US20180315849A1 - Integrated High Side Gate Driver Structure and Circuit for Driving High Side Power Transistors - Google Patents
Integrated High Side Gate Driver Structure and Circuit for Driving High Side Power Transistors Download PDFInfo
- Publication number
- US20180315849A1 US20180315849A1 US15/981,748 US201815981748A US2018315849A1 US 20180315849 A1 US20180315849 A1 US 20180315849A1 US 201815981748 A US201815981748 A US 201815981748A US 2018315849 A1 US2018315849 A1 US 2018315849A1
- Authority
- US
- United States
- Prior art keywords
- high side
- gate driver
- well
- diffusion
- well diffusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 141
- 239000004065 semiconductor Substances 0.000 claims abstract description 76
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 30
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 238000009429 electrical wiring Methods 0.000 claims description 7
- 230000003071 parasitic effect Effects 0.000 description 35
- 230000001105 regulatory effect Effects 0.000 description 20
- 239000003990 capacitor Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 7
- 230000005236 sound signal Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/761—PN junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823892—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2171—Class D power amplifiers; Switching amplifiers with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2173—Class D power amplifiers; Switching amplifiers of the bridge type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1087—Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Definitions
- the present invention relates to an integrated high side gate driver structure for driving a power transistor.
- the high side gate driver structure comprises a semiconductor substrate comprising a first polarity semiconductor material in which a first well diffusion comprising a second polarity semiconductor material is formed. A peripheral outer wall of the first well diffusion is abutted to the semiconductor substrate.
- a second well diffusion, comprising first polarity semiconductor material, is arranged inside the first well diffusion such that an outer peripheral wall of the second well diffusion is abutted to an inner peripheral wall of the first well diffusion.
- the integrated high side gate driver structure further comprises a gate driver comprising a high side positive supply voltage port, a high side negative supply voltage port, a driver input and a driver output, wherein the gate driver comprises a transistor driver arranged in the second well diffusion such that a control terminal of the transistor driver and an output terminal of the transistor driver is coupled to the driver input and the driver output, respectively; the integrated high side gate driver structure also comprises a first electrical connection between the first well diffusion and the high side negative supply voltage port and a second electrical connection between the second well diffusion and the high side negative supply voltage port.
- CMOS and DMOS high voltage semiconductor processes are typical candidates for implementation of these integrated class D audio amplifiers which feature large LDMOS devices as active switches of output stages. These LDMOS transistors are isolated high side devices and typically of NMOS type to minimize transistor dimensions for a given output resistance. As the bipolar CMOS and DMOS high voltage semiconductor processes continue to evolve to feature sizes at 180 nm and below, the gate drive voltage required to the LDMOS active switches is approaching a voltage level around 5 V.
- This gate drive voltage should not be exceeded by the integrated high side gate driver structure to maintain gate integrity because the gate-source voltage of the high side LDMOS transistor should always be limited to a voltage range that fits an oxide voltage range of the LDMOS transistor in question such as the above-mentioned 5 V.
- This accuracy requirement complicates the provision of an adequate DC supply voltage, i.e. the high side positive supply voltage, to the integrated high side gate driver structure driving a high side LDMOS transistor.
- the accuracy and stability of the gate-source voltage supplied to the high side LDMOS transistor has been solved by using an external bootstrap capacitor for the DC supply voltage of the gate driver of every high side LDMOS transistor.
- a typical class D audio amplifier may include numerous high side power transistors and associated high side gate driver structures or circuits that each needs an external capacitor for example in H-bridge output stages of multi-level PWM amplifiers. Consequently, it is highly desirable to provide a novel high side gate driver structure and circuit capable of accurately driving a high side LDMOS transistor, and other types of high side power transistors, without any need for an external capacitor to stabilize the high side positive supply voltage for the high side gate driver.
- the present high side gate driver structure which comprises a novel type of double junction isolated well structure with an extra buried semiconductor layer.
- the present high side gate driver structure eliminates parasitic well structure to semiconductor substrate capacitance at the high side positive DC supply voltage of the high side gate driver which allows elimination of the above-discussed traditional external bootstrap capacitor.
- a first aspect of the invention relates to an integrated high side gate driver structure for driving a power transistor.
- the high side gate driver structure comprises a semiconductor substrate comprising a first polarity semiconductor material in which a first well diffusion comprising a second polarity semiconductor material is formed.
- a peripheral outer wall of the first well diffusion is abutted to, or facing, the semiconductor substrate.
- a second well diffusion, comprising first polarity semiconductor material, is arranged inside the first well diffusion such that an outer peripheral wall of the second well diffusion is abutted to, or facing, an inner peripheral wall of the first well diffusion.
- the integrated high side gate driver structure further comprises a gate driver comprising a high side positive supply voltage port, a high side negative supply voltage port, a driver input and a driver output, wherein the gate driver comprises a transistor driver arranged in the second well diffusion such that a control terminal of the transistor driver and an output terminal of the transistor driver is coupled to the driver input and the driver output, respectively; the integrated high side gate driver structure also comprises a first electrical connection between the first well diffusion and the high side negative supply voltage port and a second electrical connection between the second well diffusion and the high side negative supply voltage port.
- a first well contact may be arranged in the first well diffusion for establishing the first electrical connection to the high side negative supply voltage port or input; and a second well contact may be arranged in the second well diffusion for establishing the second electrical connection to the high side negative supply voltage port or input.
- Each of the first and second electrical connections may comprise a wire or a conductive trace, such as a metal wire, of the semiconductor substrate.
- the semiconductor substrate may comprise a P type or N type epitaxial semiconductor substrate.
- the present high side gate driver structure comprises a novel type of double junction isolated well structure due to the presence of the first and second well diffusions or ell structures where the second well diffusion is arranged inside the first well diffusion.
- the first well diffusion may comprise P polarity semiconductor material and the second well diffusion N polarity semiconductor material or vice versa depending on the polarity of the semiconductor substrate.
- the present high side gate driver structure is capable of substantially eliminating the parasitic well capacitance associated with the first well diffusion to the semiconductor substrate at the high side positive supply voltage port of the gate driver.
- This parasitic well capacitance is moved to the high side negative supply voltage port of the gate driver which may be connected to an output terminal of a power transistor of a class D amplifier or AC motor driver wherein the high side gate driver structure is integrated.
- a power transistor output terminal for example a source terminal of a MOSFET or IGBT, inherently possesses a very low output impedance and high current delivery capability such that parasitic charging and discharging current to the parasitic well capacitance is delivered without inducing ripple voltage on the output terminal and output voltage of class D amplifier or motor driver.
- the change of electrical connection of the parasitic well capacitance from the high side positive supply voltage port of the gate driver to the high side negative supply voltage port of the gate driver as accomplished by the present high side gate driver structure eliminates the need of the above-discussed traditional external bootstrap capacitors for smoothing the high side DC voltage that must be supplied to the high side positive supply voltage port of the gate driver.
- the outer peripheral wall of the first well diffusion may comprise first and second vertical wall sections electrically connected to a horizontal bottom wall section and the outer peripheral wall of the second well diffusion may comprise first and second vertical wall sections electrically connected to a horizontal bottom wall section.
- the electrical connection between the first and second vertical wall sections and the horizontal bottom wall section of each of the first and second well diffusions may comprise an intermediate semiconductor layer of appropriate polarity and conductance.
- Each of the horizontal bottom wall sections may comprise a buried layer.
- the horizontal bottom wall section of the first well diffusion may comprise an N+ polarity or P+ polarity buried layer and the horizontal bottom wall section of the second well diffusion may comprise a buried layer of opposite polarity to the buried layer of the first well diffusion,
- the integrated high side gate driver structure may comprise a first transistor body diffusion arranged above or on top of the horizontal bottom wall section of the second well diffusion.
- the first transistor body diffusion is preferably facing or placed in abutment to at least one of the first and second vertical wall section(s) of the second well diffusion as described in further detail below with reference to the appended drawings.
- the transistor driver of the gate driver preferably comprises at least one MOSFET arranged in the first or second vertical wall sections of the second well diffusion or arranged in the first transistor body diffusion.
- the transistor driver comprises a first MOSFET arranged in the first transistor body diffusion and a second MOSFET, of opposite polarity to the first MOSFET, arranged in the first or second vertical wall sections of the second well diffusion.
- the first and second MOSFETs may be of opposite polarity.
- Each of the least one MOSFET or each of the first and second MOSFETs may be a low voltage device having a drain-source break-down voltage of less than 10 V.
- the DC voltage difference between the high side positive and negative supply voltage ports of the gate driver is preferably set to a value between 3 V and 10 V such as about 4.5 V.
- This DC voltage difference is preferably supplied by a floating voltage regulator which is capable of providing an accurate and stable floating DC supply voltage to the gate driver as discussed in further detail below.
- the first and second MOSFETs may be interconnected to form an inverter type of transistor driver.
- the first and second MOSFETs are connected in series between the high side positive and negative supply voltage ports of the gate driver; and respective drain terminals of the first and second MOSFETs are connected to the driver output.
- the gate terminals of the first and second MOSFETs are preferably coupled together to form the control terminal of the transistor driver.
- a source terminal of the second MOSFET transistor may be connected to the high side negative supply voltage port of the gate driver.
- a pulse width or pulse density modulated input signal may be applied to the control terminal of the transistor driver and thereby modulate the output signal of the class D amplifier, AC motor driver etc.
- the integrated high side gate driver structure may further comprise a third well diffusion comprising a second polarity semiconductor material arranged in the semiconductor substrate adjacent to the first well diffusion.
- a second polarity semiconductor material is arranged inside the third well diffusion to form a second transistor body diffusion and a transistor, e.g. a MOSFET such as a LDMOSFET, is arranged in the second transistor body diffusion.
- a transistor e.g. a MOSFET such as a LDMOSFET
- This embodiment is particularly well-adapted for integrating the above-discussed floating voltage regulator in the integrated high side gate driver structure.
- the transistor may be utilized as a pass-transistor of a linear voltage regulator as discussed in further detail below.
- Electrical wiring may be added on top of the semiconductor substrate to electrically connect a source terminal of the transistor with the high side positive supply voltage port of the gate driver.
- the source terminal of the transistor may supply a regulated DC voltage of the floating voltage regulator.
- a second aspect of the invention relates to a class D amplifier output stage comprising:
- a regulated DC voltage output coupled to the high side positive supply voltage port of the gate driver
- a DC voltage reference generator coupled between the high side negative supply voltage port and reference voltage input of the floating voltage regulator.
- the power transistor of the output stage preferably comprises an output transistor of the class D amplifier and may be driven through the control terminal by a pulse width or pulse density modulated audio input signal of the class D amplifier.
- the class D amplifier may comprise a plurality of power transistors connected in an H-bridge topology. Each of the power transistors may comprise an LDMOS transistor such as LDNMOS transistor.
- the regulated DC voltage output may have a DC voltage which is at least 5 V higher than a DC supply voltage of the power transistor or transistors of the output stage to ensure that the gate voltage of an N type MOS power transistor can be driven into an appropriate low impedance on-state.
- the high side DC voltage supply of the class D amplifier may have a DC voltage which is at least 2 V higher than the regulated DC voltage output of the floating regulator to ensure that a pass transistor of the voltage regulator is adequately biased.
- the pass transistor may comprise a LDNMOS or LDPMOS transistor having drain-source terminals coupled between the positive voltage input of the regulator and the regulated DC voltage output.
- a third aspect of the invention relates to an integrated high side gate driver assembly comprising:
- a regulated DC voltage output coupled to the high side positive supply voltage port of the gate driver
- a DC voltage reference generator coupled between the high side negative supply voltage port of the gate driver and reference voltage input of the floating voltage regulator.
- the floating voltage regulator may comprise a linear regulator with a pass transistor.
- the pass transistor may comprise a LDNMOS or LDPMOS transistor having drain-source terminals coupled between the positive voltage input of the regulator and the regulated DC voltage output.
- the gate driver may comprise an integrated high side gate driver structure according to any of the above-described embodiments thereof to exploit the above-mentioned advantages of this structure.
- the use of a regulated DC voltage for the supply of power to the gate driver means that a stable and accurate gate signal voltage can be applied to a control terminal of an output transistor of class D amplifier or motor driver to harvest the above-mentioned advantages of this feature.
- the output or power transistor may comprise an LDMOS transistor such as LDNMOS transistor or LDPMOS transistor while the gate driver may comprise exclusively low voltage MOS transistors with the above-mentioned characteristics.
- the gate driver may comprise any of the above-mentioned transistor drivers.
- FIG. 1 is a simplified schematic circuit diagram of a class D amplifier output stage which comprises a prior art integrated high side gate driver structure
- FIG. 2A is a schematic circuit diagram of the class D amplifier output stage indicating connections to parasitic circuit capacitances and an external capacitance
- FIG. 2B is a simplified cross-sectional view of a prior art well structure in a semiconductor substrate for the prior art integrated high side gate driver structure
- FIG. 3A is a schematic circuit diagram of a class D amplifier output stage which comprises an integrated high side gate driver structure in accordance with a first embodiment of the invention
- FIG. 3B is a simplified cross-sectional view of a well structure formed in a semiconductor substrate for the integrated high side gate driver structure in accordance with the first embodiment of the invention
- FIG. 4A is a schematic circuit diagram of a class D amplifier output stage which comprises the integrated high side gate driver structure in accordance with the first embodiment of the invention.
- FIG. 4B is a simplified cross-sectional view of the class D amplifier output stage depicted on FIG. 4A ) embedded in a semiconductor substrate.
- FIG. 1 is a simplified schematic circuit diagram of a class D amplifier output stage 100 .
- the class D amplifier output stage 100 comprises a prior art integrated high side gate driver structure or circuit, GD, 103 .
- the integrated high side gate driver or circuit 103 has a driver output 104 electrically coupled or connected to a gate terminal of an NMOS power transistor 107 on a high side of the class D output stage.
- the source terminal of the NMOS power transistor 107 is coupled to a load node or terminal OUT which is connectable to a loudspeaker load for production of sound.
- the drain terminal of the NMOS power transistor 107 is coupled to a positive DC voltage supply or rail PVDD of the class D output stage.
- the class D output stage further comprises a low side NMOS power transistor 127 which has a drain terminal coupled to the load terminal OUT such that the loudspeaker load is driven in a push-pull fashion by alternatingly connecting the loudspeaker to the positive DC voltage supply PVDD and the negative DC voltage supply GND.
- the integrated high side gate driver circuit 103 must drive a large capacitive load presented by the gate of the NMOS power transistor 107 .
- the gate driver circuit 103 is capable of driving the gate voltage of the NMOS power transistor 107 to a voltage level well-above the positive DC voltage supply PVDD to accommodate the threshold voltage of the NMOS power transistor 107 and ensure a low resistance when conducting or switched on.
- This drive voltage capability has typically been accomplished by supplying a high DC voltage GVDD_FLOAT to the gate driver circuit 103 via a separate high DC supply voltage line which is capable of generating a DC voltage of sufficiently high level due to its connection to a high side DC voltage supply GVDD of the class D amplifier through a diode 105 .
- the high side DC voltage supply GVDD may for example possess a DC voltage level which is between 5 and 15 Volts higher than the positive DC voltage supply PVDD.
- the high DC voltage GVDD_FLOAT is supplied to the gate driver circuit 103 via a high side positive supply voltage port 106 a of the driver circuit 103 .
- a negative power supply voltage of the gate driver circuit 103 is provided via a high side negative supply voltage port 106 b.
- the negative power supply voltage of the gate driver circuit 103 is connected to the load terminal OUT such that the gate driver 103 and the DC voltage supply GVDD_FLOAT are both floating relative to ground GND of the class D output stage 100 .
- a pulse width modulated audio signal is supplied to a driver input of the gate driver circuit 103 via a level shifter 111 .
- a level shifted replica of this pulse width modulated audio signal is supplied to the gate of the NMOS power transistor 107 via the driver output 104 of the gate driver circuit 103 .
- the prior art gate driver circuit 103 is placed in a traditional well-structure of a semiconductor substrate into which the class D output stage 100 is integrated. This traditional well-structure has a parasitic well capacitance (not shown) coupled from the well structure to the semiconductor substrate.
- the traditional well-structure must furthermore be tied to the highest DC voltage potential of the prior art gate driver circuit 103 as explained below which has the undesired effect that the parasitic well capacitance becomes coupled to the high DC voltage GVDD_FLOAT at the high side positive supply voltage port 106 a.
- the formation of the parasitic well capacitance creates numerous problems with the stability of the regulated DC voltage and makes the presence of a relatively large, and therefore, external regulator capacitor Cext mandatory to mitigate the harmful effects of the parasitic well capacitance as explained below in additional detail with reference to FIGS. 2A ) and 2 B).
- FIG. 2A is a schematic circuit diagram of the prior art class D amplifier output stage 100 depicted on FIG. 1 but including additional circuit details such as connections to the above-discussed parasitic well capacitance 213 and a parasitic gate capacitance Cgate of the NMOS power transistor 107 .
- the gate driver circuit 103 may comprise a CMOS inverter comprising a PMOS-NMOS transistor pair schematically depicted as a pull-up and a pull down resistance 201 a, 203 a in series with respective ideal switches 201 , 203 .
- the high DC voltage supply (refer to FIG. 1 ) is schematically illustrated by GVDD and diode 205 .
- the gate driver circuit alternatingly pulls the driver output 104 between the high DC voltage GVDD_FLOAT and the voltage at the load terminal OUT in accordance with the pulse width modulated audio signal leading to an alternating switching between on-states and off-states of the NMOS power transistor 107 .
- the capacitance of the gate terminal of the NMOS power transistor 107 may be very large for class D power amplifiers for example larger than 1 nF, such as between 1 nF and 10 nF, depending on dimensions of the NMOS power transistor 107 .
- the traditional well-structure in which the prior art gate driver circuit 103 is placed leads to the formation of the previously discussed parasitic well capacitance 213 connected between the high DC voltage GVDD_FLOAT at node 206 and the ground potential of the semiconductor substrate in which the entire class D output stage 100 is formed or embedded. Consequently, the high voltage supply comprising GVDD and diode 205 needs to supply parasitic charging and discharging currents to the parasitic well capacitance 213 as indicated by parasitic well current INBL.
- the high slew-rate or dv/dt of the drain-source voltage of the NMOS power transistor 107 associated with its pulse width modulated waveform causes large parasitic charging and discharging currents to flow through the parasitic well capacitance 213 .
- the large parasitic charging and discharging currents induce significant ripple voltage on the high DC voltage GVDD_FLOAT supplied by the high DC voltage supply.
- the slew-rate or dv/dt of the drain-source voltage of the NMOS power transistor 107 may for example be larger than 20 V/ns.
- the ripple voltage induced on the high DC voltage can lead to numerous undesirable effects on the operation of the gate driver for example undervoltage events, loss of a gate driver state and control loss over the NMOS power transistor 107 .
- the external capacitor Cext is connected between the regulated DC voltage GVDD_FLOAT at node 206 and the output terminal OUT at node 212 .
- the external capacitor Cext reduces the voltage ripple and stabilizes the regulated output voltage because the parasitic well current INBL can now be drawn from energy stored in Cext.
- the voltage ripple at the high DC voltage GVDD_FLOAT now becomes controlled by a capacitive voltage division between Cext and the parasitic well capacitance 213 such that a sufficiently large capacitance of Cext will suppress the voltage ripple to any desired degree.
- the capacitance of the parasitic well capacitance 213 may be in the order of 5-10 pF
- This capacitance value makes it unfortunately impractical to integrate the external capacitor Cext on the semiconductor substrate together with the other electronic components because the die area consumption would be prohibitive.
- a typical output stage of a Class D audio amplifier may include numerous power transistors and associated high side gate driver structures or circuits that each needs an external capacitor for example in H-bridge output stages of multi-level PWM amplifiers. Consequently, it is highly desirable to provide a novel high side high side gate driver topology or structure for a power transistor that eliminates any need for an external capacitor to stabilize the regulated supply voltage to the high side positive supply voltage of the gate driver.
- FIG. 2B is a simplified cross-sectional view of an exemplary prior art well structure 220 arranged in a semiconductor substrate and used for holding the prior art integrated high side gate driver structure 100 discussed above in connection with FIG. 2A ) above.
- the prior art well structure 220 leads to the formation of the above-discussed problematic coupling of the parasitic well capacitance 213 between the high DC voltage GVDD_FLOAT and ground (GND).
- the prior art well structure 220 is an N-well diffusion formed in a P type epitaxial semiconductor substrate 222 .
- the P type epitaxial semiconductor substrate 222 is electrically connected to the ground (GND) potential of the class D output stage through a P+ diffusion contact 221 and suitable electrical wiring.
- the N-well diffusion comprises a horizontal N+ polarity buried layer (NBL) 226 which forms a bottom portion of the N-well diffusion.
- the N-well diffusion also comprises a vertical wall section 230 of N+ polarity semiconductor material electrically coupled to the NBL 226 via an intermediate BNW layer 228 .
- the intermediate DNW layer 228 functions as an electrical interconnect layer between the NBL 226 and the NW 230 .
- the N-well diffusion is electrically connected to the high DC voltage GVDD_FLOAT through an N+ diffusion contact 232 and suitable electrical wiring.
- the coupling arrangement of the parasitic well capacitance 213 (NBL-epi Cap) to the P type epitaxial semiconductor substrate 222 is schematically illustrated by the capacitor symbol 213 .
- the arrangement of the prior art integrated high side gate driver structure 100 inside the N-well diffusion i.e. with volume 236 ) has the effect that the N-well diffusion must be electrically connected or tied to the highest electrical potential of the integrated high side gate driver structure 100 . This is required because the PMOS-NMOS transistor pair or driver transistors of the gate driver circuit 103 are low-voltage devices, e.g.
- the level of the high DC voltage, as measured relative to the DC voltage of the output node, OUT, may lie between 3 V and 6 V such as about 4.5 V. Consequently, the N-well diffusion is electrically connected to the high DC voltage GVDD_FLOAT. Hence, the parasitic well capacitance 213 is formed between the high DC voltage GVDD_FLOAT and ground (GND) leading to the above-discussed problems.
- FIG. 3A is a schematic circuit diagram of a class D amplifier output stage 300 which comprises an integrated high side gate driver structure in accordance with a first embodiment of the invention.
- the skilled person will understand that the present high side gate driver structure in the alternative may be used to drive an output or power transistor of a single-phase or multiphase motor driver or a power transistor of a switched mode supply.
- the integrated high side gate driver structure is placed in the novel type of well-structure depicted on FIG. 3B ) which shows a simplified cross-sectional view of the novel well structure 324 . As illustrated on FIG.
- the novel type of well-structure has connected the parasitic well capacitance 313 associated with the N-well diffusions 326 , 330 to the output terminal OUT of the class D output stage instead of the high DC voltage terminal GVDD_FLOAT which was the case in the prior art gate driver circuit illustrated on FIG. 2A ).
- the parasitic well capacitance 313 is coupled between the output terminal OUT, at node 312 , and ground (GND) of the class D output stage in the present integrated high side gate driver structure.
- the output terminal OUT is a low impedance node of the class D output stage which node is driven by the source terminal of the LDNMOS power transistor 307 which exhibits a low impedance and large current supply capability.
- the LDNMOS power transistor 307 can easily deliver the above-discussed parasitic well current INBL to charge and discharge the parasitic well capacitance 313 . Consequently, undesired ripple voltage on the high DC voltage supply GVDD_FLOAT to the gate driver due to the previously discussed parasitic well current INBL has been eliminated. Therefore, the previously discussed external capacitor Cext that was required to reduce this voltage ripple on the high DC voltage of the prior art prior art integrated high side gate driver structure 100 has been eliminated.
- the high DC voltage supply GVDD_FLOAT (node 306 ) to the gate driver is generated by a floating linear voltage regulator 305 in the present embodiment of the gate driver as discussed in further detail below.
- class D output stage may use a NMOS transistor, or PLDMOS transistor as the power transistor 307 .
- the integrated high side gate driver structure may comprise a CMOS inverter comprising a PMOS-NMOS transistor pair schematically depicted as pull-up and pull down resistances 301 a, 303 a in series with respective ideal switches 301 , 303 .
- the integrated high side gate driver or circuit has a driver output 304 electrically coupled or connected to a gate terminal of an NMOS power transistor 307 on a high side of the class D output stage.
- the source terminal of the LDNMOS power transistor 307 is coupled to a load node or terminal OUT which is connectable to a loudspeaker load for production of sound.
- the drain terminal of the LDNMOS power transistor 307 may be coupled to a positive DC voltage supply or rail PVDD of the class D output stage or to a stacked power transistor.
- the class D output stage may further comprises a low side NMOS power transistor (not shown) as discussed in connection with the prior art class D output stage of FIG. 1 such that the loudspeaker load is driven in a push-pull fashion by alternatingly connecting the loudspeaker to a positive DC voltage supply and a negative DC voltage supply, e.g. GND.
- the integrated high side gate driver circuit must be capable of driving a large capacitive load presented by the gate of the LDNMOS power transistor 307 as discussed above, Furthermore, the gate driver is capable of accurately driving the gate voltage of the LDNMOS power transistor 307 to a voltage level well-above the positive DC voltage supply to accommodate the threshold voltage of the LDNMOS power transistor 307 and ensure a low on-resistance of the power transistor 307 .
- This is accomplished by supplying the regulated DC voltage GVDD_FLOAT to the gate driver via the linear voltage regulator 305 which is floating and capable of generating a sufficiently high voltage level of the regulated DC voltage GVDD_FLOAT due to its connection to a high side DC voltage supply PVDD+GVDD of the class D amplifier.
- the floating linear voltage regulator 305 is schematically illustrated by an LDMOS pass transistor 305 controlled by a DC reference voltage generator VREF to set a suitable regulated DC voltage at node 306 .
- a suitable smoothing capacitor Cr may be connected across VREF.
- the level of the regulated DC voltage GVDD_FLOAT, as measured relative to the DC voltage of the output node 312 , OUT, may lie between 3 V and 6 V such as about 4.5 V for the same reasons as those discussed above in connection with the prior art embodiment of the high side gate driver circuit.
- the high side DC voltage supply PVDD+GVDD may for example possess a DC voltage level which is between 5 and 15 Volts higher than the positive DC voltage supply of the class D output stage.
- the regulated DC voltage GVDD_FLOAT generated by the floating linear voltage regulator 305 is preferably supplied to the gate driver via a high side positive supply voltage port (not shown) of the gate driver.
- a negative power supply voltage of the gate driver is preferably provided via a high side negative supply voltage port (not shown) connected to the load terminal OUT 12 such that the gate driver and the linear voltage regulator 305 are both floating relative to ground GND of the class D output stage 300 .
- the output terminal OUT 312 accordingly forms a high side negative supply voltage port for the present integrated high side gate driver structure,
- a pulse width modulated audio signal may be supplied to a driver input (refer to item 414 of FIG. 4A )) of the gate driver via a suitable level shifter in a manner similar to the one illustrated on FIG. 1 .
- a level shifted replica of this pulse width modulated audio signal is supplied to the gate of the NMOS power transistor 307 via the driver output 304 of the gate driver.
- the movement of the parasitic well capacitance 313 of the integrated high side gate driver structure from the regulated DC supply voltage to the output terminal OUT of the class D output stage is explained below with reference to FIGS. 3B ), 4 A) and 4 B).
- FIG. 3B shows the novel well structure 324 before formation of the gate driver circuitry.
- the novel well structure 324 is formed in a P+ type epitaxial semiconductor substrate 322 .
- the P+ type epitaxial semiconductor substrate 322 is electrically connected to the ground (GND) potential of the class D output stage through a P+ diffusion contact 321 and suitable electrical wiring.
- the novel well structure 324 comprises a double junction isolation mechanism and structure with an extra P+ type buried layer 327 for the integrated high side gate driver structure.
- the novel well structure 324 comprises an N-well diffusion which comprises a horizontal N+ polarity buried layer (NBL) 326 and a vertical wall section 330 of N+ polarity semiconductor material.
- NBL horizontal N+ polarity buried layer
- the vertical wall section 330 is electrically coupled to the NBL 326 via an intermediate DNW layer 328 to form a complete N-well structure.
- the NBL 326 forms a bottom portion of the novel well-structure 324 which hence has a peripheral outer wall abutted to, or facing, the P type epitaxial semiconductor substrate 322 .
- the N-well diffusion is electrically connected to the output terminal OUT 312 through an N+ diffusion contact 332 and suitable electrical wiring.
- a second well diffusion comprising P+ polarity semiconductor material is arranged inside the N-well diffusion ( 326 , 330 , DNW) such that an outer peripheral wall of the second well diffusion is abutted to, or facing, an inner peripheral wall of the N-well diffusion.
- the second, or P-well, diffusion comprises a buried layer 327 which forms a horizontal bottom wall section of P-well diffusion.
- the P-well diffusion also comprises a vertical wall section 329 of P+ polarity semiconductor material which has a lowermost edge surface abutted and electrically connected to the horizontal bottom wall section 327 .
- the P-well diffusion is electrically connected to the output terminal OUT 312 through a P+ diffusion contact 331 and suitable electrical wiring such that the P-well diffusion and the N-well diffusion are placed at the same electrical potential.
- the integrated high side gate driver structure 420 comprises a gate driver 411 arranged inside or in the novel well structure 424 .
- FIG. 4B shows a simplified cross-sectional view of the class D amplifier output stage 400 depicted on FIG. 4A ) except for high side LDNMOS power transistor 407 embedded in the P+ type epitaxial semiconductor substrate 422 .
- the class D amplifier output stage 400 also comprises a floating linear voltage regulator as schematically illustrated by the LDNMOS pass transistor 405 controlled by a DC reference voltage VREF to set a suitable regulated DC voltage at node 406 , GVDD_FLOAT, for the high side positive supply voltage port (source terminal of PMOS transistor 401 ) of the gate driver 411 .
- the semiconductor layout of the LDMOS pass transistor 405 in the semiconductor substrate 422 is illustrated in cross-sectional view on the rightmost portion of FIG. 4B ).
- a source terminal of the LDNMOS pass transistor 405 is coupled to the high side positive supply voltage port of the gate driver 411 to provide an accurate and stable floating DC voltage supply for the gate driver 411 .
- One of the drain terminals of the pass transistor 405 is coupled to the high side DC voltage supply PVDD+GVDD of the class D amplifier.
- the novel well structure 424 which encloses or houses the gate driver 411 is of similar construction as the previously discussed well-structure 324 and corresponding features have been provided with corresponding reference numerals to ease comparison.
- the gate driver 411 comprises an inverter comprising cascaded PMOS-NMOS transistor pair 401 , 403 with a driver output 404 electrically coupled or connected to a gate terminal of the LDNMOS power transistor 407 on a high side of the class D output stage. Drain, gate and source diffusions or terminals of the NMOS transistor 403 of the gate driver 411 are arranged in a vertical wall section 429 of P+ polarity semiconductor material as illustrated on FIG. 4B .
- This vertical wall section 429 is a part of an inner P-well diffusion of the novel well structure 424 .
- the novel well structure 424 additionally comprises an N+ polarity transistor body diffusion 435 arranged in abutment to the opposing wall segments of the vertical wall section 429 and above the horizontal P+ buried layer 427 .
- Drain, gate and source diffusions or terminals of the PMOS transistor 401 of the gate driver 411 are arranged in the N+ polarity transistor body diffusion 435 as illustrated on FIG. 4B ).
- the gate terminals of the PMOS-NMOS transistor pair 401 , 403 are electrically connected via a wire or trace 404 to form an input 414 of the gate driver.
- the PMOS source terminal and the NMOS drain terminal of invertor or transistor pair 401 , 403 are electrically connected via a wire or trace 415 to form the output node or terminal 425 of the gate driver 411 .
- the latter output node 425 is connected to the gate of the high side power LDNMOS transistor 407 of the class D output stage.
- the electrical wire or trace pattern 412 a establishes electrical connection between the source of the NMOS driver transistor 403 and the inner P-well diffusion via the indicated black rectangular well contact.
- the electrical wire or trace pattern 412 a likewise establishes electrical connection between the source of the NMOS driver transistor 403 and the outer N-well diffusion 430 via the well contact (illustrated by white rectangle symbol) embedded in the diffusion 430 .
- the electrical wire or trace pattern 412 a accordingly connects the high side negative supply voltage port of the gate driver 411 to the inner P-well diffusion, the outer N-well diffusion and to the output terminal OUT 412 of the class D output stage.
- the other electrical connection, wire or trace 412 b establishes a further electrical connection between the inner P-well diffusion and the outer N-well diffusion via respective well contacts.
- the coupling of the parasitic well capacitance 413 (NBL-epi Cap) to the P type epitaxial semiconductor substrate 422 is schematically illustrated by the capacitor symbol 413 on FIG. 4A ) and FIG. 4B ) which illustrate how the parasitic well capacitance 413 has been eliminated from the regulated DC voltage node 406 , GVDD_FLOAT.
- the parasitic well capacitance 413 has been moved and connected to the low impedance output terminal OUT 412 of the class D output stage leading to the previously discussed benefits.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Amplifiers (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
- The present application is a continuation of U.S. patent application Ser. No. 15/112,830, filed 20 Jul. 2016, which is a U.S. National Stage entry under 35 U.S.C. § 371 of International Patent Application No. PCT/EP2015/050798, filed 16 Jan. 2015, which claims the benefit of European Patent Application No. 14151919.9, filed 21 Jan. 2014. The entire contents of the aforementioned applications are incorporated herein by reference.
- The present invention relates to an integrated high side gate driver structure for driving a power transistor. The high side gate driver structure comprises a semiconductor substrate comprising a first polarity semiconductor material in which a first well diffusion comprising a second polarity semiconductor material is formed. A peripheral outer wall of the first well diffusion is abutted to the semiconductor substrate. A second well diffusion, comprising first polarity semiconductor material, is arranged inside the first well diffusion such that an outer peripheral wall of the second well diffusion is abutted to an inner peripheral wall of the first well diffusion. The integrated high side gate driver structure further comprises a gate driver comprising a high side positive supply voltage port, a high side negative supply voltage port, a driver input and a driver output, wherein the gate driver comprises a transistor driver arranged in the second well diffusion such that a control terminal of the transistor driver and an output terminal of the transistor driver is coupled to the driver input and the driver output, respectively; the integrated high side gate driver structure also comprises a first electrical connection between the first well diffusion and the high side negative supply voltage port and a second electrical connection between the second well diffusion and the high side negative supply voltage port.
- Integrated class D audio amplifiers have been around for more than 10 years and steadily gained popularity due to numerous advantageous characteristics such as high power conversion efficiency, small dimensions, low heat generation and good sound quality. Bipolar CMOS and DMOS high voltage semiconductor processes are typical candidates for implementation of these integrated class D audio amplifiers which feature large LDMOS devices as active switches of output stages. These LDMOS transistors are isolated high side devices and typically of NMOS type to minimize transistor dimensions for a given output resistance. As the bipolar CMOS and DMOS high voltage semiconductor processes continue to evolve to feature sizes at 180 nm and below, the gate drive voltage required to the LDMOS active switches is approaching a voltage level around 5 V. This gate drive voltage should not be exceeded by the integrated high side gate driver structure to maintain gate integrity because the gate-source voltage of the high side LDMOS transistor should always be limited to a voltage range that fits an oxide voltage range of the LDMOS transistor in question such as the above-mentioned 5 V. This accuracy requirement complicates the provision of an adequate DC supply voltage, i.e. the high side positive supply voltage, to the integrated high side gate driver structure driving a high side LDMOS transistor. Traditionally, the accuracy and stability of the gate-source voltage supplied to the high side LDMOS transistor has been solved by using an external bootstrap capacitor for the DC supply voltage of the gate driver of every high side LDMOS transistor.
- However, such external capacitor(s) adds component and assembly costs to the integrated class D audio amplifier to an extent that is unacceptable in numerous types of applications such as high-volume consumer audio systems. To further worsen the situation, a typical class D audio amplifier may include numerous high side power transistors and associated high side gate driver structures or circuits that each needs an external capacitor for example in H-bridge output stages of multi-level PWM amplifiers. Consequently, it is highly desirable to provide a novel high side gate driver structure and circuit capable of accurately driving a high side LDMOS transistor, and other types of high side power transistors, without any need for an external capacitor to stabilize the high side positive supply voltage for the high side gate driver.
- This has been accomplished by the present high side gate driver structure which comprises a novel type of double junction isolated well structure with an extra buried semiconductor layer. The present high side gate driver structure eliminates parasitic well structure to semiconductor substrate capacitance at the high side positive DC supply voltage of the high side gate driver which allows elimination of the above-discussed traditional external bootstrap capacitor.
- A first aspect of the invention relates to an integrated high side gate driver structure for driving a power transistor. The high side gate driver structure comprises a semiconductor substrate comprising a first polarity semiconductor material in which a first well diffusion comprising a second polarity semiconductor material is formed. A peripheral outer wall of the first well diffusion is abutted to, or facing, the semiconductor substrate. A second well diffusion, comprising first polarity semiconductor material, is arranged inside the first well diffusion such that an outer peripheral wall of the second well diffusion is abutted to, or facing, an inner peripheral wall of the first well diffusion. The integrated high side gate driver structure further comprises a gate driver comprising a high side positive supply voltage port, a high side negative supply voltage port, a driver input and a driver output, wherein the gate driver comprises a transistor driver arranged in the second well diffusion such that a control terminal of the transistor driver and an output terminal of the transistor driver is coupled to the driver input and the driver output, respectively; the integrated high side gate driver structure also comprises a first electrical connection between the first well diffusion and the high side negative supply voltage port and a second electrical connection between the second well diffusion and the high side negative supply voltage port.
- A first well contact may be arranged in the first well diffusion for establishing the first electrical connection to the high side negative supply voltage port or input; and a second well contact may be arranged in the second well diffusion for establishing the second electrical connection to the high side negative supply voltage port or input. Each of the first and second electrical connections may comprise a wire or a conductive trace, such as a metal wire, of the semiconductor substrate.
- The semiconductor substrate may comprise a P type or N type epitaxial semiconductor substrate. The present high side gate driver structure comprises a novel type of double junction isolated well structure due to the presence of the first and second well diffusions or ell structures where the second well diffusion is arranged inside the first well diffusion. The first well diffusion may comprise P polarity semiconductor material and the second well diffusion N polarity semiconductor material or vice versa depending on the polarity of the semiconductor substrate. The present high side gate driver structure is capable of substantially eliminating the parasitic well capacitance associated with the first well diffusion to the semiconductor substrate at the high side positive supply voltage port of the gate driver. This parasitic well capacitance is moved to the high side negative supply voltage port of the gate driver which may be connected to an output terminal of a power transistor of a class D amplifier or AC motor driver wherein the high side gate driver structure is integrated. Such a power transistor output terminal, for example a source terminal of a MOSFET or IGBT, inherently possesses a very low output impedance and high current delivery capability such that parasitic charging and discharging current to the parasitic well capacitance is delivered without inducing ripple voltage on the output terminal and output voltage of class D amplifier or motor driver. Hence, the change of electrical connection of the parasitic well capacitance from the high side positive supply voltage port of the gate driver to the high side negative supply voltage port of the gate driver as accomplished by the present high side gate driver structure eliminates the need of the above-discussed traditional external bootstrap capacitors for smoothing the high side DC voltage that must be supplied to the high side positive supply voltage port of the gate driver.
- The outer peripheral wall of the first well diffusion may comprise first and second vertical wall sections electrically connected to a horizontal bottom wall section and the outer peripheral wall of the second well diffusion may comprise first and second vertical wall sections electrically connected to a horizontal bottom wall section. The electrical connection between the first and second vertical wall sections and the horizontal bottom wall section of each of the first and second well diffusions may comprise an intermediate semiconductor layer of appropriate polarity and conductance. Each of the horizontal bottom wall sections may comprise a buried layer. The horizontal bottom wall section of the first well diffusion may comprise an N+ polarity or P+ polarity buried layer and the horizontal bottom wall section of the second well diffusion may comprise a buried layer of opposite polarity to the buried layer of the first well diffusion,
- The integrated high side gate driver structure may comprise a first transistor body diffusion arranged above or on top of the horizontal bottom wall section of the second well diffusion. The first transistor body diffusion is preferably facing or placed in abutment to at least one of the first and second vertical wall section(s) of the second well diffusion as described in further detail below with reference to the appended drawings.
- The transistor driver of the gate driver preferably comprises at least one MOSFET arranged in the first or second vertical wall sections of the second well diffusion or arranged in the first transistor body diffusion. In one such embodiment, the transistor driver comprises a first MOSFET arranged in the first transistor body diffusion and a second MOSFET, of opposite polarity to the first MOSFET, arranged in the first or second vertical wall sections of the second well diffusion. The first and second MOSFETs may be of opposite polarity. Each of the least one MOSFET or each of the first and second MOSFETs may be a low voltage device having a drain-source break-down voltage of less than 10 V. For the latter reason, the DC voltage difference between the high side positive and negative supply voltage ports of the gate driver is preferably set to a value between 3 V and 10 V such as about 4.5 V. This DC voltage difference is preferably supplied by a floating voltage regulator which is capable of providing an accurate and stable floating DC supply voltage to the gate driver as discussed in further detail below.
- The first and second MOSFETs may be interconnected to form an inverter type of transistor driver. In the latter embodiment, the first and second MOSFETs are connected in series between the high side positive and negative supply voltage ports of the gate driver; and respective drain terminals of the first and second MOSFETs are connected to the driver output. The gate terminals of the first and second MOSFETs are preferably coupled together to form the control terminal of the transistor driver. A source terminal of the second MOSFET transistor may be connected to the high side negative supply voltage port of the gate driver.
- A pulse width or pulse density modulated input signal, for example comprising an audio signal, may be applied to the control terminal of the transistor driver and thereby modulate the output signal of the class D amplifier, AC motor driver etc.
- The integrated high side gate driver structure may further comprise a third well diffusion comprising a second polarity semiconductor material arranged in the semiconductor substrate adjacent to the first well diffusion. A second polarity semiconductor material is arranged inside the third well diffusion to form a second transistor body diffusion and a transistor, e.g. a MOSFET such as a LDMOSFET, is arranged in the second transistor body diffusion. This embodiment is particularly well-adapted for integrating the above-discussed floating voltage regulator in the integrated high side gate driver structure. The transistor may be utilized as a pass-transistor of a linear voltage regulator as discussed in further detail below. Electrical wiring may be added on top of the semiconductor substrate to electrically connect a source terminal of the transistor with the high side positive supply voltage port of the gate driver. The source terminal of the transistor may supply a regulated DC voltage of the floating voltage regulator.
- A second aspect of the invention relates to a class D amplifier output stage comprising:
- an integrated high side gate driver structure according to any of the above-described embodiments thereof,
- a power transistor comprising a control terminal connected to the driver output of the gate driver,
- a floating voltage regulator, arranged in the semiconductor substrate, comprising:
- a positive voltage input coupled to a high side DC voltage supply of the class D amplifier,
- a regulated DC voltage output coupled to the high side positive supply voltage port of the gate driver,
- a DC voltage reference generator coupled between the high side negative supply voltage port and reference voltage input of the floating voltage regulator.
- The power transistor of the output stage preferably comprises an output transistor of the class D amplifier and may be driven through the control terminal by a pulse width or pulse density modulated audio input signal of the class D amplifier. The class D amplifier may comprise a plurality of power transistors connected in an H-bridge topology. Each of the power transistors may comprise an LDMOS transistor such as LDNMOS transistor. The regulated DC voltage output may have a DC voltage which is at least 5 V higher than a DC supply voltage of the power transistor or transistors of the output stage to ensure that the gate voltage of an N type MOS power transistor can be driven into an appropriate low impedance on-state. The high side DC voltage supply of the class D amplifier may have a DC voltage which is at least 2 V higher than the regulated DC voltage output of the floating regulator to ensure that a pass transistor of the voltage regulator is adequately biased. The pass transistor may comprise a LDNMOS or LDPMOS transistor having drain-source terminals coupled between the positive voltage input of the regulator and the regulated DC voltage output.
- A third aspect of the invention relates to an integrated high side gate driver assembly comprising:
- a gate driver comprising a high side positive supply voltage port, a high side negative supply voltage port, a driver input and a driver output;
- a floating voltage regulator comprising:
- a positive voltage input coupled to a high side DC voltage supply,
- a regulated DC voltage output coupled to the high side positive supply voltage port of the gate driver,
- a DC voltage reference generator coupled between the high side negative supply voltage port of the gate driver and reference voltage input of the floating voltage regulator.
- The floating voltage regulator may comprise a linear regulator with a pass transistor. The pass transistor may comprise a LDNMOS or LDPMOS transistor having drain-source terminals coupled between the positive voltage input of the regulator and the regulated DC voltage output. The gate driver may comprise an integrated high side gate driver structure according to any of the above-described embodiments thereof to exploit the above-mentioned advantages of this structure. The use of a regulated DC voltage for the supply of power to the gate driver means that a stable and accurate gate signal voltage can be applied to a control terminal of an output transistor of class D amplifier or motor driver to harvest the above-mentioned advantages of this feature. The output or power transistor may comprise an LDMOS transistor such as LDNMOS transistor or LDPMOS transistor while the gate driver may comprise exclusively low voltage MOS transistors with the above-mentioned characteristics. The gate driver may comprise any of the above-mentioned transistor drivers.
- Embodiments of the invention will be described in more detail in connection with the append drawings in which:
-
FIG. 1 is a simplified schematic circuit diagram of a class D amplifier output stage which comprises a prior art integrated high side gate driver structure, -
FIG. 2A ) is a schematic circuit diagram of the class D amplifier output stage indicating connections to parasitic circuit capacitances and an external capacitance, -
FIG. 2B ) is a simplified cross-sectional view of a prior art well structure in a semiconductor substrate for the prior art integrated high side gate driver structure, -
FIG. 3A ) is a schematic circuit diagram of a class D amplifier output stage which comprises an integrated high side gate driver structure in accordance with a first embodiment of the invention, -
FIG. 3B ) is a simplified cross-sectional view of a well structure formed in a semiconductor substrate for the integrated high side gate driver structure in accordance with the first embodiment of the invention, -
FIG. 4A ) is a schematic circuit diagram of a class D amplifier output stage which comprises the integrated high side gate driver structure in accordance with the first embodiment of the invention; and -
FIG. 4B ) is a simplified cross-sectional view of the class D amplifier output stage depicted onFIG. 4A ) embedded in a semiconductor substrate. -
FIG. 1 is a simplified schematic circuit diagram of a class Damplifier output stage 100. The class Damplifier output stage 100 comprises a prior art integrated high side gate driver structure or circuit, GD, 103. The integrated high side gate driver orcircuit 103 has adriver output 104 electrically coupled or connected to a gate terminal of anNMOS power transistor 107 on a high side of the class D output stage. The source terminal of theNMOS power transistor 107 is coupled to a load node or terminal OUT which is connectable to a loudspeaker load for production of sound. The drain terminal of theNMOS power transistor 107 is coupled to a positive DC voltage supply or rail PVDD of the class D output stage. The class D output stage further comprises a low sideNMOS power transistor 127 which has a drain terminal coupled to the load terminal OUT such that the loudspeaker load is driven in a push-pull fashion by alternatingly connecting the loudspeaker to the positive DC voltage supply PVDD and the negative DC voltage supply GND. The integrated high sidegate driver circuit 103 must drive a large capacitive load presented by the gate of theNMOS power transistor 107. Furthermore, thegate driver circuit 103 is capable of driving the gate voltage of theNMOS power transistor 107 to a voltage level well-above the positive DC voltage supply PVDD to accommodate the threshold voltage of theNMOS power transistor 107 and ensure a low resistance when conducting or switched on. This drive voltage capability has typically been accomplished by supplying a high DC voltage GVDD_FLOAT to thegate driver circuit 103 via a separate high DC supply voltage line which is capable of generating a DC voltage of sufficiently high level due to its connection to a high side DC voltage supply GVDD of the class D amplifier through adiode 105. The high side DC voltage supply GVDD may for example possess a DC voltage level which is between 5 and 15 Volts higher than the positive DC voltage supply PVDD. The high DC voltage GVDD_FLOAT is supplied to thegate driver circuit 103 via a high side positivesupply voltage port 106 a of thedriver circuit 103. A negative power supply voltage of thegate driver circuit 103 is provided via a high side negativesupply voltage port 106 b. The negative power supply voltage of thegate driver circuit 103 is connected to the load terminal OUT such that thegate driver 103 and the DC voltage supply GVDD_FLOAT are both floating relative to ground GND of the classD output stage 100. - A pulse width modulated audio signal is supplied to a driver input of the
gate driver circuit 103 via a level shifter 111. Hence, a level shifted replica of this pulse width modulated audio signal is supplied to the gate of theNMOS power transistor 107 via thedriver output 104 of thegate driver circuit 103. The prior artgate driver circuit 103 is placed in a traditional well-structure of a semiconductor substrate into which the classD output stage 100 is integrated. This traditional well-structure has a parasitic well capacitance (not shown) coupled from the well structure to the semiconductor substrate. The traditional well-structure must furthermore be tied to the highest DC voltage potential of the prior artgate driver circuit 103 as explained below which has the undesired effect that the parasitic well capacitance becomes coupled to the high DC voltage GVDD_FLOAT at the high side positivesupply voltage port 106 a. The formation of the parasitic well capacitance creates numerous problems with the stability of the regulated DC voltage and makes the presence of a relatively large, and therefore, external regulator capacitor Cext mandatory to mitigate the harmful effects of the parasitic well capacitance as explained below in additional detail with reference toFIGS. 2A ) and 2B). -
FIG. 2A ) is a schematic circuit diagram of the prior art class Damplifier output stage 100 depicted onFIG. 1 but including additional circuit details such as connections to the above-discussedparasitic well capacitance 213 and a parasitic gate capacitance Cgate of theNMOS power transistor 107. Thegate driver circuit 103 may comprise a CMOS inverter comprising a PMOS-NMOS transistor pair schematically depicted as a pull-up and a pull downresistance ideal switches FIG. 1 ) is schematically illustrated by GVDD anddiode 205. The gate driver circuit alternatingly pulls thedriver output 104 between the high DC voltage GVDD_FLOAT and the voltage at the load terminal OUT in accordance with the pulse width modulated audio signal leading to an alternating switching between on-states and off-states of theNMOS power transistor 107. However, the skilled person will understand that the capacitance of the gate terminal of theNMOS power transistor 107 may be very large for class D power amplifiers for example larger than 1 nF, such as between 1 nF and 10 nF, depending on dimensions of theNMOS power transistor 107. As explained above, the traditional well-structure in which the prior artgate driver circuit 103 is placed leads to the formation of the previously discussedparasitic well capacitance 213 connected between the high DC voltage GVDD_FLOAT atnode 206 and the ground potential of the semiconductor substrate in which the entire classD output stage 100 is formed or embedded. Consequently, the high voltage supply comprising GVDD anddiode 205 needs to supply parasitic charging and discharging currents to theparasitic well capacitance 213 as indicated by parasitic well current INBL. Furthermore, the high slew-rate or dv/dt of the drain-source voltage of theNMOS power transistor 107 associated with its pulse width modulated waveform causes large parasitic charging and discharging currents to flow through theparasitic well capacitance 213. The large parasitic charging and discharging currents induce significant ripple voltage on the high DC voltage GVDD_FLOAT supplied by the high DC voltage supply. The slew-rate or dv/dt of the drain-source voltage of theNMOS power transistor 107 may for example be larger than 20 V/ns. - The ripple voltage induced on the high DC voltage can lead to numerous undesirable effects on the operation of the gate driver for example undervoltage events, loss of a gate driver state and control loss over the
NMOS power transistor 107. To eliminate or at least suppress these unwanted effects, the external capacitor Cext is connected between the regulated DC voltage GVDD_FLOAT atnode 206 and the output terminal OUT atnode 212. The external capacitor Cext reduces the voltage ripple and stabilizes the regulated output voltage because the parasitic well current INBL can now be drawn from energy stored in Cext. In other words, the voltage ripple at the high DC voltage GVDD_FLOAT now becomes controlled by a capacitive voltage division between Cext and theparasitic well capacitance 213 such that a sufficiently large capacitance of Cext will suppress the voltage ripple to any desired degree. However, since the capacitance of theparasitic well capacitance 213 may be in the order of 5-10 pF, experience shows that typical Class D output stages need a capacitance in the order of 100 nF of the external capacitor Cext to adequately suppress the voltage ripple of the high DC voltage. This capacitance value makes it unfortunately impractical to integrate the external capacitor Cext on the semiconductor substrate together with the other electronic components because the die area consumption would be prohibitive. On the other hand, external components are highly undesirable in class D amplifier solutions for high-volume consumer oriented audio applications, such as TV sets, mobile phones, MP3 players etc. where product cost is an essential performance parameter. The external components add component and assembly costs to the class D amplifier solution. To further worsen the situation, a typical output stage of a Class D audio amplifier may include numerous power transistors and associated high side gate driver structures or circuits that each needs an external capacitor for example in H-bridge output stages of multi-level PWM amplifiers. Consequently, it is highly desirable to provide a novel high side high side gate driver topology or structure for a power transistor that eliminates any need for an external capacitor to stabilize the regulated supply voltage to the high side positive supply voltage of the gate driver. -
FIG. 2B ) is a simplified cross-sectional view of an exemplary prior art well structure 220 arranged in a semiconductor substrate and used for holding the prior art integrated high sidegate driver structure 100 discussed above in connection withFIG. 2A ) above. The prior art well structure 220 leads to the formation of the above-discussed problematic coupling of theparasitic well capacitance 213 between the high DC voltage GVDD_FLOAT and ground (GND). The prior art well structure 220 is an N-well diffusion formed in a P typeepitaxial semiconductor substrate 222. The P typeepitaxial semiconductor substrate 222 is electrically connected to the ground (GND) potential of the class D output stage through aP+ diffusion contact 221 and suitable electrical wiring. The N-well diffusion comprises a horizontal N+ polarity buried layer (NBL) 226 which forms a bottom portion of the N-well diffusion. The N-well diffusion also comprises avertical wall section 230 of N+ polarity semiconductor material electrically coupled to theNBL 226 via anintermediate BNW layer 228. Theintermediate DNW layer 228 functions as an electrical interconnect layer between theNBL 226 and theNW 230. - The N-well diffusion is electrically connected to the high DC voltage GVDD_FLOAT through an
N+ diffusion contact 232 and suitable electrical wiring. The coupling arrangement of the parasitic well capacitance 213 (NBL-epi Cap) to the P typeepitaxial semiconductor substrate 222 is schematically illustrated by thecapacitor symbol 213. The arrangement of the prior art integrated high sidegate driver structure 100 inside the N-well diffusion (i.e. with volume 236) has the effect that the N-well diffusion must be electrically connected or tied to the highest electrical potential of the integrated high sidegate driver structure 100. This is required because the PMOS-NMOS transistor pair or driver transistors of thegate driver circuit 103 are low-voltage devices, e.g. 3 V or 5 V devices, which cannot tolerate voltage levels much larger than the voltage level difference between the high DC voltage GVDD_FLOAT and the voltage level at OUT. The level of the high DC voltage, as measured relative to the DC voltage of the output node, OUT, may lie between 3 V and 6 V such as about 4.5 V. Consequently, the N-well diffusion is electrically connected to the high DC voltage GVDD_FLOAT. Hence, theparasitic well capacitance 213 is formed between the high DC voltage GVDD_FLOAT and ground (GND) leading to the above-discussed problems. -
FIG. 3A ) is a schematic circuit diagram of a class Damplifier output stage 300 which comprises an integrated high side gate driver structure in accordance with a first embodiment of the invention. The skilled person will understand that the present high side gate driver structure in the alternative may be used to drive an output or power transistor of a single-phase or multiphase motor driver or a power transistor of a switched mode supply. The integrated high side gate driver structure is placed in the novel type of well-structure depicted onFIG. 3B ) which shows a simplified cross-sectional view of thenovel well structure 324. As illustrated onFIG. 3A ), the novel type of well-structure has connected theparasitic well capacitance 313 associated with the N-well diffusions FIG. 2A ). For this reason theparasitic well capacitance 313 is coupled between the output terminal OUT, atnode 312, and ground (GND) of the class D output stage in the present integrated high side gate driver structure. The output terminal OUT is a low impedance node of the class D output stage which node is driven by the source terminal of theLDNMOS power transistor 307 which exhibits a low impedance and large current supply capability. Hence, theLDNMOS power transistor 307 can easily deliver the above-discussed parasitic well current INBL to charge and discharge theparasitic well capacitance 313. Consequently, undesired ripple voltage on the high DC voltage supply GVDD_FLOAT to the gate driver due to the previously discussed parasitic well current INBL has been eliminated. Therefore, the previously discussed external capacitor Cext that was required to reduce this voltage ripple on the high DC voltage of the prior art prior art integrated high sidegate driver structure 100 has been eliminated. The high DC voltage supply GVDD_FLOAT (node 306) to the gate driver is generated by a floatinglinear voltage regulator 305 in the present embodiment of the gate driver as discussed in further detail below. The elimination of the external capacitor Cext leads to significant cost reduction and size reduction of the class D amplifier output stage and the corresponding class D audio amplifier solution. The skilled person will understand that other embodiments of the class D output stage may use a NMOS transistor, or PLDMOS transistor as thepower transistor 307. - The integrated high side gate driver structure may comprise a CMOS inverter comprising a PMOS-NMOS transistor pair schematically depicted as pull-up and pull down
resistances ideal switches driver output 304 electrically coupled or connected to a gate terminal of anNMOS power transistor 307 on a high side of the class D output stage. The source terminal of theLDNMOS power transistor 307 is coupled to a load node or terminal OUT which is connectable to a loudspeaker load for production of sound. The drain terminal of theLDNMOS power transistor 307 may be coupled to a positive DC voltage supply or rail PVDD of the class D output stage or to a stacked power transistor. The class D output stage may further comprises a low side NMOS power transistor (not shown) as discussed in connection with the prior art class D output stage ofFIG. 1 such that the loudspeaker load is driven in a push-pull fashion by alternatingly connecting the loudspeaker to a positive DC voltage supply and a negative DC voltage supply, e.g. GND. The integrated high side gate driver circuit must be capable of driving a large capacitive load presented by the gate of theLDNMOS power transistor 307 as discussed above, Furthermore, the gate driver is capable of accurately driving the gate voltage of theLDNMOS power transistor 307 to a voltage level well-above the positive DC voltage supply to accommodate the threshold voltage of theLDNMOS power transistor 307 and ensure a low on-resistance of thepower transistor 307. This is accomplished by supplying the regulated DC voltage GVDD_FLOAT to the gate driver via thelinear voltage regulator 305 which is floating and capable of generating a sufficiently high voltage level of the regulated DC voltage GVDD_FLOAT due to its connection to a high side DC voltage supply PVDD+GVDD of the class D amplifier. The floatinglinear voltage regulator 305 is schematically illustrated by anLDMOS pass transistor 305 controlled by a DC reference voltage generator VREF to set a suitable regulated DC voltage atnode 306. A suitable smoothing capacitor Cr may be connected across VREF. The level of the regulated DC voltage GVDD_FLOAT, as measured relative to the DC voltage of theoutput node 312, OUT, may lie between 3 V and 6 V such as about 4.5 V for the same reasons as those discussed above in connection with the prior art embodiment of the high side gate driver circuit. The high side DC voltage supply PVDD+GVDD may for example possess a DC voltage level which is between 5 and 15 Volts higher than the positive DC voltage supply of the class D output stage. The regulated DC voltage GVDD_FLOAT generated by the floatinglinear voltage regulator 305 is preferably supplied to the gate driver via a high side positive supply voltage port (not shown) of the gate driver. A negative power supply voltage of the gate driver is preferably provided via a high side negative supply voltage port (not shown) connected to the load terminal OUT 12 such that the gate driver and thelinear voltage regulator 305 are both floating relative to ground GND of the classD output stage 300. The output terminal OUT 312 accordingly forms a high side negative supply voltage port for the present integrated high side gate driver structure, - The skilled person will appreciate that a pulse width modulated audio signal may be supplied to a driver input (refer to
item 414 ofFIG. 4A )) of the gate driver via a suitable level shifter in a manner similar to the one illustrated onFIG. 1 . Hence, a level shifted replica of this pulse width modulated audio signal is supplied to the gate of theNMOS power transistor 307 via thedriver output 304 of the gate driver. The movement of theparasitic well capacitance 313 of the integrated high side gate driver structure from the regulated DC supply voltage to the output terminal OUT of the class D output stage is explained below with reference toFIGS. 3B ), 4A) and 4B). -
FIG. 3B ) shows thenovel well structure 324 before formation of the gate driver circuitry. Thenovel well structure 324 is formed in a P+ typeepitaxial semiconductor substrate 322. The P+ typeepitaxial semiconductor substrate 322 is electrically connected to the ground (GND) potential of the class D output stage through aP+ diffusion contact 321 and suitable electrical wiring. Thenovel well structure 324 comprises a double junction isolation mechanism and structure with an extra P+ type buriedlayer 327 for the integrated high side gate driver structure. Thenovel well structure 324 comprises an N-well diffusion which comprises a horizontal N+ polarity buried layer (NBL) 326 and avertical wall section 330 of N+ polarity semiconductor material. Thevertical wall section 330 is electrically coupled to theNBL 326 via anintermediate DNW layer 328 to form a complete N-well structure. TheNBL 326 forms a bottom portion of the novel well-structure 324 which hence has a peripheral outer wall abutted to, or facing, the P typeepitaxial semiconductor substrate 322. The N-well diffusion is electrically connected to the output terminal OUT 312 through anN+ diffusion contact 332 and suitable electrical wiring. A second well diffusion comprising P+ polarity semiconductor material is arranged inside the N-well diffusion (326, 330, DNW) such that an outer peripheral wall of the second well diffusion is abutted to, or facing, an inner peripheral wall of the N-well diffusion. The second, or P-well, diffusion comprises a buriedlayer 327 which forms a horizontal bottom wall section of P-well diffusion. The P-well diffusion also comprises avertical wall section 329 of P+ polarity semiconductor material which has a lowermost edge surface abutted and electrically connected to the horizontalbottom wall section 327. The P-well diffusion is electrically connected to the output terminal OUT 312 through aP+ diffusion contact 331 and suitable electrical wiring such that the P-well diffusion and the N-well diffusion are placed at the same electrical potential. - As shown on
FIG. 4B ), the integrated high sidegate driver structure 420 comprises agate driver 411 arranged inside or in thenovel well structure 424.FIG. 4B ) shows a simplified cross-sectional view of the class Damplifier output stage 400 depicted onFIG. 4A ) except for high sideLDNMOS power transistor 407 embedded in the P+ typeepitaxial semiconductor substrate 422. The class Damplifier output stage 400 also comprises a floating linear voltage regulator as schematically illustrated by theLDNMOS pass transistor 405 controlled by a DC reference voltage VREF to set a suitable regulated DC voltage atnode 406, GVDD_FLOAT, for the high side positive supply voltage port (source terminal of PMOS transistor 401) of thegate driver 411. The semiconductor layout of theLDMOS pass transistor 405 in thesemiconductor substrate 422 is illustrated in cross-sectional view on the rightmost portion ofFIG. 4B ). A source terminal of theLDNMOS pass transistor 405 is coupled to the high side positive supply voltage port of thegate driver 411 to provide an accurate and stable floating DC voltage supply for thegate driver 411. One of the drain terminals of thepass transistor 405 is coupled to the high side DC voltage supply PVDD+GVDD of the class D amplifier. - The novel well structure 424 which encloses or houses the
gate driver 411 is of similar construction as the previously discussed well-structure 324 and corresponding features have been provided with corresponding reference numerals to ease comparison. Thegate driver 411 comprises an inverter comprising cascaded PMOS-NMOS transistor pair driver output 404 electrically coupled or connected to a gate terminal of theLDNMOS power transistor 407 on a high side of the class D output stage. Drain, gate and source diffusions or terminals of theNMOS transistor 403 of thegate driver 411 are arranged in a vertical wall section 429 of P+ polarity semiconductor material as illustrated onFIG. 4B . This vertical wall section 429 is a part of an inner P-well diffusion of thenovel well structure 424. The novel well structure 424 additionally comprises an N+ polaritytransistor body diffusion 435 arranged in abutment to the opposing wall segments of the vertical wall section 429 and above the horizontal P+ buriedlayer 427. Drain, gate and source diffusions or terminals of thePMOS transistor 401 of thegate driver 411 are arranged in the N+ polaritytransistor body diffusion 435 as illustrated onFIG. 4B ). The gate terminals of the PMOS-NMOS transistor pair input 414 of the gate driver. The PMOS source terminal and the NMOS drain terminal of invertor ortransistor pair terminal 425 of thegate driver 411. Thelatter output node 425 is connected to the gate of the high sidepower LDNMOS transistor 407 of the class D output stage. The electrical wire or tracepattern 412 a establishes electrical connection between the source of theNMOS driver transistor 403 and the inner P-well diffusion via the indicated black rectangular well contact. The electrical wire or tracepattern 412 a likewise establishes electrical connection between the source of theNMOS driver transistor 403 and the outer N-well diffusion 430 via the well contact (illustrated by white rectangle symbol) embedded in the diffusion 430. The electrical wire or tracepattern 412 a accordingly connects the high side negative supply voltage port of thegate driver 411 to the inner P-well diffusion, the outer N-well diffusion and to the output terminal OUT 412 of the class D output stage. The other electrical connection, wire or trace 412 b establishes a further electrical connection between the inner P-well diffusion and the outer N-well diffusion via respective well contacts. The coupling of the parasitic well capacitance 413 (NBL-epi Cap) to the P typeepitaxial semiconductor substrate 422 is schematically illustrated by thecapacitor symbol 413 onFIG. 4A ) andFIG. 4B ) which illustrate how theparasitic well capacitance 413 has been eliminated from the regulatedDC voltage node 406, GVDD_FLOAT. Theparasitic well capacitance 413 has been moved and connected to the low impedance output terminal OUT 412 of the class D output stage leading to the previously discussed benefits.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/981,748 US20180315849A1 (en) | 2014-01-21 | 2018-05-16 | Integrated High Side Gate Driver Structure and Circuit for Driving High Side Power Transistors |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14151919.9 | 2014-01-21 | ||
EP14151919 | 2014-01-21 | ||
PCT/EP2015/050798 WO2015110362A1 (en) | 2014-01-21 | 2015-01-16 | Integrated high side gate driver structure and circuit for driving high side power transistors |
US201615112830A | 2016-07-20 | 2016-07-20 | |
US15/981,748 US20180315849A1 (en) | 2014-01-21 | 2018-05-16 | Integrated High Side Gate Driver Structure and Circuit for Driving High Side Power Transistors |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/050798 Continuation WO2015110362A1 (en) | 2014-01-21 | 2015-01-16 | Integrated high side gate driver structure and circuit for driving high side power transistors |
US15/112,830 Continuation US10096705B2 (en) | 2014-01-21 | 2015-01-16 | Integrated high side gate driver structure and circuit for driving high side power transistors |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180315849A1 true US20180315849A1 (en) | 2018-11-01 |
Family
ID=49955260
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/112,830 Active US10096705B2 (en) | 2014-01-21 | 2015-01-16 | Integrated high side gate driver structure and circuit for driving high side power transistors |
US15/981,748 Pending US20180315849A1 (en) | 2014-01-21 | 2018-05-16 | Integrated High Side Gate Driver Structure and Circuit for Driving High Side Power Transistors |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/112,830 Active US10096705B2 (en) | 2014-01-21 | 2015-01-16 | Integrated high side gate driver structure and circuit for driving high side power transistors |
Country Status (6)
Country | Link |
---|---|
US (2) | US10096705B2 (en) |
EP (1) | EP3097584B1 (en) |
JP (1) | JP6486385B2 (en) |
KR (1) | KR102287060B1 (en) |
CN (1) | CN105934818B (en) |
WO (1) | WO2015110362A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105720099A (en) * | 2014-12-02 | 2016-06-29 | 无锡华润上华半导体有限公司 | N-type lateral double-diffused metal oxide semiconductor field effect transistor |
US10504769B2 (en) | 2014-12-09 | 2019-12-10 | Infineon Technologies Austria Ag | Regulated high side gate driver circuit for power transistors |
US9571038B1 (en) * | 2015-08-31 | 2017-02-14 | Nxp B.V. | Driver circuit for a power stage of a class-D amplifier |
KR20170076497A (en) * | 2015-12-24 | 2017-07-04 | 삼성전기주식회사 | Drive circuit |
JP6873876B2 (en) * | 2017-09-21 | 2021-05-19 | 株式会社東芝 | Drive circuit |
TWI628792B (en) * | 2017-09-21 | 2018-07-01 | 新唐科技股份有限公司 | Semiconductor substrate structures and semiconductor devices |
US11041890B2 (en) * | 2017-10-20 | 2021-06-22 | Synaptics Incorporated | Current measurement at a switching amplifier output |
US10498315B2 (en) * | 2018-03-05 | 2019-12-03 | Texas Instruments Incorporated | Level shifter circuit |
US10833083B2 (en) * | 2018-04-05 | 2020-11-10 | Synaptics Corporation | Power device structure with improved reliability and efficiency |
TWI673869B (en) * | 2018-07-31 | 2019-10-01 | 新唐科技股份有限公司 | High voltage semiconductor devices and methods for manufacturing the same |
DE102018119098B4 (en) * | 2018-08-06 | 2020-02-20 | Infineon Technologies Dresden GmbH & Co. KG | ELECTRONIC CIRCUIT WITH A TRANSISTOR COMPONENT AND A LEVEL CONVERTER |
US10651723B1 (en) * | 2018-10-22 | 2020-05-12 | Infineon Technologies Austria Ag | Method for static gate clamping in multi-output gate driver systems |
CN111276491A (en) * | 2018-12-04 | 2020-06-12 | 世界先进积体电路股份有限公司 | Semiconductor structure and forming method thereof |
EP3761148B1 (en) * | 2019-07-04 | 2023-06-07 | Advanced Energy Industries, Inc. | High voltage power supply |
US11082038B1 (en) | 2020-09-10 | 2021-08-03 | Allegro Microsystems, Llc | Gate driver isolating circuit |
US11075622B1 (en) * | 2020-09-10 | 2021-07-27 | Allegro Microsystems, Llc | Switch turn on in a gate driver circuit |
CN113054962B (en) * | 2021-03-25 | 2024-03-19 | 苏州华太电子技术股份有限公司 | Co-source co-grid GaN power device and half-bridge application circuit thereof |
CN114679036B (en) * | 2022-05-11 | 2023-05-26 | 电子科技大学 | High-speed grid driving circuit for power LDMOS |
US12114422B2 (en) * | 2022-12-16 | 2024-10-08 | Bae Systems Controls Inc. | High voltage gate drive circuitry |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3372171B2 (en) * | 1995-08-29 | 2003-01-27 | 東芝マイクロエレクトロニクス株式会社 | Semiconductor device |
TW417307B (en) * | 1998-09-23 | 2001-01-01 | Koninkl Philips Electronics Nv | Semiconductor device |
US6395593B1 (en) * | 1999-05-06 | 2002-05-28 | Texas Instruments Incorporated | Method of manufacturing high side and low side guard rings for lowest parasitic performance in an H-bridge configuration |
JP2001007286A (en) * | 1999-06-18 | 2001-01-12 | Fujitsu Ltd | Semiconductor device |
US6476673B2 (en) * | 2000-07-12 | 2002-11-05 | Monolithic Power Systems, Inc. | Class D audio amplifier |
JP4531276B2 (en) * | 2001-02-27 | 2010-08-25 | 三菱電機株式会社 | Semiconductor device |
US7436043B2 (en) | 2004-12-21 | 2008-10-14 | Taiwan Semiconductor Manufacturing Co., Ltd | N-well and N+ buried layer isolation by auto doping to reduce chip size |
US8427235B2 (en) * | 2007-04-13 | 2013-04-23 | Advanced Analogic Technologies, Inc. | Power-MOSFETs with improved efficiency for multi-channel class-D audio amplifiers and packaging thereof |
US8283979B2 (en) * | 2011-01-19 | 2012-10-09 | Harman International Industries, Incorporated | Amplifier system for a power converter |
WO2012171938A2 (en) | 2011-06-14 | 2012-12-20 | Merus Audio Aps | Power transistor gate driver |
-
2015
- 2015-01-16 US US15/112,830 patent/US10096705B2/en active Active
- 2015-01-16 KR KR1020167022804A patent/KR102287060B1/en active IP Right Grant
- 2015-01-16 WO PCT/EP2015/050798 patent/WO2015110362A1/en active Application Filing
- 2015-01-16 JP JP2016564403A patent/JP6486385B2/en active Active
- 2015-01-16 CN CN201580005223.XA patent/CN105934818B/en active Active
- 2015-01-16 EP EP15700683.4A patent/EP3097584B1/en active Active
-
2018
- 2018-05-16 US US15/981,748 patent/US20180315849A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US10096705B2 (en) | 2018-10-09 |
US20160336442A1 (en) | 2016-11-17 |
KR102287060B1 (en) | 2021-08-09 |
CN105934818B (en) | 2019-03-29 |
KR20160111984A (en) | 2016-09-27 |
JP2017505549A (en) | 2017-02-16 |
CN105934818A (en) | 2016-09-07 |
WO2015110362A1 (en) | 2015-07-30 |
EP3097584B1 (en) | 2023-03-01 |
JP6486385B2 (en) | 2019-03-20 |
EP3097584A1 (en) | 2016-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180315849A1 (en) | Integrated High Side Gate Driver Structure and Circuit for Driving High Side Power Transistors | |
US10854500B2 (en) | Gate driver circuitry for power transistors | |
US9866207B2 (en) | Semiconductor device, power control device and electronic system | |
JP5488256B2 (en) | Power semiconductor device | |
US7838901B2 (en) | Single-chip common-drain JFET device and its applications | |
US10277224B2 (en) | Bootstrap diode emulator circuit | |
KR20010078751A (en) | Mask configurable smart power circuits-applications and gs-nmos devices | |
WO2018056234A1 (en) | Switching circuit device, step-down dc-dc converter, and element unit | |
US20160043708A1 (en) | Semiconductor device | |
CN117375410A (en) | Boost charge pump circuit and power amplifier | |
KR101091835B1 (en) | Device for Providing Negative Voltage | |
KR20070026612A (en) | Gate driver output stage with bias circuit for high and wide operating voltage range | |
JP2004128369A (en) | Semiconductor integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MERUS AUDIO APS, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIELSEN, ALLAN NOGUERAS;HOEYERBY, MIKKEL;SIGNING DATES FROM 20160627 TO 20160720;REEL/FRAME:045825/0223 |
|
AS | Assignment |
Owner name: INFINEON TECHNOLOGIES AUSTRIA AG, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INFINEON TECHNOLOGIES DENMARK APS;REEL/FRAME:045894/0113 Effective date: 20180509 Owner name: INFINEON TECHNOLOGIES DENMARK APS, DENMARK Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:MERUS AUDIO APS;INFINEON TECHNOLOGIES DENMARK APS;REEL/FRAME:046694/0921 Effective date: 20180423 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |