US20180283145A1 - Method and system for gravel packing a borehole - Google Patents
Method and system for gravel packing a borehole Download PDFInfo
- Publication number
- US20180283145A1 US20180283145A1 US15/476,139 US201715476139A US2018283145A1 US 20180283145 A1 US20180283145 A1 US 20180283145A1 US 201715476139 A US201715476139 A US 201715476139A US 2018283145 A1 US2018283145 A1 US 2018283145A1
- Authority
- US
- United States
- Prior art keywords
- packer
- seal
- downhole
- differential
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000012856 packing Methods 0.000 title claims abstract description 16
- 230000004044 response Effects 0.000 claims abstract description 14
- 239000004576 sand Substances 0.000 claims abstract description 13
- 239000002002 slurry Substances 0.000 claims description 21
- 230000001960 triggered effect Effects 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000003607 modifier Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- -1 steam Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/04—Gravelling of wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/128—Packers; Plugs with a member expanded radially by axial pressure
- E21B33/1285—Packers; Plugs with a member expanded radially by axial pressure by fluid pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/08—Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/10—Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
Definitions
- subsurface boreholes are used to access desirable fluids such as hydrocarbons. Oftentimes the boreholes will traverse unconsolidated formations or would otherwise benefit from gravel packing to provide for filtration and support. Sometimes it is desirable to isolate two or more zones of a gravel pack with a packer or packers.
- the packers can create issues for packing and the gravel (or sand) can create issues related to the setting of the packers.
- the packers may be set prior to gravel packing and use alternate path configurations for gravel slurry to pack farther downhole of each packer or the packers may be set after completion of the gravel packing operation, relying upon the fluid velocity increase in the smaller area radially outwardly of an unset packer to ensure that little if any gravel will settle out of the slurry stream radially outwardly of the unset packer. While these methods have been successfully used commercially, improvements in efficiency and quality of the gravel pack are always welcomed by the art.
- a downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a sensor uphole of the seal to detect a parameter and a sensor downhole of the seal to detect a parameter, a valve openable in response to a differential detected in the parameter between the sensor uphole of the seal and the sensor downhole of the seal; wherein the packer is settable in response to the same detected differential.
- a method for packing a borehole including flowing a gravel slurry to an area of a borehole that includes a packer, a screen downhole of the packer and a screen uphole of the packer and a service string disposed within and sealed to the packer by an annular seal, depositing gravel from the gravel slurry in an alpha wave and a beta wave, sensing a parameter uphole of the seal and downhole of the seal, triggering setting of the packer upon a selected differential in the sensed parameter uphole and downhole of the seal.
- a method for packing a borehole including flowing slurry into a borehole, sanding out a screen downhole of a packer, sensing a parameter on each longitudinal end of an annular seal sealed between the packer and a service string, triggering setting of the packer upon sensing a selected differential in the parameter on each longitudinal end of the annular seal.
- a downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a valve openable in response to a differential detected across the annular seal, wherein the packer is settable in response to the same detected differential.
- FIG. 1 is a schematic view of a portion of a borehole gravel pack system at a zone isolation packer in a first part of an operation
- FIG. 2 is a schematic view of the portion of a borehole gravel pack system as in FIG. 1 in a second part of an operation;
- FIG. 3 is the system of FIG. 1 illustrating an alternative position for the valve
- FIG. 4 is an end view of a packer with an eccentric flow pathway.
- a system 10 is illustrated in an open hole 12 and having a service string 14 disposed within a downhole sand screen 16 , an uphole sand screen 18 and a packer 20 .
- the service string is sealed to the packer 20 with annular seal 22 , adjacent to which is a diverter valve 24 similar to a valve commercially known from Baker Hughes Incorporated as a Beta Breaker ValveTM.
- the valve may be triggered hydraulically pursuant to differential pressure or upon receiving a signal representative of a differential in a detected parameter.
- the packer illustrated is a hydraulically activated compression packer similar to a packer commercially known from Baker Hughes Incorporated as an MPASTM or MPAS-ETM packer.
- a sensor 26 for a parameter which in an embodiment may be a pressure sensor disposed to read pressure in the volume identifiable in the Figure by the pressure indicator P 2 .
- another sensor 28 for a parameter which in an embodiment may be a pressure sensor disposed to read pressure in the volume identifiable in the Figure by the pressure indicator P 1 .
- the sensors are positioned in the figures only schematically. They are disposed so as to measure pressure in spaces uphole and downhole of the seal 22 . They may be mounted in other areas of these pressure volumes with similar results. These sensors are configured to communicate pressure readings to the valve 24 .
- the valve may simply open hydraulically upon the selected differential pressure acting thereon. Opening the valve 24 will produce a different flow pattern than when the valve is closed. More specifically, and referring to FIG. 1 , the flow of slurry 30 a is seen moving through an annular space outside of the screens in a downstream direction and dehydrating through screen 16 . The flow then continues downstream radially inwardly of the screen 16 to an end 32 of the service string 14 and then back toward the slurry source (not shown) radially inwardly of the service string 14 .
- valve 24 opens to the ID of the service string, effectively changing where the end of the service string is from a hydraulic standpoint while in FIG. 3 , the service string stays the same and the valve allows fluid to flow through the annular seal 22 to the original end of the service string.
- the signal generated through the acquisition of differential pressures where P 1 >P 2 that is sent to the valve 24 or experienced by the valve 24 hydraulically is also received by the packer 20 or experienced by the packer 20 hydraulically and used to trigger setting of the packer 20 .
- this may be an MPASTM Packer or an MPAS-ETM packer, for example commercially available from Baker Hughes, Houston Tex.
- the system as described may include an alternate path for slurry flow past the packer in some embodiments such as shunt tubes, a part annular flow pathways such as illustrated in FIG. 4 wherein an additional tubular member 60 is disposed within packer 20 to provide a fluid passageway 62 past the packer that can be accessed similarly to the pathway disclosed in U.S. Pat. No. 9,488,039 which is incorporated herein by reference.
- the pathway may be annular, part annular, eccentric, etc. depending upon the positioning of the tubular member 60 within the packer 20 , i.e., coaxial or with its axis offset from the axis of the packer.
- a downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a sensor uphole of the seal to detect a parameter and a sensor downhole of the seal to detect a parameter, a valve openable in response to a differential detected in the parameter between the sensor uphole of the seal and the sensor downhole of the seal; wherein the packer is settable in response to the same detected differential.
- a method for packing a borehole including flowing a gravel slurry to an area of a borehole that includes a packer, a screen downhole of the packer and a screen uphole of the packer and a service string disposed within and sealed to the packer by an annular seal, depositing gravel from the gravel slurry in an alpha wave and a beta wave, sensing a parameter uphole of the seal and downhole of the seal, triggering setting of the packer upon a selected differential in the sensed parameter uphole and downhole of the seal.
- a method for packing a borehole including flowing slurry into a borehole, sanding out a screen downhole of a packer, sensing a parameter on each longitudinal end of an annular seal sealed between the packer and a service string, triggering setting of the packer upon sensing a selected differential in the parameter on each longitudinal end of the annular seal.
- the method as in any prior embodiment further comprising opening a valve after sand out of the screen to promote gravel packing of a next adjacent screen.
- a downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a valve openable in response to a differential detected across the annular seal, wherein the packer is settable in response to the same detected differential.
- the teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a wellbore, and/or equipment in the wellbore, such as production tubing.
- the treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof.
- Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc.
- Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
A downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a sensor uphole of the seal to detect a parameter and a sensor downhole of the seal to detect a parameter, a valve openable in response to a differential detected in the parameter between the sensor uphole of the seal and the sensor downhole of the seal; wherein the packer is settable in response to the same detected differential. A method for packing a borehole.
Description
- In the resource recovery industry subsurface boreholes are used to access desirable fluids such as hydrocarbons. Oftentimes the boreholes will traverse unconsolidated formations or would otherwise benefit from gravel packing to provide for filtration and support. Sometimes it is desirable to isolate two or more zones of a gravel pack with a packer or packers. The packers can create issues for packing and the gravel (or sand) can create issues related to the setting of the packers. Conventionally the packers may be set prior to gravel packing and use alternate path configurations for gravel slurry to pack farther downhole of each packer or the packers may be set after completion of the gravel packing operation, relying upon the fluid velocity increase in the smaller area radially outwardly of an unset packer to ensure that little if any gravel will settle out of the slurry stream radially outwardly of the unset packer. While these methods have been successfully used commercially, improvements in efficiency and quality of the gravel pack are always welcomed by the art.
- A downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a sensor uphole of the seal to detect a parameter and a sensor downhole of the seal to detect a parameter, a valve openable in response to a differential detected in the parameter between the sensor uphole of the seal and the sensor downhole of the seal; wherein the packer is settable in response to the same detected differential.
- A method for packing a borehole including flowing a gravel slurry to an area of a borehole that includes a packer, a screen downhole of the packer and a screen uphole of the packer and a service string disposed within and sealed to the packer by an annular seal, depositing gravel from the gravel slurry in an alpha wave and a beta wave, sensing a parameter uphole of the seal and downhole of the seal, triggering setting of the packer upon a selected differential in the sensed parameter uphole and downhole of the seal.
- A method for packing a borehole including flowing slurry into a borehole, sanding out a screen downhole of a packer, sensing a parameter on each longitudinal end of an annular seal sealed between the packer and a service string, triggering setting of the packer upon sensing a selected differential in the parameter on each longitudinal end of the annular seal.
- A downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a valve openable in response to a differential detected across the annular seal, wherein the packer is settable in response to the same detected differential.
- The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
-
FIG. 1 is a schematic view of a portion of a borehole gravel pack system at a zone isolation packer in a first part of an operation; -
FIG. 2 is a schematic view of the portion of a borehole gravel pack system as inFIG. 1 in a second part of an operation; -
FIG. 3 is the system ofFIG. 1 illustrating an alternative position for the valve; and -
FIG. 4 is an end view of a packer with an eccentric flow pathway. - A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
- Referring to
FIG. 1 , asystem 10 is illustrated in anopen hole 12 and having aservice string 14 disposed within adownhole sand screen 16, anuphole sand screen 18 and apacker 20. It is to be understood that the terms downhole and uphole as used with respect to the addressed sand screen are only to distinguish them from one another and place them on opposing longitudinal ends of thepacker 20. The service string is sealed to thepacker 20 withannular seal 22, adjacent to which is adiverter valve 24 similar to a valve commercially known from Baker Hughes Incorporated as a Beta Breaker Valve™. The valve may be triggered hydraulically pursuant to differential pressure or upon receiving a signal representative of a differential in a detected parameter. The packer illustrated is a hydraulically activated compression packer similar to a packer commercially known from Baker Hughes Incorporated as an MPAS™ or MPAS-E™ packer. - In an embodiment, disposed downhole of the
seal 22 is asensor 26 for a parameter, which in an embodiment may be a pressure sensor disposed to read pressure in the volume identifiable in the Figure by the pressure indicator P2. Disposed uphole of theseal 22 is anothersensor 28 for a parameter, which in an embodiment may be a pressure sensor disposed to read pressure in the volume identifiable in the Figure by the pressure indicator P1. It is to be appreciated that the sensors are positioned in the figures only schematically. They are disposed so as to measure pressure in spaces uphole and downhole of theseal 22. They may be mounted in other areas of these pressure volumes with similar results. These sensors are configured to communicate pressure readings to thevalve 24. The valve is programmed to remain closed while P1=P2 or P1>P2 but to open when P2>P1. Alternatively as alluded to above, the valve may simply open hydraulically upon the selected differential pressure acting thereon. Opening thevalve 24 will produce a different flow pattern than when the valve is closed. More specifically, and referring toFIG. 1 , the flow ofslurry 30 a is seen moving through an annular space outside of the screens in a downstream direction and dehydrating throughscreen 16. The flow then continues downstream radially inwardly of thescreen 16 to anend 32 of theservice string 14 and then back toward the slurry source (not shown) radially inwardly of theservice string 14. This will continue until the gravel in the slurry has packed into thescreen 16 to create what is known as a screen out whereby pressure of the slurry upstream of the screened out section is higher than the pressure of the dehydrate fluid downstream of the screened out screen. At this point, thesensors valve 24 opens. Referring toFIG. 3 the change in theslurry flow 30 b is the result of the opening ofvalve 24. Such action will cause a stall in a beta wave of an alpha/beta wave gravel packing operation and the resumption of the beta wave in the location ofscreen 18, effectively skipping the packer. It will be appreciated that inFIG. 2 , thevalve 24 opens to the ID of the service string, effectively changing where the end of the service string is from a hydraulic standpoint while inFIG. 3 , the service string stays the same and the valve allows fluid to flow through theannular seal 22 to the original end of the service string. - As disclosed herein, the signal generated through the acquisition of differential pressures where P1>P2 that is sent to the
valve 24 or experienced by thevalve 24 hydraulically is also received by thepacker 20 or experienced by thepacker 20 hydraulically and used to trigger setting of thepacker 20. In an embodiment, this may be an MPAS™ Packer or an MPAS-E™ packer, for example commercially available from Baker Hughes, Houston Tex. - Several advantages are achieved by configuring the
system 10 to operate as discussed, not the least of which is to set thepacker 20 closely in time after screen out of thescreen 16, which will ensure little migration of any gravel originally packed atscreen 16. Another benefit is that because the packer is rapidly set once thevalve 24 is triggered, and in embodiments, during the continuing gravel packing operation, errant gravel fromscreen 18 settling on theunset packer 20 is minimized. - It is to be appreciated that although the figures only show two screens and one packer, the system hereof may employ any practical number of screens and intermittent packers with valves and sensors as shown to achieve similar results in a longer zonally isolated gravel pack system.
- It is further to be appreciated that the system as described may include an alternate path for slurry flow past the packer in some embodiments such as shunt tubes, a part annular flow pathways such as illustrated in
FIG. 4 wherein an additionaltubular member 60 is disposed withinpacker 20 to provide afluid passageway 62 past the packer that can be accessed similarly to the pathway disclosed in U.S. Pat. No. 9,488,039 which is incorporated herein by reference. It will be understood that the pathway may be annular, part annular, eccentric, etc. depending upon the positioning of thetubular member 60 within thepacker 20, i.e., coaxial or with its axis offset from the axis of the packer. - Set forth below are some embodiments of the foregoing disclosure:
- A downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a sensor uphole of the seal to detect a parameter and a sensor downhole of the seal to detect a parameter, a valve openable in response to a differential detected in the parameter between the sensor uphole of the seal and the sensor downhole of the seal; wherein the packer is settable in response to the same detected differential.
- The downhole system as in any prior embodiment wherein the differential detected is pressure.
- The downhole system as in any prior embodiment wherein the packer is triggered to set when the differential is that the pressure uphole of the seal is higher than the pressure downhole of the seal.
- The downhole system as in any prior embodiment wherein the packer is a hydraulically set compression packer.
- The downhole system as in any prior embodiment wherein the packer is triggered electrically.
- The downhole system as in any prior embodiment wherein the valve is uphole of the seal.
- The downhole system as in any prior embodiment wherein the system includes an alternate path for slurry flow.
- The downhole system as in any prior embodiment wherein the alternate path for slurry flow is eccentric.
- A method for packing a borehole including flowing a gravel slurry to an area of a borehole that includes a packer, a screen downhole of the packer and a screen uphole of the packer and a service string disposed within and sealed to the packer by an annular seal, depositing gravel from the gravel slurry in an alpha wave and a beta wave, sensing a parameter uphole of the seal and downhole of the seal, triggering setting of the packer upon a selected differential in the sensed parameter uphole and downhole of the seal.
- The method as in any prior embodiment wherein the parameter is pressure.
- The method as in any prior embodiment wherein the triggering includes hydraulically setting the packer.
- The method as in any prior embodiment wherein the triggering is electrical.
- A method for packing a borehole including flowing slurry into a borehole, sanding out a screen downhole of a packer, sensing a parameter on each longitudinal end of an annular seal sealed between the packer and a service string, triggering setting of the packer upon sensing a selected differential in the parameter on each longitudinal end of the annular seal.
- The method as in any prior embodiment further comprising opening a valve after sand out of the screen to promote gravel packing of a next adjacent screen.
- The method as in any prior embodiment wherein the opening is triggered by the same selected differential.
- The method as in any prior embodiment wherein the differential is of pressure.
- A downhole system including a packer between sand screens, a service string having an annular seal bridging between the service string and the packer, a valve openable in response to a differential detected across the annular seal, wherein the packer is settable in response to the same detected differential.
- The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).
- The teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a wellbore, and/or equipment in the wellbore, such as production tubing. The treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof. Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc. Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.
- While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited.
Claims (17)
1. A downhole system comprising:
a packer between sand screens;
a service string having an annular seal bridging between the service string and the packer;
a sensor uphole of the seal to detect a parameter and a sensor downhole of the seal to detect a parameter;
a valve openable in response to a differential detected in the parameter between the sensor uphole of the seal and the sensor downhole of the seal; wherein the packer is settable in response to the same detected differential.
2. The downhole system as claimed in claim 1 wherein the differential detected is pressure.
3. The downhole system as claimed in claim 1 wherein the packer is triggered to set when the differential is that the pressure uphole of the seal is higher than the pressure downhole of the seal.
4. The downhole system as claimed in claim 1 wherein the packer is a hydraulically set compression packer.
5. The downhole system as claimed in claim 1 wherein the packer is triggered electrically.
6. The downhole system as claimed in claim 1 wherein the valve is uphole of the seal.
7. The downhole system as claimed in claim 1 wherein the system includes an alternate path for slurry flow.
8. The downhole system as claimed in claim 7 wherein the alternate path for slurry flow is eccentric.
9. A method for packing a borehole comprising:
flowing a gravel slurry to an area of a borehole that includes a packer, a screen downhole of the packer and a screen uphole of the packer and a service string disposed within and sealed to the packer by an annular seal;
depositing gravel from the gravel slurry in an alpha wave and a beta wave;
sensing a parameter uphole of the seal and downhole of the seal;
triggering setting of the packer upon a selected differential in the sensed parameter uphole and downhole of the seal.
10. The method as claimed in claim 9 wherein the parameter is pressure.
11. The method as claimed in claim 9 wherein the triggering includes hydraulically setting the packer.
12. The method as claimed in claim 9 wherein the triggering is electrical.
13. A method for packing a borehole comprising:
flowing slurry into a borehole;
sanding out a screen downhole of a packer;
sensing a parameter on each longitudinal end of an annular seal sealed between the packer and a service string;
triggering setting of the packer upon sensing a selected differential in the parameter on each longitudinal end of the annular seal.
14. The method as claimed in claim 13 further comprising opening a valve after sand out of the screen to promote gravel packing of a next adjacent screen.
15. The method as claimed in claim 14 wherein the opening is triggered by the same selected differential.
16. The method as claimed in claim 13 wherein the differential is of pressure.
17. A downhole system comprising:
a packer between sand screens;
a service string having an annular seal bridging between the service string and the packer;
a valve openable in response to a differential detected across the annular seal; wherein the packer is settable in response to the same detected differential.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/476,139 US20180283145A1 (en) | 2017-03-31 | 2017-03-31 | Method and system for gravel packing a borehole |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/476,139 US20180283145A1 (en) | 2017-03-31 | 2017-03-31 | Method and system for gravel packing a borehole |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180283145A1 true US20180283145A1 (en) | 2018-10-04 |
Family
ID=63673095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/476,139 Abandoned US20180283145A1 (en) | 2017-03-31 | 2017-03-31 | Method and system for gravel packing a borehole |
Country Status (1)
Country | Link |
---|---|
US (1) | US20180283145A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200224516A1 (en) * | 2019-01-11 | 2020-07-16 | Baker Hughes Oilfield Operations Llc | Downhole system for gravel packing without a washpipe |
US11946362B2 (en) | 2021-01-22 | 2024-04-02 | Halliburton Energy Services, Inc. | Gravel pack sand out detection/stationary gravel pack monitoring |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6311772B1 (en) * | 1998-11-03 | 2001-11-06 | Baker Hughes Incorporated | Hydrocarbon preparation system for open hole zonal isolation and control |
US20030111224A1 (en) * | 2001-12-19 | 2003-06-19 | Hailey Travis T. | Apparatus and method for gravel packing a horizontal open hole production interval |
US20060042795A1 (en) * | 2004-08-24 | 2006-03-02 | Richards William M | Sand control screen assembly having fluid loss control capability and method for use of same |
US20080185146A1 (en) * | 2007-02-02 | 2008-08-07 | Baycroft Perry D | Reduced friction pressure gravel pack slurry |
US20100084130A1 (en) * | 2008-10-07 | 2010-04-08 | Halliburton Energy Services, Inc. | Valve device and associated methods of selectively communicating between an interior and an exterior of a tubular string |
US20150068743A1 (en) * | 2013-09-10 | 2015-03-12 | Weatherford/Lamb, Inc. | Multi-Zone Bypass Packer Assembly for Gravel Packing Boreholes |
US9488039B2 (en) * | 2014-07-03 | 2016-11-08 | Baker Hughes Incorporated | Multi-zone single treatment gravel pack system |
US20170342810A1 (en) * | 2014-12-31 | 2017-11-30 | Halliburton Energy Services, Inc. | Gravel pack service tool with enhanced pressure maintenance |
-
2017
- 2017-03-31 US US15/476,139 patent/US20180283145A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6311772B1 (en) * | 1998-11-03 | 2001-11-06 | Baker Hughes Incorporated | Hydrocarbon preparation system for open hole zonal isolation and control |
US20030111224A1 (en) * | 2001-12-19 | 2003-06-19 | Hailey Travis T. | Apparatus and method for gravel packing a horizontal open hole production interval |
US6675891B2 (en) * | 2001-12-19 | 2004-01-13 | Halliburton Energy Services, Inc. | Apparatus and method for gravel packing a horizontal open hole production interval |
US20060042795A1 (en) * | 2004-08-24 | 2006-03-02 | Richards William M | Sand control screen assembly having fluid loss control capability and method for use of same |
US20080185146A1 (en) * | 2007-02-02 | 2008-08-07 | Baycroft Perry D | Reduced friction pressure gravel pack slurry |
US20100084130A1 (en) * | 2008-10-07 | 2010-04-08 | Halliburton Energy Services, Inc. | Valve device and associated methods of selectively communicating between an interior and an exterior of a tubular string |
US20150068743A1 (en) * | 2013-09-10 | 2015-03-12 | Weatherford/Lamb, Inc. | Multi-Zone Bypass Packer Assembly for Gravel Packing Boreholes |
US9488039B2 (en) * | 2014-07-03 | 2016-11-08 | Baker Hughes Incorporated | Multi-zone single treatment gravel pack system |
US20170342810A1 (en) * | 2014-12-31 | 2017-11-30 | Halliburton Energy Services, Inc. | Gravel pack service tool with enhanced pressure maintenance |
Non-Patent Citations (1)
Title |
---|
SPE 71668 "Beta-wave Pressure Control Enables Extended-Reach Horizontal Gravel Packs" by Coronado and Corbett (Year: 2001) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200224516A1 (en) * | 2019-01-11 | 2020-07-16 | Baker Hughes Oilfield Operations Llc | Downhole system for gravel packing without a washpipe |
US10982511B2 (en) * | 2019-01-11 | 2021-04-20 | Baker Hughes Oilfield Operations Llc | Downhole system for gravel packing without a washpipe |
US11946362B2 (en) | 2021-01-22 | 2024-04-02 | Halliburton Energy Services, Inc. | Gravel pack sand out detection/stationary gravel pack monitoring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11634977B2 (en) | Well injection and production method and system | |
AU2006337613B2 (en) | Wellbore method and apparatus for completion, production and injection | |
GB2265399A (en) | Horizontal well treatment method | |
CA3141840C (en) | Determining downhole properties with sensor array | |
US9605517B2 (en) | Wellbore assembly for injecting a fluid into a subsurface formation, and method of injecting fluids into a subsurface formation | |
US20110241897A1 (en) | System and method for real time data transmission during well completions | |
US20150176376A1 (en) | Packer Tool Including Multiple Ports | |
WO2017069765A1 (en) | Extraction cleaner and gas system check | |
US10648285B2 (en) | Fracturing system and method | |
US20180283145A1 (en) | Method and system for gravel packing a borehole | |
US20150176405A1 (en) | Packer Tool Including Multiple Ports For Selective Guarding And Sampling | |
US9422811B2 (en) | Packer tool including multiple port configurations | |
NO20240432A1 (en) | Convertible gauge module and system | |
US20200063547A1 (en) | Sensor configuration | |
US12024974B2 (en) | Isolation and filtration object, system, and method | |
RU2773609C1 (en) | Method for gravel packing of openhole wells | |
Meyer et al. | Application Of Radial Differential Temperature (RDT) Logging To Detect And Treat Flow Behind Casing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAKER HUGHES INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ELISEEV, VASILY;WOUDWIJK, ROY;FARIA, NERVY ENRIQUE;REEL/FRAME:043447/0747 Effective date: 20170330 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |