US20190175836A1 - Method and apparatus for delivery of therapeutic agents - Google Patents
Method and apparatus for delivery of therapeutic agents Download PDFInfo
- Publication number
- US20190175836A1 US20190175836A1 US16/279,687 US201916279687A US2019175836A1 US 20190175836 A1 US20190175836 A1 US 20190175836A1 US 201916279687 A US201916279687 A US 201916279687A US 2019175836 A1 US2019175836 A1 US 2019175836A1
- Authority
- US
- United States
- Prior art keywords
- therapeutic agent
- recited
- administration
- agent
- orifice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
- A61M5/2033—Spring-loaded one-shot injectors with or without automatic needle insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/30—Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/20—Applying electric currents by contact electrodes continuous direct currents
- A61N1/30—Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/20—Applying electric currents by contact electrodes continuous direct currents
- A61N1/30—Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
- A61N1/303—Constructional details
- A61N1/306—Arrangements where at least part of the apparatus is introduced into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
- A61M2005/206—With automatic needle insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
- A61M5/2053—Media being expelled from injector by pressurised fluid or vacuum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3205—Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
- A61M5/321—Means for protection against accidental injuries by used needles
- A61M5/3243—Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
- A61M5/326—Fully automatic sleeve extension, i.e. in which triggering of the sleeve does not require a deliberate action by the user
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/46—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for controlling depth of insertion
Definitions
- the present disclosure is directed to the delivery of prophylactic and therapeutic agents to patients and, more particularly, to the reproducible, consistent, and efficacious delivery of prophylactic and therapeutic agents, such as nucleic acids, drugs, and proteins, to defined regions in selected tissues of interest.
- prophylactic and therapeutic agents such as nucleic acids, drugs, and proteins
- Prophylactic and therapeutic agents have long been delivered to patients using various conventional routes of administration, such as topical, oral, intravenous, parenteral, and the like. Once administered to the patient by the selected route, the delivery of the agent to the tissue of interest and its beneficial interaction with the tissue is largely dependent on its inherent physicochemical factors, but may have been facilitated by, for example, selected components of the delivery composition such as carriers, adjuvants, buffers and excipients, and the like.
- Such development should include a means for minimizing operator-associated variability while providing a means to accommodate the differences in patient characteristics likely to be encountered during widespread clinical application of electrically mediated agent delivery.
- the present disclosure provides improved methods and apparatus for the reproducible, consistent, and efficacious delivery of therapeutic agents, such as nucleic acids, drugs, and proteins, to patients utilizing Electrically Mediated Therapeutic Agent Delivery.
- therapeutic agents such as nucleic acids, drugs, and proteins
- the present disclosure provides an apparatus for the delivery of a therapeutic agent to a predetermined site within a patient comprising means for the controlled administration of the therapeutic agent to the patient comprising a reservoir for the therapeutic agent, at least one orifice through which the agent is administered, and a controlled source of energy sufficient to transfer a predetermined amount of the therapeutic agent at a predetermined rate from the reservoir through the orifice to the predetermined site within the patient.
- the apparatus comprises a plurality of penetrating electrodes arranged with a predetermined spatial relationship relative to the orifice, and means for generating an electrical signal operatively connected to the electrodes.
- compositions comprising Therapeutic Agent Administration in controlled spatial and temporal conjunction with Electric Signal Administration.
- FIGS. 1 A-C are graphic depictions of potential sources of spatial variability associated with conventional needle syringe injection
- FIG. 2 is a cross sectional depiction of an embodiment of an apparatus of the disclosure comprising an integrated means for therapeutic agent administration and electrical signal application;
- FIG. 3 is a cross sectional depiction of an alternative embodiment of an apparatus of the disclosure comprising an integrated means for therapeutic agent administration and electrical signal application;
- FIG. 4A is a cross sectional view of a portion of an embodiment of the disclosure during therapeutic agent administration
- FIG. 4B is a bottom view of the embodiment of FIG. 4A , depicting the portion of the device which interfaces with the tissue of a patient;
- FIGS. 5A-D illustrate several embodiments of embodiments of the disclosure depicting the portion of the apparatus that interfaces with the tissue of a patient;
- FIG. 6A is a partial cross sectional view of a further alternative embodiment of an apparatus of the disclosure comprising an integrated means for therapeutic agent administration and electrical signal application;
- FIG. 6B is a bottom plan view of the embodiment of FIG. 6A , depicting the portion of the device which interfaces with the tissue of a patient;
- FIG. 7 is a block diagram of a treatment system in accordance with the disclosure.
- the present disclosure provides improved methods and apparatus for the reproducible, consistent, and efficacious delivery of therapeutic agents, such as nucleic acids, drugs, and proteins, with Electrically Mediated Therapeutic Agent Delivery (EMTAD).
- therapeutic agents such as nucleic acids, drugs, and proteins
- ETAD Electrically Mediated Therapeutic Agent Delivery
- the present disclosure provides an apparatus for the delivery of a therapeutic agent to a predetermined site within a patient comprising means for the controlled administration of the therapeutic agent to the patient comprising a reservoir for the therapeutic agent, at least one orifice through which the agent is administered, and a controlled source of energy sufficient to transfer a predetermined amount of the therapeutic agent at a predetermined rate from the reservoir through the orifice to the predetermined site within the patient.
- the apparatus comprises a plurality of penetrating electrodes arranged with a predetermined spatial relationship relative to the orifice, and means for generating an electrical signal operatively connected to the electrodes.
- EMTAD is defined as the application of electrical signals to biological tissue for the purpose of enhancing movement and/or uptake of a therapeutic agent in tissue.
- the process of EMTAD is comprised of two elements: 1) Therapeutic Agent Administration (TAA), and 2) an Electrical Signal Application (ESA) sufficient to induce the desired EMTAD effect.
- TAA Therapeutic Agent Administration
- ESA Electrical Signal Application
- therapeutic agent administration is accomplished in a controllable fashion, termed Controlled Therapeutic Agent Administration (CTAA).
- CTAA used herein refers to methods and apparatus capable of providing spatial and temporal control over administration of a therapeutic agent relative to the induction of an EMTAD effect.
- Controllable administration techniques may utilize variations on the conventional needle-syringe (e.g. automatic injection device) and/or various needleless methodologies (e.g.
- ESA electrodermal/transcutaneous patch
- oral gel, cream, or inhaled administration
- ESA used herein refers to the application of electrical signals to facilitate or enhance the delivery of therapeutic agents by improving movement and/or uptake of said agents within tissue, thus inducing an EMTAD effect.
- ESA processes such as electroporation, iontophoresis, electroosmosis, electropermeabilization, electrostimulation, electromigration, and electroconvection all represent various modes of EMTAD.
- EMTAD electrospray deposition
- therapeutic agents include, but are not limited to, the delivery of vaccines, therapeutic proteins, and chemotherapeutic drugs.
- EMTAD is initiated by therapeutic agent injection using a conventional needle-syringe. After the agent has been administered, a device suitable for ESA is applied to the patient at a designated location. Finally, an appropriate ESA protocol is utilized to provide the desired facilitation or enhancement to therapeutic agent delivery. With traditional EMTAD, however, the desired spatial and temporal relationship between agent administration and ESA may not be realized.
- any conventional needle-syringe injection as the needle 5 is inserted into the tissue, the depth 1 and the angle 2 of insertion relative to the surface of the tissue 3 can be difficult to control. Additionally, the point of needle penetration 4 at the tissue surface 3 may not be representative of the location of the orifice 6 and the region of agent administration 7 within the target tissue. As an illustrative example a transcutaneous intramuscular injection may not correspond to the site of insertion on the skin since the two tissues can often move in relation to one another.
- EMTAD electroporation
- Electroporation is typically most effective in enhancing therapeutic agent delivery when TAA and ESA are co-localized within the target region of tissue. In many cases, if the agent to be delivered and the induced electroporation effect are not co-localized within the target region of tissue, the delivery of said agent is suboptimal.
- EMTAD electrowetting-on-adhepatocytes
- This mode of EMTAD uses electrical fields to cause movement of charged molecules.
- the proper spatial relationship between the electrodes and the therapeutic agent must be realized. If a negatively charged agent were placed in close proximity to the location of a positive electrode, little or no movement of the agent through the tissue would be observed. In contrast, localization of the said negatively charged agent near the negative electrode would result in significant movement of the agent through the tissue in the direction of the positive electrode.
- TAA needle-syringe injection
- the rate of injection may vary from one operator to another, thereby causing inconsistent agent distribution in the tissue.
- Additional temporal variability is introduced when multiple device placements are required to complete the EMTAD process.
- one application of EMTAD calls for the administration of plasmid DNA encoding for a therapeutic protein, followed by generation of an electroporation-inducing electrical field.
- the plasmid is injected with a needle-syringe, followed by placement and activation of the electroporation device.
- this procedure is susceptible to inter-patient variability arising from inconsistent temporal application of each device by the operator.
- therapeutic agent degradation can lead to a reduction in efficacy and consistency in the application of the therapy. Also, the inter-patient rate of therapeutic agent degradation is not constant, thus contributing to the overall therapeutic inconsistency of conventional needle-syringe injection combined with ESA, and more specifically with electroporation therapy.
- TAA tissue-to-emetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adetic adotylation, a cellular cellular cellular adion-e-associated adion-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl
- Another aspect of the disclosure provides a controllable temporal relationship for the sequence and timing of TAA relative to ESA.
- the optimal sequence and timing for combination of TAA and ESA is determined prior to treatment.
- the desired temporal relationship between TAA and ESA is dictated by parameters such as the nature of the agent being administered and the properties of the target tissue to which the agent is administered.
- exposure to the electrical fields associated with ESA may adversely affect the therapeutic agent.
- generation of such electrical fields is followed by CTAA.
- CTAA the typical temporal relationship is CTAA followed by ESA.
- the present disclosure provides improved methods and apparatus for the reproducible, consistent, and efficacious delivery of therapeutic agents, such as nucleic acid based constructs', pharmaceutical compounds, drugs, and proteins, with EMTAD.
- This objective is accomplished by controlling the spatial and temporal administration of a therapeutic agent relative to application of electrical signals.
- Specific applications for EMTAD include, but are not limited to, the delivery of vaccines, therapeutic proteins, and chemotherapeutic drugs.
- EMTAD is initiated by therapeutic agent injection using a conventional needle-syringe. After the agent has been administered, a device suitable for ESA is applied to the patient at a designated location. Finally, an appropriate ESA protocol is utilized to provide the desired facilitation or enhancement to therapeutic agent delivery.
- ESA electroporation
- Other methods of electrically mediated delivery include iontophoresis, electroosmosis, electropermeabilization, electrostimulation, electromigration, and electroconvection. These terms are used for illustrative purposes only and should not be construed as limitations in the disclosure.
- the technique of electroporation utilizes the application of electric fields to induce a transient increase in cell membrane permeability and to move charged particles.
- electroporation By permeabilizing the cell membranes within the target tissue, electroporation dramatically improves the intracellular uptake of exogenous substances that have been administered to the target tissue.
- the increase in cell membrane permeability and molecular movement due to electroporation offers a method for overcoming the cell membrane as a barrier to therapeutic agent delivery.
- the application of electroporation as a technique for inducing EMTAD is advantageous in that the physical nature of the technique allows electroporation to be applied in virtually all tissue types. Accordingly, various aspects and embodiments of the disclosure discuss, but are not limited to, electroporation as a technique for inducing EMTAD.
- therapeutic agent will be used in its broadest sense to include any agent capable of providing a desired or beneficial effect on living tissue. Thus, the term will include both prophylactic and therapeutic agents, as well as any other category of agent having such desired effects. Clearly, the scope of the present disclosure is sufficiently broad to include the controlled delivery of any agent, however categorized.
- Therapeutic agents include, but are not limited to pharmaceutical drugs and vaccines, and nucleic acid sequences (such as supercoiled, relaxed, and linear plasmid DNA, antisense constructs, artificial chromosomes, or any other nucleic acid-based therapeutic), and any formulations thereof.
- agent formulations include, but are not limited to, cationic lipids, cationic polymers, liposomes, saline, nuclease inhibitors, anesthetics, poloxamers, preservatives, sodium phosphate solutions, or other compounds that can improve the administration, stability, and/or effect of the therapeutic agent. Additional benefits derived from certain agent formulations include the ability to control viscosity and electrical impedance of the administered agent, an important consideration for EMTAD applications.
- nucleic acids an example of a therapeutic agent would be plasmid DNA dissolved in a sodium phosphate solution with a competitive nuclease inhibitor such as aurintricarboxylic acid (ATA) added to the agent.
- a signaling peptide onto the construct.
- Potentially useful peptides include, but are not limited to, nuclear localization signals, endosomal lytic peptides, and transcriptional control elements. These signals can enable improved delivery and/or processing of the therapeutic agents delivered to the cells via EMTAD. This signaling can be accomplished through the use of methods as described in U.S. Pat. No. 6,165,720. While these techniques can be utilized with other delivery systems, the-ability of EMTAD to increase the delivery of nucleic acid constructs to target tissues makes it particularly well suited for use with such signals.
- Target tissues well suited for EMTAD include both healthy and diseased cells located in the epidermis, dermis, hypodermis, connective, and muscle tissue.
- the technique can also be utilized for application in healthy or diseased organs that must be accessed via minimally invasive or other surgical means.
- target tissues include the liver, lungs, heart, blood vessels, lymphatic, brain, kidneys, pancreas, stomach, intestines, colon, bladder, and reproductive organs.
- the desired therapeutic effect may be derived from agent delivery to cell types normally located within the target tissues as well as other cell types abnormally found within said tissues (e.g. chemotherapeutic treatment of tumors).
- the present disclosure describes methods and apparatus for combined CTAA and ESA to provide a more advantageous clinical application of EMTAD.
- This disclosure utilizes various aspects of CTAA in conjunction with ESA to provide reproducible, consistent, and efficacious therapeutic agent delivery. More specifically, the methods and apparatus proposed herein provide spatial and temporal control over administration of a therapeutic agent relative to the application of electrical signals, thereby improving the movement and/or uptake of said agent in the target tissue.
- the disclosure described herein provides methods for controlled administration of a therapeutic agent followed by ESA. These methods consist of, but are not limited in scope or sequential relationship to, the determination of treatment parameters, patient preparation procedures, CTAA, ESA, and additional measures.
- Treatment parameters are dictated by the desired dosing of the therapeutic agent.
- Therapeutic agent dosing may depend on the particular indication or treatment application (such as the type and location of the target tissue), as well as various patient parameters (such as age and body mass).
- Dosing of the therapeutic agent may be controlled by parameters pertaining to administration of the therapeutic agent and ESA.
- Controllable parameters pertaining to CTAA include agent volume, agent viscosity, and injection rate.
- Controllable parameters pertaining to ESA include the characteristics of the electrical signals, the tissue volume exposed to the electrical signals, and the electrode array format. The relative timing and location of CTAA and ESA are parameters providing further control over therapeutic agent dosing.
- Patient preparation includes, but is not limited to, antiseptic cleansing and anesthetic administration, including local or regional, nerve block, spinal block, epidural block, or general anesthesia.
- IM intramuscular
- protocols to minimize the effects of electrical stimulation of the muscle may be taken, including thermal control (e.g. cooling the muscle), administration of anesthetics, and/or alternative stimulation patterns sufficient for mitigation of discomfort.
- thermal control e.g. cooling the muscle
- administration of anesthetics e.g. cooling the muscle
- alternative stimulation patterns sufficient for mitigation of discomfort.
- CTAA computed tomography
- an automatic injection device 10 is utilized as the means of controlled administration of therapeutic agents to the target tissue.
- an automatic injection device is a device that is capable of administering a therapeutic agent to a patient at a controlled rate through at least one hollow injection needle 12 , such as a hypodermic needle, each with at least one orifice 14 .
- the-automatic injection device 10 will utilize a housing 16 to-enclose, for example, a conventional disposable syringe 18 , plunger 20 and needle 12 arrangement, together with the means necessary to insert the needle into the patient and dispense the therapeutic agent through the needle (as described below).
- Administration of therapeutic agents with automatic injection device 10 is initiated by an operator activating trigger 22 and begins with the insertion of injection needle 12 containing one or more orifices 14 through which the therapeutic agent can be transferred into the patient.
- Descriptions and examples of automatic injection devices which can find use in the present disclosure are provided in U.S. Pat. Nos. 6,077,247 and 6,159,181, the entire disclosures of which are incorporated by this reference.
- injection needle 12 is inserted into the patient by a drive mechanism 24 contained within automatic injection device 10 .
- injection device 10 also includes depth control means 26 for reliably controlling the depth of penetration of injection needle 12 .
- the therapeutic agent is transferred at a controlled rate from a suitable reservoir 28 through orifice 14 of needle 12 and into the patient. It is also considered desirable to include a means to inhibit relative motion between the plunger and the body of the syringe until such time as the injection needle has reached the predetermined location within the patient, and thereby minimize the distribution of the agent outside of the predetermined area of interest.
- the automatic injection device 10 may contain a single injection needle 12 or multiple needles, through which single or multiple types of agents may pass, depending upon the specific application.
- the energy source 30 utilized to transfer the therapeutic agent from the reservoir 28 into the patient is commonly compressed gas or a spring, though other sources may be utilized.
- injection parameters include the needle size, injectant viscosity, injectant volume, concentration of therapeutics, and injection rate.
- a means for adjusting these parameters is desirable to compensate for various characteristics of the therapy recipient, including age, weight, dosing, target tissue type, and the target tissue depth, especially for transcutaneous administration (which may be affected, among other factors, by the recipient's age and level of obesity).
- a single-use and/or self-destructing needle-syringe may be used as therapeutic agent reservoir 28 , thereby preventing cross-contamination of blood-bone pathogens between recipients.
- protection is provided to the operator against accidental needle-stick injuries and resulting blood-borne pathogen transmission by using automatic injection devices that incorporate a means of needle retraction 32 after use.
- This method of agent administration is particularly useful in high-risk situations, such as injecting patients infected with HIV, Hepatitis, or any other blood-borne pathogens.
- an automatic injection device is used for IM injection of plasmid DNA encoding for a therapeutic protein.
- Skeletal muscle has several characteristics that make it a desirable target tissue for this application. First, skeletal muscle constitutes up to 40% of the average adult's body mass and is easily accessible for transcutaneous administration of the plasmid. In addition, muscle cells rarely divide in vivo and thus, the introduced plasmid will not be lost during mitosis. Muscle cells are also multi-nucleated, thereby providing multiple targets for the plasmid once it reaches the intracellular space. These characteristics enable prolonged expression and secretion of the protein into systemic circulation.
- the tissue can produce the protein at levels sufficient to induce a biologic effect in patients.
- an anemic patient may receive an IM injection of plasmid DNA encoding for the protein erythropoietin (EPO), followed by electroporation.
- EPO erythropoietin
- transfected cells would produce and secrete the EPO protein, leading to an increase in hematocrit.
- the benefits of having such a treatment which allows the body to manufacture its own EPO, are very enticing. By introducing and expressing EPO in muscle using electroporation, the body would be able to produce EPO for an extended period of time and patients may require boosters at substantially reduced time intervals.
- a jet injector 100 is utilized as the means for CTAA to the target tissue.
- jet injection devices include: WIPO Publication Nos. W00113975, W00113977, and W00009186. Similar to the use of an automatic injection device, administration of therapeutic agents with a jet injector 100 is initiated by an operator activating trigger 22 but transmission of the agent from a jet injector to the patient relies on the penetration of a high-pressure stream 102 of such agent through an orifice 104 into the tissue.
- jet injection is typically accomplished without the use of a penetrating injection needle
- the injection orifice 104 is located at the terminal end of a mini-needle used to bypass the outermost layers of a tissue system.
- the high-pressure stream 102 of therapeutic agent generated by jet injector 100 then follows-the path of least resistance as it is forced through the tissue, resulting in a widely dispersed distribution of the therapeutic agent (see FIG. 4A ).
- the jet injector 100 may contain a single orifice 104 or multiple orifices for injection, through which single or multiple types of agents may be transferred, depending upon the specific application.
- the source of energy 30 used to activate a plunger 106 to transfer the therapeutic agent from a suitable reservoir 28 through the injection orifice 104 is commonly compressed gas or a spring, but other energy sources can also be used.
- the orifice size and shape, injectant pressure, injectant viscosity, injectant volume, concentration of therapeutics, and injection rate are a few examples of the adjustable jet injection parameters which can be controlled.
- Such adjustable parameters of the jet injector are necessary to account for various characteristics of the therapy recipient, including age, weight, dosing, target tissue type, and the target tissue depth, especially for transcutaneous administration (which may be affected, among other factors, by the recipient's age and level of obesity).
- Such adjustable parameters may also be necessary to ensure that the agent is stable and viable when exposed to the pressure and shearing stress inherent to jet injection-mediated administration.
- the interface between the injector orifice and skin is also critical in achieving reproducible and safe administration; the spatial location of the jet injector should be maintained for the duration of injection.
- the jet injector can be provided with the means of maintaining a slight vacuum 108 at the device/tissue interface to facilitate administration of the technique and stabilize the spatial location of the unit. Interface stabilization may also be accomplished with the use of adhesives, with the temporary application of restraint mechanisms, or any combination thereof.
- a significant concern with jet injection technology is ballistic contamination, in which the jet injection builds pressure in the tissue that is greater than the pressure in the injector, causing a small backflow of blood or other bodily fluids onto the device.
- a single-use, self-destructing vial 110 may be used for therapeutic agent containment of the jet injector. This prevents cross-contamination of blood-borne pathogens between recipients.
- most jet injectors have no needle, protection is provided to the operator against accidental needle-stick injuries and resulting blood-borne pathogen transmission.
- Such a form of needleless injection is particularly useful in high-risk situations, such as injecting patients infected with HIV, Hepatitis, or any other blood-borne pathogens.
- ESA electroporation
- a critical aspect of electroporation is the generation and propagation of electroporation-inducing electrical fields within the region of tissue targeted for therapeutic agent delivery.
- the present disclosure can be practiced with any electrode system suitable for propagating the electrical signals within the targeted region of tissue. The specific characteristics of.the electrode systems will determine if that type of electrode is suitable for use in a given application.
- surface style electrode arrays With surface style electrode arrays, an electrical field is propagated through the surface of the skin and into the target tissue.
- surface style electrode arrays such as plates or meander-type electrodes (as described in U.S. Pat. No. 5,968,006), are inefficient or impractical for most indications.
- the electrodes are typically unable to target regions beyond the most superficial tissues, they cannot be applied in a reliable fashion, and their use often can result in burning and scarring at the site of application.
- Penetrating electrodes are typically more desirable for most forms of ESA, and particularly for electroporation. Penetrating electrodes are defined as conductive elements whose size and shape are sufficient to enable insertion through the matter covering a tissue of interest, such as skin covering muscle tissue, or the outer layer(s) of such tissue.
- a tissue of interest such as skin covering muscle tissue, or the outer layer(s) of such tissue.
- penetrating electrode array systems including bipolar and multielement electrode arrays.
- the simplest penetrating electrode array is the bipolar system, which consists of two penetrating electrodes connected to the opposite poles of a pulse generator. Systems of penetrating bipolar electrodes have been used extensively in preclinical studies of electroporation.
- bipolar electrodes make them an inefficient means for generating threshold levels sufficient for electroporation throughout a target region of tissue.
- More complex systems have been developed using three or more electrodes to comprise a multielement array. The specific geometrical arrangement and activation pattern of these multi-element arrays can result in superior performance characteristics compared to the bipolar approach.
- a grid-based multielement electrode array such as the TriGridTM electrode system
- TriGridTM system disclosed in U.S. Pat. No. 5,873,849 (the entire disclosure of which is incorporated herein by reference), consists of slender penetrating electrodes with a geometry and activation pattern designed to maximize field uniformity within a targeted volume of tissue.
- the ESA effect can be achieved throughout the target volume with minimized variability due to the electrical fields propagated within the tissue.
- the TriGridTM design considerations ensure that the threshold field strengths required to achieve electroporation are propagated throughout the target tissue while minimizing the amount of tissue exposed to excessively high fields that could result in tissue injury. These more uniform electric field distributions are achieved by simultaneously activating more than two of the electrodes within the array, thereby reinforcing the electric fields being propagated in the more central tissues away from the electrodes. Since the probability of achieving membrane permeability can also depend on the physical dimensions and orientation of the cell, the sequential propagation of electrical fields at different angles increases the likelihood that the electroporation effect can be achieved in any given cell.
- each set of four electrodes establishing a generally diamond shaped multielement array is called a Unit TriGridTM 50 .
- Any number of Unit TriGridTM “modules” can be integrated together and expanded to form electrode arrays with different geometries capable of treating various shapes and volumes of tissue.
- the expandable TriGridTM electrode array system allows the patient to be treated with a single placement of the electrodes, thereby minimizing the time required for the procedure and reducing any discomfort associated with repeated penetration and stimulation of an electrode array.
- the grid based electrode format essentially provides a method for accurately adjusting the dose of the therapeutic agent.
- the TriGridTM is likely to result in consistent application of the treatment from patient-to-patient and operator-to-operator since it reduces uncertainty associated with the amount of tissue targeted by threshold level electroporation-inducing electrical fields.
- a TriGridTM array is utilized as the mode of establishing electroporation-inducing electrical fields.
- a high voltage electrical state sequencer and electrical signal generator is connected to each of the electrodes through conductive cables, thus generating an electroporation-inducing electrical field.
- variable patient parameters the electrode size, shape, and surface area, the electrical field strength (typically 50-2000 volts per centimeter), the frequency of stimulation (typically 0.1 Hertz to 1 megahertz), the waveform (such as bipolar, monopolar, AC, capacitive discharge, square, sawtooth, or any combination thereof) and the electrical signal duration (typically 1 microsecond to 100 milliseconds) are a few examples of the adjustable electroporation-inducing electrical field parameters. Selection of such adjustable electroporation parameters is based, among other factors, on the agent to be delivered, the dosing, the specific application and method of administration, the type and location of the target tissue, and the volume to be treated. In other embodiments, plate electrodes, bipolar, and other multielement electrode al-rays may be utilized as the mode of generating electroporation-inducing electrical fields; however, the TriGridTM array is superior in accomplishing the therapeutic objective for most indications.
- CTAA and ESA there are several additional procedures that may be included in the application of CTAA and ESA, which assist in the accomplishment of the desired therapeutic objective.
- Suitable techniques to enhance molecular movement and homogeneity include iontophoresis, electroosmosis, ultrasound, and thermal means.
- iontophoresis and electroosmosis it may be desirable to use the same electrodes that deliver electroporation; however, additional electrodes may be used.
- dexamethasone and poloxamer among other agents that can affect the state of the cell membrane, have been shown to enhance various aspects of electroporation therapy. Following treatment, precautionary measures may be taken to the treatment site.
- a preferred embodiment providing spatial and temporal control is an apparatus wherein therapeutic agent administration and ESA are accomplished by means of an integrated unit.
- the integrated unit may utilize administration means such as an automatic injection device ( FIG. 2 ) or a jet injector device ( FIG. 3 ) as the mode of CTAA, with electroporation-inducing electrical fields as the mode of ESA.
- administration means such as an automatic injection device ( FIG. 2 ) or a jet injector device ( FIG. 3 ) as the mode of CTAA, with electroporation-inducing electrical fields as the mode of ESA.
- the appropriate temporal and spatial generation of an electroporation-inducing electrical field with respect to the timing and location of the therapeutic agent administration is critical for achievement of consistent and reproducible therapeutic effects. For instance, if the operator administers a therapeutic agent with one device, and then employs another' device for establishment of an electroporation-inducing electrical field, there may be variability in the relative temporal and spatial applications of CTAA and electroporation. Such inter-patient variability, due to inter-operator variability, can result in highly undesirable therapeutic inconsistencies. In the practice of the proposed integrated unit, operator training and variability are significantly reduced, since the spatial and temporal relationship of the CTAA and electroporation are controlled through the use of an integrated application system and control means rather than the operator. Furthermore, operator error by inconsistent and inaccurate temporal and spatial establishment of the electroporation-inducing electrical field relative to the therapeutic agent administration may be minimized, enabling reproducible and consistent therapeutic efficacy and dosing.
- administration of the therapeutic agent is performed in a spatially and temporally controlled fashion relative to ESA. Accordingly, spatial control and temporal control are both addressed below as separate aspects. Though addressed separately, these aspects may be combined in all such embodiments to form an integrated application unit providing both spatial and temporal control over administration of the therapeutic agent. The particular combination of embodiments employed is dictated by the specific indication.
- the need for temporal control is twofold: 1) the ability to administer the therapeutic agent at a controlled rate, and 2) the ability to control the sequence and timing of TAA and electroporation application.
- the former issue is addressed by the use of an automated injection apparatus, and the latter is addressed by integrating this automated injection apparatus with an appropriate means for the application of electroporation.
- the rate of therapeutic agent administration into the tissue is largely controlled by the design of the administration apparatus.
- Two common administration methods that provide suitable control over the rate of agent administration are automatic injection devices 10 and jet injector devices 100 .
- an energy source 30 is required to transfer the therapeutic agent from a suitable reservoir 28 in the device through an orifice 14 , 104 and into a target region of tissue at a controlled rate.
- Suitable sources of energy for automatic injection devices and jet injectors include springs, compressed gas, and electromechanical means.
- the rate of administration may be controlled by regulation of several parameters, including the energy source (e.g. spring constant, gas pressure, voltage, or current), needle diameter, orifice diameter, and agent viscosity. The parameters may be selected by the operator prior to administration to set the desired rate. However, once administration is initiated, the rate is operator-independent, and the agent is transferred at a predetermined rate.
- an integrated unit is applied to the therapy recipient, allowing the desired sequence and timing of CTAA and electroporation to be achieved in a controlled and reliable fashion without undesirable time delays and/or multiple device placements.
- one treatment protocol calls for the administration of plasmid DNA encoding for a therapeutic protein, followed by generation of an electroporation-inducing electrical field, and then followed by administration of dexamethasone.
- FIGS. 5A-D There are several embodiments suitable for achieving spatially controlled therapeutic agent administration.
- One embodiment suitable for spatially controlled therapeutic agent administration is a template 52 , as depicted in FIGS. 5A-D , containing a single ( FIG. 5A ) or a plurality ( FIGS. 5B-D ) of ports 54 designed to accommodate injection orifices characteristic of a jet injector or automatic injection device at a fixed location relative to electrodes 56 suitable for generation of electroporation-inducing electrical fields. Additionally, the use of ports 54 provides improved angular and depth control over administration of the therapeutic agent.
- the template 52 may contain a single or plurality of port interlocks for administration device stabilization, through which any combination of automatic injection devices or jet injectors may be connected and employed in a spatially controlled fashion.
- a preferred embodiment of the disclosure that provides spatial and temporal control in the delivery of therapeutic agents is an apparatus wherein CTAA and ESA are accomplished by means of an integrated unit.
- the integrated unit may utilize administration methods such as an automatic injection device or a jet injector as the mode of CTAA, with electroporation-inducing electrical fields as the preferred mode of ESA.
- administration methods such as an automatic injection device or a jet injector as the mode of CTAA, with electroporation-inducing electrical fields as the preferred mode of ESA.
- the TriGridTM electrode array allows for virtually all target tissue volumes and shape to be treated with a single placement of the array.
- a device with multiple agent administration means would then allow for reproducibly co-localized CTAA and electroporation to a wide variety of target tissues with a single placement of the integrated unit.
- the number of administration means implemented with respect to the number of Unit TriGridTM arrays may depend on various treatment parameters, including the nature of the agent to be delivered, the desired dosing, the type and location of the target tissue,
- the integrated unit is placed in the desired location, the administration device is employed to administer the therapeutic agent, and the electrode array of electrodes is activated in the target tissue, all without spatial relocation of the integrated unit.
- the electrode array can be provided with the means to adjust the spatial relationship to the orifice, for example, by providing retractable electrodes.
- the electrodes would then be deployed upon command, and activated at the appropriate time, in order to effect the EMTAD treatment.
- the electroporation-inducing electrical field is thereby established, enabling delivery of the therapeutic agent to the interior of the target cells, and the electrode array is then retracted from the target tissue.
- This single-placement device minimizes spatial variability and limitations on the sequential application of CTAA and electroporation, while enabling highly accurate control over spatial parameters, such as the application of CTAA relative to electroporation. This is especially important for electroporation, where reproducible co-localization between the therapeutic agent and the target tissue is optimal for therapeutic agent delivery in consistent, efficacious therapies.
- additional distributional control is derived from combination of rate control with a template-based device, or as a component of an integrated unit. For example, if a plurality of administration devices is used, then the spatial and temporal relationship between location and timing of injections is readily controlled, thereby providing a more consistent, rapid, and homogeneous distribution of the therapeutic agent.
- the integrated unit may use an automatic injection device 10 , jet injector 100 , or any combination thereof as the mode of CTAA.
- an automatic injection device 10 may be the preferred mode of CTAA.
- the automatic injection device may use standard syringes and needles; fixed or non-fixed.
- a disposable, self-destructible, and/or pre-filled needle-syringe unit 18 may be preferable for certain indications.
- the needle should be positioned within a housing 16 that incorporates a penetration-depth controlling means 26 , thereby preventing accidental needle stick.
- the automatic injection device may provide retraction of the needle once insertion and injection has been completed. Accidental discharge prevention means may also be desirable.
- a needleless or mini-needle jet injector 100 may be the preferred mode of CTAA.
- a disposable, self-destructible, and/or pre-filled vial 110 containing the agent may be preferable for certain indications.
- the jet injector contains a mini-needle, as may be the case for transcutaneous penetration, the mini-needle should be positioned to prevent accidental needle stick.
- the jet injector may provide retraction of the mini-needle once insertion and injection has been completed. it may also be desirable to have accidental discharge prevention means.
- an integrated apparatus 200 shown in FIGS. 6 and 7 , includes an array of electrodes 202 contained within a separable, and optionally disposable, sub-assembly 204 that can be easily attached to and removed from the main unit 206 , allowing for controlled-usage and disposable electrodes.
- certain embodiments of the disclosure employ retractable electrodes 208 , as it is preferable if the electrodes can be contained within the apparatus 200 prior to their deployment into the target tissue.
- retractable electrodes would allow for improved operator safety, reduced risk of a loss in electrode sterility prior to insertion and mitigation of any belonephobia for the patient.
- Control over movement of such electrodes may be provided by spring, compressed gas, or other appropriate energy source 210 in conjunction with a drive mechanism 212 to extend the electrodes 208 through port 228 and into the patient.
- the electrodes 208 may be actuated individually or as a unit, and preferably, the deployed or retracted state of the electrodes is displayed, either individually or as a unit, to the operator.
- the use of retractable needle-type electrodes 208 may reduce belonephobia experienced by the therapy recipient, while providing the operator with increased safety to blood borne pathogens and other needle-stick related injury.
- the disclosure also includes an electrical signal generating means 216 in conductive communication with the apparatus 200 .
- the nature of the electrical signal generating means 216 will depend on the desired application.
- the electrical signal generating means 216 can be located 226 within the integrated apparatus 200 .
- the connections necessary to maintain electrical continuity between the electrodes and the electrical signal generator are housed internal to the apparatus. In the case of external electrical signal generating means 216 , as depicted in FIG.
- a cable 218 between the generator 216 and the apparatus 200 is provided with a suitable connector 220 located on the apparatus 200 in a manner to minimize interference with operator use.
- conductive housing 222 is provided for electrical connection between deployed electrodes and the electrical signal generator 216 .
- Conductivity may also be accomplished by connection 230 through the electrode drive mechanism 212 and/or energy source 210 .
- Electrode parameters include diameter, tip profile, length, conductivity, and materials.
- the electrodes may be hollow, allowing for the administration of anesthetics or other agents.
- the electrodes may also be coated with anesthetics and/or lubricious agents for pain mitigation and ease of insertion.
- the electrode parameter selection is dictated by several treatment factors, including properties of the target tissue, tissue volume to be treated, and charge injection/current densities at the electrode-tissue interface. For example, in the transcutaneous application of electroporation, trocar tip 58 (polyhedron with three faces) electrodes with a nominal diameter of 0.005′′ to 0.05′′ are desirable.
- the inter-electrode spacing 60 and penetration depth define the volume of tissue to be treated.
- the electrodes have a sufficiently inert surface material 62 which is electrochemically stable and will not exhibit substantial oxidation-reduction reactions with the interstitial environment when exposed to high charge injections that may occur as a result of ESA.
- Such surfaces may be platinum, platinum-iridium, iridium, iridium-oxide, gold, and titanium nitride.
- base metals include, but are not limited to titanium, tungsten, stainless steel, and MP35N.
- the process of deposition for the desired electrochemically stable coating may consist of chemical or physical vapor deposition, creating coatings on the order of tenths to hundreds of microns.
- the level of charge injection and irreversible oxidation-reduction reactions should be considered when choosing a sufficiently inert material and deposition thickness.
- dielectric coatings 66 such as Polytetrafluoroethylene (PTFE), Parylene, and Silicon Carbide may be deposited onto the electrode at thicknesses of tenths to hundreds of microns.
- the pinhole size and dielectric strength of such coatings should be considered when choosing an appropriate dielectric material and thickness.
- a further aspect of the disclosure provides a system wherein the sequential timing and functions of the integrated CTAA-ESA unit are controllable. This may provide, for example, presettable procedure parameters, procedure automation, and/or closed loop systemic control.
- the control system 224 of the integrated unit may regulate parameters pertaining individually to CTAA and electroporation, and collectively to their integrated function.
- control system may regulate the effective administration and dosing of therapeutic agents by adjustment of CTAA and electroporation parameters.
- Other treatment parameters to be controlled include application of a local anesthetic, placement and removal of retractable electrodes, administration of additional therapeutics, and the timing and duration of each step of the procedure.
- control system and means for electrical signal generation are incorporated into a portable or handheld unit for use with the. integrated CTAA-ESA apparatus.
- a spring or compressed gas may be used as an energy source 30 acting through a drive mechanism 232 as a means of therapeutic agent transfer, and desirably having multiple settings for operator-selectable control over the rate of transfer in therapeutic agent administration. If a spring is used, then the loaded and unloaded state of the spring could be displayed to the operator. If compressed gas is used, a qualitative or quantitative pressure level could be displayed to the operator.
- the integrated unit may be powered by battery, capacitor bank, or pulse forming network that is energized by use of a portable station, solar cells, or other electrical sources.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Electrotherapy Devices (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Methods and apparatus for the reproducible, consistent and efficacious delivery of a therapeutic agent to a patient. The disclosure comprises means for the controlled administration of the therapeutic agent through an orifice to the patient, a plurality of penetrating electrodes arranged with a predetermined spatial relationship relative to the orifice, and means for generating an electrical signal operatively connected to the electrodes.
Description
- This application is a continuation of U.S. application Ser. No. 15/351,262 filed Nov. 14, 2016, which is a continuation of U.S. application Ser. No. 13/450,320 filed Apr. 18, 2012, now U.S. Pat. No. 9,526,836, which is a continuation of U.S. application Ser. No. 11/376,619 filed Mar. 14, 2006, now U.S. Pat. No. 8,187,249, which is a continuation of U.S. application Ser. No. 10/510,399, filed May 26, 2005, now U.S. Pat. No. 8,108,040, which was filed pursuant to 35 U.S.C. § 371 as a United States National Phase Application of International Application No. PCT/US2003/010337 filed Apr. 4, 2003, which is a continuation-in-part of U.S. application Ser. No. 10/117,457, filed Apr. 5, 2002, now U.S. Pat. No. 6,912,417, each of which are incorporated herein by reference in their entirety.
- The present disclosure is directed to the delivery of prophylactic and therapeutic agents to patients and, more particularly, to the reproducible, consistent, and efficacious delivery of prophylactic and therapeutic agents, such as nucleic acids, drugs, and proteins, to defined regions in selected tissues of interest.
- Prophylactic and therapeutic agents have long been delivered to patients using various conventional routes of administration, such as topical, oral, intravenous, parenteral, and the like. Once administered to the patient by the selected route, the delivery of the agent to the tissue of interest and its beneficial interaction with the tissue is largely dependent on its inherent physicochemical factors, but may have been facilitated by, for example, selected components of the delivery composition such as carriers, adjuvants, buffers and excipients, and the like.
- More recently, the application of electrical signals has been shown to enhance the movement and uptake of macromolecules in living tissue. Application of such electrical signals in tissue relative to the administration of a prophylactic or therapeutic agent can have desirable effects on the tissue and/or the agent to be delivered. Specifically, techniques such as electroporation and iontophoresis have been utilized to significantly improve the delivery and/or uptake of a variety of agents in tissue. Such agents include pharmaceuticals, proteins, and nucleic acids. Potential clinical applications of such techniques include the delivery of chemotherapeutic drugs and/or therapeutic genes in tumors, the delivery of DNA vaccines for prophylactic and therapeutic immunization, and the delivery of nucleic acid sequences encoding therapeutic proteins.
- Many devices have been described for the application of electrical signals in tissue for the purpose of enhancing agent delivery. The vast majority of these have focused on a means for effective application of the electrical signals within a target region of tissue. A variety of surface and penetrating electrode systems have been developed for generating the desired electrophysiological effects.
- In spite of the promise associated with electrically mediated agent delivery and the potential clinical applications of these techniques, progress has been hampered by the lack of an effective means to achieve the overall objective of efficient and reliable agent delivery using these techniques. One of the most significant shortcomings of current systems is the inability to achieve reliable and consistent application from subject to subject. Significant sources of this variability are due to differences in the technique and skill level of the operator. Other sources of variability that are not addressed by current systems include differences in the physiologic characteristics between patients that can affect the application of the procedure.
- Given that reliable and consistent application of clinical therapies is highly desirable, the development of improved application systems is well warranted. Such development should include a means for minimizing operator-associated variability while providing a means to accommodate the differences in patient characteristics likely to be encountered during widespread clinical application of electrically mediated agent delivery.
- The present disclosure provides improved methods and apparatus for the reproducible, consistent, and efficacious delivery of therapeutic agents, such as nucleic acids, drugs, and proteins, to patients utilizing Electrically Mediated Therapeutic Agent Delivery.
- In one aspect, the present disclosure provides an apparatus for the delivery of a therapeutic agent to a predetermined site within a patient comprising means for the controlled administration of the therapeutic agent to the patient comprising a reservoir for the therapeutic agent, at least one orifice through which the agent is administered, and a controlled source of energy sufficient to transfer a predetermined amount of the therapeutic agent at a predetermined rate from the reservoir through the orifice to the predetermined site within the patient. In addition, the apparatus comprises a plurality of penetrating electrodes arranged with a predetermined spatial relationship relative to the orifice, and means for generating an electrical signal operatively connected to the electrodes.
- Other aspects of the disclosure include methods comprising Therapeutic Agent Administration in controlled spatial and temporal conjunction with Electric Signal Administration.
- All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
- The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:
-
FIGS. 1 A-C are graphic depictions of potential sources of spatial variability associated with conventional needle syringe injection; -
FIG. 2 is a cross sectional depiction of an embodiment of an apparatus of the disclosure comprising an integrated means for therapeutic agent administration and electrical signal application; -
FIG. 3 is a cross sectional depiction of an alternative embodiment of an apparatus of the disclosure comprising an integrated means for therapeutic agent administration and electrical signal application; -
FIG. 4A is a cross sectional view of a portion of an embodiment of the disclosure during therapeutic agent administration; -
FIG. 4B is a bottom view of the embodiment ofFIG. 4A , depicting the portion of the device which interfaces with the tissue of a patient; -
FIGS. 5A-D illustrate several embodiments of embodiments of the disclosure depicting the portion of the apparatus that interfaces with the tissue of a patient; -
FIG. 6A is a partial cross sectional view of a further alternative embodiment of an apparatus of the disclosure comprising an integrated means for therapeutic agent administration and electrical signal application; -
FIG. 6B is a bottom plan view of the embodiment ofFIG. 6A , depicting the portion of the device which interfaces with the tissue of a patient; and -
FIG. 7 is a block diagram of a treatment system in accordance with the disclosure. - The present disclosure provides improved methods and apparatus for the reproducible, consistent, and efficacious delivery of therapeutic agents, such as nucleic acids, drugs, and proteins, with Electrically Mediated Therapeutic Agent Delivery (EMTAD).
- In one aspect, the present disclosure provides an apparatus for the delivery of a therapeutic agent to a predetermined site within a patient comprising means for the controlled administration of the therapeutic agent to the patient comprising a reservoir for the therapeutic agent, at least one orifice through which the agent is administered, and a controlled source of energy sufficient to transfer a predetermined amount of the therapeutic agent at a predetermined rate from the reservoir through the orifice to the predetermined site within the patient. In addition, the apparatus comprises a plurality of penetrating electrodes arranged with a predetermined spatial relationship relative to the orifice, and means for generating an electrical signal operatively connected to the electrodes.
- In the present disclosure, EMTAD is defined as the application of electrical signals to biological tissue for the purpose of enhancing movement and/or uptake of a therapeutic agent in tissue. The process of EMTAD is comprised of two elements: 1) Therapeutic Agent Administration (TAA), and 2) an Electrical Signal Application (ESA) sufficient to induce the desired EMTAD effect. In the present disclosure, therapeutic agent administration is accomplished in a controllable fashion, termed Controlled Therapeutic Agent Administration (CTAA). The term CTAA used herein refers to methods and apparatus capable of providing spatial and temporal control over administration of a therapeutic agent relative to the induction of an EMTAD effect. Controllable administration techniques may utilize variations on the conventional needle-syringe (e.g. automatic injection device) and/or various needleless methodologies (e.g. jet injector, transdermal/transcutaneous patch, oral, gel, cream, or inhaled administration). The term ESA used herein refers to the application of electrical signals to facilitate or enhance the delivery of therapeutic agents by improving movement and/or uptake of said agents within tissue, thus inducing an EMTAD effect. When used to facilitate or enhance delivery of a therapeutic agent, ESA processes such as electroporation, iontophoresis, electroosmosis, electropermeabilization, electrostimulation, electromigration, and electroconvection all represent various modes of EMTAD.
- Specific applications for EMTAD include, but are not limited to, the delivery of vaccines, therapeutic proteins, and chemotherapeutic drugs. Traditionally with such applications, EMTAD is initiated by therapeutic agent injection using a conventional needle-syringe. After the agent has been administered, a device suitable for ESA is applied to the patient at a designated location. Finally, an appropriate ESA protocol is utilized to provide the desired facilitation or enhancement to therapeutic agent delivery. With traditional EMTAD, however, the desired spatial and temporal relationship between agent administration and ESA may not be realized.
- For agents in which the use of EMTAD is not required or desirable, therapeutic agent administration is often performed using a conventional needle syringe. While the therapeutic objectives can usually be accomplished using these means, the need to deliver certain agents with EMTAD brings an additional level of complexity to the issue of TAA. As depicted in
FIG. 1 , in any conventional needle-syringe injection, as theneedle 5 is inserted into the tissue, thedepth 1 and theangle 2 of insertion relative to the surface of thetissue 3 can be difficult to control. Additionally, the point ofneedle penetration 4 at thetissue surface 3 may not be representative of the location of theorifice 6 and the region ofagent administration 7 within the target tissue. As an illustrative example a transcutaneous intramuscular injection may not correspond to the site of insertion on the skin since the two tissues can often move in relation to one another. - While this conventional approach is generally adequate for the delivery of many different therapeutics that do not require EMTAD, these variables lead to a distribution of the therapeutic agent following injection that is often inconsistent and/or indeterminate and can hamper effective EMTAD. Commonly, the most effective use of EMTAD utilizes a predefined relationship between the therapeutic agent and ESA within the patient. As a result, the lack of spatial control over TAA in a target tissue using a conventional needle syringe can hamper the outcome of the EMTAD application. One illustrative example of this concept is the use of electroporation to facilitate the delivery of a therapeutic agent. Electroporation is typically most effective in enhancing therapeutic agent delivery when TAA and ESA are co-localized within the target region of tissue. In many cases, if the agent to be delivered and the induced electroporation effect are not co-localized within the target region of tissue, the delivery of said agent is suboptimal.
- Another example of the need for adequate spatial control of TAA in EMTAD is iontophoresis. This mode of EMTAD uses electrical fields to cause movement of charged molecules. In order to achieve the desired movement of the agent, the proper spatial relationship between the electrodes and the therapeutic agent must be realized. If a negatively charged agent were placed in close proximity to the location of a positive electrode, little or no movement of the agent through the tissue would be observed. In contrast, localization of the said negatively charged agent near the negative electrode would result in significant movement of the agent through the tissue in the direction of the positive electrode.
- As illustrated by the preceding examples, care must be taken to control the precise location of TAA relative to the application of ESA to achieve the desired effect. As a result, methods for achieving reproducible, consistent, and well-characterized distribution of the therapeutic agents are highly desirable.
- Another disadvantage with conventional needle-syringe injection TAA is that the rate of injection may vary from one operator to another, thereby causing inconsistent agent distribution in the tissue. Additional temporal variability is introduced when multiple device placements are required to complete the EMTAD process. For example, one application of EMTAD calls for the administration of plasmid DNA encoding for a therapeutic protein, followed by generation of an electroporation-inducing electrical field. Using the traditional method of EMTAD, the plasmid is injected with a needle-syringe, followed by placement and activation of the electroporation device. By requiring two separate device placements (the initial needle syringe followed by the ESA device), this procedure is susceptible to inter-patient variability arising from inconsistent temporal application of each device by the operator. Additionally, the use of two separate device placements leads to an unavoidable time interval in between the clinician's placement and activation of each device. This is compounded in the case where multiple application sites are necessary to achieve adequate delivery of the agent to a specifiable region within the target tissue.
- These issues are especially critical for agents, such as nucleic acids, that can be degraded or inactivated in the extracellular environment. Therapeutic agent degradation can lead to a reduction in efficacy and consistency in the application of the therapy. Also, the inter-patient rate of therapeutic agent degradation is not constant, thus contributing to the overall therapeutic inconsistency of conventional needle-syringe injection combined with ESA, and more specifically with electroporation therapy.
- Due to the inherent difficulty of spatial and temporal variability with conventional needle-syringe injection used in conjunction with ESA, the precise location and timing of TAA relative to ESA is often unknown. As a result, the effective administration and dosing of therapeutic agents with EMTAD may be inconsistent and irreproducible. Though conventional needle-syringe injection is sometimes adequate for therapeutic agent administration, reproducible and consistent agent delivery is significantly enhanced by controlling the spatial and temporal relationship between administration of the therapeutic agent and induction of the desired ENITAD effect.
- Thus, while the traditional EMTAD procedure may be adequate for certain applications, temporal and spatial control is highly desirable for clinical applications that typically require a high degree of consistency and reproducibility. In contrast to the conventional EMTAD approach previously described, several techniques for combined CTAA and ESA are described herein to provide more advantageous methods and apparatus for the clinical application of EMTAD. The present disclosure utilizes various aspects of CTAA in conjunction with ESA to provide reproducible, consistent, and efficacious therapeutic agent delivery. More specifically, this disclosure describes methods and apparatus to provide spatial and temporal control over administration of a therapeutic agent relative to the application of electrical signals, thereby improving the movement and/or uptake of said agent in the target tissue.
- In the present disclosure, there exists a controllable spatial relationship for the administration of the therapeutic agent relative to the application of electrical signals. Prior to treatment, the optimal location for TAA relative to ESA is determined. This spatial relationship between TAA and ESA is dictated by treatment parameters, including the nature of the agent being administered and the properties of the target tissue to which the agent is administered. In certain applications, electrical signals are preferentially applied distal to the site of therapeutic agent administration. However, the typical spatial relationship is to apply the EMTAD-inducing electrical signals proximal to the site of agent administration. In the practice of such applications, co-localization between TAA and ESA may be preferential. This is often the case when electroporation and/or iontophoresis are utilized for induction of the desired EMTAD effect.
- Another aspect of the disclosure provides a controllable temporal relationship for the sequence and timing of TAA relative to ESA. Prior to treatment, the optimal sequence and timing for combination of TAA and ESA is determined. As with the spatial relationship, the desired temporal relationship between TAA and ESA is dictated by parameters such as the nature of the agent being administered and the properties of the target tissue to which the agent is administered. In certain applications, exposure to the electrical fields associated with ESA may adversely affect the therapeutic agent. In the practice of such applications, generation of such electrical fields is followed by CTAA. However, the typical temporal relationship is CTAA followed by ESA.
- The present disclosure provides improved methods and apparatus for the reproducible, consistent, and efficacious delivery of therapeutic agents, such as nucleic acid based constructs', pharmaceutical compounds, drugs, and proteins, with EMTAD. This objective is accomplished by controlling the spatial and temporal administration of a therapeutic agent relative to application of electrical signals. Specific applications for EMTAD include, but are not limited to, the delivery of vaccines, therapeutic proteins, and chemotherapeutic drugs. Traditionally with such applications, EMTAD is initiated by therapeutic agent injection using a conventional needle-syringe. After the agent has been administered, a device suitable for ESA is applied to the patient at a designated location. Finally, an appropriate ESA protocol is utilized to provide the desired facilitation or enhancement to therapeutic agent delivery. One such ESA method that has proven to be effective in virtually all cell types is electroporation. Other methods of electrically mediated delivery include iontophoresis, electroosmosis, electropermeabilization, electrostimulation, electromigration, and electroconvection. These terms are used for illustrative purposes only and should not be construed as limitations in the disclosure.
- The technique of electroporation utilizes the application of electric fields to induce a transient increase in cell membrane permeability and to move charged particles. By permeabilizing the cell membranes within the target tissue, electroporation dramatically improves the intracellular uptake of exogenous substances that have been administered to the target tissue. The increase in cell membrane permeability and molecular movement due to electroporation offers a method for overcoming the cell membrane as a barrier to therapeutic agent delivery. The application of electroporation as a technique for inducing EMTAD is advantageous in that the physical nature of the technique allows electroporation to be applied in virtually all tissue types. Accordingly, various aspects and embodiments of the disclosure discuss, but are not limited to, electroporation as a technique for inducing EMTAD.
- The term “therapeutic agent” will be used in its broadest sense to include any agent capable of providing a desired or beneficial effect on living tissue. Thus, the term will include both prophylactic and therapeutic agents, as well as any other category of agent having such desired effects. Clearly, the scope of the present disclosure is sufficiently broad to include the controlled delivery of any agent, however categorized. Therapeutic agents include, but are not limited to pharmaceutical drugs and vaccines, and nucleic acid sequences (such as supercoiled, relaxed, and linear plasmid DNA, antisense constructs, artificial chromosomes, or any other nucleic acid-based therapeutic), and any formulations thereof. Such agent formulations include, but are not limited to, cationic lipids, cationic polymers, liposomes, saline, nuclease inhibitors, anesthetics, poloxamers, preservatives, sodium phosphate solutions, or other compounds that can improve the administration, stability, and/or effect of the therapeutic agent. Additional benefits derived from certain agent formulations include the ability to control viscosity and electrical impedance of the administered agent, an important consideration for EMTAD applications.
- In the case of nucleic acids, an example of a therapeutic agent would be plasmid DNA dissolved in a sodium phosphate solution with a competitive nuclease inhibitor such as aurintricarboxylic acid (ATA) added to the agent. In some embodiments using nucleic acid-based therapeutics, it may also be advantageous to incorporate a signaling peptide onto the construct. Potentially useful peptides include, but are not limited to, nuclear localization signals, endosomal lytic peptides, and transcriptional control elements. These signals can enable improved delivery and/or processing of the therapeutic agents delivered to the cells via EMTAD. This signaling can be accomplished through the use of methods as described in U.S. Pat. No. 6,165,720. While these techniques can be utilized with other delivery systems, the-ability of EMTAD to increase the delivery of nucleic acid constructs to target tissues makes it particularly well suited for use with such signals.
- Target tissues well suited for EMTAD include both healthy and diseased cells located in the epidermis, dermis, hypodermis, connective, and muscle tissue. The technique can also be utilized for application in healthy or diseased organs that must be accessed via minimally invasive or other surgical means. Such target tissues include the liver, lungs, heart, blood vessels, lymphatic, brain, kidneys, pancreas, stomach, intestines, colon, bladder, and reproductive organs. One should note that the desired therapeutic effect may be derived from agent delivery to cell types normally located within the target tissues as well as other cell types abnormally found within said tissues (e.g. chemotherapeutic treatment of tumors).
- As discussed previously, and depicted in
FIG. 1 , traditional EMTAD suffers from a lack of precision and reproducibility in the spatial and temporal relationship between the administration of the therapeutic agent and the electrical signal. In contrast to the traditional EMTAD approach, the present disclosure describes methods and apparatus for combined CTAA and ESA to provide a more advantageous clinical application of EMTAD. This disclosure utilizes various aspects of CTAA in conjunction with ESA to provide reproducible, consistent, and efficacious therapeutic agent delivery. More specifically, the methods and apparatus proposed herein provide spatial and temporal control over administration of a therapeutic agent relative to the application of electrical signals, thereby improving the movement and/or uptake of said agent in the target tissue. - In one aspect, the disclosure described herein provides methods for controlled administration of a therapeutic agent followed by ESA. These methods consist of, but are not limited in scope or sequential relationship to, the determination of treatment parameters, patient preparation procedures, CTAA, ESA, and additional measures.
- Treatment parameters are dictated by the desired dosing of the therapeutic agent. Therapeutic agent dosing may depend on the particular indication or treatment application (such as the type and location of the target tissue), as well as various patient parameters (such as age and body mass). Dosing of the therapeutic agent may be controlled by parameters pertaining to administration of the therapeutic agent and ESA. Controllable parameters pertaining to CTAA include agent volume, agent viscosity, and injection rate. Controllable parameters pertaining to ESA include the characteristics of the electrical signals, the tissue volume exposed to the electrical signals, and the electrode array format. The relative timing and location of CTAA and ESA are parameters providing further control over therapeutic agent dosing.
- Patient preparation includes, but is not limited to, antiseptic cleansing and anesthetic administration, including local or regional, nerve block, spinal block, epidural block, or general anesthesia. In the case of intramuscular (IM) ESA, protocols to minimize the effects of electrical stimulation of the muscle may be taken, including thermal control (e.g. cooling the muscle), administration of anesthetics, and/or alternative stimulation patterns sufficient for mitigation of discomfort. One should ensure that the selected patient preparation techniques do not adversely affect therapeutic efficacy, if acceptable alternatives exist. For example, it has been shown that certain anesthetics can have an undesirable effect on plasmid DNA-based therapies.
- In the practice of the method, the application of CTAA and ESA are combined, enabling consistent and reproducible therapeutic agent delivery. Two representative embodiments of apparatus suitable for CTAA include automatic injection devices and jet injectors.
- Turning now to the additional drawings, where like elements are identified by like numerals throughout the figures, as depicted in
FIG. 2 , in certain embodiments anautomatic injection device 10 is utilized as the means of controlled administration of therapeutic agents to the target tissue. As used herein, an automatic injection device is a device that is capable of administering a therapeutic agent to a patient at a controlled rate through at least onehollow injection needle 12, such as a hypodermic needle, each with at least oneorifice 14. - Conveniently, the-
automatic injection device 10 will utilize ahousing 16 to-enclose, for example, a conventionaldisposable syringe 18,plunger 20 andneedle 12 arrangement, together with the means necessary to insert the needle into the patient and dispense the therapeutic agent through the needle (as described below). Administration of therapeutic agents withautomatic injection device 10 is initiated by anoperator activating trigger 22 and begins with the insertion ofinjection needle 12 containing one ormore orifices 14 through which the therapeutic agent can be transferred into the patient. Descriptions and examples of automatic injection devices which can find use in the present disclosure are provided in U.S. Pat. Nos. 6,077,247 and 6,159,181, the entire disclosures of which are incorporated by this reference. - Preferably,
injection needle 12 is inserted into the patient by adrive mechanism 24 contained withinautomatic injection device 10. Preferably,injection device 10 also includes depth control means 26 for reliably controlling the depth of penetration ofinjection needle 12. Onceneedle 12 is inserted, the therapeutic agent is transferred at a controlled rate from asuitable reservoir 28 throughorifice 14 ofneedle 12 and into the patient. It is also considered desirable to include a means to inhibit relative motion between the plunger and the body of the syringe until such time as the injection needle has reached the predetermined location within the patient, and thereby minimize the distribution of the agent outside of the predetermined area of interest. - The
automatic injection device 10 may contain asingle injection needle 12 or multiple needles, through which single or multiple types of agents may pass, depending upon the specific application. Theenergy source 30 utilized to transfer the therapeutic agent from thereservoir 28 into the patient is commonly compressed gas or a spring, though other sources may be utilized. - Given that multiple applications for the present disclosure are contemplated and that there are significant differences in body and tissue composition between patients, it is likely that reproducible and consistent practice of the disclosure in a large patient population will desirably include a means for adjusting the injection parameters. Such injection parameters include the needle size, injectant viscosity, injectant volume, concentration of therapeutics, and injection rate. A means for adjusting these parameters is desirable to compensate for various characteristics of the therapy recipient, including age, weight, dosing, target tissue type, and the target tissue depth, especially for transcutaneous administration (which may be affected, among other factors, by the recipient's age and level of obesity).
- In certain indications, a single-use and/or self-destructing needle-syringe may be used as
therapeutic agent reservoir 28, thereby preventing cross-contamination of blood-bone pathogens between recipients. Similarly, protection is provided to the operator against accidental needle-stick injuries and resulting blood-borne pathogen transmission by using automatic injection devices that incorporate a means ofneedle retraction 32 after use. This method of agent administration is particularly useful in high-risk situations, such as injecting patients infected with HIV, Hepatitis, or any other blood-borne pathogens. - In one specific application of such an embodiment, an automatic injection device is used for IM injection of plasmid DNA encoding for a therapeutic protein. Skeletal muscle has several characteristics that make it a desirable target tissue for this application. First, skeletal muscle constitutes up to 40% of the average adult's body mass and is easily accessible for transcutaneous administration of the plasmid. In addition, muscle cells rarely divide in vivo and thus, the introduced plasmid will not be lost during mitosis. Muscle cells are also multi-nucleated, thereby providing multiple targets for the plasmid once it reaches the intracellular space. These characteristics enable prolonged expression and secretion of the protein into systemic circulation. If the gene of interest can be transfected into an adequate number of muscle fibers, the tissue can produce the protein at levels sufficient to induce a biologic effect in patients. For example, an anemic patient may receive an IM injection of plasmid DNA encoding for the protein erythropoietin (EPO), followed by electroporation. Upon treatment, transfected cells would produce and secrete the EPO protein, leading to an increase in hematocrit. The benefits of having such a treatment, which allows the body to manufacture its own EPO, are very enticing. By introducing and expressing EPO in muscle using electroporation, the body would be able to produce EPO for an extended period of time and patients may require boosters at substantially reduced time intervals.
- In other embodiments of the present apparatus, as depicted in
FIGS. 3 and 4 , ajet injector 100 is utilized as the means for CTAA to the target tissue. Examples of jet injection devices include: WIPO Publication Nos. W00113975, W00113977, and W00009186. Similar to the use of an automatic injection device, administration of therapeutic agents with ajet injector 100 is initiated by anoperator activating trigger 22 but transmission of the agent from a jet injector to the patient relies on the penetration of a high-pressure stream 102 of such agent through anorifice 104 into the tissue. Although jet injection is typically accomplished without the use of a penetrating injection needle, in some cases theinjection orifice 104 is located at the terminal end of a mini-needle used to bypass the outermost layers of a tissue system. The high-pressure stream 102 of therapeutic agent generated byjet injector 100 then follows-the path of least resistance as it is forced through the tissue, resulting in a widely dispersed distribution of the therapeutic agent (seeFIG. 4A ). Thejet injector 100 may contain asingle orifice 104 or multiple orifices for injection, through which single or multiple types of agents may be transferred, depending upon the specific application. The source ofenergy 30 used to activate aplunger 106 to transfer the therapeutic agent from asuitable reservoir 28 through theinjection orifice 104 is commonly compressed gas or a spring, but other energy sources can also be used. - In order to achieve reproducible and consistent agent administration, where the population is expected to exhibit variable patient parameters, the orifice size and shape, injectant pressure, injectant viscosity, injectant volume, concentration of therapeutics, and injection rate are a few examples of the adjustable jet injection parameters which can be controlled. Such adjustable parameters of the jet injector are necessary to account for various characteristics of the therapy recipient, including age, weight, dosing, target tissue type, and the target tissue depth, especially for transcutaneous administration (which may be affected, among other factors, by the recipient's age and level of obesity). Such adjustable parameters may also be necessary to ensure that the agent is stable and viable when exposed to the pressure and shearing stress inherent to jet injection-mediated administration.
- In the case of transcutaneous injection, the interface between the injector orifice and skin is also critical in achieving reproducible and safe administration; the spatial location of the jet injector should be maintained for the duration of injection. To address this issue, in certain embodiments the jet injector can be provided with the means of maintaining a
slight vacuum 108 at the device/tissue interface to facilitate administration of the technique and stabilize the spatial location of the unit. Interface stabilization may also be accomplished with the use of adhesives, with the temporary application of restraint mechanisms, or any combination thereof. - A significant concern with jet injection technology is ballistic contamination, in which the jet injection builds pressure in the tissue that is greater than the pressure in the injector, causing a small backflow of blood or other bodily fluids onto the device. In response to this problem, a single-use, self-destructing
vial 110 may be used for therapeutic agent containment of the jet injector. This prevents cross-contamination of blood-borne pathogens between recipients. Similarly, since most jet injectors have no needle, protection is provided to the operator against accidental needle-stick injuries and resulting blood-borne pathogen transmission. Such a form of needleless injection is particularly useful in high-risk situations, such as injecting patients infected with HIV, Hepatitis, or any other blood-borne pathogens. - One representative form of ESA is electroporation, but all forms of ESA share certain common features desirable for the efficient application of the techniques to EMTAD. A critical aspect of electroporation is the generation and propagation of electroporation-inducing electrical fields within the region of tissue targeted for therapeutic agent delivery. There are several methods for generating such fields in vivo, including surface and penetrating electrode arrays. The present disclosure can be practiced with any electrode system suitable for propagating the electrical signals within the targeted region of tissue. The specific characteristics of.the electrode systems will determine if that type of electrode is suitable for use in a given application.
- With surface style electrode arrays, an electrical field is propagated through the surface of the skin and into the target tissue. Unfortunately, surface style electrode arrays, such as plates or meander-type electrodes (as described in U.S. Pat. No. 5,968,006), are inefficient or impractical for most indications. The electrodes are typically unable to target regions beyond the most superficial tissues, they cannot be applied in a reliable fashion, and their use often can result in burning and scarring at the site of application.
- Penetrating electrodes are typically more desirable for most forms of ESA, and particularly for electroporation. Penetrating electrodes are defined as conductive elements whose size and shape are sufficient to enable insertion through the matter covering a tissue of interest, such as skin covering muscle tissue, or the outer layer(s) of such tissue. There are numerous embodiments of penetrating electrode array systems, including bipolar and multielement electrode arrays. The simplest penetrating electrode array is the bipolar system, which consists of two penetrating electrodes connected to the opposite poles of a pulse generator. Systems of penetrating bipolar electrodes have been used extensively in preclinical studies of electroporation. However, the non-uniform electrical fields characteristic of bipolar electrodes makes them an inefficient means for generating threshold levels sufficient for electroporation throughout a target region of tissue. More complex systems have been developed using three or more electrodes to comprise a multielement array. The specific geometrical arrangement and activation pattern of these multi-element arrays can result in superior performance characteristics compared to the bipolar approach.
- For many clinical indications, a grid-based multielement electrode array, such as the TriGrid™ electrode system, is the most advantageous means of applying ESA in accomplishing the therapeutic objective. The TriGrid™ system, disclosed in U.S. Pat. No. 5,873,849 (the entire disclosure of which is incorporated herein by reference), consists of slender penetrating electrodes with a geometry and activation pattern designed to maximize field uniformity within a targeted volume of tissue. As a result, the ESA effect can be achieved throughout the target volume with minimized variability due to the electrical fields propagated within the tissue.
- The TriGrid™ design considerations ensure that the threshold field strengths required to achieve electroporation are propagated throughout the target tissue while minimizing the amount of tissue exposed to excessively high fields that could result in tissue injury. These more uniform electric field distributions are achieved by simultaneously activating more than two of the electrodes within the array, thereby reinforcing the electric fields being propagated in the more central tissues away from the electrodes. Since the probability of achieving membrane permeability can also depend on the physical dimensions and orientation of the cell, the sequential propagation of electrical fields at different angles increases the likelihood that the electroporation effect can be achieved in any given cell.
- As depicted in
FIG. 5 , each set of four electrodes establishing a generally diamond shaped multielement array is called aUnit TriGrid™ 50. Any number of Unit TriGrid™ “modules” can be integrated together and expanded to form electrode arrays with different geometries capable of treating various shapes and volumes of tissue. Several important clinical benefits are derived from the use of the expandable TriGrid™ electrode array system. First, the system allows the patient to be treated with a single placement of the electrodes, thereby minimizing the time required for the procedure and reducing any discomfort associated with repeated penetration and stimulation of an electrode array. Second, by controlling the amount of tissue exposed to the ESA-induced electrical fields, the grid based electrode format essentially provides a method for accurately adjusting the dose of the therapeutic agent. Finally the TriGrid™ is likely to result in consistent application of the treatment from patient-to-patient and operator-to-operator since it reduces uncertainty associated with the amount of tissue targeted by threshold level electroporation-inducing electrical fields. - In certain preferred embodiments, a TriGrid™ array is utilized as the mode of establishing electroporation-inducing electrical fields. A high voltage electrical state sequencer and electrical signal generator is connected to each of the electrodes through conductive cables, thus generating an electroporation-inducing electrical field. In order to achieve reproducible and consistent therapeutic efficacy provided variable patient parameters, the electrode size, shape, and surface area, the electrical field strength (typically 50-2000 volts per centimeter), the frequency of stimulation (typically 0.1 Hertz to 1 megahertz), the waveform (such as bipolar, monopolar, AC, capacitive discharge, square, sawtooth, or any combination thereof) and the electrical signal duration (typically 1 microsecond to 100 milliseconds) are a few examples of the adjustable electroporation-inducing electrical field parameters. Selection of such adjustable electroporation parameters is based, among other factors, on the agent to be delivered, the dosing, the specific application and method of administration, the type and location of the target tissue, and the volume to be treated. In other embodiments, plate electrodes, bipolar, and other multielement electrode al-rays may be utilized as the mode of generating electroporation-inducing electrical fields; however, the TriGrid™ array is superior in accomplishing the therapeutic objective for most indications.
- There are several additional procedures that may be included in the application of CTAA and ESA, which assist in the accomplishment of the desired therapeutic objective. For instance, after the therapeutic agent has been administered it may be advantageous to utilize techniques to enhance agent distribution within the tissue by molecular movement. Suitable techniques to enhance molecular movement and homogeneity include iontophoresis, electroosmosis, ultrasound, and thermal means. In the case of iontophoresis and electroosmosis, it may be desirable to use the same electrodes that deliver electroporation; however, additional electrodes may be used. The administration of dexamethasone and poloxamer, among other agents that can affect the state of the cell membrane, have been shown to enhance various aspects of electroporation therapy. Following treatment, precautionary measures may be taken to the treatment site.
- There are several embodiments suitable for achieving spatially and temporally controlled TAA relative to application of electrical signals. A preferred embodiment providing spatial and temporal control is an apparatus wherein therapeutic agent administration and ESA are accomplished by means of an integrated unit. The integrated unit may utilize administration means such as an automatic injection device (
FIG. 2 ) or a jet injector device (FIG. 3 ) as the mode of CTAA, with electroporation-inducing electrical fields as the mode of ESA. Such an embodiment does not limit this disclosure of combined employment of CTAA and electroporation to an integrated unit, or by said means. However, integration of such an apparatus provides improved temporal and spatial control that may not be as accurately achieved with application of individual CTAA and electroporation units. - The appropriate temporal and spatial generation of an electroporation-inducing electrical field with respect to the timing and location of the therapeutic agent administration is critical for achievement of consistent and reproducible therapeutic effects. For instance, if the operator administers a therapeutic agent with one device, and then employs another' device for establishment of an electroporation-inducing electrical field, there may be variability in the relative temporal and spatial applications of CTAA and electroporation. Such inter-patient variability, due to inter-operator variability, can result in highly undesirable therapeutic inconsistencies. In the practice of the proposed integrated unit, operator training and variability are significantly reduced, since the spatial and temporal relationship of the CTAA and electroporation are controlled through the use of an integrated application system and control means rather than the operator. Furthermore, operator error by inconsistent and inaccurate temporal and spatial establishment of the electroporation-inducing electrical field relative to the therapeutic agent administration may be minimized, enabling reproducible and consistent therapeutic efficacy and dosing.
- In all embodiments, administration of the therapeutic agent is performed in a spatially and temporally controlled fashion relative to ESA. Accordingly, spatial control and temporal control are both addressed below as separate aspects. Though addressed separately, these aspects may be combined in all such embodiments to form an integrated application unit providing both spatial and temporal control over administration of the therapeutic agent. The particular combination of embodiments employed is dictated by the specific indication.
- In the combination of therapeutic agent application and electroporation, the need for temporal control is twofold: 1) the ability to administer the therapeutic agent at a controlled rate, and 2) the ability to control the sequence and timing of TAA and electroporation application. In the present disclosure, the former issue is addressed by the use of an automated injection apparatus, and the latter is addressed by integrating this automated injection apparatus with an appropriate means for the application of electroporation.
- The rate of therapeutic agent administration into the tissue is largely controlled by the design of the administration apparatus. Two common administration methods that provide suitable control over the rate of agent administration are
automatic injection devices 10 andjet injector devices 100. Fol. both administration methods, anenergy source 30 is required to transfer the therapeutic agent from asuitable reservoir 28 in the device through anorifice - In the practice of the present disclosure, an integrated unit is applied to the therapy recipient, allowing the desired sequence and timing of CTAA and electroporation to be achieved in a controlled and reliable fashion without undesirable time delays and/or multiple device placements. For example, one treatment protocol calls for the administration of plasmid DNA encoding for a therapeutic protein, followed by generation of an electroporation-inducing electrical field, and then followed by administration of dexamethasone. In the absence of the present disclosure, there would be three different device placements, with an unavoidable time interval in between the operator's placement and activation of each device. This complexity increases the probability that inter-patient variability would arise from inconsistent temporal application of each device by individual operators who are likely to have substantially different skill levels. This complexity and variability is compounded in the case where multiple application sites are necessary to get adequate dispersal of the agent to a treatment region within the target tissue. Using the described disclosure, however, only a single device is required, enabling any desired sequence of CTAA, electroporation, and additional procedures-.to be applied with minimal spatial and temporal variability and limitations. This feature is critical for agents that must reach the interior of the target cells to maintain efficacy. The treatment may not be consistently and reliably accomplished with multiple units, where temporal limitations and injection rate variability may be present in the treatment regimen. For example, when plasmid DNA is exposed after in vivo administration to the extracellular environment, physiological enzymes (DNases) break it down. Since the exact rate of enzymatic activity is dependent on the specific patient, minimizing the time interval between CTAA and electroporation allows more accurate control over the treatment dosage. In the in vivo environment, viability must be maintained by expeditious entry of the therapeutic agent to the interior of the target cells, and this may not be as consistently and reliably achieved with multiple units as it may he with an integrated unit, with which time lags are not a significant limitation and enzymatic activity is reduced as a source of variability.
- There are several embodiments suitable for achieving spatially controlled therapeutic agent administration. One embodiment suitable for spatially controlled therapeutic agent administration is a
template 52, as depicted inFIGS. 5A-D , containing a single (FIG. 5A ) or a plurality (FIGS. 5B-D ) ofports 54 designed to accommodate injection orifices characteristic of a jet injector or automatic injection device at a fixed location relative toelectrodes 56 suitable for generation of electroporation-inducing electrical fields. Additionally, the use ofports 54 provides improved angular and depth control over administration of the therapeutic agent. Thetemplate 52 may contain a single or plurality of port interlocks for administration device stabilization, through which any combination of automatic injection devices or jet injectors may be connected and employed in a spatially controlled fashion. - A preferred embodiment of the disclosure that provides spatial and temporal control in the delivery of therapeutic agents is an apparatus wherein CTAA and ESA are accomplished by means of an integrated unit. The integrated unit may utilize administration methods such as an automatic injection device or a jet injector as the mode of CTAA, with electroporation-inducing electrical fields as the preferred mode of ESA. There may also be indications for which any combination of single or multiple automatic injection devices and jet injectors is beneficial. For instance, the TriGrid™ electrode array allows for virtually all target tissue volumes and shape to be treated with a single placement of the array. A device with multiple agent administration means would then allow for reproducibly co-localized CTAA and electroporation to a wide variety of target tissues with a single placement of the integrated unit. The number of administration means implemented with respect to the number of Unit TriGrid™ arrays may depend on various treatment parameters, including the nature of the agent to be delivered, the desired dosing, the type and location of the target tissue, and the volume to be treated.
- In the practice of the disclosure utilizing such embodiments, the integrated unit is placed in the desired location, the administration device is employed to administer the therapeutic agent, and the electrode array of electrodes is activated in the target tissue, all without spatial relocation of the integrated unit. Desirably, the electrode array can be provided with the means to adjust the spatial relationship to the orifice, for example, by providing retractable electrodes. In such an embodiment, the electrodes would then be deployed upon command, and activated at the appropriate time, in order to effect the EMTAD treatment. The electroporation-inducing electrical field is thereby established, enabling delivery of the therapeutic agent to the interior of the target cells, and the electrode array is then retracted from the target tissue. This single-placement device minimizes spatial variability and limitations on the sequential application of CTAA and electroporation, while enabling highly accurate control over spatial parameters, such as the application of CTAA relative to electroporation. This is especially important for electroporation, where reproducible co-localization between the therapeutic agent and the target tissue is optimal for therapeutic agent delivery in consistent, efficacious therapies.
- In all embodiments described above, additional distributional control is derived from combination of rate control with a template-based device, or as a component of an integrated unit. For example, if a plurality of administration devices is used, then the spatial and temporal relationship between location and timing of injections is readily controlled, thereby providing a more consistent, rapid, and homogeneous distribution of the therapeutic agent.
- As depicted in
FIGS. 2, 3, 6 and 7 , the integrated unit may use anautomatic injection device 10,jet injector 100, or any combination thereof as the mode of CTAA. For certain indications, anautomatic injection device 10 may be the preferred mode of CTAA. The automatic injection device may use standard syringes and needles; fixed or non-fixed. A disposable, self-destructible, and/or pre-filled needle-syringe unit 18 may be preferable for certain indications. The needle should be positioned within ahousing 16 that incorporates a penetration-depth controlling means 26, thereby preventing accidental needle stick. For added safety, the automatic injection device may provide retraction of the needle once insertion and injection has been completed. Accidental discharge prevention means may also be desirable. For other indications, a needleless ormini-needle jet injector 100 may be the preferred mode of CTAA. A disposable, self-destructible, and/orpre-filled vial 110 containing the agent may be preferable for certain indications. If the jet injector contains a mini-needle, as may be the case for transcutaneous penetration, the mini-needle should be positioned to prevent accidental needle stick. Likewise, the jet injector may provide retraction of the mini-needle once insertion and injection has been completed. it may also be desirable to have accidental discharge prevention means. For all administration devices containing needles and mini-needles, it may be desirable to have the deployed or retracted state of said needles and mini-needles displayed to the operator. - The integrated unit may use the TriGrid™ array as the mode of implementing ESA, with
elongate electrodes 56 disposed according to the tissue shape and volume to be treated. In one embodiment of the disclosure, anintegrated apparatus 200, shown inFIGS. 6 and 7 , includes an array ofelectrodes 202 contained within a separable, and optionally disposable, sub-assembly 204 that can be easily attached to and removed from themain unit 206, allowing for controlled-usage and disposable electrodes. As described above, certain embodiments of the disclosure employretractable electrodes 208, as it is preferable if the electrodes can be contained within theapparatus 200 prior to their deployment into the target tissue. In cases of transcutaneous application, retractable electrodes would allow for improved operator safety, reduced risk of a loss in electrode sterility prior to insertion and mitigation of any belonephobia for the patient. Control over movement of such electrodes may be provided by spring, compressed gas, or otherappropriate energy source 210 in conjunction with adrive mechanism 212 to extend theelectrodes 208 throughport 228 and into the patient. Theelectrodes 208 may be actuated individually or as a unit, and preferably, the deployed or retracted state of the electrodes is displayed, either individually or as a unit, to the operator. As with automatic and jet injection devices, the use of retractable needle-type electrodes 208 may reduce belonephobia experienced by the therapy recipient, while providing the operator with increased safety to blood borne pathogens and other needle-stick related injury. - Electrical continuity is necessary between the desirably active electrodes and the electrical signal generator. Therefore, in embodiments where the electrode array is detachable, a continuous and reliable
electrical connection 214 should be readily achieved between theelectrodes 208 within thearray 202 and theapparatus 200. The disclosure also includes an electrical signal generating means 216 in conductive communication with theapparatus 200. The nature of the electrical signal generating means 216 will depend on the desired application. In some embodiments, the electrical signal generating means 216 can be located 226 within theintegrated apparatus 200. Desirably, in such an embodiment the connections necessary to maintain electrical continuity between the electrodes and the electrical signal generator are housed internal to the apparatus. In the case of external electrical signal generating means 216, as depicted inFIG. 7 , acable 218 between thegenerator 216 and theapparatus 200 is provided with asuitable connector 220 located on theapparatus 200 in a manner to minimize interference with operator use. Aselectrodes 208 may be retracted or deployed,conductive housing 222 is provided for electrical connection between deployed electrodes and theelectrical signal generator 216. Conductivity may also be accomplished byconnection 230 through theelectrode drive mechanism 212 and/orenergy source 210. - Selection of electrode parameters is a critical component of electroporation therapy. Electrode parameters include diameter, tip profile, length, conductivity, and materials. The electrodes may be hollow, allowing for the administration of anesthetics or other agents. The electrodes may also be coated with anesthetics and/or lubricious agents for pain mitigation and ease of insertion. The electrode parameter selection is dictated by several treatment factors, including properties of the target tissue, tissue volume to be treated, and charge injection/current densities at the electrode-tissue interface. For example, in the transcutaneous application of electroporation, trocar tip 58 (polyhedron with three faces) electrodes with a nominal diameter of 0.005″ to 0.05″ are desirable. The
inter-electrode spacing 60 and penetration depth define the volume of tissue to be treated. For electroporation in healthy tissues, it is often desirable that the electrodes have a sufficientlyinert surface material 62 which is electrochemically stable and will not exhibit substantial oxidation-reduction reactions with the interstitial environment when exposed to high charge injections that may occur as a result of ESA. Such surfaces may be platinum, platinum-iridium, iridium, iridium-oxide, gold, and titanium nitride. Depending upon the material chosen, it may be desirable for cost and structural reasons to deposit these inert metals to the surface of a base metal. Appropriate base metals include, but are not limited to titanium, tungsten, stainless steel, and MP35N. - The process of deposition for the desired electrochemically stable coating may consist of chemical or physical vapor deposition, creating coatings on the order of tenths to hundreds of microns. The level of charge injection and irreversible oxidation-reduction reactions should be considered when choosing a sufficiently inert material and deposition thickness. In order to target the ESA electrical fields to a specified region, including elimination of non-homogeneous electrical fields from the
electrode tips 64,dielectric coatings 66 such as Polytetrafluoroethylene (PTFE), Parylene, and Silicon Carbide may be deposited onto the electrode at thicknesses of tenths to hundreds of microns. The pinhole size and dielectric strength of such coatings should be considered when choosing an appropriate dielectric material and thickness. - A further aspect of the disclosure provides a system wherein the sequential timing and functions of the integrated CTAA-ESA unit are controllable. This may provide, for example, presettable procedure parameters, procedure automation, and/or closed loop systemic control. The
control system 224 of the integrated unit may regulate parameters pertaining individually to CTAA and electroporation, and collectively to their integrated function. - In certain embodiments, the control system may regulate the effective administration and dosing of therapeutic agents by adjustment of CTAA and electroporation parameters. Other treatment parameters to be controlled include application of a local anesthetic, placement and removal of retractable electrodes, administration of additional therapeutics, and the timing and duration of each step of the procedure.
- In certain embodiments, the control system and means for electrical signal generation are incorporated into a portable or handheld unit for use with the. integrated CTAA-ESA apparatus. For portability, a spring or compressed gas may be used as an
energy source 30 acting through adrive mechanism 232 as a means of therapeutic agent transfer, and desirably having multiple settings for operator-selectable control over the rate of transfer in therapeutic agent administration. If a spring is used, then the loaded and unloaded state of the spring could be displayed to the operator. If compressed gas is used, a qualitative or quantitative pressure level could be displayed to the operator. In this embodiment, the integrated unit may be powered by battery, capacitor bank, or pulse forming network that is energized by use of a portable station, solar cells, or other electrical sources. - All patents and patent applications cited in this specification are hereby incorporated by reference as if they had been specifically and individually indicated to be incorporated by reference.
- Although the foregoing disclosure has been described in some detail by way of illustration and Example for purposes of clarity and understanding, it will be apparent to those of ordinary skill in the art in light of the disclosure that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
- While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Claims (17)
1. An apparatus for the delivery of a therapeutic agent to a predetermined site within a patient comprising:
means for the administration of said therapeutic agent to said patient comprising a reservoir for the therapeutic agent, at least one orifice through which the agent is administered, and a controlled source of energy sufficient to transfer a predetermined amount of the therapeutic agent at a predetermined rate from said reservoir through said orifice to the predetermined site within the patient;
a plurality of penetrating electrodes arranged with a predetermined spatial relationship relative to said orifice; and
means for generating an electrical signal operatively connected to said electrodes.
2. The apparatus as recited in claim 1 wherein the electrodes comprise a subassembly that can be separated from the orifice.
3. The apparatus as recited in claim 1 further comprising means for adjusting the predetermined spatial relationship between said electrodes and said orifice.
4. The apparatus as recited in claim 3 wherein said means for adjusting the spatial relationship comprises a source of energy.
5. The apparatus as recited in claim 1 wherein the electrodes comprise-a conductive, electrochemically stable compound.
6. The apparatus as recited in claim 5 wherein the electrodes comprise a conductive metal coated with said conductive, electrochemically stable compound.
7. The apparatus as recited in claim 5 wherein said conductive, electrochemically stable compound consists of at least one of the following materials: titanium nitride, platinum, platinum iridium, iridium oxide.
8. The apparatus as recited in claim 1 wherein the means for administration of the therapeutic agent is a jet injector.
9. The apparatus as recited in claim 8 wherein the source of energy to transfer the therapeutic agent is at least one compressed gas.
10. The apparatus as recited in claim 8 wherein the source of energy to transfer the therapeutic agent is at least one spring.
11. The apparatus as recited in claim 8 wherein the jet injection comprises means for controlling the rate at which the agent is transferred through the orifice.
12. The apparatus as recited in claim 1 wherein the means for administration of the therapeutic agent is an automatic injection device.
13. The apparatus as recited in claim 12 wherein said reservoir is a syringe including a penetrating hypodermic needle having a medial and a distal end and said orifice is located at the distal end of said needle.
14. The apparatus as recited in claim 12 wherein the source of energy to transfer the therapeutic agent is at least one compressed gas.
15. The apparatus as recited in claim 12 wherein the source of energy to, transfer the therapeutic agent is at least one spring.
16. The apparatus as recited in claim 13 wherein the automatic injection device comprises means for controlling the depth of penetration of said needle into the patient.
17. The apparatus as recited in claim 12 wherein the automatic injection device comprises means for controlling the rate at which the agent is transferred through the orifice.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/279,687 US20190175836A1 (en) | 2002-04-05 | 2019-02-19 | Method and apparatus for delivery of therapeutic agents |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/117,457 US6912417B1 (en) | 2002-04-05 | 2002-04-05 | Method and apparatus for delivery of therapeutic agents |
PCT/US2003/010337 WO2003086534A1 (en) | 2002-04-05 | 2003-04-04 | Method and apparatus for delivery of therapeutic agents |
US51039905A | 2005-05-26 | 2005-05-26 | |
US11/376,619 US8187249B2 (en) | 2002-04-05 | 2006-03-14 | Method and apparatus for delivery of therapeutic agents |
US13/450,320 US9526836B2 (en) | 2002-04-05 | 2012-04-18 | Method and apparatus for delivery of therapeutic agents |
US15/351,262 US10252004B2 (en) | 2002-04-05 | 2016-11-14 | Method and apparatus for delivery of therapeutic agents |
US16/279,687 US20190175836A1 (en) | 2002-04-05 | 2019-02-19 | Method and apparatus for delivery of therapeutic agents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/351,262 Continuation US10252004B2 (en) | 2002-04-05 | 2016-11-14 | Method and apparatus for delivery of therapeutic agents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190175836A1 true US20190175836A1 (en) | 2019-06-13 |
Family
ID=29248203
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/117,457 Expired - Lifetime US6912417B1 (en) | 2002-04-05 | 2002-04-05 | Method and apparatus for delivery of therapeutic agents |
US10/510,399 Expired - Fee Related US8108040B2 (en) | 2002-04-05 | 2003-04-04 | Method and apparatus for delivery of therapeutic agents |
US11/376,619 Active 2025-12-14 US8187249B2 (en) | 2002-04-05 | 2006-03-14 | Method and apparatus for delivery of therapeutic agents |
US13/114,878 Abandoned US20110288467A1 (en) | 2002-04-05 | 2011-05-24 | Method and apparatus for delivery of therapeutic agents |
US13/450,320 Expired - Lifetime US9526836B2 (en) | 2002-04-05 | 2012-04-18 | Method and apparatus for delivery of therapeutic agents |
US15/351,262 Expired - Fee Related US10252004B2 (en) | 2002-04-05 | 2016-11-14 | Method and apparatus for delivery of therapeutic agents |
US16/279,687 Abandoned US20190175836A1 (en) | 2002-04-05 | 2019-02-19 | Method and apparatus for delivery of therapeutic agents |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/117,457 Expired - Lifetime US6912417B1 (en) | 2002-04-05 | 2002-04-05 | Method and apparatus for delivery of therapeutic agents |
US10/510,399 Expired - Fee Related US8108040B2 (en) | 2002-04-05 | 2003-04-04 | Method and apparatus for delivery of therapeutic agents |
US11/376,619 Active 2025-12-14 US8187249B2 (en) | 2002-04-05 | 2006-03-14 | Method and apparatus for delivery of therapeutic agents |
US13/114,878 Abandoned US20110288467A1 (en) | 2002-04-05 | 2011-05-24 | Method and apparatus for delivery of therapeutic agents |
US13/450,320 Expired - Lifetime US9526836B2 (en) | 2002-04-05 | 2012-04-18 | Method and apparatus for delivery of therapeutic agents |
US15/351,262 Expired - Fee Related US10252004B2 (en) | 2002-04-05 | 2016-11-14 | Method and apparatus for delivery of therapeutic agents |
Country Status (5)
Country | Link |
---|---|
US (7) | US6912417B1 (en) |
EP (1) | EP1496986A1 (en) |
JP (3) | JP4362767B2 (en) |
AU (1) | AU2003228436A1 (en) |
WO (1) | WO2003086534A1 (en) |
Families Citing this family (223)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6300108B1 (en) * | 1999-07-21 | 2001-10-09 | The Regents Of The University Of California | Controlled electroporation and mass transfer across cell membranes |
US6795728B2 (en) | 2001-08-17 | 2004-09-21 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation |
US6697670B2 (en) * | 2001-08-17 | 2004-02-24 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients |
US8251986B2 (en) | 2000-08-17 | 2012-08-28 | Angiodynamics, Inc. | Method of destroying tissue cells by eletroporation |
US6892099B2 (en) | 2001-02-08 | 2005-05-10 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation |
US8034026B2 (en) | 2001-05-18 | 2011-10-11 | Deka Products Limited Partnership | Infusion pump assembly |
EP1815879A3 (en) | 2001-05-18 | 2007-11-14 | Deka Products Limited Partnership | Infusion set for a fluid pump |
US6994706B2 (en) * | 2001-08-13 | 2006-02-07 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of benign prostatic hyperplasia |
USRE42016E1 (en) | 2001-08-13 | 2010-12-28 | Angiodynamics, Inc. | Apparatus and method for the treatment of benign prostatic hyperplasia |
US7130697B2 (en) * | 2002-08-13 | 2006-10-31 | Minnesota Medical Physics Llc | Apparatus and method for the treatment of benign prostatic hyperplasia |
US8209006B2 (en) * | 2002-03-07 | 2012-06-26 | Vgx Pharmaceuticals, Inc. | Constant current electroporation device and methods of use |
US6912417B1 (en) * | 2002-04-05 | 2005-06-28 | Ichor Medical Systmes, Inc. | Method and apparatus for delivery of therapeutic agents |
US7072834B2 (en) * | 2002-04-05 | 2006-07-04 | Intel Corporation | Adapting to adverse acoustic environment in speech processing using playback training data |
US7211083B2 (en) * | 2003-03-17 | 2007-05-01 | Minnesota Medical Physics, Llc | Apparatus and method for hair removal by electroporation |
US8777889B2 (en) | 2004-06-15 | 2014-07-15 | Ceramatec, Inc. | Apparatus and method for administering a therapeutic agent into tissue |
US8066659B2 (en) * | 2004-06-15 | 2011-11-29 | Ceramatec, Inc. | Apparatus and method for treating and dispensing a material into tissue |
US7615030B2 (en) * | 2003-10-06 | 2009-11-10 | Active O, Llc | Apparatus and method for administering a therapeutic agent into tissue |
WO2005065284A2 (en) | 2003-12-24 | 2005-07-21 | The Regents Of The University Of California | Tissue ablation with irreversible electroporation |
US8298222B2 (en) | 2003-12-24 | 2012-10-30 | The Regents Of The University Of California | Electroporation to deliver chemotherapeutics and enhance tumor regression |
EP1711115B1 (en) * | 2004-02-06 | 2010-06-30 | Dr.h.c. Robert Mathys Stiftung | Injection device, especially for bone cement |
CN102886101B (en) * | 2004-03-08 | 2015-10-28 | 艾科医疗系统公司 | The apparatus for electrically mediated delivery of therapeutic agents improved |
US7347851B1 (en) * | 2004-03-09 | 2008-03-25 | Leo B Kriksunov | Needleless hypodermic jet injector apparatus and method |
JP4443278B2 (en) * | 2004-03-26 | 2010-03-31 | テルモ株式会社 | Catheter with expansion body |
US7706873B2 (en) * | 2004-05-05 | 2010-04-27 | Mario Ammirati | System and method for controlled delivery of a therapeutic agent to a target location within an internal body tissue |
GB2414399B (en) | 2004-05-28 | 2008-12-31 | Cilag Ag Int | Injection device |
GB2414406B (en) * | 2004-05-28 | 2009-03-18 | Cilag Ag Int | Injection device |
GB2414400B (en) | 2004-05-28 | 2009-01-14 | Cilag Ag Int | Injection device |
GB2414401B (en) | 2004-05-28 | 2009-06-17 | Cilag Ag Int | Injection device |
GB2414402B (en) | 2004-05-28 | 2009-04-22 | Cilag Ag Int | Injection device |
GB2414403B (en) | 2004-05-28 | 2009-01-07 | Cilag Ag Int | Injection device |
GB2414775B (en) | 2004-05-28 | 2008-05-21 | Cilag Ag Int | Releasable coupling and injection device |
JP5197006B2 (en) * | 2004-06-24 | 2013-05-15 | スフェルゲン | Devices that move molecules to cells using electrical force |
FR2872055B1 (en) * | 2004-06-24 | 2008-02-08 | Yves Leon Scherman | DEVICE FOR TRANSFERRING MOLECULES TO CELLS USING A FORCE OF PHYSICAL ORIGIN AND COMBINATION FOR IMPLEMENTING THE METHOD |
FR2872056B1 (en) * | 2004-06-24 | 2007-08-10 | Yves Scherman | DEVICE FOR DELIVERING ACTIVE PRINCIPLE TO CELLS AND TISSUES USING ONE OR TWO PHYSICAL FORCES |
CA2588181A1 (en) * | 2004-11-23 | 2006-06-01 | International Bio-Therapeutic Research Inc. | Method of delivery of therapeutic metal ions, alloys and salts |
WO2006084173A1 (en) * | 2005-02-04 | 2006-08-10 | The Johns Hopkins University | Electroporation gene therapy gun system |
US7833189B2 (en) | 2005-02-11 | 2010-11-16 | Massachusetts Institute Of Technology | Controlled needle-free transport |
US7601149B2 (en) | 2005-03-07 | 2009-10-13 | Boston Scientific Scimed, Inc. | Apparatus for switching nominal and attenuated power between ablation probes |
GB2424836B (en) | 2005-04-06 | 2010-09-22 | Cilag Ag Int | Injection device (bayonet cap removal) |
GB2427826B (en) | 2005-04-06 | 2010-08-25 | Cilag Ag Int | Injection device comprising a locking mechanism associated with integrally formed biasing means |
GB2425062B (en) | 2005-04-06 | 2010-07-21 | Cilag Ag Int | Injection device |
GB2424835B (en) | 2005-04-06 | 2010-06-09 | Cilag Ag Int | Injection device (modified trigger) |
GB2424838B (en) * | 2005-04-06 | 2011-02-23 | Cilag Ag Int | Injection device (adaptable drive) |
US20060264752A1 (en) * | 2005-04-27 | 2006-11-23 | The Regents Of The University Of California | Electroporation controlled with real time imaging |
US20060293725A1 (en) * | 2005-06-24 | 2006-12-28 | Boris Rubinsky | Methods and systems for treating fatty tissue sites using electroporation |
US20060293730A1 (en) | 2005-06-24 | 2006-12-28 | Boris Rubinsky | Methods and systems for treating restenosis sites using electroporation |
US20060293731A1 (en) * | 2005-06-24 | 2006-12-28 | Boris Rubinsky | Methods and systems for treating tumors using electroporation |
US8114070B2 (en) * | 2005-06-24 | 2012-02-14 | Angiodynamics, Inc. | Methods and systems for treating BPH using electroporation |
EP1908057B1 (en) * | 2005-06-30 | 2012-06-20 | LG Electronics Inc. | Method and apparatus for decoding an audio signal |
US8353906B2 (en) * | 2005-08-01 | 2013-01-15 | Ceramatec, Inc. | Electrochemical probe and method for in situ treatment of a tissue |
ATE452670T1 (en) | 2005-08-30 | 2010-01-15 | Cilag Gmbh Int | NEEDLE DEVICE FOR A PREFILLED SYRINGE |
US20110098656A1 (en) | 2005-09-27 | 2011-04-28 | Burnell Rosie L | Auto-injection device with needle protecting cap having outer and inner sleeves |
US20070156135A1 (en) * | 2006-01-03 | 2007-07-05 | Boris Rubinsky | System and methods for treating atrial fibrillation using electroporation |
US9339641B2 (en) | 2006-01-17 | 2016-05-17 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
US20100168501A1 (en) * | 2006-10-02 | 2010-07-01 | Daniel Rogers Burnett | Method and apparatus for magnetic induction therapy |
US9610459B2 (en) | 2009-07-24 | 2017-04-04 | Emkinetics, Inc. | Cooling systems and methods for conductive coils |
WO2007131025A1 (en) * | 2006-05-03 | 2007-11-15 | Antares Pharma, Inc. | Injector with adjustable dosing |
GB2438591B (en) | 2006-06-01 | 2011-07-13 | Cilag Gmbh Int | Injection device |
GB2438590B (en) | 2006-06-01 | 2011-02-09 | Cilag Gmbh Int | Injection device |
GB2438593B (en) | 2006-06-01 | 2011-03-30 | Cilag Gmbh Int | Injection device (cap removal feature) |
DK2032057T3 (en) * | 2006-06-12 | 2010-02-08 | Region Hovedstaden V Herlev Ho | Electrode insertion device |
US10786669B2 (en) | 2006-10-02 | 2020-09-29 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
US11224742B2 (en) | 2006-10-02 | 2022-01-18 | Emkinetics, Inc. | Methods and devices for performing electrical stimulation to treat various conditions |
US9005102B2 (en) | 2006-10-02 | 2015-04-14 | Emkinetics, Inc. | Method and apparatus for electrical stimulation therapy |
WO2008048620A2 (en) | 2006-10-16 | 2008-04-24 | The Regents Of The University Of California | Gels with predetermined conductivity used in irreversible electroporation of tissue |
US20080132884A1 (en) * | 2006-12-01 | 2008-06-05 | Boris Rubinsky | Systems for treating tissue sites using electroporation |
JP5408841B2 (en) | 2006-12-29 | 2014-02-05 | 株式会社Adeka | Polymerizable compound and polymerizable composition |
CA2681398A1 (en) * | 2007-03-19 | 2008-09-25 | Insuline Medical Ltd. | Drug delivery device |
GB2452286B (en) * | 2007-08-29 | 2012-09-26 | Cilag Gmbh Int | Injection system |
JP4994167B2 (en) * | 2007-09-21 | 2012-08-08 | 富士電機エフテック株式会社 | Dental anesthesia syringe |
CN101888874B (en) * | 2007-10-11 | 2013-11-13 | 京畿州海莱乌医院 | An electroporation device for improved electrical field control |
US20090099427A1 (en) * | 2007-10-12 | 2009-04-16 | Arkal Medical, Inc. | Microneedle array with diverse needle configurations |
US8409133B2 (en) | 2007-12-18 | 2013-04-02 | Insuline Medical Ltd. | Drug delivery device with sensor for closed-loop operation |
US20100004623A1 (en) * | 2008-03-27 | 2010-01-07 | Angiodynamics, Inc. | Method for Treatment of Complications Associated with Arteriovenous Grafts and Fistulas Using Electroporation |
US20090248012A1 (en) | 2008-03-27 | 2009-10-01 | The Regents Of The University Of California | Irreversible electroporation device and method for attenuating neointimal |
US9198733B2 (en) | 2008-04-29 | 2015-12-01 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for electroporation-based therapies |
US9867652B2 (en) | 2008-04-29 | 2018-01-16 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US11272979B2 (en) | 2008-04-29 | 2022-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US10238447B2 (en) | 2008-04-29 | 2019-03-26 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
US10702326B2 (en) | 2011-07-15 | 2020-07-07 | Virginia Tech Intellectual Properties, Inc. | Device and method for electroporation based treatment of stenosis of a tubular body part |
US8992517B2 (en) | 2008-04-29 | 2015-03-31 | Virginia Tech Intellectual Properties Inc. | Irreversible electroporation to treat aberrant cell masses |
US10272178B2 (en) | 2008-04-29 | 2019-04-30 | Virginia Tech Intellectual Properties Inc. | Methods for blood-brain barrier disruption using electrical energy |
US10245098B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Acute blood-brain barrier disruption using electrical energy based therapy |
US10117707B2 (en) | 2008-04-29 | 2018-11-06 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US11254926B2 (en) | 2008-04-29 | 2022-02-22 | Virginia Tech Intellectual Properties, Inc. | Devices and methods for high frequency electroporation |
CA2722296A1 (en) | 2008-04-29 | 2009-11-05 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US9283051B2 (en) | 2008-04-29 | 2016-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
WO2009137800A2 (en) * | 2008-05-09 | 2009-11-12 | Angiodynamics, Inc. | Electroporation device and method |
US20090299266A1 (en) * | 2008-06-02 | 2009-12-03 | Mattioli Engineering Ltd. | Method and apparatus for skin absorption enhancement and transdermal drug delivery |
GB2461086B (en) | 2008-06-19 | 2012-12-05 | Cilag Gmbh Int | Injection device |
GB2461087B (en) | 2008-06-19 | 2012-09-26 | Cilag Gmbh Int | Injection device |
GB2461085B (en) | 2008-06-19 | 2012-08-29 | Cilag Gmbh Int | Injection device |
GB2461089B (en) | 2008-06-19 | 2012-09-19 | Cilag Gmbh Int | Injection device |
GB2461084B (en) | 2008-06-19 | 2012-09-26 | Cilag Gmbh Int | Fluid transfer assembly |
US9173704B2 (en) * | 2008-06-20 | 2015-11-03 | Angiodynamics, Inc. | Device and method for the ablation of fibrin sheath formation on a venous catheter |
US9681909B2 (en) * | 2008-06-23 | 2017-06-20 | Angiodynamics, Inc. | Treatment devices and methods |
US8267892B2 (en) | 2008-10-10 | 2012-09-18 | Deka Products Limited Partnership | Multi-language / multi-processor infusion pump assembly |
US8066672B2 (en) | 2008-10-10 | 2011-11-29 | Deka Products Limited Partnership | Infusion pump assembly with a backup power supply |
US8223028B2 (en) | 2008-10-10 | 2012-07-17 | Deka Products Limited Partnership | Occlusion detection system and method |
US8016789B2 (en) * | 2008-10-10 | 2011-09-13 | Deka Products Limited Partnership | Pump assembly with a removable cover assembly |
US9180245B2 (en) | 2008-10-10 | 2015-11-10 | Deka Products Limited Partnership | System and method for administering an infusible fluid |
US8708376B2 (en) | 2008-10-10 | 2014-04-29 | Deka Products Limited Partnership | Medium connector |
US8262616B2 (en) | 2008-10-10 | 2012-09-11 | Deka Products Limited Partnership | Infusion pump assembly |
US8788211B2 (en) | 2008-10-31 | 2014-07-22 | The Invention Science Fund I, Llc | Method and system for comparing tissue ablation or abrasion data to data related to administration of a frozen particle composition |
US8731840B2 (en) | 2008-10-31 | 2014-05-20 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
US20110150765A1 (en) | 2008-10-31 | 2011-06-23 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Frozen compositions and methods for piercing a substrate |
US8793075B2 (en) | 2008-10-31 | 2014-07-29 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
US8721583B2 (en) | 2008-10-31 | 2014-05-13 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
US8545856B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for delivery of frozen particle adhesives |
US9072688B2 (en) | 2008-10-31 | 2015-07-07 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
US8731842B2 (en) | 2008-10-31 | 2014-05-20 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
US20100111857A1 (en) | 2008-10-31 | 2010-05-06 | Boyden Edward S | Compositions and methods for surface abrasion with frozen particles |
US9050317B2 (en) | 2008-10-31 | 2015-06-09 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
US8414356B2 (en) | 2008-10-31 | 2013-04-09 | The Invention Science Fund I, Llc | Systems, devices, and methods for making or administering frozen particles |
US9072799B2 (en) | 2008-10-31 | 2015-07-07 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
US8762067B2 (en) | 2008-10-31 | 2014-06-24 | The Invention Science Fund I, Llc | Methods and systems for ablation or abrasion with frozen particles and comparing tissue surface ablation or abrasion data to clinical outcome data |
US9060931B2 (en) | 2008-10-31 | 2015-06-23 | The Invention Science Fund I, Llc | Compositions and methods for delivery of frozen particle adhesives |
US9060934B2 (en) | 2008-10-31 | 2015-06-23 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
US8731841B2 (en) * | 2008-10-31 | 2014-05-20 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
US9050070B2 (en) | 2008-10-31 | 2015-06-09 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
US9060926B2 (en) | 2008-10-31 | 2015-06-23 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
US8725420B2 (en) | 2008-10-31 | 2014-05-13 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
BRPI0916125A2 (en) | 2008-11-07 | 2015-11-03 | Insuline Medical Ltd | "treatment device" |
US20100152725A1 (en) * | 2008-12-12 | 2010-06-17 | Angiodynamics, Inc. | Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation |
WO2010085765A2 (en) * | 2009-01-23 | 2010-07-29 | Moshe Meir H | Therapeutic energy delivery device with rotational mechanism |
US8231603B2 (en) * | 2009-02-10 | 2012-07-31 | Angiodynamics, Inc. | Irreversible electroporation and tissue regeneration |
US9370619B2 (en) * | 2009-02-21 | 2016-06-21 | Incumed, Llc | Partially implantable medical devices and delivery/manifold tube for use with same |
US9125981B2 (en) * | 2009-02-21 | 2015-09-08 | Incumed, Llc | Fluid cartridges including a power source and partially implantable medical devices for use with same |
US8202260B2 (en) * | 2009-02-21 | 2012-06-19 | Incumed, Llc | Partially implantable medical devices with cartridge movement sensor and associated methods |
WO2010118387A1 (en) * | 2009-04-09 | 2010-10-14 | Virginia Tech Intellectual Properties, Inc. | Integration of very short electric pulses for minimally to noninvasive electroporation |
US11382681B2 (en) | 2009-04-09 | 2022-07-12 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of high frequency electrical pulses for non-thermal ablation |
US11638603B2 (en) | 2009-04-09 | 2023-05-02 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
USD630321S1 (en) | 2009-05-08 | 2011-01-04 | Angio Dynamics, Inc. | Probe handle |
US20100298761A1 (en) * | 2009-05-20 | 2010-11-25 | Sonion A/S | Electroporation device with improved tip and electrode support |
US8903488B2 (en) | 2009-05-28 | 2014-12-02 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
EP2470255A4 (en) * | 2009-08-24 | 2013-02-06 | Ron L Alterman | Apparatus for trans-cerebral electrophoresis and methods of use thereof |
WO2011028719A2 (en) | 2009-09-01 | 2011-03-10 | Massachusetts Institute Of Technology | Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties |
EP2493551A4 (en) | 2009-10-26 | 2013-04-17 | Emkinetics Inc | Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues |
US20110118732A1 (en) | 2009-11-19 | 2011-05-19 | The Regents Of The University Of California | Controlled irreversible electroporation |
PL2542300T3 (en) | 2010-03-01 | 2017-06-30 | Inovio Pharmaceuticals, Inc. | A tolerable and minimally invasive skin electroporation device |
CN107096101A (en) * | 2010-10-07 | 2017-08-29 | 麻省理工学院 | Use the injecting method of servo-controlled needleless injector |
EP2627274B1 (en) | 2010-10-13 | 2022-12-14 | AngioDynamics, Inc. | System for electrically ablating tissue of a patient |
WO2012088149A2 (en) | 2010-12-20 | 2012-06-28 | Virginia Tech Intellectual Properties, Inc. | High-frequency electroporation for cancer therapy |
US9457183B2 (en) * | 2011-06-15 | 2016-10-04 | Tripep Ab | Injection needle and device |
US9078665B2 (en) | 2011-09-28 | 2015-07-14 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
US9414881B2 (en) | 2012-02-08 | 2016-08-16 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
US9849252B2 (en) * | 2012-05-04 | 2017-12-26 | Sofia Eleni Armes | Electromechanical manipulating device for medical needle and syringe with sensory biofeedback and pain suppression capability |
US20130304017A1 (en) * | 2012-05-09 | 2013-11-14 | Bioject, Inc. | Peformance of needle-free injection according to known relationships |
US9456916B2 (en) | 2013-03-12 | 2016-10-04 | Medibotics Llc | Device for selectively reducing absorption of unhealthy food |
US9999718B2 (en) | 2012-08-28 | 2018-06-19 | Osprey Medical, Inc. | Volume monitoring device utilizing light-based systems |
US9320846B2 (en) | 2012-08-28 | 2016-04-26 | Osprey Medical, Inc. | Devices and methods for modulating medium delivery |
US10010673B2 (en) | 2012-08-28 | 2018-07-03 | Osprey Medical, Inc. | Adjustable medium diverter |
US11219719B2 (en) | 2012-08-28 | 2022-01-11 | Osprey Medical, Inc. | Volume monitoring systems |
US11116892B2 (en) | 2012-08-28 | 2021-09-14 | Osprey Medical, Inc. | Medium injection diversion and measurement |
US10413677B2 (en) | 2012-08-28 | 2019-09-17 | Osprey Medical, Inc. | Volume monitoring device |
US10022497B2 (en) | 2012-08-28 | 2018-07-17 | Osprey Medical, Inc. | Reservoir for collection and reuse of diverted medium |
JP5391323B1 (en) * | 2012-10-23 | 2014-01-15 | 有限会社ミューコム | Biologic injection device |
US9067070B2 (en) | 2013-03-12 | 2015-06-30 | Medibotics Llc | Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type |
US9011365B2 (en) | 2013-03-12 | 2015-04-21 | Medibotics Llc | Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food |
WO2014151431A2 (en) * | 2013-03-15 | 2014-09-25 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
GB2515032A (en) | 2013-06-11 | 2014-12-17 | Cilag Gmbh Int | Guide for an injection device |
GB2517896B (en) | 2013-06-11 | 2015-07-08 | Cilag Gmbh Int | Injection device |
GB2515039B (en) | 2013-06-11 | 2015-05-27 | Cilag Gmbh Int | Injection Device |
GB2515038A (en) | 2013-06-11 | 2014-12-17 | Cilag Gmbh Int | Injection device |
US10166321B2 (en) | 2014-01-09 | 2019-01-01 | Angiodynamics, Inc. | High-flow port and infusion needle systems |
US10471254B2 (en) | 2014-05-12 | 2019-11-12 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
US10694972B2 (en) | 2014-12-15 | 2020-06-30 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment |
CN115737104A (en) | 2015-03-31 | 2023-03-07 | 昂科赛克医疗公司 | Systems and methods for improved tissue sensing-based electroporation |
EP3313505A4 (en) * | 2015-06-25 | 2018-06-06 | NewSouth Innovations Pty Limited | Electroporation system for controlled localized therapeutics delivery |
US11027071B2 (en) | 2015-12-28 | 2021-06-08 | Inovio Pharmaceuticals, Inc. | Intradermal jet injection electroporation device |
ES2843400T3 (en) | 2015-12-30 | 2021-07-16 | Inovio Pharmaceuticals Inc | Electroporation device with detachable needle assembly with locking system |
US11517741B2 (en) * | 2016-02-22 | 2022-12-06 | Tokyo Metropolitan Institute Of Medical Science | Electrodes for electroporation |
CR20180504A (en) * | 2016-03-28 | 2018-12-21 | Ichor Medical System Inc | METHOD AND APPLIANCE FOR SUPPLY OF THERAPEUTIC AGENTS |
CA3020426A1 (en) | 2016-04-13 | 2017-10-19 | Synthetic Genomics, Inc. | Recombinant arterivirus replicon systems and uses thereof |
CN110073002B (en) | 2016-10-17 | 2024-06-11 | 杨森制药公司 | Recombinant viral replicon systems and uses thereof |
US10905492B2 (en) | 2016-11-17 | 2021-02-02 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
WO2018106615A2 (en) | 2016-12-05 | 2018-06-14 | Synthetic Genomics, Inc. | Compositions and methods for enhancing gene expression |
US11459651B2 (en) * | 2017-02-07 | 2022-10-04 | Applied Materials, Inc. | Paste method to reduce defects in dielectric sputtering |
WO2018210345A1 (en) * | 2017-05-18 | 2018-11-22 | Chen Wen Shiang | Apparatus for delivery of agent |
US11607537B2 (en) | 2017-12-05 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | Method for treating neurological disorders, including tumors, with electroporation |
JOP20200153A1 (en) | 2017-12-19 | 2022-10-30 | Janssen Sciences Ireland Unlimited Co | Hepatitis b virus (hbv) vaccines and uses thereof |
SG11202005710YA (en) | 2017-12-19 | 2020-07-29 | Janssen Sciences Ireland Unlimited Co | Methods and compositions for inducing an immune response against hepatitis b virus (hbv) |
US11389531B2 (en) | 2017-12-19 | 2022-07-19 | Janssen Sciences Ireland Unlimited Company | Methods and apparatus for the delivery of hepatitis B virus (HBV) vaccines |
US11021692B2 (en) | 2017-12-19 | 2021-06-01 | Janssen Sciences Ireland Unlimited Company | Hepatitis B virus (HBV) vaccines and uses thereof |
US11020476B2 (en) | 2017-12-19 | 2021-06-01 | Janssen Sciences Ireland Unlimited Company | Methods and compositions for inducing an immune response against Hepatitis B Virus (HBV) |
CN111902163B (en) | 2018-01-19 | 2024-02-13 | 杨森制药公司 | Induction and enhancement of immune responses using recombinant replicon systems |
US11925405B2 (en) | 2018-03-13 | 2024-03-12 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation |
US11311329B2 (en) | 2018-03-13 | 2022-04-26 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for immunotherapy based treatments using non-thermal ablation techniques |
CA3098615A1 (en) * | 2018-05-02 | 2019-11-07 | Oncosec Medical Incorporated | Electroporation systems, methods, and apparatus |
US11071860B2 (en) | 2019-02-06 | 2021-07-27 | Oncosec Medical Incorporated | Systems and methods for detecting fault conditions in electroporation therapy |
US11660139B2 (en) | 2019-04-10 | 2023-05-30 | Radioclash Inc. | Electroporation probe |
US11499841B2 (en) | 2019-04-12 | 2022-11-15 | Osprey Medical, Inc. | Energy-efficient position determining with multiple sensors |
JP2022537324A (en) | 2019-06-18 | 2022-08-25 | ヤンセン・サイエンシズ・アイルランド・アンリミテッド・カンパニー | Combination of hepatitis B virus (HBV) vaccine and anti-PD-1 antibody |
EP3986915A1 (en) | 2019-06-18 | 2022-04-27 | Janssen Sciences Ireland Unlimited Company | Recombinant interleukin 12 construct and uses thereof |
CA3140690A1 (en) | 2019-06-18 | 2020-12-24 | Helen Horton | Combination of hepatitis b virus (hbv) vaccines and dihydropyrimidine derivatives as capsid assembly modulators |
WO2020255013A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and capsid assembly modulators being amide derivatives |
WO2020255017A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and dihydropyrimidine derivatives as capsid assembly modulators |
US20220296703A1 (en) | 2019-06-18 | 2022-09-22 | Janssen Sciences Ireland Unlimited Company | Cobmination of hepatitis b virus (hbv) vaccines and anti-pd-1 or anti-pd-l1 antibody |
WO2020255022A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and aminopyridine derivatives as hpk1 inhibitors |
US20220233684A1 (en) | 2019-06-18 | 2022-07-28 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and pd-l1 inhibitors |
WO2020255042A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and a pyrimidine derivative |
US20220241402A1 (en) | 2019-06-18 | 2022-08-04 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and quinazoline derivatives |
WO2020255019A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and a quinazoline derivative |
WO2020255016A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and dihydropyrimidine derivatives as capsid assembly modulators |
WO2020255010A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of recombinant interleukin 12 construct and hepatitis b virus (hbv) vaccines |
US20220305114A1 (en) | 2019-06-18 | 2022-09-29 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and small molecule pdl1 or pd1 inhibitor |
WO2020254876A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Virus-like particle delivery of hepatitis b virus (hbv) vaccines |
WO2020255035A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and pyrimidine derivatives |
US20220305116A1 (en) | 2019-06-18 | 2022-09-29 | Janssen Sciences lreland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and capsid assembly modulators being sulfonamide derivatives |
WO2020255038A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and pyridopyrimidine derivatives |
WO2020255018A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Hepatitis b virus (hbv) vaccines and uses thereof |
EP3986456A1 (en) | 2019-06-18 | 2022-04-27 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and hbv-targeting rnai |
JP2022536945A (en) | 2019-06-18 | 2022-08-22 | ヤンセン・サイエンシズ・アイルランド・アンリミテッド・カンパニー | Combination of hepatitis B virus (HBV) vaccine and RNAi targeting HBV |
EP3986563A1 (en) | 2019-06-20 | 2022-04-27 | Janssen Sciences Ireland Unlimited Company | Lipid nanoparticle or liposome delivery of hepatitis b virus (hbv) vaccines |
EP3986457A1 (en) | 2019-06-20 | 2022-04-27 | Janssen Sciences Ireland Unlimited Company | Carbohydrate nanocarrier delivery of hepatitis b virus (hbv) vaccines |
US11950835B2 (en) | 2019-06-28 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy |
US20210290941A1 (en) * | 2020-03-20 | 2021-09-23 | Inovio Pharmaceuticals Inc | Vacuum-Assisted Electroporation Devices, And Related Systems And Methods |
EP4178613A1 (en) | 2020-07-08 | 2023-05-17 | Janssen Sciences Ireland Unlimited Company | Rna replicon vaccines against hbv |
TW202245809A (en) | 2020-12-18 | 2022-12-01 | 美商詹森藥物公司 | Combination therapy for treating hepatitis b virus infection |
CA3203442A1 (en) | 2020-12-28 | 2022-07-07 | Arcturus Therapeutics, Inc. | Transcription activator-like effector nucleases (talens) targeting hbv |
WO2023233290A1 (en) | 2022-05-31 | 2023-12-07 | Janssen Sciences Ireland Unlimited Company | Rnai agents targeting pd-l1 |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2680439A (en) | 1948-09-08 | 1954-06-08 | Arnold K Sutermeister | High-pressure injection device |
US2725877A (en) * | 1950-12-22 | 1955-12-06 | Reiter David | Hypodermic syringe with feed control |
US2860439A (en) | 1955-08-10 | 1958-11-18 | Arvey Corp | Foldable display piece |
FR2348709A1 (en) | 1976-04-23 | 1977-11-18 | Pistor Michel | MESOTHERAPIC TREATMENT PROCESS AND INJECTION DEVICE, FORMING AUTOMATIC MICRO-INJECTOR, INCLUDING APPLICATION |
US4198975A (en) * | 1978-10-06 | 1980-04-22 | Haller J Gilbert | Self-injecting hypodermic syringe device |
US4394863A (en) * | 1981-10-23 | 1983-07-26 | Survival Technology, Inc. | Automatic injector with cartridge having separate sequentially injectable medicaments |
US4832682A (en) | 1984-08-08 | 1989-05-23 | Survival Technology, Inc. | Injection method and apparatus with electrical blood absorbing stimulation |
US4636197A (en) * | 1985-02-15 | 1987-01-13 | Ping Chu | Intravenous fluid infusion device |
FR2638359A1 (en) * | 1988-11-03 | 1990-05-04 | Tino Dalto | SYRINGE GUIDE WITH ADJUSTMENT OF DEPTH DEPTH OF NEEDLE IN SKIN |
JPH04244172A (en) | 1991-01-30 | 1992-09-01 | Sony Corp | Analgenic method and apparatus with low frequency therapeutic apparatus |
JPH04362767A (en) | 1991-06-10 | 1992-12-15 | Agency Of Ind Science & Technol | Multiprocessor device |
JPH0584313A (en) * | 1991-07-23 | 1993-04-06 | Sony Corp | Electrode for low frequency pain removing device |
US5215089A (en) * | 1991-10-21 | 1993-06-01 | Cyberonics, Inc. | Electrode assembly for nerve stimulation |
JP3263854B2 (en) * | 1992-02-21 | 2002-03-11 | ソニー株式会社 | Electrode for painkiller |
US5383851A (en) * | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
US5273525A (en) * | 1992-08-13 | 1993-12-28 | Btx Inc. | Injection and electroporation apparatus for drug and gene delivery |
US5688233A (en) * | 1992-08-17 | 1997-11-18 | Genetronics, Inc. | Electronincorporation enhanced transdermal delivery of molecules |
US5318514A (en) * | 1992-08-17 | 1994-06-07 | Btx, Inc. | Applicator for the electroporation of drugs and genes into surface cells |
US5306236A (en) * | 1993-02-18 | 1994-04-26 | Vickers Plc | Needle electrode for use with hypodermic syringe attachment |
US5993434A (en) | 1993-04-01 | 1999-11-30 | Genetronics, Inc. | Method of treatment using electroporation mediated delivery of drugs and genes |
US5702359A (en) * | 1995-06-06 | 1997-12-30 | Genetronics, Inc. | Needle electrodes for mediated delivery of drugs and genes |
US5425715A (en) | 1993-08-05 | 1995-06-20 | Survival Technology, Inc. | Reloadable injector |
US5478316A (en) | 1994-02-02 | 1995-12-26 | Becton, Dickinson And Company | Automatic self-injection device |
US5593429A (en) * | 1994-06-28 | 1997-01-14 | Cadwell Industries, Inc. | Needle electrode with depth of penetration limiter |
US6041252A (en) | 1995-06-07 | 2000-03-21 | Ichor Medical Systems Inc. | Drug delivery system and method |
GB9612724D0 (en) | 1996-06-18 | 1996-08-21 | Owen Mumford Ltd | Improvements relating to injection devices |
US5846225A (en) * | 1997-02-19 | 1998-12-08 | Cornell Research Foundation, Inc. | Gene transfer therapy delivery device and method |
US5851197A (en) | 1997-02-05 | 1998-12-22 | Minimed Inc. | Injector for a subcutaneous infusion set |
WO1998043702A2 (en) | 1997-04-03 | 1998-10-08 | Iacob Mathiesen | Method for introducing pharmaceutical drugs and nucleic acids into skeletal muscle |
US5873849A (en) * | 1997-04-24 | 1999-02-23 | Ichor Medical Systems, Inc. | Electrodes and electrode arrays for generating electroporation inducing electrical fields |
US6558351B1 (en) * | 1999-06-03 | 2003-05-06 | Medtronic Minimed, Inc. | Closed loop system for controlling insulin infusion |
CN1106224C (en) | 1997-07-04 | 2003-04-23 | 南安普敦大学 | Improved targeting of flying insects with insecticides and apparatus for charging liquids |
US6241701B1 (en) * | 1997-08-01 | 2001-06-05 | Genetronics, Inc. | Apparatus for electroporation mediated delivery of drugs and genes |
US6055453A (en) * | 1997-08-01 | 2000-04-25 | Genetronics, Inc. | Apparatus for addressing needle array electrodes for electroporation therapy |
JP2001516562A (en) | 1997-09-18 | 2001-10-02 | ジーン セラピー システムズ インコーポレーテッド | Chemical modification of DNA using peptide nucleic acid conjugate |
TW368420B (en) | 1997-11-04 | 1999-09-01 | Genetronics Inc | Apparatus and method for transdermal molecular delivery by applying sufficient amplitude of electric field to induce migration of molecules through pores in the stratum corneum |
US6356783B1 (en) * | 1997-11-20 | 2002-03-12 | David R. Hubbard, Jr. | Multi-electrode and needle injection device for diagnosis and treatment of muscle injury and pain |
US6918901B1 (en) | 1997-12-10 | 2005-07-19 | Felix Theeuwes | Device and method for enhancing transdermal agent flux |
US6208893B1 (en) * | 1998-01-27 | 2001-03-27 | Genetronics, Inc. | Electroporation apparatus with connective electrode template |
US6120493A (en) * | 1998-01-27 | 2000-09-19 | Genetronics, Inc. | Method for the introduction of therapeutic agents utilizing an electroporation apparatus |
US6309370B1 (en) * | 1998-02-05 | 2001-10-30 | Biosense, Inc. | Intracardiac drug delivery |
AU3050499A (en) | 1998-03-23 | 1999-10-18 | Elan Corporation, Plc | Drug delivery device |
GB9808408D0 (en) | 1998-04-18 | 1998-06-17 | Owen Mumford Ltd | Improvements relating to injection devices |
EP2428249B1 (en) * | 1998-07-13 | 2015-10-07 | Inovio Pharmaceuticals, Inc. | Skin and muscle-targeted gene therapy by pulsed electrical field |
DE69927826D1 (en) | 1998-08-03 | 2006-03-02 | Univ North Carolina State | USE OF CO2 COOLING FOR THE TREATMENT OF POULTRY EGGS |
US6428528B2 (en) | 1998-08-11 | 2002-08-06 | Antares Pharma, Inc. | Needle assisted jet injector |
GB9817662D0 (en) | 1998-08-13 | 1998-10-07 | Crocker Peter J | Substance delivery |
US6678558B1 (en) * | 1999-03-25 | 2004-01-13 | Genetronics, Inc. | Method and apparatus for reducing electroporation-mediated muscle reaction and pain response |
CA2369329A1 (en) * | 1999-05-10 | 2000-11-16 | Gunter A. Hofmann | Method of electroporation-enhanced delivery of active agents |
JP2000316991A (en) | 1999-05-13 | 2000-11-21 | Hisamitsu Pharmaceut Co Inc | Electrode structural body for iontophoresis device and its manufacture |
WO2001013975A2 (en) | 1999-08-20 | 2001-03-01 | Bioject, Inc. | Dna-based intramuscular injection system for humans |
US6319224B1 (en) | 1999-08-20 | 2001-11-20 | Bioject Medical Technologies Inc. | Intradermal injection system for injecting DNA-based injectables into humans |
JP2003520094A (en) | 2000-01-21 | 2003-07-02 | インストルメンタリウム コーポレイション | Medical electrode |
US7530964B2 (en) | 2000-06-30 | 2009-05-12 | Elan Pharma International Limited | Needle device and method thereof |
CN1345607A (en) | 2000-09-30 | 2002-04-24 | 杭州泰士生物科技有限公司 | Muscle gene injection needle with electrode |
DE60138411D1 (en) | 2000-10-13 | 2009-05-28 | Alza Corp | DEVICE AND METHOD FOR PURIFYING SKIN WITH MICRONED PINS |
US20020078161A1 (en) | 2000-12-19 | 2002-06-20 | Philips Electronics North America Corporation | UPnP enabling device for heterogeneous networks of slave devices |
US6899699B2 (en) * | 2001-01-05 | 2005-05-31 | Novo Nordisk A/S | Automatic injection device with reset feature |
US6748266B2 (en) * | 2001-04-06 | 2004-06-08 | Mattioli Engineering Ltd. | Method and apparatus for skin absorption enhancement and transdermal drug delivery |
US7429258B2 (en) | 2001-10-26 | 2008-09-30 | Massachusetts Institute Of Technology | Microneedle transport device |
WO2003075978A2 (en) * | 2002-03-07 | 2003-09-18 | Merck & Co., Inc. | Clinical syringe with electrical stimulation aspects |
US6912417B1 (en) | 2002-04-05 | 2005-06-28 | Ichor Medical Systmes, Inc. | Method and apparatus for delivery of therapeutic agents |
US7328064B2 (en) | 2002-07-04 | 2008-02-05 | Inovio As | Electroporation device and injection apparatus |
JP2004041434A (en) | 2002-07-11 | 2004-02-12 | Kiyohito Ishida | Electroporation apparatus |
GB2421689B (en) | 2002-08-05 | 2007-03-07 | Caretek Medical Ltd | Drug delivery system |
CN102886101B (en) | 2004-03-08 | 2015-10-28 | 艾科医疗系统公司 | The apparatus for electrically mediated delivery of therapeutic agents improved |
US20100092391A1 (en) | 2007-01-11 | 2010-04-15 | Huntington Medical Research Institutes | Imaging agents and methods of use thereof |
-
2002
- 2002-04-05 US US10/117,457 patent/US6912417B1/en not_active Expired - Lifetime
-
2003
- 2003-04-04 EP EP03726188A patent/EP1496986A1/en not_active Withdrawn
- 2003-04-04 US US10/510,399 patent/US8108040B2/en not_active Expired - Fee Related
- 2003-04-04 AU AU2003228436A patent/AU2003228436A1/en not_active Abandoned
- 2003-04-04 JP JP2003583542A patent/JP4362767B2/en not_active Expired - Lifetime
- 2003-04-04 WO PCT/US2003/010337 patent/WO2003086534A1/en active Application Filing
-
2006
- 2006-03-14 US US11/376,619 patent/US8187249B2/en active Active
-
2009
- 2009-06-11 JP JP2009140108A patent/JP5410847B2/en not_active Expired - Fee Related
-
2011
- 2011-05-24 US US13/114,878 patent/US20110288467A1/en not_active Abandoned
-
2012
- 2012-04-18 US US13/450,320 patent/US9526836B2/en not_active Expired - Lifetime
-
2013
- 2013-01-23 JP JP2013009962A patent/JP5707428B2/en not_active Expired - Fee Related
-
2016
- 2016-11-14 US US15/351,262 patent/US10252004B2/en not_active Expired - Fee Related
-
2019
- 2019-02-19 US US16/279,687 patent/US20190175836A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2003086534A1 (en) | 2003-10-23 |
JP4362767B2 (en) | 2009-11-11 |
US20170252515A1 (en) | 2017-09-07 |
US20120277661A1 (en) | 2012-11-01 |
JP2013099570A (en) | 2013-05-23 |
US6912417B1 (en) | 2005-06-28 |
JP2005521538A (en) | 2005-07-21 |
AU2003228436A1 (en) | 2003-10-27 |
US20050215941A1 (en) | 2005-09-29 |
JP5410847B2 (en) | 2014-02-05 |
US20110288467A1 (en) | 2011-11-24 |
JP2009195756A (en) | 2009-09-03 |
US9526836B2 (en) | 2016-12-27 |
JP5707428B2 (en) | 2015-04-30 |
US10252004B2 (en) | 2019-04-09 |
US8108040B2 (en) | 2012-01-31 |
US8187249B2 (en) | 2012-05-29 |
EP1496986A1 (en) | 2005-01-19 |
US20070021712A1 (en) | 2007-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10252004B2 (en) | Method and apparatus for delivery of therapeutic agents | |
US11331479B2 (en) | Device and method for single-needle in vivo electroporation | |
US7054685B2 (en) | Method and apparatus for reducing electroporation-mediated muscle reaction and pain response | |
AU2001264759B2 (en) | System and method for assessing the performance of a pharmaceutical agent delivery system | |
US20100191174A1 (en) | Hand-held electrical stimulation device | |
EP1171189B1 (en) | Apparatus for reducing electroporation-mediated muscle reaction and pain response | |
CA2686855C (en) | Device and method for single-needle in vivo electroporation | |
WO2023224829A1 (en) | Intracellular treatment device and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: ICHOR MEDICAL SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERNARD, ROBERT M.;HANNAMAN, ANDREW W.;BERNARD, BRADY M.;SIGNING DATES FROM 20190425 TO 20190916;REEL/FRAME:050626/0905 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |