US20190100576A1 - Signal biomarkers - Google Patents
Signal biomarkers Download PDFInfo
- Publication number
- US20190100576A1 US20190100576A1 US15/971,633 US201815971633A US2019100576A1 US 20190100576 A1 US20190100576 A1 US 20190100576A1 US 201815971633 A US201815971633 A US 201815971633A US 2019100576 A1 US2019100576 A1 US 2019100576A1
- Authority
- US
- United States
- Prior art keywords
- eposp
- antibody
- antigen
- cnpsp
- fragment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000090 biomarker Substances 0.000 title description 12
- 239000012634 fragment Substances 0.000 claims abstract description 233
- 108010076504 Protein Sorting Signals Proteins 0.000 claims abstract description 68
- 229940105423 erythropoietin Drugs 0.000 claims abstract description 34
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical group [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 claims abstract description 33
- 102000003951 Erythropoietin Human genes 0.000 claims abstract description 32
- 108090000394 Erythropoietin Proteins 0.000 claims abstract description 32
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 134
- 238000009739 binding Methods 0.000 claims description 79
- 230000027455 binding Effects 0.000 claims description 78
- 239000000427 antigen Substances 0.000 claims description 66
- 102000036639 antigens Human genes 0.000 claims description 65
- 108091007433 antigens Proteins 0.000 claims description 65
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 19
- 239000003550 marker Substances 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 239000002934 diuretic Substances 0.000 abstract description 4
- 230000001452 natriuretic effect Effects 0.000 abstract description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 97
- 229920001184 polypeptide Polymers 0.000 description 67
- 238000000034 method Methods 0.000 description 66
- 102000007079 Peptide Fragments Human genes 0.000 description 51
- 238000003556 assay Methods 0.000 description 51
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 50
- 230000001154 acute effect Effects 0.000 description 45
- 239000000523 sample Substances 0.000 description 44
- 239000011230 binding agent Substances 0.000 description 42
- 208000020832 chronic kidney disease Diseases 0.000 description 42
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 40
- 239000012472 biological sample Substances 0.000 description 39
- 208000035475 disorder Diseases 0.000 description 38
- 210000002381 plasma Anatomy 0.000 description 36
- 230000000747 cardiac effect Effects 0.000 description 30
- 230000000875 corresponding effect Effects 0.000 description 24
- 238000001514 detection method Methods 0.000 description 23
- 108010033276 Peptide Fragments Proteins 0.000 description 22
- 238000012544 monitoring process Methods 0.000 description 22
- 208000010125 myocardial infarction Diseases 0.000 description 20
- 206010000891 acute myocardial infarction Diseases 0.000 description 19
- 238000005259 measurement Methods 0.000 description 19
- 210000004369 blood Anatomy 0.000 description 18
- 239000008280 blood Substances 0.000 description 18
- 238000011282 treatment Methods 0.000 description 18
- 235000001014 amino acid Nutrition 0.000 description 17
- 230000006378 damage Effects 0.000 description 17
- 230000004087 circulation Effects 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- 229940024606 amino acid Drugs 0.000 description 15
- 150000001413 amino acids Chemical class 0.000 description 15
- 210000003734 kidney Anatomy 0.000 description 15
- 208000017169 kidney disease Diseases 0.000 description 15
- 206010019280 Heart failures Diseases 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 14
- 238000003018 immunoassay Methods 0.000 description 14
- 238000003127 radioimmunoassay Methods 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 208000011580 syndromic disease Diseases 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 201000010099 disease Diseases 0.000 description 12
- 108010062374 Myoglobin Proteins 0.000 description 11
- 102000036675 Myoglobin Human genes 0.000 description 11
- 239000011324 bead Substances 0.000 description 11
- 238000003745 diagnosis Methods 0.000 description 11
- -1 BNP-SP Proteins 0.000 description 10
- 208000024172 Cardiovascular disease Diseases 0.000 description 10
- 206010020772 Hypertension Diseases 0.000 description 10
- 102000013394 Troponin I Human genes 0.000 description 10
- 108010065729 Troponin I Proteins 0.000 description 10
- 230000000890 antigenic effect Effects 0.000 description 10
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 241000124008 Mammalia Species 0.000 description 8
- 102000004987 Troponin T Human genes 0.000 description 8
- 108090001108 Troponin T Proteins 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 201000000523 end stage renal failure Diseases 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 208000014674 injury Diseases 0.000 description 8
- 150000007523 nucleic acids Chemical class 0.000 description 8
- 239000007790 solid phase Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 210000002700 urine Anatomy 0.000 description 8
- 208000030090 Acute Disease Diseases 0.000 description 7
- 206010002383 Angina Pectoris Diseases 0.000 description 7
- 201000001320 Atherosclerosis Diseases 0.000 description 7
- 101800000407 Brain natriuretic peptide 32 Proteins 0.000 description 7
- 102400000667 Brain natriuretic peptide 32 Human genes 0.000 description 7
- 101800002247 Brain natriuretic peptide 45 Proteins 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 230000001684 chronic effect Effects 0.000 description 7
- 210000002216 heart Anatomy 0.000 description 7
- 230000003907 kidney function Effects 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 206010002388 Angina unstable Diseases 0.000 description 6
- 238000000018 DNA microarray Methods 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 6
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 6
- 102100034296 Natriuretic peptides A Human genes 0.000 description 6
- 208000007814 Unstable Angina Diseases 0.000 description 6
- 208000027418 Wounds and injury Diseases 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- 238000012875 competitive assay Methods 0.000 description 6
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 6
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 6
- 208000028208 end stage renal disease Diseases 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 230000036541 health Effects 0.000 description 6
- 229940088597 hormone Drugs 0.000 description 6
- 239000005556 hormone Substances 0.000 description 6
- 210000004408 hybridoma Anatomy 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 201000004332 intermediate coronary syndrome Diseases 0.000 description 6
- 208000031225 myocardial ischemia Diseases 0.000 description 6
- 230000010410 reperfusion Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 206010042772 syncope Diseases 0.000 description 6
- 208000019553 vascular disease Diseases 0.000 description 6
- 208000009304 Acute Kidney Injury Diseases 0.000 description 5
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 5
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 5
- 101800001890 Atrial natriuretic peptide Proteins 0.000 description 5
- 102100031478 C-type natriuretic peptide Human genes 0.000 description 5
- 206010007556 Cardiac failure acute Diseases 0.000 description 5
- 102000011026 Fatty Acid Binding Protein 3 Human genes 0.000 description 5
- 108010062715 Fatty Acid Binding Protein 3 Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 208000033626 Renal failure acute Diseases 0.000 description 5
- 206010061481 Renal injury Diseases 0.000 description 5
- 208000006117 ST-elevation myocardial infarction Diseases 0.000 description 5
- 201000011040 acute kidney failure Diseases 0.000 description 5
- 210000003748 coronary sinus Anatomy 0.000 description 5
- 230000009260 cross reactivity Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004949 mass spectrometry Methods 0.000 description 5
- 210000004165 myocardium Anatomy 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000004393 prognosis Methods 0.000 description 5
- 238000000672 surface-enhanced laser desorption--ionisation Methods 0.000 description 5
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 4
- 102400000345 Angiotensin-2 Human genes 0.000 description 4
- 101800000733 Angiotensin-2 Proteins 0.000 description 4
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 4
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 4
- 208000031229 Cardiomyopathies Diseases 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 4
- 208000012998 acute renal failure Diseases 0.000 description 4
- 229950006323 angiotensin ii Drugs 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 210000002683 foot Anatomy 0.000 description 4
- 210000005003 heart tissue Anatomy 0.000 description 4
- 229940124452 immunizing agent Drugs 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 4
- 230000036470 plasma concentration Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 108010008064 pro-brain natriuretic peptide (1-76) Proteins 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 210000002796 renal vein Anatomy 0.000 description 4
- 238000004007 reversed phase HPLC Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 102000004379 Adrenomedullin Human genes 0.000 description 3
- 101800004616 Adrenomedullin Proteins 0.000 description 3
- 206010003445 Ascites Diseases 0.000 description 3
- 208000020446 Cardiac disease Diseases 0.000 description 3
- 108090000746 Chymosin Proteins 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 102000002045 Endothelin Human genes 0.000 description 3
- 108050009340 Endothelin Proteins 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 208000013875 Heart injury Diseases 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 3
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- ULCUCJFASIJEOE-NPECTJMMSA-N adrenomedullin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)NCC(=O)N[C@@H]1C(N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)NCC(=O)N[C@H](C(=O)N[C@@H](CSSC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)[C@@H](C)O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 ULCUCJFASIJEOE-NPECTJMMSA-N 0.000 description 3
- 239000003146 anticoagulant agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000003683 cardiac damage Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 229940109239 creatinine Drugs 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000002873 global sequence alignment Methods 0.000 description 3
- 208000019622 heart disease Diseases 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 230000000302 ischemic effect Effects 0.000 description 3
- 201000006370 kidney failure Diseases 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000027939 micturition Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000002485 urinary effect Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 2
- 208000003918 Acute Kidney Tubular Necrosis Diseases 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 108010064733 Angiotensins Proteins 0.000 description 2
- 102000015427 Angiotensins Human genes 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 206010006326 Breath odour Diseases 0.000 description 2
- 101800000060 C-type natriuretic peptide Proteins 0.000 description 2
- 206010007559 Cardiac failure congestive Diseases 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 206010008479 Chest Pain Diseases 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 2
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 2
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 2
- 102400000686 Endothelin-1 Human genes 0.000 description 2
- 101800004490 Endothelin-1 Proteins 0.000 description 2
- 241000283074 Equus asinus Species 0.000 description 2
- 238000004252 FT/ICR mass spectrometry Methods 0.000 description 2
- 101800001586 Ghrelin Proteins 0.000 description 2
- 102400000442 Ghrelin-28 Human genes 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 208000031361 Hiccup Diseases 0.000 description 2
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 description 2
- 208000001953 Hypotension Diseases 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- 206010038540 Renal tubular necrosis Diseases 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 206010070863 Toxicity to various agents Diseases 0.000 description 2
- 102000005630 Urocortins Human genes 0.000 description 2
- 108010059705 Urocortins Proteins 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 230000002532 anti-gammaglobulin Effects 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 238000013176 antiplatelet therapy Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000010420 art technique Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 208000034158 bleeding Diseases 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000036765 blood level Effects 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229960003624 creatine Drugs 0.000 description 2
- 239000006046 creatine Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 2
- 229960005156 digoxin Drugs 0.000 description 2
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 238000000132 electrospray ionisation Methods 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 210000003722 extracellular fluid Anatomy 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 206010016256 fatigue Diseases 0.000 description 2
- 210000003191 femoral vein Anatomy 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- GNKDKYIHGQKHHM-RJKLHVOGSA-N ghrelin Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)CN)COC(=O)CCCCCCC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C1=CC=CC=C1 GNKDKYIHGQKHHM-RJKLHVOGSA-N 0.000 description 2
- 230000024924 glomerular filtration Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000002989 hepatic vein Anatomy 0.000 description 2
- 102000044890 human EPO Human genes 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003680 myocardial damage Effects 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 238000011458 pharmacological treatment Methods 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 210000001147 pulmonary artery Anatomy 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000002966 stenotic effect Effects 0.000 description 2
- 230000003319 supportive effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 239000000777 urocortin Substances 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 210000001631 vena cava inferior Anatomy 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 108010041801 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase Proteins 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 201000000736 Amenorrhea Diseases 0.000 description 1
- 206010001928 Amenorrhoea Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 200000000007 Arterial disease Diseases 0.000 description 1
- 206010006002 Bone pain Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101000800130 Bos taurus Thyroglobulin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 206010007558 Cardiac failure chronic Diseases 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 206010008469 Chest discomfort Diseases 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 201000000057 Coronary Stenosis Diseases 0.000 description 1
- 206010011091 Coronary artery thrombosis Diseases 0.000 description 1
- 102000004420 Creatine Kinase Human genes 0.000 description 1
- 108010042126 Creatine kinase Proteins 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 206010016173 Fall Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 208000002513 Flank pain Diseases 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 101000928278 Homo sapiens Natriuretic peptides B Proteins 0.000 description 1
- PVHLMTREZMEJCG-GDTLVBQBSA-N Ile(5)-angiotensin II (1-7) Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C([O-])=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=[NH2+])NC(=O)[C@@H]([NH3+])CC([O-])=O)C(C)C)C1=CC=C(O)C=C1 PVHLMTREZMEJCG-GDTLVBQBSA-N 0.000 description 1
- 208000000913 Kidney Calculi Diseases 0.000 description 1
- 206010023424 Kidney infection Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 206010027525 Microalbuminuria Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- 101710187800 Natriuretic peptides A Proteins 0.000 description 1
- 206010029148 Nephrolithiasis Diseases 0.000 description 1
- 208000000770 Non-ST Elevated Myocardial Infarction Diseases 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 208000005228 Pericardial Effusion Diseases 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000002787 Pregnancy Complications Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 208000036741 Pruritus generalised Diseases 0.000 description 1
- 206010037596 Pyelonephritis Diseases 0.000 description 1
- 206010065427 Reflux nephropathy Diseases 0.000 description 1
- 208000031074 Reinjury Diseases 0.000 description 1
- 208000005793 Restless legs syndrome Diseases 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 208000007718 Stable Angina Diseases 0.000 description 1
- 206010049418 Sudden Cardiac Death Diseases 0.000 description 1
- 206010042434 Sudden death Diseases 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 208000025371 Taste disease Diseases 0.000 description 1
- 206010043458 Thirst Diseases 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 102000050488 Urotensin II Human genes 0.000 description 1
- 108010018369 Urotensin II Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000011360 adjunctive therapy Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 231100000540 amenorrhea Toxicity 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 108010021281 angiotensin I (1-7) Proteins 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000004596 appetite loss Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 125000000613 asparagine group Chemical class N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000007698 birth defect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 208000027503 bloody stool Diseases 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- XQNAUQUKWRBODG-UHFFFAOYSA-N chlornitrofen Chemical compound C1=CC([N+](=O)[O-])=CC=C1OC1=C(Cl)C=C(Cl)C=C1Cl XQNAUQUKWRBODG-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000002586 coronary angiography Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 208000002528 coronary thrombosis Diseases 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 208000010643 digestive system disease Diseases 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N dihydromaleimide Natural products O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000037336 dry skin Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000007823 electrophoretic assay Methods 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000001667 episodic effect Effects 0.000 description 1
- 208000001780 epistaxis Diseases 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 230000002169 extracardiac Effects 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 208000018685 gastrointestinal system disease Diseases 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000007446 glucose tolerance test Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002337 glycosamines Chemical group 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 208000035861 hematochezia Diseases 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000003317 immunochromatography Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 230000005977 kidney dysfunction Effects 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 208000012866 low blood pressure Diseases 0.000 description 1
- 238000007422 luminescence assay Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000003821 menstrual periods Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000019656 metallic taste Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 208000020470 nervous system symptom Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000020925 non fasting Nutrition 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007826 nucleic acid assay Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 208000001797 obstructive sleep apnea Diseases 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229940124583 pain medication Drugs 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 238000013146 percutaneous coronary intervention Methods 0.000 description 1
- 210000004912 pericardial fluid Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 108060006184 phycobiliprotein Proteins 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 208000024356 pleural disease Diseases 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 208000012113 pregnancy disease Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 201000001474 proteinuria Diseases 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000012959 renal replacement therapy Methods 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 235000019615 sensations Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000002764 solid phase assay Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 208000014221 sudden cardiac arrest Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 201000002327 urinary tract obstruction Diseases 0.000 description 1
- ZEBBPGHOLWPSGI-KPLDDXDLSA-N urocortin ii Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@H](C(=O)N[C@@H](CS)C(N)=O)CC1=CN=CN1 ZEBBPGHOLWPSGI-KPLDDXDLSA-N 0.000 description 1
- HFNHAPQMXICKCF-USJMABIRSA-N urotensin-ii Chemical compound N([C@@H](CC(O)=O)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@@H](C(C)C)C(O)=O)C(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@@H](N)CCC(O)=O)[C@@H](C)O HFNHAPQMXICKCF-USJMABIRSA-N 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/26—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
- G01N33/746—Erythropoetin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/475—Assays involving growth factors
- G01N2333/505—Erythropoietin [EPO]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/575—Hormones
- G01N2333/58—Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Brain natriuretic peptide [BNP, proBNP]; Cardionatrin; Cardiodilatin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/32—Cardiovascular disorders
- G01N2800/324—Coronary artery diseases, e.g. angina pectoris, myocardial infarction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/32—Cardiovascular disorders
- G01N2800/325—Heart failure or cardiac arrest, e.g. cardiomyopathy, congestive heart failure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/34—Genitourinary disorders
- G01N2800/347—Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- This invention relates to diagnostics and related technologies, including diagnostics relating to C-type natriuretic and erythropoietin signal peptides, and kits, uses and applications therefor.
- AMI acute coronary syndromes
- Proposed biomarkers include creatine kinase-MB (CK-MB), troponin T (TnT), troponin I (TnI) BNP, N-BNP (also known as NP-BNP), BNP signal peptide (BNP-SP) and myoglobin.
- Time to detectable or abnormal elevation of plasma cardiac biomarkers can be from up to 6 hours (myoglobin, CK-MB) to 12 hours or more (TnT, TnI, BNP, N-BNP) with peak levels often not occurring until 24-48 hours after onset of injury, imposing a window of delay upon precise diagnosis and treatment.
- both myoglobin and CK-MB are non-specific and can be secreted from extra-cardiac sources, especially during trauma or surgery. 1
- Atherosclerosis is a major health problem with an annual mortality of 500,000 deaths in the United States alone. It is currently accepted that acute coronary syndromes are most commonly the result of disruption of atheromatous vulnerable plaques that are angiographically modest in severity. “Vulnerable plaque” is used to refer to a subgroup of modestly stenotic but unstable plaques that are prone to rupture and, as a result, cause sudden cardiac arrest. While coronary angiography is widely used to illustrate and monitor luminal narrowing of the coronary artery, it is unable to provide selective identification of vulnerable plaques. Most of the alternative approaches to identify vulnerable plaques are based on invasive endovascular approaches.
- Acute renal failure in hospitalized patients is also a significant problem in the United States, ranging from 1-15% of hospitalized patients. Medical management of acute renal failure has traditionally consisted primarily of supportive care, with renal replacement therapy for the most severe cases. Despite such interventions in acute renal failure, however, mortality rates in affected patients remain very high (>50% in some series).
- CRF chronic renal failure
- ischemic CRF is characterized by acute tubular necrosis; however a major limitation in approaching the disease is the lack of clinically feasible diagnostics for early detection.
- Early identification of chronic renal disease and timely detection of progression are challenges facing the global nephrology community, especially since a number of promising primary and secondary interventions to decelerate progression are available.
- physicians will need to decrease progression rates of chronic renal disease to end-stage renal disease (ESRD).
- ESRD end-stage renal disease
- Current markers of kidney disease and kidney disease progression are the serum creatinine and urinary protein concentration, including microalbuminuria.
- EPO erythropoietin
- Embodiments of the present invention relate to the discovery of new early markers for diagnostics, including for use in the evaluation, diagnosis and prognosis of, for example, acute coronary syndromes, acute and chronic kidney disorders and injuries, and vulnerable plaque, as well as for use in the detection of EPO doping, for example, by athletes.
- CNPsp C-type natriuretic peptide
- EPOsp erythropoietin
- the invention relates to signal peptides and signal peptide fragments of C-type natriuretic peptides and erythropoietins, and to methods for their detection (including detection of EPOsp and/or CNPsp and EPOsp and/or CNPsp fragment immunoreactivity), for example, as well as binding agents and assays useful therefor.
- the invention also relates to and their use in the prognosis, diagnosis and monitoring of biological events or disorders or states which result in their release into body fluids that can be sampled.
- Examples of biological events, disorders and states for prognosis, diagnosis and monitoring include acute and chronic cardiovascular disorders, vulnerable atherosclerotic plaque, congestive heart failure, cardiac arrhythmia, acute coronary syndromes, chronic arterial disease, acute and chronic kidney diseases disorders, injuries and conditions.
- EPOsp and/or CNPsp immunoreactivity provides superior detection and discriminatory capabilities compared with existing standard markers.
- the much quicker time to reach peak levels in blood and the specific nature of each marker to the condition is noted. The latter arises from the organ specific location of each signal peptide fragment.
- EPOsp is specifically released from kidney
- CNP is released from the heart and blood vessels.
- signal peptides have a shorter half life in blood compared with existing markers, they have the capacity to rise and fall more quickly, detecting underlying active disease. This cannot be said for existing markers, which have long half lives and therefore, possess blood levels which do not respond as rapidly to active disease.
- Human EPOsp has the sequence (SEQ ID NO: 1) MGVHECPAWLWLLLSLLSLPLGLPVLG
- EPOsp fragments include, for example, EPOsp(1-9) and EPOsp(18-27), which may be written as follows:
- SEQ ID NO: 2 MGVHECPAW (SEQ ID NO: 3) SLPLGLPVLG Human CNPsp has the sequence (SEQ ID NO: 4) MHLSQ LLACA LLLTL LSLRP SEA.
- Human CNPsp fragments include, for example, CNPsp(1-13) and CNPsp(14-23), which may be written as follows:
- the inventions include methods for predicting, diagnosing or monitoring a biological event or disorder in a subject wherein the event correlates with the release of CNPsp or EPOsp or fragments thereof into the circulation, or for evaluation of EPO doping.
- a method comprises measuring the level of one or more of these signal peptides or fragments in a biological sample from the subject, and comparing the level of the signal peptide fragments with individual or combinatorial levels of said signal peptide fragments from a control or control population (including historical controls) wherein a deviation in the measured level from the control level is indicative of a biological event.
- the signal peptides themselves may also be measured.
- EPOsp and/or CNPsp fragments can be used to evaluate the presence of acute cardiac syndromes, and that one or more of said EPOsp and/or CNPsp fragments are typically highest in the first few hours following onset of, or at clinical presentation with a suspected acute coronary syndrome.
- the present invention provides a method for predicting, diagnosing or monitoring an ACS in a subject, the method comprising measuring the level of EPOsp and/or CNPsp fragments in a biological sample from the subject and comparing the level of said EPOsp and/or CNPsp fragments with the level of said EPOsp and/or CNPsp fragments from one or more controls wherein a measured level of said EPOsp and/or CNPsp fragments higher than the control level is indicative of an ACS.
- Elevated levels of EPOsp and/or CNPsp fragments are typically diagnostic of MI and angina.
- Elevated levels of EPOsp and/or CNPsp fragments may also be used as a diagnostic for heart failure.
- Elevated levels of EPOsp and/or CNPsp fragments may also be used as a diagnostic for vascular disease and/or atherosclerosis.
- CNPsp for example, can be elevated by about 50% or more over normal in these conditions.
- Elevated levels of CNPsp fragments may also be used for diagnoses of hypertension.
- Elevated levels of CNPsp fragments may also be used for diagnoses of syncope, a temporary loss of consciousness and posture usually related to temporary insufficient blood flow to the brain. Syncope most often occurs when the blood pressure is too low (hypotension) and the heart doesn't pump a normal supply of oxygen to the brain.
- Elevated levels of EPOsp and/or EPOsp fragments may also be used for evaluation of EPO doping.
- An EPO/EPOsp immunoreactivity (indicative of an EPOsp and/or an EPOsp fragment or fragments) plasma ratio could be expected to exceed up to 1000:1, for example, particularly during the acute phase of administration.
- the inventions also include methods for monitoring a response to treatment of a biological event or disorder, particularly an acute cardiac syndrome in a subject, the method comprising measuring the level of one or more of the signal peptide fragments referenced herein, for example, EPOsp and/or CNPsp fragments, in a biological sample from the subject, preferably before and after treatment, and comparing the level of said fragments with the level of said fragments from a control, wherein a change in the level or measured level (e.g., an historical level or baseline) of fragments from the control level is indicative of a response to the treatment.
- the level or measured level e.g., an historical level or baseline
- the invention also includes methods for diagnosing or evaluating acute and chronic renal disease or renal failure or injury in a subject, wherein measurement of the level of EPOsp shows a negative correlation with GFR (an indicator of renal function).
- Plasma EPOsp levels are elevated in patients with chronic renal disease and in those with heart failure compared with normal.
- the ratio of EPOsp to EPO is about 6 in normal health, and this rises to approximately 10 in renal disease and drops to about 4 in heart failure patients.
- the invention also includes methods for predicting, diagnosing or monitoring an acute cardiac syndrome in a subject, the method comprising measuring the level of one or more of EPOsp and/or CNPsp fragments in a biological sample obtained from the subject within about the first 12 hours or more, preferably the first 4-6 hours or less, of onset of, or clinical presentation with an ACS or suspected ACS, comparing the measured level of said one or more of EPOsp and/or CNPsp fragments with the level of one or more of EPOsp and/or CNPsp fragments from a control (e.g., an historical control or known control level), wherein a measured level of one or more of EPOsp and/or CNPsp fragments higher than the control level is indicative of an ACS.
- a control e.g., an historical control or known control level
- the inventions can be used to predict, diagnose or monitor any event in which one or more of EPOsp and/or CNPsp and/or fragments thereof are released from cells, for example, into the circulation or other biological fluid or tissue.
- the level(s) of one or more of the EPOsp and/or CNPsp and/or fragments thereof is/are measured within about forty-eight hours, about twenty-four hours, about twelve hours, about ten hours, about eight hours, about six hours, about four hours, about two hours, or about one hour, or within about 30 minutes of presentation of the patient with a disorder or suspected disorder.
- the methods of the invention are in vitro methods and the biological sample is blood, plasma, serum, urine, saliva, interstitial fluid or heart tissue.
- the measuring step comprises detecting binding between one or more target fragments and a binding agent that binds said fragment or fragments with desired specificity and selectivity.
- the measuring step may comprise:
- the binding agent may be, for example, an antibody, or any molecule comprising an antigen-binding fragment thereof.
- the antibody may be a monoclonal, polyclonal, chimeric or humanized antibody.
- the antibody is a monoclonal antibody.
- the binding agent is, for example, a single chain antibody or scFv.
- the anti-fragment binding agent is, for example, an antibody or antigen-binding fragment thereof that recognizes fragments in or obtained from a biological sample.
- the levels of one or more target fragments is/are measured using mass spectroscopy.
- One or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, may be bound using a binding agent of the invention.
- Other EPOsp and CNPsp fragments are also within the invention.
- the molecules which is/are bound by the binding agent or agents may be the full-length human signal peptide molecules (SEQ ID NOS: 1, 4) or an antigenic variant or fragment thereof.
- the fragment is at least four contiguous amino acids in length.
- the binding agent or agents may, for example, bind the N-terminus or the C-terminus of an EPOsp and/or CNPsp.
- the fragments may, for example, be any of SEQ ID NOS:2, 3, 5 and/or 6.
- Binding of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments may be measured, for example, using antibodies or antibody fragments or other binding agents that are immobilised on a solid phase.
- Levels of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments may usefully be measured by, for example, RIA, ELISA, fluoroimmunoassay, immunofluorometric assay, mass spectrometry or immunoradiometric assay.
- the methods of the invention include the use of binding agents and assays for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in a biological sample from a subject, the assay comprising determining the presence or amount of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the sample using any known methods.
- the invention also provides assays, including assays for the uses described herein, for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other EPOsp and/or CNPsp fragments, comprising, for example:
- the invention also provides a assay or assays for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1, 2, 3, 4, 5 or 6 (or non-human analogs or variants thereof), or other signal peptide fragments, for use in predicting, diagnosing or monitoring biological event or disorder in a subject.
- the assay is an in vitro assay.
- the invention also includes isolated, substantially purified, or purified, as well as synthetically made, fragments corresponding to, for example, any of SEQ ID NOS:2, 3, 5 and/or 6.
- the cardiac-related methods of the invention may further comprise measuring the level of one or more non-EPOsp and non-CNPsp markers of, for example, ACS, and comparing the levels against marker levels from a control wherein a deviation in the measured level from a control level, together with a measured level of one or more of EPOsp and/or CNPsp fragments which is higher than the control level of one or more of EPOsp and/or CNPsp fragments, is predictive or diagnostic of the ACS, or can be used to monitor said ACS.
- Markers for use in the context of acute coronary syndrome include, for example, troponin T, troponin I, creatine kinase MB, myoglobin, BNP, NT-BNP, BNP-SP, ANP, ANP-SP, LDH, aspartate aminotransferase, and heart specific fatty acid binding protein (H-FABP).
- H-FABP heart specific fatty acid binding protein
- the present invention also provides a binding agent for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other fragments.
- the binding agent of the invention binds one of SEQ ID NOS:2, 3, 5 and/or 6.
- the binding agent binds a variant or fragment of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments.
- the binding agent is useful in predicting, diagnosing or monitoring a biological event or disorder which correlates with the release of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1, 2, 3, 4, 5 or 6 (or non-human analogs or variants thereof), or other signal peptide fragments, including, for example, into the circulation.
- Such events or disorders include acute cardiac syndromes in a subject.
- the invention also provides an anti-EPOsp and/or anti-CNPsp antibody or antigen-binding fragment thereof.
- the antibody may be a monoclonal, polyclonal, chimeric or humanized antibody, for example.
- the invention also includes antibodies and binding fragments thereof that bind to EPOsp and/or CNPsp fragments, including fragments identified by SEQ ID NOS:2, 3, 5 and/or 6.
- the invention is also directed to the use of a binding agent in the manufacture of a assay for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, for assessing a biological event or disorder in a subject, or to the use of a binding agent in the manufacture of a prognostic, diagnostic or monitoring tool for assessing a biological event or disorder in a subject and/or the treatment thereof, or for evaluation of EPO misuse or doping.
- the event or disorder correlates with the release of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, into the circulation including from or following a chronic renal disease or injury, heart failure, hypertension, syncope, vascular disease including atherosclerosis, or an acute cardiac syndrome including myocardial infarction and angina, or EPO misuse or doping.
- the invention also relates to the use of an antibody or antigen-binding fragment of the invention in the manufacture of a prognostic, diagnostic or monitoring tool for assessing a biological event or disorder which correlates with the release of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, including, for example, into the circulation including a chronic renal disease or injury, heart failure, hypertension, syncope, vascular disease including atherosclerosis, or an acute cardiac syndrome or disorder including myocardial infarction and angina in a subject.
- the prognostic, diagnostic or monitoring tool is calibrated to measure levels of one or more of the peptides or peptide fragments corresponding to any of SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the range of, for example, from 0.1 to 1500 pmol/L, 0.1 to 500 pmol/L, 1 to 300 pmol/L, 10 to 250 or 20 to 150 pmol/L.
- erythropoietin signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 400 to 4000 pmol/L, about 400 to 200 pmol/L, about 320 to 520 pmol/L, or about 400-420 pmol/L or less. Levels at least as low as 5 pmol/L are detectable.
- Angiotensin signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 10 to 1000 pmol/L, about 5 to 500 pmol/L, about 1 to 100 pmol/L, or about 0.1 to 10 pmol/L or less. Levels at least as low as 0.1 pmol/L are detectable.
- C-type natriuretic signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 50 to 1500 pmol/L, about 25 to 750 pmol/L, about 10 to 500 pmol/L, or about 5 to 150 pmol/L or less. Levels at least as low as 2 pmol/L are detectable. Endothelin-1 signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 10 to 200 pmol/L, about 5 to 100 pmol/L, about 10 to 50 pmol/L, or about 1 to 20 pmol/L or less. Levels at least as low as 1 pmol/L are detectable.
- the normal level of EPOsp and/or EPOsp fragments, including SEQ ID NOS:1-3 is about 14 to about 90 pmol/L and in one of more of the disease states or conditions referenced herein is about 30 to about 200 pmol/L.
- Such levels can be measured, for example, in blood or plasma.
- the normal level of CNPsp and/or CNPsp fragments, including SEQ ID NOS:4-6 is about 5 to about 15 pmol/L and in one of more of the disease states or conditions referenced herein is about 18 to about 55 pmol/L.
- Such levels can be measured, for example, in blood or plasma.
- the invention provides a kit for predicting, diagnosing or monitoring a biological event or disorder in a subject, the kit comprising a binding agent against a peptide or peptide fragment corresponding to one or more of SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments.
- the kit is calibrated to measure levels a peptide or peptide fragment corresponding to any one or more of SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the ranges noted above.
- the kit also includes information and/or instructions for carrying out an assay using the binding agent.
- the kit may also include information and/or instructions for predicting, diagnosing or monitoring a biological event or disorder including one or more of chronic renal disease or injury, heart failure, hypertension, syncope, vascular disease including atherosclerosis, or an acute cardiac syndrome including myocardial infarction and angina in a subject, from the level of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1, 2, 3, 4, 5 or 6 (or non-human analogs or variants thereof), or other signal peptide fragments, measured in a biological sample and comparing the measured level to a control level.
- the invention also relates to the use of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the preparation of an antibody or binding fragment thereof.
- FIG. 1 shows the amino acid sequences of EPOsp and CNPspP using single letter notation.
- FIG. 2 (upper panel) a representative standard curve of a CNPsp(15-23) RIA.
- the signal peptide may be identified in an arterial sample, but a venous sample may be used to identify the source of the peptide.
- FIG. 3 plasma EPOsp(1-9) levels show a negative correlation with GFR (an indicator of renal function).
- GFR an indicator of renal function.
- Plasma EPOsp levels are elevated in patients with chronic renal disease (while EPO drops markedly) and in those with heart failure where EPOsp levels are elevated (while EPO rises markedly) compared with normal.
- the ratio of EPOsp (pmol/L) to EPO (mU/L) is about 6 in normal health. This rises to approximately 10 in renal disease and drops to about 4 in heart failure patients.
- FIG. 4 shows a generalised schematic of signal peptide cleavage from prepropeptide precursor molecules and indicates the generation of previously unknown and unrecognized, detectable signal peptide fragments.
- FIG. 5 Immunoassay results showing Upper panel: Serial plasma concentrations of CNPsp(14-23) in 8 patients with documented ST-elevation myocardial infarction (STEMI) from the time of onset of chest pain at hospital emergency department.
- Lower panel concomitant TnI, CK-MB and myoglobin plasma levels in the same STEMI patients identified in the upper panel.
- FIG. 6 shows a table of cross reactivity data of EPOsp and CNPsp antiserum.
- Acute coronary syndromes encompasses a wide spectrum of cardiac ischemia events including acute myocardial infarction (AMI) with ST-elevation on presenting ECG, unstable angina, and acute non-ST-elevated myocardial infarction; cardiac ischemia; acute cardiac injury; acute cardiac damage resulting from acute drug toxicity; and acute cardiomyopathies.
- AMI acute myocardial infarction
- cardiac ischemia with ST-elevation on presenting ECG, unstable angina, and acute non-ST-elevated myocardial infarction
- cardiac ischemia acute cardiac injury
- acute cardiac damage resulting from acute drug toxicity and acute cardiomyopathies.
- full descriptive, definitions of these disorders are found in reference 1. See, e.g., FIG. 5 .
- Acute (sudden) kidney failure is the sudden loss of the ability of the kidneys to remove waste and concentrate urine without losing electrolytes.
- causes of such kidney damage including disease and injury. They include acute tubular necrosis; autoimmune kidney disease; decreased blood flow due to very low blood pressure; disorders that cause clotting within the kidney's blood vessels; infections that directly injure the kidney; pregnancy complications; and urinary tract obstruction.
- Chronic kidney disease is the slow loss of kidney function over time.
- Symptoms include bloody stools, breath odor, bruising easily, changes in mental status or mood, decreased appetite, decreased sensation, especially in the hands or feet, fatigue, flank pain (between the ribs and hips), hand tremor, high blood pressure, metallic taste in mouth, nausea or vomiting (which may last for days), nosebleeds, persistent hiccups, prolonged bleeding, seizures, slow, sluggish movements, generalized swelling (fluid retention), swelling of the ankle, foot, and leg, and urination changes (decrease in amount of urine, excessive urination at night, and urination stops completely).
- Chronic kidney disease slowly gets worse over time. In the early stages, there may be no symptoms. The loss of function usually takes months or years to occur. It may be so slow that symptoms do not occur until kidney function is less than one-tenth of normal. The final stage of chronic kidney disease is called end-stage renal disease (ESRD). The kidneys no longer function and the patient needs dialysis or a kidney transplant. Chronic kidney disease and ESRD affect more than 2 out of every 1,000 people in the United States. Diabetes and high blood pressure are the two most common causes and account for most cases. Injuries are another cause.
- ESRD end-stage renal disease
- kidneys can damage the kidneys, including problems with the arteries leading to or inside the kidneys; birth defects of the kidneys (such as polycystic kidney disease); some pain medications and other drugs; certain toxic chemicals; autoimmune disorders (such as systemic lupus erythematosus and scleroderma); injury or trauma glomerulonephritis; kidney stones and infection; reflux nephropathy (in which the kidneys are damaged by the backward flow of urine into the kidneys) and other kidney diseases. Symptoms may include general ill feeling and fatigue, generalized itching (pruritus) and dry skin, headaches, weight loss without trying to lose weight, appetite loss, and nausea.
- Other symptoms that may develop, especially when kidney function has worsened include abnormally dark or light skin, bone pain, brain and nervous system symptoms, drowsiness and confusion, problems concentrating or thinking, numbness in the hands, feet, or other areas, muscle twitching or cramps, breath odor, easy bruising, bleeding, or blood in the stool, excessive thirst, frequent hiccups, low level of sexual interest and impotence, menstrual periods stop (amenorrhea), sleep problems, such as insomnia, restless leg syndrome, and obstructive sleep apnea, swelling of the feet and hands (edema), and vomiting, typically in the morning.
- a vulnerable plaque is an atheromatous plaque which is particularly prone to produce sudden major problems, such as a heart attack or stroke.
- Plaque rupture the most frequent cause of coronary thrombosis, has been implicated in the episodic progression of coronary stenosis as demonstrated by sequential angiography and is often associated with unstable angina, myocardial infarction, and sudden death.
- Atherosclerotic plaques that are vulnerable to rupture have a dense infiltrate of macrophages and, to a lesser extent, lymphocytes, within a fibrous cap that overlies a crescentic hypocellular mass of lipids.
- vulnerable plaque is often characterized as an atheromatous plaque in an arterial wall, which has abundant macrophages, gobs of lipids and cholesterol, and is usually covered by a thin fibrous cap which may rupture.
- the ruptured plaque results in exposure of blood to the lipid core and other plaque components and is believed to instigate the majority of coronary thrombi.
- the characterization of these relatively less stenotic plaques prone to erosion or rupture, and the recognition that they contribute to unstable angina and myocardial infarction, has important implications. Early identification of potentially vulnerable plaques may lead to changes in the indications for patients considered for bypass surgery, angioplasty, and other procedures. See “Molecular and Physical Characterization of the Vulnerable Plaque” NIH guide, Volume 26, Number 37, Nov. 7, 1997
- antibody refers to an immunoglobulin molecule having a specific structure that interacts (binds) specifically with a molecule comprising the antigen used for synthesizing the antibody or with an antigen closely related to it.
- antibody broadly includes full length antibodies and may also include antigen binding fragments thereof.
- single chain antibodies, scFvs, and other molecules containing antigen binding constructs are examples of antibodies, and other molecules containing antigen binding constructs.
- An antibody binds selectively or specifically to an EPOsp and/or CNPsp polypeptide or fragment of the invention if the antibody binds preferentially to the target, including, for example, those having less than about 25%, or less than about 10%, or less than about 1% or less than about 0.1% cross-reactivity with a non-EPOsp and/or non-CNPsp polypeptide or polypeptide fragment.
- the antibody will have any useful binding affinity binding affinity (dissociation constant (Kd) value), for the antigen or epitope for the uses described and claimed herein.
- Typical binding affinity may be equal to, for example, 10 ⁇ 6 , or 10 ⁇ 7 M, and more typically at least about 10 ⁇ 8 M, 10 ⁇ 9 M, 10 ⁇ 10 , 10 ⁇ 11 or 10 ⁇ 12 M. Binding affinity may be assessed using surface plasma resonance, or other methods known in the art.
- an “antigen-binding fragment” or “antibody fragment” means a portion of the intact antibody that preferably retains most or all, or minimally at least one of, the normal functions of that antibody fragment.
- An antibody fragment for example, may comprise an Fv region that retains all or most or some of the function of the corresponding Fv region in the intact antibody-antigen binding region.
- Examples of antibody fragments include Fab, Fab′, F(ab′) 2 and Fv fragments, linear antibodies, diabodies, single chain antibodies (ScFV) and multispecific antibodies.
- a “monoclonal antibody” means an antibody that is directed against a single target antigen.
- a monoclonal antibody may be obtained from a population of homogenous or substantially homogenous antibodies wherein each monoclonal antibody is identical and/or bind the same epitope, except for natural mutations which may occur in minor amounts.
- an “isolated antibody” is an identified antibody which has been separated or recovered, or both, from a component of its natural environment, for example, separated from other proteins including enzymes and hormones.
- the antibody is purified to at least about 95%, about 96% about 97% about 98% or about 99% by weight of antibody. Purity can be determined by the Lowry method, for example. Ordinarily the antibody will be prepared by at least one purification step.
- binding agent refers to any solid or non-solid material capable of binding an EPOsp and/or CNPsp polypeptides, or a fragment or variant thereof. In one embodiment the term refers to any natural or non-natural molecule that binds to an EPOsp and/or CNPsp polypeptide or a fragment or variant thereof.
- binding agents include proteins, peptides, nucleic acids, carbohydrates, lipids, and small molecule compounds.
- Biological sample as used herein means any sample derived from a subject to be screened that contains or is suspected of containing a EPOsp and/or CNPsp polypeptide or polypeptide fragment.
- the sample may be any sample known in the art in which the target can be detected. Included are body fluids such as plasma, serum, blood (including arterial and/or venous samples), urine, saliva, interstitial fluid, synovial, cerebrospinal, lymph, seminal, amniotic, pericardial fluid and ascites, as well as tissues such as cardiac and renal tissues but not limited thereto.
- epitope includes any protein determinant capable of specific binding to an immunoglobulin and/or T cell receptor. That is, a site on an antigen to which antibodies bind or B and/or T cells respond.
- Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains, and usually have specific three dimensional structural characteristics, and specific charge characteristics.
- An epitope typically includes 3, 5 or usually 8-10 amino acids. The amino acids may be contiguous, or non-contiguous amino acids juxtaposed by tertiary folding.
- Within about 2 or 4 to about 12 hours of the onset of symptoms or clinical presentation includes from 1 minute up to and including about 240 to about 720 or minutes from onset of, or presentation at a medical facility, for example, with ACS, or other disorder or suspected disorder as described herein.
- Measurements may be made within about 10 hours (from 1 minute up to and including about 600 minutes), within about 8 hours (from 1 minute up to and including about 480 minutes), within about 6 hours (from 1 minute up to and including about 360 minutes), within about 4 hours (from 1 minute up to and including about 240 minutes), within about 2 hours (from 1 minute up to and including about 120 minutes) or within about 1 hour (from 1 minute up to and including about 60 minutes) from onset or presentation, within 5 to about 45 minutes, 15 to about 40 minutes, 20 to about 35 minutes, or within about 25 to 30 minutes of onset or presentation.
- a level “higher” or “lower” than a control, or a change or deviation from a control in one embodiment is statistically significant.
- a higher level, lower level, deviation from, or change from a control level or mean or historical control level can be considered to exist if the level differs from the control level by about 5% or more, by about 10% or more, by about 20% or more, or by about 50% or more compared to the control level.
- Statistically significant may alternatively be calculated as P ⁇ 0.05.
- Higher levels, lower levels, deviation, and changes can also be determined by recourse to assay reference limits or reference intervals. These can be calculated from intuitive assessment or non-parametric methods.
- these methods may calculate the 0.025, and 0.975 fractiles as 0.025*(n+1) and 0.975 (n+1). Such methods are well known in the art. 9,10 Presence of a marker absent in a control may be seen as a higher level, deviation or change. Absence of a marker present in a control may be seen as a lower level, deviation or change.
- samples from any subjects such as from normal healthy subjects with no clinical history of biological events or disorders, including diabetes or ACS, and subjects with various ACS's including but not limited to acute coronary syndromes: AMI with ST-elevation on presenting ECG, unstable angina, and acute non ST-elevated MI; cardiac ischemia; acute cardiac injury; acute cardiac damage resulting from acute drug toxicity, and acute cardiomyopathies.
- cardiomyopathies refers to diseases of the myocardium where the myocardium or heart muscle is weakened. This can result in reduced pumping of the heart. Common causes of cardiomyopathies are heart attacks, viral infections, high blood pressure, alcoholism, and autoimmune diseases.
- Bio event or disorder refers to a range of events in which EPOsp and/or CNPsp polypeptides or polypeptide fragments is/are released from cells and into, for example, the circulation of a subject, including acute and chronic conditions.
- exemplary conditions include acute and chronic kidney disease and cardiovascular disease (including acute coronary syndromes).
- Examples of chronic conditions are heart failure, AMI and cardiovascular disease, as well as hypertension.
- EPOsp and/or CNPsp refer to the complete signal peptide for the human sequence. Also encompassed within the terms EPOsp and/or CNPsp are variants and fragments thereof. In one embodiment an EPOsp and/or CNPsp polypeptide functions as a signal polypeptide, or as an antigenic polypeptide to which an antibody can bind. Variants and fragments of an EPOsp and/or CNPsp include variants and fragments which retain either or both of these functions.
- polypeptide encompasses amino acid chains of any length, including full length sequences in which amino acid residues are linked by covalent peptide bonds.
- Polypeptides useful in the present invention may be purified natural products, or may be produced partially or wholly using recombinant or synthetic techniques.
- the term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof.
- Polypeptides herein may have chain lengths of at least 4 amino acids, at least 5 amino acids, or at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, or all 23 amino acids of the full-length EPOsp and/or CNPsp.
- Reference to other polypeptides of the invention or other polypeptides described herein should be similarly understood.
- a “fragment” of a polypeptide is a subsequence of the polypeptide that may be detected using a binding agent.
- the term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof.
- isolated as applied to the polypeptide sequences disclosed herein is used to refer to sequences that are removed from their natural cellular or other naturally-occurring biological environment.
- An isolated molecule may be obtained by any method or combination of methods including biochemical, recombinant, and synthetic techniques.
- the polypeptide sequences may be prepared by at least one purification step.
- purified does not require absolute purity. Purified refers in various embodiments, for example, to at least about 80%, 85%, 90%, 95%, 98%, or 99% homogeneity of a polypeptide, for example, in a sample. The term should be similarly understood in relation to other molecules and constructs described herein.
- variants refers to polypeptide sequences different from the specifically identified sequences, wherein 1 to 6 or more or amino acid residues are deleted, substituted, or added. Substitutions, additions or deletions of one, two, three, four, five or six amino acids are contemplated. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variants may be from the same or from other species and may encompass homologues, paralogues and orthologues. In certain embodiments, variants of the polypeptides useful in the invention have biological activities including signal peptide activity or antigenic-binding properties that are the same or similar to those of the parent polypeptides. The term “variant” with reference to polypeptides encompasses all forms of polypeptides as defined herein.
- Variant polypeptide sequences exhibit at least about 50%, at least about 60%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to a sequence of the present invention. With regard to polypeptides, identity is found over a comparison window of at least 5 to 7 amino acid positions.
- Polypeptide variants also encompass those which exhibit a similarity to one or more of the specifically identified sequences that is likely to preserve the functional equivalence of those sequences, including those which could not reasonably be expected to have occurred by random chance.
- EPOsp and/or CNPsp variants function may be as either a signal polypeptide, or antigenic polypeptide, or both.
- Polypeptide sequence identity and similarity can be determined in the following manner.
- the subject polypeptide sequence is compared to a candidate polypeptide sequence using BLASTP (from the BLAST suite of programs, version 2.2.18 [April 2008]]) in bl2seq, which is publicly available from NCBI (ftp://ftp.ncbi.nih.gov/blast/).
- BLASTP from the BLAST suite of programs, version 2.2.18 [April 2008]
- bl2seq which is publicly available from NCBI (ftp://ftp.ncbi.nih.gov/blast/).
- NCBI ftp://ftp.ncbi.nih.gov/blast/
- the similarity of polypeptide sequences may be examined using the following UNIX command line parameters: bl2seq—i peptideseq1—j peptideseq2—F F—p blastp.
- the parameter—F F turns off filtering of low complexity sections.
- the parameter—p selects the appropriate algorithm for the pair of sequences. This program finds regions of similarity between the sequences and for each such region reports an “E value” which is the expected number of times one could expect to see such a match by chance in a database of a fixed reference size containing random sequences. For small E values, much less than one, this is approximately the probability of such a random match.
- Variant polypeptide sequences commonly exhibit an E value of less than 1 ⁇ 10 ⁇ 5 , less than 1 ⁇ 10 ⁇ 6 , less than 1 ⁇ 10 ⁇ 9 , less than 1 ⁇ 10 ⁇ 12 , less than 1 ⁇ 10 ⁇ 5 , less than 1 ⁇ 10 ⁇ 1 8 or less than 1 ⁇ 10 ⁇ 21 when compared with any one of the specifically identified sequences.
- Polypeptide sequence identity may also be calculated over the entire length of the overlap between a candidate and subject polypeptide sequences using global sequence alignment programs. EMBOSS-needle (available at http:/www.ebi.ac.uk/emboss/align/) and GAP (Huang, X. (1994) On Global Sequence Alignment. Computer Applications in the Biosciences 10, 227-235.) as discussed above are also suitable global sequence alignment programs for calculating polypeptide sequence identity. Use of BLASTP is preferred for use in the determination of polypeptide variants according to the present invention.
- variants include peptides whose sequence differ from the human signal peptides and fragments herein by one, two, three, four, five, six or more conservative amino acid substitutions, deletions, additions or insertions which do not affect the biological activity of the peptide.
- Conservative substitutions typically include the substitution of one amino acid for another with similar characteristics, e.g., substitutions within the following groups: valine, glycine; glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagines, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Examples of conservative substitutions can also be found in the sequences as shown in the sequence listings whereby the substitutions in different mammalian species compared to the human sequence are shown. Other conservative substitutions are known in the art.
- Non-conservative substitutions may also be used and may entail, for example, exchanging a member of one amino acid class (e.g., hydrophobic, neutral hydrophilic, acidic, basic, residues that influence chain orientation, and aromatic) for a member of another class.
- one amino acid class e.g., hydrophobic, neutral hydrophilic, acidic, basic, residues that influence chain orientation, and aromatic
- variants include peptides with modifications which influence peptide stability.
- Such analogs may contain, for example, one or more non-peptide bonds (which replace the peptide bonds) in the peptide sequence.
- analogs that include residues other than naturally occurring L-amino acids, e.g. D-amino acids or non-naturally occurring synthetic amino acids, e.g. beta or gamma amino acids and cyclic analogs.
- Subject as used herein is preferably a mammal and includes human, and non-human mammals such as cats, dogs, horses, cows, sheep, deer, mice, rats, primates (including gorillas, rhesus monkeys and chimpanzees), and other domestic farm or zoo animals.
- the mammal is human.
- presentation refers to presentation of a subject, including, for example, before medical personnel at a medical facility such as a doctor's office, clinic or hospital. Presentation, however, includes presentation of a subject before any person who will use the invention, e.g., paramedic personnel in an ambulance.
- treat refers to therapeutic or prophylactic measures which alleviate, ameliorate, manage, prevent, restrain, stop or reverse progression of a biological event characterized by a EPOsp and/or CNPsp polypeptide or polypeptide fragment level which shows a deviation from normal control levels, including cardiovascular disease, an ACS, renal disease and AMI, and other disorders and conditions noted herein.
- the subject may show observable or measurable (statistically significant) reduction in one or more of glucose, lactate, insulin, fatty acids, triglycerides, TnI, TnT, BNP, N—BNP, BNP-SP, ANP, ANP-SP, creatine kinase-MB, myoglobin LDH, aspartate aminotransferase, H-FABP, endothelin, adrenomedullin, rennin, angiotensin II, and other markers.
- mass spectrometry refers to methods of filtering, detecting, and measuring ions based on their mass to charge ratio. See for example U.S. Pat. Nos. 5,719,060, 6,204,500, 6,107,623, 6,124,137, 6,225,047, 6,268,144, 7,057,165, and 7,045,366.
- Common mass spectrometry techniques include matrix-assisted laser desorption ionization (MALDI) and surface-enhanced laser desorption ionization (SELDI). Both may be coupled with time of flight analysers (MALDI-TOF and SELDI-TOF) which allow for analysis of analytes at femtomole levels in very short ion pulses.
- SELDI Surface-Enhanced Affinity Capture
- SEND Surface-Enhanced Neat Desorption
- SEPAR Surface-Enhanced Photolabile Attachment and Release
- EPOsp and/or CNPsp EPOsp and/or CNPsp were limited to controlling the trafficking of parent molecules in the endoplasmic reticulum. Once this is achieved it has been assumed that the signal peptide is then degraded without ever being secreted from the cell. 12
- EPOsp and/or CNPsp EPOsp and/or CNPsp fragments are available in biological samples and appear, for example, in the circulation.
- EPOsp and CNPsp and fragments thereof are useful as, for example, circulating biomarkers for a range of biological events or disorders.
- EPOsp and/or CNPsp provide superior detection and discriminatory capabilities compared with existing standard markers.
- the much quicker time to reach peak levels in blood and the specific nature of each marker to the condition is noted.
- the organ specific location of each signal peptide fragment is also noted.
- EPOsp is released from kidney
- CNP is released from the heart and blood vessels.
- signal peptides have a shorter half life in blood compared with existing markers, they have the capacity to rise and fall more quickly, detecting underlying active disease. This cannot be said for existing markers, which have long half lives and therefore, possess blood levels which do not respond as rapidly to active disease.
- the invention provides a method for predicting, diagnosing or monitoring a biological event in a subject wherein the event correlates with the release of one or more of an EPOsp and/or CNPsp fragment into the circulation, the method comprising:
- the biological event or disorder includes one or more of acute and chronic renal disease or injury, heart failure, hypertension, syncope, and chronic cardiovascular disease, vascular disease including atherosclerosis, vulnerable plaque, or an acute cardiac syndrome or disorder including myocardial infarctions and angina (unstable), and stable angina.
- the applicants have also surprisingly found that in patients with acute myocardial infarction (AMI) the circulating concentration of an EPOsp and/or CNPsp fragment is highest in the first few hours following the onset of the patient's symptoms. Levels observed in the first two to six hours, or four hours were surprisingly very high often reaching a peak some 1.5 to five, commonly two to three fold higher than levels in a normal control population.
- AMI acute myocardial infarction
- an EPOsp and/or CNPsp fragment is/are useful as clear early stage markers of, for example, acute coronary syndromes (ACS) such as AMI, particularly non-ST elevated MI, and acute cardiac ischemia, and other disorders as noted herein.
- ACS acute coronary syndromes
- the applicants have determined for the first time, that it would be useful to screen for one or more of an EPOsp and/or CNPsp or variants or fragments thereof in a biological sample taken from a subject, particularly, for example, within twelve, ten, eight, six, four, two or one hours of onset of, or at clinical presentation with the disorder.
- Useful in the invention are antigenic fragments or variants of one or more of an EPOsp and/or CNPsp, which are least 4 or 5 amino acids in length. Particularly useful fragments are at the N-terminus (1-9) or C-terminus of the signal peptides herein. Examples of specific antigenic peptides are shown in SEQ ID NOS:1-6. Both the nucleic acid molecules and peptides form aspects of the invention.
- polypeptides of the invention include a polypeptide having the amino acid sequence of any of SEQ ID NOS: 1-6 as set forth herein. Also contemplated are variants and fragments of these polypeptides as defined herein, or amino acid sequences having at least about 70%, 75%, 80%, 85%, 90%, 95% or 99% amino acid identity to them. In one embodiment the variants or fragments are functionally equivalent variants or fragments. That is the variants or fragments maintain the function as antigens or signal peptides. Any of the peptides in SEQ ID NOS:1-6 may be used in the preparation of binding agents, for example, antibodies.
- Polypeptides including variant polypeptides and fragments, may be prepared using peptide synthesis methods well known in the art such as direct peptide synthesis using solid phase or automated synthesis. Mutated forms of the polypeptides may also be produced using synthetic methods such as site-specific mutagensis of the DNA encoding the amino acid sequence.
- polypeptides and variant polypeptides and fragments thereof are in one embodiment isolated. They may be isolated or purified from natural sources, or following synthesis, using a variety of techniques that are well known in the art. Technologies include HPLC, ion-exchange chromatography, and immunochromatography but are not limited thereto.
- the present invention provides a method for predicting, diagnosing or monitoring an acute cardiac syndrome in a subject, the method comprising: measuring the level of one or more of an EPOsp and/or CNPsp or fragment in a biological sample from the subject and comparing the level of said EPOsp and/or CNPsp or fragments with the level from a control wherein a measured level of is higher than the control level and indicative of ACS.
- the invention provides a method for monitoring a response to treatment of an ACS or chonic renal disease in a subject, the method comprising measuring the level of one or more of an EPOsp and/or CNPsp or fragment in a biological sample from the subject and comparing the level of said one or more of an EPOsp and/or CNPsp or fragment with the level from a control, wherein a change in the measured level from the control level is indicative of a response to the treatment.
- an EPOsp and/or CNPsp or fragment level may usefully be compared or correlated with a reference value or control value.
- a control can be an individual or group from which samples of one or more of an EPOsp and/or CNPsp or fragment are taken and a mean level determined.
- the individual or group will comprise normal healthy individuals or a group of individuals not known to be suffering from a biological event to be monitored.
- Levels of EPOsp fragments in normal individuals range from between about 14-90 pmol/L (mean is about 50 pmol/L).
- Levels of CNPsp fragments in normal individuals range from between about 8-50 pmol/L, and the mean control level is about 21 pmol/L.
- the control level may be assessed based on a plurality of readings from previously tested individuals or groups.
- the step of measuring levels of one or more of an EPOsp and/or CNPsp or fragment thereof in a sample may be a single measurement on a single sample, or repeated measurements on a number of samples depending on the biological event being studied.
- measurement may comprise, for example, 1 to 20 or more measurements of an EPOsp and/or CNPsp or fragment, 1 to 10, 1 to 5, 1 to 3, or 2 or 3 measurements of one or more of an EPOsp and/or CNPsp or fragment a fragment thereof in samples taken at different times.
- the measurements are on samples taken within the first twelve, ten, eight, six, five, four, two hours, or within one hour or less of, onset of or clinical presentation with a disorder or suspected disorder.
- Single, or repeated measurements outside the sample period above may also be taken to establish whether the level of one or more of an EPOsp and/or CNPsp or fragment thereof has fallen to the normal control level, or, for example, cardiac tissue control level.
- the method comprises measuring levels of one or more of an EPOsp and/or CNPsp or fragment thereof in 1 or 2 samples taken within the first hour of onset or presentation, followed by measuring levels of one or more of an EPOsp and/or CNPsp or fragment thereof in 1 or 2 samples taken within two to four hours, or two to three hours of onset or presentation, or initial measurement of the level of one or more of an EPOsp and/or CNPsp or fragment thereof.
- levels of one or more of an EPOsp and/or CNPsp fragments thereof measured within the first one to twelve, ten, eight, six, four or two hours or less of onset or presentation of an ACS, heart failure, or renal failure are 1.5 to 10, 1.5 to 5 times higher are usually two to three times higher than levels measured in a normal control.
- the prognostic, diagnostic or monitoring tool is calibrated to measure levels of one or more of the peptides or peptide fragments corresponding to any of SEQ ID NOS:1, 2, 3, 4, 5 or 6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the range of, for example, from 0.1 to 1500 pmol/L, 0.1 to 500 pmol/L, 1 to 300 pmol/L, 10 to 250 or 20 to 150 pmol/L.
- erythropoietin signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 400 to 4000 pmol/L, about 400 to 200 pmol/L, about 320 to 520 pmol/L, or about 400-420 pmol/L or less. Levels at least as low as 5 pmol/L are detectable.
- Angiotensin signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 10 to 1000 pmol/L, about 5 to 500 pmol/L, about 1 to 100 pmol/L, or about 0.1 to 10 pmol/L or less. Levels at least as low as 0.1 pmol/L are detectable.
- C-type natriuretic signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 50 to 1500 pmol/L, about 25 to 750 pmol/L, about 10 to 500 pmol/L, or about 5 to 150 pmol/L or less. Levels at least as low as 2 pmol/L are detectable. Endothelin-1 signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 10 to 200 pmol/L, about 5 to 100 pmol/L, about 10 to 50 pmol/L, or about 1 to 20 pmol/L or less. Levels at least as low as 1 pmol/L are detectable.
- a level of one or more of an EPOsp and/or CNPsp or fragment thereof in the sample in the range of about 40 to about 250 pmol/L, about 65 to 250 pmol/L, about 65 to 200 pmol/L, about 70 to 150, or about 70 to 130 pmol/L, is indicative of an ACS.
- the biological sample as defined above can be any biological material in which of one or more of an EPOsp and/or CNPsp or fragment thereof can be located or secreted.
- a biological sample is a circulatory biological sample, for example blood, serum or plasma.
- the biological sample is cardiac tissue.
- the presence of one or more of an EPOsp and/or CNPspEPOsp and/or CNPsp, or a fragment thereof and the level of expression in a sample may be determined according to methods known in the art such as Southern Blotting, Northern Blotting, FISH or quantative PCR to quantitate the transcription of mRNA, 12 dot blotting, (DNA analysis) or in situ hybridization using an appropriately labelled probe, based on the sequences provided herein.
- the hybridisation probe is a labelled probe.
- labels include fluorescent, chemiluminescent, radioenzyme and biotin-avidin labels. Labelling and visualisation of labelled probes is carried out according to known art methods such as those above.
- the nucleic acid probe may be immobilized on a solid support including resins (such as polyacrylamides), carbohydrates (such as sepharose), plastics (such as polycarbonate), and latex beads.
- the nucleic acid expression level may be determined using known art techniques such as RT-PCR and electrophoresis techniques including SDS-PAGE. Using these techniques the DNA or cDNA sequence of a nucleic acid molecule of the invention, in a subject sample is amplified, and the level of DNA or cDNA or RNA measured. In an alternate method the DNA, cDNA or RNA level may be measured directly in the sample without amplification. In one embodiment the method is Northern blot hybridization analysis.
- the expression level may be measured using reverse transcription based PCR (RT-PCR) assays using primers specific for the nucleic acid sequences.
- RT-PCR reverse transcription based PCR
- comparison of the level of one or more of a EPOsp and/or CNPsp polynucleotide in the sample can be made with reference to a control nucleic acid molecule the expression of which is independent of the parameter or condition being measured.
- a control nucleic acid molecule refers to a molecule in which the level does not differ between the disorder or transplant rejection state and the healthy state. Levels of the control molecule can be used to normalise levels in the compared populations. An example of such a control molecule is GAP-DH.
- TheEPOsp and/or CNPsp polypeptides and fragments of the invention will change levels with the biological event or disorder.
- the measuring step comprises detecting binding between one or more of an EPOsp and/or CNPsp, or a fragment thereof and a binding agent that binds, for example, selectively or specifically binds, to one or more of an EPOsp and/or CNPsp or a fragment or variant thereof.
- the invention provides an assay for one or more of an EPOsp and/or CNPsp or a fragment or variant thereof in a biological sample, the assay comprising detecting and measuring the level thereof in the sample using any known methods.
- the biological sample is obtained from a subject within about twelve, ten, eight, six or four or less hours from onset of an ACS or other disorder related to the concentration or amount of said fragment(s) in a biological sample, or within about twelve, ten, eight, six or four or less of clinical presentation with an ACS, for example, and an EPOsp and/or CNPsp or a fragment thereof are measured.
- the invention provides an assay for one or more of an EPOsp and/or CNPspEPOsp and/or CNPsp, or a fragment thereof comprising:
- the target molecule is one or more of SEQ ID NOS:1-6 or a variant or fragment thereof.
- the binding agent may be a selective (specific) binding agent. That is, it has low cross-reactivity with other markers of biological events, and more particularly ghrelin.
- the binding agent in one embodiment is an antibody or a molecule comprising an antigen-binding fragment thereof. Where an antibody is used in the assay, the antibody may be raised against any antigenic part of one or more an EPOsp and/or CNPsp, or a fragment thereof, including within the N-terminus or the C-terminus, so long as it binds a fragment found in a biological sample, preferably a sample in which its presence indicates excretion from a cell. In one embodiment the antibody is raised against a peptide according to any one or more of SEQ ID NOS:1-6 or a variant or fragment thereof.
- the present invention also relates to binding agents, including, for example, antibodies, and antigen-binding fragments of the antibodies and their uses. Uses include in an assay, or in the manufacture of an assay, or as a prognostic, diagnostic or monitoring tool are provided as described herein, as are related kits with instructions for use.
- Binding agents may be in isolated or purified form.
- An antibody that binds to one or more of an EPOsp and/or CNPsp, or a fragment or variant thereof may be in any form, including, for example, all classes of polyclonal, monoclonal, single chain, human, humanized antibodies and chimeric antibodies, and other antigen binding constructs.
- antiserum obtained by immunizing an animal such as a mouse, rat or rabbit.
- the antibodies may bind to a common sequence in a group of fragments, or to a specific EPOsp and/or CNPsp fragment, or even to sets of fragments.
- a fragment of an antibody or a modified antibody may be used so long as it binds the desired signal peptide or a fragment or variant thereof.
- the antigen-binding fragment may be, for example, Fab, F(ab′), F(ab′), an Fv fragment or single chain Fv (scFv), in which Fv fragments from H and L chains are ligated by an appropriate linker. 13 Methods for preparing antibodies, and detecting, modifying and isolating same are well known in the art. 14,15,16 In one embodiment antibodies used are produced by immunizing a suitable host mammal. Fusion proteins comprising one or more of an EPOsp and/or CNPsp, or a fragment thereof may also be used as immunogens.
- a binding agent such as an antibody or other molecule comprising an antigen binding site
- a binding agent may be modified by conjugation with a variety of molecules, such as polyethylene glycol (PEG), biotin, streptavidin, and chemiluminescent, fluorescent, calorimetric, and radioimmunometric labels as discussed herein.
- PEG polyethylene glycol
- biotin biotin
- streptavidin and chemiluminescent, fluorescent, calorimetric, and radioimmunometric labels as discussed herein.
- the modified antibody can be obtained by chemically modifying an antibody. These modification methods are conventional in the field.
- polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant.
- the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections.
- the immunizing agent may include one or more of an EPOsp and/or CNPsp, or a fragment or variant thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized.
- immunogenic proteins include but are not limited to keyhole limpet hemocyanin, bovine serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.
- adjuvants which may be employed include Freund's complete adjuvant and MPL TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.
- Monoclonal antibodies may be prepared using hybridoma methods well known in the art.
- the hybridoma cells may be cultured in a suitable culture medium, alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal.
- Preferred immortalized cell lines are murine myeloma lines, which can be obtained, for example, from the American Type Culture Collection, Virginia, USA.
- Immunoassays may be used to screen for immortalized cell lines which secrete the antibody of interest.
- One or more of an EPOsp and/or CNPsp, or fragments or variants thereof may be used in screening.
- hybridomas which are immortalized cell lines capable of secreting an EPOsp and/or CNPsp fragment-specific monoclonal antibody.
- Well known means for establishing binding specificity of monoclonal antibodies produced by the hybridoma cells include immunoprecipitation, radiolinked immunoassay (RIA), enzyme-linked immunoabsorbent assay (ELISA) and Western blot.
- RIA radiolinked immunoassay
- ELISA enzyme-linked immunoabsorbent assay
- Western blot the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis. 14 Samples from immunised animals may similarly be screened for the presence of polyclonal antibodies.
- Monoclonal antibodies and other antigen-binding constructs can also be obtained from recombinant host cells.
- DNA encoding the antibody or antigen-binding construct can be obtained from a hybridoma cell line.
- the DNA is then placed into an expression vector, transfected into host cells (e.g., COS cells, CHO cells, E. coli cells) and the antibody or antigen-binding construct produced in the host cells.
- the antibody may then be isolated and/or purified using standard techniques.
- antibodies and fragments herein may be labelled with detectable markers such as, for example, fluorescent, bioluminescent, and chemiluminescent compounds, as well as radioisotopes, magnetic beads and affinity labels (e.g., biotin and avidin).
- detectable markers such as, for example, fluorescent, bioluminescent, and chemiluminescent compounds, as well as radioisotopes, magnetic beads and affinity labels (e.g., biotin and avidin).
- labels which permit indirect measurement of binding include enzymes where the substrate may provide for a coloured fluorescent product, suitable enzymes include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase and the like.
- Fluorochromes e.g., Texas Red, fluorescein, phycobiliproteins, and phycoerythrin
- Labelling techniques are well known in the art.
- the monoclonal antibodies, for example, secreted by the cells may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, reverse phase HPLC, protein A-Sepharose, hydroxyapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
- Binding of one or more of an EPOsp and/or CNPsp, or a fragment thereof can be detected by any means known in the art including specific (antibody-based) and non-specific (such as HPLC solid phase). Most commonly, antibodies are detected using an assay such as ELISA or RIA as noted above.
- an antibody can be fixed to a solid substrate to facilitate washing and isolation of the polypeptide/antibody complex. Binding of antibodies to a solid support can be achieved using known art techniques.
- Useful solid substrates for antibodies include glass, nylon, paper and plastics.
- one or more of an EPOsp and/or CNPsp, or a fragment thereof can be adsorbed onto a solid substrate such as adsorbent silica, or resin particles, or silicon chips optionally coated or derivatised with ion exchange, reverse phase (e.g. C18 coating) or other materials.
- the substrate may be in the form of beads, plates, tubes, sticks or biochips.
- biochips examples include Ciphergen, ProteinChip arrays (Ciphergen Biosystems (CA, USA)), and Packard BioChips available from Perkin Elmer, USA.
- the biochips may include a chromatographic surface. Biochips or plates with addressable locations and discreet microtitre plates are particularly useful.
- multiplex systems where beads containing antibodies directed to multiple analytes are used to measure levels of the analytes in a single sample.
- Analytes to be measured may include other markers, e.g., cardiac markers, as well as an EPOsp and/or CNPsp, or variants or fragments thereof.
- Luminex Flurokine Multianalyte Profiling system is the Luminex Flurokine Multianalyte Profiling system.
- Antibody assay methods are well known in the art see for example U.S. Pat. Nos. 5,221,685, 5,310,687, 5,480,792, 5,525,524, 5,679,526, 5,824,799, 5,851,776, 5,885,527, 5,922,615, 5,939,272, 5,647,124, 5,985,579, 6,019,944, 6,113,855, 6,143,576 and for unlabelled assays U.S. Pat. Nos. 5,955,377 and 5,631,171. All of the documents cited herein are incorporated herein by reference in their entirety.
- Immunoassay analysers are also well known and include Beckman Access, Abbott AxSym, Roche ElecSys/Cobas and Dade Behring Status systems amongst others that are well described.
- Binding of one or more of an EPOsp and/or CNPsp, or a fragment thereof and an antibody to form a complex can be detected directly or indirectly.
- Direct detection is carried out using labels such as fluorescence, luminescence, radionuclides, metals, dyes and the like.
- Indirect detection includes binding detectable labels such as digoxin or enzymes such as horseradish peroxidase and alkaline phosphatase to form a labelled antibody followed by a step of detecting the label by addition of detection reagents.
- Horseradish peroxidase for example can be incubated with substrates such as o-Phenylenediamine Dihyhydrochloride (OPD) and peroxide to generate a coloured product whose absorbance can be measured, or with luminol and peroxide to give chemiluminescent light which can be measured in a luminometer as is known in the art.
- Biotin or digoxin can be reacted with binding agents that bind strongly to them.
- the proteins avidin and streptavidin will bind strongly to biotin.
- a further measurable label is then covalently bound or linked thereto either by direct reaction with the protein, or through the use of commonly available crosslinking agents such as MCS and carbodiimide, or by addition of chelating agents.
- the complex is separated from the uncomplexed reagents for example by centrifugation. If the antibody is labelled, the amount of complex will be reflected by the amount of label detected.
- one or more of an EPOsp and/or CNPsp, or a fragment thereof may be labelled by binding to an antibody and detected in a competitive assay by measuring a reduction in bound labelled polypeptide when the antibody-labelled-polypeptide is incubated with a biological sample containing one or more of an EPOsp and/or CNPsp, or a fragment thereof that is unlabelled.
- Other immunoassays may be used, for example, a sandwich assay.
- the labelled an EPOsp and/or CNPsp, or a fragment thereof bound to the binding agent is separated from the unbound labelled an EPOsp and/or CNPsp, or a fragment thereof.
- the separation may be accomplished by addition of an anti gamma globulin antibody (second-antibody) coupled to solid phase particles such as cellulose, or magnetic material.
- second-antibody is raised in a different species to that used for the primary antibody and binds the primary antibody. All primary antibodies are therefore bound to the solid phase via the second antibody.
- This complex is removed from solution by centrifugation or magnetic attraction and the bound labelled peptide measured using the label bound to it.
- Other options for separating bound from free label include formation of immune complexes, which precipitate from solution, precipitation of the antibodies by polyethyleneglycol or binding free labelled peptide to charcoal and removal from solution by centrifugation of filtration.
- the label in the separated bound or free phase is measured by an appropriate method such as those presented above.
- Competitive binding assays can also be configured as solid phase assays that are easier to perform and are therefore preferable to those above.
- This type of assay uses plates with wells (commonly known as ELISA or immunoassay plates), solid beads or the surfaces of tubes.
- the primary antibody is either adsorbed or covalently bound to the surface of the plate, bead or tube, or is bound indirectly through a second anti gamma globulin or anti Fc region antibody adsorbed or covalently bound to the plate.
- Sample and labelled peptide (as above) are added to the plate either together or sequentially and incubated under conditions allowing competition for antibody binding between an EPOsp and/or CNPsp, or a fragment thereof in the sample and the labelled peptide. Unbound labelled peptide can subsequently be aspirated off and the plate rinsed leaving the antibody bound labelled peptide attached to the plate. The labelled peptide can then be measured using techniques described above.
- Sandwich type assays have greater specificity, speed and greater measuring range.
- an excess of the primary antibody to an EPOsp and/or CNPsp, or a fragment thereof is attached to the well of an ELISA plate, bead or tube via adsorption, covalent coupling, or an anti Fc or gamma globulin antibody, as described above for solid phase competition binding assays.
- Sample fluid or extract is contacted with the antibody attached to the solid phase. Because the antibody is in excess this binding reaction is usually rapid.
- a second antibody to an EPOsp and/or CNPsp, or a fragment thereof is also incubated with the sample either simultaneously or sequentially with the primary antibody.
- This second antibody is chosen to bind to a site on an EPOsp and/or CNPsp, or a fragment thereof that is different from the binding site of the primary antibody. These two antibody reactions result in a sandwich with the EPOsp and/or CNPsp, or a fragment thereof from the sample sandwiched between the two antibodies.
- the second antibody is usually labelled with a readily measurable compound as detailed above for competitive binding assays.
- a labelled third antibody which binds specifically to the second antibody may be contacted with the sample. After washing away the unbound material the bound labelled antibody can be measured and quantified by methods outlined for competitive binding assays.
- a dipstick type assay may also be used. These assays are well known in the art. They may for example, employ small particles such as gold or coloured latex particles with specific antibodies attached. The liquid sample to be measured may be added to one end of a membrane or paper strip preloaded with the particles and allowed to migrate along the strip. Binding of the antigen in the sample to the particles modifies the ability of the particles to bind to trapping sites, which contain binding agents for the particles such as antigens or antibodies, further along the strip. Accumulation of the coloured particles at these sites results in colour development are dependent on the concentration of competing antigen in the sample. Other dipstick methods may employ antibodies covalently bound to paper or membrane strips to trap antigen in the sample. Subsequent reactions employing second antibodies coupled to enzymes such as horse radish peroxidase and incubation with substrates to produce colour, fluorescent or chemiluminescent light output will enable quantitation of antigen in the sample.
- radioimmunoassay is the laboratory technique used.
- a radiolabelled antigen and unlabelled antigen are employed in competitive binding with an antibody.
- Common radiolabels include I 25 , 131 I, 3 H and 14 C.
- Radioimmunoassays involving precipitation of an EPOsp and/or CNPsp, or a fragment thereof with a specific antibody and radiolabelled antibody binding protein can measure the amount of labelled antibody in the precipitate as proportional to the amount of an EPOsp and/or CNPsp, or a fragment thereof in the sample.
- a labelled an EPOsp and/or CNPsp, or a fragment thereof is produced and an unlabelled antibody binding protein is used.
- a biological sample to be tested is then added. The decrease in counts from the labelled an EPOsp and/or CNPsp, or a fragment thereof is proportional to the amount of an EPOsp and/or CNPsp, or a fragment thereof in the sample.
- RIA it is also feasible to separate bound EPOsp and/or CNPsp, or a fragment thereof, from free an EPOsp and/or CNPsp, or a fragment thereof.
- This may involve precipitating the peptide/antibody complex with a second antibody.
- the peptide/antibody complex contains rabbit antibody then donkey anti-rabbit antibody can be used to precipitate the complex and the amount of label counted.
- an LKB, Gammamaster counter 9
- the methods of the invention further comprise measuring the levels of one or more other markers of kidney disease, cardiovascular disease, etc.
- the level of the other marker or markers can be compared to mean control levels from a control population.
- a deviation in the measured level from the mean control level is predictive or diagnostic of or a predisposition to acute or chronic kidney disease, acute or chronic cardiovascular disease, etc.
- the methods of the invention have been described with respect to a higher level or increase in levels of an EPOsp and/or CNPsp, or fragment thereof, being indicative of acute coronary syndromes (e.g., AMI and angina), heart failure, vascular disease including atherosclerosis, and chronic renal disease. Measuring deviations above or below a control level are also contemplated.
- markers include troponin T, troponin I, creatin kinase MB, myoglobin, BNP, NT-BNP, BNP-SP, ANP, ANP-SP, LDH, aspartate aminotransferase, H-FABP, endothelin, adrenomedullin, rennin and angiotensin II. These markers are all implicated in cardiac dysfunction or disease. Kits and reagents for performing such assays are commercially available from a number of suppliers. Correlating the level of an EPOsp and/or CNPsp, or fragment thereof with other markers can increase the predictive, diagnostic or monitoring value of an EPOsp and/or CNPsp, or fragment thereof. In the case of ACS, combining EPOsp and/or CNPsp, or fragment marker levels with known cardiac markers can increase the predictive or diagnostic value of a patient outcome.
- Analysis of a number of peptide markers can be carried out simultaneously or separately using a single test sample. Simultaneous, two or multi-site format assays are preferred. Multiplex bead, microassay or biochip systems are particularly useful.
- the beads, assays or chips can have a number of discreet, often addressable locations, comprising an antibody to one or more markers including an EPOsp and/or CNPsp, or fragment thereof.
- the one or more markers include more than one an EPOsp and/or CNPsp, or fragment thereof marker. For example, it may be useful to assay for N-terminal and C-terminal an EPOsp and/or CNPsp, or fragment thereof fragments and combine the assay results. Many other such marker combinations are feasible.
- Luminex provides a multiplex bead system useful in the present invention.
- Laboratory analysers suitable for use with separate or sequential assays include AxSym (Abbott, USA), ElecSys (Roche), Access (Beckman), ADVIA CENTAUR® (Bayer) and Nichols Advantage® (Nichols Institute) immunoassay system.
- simultaneous assays of a plurality of polypeptides are performed on a single surface such as a chip or array.
- a number of biological samples may be taken over time. Serial sampling allows changes in marker levels to be measured over time. Sampling can provide information on the approximate onset time of an event, the severity of the event, indicate which therapeutic regimes may be appropriate, response to therapeutic regimes employed, or long-term prognosis. Analysis may be carried out at points of care such as in ambulances, doctors' offices, on clinical presentation, during hospital stays, in outpatients, or during routine health screening, etc.
- the methods of the invention may also be performed in conjunction with an analysis of one or more risk factors such as but not limited to age, weight, level of physical activity, sex and family history of events such as obesity, diabetes and cardiac events.
- Test results can also be used in conjunction with the methods of the invention. For example, glucose tolerance tests, ECG results and clinical examination.
- a statistically significant change in circulating level of an EPOsp and/or CNPsp, or fragment thereof, together with one or more additional risk factors or test results may be used to more accurately diagnose, prognose or monitor the subject's condition.
- Applicants have shown that concentrations of various signal peptide fragments are correlated with acute cardiac disorders ( FIG. 6 ). Moreover, levels of an EPOsp and/or CNPsp, or fragment(s) thereof, are at their highest upon clinical presentation in the case of patients presenting with suspected acute myocardial infarction (AMI) or heart attack. Patients presenting with acute cardiac syndromes or disorders, and in particular acute cardiac ischemia coronary artery disease caused by (heart attack leaving scarring in the heart muscle or myocardium) may or may not experience subsequent myocardial infarction (MI). The group which does not experience MI cannot be readily diagnosed using current clinical techniques and markers. Applicants have provided a useful early and specific marker for myocardial damage associated with MI, for example.
- the invention has application in monitoring reperfusion treatment in cardiac patients.
- Reperfusion treatment commonly includes percutaneous coronary intervention (eg angioplasty) and/or pharmacological treatment.
- Thrombolytic drugs for revascularisation are commonly employed in pharmacological treatment.
- Adjunctive therapies include anticoagulant and anti-platelet therapies.
- Reperfusion treatment is most effective when employed as soon as possible after diagnosis.
- Use of analysis of EPOsp and/or CNPsp, or fragment(s) thereof, to accelerate diagnosis allows prompt introduction of reperfusion treatment. Effectiveness of treatment can also be monitored by repeat testing, and therapy adjusted as appropriate.
- For a comprehensive discussion of reperfusion treatment see Braunwald et al. herein. 3
- the methods of the invention may also be useful to diagnose or predict cardiac disease in a subject by analysis of an EPOsp and/or CNPsp, or fragment(s) thereof, particularly in biological samples taken from the circulation (or biological samples derived from such samples).
- proteins and peptides provide an attractive option.
- the invention provides a solution to this problem.
- proteins such as EPO are made to mimic as closely as possible the endogenous counterpart present in the circulation or tissue. This entails removal either a priori or a posteriori of components that would render the molecule vulnerable to easy detection.
- One such component is a region of the molecule known as the signal peptide. It was thought that signal peptide sequences derived from the endogenous production of proteins underwent intracellular destruction and were therefore absent from the circulation.
- EPO signal peptide sequences of EPO is not only present in the circulation of humans, but may also be measured in urine (or another bodily fluid, tissue sample, etc.).
- the EPO signal peptide sequence is very short in comparison with full length natural or recombinant EPO and has a much simpler primary and tertiary structure, without glycosylations, rendering it much easier to measure by existing assay formats.
- An immunoassay directed towards the signal peptide of human EPO is described herein, which is sensitive for immunoreactive human EPO signal peptide (EPOsp) and can detect circulating levels down to ⁇ 20 fmol/ml ( ⁇ 640 pg/ml).
- kits will be formatted for assays known in the art, and in certain embodiments for RIA or ELISA assays, as are known in the art.
- kits may also include one or more additional markers for the disorders noted herein.
- the additional marker may include one or more of troponin T, troponin I, creatin kinase MB, myoglobin, ANP, BNP, BNP-SP, ANP, ANP-SP, NT-BNP, LDH, aspartate aminotransferase, H-FABP, endothelin, adrenomedullin, rennin and angiotensin II.
- all of a subset of the markers are included in the kit.
- the kit may be comprised of one or more containers and may also include collection equipment, for example, bottles, bags (such as intravenous fluids bags), vials, syringes, and test tubes. At least one container will be included and will hold a product which is effective for predicting, diagnosing, or monitoring a biological event such as acute or chronic kidney disease, acute or chronic cardiovascular disease, ACS, etc.
- the product is usually a polypeptide and/or a binding agent, particularly an antibody or antigen-binding fragment of the invention, or a composition comprising any of these.
- an instruction or label on or associated with the container indicates that the composition is used for predicting, diagnosing, or monitoring the biological event.
- Other components may include needles, diluents and buffers.
- the kit may include at least one container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution or dextrose solution.
- Binding agents that selectively bind EPOsp and/or CNPsp, or fragment(s) thereof are desirably included in the kit.
- the binding agent is an antibody, preferably an antibody or antigen-binding fragment of the invention.
- the antibody used in the assays and kits may be monoclonal or polyclonal, for example, and may be prepared in any mammal as discussed above, and includes antibody fragments and antibodies prepared using native and fusion peptides, for example.
- a target peptide detection reagent is immobilized on a solid matrix, for example, a porous strip or chip to form at least one detection site for an EPOsp and/or CNPsp, or a fragment(s) thereof.
- the measurement or detection region of the porous strip may include a plurality of detection sites, such detection sites containing a detection reagent.
- the sites may be arranged in a bar, cross or dot or other arrangement.
- a test strip or chip may also contain sites for negative and/or positive controls.
- the control sites may alternatively be on a different strip or chip.
- the different detection sites may contain different amounts of immobilized nucleic acids or antibodies, e.g., a higher amount in the first detection site and lower amounts in subsequent sites.
- kits for sample analysis comprising a disposable testing cartridge with appropriate components (markers, antibodies and reagents) to carry out sample testing.
- the device will conveniently include a testing zone and test result window.
- Immunochromatographic cartridges are examples of such devices. See for example U.S. Pat. Nos. 6,399,398; 6,235,241 and 5,504,013.
- the device may be an electronic device which allows input, storage and evaluation of levels of the measured marker against control levels and other marker levels.
- US 2006/0234315 provides examples of such devices.
- Ciphergen's Protein Chip® which can be used to process SELDI results using Ciphergen's Protein Chip® software package.
- EPOsp and CNPsp were synthesised using a mild Fmoc Solid Phase Synthesis method. 4,9 All buffer reagents were purchased from BDH® (UK) and/or Sigma (Mo, USA). EPOsp(1-9) and CNPsp(14-23) were all synthesised with an extended cysteine (C- or N-terminus) for directional carrier coupling. EPOsp(1-9) and CNPsp(14-23), tyrosyl-containing peptides were also synthesised for tracer preparation.
- Non-fasting blood samples were collected from the following groups of patients presenting at Victoria Hospital, New Zealand:
- Plasma samples were assayed for Tn1, CK-MB, Myoglobin and Insulin using heterologous immunoassays on an Elecsys 2010 (Roche, USA) using ruthenium labelled biotinylated antibodies according to standard manufacturers protocols.
- EPOsp and CNPsp fragments were measured by specific RIA as follows:
- Each antigenic residue sequence containing either a N- or C-terminally linked cysteine, was coupled to malemide treated N-e-maleimidocaproyloxy succinimide ester (EMCS) derivatised BSA in PBS (pH 7.0) by gentle mixing at room temperature. Coupled peptide was emulsified with Freund's (2 ml) adjuvant and injected subcutaneously (2 ml total) in 2 sheep over 4-5 sites at monthly intervals. Sheep were bled 12 days after injection to assess antibody titres until adequate levels were achieved. For immunoassay, EPOsp and CNPsp immunoreactivity were determined using antiserum within the final dilution range of 1:6,000-1:45,000.
- Each antiserum had no detectable cross reactivity with peptides and drugs indicated in FIG. 6 .
- Cross reactivity was assessed following standardised protocols well known in the art. 10
- Each antigenic residue containing either a N- or C-terminal tyrosine residue, was iodinated via the Chloramine T method and purified on reverse phase HPLC (RP-HPLC). From this preparation an iodinated tracer form after RP-HPLC was tested. All samples, standards, radioactive traces and antiserum solutions were diluted in potassium based assay buffer. 4,9 Each assay incubate consisted of 100 ⁇ L sample or standard (the appropriate synthetic antigenic peptide sequence) and 100 ⁇ L specific antigen-antiserum which was vortexed and incubated at 4° C. for 24 hours. 100 ⁇ L of trace (4000-5000 cpm) was then added and further incubated for 24 hours at 4° C. Free and bound immunoreactivities were finally separated by solid phase second antibody method (donkey anti-sheep Sac-Cel®, IDS Ltd, England) and counted in a Gammamaster counter (LKB, Uppsala, Sweden
- Respective venous plasma concentrations (in pmol/L) measured for EPOsp and CNPsp fragments in healthy humans are below:
- EPOsp and CNPsp in blood do not show a significant correlation with BMI.
- EPOsp and CNPsp fragments are present in human plasma.
- Highest concentrations of immunoreactive EPOsp and/CNPsp were observed hours after hospital admission and slowly dropped to stable levels over about eight hours.
- average peak EPOsp and CNPsp fragment levels were 2 to 3 fold higher (range two to 5 fold higher) than levels in normal healthy volunteers. Peak concentrations of myoglobin occurred 1-2 hours after hospital admission, whereas peak TnI and CK-MB levels were not attained until 8-12 hours after admission.
- FV femoral artery FA(1) and FA(2) femoral vein
- RV renal vein
- HV hepatic vein
- IVC inferior vena cava
- JUG inferior vena cava
- JUG cardiac coronary sinus vein
- PA pulmonary artery
- FIG. 2 clearly shows that the highest site of immunoreactive CNPsp concentration is the CS, the vein draining the heart, especially the ventricles. This is evidence that the heart can secrete immunoreactive CNPsp (e.g., CNPsp fragments).
- Immunoreactive EPOsp particularly in the form of EPOsp fragments, can also be secreted.
- Plasma extracts from 10 patients with acute decompensated heart failure and 75 patients with chronic renal failure were subjected to specific EPOsp and EPO immunoassay.
- Top panel estimated glomerular filtration rate (eGFR) in 10 patients with chronic renal failure. There was a statistically significant negative relationship between eGFR and plasma EPOsp.
- Middle panel Plasma EPOsp concentrations in normal healthy individuals, patients with chronic renal failure and in patients with decompensated acute heart failure. Plasma concentrations of EPOsp are signficantly
- Lower panel the ratio of EPOsp/EPO in normal heaoth, chronic renal failure and acute heart failure.
- the ratio in normal health is approximately 6:1, whereas in chronic renal failure the ratio increases significantly (compared with normals) to approximately 10:1.
- the ratio of EPOsp to EPO is significantly reduced (compared with normals) to approximately 3:1.
- Circulating EPOsp and CNPsp concentrations in clinically stable patients are likely derived from cardiac sources.
- the significant cardiac secretion is consistent with EPOsp and CNPsp being cardiac hormones.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Endocrinology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Peptides Or Proteins (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
- This application is a continuation application of and claims the benefit of and priority to U.S. patent application Ser. No. 13/186,447, filed on 19 Jul. 2011, which claims priority to U.S. provisional patent application Ser. No. 61/365,677, filed on 19 Jul. 2010, which is commonly owned with the instant application and is herein incorporated by reference in its entirety for any and all purposes.
- This invention relates to diagnostics and related technologies, including diagnostics relating to C-type natriuretic and erythropoietin signal peptides, and kits, uses and applications therefor.
- The following includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art, or relevant, to the presently described or claimed inventions, or that any publication or document that is specifically or implicitly referenced is prior art.
- Acute coronary syndromes (ACS) encompass a wide spectrum of cardiac ischemic events ranging from unstable angina through to acute myocardial infarction (AMI). AMI presents as the most serious of these events and therefore requires rapid and accurate diagnosis. Patients who present with two or more of the described features (a history of ischemic chest discomfort, evolutionary changes on serial electrocardiogram (ECG) traces and a rise and fall in plasma cardiac biomarkers) are clearly identified as undergoing AMI.1 However, a significant proportion of patients (40%-50%) who present with suspected AMI do not have serial changes on ECG, or typical symptoms thus placing heavy emphasis on biomarker analysis for accurate diagnosis.1,2 Accurate early diagnosis of myocardial infarction facilitates prompt introduction of reperfusion treatment, including effective percutaneous or thrombolytic revascularisation and adjunctive anticoagulant and anti-platelet therapy. Such treatments are progressively less effective at reducing mortality and morbidity with each hour of delay in diagnosis and management.3-6 Given the need for accelerated decision-making in this clinical situation, there is considerable interest in the identification of biomarkers, particularly circulating biomarkers, that provide an early and specific diagnosis of acute cardiac syndromes and disorders, particularly AMI.1 Proposed biomarkers include creatine kinase-MB (CK-MB), troponin T (TnT), troponin I (TnI) BNP, N-BNP (also known as NP-BNP), BNP signal peptide (BNP-SP) and myoglobin. Time to detectable or abnormal elevation of plasma cardiac biomarkers, however, can be from up to 6 hours (myoglobin, CK-MB) to 12 hours or more (TnT, TnI, BNP, N-BNP) with peak levels often not occurring until 24-48 hours after onset of injury, imposing a window of delay upon precise diagnosis and treatment.3-6 Furthermore, both myoglobin and CK-MB are non-specific and can be secreted from extra-cardiac sources, especially during trauma or surgery.1 A need exists for a marker or suite of markers that provide early and specific information about acute cardiac syndromes and disorders such as acute cardiac injury, particularly within the first few hours of clinical presentation.
- There is also a need for means to monitor vascular vulnerable plaques, which provide the substrate for acute cardiac events. Atherosclerosis is a major health problem with an annual mortality of 500,000 deaths in the United States alone. It is currently accepted that acute coronary syndromes are most commonly the result of disruption of atheromatous vulnerable plaques that are angiographically modest in severity. “Vulnerable plaque” is used to refer to a subgroup of modestly stenotic but unstable plaques that are prone to rupture and, as a result, cause sudden cardiac arrest. While coronary angiography is widely used to illustrate and monitor luminal narrowing of the coronary artery, it is unable to provide selective identification of vulnerable plaques. Most of the alternative approaches to identify vulnerable plaques are based on invasive endovascular approaches. Therefore, the development of noninvasive technology which enables vulnerable plaques to be distinguished from stable ones is critical and urgently needed to reduce the morbidity and mortality of atherosclerotic patients. It would be highly desirable if methods and devices were available to detect the unstable atherosclerotic plaque, independent of the degree of luminal diameter narrowing, and treat it before unstable angina and/or acute myocardial infarction and their consequences occur.7
- According to the National Institutes of Health (Program Announcement PA-09-196, “Ancillary Studies of Acute Kidney Injury, Chronic Kidney Disease, and End Stage Renal Disease Accessing Information from Clinical Trials, Epidemiological Studies, and Databases”), the public health and economic burden of chronic kidney disease in the United States is substantial. Diabetes and hypertension are the main causes of chronic kidney disease. The number of new cases of end-stage kidney disease in 2006 exceeded 110,000 and the number of patients undergoing treatment was over 500,000. As the United States population continues to age it is anticipated that the number of new cases of end-stage kidney disease will also increase. It has been estimated that approximately 26,000,000 people have chronic kidney disease in the US. Acute renal failure in hospitalized patients is also a significant problem in the United States, ranging from 1-15% of hospitalized patients. Medical management of acute renal failure has traditionally consisted primarily of supportive care, with renal replacement therapy for the most severe cases. Despite such interventions in acute renal failure, however, mortality rates in affected patients remain very high (>50% in some series).
- Similarly, chronic renal failure (CRF) has high mortality and morbidity, for which there is no specific therapy except supportive care.8 Histologically, ischemic CRF is characterized by acute tubular necrosis; however a major limitation in approaching the disease is the lack of clinically feasible diagnostics for early detection. Early identification of chronic renal disease and timely detection of progression are challenges facing the global nephrology community, especially since a number of promising primary and secondary interventions to decelerate progression are available. In order to control costs, physicians will need to decrease progression rates of chronic renal disease to end-stage renal disease (ESRD). Current markers of kidney disease and kidney disease progression are the serum creatinine and urinary protein concentration, including microalbuminuria.8 The slope of the decrease in glomerular filtration rate (GFR) has been demonstrated to predict the timing of ESRD, and the level of proteinuria has been shown in multiple studies to correlate with kidney disease progression rates. However, their ability to recognize early kidney disease is limited. Serum creatinine concentration is dependent on the subject's age, gender, race, muscle mass, weight, degree of physical exertion, and various medications and correct interpretation of kidney function based on serum creatinine requires complex formulas. Although urinary protein is sensitive for progressive renal disease, its appearance occurs after significant renal damage has already occurred. For maximum usefulness, a biomarker of early and/or progressive kidney damage should become positive at the earliest possible point, preferably at that point that kidney damage begins to occur. There remains a strong need for discovery and validation of relevant markers, in particular for early detection.8
- A continuing problem for the World Anti-Doping Agency is the misuse of peptide/protein hormones such as erythropoietin (EPO) as performance enhancing agents by athletes. Currently, blood and urine samples are analyzed by electrophoretic or immunoassay methodologies for the presence of prohibited substances. Aside from any inherent technical issues, these determinations must account for accepted physiological levels of endogenous peptide hormones as well as determining the presence of their synthetic or recombinant forms. However it is also recognized that for some hormones in this group, newer generations of their synthetic or recombinant form have also rendered their detection more difficult when they are misused in sport, and that this issue is further complicated by (1) technological developments in the construction of synthetic or recombinant EPO, (2) controlled administration at time-points to avoid detection, (3) resultant difficulties in confirming substance levels that exceed the accepted norm, and (4) indeterminate recordings that reflect protein variability in non-specific binding of secondary antibodies (particularly in urine concentrates) and the non-specific enzymatic-induced band shifts in iso-electric tests.
- Embodiments of the present invention relate to the discovery of new early markers for diagnostics, including for use in the evaluation, diagnosis and prognosis of, for example, acute coronary syndromes, acute and chronic kidney disorders and injuries, and vulnerable plaque, as well as for use in the detection of EPO doping, for example, by athletes.
- The inventions described and claimed herein have many attributes and embodiments including, but not limited to, those set forth or described or referenced in this Brief Summary. It is not intended to be all-inclusive and the inventions described and claimed herein are not limited to or by the features or embodiments identified in this Brief Summary, which is included for purposes of illustration only and not restriction.
- Applicant has discovered signal peptide fragments of C-type natriuretic peptide (CNPsp) and erythropoietin (EPOsp). Applicant has also discovered that these signal peptide fragments are detectable by assay of biological samples, including by assay of samples of biological material that contain material released into the circulation.
- The invention relates to signal peptides and signal peptide fragments of C-type natriuretic peptides and erythropoietins, and to methods for their detection (including detection of EPOsp and/or CNPsp and EPOsp and/or CNPsp fragment immunoreactivity), for example, as well as binding agents and assays useful therefor. The invention also relates to and their use in the prognosis, diagnosis and monitoring of biological events or disorders or states which result in their release into body fluids that can be sampled. Examples of biological events, disorders and states for prognosis, diagnosis and monitoring include acute and chronic cardiovascular disorders, vulnerable atherosclerotic plaque, congestive heart failure, cardiac arrhythmia, acute coronary syndromes, chronic arterial disease, acute and chronic kidney diseases disorders, injuries and conditions.
- The use and measurement of EPOsp and/or CNPsp immunoreactivity, an EPOsp and/or CNPsp, or fragments, including immunoreactive peptide fragments, of EPOsp and CNPsp, provides superior detection and discriminatory capabilities compared with existing standard markers. In this regard, the much quicker time to reach peak levels in blood and the specific nature of each marker to the condition is noted. The latter arises from the organ specific location of each signal peptide fragment. Thus, EPOsp is specifically released from kidney, whereas CNP is released from the heart and blood vessels. Furthermore, because signal peptides have a shorter half life in blood compared with existing markers, they have the capacity to rise and fall more quickly, detecting underlying active disease. This cannot be said for existing markers, which have long half lives and therefore, possess blood levels which do not respond as rapidly to active disease.
-
Human EPOsp has the sequence (SEQ ID NO: 1) MGVHECPAWLWLLLSLLSLPLGLPVLG - Human EPOsp fragments include, for example, EPOsp(1-9) and EPOsp(18-27), which may be written as follows:
-
(SEQ ID NO: 2) MGVHECPAW (SEQ ID NO: 3) SLPLGLPVLG Human CNPsp has the sequence (SEQ ID NO: 4) MHLSQ LLACA LLLTL LSLRP SEA. - Human CNPsp fragments include, for example, CNPsp(1-13) and CNPsp(14-23), which may be written as follows:
-
(SEQ ID NO: 5) MHLSQLLACALLL (SEQ ID NO: 6) TLLSLRPSEA - Animal analogs of these signal peptides and fragments, as well as variants thereof useful to prepare binding agents to these human and animal signal peptides and fragments are within the invention.
- The inventions include methods for predicting, diagnosing or monitoring a biological event or disorder in a subject wherein the event correlates with the release of CNPsp or EPOsp or fragments thereof into the circulation, or for evaluation of EPO doping. In one aspect, a method comprises measuring the level of one or more of these signal peptides or fragments in a biological sample from the subject, and comparing the level of the signal peptide fragments with individual or combinatorial levels of said signal peptide fragments from a control or control population (including historical controls) wherein a deviation in the measured level from the control level is indicative of a biological event. The signal peptides themselves may also be measured.
- Applicant has also discovered that EPOsp and/or CNPsp fragments can be used to evaluate the presence of acute cardiac syndromes, and that one or more of said EPOsp and/or CNPsp fragments are typically highest in the first few hours following onset of, or at clinical presentation with a suspected acute coronary syndrome.
- In a further aspect the present invention provides a method for predicting, diagnosing or monitoring an ACS in a subject, the method comprising measuring the level of EPOsp and/or CNPsp fragments in a biological sample from the subject and comparing the level of said EPOsp and/or CNPsp fragments with the level of said EPOsp and/or CNPsp fragments from one or more controls wherein a measured level of said EPOsp and/or CNPsp fragments higher than the control level is indicative of an ACS.
- Elevated levels of EPOsp and/or CNPsp fragments are typically diagnostic of MI and angina.
- Elevated levels of EPOsp and/or CNPsp fragments may also be used as a diagnostic for heart failure.
- Elevated levels of EPOsp and/or CNPsp fragments may also be used as a diagnostic for vascular disease and/or atherosclerosis. CNPsp, for example, can be elevated by about 50% or more over normal in these conditions.
- Elevated levels of CNPsp fragments may also be used for diagnoses of hypertension.
- Elevated levels of CNPsp fragments may also be used for diagnoses of syncope, a temporary loss of consciousness and posture usually related to temporary insufficient blood flow to the brain. Syncope most often occurs when the blood pressure is too low (hypotension) and the heart doesn't pump a normal supply of oxygen to the brain.
- Elevated levels of EPOsp and/or EPOsp fragments may also be used for evaluation of EPO doping. An EPO/EPOsp immunoreactivity (indicative of an EPOsp and/or an EPOsp fragment or fragments) plasma ratio could be expected to exceed up to 1000:1, for example, particularly during the acute phase of administration.
- The inventions also include methods for monitoring a response to treatment of a biological event or disorder, particularly an acute cardiac syndrome in a subject, the method comprising measuring the level of one or more of the signal peptide fragments referenced herein, for example, EPOsp and/or CNPsp fragments, in a biological sample from the subject, preferably before and after treatment, and comparing the level of said fragments with the level of said fragments from a control, wherein a change in the level or measured level (e.g., an historical level or baseline) of fragments from the control level is indicative of a response to the treatment.
- The invention also includes methods for diagnosing or evaluating acute and chronic renal disease or renal failure or injury in a subject, wherein measurement of the level of EPOsp shows a negative correlation with GFR (an indicator of renal function). Plasma EPOsp levels, for example, are elevated in patients with chronic renal disease and in those with heart failure compared with normal. The ratio of EPOsp to EPO is about 6 in normal health, and this rises to approximately 10 in renal disease and drops to about 4 in heart failure patients.
- The invention also includes methods for predicting, diagnosing or monitoring an acute cardiac syndrome in a subject, the method comprising measuring the level of one or more of EPOsp and/or CNPsp fragments in a biological sample obtained from the subject within about the first 12 hours or more, preferably the first 4-6 hours or less, of onset of, or clinical presentation with an ACS or suspected ACS, comparing the measured level of said one or more of EPOsp and/or CNPsp fragments with the level of one or more of EPOsp and/or CNPsp fragments from a control (e.g., an historical control or known control level), wherein a measured level of one or more of EPOsp and/or CNPsp fragments higher than the control level is indicative of an ACS.
- Broadly, the inventions can be used to predict, diagnose or monitor any event in which one or more of EPOsp and/or CNPsp and/or fragments thereof are released from cells, for example, into the circulation or other biological fluid or tissue.
- In one embodiment of the methods of the invention, particularly for a cardiovascular or renal disorder, or suspected cardiovascular or renal disorder, the level(s) of one or more of the EPOsp and/or CNPsp and/or fragments thereof is/are measured within about forty-eight hours, about twenty-four hours, about twelve hours, about ten hours, about eight hours, about six hours, about four hours, about two hours, or about one hour, or within about 30 minutes of presentation of the patient with a disorder or suspected disorder.
- In one embodiment, the methods of the invention are in vitro methods and the biological sample is blood, plasma, serum, urine, saliva, interstitial fluid or heart tissue.
- In one embodiment, the measuring step comprises detecting binding between one or more target fragments and a binding agent that binds said fragment or fragments with desired specificity and selectivity. The measuring step may comprise:
-
- (a) bringing together a biological sample containing or suspected of containing one or more target fragments with a binding agent or agents, with or without an incubation step; and
- (b) measuring the level of bound target signal peptide(s) or fragment(s).
- The binding agent may be, for example, an antibody, or any molecule comprising an antigen-binding fragment thereof. Most commonly, the antibody may be a monoclonal, polyclonal, chimeric or humanized antibody. In one embodiment the antibody is a monoclonal antibody. In another embodiment, the binding agent is, for example, a single chain antibody or scFv. In one embodiment, the anti-fragment binding agent is, for example, an antibody or antigen-binding fragment thereof that recognizes fragments in or obtained from a biological sample.
- In another embodiment, the levels of one or more target fragments is/are measured using mass spectroscopy.
- One or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, may be bound using a binding agent of the invention. Other EPOsp and CNPsp fragments are also within the invention.
- The molecules which is/are bound by the binding agent or agents may be the full-length human signal peptide molecules (SEQ ID NOS: 1, 4) or an antigenic variant or fragment thereof. In one embodiment, the fragment is at least four contiguous amino acids in length. The binding agent or agents may, for example, bind the N-terminus or the C-terminus of an EPOsp and/or CNPsp. The fragments may, for example, be any of SEQ ID NOS:2, 3, 5 and/or 6.
- Binding of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, may be measured, for example, using antibodies or antibody fragments or other binding agents that are immobilised on a solid phase.
- Levels of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, may usefully be measured by, for example, RIA, ELISA, fluoroimmunoassay, immunofluorometric assay, mass spectrometry or immunoradiometric assay. The methods of the invention include the use of binding agents and assays for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in a biological sample from a subject, the assay comprising determining the presence or amount of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the sample using any known methods.
- The invention also provides assays, including assays for the uses described herein, for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other EPOsp and/or CNPsp fragments, comprising, for example:
-
- (a) binding one or more one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof) from a sample; and
- (b) measuring the level of one or more bound peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof).
- The invention also provides a assay or assays for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1, 2, 3, 4, 5 or 6 (or non-human analogs or variants thereof), or other signal peptide fragments, for use in predicting, diagnosing or monitoring biological event or disorder in a subject. In one embodiment, the assay is an in vitro assay.
- The invention also includes isolated, substantially purified, or purified, as well as synthetically made, fragments corresponding to, for example, any of SEQ ID NOS:2, 3, 5 and/or 6.
- The cardiac-related methods of the invention may further comprise measuring the level of one or more non-EPOsp and non-CNPsp markers of, for example, ACS, and comparing the levels against marker levels from a control wherein a deviation in the measured level from a control level, together with a measured level of one or more of EPOsp and/or CNPsp fragments which is higher than the control level of one or more of EPOsp and/or CNPsp fragments, is predictive or diagnostic of the ACS, or can be used to monitor said ACS. Markers for use in the context of acute coronary syndrome include, for example, troponin T, troponin I, creatine kinase MB, myoglobin, BNP, NT-BNP, BNP-SP, ANP, ANP-SP, LDH, aspartate aminotransferase, and heart specific fatty acid binding protein (H-FABP).
- In another aspect, the present invention also provides a binding agent for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other fragments. In one embodiment, the binding agent of the invention binds one of SEQ ID NOS:2, 3, 5 and/or 6. In another embodiment, the binding agent binds a variant or fragment of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments.
- The binding agent is useful in predicting, diagnosing or monitoring a biological event or disorder which correlates with the release of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1, 2, 3, 4, 5 or 6 (or non-human analogs or variants thereof), or other signal peptide fragments, including, for example, into the circulation. Such events or disorders include acute cardiac syndromes in a subject.
- The invention also provides an anti-EPOsp and/or anti-CNPsp antibody or antigen-binding fragment thereof. The antibody may be a monoclonal, polyclonal, chimeric or humanized antibody, for example. The invention also includes antibodies and binding fragments thereof that bind to EPOsp and/or CNPsp fragments, including fragments identified by SEQ ID NOS:2, 3, 5 and/or 6.
- The invention is also directed to the use of a binding agent in the manufacture of a assay for one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, for assessing a biological event or disorder in a subject, or to the use of a binding agent in the manufacture of a prognostic, diagnostic or monitoring tool for assessing a biological event or disorder in a subject and/or the treatment thereof, or for evaluation of EPO misuse or doping. In one embodiment, the event or disorder correlates with the release of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, into the circulation including from or following a chronic renal disease or injury, heart failure, hypertension, syncope, vascular disease including atherosclerosis, or an acute cardiac syndrome including myocardial infarction and angina, or EPO misuse or doping.
- The invention also relates to the use of an antibody or antigen-binding fragment of the invention in the manufacture of a prognostic, diagnostic or monitoring tool for assessing a biological event or disorder which correlates with the release of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, including, for example, into the circulation including a chronic renal disease or injury, heart failure, hypertension, syncope, vascular disease including atherosclerosis, or an acute cardiac syndrome or disorder including myocardial infarction and angina in a subject.
- In one embodiment the prognostic, diagnostic or monitoring tool is calibrated to measure levels of one or more of the peptides or peptide fragments corresponding to any of SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the range of, for example, from 0.1 to 1500 pmol/L, 0.1 to 500 pmol/L, 1 to 300 pmol/L, 10 to 250 or 20 to 150 pmol/L. Furthermore, erythropoietin signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 400 to 4000 pmol/L, about 400 to 200 pmol/L, about 320 to 520 pmol/L, or about 400-420 pmol/L or less. Levels at least as low as 5 pmol/L are detectable. Angiotensin signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 10 to 1000 pmol/L, about 5 to 500 pmol/L, about 1 to 100 pmol/L, or about 0.1 to 10 pmol/L or less. Levels at least as low as 0.1 pmol/L are detectable. C-type natriuretic signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 50 to 1500 pmol/L, about 25 to 750 pmol/L, about 10 to 500 pmol/L, or about 5 to 150 pmol/L or less. Levels at least as low as 2 pmol/L are detectable. Endothelin-1 signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 10 to 200 pmol/L, about 5 to 100 pmol/L, about 10 to 50 pmol/L, or about 1 to 20 pmol/L or less. Levels at least as low as 1 pmol/L are detectable.
- In one aspect, the normal level of EPOsp and/or EPOsp fragments, including SEQ ID NOS:1-3 is about 14 to about 90 pmol/L and in one of more of the disease states or conditions referenced herein is about 30 to about 200 pmol/L. Such levels can be measured, for example, in blood or plasma.
- In one aspect, the normal level of CNPsp and/or CNPsp fragments, including SEQ ID NOS:4-6 is about 5 to about 15 pmol/L and in one of more of the disease states or conditions referenced herein is about 18 to about 55 pmol/L. Such levels can be measured, for example, in blood or plasma.
- In another aspect, the invention provides a kit for predicting, diagnosing or monitoring a biological event or disorder in a subject, the kit comprising a binding agent against a peptide or peptide fragment corresponding to one or more of SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments.
- In one embodiment the kit is calibrated to measure levels a peptide or peptide fragment corresponding to any one or more of SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the ranges noted above.
- In one embodiment the kit also includes information and/or instructions for carrying out an assay using the binding agent. The kit may also include information and/or instructions for predicting, diagnosing or monitoring a biological event or disorder including one or more of chronic renal disease or injury, heart failure, hypertension, syncope, vascular disease including atherosclerosis, or an acute cardiac syndrome including myocardial infarction and angina in a subject, from the level of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1, 2, 3, 4, 5 or 6 (or non-human analogs or variants thereof), or other signal peptide fragments, measured in a biological sample and comparing the measured level to a control level.
- The invention also relates to the use of one or more of the peptides or peptide fragments corresponding to SEQ ID NOS:1-6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the preparation of an antibody or binding fragment thereof.
- The invention will now be described with reference to the figures in the accompanying drawings in which
-
FIG. 1 shows the amino acid sequences of EPOsp and CNPspP using single letter notation. -
FIG. 2 (upper panel) a representative standard curve of a CNPsp(15-23) RIA. (Lower panel): sampling of regional vascular beds in humans shows that only the cardiac coronary sinus (CS) and renal vein (RV) had higher CNPsp concentrations compared with circulating arterial (FA1 and FA2) levels. This indicates that heart is a functional source of CNPsp and that one may sample a desired venous source with no need to sample an arterial source. The signal peptide may be identified in an arterial sample, but a venous sample may be used to identify the source of the peptide. -
FIG. 3 (upper panel) plasma EPOsp(1-9) levels show a negative correlation with GFR (an indicator of renal function). (Middle panel) plasma EPOsp levels are elevated in patients with chronic renal disease (while EPO drops markedly) and in those with heart failure where EPOsp levels are elevated (while EPO rises markedly) compared with normal. (Lower panel) the ratio of EPOsp (pmol/L) to EPO (mU/L) is about 6 in normal health. This rises to approximately 10 in renal disease and drops to about 4 in heart failure patients. -
FIG. 4 shows a generalised schematic of signal peptide cleavage from prepropeptide precursor molecules and indicates the generation of previously unknown and unrecognized, detectable signal peptide fragments. -
FIG. 5 Immunoassay results showing Upper panel: Serial plasma concentrations of CNPsp(14-23) in 8 patients with documented ST-elevation myocardial infarction (STEMI) from the time of onset of chest pain at hospital emergency department. Lower panel: concomitant TnI, CK-MB and myoglobin plasma levels in the same STEMI patients identified in the upper panel. -
FIG. 6 shows a table of cross reactivity data of EPOsp and CNPsp antiserum. - Acute coronary syndromes encompasses a wide spectrum of cardiac ischemia events including acute myocardial infarction (AMI) with ST-elevation on presenting ECG, unstable angina, and acute non-ST-elevated myocardial infarction; cardiac ischemia; acute cardiac injury; acute cardiac damage resulting from acute drug toxicity; and acute cardiomyopathies. Full descriptive, definitions of these disorders are found in
reference 1. See, e.g.,FIG. 5 . - Acute (sudden) kidney failure is the sudden loss of the ability of the kidneys to remove waste and concentrate urine without losing electrolytes. There are many possible causes of such kidney damage, including disease and injury. They include acute tubular necrosis; autoimmune kidney disease; decreased blood flow due to very low blood pressure; disorders that cause clotting within the kidney's blood vessels; infections that directly injure the kidney; pregnancy complications; and urinary tract obstruction. Chronic kidney disease is the slow loss of kidney function over time. Symptoms include bloody stools, breath odor, bruising easily, changes in mental status or mood, decreased appetite, decreased sensation, especially in the hands or feet, fatigue, flank pain (between the ribs and hips), hand tremor, high blood pressure, metallic taste in mouth, nausea or vomiting (which may last for days), nosebleeds, persistent hiccups, prolonged bleeding, seizures, slow, sluggish movements, generalized swelling (fluid retention), swelling of the ankle, foot, and leg, and urination changes (decrease in amount of urine, excessive urination at night, and urination stops completely).
- Chronic kidney disease (CKD) slowly gets worse over time. In the early stages, there may be no symptoms. The loss of function usually takes months or years to occur. It may be so slow that symptoms do not occur until kidney function is less than one-tenth of normal. The final stage of chronic kidney disease is called end-stage renal disease (ESRD). The kidneys no longer function and the patient needs dialysis or a kidney transplant. Chronic kidney disease and ESRD affect more than 2 out of every 1,000 people in the United States. Diabetes and high blood pressure are the two most common causes and account for most cases. Injuries are another cause. Many other diseases and conditions can damage the kidneys, including problems with the arteries leading to or inside the kidneys; birth defects of the kidneys (such as polycystic kidney disease); some pain medications and other drugs; certain toxic chemicals; autoimmune disorders (such as systemic lupus erythematosus and scleroderma); injury or trauma glomerulonephritis; kidney stones and infection; reflux nephropathy (in which the kidneys are damaged by the backward flow of urine into the kidneys) and other kidney diseases. Symptoms may include general ill feeling and fatigue, generalized itching (pruritus) and dry skin, headaches, weight loss without trying to lose weight, appetite loss, and nausea. Other symptoms that may develop, especially when kidney function has worsened, include abnormally dark or light skin, bone pain, brain and nervous system symptoms, drowsiness and confusion, problems concentrating or thinking, numbness in the hands, feet, or other areas, muscle twitching or cramps, breath odor, easy bruising, bleeding, or blood in the stool, excessive thirst, frequent hiccups, low level of sexual interest and impotence, menstrual periods stop (amenorrhea), sleep problems, such as insomnia, restless leg syndrome, and obstructive sleep apnea, swelling of the feet and hands (edema), and vomiting, typically in the morning.
- A vulnerable plaque is an atheromatous plaque which is particularly prone to produce sudden major problems, such as a heart attack or stroke. Plaque rupture, the most frequent cause of coronary thrombosis, has been implicated in the episodic progression of coronary stenosis as demonstrated by sequential angiography and is often associated with unstable angina, myocardial infarction, and sudden death. Atherosclerotic plaques that are vulnerable to rupture have a dense infiltrate of macrophages and, to a lesser extent, lymphocytes, within a fibrous cap that overlies a crescentic hypocellular mass of lipids. Thus, vulnerable plaque is often characterized as an atheromatous plaque in an arterial wall, which has abundant macrophages, gobs of lipids and cholesterol, and is usually covered by a thin fibrous cap which may rupture. The ruptured plaque results in exposure of blood to the lipid core and other plaque components and is believed to instigate the majority of coronary thrombi. The characterization of these relatively less stenotic plaques prone to erosion or rupture, and the recognition that they contribute to unstable angina and myocardial infarction, has important implications. Early identification of potentially vulnerable plaques may lead to changes in the indications for patients considered for bypass surgery, angioplasty, and other procedures. See “Molecular and Physical Characterization of the Vulnerable Plaque” NIH guide, Volume 26, Number 37, Nov. 7, 1997
- The term “antibody” refers to an immunoglobulin molecule having a specific structure that interacts (binds) specifically with a molecule comprising the antigen used for synthesizing the antibody or with an antigen closely related to it. As used herein, the term “antibody” broadly includes full length antibodies and may also include antigen binding fragments thereof. Also included are monoclonal and polyclonal antibodies, multivalent and monovalent antibodies, multispecific antibodies (for example bi-specific antibodies), chimeric antibodies, human antibodies, humanized antibodies and antibodies that have been affinity matured. Also included are single chain antibodies, scFvs, and other molecules containing antigen binding constructs. An antibody binds selectively or specifically to an EPOsp and/or CNPsp polypeptide or fragment of the invention if the antibody binds preferentially to the target, including, for example, those having less than about 25%, or less than about 10%, or less than about 1% or less than about 0.1% cross-reactivity with a non-EPOsp and/or non-CNPsp polypeptide or polypeptide fragment. The antibody will have any useful binding affinity binding affinity (dissociation constant (Kd) value), for the antigen or epitope for the uses described and claimed herein. Typical binding affinity may be equal to, for example, 10−6, or 10−7M, and more typically at least about 10−8M, 10−9M, 10−10, 10−11 or 10−12 M. Binding affinity may be assessed using surface plasma resonance, or other methods known in the art.
- As used herein, an “antigen-binding fragment” or “antibody fragment” means a portion of the intact antibody that preferably retains most or all, or minimally at least one of, the normal functions of that antibody fragment. An antibody fragment, for example, may comprise an Fv region that retains all or most or some of the function of the corresponding Fv region in the intact antibody-antigen binding region. Examples of antibody fragments include Fab, Fab′, F(ab′)2 and Fv fragments, linear antibodies, diabodies, single chain antibodies (ScFV) and multispecific antibodies.
- As used herein, a “monoclonal antibody” means an antibody that is directed against a single target antigen. A monoclonal antibody may be obtained from a population of homogenous or substantially homogenous antibodies wherein each monoclonal antibody is identical and/or bind the same epitope, except for natural mutations which may occur in minor amounts.
- An “isolated antibody” is an identified antibody which has been separated or recovered, or both, from a component of its natural environment, for example, separated from other proteins including enzymes and hormones. In one embodiment, the antibody is purified to at least about 95%, about 96% about 97% about 98% or about 99% by weight of antibody. Purity can be determined by the Lowry method, for example. Ordinarily the antibody will be prepared by at least one purification step.
- The term “binding agent” as used herein refers to any solid or non-solid material capable of binding an EPOsp and/or CNPsp polypeptides, or a fragment or variant thereof. In one embodiment the term refers to any natural or non-natural molecule that binds to an EPOsp and/or CNPsp polypeptide or a fragment or variant thereof. Examples of binding agents include proteins, peptides, nucleic acids, carbohydrates, lipids, and small molecule compounds.
- Biological sample as used herein means any sample derived from a subject to be screened that contains or is suspected of containing a EPOsp and/or CNPsp polypeptide or polypeptide fragment. The sample may be any sample known in the art in which the target can be detected. Included are body fluids such as plasma, serum, blood (including arterial and/or venous samples), urine, saliva, interstitial fluid, synovial, cerebrospinal, lymph, seminal, amniotic, pericardial fluid and ascites, as well as tissues such as cardiac and renal tissues but not limited thereto.
- The term “epitope” includes any protein determinant capable of specific binding to an immunoglobulin and/or T cell receptor. That is, a site on an antigen to which antibodies bind or B and/or T cells respond. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains, and usually have specific three dimensional structural characteristics, and specific charge characteristics. An epitope typically includes 3, 5 or usually 8-10 amino acids. The amino acids may be contiguous, or non-contiguous amino acids juxtaposed by tertiary folding.
- Within about 2 or 4 to about 12 hours of the onset of symptoms or clinical presentation includes from 1 minute up to and including about 240 to about 720 or minutes from onset of, or presentation at a medical facility, for example, with ACS, or other disorder or suspected disorder as described herein. Measurements may be made within about 10 hours (from 1 minute up to and including about 600 minutes), within about 8 hours (from 1 minute up to and including about 480 minutes), within about 6 hours (from 1 minute up to and including about 360 minutes), within about 4 hours (from 1 minute up to and including about 240 minutes), within about 2 hours (from 1 minute up to and including about 120 minutes) or within about 1 hour (from 1 minute up to and including about 60 minutes) from onset or presentation, within 5 to about 45 minutes, 15 to about 40 minutes, 20 to about 35 minutes, or within about 25 to 30 minutes of onset or presentation.
- A level “higher” or “lower” than a control, or a change or deviation from a control in one embodiment is statistically significant. A higher level, lower level, deviation from, or change from a control level or mean or historical control level can be considered to exist if the level differs from the control level by about 5% or more, by about 10% or more, by about 20% or more, or by about 50% or more compared to the control level. Statistically significant may alternatively be calculated as P≤0.05. Higher levels, lower levels, deviation, and changes can also be determined by recourse to assay reference limits or reference intervals. These can be calculated from intuitive assessment or non-parametric methods. Overall, these methods may calculate the 0.025, and 0.975 fractiles as 0.025*(n+1) and 0.975 (n+1). Such methods are well known in the art.9,10 Presence of a marker absent in a control may be seen as a higher level, deviation or change. Absence of a marker present in a control may be seen as a lower level, deviation or change.
- Included are samples from any subjects such as from normal healthy subjects with no clinical history of biological events or disorders, including diabetes or ACS, and subjects with various ACS's including but not limited to acute coronary syndromes: AMI with ST-elevation on presenting ECG, unstable angina, and acute non ST-elevated MI; cardiac ischemia; acute cardiac injury; acute cardiac damage resulting from acute drug toxicity, and acute cardiomyopathies.
- The term “cardiomyopathies” as used herein refers to diseases of the myocardium where the myocardium or heart muscle is weakened. This can result in reduced pumping of the heart. Common causes of cardiomyopathies are heart attacks, viral infections, high blood pressure, alcoholism, and autoimmune diseases.
- “Biological event or disorder” as used herein refers to a range of events in which EPOsp and/or CNPsp polypeptides or polypeptide fragments is/are released from cells and into, for example, the circulation of a subject, including acute and chronic conditions. Exemplar conditions include acute and chronic kidney disease and cardiovascular disease (including acute coronary syndromes). Examples of chronic conditions are heart failure, AMI and cardiovascular disease, as well as hypertension.
- EPOsp and/or CNPsp refer to the complete signal peptide for the human sequence. Also encompassed within the terms EPOsp and/or CNPsp are variants and fragments thereof. In one embodiment an EPOsp and/or CNPsp polypeptide functions as a signal polypeptide, or as an antigenic polypeptide to which an antibody can bind. Variants and fragments of an EPOsp and/or CNPsp include variants and fragments which retain either or both of these functions.
- The term “comprising” as used in this specification and claims means “including”; that is to say when interpreting statements in this specification and claims which include “comprising”, the features prefaced by this term in each statement all need to be present but other features can also be present. Related terms such as “comprise” and “comprised” are to be interpreted in similar manner.
- The term “polypeptide”, as used herein, encompasses amino acid chains of any length, including full length sequences in which amino acid residues are linked by covalent peptide bonds. Polypeptides useful in the present invention may be purified natural products, or may be produced partially or wholly using recombinant or synthetic techniques. The term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof. Polypeptides herein may have chain lengths of at least 4 amino acids, at least 5 amino acids, or at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, or all 23 amino acids of the full-length EPOsp and/or CNPsp. Reference to other polypeptides of the invention or other polypeptides described herein should be similarly understood.
- A “fragment” of a polypeptide is a subsequence of the polypeptide that may be detected using a binding agent. The term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof.
- The term “isolated” as applied to the polypeptide sequences disclosed herein is used to refer to sequences that are removed from their natural cellular or other naturally-occurring biological environment. An isolated molecule may be obtained by any method or combination of methods including biochemical, recombinant, and synthetic techniques. The polypeptide sequences may be prepared by at least one purification step.
- The term “purified” as used herein does not require absolute purity. Purified refers in various embodiments, for example, to at least about 80%, 85%, 90%, 95%, 98%, or 99% homogeneity of a polypeptide, for example, in a sample. The term should be similarly understood in relation to other molecules and constructs described herein.
- As used herein, the term “variant” refers to polypeptide sequences different from the specifically identified sequences, wherein 1 to 6 or more or amino acid residues are deleted, substituted, or added. Substitutions, additions or deletions of one, two, three, four, five or six amino acids are contemplated. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variants may be from the same or from other species and may encompass homologues, paralogues and orthologues. In certain embodiments, variants of the polypeptides useful in the invention have biological activities including signal peptide activity or antigenic-binding properties that are the same or similar to those of the parent polypeptides. The term “variant” with reference to polypeptides encompasses all forms of polypeptides as defined herein.
- Variant polypeptide sequences exhibit at least about 50%, at least about 60%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to a sequence of the present invention. With regard to polypeptides, identity is found over a comparison window of at least 5 to 7 amino acid positions.
- Polypeptide variants also encompass those which exhibit a similarity to one or more of the specifically identified sequences that is likely to preserve the functional equivalence of those sequences, including those which could not reasonably be expected to have occurred by random chance. As discussed above, in the case of EPOsp and/or CNPsp variants function may be as either a signal polypeptide, or antigenic polypeptide, or both.
- Polypeptide sequence identity and similarity can be determined in the following manner. The subject polypeptide sequence is compared to a candidate polypeptide sequence using BLASTP (from the BLAST suite of programs, version 2.2.18 [April 2008]]) in bl2seq, which is publicly available from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The default parameters of bl2seq are utilized except that filtering of low complexity regions should be turned off.
- The similarity of polypeptide sequences may be examined using the following UNIX command line parameters: bl2seq—i peptideseq1—j peptideseq2—F F—p blastp. The parameter—F F turns off filtering of low complexity sections. The parameter—p selects the appropriate algorithm for the pair of sequences. This program finds regions of similarity between the sequences and for each such region reports an “E value” which is the expected number of times one could expect to see such a match by chance in a database of a fixed reference size containing random sequences. For small E values, much less than one, this is approximately the probability of such a random match. Variant polypeptide sequences commonly exhibit an E value of less than 1×10−5, less than 1×10−6, less than 1×10−9, less than 1×10−12, less than 1×10−5, less than 1×10−18 or less than 1×10−21 when compared with any one of the specifically identified sequences. Polypeptide sequence identity may also be calculated over the entire length of the overlap between a candidate and subject polypeptide sequences using global sequence alignment programs. EMBOSS-needle (available at http:/www.ebi.ac.uk/emboss/align/) and GAP (Huang, X. (1994) On Global Sequence Alignment. Computer Applications in the
Biosciences 10, 227-235.) as discussed above are also suitable global sequence alignment programs for calculating polypeptide sequence identity. Use of BLASTP is preferred for use in the determination of polypeptide variants according to the present invention. - In one embodiment variants include peptides whose sequence differ from the human signal peptides and fragments herein by one, two, three, four, five, six or more conservative amino acid substitutions, deletions, additions or insertions which do not affect the biological activity of the peptide. Conservative substitutions typically include the substitution of one amino acid for another with similar characteristics, e.g., substitutions within the following groups: valine, glycine; glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagines, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Examples of conservative substitutions can also be found in the sequences as shown in the sequence listings whereby the substitutions in different mammalian species compared to the human sequence are shown. Other conservative substitutions are known in the art.
- Non-conservative substitutions may also be used and may entail, for example, exchanging a member of one amino acid class (e.g., hydrophobic, neutral hydrophilic, acidic, basic, residues that influence chain orientation, and aromatic) for a member of another class.
- Other variants include peptides with modifications which influence peptide stability. Such analogs may contain, for example, one or more non-peptide bonds (which replace the peptide bonds) in the peptide sequence. Also included are analogs that include residues other than naturally occurring L-amino acids, e.g. D-amino acids or non-naturally occurring synthetic amino acids, e.g. beta or gamma amino acids and cyclic analogs.
- “Subject” as used herein is preferably a mammal and includes human, and non-human mammals such as cats, dogs, horses, cows, sheep, deer, mice, rats, primates (including gorillas, rhesus monkeys and chimpanzees), and other domestic farm or zoo animals. In one embodiment, the mammal is human.
- The term “presentation” as used herein refers to presentation of a subject, including, for example, before medical personnel at a medical facility such as a doctor's office, clinic or hospital. Presentation, however, includes presentation of a subject before any person who will use the invention, e.g., paramedic personnel in an ambulance.
- The term “treat”, “treating” or “treatment” and “preventing” refer to therapeutic or prophylactic measures which alleviate, ameliorate, manage, prevent, restrain, stop or reverse progression of a biological event characterized by a EPOsp and/or CNPsp polypeptide or polypeptide fragment level which shows a deviation from normal control levels, including cardiovascular disease, an ACS, renal disease and AMI, and other disorders and conditions noted herein. The subject may show observable or measurable (statistically significant) reduction in one or more of glucose, lactate, insulin, fatty acids, triglycerides, TnI, TnT, BNP, N—BNP, BNP-SP, ANP, ANP-SP, creatine kinase-MB, myoglobin LDH, aspartate aminotransferase, H-FABP, endothelin, adrenomedullin, rennin, angiotensin II, and other markers.
- The term “mass spectrometry” as used herein refers to methods of filtering, detecting, and measuring ions based on their mass to charge ratio. See for example U.S. Pat. Nos. 5,719,060, 6,204,500, 6,107,623, 6,124,137, 6,225,047, 6,268,144, 7,057,165, and 7,045,366. Common mass spectrometry techniques include matrix-assisted laser desorption ionization (MALDI) and surface-enhanced laser desorption ionization (SELDI). Both may be coupled with time of flight analysers (MALDI-TOF and SELDI-TOF) which allow for analysis of analytes at femtomole levels in very short ion pulses.
- Versions of SELDI discussed for example in U.S. Pat. Nos. 5,719,600, 6,124,137, and 6,225,047 which are useful in this invention include Surface-Enhanced Affinity Capture (SEAC), Surface-Enhanced Neat Desorption (SEND), and Surface-Enhanced Photolabile Attachment and Release (SEPAR).
- It is intended that reference to a range of numbers disclosed herein (for example 1 to 10) also incorporates reference to all related numbers within that range (for example, 1, 1.1, 2, 3, 3.9, 4, 5, 6, 6.5, 7, 8, 9 and 10) and also any range of rational numbers within that range (for example 2 to 8, 1.5 to 5.5 and 3.1 to 4.7) and, therefore, all sub-ranges of all ranges expressly disclosed herein are expressly disclosed. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner.
- It has long been thought that the functional roles of EPOsp and/or CNPsp EPOsp and/or CNPsp were limited to controlling the trafficking of parent molecules in the endoplasmic reticulum. Once this is achieved it has been assumed that the signal peptide is then degraded without ever being secreted from the cell.12
- The inventors have discovered that EPOsp and/or CNPsp EPOsp and/or CNPsp fragments are available in biological samples and appear, for example, in the circulation.
- Additionally the inventors have discovered that EPOsp and CNPsp and fragments thereof are useful as, for example, circulating biomarkers for a range of biological events or disorders.
- The use and measurement of immunoreactive signal peptide fragments of EPOsp and/or CNPsp provides superior detection and discriminatory capabilities compared with existing standard markers. In this regard, the much quicker time to reach peak levels in blood and the specific nature of each marker to the condition is noted. With regard to the latter the organ specific location of each signal peptide fragment is also noted. Thus, EPOsp is released from kidney, whereas CNP is released from the heart and blood vessels. Furthermore, because signal peptides have a shorter half life in blood compared with existing markers, they have the capacity to rise and fall more quickly, detecting underlying active disease. This cannot be said for existing markers, which have long half lives and therefore, possess blood levels which do not respond as rapidly to active disease.
- In one aspect, the invention provides a method for predicting, diagnosing or monitoring a biological event in a subject wherein the event correlates with the release of one or more of an EPOsp and/or CNPsp fragment into the circulation, the method comprising:
-
- (a) measuring the level of one or more of an EPOsp and/or CNPsp fragment in a biological sample from the subject; and
- (b) comparing the level of one or more of an EPOsp and/or CNPsp fragment with the level of one or more an EPOsp and/or CNPsp fragment from a control,
- wherein a deviation in the measured level from the control level is indicative of a biological event.
- The biological event or disorder includes one or more of acute and chronic renal disease or injury, heart failure, hypertension, syncope, and chronic cardiovascular disease, vascular disease including atherosclerosis, vulnerable plaque, or an acute cardiac syndrome or disorder including myocardial infarctions and angina (unstable), and stable angina.
- The applicants have also surprisingly found that in patients with acute myocardial infarction (AMI) the circulating concentration of an EPOsp and/or CNPsp fragment is highest in the first few hours following the onset of the patient's symptoms. Levels observed in the first two to six hours, or four hours were surprisingly very high often reaching a peak some 1.5 to five, commonly two to three fold higher than levels in a normal control population.
- In sum, one or more of an EPOsp and/or CNPsp fragment is/are useful as clear early stage markers of, for example, acute coronary syndromes (ACS) such as AMI, particularly non-ST elevated MI, and acute cardiac ischemia, and other disorders as noted herein.
- Based on these surprising findings, the applicants have determined for the first time, that it would be useful to screen for one or more of an EPOsp and/or CNPsp or variants or fragments thereof in a biological sample taken from a subject, particularly, for example, within twelve, ten, eight, six, four, two or one hours of onset of, or at clinical presentation with the disorder.
- Useful in the invention are antigenic fragments or variants of one or more of an EPOsp and/or CNPsp, which are least 4 or 5 amino acids in length. Particularly useful fragments are at the N-terminus (1-9) or C-terminus of the signal peptides herein. Examples of specific antigenic peptides are shown in SEQ ID NOS:1-6. Both the nucleic acid molecules and peptides form aspects of the invention.
- Specific polypeptides of the invention include a polypeptide having the amino acid sequence of any of SEQ ID NOS: 1-6 as set forth herein. Also contemplated are variants and fragments of these polypeptides as defined herein, or amino acid sequences having at least about 70%, 75%, 80%, 85%, 90%, 95% or 99% amino acid identity to them. In one embodiment the variants or fragments are functionally equivalent variants or fragments. That is the variants or fragments maintain the function as antigens or signal peptides. Any of the peptides in SEQ ID NOS:1-6 may be used in the preparation of binding agents, for example, antibodies.
- Polypeptides, including variant polypeptides and fragments, may be prepared using peptide synthesis methods well known in the art such as direct peptide synthesis using solid phase or automated synthesis. Mutated forms of the polypeptides may also be produced using synthetic methods such as site-specific mutagensis of the DNA encoding the amino acid sequence.
- The polypeptides and variant polypeptides and fragments thereof are in one embodiment isolated. They may be isolated or purified from natural sources, or following synthesis, using a variety of techniques that are well known in the art. Technologies include HPLC, ion-exchange chromatography, and immunochromatography but are not limited thereto.
- In another aspect, the present invention provides a method for predicting, diagnosing or monitoring an acute cardiac syndrome in a subject, the method comprising: measuring the level of one or more of an EPOsp and/or CNPsp or fragment in a biological sample from the subject and comparing the level of said EPOsp and/or CNPsp or fragments with the level from a control wherein a measured level of is higher than the control level and indicative of ACS.
- In another aspect the invention provides a method for monitoring a response to treatment of an ACS or chonic renal disease in a subject, the method comprising measuring the level of one or more of an EPOsp and/or CNPsp or fragment in a biological sample from the subject and comparing the level of said one or more of an EPOsp and/or CNPsp or fragment with the level from a control, wherein a change in the measured level from the control level is indicative of a response to the treatment.
- The skilled reader will appreciate that for evaluation purposes, the one or more of an EPOsp and/or CNPsp or fragment level may usefully be compared or correlated with a reference value or control value.
- As used herein a control can be an individual or group from which samples of one or more of an EPOsp and/or CNPsp or fragment are taken and a mean level determined. Usually, the individual or group will comprise normal healthy individuals or a group of individuals not known to be suffering from a biological event to be monitored. Levels of EPOsp fragments in normal individuals range from between about 14-90 pmol/L (mean is about 50 pmol/L). Levels of CNPsp fragments in normal individuals range from between about 8-50 pmol/L, and the mean control level is about 21 pmol/L. Alternatively, the control level may be assessed based on a plurality of readings from previously tested individuals or groups.
- It will be appreciated that the step of measuring levels of one or more of an EPOsp and/or CNPsp or fragment thereof in a sample may be a single measurement on a single sample, or repeated measurements on a number of samples depending on the biological event being studied. In the case of ACS, measurement may comprise, for example, 1 to 20 or more measurements of an EPOsp and/or CNPsp or fragment, 1 to 10, 1 to 5, 1 to 3, or 2 or 3 measurements of one or more of an EPOsp and/or CNPsp or fragment a fragment thereof in samples taken at different times. In one embodiment the measurements are on samples taken within the first twelve, ten, eight, six, five, four, two hours, or within one hour or less of, onset of or clinical presentation with a disorder or suspected disorder. Single, or repeated measurements outside the sample period above may also be taken to establish whether the level of one or more of an EPOsp and/or CNPsp or fragment thereof has fallen to the normal control level, or, for example, cardiac tissue control level.
- In one embodiment, the method comprises measuring levels of one or more of an EPOsp and/or CNPsp or fragment thereof in 1 or 2 samples taken within the first hour of onset or presentation, followed by measuring levels of one or more of an EPOsp and/or CNPsp or fragment thereof in 1 or 2 samples taken within two to four hours, or two to three hours of onset or presentation, or initial measurement of the level of one or more of an EPOsp and/or CNPsp or fragment thereof.
- As noted above, levels of one or more of an EPOsp and/or CNPsp fragments thereof measured within the first one to twelve, ten, eight, six, four or two hours or less of onset or presentation of an ACS, heart failure, or renal failure, for example, are 1.5 to 10, 1.5 to 5 times higher are usually two to three times higher than levels measured in a normal control.
- In one embodiment the prognostic, diagnostic or monitoring tool is calibrated to measure levels of one or more of the peptides or peptide fragments corresponding to any of SEQ ID NOS:1, 2, 3, 4, 5 or 6 (or non-human analogs or variants thereof), or other signal peptide fragments, in the range of, for example, from 0.1 to 1500 pmol/L, 0.1 to 500 pmol/L, 1 to 300 pmol/L, 10 to 250 or 20 to 150 pmol/L. Furthermore, erythropoietin signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 400 to 4000 pmol/L, about 400 to 200 pmol/L, about 320 to 520 pmol/L, or about 400-420 pmol/L or less. Levels at least as low as 5 pmol/L are detectable. Angiotensin signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 10 to 1000 pmol/L, about 5 to 500 pmol/L, about 1 to 100 pmol/L, or about 0.1 to 10 pmol/L or less. Levels at least as low as 0.1 pmol/L are detectable. C-type natriuretic signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 50 to 1500 pmol/L, about 25 to 750 pmol/L, about 10 to 500 pmol/L, or about 5 to 150 pmol/L or less. Levels at least as low as 2 pmol/L are detectable. Endothelin-1 signal peptides may be found in biological samples, including plasma samples, at levels ranging from about 10 to 200 pmol/L, about 5 to 100 pmol/L, about 10 to 50 pmol/L, or about 1 to 20 pmol/L or less. Levels at least as low as 1 pmol/L are detectable.
- In another embodiment, a level of one or more of an EPOsp and/or CNPsp or fragment thereof in the sample in the range of about 40 to about 250 pmol/L, about 65 to 250 pmol/L, about 65 to 200 pmol/L, about 70 to 150, or about 70 to 130 pmol/L, is indicative of an ACS.
- The biological sample as defined above can be any biological material in which of one or more of an EPOsp and/or CNPsp or fragment thereof can be located or secreted. In one embodiment a biological sample is a circulatory biological sample, for example blood, serum or plasma. In one embodiment, the biological sample is cardiac tissue.
- The presence of one or more of an EPOsp and/or CNPspEPOsp and/or CNPsp, or a fragment thereof and the level of expression in a sample may be determined according to methods known in the art such as Southern Blotting, Northern Blotting, FISH or quantative PCR to quantitate the transcription of mRNA,12 dot blotting, (DNA analysis) or in situ hybridization using an appropriately labelled probe, based on the sequences provided herein. In one embodiment the hybridisation probe is a labelled probe. Examples of labels include fluorescent, chemiluminescent, radioenzyme and biotin-avidin labels. Labelling and visualisation of labelled probes is carried out according to known art methods such as those above. For convenience the nucleic acid probe may be immobilized on a solid support including resins (such as polyacrylamides), carbohydrates (such as sepharose), plastics (such as polycarbonate), and latex beads.
- The nucleic acid expression level may be determined using known art techniques such as RT-PCR and electrophoresis techniques including SDS-PAGE. Using these techniques the DNA or cDNA sequence of a nucleic acid molecule of the invention, in a subject sample is amplified, and the level of DNA or cDNA or RNA measured. In an alternate method the DNA, cDNA or RNA level may be measured directly in the sample without amplification. In one embodiment the method is Northern blot hybridization analysis.
- Alternatively, the expression level may be measured using reverse transcription based PCR (RT-PCR) assays using primers specific for the nucleic acid sequences. If desired, comparison of the level of one or more of a EPOsp and/or CNPsp polynucleotide in the sample can be made with reference to a control nucleic acid molecule the expression of which is independent of the parameter or condition being measured. A control nucleic acid molecule refers to a molecule in which the level does not differ between the disorder or transplant rejection state and the healthy state. Levels of the control molecule can be used to normalise levels in the compared populations. An example of such a control molecule is GAP-DH. TheEPOsp and/or CNPsp polypeptides and fragments of the invention will change levels with the biological event or disorder.
- In one embodiment the measuring step comprises detecting binding between one or more of an EPOsp and/or CNPsp, or a fragment thereof and a binding agent that binds, for example, selectively or specifically binds, to one or more of an EPOsp and/or CNPsp or a fragment or variant thereof.
- Accordingly, in one embodiment the invention provides an assay for one or more of an EPOsp and/or CNPsp or a fragment or variant thereof in a biological sample, the assay comprising detecting and measuring the level thereof in the sample using any known methods. In one embodiment, the biological sample is obtained from a subject within about twelve, ten, eight, six or four or less hours from onset of an ACS or other disorder related to the concentration or amount of said fragment(s) in a biological sample, or within about twelve, ten, eight, six or four or less of clinical presentation with an ACS, for example, and an EPOsp and/or CNPsp or a fragment thereof are measured.
- In one embodiment, the invention provides an assay for one or more of an EPOsp and/or CNPspEPOsp and/or CNPsp, or a fragment thereof comprising:
-
- (a) binding one or more of an EPOsp and/or CNPspEPOsp and/or CNPsp, or a fragment thereof from a biological sample; and
- (b) measuring the level of bound an EPOsp and/or CNPspEPOsp and/or CNPsp, or a fragment thereof peptides or fragments.
- In one embodiment, the target molecule is one or more of SEQ ID NOS:1-6 or a variant or fragment thereof.
- In one embodiment, of one or more of an EPOsp and/or CNPsp, or a fragment thereof is bound using a binding agent. The binding agent may be a selective (specific) binding agent. That is, it has low cross-reactivity with other markers of biological events, and more particularly ghrelin. The binding agent in one embodiment is an antibody or a molecule comprising an antigen-binding fragment thereof. Where an antibody is used in the assay, the antibody may be raised against any antigenic part of one or more an EPOsp and/or CNPsp, or a fragment thereof, including within the N-terminus or the C-terminus, so long as it binds a fragment found in a biological sample, preferably a sample in which its presence indicates excretion from a cell. In one embodiment the antibody is raised against a peptide according to any one or more of SEQ ID NOS:1-6 or a variant or fragment thereof.
- The present invention also relates to binding agents, including, for example, antibodies, and antigen-binding fragments of the antibodies and their uses. Uses include in an assay, or in the manufacture of an assay, or as a prognostic, diagnostic or monitoring tool are provided as described herein, as are related kits with instructions for use.
- Binding agents, for example, antibodies, may be in isolated or purified form. An antibody that binds to one or more of an EPOsp and/or CNPsp, or a fragment or variant thereof may be in any form, including, for example, all classes of polyclonal, monoclonal, single chain, human, humanized antibodies and chimeric antibodies, and other antigen binding constructs. Also included is antiserum obtained by immunizing an animal such as a mouse, rat or rabbit. The antibodies may bind to a common sequence in a group of fragments, or to a specific EPOsp and/or CNPsp fragment, or even to sets of fragments.
- A fragment of an antibody or a modified antibody may be used so long as it binds the desired signal peptide or a fragment or variant thereof. The antigen-binding fragment may be, for example, Fab, F(ab′), F(ab′), an Fv fragment or single chain Fv (scFv), in which Fv fragments from H and L chains are ligated by an appropriate linker.13 Methods for preparing antibodies, and detecting, modifying and isolating same are well known in the art.14,15,16 In one embodiment antibodies used are produced by immunizing a suitable host mammal. Fusion proteins comprising one or more of an EPOsp and/or CNPsp, or a fragment thereof may also be used as immunogens.
- A binding agent, such as an antibody or other molecule comprising an antigen binding site, may be modified by conjugation with a variety of molecules, such as polyethylene glycol (PEG), biotin, streptavidin, and chemiluminescent, fluorescent, calorimetric, and radioimmunometric labels as discussed herein. The modified antibody can be obtained by chemically modifying an antibody. These modification methods are conventional in the field.
- In brief, methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include one or more of an EPOsp and/or CNPsp, or a fragment or variant thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, bovine serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.
- Monoclonal antibodies may be prepared using hybridoma methods well known in the art. The hybridoma cells may be cultured in a suitable culture medium, alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal. Preferred immortalized cell lines are murine myeloma lines, which can be obtained, for example, from the American Type Culture Collection, Virginia, USA. Immunoassays may be used to screen for immortalized cell lines which secrete the antibody of interest. One or more of an EPOsp and/or CNPsp, or fragments or variants thereof may be used in screening.
- Accordingly also contemplated herein are hybridomas which are immortalized cell lines capable of secreting an EPOsp and/or CNPsp fragment-specific monoclonal antibody.
- Well known means for establishing binding specificity of monoclonal antibodies produced by the hybridoma cells include immunoprecipitation, radiolinked immunoassay (RIA), enzyme-linked immunoabsorbent assay (ELISA) and Western blot. For example, the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis.14 Samples from immunised animals may similarly be screened for the presence of polyclonal antibodies.
- Monoclonal antibodies and other antigen-binding constructs can also be obtained from recombinant host cells. DNA encoding the antibody or antigen-binding construct can be obtained from a hybridoma cell line. The DNA is then placed into an expression vector, transfected into host cells (e.g., COS cells, CHO cells, E. coli cells) and the antibody or antigen-binding construct produced in the host cells. The antibody may then be isolated and/or purified using standard techniques.
- To facilitate detection, antibodies and fragments herein may be labelled with detectable markers such as, for example, fluorescent, bioluminescent, and chemiluminescent compounds, as well as radioisotopes, magnetic beads and affinity labels (e.g., biotin and avidin). Examples of labels which permit indirect measurement of binding include enzymes where the substrate may provide for a coloured fluorescent product, suitable enzymes include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase and the like. Fluorochromes (e.g., Texas Red, fluorescein, phycobiliproteins, and phycoerythrin) can be used with a fluorescence activated cell sorter. Labelling techniques are well known in the art.
- The monoclonal antibodies, for example, secreted by the cells may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, reverse phase HPLC, protein A-Sepharose, hydroxyapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
- Binding of one or more of an EPOsp and/or CNPsp, or a fragment thereof can be detected by any means known in the art including specific (antibody-based) and non-specific (such as HPLC solid phase). Most commonly, antibodies are detected using an assay such as ELISA or RIA as noted above. Competitive binding assays, sandwich assays, non-competitive assays, fluoroimmunoassay, immunofluorometric assay, or immunoradiometric assays, luminescence assays, chemiluniescence assays and mass spectrometry analysis such a surface-enhanced laser desorption and ionization (SELDI) electrospray ionization (ESI), matrix assisted laser-desorption ionization (MALDI), fourier transform Ion cyclotron resonance mass spectroscopy (FTICR) alone or in combination with non-specific binding agents such as chromatography formats are also feasible.
- Conveniently, an antibody can be fixed to a solid substrate to facilitate washing and isolation of the polypeptide/antibody complex. Binding of antibodies to a solid support can be achieved using known art techniques. Useful solid substrates for antibodies include glass, nylon, paper and plastics. Similarly, one or more of an EPOsp and/or CNPsp, or a fragment thereof can be adsorbed onto a solid substrate such as adsorbent silica, or resin particles, or silicon chips optionally coated or derivatised with ion exchange, reverse phase (e.g. C18 coating) or other materials. The substrate may be in the form of beads, plates, tubes, sticks or biochips. Examples of biochips include Ciphergen, ProteinChip arrays (Ciphergen Biosystems (CA, USA)), and Packard BioChips available from Perkin Elmer, USA. The biochips may include a chromatographic surface. Biochips or plates with addressable locations and discreet microtitre plates are particularly useful. Also preferred for use are multiplex systems where beads containing antibodies directed to multiple analytes are used to measure levels of the analytes in a single sample. Analytes to be measured may include other markers, e.g., cardiac markers, as well as an EPOsp and/or CNPsp, or variants or fragments thereof. One example of a suitable multiplex bead system for use herein is the Luminex Flurokine Multianalyte Profiling system.
- Antibody assay methods are well known in the art see for example U.S. Pat. Nos. 5,221,685, 5,310,687, 5,480,792, 5,525,524, 5,679,526, 5,824,799, 5,851,776, 5,885,527, 5,922,615, 5,939,272, 5,647,124, 5,985,579, 6,019,944, 6,113,855, 6,143,576 and for unlabelled assays U.S. Pat. Nos. 5,955,377 and 5,631,171. All of the documents cited herein are incorporated herein by reference in their entirety.
- Immunoassay analysers are also well known and include Beckman Access, Abbott AxSym, Roche ElecSys/Cobas and Dade Behring Status systems amongst others that are well described.
- Binding of one or more of an EPOsp and/or CNPsp, or a fragment thereof and an antibody to form a complex can be detected directly or indirectly. Direct detection is carried out using labels such as fluorescence, luminescence, radionuclides, metals, dyes and the like. Indirect detection includes binding detectable labels such as digoxin or enzymes such as horseradish peroxidase and alkaline phosphatase to form a labelled antibody followed by a step of detecting the label by addition of detection reagents.
- Horseradish peroxidase for example can be incubated with substrates such as o-Phenylenediamine Dihyhydrochloride (OPD) and peroxide to generate a coloured product whose absorbance can be measured, or with luminol and peroxide to give chemiluminescent light which can be measured in a luminometer as is known in the art. Biotin or digoxin can be reacted with binding agents that bind strongly to them. For example, the proteins avidin and streptavidin will bind strongly to biotin. A further measurable label is then covalently bound or linked thereto either by direct reaction with the protein, or through the use of commonly available crosslinking agents such as MCS and carbodiimide, or by addition of chelating agents.
- Generally, the complex is separated from the uncomplexed reagents for example by centrifugation. If the antibody is labelled, the amount of complex will be reflected by the amount of label detected. Alternatively, one or more of an EPOsp and/or CNPsp, or a fragment thereof may be labelled by binding to an antibody and detected in a competitive assay by measuring a reduction in bound labelled polypeptide when the antibody-labelled-polypeptide is incubated with a biological sample containing one or more of an EPOsp and/or CNPsp, or a fragment thereof that is unlabelled. Other immunoassays may be used, for example, a sandwich assay.
- In one embodiment, following contact with the antibody, usually overnight for 18 to 25 hours at 4° C., or for 1 to 2 to 4 hours at 25° C. to 40° C., the labelled an EPOsp and/or CNPsp, or a fragment thereof bound to the binding agent (antibody) is separated from the unbound labelled an EPOsp and/or CNPsp, or a fragment thereof. In solution phase assays, the separation may be accomplished by addition of an anti gamma globulin antibody (second-antibody) coupled to solid phase particles such as cellulose, or magnetic material. The second-antibody is raised in a different species to that used for the primary antibody and binds the primary antibody. All primary antibodies are therefore bound to the solid phase via the second antibody. This complex is removed from solution by centrifugation or magnetic attraction and the bound labelled peptide measured using the label bound to it. Other options for separating bound from free label include formation of immune complexes, which precipitate from solution, precipitation of the antibodies by polyethyleneglycol or binding free labelled peptide to charcoal and removal from solution by centrifugation of filtration. The label in the separated bound or free phase is measured by an appropriate method such as those presented above.
- Competitive binding assays can also be configured as solid phase assays that are easier to perform and are therefore preferable to those above. This type of assay uses plates with wells (commonly known as ELISA or immunoassay plates), solid beads or the surfaces of tubes. The primary antibody is either adsorbed or covalently bound to the surface of the plate, bead or tube, or is bound indirectly through a second anti gamma globulin or anti Fc region antibody adsorbed or covalently bound to the plate. Sample and labelled peptide (as above) are added to the plate either together or sequentially and incubated under conditions allowing competition for antibody binding between an EPOsp and/or CNPsp, or a fragment thereof in the sample and the labelled peptide. Unbound labelled peptide can subsequently be aspirated off and the plate rinsed leaving the antibody bound labelled peptide attached to the plate. The labelled peptide can then be measured using techniques described above.
- Sandwich type assays have greater specificity, speed and greater measuring range. In this type of assay an excess of the primary antibody to an EPOsp and/or CNPsp, or a fragment thereof is attached to the well of an ELISA plate, bead or tube via adsorption, covalent coupling, or an anti Fc or gamma globulin antibody, as described above for solid phase competition binding assays. Sample fluid or extract is contacted with the antibody attached to the solid phase. Because the antibody is in excess this binding reaction is usually rapid. A second antibody to an EPOsp and/or CNPsp, or a fragment thereof is also incubated with the sample either simultaneously or sequentially with the primary antibody. This second antibody is chosen to bind to a site on an EPOsp and/or CNPsp, or a fragment thereof that is different from the binding site of the primary antibody. These two antibody reactions result in a sandwich with the EPOsp and/or CNPsp, or a fragment thereof from the sample sandwiched between the two antibodies. The second antibody is usually labelled with a readily measurable compound as detailed above for competitive binding assays. Alternatively a labelled third antibody which binds specifically to the second antibody may be contacted with the sample. After washing away the unbound material the bound labelled antibody can be measured and quantified by methods outlined for competitive binding assays.
- A dipstick type assay may also be used. These assays are well known in the art. They may for example, employ small particles such as gold or coloured latex particles with specific antibodies attached. The liquid sample to be measured may be added to one end of a membrane or paper strip preloaded with the particles and allowed to migrate along the strip. Binding of the antigen in the sample to the particles modifies the ability of the particles to bind to trapping sites, which contain binding agents for the particles such as antigens or antibodies, further along the strip. Accumulation of the coloured particles at these sites results in colour development are dependent on the concentration of competing antigen in the sample. Other dipstick methods may employ antibodies covalently bound to paper or membrane strips to trap antigen in the sample. Subsequent reactions employing second antibodies coupled to enzymes such as horse radish peroxidase and incubation with substrates to produce colour, fluorescent or chemiluminescent light output will enable quantitation of antigen in the sample.
- As discussed in the following examples, in one embodiment radioimmunoassay (RIA) is the laboratory technique used. In one RIA a radiolabelled antigen and unlabelled antigen are employed in competitive binding with an antibody. Common radiolabels include I25, 131I, 3H and 14C.
- Radioimmunoassays involving precipitation of an EPOsp and/or CNPsp, or a fragment thereof with a specific antibody and radiolabelled antibody binding protein can measure the amount of labelled antibody in the precipitate as proportional to the amount of an EPOsp and/or CNPsp, or a fragment thereof in the sample. Alternatively, a labelled an EPOsp and/or CNPsp, or a fragment thereof is produced and an unlabelled antibody binding protein is used. A biological sample to be tested is then added. The decrease in counts from the labelled an EPOsp and/or CNPsp, or a fragment thereof is proportional to the amount of an EPOsp and/or CNPsp, or a fragment thereof in the sample.
- In RIA it is also feasible to separate bound EPOsp and/or CNPsp, or a fragment thereof, from free an EPOsp and/or CNPsp, or a fragment thereof. This may involve precipitating the peptide/antibody complex with a second antibody. For example, if the peptide/antibody complex contains rabbit antibody then donkey anti-rabbit antibody can be used to precipitate the complex and the amount of label counted. For example in an LKB, Gammamaster counter.9
- The methods of the invention further comprise measuring the levels of one or more other markers of kidney disease, cardiovascular disease, etc. The level of the other marker or markers can be compared to mean control levels from a control population. A deviation in the measured level from the mean control level is predictive or diagnostic of or a predisposition to acute or chronic kidney disease, acute or chronic cardiovascular disease, etc.
- The methods of the invention have been described with respect to a higher level or increase in levels of an EPOsp and/or CNPsp, or fragment thereof, being indicative of acute coronary syndromes (e.g., AMI and angina), heart failure, vascular disease including atherosclerosis, and chronic renal disease. Measuring deviations above or below a control level are also contemplated.
- Other markers include troponin T, troponin I, creatin kinase MB, myoglobin, BNP, NT-BNP, BNP-SP, ANP, ANP-SP, LDH, aspartate aminotransferase, H-FABP, endothelin, adrenomedullin, rennin and angiotensin II. These markers are all implicated in cardiac dysfunction or disease. Kits and reagents for performing such assays are commercially available from a number of suppliers. Correlating the level of an EPOsp and/or CNPsp, or fragment thereof with other markers can increase the predictive, diagnostic or monitoring value of an EPOsp and/or CNPsp, or fragment thereof. In the case of ACS, combining EPOsp and/or CNPsp, or fragment marker levels with known cardiac markers can increase the predictive or diagnostic value of a patient outcome.
- Analysis of a number of peptide markers can be carried out simultaneously or separately using a single test sample. Simultaneous, two or multi-site format assays are preferred. Multiplex bead, microassay or biochip systems are particularly useful. The beads, assays or chips can have a number of discreet, often addressable locations, comprising an antibody to one or more markers including an EPOsp and/or CNPsp, or fragment thereof. The one or more markers include more than one an EPOsp and/or CNPsp, or fragment thereof marker. For example, it may be useful to assay for N-terminal and C-terminal an EPOsp and/or CNPsp, or fragment thereof fragments and combine the assay results. Many other such marker combinations are feasible. US2005/0064511 and U.S. Pat. No. 6,019,944 provide a description of microarray, chips, capillary devices and techniques useful in the present invention. Luminex provides a multiplex bead system useful in the present invention. Laboratory analysers suitable for use with separate or sequential assays include AxSym (Abbott, USA), ElecSys (Roche), Access (Beckman), ADVIA CENTAUR® (Bayer) and Nichols Advantage® (Nichols Institute) immunoassay system.
- In one embodiment simultaneous assays of a plurality of polypeptides are performed on a single surface such as a chip or array.
- In another embodiment separate assays of one or more non-EPOsp and/or CNPsp, or fragment markers are performed and the results collated or combined with EPOsp and/or CNPsp, or fragment marker results.
- Where a subject is to be monitored, a number of biological samples may be taken over time. Serial sampling allows changes in marker levels to be measured over time. Sampling can provide information on the approximate onset time of an event, the severity of the event, indicate which therapeutic regimes may be appropriate, response to therapeutic regimes employed, or long-term prognosis. Analysis may be carried out at points of care such as in ambulances, doctors' offices, on clinical presentation, during hospital stays, in outpatients, or during routine health screening, etc.
- The methods of the invention may also be performed in conjunction with an analysis of one or more risk factors such as but not limited to age, weight, level of physical activity, sex and family history of events such as obesity, diabetes and cardiac events. Test results can also be used in conjunction with the methods of the invention. For example, glucose tolerance tests, ECG results and clinical examination. A statistically significant change in circulating level of an EPOsp and/or CNPsp, or fragment thereof, together with one or more additional risk factors or test results may be used to more accurately diagnose, prognose or monitor the subject's condition.
- Applicants have shown that concentrations of various signal peptide fragments are correlated with acute cardiac disorders (
FIG. 6 ). Moreover, levels of an EPOsp and/or CNPsp, or fragment(s) thereof, are at their highest upon clinical presentation in the case of patients presenting with suspected acute myocardial infarction (AMI) or heart attack. Patients presenting with acute cardiac syndromes or disorders, and in particular acute cardiac ischemia coronary artery disease caused by (heart attack leaving scarring in the heart muscle or myocardium) may or may not experience subsequent myocardial infarction (MI). The group which does not experience MI cannot be readily diagnosed using current clinical techniques and markers. Applicants have provided a useful early and specific marker for myocardial damage associated with MI, for example. This will allow the early diagnosis of myocardial damage due to adverse events and allow a physician to distinguish such cases from other acute coronary syndromes, including angina, as well as from other causes of chest pain (e.g., gastro-intestinal disease, lung/pleural disorders and the like). This significantly shortens the window currently experienced waiting for elevation of levels of current cardiac biomarkers such as myoglobin, CK-MB, TnT and TnI. A more precise diagnosis and treatment can also be effected earlier, reducing morbidity and mortality and providing better prognostic outcomes. - In another embodiment, the invention has application in monitoring reperfusion treatment in cardiac patients. Reperfusion treatment commonly includes percutaneous coronary intervention (eg angioplasty) and/or pharmacological treatment. Thrombolytic drugs for revascularisation are commonly employed in pharmacological treatment. Adjunctive therapies include anticoagulant and anti-platelet therapies. Reperfusion treatment is most effective when employed as soon as possible after diagnosis. Use of analysis of EPOsp and/or CNPsp, or fragment(s) thereof, to accelerate diagnosis allows prompt introduction of reperfusion treatment. Effectiveness of treatment can also be monitored by repeat testing, and therapy adjusted as appropriate. For a comprehensive discussion of reperfusion treatment see Braunwald et al. herein.3
- The methods of the invention may also be useful to diagnose or predict cardiac disease in a subject by analysis of an EPOsp and/or CNPsp, or fragment(s) thereof, particularly in biological samples taken from the circulation (or biological samples derived from such samples).
- Applied to the spectrum of agents that athletes can choose from to illegally boost performance, proteins and peptides provide an attractive option. In one aspect, the invention provides a solution to this problem. When produced by synthetic or recombinant technologies, proteins such as EPO are made to mimic as closely as possible the endogenous counterpart present in the circulation or tissue. This entails removal either a priori or a posteriori of components that would render the molecule vulnerable to easy detection. One such component is a region of the molecule known as the signal peptide. It was thought that signal peptide sequences derived from the endogenous production of proteins underwent intracellular destruction and were therefore absent from the circulation. However, we have developed novel immunoassay technologies to demonstrate that signal peptide sequences of EPO is not only present in the circulation of humans, but may also be measured in urine (or another bodily fluid, tissue sample, etc.). The EPO signal peptide sequence is very short in comparison with full length natural or recombinant EPO and has a much simpler primary and tertiary structure, without glycosylations, rendering it much easier to measure by existing assay formats. An immunoassay directed towards the signal peptide of human EPO is described herein, which is sensitive for immunoreactive human EPO signal peptide (EPOsp) and can detect circulating levels down to <20 fmol/ml (<640 pg/ml). Utilizing this assay, we have determined in normal human plasma, a ratio of EPOsp:EPO as approximately 6:1. However, in patients with chronic renal failure this ratio rises to approximately 10:1, whereas in patients with heart failure the ratio is approximately 3:1. Thus, there is a differential response of EPOsp:EPO ratio in patients with different disease states. Applying this paradigm to athletes doping with or otherwise misusing recombinant EPO, the plasma EPOsp:EPO ratio could be expected to be less than 1:1, including 1:10, 1:100, 1:1000, or less during, for example, the acute phase of administration. After repeated administration of rEPO, circulating levels of EPOsp will be much lower than normal drug-free levels, due to changes in endogenous secretion and excretion. Furthermore, as EPOsp is a much smaller molecule than EPO itself, its renal clearance and subsequent urinary presence will display a marked variation with prominent swings in ratio when compared with plasma EPOsp.
- Most usually, kits will be formatted for assays known in the art, and in certain embodiments for RIA or ELISA assays, as are known in the art.
- The kits may also include one or more additional markers for the disorders noted herein. In the case of ACS, for example, the additional marker may include one or more of troponin T, troponin I, creatin kinase MB, myoglobin, ANP, BNP, BNP-SP, ANP, ANP-SP, NT-BNP, LDH, aspartate aminotransferase, H-FABP, endothelin, adrenomedullin, rennin and angiotensin II. In one embodiment all of a subset of the markers are included in the kit.
- The kit may be comprised of one or more containers and may also include collection equipment, for example, bottles, bags (such as intravenous fluids bags), vials, syringes, and test tubes. At least one container will be included and will hold a product which is effective for predicting, diagnosing, or monitoring a biological event such as acute or chronic kidney disease, acute or chronic cardiovascular disease, ACS, etc. The product is usually a polypeptide and/or a binding agent, particularly an antibody or antigen-binding fragment of the invention, or a composition comprising any of these. In a preferred embodiment, an instruction or label on or associated with the container indicates that the composition is used for predicting, diagnosing, or monitoring the biological event. Other components may include needles, diluents and buffers. Usefully, the kit may include at least one container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution or dextrose solution.
- Binding agents that selectively bind EPOsp and/or CNPsp, or fragment(s) thereof are desirably included in the kit. In one embodiment, the binding agent is an antibody, preferably an antibody or antigen-binding fragment of the invention. The antibody used in the assays and kits may be monoclonal or polyclonal, for example, and may be prepared in any mammal as discussed above, and includes antibody fragments and antibodies prepared using native and fusion peptides, for example.
- In one kit embodiment a target peptide detection reagent is immobilized on a solid matrix, for example, a porous strip or chip to form at least one detection site for an EPOsp and/or CNPsp, or a fragment(s) thereof. The measurement or detection region of the porous strip may include a plurality of detection sites, such detection sites containing a detection reagent. The sites may be arranged in a bar, cross or dot or other arrangement. A test strip or chip may also contain sites for negative and/or positive controls. The control sites may alternatively be on a different strip or chip. The different detection sites may contain different amounts of immobilized nucleic acids or antibodies, e.g., a higher amount in the first detection site and lower amounts in subsequent sites. Upon the addition of a test biological sample the number of sites displaying a detectable signal provides a quantitative indication of the amount of an EPOsp and/or CNPsp, or a fragment(s) thereof present in the sample.
- Also included in the kit may be a device for sample analysis comprising a disposable testing cartridge with appropriate components (markers, antibodies and reagents) to carry out sample testing. The device will conveniently include a testing zone and test result window. Immunochromatographic cartridges are examples of such devices. See for example U.S. Pat. Nos. 6,399,398; 6,235,241 and 5,504,013.
- Alternatively, the device may be an electronic device which allows input, storage and evaluation of levels of the measured marker against control levels and other marker levels. US 2006/0234315 provides examples of such devices. Also useful in the invention are Ciphergen's Protein Chip® which can be used to process SELDI results using Ciphergen's Protein Chip® software package.
- In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents; or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.
- The invention will now be illustrated in a non-limiting way by reference to the following examples.
- All human protocols were approved by the Upper South Regional Ethics Committee of the Ministry of Health, New Zealand and were performed in accord with the Declaration of Helsinki.
- Synthetic human signal peptide fragments corresponding to EPOsp and CNPsp were synthesised using a mild Fmoc Solid Phase Synthesis method.4,9 All buffer reagents were purchased from BDH® (UK) and/or Sigma (Mo, USA). EPOsp(1-9) and CNPsp(14-23) were all synthesised with an extended cysteine (C- or N-terminus) for directional carrier coupling. EPOsp(1-9) and CNPsp(14-23), tyrosyl-containing peptides were also synthesised for tracer preparation.
- Non-fasting blood samples were collected from the following groups of patients presenting at Christchurch Hospital, New Zealand:
- 1) 55 normal, healthy volunteers. Samples were collected into EDTA blood tubes, centrifuged and the plasma stored at −80° C. until analysis.
- 2) 10 patients with acutely decompensated heart failure (CHF). Samples were taken at presentation, 24-48 hours after admission and at hospital discharge.
- 3) 23 ST-elevation myocardial infarction (STEMI) patients. Samples were drawn on admission to the Coronary Care Unit (time 0) and thereafter at 00.5, 1, 2, 4, 8, 12, 24 and 72 hours as in patients, samples were taken into tubes on ice and centrifuged at +4° C. at 2700 g for 5 min and the plasma stored at −80° C. until analysed.
- 4) 75 patients with end stage renal disease. Samples were drawn into EDTA collection tubes at a hospital outpatient visit, centrifuged to prepare plasma and stored at −80° C.
- All plasma samples were extracted on SepPak Cartridges, (Waters, USA) as previously described,9 dried and stored at −20° C. prior to RIA and HPLC.
- Plasma samples were assayed for Tn1, CK-MB, Myoglobin and Insulin using heterologous immunoassays on an Elecsys 2010 (Roche, USA) using ruthenium labelled biotinylated antibodies according to standard manufacturers protocols.
- EPOsp and CNPsp fragments were measured by specific RIA as follows:
- For the measurement of circulating human EPOsp(1-9) and CNPsp(14-23) peptides, we generated a novel and specific immunoassays.
- Each antigenic residue sequence, containing either a N- or C-terminally linked cysteine, was coupled to malemide treated N-e-maleimidocaproyloxy succinimide ester (EMCS) derivatised BSA in PBS (pH 7.0) by gentle mixing at room temperature. Coupled peptide was emulsified with Freund's (2 ml) adjuvant and injected subcutaneously (2 ml total) in 2 sheep over 4-5 sites at monthly intervals. Sheep were bled 12 days after injection to assess antibody titres until adequate levels were achieved. For immunoassay, EPOsp and CNPsp immunoreactivity were determined using antiserum within the final dilution range of 1:6,000-1:45,000. Each antiserum had no detectable cross reactivity with peptides and drugs indicated in
FIG. 6 . including human proBNP (1-13), proBNP (1-76), proANP (1-30), insulin, angiotensin II, angiotensin (1-7), urotensin II, CNP, ghrelin, C-ghrelin (52-117), proCNP (1-15), adrenomedulin, urocortin I, urocortin II, BNP-SPn(1-10), ANP-SPc (16-25), ANP-SP (1-10), INS-SPn (1-9). Cross reactivity was assessed following standardised protocols well known in the art.10 - Each antigenic residue, containing either a N- or C-terminal tyrosine residue, was iodinated via the Chloramine T method and purified on reverse phase HPLC (RP-HPLC). From this preparation an iodinated tracer form after RP-HPLC was tested. All samples, standards, radioactive traces and antiserum solutions were diluted in potassium based assay buffer.4,9 Each assay incubate consisted of 100 μL sample or standard (the appropriate synthetic antigenic peptide sequence) and 100 μL specific antigen-antiserum which was vortexed and incubated at 4° C. for 24 hours. 100 μL of trace (4000-5000 cpm) was then added and further incubated for 24 hours at 4° C. Free and bound immunoreactivities were finally separated by solid phase second antibody method (donkey anti-sheep Sac-Cel®, IDS Ltd, England) and counted in a Gammamaster counter (LKB, Uppsala, Sweden
- All results are presented as mean±SEM. Time-course data were analysed using two-way ANOVA for repeated measurements followed by least significant difference post-hoc testing. Correlation analysis of plasma hormone concentrations was carried out using a general linear regression model. In all analyses, a P-value <0.05 was considered significant.
- Respective venous plasma concentrations (in pmol/L) measured for EPOsp and CNPsp fragments in healthy humans are below:
-
EPOsp fragment 49.9 ± 3.7 CNPsp fragment 20.7 ± 3.1 - In healthy humans, concentrations of EPOsp and CNPsp in blood do not show a significant correlation with BMI. Having established that EPOsp and CNPsp fragments are present in human plasma we then measured serial concentrations of immunoreactive EPOsp and CNPsp in patients with documented AMI. Highest concentrations of immunoreactive EPOsp and/CNPsp were observed hours after hospital admission and slowly dropped to stable levels over about eight hours. Importantly, average peak EPOsp and CNPsp fragment levels were 2 to 3 fold higher (range two to 5 fold higher) than levels in normal healthy volunteers. Peak concentrations of myoglobin occurred 1-2 hours after hospital admission, whereas peak TnI and CK-MB levels were not attained until 8-12 hours after admission.
- Eight patients with clinically stable suspected ACS were catheterized and blood samples from multiple organ sites: these were the femoral artery FA(1) and FA(2) femoral vein (FV), renal vein (RV), hepatic vein (HV), inferior vena cava (IVC), jugular (JUG), cardiac coronary sinus vein (CS) and pulmonary artery (PA). Blood was collected into chilled EDTA tubes, prepared from plasma by centrifugation and the plasma submitted to immunoreactive EPOsp and CNPsp RIAs.
FIG. 2 clearly shows that the highest site of immunoreactive CNPsp concentration is the CS, the vein draining the heart, especially the ventricles. This is evidence that the heart can secrete immunoreactive CNPsp (e.g., CNPsp fragments). Immunoreactive EPOsp, particularly in the form of EPOsp fragments, can also be secreted. - Plasma extracts from 10 patients with acute decompensated heart failure and 75 patients with chronic renal failure were subjected to specific EPOsp and EPO immunoassay. Top panel: estimated glomerular filtration rate (eGFR) in 10 patients with chronic renal failure. There was a statistically significant negative relationship between eGFR and plasma EPOsp. Middle panel: Plasma EPOsp concentrations in normal healthy individuals, patients with chronic renal failure and in patients with decompensated acute heart failure. Plasma concentrations of EPOsp are signficantly
- elevated in patients with chronic renal failure and heart failure. Lower panel: the ratio of EPOsp/EPO in normal heaoth, chronic renal failure and acute heart failure. The ratio in normal health is approximately 6:1, whereas in chronic renal failure the ratio increases significantly (compared with normals) to approximately 10:1. In contrast, in acute heart failure, the ratio of EPOsp to EPO is significantly reduced (compared with normals) to approximately 3:1.
- Circulating EPOsp and CNPsp concentrations in clinically stable patients are likely derived from cardiac sources. The significant cardiac secretion is consistent with EPOsp and CNPsp being cardiac hormones.
- This evidence is the first to document EPOsp and CNPsp fragments as being present in the circulation and extracellular space within two hours of a patient presenting with ACS or within two hours of the onset of ACS. We show in the first instance that the measurement of immunoreactive EPOsp and CNPsp in blood has potential as a rapid biomarker of acute cardiac ischemia and/or subsequent injury and in the second instance, that measurement of immunoreactive EPOsp and CNPsp after the event has potential merit as a marker of long term prognosis and outcome.
- We also show that measurement of immunoreactive EPOsp and CNPsp has potential use in acute or chronic kidney disease and the potential to act as biomarkers of acute or chronic kidney function/dysfunction.
- Those skilled in the art will of course appreciate that the above description is provided by way of example and that the invention is not limited thereto.
-
- 1. Universal definition of myocardial infarction. Consensus statement from the Joint ESC/ACCF/AHA/WHF Taskforce for the redefinition of myocardial infarction. Circulation 2007 116:2634-2653.
- 2. National Academy of Clinical Biochemistry and IFCC Committee for standardisation of markers of cardiac damage laboratory medicine practice guidelines: analytical issues for biochemical markers of acute coronary syndromes. Circulation 2007 115:e352-e355.
- 3. Braunwald E, Zipes D P, Libby P. Acute myocardial infarction Chp. 35 Heart disease: a textbook of cardiovascular medicine, 6th ed. 2001. pgs. 1114-1231.
- 4. Richards A M, Nicholls M G, Yandle T G, Frampton C, Espiner E A, Turner J G, Buttimore R C, Lainchbury J G, Elliott J M, Ikram H, Crozier I G, Smyth D W. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: new neurohormonal predictors of left ventricular function and prognosis after myocardial infarction. Circulation 1998 97:1921-1929.
- 5. Jernberg T, Stridsberg M, Venge P, Lindahl B. N-terminal pro Brain Natriuretic Peptide on admission for early risk stratification of patients with chest pain and no ST-segment elevation. J. Am. Coll. Cardiology 2002 40:437-445.
- 6. Omland T, Persson A, Ng L, O'Brien R, Karlsson T, Herlitz J, Hartford M, Caidahl K. N-terminal pro-B-type natriuretic peptide and long-term mortality in acute coronary syndromes. Circulation. 2002 106:2913-2918.
- 7. Naghavi M, Libby P, Falk E, Casscells S W, Litovsky S, Rumberger J, Badimon J J, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone P H, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald P J, Siscovick D S, de Korte C L, Aikawa M, Airaksinen K E, Assmann G, Becker C R, Chesebro J H, Farb A, Galis Z S, Jackson C, Jang I K, Koenig W, Lodder R A, March K, Demirovic J, Navab M, Priori S G, Rekhter M D, Bahr R, Grundy S M, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz R S, Vogel R, Serruys P W, Hansson G K, Faxon D P, Kaul S, Drexler H, Greenland P, Muller J E, Virmani R, Ridker P M, Zipes D P, Shah P K, Willerson J T. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II Circulation 2003 108: 1772-1778.
- 8. Ronco C, Haapio M, House A A, Anavekar N, Bellomo R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008 52:1527-1539.
- 9. Hunt P J, Richards A M, Nicholls M G, Yandle T G, Doughty R N, Espiner E A. Immunoreactive amino terminal pro brain natriuretic peptide (NT-proBNP): a new marker of cardiac impairment. Clin. Endocrinol. 1997 47:287-296.
- 10. The Immunoassay Handbook. 3rd edition, ed. David Wild. Elsevier Ltd, 2005.
- 11. Braud V M, Allan D S, O'Callaghan C A, Soderstrom K, D'Andrea A, Ogg G S, Lazetic S, Young N T, Bell J I, Phillips J H, Lanier L L, McMichael A J. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998 391:795-799.
- 12. Thomas P S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose Proc. Natl. Acad. Sci. USA 1980 77:5201-5205.
- 13. Huston J S, D Levinson, M Mudgett-Hunter, M S Tai, J Novotny, M N Margolies, R J Ridge, R E Bruccoleri, E Haber, R Crea. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli Proc. Natl. Acad. Sci. USA 1988 85:5879-5883.
- 14. Harbour E, Lane D. Antibodies: A Laboratory Manual. 1988 Cold Spring Harbour Press New York.
- 15. Kohler G, Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specficity. Nature 1975 256: 495-497.
- 16. Verhoeyen M, Milstein C, Winter G. Reshaping human antibodies: grafting an antilysozyme activity. Science 1988 239: 1534-1536.
- All citations in this list and throughout the specification including patent specifications are hereby incorporated in their entirety.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/971,633 US20190100576A1 (en) | 2010-07-19 | 2018-05-04 | Signal biomarkers |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36567710P | 2010-07-19 | 2010-07-19 | |
US13/186,447 US9103840B2 (en) | 2010-07-19 | 2011-07-19 | Signal biomarkers |
US14/691,562 US9994631B2 (en) | 2010-07-19 | 2015-04-20 | Signal biomarkers |
US15/971,633 US20190100576A1 (en) | 2010-07-19 | 2018-05-04 | Signal biomarkers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/691,562 Continuation US9994631B2 (en) | 2010-07-19 | 2015-04-20 | Signal biomarkers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190100576A1 true US20190100576A1 (en) | 2019-04-04 |
Family
ID=45497426
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/186,447 Expired - Fee Related US9103840B2 (en) | 2010-07-19 | 2011-07-19 | Signal biomarkers |
US14/691,562 Expired - Fee Related US9994631B2 (en) | 2010-07-19 | 2015-04-20 | Signal biomarkers |
US15/971,633 Abandoned US20190100576A1 (en) | 2010-07-19 | 2018-05-04 | Signal biomarkers |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/186,447 Expired - Fee Related US9103840B2 (en) | 2010-07-19 | 2011-07-19 | Signal biomarkers |
US14/691,562 Expired - Fee Related US9994631B2 (en) | 2010-07-19 | 2015-04-20 | Signal biomarkers |
Country Status (10)
Country | Link |
---|---|
US (3) | US9103840B2 (en) |
EP (2) | EP3246335A3 (en) |
JP (2) | JP6087816B2 (en) |
CN (1) | CN103140498B (en) |
AU (2) | AU2011282245B2 (en) |
CA (1) | CA2805794A1 (en) |
DK (1) | DK2596010T3 (en) |
ES (1) | ES2629850T3 (en) |
NZ (2) | NZ605640A (en) |
WO (1) | WO2012012469A2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103140498B (en) * | 2010-07-19 | 2017-05-17 | 奥塔哥创新有限公司 | Signal biomarkers |
CN102608335A (en) * | 2012-04-19 | 2012-07-25 | 协和生物制药(天津)有限公司 | Method for preparing NT-proBNP time-resolved fluoroimmunoassay kit |
SG11201705444QA (en) * | 2015-01-09 | 2017-07-28 | Global Genomics Group Llc | Blood based biomarkers for diagnosing atherosclerotic coronary artery disease |
CN106706623A (en) * | 2016-12-30 | 2017-05-24 | 广州华弘生物科技有限公司 | Kit for rapidly detecting ischemia modified albumin and application of kit |
WO2020190532A1 (en) * | 2019-03-15 | 2020-09-24 | Mayo Foundation For Medical Education And Research | Use of natriuretic peptides to assess and treat acute kidney injury |
PL444560A1 (en) * | 2023-04-25 | 2024-10-28 | Uniwersytet Medyczny W Białymstoku | Application of the IMA biomarker |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9103840B2 (en) * | 2010-07-19 | 2015-08-11 | Otago Innovation Limited | Signal biomarkers |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196265A (en) | 1977-06-15 | 1980-04-01 | The Wistar Institute | Method of producing antibodies |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5310687A (en) | 1984-10-31 | 1994-05-10 | Igen, Inc. | Luminescent metal chelate labels and means for detection |
GB8800077D0 (en) | 1988-01-05 | 1988-02-10 | Ciba Geigy Ag | Novel chimeric antibodies |
US5843708A (en) | 1988-01-05 | 1998-12-01 | Ciba-Geigy Corporation | Chimeric antibodies |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
US5939272A (en) | 1989-01-10 | 1999-08-17 | Biosite Diagnostics Incorporated | Non-competitive threshold ligand-receptor assays |
US5028535A (en) | 1989-01-10 | 1991-07-02 | Biosite Diagnostics, Inc. | Threshold ligand-receptor assay |
US5744101A (en) | 1989-06-07 | 1998-04-28 | Affymax Technologies N.V. | Photolabile nucleoside protecting groups |
US5922615A (en) | 1990-03-12 | 1999-07-13 | Biosite Diagnostics Incorporated | Assay devices comprising a porous capture membrane in fluid-withdrawing contact with a nonabsorbent capillary network |
EP0527755A4 (en) | 1990-05-07 | 1995-04-19 | Immunomedics Inc | Improved method for radiolabeling monovalent antibody fragments |
CA2072758A1 (en) | 1990-09-14 | 1992-03-15 | Kenneth Francis Buechler | Antibodies to complexes of ligand receptors and ligands and their utility in ligand-receptor assays |
US5221685A (en) | 1991-02-01 | 1993-06-22 | Ube Industries, Ltd. | Thiazoline derivative, process for preparing the same and chemical for controlling noxious organisms containing the same |
US5955377A (en) | 1991-02-11 | 1999-09-21 | Biostar, Inc. | Methods and kits for the amplification of thin film based assays |
JPH06506688A (en) | 1991-04-10 | 1994-07-28 | バイオサイト・ダイアグノスティックス・インコーポレイテッド | Crosstalk inhibitors and their use |
ES2150915T3 (en) | 1991-04-12 | 2000-12-16 | Biosite Diagnostics Inc | NEW CONJUGATES AND DOSES INTENDED FOR THE SIMULTANEOUS DETECTION OF MULTIPLE LEAGUES. |
US5885527A (en) | 1992-05-21 | 1999-03-23 | Biosite Diagnostics, Inc. | Diagnostic devices and apparatus for the controlled movement of reagents without membrances |
US6143576A (en) | 1992-05-21 | 2000-11-07 | Biosite Diagnostics, Inc. | Non-porous diagnostic devices for the controlled movement of reagents |
US5494829A (en) | 1992-07-31 | 1996-02-27 | Biostar, Inc. | Devices and methods for detection of an analyte based upon light interference |
US5605798A (en) | 1993-01-07 | 1997-02-25 | Sequenom, Inc. | DNA diagnostic based on mass spectrometry |
PT700521E (en) | 1993-05-28 | 2003-10-31 | Baylor College Medicine | METHOD AND MASS SPECTROMETER FOR DESSORING AND IONIZATION OF ANALYZES |
US5824799A (en) | 1993-09-24 | 1998-10-20 | Biosite Diagnostics Incorporated | Hybrid phthalocyanine derivatives and their uses |
PT653639E (en) | 1993-11-12 | 2000-06-30 | Unilever Nv | ANALYTICAL EQUIPMENT AND METHODS FOR THEIR UTILIZATION |
DK0653625T3 (en) | 1993-11-12 | 2003-01-13 | Inverness Medical Switzerland | Test strip reading devices |
US5647124A (en) | 1994-04-25 | 1997-07-15 | Texas Instruments Incorporated | Method of attachment of a semiconductor slotted lead to a substrate |
GB9419267D0 (en) | 1994-09-23 | 1994-11-09 | Unilever Plc | Assay devices |
US5792294A (en) | 1995-11-16 | 1998-08-11 | Otis Elevator Company | Method of replacing sheave liner |
US5719600A (en) | 1995-12-12 | 1998-02-17 | Hewlett-Packard Company | Gradient calculation system and method |
US6113855A (en) | 1996-11-15 | 2000-09-05 | Biosite Diagnostics, Inc. | Devices comprising multiple capillarity inducing surfaces |
US5947124A (en) | 1997-03-11 | 1999-09-07 | Biosite Diagnostics Incorporated | Diagnostic for determining the time of a heart attack |
US6057098A (en) | 1997-04-04 | 2000-05-02 | Biosite Diagnostics, Inc. | Polyvalent display libraries |
NZ516848A (en) | 1997-06-20 | 2004-03-26 | Ciphergen Biosystems Inc | Retentate chromatography apparatus with applications in biology and medicine |
GB9717926D0 (en) | 1997-08-22 | 1997-10-29 | Micromass Ltd | Methods and apparatus for tandem mass spectrometry |
JP2002502086A (en) | 1998-01-23 | 2002-01-22 | アナリティカ オブ ブランフォード インコーポレーテッド | Mass spectrometry from the surface |
US6150098A (en) * | 1998-02-20 | 2000-11-21 | Amgen Inc. | Methods for identifying novel secreted mammalian polypeptides |
US6406921B1 (en) | 1998-07-14 | 2002-06-18 | Zyomyx, Incorporated | Protein arrays for high-throughput screening |
US6831060B2 (en) | 1999-05-07 | 2004-12-14 | Genentech, Inc. | Chimpanzee erythropoietin (CHEPO) polypeptides and nucleic acids encoding the same |
US6784154B2 (en) | 2001-11-01 | 2004-08-31 | University Of Utah Research Foundation | Method of use of erythropoietin to treat ischemic acute renal failure |
EP1464069A2 (en) | 2001-12-21 | 2004-10-06 | Sense Proteomic Limited | Probe for mass spectrometry |
AUPS169202A0 (en) | 2002-04-11 | 2002-05-16 | Goetze, Jens Peter | Neuropeptide assay |
US6780645B2 (en) | 2002-08-21 | 2004-08-24 | Lifescan, Inc. | Diagnostic kit with a memory storing test strip calibration codes and related methods |
US7045366B2 (en) | 2003-09-12 | 2006-05-16 | Ciphergen Biosystems, Inc. | Photocrosslinked hydrogel blend surface coatings |
US20040091961A1 (en) * | 2002-11-08 | 2004-05-13 | Evans Glen A. | Enhanced variants of erythropoietin and methods of use |
WO2004094460A2 (en) | 2003-04-17 | 2004-11-04 | Ciphergen Biosystems, Inc. | Polypeptides related to natriuretic peptides and methods of their identification and use |
US20060216757A1 (en) * | 2003-04-25 | 2006-09-28 | The Kenneth S. Warren Institute, Inc. | Tissue protective cytokine receptor complex, assays for identifying tissue protective compounds and uses thereof |
US7718363B2 (en) * | 2003-04-25 | 2010-05-18 | The Kenneth S. Warren Institute, Inc. | Tissue protective cytokine receptor complex and assays for identifying tissue protective compounds |
EP1639000A2 (en) | 2003-07-02 | 2006-03-29 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of tumor |
WO2005052593A1 (en) * | 2003-10-29 | 2005-06-09 | The University Of Leicester | Detection |
US7423139B2 (en) * | 2004-01-20 | 2008-09-09 | Insight Biopharmaceuticals Ltd. | High level expression of recombinant human erythropoietin having a modified 5′-UTR |
NZ552667A (en) | 2004-07-23 | 2009-04-30 | Inst Medical W & E Hall | Therapeutic and diagnostic agents |
US7476724B2 (en) | 2004-08-05 | 2009-01-13 | Genentech, Inc. | Humanized anti-cmet antibodies |
JP2006292623A (en) | 2005-04-13 | 2006-10-26 | Univ Of Dundee | Marker for sudden death in cardiac failure |
EP1731910A1 (en) | 2005-06-07 | 2006-12-13 | F. Hoffmann-La Roche Ag | Use of NT-proANP and NT-proBNP for diagnosing cardiac diseases |
EP1746161A1 (en) * | 2005-07-20 | 2007-01-24 | Cytheris | Glycosylated IL-7, preparation and uses |
DK2089722T3 (en) | 2006-09-07 | 2018-01-22 | Otago Innovation Ltd | BIOMARKET FOR EARLY DETECTION OF ACUTE HEART DISORDERS |
US9086408B2 (en) * | 2007-04-30 | 2015-07-21 | Nexus Dx, Inc. | Multianalyte assay |
GB0712670D0 (en) | 2007-06-29 | 2007-08-08 | King S College London | Isolated peptides and uses thereof |
WO2009019458A2 (en) * | 2007-08-03 | 2009-02-12 | Asterion Limited | Erythropoietin fusion proteins |
EP2263086A4 (en) * | 2008-02-22 | 2012-10-17 | Otago Innovation Ltd | Biomarkers |
JP2011516038A (en) | 2008-03-12 | 2011-05-26 | オタゴ イノベーション リミテッド | Biomarker |
-
2011
- 2011-07-19 CN CN201180044836.6A patent/CN103140498B/en not_active Expired - Fee Related
- 2011-07-19 US US13/186,447 patent/US9103840B2/en not_active Expired - Fee Related
- 2011-07-19 EP EP17165828.9A patent/EP3246335A3/en not_active Withdrawn
- 2011-07-19 NZ NZ605640A patent/NZ605640A/en not_active IP Right Cessation
- 2011-07-19 NZ NZ707637A patent/NZ707637A/en not_active IP Right Cessation
- 2011-07-19 AU AU2011282245A patent/AU2011282245B2/en not_active Ceased
- 2011-07-19 CA CA2805794A patent/CA2805794A1/en not_active Abandoned
- 2011-07-19 JP JP2013520823A patent/JP6087816B2/en not_active Expired - Fee Related
- 2011-07-19 WO PCT/US2011/044586 patent/WO2012012469A2/en active Application Filing
- 2011-07-19 ES ES11810311.8T patent/ES2629850T3/en active Active
- 2011-07-19 DK DK11810311.8T patent/DK2596010T3/en active
- 2011-07-19 EP EP11810311.8A patent/EP2596010B1/en active Active
-
2015
- 2015-04-20 US US14/691,562 patent/US9994631B2/en not_active Expired - Fee Related
-
2017
- 2017-02-02 JP JP2017017562A patent/JP2017122093A/en active Pending
- 2017-09-28 AU AU2017235947A patent/AU2017235947A1/en not_active Abandoned
-
2018
- 2018-05-04 US US15/971,633 patent/US20190100576A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9103840B2 (en) * | 2010-07-19 | 2015-08-11 | Otago Innovation Limited | Signal biomarkers |
US9994631B2 (en) * | 2010-07-19 | 2018-06-12 | Upstream Medical Technologies Limited | Signal biomarkers |
Also Published As
Publication number | Publication date |
---|---|
WO2012012469A2 (en) | 2012-01-26 |
EP2596010B1 (en) | 2017-04-12 |
JP2013532820A (en) | 2013-08-19 |
US20150353632A1 (en) | 2015-12-10 |
US9994631B2 (en) | 2018-06-12 |
JP2017122093A (en) | 2017-07-13 |
CN103140498A (en) | 2013-06-05 |
WO2012012469A3 (en) | 2012-05-18 |
NZ605640A (en) | 2016-01-29 |
CA2805794A1 (en) | 2012-01-26 |
EP3246335A2 (en) | 2017-11-22 |
EP3246335A3 (en) | 2017-12-27 |
AU2017235947A1 (en) | 2017-10-26 |
US9103840B2 (en) | 2015-08-11 |
NZ707637A (en) | 2016-09-30 |
DK2596010T3 (en) | 2017-07-31 |
JP6087816B2 (en) | 2017-03-01 |
CN103140498B (en) | 2017-05-17 |
EP2596010A4 (en) | 2013-11-13 |
AU2011282245A1 (en) | 2013-02-28 |
US20120045780A1 (en) | 2012-02-23 |
AU2011282245B2 (en) | 2017-09-28 |
ES2629850T3 (en) | 2017-08-16 |
EP2596010A2 (en) | 2013-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190100576A1 (en) | Signal biomarkers | |
US9151766B2 (en) | Methods of determination of activation or inactivation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) hormonal systems | |
US8507209B2 (en) | Biomarkers | |
EP2828282B1 (en) | Biomarkers | |
US10106575B2 (en) | Biomarkers | |
US20180156822A1 (en) | Biomarker for cardiac disorders | |
CA2771954A1 (en) | Pneumonia biomarkers | |
JP4423426B2 (en) | Method of using increased concentration of adrenomedullin precursor C-terminal peptide as an indicator of cardiovascular disease or inflammatory disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OTAGO INNOVATION LIMITED, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PEMBERTON, CHRISTOPHER J.;RICHARDS, ARTHUR MARK;SIGNING DATES FROM 20111017 TO 20111019;REEL/FRAME:046631/0142 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |