- the virus causes a target cell population at the site of interest to express the opsin gene.
- Various different light sources are possible. The use of different wavelengths can be particularly useful for facilitating the use of different (external) light sources, e.g., as certain wavelengths exhibit corresponding decreases in absorption by tissue of the brain or otherwise.
- a light-emitting diode (“LED”) is placed on a portion of a skull that has been thinned.
- the LED is placed under the skin near the thinned portion of the skull, and the location and/or orientation of the LED is chosen, at least in part, based on the location of the target cell population. For example, the LED can be placed to reduce the distance between the LED and the target cell population and oriented accordingly.
- light from the LED travels through surrounding tissue to the nanoparticles.
- the nanoparticles absorb the infrared (IR) photons and emit visible photons.
- the visible photons are then absorbed by the opsins expressed within the target cell population causing a response therein (e.g., triggering neural excitation or inhibition).
- the LED can be powered by a battery similar to those used for pacemakers.
- the LED can emit light in the infrared spectrum, and particularly between 700 nm-1000 nm, which can travel through the skull and intervening tissue.
- the light emitted from the nanoparticles has a spectra centered between 450-550 nm. The wavelength of the light emitted is dependent on characteristics of the nanoparticle.
- FIG. 1 shows a cross section of a skull, consistent with an embodiment of the present disclosure.
- FIG. 2 shows light delivery to target neurons, consistent with an embodiment of the present disclosure.
- FIG. 3 depicts a system that uses multiple light sources, consistent with an embodiment of the present disclosure.
- This invention provides, inter alia, compositions and methods for delivering light to neural cells expressing one or more light-responsive opsin proteins on the plasma membranes of those neural cells.
- the inventors have discovered that nanoparticles doped with a lanthanide metal (for example, Gadolinium) that converts infrared (IR) or near infrared (NIR) electromagnetic radiation into wavelengths corresponding to the visible light spectrum can be used to activate light-responsive opsin proteins on the plasma membrane of a neural cell and selectively alter the membrane polarization state of the cell.
- IR or NIR electromagnetic energy readily penetrates biological tissues.
- NIR can penetrate biological tissues for distances of up to 4 centimeters (Heyward & Dale Wagner, “ Applied Body Composition Assessment”, 2nd edition (2004), p. 100).
- Certain equations useful for calculating light penetration in tissue as a function of wavelength are disclosed in U.S. Pat. No. 7,043,287, the contents of which are incorporated herein by reference.
- U.S. Patent Application Publication No. 2007/0027411 discloses that near infrared Low Level Laser Treatment light penetrates the body to a depth of between 3-5 cm. Therefore, use of IR or NIR sources of electromagnetic radiation in optogenetic methods can alleviate the need to place a light source in direct proximity to neural cells.
- opsin-expressing nerves can be activated via IR or NM sources placed under the skin or worn against the skin.
- infrared or “near infrared” or “infrared light” or “near infrared light” refers to electromagnetic radiation in the spectrum immediately above that of visible light, measured from the nominal edge of visible red light at 0.74 ⁇ m, and extending to 300 ⁇ m. These wavelengths correspond to a frequency range of approximately 1 to 400 THz. In particular, “near infrared” or “near infrared light” also refers to electromagnetic radiation measuring 0.75-1.4 ⁇ m in wavelength, defined by the water absorption.
- “Visible light” is defined as electromagnetic radiation with wavelengths between 380 nm and 750 nm.
- electromagnetic radiation including light, is generated by the acceleration and deceleration or changes in movement (vibration) of electrically charged particles, such as parts of molecules (or adjacent atoms) with high thermal energy, or electrons in atoms (or molecules).
- nanoparticles can also refer to nanocrystals, nanorods, nanoclusters, clusters, particles, dots, quantum dots, small particles, and nanostructured materials.
- nanoparticle encompasses all materials with small size (generally, though not necessarily) less than 100 nm associated with quantum size effects.
- an “individual” is a mammal including a human. Mammals include, but are not limited to, farm animals, sport animals, pets, primates, mice and rats. Individuals also include companion animals including, but not limited to, dogs and cats. In some aspects, an individual is a non-human animal, such as a mammal. In another aspect, an individual is a human.
- doping is commonly used to incorporate specific species of ions or atoms into a host lattice core structure to produce hybrid materials with new and useful properties.
- doping can influence not only the size and shape of the particles, but also other properties, such as the ability to convert near infrared (NIR) excitation into a visible emission of light.
- NIR near infrared
- the lanthanide metals, or lanthanoids are elements of atomic number 57 (Lanthanum) through 71 (Lutetium), and often include Yttrium (atomic number 39) and Scandium (atomic number 21) because of their chemical similarities.
- Lanthanide ions exhibit unique luminescent properties, including the ability to convert near infrared long-wavelength excitation radiation into shorter visible wavelengths through a process known as photon upconversion.
- Lanthanides usually exist as trivalent cations, in which case their electronic configuration is (Xe) 4f, with n varying from 1 (Ce 3+ ) to 14 (Lu 3+ ).
- the transitions within the f-manifold are responsible for many of the photo-physical properties of the lanthanide ions, such as long-lived luminescence and sharp absorption and emission lines.
- the f-electrons are shielded from external perturbations by filled 5s and 5p orbitals, thus giving rise to line-like spectra.
- the f-f electronic transitions of lanthanides are LaPorte forbidden, leading to long excited state lifetimes, in the micro- to millisecond range.
- any known method can be used to synthesize lanthanide-doped nanoparticles. Such methods are well known in the art (See, e.g., Xu & Li, 2007 , Clin Chem., 53(8):1503-10; Wang et al., 2010 , Nature, 463(7284):1061-5; U.S. Patent Application Publication Nos.: 2003/0030067 and 2010/0261263; and U.S. Pat. No. 7,550,201, the disclosures of each of which are incorporated herein by reference in their entireties).
- Nanorods are then obtained by centrifugation, washed with water and ethanol several times, and finally re-dispersed in cyclohexane.
- the solution is next heated to 300° C. under argon for 1.5 h and cooled down to room temperature.
- the resulting nanoparticles are precipitated by the addition of ethanol, collected by centrifugation, washed with methanol and ethanol several times, and finally re-dispersed in cyclohexane.
- the materials for the lanthanide-doped nanoparticle core can include a wide variety of dielectric materials.
- the dielectric core can include lanthanide-doped oxide materials.
- Lanthanides include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).
- suitable dielectric core materials include non-lanthanide elements such as yttrium (Y) and scandium (Sc).
- suitable dielectric core materials include, but are not limited to, Y 2 O 3 , Y 2 O 2 S, NaYF 4 , NaYbF4, Na doped YbF 3 , YAG, YAP, Nd 2 O 3 , LaF 3 , LaCl 3 , La 2 O 3 , TiO 2 , LuPO 4 , YVO 4 , YbF 3 , YF 3 , or SiO 2 .
- the dielectric nanoparticle core is NaYF 4 .
- dielectric cores can be doped with one or more Er, Eu, Yb, Tm, Nd, Tb, Ce, Y, U, Pr, La, Gd and other rare-earth species or a combination thereof.
- the dielectric core material is doped with Gd.
- the lanthanide-doped nanoparticle comprises NaYF 4 :Yb/X/Gd, wherein X is Er, Tm, or Er/Tm.
- the lanthanide-doped nanoparticles comprise a NaYF 4 :Yb/Er (18/2 mol %) dielectric core doped with any of about 0 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, about 25 mol %, about 30 mol %, about 35 mol %, about 40 mol %, about 45 mol %, about 50 mol %, about 55 mol %, about or 60 mol % Gd 3+ ions, inclusive, including any mol % in between these values.
- the lanthanide-doped nanoparticles comprise a NaYF 4 :Yb/Er (18/2 mol %) dielectric core doped with any of about 0 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, about 25 mol %, or about 30 mol % Yb 3+ ions, inclusive, including any mol % in between these values.
- the lanthanide-doped nanoparticles comprise a NaYF 4 :Yb/Er (18/2 mol %) dielectric core doped with any of about 0 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, about 25 mol %, or about 30 mol % Er 3+ ions, inclusive, including any mol % in between these values.
- the lanthanide-doped nanoparticles comprise a NaYF 4 :Yb/Er (18/2 mol %) dielectric core doped with any of about 0 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, about 25 mol %, or about 30 mol % Tm 3+ ions, inclusive, including any mol % in between these values.
- the lanthanide-doped nanoparticle is selected from the group consisting of NaYF 4 :Yb/Er/Gd (18/2/5 mol %), NaYF 4 :Yb/Tm/Er/Gd (20/0.2/0.1/5 mol %), NaYF 4 :Yb/Tm/Er/Gd (20/0.2/0.05/5 mol %), and NaYF 4 :Yb/Tm/Gd (20/0.2/5 mol %).
- the lanthanide-doped nanoparticles disclosed herein are conjugated to one or more delivery molecules to target them to one or more molecules expressed on the surface of a neural cell of interest (such as a neural cell expressing one or more light-responsive opsin proteins on its plasma membrane).
- a neural cell of interest such as a neural cell expressing one or more light-responsive opsin proteins on its plasma membrane.
- These can include, without limitation, antibodies or fragments thereof, small molecules, as well as lectins or any other carbohydrate motif.
- the delivery molecules ensure that the lanthanide-doped nanoparticles remain in close proximity to the opsin proteins to permit activation upon upconversion of IR or NIR electromagnetic radiation.
- Antibody conjugation to nanoparticles is well-known in the art (See, e.g., U.S. Patent Application Publication No.: 2010/0209352 and 2008/0267876, the contents of each of which are incorporated by reference herein in their entireties).
- lanthanide-doped nanoparticles can be embedded or trapped within a biocompatible material which is surgically placed proximal to (such as adjacent to or around) the neural cell of interest (such as a neural cell expressing one or more light-responsive opsin proteins on its plasma membrane).
- the biocompatible material is transparent, so that visible light produced by the upconversion of IR or NIR electromagnetic radiation by the lanthanide-doped nanoparticles can reach the light-responsive opsin proteins expressed on the surface of the neural cell of interest.
- the biocompatible materials used to embed or trap the lanthanide-doped nanoparticles can include, but are not limited to, Ioplex materials and other hydrogels such as those based on 2-hydroxyethyl methacrylate or acrylamide, and poly ether polyurethane ureas (PEUU) including Biomer (Ethicon Corp.), Avcothane (Avco-Everrett Laboratories), polyethylene, polypropylene, polytetrafluoroethylene (Gore-TexTM), poly(vinylchloride), polydimethylsiloxane, an ethylene-acrylic acid copolymer, knitted or woven Dacron, polyester-polyurethane, polyurethane, polycarbonatepolyurethane (CorethaneTM), polyamide (Nylon) and polystyrene.
- Ioplex materials and other hydrogels such as those based on 2-hydroxyethyl methacrylate or acrylamide
- PEUU poly ether polyurethane
- the biocompatible material can be polydimethylsiloxane (PDMS).
- PDMS polydimethylsiloxane
- Additional compounds that may be used for embedding and/or trapping the lanthanide-doped nanoparticles disclosed herein are described in Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition 1982 (Vol. 19, pp. 275-313, and Vol. 18, pp. 219-2220), van der Giessen et al., 1996 , Circulation, 94:1690-1997 (1996), U.S. Patent Application Publication No.: 2011/0054305, and U.S. Pat. No. 6,491,965, the contents of each which are incorporated herein by reference in their entireties.
- Optogenetic-based compositions for selectively hyperpolarizing or depolarizing neurons of the central or peripheral nervous system.
- Optogenetics refers to the combination of genetic and optical methods used to control specific events in targeted cells of living tissue, even within freely moving mammals and other animals, with the temporal precision (millisecond-timescale) needed to keep pace with functioning intact biological systems.
- Optogenetics requires the introduction of fast light-responsive channel or pump proteins to the plasma membranes of target neuronal cells that allow temporally precise manipulation of neuronal membrane potential while maintaining cell-type resolution through the use of specific targeting mechanisms.
- Light-responsive opsins that may be used in the present invention include opsins that induce hyperpolarization in neurons by light and opsins that induce depolarization in neurons by light. Examples of opsins are shown in Tables 1 and 2 below.
- Wavelength Opsin Type Biological Origin Sensitivity Defined action VChR1 Volvox carteri 589 nm utility Excitation 535 nm max (depolarization) DChR Dunaliella salina 500 nm max Excitation (depolarization) ChR2 Chlamydomonas 470 nm max Excitation reinhardtii 380-405 nm utility (depolarization) ChETA Chlamydomonas 470 nm max Excitation reinhardtii 380-405 nm utility (depolarization) SFO Chlamydomonas 470 nm max Excitation reinhardtii 530 nm max (depolarization) Inactivation SSFO Chlamydomonas 445 nm max Step-like activation reinhardtii 590 nm; 390-400 nm (depolarization) Inactivation C1V1 Volvox carteri and 542 nm max Excitation Chlamydomonas (depolarization) reinhardti
- a light-responsive opsin (such as NpHR, BR, AR, GtR3, Mac, ChR2, VChR1, DChR, and ChETA) includes naturally occurring protein and functional variants, fragments, fusion proteins comprising the fragments, or the full length protein.
- the signal peptide may be deleted.
- a variant may have an amino acid sequence at least about any of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the naturally occurring protein sequence.
- a functional variant may have the same or similar hyperpolarization function or depolarization function as the naturally occurring protein.
- the present disclosure provides for the modification of light-responsive opsin proteins expressed in a cell by the addition of one or more amino acid sequence motifs which enhance transport to the plasma membranes of mammalian cells.
- Light-responsive opsin proteins having components derived from evolutionarily simpler organisms may not be expressed or tolerated by mammalian cells or may exhibit impaired subcellular localization when expressed at high levels in mammalian cells. Consequently, in some embodiments, the light-responsive opsin proteins expressed in a cell can be fused to one or more amino acid sequence motifs selected from the group consisting of a signal peptide, an endoplasmic reticulum (ER) export signal, a membrane trafficking signal, and/or an N-terminal golgi export signal.
- ER endoplasmic reticulum
- the one or more amino acid sequence motifs which enhance light-responsive opsin protein transport to the plasma membranes of mammalian cells can be fused to the N-terminus, the C-terminus, or to both the N- and C-terminal ends of the light-responsive opsin protein.
- the light-responsive opsin protein and the one or more amino acid sequence motifs may be separated by a linker.
- the light-responsive opsin protein can be modified by the addition of a trafficking signal (ts) which enhances transport of the protein to the cell plasma membrane.
- the trafficking signal can be derived from the amino acid sequence of the human inward rectifier potassium channel Kir2.1.
- the trafficking signal can comprise the amino acid sequence KSRITSEGEYIPLDQIDINV.
- the signal peptide sequence in the protein can be deleted or substituted with a signal peptide sequence from a different protein.
- the light-responsive opsin proteins described herein are light-responsive chloride pumps.
- one or more members of the Halorhodopsin family of light-responsive chloride pumps are expressed on the plasma membranes of neurons of the central and peripheral nervous systems.
- said one or more light-responsive chloride pump proteins expressed on the plasma membranes of nerve cells of the central or peripheral nervous systems can be derived from Natronomonas pharaonic .
- the light-responsive chloride pump proteins can be responsive to amber light as well as red light and can mediate a hyperpolarizing current in the interneuron when the light-responsive chloride pump proteins are illuminated with amber or red light.
- the wavelength of light which can activate the light-responsive chloride pumps can be between about 580 and about 630 nm. In some embodiments, the light can be at a wavelength of about 590 nm or the light can have a wavelength greater than about 630 nm (e.g. less than about 740 nm).
- the light has a wavelength of around 630 nm.
- the light-responsive chloride pump protein can hyperpolarize a neural membrane for at least about 90 minutes when exposed to a continuous pulse of light.
- the light-responsive chloride pump protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1.
- the light-responsive chloride pump protein can comprise substitutions, deletions, and/or insertions introduced into a native amino acid sequence to increase or decrease sensitivity to light, increase or decrease sensitivity to particular wavelengths of light, and/or increase or decrease the ability of the light-responsive protein to regulate the polarization state of the plasma membrane of the cell.
- the light-responsive chloride pump protein contains one or more conservative amino acid substitutions.
- the light-responsive protein contains one or more non-conservative amino acid substitutions.
- the light-responsive protein comprising substitutions, deletions, and/or insertions introduced into the native amino acid sequence suitably retains the ability to hyperpolarize the plasma membrane of a neuronal cell in response to light.
- the light-responsive chloride pump protein can comprise a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1 and an endoplasmic reticulum (ER) export signal.
- This ER export signal can be fused to the C-terminus of the core amino acid sequence or can be fused to the N-terminus of the core amino acid sequence.
- the ER export signal is linked to the core amino acid sequence by a linker.
- the linker can comprise any of about 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length.
- the linker may further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein.
- the ER export signal can comprise the amino acid sequence FXYENE, where X can be any amino acid.
- the ER export signal can comprise the amino acid sequence VXXSL, where X can be any amino acid.
- the ER export signal can comprise the amino acid sequence FCYENEV.
- the light-responsive chloride pump proteins provided herein can comprise a light-responsive protein expressed on the cell membrane, wherein the protein comprises a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1 and a trafficking signal (e.g., which can enhance transport of the light-responsive chloride pump protein to the plasma membrane).
- the trafficking signal may be fused to the C-terminus of the core amino acid sequence or may be fused to the N-terminus of the core amino acid sequence.
- the trafficking signal can be linked to the core amino acid sequence by a linker which can comprise any of about 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length.
- the linker may further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein.
- the trafficking signal can be derived from the amino acid sequence of the human inward rectifier potassium channel Kir2.1.
- the trafficking signal can comprise the amino acid sequence KSRITSEGEYIPLDQIDINV.
- the light-responsive chloride pump protein can comprise a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1 and at least one (such as one, two, three, or more) amino acid sequence motifs which enhance transport to the plasma membranes of mammalian cells selected from the group consisting of an ER export signal, a signal peptide, and a membrane trafficking signal.
- the light-responsive chloride pump protein comprises an N-terminal signal peptide, a C-terminal ER Export signal, and a C-terminal trafficking signal.
- the C-terminal ER Export signal and the C-terminal trafficking signal can be linked by a linker.
- the linker can comprise any of about 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length.
- the linker can also further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein.
- the ER Export signal can be more C-terminally located than the trafficking signal.
- the trafficking signal is more C-terminally located than the ER Export signal.
- the signal peptide comprises the amino acid sequence MTETLPPVTESAVALQAE.
- the light-responsive chloride pump protein comprises an amino acid sequence at least 95% identical to SEQ ID NO:2.
- the light-responsive chloride pump proteins can comprise a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1, wherein the N-terminal signal peptide of SEQ ID NO:1 is deleted or substituted.
- other signal peptides such as signal peptides from other opsins
- the light-responsive protein can further comprise an ER transport signal and/or a membrane trafficking signal described herein.
- the light-responsive chloride pump protein comprises an amino acid sequence at least 95% identical to SEQ ID NO:3.
- the light-responsive opsin protein is a NpHR opsin protein comprising an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to the sequence shown in SEQ ID NO:1.
- the NpHR opsin protein further comprises an endoplasmic reticulum (ER) export signal and/or a membrane trafficking signal.
- the NpHR opsin protein comprises an amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1 and an endoplasmic reticulum (ER) export signal.
- the amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1 is linked to the ER export signal through a linker.
- the ER export signal comprises the amino acid sequence FXYENE, where X can be any amino acid.
- the ER export signal comprises the amino acid sequence VXXSL, where X can be any amino acid.
- the ER export signal comprises the amino acid sequence FCYENEV.
- the NpHR opsin protein comprises an amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1, an ER export signal, and a membrane trafficking signal.
- the NpHR opsin protein comprises, from the N-terminus to the C-terminus, the amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1, the ER export signal, and the membrane trafficking signal.
- the NpHR opsin protein comprises, from the N-terminus to the C-terminus, the amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1, the membrane trafficking signal, and the ER export signal.
- the membrane trafficking signal is derived from the amino acid sequence of the human inward rectifier potassium channel Kir2.1.
- the membrane trafficking signal comprises the amino acid sequence KSRITSEGEYIPLDQIDINV.
- the membrane trafficking signal is linked to the amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1 by a linker.
- the membrane trafficking signal is linked to the ER export signal through a linker.
- the linker may comprise any of 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length.
- the linker may further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein.
- the light-responsive opsin protein further comprises an N-terminal signal peptide.
- the light-responsive opsin protein comprises the amino acid sequence of SEQ ID NO:2.
- the light-responsive opsin protein comprises the amino acid sequence of SEQ ID NO:3.
- polynucleotides encoding any of the light-responsive chloride ion pump proteins described herein, such as a light-responsive protein comprising a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:1, an ER export signal, and a membrane trafficking signal.
- the polynucleotides comprise a sequence which encodes an amino acid at least 95% identical to SEQ ID NO:2 and/or SEQ ID NO:3.
- the polynucleotides may be in an expression vector (such as, but not limited to, a viral vector described herein).
- the polynucleotides may be used for expression of the light-responsive chloride ion pump proteins in neurons of the central or peripheral nervous systems.
- the light-responsive opsin proteins described herein are light-responsive proton pumps.
- one or more light-responsive proton pumps are expressed on the plasma membranes of neurons of the central or peripheral nervous systems.
- the light-responsive proton pump protein can be responsive to blue light and can be derived from Guillardia theta , wherein the proton pump protein can be capable of mediating a hyperpolarizing current in the cell when the cell is illuminated with blue light.
- the light can have a wavelength between about 450 and about 495 nm or can have a wavelength of about 490 nm.
- the light-responsive proton pump protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:4.
- the light-responsive proton pump protein can additionally comprise substitutions, deletions, and/or insertions introduced into a native amino acid sequence to increase or decrease sensitivity to light, increase or decrease sensitivity to particular wavelengths of light, and/or increase or decrease the ability of the light-responsive proton pump protein to regulate the polarization state of the plasma membrane of the cell. Additionally, the light-responsive proton pump protein can contain one or more conservative amino acid substitutions and/or one or more non-conservative amino acid substitutions.
- the light-responsive proton pump protein comprising substitutions, deletions, and/or insertions introduced into the native amino acid sequence suitably retains the ability to hyperpolarize the plasma membrane of a neuronal cell in response to light.
- the light-responsive proton pump protein can comprise a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:4 and at least one (such as one, two, three, or more) amino acid sequence motifs which enhance transport to the plasma membranes of mammalian cells selected from the group consisting of a signal peptide, an ER export signal, and a membrane trafficking signal.
- the light-responsive proton pump protein comprises an N-terminal signal peptide and a C-terminal ER export signal.
- the light-responsive proton pump protein comprises an N-terminal signal peptide and a C-terminal trafficking signal. In some embodiments, the light-responsive proton pump protein comprises an N-terminal signal peptide, a C-terminal ER Export signal, and a C-terminal trafficking signal. In some embodiments, the light-responsive proton pump protein comprises a C-terminal ER Export signal and a C-terminal trafficking signal. In some embodiments, the C-terminal ER Export signal and the C-terminal trafficking signal are linked by a linker.
- the linker can comprise any of about 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length.
- the linker may further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein.
- the ER Export signal is more C-terminally located than the trafficking signal. In some embodiments the trafficking signal is more C-terminally located than the ER Export signal.
- isolated polynucleotides encoding any of the light-responsive proton pump proteins described herein, such as a light-responsive proton pump protein comprising a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:4.
- expression vectors such as a viral vector described herein
- a polynucleotide encoding the proteins described herein, such as a light-responsive proton pump protein comprising a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:4.
- the polynucleotides may be used for expression of the light-responsive proton pumps in neural cells of the central or peripheral nervous systems.
- the light-responsive opsin proteins described herein are light-activated cation channel proteins.
- one or more light-activated cation channels can be expressed on the plasma membranes of the neural cells of the central or peripheral nervous systems.
- the light-activated cation channel protein can be derived from Chlamydomonas reinhardtii , wherein the cation channel protein can be capable of mediating a depolarizing current in the cell when the cell is illuminated with light.
- the light-activated cation channel protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:5.
- the light used to activate the light-activated cation channel protein derived from Chlamydomonas reinhardtii can have a wavelength between about 460 and about 495 nm or can have a wavelength of about 480 nm.
- the light can have an intensity of at least about 100 Hz.
- activation of the light-activated cation channel derived from Chlamydomonas reinhardtii with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the light-activated cation channel.
- the light-activated cation channel protein can additionally comprise substitutions, deletions, and/or insertions introduced into a native amino acid sequence to increase or decrease sensitivity to light, increase or decrease sensitivity to particular wavelengths of light, and/or increase or decrease the ability of the light-activated cation channel protein to regulate the polarization state of the plasma membrane of the cell.
- the light-activated cation channel protein can contain one or more conservative amino acid substitutions and/or one or more non-conservative amino acid substitutions.
- the light-activated proton pump protein comprising substitutions, deletions, and/or insertions introduced into the native amino acid sequence suitably retains the ability to depolarize the plasma membrane of a neuronal cell in response to light.
- the light-activated cation channel protein can be a step function opsin (SFO) protein or a stabilized step function opsin (SSFO) protein that can have specific amino acid substitutions at key positions throughout the retinal binding pocket of the protein.
- the SFO protein can have a mutation at amino acid residue C128 of SEQ ID NO:5.
- the SFO protein has a C128A mutation in SEQ ID NO:5.
- the SFO protein has a C128S mutation in SEQ ID NO:5.
- the SFO protein has a C128T mutation in SEQ ID NO:5.
- the SFO protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:6.
- the SSFO protein can have a mutation at amino acid residue D156 of SEQ ID NO:5. In other embodiments, the SSFO protein can have a mutation at both amino acid residues C128 and D156 of SEQ ID NO:5. In one embodiment, the SSFO protein has an C128S and a D156A mutation in SEQ ID NO:5. In another embodiment, the SSFO protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:7.
- the SFO or SSFO proteins provided herein can be capable of mediating a depolarizing current in the cell when the cell is illuminated with blue light.
- the light can have a wavelength of about 445 nm.
- the light can have an intensity of about 100 Hz.
- activation of the SFO or SSFO protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the SFO or SSFO protein.
- each of the disclosed step function opsin and stabilized step function opsin proteins can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- the light-activated cation channel protein can be a C1V1 chimeric protein derived from the VChR1 protein of Volvox carteri and the ChR1 protein from Chlamydomonas reinhardti , wherein the protein comprises the amino acid sequence of VChR1 having at least the first and second transmembrane helices replaced by the first and second transmembrane helices of ChR1; is responsive to light; and is capable of mediating a depolarizing current in the cell when the cell is illuminated with light.
- the C1V1 protein can further comprise a replacement within the intracellular loop domain located between the second and third transmembrane helices of the chimeric light responsive protein, wherein at least a portion of the intracellular loop domain is replaced by the corresponding portion from ChR1.
- the portion of the intracellular loop domain of the C1V1 chimeric protein can be replaced with the corresponding portion from ChR1 extending to amino acid residue A145 of the ChR1.
- the C1V1 chimeric protein can further comprise a replacement within the third transmembrane helix of the chimeric light responsive protein, wherein at least a portion of the third transmembrane helix is replaced by the corresponding sequence of ChR1.
- the portion of the intracellular loop domain of the C1V1 chimeric protein can be replaced with the corresponding portion from ChR1 extending to amino acid residue W163 of the ChR1.
- the C1V1 chimeric protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:8.
- the C1V1 protein can mediate a depolarizing current in the cell when the cell is illuminated with green light.
- the light can have a wavelength of between about 540 nm to about 560 nm. In some embodiments, the light can have a wavelength of about 542 nm.
- the C1V1 chimeric protein is not capable of mediating a depolarizing current in the cell when the cell is illuminated with violet light. In some embodiments, the chimeric protein is not capable of mediating a depolarizing current in the cell when the cell is illuminated with light having a wavelength of about 405 nm. Additionally, the light can have an intensity of about 100 Hz.
- activation of the C1V1 chimeric protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the C1V1 chimeric protein.
- the disclosed C1V1 chimeric protein can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- the invention can include polypeptides comprising substituted or mutated amino acid sequences, wherein the mutant polypeptide retains the characteristic light-responsive nature of the precursor C1V1 chimeric polypeptide but may also possess altered properties in some specific aspects.
- the mutant light-activated C1V1 chimeric proteins described herein can exhibit an increased level of expression both within an animal cell or on the animal cell plasma membrane; an altered responsiveness when exposed to different wavelengths of light, particularly red light; and/or a combination of traits whereby the chimeric C1V1 polypeptide possess the properties of low desensitization, fast deactivation, low violet-light activation for minimal cross-activation with other light-activated cation channels, and/or strong expression in animal cells.
- C1V1 chimeric light-activated proteins that can have specific amino acid substitutions at key positions throughout the retinal binding pocket of the VChR1 portion of the chimeric polypeptide.
- the C1V1 protein can have a mutation at amino acid residue E122 of SEQ ID NO:7.
- the C1V1 protein can have a mutation at amino acid residue E162 of SEQ ID NO:7.
- the C1V1 protein can have a mutation at both amino acid residues E162 and E122 of SEQ ID NO:7.
- the C1V1 protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:9, SEQ ID NO:10, or SEQ ID NO:11.
- each of the disclosed mutant C1V1 chimeric proteins can have specific properties and characteristics for use in depolarizing the membrane of an animal cell in response to light.
- the C1V1-E122 mutant chimeric protein is capable of mediating a depolarizing current in the cell when the cell is illuminated with light.
- the light can be green light.
- the light can have a wavelength of between about 540 nm to about 560 nm.
- the light can have a wavelength of about 546 nm.
- the C1V1-E122 mutant chimeric protein can mediate a depolarizing current in the cell when the cell is illuminated with red light.
- the red light can have a wavelength of about 630 nm.
- the C1V1-E122 mutant chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with violet light. In some embodiments, the chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with light having a wavelength of about 405 nm. Additionally, the light can have an intensity of about 100 Hz. In some embodiments, activation of the C1V1-E122 mutant chimeric protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the C1V1-E122 mutant chimeric protein. In some embodiments, the disclosed C1V1-E122 mutant chimeric protein can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- the C1V1-E162 mutant chimeric protein is capable of mediating a depolarizing current in the cell when the cell is illuminated with light.
- the light can be green light.
- the light can have a wavelength of between about 540 nm to about 535 nm.
- the light can have a wavelength of about 542 nm.
- the light can have a wavelength of about 530 nm.
- the C1V1-E162 mutant chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with violet light.
- the chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with light having a wavelength of about 405 nm. Additionally, the light can have an intensity of about 100 Hz. In some embodiments, activation of the C1V1-E162 mutant chimeric protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the C1V1-E162 mutant chimeric protein. In some embodiments, the disclosed C1V1-E162 mutant chimeric protein can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- the C1V1-E122/E162 mutant chimeric protein is capable of mediating a depolarizing current in the cell when the cell is illuminated with light.
- the light can be green light.
- the light can have a wavelength of between about 540 nm to about 560 nm.
- the light can have a wavelength of about 546 nm.
- the C1V1-E122/E162 mutant chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with violet light.
- the chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with light having a wavelength of about 405 nm.
- the C1V1-E122/E162 mutant chimeric protein can exhibit less activation when exposed to violet light relative to C1V1 chimeric proteins lacking mutations at E122/E162 or relative to other light-activated cation channel proteins. Additionally, the light can have an intensity of about 100 Hz.
- activation of the C1V1-E122/E162 mutant chimeric protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the C1V1-E122/E162 mutant chimeric protein.
- the disclosed C1V1-E122/E162 mutant chimeric protein can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- the disclosure also provides polynucleotides comprising a nucleotide sequence encoding a light-responsive opsin protein described herein.
- the polynucleotide comprises an expression cassette.
- the polynucleotide is a vector comprising the above-described nucleic acid(s).
- the nucleic acid encoding a light-activated protein of the disclosure is operably linked to a promoter. Promoters are well known in the art. Any promoter that functions in the host cell can be used for expression of the light-responsive opsin proteins and/or any variant thereof of the present disclosure.
- the promoter used to drive expression of the light-responsive opsin proteins is a promoter that is specific to motor neurons.
- the promoter used to drive expression of the light-responsive opsin proteins is a promoter that is specific to central nervous system neurons.
- the promoter is capable of driving expression of the light-responsive opsin proteins in neurons of both the sympathetic and/or the parasympathetic nervous systems. Initiation control regions or promoters, which are useful to drive expression of the light-responsive opsin proteins or variant thereof in a specific animal cell are numerous and familiar to those skilled in the art. Virtually any promoter capable of driving these nucleic acids can be used.
- the promoter used to drive expression of the light-activated protein can be the Thy1 promoter, which is capable of driving robust expression of transgenes in neurons of both the central and peripheral nervous systems (See, e.g., Llewellyn, et al., 2010 , Nat. Med., 16(10):1161-1166).
- the promoter used to drive expression of the light-responsive opsin protein can be the EF1 ⁇ promoter, a cytomegalovirus (CMV) promoter, the CAG promoter, the sinapsin promoter, or any other ubiquitous promoter capable of driving expression of the light-responsive opsin proteins in the peripheral and/or central nervous system neurons of mammals.
- CMV cytomegalovirus
- vectors comprising a nucleotide sequence encoding a light-responsive opsin protein or any variant thereof described herein.
- the vectors that can be administered according to the present invention also include vectors comprising a nucleotide sequence which encodes an RNA (e.g., an mRNA) that when transcribed from the polynucleotides of the vector will result in the accumulation of light-responsive opsin proteins on the plasma membranes of target animal cells.
- Vectors which may be used include, without limitation, lentiviral, HSV, adenoviral, and andeno-associated viral (AAV) vectors.
- Lentiviruses include, but are not limited to HW-1, HIV-2, SW, FW and EIAV.
- Lentiviruses may be pseudotyped with the envelope proteins of other viruses, including, but not limited to VSV, rabies, Mo-MLV, baculovirus and Ebola.
- Such vectors may be prepared using standard methods in the art.
- the vector is a recombinant AAV vector.
- AAV vectors are DNA viruses of relatively small size that can integrate, in a stable and site-specific manner, into the genome of the cells that they infect. They are able to infect a wide spectrum of cells without inducing any effects on cellular growth, morphology or differentiation, and they do not appear to be involved in human pathologies.
- the AAV genome has been cloned, sequenced and characterized. It encompasses approximately 4700 bases and contains an inverted terminal repeat (ITR) region of approximately 145 bases at each end, which serves as an origin of replication for the virus.
- ITR inverted terminal repeat
- the remainder of the genome is divided into two essential regions that carry the encapsidation functions: the left-hand part of the genome, that contains the rep gene involved in viral replication and expression of the viral genes; and the right-hand part of the genome, that contains the cap gene encoding the capsid proteins of the virus.
- AAV vectors may be prepared using standard methods in the art.
- Adeno-associated viruses of any serotype are suitable (See, e.g., Blacklow, pp. 165-174 of “ Parvoviruses and Human Disease ” J. R. Pattison, ed. (1988); Rose, Comprehensive Virology 3:1, 1974; P. Tattersall “The Evolution of Parvovirus Taxonomy” in Parvoviruses (J R Kerr, S F Cotmore. M E Bloom, R M Linden, C R Parrish, Eds.) p 5-14, Hudder Arnold, London, U K (2006); and D E Bowles, J E Rabinowitz, R T Samulski “ The Genus Dependovirus ” (J R Kerr, S F Cotmore.
- the replication defective recombinant AAVs according to the invention can be prepared by co-transfecting a plasmid containing the nucleic acid sequence of interest flanked by two AAV inverted terminal repeat (ITR) regions, and a plasmid carrying the AAV encapsidation genes (rep and cap genes), into a cell line that is infected with a human helper virus (for example, an adenovirus).
- ITR inverted terminal repeat
- rep and cap genes AAV encapsidation genes
- the vector(s) for use in the methods of the invention are encapsidated into a virus particle (e.g. AAV virus particle including, but not limited to, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAV13, AAV14, AAV15, and AAV16).
- a virus particle e.g. AAV virus particle including, but not limited to, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAV13, AAV14, AAV15, and AAV16.
- the invention includes a recombinant virus particle (recombinant because it contains a recombinant polynucleotide) comprising any of the vectors described herein. Methods of producing such particles are known in the art and are described in U.S. Pat. No. 6,596,53
- polynucleotides encoding the light-responsive opsin proteins disclosed herein can be delivered directly to neurons of the central or peripheral nervous system with a needle, catheter, or related device, using neurosurgical techniques known in the art, such as by stereotactic injection (See, e.g., Stein et al., J. Virol., 1999, 73:34243429; Davidson et al., Proc. Nat. Acad. Sci. U.S.A., 2000, 97:3428-3432; Davidson et al., Nat. Genet., 1993, 3:219-223; and Alisky & Davidson, Hum.
- stereotactic injection See, e.g., Stein et al., J. Virol., 1999, 73:34243429; Davidson et al., Proc. Nat. Acad. Sci. U.S.A., 2000, 97:3428-3432; Davidson et al., Nat. Genet., 1993
- the polynucleotide encoding the light-responsive opsin proteins disclosed herein can be delivered to neurons of the peripheral nervous system by injection into any one of the spinal nerves (such as the cervical spinal nerves, the thoracic spinal nerves, the lumbar spinal nerves, the sacral spinal nerves, and/or the coccygeal spinal nerves).
- spinal nerves such as the cervical spinal nerves, the thoracic spinal nerves, the lumbar spinal nerves, the sacral spinal nerves, and/or the coccygeal spinal nerves.
- Other methods to deliver the light-responsive opsin proteins to the nerves of interest can also be used, such as, but not limited to, transfection with ionic lipids or polymers, electroporation, optical transfection, impalefection, or via gene gun.
- the polynucleotide encoding the light-responsive opsin proteins disclosed herein can be delivered directly to muscles innervated by the neurons of the peripheral nervous system. Because of the limitations inherent in injecting viral vectors directly into the specific cell bodies which innvervate particular muscles, researchers have attempted to deliver transgenes to peripheral neurons by injecting viral vectors directly into muscle.
- the vectors expressing the light-responsive opsin proteins disclosed herein can be delivered to the neurons responsible for the innervation of muscles by direct injection into the muscle of interest.
- the lanthanide-doped nanoparticles disclosed herein can be delivered to neurons expressing one or more light-responsive opsin proteins by any route, such as intravascularly, intracranially, intracerebrally, intramuscularly, intradermally, intravenously, intraocularly, orally, nasally, topically, or by open surgical procedure, depending upon the anatomical site or sites to which the nanoparticles are to be delivered.
- the nanoparticles can additionally be delivered by the same route used for delivery of the polynucleotide vectors expressing the light-responsive opsin proteins, such as any of those described above.
- the nanoparticles can also be administered in an open manner, as in the heart during open heart surgery, or in the brain during stereotactic surgery, or by intravascular interventional methods using catheters going to the blood supply of specific organs, or by other interventional methods.
- compositions used for the delivery and/or storage of polynucleotides encoding the light-responsive opsin proteins disclosed herein and/or the lanthanide-doped nanoparticles disclosed herein can be formulated according to known methods for preparing pharmaceutically useful compositions.
- Formulations are described in a number of sources which are well known and readily available to those skilled in the art. For example, Remington's Pharmaceutical Sciences (Martin E W, 1995, Easton Pa., Mack Publishing Company, 19 th ed.) describes formulations which can be used in connection with the subject invention.
- Formulations suitable for parenteral administration include, for example, aqueous sterile injection solutions, which may contain antioxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the condition of the sterile liquid carrier, for example, water for injections, prior to use.
- the lanthanide-doped nanoparticles may also be administered intravenously or intraperitoneally by infusion or injection.
- Solutions of the nanoparticles and/or cells can be prepared in water, optionally mixed with a nontoxic surfactant.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical dosage forms suitable for injection or infusion of the lanthanide-doped nanoparticles described herein can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions.
- the liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- Any device that is capable of producing a source of electromagnetic radiation having a wavelength in the infrared (IR) or near infrared (NIR) spectrum may be used to activate one or more light-responsive proteins expressed on the surface of a neuron in combination with the lanthanide-doped nanoparticles described herein.
- the IR or NIR source can be configured to provide optical stimulus to a specific target region of the brain.
- the IR or NIR source can additionally provide continuous IR or NIR electromagnetic radiation and/or pulsed IR or NIR electromagnetic radiation, and may be programmable to provide IR or NIR electromagnetic radiation in pre-determined pulse sequences.
- the implantable IR or NIR source does not require physical tethering to an external power source.
- the power source can be an internal battery for powering the IR or NIR source.
- the implantable IR or NIR source can comprise an external antenna for receiving wirelessly transmitted electromagnetic energy from an external power source for powering the IR or NIR source.
- the wirelessly transmitted electromagnetic energy can be a radio wave, a microwave, or any other electromagnetic energy source that can be transmitted from an external source to power the IR or NIR-generating source.
- the IR or NIR source is controlled by an integrated circuit produced using semiconductor or other processes known in the art.
- the implantable IR or NIR electromagnetic radiation source can be externally activated by an external controller.
- the external controller can comprise a power generator which can be mounted to a transmitting coil.
- a battery can be connected to the power generator, for providing power thereto.
- a switch can be connected to the power generator, allowing an individual to manually activate or deactivate the power generator.
- the power generator upon activation of the switch, can provide power to the IR or NIR electromagnetic radiation source through electromagnetic coupling between the transmitting coil on the external controller and the external antenna of the implantable IR or NIR source.
- the operational frequency of the radio wave can be between about 1 and 20 MHz, inclusive, including any values in between these numbers (for example, about 1 MHz, about 2 MHz, about 3 MHz, about 4 MHz, about 5 MHz, about 6 MHz, about 7 MHz, about 8 MHz, about 9 MHz, about 10 MHz, about 11 MHz, about 12 MHz, about 13 MHz, about 14 MHz, about 15 MHz, about 16 MHz, about 17 MHz, about 18 MHz, about 19 MHz, or about 20 MHz).
- the intensity of the IR or NIR electromagnetic radiation reaching the neural cells (such as neural cells expressing one or more light-responsive opsin proteins) produced by the IR or NW electromagnetic radiation source has an intensity of any of about 0.05 mW/mm 2 , 0.1 mW/mm 2 , 0.2 mW/mm 2 , 0.3 mW/mm 2 , 0.4 mW/mm 2 , 0.5 mW/mm 2 , about 0.6 mW/mm 2 , about 0.7 mW/mm 2 , about 0.8 mW/mm 2 , about 0.9 mW/mm 2 , about 1.0 mW/mm 2 , about 1.1 mW/mm 2 , about 1.2 mW/mm 2 , about 1.3 mW/mm 2 , about 1.4 mW/mm 2 , about 1.5 mW/mm 2 , about 1.6 mW/mm 2 , about 1.7 mW/mm 2 , about 1.8 mW/mm 2 , about 1.5
- the IR or NIR electromagnetic radiation produced by the IR or NW electromagnetic radiation source can have a wavelength encompassing the entire infrared spectrum, such as from about 740 nm to about 300,000 nm. In other embodiments, the IR or NIR electromagnetic radiation produced by the IR or NIR electromagnetic radiation source can have a wavelength corresponding to the NIR spectrum, such as about 740 nm to about 1400 nm. In other embodiments, NIR electromagnetic radiation produced has a wavelength between 700 nm and 1000 nm.
- an IR or NIR electromagnetic radiation source is used to hyperpolarize or depolarize the plasma membranes of neural cells (such as neural cells expressing one or more light-responsive opsin proteins) in the brain or central nervous system of an individual when used in combination with the lanthanide-doped nanoparticles disclosed herein.
- the skull of the individual is surgically thinned in an area adjacent to the brain region of interest without puncturing the bone.
- the IR or NW electromagnetic radiation source can then be placed directly over the thinned-skull region.
- the IR or NIR electromagnetic radiation generator is implanted under the skin of the individual directly adjacent to the thinned skull region.
- an IR or NIR electromagnetic radiation source is used to hyperpolarize or depolarize the plasma membranes of neural cells (such as neural cells expressing one or more light-responsive opsin proteins) in the peripheral nervous system of an individual when used in combination with the lanthanide-doped nanoparticles disclosed herein.
- the IR or NIR electromagnetic radiation source is surgically implanted under the skin of the individual directly adjacent to the peripheral neural cell of interest.
- the IR or NIR electromagnetic radiation source is placed against the skin directly adjacent to the peripheral neural cell of interest.
- the IR or NIR electromagnetic radiation source is held against the skin in a bracelet or cuff configuration.
- IR or NIR electromagnetic radiation sources particularly those small enough to be implanted under the skin, can be found in U.S. Patent Application Publication Nos.: 2009/0143842, 2011/0152969, 2011/0144749, and 2011/0054305, the disclosures of each of which are incorporated by reference herein in their entireties.
- the lanthanide-doped nanoparticles disclosed herein can be exposed to higher wavelength light in the visible spectrum (such as red light) to upconvert the higher wavelength visible light into lower wavelength visible light (such as blue or green light).
- red light a visible light
- visible light passes through biological tissue poorly.
- the lanthanide-doped nanoparticles disclosed herein can additionally be used in combination with optical sources of visible light to upshift wavelengths corresponding to red light into wavelengths corresponding to green or blue light (for example, between about 440 nm and 570 nm).
- Examples of light stimulation devices can be found in International Patent Application Nos.: PCT/US08/50628 and PCT/US09/49936 and in Llewellyn et al., 2010 , Nat. Med., 16(10):161-165, the disclosures of each of which are hereby incorporated herein in their entireties.
- IR infrared
- NM near infrared
- Also provided herein is a method to depolarize the plasma membrane of a neural cell in an individual comprising administering a polynucleotide encoding a light-responsive opsin to a neural cell in the brain of an individual, wherein the light-responsive protein is expressed on the plasma membrane of the neural cell and the opsin is capable of inducing membrane depolarization of the neural cell when illuminated with light administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near (IR) spectrum, wherein the electromagnetic radiation in the IR or near IR spectrum is upconverted into light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the depolarization of the plasma membrane.
- IR infrared
- IR infrared
- IR infrared
- the light-responsive opsin protein is ChR2, VChR1, or C1V1. In other embodiments, the light-responsive opsin protein is selected from the group consisting of SFO, SSFO, C1V1-E122, C1V1-E162, and C1V1-E122/E162.
- the lanthanide metal can be ions or atoms from any of the lanthanide series of elements, such as Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, or Lutetium.
- the nanoparticles comprise NaYF4:Yb/X/Gd, wherein X is Er, Tm, or Er/Tm.
- the electromagnetic radiation in the IR or near IR spectrum can be upconverted into light having a wavelength of about 450 nm to about 550 nm.
- the light can have wavelengths corresponding to red, yellow, amber, orange, green, or blue light.
- the individual is a human or a non-human animal.
- the neural cell is in the peripheral nervous system. In another embodiment, the neural cell is in the central nervous system.
- IR infrared
- NIR near infrared
- Also provided herein is a method to hyperpolarize the plasma membrane of a neural cell in an individual comprising administering a polynucleotide encoding a light-responsive opsin to a neural cell in the brain of an individual, wherein the light-responsive protein is expressed on the plasma membrane of the neural cell and the opsin is capable of inducing membrane depolarization of the neural cell when illuminated with light administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near (IR) spectrum, wherein the electromagnetic radiation in the IR or near IR spectrum is upconverted into light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
- IR infrared
- IR infrared
- IR infrared
- the light-responsive opsin protein is an NpHR or a GtR3.
- the lanthanide metal can be ions or atoms from any of the lanthanide series of elements, such as Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, or Lutetium.
- the nanoparticles comprise NaYF4:Yb/X/Gd, wherein X is Er, Tm, or Er/Tm.
- the electromagnetic radiation in the IR or near IR spectrum can be upconverted into light having a wavelength of about 450 nm to about 550 nm.
- the light can have wavelengths corresponding to red, yellow, amber, orange, green, or blue light.
- the individual is a human or a non-human animal.
- the neural cell is in the peripheral nervous system. In another embodiment, the neural cell is in the central nervous system.
- kits comprising polynucleotides encoding a light-responsive opsin protein (such as any of the light-responsive opsin proteins described herein) and lanthanide-doped nanoparticles for use in any of the methods disclosed herein to alter the membrane polarization state of one or more neurons of the central and/or peripheral nervous system.
- the kits further comprise an infrared or near infrared electromagnetic radiation source.
- the kits further comprise instructions for using the polynucleotides and lanthanide-doped nanoparticles described herein.
- the lanthanide-doped nanoparticles described herein are embedded and/or trapped in a biocompatible material (such as any of the biocompatible materials described above).
- minimally invasive delivery of light for example as can be useful for manipulation of neural circuits with optogenetics, using near infrared up-conversion nanocrystals.
- This is used to avoid the implantation of light sources within living tissues, including, for example, a subject's brain.
- Mammalian tissue has a transparency window in near infrared part of the spectrum (700-1000 nm). Accordingly, aspects of the present disclosure relate to the use of nanoparticles for the purpose of using (near) infrared light to deliver energy into the depth of a brain by converting the infrared light into visible wavelengths at a site of interest.
- delivering visible wavelengths at a site of interest within the brain is achieved through a process of optical upconversion in Lanthanide-doped nanocrystals.
- upconversion 3-4 photons are absorbed by the material which then emits one photon with the energy ⁇ 1.5-2 times the energy of absorbed photons.
- NaYF4:Yb/X/Gd nanocrystals can absorb 980 nm light and emit light with spectra centered between 450-550 nm depending on the nature and relative content of dopants (X ⁇ Er, Tm, Er/Tm).
- X ⁇ Er, Tm, Er/Tm dopants
- a single step surgery is performed to modify a target cell population and provide nanoparticles to convert near infrared light to visible light that stimulates the modified target cell population.
- the surgeon injects both an adeno-associated virus carrying an opsin gene and a nanoparticle solution to a site of interest.
- the virus is optimized to only infect the target cell population.
- the nanoparticles are functionalized with antibodies so that the nanoparticles anchor to the target cell population as well.
- the target cell population is a particular neuron type.
- a LED that emits near infrared light is placed on a thinned portion of the patient's skull, underneath the skin.
- a battery can also be implanted underneath the skin to power the LED.
- the battery has characteristics similar to those of a pacemaker battery.
- a microcontroller can be used to control the battery to deliver energy to the LED at specified intervals, resulting in LED light pulses at specified intervals.
- Optogenetics applied in vivo, relies on light delivery to specific neuron populations that can be located deep within the brain. Mammalian tissue is highly absorptive and scatters light in the visible spectrum. However, near infrared light is able to penetrate to deep levels of the brain without excessive absorption or scattering.
- Certain aspects of the present disclosure are directed to imbedding nanoparticles in the brain near target neurons.
- the nanoparticles can be lanthanide doped-nanoparticle.
- Nanoparticles doped with Lanthanides or with other dopants can be optimized with respect to a particular opsin's activation spectra.
- the spectra of the light emitted from lanthanide-doped nanocrystals can be manipulated based on which dopants are used, and how much.
- the light emitted from nanoparticles doped with other molecules can be manipulated based on the concentration of dopants.
- a light source such as a LED can be mounted onto a thinned skull under the skin.
- aspects of the present disclosure can be used for neural excitation or silencing.
- multiple neural populations may be controlled simultaneously through the use of various dopants and opsins in combination.
- a target (neural) cell population 114 includes light responsive molecules. These light responsive molecules can include, but are not necessarily limited to, opsins derived from Channel rhodopsins (e.g. ChR1 or ChR2) or Halorhodopins (NpHR). The specific molecule can be tailored/selected based upon the desired effect on the target cell population and/or the wavelength at which the molecules respond to light.
- Nanocrystals 110 are introduced near or at the target cell populate.
- Various embodiments of the present disclosure are directed toward methods and devices for positioning and maintaining positioning of the nanocrystals near the target cell population.
- Certain embodiments are directed toward anchoring the nanocrystals to cells of (or near) the target cell population using antibodies.
- a structure can be introduced that includes the nanocrystals.
- a mesh structure can be coated with the nanocrystals.
- the synthetic mesh can be constructed so as to allow the dendrites and axons to pass through the mess without allowing the entire neuron (e.g., the cell body) to pass.
- One example of such a mesh has pores that are on the order of 3-7 microns in diameter and is made from polyethylene terephthalate.
- This mesh structure can be constructed with light-responsive cells/neurons contained therein and/or be placed near the target cell population, which includes the light-responsive cells.
- one or more transparent capsules, each containing a solution of nanocrystals can be positioned near the target cell populations.
- Embodiments of the present disclosure are also directed toward various optical sources of stimulation. These sources can include, but are not limited to, external laser sources and light-emitting didoes (LEDs). Particular aspects of the present disclosure are directed toward the relatively low absorption and/or scattering/diffusion caused by intervening material when the light is at certain wavelengths (e.g., (near) infrared). Accordingly, the light source can be externally located because of the ability to penetrate the tissue with little loss of optical intensity or power. Moreover, reduced diffusion can be particularly useful for providing a relatively-high spatial-precision for the delivery of the light. Thus, embodiments of the present disclosure are directed toward multiple target cell populations with respective nanocrystals that can be individually controlled using spatially-precise optical stimulus. For instance, the nanocrystals can be implanted in several locations within the brain. The light source can then be aimed at a respective and particular location. Multiple light sources can also be used for simultaneous stimulation of a plurality of locations.
- LEDs light-emitting
- the skull 102 has a thinned portion 106 .
- An LED 104 is located above the thinned portion of the skull and emits near infrared light 108 .
- the IR hits nanocrystal 110 , it is absorbed.
- the nanocrystal emits visible light 112 in response to absorbing the IR light 108 .
- the visible light 112 is absorbed by modified cell 114 .
- the system shown in FIG. 1 allows for delivery of light to a target cell deep within a patient's brain tissue.
- the light responsive molecule can be specifically targeted to a neural cell type of interest.
- the nanocrystals 112 are anchored to the neural cell with antibodies chosen based on the type of neural cell 114 being targeted.
- Target neurons 214 express an opsin gene, allowing the neurons to be activated or inhibited, depending on which opsin, and what wavelength of light is absorbed by the neurons 214 .
- the target neurons 214 can be interspersed between other neurons 216 .
- target neurons 214 are coated with upconverting nanoparticles 210 that are anchored to the neural membrane via antibodies. The nanoparticles 210 absorb IR photons and emit visible photons that are then absorbed by opsins triggering neural activation.
- the system of FIG. 2 can be used with a variety of target neurons 214 .
- the opsin gene 215 expressed in the target neurons 214 is modified based on the target neuron.
- the antibodies used to anchor the nanoparticles 210 to the target neuron membranes are modified to attach to a specific membrane type.
- the nanoparticles 210 are closely linked to the target neurons so that visible light photons emitted by the nanoparticles 210 are absorbed by the target neurons 214 .
- FIG. 3 depicts a system that uses multiple light sources, consistent with an embodiment of the present disclosure.
- a patient has nanoparticles located at target locations 308 - 312 .
- the system includes light sources 302 - 306 , which can be configured to generate light at a frequency that is upconverted by the nanoparticles located at target locations 308 - 312 .
- three light sources are depicted, there can be any number of light sources.
- These light sources can be external to the patient (e.g., a targeting system that directs several light sources using mechanical positioning), using embedded lights sources (e.g., LEDs implanted on the skull) or combinations thereof.
- the target locations 308 - 312 include cells that have optically-responsive membrane molecules. These optically-responsive membrane molecules react to light at the upconverted frequency.
- Nanoparticles located at the intersection 314 of the light from the different light sources 302 - 306 receive increased intensity of optical stimulus relative to other locations, including those locations within the path of light from a single light source.
- the light intensity of each of the light sources can be set below a threshold level.
- the threshold level can be set according to an amount of light necessary to cause the desired effect (e.g., excitation or inhibition) on the target cells.
- the threshold level can be set to avoid adverse effects on non-targeted tissue (e.g., heating).
- the use of multiple light sources can also bring about a step-wise increase in light intensity. For instance, a disease model could be tested by monitoring the effects of additional stimulation caused by the increase in light intensity.
- the use of independent light sources allows for relatively simple control over temporal and spatial increases or decreases. Consistent with other embodiments of the present disclosure, the spatial precision of the light sources can be varied between the different light sources. For example, a first light source can provide light that illuminates the entire target cell location. This allows for all cells within the population to be illuminated. A second light source can provide light having a focal point that illuminates less than all of the entire target cell location. The combination of the first and second (or more) light sources can be used to provide different levels of stimulation within the same cell population.
- Embodiments of the present disclosure relate to the use of one or more light sources operating in a scanning mode.
- the light source(s) are aimed at specific locations within a target cell population.
- the effects of the stimulation can be monitored as the light source is used to scan or otherwise move within the target cell population. This can be particularly useful in connection with the three-dimensional control provided by the use of multiple light sources.
- Various embodiments of the present disclosure are directed toward the use of nanocrystals that emit light at different wavelengths. This can be particularly useful when using multiple opsins having different light-absorption spectrums.
- the nanocrystals can be targeted toward different opsins and/or placed in the corresponding locations.
- Example 1 Use of Lanthanide-Doped Nanoparticles in the Use of Optogenetics to Hyperpolarize the Cholinergic Interneurons of the Nucleus Accumbens
- the nucleus accumbens is a collection of neurons that forms the main part of the ventral striatum.
- the NAc is thought to play an important role in the complex mammalian behaviors associated with reward, pleasure, laughter, addiction, aggression, fear, and the placebo effect.
- Cholinergic interneurons within the NAc constitute less than 1% of the local neural population, yet they project throughout the NAc and provide its only known cholinergic input.
- an optogenetic approach using a light-responsive chloride pump protein in combination with lanthanide-doped nanoparticles is used to block action potential firing in these cells, with both high temporal resolution and high cell-type specificity.
- a transgenic mouse line expressing Cre recombinase is employed under the choline acetyltransferase (ChAT) promoter.
- a Cre-inducible adeno-associated virus (AAV) vector carrying a yellow-light gated third-generation chloride pump halorhodopsin (eNpHR3.0) gene fused in-frame with coding sequence for enhanced yellow fluorescent protein (eYFP) is stereotactically injected.
- mice are anesthetized and then placed in a stereotactic head apparatus.
- Surgeries are performed on 4-6 week old mice and ophthalmic ointment is applied throughout to prevent the eyes from drying.
- a midline scalp incision is made followed by a craniotomy, and then AAV vector is injected with a 10 ⁇ l syringe and a 34 gauge metal needle.
- the injection volume and flow rate (1 ⁇ l at 0.15 ⁇ l/min) are controlled by an injection pump.
- Each NAc receives two injections (injection 1: AP 1.15 mm, ML 0.8 mm, DV ⁇ 4.8 mm; injection 2: AP 1.15 mm, ML 0.8 mm, DV ⁇ 4.2 mm).
- the virus injection and fiber position are chosen so that virtually the entire shell is stimulated.
- nanoparticles are injected into the Nac. Concentrations of 3.4, 8.5, or 17 nmoles of NaYF4:Yb/Er/Gd, nanoparticles are used. After injection of both the AAV vector and the lanthanide-doped nanoparticles is complete, the needle is left in place for 5 additional minutes and then very slowly withdrawn.
- mice are again anesthetized, the skulls of the mice are thinned and an NIR source of electromagnetic radiation is placed adjacent to the thinned skull-region.
- Simultaneous NW stimulation and extracellular electrical recording are performed based on methods described previously using optical stimulation (Gradinaru et al., J. Neurosci., 27, 14231-14238 (2007)).
- the electrode consists of a tungsten electrode (1 M ⁇ ; 0.005 in; parylene insulation) with the tip of the electrode projecting beyond the fiber by 300-500 ⁇ m.
- the electrode is lowered through the NAc in approximately 100 ⁇ m increments, and NIR-upconverted optical responses are recorded at each increment.
- Signals are amplified and band-pass filtered (300 Hz low cut-off, 10 kHz high cut-off) before digitizing and recording to disk. At each site, 5 stimulation repetitions are presented and saved.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Nanotechnology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Neurosurgery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medical Informatics (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Virology (AREA)
- Microbiology (AREA)
- Dermatology (AREA)
- Inorganic Chemistry (AREA)
- Radiation-Therapy Devices (AREA)
- Peptides Or Proteins (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Provided herein are compositions comprising lanthanide-doped nanoparticles which upconvert electromagnetic radiation from infrared or near infrared wavelengths into the visible light spectrum. Also provided herein are methods activating light-responsive opsin proteins expressed on plasma membranes of neurons and selectively altering the membrane polarization state of the neurons using the light delivered by the lanthanide-doped nanoparticles.
Description
- This application claims priority to U.S. Provisional Application No. 61/410,729 filed Nov. 5, 2010, the disclosure of which is incorporated herein by reference in its entirety.
- This application pertains to compositions comprising lanthanide-doped nanoparticles which upconvert electromagnetic radiation from infrared or near infrared wavelengths into the visible light spectrum and methods of using lanthanide-doped nanoparticles to deliver light to activate light-responsive opsin proteins expressed in neurons and selectively alter the membrane polarization state of the neurons.
- Optogenetics is the combination of genetic and optical methods used to control specific events in targeted cells of living tissue, even within freely moving mammals and other animals, with the temporal precision (millisecond-timescale) needed to keep pace with functioning intact biological systems. The hallmark of optogenetics is the introduction of fast light-responsive opsin channel or pump proteins to the plasma membranes of target neuronal cells that allow temporally precise manipulation of neuronal membrane potential while maintaining cell-type resolution through the use of specific targeting mechanisms. Among the microbial opsins which can be used to investigate the function of neural systems are the halorhodopsins (NpHRs), used to promote membrane hyperpolarization when illuminated, and the channel rhodopsins, used to depolarize membranes upon exposure to light. In just a few short years, the field of optogenetics has furthered the fundamental scientific understanding of how specific cell types contribute to the function of biological tissues, such as neural circuits, in vivo. Moreover, on the clinical side, optogenetics-driven research has led to insights into the neurological mechanisms underlying complex mammalian behaviors such as anxiety, memory, fear, and addiction.
- In spite of these advances, use of optogenetic methods in animals suffers from the significant drawback of requiring the animal to either be tethered to a light source or to have a light source surgically implanted into the animal. Moreover, when optogenetic methods are used to alter the function of neurons in the brain, a light source must be placed in proximity to those neurons. This requires drilling a hole in the animal's skull and also presents practical difficulties when the brain region of interest is located deep within the brain itself. Since light poorly passes through neural tissue, this necessitates inserting a fiber optic light source into the brain, which can result in unintended damage to surrounding brain tissue.
- What is needed, therefore, is a method to non-invasively deliver light to neurons located within the brain and the peripheral nervous system of animals expressing light-responsive opsin proteins on the plasma membranes of neural cells.
- Throughout this specification, references are made to publications (e.g., scientific articles), patent applications, patents, etc., all of which are herein incorporated by reference in their entirety.
- Provided herein are compositions and methods for non-invasively delivering light to neurons expressing light-responsive opsin proteins on neural plasma membranes via the use of nanoparticles capable of upshifting electromagnetic radiation from wavelengths associated with the infrared (IR) or near infrared (NIR) spectrum into wavelengths associated with visible light.
- Accordingly, provided herein is a method to depolarize the plasma membrane of a neural cell in an individual comprising: (a) placing a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and (b) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum by the nanoparticles, and wherein a light-responsive opsin is expressed on the plasma membrane of the neural cells and activation of the opsin by the light in the visible spectrum induces the depolarization of the plasma membrane.
- In other aspects, provided herein is a method to depolarize the plasma membrane of a neural cell in an individual comprising: (a) administering a polynucleotide encoding a light-responsive opsin to an individual, wherein the light-responsive protein is expressed on the plasma membrane of a neural cell in the individual, and the opsin is capable of inducing membrane depolarization of the neural cell when illuminated with light; (b) administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and (c) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the depolarization of the plasma membrane.
- In some aspects, provided herein is a method to hyperpolarize the plasma membrane of a neural cell in an individual comprising: (a) placing a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and (b) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum by the nanoparticles, and wherein a light-responsive opsin is expressed on the plasma membrane and activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
- In yet other aspects, provided herein is a method to hyperpolarize the plasma membrane of a neural cell in an individual comprising: (a) administering a polynucleotide encoding a light-responsive opsin to an individual, wherein the light-responsive protein is expressed on the plasma membrane of a neural cell in the individual, and the opsin is capable of inducing membrane hyperpolarization of the neural cell when illuminated with light; (b) administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and (c) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
- The present disclosure is directed to apparatuses and methods involving upconversion for deep delivery of light in vivo. Aspects of the present disclosure relate generally to delivery of light to tissue in vivo using upconversion of near infrared light to the visible light spectrum and methods relating to the applications discussed herein.
- Certain aspects of the present disclosure are directed to a light source that is implanted within living tissue. Nanoparticles from the nanoparticle solution anchor to a target cell population that includes cells expressing light responsive channels/opsins. The nanoparticles are configured to respond to receipt of light of a first wavelength by emitting light of a second, different wavelength. For example, the nanoparticles can upconvert received light and thereby emit light of a higher frequency.
- Embodiments of the present disclosure are directed towards injection of a site of interest with a virus, caring an opsin gene and a nanoparticle solution. The virus causes a target cell population at the site of interest to express the opsin gene. Various different light sources are possible. The use of different wavelengths can be particularly useful for facilitating the use of different (external) light sources, e.g., as certain wavelengths exhibit corresponding decreases in absorption by tissue of the brain or otherwise.
- Consistent with a particular embodiment of the present disclosure, a light-emitting diode (“LED”) is placed on a portion of a skull that has been thinned. The LED is placed under the skin near the thinned portion of the skull, and the location and/or orientation of the LED is chosen, at least in part, based on the location of the target cell population. For example, the LED can be placed to reduce the distance between the LED and the target cell population and oriented accordingly.
- In certain more specific aspects of the present disclosure, light from the LED travels through surrounding tissue to the nanoparticles. When (near) infrared light hits the nanoparticles, the nanoparticles absorb the infrared (IR) photons and emit visible photons. The visible photons are then absorbed by the opsins expressed within the target cell population causing a response therein (e.g., triggering neural excitation or inhibition).
- The LED can be powered by a battery similar to those used for pacemakers. The LED can emit light in the infrared spectrum, and particularly between 700 nm-1000 nm, which can travel through the skull and intervening tissue. The light emitted from the nanoparticles has a spectra centered between 450-550 nm. The wavelength of the light emitted is dependent on characteristics of the nanoparticle.
- The above overview is not intended to describe each illustrated embodiment or every implementation of the present disclosure.
- Various example embodiments may be more completely understood in consideration of the following description and the accompanying drawings, in which:
-
FIG. 1 shows a cross section of a skull, consistent with an embodiment of the present disclosure. -
FIG. 2 shows light delivery to target neurons, consistent with an embodiment of the present disclosure. -
FIG. 3 depicts a system that uses multiple light sources, consistent with an embodiment of the present disclosure. - While the present disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the present disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the present disclosure including aspects defined in the claims.
- This invention provides, inter alia, compositions and methods for delivering light to neural cells expressing one or more light-responsive opsin proteins on the plasma membranes of those neural cells. The inventors have discovered that nanoparticles doped with a lanthanide metal (for example, Gadolinium) that converts infrared (IR) or near infrared (NIR) electromagnetic radiation into wavelengths corresponding to the visible light spectrum can be used to activate light-responsive opsin proteins on the plasma membrane of a neural cell and selectively alter the membrane polarization state of the cell. Unlike visible light, IR or NIR electromagnetic energy readily penetrates biological tissues. For example, NIR can penetrate biological tissues for distances of up to 4 centimeters (Heyward & Dale Wagner, “Applied Body Composition Assessment”, 2nd edition (2004), p. 100). Certain equations useful for calculating light penetration in tissue as a function of wavelength are disclosed in U.S. Pat. No. 7,043,287, the contents of which are incorporated herein by reference. Similarly, U.S. Patent Application Publication No. 2007/0027411 discloses that near infrared Low Level Laser Treatment light penetrates the body to a depth of between 3-5 cm. Therefore, use of IR or NIR sources of electromagnetic radiation in optogenetic methods can alleviate the need to place a light source in direct proximity to neural cells. In particular, for optogenetic techniques in the brain, use of lanthanide-doped nanoparticles in combination with IR or NIR electromagnetic energy can permit activation of the opsin protein without the need to puncture the skull or insert a fiber optic light source into the brain. Similarly, in the peripheral nervous system, opsin-expressing nerves can be activated via IR or NM sources placed under the skin or worn against the skin.
- General Techniques
- The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, cell biology, biochemistry, nucleic acid chemistry, immunology, and physiology, which are well known to those skilled in the art. Such techniques are explained fully in the literature, such as, Molecular Cloning: A Laboratory Manual, second edition (Sambrook et al., 1989) and Molecular Cloning: A Laboratory Manual, third edition (Sambrook and Russel, 2001), (jointly referred to herein as “Sambrook”); Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987, including supplements through 2001); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Harlow and Lane (1988), Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York; Harlow and Lane (1999), Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (jointly referred to herein as “Harlow and Lane”), Beaucage et al. eds., Current Protocols in Nucleic Acid Chemistry, John Wiley & Sons, Inc., New York, 2000), Handbook of Experimental Immunology, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987), and Gene Transfer Vectors for Mammalian Cells (J. M. Miller & M. P. Calos, eds., 1987). Other useful references include Harrison's Principles of Internal Medicine (McGraw Hill; J. Isseleacher et al., eds.) and Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects (Springer-Verlag, Berlin, Heidelberg; Hanninen & Harma, eds., 2011).
- As used herein, “infrared” or “near infrared” or “infrared light” or “near infrared light” refers to electromagnetic radiation in the spectrum immediately above that of visible light, measured from the nominal edge of visible red light at 0.74 μm, and extending to 300 μm. These wavelengths correspond to a frequency range of approximately 1 to 400 THz. In particular, “near infrared” or “near infrared light” also refers to electromagnetic radiation measuring 0.75-1.4 μm in wavelength, defined by the water absorption.
- “Visible light” is defined as electromagnetic radiation with wavelengths between 380 nm and 750 nm. In general, “electromagnetic radiation,” including light, is generated by the acceleration and deceleration or changes in movement (vibration) of electrically charged particles, such as parts of molecules (or adjacent atoms) with high thermal energy, or electrons in atoms (or molecules).
- The term “nanoparticles” as used herein, can also refer to nanocrystals, nanorods, nanoclusters, clusters, particles, dots, quantum dots, small particles, and nanostructured materials. The term “nanoparticle” encompasses all materials with small size (generally, though not necessarily) less than 100 nm associated with quantum size effects.
- An “individual” is a mammal including a human. Mammals include, but are not limited to, farm animals, sport animals, pets, primates, mice and rats. Individuals also include companion animals including, but not limited to, dogs and cats. In some aspects, an individual is a non-human animal, such as a mammal. In another aspect, an individual is a human.
- As used herein, the singular form “a”, “an”, and “the” includes plural references unless indicated otherwise.
- It is intended that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
- Lanthanide-Doped Nanoparticles
- In materials science, doping is commonly used to incorporate specific species of ions or atoms into a host lattice core structure to produce hybrid materials with new and useful properties. When synthesizing nanoparticles, doping can influence not only the size and shape of the particles, but also other properties, such as the ability to convert near infrared (NIR) excitation into a visible emission of light.
- The lanthanide metals, or lanthanoids (also known as the “Rare Earth” metals), are elements of atomic number 57 (Lanthanum) through 71 (Lutetium), and often include Yttrium (atomic number 39) and Scandium (atomic number 21) because of their chemical similarities. Lanthanide ions exhibit unique luminescent properties, including the ability to convert near infrared long-wavelength excitation radiation into shorter visible wavelengths through a process known as photon upconversion. Lanthanides usually exist as trivalent cations, in which case their electronic configuration is (Xe) 4f, with n varying from 1 (Ce3+) to 14 (Lu3+). The transitions within the f-manifold are responsible for many of the photo-physical properties of the lanthanide ions, such as long-lived luminescence and sharp absorption and emission lines. The f-electrons are shielded from external perturbations by filled 5s and 5p orbitals, thus giving rise to line-like spectra. Additionally, the f-f electronic transitions of lanthanides are LaPorte forbidden, leading to long excited state lifetimes, in the micro- to millisecond range.
- In some embodiments, any known method can be used to synthesize lanthanide-doped nanoparticles. Such methods are well known in the art (See, e.g., Xu & Li, 2007, Clin Chem., 53(8):1503-10; Wang et al., 2010, Nature, 463(7284):1061-5; U.S. Patent Application Publication Nos.: 2003/0030067 and 2010/0261263; and U.S. Pat. No. 7,550,201, the disclosures of each of which are incorporated herein by reference in their entireties). For example, in some embodiments, lanthanide-doped nanorods can be synthesized with a NaYF4 dielectric core, wherein a DI water solution (1.5 ml) of 0.3 g NaOH is mixed with 5 ml of ethanol and 5 ml of oleic acid under stirring. To the resulting mixture is selectively added 2 ml of RECl3 (0.2 M, RE=Y, Yb, Er, Gd, Sm, Nd or La) and 1 ml of NH4F (2 M). The solution is then transferred into an autoclave and heated at 200° C. for 2 h. Nanorods are then obtained by centrifugation, washed with water and ethanol several times, and finally re-dispersed in cyclohexane. In another non-limiting example, nanoparticles can be synthesized using 2 ml of RECl3 (0.2 M, RE=Y, Yb, Er, Gd, or Tm) in methanol added to a flask containing 3 ml oleic acid and 7 ml of 1-octadecene. This solution is then heated to 160° C. for 30 min and cooled down to room temperature. Thereafter, a 5 ml methanol solution of NH4F (1.6 mmol) and NaOH (1 mmol) is added and the solution is stirred for 30 min. After methanol evaporation, the solution is next heated to 300° C. under argon for 1.5 h and cooled down to room temperature. The resulting nanoparticles are precipitated by the addition of ethanol, collected by centrifugation, washed with methanol and ethanol several times, and finally re-dispersed in cyclohexane.
- In one embodiment, the materials for the lanthanide-doped nanoparticle core can include a wide variety of dielectric materials. In various embodiments, the dielectric core can include lanthanide-doped oxide materials. Lanthanides include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). Other suitable dielectric core materials include non-lanthanide elements such as yttrium (Y) and scandium (Sc). Hence, suitable dielectric core materials include, but are not limited to, Y2O3, Y2O2S, NaYF4, NaYbF4, Na doped YbF3, YAG, YAP, Nd2O3, LaF3, LaCl3, La2O3, TiO2, LuPO4, YVO4, YbF3, YF3, or SiO2. In one embodiment, the dielectric nanoparticle core is NaYF4. These dielectric cores can be doped with one or more Er, Eu, Yb, Tm, Nd, Tb, Ce, Y, U, Pr, La, Gd and other rare-earth species or a combination thereof. In one embodiment, the dielectric core material is doped with Gd. In another embodiment, the lanthanide-doped nanoparticle comprises NaYF4:Yb/X/Gd, wherein X is Er, Tm, or Er/Tm. In some embodiments, the lanthanide-doped nanoparticles comprise a NaYF4:Yb/Er (18/2 mol %) dielectric core doped with any of about 0 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, about 25 mol %, about 30 mol %, about 35 mol %, about 40 mol %, about 45 mol %, about 50 mol %, about 55 mol %, about or 60 mol % Gd3+ ions, inclusive, including any mol % in between these values. In other embodiments, the lanthanide-doped nanoparticles comprise a NaYF4:Yb/Er (18/2 mol %) dielectric core doped with any of about 0 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, about 25 mol %, or about 30 mol % Yb3+ ions, inclusive, including any mol % in between these values. In yet other embodiments, the lanthanide-doped nanoparticles comprise a NaYF4:Yb/Er (18/2 mol %) dielectric core doped with any of about 0 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, about 25 mol %, or about 30 mol % Er3+ ions, inclusive, including any mol % in between these values. In other embodiments, the lanthanide-doped nanoparticles comprise a NaYF4:Yb/Er (18/2 mol %) dielectric core doped with any of about 0 mol %, about 5 mol %, about 10 mol %, about 15 mol %, about 20 mol %, about 25 mol %, or about 30 mol % Tm3+ ions, inclusive, including any mol % in between these values. In another embodiment, the lanthanide-doped nanoparticle is selected from the group consisting of NaYF4:Yb/Er/Gd (18/2/5 mol %), NaYF4:Yb/Tm/Er/Gd (20/0.2/0.1/5 mol %), NaYF4:Yb/Tm/Er/Gd (20/0.2/0.05/5 mol %), and NaYF4:Yb/Tm/Gd (20/0.2/5 mol %).
- In some aspects, the lanthanide-doped nanoparticles disclosed herein are conjugated to one or more delivery molecules to target them to one or more molecules expressed on the surface of a neural cell of interest (such as a neural cell expressing one or more light-responsive opsin proteins on its plasma membrane). These can include, without limitation, antibodies or fragments thereof, small molecules, as well as lectins or any other carbohydrate motif. The delivery molecules ensure that the lanthanide-doped nanoparticles remain in close proximity to the opsin proteins to permit activation upon upconversion of IR or NIR electromagnetic radiation. Antibody conjugation to nanoparticles is well-known in the art (See, e.g., U.S. Patent Application Publication No.: 2010/0209352 and 2008/0267876, the contents of each of which are incorporated by reference herein in their entireties).
- In another aspect, lanthanide-doped nanoparticles can be embedded or trapped within a biocompatible material which is surgically placed proximal to (such as adjacent to or around) the neural cell of interest (such as a neural cell expressing one or more light-responsive opsin proteins on its plasma membrane). In some embodiments, the biocompatible material is transparent, so that visible light produced by the upconversion of IR or NIR electromagnetic radiation by the lanthanide-doped nanoparticles can reach the light-responsive opsin proteins expressed on the surface of the neural cell of interest. The biocompatible materials used to embed or trap the lanthanide-doped nanoparticles can include, but are not limited to, Ioplex materials and other hydrogels such as those based on 2-hydroxyethyl methacrylate or acrylamide, and poly ether polyurethane ureas (PEUU) including Biomer (Ethicon Corp.), Avcothane (Avco-Everrett Laboratories), polyethylene, polypropylene, polytetrafluoroethylene (Gore-Tex™), poly(vinylchloride), polydimethylsiloxane, an ethylene-acrylic acid copolymer, knitted or woven Dacron, polyester-polyurethane, polyurethane, polycarbonatepolyurethane (Corethane™), polyamide (Nylon) and polystyrene. In one embodiment, the biocompatible material can be polydimethylsiloxane (PDMS). Additional compounds that may be used for embedding and/or trapping the lanthanide-doped nanoparticles disclosed herein are described in Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition 1982 (Vol. 19, pp. 275-313, and Vol. 18, pp. 219-2220), van der Giessen et al., 1996, Circulation, 94:1690-1997 (1996), U.S. Patent Application Publication No.: 2011/0054305, and U.S. Pat. No. 6,491,965, the contents of each which are incorporated herein by reference in their entireties.
- Light-Responsive Opsin Proteins
- Provided herein are optogenetic-based compositions for selectively hyperpolarizing or depolarizing neurons of the central or peripheral nervous system. Optogenetics refers to the combination of genetic and optical methods used to control specific events in targeted cells of living tissue, even within freely moving mammals and other animals, with the temporal precision (millisecond-timescale) needed to keep pace with functioning intact biological systems. Optogenetics requires the introduction of fast light-responsive channel or pump proteins to the plasma membranes of target neuronal cells that allow temporally precise manipulation of neuronal membrane potential while maintaining cell-type resolution through the use of specific targeting mechanisms.
- Light-responsive opsins that may be used in the present invention include opsins that induce hyperpolarization in neurons by light and opsins that induce depolarization in neurons by light. Examples of opsins are shown in Tables 1 and 2 below.
-
Opsin Biological Wavelength Type Origin Sensitivity Defined action NpHR Natronomonas 589 nm max Inhibition pharaonis (hyperpolarization) BR Halobacterium 570 nm max Inhibition helobium (hyperpolarization) AR Acetabulaira 518 nm max Inhibition acetabulum (hyperpolarization) GtR3 Guillardia 472 nm max Inhibition theta (hyperpolarization) Mac Leptosphaeria 470-500 nm max Inhibition maculans (hyperpolarization) NpHr3.0 Natronomonas 680 nm utility Inhibition pharaonis 589 nm max (hyperpolarization) NpHR3.1 Natronomonas 680 nm utility Inhibition pharaonis 589 nm max (hyperpolarization) -
Wavelength Opsin Type Biological Origin Sensitivity Defined action VChR1 Volvox carteri 589 nm utility Excitation 535 nm max (depolarization) DChR Dunaliella salina 500 nm max Excitation (depolarization) ChR2 Chlamydomonas 470 nm max Excitation reinhardtii 380-405 nm utility (depolarization) ChETA Chlamydomonas 470 nm max Excitation reinhardtii 380-405 nm utility (depolarization) SFO Chlamydomonas 470 nm max Excitation reinhardtii 530 nm max (depolarization) Inactivation SSFO Chlamydomonas 445 nm max Step-like activation reinhardtii 590 nm; 390-400 nm (depolarization) Inactivation C1V1 Volvox carteri and 542 nm max Excitation Chlamydomonas (depolarization) reinhardtii C1V1 E122 Volvox carteri and 546 nm max Excitation Chlamydomonas (depolarization) reinhardtii C1V1 E162 Volvox carteri and 542 nm max Excitation Chlamydomonas (depolarization) reinhardtii C1V1 E122/E162 Volvox carteri and 546 nm max Excitation Chlamydomonas (depolarization) reinhardtii - As used herein, a light-responsive opsin (such as NpHR, BR, AR, GtR3, Mac, ChR2, VChR1, DChR, and ChETA) includes naturally occurring protein and functional variants, fragments, fusion proteins comprising the fragments, or the full length protein. For example, the signal peptide may be deleted. A variant may have an amino acid sequence at least about any of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the naturally occurring protein sequence. A functional variant may have the same or similar hyperpolarization function or depolarization function as the naturally occurring protein.
- Enhanced Intracellular Transport Amino Acid Motifs
- The present disclosure provides for the modification of light-responsive opsin proteins expressed in a cell by the addition of one or more amino acid sequence motifs which enhance transport to the plasma membranes of mammalian cells. Light-responsive opsin proteins having components derived from evolutionarily simpler organisms may not be expressed or tolerated by mammalian cells or may exhibit impaired subcellular localization when expressed at high levels in mammalian cells. Consequently, in some embodiments, the light-responsive opsin proteins expressed in a cell can be fused to one or more amino acid sequence motifs selected from the group consisting of a signal peptide, an endoplasmic reticulum (ER) export signal, a membrane trafficking signal, and/or an N-terminal golgi export signal. The one or more amino acid sequence motifs which enhance light-responsive opsin protein transport to the plasma membranes of mammalian cells can be fused to the N-terminus, the C-terminus, or to both the N- and C-terminal ends of the light-responsive opsin protein. Optionally, the light-responsive opsin protein and the one or more amino acid sequence motifs may be separated by a linker. In some embodiments, the light-responsive opsin protein can be modified by the addition of a trafficking signal (ts) which enhances transport of the protein to the cell plasma membrane. In some embodiments, the trafficking signal can be derived from the amino acid sequence of the human inward rectifier potassium channel Kir2.1. In other embodiments, the trafficking signal can comprise the amino acid sequence KSRITSEGEYIPLDQIDINV.
- Additional protein motifs which can enhance light-responsive opsin protein transport to the plasma membrane of a cell are described in U.S. Patent Application Publication No. 2009/0093403, which is incorporated herein by reference in its entirety. In some embodiments, the signal peptide sequence in the protein can be deleted or substituted with a signal peptide sequence from a different protein.
- Light-Responsive Chloride Pumps
- In some aspects, the light-responsive opsin proteins described herein are light-responsive chloride pumps. In some aspects of the methods provided herein, one or more members of the Halorhodopsin family of light-responsive chloride pumps are expressed on the plasma membranes of neurons of the central and peripheral nervous systems.
- In some aspects, said one or more light-responsive chloride pump proteins expressed on the plasma membranes of nerve cells of the central or peripheral nervous systems can be derived from Natronomonas pharaonic. In some embodiments, the light-responsive chloride pump proteins can be responsive to amber light as well as red light and can mediate a hyperpolarizing current in the interneuron when the light-responsive chloride pump proteins are illuminated with amber or red light. The wavelength of light which can activate the light-responsive chloride pumps can be between about 580 and about 630 nm. In some embodiments, the light can be at a wavelength of about 590 nm or the light can have a wavelength greater than about 630 nm (e.g. less than about 740 nm). In another embodiment, the light has a wavelength of around 630 nm. In some embodiments, the light-responsive chloride pump protein can hyperpolarize a neural membrane for at least about 90 minutes when exposed to a continuous pulse of light. In some embodiments, the light-responsive chloride pump protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1. Additionally, the light-responsive chloride pump protein can comprise substitutions, deletions, and/or insertions introduced into a native amino acid sequence to increase or decrease sensitivity to light, increase or decrease sensitivity to particular wavelengths of light, and/or increase or decrease the ability of the light-responsive protein to regulate the polarization state of the plasma membrane of the cell. In some embodiments, the light-responsive chloride pump protein contains one or more conservative amino acid substitutions. In some embodiments, the light-responsive protein contains one or more non-conservative amino acid substitutions. The light-responsive protein comprising substitutions, deletions, and/or insertions introduced into the native amino acid sequence suitably retains the ability to hyperpolarize the plasma membrane of a neuronal cell in response to light.
- Additionally, in other aspects, the light-responsive chloride pump protein can comprise a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1 and an endoplasmic reticulum (ER) export signal. This ER export signal can be fused to the C-terminus of the core amino acid sequence or can be fused to the N-terminus of the core amino acid sequence. In some embodiments, the ER export signal is linked to the core amino acid sequence by a linker. The linker can comprise any of about 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length. The linker may further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein. In some embodiments, the ER export signal can comprise the amino acid sequence FXYENE, where X can be any amino acid. In another embodiment, the ER export signal can comprise the amino acid sequence VXXSL, where X can be any amino acid. In some embodiments, the ER export signal can comprise the amino acid sequence FCYENEV.
- In other aspects, the light-responsive chloride pump proteins provided herein can comprise a light-responsive protein expressed on the cell membrane, wherein the protein comprises a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1 and a trafficking signal (e.g., which can enhance transport of the light-responsive chloride pump protein to the plasma membrane). The trafficking signal may be fused to the C-terminus of the core amino acid sequence or may be fused to the N-terminus of the core amino acid sequence. In some embodiments, the trafficking signal can be linked to the core amino acid sequence by a linker which can comprise any of about 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length. The linker may further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein. In some embodiments, the trafficking signal can be derived from the amino acid sequence of the human inward rectifier potassium channel Kir2.1. In other embodiments, the trafficking signal can comprise the amino acid sequence KSRITSEGEYIPLDQIDINV.
- In some aspects, the light-responsive chloride pump protein can comprise a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1 and at least one (such as one, two, three, or more) amino acid sequence motifs which enhance transport to the plasma membranes of mammalian cells selected from the group consisting of an ER export signal, a signal peptide, and a membrane trafficking signal. In some embodiments, the light-responsive chloride pump protein comprises an N-terminal signal peptide, a C-terminal ER Export signal, and a C-terminal trafficking signal. In some embodiments, the C-terminal ER Export signal and the C-terminal trafficking signal can be linked by a linker. The linker can comprise any of about 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length. The linker can also further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein. In some embodiments the ER Export signal can be more C-terminally located than the trafficking signal. In other embodiments the trafficking signal is more C-terminally located than the ER Export signal. In some embodiments, the signal peptide comprises the amino acid sequence MTETLPPVTESAVALQAE. In another embodiment, the light-responsive chloride pump protein comprises an amino acid sequence at least 95% identical to SEQ ID NO:2.
- Moreover, in other aspects, the light-responsive chloride pump proteins can comprise a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO: 1, wherein the N-terminal signal peptide of SEQ ID NO:1 is deleted or substituted. In some embodiments, other signal peptides (such as signal peptides from other opsins) can be used. The light-responsive protein can further comprise an ER transport signal and/or a membrane trafficking signal described herein. In some embodiments, the light-responsive chloride pump protein comprises an amino acid sequence at least 95% identical to SEQ ID NO:3.
- In some embodiments, the light-responsive opsin protein is a NpHR opsin protein comprising an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to the sequence shown in SEQ ID NO:1. In some embodiments, the NpHR opsin protein further comprises an endoplasmic reticulum (ER) export signal and/or a membrane trafficking signal. For example, the NpHR opsin protein comprises an amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1 and an endoplasmic reticulum (ER) export signal. In some embodiments, the amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1 is linked to the ER export signal through a linker. In some embodiments, the ER export signal comprises the amino acid sequence FXYENE, where X can be any amino acid. In another embodiment, the ER export signal comprises the amino acid sequence VXXSL, where X can be any amino acid. In some embodiments, the ER export signal comprises the amino acid sequence FCYENEV. In some embodiments, the NpHR opsin protein comprises an amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1, an ER export signal, and a membrane trafficking signal. In other embodiments, the NpHR opsin protein comprises, from the N-terminus to the C-terminus, the amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1, the ER export signal, and the membrane trafficking signal. In other embodiments, the NpHR opsin protein comprises, from the N-terminus to the C-terminus, the amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1, the membrane trafficking signal, and the ER export signal. In some embodiments, the membrane trafficking signal is derived from the amino acid sequence of the human inward rectifier potassium channel Kir2.1. In some embodiments, the membrane trafficking signal comprises the amino acid sequence KSRITSEGEYIPLDQIDINV. In some embodiments, the membrane trafficking signal is linked to the amino acid sequence at least 95% identical to the sequence shown in SEQ ID NO:1 by a linker. In some embodiments, the membrane trafficking signal is linked to the ER export signal through a linker. The linker may comprise any of 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length. The linker may further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein. In some embodiments, the light-responsive opsin protein further comprises an N-terminal signal peptide. In some embodiments, the light-responsive opsin protein comprises the amino acid sequence of SEQ ID NO:2. In some embodiments, the light-responsive opsin protein comprises the amino acid sequence of SEQ ID NO:3.
- Also provided herein are polynucleotides encoding any of the light-responsive chloride ion pump proteins described herein, such as a light-responsive protein comprising a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:1, an ER export signal, and a membrane trafficking signal. In another embodiment, the polynucleotides comprise a sequence which encodes an amino acid at least 95% identical to SEQ ID NO:2 and/or SEQ ID NO:3. The polynucleotides may be in an expression vector (such as, but not limited to, a viral vector described herein). The polynucleotides may be used for expression of the light-responsive chloride ion pump proteins in neurons of the central or peripheral nervous systems.
- Further disclosure related to light-responsive chloride pump proteins can be found in U.S. Patent Application Publication Nos: 2009/0093403 and 2010/0145418 as well as in International Patent Application No: PCT/US2011/028893, the disclosures of each of which are hereby incorporated by reference in their entireties.
- Light-Responsive Proton Pumps
- In some aspects, the light-responsive opsin proteins described herein are light-responsive proton pumps. In some aspects of the compositions and methods provided herein, one or more light-responsive proton pumps are expressed on the plasma membranes of neurons of the central or peripheral nervous systems.
- In some embodiments, the light-responsive proton pump protein can be responsive to blue light and can be derived from Guillardia theta, wherein the proton pump protein can be capable of mediating a hyperpolarizing current in the cell when the cell is illuminated with blue light. The light can have a wavelength between about 450 and about 495 nm or can have a wavelength of about 490 nm. In another embodiment, the light-responsive proton pump protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:4. The light-responsive proton pump protein can additionally comprise substitutions, deletions, and/or insertions introduced into a native amino acid sequence to increase or decrease sensitivity to light, increase or decrease sensitivity to particular wavelengths of light, and/or increase or decrease the ability of the light-responsive proton pump protein to regulate the polarization state of the plasma membrane of the cell. Additionally, the light-responsive proton pump protein can contain one or more conservative amino acid substitutions and/or one or more non-conservative amino acid substitutions. The light-responsive proton pump protein comprising substitutions, deletions, and/or insertions introduced into the native amino acid sequence suitably retains the ability to hyperpolarize the plasma membrane of a neuronal cell in response to light.
- In other aspects of the methods disclosed herein, the light-responsive proton pump protein can comprise a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:4 and at least one (such as one, two, three, or more) amino acid sequence motifs which enhance transport to the plasma membranes of mammalian cells selected from the group consisting of a signal peptide, an ER export signal, and a membrane trafficking signal. In some embodiments, the light-responsive proton pump protein comprises an N-terminal signal peptide and a C-terminal ER export signal. In some embodiments, the light-responsive proton pump protein comprises an N-terminal signal peptide and a C-terminal trafficking signal. In some embodiments, the light-responsive proton pump protein comprises an N-terminal signal peptide, a C-terminal ER Export signal, and a C-terminal trafficking signal. In some embodiments, the light-responsive proton pump protein comprises a C-terminal ER Export signal and a C-terminal trafficking signal. In some embodiments, the C-terminal ER Export signal and the C-terminal trafficking signal are linked by a linker. The linker can comprise any of about 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, or 500 amino acids in length. The linker may further comprise a fluorescent protein, for example, but not limited to, a yellow fluorescent protein, a red fluorescent protein, a green fluorescent protein, or a cyan fluorescent protein. In some embodiments the ER Export signal is more C-terminally located than the trafficking signal. In some embodiments the trafficking signal is more C-terminally located than the ER Export signal.
- Also provided herein are isolated polynucleotides encoding any of the light-responsive proton pump proteins described herein, such as a light-responsive proton pump protein comprising a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:4. Also provided herein are expression vectors (such as a viral vector described herein) comprising a polynucleotide encoding the proteins described herein, such as a light-responsive proton pump protein comprising a core amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:4. The polynucleotides may be used for expression of the light-responsive proton pumps in neural cells of the central or peripheral nervous systems.
- Further disclosure related to light-responsive proton pump proteins can be found in International Patent Application No. PCT/US2011/028893, the disclosure of which is hereby incorporated by reference in its entirety.
- Light-Activated Cation Channel Proteins
- In some aspects, the light-responsive opsin proteins described herein are light-activated cation channel proteins. In some aspects of the methods provided herein, one or more light-activated cation channels can be expressed on the plasma membranes of the neural cells of the central or peripheral nervous systems.
- In some aspects, the light-activated cation channel protein can be derived from Chlamydomonas reinhardtii, wherein the cation channel protein can be capable of mediating a depolarizing current in the cell when the cell is illuminated with light. In another embodiment, the light-activated cation channel protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:5. The light used to activate the light-activated cation channel protein derived from Chlamydomonas reinhardtii can have a wavelength between about 460 and about 495 nm or can have a wavelength of about 480 nm. Additionally, the light can have an intensity of at least about 100 Hz. In some embodiments, activation of the light-activated cation channel derived from Chlamydomonas reinhardtii with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the light-activated cation channel. The light-activated cation channel protein can additionally comprise substitutions, deletions, and/or insertions introduced into a native amino acid sequence to increase or decrease sensitivity to light, increase or decrease sensitivity to particular wavelengths of light, and/or increase or decrease the ability of the light-activated cation channel protein to regulate the polarization state of the plasma membrane of the cell.
- Additionally, the light-activated cation channel protein can contain one or more conservative amino acid substitutions and/or one or more non-conservative amino acid substitutions. The light-activated proton pump protein comprising substitutions, deletions, and/or insertions introduced into the native amino acid sequence suitably retains the ability to depolarize the plasma membrane of a neuronal cell in response to light.
- Further disclosure related to light-activated cation channel proteins can be found in U.S. Patent Application Publication No. 2007/0054319 and International Patent Application Publication Nos. WO 2009/131837 and WO 2007/024391, the disclosures of each of which are hereby incorporated by reference in their entireties.
- Step Function Opsins and Stabilized Step Function Opsins
- In other embodiments, the light-activated cation channel protein can be a step function opsin (SFO) protein or a stabilized step function opsin (SSFO) protein that can have specific amino acid substitutions at key positions throughout the retinal binding pocket of the protein. In some embodiments, the SFO protein can have a mutation at amino acid residue C128 of SEQ ID NO:5. In other embodiments, the SFO protein has a C128A mutation in SEQ ID NO:5. In other embodiments, the SFO protein has a C128S mutation in SEQ ID NO:5. In another embodiment, the SFO protein has a C128T mutation in SEQ ID NO:5. In some embodiments, the SFO protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:6.
- In some embodiments, the SSFO protein can have a mutation at amino acid residue D156 of SEQ ID NO:5. In other embodiments, the SSFO protein can have a mutation at both amino acid residues C128 and D156 of SEQ ID NO:5. In one embodiment, the SSFO protein has an C128S and a D156A mutation in SEQ ID NO:5. In another embodiment, the SSFO protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:7.
- In some embodiments the SFO or SSFO proteins provided herein can be capable of mediating a depolarizing current in the cell when the cell is illuminated with blue light. In other embodiments, the light can have a wavelength of about 445 nm. Additionally, the light can have an intensity of about 100 Hz. In some embodiments, activation of the SFO or SSFO protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the SFO or SSFO protein. In some embodiments, each of the disclosed step function opsin and stabilized step function opsin proteins can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- Further disclosure related to SFO or SSFO proteins can be found in International Patent Application Publication No. WO 2010/056970 and U.S. Provisional Patent Application Nos. 61/410,704 and 61/511,905, the disclosures of each of which are hereby incorporated by reference in their entireties.
- C1V1 Chimeric Cation Channels
- In other embodiments, the light-activated cation channel protein can be a C1V1 chimeric protein derived from the VChR1 protein of Volvox carteri and the ChR1 protein from Chlamydomonas reinhardti, wherein the protein comprises the amino acid sequence of VChR1 having at least the first and second transmembrane helices replaced by the first and second transmembrane helices of ChR1; is responsive to light; and is capable of mediating a depolarizing current in the cell when the cell is illuminated with light. In some embodiments, the C1V1 protein can further comprise a replacement within the intracellular loop domain located between the second and third transmembrane helices of the chimeric light responsive protein, wherein at least a portion of the intracellular loop domain is replaced by the corresponding portion from ChR1. In another embodiment, the portion of the intracellular loop domain of the C1V1 chimeric protein can be replaced with the corresponding portion from ChR1 extending to amino acid residue A145 of the ChR1. In other embodiments, the C1V1 chimeric protein can further comprise a replacement within the third transmembrane helix of the chimeric light responsive protein, wherein at least a portion of the third transmembrane helix is replaced by the corresponding sequence of ChR1. In yet another embodiment, the portion of the intracellular loop domain of the C1V1 chimeric protein can be replaced with the corresponding portion from ChR1 extending to amino acid residue W163 of the ChR1. In other embodiments, the C1V1 chimeric protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:8.
- In some embodiments, the C1V1 protein can mediate a depolarizing current in the cell when the cell is illuminated with green light. In other embodiments, the light can have a wavelength of between about 540 nm to about 560 nm. In some embodiments, the light can have a wavelength of about 542 nm. In some embodiments, the C1V1 chimeric protein is not capable of mediating a depolarizing current in the cell when the cell is illuminated with violet light. In some embodiments, the chimeric protein is not capable of mediating a depolarizing current in the cell when the cell is illuminated with light having a wavelength of about 405 nm. Additionally, the light can have an intensity of about 100 Hz. In some embodiments, activation of the C1V1 chimeric protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the C1V1 chimeric protein. In some embodiments, the disclosed C1V1 chimeric protein can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- C1V1 Chimeric Mutant Variants
- In some aspects, the invention can include polypeptides comprising substituted or mutated amino acid sequences, wherein the mutant polypeptide retains the characteristic light-responsive nature of the precursor C1V1 chimeric polypeptide but may also possess altered properties in some specific aspects. For example, the mutant light-activated C1V1 chimeric proteins described herein can exhibit an increased level of expression both within an animal cell or on the animal cell plasma membrane; an altered responsiveness when exposed to different wavelengths of light, particularly red light; and/or a combination of traits whereby the chimeric C1V1 polypeptide possess the properties of low desensitization, fast deactivation, low violet-light activation for minimal cross-activation with other light-activated cation channels, and/or strong expression in animal cells.
- Accordingly, provided herein are C1V1 chimeric light-activated proteins that can have specific amino acid substitutions at key positions throughout the retinal binding pocket of the VChR1 portion of the chimeric polypeptide. In some embodiments, the C1V1 protein can have a mutation at amino acid residue E122 of SEQ ID NO:7. In some embodiments, the C1V1 protein can have a mutation at amino acid residue E162 of SEQ ID NO:7. In other embodiments, the C1V1 protein can have a mutation at both amino acid residues E162 and E122 of SEQ ID NO:7. In other embodiments, the C1V1 protein can comprise an amino acid sequence at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the sequence shown in SEQ ID NO:9, SEQ ID NO:10, or SEQ ID NO:11. In some embodiments, each of the disclosed mutant C1V1 chimeric proteins can have specific properties and characteristics for use in depolarizing the membrane of an animal cell in response to light.
- In some aspects, the C1V1-E122 mutant chimeric protein is capable of mediating a depolarizing current in the cell when the cell is illuminated with light. In some embodiments the light can be green light. In other embodiments, the light can have a wavelength of between about 540 nm to about 560 nm. In some embodiments, the light can have a wavelength of about 546 nm. In other embodiments, the C1V1-E122 mutant chimeric protein can mediate a depolarizing current in the cell when the cell is illuminated with red light. In some embodiments, the red light can have a wavelength of about 630 nm. In some embodiments, the C1V1-E122 mutant chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with violet light. In some embodiments, the chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with light having a wavelength of about 405 nm. Additionally, the light can have an intensity of about 100 Hz. In some embodiments, activation of the C1V1-E122 mutant chimeric protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the C1V1-E122 mutant chimeric protein. In some embodiments, the disclosed C1V1-E122 mutant chimeric protein can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- In other aspects, the C1V1-E162 mutant chimeric protein is capable of mediating a depolarizing current in the cell when the cell is illuminated with light. In some embodiments the light can be green light. In other embodiments, the light can have a wavelength of between about 540 nm to about 535 nm. In some embodiments, the light can have a wavelength of about 542 nm. In other embodiments, the light can have a wavelength of about 530 nm. In some embodiments, the C1V1-E162 mutant chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with violet light. In some embodiments, the chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with light having a wavelength of about 405 nm. Additionally, the light can have an intensity of about 100 Hz. In some embodiments, activation of the C1V1-E162 mutant chimeric protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the C1V1-E162 mutant chimeric protein. In some embodiments, the disclosed C1V1-E162 mutant chimeric protein can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- In yet other aspects, the C1V1-E122/E162 mutant chimeric protein is capable of mediating a depolarizing current in the cell when the cell is illuminated with light. In some embodiments the light can be green light. In other embodiments, the light can have a wavelength of between about 540 nm to about 560 nm. In some embodiments, the light can have a wavelength of about 546 nm. In some embodiments, the C1V1-E122/E162 mutant chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with violet light. In some embodiments, the chimeric protein does not mediate a depolarizing current in the cell when the cell is illuminated with light having a wavelength of about 405 nm. In some embodiments, the C1V1-E122/E162 mutant chimeric protein can exhibit less activation when exposed to violet light relative to C1V1 chimeric proteins lacking mutations at E122/E162 or relative to other light-activated cation channel proteins. Additionally, the light can have an intensity of about 100 Hz. In some embodiments, activation of the C1V1-E122/E162 mutant chimeric protein with light having an intensity of 100 Hz can cause depolarization-induced synaptic depletion of the neurons expressing the C1V1-E122/E162 mutant chimeric protein. In some embodiments, the disclosed C1V1-E122/E162 mutant chimeric protein can have specific properties and characteristics for use in depolarizing the membrane of a neuronal cell in response to light.
- Further disclosure related to C1V1 chimeric cation channels as well as mutant variants of the same can be found in U.S. Provisional Patent Application Nos. 61/410,736, 61/410,744, and 61/511,912, the disclosures of each of which are hereby incorporated by reference in their entireties.
- Polynucleotides
- The disclosure also provides polynucleotides comprising a nucleotide sequence encoding a light-responsive opsin protein described herein. In some embodiments, the polynucleotide comprises an expression cassette. In some embodiments, the polynucleotide is a vector comprising the above-described nucleic acid(s). In some embodiments, the nucleic acid encoding a light-activated protein of the disclosure is operably linked to a promoter. Promoters are well known in the art. Any promoter that functions in the host cell can be used for expression of the light-responsive opsin proteins and/or any variant thereof of the present disclosure. In one embodiment, the promoter used to drive expression of the light-responsive opsin proteins is a promoter that is specific to motor neurons. In another embodiment, the promoter used to drive expression of the light-responsive opsin proteins is a promoter that is specific to central nervous system neurons. In other embodiments, the promoter is capable of driving expression of the light-responsive opsin proteins in neurons of both the sympathetic and/or the parasympathetic nervous systems. Initiation control regions or promoters, which are useful to drive expression of the light-responsive opsin proteins or variant thereof in a specific animal cell are numerous and familiar to those skilled in the art. Virtually any promoter capable of driving these nucleic acids can be used. Examples of motor neuron-specific genes can be found, for example, in Kudo, et al., Human Mol. Genetics, 2010, 19(16): 3233-3253, the contents of which are hereby incorporated by reference in their entirety. In some embodiments, the promoter used to drive expression of the light-activated protein can be the Thy1 promoter, which is capable of driving robust expression of transgenes in neurons of both the central and peripheral nervous systems (See, e.g., Llewellyn, et al., 2010, Nat. Med., 16(10):1161-1166). In other embodiments, the promoter used to drive expression of the light-responsive opsin protein can be the EF1α promoter, a cytomegalovirus (CMV) promoter, the CAG promoter, the sinapsin promoter, or any other ubiquitous promoter capable of driving expression of the light-responsive opsin proteins in the peripheral and/or central nervous system neurons of mammals.
- Also provided herein are vectors comprising a nucleotide sequence encoding a light-responsive opsin protein or any variant thereof described herein. The vectors that can be administered according to the present invention also include vectors comprising a nucleotide sequence which encodes an RNA (e.g., an mRNA) that when transcribed from the polynucleotides of the vector will result in the accumulation of light-responsive opsin proteins on the plasma membranes of target animal cells. Vectors which may be used, include, without limitation, lentiviral, HSV, adenoviral, and andeno-associated viral (AAV) vectors. Lentiviruses include, but are not limited to HW-1, HIV-2, SW, FW and EIAV. Lentiviruses may be pseudotyped with the envelope proteins of other viruses, including, but not limited to VSV, rabies, Mo-MLV, baculovirus and Ebola. Such vectors may be prepared using standard methods in the art.
- In some embodiments, the vector is a recombinant AAV vector. AAV vectors are DNA viruses of relatively small size that can integrate, in a stable and site-specific manner, into the genome of the cells that they infect. They are able to infect a wide spectrum of cells without inducing any effects on cellular growth, morphology or differentiation, and they do not appear to be involved in human pathologies. The AAV genome has been cloned, sequenced and characterized. It encompasses approximately 4700 bases and contains an inverted terminal repeat (ITR) region of approximately 145 bases at each end, which serves as an origin of replication for the virus. The remainder of the genome is divided into two essential regions that carry the encapsidation functions: the left-hand part of the genome, that contains the rep gene involved in viral replication and expression of the viral genes; and the right-hand part of the genome, that contains the cap gene encoding the capsid proteins of the virus.
- AAV vectors may be prepared using standard methods in the art. Adeno-associated viruses of any serotype are suitable (See, e.g., Blacklow, pp. 165-174 of “Parvoviruses and Human Disease” J. R. Pattison, ed. (1988); Rose, Comprehensive Virology 3:1, 1974; P. Tattersall “The Evolution of Parvovirus Taxonomy” in Parvoviruses (J R Kerr, S F Cotmore. M E Bloom, R M Linden, C R Parrish, Eds.) p 5-14, Hudder Arnold, London, U K (2006); and D E Bowles, J E Rabinowitz, R T Samulski “The Genus Dependovirus” (J R Kerr, S F Cotmore. M E Bloom, R M Linden, C R Parrish, Eds.) p 15-23, Hudder Arnold, London, UK (2006), the disclosures of each of which are hereby incorporated by reference herein in their entireties). Methods for purifying for vectors may be found in, for example, U.S. Pat. Nos. 6,566,118, 6,989,264, and 6,995,006 and International Patent Application Publication No.: WO/1999/011764 titled “Methods for Generating High Titer Helper-free Preparation of Recombinant AAV Vectors”, the disclosures of which are herein incorporated by reference in their entirety. Preparation of hybrid vectors is described in, for example, PCT Application No. PCT/US2005/027091, the disclosure of which is herein incorporated by reference in its entirety. The use of vectors derived from the AAVs for transferring genes in vitro and in vivo has been described (See e.g., International Patent Application Publication Nos.: WO 91/18088 and WO 93/09239; U.S. Pat. Nos. 4,797,368, 6,596,535, and 5,139,941; and European Patent No.: 0488528, all of which are hereby incorporated by reference herein in their entireties). These publications describe various AAV-derived constructs in which the rep and/or cap genes are deleted and replaced by a gene of interest, and the use of these constructs for transferring the gene of interest in vitro (into cultured cells) or in vivo (directly into an organism). The replication defective recombinant AAVs according to the invention can be prepared by co-transfecting a plasmid containing the nucleic acid sequence of interest flanked by two AAV inverted terminal repeat (ITR) regions, and a plasmid carrying the AAV encapsidation genes (rep and cap genes), into a cell line that is infected with a human helper virus (for example, an adenovirus). The AAV recombinants that are produced are then purified by standard techniques.
- In some embodiments, the vector(s) for use in the methods of the invention are encapsidated into a virus particle (e.g. AAV virus particle including, but not limited to, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAV13, AAV14, AAV15, and AAV16). Accordingly, the invention includes a recombinant virus particle (recombinant because it contains a recombinant polynucleotide) comprising any of the vectors described herein. Methods of producing such particles are known in the art and are described in U.S. Pat. No. 6,596,535, the disclosure of which is hereby incorporated by reference in its entirety.
- Delivery of Light-Responsive Opsin Proteins and Lanthanide-Doped Nanoparticles
- In some aspects, polynucleotides encoding the light-responsive opsin proteins disclosed herein (for example, an AAV1 vector) can be delivered directly to neurons of the central or peripheral nervous system with a needle, catheter, or related device, using neurosurgical techniques known in the art, such as by stereotactic injection (See, e.g., Stein et al., J. Virol., 1999, 73:34243429; Davidson et al., Proc. Nat. Acad. Sci. U.S.A., 2000, 97:3428-3432; Davidson et al., Nat. Genet., 1993, 3:219-223; and Alisky & Davidson, Hum. Gene Ther., 2000, 11:2315-2329, the contents of each of which are hereby incorporated by reference herein in their entireties) or fluoroscopy. In some embodiments, the polynucleotide encoding the light-responsive opsin proteins disclosed herein (for example, an AAV1 vector) can be delivered to neurons of the peripheral nervous system by injection into any one of the spinal nerves (such as the cervical spinal nerves, the thoracic spinal nerves, the lumbar spinal nerves, the sacral spinal nerves, and/or the coccygeal spinal nerves).
- Other methods to deliver the light-responsive opsin proteins to the nerves of interest can also be used, such as, but not limited to, transfection with ionic lipids or polymers, electroporation, optical transfection, impalefection, or via gene gun.
- In another aspect, the polynucleotide encoding the light-responsive opsin proteins disclosed herein (for example, an AAV2 vector) can be delivered directly to muscles innervated by the neurons of the peripheral nervous system. Because of the limitations inherent in injecting viral vectors directly into the specific cell bodies which innvervate particular muscles, researchers have attempted to deliver transgenes to peripheral neurons by injecting viral vectors directly into muscle. These experiments have shown that some viral serotypes such as adenovirus, AAV2, and Rabies glycoprotein-pseudotyped lentivirus can be taken up by muscle cells and retrogradely transported to motor neurons across the neuromuscular synapse (See, e.g., Azzouz et al., 2009, Antioxid Redox Signal., 11(7):1523-34; Kaspar et al., 2003, Science, 301(5634):839-842; Manabe et al., 2002, Apoptosis, 7(4):329-334, the disclosures of each of which are herein incorporated by reference in their entireties).
- Accordingly, in some embodiments, the vectors expressing the light-responsive opsin proteins disclosed herein (for example, an AAV2 vector) can be delivered to the neurons responsible for the innervation of muscles by direct injection into the muscle of interest.
- The lanthanide-doped nanoparticles disclosed herein can be delivered to neurons expressing one or more light-responsive opsin proteins by any route, such as intravascularly, intracranially, intracerebrally, intramuscularly, intradermally, intravenously, intraocularly, orally, nasally, topically, or by open surgical procedure, depending upon the anatomical site or sites to which the nanoparticles are to be delivered. The nanoparticles can additionally be delivered by the same route used for delivery of the polynucleotide vectors expressing the light-responsive opsin proteins, such as any of those described above. The nanoparticles can also be administered in an open manner, as in the heart during open heart surgery, or in the brain during stereotactic surgery, or by intravascular interventional methods using catheters going to the blood supply of specific organs, or by other interventional methods.
- Pharmaceutical compositions used for the delivery and/or storage of polynucleotides encoding the light-responsive opsin proteins disclosed herein and/or the lanthanide-doped nanoparticles disclosed herein can be formulated according to known methods for preparing pharmaceutically useful compositions. Formulations are described in a number of sources which are well known and readily available to those skilled in the art. For example, Remington's Pharmaceutical Sciences (Martin E W, 1995, Easton Pa., Mack Publishing Company, 19th ed.) describes formulations which can be used in connection with the subject invention. Formulations suitable for parenteral administration include, for example, aqueous sterile injection solutions, which may contain antioxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the condition of the sterile liquid carrier, for example, water for injections, prior to use.
- The lanthanide-doped nanoparticles may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the nanoparticles and/or cells can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical dosage forms suitable for injection or infusion of the lanthanide-doped nanoparticles described herein can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- Sources of Infrared or Near Infrared Electromagnetic Radiation
- Any device that is capable of producing a source of electromagnetic radiation having a wavelength in the infrared (IR) or near infrared (NIR) spectrum may be used to activate one or more light-responsive proteins expressed on the surface of a neuron in combination with the lanthanide-doped nanoparticles described herein. The IR or NIR source can be configured to provide optical stimulus to a specific target region of the brain. The IR or NIR source can additionally provide continuous IR or NIR electromagnetic radiation and/or pulsed IR or NIR electromagnetic radiation, and may be programmable to provide IR or NIR electromagnetic radiation in pre-determined pulse sequences.
- In other aspects, the implantable IR or NIR source does not require physical tethering to an external power source. In some embodiments, the power source can be an internal battery for powering the IR or NIR source. In another embodiment, the implantable IR or NIR source can comprise an external antenna for receiving wirelessly transmitted electromagnetic energy from an external power source for powering the IR or NIR source. The wirelessly transmitted electromagnetic energy can be a radio wave, a microwave, or any other electromagnetic energy source that can be transmitted from an external source to power the IR or NIR-generating source. In one embodiment, the IR or NIR source is controlled by an integrated circuit produced using semiconductor or other processes known in the art.
- In some aspects, the implantable IR or NIR electromagnetic radiation source can be externally activated by an external controller. The external controller can comprise a power generator which can be mounted to a transmitting coil. In some embodiments of the external controller, a battery can be connected to the power generator, for providing power thereto. A switch can be connected to the power generator, allowing an individual to manually activate or deactivate the power generator. In some embodiments, upon activation of the switch, the power generator can provide power to the IR or NIR electromagnetic radiation source through electromagnetic coupling between the transmitting coil on the external controller and the external antenna of the implantable IR or NIR source. When radio-frequency magnetic inductance coupling is used, the operational frequency of the radio wave can be between about 1 and 20 MHz, inclusive, including any values in between these numbers (for example, about 1 MHz, about 2 MHz, about 3 MHz, about 4 MHz, about 5 MHz, about 6 MHz, about 7 MHz, about 8 MHz, about 9 MHz, about 10 MHz, about 11 MHz, about 12 MHz, about 13 MHz, about 14 MHz, about 15 MHz, about 16 MHz, about 17 MHz, about 18 MHz, about 19 MHz, or about 20 MHz). However, other coupling techniques may be used, such as an optical receiver or a biomedical telemetry system (See, e.g., Kiourti, “Biomedical Telemetry: Communication between Implanted Devices and the External World, Opticon 1826, (8): Spring, 2010).
- In some aspects, the intensity of the IR or NIR electromagnetic radiation reaching the neural cells (such as neural cells expressing one or more light-responsive opsin proteins) produced by the IR or NW electromagnetic radiation source has an intensity of any of about 0.05 mW/mm2, 0.1 mW/mm2, 0.2 mW/mm2, 0.3 mW/mm2, 0.4 mW/mm2, 0.5 mW/mm2, about 0.6 mW/mm2, about 0.7 mW/mm2, about 0.8 mW/mm2, about 0.9 mW/mm2, about 1.0 mW/mm2, about 1.1 mW/mm2, about 1.2 mW/mm2, about 1.3 mW/mm2, about 1.4 mW/mm2, about 1.5 mW/mm2, about 1.6 mW/mm2, about 1.7 mW/mm2, about 1.8 mW/mm2, about 1.9 mW/mm2, about 2.0 mW/mm2, about 2.1 mW/mm2, about 2.2 mW/mm2, about 2.3 mW/mm2, about 2.4 mW/mm2, about 2.5 mW/mm2, about 3 mW/mm2, about 3.5 mW/mm2, about 4 mW/mm2, about 4.5 mW/mm2, about 5 mW/mm2, about 5.5 mW/mm2, about 6 mW/mm2, about 7 mW/mm2, about 8 mW/mm2, about 9 mW/mm2, or about 10 mW/mm2, inclusive, including values in between these numbers.
- In other aspects, the IR or NIR electromagnetic radiation produced by the IR or NW electromagnetic radiation source can have a wavelength encompassing the entire infrared spectrum, such as from about 740 nm to about 300,000 nm. In other embodiments, the IR or NIR electromagnetic radiation produced by the IR or NIR electromagnetic radiation source can have a wavelength corresponding to the NIR spectrum, such as about 740 nm to about 1400 nm. In other embodiments, NIR electromagnetic radiation produced has a wavelength between 700 nm and 1000 nm.
- In some aspects, an IR or NIR electromagnetic radiation source is used to hyperpolarize or depolarize the plasma membranes of neural cells (such as neural cells expressing one or more light-responsive opsin proteins) in the brain or central nervous system of an individual when used in combination with the lanthanide-doped nanoparticles disclosed herein. In some embodiments, the skull of the individual is surgically thinned in an area adjacent to the brain region of interest without puncturing the bone. The IR or NW electromagnetic radiation source can then be placed directly over the thinned-skull region. In other embodiments, the IR or NIR electromagnetic radiation generator is implanted under the skin of the individual directly adjacent to the thinned skull region.
- In some aspects, an IR or NIR electromagnetic radiation source is used to hyperpolarize or depolarize the plasma membranes of neural cells (such as neural cells expressing one or more light-responsive opsin proteins) in the peripheral nervous system of an individual when used in combination with the lanthanide-doped nanoparticles disclosed herein. In some embodiments, the IR or NIR electromagnetic radiation source is surgically implanted under the skin of the individual directly adjacent to the peripheral neural cell of interest. In other embodiments, the IR or NIR electromagnetic radiation source is placed against the skin directly adjacent to the peripheral neural cell of interest. In one embodiment, the IR or NIR electromagnetic radiation source is held against the skin in a bracelet or cuff configuration.
- Examples of the IR or NIR electromagnetic radiation sources, particularly those small enough to be implanted under the skin, can be found in U.S. Patent Application Publication Nos.: 2009/0143842, 2011/0152969, 2011/0144749, and 2011/0054305, the disclosures of each of which are incorporated by reference herein in their entireties.
- In still other aspects, the lanthanide-doped nanoparticles disclosed herein can be exposed to higher wavelength light in the visible spectrum (such as red light) to upconvert the higher wavelength visible light into lower wavelength visible light (such as blue or green light). As described above, light passes through biological tissue poorly. However, when visible light does penetrate into tissues, it typically does so in higher wavelengths which correspond to red light (for example, between about 620 nm to 740 nm). Accordingly, the lanthanide-doped nanoparticles disclosed herein can additionally be used in combination with optical sources of visible light to upshift wavelengths corresponding to red light into wavelengths corresponding to green or blue light (for example, between about 440 nm and 570 nm). Examples of light stimulation devices, including light sources, can be found in International Patent Application Nos.: PCT/US08/50628 and PCT/US09/49936 and in Llewellyn et al., 2010, Nat. Med., 16(10):161-165, the disclosures of each of which are hereby incorporated herein in their entireties.
- Depolarization of Neural Cells
- Provided herein are methods to depolarize the plasma membrane of a neural cell in an individual comprising placing a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NM) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum by the nanoparticles, and wherein a light-responsive opsin is expressed on the plasma membrane of the neural cells and activation of the opsin by the light in the visible spectrum induces the depolarization of the plasma membrane.
- Also provided herein is a method to depolarize the plasma membrane of a neural cell in an individual comprising administering a polynucleotide encoding a light-responsive opsin to a neural cell in the brain of an individual, wherein the light-responsive protein is expressed on the plasma membrane of the neural cell and the opsin is capable of inducing membrane depolarization of the neural cell when illuminated with light administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near (IR) spectrum, wherein the electromagnetic radiation in the IR or near IR spectrum is upconverted into light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the depolarization of the plasma membrane.
- In some embodiments, the light-responsive opsin protein is ChR2, VChR1, or C1V1. In other embodiments, the light-responsive opsin protein is selected from the group consisting of SFO, SSFO, C1V1-E122, C1V1-E162, and C1V1-E122/E162.
- The lanthanide metal can be ions or atoms from any of the lanthanide series of elements, such as Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, or Lutetium. In other embodiments, the nanoparticles comprise NaYF4:Yb/X/Gd, wherein X is Er, Tm, or Er/Tm.
- The electromagnetic radiation in the IR or near IR spectrum can be upconverted into light having a wavelength of about 450 nm to about 550 nm. The light can have wavelengths corresponding to red, yellow, amber, orange, green, or blue light. In some embodiments, the individual is a human or a non-human animal. In other embodiments, the neural cell is in the peripheral nervous system. In another embodiment, the neural cell is in the central nervous system.
- Hyperpolarization of Neural Cells
- Provided herein are methods to hyperpolarize the plasma membrane of a neural cell in an individual comprising placing a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into light in the visible spectrum by the nanoparticles, and wherein a light-responsive opsin is expressed on the plasma membrane of the neural cells and activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
- Also provided herein is a method to hyperpolarize the plasma membrane of a neural cell in an individual comprising administering a polynucleotide encoding a light-responsive opsin to a neural cell in the brain of an individual, wherein the light-responsive protein is expressed on the plasma membrane of the neural cell and the opsin is capable of inducing membrane depolarization of the neural cell when illuminated with light administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell; and exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near (IR) spectrum, wherein the electromagnetic radiation in the IR or near IR spectrum is upconverted into light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
- In some embodiments, the light-responsive opsin protein is an NpHR or a GtR3.
- The lanthanide metal can be ions or atoms from any of the lanthanide series of elements, such as Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, or Lutetium. In other embodiments, the nanoparticles comprise NaYF4:Yb/X/Gd, wherein X is Er, Tm, or Er/Tm.
- The electromagnetic radiation in the IR or near IR spectrum can be upconverted into light having a wavelength of about 450 nm to about 550 nm. The light can have wavelengths corresponding to red, yellow, amber, orange, green, or blue light. In some embodiments, the individual is a human or a non-human animal. In other embodiments, the neural cell is in the peripheral nervous system. In another embodiment, the neural cell is in the central nervous system.
- Kits
- Also provided herein are kits comprising polynucleotides encoding a light-responsive opsin protein (such as any of the light-responsive opsin proteins described herein) and lanthanide-doped nanoparticles for use in any of the methods disclosed herein to alter the membrane polarization state of one or more neurons of the central and/or peripheral nervous system. In some embodiments, the kits further comprise an infrared or near infrared electromagnetic radiation source. In other embodiments, the kits further comprise instructions for using the polynucleotides and lanthanide-doped nanoparticles described herein. In still other embodiments, the lanthanide-doped nanoparticles described herein are embedded and/or trapped in a biocompatible material (such as any of the biocompatible materials described above).
- Aspects of the present disclosure may be more completely understood in consideration of the detailed description of various embodiments of the present disclosure that follows in connection with the accompanying drawings. This description and the various embodiments are presented as follows:
- The embodiments and specific applications discussed herein may be implemented in connection with one or more of the above-described aspects, embodiments and implementations, as well as with those shown in the figures and described below. Reference may also be made to Wang et al., 2010, Nature, 463(7284):1061-5, which is fully incorporated herein by reference. For further details on light responsive molecules and/or opsins, including methodology, devices and substances, reference may also be made to the following background publications: U.S. Patent Publication No. 2010/0190229, entitled “System for Optical Stimulation of Target Cells” to Zhang et al.; U.S. Patent Publication No. 2007/0261127, entitled “System for Optical Stimulation of Target Cells” to Boyden et al. These applications form part of the provisional patent document and are fully-incorporated herein by reference. Consistent with these publications, numerous opsins can be used in mammalian cells in vivo and in vitro to provide optical stimulation and control of target cells. For example, when ChR2 is introduced into an electrically-excitable cell, such as a neuron, light activation of the ChR2 channel rhodopsin can result in excitation and/or firing of the cell. In instances when NpHR is introduced into an electrically-excitable cell, such as a neuron, light activation of the NpHR opsin can result in inhibition of firing of the cell. These and other aspects of the disclosures of the above-referenced patent applications may be useful in implementing various aspects of the present disclosure.
- In various embodiments of the present disclosure, minimally invasive delivery of light, for example as can be useful for manipulation of neural circuits with optogenetics, using near infrared up-conversion nanocrystals, is achieved. This is used to avoid the implantation of light sources within living tissues, including, for example, a subject's brain. Mammalian tissue has a transparency window in near infrared part of the spectrum (700-1000 nm). Accordingly, aspects of the present disclosure relate to the use of nanoparticles for the purpose of using (near) infrared light to deliver energy into the depth of a brain by converting the infrared light into visible wavelengths at a site of interest.
- In certain embodiments, delivering visible wavelengths at a site of interest within the brain is achieved through a process of optical upconversion in Lanthanide-doped nanocrystals. During upconversion 3-4 photons are absorbed by the material which then emits one photon with the energy ˜1.5-2 times the energy of absorbed photons. For example NaYF4:Yb/X/Gd nanocrystals can absorb 980 nm light and emit light with spectra centered between 450-550 nm depending on the nature and relative content of dopants (X═Er, Tm, Er/Tm). For more information regarding modifying the light emitted from the nanoparticles, see Wang et al., Nature, 2010, 463(7284):1061-5, the disclosure of which is incorporated by reference herein in its entirety.
- In certain embodiments a single step surgery is performed to modify a target cell population and provide nanoparticles to convert near infrared light to visible light that stimulates the modified target cell population. During the surgery, the surgeon injects both an adeno-associated virus carrying an opsin gene and a nanoparticle solution to a site of interest.
- The virus is optimized to only infect the target cell population. Similarly, the nanoparticles are functionalized with antibodies so that the nanoparticles anchor to the target cell population as well. In certain more specific embodiments the target cell population is a particular neuron type. After surgery is completed, a LED that emits near infrared light is placed on a thinned portion of the patient's skull, underneath the skin. A battery can also be implanted underneath the skin to power the LED. In certain embodiments the battery has characteristics similar to those of a pacemaker battery. A microcontroller can be used to control the battery to deliver energy to the LED at specified intervals, resulting in LED light pulses at specified intervals.
- Certain aspects of the present disclosure are directed to the use of optogenetics in vivo. Optogenetics, applied in vivo, relies on light delivery to specific neuron populations that can be located deep within the brain. Mammalian tissue is highly absorptive and scatters light in the visible spectrum. However, near infrared light is able to penetrate to deep levels of the brain without excessive absorption or scattering.
- Certain aspects of the present disclosure are directed to imbedding nanoparticles in the brain near target neurons. The nanoparticles can be lanthanide doped-nanoparticle. Nanoparticles doped with Lanthanides or with other dopants can be optimized with respect to a particular opsin's activation spectra. As discussed in more detail in Wang et al., Nature, 2010, 463(7284):1061-5, the disclosure of which is incorporated by reference herein in its entirety, the spectra of the light emitted from lanthanide-doped nanocrystals can be manipulated based on which dopants are used, and how much. Similarly, the light emitted from nanoparticles doped with other molecules can be manipulated based on the concentration of dopants.
- The ability to provide different output spectra depending on the doping of nanoparticles allows for a non-invasive approach to acute neural manipulation. A light source, such as a LED can be mounted onto a thinned skull under the skin. Depending on the composition of nanoparticles, and the opsin delivered to the target neurons, aspects of the present disclosure can be used for neural excitation or silencing. Similarly, multiple neural populations may be controlled simultaneously through the use of various dopants and opsins in combination.
- Turning to
FIG. 1 , a patient'shead 100 is shown. A target (neural)cell population 114 includes light responsive molecules. These light responsive molecules can include, but are not necessarily limited to, opsins derived from Channel rhodopsins (e.g. ChR1 or ChR2) or Halorhodopins (NpHR). The specific molecule can be tailored/selected based upon the desired effect on the target cell population and/or the wavelength at which the molecules respond to light. - Nanocrystals 110 are introduced near or at the target cell populate. Various embodiments of the present disclosure are directed toward methods and devices for positioning and maintaining positioning of the nanocrystals near the target cell population. Certain embodiments are directed toward anchoring the nanocrystals to cells of (or near) the target cell population using antibodies.
- According to other example embodiments, a structure can be introduced that includes the nanocrystals. For instance, a mesh structure can be coated with the nanocrystals. The synthetic mesh can be constructed so as to allow the dendrites and axons to pass through the mess without allowing the entire neuron (e.g., the cell body) to pass. One example of such a mesh has pores that are on the order of 3-7 microns in diameter and is made from polyethylene terephthalate. This mesh structure can be constructed with light-responsive cells/neurons contained therein and/or be placed near the target cell population, which includes the light-responsive cells. Consistent with another embodiment, one or more transparent capsules, each containing a solution of nanocrystals, can be positioned near the target cell populations.
- Embodiments of the present disclosure are also directed toward various optical sources of stimulation. These sources can include, but are not limited to, external laser sources and light-emitting didoes (LEDs). Particular aspects of the present disclosure are directed toward the relatively low absorption and/or scattering/diffusion caused by intervening material when the light is at certain wavelengths (e.g., (near) infrared). Accordingly, the light source can be externally located because of the ability to penetrate the tissue with little loss of optical intensity or power. Moreover, reduced diffusion can be particularly useful for providing a relatively-high spatial-precision for the delivery of the light. Thus, embodiments of the present disclosure are directed toward multiple target cell populations with respective nanocrystals that can be individually controlled using spatially-precise optical stimulus. For instance, the nanocrystals can be implanted in several locations within the brain. The light source can then be aimed at a respective and particular location. Multiple light sources can also be used for simultaneous stimulation of a plurality of locations.
- Consistent with a particular embodiment of the present disclosure, the
skull 102 has a thinnedportion 106. AnLED 104 is located above the thinned portion of the skull and emits nearinfrared light 108. When the IR hits nanocrystal 110, it is absorbed. The nanocrystal emits visible light 112 in response to absorbing theIR light 108. The visible light 112 is absorbed by modifiedcell 114. - The system shown in
FIG. 1 allows for delivery of light to a target cell deep within a patient's brain tissue. The light responsive molecule can be specifically targeted to a neural cell type of interest. Similarly, the nanocrystals 112 are anchored to the neural cell with antibodies chosen based on the type ofneural cell 114 being targeted. - Turning to
FIG. 2 , a group of neurons is illuminated withinfrared light 208 between 700-1000 nm.Target neurons 214 express an opsin gene, allowing the neurons to be activated or inhibited, depending on which opsin, and what wavelength of light is absorbed by theneurons 214. Thetarget neurons 214 can be interspersed betweenother neurons 216. As shown ininset 202,target neurons 214 are coated with upconverting nanoparticles 210 that are anchored to the neural membrane via antibodies. The nanoparticles 210 absorb IR photons and emit visible photons that are then absorbed by opsins triggering neural activation. - The system of
FIG. 2 can be used with a variety oftarget neurons 214. The opsin gene 215 expressed in thetarget neurons 214 is modified based on the target neuron. Similarly, the antibodies used to anchor the nanoparticles 210 to the target neuron membranes are modified to attach to a specific membrane type. As shown ininset 202, the nanoparticles 210 are closely linked to the target neurons so that visible light photons emitted by the nanoparticles 210 are absorbed by thetarget neurons 214. -
FIG. 3 depicts a system that uses multiple light sources, consistent with an embodiment of the present disclosure. A patient has nanoparticles located at target locations 308-312. The system includes light sources 302-306, which can be configured to generate light at a frequency that is upconverted by the nanoparticles located at target locations 308-312. Although three light sources are depicted, there can be any number of light sources. These light sources can be external to the patient (e.g., a targeting system that directs several light sources using mechanical positioning), using embedded lights sources (e.g., LEDs implanted on the skull) or combinations thereof. The target locations 308-312 include cells that have optically-responsive membrane molecules. These optically-responsive membrane molecules react to light at the upconverted frequency. - Nanoparticles located at the
intersection 314 of the light from the different light sources 302-306 receive increased intensity of optical stimulus relative to other locations, including those locations within the path of light from a single light source. In this manner, the light intensity of each of the light sources can be set below a threshold level. When multiple light sources are directed at the same location, the threshold intensity level can be exceeded at the location. This allows for spatial control in three-dimensions and also allows for reduced inadvertent effects on non-targeted tissue. Consistent with one embodiment, the threshold level can be set according to an amount of light necessary to cause the desired effect (e.g., excitation or inhibition) on the target cells. Consistent with other embodiments, the threshold level can be set to avoid adverse effects on non-targeted tissue (e.g., heating). - The use of multiple light sources can also bring about a step-wise increase in light intensity. For instance, a disease model could be tested by monitoring the effects of additional stimulation caused by the increase in light intensity. The use of independent light sources allows for relatively simple control over temporal and spatial increases or decreases. Consistent with other embodiments of the present disclosure, the spatial precision of the light sources can be varied between the different light sources. For example, a first light source can provide light that illuminates the entire target cell location. This allows for all cells within the population to be illuminated. A second light source can provide light having a focal point that illuminates less than all of the entire target cell location. The combination of the first and second (or more) light sources can be used to provide different levels of stimulation within the same cell population.
- Embodiments of the present disclosure relate to the use of one or more light sources operating in a scanning mode. The light source(s) are aimed at specific locations within a target cell population. The effects of the stimulation can be monitored as the light source is used to scan or otherwise move within the target cell population. This can be particularly useful in connection with the three-dimensional control provided by the use of multiple light sources.
- Various embodiments of the present disclosure are directed toward the use of nanocrystals that emit light at different wavelengths. This can be particularly useful when using multiple opsins having different light-absorption spectrums. The nanocrystals can be targeted toward different opsins and/or placed in the corresponding locations. While the present disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in further detail. It should be understood that the intention is not to limit the disclosure to the particular embodiments and/or applications described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure.
- The nucleus accumbens (NAc) is a collection of neurons that forms the main part of the ventral striatum. The NAc is thought to play an important role in the complex mammalian behaviors associated with reward, pleasure, laughter, addiction, aggression, fear, and the placebo effect. Cholinergic interneurons within the NAc constitute less than 1% of the local neural population, yet they project throughout the NAc and provide its only known cholinergic input. In this Example, an optogenetic approach using a light-responsive chloride pump protein in combination with lanthanide-doped nanoparticles is used to block action potential firing in these cells, with both high temporal resolution and high cell-type specificity. To express microbial opsin genes specifically in cholinergic interneurons, a transgenic mouse line expressing Cre recombinase is employed under the choline acetyltransferase (ChAT) promoter. A Cre-inducible adeno-associated virus (AAV) vector carrying a yellow-light gated third-generation chloride pump halorhodopsin (eNpHR3.0) gene fused in-frame with coding sequence for enhanced yellow fluorescent protein (eYFP) is stereotactically injected.
- Specifically, mice are anesthetized and then placed in a stereotactic head apparatus. Surgeries are performed on 4-6 week old mice and ophthalmic ointment is applied throughout to prevent the eyes from drying. A midline scalp incision is made followed by a craniotomy, and then AAV vector is injected with a 10 μl syringe and a 34 gauge metal needle. The injection volume and flow rate (1 μl at 0.15 μl/min) are controlled by an injection pump. Each NAc receives two injections (injection 1: AP 1.15 mm, ML 0.8 mm, DV −4.8 mm; injection 2: AP 1.15 mm, ML 0.8 mm, DV −4.2 mm). The virus injection and fiber position are chosen so that virtually the entire shell is stimulated.
- Next, before withdrawing the needle, NaYF4:Yb/Er/Gd, nanoparticles are injected into the Nac. Concentrations of 3.4, 8.5, or 17 nmoles of NaYF4:Yb/Er/Gd, nanoparticles are used. After injection of both the AAV vector and the lanthanide-doped nanoparticles is complete, the needle is left in place for 5 additional minutes and then very slowly withdrawn.
- Following a recovery period, the mice are again anesthetized, the skulls of the mice are thinned and an NIR source of electromagnetic radiation is placed adjacent to the thinned skull-region. Simultaneous NW stimulation and extracellular electrical recording are performed based on methods described previously using optical stimulation (Gradinaru et al., J. Neurosci., 27, 14231-14238 (2007)). The electrode consists of a tungsten electrode (1 MΩ; 0.005 in; parylene insulation) with the tip of the electrode projecting beyond the fiber by 300-500 μm. The electrode is lowered through the NAc in approximately 100 μm increments, and NIR-upconverted optical responses are recorded at each increment. Signals are amplified and band-pass filtered (300 Hz low cut-off, 10 kHz high cut-off) before digitizing and recording to disk. At each site, 5 stimulation repetitions are presented and saved.
- The examples, which are intended to be purely exemplary of the invention and should therefore not be considered to limit the invention in any way, also describe and detail aspects and embodiments of the invention discussed above. The foregoing examples and detailed description are offered by way of illustration and not by way of limitation. All publications, patent applications, and patents cited in this specification are herein incorporated by reference as if each individual publication, patent application, or patent were specifically and individually indicated to be incorporated by reference. In particular, all publications cited herein are expressly incorporated herein by reference for the purpose of describing and disclosing compositions and methodologies which might be used in connection with the invention. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Claims (35)
1.-13. (canceled)
14. A method to hyperpolarize the plasma membrane of a neural cell in an individual comprising:
(a) placing a plurality of lanthanide-doped nanoparticles in proximity to the neural cell, wherein the nanoparticles comprise NaYF4:Yb/X/Gd, wherein X is erbium (Er), thulium (Tm), or Er/Tm; and
(b) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into yellow, amber or red light in the visible spectrum by the nanoparticles, and wherein a light-responsive opsin comprising a light-responsive chloride pump is expressed on the plasma membrane and activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
15. A method to hyperpolarize the plasma membrane of a neural cell in an individual comprising:
(a) administering a polynucleotide encoding a light-responsive opsin to an individual, wherein the light-responsive opsin comprises a light-responsive chloride pump and is expressed on the plasma membrane of a neural cell in the individual and the opsin is capable of inducing membrane hyperpolarization of the neural cell when illuminated with light;
(b) administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell, wherein the nanoparticles comprise NaYF4:Yb/X/Gd, wherein X is erbium (Er), thulium (Tm), or Er/Tm; and
(c) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into yellow, amber or red light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
16. The method of claim 14 , wherein the light-responsive opsin comprises an amino acid sequence having at least 85% amino acid sequence identity to SEQ ID NO:1.
17. (canceled)
18. The method of claim 14 , wherein the electromagnetic energy in the IR or NIR spectrum is upconverted into light having a wavelength of about 580 nm to about 630 nm.
19. The method of claim 14 , wherein the electromagnetic energy in the IR or NIR spectrum is upconverted into light having a wavelength of about 630 nm to about 740 nm.
20. The method of claim 14 , wherein the electromagnetic energy in the IR or NIR spectrum is upconverted into light having a wavelength corresponding to yellow or amber light.
21. The method of claim 14 , wherein the electromagnetic energy in the IR or NIR spectrum is upconverted into light having a wavelength corresponding to red light.
22. The method of claim 14 , wherein the individual is a non-human animal.
23. The method of claim 14 , wherein the individual is a human.
24. The method of claim 14 , wherein the neural cell is a neural cell in the central nervous system.
25. The method of claim 14 , wherein the neural cell is a neural cell in the peripheral nervous system.
26.-32. (canceled)
33. The method of claim 14 , wherein X is Er.
34. The method of claim 14 , wherein X is Tm.
35. The method of claim 14 , wherein X is Er/Tm.
36. The method of claim 14 , wherein the neural cell is a neural cell in the nucleus accumbens of the individual.
37. The method of claim 14 , wherein the light-responsive opsin comprises an amino acid sequence having at least 95% amino acid sequence identity to SEQ ID NO:2 or SEQ ID NO:3.
38. The method of claim 14 , wherein the light-responsive opsin comprises a NpHR protein.
39. A method to hyperpolarize the plasma membrane of a neural cell in an individual comprising:
(a) placing a plurality of lanthanide-doped nanoparticles in proximity to the neural cell, wherein the nanoparticles comprise NaYF4:Yb/X/Gd, wherein X is erbium (Er), thulium (Tm), or Er/Tm; and
(b) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into green or blue light in the visible spectrum by the nanoparticles, and wherein a light-responsive opsin comprising a light-responsive proton pump is expressed on the plasma membrane and activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
40. A method to hyperpolarize the plasma membrane of a neural cell in an individual comprising:
(a) administering a polynucleotide encoding a light-responsive opsin to an individual, wherein the light-responsive opsin comprises a light-responsive proton pump and is expressed on the plasma membrane of a neural cell in the individual and the opsin is capable of inducing membrane hyperpolarization of the neural cell when illuminated with light;
(b) administering a plurality of lanthanide-doped nanoparticles in proximity to the neural cell, wherein the nanoparticles comprise NaYF4:Yb/X/Gd, wherein X is erbium (Er), thulium (Tm), or Er/Tm; and
(c) exposing the plurality of nanoparticles to electromagnetic radiation in the infrared (IR) or near infrared (NIR) spectrum, wherein the electromagnetic radiation in the IR or NIR spectrum is upconverted into green or blue light in the visible spectrum and the activation of the opsin by the light in the visible spectrum induces the hyperpolarization of the plasma membrane.
41. The method of claim 39 , wherein the light-responsive opsin comprises an amino acid sequence having at least 85% amino acid sequence identity to SEQ ID NO:4.
42. The method of claim 39 , wherein the electromagnetic energy in the IR or NIR spectrum is upconverted into light having a wavelength of about 450 nm to about 495 nm.
43. The method of claim 39 , wherein the electromagnetic energy in the IR or NIR spectrum is upconverted into light having a wavelength corresponding to green light.
44. The method of claim 39 , wherein the electromagnetic energy in the IR or NIR spectrum is upconverted into light having a wavelength corresponding to blue light.
45. The method of claim 39 , wherein the individual is a non-human animal.
46. The method of claim 39 , wherein the individual is a human.
47. The method of claim 39 , wherein the neural cell is a neural cell in the central nervous system.
48. The method of claim 39 , wherein the neural cell is a neural cell in the peripheral nervous system.
49. The method of claim 39 , wherein X is Er.
50. The method of claim 39 , wherein X is Tm.
51. The method of claim 39 , wherein X is Er/Tm.
52. The method of claim 39 , wherein the light-responsive opsin comprises an amino acid sequence having at least 95% amino acid sequence identity to SEQ ID NO:4.
53. The method of claim 14 , wherein the light-responsive opsin comprises a GtR3 protein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/267,144 US20190217118A1 (en) | 2010-11-05 | 2019-02-04 | Upconversion of light for use in optogenetic methods |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41072910P | 2010-11-05 | 2010-11-05 | |
PCT/US2011/059287 WO2012061684A1 (en) | 2010-11-05 | 2011-11-04 | Upconversion of light for use in optogenetic methods |
US201313882703A | 2013-07-16 | 2013-07-16 | |
US15/214,403 US10252076B2 (en) | 2010-11-05 | 2016-07-19 | Upconversion of light for use in optogenetic methods |
US16/267,144 US20190217118A1 (en) | 2010-11-05 | 2019-02-04 | Upconversion of light for use in optogenetic methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/214,403 Continuation US10252076B2 (en) | 2010-11-05 | 2016-07-19 | Upconversion of light for use in optogenetic methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190217118A1 true US20190217118A1 (en) | 2019-07-18 |
Family
ID=46024837
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/882,703 Active 2034-01-05 US9522288B2 (en) | 2010-11-05 | 2011-11-04 | Upconversion of light for use in optogenetic methods |
US15/214,403 Active US10252076B2 (en) | 2010-11-05 | 2016-07-19 | Upconversion of light for use in optogenetic methods |
US16/267,144 Abandoned US20190217118A1 (en) | 2010-11-05 | 2019-02-04 | Upconversion of light for use in optogenetic methods |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/882,703 Active 2034-01-05 US9522288B2 (en) | 2010-11-05 | 2011-11-04 | Upconversion of light for use in optogenetic methods |
US15/214,403 Active US10252076B2 (en) | 2010-11-05 | 2016-07-19 | Upconversion of light for use in optogenetic methods |
Country Status (8)
Country | Link |
---|---|
US (3) | US9522288B2 (en) |
EP (1) | EP2635341B1 (en) |
JP (2) | JP6145043B2 (en) |
CN (3) | CN110215614A (en) |
AU (2) | AU2011323231B2 (en) |
CA (1) | CA2817175C (en) |
ES (1) | ES2690172T3 (en) |
WO (1) | WO2012061684A1 (en) |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9274099B2 (en) | 2005-07-22 | 2016-03-01 | The Board Of Trustees Of The Leland Stanford Junior University | Screening test drugs to identify their effects on cell membrane voltage-gated ion channel |
US8906360B2 (en) | 2005-07-22 | 2014-12-09 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated cation channel and uses thereof |
US8926959B2 (en) | 2005-07-22 | 2015-01-06 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US9238150B2 (en) | 2005-07-22 | 2016-01-19 | The Board Of Trustees Of The Leland Stanford Junior University | Optical tissue interface method and apparatus for stimulating cells |
US10052497B2 (en) | 2005-07-22 | 2018-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US20090093403A1 (en) | 2007-03-01 | 2009-04-09 | Feng Zhang | Systems, methods and compositions for optical stimulation of target cells |
US10022457B2 (en) * | 2005-08-05 | 2018-07-17 | Gholam A. Peyman | Methods to regulate polarization and enhance function of cells |
US20150182756A1 (en) * | 2005-08-05 | 2015-07-02 | Gholam A. Peyman | Methods to regulate polarization and enhance function of cells |
US9962558B2 (en) * | 2005-08-05 | 2018-05-08 | Gholam A. Peyman | Methods to regulate polarization and enhance function of cells |
US8398692B2 (en) | 2007-01-10 | 2013-03-19 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
WO2008101128A1 (en) | 2007-02-14 | 2008-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | System, method and applications involving identification of biological circuits such as neurological characteristics |
US10434327B2 (en) | 2007-10-31 | 2019-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Implantable optical stimulators |
US10035027B2 (en) | 2007-10-31 | 2018-07-31 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for ultrasonic neuromodulation via stereotactic frame based technique |
ES2608498T3 (en) | 2008-04-23 | 2017-04-11 | The Board Of Trustees Of The Leland Stanford Junior University | Systems, methods and compositions for optical stimulation of target cells |
JP5890176B2 (en) | 2008-05-29 | 2016-03-22 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Cell line, system and method for optically controlling a second messenger |
EP2303406B1 (en) | 2008-06-17 | 2016-11-09 | The Board of Trustees of the Leland Stanford Junior University | Devices for optical stimulation of target cells using an optical transmission element |
MX2010014101A (en) | 2008-06-17 | 2011-03-04 | Univ Leland Stanford Junior | Apparatus and methods for controlling cellular development. |
WO2010006049A1 (en) | 2008-07-08 | 2010-01-14 | The Board Of Trustees Of The Leland Stanford Junior University | Materials and approaches for optical stimulation of the peripheral nervous system |
NZ602416A (en) | 2008-11-14 | 2014-08-29 | Univ Leland Stanford Junior | Optically-based stimulation of target cells and modifications thereto |
CA2791094A1 (en) * | 2010-03-17 | 2011-09-22 | The Board Of Trustees Of The Leland Stanford Junior University | Light-sensitive ion-passing molecules |
CN110215614A (en) | 2010-11-05 | 2019-09-10 | 斯坦福大学托管董事会 | The upper conversion of light for light genetic method |
US9992981B2 (en) | 2010-11-05 | 2018-06-12 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of reward-related behaviors |
ES2661093T3 (en) | 2010-11-05 | 2018-03-27 | The Board Of Trustees Of The University Of The Leland Stanford Junior University | Control and characterization of memory function |
EP2635111B1 (en) | 2010-11-05 | 2018-05-23 | The Board of Trustees of the Leland Stanford Junior University | Stabilized step function opsin proteins and methods of using the same |
US8932562B2 (en) | 2010-11-05 | 2015-01-13 | The Board Of Trustees Of The Leland Stanford Junior University | Optically controlled CNS dysfunction |
CN106947741A (en) | 2010-11-05 | 2017-07-14 | 斯坦福大学托管董事会 | Photoactivation is fitted together to opsin and its application method |
US8696722B2 (en) | 2010-11-22 | 2014-04-15 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic magnetic resonance imaging |
JP6406581B2 (en) | 2011-12-16 | 2018-10-17 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Opsin polypeptides and uses thereof |
ES2728077T3 (en) | 2012-02-21 | 2019-10-22 | Univ Leland Stanford Junior | Compositions for the treatment of neurogenic disorders of the pelvic floor |
US20150190649A1 (en) * | 2012-06-29 | 2015-07-09 | The General Hospital Corporation | Embedded photonic systems and methods for irradiation of medium with same |
AU2013348395A1 (en) | 2012-11-21 | 2015-06-11 | Circuit Therapeutics, Inc. | System and method for optogenetic therapy |
JP6594854B2 (en) | 2013-03-15 | 2019-10-23 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Optogenetic control of behavioral state |
US9636380B2 (en) | 2013-03-15 | 2017-05-02 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of inputs to the ventral tegmental area |
EP2970767B1 (en) | 2013-03-15 | 2017-06-28 | Massachusetts Institute of Technology | Rare earth spatial/spectral microparticle barcodes for labeling of objects and tissues |
CN105431046B (en) * | 2013-04-29 | 2020-04-17 | 小利兰·斯坦福大学托管委员会 | Devices, systems, and methods for optogenetic modulation of action potentials in target cells |
CA2921221A1 (en) | 2013-08-14 | 2015-02-19 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for controlling pain |
US9365659B2 (en) * | 2014-01-29 | 2016-06-14 | Excelsior Nanotech Corporation | System and method for optimizing the efficiency of photo-polymerization |
CA2944056A1 (en) * | 2014-03-27 | 2015-10-01 | Circuit Therapeutics, Inc. | System and method for therapeutic management of cough |
EP3581580A1 (en) | 2014-03-28 | 2019-12-18 | The Board of Trustees of the Leland Stanford Junior University | Engineered light-activated anion channel proteins and methods of use thereof |
KR101552446B1 (en) * | 2014-12-22 | 2015-09-10 | 성균관대학교산학협력단 | Apparatus for wireless stimulate body using light |
US9895467B2 (en) | 2015-05-14 | 2018-02-20 | California Institute Of Technology | Light adjustable intraocular lenses using upconverting nanoparticles and near infrared (NIR) light |
US10568516B2 (en) | 2015-06-22 | 2020-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and devices for imaging and/or optogenetic control of light-responsive neurons |
CN108136197A (en) * | 2015-09-15 | 2018-06-08 | 斯坦福大学托管董事会 | Optical Response polypeptide and its application method |
US11504530B2 (en) | 2016-11-01 | 2022-11-22 | Massachusetts Institute Of Technology | Transdermal optogenetic peripheral nerve stimulation |
US11294165B2 (en) | 2017-03-30 | 2022-04-05 | The Board Of Trustees Of The Leland Stanford Junior University | Modular, electro-optical device for increasing the imaging field of view using time-sequential capture |
WO2018200658A1 (en) * | 2017-04-25 | 2018-11-01 | Theralase Biotech Inc. | Method and apparatus for photoactivating nuclear receptors |
EP3635105A4 (en) | 2017-05-25 | 2021-03-31 | Prellis Biologics, Inc. | Three-dimensional printed organs, devices, and matrices |
US10765777B2 (en) | 2017-06-28 | 2020-09-08 | California Institute Of Technology | Light adjustable intraocular lenses using upconverting core-shell nanoparticles and near infrared (NIR) light |
US11103725B2 (en) | 2017-09-05 | 2021-08-31 | City University Of Hong Kong | Wireless optogenetic device and associated radiation system |
US20190076526A1 (en) * | 2017-09-13 | 2019-03-14 | Posco | Upconversion nanoparticle, hyaluronic acid-upconversion nanoparticle conjugate, and a production method thereof using a calculation from first principles |
US11723579B2 (en) | 2017-09-19 | 2023-08-15 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement |
US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US11318277B2 (en) | 2017-12-31 | 2022-05-03 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
WO2020028436A1 (en) * | 2018-07-31 | 2020-02-06 | Prellis Biologics, Inc. | Optically-induced auto-encapsulation |
JP2020022389A (en) * | 2018-08-07 | 2020-02-13 | 国立大学法人横浜国立大学 | Method for manipulating cells with light |
US11452839B2 (en) | 2018-09-14 | 2022-09-27 | Neuroenhancement Lab, LLC | System and method of improving sleep |
KR20210096163A (en) * | 2018-11-27 | 2021-08-04 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | Photon Upconversion Nanocapsules for 3D Printing and Other Applications |
EP3930843A4 (en) * | 2019-02-25 | 2023-04-05 | University of Massachusetts | Long-acting photoreceptor-binding nanoparticles, and compositions and methods thereof |
JP2021031467A (en) * | 2019-08-28 | 2021-03-01 | 国立大学法人東海国立大学機構 | Method for controlling the activity of opsin |
US11921271B2 (en) | 2020-05-22 | 2024-03-05 | The Board Of Trustees Of The Leland Stanford Junior Univeristy | Multifocal macroscope for large field of view imaging of dynamic specimens |
WO2021247926A1 (en) * | 2020-06-03 | 2021-12-09 | Quadratic 3D, Inc. | Volumetric three-dimensional printing methods |
CN112386806A (en) * | 2020-10-10 | 2021-02-23 | 深圳敬中堂科技有限公司 | Light source combination for correcting visual diseases related to opsin gene and application |
CN115006730B (en) * | 2022-04-15 | 2023-09-01 | 中国科学院西安光学精密机械研究所 | Dual-channel optogenetic method, rare earth-based near infrared nanomaterial system and application thereof |
CN115463251A (en) * | 2022-09-09 | 2022-12-13 | 四川大学 | Optogenetic nerve repair scaffold compounded with up-conversion nanoparticles and preparation method thereof |
Family Cites Families (297)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2968302A (en) | 1956-07-20 | 1961-01-17 | Univ Illinois | Multibeam focusing irradiator |
US3131690A (en) | 1962-10-22 | 1964-05-05 | American Optical Corp | Fiber optics devices |
US3499437A (en) | 1967-03-10 | 1970-03-10 | Ultrasonic Systems | Method and apparatus for treatment of organic structures and systems thereof with ultrasonic energy |
US3567847A (en) | 1969-01-06 | 1971-03-02 | Edgar E Price | Electro-optical display system |
US4343301A (en) | 1979-10-04 | 1982-08-10 | Robert Indech | Subcutaneous neural stimulation or local tissue destruction |
US4559951A (en) | 1982-11-29 | 1985-12-24 | Cardiac Pacemakers, Inc. | Catheter assembly |
US4616231A (en) | 1984-03-26 | 1986-10-07 | Hughes Aircraft Company | Narrow-band beam steering system |
FR2580277B1 (en) | 1985-04-15 | 1988-06-10 | Oreal | NOVEL NAPHTHALENIC DERIVATIVES WITH RETINOIC ACTION, THEIR PREPARATION METHOD AND MEDICINAL AND COSMETIC COMPOSITIONS CONTAINING THEM |
US4865042A (en) | 1985-08-16 | 1989-09-12 | Hitachi, Ltd. | Ultrasonic irradiation system |
EP0335326B1 (en) | 1988-03-28 | 1994-06-15 | Canon Kabushiki Kaisha | Ion permeable membrane and ion transport method by utilizing said membrane |
US5082670A (en) | 1988-12-15 | 1992-01-21 | The Regents Of The University Of California | Method of grafting genetically modified cells to treat defects, disease or damage or the central nervous system |
JP2882818B2 (en) | 1989-09-08 | 1999-04-12 | 株式会社エス・エル・ティ・ジャパン | Laser irradiation equipment |
CA2028261C (en) | 1989-10-28 | 1995-01-17 | Won Suck Yang | Non-invasive method and apparatus for measuring blood glucose concentration |
US5032123A (en) | 1989-12-28 | 1991-07-16 | Cordis Corporation | Laser catheter with radially divergent treatment beam |
DK0574402T3 (en) | 1990-11-26 | 1998-05-18 | Chiron Corp | Expression of PACE in Host Cells and Methods for Using Them |
US5550316A (en) | 1991-01-02 | 1996-08-27 | Fox Chase Cancer Center | Transgenic animal model system for human cutaneous melanoma |
US6497872B1 (en) | 1991-07-08 | 2002-12-24 | Neurospheres Holdings Ltd. | Neural transplantation using proliferated multipotent neural stem cells and their progeny |
US5249575A (en) | 1991-10-21 | 1993-10-05 | Adm Tronics Unlimited, Inc. | Corona discharge beam thermotherapy system |
SE9103752D0 (en) | 1991-12-18 | 1991-12-18 | Astra Ab | NEW COMPOUNDS |
US5670113A (en) | 1991-12-20 | 1997-09-23 | Sibia Neurosciences, Inc. | Automated analysis equipment and assay method for detecting cell surface protein and/or cytoplasmic receptor function using same |
US5739273A (en) | 1992-02-12 | 1998-04-14 | Yale University | Transmembrane polypeptide and methods of use |
US5460954A (en) | 1992-04-01 | 1995-10-24 | Cheil Foods & Chemicals, Inc. | Production of human proinsulin using a novel vector system |
US5330515A (en) | 1992-06-17 | 1994-07-19 | Cyberonics, Inc. | Treatment of pain by vagal afferent stimulation |
US5382516A (en) | 1992-09-15 | 1995-01-17 | Schleicher & Schuell, Inc. | Method and devices for delivery of substrate for the detection of enzyme-linked, membrane-based binding assays |
US5527695A (en) | 1993-01-29 | 1996-06-18 | Purdue Research Foundation | Controlled modification of eukaryotic genomes |
WO1994021789A1 (en) | 1993-03-25 | 1994-09-29 | The Regents Of The University Of California | Expression of heterologous polypeptides in halobacteria |
JP3128386B2 (en) | 1993-04-07 | 2001-01-29 | 三洋電機株式会社 | Neural model element |
US5411540A (en) | 1993-06-03 | 1995-05-02 | Massachusetts Institute Of Technology | Method and apparatus for preferential neuron stimulation |
GB2278783A (en) | 1993-06-11 | 1994-12-14 | Daniel Shellon Gluck | Method of magnetically stimulating neural cells |
US6346101B1 (en) | 1993-07-19 | 2002-02-12 | Research Foundation Of City College Of New York | Photon-mediated introduction of biological materials into cells and/or cellular components |
US5445608A (en) | 1993-08-16 | 1995-08-29 | James C. Chen | Method and apparatus for providing light-activated therapy |
JPH07171162A (en) | 1993-09-07 | 1995-07-11 | Olympus Optical Co Ltd | Laser probe |
US6251100B1 (en) | 1993-09-24 | 2001-06-26 | Transmedica International, Inc. | Laser assisted topical anesthetic permeation |
US5470307A (en) | 1994-03-16 | 1995-11-28 | Lindall; Arnold W. | Catheter system for controllably releasing a therapeutic agent at a remote tissue site |
JPH10501686A (en) | 1994-04-13 | 1998-02-17 | ザ ロックフェラー ユニヴァーシティ | AAV-mediated delivery of DNA to cells of the nervous system |
US6436908B1 (en) | 1995-05-30 | 2002-08-20 | Duke University | Use of exogenous β-adrenergic receptor and β-adrenergic receptor kinase gene constructs to enhance myocardial function |
US5495541A (en) | 1994-04-19 | 1996-02-27 | Murray; Steven C. | Optical delivery device with high numerical aperture curved waveguide |
US5503737A (en) | 1994-07-25 | 1996-04-02 | Ingersoll-Rand Company | Air inflow restrictor for disc filters |
US5807285A (en) | 1994-08-18 | 1998-09-15 | Ethicon-Endo Surgery, Inc. | Medical applications of ultrasonic energy |
US5520188A (en) | 1994-11-02 | 1996-05-28 | Focus Surgery Inc. | Annular array transducer |
US6334846B1 (en) | 1995-03-31 | 2002-01-01 | Kabushiki Kaisha Toshiba | Ultrasound therapeutic apparatus |
US5795581A (en) | 1995-03-31 | 1998-08-18 | Sandia Corporation | Controlled release of molecular components of dendrimer/bioactive complexes |
WO1996032076A1 (en) | 1995-04-11 | 1996-10-17 | Baxter Internatonal Inc. | Tissue implant systems |
US6342379B1 (en) * | 1995-06-07 | 2002-01-29 | The Regents Of The University Of California | Detection of transmembrane potentials by optical methods |
US6480743B1 (en) | 2000-04-05 | 2002-11-12 | Neuropace, Inc. | System and method for adaptive brain stimulation |
US5755750A (en) | 1995-11-13 | 1998-05-26 | University Of Florida | Method and apparatus for selectively inhibiting activity in nerve fibers |
US5722426A (en) | 1996-02-26 | 1998-03-03 | Kolff; Jack | Coronary light probe and method of use |
US5703985A (en) | 1996-04-29 | 1997-12-30 | Eclipse Surgical Technologies, Inc. | Optical fiber device and method for laser surgery procedures |
US5898058A (en) | 1996-05-20 | 1999-04-27 | Wellman, Inc. | Method of post-polymerization stabilization of high activity catalysts in continuous polyethylene terephthalate production |
US5939320A (en) | 1996-05-20 | 1999-08-17 | New York University | G-coupled receptors associated with macrophage-trophic HIV, and diagnostic and therapeutic uses thereof |
US20040076613A1 (en) | 2000-11-03 | 2004-04-22 | Nicholas Mazarakis | Vector system |
US7732129B1 (en) | 1998-12-01 | 2010-06-08 | Crucell Holland B.V. | Method for the production and purification of adenoviral vectors |
US5741316A (en) | 1996-12-02 | 1998-04-21 | Light Sciences Limited Partnership | Electromagnetic coil configurations for power transmission through tissue |
US5756351A (en) | 1997-01-13 | 1998-05-26 | The Regents Of The University Of California | Biomolecular optical sensors |
US5782896A (en) | 1997-01-29 | 1998-07-21 | Light Sciences Limited Partnership | Use of a shape memory alloy to modify the disposition of a device within an implantable medical probe |
US5904659A (en) | 1997-02-14 | 1999-05-18 | Exogen, Inc. | Ultrasonic treatment for wounds |
WO1998046273A2 (en) | 1997-04-17 | 1998-10-22 | Paola Leone | Delivery system for gene therapy to the brain |
US5816256A (en) | 1997-04-17 | 1998-10-06 | Bioanalytical Systems, Inc. | Movement--responsive system for conducting tests on freely-moving animals |
US7276488B2 (en) | 1997-06-04 | 2007-10-02 | Oxford Biomedica (Uk) Limited | Vector system |
US5984861A (en) | 1997-09-29 | 1999-11-16 | Boston Scientific Corporation | Endofluorescence imaging module for an endoscope |
US6597954B1 (en) | 1997-10-27 | 2003-07-22 | Neuropace, Inc. | System and method for controlling epileptic seizures with spatially separated detection and stimulation electrodes |
US6016449A (en) | 1997-10-27 | 2000-01-18 | Neuropace, Inc. | System for treatment of neurological disorders |
US6647296B2 (en) | 1997-10-27 | 2003-11-11 | Neuropace, Inc. | Implantable apparatus for treating neurological disorders |
US6790652B1 (en) | 1998-01-08 | 2004-09-14 | Bioimage A/S | Method and apparatus for high density format screening for bioactive molecules |
US6289229B1 (en) | 1998-01-20 | 2001-09-11 | Scimed Life Systems, Inc. | Readable probe array for in vivo use |
EP1091685B1 (en) | 1998-04-07 | 2008-06-11 | Cytyc Corporation | Devices for the localization of lesions in solid tissue |
US6319241B1 (en) | 1998-04-30 | 2001-11-20 | Medtronic, Inc. | Techniques for positioning therapy delivery elements within a spinal cord or a brain |
US6108081A (en) | 1998-07-20 | 2000-08-22 | Battelle Memorial Institute | Nonlinear vibrational microscopy |
AU5898599A (en) | 1998-08-19 | 2000-03-14 | Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for genomic modification |
US6377842B1 (en) | 1998-09-22 | 2002-04-23 | Aurora Optics, Inc. | Method for quantitative measurement of fluorescent and phosphorescent drugs within tissue utilizing a fiber optic probe |
US6253109B1 (en) | 1998-11-05 | 2001-06-26 | Medtronic Inc. | System for optimized brain stimulation |
EP1128769A4 (en) | 1998-11-06 | 2007-08-01 | Univ Rochester | A method to improve circulation to ischemic tissue |
US6303362B1 (en) | 1998-11-19 | 2001-10-16 | The Board Of Trustees Of The Leland Stanford Junior University | Adenoviral vector and methods for making and using the same |
US6790657B1 (en) | 1999-01-07 | 2004-09-14 | The United States Of America As Represented By The Department Of Health And Human Services | Lentivirus vector system |
US7507545B2 (en) | 1999-03-31 | 2009-03-24 | Cardiome Pharma Corp. | Ion channel modulating activity method |
US6224566B1 (en) | 1999-05-04 | 2001-05-01 | Cardiodyne, Inc. | Method and devices for creating a trap for confining therapeutic drugs and/or genes in the myocardium |
US6161045A (en) | 1999-06-01 | 2000-12-12 | Neuropace, Inc. | Method for determining stimulation parameters for the treatment of epileptic seizures |
US7655423B2 (en) | 1999-06-14 | 2010-02-02 | Henry Ford Health System | Nitric oxide donors for inducing neurogenesis |
US6662039B2 (en) * | 1999-06-18 | 2003-12-09 | The Trustees Of Columbia University In The City Of New York | Optical probing of neuronal connections with fluorescent indicators |
US20040034882A1 (en) | 1999-07-15 | 2004-02-19 | Vale Wylie W. | Corticotropin releasing factor receptor 2 deficient mice and uses thereof |
US7674463B1 (en) | 1999-07-15 | 2010-03-09 | Research Development Foundation | Method of inhibiting angiogenesis by administration of a corticotropin releasing factor receptor 2 agonist |
AU775394B2 (en) | 1999-07-19 | 2004-07-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Apparatus and method for ablating tissue |
ES2152900B1 (en) | 1999-07-23 | 2001-08-16 | Palleja Xavier Estivill | TRANSGENIC MOUSES AND OVEREXPRESSION MODEL OF GEN NTRK3 (TRKC) BASED ON THE SAME FOR THE STUDY AND MONITORING OF TREATMENTS OF ANXIETY, DEPRESSION AND RELATED PSYCHIATRIC DISEASES. |
US6780490B1 (en) | 1999-08-06 | 2004-08-24 | Yukadenshi Co., Ltd. | Tray for conveying magnetic head for magnetic disk |
GB9923558D0 (en) | 1999-10-05 | 1999-12-08 | Oxford Biomedica Ltd | Producer cell |
GB9928248D0 (en) | 1999-12-01 | 2000-01-26 | Gill Steven S | An implantable guide tube for neurosurgery |
US6808873B2 (en) | 2000-01-14 | 2004-10-26 | Mitokor, Inc. | Screening assays using intramitochondrial calcium |
US7706882B2 (en) | 2000-01-19 | 2010-04-27 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area |
US6595934B1 (en) | 2000-01-19 | 2003-07-22 | Medtronic Xomed, Inc. | Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
AU3979201A (en) | 2000-02-18 | 2001-08-27 | Univ Leland Stanford Junior | Altered recombinases for genome modification |
US6473639B1 (en) | 2000-03-02 | 2002-10-29 | Neuropace, Inc. | Neurological event detection procedure using processed display channel based algorithms and devices incorporating these procedures |
WO2001083729A2 (en) | 2000-05-01 | 2001-11-08 | Novartis Ag | Vectors for ocular transduction and use thereof for genetic therapy |
US6599281B1 (en) | 2000-05-03 | 2003-07-29 | Aspect Medical Systems, Inc. | System and method for adaptive drug delivery |
US6551346B2 (en) | 2000-05-17 | 2003-04-22 | Kent Crossley | Method and apparatus to prevent infections |
US7250294B2 (en) | 2000-05-17 | 2007-07-31 | Geron Corporation | Screening small molecule drugs using neural cells differentiated from human embryonic stem cells |
AU2001268149B2 (en) | 2000-06-01 | 2005-08-18 | University Of North Carolina At Chapel Hill | Methods and compounds for controlled release of recombinant parvovirus vectors |
WO2002002639A2 (en) | 2000-07-05 | 2002-01-10 | Pharmacia & Upjohn Company | Human ion channels |
US6686193B2 (en) | 2000-07-10 | 2004-02-03 | Vertex Pharmaceuticals, Inc. | High throughput method and system for screening candidate compounds for activity against target ion channels |
US6921413B2 (en) | 2000-08-16 | 2005-07-26 | Vanderbilt University | Methods and devices for optical stimulation of neural tissues |
US6567690B2 (en) | 2000-10-16 | 2003-05-20 | Cole Giller | Method and apparatus for probe localization in brain matter |
US7350522B2 (en) | 2000-10-17 | 2008-04-01 | Sony Corporation | Scanning method for applying ultrasonic acoustic data to the human neural cortex |
US6536440B1 (en) | 2000-10-17 | 2003-03-25 | Sony Corporation | Method and system for generating sensory data onto the human neural cortex |
US6584357B1 (en) | 2000-10-17 | 2003-06-24 | Sony Corporation | Method and system for forming an acoustic signal from neural timing difference data |
US20020086814A1 (en) | 2000-11-15 | 2002-07-04 | Brian Storrie | B/B-like fragment targeting for the purposes of photodynamic therapy and medical imaging |
US6506154B1 (en) | 2000-11-28 | 2003-01-14 | Insightec-Txsonics, Ltd. | Systems and methods for controlling a phased array focused ultrasound system |
SE525540C2 (en) | 2000-11-30 | 2005-03-08 | Datainnovation I Lund Ab | System and procedure for automatic sampling from a sample object |
US20070196838A1 (en) | 2000-12-08 | 2007-08-23 | Invitrogen Corporation | Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites |
US6489115B2 (en) | 2000-12-21 | 2002-12-03 | The Board Of Regents Of The University Of Nebraska | Genetic assays for trinucleotide repeat mutations in eukaryotic cells |
US6615080B1 (en) | 2001-03-29 | 2003-09-02 | John Duncan Unsworth | Neuromuscular electrical stimulation of the foot muscles for prevention of deep vein thrombosis and pulmonary embolism |
US7047078B2 (en) | 2001-03-30 | 2006-05-16 | Case Western Reserve University | Methods for stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses |
WO2002080758A2 (en) | 2001-04-04 | 2002-10-17 | Irm Llc | Methods for treating drug addiction |
US7107996B2 (en) | 2001-04-10 | 2006-09-19 | Ganz Robert A | Apparatus and method for treating atherosclerotic vascular disease through light sterilization |
US6961045B2 (en) | 2001-06-16 | 2005-11-01 | Che-Chih Tsao | Pattern projection techniques for volumetric 3D displays and 2D displays |
US6810285B2 (en) | 2001-06-28 | 2004-10-26 | Neuropace, Inc. | Seizure sensing and detection using an implantable device |
US7144733B2 (en) | 2001-08-16 | 2006-12-05 | Sloan-Kettering Institute For Cancer Research | Bio-synthetic photostimulators and methods of use |
DE60219810D1 (en) | 2001-08-23 | 2007-06-06 | Univ California | UNIVERSAL, LIGHT SWITCHABLE GENERIC PROMOTER SYSTEM |
US6974448B2 (en) | 2001-08-30 | 2005-12-13 | Medtronic, Inc. | Method for convection enhanced delivery catheter to treat brain and other tumors |
US7904176B2 (en) | 2006-09-07 | 2011-03-08 | Bio Control Medical (B.C.M.) Ltd. | Techniques for reducing pain associated with nerve stimulation |
WO2003020103A2 (en) | 2001-09-04 | 2003-03-13 | Amit Technology Science & Medicine Ltd. | Method of and device for therapeutic illumination of internal organs and tissues |
WO2003026618A1 (en) | 2001-09-28 | 2003-04-03 | Saoirse Corporation | Localized non-invasive biological modulation system |
US7175596B2 (en) | 2001-10-29 | 2007-02-13 | Insightec-Txsonics Ltd | System and method for sensing and locating disturbances in an energy path of a focused ultrasound system |
US7303578B2 (en) | 2001-11-01 | 2007-12-04 | Photothera, Inc. | Device and method for providing phototherapy to the brain |
US8308784B2 (en) | 2006-08-24 | 2012-11-13 | Jackson Streeter | Low level light therapy for enhancement of neurologic function of a patient affected by Parkinson's disease |
WO2003040323A2 (en) | 2001-11-08 | 2003-05-15 | Children's Medical Center Corporation | Bacterial ion channel and a method for screening ion channel modulators |
WO2003041496A1 (en) | 2001-11-14 | 2003-05-22 | Yamanouchi Pharmaceutical Co., Ltd. | Transgenic animal |
AU2002360424A1 (en) | 2001-11-26 | 2003-06-10 | Advanced Cell Technology, Inc. | Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells |
US20030104512A1 (en) | 2001-11-30 | 2003-06-05 | Freeman Alex R. | Biosensors for single cell and multi cell analysis |
US6873868B2 (en) | 2001-12-31 | 2005-03-29 | Infraredx, Inc. | Multi-fiber catheter probe arrangement for tissue analysis or treatment |
US6721603B2 (en) | 2002-01-25 | 2004-04-13 | Cyberonics, Inc. | Nerve stimulation as a treatment for pain |
US6666857B2 (en) | 2002-01-29 | 2003-12-23 | Robert F. Smith | Integrated wavefront-directed topography-controlled photoablation |
CA2474922A1 (en) | 2002-02-01 | 2003-08-14 | Ali Rezai | Microinfusion device |
EP1476080A4 (en) | 2002-02-20 | 2010-06-02 | Medicis Technologies Corp | Ultrasonic treatment and imaging of adipose tissue |
JP4363843B2 (en) | 2002-03-08 | 2009-11-11 | オリンパス株式会社 | Capsule endoscope |
US20030186249A1 (en) | 2002-04-01 | 2003-10-02 | Zairen Sun | Human TARPP genes and polypeptides |
US20070135875A1 (en) | 2002-04-08 | 2007-06-14 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
DE10216005A1 (en) | 2002-04-11 | 2003-10-30 | Max Planck Gesellschaft | Use of biological photoreceptors as direct light-controlled ion channels |
US7283861B2 (en) | 2002-04-30 | 2007-10-16 | Alexander Bystritsky | Methods for modifying electrical currents in neuronal circuits |
US9592409B2 (en) | 2002-04-30 | 2017-03-14 | The Regents Of The University Of California | Methods for modifying electrical currents in neuronal circuits |
US7298143B2 (en) | 2002-05-13 | 2007-11-20 | Koninklijke Philips Electronics N.V. | Reduction of susceptibility artifacts in subencoded single-shot magnetic resonance imaging |
JP2006511197A (en) | 2002-05-31 | 2006-04-06 | スローン − ケッタリング インスティチュート フォー キャンサー リサーチ | Heterogeneous stimulus-gated ion channel and method of use thereof |
WO2003101532A2 (en) | 2002-06-04 | 2003-12-11 | Cyberkinetics, Inc. | Optically-connected implants and related systems and methods of use |
CA2489291A1 (en) | 2002-06-12 | 2003-12-24 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Vegetable protein preparations and use thereof |
US7292890B2 (en) | 2002-06-20 | 2007-11-06 | Advanced Bionics Corporation | Vagus nerve stimulation via unidirectional propagation of action potentials |
US20050020945A1 (en) | 2002-07-02 | 2005-01-27 | Tosaya Carol A. | Acoustically-aided cerebrospinal-fluid manipulation for neurodegenerative disease therapy |
US20040049134A1 (en) | 2002-07-02 | 2004-03-11 | Tosaya Carol A. | System and methods for treatment of alzheimer's and other deposition-related disorders of the brain |
EP1527407A2 (en) | 2002-08-09 | 2005-05-04 | Siemens Aktiengesellschaft | Method and computer program comprising program code means, and computer program product for analysing the activity of a pharmaceutical preparation |
US7702395B2 (en) | 2002-08-19 | 2010-04-20 | Arizona Board Of Regents, A Body Corporate, Acting For And On Behalf Of Arizona State University | Neurostimulator |
WO2004033647A2 (en) | 2002-10-10 | 2004-04-22 | Merck & Co., Inc. | Assay methods for state-dependent calcium channel agonists/antagonists |
US7355033B2 (en) | 2002-11-18 | 2008-04-08 | Health Research, Inc. | Screening for West Nile Virus antiviral therapy |
WO2004060053A2 (en) | 2002-12-16 | 2004-07-22 | Genentech, Inc. | Transgenic mice expressing human cd20 |
US20040122475A1 (en) | 2002-12-18 | 2004-06-24 | Myrick Andrew J. | Electrochemical neuron systems |
CN1781019A (en) | 2003-03-12 | 2006-05-31 | 萨马里坦药品公司 | Animal model simulating neurologic disease |
US20040216177A1 (en) | 2003-04-25 | 2004-10-28 | Otsuka Pharmaceutical Co., Ltd. | Congenic rats containing a mutant GPR10 gene |
US7377900B2 (en) | 2003-06-02 | 2008-05-27 | Insightec - Image Guided Treatment Ltd. | Endo-cavity focused ultrasound transducer |
US7442685B2 (en) | 2003-06-13 | 2008-10-28 | The University Of North Carolina At Chapel Hill | DOT1 histone methyltransferases as a target for identifying therapeutic agents for leukemia |
CA2432810A1 (en) | 2003-06-19 | 2004-12-19 | Andres M. Lozano | Method of treating depression, mood disorders and anxiety disorders by brian infusion |
US8367410B2 (en) | 2003-06-20 | 2013-02-05 | Massachusetts Institute Of Technology | Application of electrical stimulation for functional tissue engineering in vitro and in vivo |
US7091500B2 (en) | 2003-06-20 | 2006-08-15 | Lucent Technologies Inc. | Multi-photon endoscopic imaging system |
JP2005034073A (en) | 2003-07-16 | 2005-02-10 | Masamitsu Iino | Fluorescent probe for assaying myosin light chain phosphorylation |
US20050153885A1 (en) | 2003-10-08 | 2005-07-14 | Yun Anthony J. | Treatment of conditions through modulation of the autonomic nervous system |
EP1684861B1 (en) | 2003-10-21 | 2014-12-03 | The Regents Of The University Of Michigan | Intracranial neural interface system |
US6952097B2 (en) | 2003-10-22 | 2005-10-04 | Siemens Aktiengesellschaft | Method for slice position planning of tomographic measurements, using statistical images |
US20060034943A1 (en) | 2003-10-31 | 2006-02-16 | Technology Innovations Llc | Process for treating a biological organism |
US20080119421A1 (en) | 2003-10-31 | 2008-05-22 | Jack Tuszynski | Process for treating a biological organism |
EP1701772A4 (en) | 2003-11-21 | 2012-03-28 | Univ Johns Hopkins | Biomolecule partition motifs and uses thereof |
US20050124897A1 (en) | 2003-12-03 | 2005-06-09 | Scimed Life Systems, Inc. | Apparatus and methods for delivering acoustic energy to body tissue |
US7783349B2 (en) | 2006-04-10 | 2010-08-24 | Cardiac Pacemakers, Inc. | System and method for closed-loop neural stimulation |
CN1236305C (en) * | 2004-02-03 | 2006-01-11 | 复旦大学 | Preparation method for biologic photosensitive protein-nanometer semiconductor composite photoelectric electrode |
US7662114B2 (en) | 2004-03-02 | 2010-02-16 | Focus Surgery, Inc. | Ultrasound phased arrays |
US20050215764A1 (en) | 2004-03-24 | 2005-09-29 | Tuszynski Jack A | Biological polymer with differently charged portions |
ITMI20040598A1 (en) | 2004-03-26 | 2004-06-26 | Carlotta Giorgi | METHOD FOR DETECTION OF INTRACELLULAR PARAMETERS WITH LUMINESCENT PROTEIN PROBES FOR THE SCREENING OF MOLECULES ABLE TO ALTER THE SAID PARAMETERS |
US8512219B2 (en) | 2004-04-19 | 2013-08-20 | The Invention Science Fund I, Llc | Bioelectromagnetic interface system |
EP1750800A1 (en) | 2004-04-30 | 2007-02-14 | Advanced Neuromodulation Systems, Inc. | Method of treating mood disorders and/or anxiety disorders by brain stimulation |
US7670838B2 (en) | 2004-05-24 | 2010-03-02 | The Board Of Trustees Of The Leland Stanford Junior University | Coupling of excitation and neurogenesis in neural stem/progenitor cells |
US20050279354A1 (en) | 2004-06-21 | 2005-12-22 | Harvey Deutsch | Structures and Methods for the Joint Delivery of Fluids and Light |
US20060057614A1 (en) | 2004-08-04 | 2006-03-16 | Nathaniel Heintz | Tethering neuropeptides and toxins for modulation of ion channels and receptors |
US7699780B2 (en) | 2004-08-11 | 2010-04-20 | Insightec—Image-Guided Treatment Ltd. | Focused ultrasound system with adaptive anatomical aperture shaping |
US8409099B2 (en) | 2004-08-26 | 2013-04-02 | Insightec Ltd. | Focused ultrasound system for surrounding a body tissue mass and treatment method |
US8821559B2 (en) | 2004-08-27 | 2014-09-02 | Codman & Shurtleff, Inc. | Light-based implants for treating Alzheimer's disease |
US7734340B2 (en) | 2004-10-21 | 2010-06-08 | Advanced Neuromodulation Systems, Inc. | Stimulation design for neuromodulation |
US7544171B2 (en) | 2004-10-22 | 2009-06-09 | General Patent Llc | Methods for promoting nerve regeneration and neuronal growth and elongation |
WO2007013891A2 (en) | 2004-11-12 | 2007-02-01 | Northwestern University | Apparatus and methods for optical stimulation of the auditory nerve |
EP1814630A4 (en) | 2004-11-15 | 2008-05-07 | Christopher Decharms | Applications of the stimulation of neural tissue using light |
US8109981B2 (en) | 2005-01-25 | 2012-02-07 | Valam Corporation | Optical therapies and devices |
US7686839B2 (en) | 2005-01-26 | 2010-03-30 | Lumitex, Inc. | Phototherapy treatment devices for applying area lighting to a wound |
US7553284B2 (en) | 2005-02-02 | 2009-06-30 | Vaitekunas Jeffrey J | Focused ultrasound for pain reduction |
US9034650B2 (en) | 2005-02-02 | 2015-05-19 | Intrexon Corporation | Site-specific serine recombinases and methods of their use |
JP2006217866A (en) | 2005-02-10 | 2006-08-24 | Tohoku Univ | Neurocyte to which photosensitivity is newly imparted |
US7548780B2 (en) | 2005-02-22 | 2009-06-16 | Cardiac Pacemakers, Inc. | Cell therapy and neural stimulation for cardiac repair |
US7288108B2 (en) | 2005-03-14 | 2007-10-30 | Codman & Shurtleff, Inc. | Red light implant for treating Parkinson's disease |
US20070059775A1 (en) * | 2005-03-29 | 2007-03-15 | The Trustees Of Columbia University In The City Of New York | Synthesis and conjugation of iron oxide nanoparticles to antibodies for targeting specific cells using fluorescence and MR imaging techniques |
WO2006103678A2 (en) | 2005-03-31 | 2006-10-05 | Esther Mayer | Probe device, system and method for photobiomodulation of tissue lining a body cavity |
JP2006295350A (en) | 2005-04-07 | 2006-10-26 | Sony Corp | Imaging apparatus and method of processing imaging result |
US9445211B2 (en) | 2005-04-11 | 2016-09-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Methods for manufacturing high intensity ultrasound transducers |
GB0508254D0 (en) | 2005-04-23 | 2005-06-01 | Smith & Nephew | Ultrasound device |
US7640057B2 (en) | 2005-04-25 | 2009-12-29 | Cardiac Pacemakers, Inc. | Methods of providing neural markers for sensed autonomic nervous system activity |
US8066908B2 (en) * | 2005-04-26 | 2011-11-29 | Uvic Industry Partnerships Inc. | Production of light from sol-gel derived thin films made with lanthanide doped nanoparticles, and preparation thereof |
DK1879623T3 (en) | 2005-05-02 | 2012-12-17 | Genzyme Corp | GENTERAPY FOR BACKGROUND DISEASES |
CN1879906A (en) | 2005-06-15 | 2006-12-20 | 郑云峰 | Magnetic stimulating device for nervous centralis system and its usage method |
US20070027443A1 (en) | 2005-06-29 | 2007-02-01 | Ondine International, Ltd. | Hand piece for the delivery of light and system employing the hand piece |
US20090093403A1 (en) | 2007-03-01 | 2009-04-09 | Feng Zhang | Systems, methods and compositions for optical stimulation of target cells |
US9238150B2 (en) | 2005-07-22 | 2016-01-19 | The Board Of Trustees Of The Leland Stanford Junior University | Optical tissue interface method and apparatus for stimulating cells |
US9274099B2 (en) | 2005-07-22 | 2016-03-01 | The Board Of Trustees Of The Leland Stanford Junior University | Screening test drugs to identify their effects on cell membrane voltage-gated ion channel |
US8926959B2 (en) | 2005-07-22 | 2015-01-06 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US8906360B2 (en) | 2005-07-22 | 2014-12-09 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated cation channel and uses thereof |
US10052497B2 (en) | 2005-07-22 | 2018-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US7736382B2 (en) | 2005-09-09 | 2010-06-15 | Lockheed Martin Corporation | Apparatus for optical stimulation of nerves and other animal tissue |
US8852184B2 (en) | 2005-09-15 | 2014-10-07 | Cannuflow, Inc. | Arthroscopic surgical temperature control system |
US20080077200A1 (en) | 2006-09-21 | 2008-03-27 | Aculight Corporation | Apparatus and method for stimulation of nerves and automated control of surgical instruments |
US8058509B2 (en) | 2005-12-21 | 2011-11-15 | Pioneer Hi-Bred International, Inc. | Methods and compositions for in planta production of inverted repeats |
US7610100B2 (en) | 2005-12-30 | 2009-10-27 | Boston Scientific Neuromodulation Corporation | Methods and systems for treating osteoarthritis |
US20070191906A1 (en) | 2006-02-13 | 2007-08-16 | Anand Iyer | Method and apparatus for selective nerve stimulation |
US20070219600A1 (en) | 2006-03-17 | 2007-09-20 | Michael Gertner | Devices and methods for targeted nasal phototherapy |
US20070282404A1 (en) | 2006-04-10 | 2007-12-06 | University Of Rochester | Side-firing linear optic array for interstitial optical therapy and monitoring using compact helical geometry |
US20070253995A1 (en) | 2006-04-28 | 2007-11-01 | Medtronic, Inc. | Drug Delivery Methods and Devices for Treating Stress Urinary Incontinence |
US8057464B2 (en) | 2006-05-03 | 2011-11-15 | Light Sciences Oncology, Inc. | Light transmission system for photoreactive therapy |
US8470790B2 (en) | 2006-05-04 | 2013-06-25 | Wayne State University | Restoration of visual responses by in vivo delivery of rhodopsin nucleic acids |
US20080176076A1 (en) * | 2006-05-11 | 2008-07-24 | University Of Victoria Innovation And Development Corporation | Functionalized lanthanide rich nanoparticles and use thereof |
US20080262411A1 (en) | 2006-06-02 | 2008-10-23 | Dobak John D | Dynamic nerve stimulation in combination with other eating disorder treatment modalities |
EP2550992B1 (en) | 2006-06-19 | 2015-08-19 | Highland Instruments, Inc. | Apparatus for stimulation of biological tissue |
US7795632B2 (en) | 2006-06-26 | 2010-09-14 | Osram Sylvania Inc. | Light emitting diode with direct view optic |
US9284363B2 (en) | 2006-07-26 | 2016-03-15 | Case Western Reserve University | System and method for controlling G-protein coupled receptor pathways |
US20080027505A1 (en) | 2006-07-26 | 2008-01-31 | G&L Consulting, Llc | System and method for treatment of headaches |
SG139588A1 (en) | 2006-07-28 | 2008-02-29 | St Microelectronics Asia | Addressable led architecure |
US7848797B2 (en) | 2006-08-17 | 2010-12-07 | Neurometrix, Inc. | Motor unit number estimation (MUNE) for the assessment of neuromuscular function |
US7521590B2 (en) | 2006-09-01 | 2009-04-21 | Korea Institute Of Science And Technology | Phospholipase C β1 (PLCβ1) knockout mice as a model system for testing schizophrenia drugs |
US10420948B2 (en) | 2006-10-30 | 2019-09-24 | Medtronic, Inc. | Implantable medical device with variable data retransmission characteristics based upon data type |
US20100021982A1 (en) | 2006-12-06 | 2010-01-28 | Stefan Herlitze | Light-sensitive constructs for inducing cell death and cell signaling |
EE200600039A (en) | 2006-12-12 | 2008-10-15 | Tartu Ülikool | Animal Transgenic Model for Modeling Pathological Anxiety, Method for Identifying Compounds Suitable for the Treatment of Pathological Anxiety Diseases or Conditions, and Method for Wfs1 Protein Targeting Against Pathological Anxiety |
US8398692B2 (en) | 2007-01-10 | 2013-03-19 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US7883536B1 (en) | 2007-01-19 | 2011-02-08 | Lockheed Martin Corporation | Hybrid optical-electrical probes |
WO2008101128A1 (en) | 2007-02-14 | 2008-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | System, method and applications involving identification of biological circuits such as neurological characteristics |
US8282559B2 (en) | 2007-03-09 | 2012-10-09 | Philip Chidi Njemanze | Method for inducing and monitoring long-term potentiation and long-term depression using transcranial doppler ultrasound device in head-down bed rest |
US8139339B2 (en) | 2007-03-16 | 2012-03-20 | Old Dominion University Research Foundation | Modulation of neuromuscular functions with ultrashort electrical pulses |
US20080287821A1 (en) | 2007-03-30 | 2008-11-20 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational user-health testing |
CN101288768A (en) | 2007-04-20 | 2008-10-22 | 中央研究院 | Medicine composition for treating progressive nerve degeneration disease |
WO2008137579A1 (en) | 2007-05-01 | 2008-11-13 | Neurofocus, Inc. | Neuro-informatics repository system |
US20110165681A1 (en) | 2009-02-26 | 2011-07-07 | Massachusetts Institute Of Technology | Light-Activated Proton Pumps and Applications Thereof |
US8097422B2 (en) | 2007-06-20 | 2012-01-17 | Salk Institute For Biological Studies | Kir channel modulators |
US9138596B2 (en) | 2007-08-22 | 2015-09-22 | Cardiac Pacemakers, Inc. | Optical depolarization of cardiac tissue |
US10434327B2 (en) | 2007-10-31 | 2019-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Implantable optical stimulators |
US10035027B2 (en) | 2007-10-31 | 2018-07-31 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for ultrasonic neuromodulation via stereotactic frame based technique |
DE112008003192T5 (en) | 2007-11-26 | 2010-10-07 | Micro-Transponder, Inc., Dallas | Transmission coils Architecture |
WO2009072123A2 (en) * | 2007-12-06 | 2009-06-11 | Technion Research & Development Foundation Ltd. | Method and system for optical stimulation of neurons |
US8883719B2 (en) | 2008-01-16 | 2014-11-11 | University Of Connecticut | Bacteriorhodopsin protein variants and methods of use for long term data storage |
US20090254134A1 (en) | 2008-02-04 | 2009-10-08 | Medtrode Inc. | Hybrid ultrasound/electrode device for neural stimulation and recording |
JP5544659B2 (en) | 2008-03-24 | 2014-07-09 | 国立大学法人東北大学 | Modified photoreceptor channel-type rhodopsin protein |
CA2906990A1 (en) * | 2008-04-04 | 2009-10-08 | Immunolight, Llc | Non-invasive systems and methods for in-situ photobiomodulation |
ES2608498T3 (en) | 2008-04-23 | 2017-04-11 | The Board Of Trustees Of The Leland Stanford Junior University | Systems, methods and compositions for optical stimulation of target cells |
MX2010012592A (en) | 2008-05-20 | 2011-05-05 | Eos Neuroscience Inc | Vectors for delivery of light-sensitive proteins and methods of use. |
JP5890176B2 (en) | 2008-05-29 | 2016-03-22 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Cell line, system and method for optically controlling a second messenger |
US8636653B2 (en) | 2008-06-09 | 2014-01-28 | Capso Vision, Inc. | In vivo camera with multiple sources to illuminate tissue at different distances |
EP2303406B1 (en) | 2008-06-17 | 2016-11-09 | The Board of Trustees of the Leland Stanford Junior University | Devices for optical stimulation of target cells using an optical transmission element |
MX2010014101A (en) | 2008-06-17 | 2011-03-04 | Univ Leland Stanford Junior | Apparatus and methods for controlling cellular development. |
WO2010006049A1 (en) | 2008-07-08 | 2010-01-14 | The Board Of Trustees Of The Leland Stanford Junior University | Materials and approaches for optical stimulation of the peripheral nervous system |
US8770203B2 (en) * | 2008-07-14 | 2014-07-08 | Immunolight, Llc. | Advanced methods and systems for treating cell proliferation disorders |
JP2012503798A (en) | 2008-09-25 | 2012-02-09 | ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク | Device, apparatus and method for providing light stimulation and imaging of structures |
NZ602416A (en) | 2008-11-14 | 2014-08-29 | Univ Leland Stanford Junior | Optically-based stimulation of target cells and modifications thereto |
US8878760B2 (en) | 2008-11-26 | 2014-11-04 | Sharp Kabushiki Kaisha | Liquid crystal display device, method for driving liquid crystal display device, and television receiver |
US8380318B2 (en) | 2009-03-24 | 2013-02-19 | Spinal Modulation, Inc. | Pain management with stimulation subthreshold to paresthesia |
KR101081360B1 (en) | 2009-03-25 | 2011-11-08 | 한국과학기술연구원 | Photostimulation array apparatus |
AR076361A1 (en) * | 2009-04-21 | 2011-06-08 | Immunoligtht Llc | PHARMACEUTICAL COMPOSITION KIT NON-INVASIVE ASCENDING ENERGY CONVERSION METHODS AND SYSTEMS FOR IN-SITU PHOTOBIOMODULATION |
WO2011005978A2 (en) | 2009-07-08 | 2011-01-13 | Duke University | Methods of manipulating cell signaling |
US20110112463A1 (en) | 2009-11-12 | 2011-05-12 | Jerry Silver | Compositions and methods for treating a neuronal injury or neuronal disorders |
US8936630B2 (en) | 2009-11-25 | 2015-01-20 | Medtronic, Inc. | Optical stimulation therapy |
AU2011220367B2 (en) | 2010-02-26 | 2016-05-12 | Cornell University | Retina prosthesis |
CA2791094A1 (en) | 2010-03-17 | 2011-09-22 | The Board Of Trustees Of The Leland Stanford Junior University | Light-sensitive ion-passing molecules |
GB2492719A (en) | 2010-04-05 | 2013-01-09 | Eos Neuroscience Inc | Methods and compositions for decreasing chronic pain |
US10051240B2 (en) | 2010-06-14 | 2018-08-14 | Howard Hughes Medical Institute | Structured plane illumination microscopy |
CA2838330C (en) | 2010-08-23 | 2021-01-26 | President And Fellows Of Harvard College | Optogenetic probes for measuring membrane potential |
US8748578B2 (en) | 2010-09-08 | 2014-06-10 | Max-Planck-Gesellschaft zur Foerderrung der Wissenschaften e.V. | Mutant channelrhodopsin 2 |
CN110215614A (en) | 2010-11-05 | 2019-09-10 | 斯坦福大学托管董事会 | The upper conversion of light for light genetic method |
US8932562B2 (en) | 2010-11-05 | 2015-01-13 | The Board Of Trustees Of The Leland Stanford Junior University | Optically controlled CNS dysfunction |
EP2635111B1 (en) | 2010-11-05 | 2018-05-23 | The Board of Trustees of the Leland Stanford Junior University | Stabilized step function opsin proteins and methods of using the same |
US9992981B2 (en) | 2010-11-05 | 2018-06-12 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of reward-related behaviors |
ES2661093T3 (en) | 2010-11-05 | 2018-03-27 | The Board Of Trustees Of The University Of The Leland Stanford Junior University | Control and characterization of memory function |
CN106267236A (en) | 2010-11-05 | 2017-01-04 | 斯坦福大学托管董事会 | The control of psychotic state and sign |
CN106947741A (en) | 2010-11-05 | 2017-07-14 | 斯坦福大学托管董事会 | Photoactivation is fitted together to opsin and its application method |
US8957028B2 (en) | 2010-11-13 | 2015-02-17 | Massachusetts Institute Of Technology | Red-shifted opsin molecules and uses thereof |
US8696722B2 (en) | 2010-11-22 | 2014-04-15 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic magnetic resonance imaging |
WO2012106407A2 (en) | 2011-02-01 | 2012-08-09 | The University Of Vermont And State Agricultural College | Diagnostic and therapeutic methods and products related to anxiety disorders |
US20120253261A1 (en) | 2011-03-29 | 2012-10-04 | Medtronic, Inc. | Systems and methods for optogenetic modulation of cells within a patient |
US20140128800A1 (en) | 2011-06-28 | 2014-05-08 | University Of Rochester | Photoactivatable receptors and their uses |
US9782091B2 (en) | 2011-07-25 | 2017-10-10 | Neuronexus Technologies, Inc. | Opto-electrical device for artifact reduction |
KR102023754B1 (en) | 2011-07-27 | 2019-09-20 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | Nanopore sensors for biomolecular characterization |
JP6406581B2 (en) | 2011-12-16 | 2018-10-17 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Opsin polypeptides and uses thereof |
ES2728077T3 (en) | 2012-02-21 | 2019-10-22 | Univ Leland Stanford Junior | Compositions for the treatment of neurogenic disorders of the pelvic floor |
EP2817670B1 (en) | 2012-02-23 | 2020-07-29 | The United States Of America, As Represented By The Sectretary, Department Of Health And Human Services | Multi-focal structured illumination microscopy systems and methods |
CN104270942B (en) | 2012-03-20 | 2018-02-02 | 斯坦福大学托管董事会 | Non-human animal's depression model and its application method |
AU2013348395A1 (en) | 2012-11-21 | 2015-06-11 | Circuit Therapeutics, Inc. | System and method for optogenetic therapy |
EP2949117A4 (en) | 2013-01-25 | 2016-10-05 | Univ Columbia | Depth of field 3d imaging slm microscope |
JP6594854B2 (en) | 2013-03-15 | 2019-10-23 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Optogenetic control of behavioral state |
US9636380B2 (en) | 2013-03-15 | 2017-05-02 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of inputs to the ventral tegmental area |
CN105431046B (en) | 2013-04-29 | 2020-04-17 | 小利兰·斯坦福大学托管委员会 | Devices, systems, and methods for optogenetic modulation of action potentials in target cells |
US20150112411A1 (en) | 2013-10-18 | 2015-04-23 | Varaya Photoceuticals, Llc | High powered light emitting diode photobiology compositions, methods and systems |
CN107106862A (en) | 2014-07-29 | 2017-08-29 | 电路治疗公司 | System and method for light genetic therapy |
HUE043265T2 (en) | 2014-11-11 | 2019-08-28 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Power adaptor, terminal and charging system |
-
2011
- 2011-11-04 CN CN201910498814.5A patent/CN110215614A/en active Pending
- 2011-11-04 WO PCT/US2011/059287 patent/WO2012061684A1/en active Application Filing
- 2011-11-04 EP EP11838859.4A patent/EP2635341B1/en not_active Not-in-force
- 2011-11-04 JP JP2013537855A patent/JP6145043B2/en not_active Expired - Fee Related
- 2011-11-04 US US13/882,703 patent/US9522288B2/en active Active
- 2011-11-04 CA CA2817175A patent/CA2817175C/en not_active Expired - Fee Related
- 2011-11-04 AU AU2011323231A patent/AU2011323231B2/en not_active Ceased
- 2011-11-04 CN CN201180060040.XA patent/CN103313752B/en not_active Expired - Fee Related
- 2011-11-04 ES ES11838859.4T patent/ES2690172T3/en active Active
- 2011-11-04 CN CN201610879622.5A patent/CN106422081B/en not_active Expired - Fee Related
-
2016
- 2016-03-31 AU AU2016202003A patent/AU2016202003B2/en not_active Ceased
- 2016-07-19 US US15/214,403 patent/US10252076B2/en active Active
-
2017
- 2017-05-12 JP JP2017095198A patent/JP6505158B2/en not_active Expired - Fee Related
-
2019
- 2019-02-04 US US16/267,144 patent/US20190217118A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2017170163A (en) | 2017-09-28 |
JP6145043B2 (en) | 2017-06-07 |
US10252076B2 (en) | 2019-04-09 |
CA2817175C (en) | 2019-09-24 |
EP2635341A1 (en) | 2013-09-11 |
US9522288B2 (en) | 2016-12-20 |
EP2635341B1 (en) | 2018-08-08 |
US20160317658A1 (en) | 2016-11-03 |
AU2016202003A1 (en) | 2016-04-21 |
US20140148880A1 (en) | 2014-05-29 |
CN106422081B (en) | 2019-06-21 |
AU2016202003B2 (en) | 2018-06-14 |
CN103313752B (en) | 2016-10-19 |
JP2014502177A (en) | 2014-01-30 |
CN110215614A (en) | 2019-09-10 |
AU2011323231A1 (en) | 2013-05-09 |
CA2817175A1 (en) | 2012-05-10 |
CN103313752A (en) | 2013-09-18 |
ES2690172T3 (en) | 2018-11-19 |
JP6505158B2 (en) | 2019-04-24 |
AU2011323231B2 (en) | 2016-01-07 |
CN106422081A (en) | 2017-02-22 |
WO2012061684A1 (en) | 2012-05-10 |
EP2635341A4 (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10252076B2 (en) | Upconversion of light for use in optogenetic methods | |
JP2014502177A5 (en) | ||
ES2725951T3 (en) | Proteins of anionic channels activated by light modified by genetic engineering and methods of use thereof | |
Bansal et al. | Towards translational optogenetics | |
US20200121942A1 (en) | Compositions and methods for controlling pain | |
JP6549559B2 (en) | Device, system and method for optogenetic regulation of action potentials in target cells | |
EP2635110B1 (en) | Control and characterization of psychotic states | |
CN109069852A (en) | The system and method for adjusting pain and itching by cutaneous metastatic hereditary information | |
CN118725046A (en) | Recombinant adeno-associated virus (AAV) having a modified AAV capsid polypeptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEISSEROTH, KARL;ANIKEEVA, POLINA;SIGNING DATES FROM 20130513 TO 20130705;REEL/FRAME:049980/0468 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |