[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20180271955A1 - Adeno-associated virus mediated gene transfer to the central nervous system - Google Patents

Adeno-associated virus mediated gene transfer to the central nervous system Download PDF

Info

Publication number
US20180271955A1
US20180271955A1 US15/989,405 US201815989405A US2018271955A1 US 20180271955 A1 US20180271955 A1 US 20180271955A1 US 201815989405 A US201815989405 A US 201815989405A US 2018271955 A1 US2018271955 A1 US 2018271955A1
Authority
US
United States
Prior art keywords
vector
aav
administered
mammal
idua
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/989,405
Inventor
R. Scott McIvor
Lalitha R. Belur
Walter Low
Carolyn Fairbanks
Karen Kozarsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Minnesota
Regenxbio Inc
Original Assignee
University of Minnesota
Regenxbio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Minnesota, Regenxbio Inc filed Critical University of Minnesota
Priority to US15/989,405 priority Critical patent/US20180271955A1/en
Assigned to REGENTS OF THE UNIVERSITY OF MINNESOTA reassignment REGENTS OF THE UNIVERSITY OF MINNESOTA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOW, WALTER, BELUR, Lalitha R., MCIVOR, R. SCOTT, FAIRBANKS, Carolyn
Assigned to REGENXBIO INC. reassignment REGENXBIO INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOZARSKY, KAREN, PH.D
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF MINNESOTA
Publication of US20180271955A1 publication Critical patent/US20180271955A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0085Brain, e.g. brain implants; Spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/864Parvoviral vectors, e.g. parvovirus, densovirus
    • C12N15/8645Adeno-associated virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14171Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/007Vector systems having a special element relevant for transcription cell cycle specific enhancer/promoter combination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01076L-Iduronidase (3.2.1.76)

Definitions

  • MPSs mucopolysaccharidoses
  • GAG glycosaminoglycan
  • Manifestations of varying severity include organomegaly, skeletal dysplasias, cardiac and pulmonary obstruction and neurological deterioration.
  • MPS 1 deficiency of iduronidase (IDUA), severity ranges from mild (Scheie syndrome) to moderate (Hurier-Scheie) to severe (Hurler syndrome), with the latter resulting in neurologic deficiency and death by age 15 (Muenzer, 2004; Munoz-Rojas et al., 2008).
  • Therapies for MPSs have been for the most part palliative.
  • Hurler syndrome for which allogeneic hematopoietic stem cell transplantation (HSCT) has exhibited efficacy (Krivit, 2004; Orchard et al., 2007; Peters et al., 2003).
  • ERT enzyme replacement therapy
  • HSCT and ERT result in the clearing of storage materials and improved peripheral conditions, although some problems persist after treatment (skeletal, cardiac, corneal clouding).
  • the primary challenge in these cellular and enzyme therapies is effectiveness in addressing neurological manifestations, as peripherally administered enzyme does not penetrate the blood-brain barrier and HSCT has been found to be of benefit for some, but not all, MPS's.
  • MPS I has been one of the most extensively studied of the MPS diseases for development of cellular and molecular therapies.
  • the effectiveness of allogeneic HSCT is most likely the result of metabolic cross-correction, whereby the missing enzyme is released from donor-derived cells and subsequently taken up by host cells and trafficked to lysosomes, where the enzyme contributes to lysosomal metabolism (Fratantoni et al., 1968). Clearing of GAG storage materials is subsequently observed in peripheral organs such as liver and spleen, there is relief from cardiopulmonary obstruction and improvement in corneal clouding (Orchard et al., 2007). Of particular importance is the effect of allogeneic stem cell transplantation on the emergence of neurologic manifestations in the MPS diseases.
  • the level of enzyme provided to CNS tissues is thus limited to that amount expressed and released from donor-derived cells engrafting in the brain. While such engraftment is of great benefit for MPS I, recipients nonetheless continue to exhibit below normal 10 and impaired neurocognitive capability (Ziegler and Shapiro, 2007).
  • Methods of preventing, inhibiting, and/or treating one or more symptoms associated with a disease of the central nervous system (CNS) in a mammal in need thereof are described.
  • the methods involve delivering to the CNS of a mammal in need of treatment a composition comprising an effective amount of a recombinant adeno-associated virus (rAAV) vector comprising an open reading frame encoding a gene product, e.g., a therapeutic gene product.
  • rAAV recombinant adeno-associated virus
  • Target gene products that may be encoded by an rAAV vector include, but are not limited to, alpha-L-iduronidase, iduronate-2-sulfatase, heparan sulfate sulfatase, N-acetyl-alpha-D-glucosaminidase, beta-hexosaminidase, alpha-galactosidase, betagalactosidase, beta-glucuronidase or glucocerebrosidase.
  • Diseases that may be prevented, inhibited or treated using the methods disclosed herein include, but are not limited to, mucopolysaccharidosis type I disorder, a mucopolysaccharidosis type II disorder, or a mucopolysaccharidosis type VII disorder.
  • the AAV vector can be administered in a variety of ways to ensure that it is delivered to the CNS/brain, and that the transgene is successfully transduced in the subject's CNS/brain. Routes of delivery to the CNS/brain include, but are not limited to intrathecal administration, intracranial administration, e.g., intracerebroventricular administration, or lateral cerebro ventricular administration), intranasal administration, endovascular administration, and intraparenchymal administration.
  • the methods involve delivering to the CNS of an adult mammal in need of treatment a composition comprising an effective amount of a rAAV- 9 vector comprising an open reading frame encoding a gene. In one embodiment, the methods involve delivering to the CNS of an adult mammal in need of treatment a composition comprising an effective amount of a rAAV-9 vector comprising an open reading frame encoding IDUA.
  • the working examples demonstrate that co-therapy to induce immunosuppression or immunotolerization, or treatment of immunodeficient animals, can achieve even higher levels of IDUA enzyme expression and activity.
  • patients with genotypes that promote an immune response that neutralizes enzyme activity are treated with an immunosuppressant in addition to the rAAV vector comprising an open reading frame encoding a gene product, such as IDUA.
  • Neonatal IDUA ⁇ / ⁇ mice are not immunocompetent.
  • administration of IDUA expressing AAV-8 to neonatal IDUA ⁇ / ⁇ mice resulted in IDUA expression (Wolf et al., 2011), thus tolerizing the animals to IDUA.
  • IDUA expression Wang et al., 2011
  • AAV-IDUA serotype 9 was administered by direct injection into the lateral ventricles of adult IDUA-deficient mice that were either immunocompetent, immunodeficient (NODSCID/IDUA ⁇ / ⁇ ), immunosuppressed with cyclophosphamide (CP), or immunotolerized by weekly injection of human iduronidase protein (Aldurazyme) starting at birth.
  • CP immunosuppressed animals were also administered AAV9-IDUA by intranasal infusion, by intrathecal injection, and by endovascular infusion with and without mannitol to disrupt the blood-brain barrier.
  • mice Animals were sacrificed at 8 weeks after vector administration, and brains were harvested and microdissected for evaluation of IDUA enzymatic activity, tissue glycosaminoglycans, and IDUA vector sequences in comparison with normal and affected control mice. Results from these studies show that numerous routes for AAV vector administration directly to the CNS may be employed, e.g., so as to achieve higher levels of protein delivery and/or enzyme activity in the CNS.
  • routes for AAV vector administration directly to the CNS may be employed, e.g., so as to achieve higher levels of protein delivery and/or enzyme activity in the CNS.
  • the brain is an immunopriviledged site, administration of an immunosuppressant or immunotolerization may increase the activity found in the brain after AAV administration. Higher levels of expression per administration and/or less invasive routes of administration are clinically more palatable to patients.
  • the invention includes the use of recombinant AAV (rAAV) vectors that encode a gene product with therapeutic effects when expressed in the CNS of a mammal.
  • the mammal is an immunocompetent mammal with a disease or disorder of the CNS (a neurologic disease).
  • An “immunocompetent” mammal as used herein is a mammal of an age where both cellular and humoral immune responses are elicited alter exposure to an antigenic stimulus, by upregulation of Th1 functions or IFN- ⁇ production in response to polyclonal stimuli, in contrast to a neonate which has innate immunity and immunity derived from the mother, e.g., during gestation or via lactation.
  • an adult mammal that does not have an immunodeficiency disease is an example of an immunocompetent mammal.
  • an immunocompetent human is typically at least 1, 2, 3, 4, 5 or 6 months of age, and includes adult humans without an immunodeficiency disease.
  • the AAV is administered intrathecally.
  • the AAV is administered intracranially (e.g., intracerebroventricularly).
  • the AAV is administered intranasally, with or without a permeation enhancer.
  • the AAV is administered endovascularly, e.g., carotid artery administration, with or without a permeation enhancer.
  • the mammal that is administered the AAV is immunodeficient or is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of therapeutic protein expression relative to a corresponding mammal that is administered the AAV but riot subjected to immunotolerization or immune suppression.
  • an immune suppressive agent is administered to induce immune suppression.
  • the mammal that is administered the AAV is not subjected to immunotolerization or immune suppression (e.g., administration of the AAV alone provides for the therapeutic effect).
  • the invention provides a method to prevent, inhibit or treat one or more symptoms associated with a disease or disorder of the central nervous system in a mammal in need thereof.
  • the method includes intrathecally, e.g., to the lumbar region, or intracerebroventricularly, e.g., to the lateral ventricle, administering to the mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms.
  • the gene product is a lysosomal storage enzyme.
  • the mammal is an immunocompetent adult.
  • the rAAV vector is an AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector.
  • the mammal is a human.
  • multiple doses are administered.
  • the composition is administered weekly, monthly or two or more months apart.
  • the method includes intrathecally, e.g., to the lumbar region, administering to a mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms, and optionally administering a permeation enhancer.
  • the permeation enhancer is administered before the composition.
  • the composition comprises a permeation enhancer.
  • the permeation enhancer is administered after the composition.
  • the gene product is a lysosomal storage enzyme.
  • the mammal is an immunocompetent adult.
  • the rAAV vector is an AAV-1, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector.
  • the mammal is a human.
  • multiple doses are administered.
  • the composition is administered weekly, monthly or two or more months apart.
  • the mammal that is intrathecally administered the ARV is not subjected to immunotolerization or immune suppression (e.g., administration of the AAV alone provides for the therapeutic effect).
  • the mammal that is intrathecally administered the AAV is immunodeficient or is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of therapeutic protein expression relative to a corresponding mammal that is intrathecally administered the AAV but not subjected to immunotolerization or immune suppression.
  • the method includes intracerebroventricularly, e.g., to the lateral ventricle, administering to an immunocompetent mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms.
  • the gene product is a lysosomal storage enzyme.
  • the rAAV vector is an AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, ARV-7, AAV rh10, or AAV-9 vector. In one embodiment, the rAAV vector is not a rAAV-5 vector.
  • the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly, monthly or two or more months apart. In one embodiment, the mammal that is intracerebroventricularly administered the AAV is not subjected to immunotolerization or immune suppression (e.g., administration of the AAV alone provides for the therapeutic effect).
  • the mammal that is intracerebroventricularly administered the AAV is immunodeficient or is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of therapeutic protein expression relative to a corresponding mammal that is intracerebroventricularly administered the AAV but not subjected to immunotolerization or immune suppression
  • the mammal is immunotolerized to the gene product before the composition comprising the AAV is administered.
  • the method includes endovascularly administering to the mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms, and an effective amount of a permeation enhancer.
  • the composition comprises the permeation enhancer.
  • the permeation enhancer comprises mannitol, sodium glycocholate, sodium taurocholate, sodium deoxycholate, sodium salicylate, sodium caprylate, sodium caprate, sodium lauryl sulfate, polyoxyethylene-9-laurel ether, or EDTA.
  • the gene product is a lysosomal storage enzyme.
  • the mammal is an immunocompetent adult.
  • the rAAV vector is an AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector. In one embodiment, the rAAV vector is not a rAAV-5 vector.
  • the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly. In one embodiment, the composition is administered weekly, monthly or two or more months apart. In one embodiment, the mammal that is endovascularly administered the AAV is not subjected to immunotolerization or immune suppression (e.g., administration of the AAV provides for the therapeutic effect). In one embodiment, the mammal that is endovascularly administered the AAV is immunodeficient or is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of therapeutic protein expression relative to a corresponding mammal that is endovascularly administered the AAV but not subjected to immunotolerization or immune suppression.
  • the method includes intranasally administering to a mammal a composition comprising an effective amount of a rAAV-9 vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms, and optionally administering a permeation enhancer.
  • intranasal delivery may be accomplished as described in U.S. Pat. No. 8,609,088, the disclosure of which is incorporated by reference herein.
  • the permeation enhancer is administered before the composition.
  • the composition comprises a permeation enhancer.
  • the permeation enhancer is administered after the composition.
  • the gene product is a lysosomal storage enzyme.
  • the mammal is an immunocompetent adult. In one embodiment, the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly, monthly or two or more months apart. In one embodiment, the mammal that is intranasally administered the AAV is not subjected to immunotolerization or immune suppression. In one embodiment, the mammal that is intranasally administered the AAV is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of IDUA protein expression relative to a corresponding mammal that is intranasally administered the AAV but not subjected to immunotolerization or immune suppression.
  • the method includes administering to the mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms, and an immune suppressant.
  • the immune suppressant comprises cyclophosphamide.
  • the immune suppressant comprises a glucocorticoid, cytostatic agents including an alkylating agent or an anti-metabolite such as methotrexate, azathioprine, mercaptopurine or a cytotoxic antibiotic, an antibody, or an agent active on immunophilin.
  • cytostatic agents including an alkylating agent or an anti-metabolite such as methotrexate, azathioprine, mercaptopurine or a cytotoxic antibiotic, an antibody, or an agent active on immunophilin.
  • the immune suppressant comprises a nitrogen mustard, nitrosourea, a platinum compound, methotrexate, azathioprine, mercaptopurine, fluorouracil, dactinomycin, an anthracyclin, mitomycin C, bleomycin, mithramycin, IL2-receptor-(CD25-) or CD3-directed antibodies, anti-IL-2 antibodies, cyclosporin, tacrolimus, sirolimus, IFN- ⁇ , IFN- ⁇ , an opioid, or TNF- ⁇ (tumor necrosis factor-alpha) binding agents such as infliximab (Remicade), etanercept (Enbrel), or adalimumab (Humira).
  • the rAAV and the immune suppressant are co-administered. In one embodiment, the rAAV is administered before and optionally after the immune suppressant. In one embodiment, the immune suppressant is administered before the rAAV. In one embodiment, the rAAV and the immune suppressant are intrathecally administered. In one embodiment, the rAAV and the immune suppressant are intracerebroventricularly administered. In one embodiment, the rAAV is intrathecally administered and the immune suppressant is intravenously administered. In one embodiment, the gene product is a lysosomal storage enzyme. In one embodiment, the mammal is an adult.
  • the rAAV vector is an AAV-1, ARV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector.
  • the mammal is a human.
  • multiple doses are administered.
  • the composition is administered weekly. In one embodiment, the composition is administered weekly, monthly or two or more months apart.
  • the invention also provides a method to prevent, inhibit or treat one or more symptoms associated with a disease of the central nervous system in a mammal in need thereof.
  • a mammal immunotolerized to a gene product that is associated with the disease is administered a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms.
  • the gene product is a lysosomal storage enzyme.
  • the mammal is an adult.
  • the rAAV vector is an AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector.
  • the mammal is a human.
  • multiple doses are administered.
  • the composition is administered weekly.
  • Gene products that may be encoded by rAAV vectors include, but are not limited to, alpha-L-iduronidase, iduronate-2-sulfatase, heparan sulfate sulfatase, N-acetyl-alpha-D-glucosaminidase, beta-hexosaminidase, alpha-galactosidase, betagalactosidase, beta-glucuronidase, glucocerebrosidase, fibroblast growth factor-2 (FGF-2), brain derived growth factor (BDGF), neurturin, glial derived growth lactor (GDGF), tyrosine hydroxylase, dopamine decarboxylase, or glutamic acid decarboxylase.
  • FGF-2 fibroblast growth factor-2
  • BDGF brain derived growth factor
  • GDGF glial derived growth lactor
  • tyrosine hydroxylase dopamine decarboxylase
  • Diseases that have one or more neurologic symptoms include, but are not limited to, Adrenoleukodystrophy, Alzheimer disease, Amyotrophic lateral sclerosis, Angelman syndrome, Ataxia telangiectasia, Charcot-Marie-Tooth syndrome, Cockayne syndrome, Deafness, Duchenne muscular dystrophy, Epilepsy, Essential tremor, Fragile X syndrome, Friedreich's ataxia, Gaucher disease, Huntington disease, Lesch-Nyhan syndrome, Maple syrup urine disease, Menkes syndrome, Myotonic dystrophy, Narcolepsy, Neurofibromatosis, Niemann-Pick disease.
  • the disease is a lysosomal storage disease, e.g., a lack or deficiency in a lysosomal storage enzyme.
  • Lysosomal storage diseases include, but are not limited to, mucopolysaccharidosis (MPS) diseases, for instance, mucopolysaccharidosis type I, e.g., Hurler syndrome and the variants Scheie syndrome and Hurer-Scheie syndrome (a deficiency in alpha-L-iduronidase); Hunter syndrome (a deficiency of iduronate-2-sulfatase); mucopolysaccharidosis type III, e.g., Sanfilippo syndrome (A, B, C or D; a deficiency of heparan sulfate sulfatase, N-acetyl-alpha-D-glucosaminidase, acetyl Cokalpha-glucosaminide N-acetyl transferase or N-acetylglucosamine-6-sulfate sulfatase); mucopolysaccharidosis type IV e.g., mucopo
  • beta-hexosaminidase GM1 gangliosidosis (type I or type II); Fabry disease (a deficiency in alpha galactosidase); metachromatic leukodystrophy (a deficiency of aryl sulfatase A); Pompe disease (a deficiency of acid maltase); fucosidosis (a deficiency of fucosidase); alpha-mannosidosis (a deficiency of alpha-mannosidase); beta-mannosidosis (a deficiency of beta-mannosidase), ceroid lipofuscinosis, and Gaucher disease (types I, II and III; a deficiency in glucocerebrosidase), as well as disorders such as Hermansky-Pudlak syndrome; Amaurotic idiocy; Tangier disease; aspartylglucosaminuria; congenital disorder of glycosylation, type la;
  • the methods described herein involve delivering to the CNS of an immunocompetent human in need of treatment a composition comprising an effective amount of a rAAV-9 vector comprising an open reading fame encoding a IDUA.
  • Routes of administration to the CNS/brain include, but are not limited to intrathecal administration, intracranial administration, e.g., intracerebroventricular administration or lateral cerebro ventricular administration, intranasal administration, endovascular administration, and intraparenchymal administration.
  • viral vectors may be employed in the methods of the invention, e.g., viral vectors such as retrovirus, lentivirus, adenovirus, semliki forest virus or herpes simplex virus vectors.
  • FIG. 1 Experimental design for iduronidase-deficient adult mice administered IDUA-AAV either intracerebroventricularly (ICV) (right lateral ventricle) or intrathecally (lumbar area).
  • IDUA-AAV intracerebroventricularly
  • OP cyclophosphamide
  • aldurazyme immunotolerized at birth by intravenous administration of human iduonidase protein
  • injections (10 microliters, 3 ⁇ 10 11 particles) were carried out in NOD-SCID immunodeficient mice that were also iduronidase deficient. Animals were sacrificed at the indicated time post-treatment, the brains were microdissected and extracts assayed for iduronidase activity.
  • FIGS. 2A-B IDUA activity in immunodeficient, IDUA deficient animals after ICV injection.
  • FIGS. 3A-B IDUA activity in immunocompetent animals administered AAV vector by ICV route and treated with cyclophosphamide.
  • FIGS. 4A-B IDUA activity in immunocompetent animals administered ARV vector by IT route and treated with cyclophosphamide.
  • FIGS. 5A-B IDUA activity in immunotolerized immunocompetent animals administered ARV vector ICV.
  • FIG. 6 Compilation of all mean levels of IDUA activity for side-by-side comparison.
  • FIGS. 7A-E Data are grouped according the area of the brain. A) hippocampus, B) cerebellum, C) cortex, D) striatum, and E) rest of brain.
  • FIGS. 8A-D Assay for GAG storage material in the different sections of the brain for all four of the test groups.
  • FIG. 9 Schematic of experimental design. All mice were adult MPS1 (IDUA, deficient) mice injected with 10 microliters (3 ⁇ 10 11 particles) of ARV.
  • FIGS. 10A-B Intracranial infusion of AAV9IDUA into immunodeficient MPS I mice.
  • Adult animals were injected with 10 11 vector genomes and evaluated for iduronidase expression in the brain after 10 weeks.
  • Enzyme activity levels in the brain were significantly higher than in the brains of wild type animals, and ranged from 30- to 300-laid higher than wild type.
  • FIGS. 11A-B Intracranial administration of AAV9IDUA in immunocompetent, IDUA deficient mice.
  • Adult animals were injected with 10 11 vector genomes, and immunosuppressed by weekly injection of cyclophosphamide (CP).
  • CP injections were terminated at 6 weeks post vector injection due to poor health, and the animals were sacrificed at 8 weeks post-injection. Brains were microdissected and assayed for IDUA enzyme activity.
  • FIGS. 12A-B Intracranial infusion of AAV9IDUA into immunotolerized MPS I mice.
  • MPS 1 mice were tolerized with either a single dose of Aldurazyme at birth or multiple doses administered weekly, starting at birth. Mice were infused with vector at 4 months, and sacrificed at 11 weeks after injection. Brains were microdissected arid analyzed for iduronidase expression. Enzyme activities ranged brain an average of 10- to 1000-fold higher than wild type levels.
  • FIGS. 13A-B Intrathecal administration of AAV9IDUA in immunocompetent, IDUA deficient animals.
  • Adult MPS I mice were injected with AAV9IDUA intrathecally, followed by a weekly immunosuppressive regimen of cyclophosphamide. Animals were sacrificed at 11 weeks post-injection, and then brains and spinal cords were analyzed for IDUA enzyme activity.
  • FIGS. 14A-B Intrathecal infusion of AAV9IDUA in immunotolerized MPS I mice.
  • IDUA deficient animals were tolerized at birth with a single dose of Aldurazyme or multiple doses administered weekly starting at birth.
  • At 4 months of age animals were infused intrathecally with AAV9IDUA vector, and at 10 weeks post-injection animals were sacrificed, brains microdissected and assayed for iduronidase activity. There was restoration of enzyme activity in all parts of the brain, with activities in the cerebellum ranging from 200- to 1500-fold higher than wild type levels. Levels of enzyme activity in the olfactory bulb and cerebellum (to the right of the dashed line) correspond to the right Y-axis.
  • FIGS. 15A-B Intrathecal infusion of AAV9IDUA in immunocompetent MPS I animals. Control MPS I animals were injected with AAV9IDUA vector, but were not immunosuppressed nor immunotolerized. Animals were sacrificed at 11 weeks after vector injection, and then their brains were assayed for iduronidase activity. Enzyme levels were restored to wild type levels in all parts of the brain, but were significantly lower than in animals that were either immunosuppressed or immunotolerized.
  • FIG. 16 Normalization of glycosaminaglycan (GAG) levels following intracranial or intrathecal AAV9 infusion.
  • AAV9IDUA was injected intracranially or intrathecally into immunodeficient, immunosuppressed or immunotolerized MPS I mice as indicated. Animals were sacrificed 8-11 weeks after injection, then the brains were microdissected and analyzed for GAG levels. GAG storage was restored to wild type levels or close to wild type in all groups analyzed.
  • 1-1 hippocampus
  • Cb cerebellum
  • C cortex
  • S striatum
  • ThB thalamus and brain stem.
  • FIGS. 17A-B IDUA vector copies in brain. Microdissected brains were analyzed for IDUA vector sequences by QPCR. The copy numbers in intracranially (A) and intrathecally (B) injected mice correlate to the levels of enzyme activity depicted in FIGS. 11 and 13 .
  • FIG. 18 ICV infusion of AAV8-MCI into adult animals.
  • FIGS. 19A-B Intranasal administration of AAV9/IDUA in immunocompetent, IDUA deficient animals.
  • Adult MPS I mice were infused with AAV9/IDUA intranasally, followed by a weekly immunosuppressive regimen of cyclophosphamide. Animals were sacrificed at 12 weeks post-injection and brains were analyzed for IDUA enzyme activity.
  • FIG. 20 IDUA vector copies in brain. Microdissected brains were analyzed for IDUA vector sequences by QPCR. The copy numbers in intranasally injected mice correlate to the levels of enzyme in FIG. 19 .
  • mammals include, for example, humans; non-human primates, e.g., apes and monkeys; and non-primates, e.g., dogs, cats, rats, mice, cattle, horses, sheep, and goats.
  • Non-mammals include, for example, fish arid birds.
  • disease or “disorder” are used interchangeably, and are used to refer to diseases or conditions wherein lack of or reduced amounts of a specific gene product, e.g., a lysosomal storage enzyme, plays a role in the disease such that a therapeutically beneficial effect can be achieved by supplementing, e.g., to at least 1% of normal levels,
  • a specific gene product e.g., a lysosomal storage enzyme
  • “Substantially” as the term is used herein means completely or almost completely; for example, a composition that is “substantially free” of a component either has none of the component or contains such a trace amount that any relevant functional property of the composition is unaffected by the presence of the trace amount, or a compound is “substantially pure” is there are only negligible traces of impurities present.
  • Treating” or “treatment” within the meaning herein refers to an alleviation of symptoms associated with a disorder or disease
  • “inhibiting” means inhibition of further progression or worsening of the symptoms associated with the disorder or disease
  • “preventing” refers to prevention of the symptoms associated with the disorder or disease.
  • an “effective amount” or a “therapeutically effective amount” of an agent of the invention refers to an amount of the agent that alleviates, in whole or in part, symptoms associated with the disorder or condition, or halts or slows further progression or worsening of those symptoms, or prevents or provides prophylaxis for the disorder or condition, e.g., an amount that is effective to prevent, inhibit or treat in the individual one or more neurological symptoms.
  • a “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result.
  • a therapeutically effective amount is also one in which any toxic or detrimental effects of compounds of the invention are outweighed by the therapeutically beneficial effects.
  • a “vector” as used herein refers to a macromolecule or association of macromolecules that comprises or associates with a polynucleotide and which can be used to mediate delivery of the polynucleotide to a cell, either in vitro or in vivo.
  • Illustrative vectors include, for example, plasmids, viral vectors, liposomes and other gene delivery vehicles.
  • the polynucleotide to be delivered sometimes referred to as a “target polynucleotide” or “transgene,” may comprise a coding sequence of interest in gene therapy (such as a gene encoding a protein of therapeutic interest) and/or a selectable or detectable marker.
  • AAV is adeno-associated virus, and may be used to refer to the virus itself or derivatives thereof. The term covers all subtypes, serotypes and pseudotypes, and both naturally occurring and recombinant forms, except where required otherwise.
  • serotype refers to an AAV which is identified by and distinguished from other AAVs based on its binding properties, e.g., there are eleven serotypes of AAVs, AAV-1-AAV-11, including AAV-2, AAV-5, AAV-8, AAV-9 and AAV rh10, and the term encompasses pseudotypes with the same binding properties.
  • AAV-5 serotypes include AAV with the binding properties of AAV-5, e.g., a pseudotyped AAV comprising AAV-5 capsid and a rAAV genome which is not derived or obtained from AAV-5 or which genome is chimeric.
  • rAAV refers to recombinant adeno-associated virus, also referred to as a recombinant AAV vector (or “rAAV vector”).
  • An “AAV virus” refers to a viral particle composed of at least one AAV capsid protein and an encapsidated polynucleotide. If the particle comprises a heterologous polynucleotide (i.e., a polynucleotide other than a wild-type AAV genome such as a transgene to be delivered to a mammalian cell), it is typically referred to as “rAAV”.
  • rAAV heterologous polynucleotide
  • An MV “capsid protein” includes a capsid protein of a wild-type AAV, as well as modified forms of an AAV capsid protein which are structurally and or functionally capable of packaging a rAAV genome and bind to at least one specific cellular receptor which may be different than a receptor employed by wild type AAV,
  • a modified AAV capsid protein includes a chimeric AAV capsid protein such as one having amino acid sequences from two or more serotypes of AAV, e,g, a capsid protein formed from a portion of the capsid protein from AAV-5 fused or linked to a portion of the capsid protein from AAV-2, and a AAV capsid protein having a tag or other detectable non-AAV capsid peptide or protein fused or linked to the AAV capsid protein, e.g., a portion of an antibody molecule which binds the transferring receptor may be recombinantly fused to the AAV-2 capsid protein.
  • a “pseudotyped” rAAV is an infectious virus having any combination of an AAV capsid protein and an AAV genome
  • Capsid proteins from any AAV serotype may be employed with a rAAV genome which is derived or obtainable from a wild-type ARV genome of a different serotype or which is a chimeric genome, i.e., formed from AAV DNA from two or more different serotypes, e.g., a chimeric genome having 2 inverted terminal repeats (ITRs), each ITR from a different serotype or chimeric ITRs.
  • ITRs inverted terminal repeats
  • chimeric genomes such as those comprising ITRs from two AAV serotypes or chimeric ITRs can result in directional recombination which may further enhance the production of transcriptionally active intermolecular concatamers.
  • the 5′ and 3′ ITRs within a rAAV vector of the invention may be homologous, i.e., from the same serotype, heterologous, i.e., from different serotypes, or chimeric, i.e., an ITR which has ITR sequences from more than one AAV serotype.
  • Adeno-associated viruses of any serotype are suitable to prepare rAAV, since the various serotypes are functionally and structurally related, even at the genetic level. All AAV serotypes apparently exhibit similar replication properties mediated by homologous rep genes; and all generally bear three related capsid proteins such as those expressed in AAV2. The degree of relatedness is further suggested by heteroduplex analysis which reveals extensive cross-hybridization between serotypes along the length of the genome; and the presence of analogous self-annealing segments at the termini that correspond to ITRs. The similar infectivity patterns also suggest that the replication functions in each serotype are under similar regulatory control. Among the various AAV serotypes, AAV2 is most commonly employed.
  • An AAV vector of the invention typically comprises a polynucleotide that is heterologous to AAV.
  • the polynucleotide is typically of interest because of a capacity to provide a function to a target cell in the context of gene therapy, such as up- or down-regulation of the expression of a certain phenotype.
  • Such a heterologous polynucleotide or “transgene,” generally is of sufficient length to provide the desired function or encoding sequence.
  • heterologous polynucleotide When transcription of the heterologous polynucleotide is desired in the intended target cell, it can be operably linked to its own or to a heterologous promoter, depending for example on the desired level and/or specificity of transcription within the target cell, as is known in the art.
  • a heterologous promoter Various types of promoters and enhancers are suitable for use in this context.
  • Constitutive promoters provide an ongoing level of gene transcription, and may be preferred when it is desired that the therapeutic or prophylactic polynucleotide be expressed on an ongoing basis.
  • Inducible promoters generally exhibit low activity in the absence of the inducer, and are up-regulated in the presence of the inducer.
  • Promoters and enhancers may also be tissue-specific: that is, they exhibit their activity only in certain cell types, presumably due to gene regulatory elements found uniquely in those cells.
  • promoters are the SV40 late promoter from simian virus 40, the Baculovirus polyhedron enhancer/promoter element, Herpes Simplex Virus thymidine kinase (HSV tk), the immediate early promoter from cytomegalovirus (CMV) and various retroviral promoters including LTR elements.
  • Inducible promoters include heavy metal ion inducible promoters (such as the mouse mammary tumor virus (mMTV) promoter or various growth hormone promoters), and the promoters from T7 phage which are active in the presence of T7 RNA polymerase.
  • tissue-specific promoters include various surfactin promoters (for expression in the lung), myosin promoters (for expression in muscle), and albumin promoters (for expression in the liver).
  • surfactin promoters for expression in the lung
  • myosin promoters for expression in muscle
  • albumin promoters for expression in the liver.
  • sequences of many such promoters are available in sequence databases such as the GenBank database.
  • the heterologous polynucleotide will preferably also comprise control elements that facilitate translation (such as a ribosome binding site or “RBS” and a polyadenylation signal).
  • the heterologous polynucleotide generally comprises at least one coding region operatively linked to a suitable promoter, and may also comprise, for example, an operatively linked enhancer, ribosome binding site and poly-A signal.
  • the heterologous polynucleotide may comprise one encoding region, or more than one encoding regions under the control of the same or different promoters. The entire unit, containing a combination of control elements and encoding region, is often referred to as an expression cassette.
  • the heterologous polynucleotide is integrated by recombinant techniques into or in place of the AAV genomic coding region (i.e., in place of the AAV rep and cap genes), but is generally flanked on either side by AAV inverted terminal repeat (ITR) regions.
  • ITR inverted terminal repeat
  • a single ITR may be sufficient to carry out the functions normally associated with configurations comprising two ITRs (see, for example, WO 94/13788), and vector constructs with only one ITR can thus be employed in conjunction with the packaging and production methods of the present invention.
  • the native promoters for rep are self-regulating, and can limit the amount of AAV particles produced.
  • the rep gene can also be operably linked to a heterologous promoter, whether rep is provided as part of the vector construct, or separately. Any heterologous promoter that is not strongly down-regulated by rep gene expression is suitable; but inducible promoters may be preferred because constitutive expression of the rep gene can have a negative impact on the host cell.
  • inducible promoters are known in the art; including, by way of illustration, heavy metal ion inducible promoters (such as metallothionein promoters); steroid hormone inducible promoters (such as the MMTV promoter or growth hormone promoters); and promoters such as those from T7 phage which are active in the presence of T7 RNA polymerase.
  • heavy metal ion inducible promoters such as metallothionein promoters
  • steroid hormone inducible promoters such as the MMTV promoter or growth hormone promoters
  • promoters such as those from T7 phage which are active in the presence of T7 RNA polymerase.
  • T7 RNA polymerase promoters
  • One sub-class of inducible promoters are those that are induced by the helper virus that is used to complement the replication and packaging of the rAAV vector.
  • helper-virus-inducible promoters include the adenovirus early gene promoter which is inducible by adenovirus E1A protein; the adenovirus major late promoter; the herpesvirus promoter which is inducible by herpesvirus proteins such as VP16 or 1CP4; as well as vaccinia or poxvirus inducible promoters.
  • helper-virus-inducible promoters have been described (see, e.g., WO 96/17947). Thus, methods are known in the art to determine whether or not candidate promoters are helper-virus-inducible, and whether or not they will be useful in the generation of high efficiency packaging cells. Briefly, one such method involves replacing the p5 promoter of the AAV rep gene with the putative helper-virus-inducible promoter (either known in the art or identified using well-known techniques such as linkage to promoter-less “reporter” genes).
  • the AAV rep-cap genes (with p5 replaced), e.g., linked to a positive selectable marker such as an antibiotic resistance gene, are then stably integrated into a suitable host cell (such as the HeLa or A549 cells exemplified below). Cells that are able to grow relatively well under selection conditions (e.g., in the presence of the antibiotic) are then tested for their ability to express the rep and cap genes upon addition of a helper virus. As an initial test for rep and/or cap expression, cells can be readily screened using immunofluorescence to detect Rep and/or Cap proteins. Confirmation of packaging capabilities and efficiencies can then be determined by functional tests for replication and packaging of incoming rAAV vectors.
  • a suitable host cell such as the HeLa or A549 cells exemplified below.
  • helper-virus-inducible promoter derived from the mouse metallothionein gene has been identified as a suitable replacement for the p5 promoter, and used for producing high titers of rAAV particles (as described in WO 96/17947).
  • Removal of one or more AAV genes is in any case desirable, to reduce the likelihood of generating replication-competent AAV (“RCA”). Accordingly, encoding or promoter sequences for rep, cap, or both, may be removed, since the functions provided by these genes can be provided in trans.
  • the resultant vector is referred to as being “detective” in these functions.
  • the missing functions are complemented with a packaging gene, or a plurality thereof, which together encode the necessary functions for the various missing rep and/or cap gene products.
  • the packaging genes or gene cassettes are in one embodiment not flanked by AAV ITRs and in one embodiment do not share any substantial homology with the rAAV genome.
  • the level of homology and corresponding frequency of recombination increase with increasing length of homologous sequences and with their level of shared identity.
  • the level of homology that will pose a concern in a given system can be determined theoretically and confirmed experimentally, as is known in the art. Typically, however, recombination can be substantially reduced or eliminated if the overlapping sequence is less than about a 25 nucleotide sequence if it is at least 80% identical over its entire length, or less than about a 50 nucleotide sequence if it is at least 70% identical over its entire length. Of course, even lower levels of homology are preferable since they will further reduce the likelihood of recombination.
  • the rAAV vector construct, and the complementary packaging gene constructs can be implemented in this invention in a number of different forms.
  • Viral particles, plasmids, and stably transformed host cells can all be used to introduce such constructs into the packaging cell, either transiently or stably.
  • the AAV vector and complementary packaging gene(s), if any, are provided in the form of bacterial plasmids, AAV particles, or any combination thereof.
  • either the AAV vector sequence, the packaging gene(s), or both are provided in the form of genetically altered (preferably inheritably altered) eukaryotic cells. The development of host cells inheritably altered to express the AAV vector sequence, AAV packaging genes, or both, provides an established source of the material that is expressed at a reliable level.
  • a mammalian host cell may be used with at least one intact copy of a stably integrated rAAV vector.
  • An AAV packaging plasmid comprising at least an AAV rep gene operably linked to a promoter can be used to supply replication functions (as described in U.S. Pat. No. 5,658,776).
  • a stable mammalian cell line with an AAV rep gene operably linked to a promoter can be used to supply replication functions (see, e.g., Trempe et al., WO 95/13392); Burstein et al. (WO 98/23018); and Johnson et al. (U.S. Pat.
  • the AAV cap gene providing the encapsidation proteins as described above, can be provided together with an AAV rep gene or separately (see, e.g., the above-referenced applications and patents as well as Allen et al. (WO 98/27204). Other combinations are possible and included within the scope of this invention.
  • Intranasal delivery bypasses the BBB and targets therapeutics directly to the CNS utilizing pathways along olfactory and trigeminal nerves innervating the nasal passages (Frey II, 2002; Thorne et al., 2004; Dhanda et al., 2005).
  • routes of administration to the CNS include intrathecal and intracranial.
  • Intracranial administration may be to the cisterna magna or ventricle.
  • cisterna magna is intended to include access to the space around and below the cerebellum via the opening between the skull and the top of the spine.
  • Cerebral ventricle is intended to include the cavities in the brain that are continuous with the central canal of the spinal cord.
  • Intracranial administration is via injection or infusion and suitable dose ranges for intracranial administration are generally about 10 3 to 10 15 infectious units of viral vector per microliter delivered in 1 to 3000 microliters of single injection volume.
  • viral genomes or infectious units of vector per micro liter would generally contain about 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , 10 12 , 10 13 , or 10 14 viral genomes or infectious units of viral vector delivered in about 10, 50, 100, 200, 500, 1000, or 2000 microliters.
  • the aforementioned dosage is merely an exemplary dosage and those of skill in the art will understand that this dosage may be varied. Effective doses may be extrapolated from dose-responsive curves derived from in vitro or in vivo test systems.
  • the AAV delivered in the intrathecal methods of treatment of the present invention may be administered through any convenient route commonly used for intrathecal administration.
  • the intrathecal administration may be via a slow infusion of the formulation for about an hour.
  • Intrathecal administration is via injection or infusion and suitable dose ranges for intrathecal administration are generally about 10 3 to 10 15 infectious units of viral vector per microliter delivered in, for example, 1 to 3000 microliters or 0.5 to 15 milliliters of single injection volume.
  • viral genomes or infectious units of vector per microliter would generally contain about 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , 10 12 , 10 13 , or 10 14 viral genomes or infectious units of viral vector.
  • the therapy results in the normalization of lysosomal storage granules in the neuronal and/or meningeal tissue of the subjects as discussed above. It is contemplated that the deposition of storage granules is ameliorated from neuronal and glial tissue, thereby alleviating the developmental delay and regression seen in individuals suffering with lysosomal storage disease.
  • Other effects of the therapy may include the normalization of lysosomal storage granules in the cerebral meninges near the arachnoid granulation, the presence of which in lysosomal storage disease result in high pressure hydrocephalus.
  • the methods of the invention also may be used in treating spinal cord compression that results from the presence of lysosomal storage granules in the cervical meninges near the cord at C1-C5 or elsewhere in the spinal cord.
  • the methods of the invention also are directed to the treatment of cysts that are caused by the perivascular storage of lysosomal storage granules around the vessels of the brain.
  • the therapy also may advantageously result in normalization of liver volume and urinary glycosaminoglycan excretion, reduction in spleen size and apnea/hypopnea events, increase in height and growth velocity in prepubertal subjects, increase in shoulder flexion and elbow and knee extension, and reduction in tricuspid regurgitation or pulmonic regurgitation.
  • the intrathecal administration of the present invention may comprise introducing the composition into the lumbar area. Any such administration may be via a bolus injection. Depending on the severity of the symptoms and the responsiveness of the subject to the therapy, the bolus injection may be administered once per week, once per month, once every 6 months or annually. In other embodiments, the intrathecal administration is achieved by use of an infusion pump. Those of skill in the art are aware of devices that may be used to effect intrathecal administration of a composition.
  • the composition may be intrathecally given, for example, by a single injection, or continuous infusion. It should be understood that the dosage treatment may be in the form of a single dose administration or multiple doses.
  • the term “intrathecal administration” is intended to include delivering a pharmaceutical composition directly into the cerebrospinal fluid of a subject, by techniques including lateral cerebroventricular injection through a burrhole or cisternal or lumbar puncture or the like.
  • the term “lumbar region” is intended to include the area between the third and fourth lumbar (lower back) vertebrae and, more inclusively, the L2-S1 region of the spine.
  • compositions in accordance with the present invention can be achieved by direct injection of the composition or by the use of infusion pumps.
  • the composition can be formulated in liquid solutions, e.g., y in physiologically compatible buffers such as Flank's solution, Ringer's solution or phosphate buffer.
  • the enzyme may be formulated in solid form and re-dissolved or suspended immediately prior to use. Lyophilized forms are also included.
  • the injection can be, for example, in the form of a bolus injection or continuous infusion (e.g., using infusion pumps) of the enzyme,
  • the rAAV is administered by lateral cerebro-ventricular injection into the brain of a subject.
  • the injection can be made, for example, through a burr hole made in the subject's skull.
  • the enzyme and/or other pharmaceutical formulation is administered through a surgically inserted shunt into the cerebral ventricle of a subject.
  • the injection can be made into the lateral ventricles, which are larger, even though injection into the third and fourth smaller ventricles can also be made.
  • the compositions used in the present invention are administered by injection into the cisterna magna or lumbar area of a subject.
  • Therapeutics can rapidly gain access to the CNS following intranasal administration along olfactory nerve pathways leading from the nasal cavity directly to the CNS.
  • Olfactory nerve pathways are a major component of intranasal delivery, evidenced by the fact that fluorescent tracers are associated with olfactory nerves as they traverse the cribriform plate (Jansson et al., 2002), drug concentrations in the olfactory bulbs are generally among the highest CNS concentrations observed (Thorne et al., 2004; Banks et al., 2004; Graff et al., 2005a); Nonaka et al., 2008; Ross et al., 2004; Ross et al., 2008; Thorne et al., 2008), and a strong, positive correlation exists between concentrations in the olfactory epithelium and olfactory bulbs (Dhuria et al., 2009a).
  • Olfactory pathways arise in the upper portion of the nasal passages, in the olfactory region, where olfactory receptor neurons (ORNs) are interspersed among supporting cells (sustentacular cells), microvillar cells, and basal cells. ORNs mediate the sense of smell by conveying sensory information from the peripheral environment to the CNS (Clerico et al., 2003). Beneath the epithelium, the lamina basement contains mucus secreting Bowman's glands, axons, blood vessels, lymphatic vessels, and connective tissue.
  • ORNs olfactory receptor neurons
  • the dendrites of ORNs extend into the mucous layer of the olfactory epithelium, while axons of these bipolar neurons extend centrally through the lamina intestinal and through perforations in the cribriform plate of the ethmoid bone, which separates the nasal and cranial cavities.
  • the axons of ORNs pass through the subarachnoid space containing CSF and terminate on mitral cells in the olfactory bulbs. From there, neural projections extend to multiple brain regions including the olfactory tract, anterior olfactory nucleus, piriform cortex, amygdala, and hypothalamus (Buck, 2000).
  • chemosensory neurons located at the anterior tip of the nasal cavity in the Grueneberg ganglion lead into the olfactory bulbs (Fuss et al., 2005; Koos et al., 2005).
  • ORNs The unique characteristics of the ORNs contribute to a dynamic cellular environment critical for intranasal delivery to the CNS. Due to the direct contact with toxins in the external environment, ORNs regenerate every 3-4 weeks from basal cells residing in the olfactory epithelium (Mackay-Sim, 2003). Special Schwann cell-like cells called olfactory ensheathing cells (OECs) envelope the axons of ORNs and have an important role in axonal regeneration, regrowth, and remyelination (Field et al., 2003; Li et al., 2005a; Li et al., 2005b). The OECs create continuous, fluid-filled perineurial channels that, interestingly, remain open, despite the degeneration and regeneration of ORNs (Williams et al., 2004).
  • OECs olfactory ensheathing cells
  • Extracellular transport mechanisms involve the rapid movement of molecules between cells in the nasal epithelium, requiring only several minutes to 30 minutes for a drug to reach the olfactory bulbs and other areas of the CNS after intranasal administration (Frey II, 2002; Balin et al., 1986). Transport likely involves bulk flow mechanisms (Thorne et al., 2004; Thorne et al., 2001) within the channels created by the OECs.
  • Drugs may also be propelled within these channels by the structural changes that occur during depolarization and axonal propagation of the action potential in adjacent axons (Luzzati et al., 2004).
  • Intracellular transport mechanisms involve the uptake of molecules into ORNs by passive diffusion, receptor-mediated endocytosis or adsorptive endocytosis, followed by slower axonal transport, taking several hours to days for a drug to appear in the olfactory bulbs and other brain areas (Baker et al., 1986; Broadwell et al., 1985; Kristensson et al., 1971).
  • Intracellular transport in ORNs has been demonstrated for small, lipophilic molecules such as gold particles (de Lorenzo, 1970; Gopinath et al., 1978), aluminum salts (Pert et al, 1987), and for substances with receptors on ORNs such as WGA-HRP (Thorne et al., 1995; Baker et al, 1986; Itaya et al., 1986; Shipley, 1985). Intracellular mechanisms, while important for certain therapeutics, are not likely to be the predominant mode of transport into the CNS.
  • GLP galanin-like peptide
  • IGF-I insulin-like growth factor-I
  • the trigeminal nerve conveys sensory information from the nasal cavity, the oral cavity, the eyelids, and the cornea, to the CNS via the ophthalmic division (V1), the maxillary division (V2), or the mandibular division (V3) of the trigeminal nerve (Clerico et al., 2003; Gray, 1978).
  • V1 the ophthalmic division
  • V2 the maxillary division
  • V3 the mandibular division
  • Branches from the ophthalmic division of the trigeminal nerve provide innervation to the dorsal nasal mucosa and the anterior portion of the nose, while branches of the maxillary division provide innervation to the lateral walls of the nasal mucosa.
  • the mandibular division of the trigeminal nerve extends to the lower, jaw and teeth, with no direct neural inputs to the nasal cavity.
  • the three branches of the trigeminal nerve come together at the trigeminal ganglion and extend centrally to enter the brain at the level of the pons, terminating in the spinal trigeminal nuclei in the brainstem.
  • a unique feature of the trigeminal nerve is that it enters the brain from the respiratory epithelium of the nasal passages at two sites: (1) through the anterior lacerated foramen near the pons and (2) through the cribriform plate near the olfactory bulbs, creating entry points into both caudal and rostral brain areas following intranasal administration. It is also likely that other nerves that innervate the face and head, such as the facial nerve, or other sensory structures in the nasal cavity, such as the Grueneberg ganglion, may provide entry points for intranasally applied therapeutics into the CNS.
  • the intranasal route of administration has been utilized to deliver drugs to the systemic circulation via absorption into the capillary blood vessels underlying the nasal mucosa.
  • the nasal mucosa is highly vascular, receiving its blood supply from branches of the maxillary, ophthalmic and lacial arteries, which arise from the carotid artery (Clerico et al., 2003; Cauna, 1982).
  • the olfactory mucosa receives blood from small branches of the ophthalmic artery, whereas the respiratory mucosa receives blood from a large caliber arterial branch of the maxillary artery (DeSesso, 1993).
  • the relative density of blood vessels is greater in the respiratory mucosa compared to the olfactory mucosa, making the former region an ideal site for absorption into the blood (DeSesso, 1993).
  • the vasculature in the respiratory region contains a mix of continuous and fenestrated endothelia (Grevers et al., 1987; Van Diest et al., 1979), allowing both small and large molecules to enter the systemic circulation following nasal administration.
  • Perivascular spaces are bound by the outermost layer of blood vessels and the basement membrane of the surrounding tissue (Pollock et al., 1997). These perivascular spaces act as a lymphatic system for the brain, where neuron-derived substances are cleared from brain interstitial fluid by entering perivascular channels associated with cerebral blood vessels.
  • Perivascular transport is due to bulk flow mechanisms, as opposed to diffusion alone (Cserr et al., 1981; Groothuis et al., 2007), and arterial pulsations are also a driving force for perivascular transport (Rennets et al., 1985; Rennets et al, 1985). Intranasally applied drugs can move into perivascular spaces in the nasal passages or after reaching the brain and the widespread distribution observed within the CNS could be due to perivascular transport mechanisms (Thorne et al., 2004).
  • Pathways connecting the subarachnoid space containing CSF, perineurial spaces encompassing olfactory nerves, and the nasal lymphatics are important for CSF drainage and these same pathways provide access for intranasally applied therapeutics to the CSF and other areas of the CNS.
  • Optimal delivery to the CNS along neural pathways is associated with delivery of the agent to the upper third of the nasal cavity (Hanson et al., 2008).
  • a supine position may be employed another position for targeting the olfactory region is with the “praying to Mecca” position, with the head down-and-forward.
  • a supine position with the head angle at 70° or 90° may be suitable for efficient delivery to the CSF using a tube inserted into the nostrils to deliver the drug via intranasal administration (van den Berg et al., (2002)).
  • nose drops may be administered over a period of 10-20 minutes to alternating nostrils every 1-2 minutes to allow the solution to be absorbed into the nasal epithelium (Thorne et al., 2004; Capsoni et al., 2002; Ross et al., 2004; Ross et al, 2008; Dhuria et al., 2009a; Dhuria et al., 2009b; Francis et al., 2008; Martinez et al., 2008).
  • This noninvasive method does not involve inserting the device into the nostril. Instead, drops are placed at the opening of the nostril, allowing the individual to sniff the drop into the nasal cavity.
  • Flexible tubing can be inserted into the nostrils for localized delivery of a small volume of the drug solution to the respiratory or olfactory epithelia, depending on the length of the tubing (Chow et al., 1999; Van den Berg et al., 2003; van den Berg et al., 2004a; Banks et al., 2004; van den Berg et al., 2002; Vyas et al., 2006a; Chariton et al., 2007a; Ciao et al., 2007a).
  • Nasal delivery devices such as sprays, nose droppers or needle-less syringes, may be employed to target the agent to different regions of the nasal cavity.
  • OptiMistTM is a breath actuated device that targets liquid or powder nasal formulations to the nasal cavity, including the olfactory region, without deposition in the lungs or esophagus (Djupesland et al., 2006).
  • the ViaNaseTM device can also be used to target a nasal spray to the olfactory and respiratory epithelia of the nasal cavity.
  • Nasal drops tend to deposit on the nasal floor and are subjected to rapid mucociliary clearance, while nasal sprays are distributed to the middle meatus of the nasal mucosa (Scheibe et al., 2008).
  • the immune suppressant or immunotolerizing agent may be administered by any route including parenterally.
  • the immune suppressant or immunotolerizing agent may be administered by subcutaneous, intramuscular, or intravenous injection, orally, intrathecally, intracranially, or intranasally, or by sustained release, e.g., using a subcutaneous implant.
  • the immune suppressant or immunotolerizing agent may be dissolved or dispersed in a liquid carrier vehicle.
  • the active material may be suitably admixed with an acceptable vehicle, e.g., of the vegetable oil variety such as peanut oil, cottonseed oil and the like.
  • compositions may comprise an aqueous solution of a water soluble pharmaceutically acceptable salt of the active acids according to the invention, desirably in a concentration of 0.01-10%, and optionally also a stabilizing agent and/or buffer substances in aqueous solution. Dosage units of the solution may advantageously be enclosed in ampules.
  • the composition e,g,, rAAV containing composition, immune suppressant containing composition or immunotolerizing composition
  • carriers or diluents usable for preparing such injectable doses include diluents such as water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxyisostearyl alcohol and polyoxyethylene sorbitan fatty acid esters, pH adjusting agents or buffers such as sodium citrate, sodium acetate and sodium phosphate, stabilizers such as sodium pyrosulfite, EDTA, thioglycolic acid and thiolactic acid, isotonic agents such as sodium chloride and glucose, local anesthetics such as procaine hydrochloride and lidocaine hydrochloride.
  • diluents such as water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxyisostearyl alcohol and
  • injections can be prepared by adding such carriers to the enzyme or other active, following procedures well known to those of skin in the art.
  • a thorough discussion of pharmaceutically acceptable excipients is available in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. 1991).
  • the pharmaceutically acceptable formulations can easily be suspended in aqueous vehicles and introduced through conventional hypodermic needles or using infusion pumps. Prior to introduction, the formulations can be sterilized with, preferably, gamma radiation or electron beam sterilization.
  • the immune suppressant or immunotolerizing agent When the immune suppressant or immunotolerizing agent is administered in the form of a subcutaneous implant, the compound is suspended or dissolved in a slowly dispersed material known to those skilled in the art, or administered in a device which slowly releases the active material through the use of a constant driving force such as an osmotic pump. In such cases, administration over an extended period of time is possible.
  • the dosage at which the immune suppressant or immunotolerizing agent containing composition is administered may vary within a wide range and will depend on various factors such as the severity of the disease, the age of the patient, etc., and may have to be individually adjusted.
  • a possible range for the amount which may be administered per day is about 0.1 mg to about 2000 mg or about 1 mg to about 2000 mg.
  • the compositions containing the immune suppressant or immunotolerizing agent may suitably be formulated so that they provide doses within these ranges, either as single dosage units or as multiple dosage units.
  • the subject formulations may contain one or more rAAV encoding a therapeutic gene product.
  • compositions described herein may be employed in combination with another medicament.
  • the compositions can appear in conventional forms, for example, aerosols, solutions, suspensions, or topical applications, or in lyophilized form.
  • compositions include a rAAV, an immune suppressant, a permeation enhancer, or a combination thereof, and a pharmaceutically acceptable excipient which can be a carrier or a diluent.
  • the active agent(s) may be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier.
  • the active agent when the active agent is mixed with a carrier, or when the carrier serves as a diluent, it can be solid, semi-solid, or liquid material that acts as a vehicle, excipient, or medium for the active agent.
  • suitable carriers are water, salt solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, gelatin, lactose, terra alba, sucrose, dextrin, magnesium carbonate, sugar, cyclodextrin, amylase, magnesium stearate, talc, gelatin, agar, pectin, acacia, stearic acid or lower alkyl ethers of cellulose, silicic acid, fatty acids, fatty acid amines, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, polyoxyethylene, hydroxymethylcellulose and polyvinylpyrrolidone.
  • the carrier or diluent can include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax.
  • the formulations can be mixed with auxiliary agents which do not deleteriously react with the active agent(s).
  • auxiliary agents which do not deleteriously react with the active agent(s).
  • Such additives can include wetting agents, emulsifying and suspending agents, salt for influencing osmotic pressure, butlers and/or coloring substances preserving agents, sweetening agents or flavoring agents.
  • the compositions can also be sterilized if desired.
  • the preparation can be in the form of a liquid such as an aqueous liquid suspension or solution.
  • Acceptable solvents or vehicles include sterilized water, Ringer's solution, or an isotonic aqueous saline solution.
  • the agent(s) may be provided as a powder suitable for reconstitution with an appropriate solution as described above. Examples of these include, but are not limited to, freeze dried, rotary dried or spray dried powders, amorphous powders, granules, precipitates, or particulates.
  • the composition can optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these.
  • a unit dosage form can be in individual containers or in multi-dose containers.
  • compositions contemplated by the present invention may include, for example, micelles or liposomes, or some other encapsulated form, or can be administered in an extended release form to provide a prolonged storage and/or delivery effect, e.g., using biodegradable polymers, e.g., polylactide-polyglycolide.
  • biodegradable polymers e.g., polylactide-polyglycolide.
  • examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides).
  • Polymeric nanoparticles e.g., comprised of a hydrophobic core of polylactic acid (PLA) and a hydrophilic shell of methoxy-polyethylene glycol) (MPEG), may have improved solubility and targeting to the CNS. Regional differences in targeting between the microemulsion and nanoparticle formulations may be due to differences in particle size.
  • PLA polylactic acid
  • MPEG methoxy-polyethylene glycol
  • Liposomes are very simple structures consisting of one or more lipid bilayers of amphiphilic lipids, i.e., phospholipids or cholesterol. The lipophilic moiety of the bilayers is turned towards each other and creates an inner hydrophobic environment in the membrane. Liposomes are suitable drug carriers for some lipophilic drugs which can be associated with the non-polar parts of lipid bilayers if they fit in size and geometry. The size of liposomes varies from 20 nm to few ⁇ m.
  • Mixed micelles are efficient detergent structures which are composed of bile salts, phospholipids, tri, di- and monoglycerides, fatty acids, free cholesterol and fat soluble micronutrients.
  • long-chain phospholipids are known to form bilayers when dispersed in water
  • the preferred phase of short chain analogues is the spherical micellar phase.
  • a micellar solution is a thermodynamically stable system formed spontaneously in water and organic solvents.
  • the interaction between micelles and hydrophobic/lipophilic drugs leads to the formation of mixed micelles (MM), often called swallen micelles, too.
  • MM mixed micelles
  • Lipid microparticles includes lipid nano- and microspheres.
  • Microspheres are generally defined as small spherical particles made of any material which are sized from about 0.2 to 100 ⁇ m. Smaller spheres below 200 nm are usually called nanospheres.
  • Lipid microspheres are homogeneous oil/water microemulsions similar to commercially available fat emulsions, and are prepared by an intensive sonication procedure or high pressure emulsifying methods (grinding methods). The natural surfactant lecithin lowers the surface tension of the liquid, thus acting as an emulsifier to form a stable emulsion.
  • the structure and composition of lipid nanospheres is similar to those of lipid microspheres, but with a smaller diameter,
  • Polymeric nanoparticles serve as carriers for a broad variety of ingredients.
  • the active components may be either dissolved in the polymetric matrix or entrapped or adsorbed onto the particle surface.
  • Polymers suitable for the preparation of organic nanoparticles include cellulose derivatives and polyesters such as poly(lactic acid), poly(glycolic acid) and their copolymer. Due to their small size, their large surface area/volume ratio and the possibility of functionalization of the interface, polymeric nanoparticles are ideal carrier and release systems. If the particle size is below 50 nm, they are no longer recognized as particles by many biological and also synthetic barrier layers, but act similar to molecularly disperse systems.
  • composition of the invention can be formulated to provide quick, sustained, controlled, or delayed release, or any combination thereof, of the active agent after administration to the individual by employing procedures well known in the art.
  • the enzyme is in an isotonic or hypotonic solution.
  • a lipid based delivery vehicle may be employed, e.g., a microemulsion such as that described in WO 2008/049588, the disclosure of which is incorporated by reference herein, or liposomes.
  • the preparation can contain an agent, dissolved or suspended in a liquid carrier, such as an aqueous carrier, for aerosol application.
  • a liquid carrier such as an aqueous carrier
  • the carrier can contain additives such as solubilizing agents, e.g., propylene glycol, surfactants, absorption enhancers such as lecithin (phosphatidylcholine) or cyclodextrin, or preservatives such as parabens.
  • solubilizing agents e.g., propylene glycol
  • surfactants e.g., surfactants
  • absorption enhancers such as lecithin (phosphatidylcholine) or cyclodextrin
  • preservatives such as parabens.
  • efficient delivery to the CNS following intranasal administration may be dependent on membrane permeability.
  • improving membrane permeability may enhance extracellular mechanisms of transport to the CNS along olfactory and trigeminal nerves.
  • permeation enhancers such as surfactants, e.g., lauroylcarnitine (LC), bile salts, lipids, cyclodextrins, polymers, or tight junction modfiers.
  • the active agents are dispensed in unit dosage form including the active ingredient together with a pharmaceutically acceptable carrier per unit dosage.
  • dosage forms suitable for nasal administration include from about 125 ⁇ g to about 125 mg, e.g., from about 250 ⁇ g to about 50 mg, or from about 2.5 mg to about 25 mg, of the compounds admixed with a pharmaceutically acceptable carrier or diluent.
  • Dosage forms can be administered daily, or more than once a day, such as twice or thrice daily. Alternatively dosage forms can be administered less frequently than daily, such as every other day, or weekly, if found to be advisable by a prescribing physician.
  • MPS I Mucopolysaccharidosis type I
  • IDUA alpha-L-iduronidase
  • Sic and abnormal accumulation of glycosaminoglycans is associated with growth delay, organomegaly, skeletal dysplasia, and cardiopulmonary disease.
  • Individuals with the most severe form of the disease suffer from neurodegeneration, mental retardation, and early death.
  • the two current treatments for MPS I hematopoietic stem cell transplantation and enzyme replacement therapy
  • CNS central nervous system
  • AAV9-IDUA preparation The AAV-IDUA vector construct (MCI) has been previously described (Wolf et al., 2011) (mCags promoter). AAV-IDUA plasmid DNA was packaged into AAV9 virions at the University of Florida Vector Core, yielding a titer of 3 ⁇ 10 13 vector genomes per milliliter.
  • ICV infusions Adult Idua ⁇ / ⁇ mice were anesthetized using a cocktail of ketamine and xylazine (100 mg ketamine+10 mg xylazine per kg) and placed on a stereotactic frame. Ten microliters of AAV9-IDUA were infused into the right-side lateral ventricle (stereotactic coordinates AP 0.4, ML 0.8, DV 2.4 mm from bregma) using a Hamilton syringe. The animals were returned to their cages on heating pads for recovery.
  • Intrathecal infusions were carried out by injection of 10 ⁇ L AAV vector containing solution between the L5 and L6 vertebrae 20 minutes after intravenous injection of 0.2 mL 25% mannitol.
  • Newborn IDUA deficient mice were injected through the facial temporal vein with 5 ⁇ L containing 5.8 ⁇ g of recombinant iduronidase protein (Aldurazyme), and then the animals were returned to their cage.
  • Aldurazyme recombinant iduronidase protein
  • Cyclophosphamide immunosuppression animals were administered cyclophosphamide once per week at a dose of 120 mg/kg starting one day after infusion with AAV9-IDUA vector.
  • Tissues Tissue homogenates were clarified by centrifugation for 3 minutes at 13,000 rpm using an Eppendorf tabletop centrifuge model 5415D (Eppendorf) and incubated overnight with proteinase K, DNase1, and Rnase. GAG concentration was determined using the Blyscan Sulfated Glycosaminoglycan Assay (Accurate Chemical) according to the manufacturer's instructions.
  • FIG. 1 shows the results for iduronidase-deficient mice that were administered AAV either intracerebroventricularly (ICV) or intrathecally (IT).
  • AAV intracerebroventricularly
  • IT intrathecally
  • animals were either immunosuppressed with cyclophosphamide (CP), immunotolerized at birth by intravenous administration of human iduonidase protein (aidurazyme), or the injections were carried out in NOD-SCID immunodeficient mice that were also iduronidase deficient. Animals were sacrificed at the indicated time post-treatment, the brains were microdissected and extracts assayed for iduronidase activity.
  • CP cyclophosphamide
  • aidurazyme immunotolerized at birth by intravenous administration of human iduonidase protein
  • NOD-SCID immunodeficient mice were also iduronidase deficient.
  • Animals were sacrificed at the indicated time post-treatment, the brains were micro
  • FIG. 2 illustrates data for immunodeficient, IDUA deficient animals injected ICV with AAV-IDUA vector. Those animals exhibited high levels of IDUA expression (10 to 100 times wild type) in all areas of the brain, with the highest level observed in the brain stem and thalamus (“rest”).
  • Immunosuppressed animals administered AAV vector by ICV route had a relatively lower level of enzyme in the brain compared to the immunodeficent animals ( FIG. 3 ), Note that immunosuppression may have been compromised in these animals because CP was withdrawn 2 weeks before sacrifice due to poor health.
  • FIG. 4 shows data for immunosuppressed animals administered AAV vector by the IT route.
  • Immunotolerized animals administered AAV vector ICV exhibited widespread IDUA activity in ail parts of the brain ( FIG. 5 ), similar to that observed in the immunodeficient animals, indicating the effectiveness of the immunotolerization procedure.
  • FIG. 6 is a compilation of all mean levels of IDUA activity for side-by-side comparison
  • FIG. 7 is data grouped according the area of the brain
  • GAG storage material was assayed in the different sections of the brain for all four of the test groups. For each group, the mean of each portion of the brain is shown on the left, the values for each of the individual animals is shown on the right ( FIG. 8 ). IDUA deficient animals (far left) contained high levels of GAG compared to wild type animals (magenta bar). GAG levels were at wild-type or lower than wild type for all portions of the brain in all groups of AAV-treated animals. GAG levels were slightly although not significantly higher than wild-type in cortex and brainstem of animals administered AAV9-IDUA intrathecally.
  • AAV9IDUA Preparation.
  • AAV-IDUA plasmid was packaged into AAV9 virions at either the University of Florida vector core, or the University of Pennsylvania vector core, yielding a titer of 1-3 ⁇ 10 13 vector genomes per milliliter.
  • Animals Animals. Animals were anesthetized with ketamine/xylazine (100 mg ketamine+10 mg xylazine per kg) and transcardially perfused with 70 mL PBS prior to sacrifice. Brains were harvested and microdissected on ice into cerebellum, hippocampus, striatum, cortex, and brainstem/thalamus (“rest”). The samples were frozen on dry ice and then stored at ⁇ 80° C.
  • Tissue IDUA activity Tissue samples were thawed and homogenized in saline in a tissue homogenizer. Tissue homogenates were clarified by centrifugation at 15,000 rpm in a benchtop Eppendorf centrifuge at 4° C. for 15 minutes. Tissue lysates (supernatant) were collected and analyzed for IDUA activity and GAG storage levels.
  • Tissue GAG levels Tissue lysates were incubated overnight with Proteinase K, RNase and DNase. GAG levels were analyzed using the Blyscan Sulfated Glycosaminoglycan Assay according to the manufacturer's instructions.
  • Tissue homogenates were used for DNA isolation and subsequent QPCR, as described in Wolf et al. (2011).
  • FIG. 9 illustrates the experimental design and groups.
  • Animals were administered AAV9IDUA vector either by intracerebroventricular (ICV) or intrathecal (IT) infusion.
  • Vector administration was carried out in NOD-SCID immunodeficient (ID) mice that were also IDUA deficient, or in IDUA deficient mice that were either immunosuppressed with cyclophosphamide (CP), or immunotolerized at birth by a single or multiple injections of human iduronidase protein (Aldurazyme). The times of treatment with vector and sacrifice are as indicated in FIG. 9 .
  • All vector administrations were carried out in adult animals ranging in age from 3-4.5 months. Animals were injected with 10 ⁇ L of vector at a dose of 3 ⁇ 10 11 vector genomes per 10 microliters.
  • FIG. 10 shows IDUA enzyme activities in intracranially infused, immunodeficient, IDUA deficient mice. High levels of enzyme activity were seen in all areas of the brain, ranging, from 30- to 300-fold higher than wild type levels. Highest enzyme expressions were seen in thalamus and brain stem, and in the hippocampus.
  • IDUA enzyme levels in animals tolerized at birth with IDUA protein (Aldurazyme) and administered vector intracranially are depicted in FIG. 12 . All animals showed high enzyme levels in all parts of the brain that ranged from 10- to 1000-fold higher than wild type levels, similar to levels achieved in immunodeficient animals, indicating the effectiveness of the immunotolerization procedure.
  • FIG. 13 depicts IDUA enzyme levels in mice that were injected intrathecally and administered CP on a weekly basis. Elevated levels of IDUA were observed in all parts of the brain, especially in the cerebellum and the spinal cord, Levels of enzyme were the lowest in the striatum and hippocampus with activities at wild type levels.
  • IDUA deficient mice were tolerized with Aidurazyme as described, and injected with vector intrathecally ( FIG. 14 ). There was widespread IDUA enzyme activity in all parts of the brain, with highest levels of activity in the brain stem and thalamus, olfactory bulb, spinal cord and the cerebellum. Similar to the data in FIG. 13 , the lowest levels of enzyme activity were seen in the striatum, cortex and hippocampus.
  • AAV9IDUA vector in animals that were immunotolerized and injected with vector either intracranially or intrathecally was evaluated by QPCR, as illustrated in FIG. 16 , IDUA copies per cell were higher in animals infused intracranially in comparison with animals infused intrathecally, which is consistent with the higher level of enzyme activity seen in animals injected intracranially.
  • IDUA High, widespread, and therapeutic levels of IDUA were observed in all areas of the brain after intracerebroventricular and intrathecal routes of AAV9IDUA administration in adult mice. Enzyme activities were restored to wild type levels or slightly higher in immunocompetent IDUA deficient animals infused with AAV-IDUA intrathecally. Significantly higher levels of IDUA enzyme were observed for both routes of vector injection in animals immunotolerized starting at birth by administration of IDUA protein.
  • mice (12 weeks old) were anesthetized with ketamine/xylazine, followed by intranasal infusion of AAV9IDUA vector.
  • Vector was administered by applying eight 3 drops with a micropipette to the intranasal cavity, alternating between nostrils, at 2 minute intervals between each application.
  • a total of 2.4-7 ⁇ 10 11 vector genomes was administered to each adult animal, depending on source of vector.
  • Animals were immunosuppressed with 120 mg/kg cyclophosphamide administered weekly, starting the day after vector administration. Mice were sacrificed at 12 weeks post vector infusion, animals were assayed for IDUA enzyme expression and vector copies in the brain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Orthopedic Medicine & Surgery (AREA)

Abstract

A method to prevent, inhibit or treat one or more symptoms associated with a disease of the central nervous system by intrathecally, intracerebroventricularly or endovascularly administering a rAAV encoding a gene product associated with the disease, e.g., a mammal in which the gene product is absent or present at a reduced level relative to a mammal without the disease.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/717,358, filed Sep. 27, 2017, which is a divisional of U.S. patent application Ser. No. 14/889,750, filed Nov. 6, 2015, now U.S. Pat. No. 9,827,295, which is a U.S. National Stage filing under 35 U.S.C. 371 from International Application No. PCT/US2014/1038209, filed on May 15, 2014 and published as WO 2014/186579 A1 on 20 Nov. 2014, which claims the benefit of the filing date of U.S. application Ser. No. 61/823,757, filed on May 15, 2013, the disclosures of which are incorporated by reference herein.
  • This application is also a divisional of U.S. patent application Ser. No. 15/717,450, filed Sep. 27, 2017, which is a divisional of U.S. patent application Ser. No. 14/889,750, filed Nov. 6, 2015, now U.S. Pat. No. 9,827,295, which is a U.S. National Stage filing under 35 U.S.C. 371 from International Application No. PCT/US2014/038209, filed on May 15, 2014 and published as WO 2014/186579 A1 on 20 Nov. 2014, which claims the benefit of the filing date of U.S. application Ser. No. 61/823,757, filed on May 15, 2013, the disclosures of which are incorporated by reference herein.
  • STATEMENT OF GOVERNMENT RIGHTS
  • This invention was made with government support under H0032652 and DK094538 awarded by National Institutes of Health. The Government has certain rights in the invention.
  • BACKGROUND
  • The mucopolysaccharidoses (MPSs) are a group of 11 storage diseases caused by disruptions in glycosaminoglycan (GAG) catabolism, leading to their accumulation in lysosomes (Muenzer, 2004; Munoz-Rojas et al., 2008). Manifestations of varying severity include organomegaly, skeletal dysplasias, cardiac and pulmonary obstruction and neurological deterioration. For MPS 1, deficiency of iduronidase (IDUA), severity ranges from mild (Scheie syndrome) to moderate (Hurier-Scheie) to severe (Hurler syndrome), with the latter resulting in neurologic deficiency and death by age 15 (Muenzer, 2004; Munoz-Rojas et al., 2008). Therapies for MPSs have been for the most part palliative. However, there are some of the MPS diseases, including Hurler syndrome, for which allogeneic hematopoietic stem cell transplantation (HSCT) has exhibited efficacy (Krivit, 2004; Orchard et al., 2007; Peters et al., 2003). Additionally, for more and more of the MPS diseases, enzyme replacement therapy (ERT) is becoming available (Brady, 2006). In general, HSCT and ERT result in the clearing of storage materials and improved peripheral conditions, although some problems persist after treatment (skeletal, cardiac, corneal clouding). The primary challenge in these cellular and enzyme therapies is effectiveness in addressing neurological manifestations, as peripherally administered enzyme does not penetrate the blood-brain barrier and HSCT has been found to be of benefit for some, but not all, MPS's.
  • MPS I has been one of the most extensively studied of the MPS diseases for development of cellular and molecular therapies. The effectiveness of allogeneic HSCT is most likely the result of metabolic cross-correction, whereby the missing enzyme is released from donor-derived cells and subsequently taken up by host cells and trafficked to lysosomes, where the enzyme contributes to lysosomal metabolism (Fratantoni et al., 1968). Clearing of GAG storage materials is subsequently observed in peripheral organs such as liver and spleen, there is relief from cardiopulmonary obstruction and improvement in corneal clouding (Orchard et al., 2007). Of particular importance is the effect of allogeneic stem cell transplantation on the emergence of neurologic manifestations in the MPS diseases. In this regard, there is evidence for several MPS diseases that individuals engrafted with allogeneic stem cells face an improved outcome in comparison with untransplanted patients (Bjoraker et al., 2006; Krivit, 2004; Orchard et al., 2007; Peters et al., 2003). A central hypothesis explaining the neurologic benefit of allogeneic hematopoietic stem cell transplant is the penetration of donor-derived hematopoietic cells (most likely microglia) (Hess et al., 2004; Unger et al., 1993) into the central nervous system, where the missing enzyme is expressed by engrafted cells from which point the enzyme diffuses into CNS tissues and participates in clearing of storage materials. The level of enzyme provided to CNS tissues is thus limited to that amount expressed and released from donor-derived cells engrafting in the brain. While such engraftment is of great benefit for MPS I, recipients nonetheless continue to exhibit below normal 10 and impaired neurocognitive capability (Ziegler and Shapiro, 2007).
  • The phenomenon of metabolic cross correction also explains the effectiveness of ERT for several lysosomal storage diseases (Brady, 2006), most notably MPS I. However, due to the requirement for penetration of the blood-brain barrier (BBB) by the enzyme missing in the particular lysosomal storage disease (LSD) in order to effectively reach the CNS, effectiveness of enzyme therapy for neurologic manifestations of lysosomal storage disease (LSD) has not been observed (Brady, 2006). Enzymes are almost always too large and generally too charged to effectively cross the BBB. This has prompted investigations into invasive intrathecal enzyme administration (Dickson et al., 2007), for which effectiveness has been demonstrated in a canine model of MPS I (Kakkis et al., 2004) and for which human clinical trials are beginning for MPS I (Pastores, 2008; Munoz-Rojas et al., 2008). Key disadvantages of enzyme therapy include its great expense $200,000 per year) and the requirement for repeated infusions of recombinant protein. Current clinical trials of intrathecal IDUA administration are designed to inject the enzyme only once every three months, so the effectiveness of this dosing regimen remains uncertain.
  • SUMMARY OF THE INVENTION
  • Methods of preventing, inhibiting, and/or treating one or more symptoms associated with a disease of the central nervous system (CNS) in a mammal in need thereof are described. The methods involve delivering to the CNS of a mammal in need of treatment a composition comprising an effective amount of a recombinant adeno-associated virus (rAAV) vector comprising an open reading frame encoding a gene product, e.g., a therapeutic gene product. Target gene products that may be encoded by an rAAV vector include, but are not limited to, alpha-L-iduronidase, iduronate-2-sulfatase, heparan sulfate sulfatase, N-acetyl-alpha-D-glucosaminidase, beta-hexosaminidase, alpha-galactosidase, betagalactosidase, beta-glucuronidase or glucocerebrosidase. Diseases that may be prevented, inhibited or treated using the methods disclosed herein include, but are not limited to, mucopolysaccharidosis type I disorder, a mucopolysaccharidosis type II disorder, or a mucopolysaccharidosis type VII disorder. The AAV vector can be administered in a variety of ways to ensure that it is delivered to the CNS/brain, and that the transgene is successfully transduced in the subject's CNS/brain. Routes of delivery to the CNS/brain include, but are not limited to intrathecal administration, intracranial administration, e.g., intracerebroventricular administration, or lateral cerebro ventricular administration), intranasal administration, endovascular administration, and intraparenchymal administration.
  • In one embodiment, the methods involve delivering to the CNS of an adult mammal in need of treatment a composition comprising an effective amount of a rAAV-9 vector comprising an open reading frame encoding a gene. In one embodiment, the methods involve delivering to the CNS of an adult mammal in need of treatment a composition comprising an effective amount of a rAAV-9 vector comprising an open reading frame encoding IDUA. These methods are based, in part, on the discovery that an AAV-9 vector can efficiently transduce the therapeutic transgene in the brain/CNS of adult subjects, restoring enzyme levels to wild type levels. (see FIG. 15, infra). The results achieved using AAV-9 are surprising in view of previous work which demonstrated that intravascular delivery of AAV-9 in adult mice does not achieve widespread direct neuronal targeting (see Foust et al., 2009), as well as additional data showing that direct injection of AAV8-IDUA, into the CNS of adult IDUA-deficient mice resulted in poor transgene expression (FIG. 18). As proof of principle, the working examples described herein use a pre-clinical model for the treatment of MPS1, an inherited metabolic disorder caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). The working examples surprisingly demonstrate that direct injection of AAV9-IDUA into the CNS of immunocompetent adult IDUA-deficient mice resulted in IDUA enzyme expression and activity that is the same or higher than IDUA enzyme expression and activity in wild-type adult mice (see FIG. 15, infra).
  • In an additional embodiment of the invention, the working examples also demonstrate that co-therapy to induce immunosuppression or immunotolerization, or treatment of immunodeficient animals, can achieve even higher levels of IDUA enzyme expression and activity. In an embodiment, patients with genotypes that promote an immune response that neutralizes enzyme activity (see, e.g., Barbier et al., 2013) are treated with an immunosuppressant in addition to the rAAV vector comprising an open reading frame encoding a gene product, such as IDUA.
  • Neonatal IDUA−/− mice are not immunocompetent. However administration of IDUA expressing AAV-8 to neonatal IDUA−/− mice resulted in IDUA expression (Wolf et al., 2011), thus tolerizing the animals to IDUA. As described herein, the applicability of AAV-mediated gene transfer to adult (immunocompetent) mice by direct infusion of AAV to the central nervous system was shown using different routes of administration. For example, AAV-IDUA serotype 9 was administered by direct injection into the lateral ventricles of adult IDUA-deficient mice that were either immunocompetent, immunodeficient (NODSCID/IDUA−/−), immunosuppressed with cyclophosphamide (CP), or immunotolerized by weekly injection of human iduronidase protein (Aldurazyme) starting at birth. CP immunosuppressed animals were also administered AAV9-IDUA by intranasal infusion, by intrathecal injection, and by endovascular infusion with and without mannitol to disrupt the blood-brain barrier. Animals were sacrificed at 8 weeks after vector administration, and brains were harvested and microdissected for evaluation of IDUA enzymatic activity, tissue glycosaminoglycans, and IDUA vector sequences in comparison with normal and affected control mice. Results from these studies show that numerous routes for AAV vector administration directly to the CNS may be employed, e.g., so as to achieve higher levels of protein delivery and/or enzyme activity in the CNS. In addition, although the brain is an immunopriviledged site, administration of an immunosuppressant or immunotolerization may increase the activity found in the brain after AAV administration. Higher levels of expression per administration and/or less invasive routes of administration are clinically more palatable to patients.
  • Thus, the invention includes the use of recombinant AAV (rAAV) vectors that encode a gene product with therapeutic effects when expressed in the CNS of a mammal. In one embodiment, the mammal is an immunocompetent mammal with a disease or disorder of the CNS (a neurologic disease). An “immunocompetent” mammal as used herein is a mammal of an age where both cellular and humoral immune responses are elicited alter exposure to an antigenic stimulus, by upregulation of Th1 functions or IFN-γ production in response to polyclonal stimuli, in contrast to a neonate which has innate immunity and immunity derived from the mother, e.g., during gestation or via lactation. An adult mammal that does not have an immunodeficiency disease is an example of an immunocompetent mammal. For example, an immunocompetent human is typically at least 1, 2, 3, 4, 5 or 6 months of age, and includes adult humans without an immunodeficiency disease. In one embodiment, the AAV is administered intrathecally. In one embodiment, the AAV is administered intracranially (e.g., intracerebroventricularly). In one embodiment, the AAV is administered intranasally, with or without a permeation enhancer. In one embodiment, the AAV is administered endovascularly, e.g., carotid artery administration, with or without a permeation enhancer. In one embodiment, the mammal that is administered the AAV is immunodeficient or is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of therapeutic protein expression relative to a corresponding mammal that is administered the AAV but riot subjected to immunotolerization or immune suppression. In one embodiment, an immune suppressive agent is administered to induce immune suppression. In one embodiment, the mammal that is administered the AAV is not subjected to immunotolerization or immune suppression (e.g., administration of the AAV alone provides for the therapeutic effect).
  • The invention provides a method to prevent, inhibit or treat one or more symptoms associated with a disease or disorder of the central nervous system in a mammal in need thereof. The method includes intrathecally, e.g., to the lumbar region, or intracerebroventricularly, e.g., to the lateral ventricle, administering to the mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms. In one embodiment, the gene product is a lysosomal storage enzyme. In one embodiment, the mammal is an immunocompetent adult. In one embodiment, the rAAV vector is an AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector. In one embodiment, the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly, monthly or two or more months apart.
  • In one embodiment, the method includes intrathecally, e.g., to the lumbar region, administering to a mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms, and optionally administering a permeation enhancer. In one embodiment, the permeation enhancer is administered before the composition. In one embodiment, the composition comprises a permeation enhancer. In one embodiment, the permeation enhancer is administered after the composition. In one embodiment, the gene product is a lysosomal storage enzyme. In one embodiment, the mammal is an immunocompetent adult. In one embodiment, the rAAV vector is an AAV-1, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector. In one embodiment, the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly, monthly or two or more months apart. In one embodiment, the mammal that is intrathecally administered the ARV is not subjected to immunotolerization or immune suppression (e.g., administration of the AAV alone provides for the therapeutic effect). In one embodiment, the mammal that is intrathecally administered the AAV is immunodeficient or is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of therapeutic protein expression relative to a corresponding mammal that is intrathecally administered the AAV but not subjected to immunotolerization or immune suppression.
  • In one embodiment, the method includes intracerebroventricularly, e.g., to the lateral ventricle, administering to an immunocompetent mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms. In one embodiment, the gene product is a lysosomal storage enzyme. In one embodiment, the rAAV vector is an AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, ARV-7, AAV rh10, or AAV-9 vector. In one embodiment, the rAAV vector is not a rAAV-5 vector. In one embodiment, the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly, monthly or two or more months apart. In one embodiment, the mammal that is intracerebroventricularly administered the AAV is not subjected to immunotolerization or immune suppression (e.g., administration of the AAV alone provides for the therapeutic effect). In one embodiment, the mammal that is intracerebroventricularly administered the AAV is immunodeficient or is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of therapeutic protein expression relative to a corresponding mammal that is intracerebroventricularly administered the AAV but not subjected to immunotolerization or immune suppression In one embodiment, the mammal is immunotolerized to the gene product before the composition comprising the AAV is administered.
  • Further provided is a method to prevent, inhibit or treat one or more symptoms associated with a disease or disorder of the central nervous system in a mammal in need thereof. The method includes endovascularly administering to the mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms, and an effective amount of a permeation enhancer. In one embodiment, the composition comprises the permeation enhancer. In one embodiment, the permeation enhancer comprises mannitol, sodium glycocholate, sodium taurocholate, sodium deoxycholate, sodium salicylate, sodium caprylate, sodium caprate, sodium lauryl sulfate, polyoxyethylene-9-laurel ether, or EDTA. In one embodiment, the gene product is a lysosomal storage enzyme. In one embodiment, the mammal is an immunocompetent adult. In one embodiment, the rAAV vector is an AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector. In one embodiment, the rAAV vector is not a rAAV-5 vector. In one embodiment, the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly. In one embodiment, the composition is administered weekly, monthly or two or more months apart. In one embodiment, the mammal that is endovascularly administered the AAV is not subjected to immunotolerization or immune suppression (e.g., administration of the AAV provides for the therapeutic effect). In one embodiment, the mammal that is endovascularly administered the AAV is immunodeficient or is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of therapeutic protein expression relative to a corresponding mammal that is endovascularly administered the AAV but not subjected to immunotolerization or immune suppression.
  • In one embodiment, the method includes intranasally administering to a mammal a composition comprising an effective amount of a rAAV-9 vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms, and optionally administering a permeation enhancer. In one embodiment, intranasal delivery may be accomplished as described in U.S. Pat. No. 8,609,088, the disclosure of which is incorporated by reference herein. In one embodiment, the permeation enhancer is administered before the composition. In one embodiment, the composition comprises a permeation enhancer. In one embodiment, the permeation enhancer is administered after the composition. In one embodiment, the gene product is a lysosomal storage enzyme. In one embodiment, the mammal is an immunocompetent adult. In one embodiment, the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly, monthly or two or more months apart. In one embodiment, the mammal that is intranasally administered the AAV is not subjected to immunotolerization or immune suppression. In one embodiment, the mammal that is intranasally administered the AAV is subjected to immunotolerization or immune suppression, e.g., to induce higher levels of IDUA protein expression relative to a corresponding mammal that is intranasally administered the AAV but not subjected to immunotolerization or immune suppression.
  • Also provided is a method to prevent, inhibit or treat one or more symptoms associated with a disease of the central nervous system in a mammal in need thereof. The method includes administering to the mammal a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms, and an immune suppressant. In one embodiment, the immune suppressant comprises cyclophosphamide. In one embodiment, the immune suppressant comprises a glucocorticoid, cytostatic agents including an alkylating agent or an anti-metabolite such as methotrexate, azathioprine, mercaptopurine or a cytotoxic antibiotic, an antibody, or an agent active on immunophilin. In one embodiment, the immune suppressant comprises a nitrogen mustard, nitrosourea, a platinum compound, methotrexate, azathioprine, mercaptopurine, fluorouracil, dactinomycin, an anthracyclin, mitomycin C, bleomycin, mithramycin, IL2-receptor-(CD25-) or CD3-directed antibodies, anti-IL-2 antibodies, cyclosporin, tacrolimus, sirolimus, IFN-β, IFN-γ, an opioid, or TNF-α (tumor necrosis factor-alpha) binding agents such as infliximab (Remicade), etanercept (Enbrel), or adalimumab (Humira). In one embodiment, the rAAV and the immune suppressant are co-administered. In one embodiment, the rAAV is administered before and optionally after the immune suppressant. In one embodiment, the immune suppressant is administered before the rAAV. In one embodiment, the rAAV and the immune suppressant are intrathecally administered. In one embodiment, the rAAV and the immune suppressant are intracerebroventricularly administered. In one embodiment, the rAAV is intrathecally administered and the immune suppressant is intravenously administered. In one embodiment, the gene product is a lysosomal storage enzyme. In one embodiment, the mammal is an adult. In one embodiment, the rAAV vector is an AAV-1, ARV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector. In one embodiment, the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly. In one embodiment, the composition is administered weekly, monthly or two or more months apart.
  • The invention also provides a method to prevent, inhibit or treat one or more symptoms associated with a disease of the central nervous system in a mammal in need thereof. A mammal immunotolerized to a gene product that is associated with the disease is administered a composition comprising an effective amount of a rAAV vector comprising an open reading frame encoding a gene product, the expression of which in the central nervous system of the mammal prevents, inhibits or treats the one or more symptoms. In one embodiment, the gene product is a lysosomal storage enzyme. In one embodiment, the mammal is an adult. In one embodiment, the rAAV vector is an AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV rh10, or AAV-9 vector. In one embodiment, the mammal is a human. In one embodiment, multiple doses are administered. In one embodiment, the composition is administered weekly.
  • Gene products that may be encoded by rAAV vectors include, but are not limited to, alpha-L-iduronidase, iduronate-2-sulfatase, heparan sulfate sulfatase, N-acetyl-alpha-D-glucosaminidase, beta-hexosaminidase, alpha-galactosidase, betagalactosidase, beta-glucuronidase, glucocerebrosidase, fibroblast growth factor-2 (FGF-2), brain derived growth factor (BDGF), neurturin, glial derived growth lactor (GDGF), tyrosine hydroxylase, dopamine decarboxylase, or glutamic acid decarboxylase.
  • Diseases that have one or more neurologic symptoms that may be prevented, inhibited or treated using the methods disclosed herein include, but are not limited to, Adrenoleukodystrophy, Alzheimer disease, Amyotrophic lateral sclerosis, Angelman syndrome, Ataxia telangiectasia, Charcot-Marie-Tooth syndrome, Cockayne syndrome, Deafness, Duchenne muscular dystrophy, Epilepsy, Essential tremor, Fragile X syndrome, Friedreich's ataxia, Gaucher disease, Huntington disease, Lesch-Nyhan syndrome, Maple syrup urine disease, Menkes syndrome, Myotonic dystrophy, Narcolepsy, Neurofibromatosis, Niemann-Pick disease. Parkinson disease, Phenylketonuria, Prader-Willi syndrome, Refsum disease, Rett syndrome, Spinal muscular atrophy, Spinocerebellar ataxia, Tangier disease, Tay-Sachs disease, Tuberous sclerosis, Von Hippel-Lindau syndrome, Williams syndrome, Wilson's disease, or Zellweger syndrome. In one embodiment, the disease is a lysosomal storage disease, e.g., a lack or deficiency in a lysosomal storage enzyme. Lysosomal storage diseases include, but are not limited to, mucopolysaccharidosis (MPS) diseases, for instance, mucopolysaccharidosis type I, e.g., Hurler syndrome and the variants Scheie syndrome and Hurer-Scheie syndrome (a deficiency in alpha-L-iduronidase); Hunter syndrome (a deficiency of iduronate-2-sulfatase); mucopolysaccharidosis type III, e.g., Sanfilippo syndrome (A, B, C or D; a deficiency of heparan sulfate sulfatase, N-acetyl-alpha-D-glucosaminidase, acetyl Cokalpha-glucosaminide N-acetyl transferase or N-acetylglucosamine-6-sulfate sulfatase); mucopolysaccharidosis type IV e.g., mucopolysaccharidosis type IV, e.g., Morquio syndrome (a deficiency of galactosamine-6-sulfate sulfatase or beta-galactosidase); mucopolysaccharidosis type VI, e.g., Maroteaux-Lamy syndrome (a deficiency of arylsulfatase B); mucopolysaccharidosis type II; mucopolysaccharidosis type III (A, B, C or D; a deficiency of heparan sulfate sulfatase, N-acetyl-alpha-D-glucosaminidase, acetyl Cokalpha-glucosaminide N-acetyl transferase or N-acetylglucosamine-6-sulfate sulfatase); mucopolysaccharidosis type IV (A or B; a deficiency of galactosamine-6-sulfatase and beta-galatacosidase); mucopolysaccharidosis type VI (a deficiency of aryisulfatase B); mucopolysaccharidosis type VII (a deficiency in beta-glucuronidase); mucopolysaccharidosis type VIII (a deficiency of glucosamine-6-sulfate sulfatase); mucopolysaccharidosis type IX (a deficiency of hyaluronidase); Tay-Sachs disease (a deficiency in alpha subunit of beta-hexosaminidase); Sandhoff disease (a deficiency in both alpha. and beta subunit of beta-hexosaminidase); GM1 gangliosidosis (type I or type II); Fabry disease (a deficiency in alpha galactosidase); metachromatic leukodystrophy (a deficiency of aryl sulfatase A); Pompe disease (a deficiency of acid maltase); fucosidosis (a deficiency of fucosidase); alpha-mannosidosis (a deficiency of alpha-mannosidase); beta-mannosidosis (a deficiency of beta-mannosidase), ceroid lipofuscinosis, and Gaucher disease (types I, II and III; a deficiency in glucocerebrosidase), as well as disorders such as Hermansky-Pudlak syndrome; Amaurotic idiocy; Tangier disease; aspartylglucosaminuria; congenital disorder of glycosylation, type la; Chediak-Higashi syndrome; macular dystrophy, corneal, 1; cystinosis, nephropathic; Fanconi-Bickel syndrome; Farber lipogranulomatosis; fibromatosis; geleophysic dysplasia; glycogen storage disease I; glycogen storage disease lb; glycogen storage disease lc; glycogen storage disease III; glycogen storage disease IV; glycogen storage disease V; glycogen storage disease VI; glycogen storage disease VII; glycogen storage disease 0; immunoosseous dysplasia, Schimke type; lipidosis; lipase b; mucolipidosis II; mucolipidosis II, including the variant form; mucolipidosis IV; neuraminidase deficiency with beta-galactosidase deficiency; mucolipidosis I; Niemann-Pick disease (a deficiency of sphingomyelinase); Niemann-Pick disease without sphingomyelinase deficiency (a deficiency of a Tot gene encoding a cholesterol metabolizing enzyme); Refsum disease; Sea-blue histiocyte disease; infantile sialic acid storage disorder; sialuria; multiple suifatase deficiency; triglyceride storage disease with impaired long-chain laity acid oxidation; Winchester disease; Wolman disease (a deficiency of cholesterol ester hydrolase); Deoxyribonuclease I-like 1 disorder; arylsulfatase E disorder; ATPase, H+ transporting, lysosomal, subunit 1 disorder; glycogen storage disease Mb; Ras-associated protein rab9 disorder; chondrodysplasia punctata 1, X-linked recessive disorder; glycogen storage disease VIII; lysosome-associated membrane protein 2 disorder; Menkes syndrome; congenital disorder of glycosylation, type lc; and sialuria. Replacement of less than 20%, e.g., less than 10% or about 1% to 5% levels of lysosomal storage enzyme found in nondiseased mammals, may prevent, inhibit or treat neurological symptoms such as neurological degeneration in mammals.
  • In one embodiment, the methods described herein involve delivering to the CNS of an immunocompetent human in need of treatment a composition comprising an effective amount of a rAAV-9 vector comprising an open reading fame encoding a IDUA. Routes of administration to the CNS/brain include, but are not limited to intrathecal administration, intracranial administration, e.g., intracerebroventricular administration or lateral cerebro ventricular administration, intranasal administration, endovascular administration, and intraparenchymal administration.
  • Other viral vectors may be employed in the methods of the invention, e.g., viral vectors such as retrovirus, lentivirus, adenovirus, semliki forest virus or herpes simplex virus vectors.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1. Experimental design for iduronidase-deficient adult mice administered IDUA-AAV either intracerebroventricularly (ICV) (right lateral ventricle) or intrathecally (lumbar area). To prevent immune response, animals were either immunosuppressed with cyclophosphamide (OP), immunotolerized at birth by intravenous administration of human iduonidase protein (aldurazyme), or the injections (10 microliters, 3×1011 particles) were carried out in NOD-SCID immunodeficient mice that were also iduronidase deficient. Animals were sacrificed at the indicated time post-treatment, the brains were microdissected and extracts assayed for iduronidase activity.
  • FIGS. 2A-B. IDUA activity in immunodeficient, IDUA deficient animals after ICV injection.
  • FIGS. 3A-B. IDUA activity in immunocompetent animals administered AAV vector by ICV route and treated with cyclophosphamide.
  • FIGS. 4A-B. IDUA activity in immunocompetent animals administered ARV vector by IT route and treated with cyclophosphamide.
  • FIGS. 5A-B. IDUA activity in immunotolerized immunocompetent animals administered ARV vector ICV.
  • FIG. 6. Compilation of all mean levels of IDUA activity for side-by-side comparison.
  • FIGS. 7A-E. Data are grouped according the area of the brain. A) hippocampus, B) cerebellum, C) cortex, D) striatum, and E) rest of brain.
  • FIGS. 8A-D. Assay for GAG storage material in the different sections of the brain for all four of the test groups. A) Immunodeficient mice, ICV administration. B) Immunocompetent mice, ICV administration and CP administration. C) Immunocompetent mice, ICV administration and aidurazyme administration. D) Immunocompetent mice, IT administration and CP administration.
  • FIG. 9. Schematic of experimental design. All mice were adult MPS1 (IDUA, deficient) mice injected with 10 microliters (3×1011 particles) of ARV.
  • FIGS. 10A-B. Intracranial infusion of AAV9IDUA into immunodeficient MPS I mice. Adult animals were injected with 1011 vector genomes and evaluated for iduronidase expression in the brain after 10 weeks. Enzyme activity levels in the brain were significantly higher than in the brains of wild type animals, and ranged from 30- to 300-laid higher than wild type.
  • FIGS. 11A-B. Intracranial administration of AAV9IDUA in immunocompetent, IDUA deficient mice. Adult animals were injected with 1011 vector genomes, and immunosuppressed by weekly injection of cyclophosphamide (CP). CP injections were terminated at 6 weeks post vector injection due to poor health, and the animals were sacrificed at 8 weeks post-injection. Brains were microdissected and assayed for IDUA enzyme activity.
  • FIGS. 12A-B. Intracranial infusion of AAV9IDUA into immunotolerized MPS I mice. MPS 1 mice were tolerized with either a single dose of Aldurazyme at birth or multiple doses administered weekly, starting at birth. Mice were infused with vector at 4 months, and sacrificed at 11 weeks after injection. Brains were microdissected arid analyzed for iduronidase expression. Enzyme activities ranged brain an average of 10- to 1000-fold higher than wild type levels.
  • FIGS. 13A-B. Intrathecal administration of AAV9IDUA in immunocompetent, IDUA deficient animals. Adult MPS I mice were injected with AAV9IDUA intrathecally, followed by a weekly immunosuppressive regimen of cyclophosphamide. Animals were sacrificed at 11 weeks post-injection, and then brains and spinal cords were analyzed for IDUA enzyme activity.
  • FIGS. 14A-B. Intrathecal infusion of AAV9IDUA in immunotolerized MPS I mice. IDUA, deficient animals were tolerized at birth with a single dose of Aldurazyme or multiple doses administered weekly starting at birth. At 4 months of age animals were infused intrathecally with AAV9IDUA vector, and at 10 weeks post-injection animals were sacrificed, brains microdissected and assayed for iduronidase activity. There was restoration of enzyme activity in all parts of the brain, with activities in the cerebellum ranging from 200- to 1500-fold higher than wild type levels. Levels of enzyme activity in the olfactory bulb and cerebellum (to the right of the dashed line) correspond to the right Y-axis.
  • FIGS. 15A-B. Intrathecal infusion of AAV9IDUA in immunocompetent MPS I animals. Control MPS I animals were injected with AAV9IDUA vector, but were not immunosuppressed nor immunotolerized. Animals were sacrificed at 11 weeks after vector injection, and then their brains were assayed for iduronidase activity. Enzyme levels were restored to wild type levels in all parts of the brain, but were significantly lower than in animals that were either immunosuppressed or immunotolerized.
  • FIG. 16. Normalization of glycosaminaglycan (GAG) levels following intracranial or intrathecal AAV9 infusion. AAV9IDUA was injected intracranially or intrathecally into immunodeficient, immunosuppressed or immunotolerized MPS I mice as indicated. Animals were sacrificed 8-11 weeks after injection, then the brains were microdissected and analyzed for GAG levels. GAG storage was restored to wild type levels or close to wild type in all groups analyzed. 1-1=hippocampus, Cb=cerebellum, C=cortex, S=striatum, ThB=thalamus and brain stem.
  • FIGS. 17A-B. IDUA vector copies in brain. Microdissected brains were analyzed for IDUA vector sequences by QPCR. The copy numbers in intracranially (A) and intrathecally (B) injected mice correlate to the levels of enzyme activity depicted in FIGS. 11 and 13.
  • FIG. 18. ICV infusion of AAV8-MCI into adult animals.
  • FIGS. 19A-B. Intranasal administration of AAV9/IDUA in immunocompetent, IDUA deficient animals. Adult MPS I mice were infused with AAV9/IDUA intranasally, followed by a weekly immunosuppressive regimen of cyclophosphamide. Animals were sacrificed at 12 weeks post-injection and brains were analyzed for IDUA enzyme activity. FIG. 20. IDUA vector copies in brain. Microdissected brains were analyzed for IDUA vector sequences by QPCR. The copy numbers in intranasally injected mice correlate to the levels of enzyme in FIG. 19.
  • DETAILED DESCRIPTION OF THE INVENTION Definitions
  • As used herein, “individual” (as in the subject of the treatment) means a mammal. Mammals include, for example, humans; non-human primates, e.g., apes and monkeys; and non-primates, e.g., dogs, cats, rats, mice, cattle, horses, sheep, and goats. Non-mammals include, for example, fish arid birds.
  • The term “disease” or “disorder” are used interchangeably, and are used to refer to diseases or conditions wherein lack of or reduced amounts of a specific gene product, e.g., a lysosomal storage enzyme, plays a role in the disease such that a therapeutically beneficial effect can be achieved by supplementing, e.g., to at least 1% of normal levels,
  • “Substantially” as the term is used herein means completely or almost completely; for example, a composition that is “substantially free” of a component either has none of the component or contains such a trace amount that any relevant functional property of the composition is unaffected by the presence of the trace amount, or a compound is “substantially pure” is there are only negligible traces of impurities present.
  • “Treating” or “treatment” within the meaning herein refers to an alleviation of symptoms associated with a disorder or disease, “inhibiting” means inhibition of further progression or worsening of the symptoms associated with the disorder or disease, and “preventing” refers to prevention of the symptoms associated with the disorder or disease.
  • As used herein, an “effective amount” or a “therapeutically effective amount” of an agent of the invention e.g., a recombinant AAV encoding a gene product, refers to an amount of the agent that alleviates, in whole or in part, symptoms associated with the disorder or condition, or halts or slows further progression or worsening of those symptoms, or prevents or provides prophylaxis for the disorder or condition, e.g., an amount that is effective to prevent, inhibit or treat in the individual one or more neurological symptoms.
  • In particular, a “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount is also one in which any toxic or detrimental effects of compounds of the invention are outweighed by the therapeutically beneficial effects.
  • A “vector” as used herein refers to a macromolecule or association of macromolecules that comprises or associates with a polynucleotide and which can be used to mediate delivery of the polynucleotide to a cell, either in vitro or in vivo. Illustrative vectors include, for example, plasmids, viral vectors, liposomes and other gene delivery vehicles. The polynucleotide to be delivered, sometimes referred to as a “target polynucleotide” or “transgene,” may comprise a coding sequence of interest in gene therapy (such as a gene encoding a protein of therapeutic interest) and/or a selectable or detectable marker.
  • “AAV” is adeno-associated virus, and may be used to refer to the virus itself or derivatives thereof. The term covers all subtypes, serotypes and pseudotypes, and both naturally occurring and recombinant forms, except where required otherwise. As used herein, the term “serotype” refers to an AAV which is identified by and distinguished from other AAVs based on its binding properties, e.g., there are eleven serotypes of AAVs, AAV-1-AAV-11, including AAV-2, AAV-5, AAV-8, AAV-9 and AAV rh10, and the term encompasses pseudotypes with the same binding properties. Thus, for example, AAV-5 serotypes include AAV with the binding properties of AAV-5, e.g., a pseudotyped AAV comprising AAV-5 capsid and a rAAV genome which is not derived or obtained from AAV-5 or which genome is chimeric. The abbreviation “rAAV” refers to recombinant adeno-associated virus, also referred to as a recombinant AAV vector (or “rAAV vector”).
  • An “AAV virus” refers to a viral particle composed of at least one AAV capsid protein and an encapsidated polynucleotide. If the particle comprises a heterologous polynucleotide (i.e., a polynucleotide other than a wild-type AAV genome such as a transgene to be delivered to a mammalian cell), it is typically referred to as “rAAV”. An MV “capsid protein” includes a capsid protein of a wild-type AAV, as well as modified forms of an AAV capsid protein which are structurally and or functionally capable of packaging a rAAV genome and bind to at least one specific cellular receptor which may be different than a receptor employed by wild type AAV, A modified AAV capsid protein includes a chimeric AAV capsid protein such as one having amino acid sequences from two or more serotypes of AAV, e,g,, a capsid protein formed from a portion of the capsid protein from AAV-5 fused or linked to a portion of the capsid protein from AAV-2, and a AAV capsid protein having a tag or other detectable non-AAV capsid peptide or protein fused or linked to the AAV capsid protein, e.g., a portion of an antibody molecule which binds the transferring receptor may be recombinantly fused to the AAV-2 capsid protein.
  • A “pseudotyped” rAAV is an infectious virus having any combination of an AAV capsid protein and an AAV genome, Capsid proteins from any AAV serotype may be employed with a rAAV genome which is derived or obtainable from a wild-type ARV genome of a different serotype or which is a chimeric genome, i.e., formed from AAV DNA from two or more different serotypes, e.g., a chimeric genome having 2 inverted terminal repeats (ITRs), each ITR from a different serotype or chimeric ITRs. The use of chimeric genomes such as those comprising ITRs from two AAV serotypes or chimeric ITRs can result in directional recombination which may further enhance the production of transcriptionally active intermolecular concatamers. Thus, the 5′ and 3′ ITRs within a rAAV vector of the invention may be homologous, i.e., from the same serotype, heterologous, i.e., from different serotypes, or chimeric, i.e., an ITR which has ITR sequences from more than one AAV serotype.
  • rAAV Vectors
  • Adeno-associated viruses of any serotype are suitable to prepare rAAV, since the various serotypes are functionally and structurally related, even at the genetic level. All AAV serotypes apparently exhibit similar replication properties mediated by homologous rep genes; and all generally bear three related capsid proteins such as those expressed in AAV2. The degree of relatedness is further suggested by heteroduplex analysis which reveals extensive cross-hybridization between serotypes along the length of the genome; and the presence of analogous self-annealing segments at the termini that correspond to ITRs. The similar infectivity patterns also suggest that the replication functions in each serotype are under similar regulatory control. Among the various AAV serotypes, AAV2 is most commonly employed.
  • An AAV vector of the invention typically comprises a polynucleotide that is heterologous to AAV. The polynucleotide is typically of interest because of a capacity to provide a function to a target cell in the context of gene therapy, such as up- or down-regulation of the expression of a certain phenotype. Such a heterologous polynucleotide or “transgene,” generally is of sufficient length to provide the desired function or encoding sequence.
  • Where transcription of the heterologous polynucleotide is desired in the intended target cell, it can be operably linked to its own or to a heterologous promoter, depending for example on the desired level and/or specificity of transcription within the target cell, as is known in the art. Various types of promoters and enhancers are suitable for use in this context. Constitutive promoters provide an ongoing level of gene transcription, and may be preferred when it is desired that the therapeutic or prophylactic polynucleotide be expressed on an ongoing basis. Inducible promoters generally exhibit low activity in the absence of the inducer, and are up-regulated in the presence of the inducer. They may be preferred when expression is desired only at certain times or at certain locations, or when it is desirable to titrate the level of expression using an inducing agent. Promoters and enhancers may also be tissue-specific: that is, they exhibit their activity only in certain cell types, presumably due to gene regulatory elements found uniquely in those cells.
  • Illustrative examples of promoters are the SV40 late promoter from simian virus 40, the Baculovirus polyhedron enhancer/promoter element, Herpes Simplex Virus thymidine kinase (HSV tk), the immediate early promoter from cytomegalovirus (CMV) and various retroviral promoters including LTR elements. Inducible promoters include heavy metal ion inducible promoters (such as the mouse mammary tumor virus (mMTV) promoter or various growth hormone promoters), and the promoters from T7 phage which are active in the presence of T7 RNA polymerase. By way of illustration, examples of tissue-specific promoters include various surfactin promoters (for expression in the lung), myosin promoters (for expression in muscle), and albumin promoters (for expression in the liver). A large variety of other promoters are known and generally available in the art, and the sequences of many such promoters are available in sequence databases such as the GenBank database.
  • Where translation is also desired in the intended target cell, the heterologous polynucleotide will preferably also comprise control elements that facilitate translation (such as a ribosome binding site or “RBS” and a polyadenylation signal). Accordingly, the heterologous polynucleotide generally comprises at least one coding region operatively linked to a suitable promoter, and may also comprise, for example, an operatively linked enhancer, ribosome binding site and poly-A signal. The heterologous polynucleotide may comprise one encoding region, or more than one encoding regions under the control of the same or different promoters. The entire unit, containing a combination of control elements and encoding region, is often referred to as an expression cassette.
  • The heterologous polynucleotide is integrated by recombinant techniques into or in place of the AAV genomic coding region (i.e., in place of the AAV rep and cap genes), but is generally flanked on either side by AAV inverted terminal repeat (ITR) regions. This means that an ITR appears both upstream and downstream from the coding sequence, either in direct juxtaposition, e.g., (although not necessarily) without any intervening sequence of AAV origin in order to reduce the likelihood of recombination that might regenerate a replication-competent AAV genome. However, a single ITR may be sufficient to carry out the functions normally associated with configurations comprising two ITRs (see, for example, WO 94/13788), and vector constructs with only one ITR can thus be employed in conjunction with the packaging and production methods of the present invention.
  • The native promoters for rep are self-regulating, and can limit the amount of AAV particles produced. The rep gene can also be operably linked to a heterologous promoter, whether rep is provided as part of the vector construct, or separately. Any heterologous promoter that is not strongly down-regulated by rep gene expression is suitable; but inducible promoters may be preferred because constitutive expression of the rep gene can have a negative impact on the host cell. A large variety of inducible promoters are known in the art; including, by way of illustration, heavy metal ion inducible promoters (such as metallothionein promoters); steroid hormone inducible promoters (such as the MMTV promoter or growth hormone promoters); and promoters such as those from T7 phage which are active in the presence of T7 RNA polymerase. One sub-class of inducible promoters are those that are induced by the helper virus that is used to complement the replication and packaging of the rAAV vector. A number of helper-virus-inducible promoters have also been described, including the adenovirus early gene promoter which is inducible by adenovirus E1A protein; the adenovirus major late promoter; the herpesvirus promoter which is inducible by herpesvirus proteins such as VP16 or 1CP4; as well as vaccinia or poxvirus inducible promoters.
  • Methods for identifying and testing helper-virus-inducible promoters have been described (see, e.g., WO 96/17947). Thus, methods are known in the art to determine whether or not candidate promoters are helper-virus-inducible, and whether or not they will be useful in the generation of high efficiency packaging cells. Briefly, one such method involves replacing the p5 promoter of the AAV rep gene with the putative helper-virus-inducible promoter (either known in the art or identified using well-known techniques such as linkage to promoter-less “reporter” genes). The AAV rep-cap genes (with p5 replaced), e.g., linked to a positive selectable marker such as an antibiotic resistance gene, are then stably integrated into a suitable host cell (such as the HeLa or A549 cells exemplified below). Cells that are able to grow relatively well under selection conditions (e.g., in the presence of the antibiotic) are then tested for their ability to express the rep and cap genes upon addition of a helper virus. As an initial test for rep and/or cap expression, cells can be readily screened using immunofluorescence to detect Rep and/or Cap proteins. Confirmation of packaging capabilities and efficiencies can then be determined by functional tests for replication and packaging of incoming rAAV vectors. Using this methodology, a helper-virus-inducible promoter derived from the mouse metallothionein gene has been identified as a suitable replacement for the p5 promoter, and used for producing high titers of rAAV particles (as described in WO 96/17947).
  • Removal of one or more AAV genes is in any case desirable, to reduce the likelihood of generating replication-competent AAV (“RCA”). Accordingly, encoding or promoter sequences for rep, cap, or both, may be removed, since the functions provided by these genes can be provided in trans.
  • The resultant vector is referred to as being “detective” in these functions. In order to replicate and package the vector, the missing functions are complemented with a packaging gene, or a plurality thereof, which together encode the necessary functions for the various missing rep and/or cap gene products. The packaging genes or gene cassettes are in one embodiment not flanked by AAV ITRs and in one embodiment do not share any substantial homology with the rAAV genome. Thus, in order to minimize homologous recombination during replication between the vector sequence and separately provided packaging genes, it is desirable to avoid overlap of the two polynucleotide sequences. The level of homology and corresponding frequency of recombination increase with increasing length of homologous sequences and with their level of shared identity. The level of homology that will pose a concern in a given system can be determined theoretically and confirmed experimentally, as is known in the art. Typically, however, recombination can be substantially reduced or eliminated if the overlapping sequence is less than about a 25 nucleotide sequence if it is at least 80% identical over its entire length, or less than about a 50 nucleotide sequence if it is at least 70% identical over its entire length. Of course, even lower levels of homology are preferable since they will further reduce the likelihood of recombination. It appears that, even without any overlapping homology, there is some residual frequency of generating RCA, Even further reductions in the frequency of generating RCA (e,g., by nonhomologous recombination) can be obtained by “splitting” the replication and encapsidation functions of AAV, as described by Allen et al., WO 98/27204).
  • The rAAV vector construct, and the complementary packaging gene constructs can be implemented in this invention in a number of different forms. Viral particles, plasmids, and stably transformed host cells can all be used to introduce such constructs into the packaging cell, either transiently or stably.
  • In certain embodiments of this invention, the AAV vector and complementary packaging gene(s), if any, are provided in the form of bacterial plasmids, AAV particles, or any combination thereof. In other embodiments, either the AAV vector sequence, the packaging gene(s), or both, are provided in the form of genetically altered (preferably inheritably altered) eukaryotic cells. The development of host cells inheritably altered to express the AAV vector sequence, AAV packaging genes, or both, provides an established source of the material that is expressed at a reliable level.
  • A variety of different genetically altered cells can thus be used in the context of this invention. By way of illustration, a mammalian host cell may be used with at least one intact copy of a stably integrated rAAV vector. An AAV packaging plasmid comprising at least an AAV rep gene operably linked to a promoter can be used to supply replication functions (as described in U.S. Pat. No. 5,658,776). Alternatively, a stable mammalian cell line with an AAV rep gene operably linked to a promoter can be used to supply replication functions (see, e.g., Trempe et al., WO 95/13392); Burstein et al. (WO 98/23018); and Johnson et al. (U.S. Pat. No. 5,656,785). The AAV cap gene, providing the encapsidation proteins as described above, can be provided together with an AAV rep gene or separately (see, e.g., the above-referenced applications and patents as well as Allen et al. (WO 98/27204). Other combinations are possible and included within the scope of this invention.
  • Pathways for Delivery
  • Despite the immense network of the cerebral vasculature, systemic delivery of therapeutics to the central nervous system (CNS) is not effective for greater than 98% of small molecules and for nearly 100% of large molecules (Partridge, 2005). The lack of effectiveness is due to the presence of the blood-brain barrier (BBB), which prevents most foreign substances, even many beneficial therapeutics, from entering the brain from the circulating blood. While certain small molecule, peptide, and protein therapeutics given systemically reach the brain parenchyma by crossing the BBB (Banks, 2008), generally high systemic doses are needed to achieve therapeutic levels, which can lead to adverse effects in the body. Therapeutics can be introduced directly into the CNS by intracerebroventricular or intraparenchymal injections. Intranasal delivery bypasses the BBB and targets therapeutics directly to the CNS utilizing pathways along olfactory and trigeminal nerves innervating the nasal passages (Frey II, 2002; Thorne et al., 2004; Dhanda et al., 2005).
  • Any route of rAAV administration may be employed so long as that route and the amount administered are prophylactically or therapeutically useful. In one example, routes of administration to the CNS include intrathecal and intracranial. Intracranial administration may be to the cisterna magna or ventricle. The term “cisterna magna” is intended to include access to the space around and below the cerebellum via the opening between the skull and the top of the spine. The term “cerebral ventricle” is intended to include the cavities in the brain that are continuous with the central canal of the spinal cord. Intracranial administration is via injection or infusion and suitable dose ranges for intracranial administration are generally about 103 to 1015 infectious units of viral vector per microliter delivered in 1 to 3000 microliters of single injection volume. For instance, viral genomes or infectious units of vector per micro liter would generally contain about 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, or 1014 viral genomes or infectious units of viral vector delivered in about 10, 50, 100, 200, 500, 1000, or 2000 microliters. It should be understood that the aforementioned dosage is merely an exemplary dosage and those of skill in the art will understand that this dosage may be varied. Effective doses may be extrapolated from dose-responsive curves derived from in vitro or in vivo test systems.
  • The AAV delivered in the intrathecal methods of treatment of the present invention may be administered through any convenient route commonly used for intrathecal administration. For example, the intrathecal administration may be via a slow infusion of the formulation for about an hour. Intrathecal administration is via injection or infusion and suitable dose ranges for intrathecal administration are generally about 103 to 1015 infectious units of viral vector per microliter delivered in, for example, 1 to 3000 microliters or 0.5 to 15 milliliters of single injection volume. For instance, viral genomes or infectious units of vector per microliter would generally contain about 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, or 1014 viral genomes or infectious units of viral vector.
  • The therapy, if a lysosomal storage enzyme such as IDUA is expressed, results in the normalization of lysosomal storage granules in the neuronal and/or meningeal tissue of the subjects as discussed above. It is contemplated that the deposition of storage granules is ameliorated from neuronal and glial tissue, thereby alleviating the developmental delay and regression seen in individuals suffering with lysosomal storage disease. Other effects of the therapy may include the normalization of lysosomal storage granules in the cerebral meninges near the arachnoid granulation, the presence of which in lysosomal storage disease result in high pressure hydrocephalus. The methods of the invention also may be used in treating spinal cord compression that results from the presence of lysosomal storage granules in the cervical meninges near the cord at C1-C5 or elsewhere in the spinal cord. The methods of the invention also are directed to the treatment of cysts that are caused by the perivascular storage of lysosomal storage granules around the vessels of the brain. In other embodiments, the therapy also may advantageously result in normalization of liver volume and urinary glycosaminoglycan excretion, reduction in spleen size and apnea/hypopnea events, increase in height and growth velocity in prepubertal subjects, increase in shoulder flexion and elbow and knee extension, and reduction in tricuspid regurgitation or pulmonic regurgitation.
  • The intrathecal administration of the present invention may comprise introducing the composition into the lumbar area. Any such administration may be via a bolus injection. Depending on the severity of the symptoms and the responsiveness of the subject to the therapy, the bolus injection may be administered once per week, once per month, once every 6 months or annually. In other embodiments, the intrathecal administration is achieved by use of an infusion pump. Those of skill in the art are aware of devices that may be used to effect intrathecal administration of a composition. The composition may be intrathecally given, for example, by a single injection, or continuous infusion. It should be understood that the dosage treatment may be in the form of a single dose administration or multiple doses.
  • As used herein, the term “intrathecal administration” is intended to include delivering a pharmaceutical composition directly into the cerebrospinal fluid of a subject, by techniques including lateral cerebroventricular injection through a burrhole or cisternal or lumbar puncture or the like. The term “lumbar region” is intended to include the area between the third and fourth lumbar (lower back) vertebrae and, more inclusively, the L2-S1 region of the spine.
  • Administration of a composition in accordance with the present invention to any of the above mentioned sites can be achieved by direct injection of the composition or by the use of infusion pumps. For injection, the composition can be formulated in liquid solutions, e.g., y in physiologically compatible buffers such as Flank's solution, Ringer's solution or phosphate buffer. In addition, the enzyme may be formulated in solid form and re-dissolved or suspended immediately prior to use. Lyophilized forms are also included. The injection can be, for example, in the form of a bolus injection or continuous infusion (e.g., using infusion pumps) of the enzyme,
  • In one embodiment of the invention, the rAAV is administered by lateral cerebro-ventricular injection into the brain of a subject. The injection can be made, for example, through a burr hole made in the subject's skull. In another embodiment, the enzyme and/or other pharmaceutical formulation is administered through a surgically inserted shunt into the cerebral ventricle of a subject. For example, the injection can be made into the lateral ventricles, which are larger, even though injection into the third and fourth smaller ventricles can also be made. In yet another embodiment, the compositions used in the present invention are administered by injection into the cisterna magna or lumbar area of a subject.
  • While the exact mechanisms underlying intranasal drug delivery to the CNS are not entirely understood, an accumulating body of evidence demonstrates that pathways involving nerves connecting the nasal passages to the brain and spinal cord are important. In addition, pathways involving the vasculature, cerebrospinal fluid, and lymphatic system have been implicated in the transport of molecules from the nasal cavity to the CNS. It is likely that a combination of these pathways is responsible, although one pathway may predominate, depending on the properties of the therapeutic, the characteristics of the formulation, and the delivery device used.
  • Therapeutics can rapidly gain access to the CNS following intranasal administration along olfactory nerve pathways leading from the nasal cavity directly to the CNS. Olfactory nerve pathways are a major component of intranasal delivery, evidenced by the fact that fluorescent tracers are associated with olfactory nerves as they traverse the cribriform plate (Jansson et al., 2002), drug concentrations in the olfactory bulbs are generally among the highest CNS concentrations observed (Thorne et al., 2004; Banks et al., 2004; Graff et al., 2005a); Nonaka et al., 2008; Ross et al., 2004; Ross et al., 2008; Thorne et al., 2008), and a strong, positive correlation exists between concentrations in the olfactory epithelium and olfactory bulbs (Dhuria et al., 2009a).
  • Olfactory pathways arise in the upper portion of the nasal passages, in the olfactory region, where olfactory receptor neurons (ORNs) are interspersed among supporting cells (sustentacular cells), microvillar cells, and basal cells. ORNs mediate the sense of smell by conveying sensory information from the peripheral environment to the CNS (Clerico et al., 2003). Beneath the epithelium, the lamina propria contains mucus secreting Bowman's glands, axons, blood vessels, lymphatic vessels, and connective tissue. The dendrites of ORNs extend into the mucous layer of the olfactory epithelium, while axons of these bipolar neurons extend centrally through the lamina propria and through perforations in the cribriform plate of the ethmoid bone, which separates the nasal and cranial cavities. The axons of ORNs pass through the subarachnoid space containing CSF and terminate on mitral cells in the olfactory bulbs. From there, neural projections extend to multiple brain regions including the olfactory tract, anterior olfactory nucleus, piriform cortex, amygdala, and hypothalamus (Buck, 2000). In addition to ORNs, chemosensory neurons located at the anterior tip of the nasal cavity in the Grueneberg ganglion lead into the olfactory bulbs (Fuss et al., 2005; Koos et al., 2005).
  • The unique characteristics of the ORNs contribute to a dynamic cellular environment critical for intranasal delivery to the CNS. Due to the direct contact with toxins in the external environment, ORNs regenerate every 3-4 weeks from basal cells residing in the olfactory epithelium (Mackay-Sim, 2003). Special Schwann cell-like cells called olfactory ensheathing cells (OECs) envelope the axons of ORNs and have an important role in axonal regeneration, regrowth, and remyelination (Field et al., 2003; Li et al., 2005a; Li et al., 2005b). The OECs create continuous, fluid-filled perineurial channels that, interestingly, remain open, despite the degeneration and regeneration of ORNs (Williams et al., 2004).
  • Given the unique environment of the olfactory epithelium, it is possible for intranasally administered therapeutics to reach the CNS via extracellular or intracellular mechanisms of transport along olfactory nerves. Extracellular transport mechanisms involve the rapid movement of molecules between cells in the nasal epithelium, requiring only several minutes to 30 minutes for a drug to reach the olfactory bulbs and other areas of the CNS after intranasal administration (Frey II, 2002; Balin et al., 1986). Transport likely involves bulk flow mechanisms (Thorne et al., 2004; Thorne et al., 2001) within the channels created by the OECs. Drugs may also be propelled within these channels by the structural changes that occur during depolarization and axonal propagation of the action potential in adjacent axons (Luzzati et al., 2004). Intracellular transport mechanisms involve the uptake of molecules into ORNs by passive diffusion, receptor-mediated endocytosis or adsorptive endocytosis, followed by slower axonal transport, taking several hours to days for a drug to appear in the olfactory bulbs and other brain areas (Baker et al., 1986; Broadwell et al., 1985; Kristensson et al., 1971). Intracellular transport in ORNs has been demonstrated for small, lipophilic molecules such as gold particles (de Lorenzo, 1970; Gopinath et al., 1978), aluminum salts (Pert et al, 1987), and for substances with receptors on ORNs such as WGA-HRP (Thorne et al., 1995; Baker et al, 1986; Itaya et al., 1986; Shipley, 1985). Intracellular mechanisms, while important for certain therapeutics, are not likely to be the predominant mode of transport into the CNS. While some large molecules, such as galanin-like peptide (GALP), exhibit saturable transport pathways into the CNS (Nonaka et al., 2008), for other large molecules such as NGF and insulin-like growth factor-I (IGF-I), intranasal delivery into the brain is nonsaturable and not receptor mediated (Thorne et al., 2004; Chen et al., 1998; Zhao et al., 2004),
  • An often overlooked but important pathway connecting the nasal passages to the CNS involves the trigeminal nerve, which innervates the respiratory and olfactory epithelium of the nasal passages and enters the CNS in the pans (Clerico et al., 2003; Graff et al., 2003). Interestingly, a small portion of the trigeminal nerve also terminates in the olfactory bulbs (Schaefer et al., 2002). The cellular composition of the respiratory region of the nasal passages is different from that of the olfactory region, with ciliated epithelial cells distributed among mucus secreting goblet cells. These cells contribute to mucociliary clearance mechanisms that remove mucus along with foreign substances from the nasal cavity to the nasopharynx. The trigeminal nerve conveys sensory information from the nasal cavity, the oral cavity, the eyelids, and the cornea, to the CNS via the ophthalmic division (V1), the maxillary division (V2), or the mandibular division (V3) of the trigeminal nerve (Clerico et al., 2003; Gray, 1978). Branches from the ophthalmic division of the trigeminal nerve provide innervation to the dorsal nasal mucosa and the anterior portion of the nose, while branches of the maxillary division provide innervation to the lateral walls of the nasal mucosa. The mandibular division of the trigeminal nerve extends to the lower, jaw and teeth, with no direct neural inputs to the nasal cavity. The three branches of the trigeminal nerve come together at the trigeminal ganglion and extend centrally to enter the brain at the level of the pons, terminating in the spinal trigeminal nuclei in the brainstem. A unique feature of the trigeminal nerve is that it enters the brain from the respiratory epithelium of the nasal passages at two sites: (1) through the anterior lacerated foramen near the pons and (2) through the cribriform plate near the olfactory bulbs, creating entry points into both caudal and rostral brain areas following intranasal administration. It is also likely that other nerves that innervate the face and head, such as the facial nerve, or other sensory structures in the nasal cavity, such as the Grueneberg ganglion, may provide entry points for intranasally applied therapeutics into the CNS.
  • Traditionally, the intranasal route of administration has been utilized to deliver drugs to the systemic circulation via absorption into the capillary blood vessels underlying the nasal mucosa. The nasal mucosa is highly vascular, receiving its blood supply from branches of the maxillary, ophthalmic and lacial arteries, which arise from the carotid artery (Clerico et al., 2003; Cauna, 1982). The olfactory mucosa receives blood from small branches of the ophthalmic artery, whereas the respiratory mucosa receives blood from a large caliber arterial branch of the maxillary artery (DeSesso, 1993). The relative density of blood vessels is greater in the respiratory mucosa compared to the olfactory mucosa, making the former region an ideal site for absorption into the blood (DeSesso, 1993). The vasculature in the respiratory region contains a mix of continuous and fenestrated endothelia (Grevers et al., 1987; Van Diest et al., 1979), allowing both small and large molecules to enter the systemic circulation following nasal administration.
  • Delivery to the CNS following absorption into the systemic circulation and subsequent transport across the BBB is possible, especially for small, lipophilic drugs, which more easily enter the blood stream and cross the BBB compared to large, hydrophilic therapeutics such as peptides and proteins.
  • Increasing evidence is emerging suggesting that mechanisms involving channels associated with blood vessels, or perivascular channels, are involved in intranasal drug delivery to the CNS. Perivascular spaces are bound by the outermost layer of blood vessels and the basement membrane of the surrounding tissue (Pollock et al., 1997). These perivascular spaces act as a lymphatic system for the brain, where neuron-derived substances are cleared from brain interstitial fluid by entering perivascular channels associated with cerebral blood vessels. Perivascular transport is due to bulk flow mechanisms, as opposed to diffusion alone (Cserr et al., 1981; Groothuis et al., 2007), and arterial pulsations are also a driving force for perivascular transport (Rennets et al., 1985; Rennets et al, 1985). Intranasally applied drugs can move into perivascular spaces in the nasal passages or after reaching the brain and the widespread distribution observed within the CNS could be due to perivascular transport mechanisms (Thorne et al., 2004).
  • Pathways connecting the subarachnoid space containing CSF, perineurial spaces encompassing olfactory nerves, and the nasal lymphatics are important for CSF drainage and these same pathways provide access for intranasally applied therapeutics to the CSF and other areas of the CNS. Several studies document that tracers injected into the CSF in the cerebral ventricles or subarachnoid space drain to the underside of the olfactory bulbs into channels associated with olfactory nerves traversing the cribriform plate and reach the nasal lymphatic system and cervical lymph nodes (Bradbury et al., 1983; Hatterer et al., 2006; Johnston et al, 2004a); Kida et al., 1993; Walter et al., 2006a; Waiter et al, 2006b). Drugs can access the CNS via these same pathways after intranasal administration, moving from the nasal passages to the CSF to the brain interstitial spaces and perivascular spaces for distribution throughout the brain. These drainage pathways are significant in a number of animal species (sheep, rabbits, and rats) accounting for approximately 50% of CSF clearance (Bradbury et al., 1981; Boulton et al., 1999; Boulton et al., 1996; Cserr et al., 1992). Pathways between the nasal passages and the CSF are still important and functional in humans, evidenced by the fact that therapeutics are directly delivered to the CSF following intranasal delivery, without entering the blood to an appreciable extent (Born et al., 2002). A number of intranasal studies demonstrate that drugs gain direct access to the CSF from the nasal cavity, followed by subsequent distribution to the brain and spinal cord. Many intranasally applied molecules rapidly enter the CSF, and this transport is dependent on the lipophilicity, molecular weight, and degree of ionization of the molecules (Dhanda et al., 2005; Born et al., 2002; Kumar et al., 1974; Sakane et al., 1995; Sakane et al., 1994; Wang et al., 2007). Assessing distribution into the CSF can provide information on the mechanism of intranasal delivery.
  • Optimal delivery to the CNS along neural pathways is associated with delivery of the agent to the upper third of the nasal cavity (Hanson et al., 2008). Although a supine position may be employed another position for targeting the olfactory region is with the “praying to Mecca” position, with the head down-and-forward. A supine position with the head angle at 70° or 90° may be suitable for efficient delivery to the CSF using a tube inserted into the nostrils to deliver the drug via intranasal administration (van den Berg et al., (2002)).
  • For intranasal drug administration nose drops may be administered over a period of 10-20 minutes to alternating nostrils every 1-2 minutes to allow the solution to be absorbed into the nasal epithelium (Thorne et al., 2004; Capsoni et al., 2002; Ross et al., 2004; Ross et al, 2008; Dhuria et al., 2009a; Dhuria et al., 2009b; Francis et al., 2008; Martinez et al., 2008). This noninvasive method does not involve inserting the device into the nostril. Instead, drops are placed at the opening of the nostril, allowing the individual to sniff the drop into the nasal cavity. Other administration methods in anesthetized individual involve sealing the esophagus and inserting a breathing tube into the trachea to prevent the nasal formulation from being swallowed and to eliminate issues related to respiratory distress (Chow et al., 1999; Chow et al., 2001; Fliedner et al., 2006; Dahlin et al., 2001). Flexible tubing can be inserted into the nostrils for localized delivery of a small volume of the drug solution to the respiratory or olfactory epithelia, depending on the length of the tubing (Chow et al., 1999; Van den Berg et al., 2003; van den Berg et al., 2004a; Banks et al., 2004; van den Berg et al., 2002; Vyas et al., 2006a; Chariton et al., 2007a; Ciao et al., 2007a).
  • Nasal delivery devices, such as sprays, nose droppers or needle-less syringes, may be employed to target the agent to different regions of the nasal cavity. OptiMist™ is a breath actuated device that targets liquid or powder nasal formulations to the nasal cavity, including the olfactory region, without deposition in the lungs or esophagus (Djupesland et al., 2006). The ViaNase™ device can also be used to target a nasal spray to the olfactory and respiratory epithelia of the nasal cavity. Nasal drops tend to deposit on the nasal floor and are subjected to rapid mucociliary clearance, while nasal sprays are distributed to the middle meatus of the nasal mucosa (Scheibe et al., 2008).
  • The immune suppressant or immunotolerizing agent may be administered by any route including parenterally. In one embodiment, the immune suppressant or immunotolerizing agent may be administered by subcutaneous, intramuscular, or intravenous injection, orally, intrathecally, intracranially, or intranasally, or by sustained release, e.g., using a subcutaneous implant. The immune suppressant or immunotolerizing agent may be dissolved or dispersed in a liquid carrier vehicle. For parenteral administration, the active material may be suitably admixed with an acceptable vehicle, e.g., of the vegetable oil variety such as peanut oil, cottonseed oil and the like. Other parenteral vehicles such as organic compositions using solketal, glycerol, formal, and aqueous parenteral formulations may also be used. For parenteral application by injection, compositions may comprise an aqueous solution of a water soluble pharmaceutically acceptable salt of the active acids according to the invention, desirably in a concentration of 0.01-10%, and optionally also a stabilizing agent and/or buffer substances in aqueous solution. Dosage units of the solution may advantageously be enclosed in ampules.
  • The composition, e,g,, rAAV containing composition, immune suppressant containing composition or immunotolerizing composition, may be in the form of an injectable unit dose. Examples of carriers or diluents usable for preparing such injectable doses include diluents such as water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxyisostearyl alcohol and polyoxyethylene sorbitan fatty acid esters, pH adjusting agents or buffers such as sodium citrate, sodium acetate and sodium phosphate, stabilizers such as sodium pyrosulfite, EDTA, thioglycolic acid and thiolactic acid, isotonic agents such as sodium chloride and glucose, local anesthetics such as procaine hydrochloride and lidocaine hydrochloride. Furthermore usual solubilizing agents and analgesics may be added. Injections can be prepared by adding such carriers to the enzyme or other active, following procedures well known to those of skin in the art. A thorough discussion of pharmaceutically acceptable excipients is available in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. 1991). The pharmaceutically acceptable formulations can easily be suspended in aqueous vehicles and introduced through conventional hypodermic needles or using infusion pumps. Prior to introduction, the formulations can be sterilized with, preferably, gamma radiation or electron beam sterilization.
  • When the immune suppressant or immunotolerizing agent is administered in the form of a subcutaneous implant, the compound is suspended or dissolved in a slowly dispersed material known to those skilled in the art, or administered in a device which slowly releases the active material through the use of a constant driving force such as an osmotic pump. In such cases, administration over an extended period of time is possible.
  • The dosage at which the immune suppressant or immunotolerizing agent containing composition is administered may vary within a wide range and will depend on various factors such as the severity of the disease, the age of the patient, etc., and may have to be individually adjusted. A possible range for the amount which may be administered per day is about 0.1 mg to about 2000 mg or about 1 mg to about 2000 mg. The compositions containing the immune suppressant or immunotolerizing agent may suitably be formulated so that they provide doses within these ranges, either as single dosage units or as multiple dosage units. In addition to containing an immune suppressant, the subject formulations may contain one or more rAAV encoding a therapeutic gene product.
  • Compositions described herein may be employed in combination with another medicament. The compositions can appear in conventional forms, for example, aerosols, solutions, suspensions, or topical applications, or in lyophilized form.
  • Typical compositions include a rAAV, an immune suppressant, a permeation enhancer, or a combination thereof, and a pharmaceutically acceptable excipient which can be a carrier or a diluent. For example, the active agent(s) may be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier. When the active agent is mixed with a carrier, or when the carrier serves as a diluent, it can be solid, semi-solid, or liquid material that acts as a vehicle, excipient, or medium for the active agent. Some examples of suitable carriers are water, salt solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, gelatin, lactose, terra alba, sucrose, dextrin, magnesium carbonate, sugar, cyclodextrin, amylase, magnesium stearate, talc, gelatin, agar, pectin, acacia, stearic acid or lower alkyl ethers of cellulose, silicic acid, fatty acids, fatty acid amines, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, polyoxyethylene, hydroxymethylcellulose and polyvinylpyrrolidone. Similarly, the carrier or diluent can include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax.
  • The formulations can be mixed with auxiliary agents which do not deleteriously react with the active agent(s). Such additives can include wetting agents, emulsifying and suspending agents, salt for influencing osmotic pressure, butlers and/or coloring substances preserving agents, sweetening agents or flavoring agents. The compositions can also be sterilized if desired.
  • If a liquid carrier is used, the preparation can be in the form of a liquid such as an aqueous liquid suspension or solution. Acceptable solvents or vehicles include sterilized water, Ringer's solution, or an isotonic aqueous saline solution.
  • The agent(s) may be provided as a powder suitable for reconstitution with an appropriate solution as described above. Examples of these include, but are not limited to, freeze dried, rotary dried or spray dried powders, amorphous powders, granules, precipitates, or particulates. The composition can optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these. A unit dosage form can be in individual containers or in multi-dose containers.
  • Compositions contemplated by the present invention may include, for example, micelles or liposomes, or some other encapsulated form, or can be administered in an extended release form to provide a prolonged storage and/or delivery effect, e.g., using biodegradable polymers, e.g., polylactide-polyglycolide. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides).
  • Polymeric nanoparticles, e.g., comprised of a hydrophobic core of polylactic acid (PLA) and a hydrophilic shell of methoxy-polyethylene glycol) (MPEG), may have improved solubility and targeting to the CNS. Regional differences in targeting between the microemulsion and nanoparticle formulations may be due to differences in particle size.
  • Liposomes are very simple structures consisting of one or more lipid bilayers of amphiphilic lipids, i.e., phospholipids or cholesterol. The lipophilic moiety of the bilayers is turned towards each other and creates an inner hydrophobic environment in the membrane. Liposomes are suitable drug carriers for some lipophilic drugs which can be associated with the non-polar parts of lipid bilayers if they fit in size and geometry. The size of liposomes varies from 20 nm to few μm.
  • Mixed micelles are efficient detergent structures which are composed of bile salts, phospholipids, tri, di- and monoglycerides, fatty acids, free cholesterol and fat soluble micronutrients. As long-chain phospholipids are known to form bilayers when dispersed in water, the preferred phase of short chain analogues is the spherical micellar phase. A micellar solution is a thermodynamically stable system formed spontaneously in water and organic solvents. The interaction between micelles and hydrophobic/lipophilic drugs leads to the formation of mixed micelles (MM), often called swallen micelles, too. In the human body, they incorporate hydrophobic compounds with low aqueous solubility and act as a reservoir for products of digestion, e.g. monoglycerides.
  • Lipid microparticles includes lipid nano- and microspheres. Microspheres are generally defined as small spherical particles made of any material which are sized from about 0.2 to 100 μm. Smaller spheres below 200 nm are usually called nanospheres. Lipid microspheres are homogeneous oil/water microemulsions similar to commercially available fat emulsions, and are prepared by an intensive sonication procedure or high pressure emulsifying methods (grinding methods). The natural surfactant lecithin lowers the surface tension of the liquid, thus acting as an emulsifier to form a stable emulsion. The structure and composition of lipid nanospheres is similar to those of lipid microspheres, but with a smaller diameter,
  • Polymeric nanoparticles serve as carriers for a broad variety of ingredients. The active components may be either dissolved in the polymetric matrix or entrapped or adsorbed onto the particle surface. Polymers suitable for the preparation of organic nanoparticles include cellulose derivatives and polyesters such as poly(lactic acid), poly(glycolic acid) and their copolymer. Due to their small size, their large surface area/volume ratio and the possibility of functionalization of the interface, polymeric nanoparticles are ideal carrier and release systems. If the particle size is below 50 nm, they are no longer recognized as particles by many biological and also synthetic barrier layers, but act similar to molecularly disperse systems.
  • Thus, the composition of the invention can be formulated to provide quick, sustained, controlled, or delayed release, or any combination thereof, of the active agent after administration to the individual by employing procedures well known in the art. In one embodiment, the enzyme is in an isotonic or hypotonic solution. In one embodiment, for enzymes that are not water soluble, a lipid based delivery vehicle may be employed, e.g., a microemulsion such as that described in WO 2008/049588, the disclosure of which is incorporated by reference herein, or liposomes.
  • In one embodiment, the preparation can contain an agent, dissolved or suspended in a liquid carrier, such as an aqueous carrier, for aerosol application. The carrier can contain additives such as solubilizing agents, e.g., propylene glycol, surfactants, absorption enhancers such as lecithin (phosphatidylcholine) or cyclodextrin, or preservatives such as parabens. For example, in addition to solubility, efficient delivery to the CNS following intranasal administration may be dependent on membrane permeability. For enzymes where paracellular transport is hindered due to size and polarity, improving membrane permeability may enhance extracellular mechanisms of transport to the CNS along olfactory and trigeminal nerves. One approach to modifying membrane permeability within the nasal epithelium is by using permeation enhancers, such as surfactants, e.g., lauroylcarnitine (LC), bile salts, lipids, cyclodextrins, polymers, or tight junction modfiers.
  • Generally, the active agents are dispensed in unit dosage form including the active ingredient together with a pharmaceutically acceptable carrier per unit dosage. Usually, dosage forms suitable for nasal administration include from about 125 μg to about 125 mg, e.g., from about 250 μg to about 50 mg, or from about 2.5 mg to about 25 mg, of the compounds admixed with a pharmaceutically acceptable carrier or diluent.
  • Dosage forms can be administered daily, or more than once a day, such as twice or thrice daily. Alternatively dosage forms can be administered less frequently than daily, such as every other day, or weekly, if found to be advisable by a prescribing physician.
  • The invention will be described by the following non-limiting examples.
  • EXAMPLE I AAV Vector-Mediated Iduronidase Gene Delivery in a Murine Model of Mucopolysaccharidosis Type I: Comoarinq Different Routes of Delivery to the CNS
  • Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). Systemic and abnormal accumulation of glycosaminoglycans is associated with growth delay, organomegaly, skeletal dysplasia, and cardiopulmonary disease. Individuals with the most severe form of the disease (Hurler syndrome) suffer from neurodegeneration, mental retardation, and early death. The two current treatments for MPS I (hematopoietic stem cell transplantation and enzyme replacement therapy) cannot effectively treat all central nervous system (CNS) manifestations of the disease.
  • With respect to gene therapy, it was previously demonstrated that intravascular delivery of AAV-9 in adult mice does not achieve widespread direct neuronal targeting (see Foust et al, 2009). Previous work also showed that direct injection of AAV8-IDUA into the CNS of adult IDUA-deficient mice resulted in a low frequency or a poor level of transgene expression (see FIG. 18). The following examples, which use a pre-clinical model for the treatment of MPSI, surprisingly demonstrate that direct injection of AAV9-IDUA into the CNS of immunocompetent adult IDUA-deficient mice resulted in IDUA enzyme expression and activity that is the same or higher than IDUA enzyme expression and activity in wild-type adult mice (see FIG. 15, infra).
  • Methods
  • AAV9-IDUA preparation. The AAV-IDUA vector construct (MCI) has been previously described (Wolf et al., 2011) (mCags promoter). AAV-IDUA plasmid DNA was packaged into AAV9 virions at the University of Florida Vector Core, yielding a titer of 3×1013 vector genomes per milliliter.
  • ICV infusions. Adult Idua−/− mice were anesthetized using a cocktail of ketamine and xylazine (100 mg ketamine+10 mg xylazine per kg) and placed on a stereotactic frame. Ten microliters of AAV9-IDUA were infused into the right-side lateral ventricle (stereotactic coordinates AP 0.4, ML 0.8, DV 2.4 mm from bregma) using a Hamilton syringe. The animals were returned to their cages on heating pads for recovery.
  • Intrathecal infusions. Infusions into young adult mice were carried out by injection of 10 μL AAV vector containing solution between the L5 and L6 vertebrae 20 minutes after intravenous injection of 0.2 mL 25% mannitol.
  • Immunotolerization. Newborn IDUA deficient mice were injected through the facial temporal vein with 5 μL containing 5.8 μg of recombinant iduronidase protein (Aldurazyme), and then the animals were returned to their cage.
  • Cyclophosphamide immunosuppression. For immunosuppression, animals were administered cyclophosphamide once per week at a dose of 120 mg/kg starting one day after infusion with AAV9-IDUA vector.
  • Animals. Animals were anesthetized with ketamine/xylazine (100 mg ketamine+10 mg xylazine per kg) and transcardially perfused with 70 mL PBS prior to sacrifice. Brains were harvested and microdissected on ice into cerebellum, hippocampus, striatum, cortex, and brainstem/thalamus (“rest”). The samples were frozen on dry ice and then stored at −80° C. Samples were thawed and homogenized in 1 mL of PBS using a motorized pestle and permeabilized with 0.1% Triton X-100. IDUA activity was determined by fluorometric assay using 4MU-iduronide as the substrate. Activity is expressed in units (percent substrate converted to product per minute) per mg protein as determined by Bradford assay (Bio Rad).
  • Tissues. Tissue homogenates were clarified by centrifugation for 3 minutes at 13,000 rpm using an Eppendorf tabletop centrifuge model 5415D (Eppendorf) and incubated overnight with proteinase K, DNase1, and Rnase. GAG concentration was determined using the Blyscan Sulfated Glycosaminoglycan Assay (Accurate Chemical) according to the manufacturer's instructions.
  • Results
  • FIG. 1 shows the results for iduronidase-deficient mice that were administered AAV either intracerebroventricularly (ICV) or intrathecally (IT). To prevent immune response, animals were either immunosuppressed with cyclophosphamide (CP), immunotolerized at birth by intravenous administration of human iduonidase protein (aidurazyme), or the injections were carried out in NOD-SCID immunodeficient mice that were also iduronidase deficient. Animals were sacrificed at the indicated time post-treatment, the brains were microdissected and extracts assayed for iduronidase activity.
  • FIG. 2 illustrates data for immunodeficient, IDUA deficient animals injected ICV with AAV-IDUA vector. Those animals exhibited high levels of IDUA expression (10 to 100 times wild type) in all areas of the brain, with the highest level observed in the brain stem and thalamus (“rest”).
  • Immunosuppressed animals administered AAV vector by ICV route had a relatively lower level of enzyme in the brain compared to the immunodeficent animals (FIG. 3), Note that immunosuppression may have been compromised in these animals because CP was withdrawn 2 weeks before sacrifice due to poor health.
  • FIG. 4 shows data for immunosuppressed animals administered AAV vector by the IT route. Immunotolerized animals administered AAV vector ICV exhibited widespread IDUA activity in ail parts of the brain (FIG. 5), similar to that observed in the immunodeficient animals, indicating the effectiveness of the immunotolerization procedure.
  • FIG. 6 is a compilation of all mean levels of IDUA activity for side-by-side comparison, and FIG. 7 is data grouped according the area of the brain,
  • GAG storage material was assayed in the different sections of the brain for all four of the test groups. For each group, the mean of each portion of the brain is shown on the left, the values for each of the individual animals is shown on the right (FIG. 8). IDUA deficient animals (far left) contained high levels of GAG compared to wild type animals (magenta bar). GAG levels were at wild-type or lower than wild type for all portions of the brain in all groups of AAV-treated animals. GAG levels were slightly although not significantly higher than wild-type in cortex and brainstem of animals administered AAV9-IDUA intrathecally.
  • Conclusions
  • The results show high and widespread distribution of IDUA in the brain regardless of the route of delivery (ICV or IT) although IDUA expression in striatum and hippocampus was lower in animals injected IT versus ICV. There appears to be an immune response since immune deficient mice have higher levels of expression than immunocompetent mice. With regard to ICV injection, when CP was withdrawn early, IDUA expression is lower. In addition, immunotolerization was effective in restoring high levels of enzyme activity. Further, GAG levels were restored to normal in all treated experimental groups of mice.
  • EXAMPLE II Methods
  • AAV9IDUA Preparation. AAV-IDUA plasmid was packaged into AAV9 virions at either the University of Florida vector core, or the University of Pennsylvania vector core, yielding a titer of 1-3×1013 vector genomes per milliliter.
  • ICV infusions. See Example I.
  • Intrathecal infusions, See Example I.
  • Immunotolerization. As in Example I except: for multiple tolerizations, newborn IDUA deficient mice were injected with the first dose of Aldurazyme in the facial temporal vein, followed by 6 weekly injections administered intraperitoneally.
  • Cyclophosphamide immunosuppression. See Example I.
  • Animals. Animals were anesthetized with ketamine/xylazine (100 mg ketamine+10 mg xylazine per kg) and transcardially perfused with 70 mL PBS prior to sacrifice. Brains were harvested and microdissected on ice into cerebellum, hippocampus, striatum, cortex, and brainstem/thalamus (“rest”). The samples were frozen on dry ice and then stored at −80° C.
  • Tissue IDUA activity. Tissue samples were thawed and homogenized in saline in a tissue homogenizer. Tissue homogenates were clarified by centrifugation at 15,000 rpm in a benchtop Eppendorf centrifuge at 4° C. for 15 minutes. Tissue lysates (supernatant) were collected and analyzed for IDUA activity and GAG storage levels.
  • Tissue GAG levels. Tissue lysates were incubated overnight with Proteinase K, RNase and DNase. GAG levels were analyzed using the Blyscan Sulfated Glycosaminoglycan Assay according to the manufacturer's instructions.
  • IDUA Vector copies. Tissue homogenates were used for DNA isolation and subsequent QPCR, as described in Wolf et al. (2011).
  • Results
  • FIG. 9 illustrates the experimental design and groups. Animals were administered AAV9IDUA vector either by intracerebroventricular (ICV) or intrathecal (IT) infusion. Vector administration was carried out in NOD-SCID immunodeficient (ID) mice that were also IDUA deficient, or in IDUA deficient mice that were either immunosuppressed with cyclophosphamide (CP), or immunotolerized at birth by a single or multiple injections of human iduronidase protein (Aldurazyme). The times of treatment with vector and sacrifice are as indicated in FIG. 9. All vector administrations were carried out in adult animals ranging in age from 3-4.5 months. Animals were injected with 10 μL of vector at a dose of 3×1011 vector genomes per 10 microliters.
  • FIG. 10 shows IDUA enzyme activities in intracranially infused, immunodeficient, IDUA deficient mice. High levels of enzyme activity were seen in all areas of the brain, ranging, from 30- to 300-fold higher than wild type levels. Highest enzyme expressions were seen in thalamus and brain stem, and in the hippocampus.
  • Animals that were injected intracranially and immunosuppressed with cyclophosphamide (OP) demonstrated significantly lower levels of enzyme activity than other groups (FIG. 11). However, CP administration in this case had to be withdrawn 2 weeks prior to sacrifice due to poor health of the animals.
  • IDUA enzyme levels in animals tolerized at birth with IDUA protein (Aldurazyme) and administered vector intracranially are depicted in FIG. 12. All animals showed high enzyme levels in all parts of the brain that ranged from 10- to 1000-fold higher than wild type levels, similar to levels achieved in immunodeficient animals, indicating the effectiveness of the immunotolerization procedure.
  • FIG. 13 depicts IDUA enzyme levels in mice that were injected intrathecally and administered CP on a weekly basis. Elevated levels of IDUA were observed in all parts of the brain, especially in the cerebellum and the spinal cord, Levels of enzyme were the lowest in the striatum and hippocampus with activities at wild type levels.
  • IDUA deficient mice were tolerized with Aidurazyme as described, and injected with vector intrathecally (FIG. 14). There was widespread IDUA enzyme activity in all parts of the brain, with highest levels of activity in the brain stem and thalamus, olfactory bulb, spinal cord and the cerebellum. Similar to the data in FIG. 13, the lowest levels of enzyme activity were seen in the striatum, cortex and hippocampus.
  • Control immunocompetent IDUA deficient animals were infused with vector intrathecally, without immunosuppression or immunotolerization (FIG. 15). The results indicate that although enzyme activities were at wild type levels or slightly higher, they are significantly lower than what was observed in animals that underwent immunomodulation. The decreases in enzyme levels were especially significant in the cerebellum, olfactory bulb and thalamus and brain stem, areas that expressed the highest levels of enzyme in immunomodulated animals.
  • Animals were assayed for GAG storage material, as shown in FIG. 15. All groups demonstrated clearance of GAG storage, with GAG levels similar to that observed in wild type animals. Animals that were immunosuppressed and injected with AAV-IDUA vector intrathecally had GAG levels in the cortex that were slightly higher than wild type, but still much lower than untreated IDUA deficient mice.
  • The presence of AAV9IDUA vector in animals that were immunotolerized and injected with vector either intracranially or intrathecally was evaluated by QPCR, as illustrated in FIG. 16, IDUA copies per cell were higher in animals infused intracranially in comparison with animals infused intrathecally, which is consistent with the higher level of enzyme activity seen in animals injected intracranially.
  • Conclusions
  • High, widespread, and therapeutic levels of IDUA were observed in all areas of the brain after intracerebroventricular and intrathecal routes of AAV9IDUA administration in adult mice. Enzyme activities were restored to wild type levels or slightly higher in immunocompetent IDUA deficient animals infused with AAV-IDUA intrathecally. Significantly higher levels of IDUA enzyme were observed for both routes of vector injection in animals immunotolerized starting at birth by administration of IDUA protein.
  • EXAMPLE III
  • Adult immunocompetent IDUA deficient mice (12 weeks old) were anesthetized with ketamine/xylazine, followed by intranasal infusion of AAV9IDUA vector. Vector was administered by applying eight 3 drops with a micropipette to the intranasal cavity, alternating between nostrils, at 2 minute intervals between each application. A total of 2.4-7×1011 vector genomes was administered to each adult animal, depending on source of vector. Animals were immunosuppressed with 120 mg/kg cyclophosphamide administered weekly, starting the day after vector administration. Mice were sacrificed at 12 weeks post vector infusion, animals were assayed for IDUA enzyme expression and vector copies in the brain.
  • REFERENCES
    • Al-Ghananeem et al., AAPS Pharm. Sci. Tech., 3:E5 (2002).
    • Bagger et al., Eur. J. Pharm. Sci., 21:235-242 (2004b),
    • Bagger et al.. Int. J. Pharm., 269:311-322 (2004a).
    • Baker et al., Exp. Brain Res., 63:461 (1986).
    • Balin et al., J. Comp. Neurol., 251:260-280 (1986).
    • Banks et al., J. Drug Target, 17:91-97 (2009).
    • Banks et al., J. Pharmacol. Exp. Ther., 309:469 (2004).
    • Banks, Biopolymers, 90:589 (2008).
    • Barakat et al., J. Pharm. Pharmacol., 58:63 (2006),
    • Barbier et al., Mol. Genet. Metab., 110:303 (2013).
    • Baumgartner et al., Neuron., 58:639 (2008).
    • Benedict et al., Neuroendocrinology, 86:136 (2007b).
    • Benedict et al., Neuropsychopharmacology, 32:239 (2007a).
    • Benedict et al., Psychoneuroendocrinology, 29:1326 (2004),
    • Bjoraker et al., J. Dev. Behav. Ped., 27:290 (2006).
    • Blits et al., J. Neuros. Methods, 185:257 (2010).
    • Born et al., Nat. Neurosci., 5:514 (2002).
    • Boulton et al., Am. J. Physiol., 276:R818 (1999).
    • Boulton et al., Neuropathol. Appl. Neurobiol., 22:325 (1996).
    • Bradbury et al., Am. J. Physiol., 240:F329 (1981).
    • Bradbury et al., J. Physiol., 339:519 (1983).
    • Brady, Ann. Rev. Med. 57:283 (2006).
    • Broadwell et al., J. Comp. Neurol., 242:632 (1985).
    • Broekman et al.. Neuroscience, 138:501 (2006).
    • Buck, In: Kandel E R, Schwartz J H, Jesseli T M, editors, Principles of neural science. 4th edition. New
    • York: McGraw-Hill Companies. pp. 625-652 (2000).
    • Buxer et al., J. Neurochem., 56:1012 (1991).
    • Cai et al., Sichuan Da Xue Xue Bao Yi Xue Ban, 39:438 (2008).
    • Capsoni et al., Proc. Natl. Acad. Sci. USA. 99:12432 (2002).
    • Carare et al., Neuropathol. Appl. Neurobiol., 34:131 (2008).
    • Cauna. In: Proctor D F, Andersen I, editors. Amsterdam: Elsevier Biomedical Press. pp. 45-69 (1982).
    • Charlton et al.. Int. J. Pharm., 338:94 (2007b).
    • Chariton et al., J. Drug Target. 15:370 (2007a).
    • Charlton et al., Pharm. Res., 25:1531 (2008).
    • Chen et al., J. Alzheimers Dis., 1:35 (1998).
    • Chen et al., J. Pharm. Sci., 95:1364 (2006).
    • Chow et al., J. Pharm. Sci., 88:754 (1999).
    • Chow et al., J. Pharm. Sci., 90:1729 (2001).
    • Clerico et al., In: Doty R L, editor. Handbook of olfaction and gustation. 2nd edition. New York: Marcel
    • Dekker. Inc. pp. 1-16 (2003).
    • Costantino et al., Int. J. Pharm., 337:1 (2007).
    • Cserr et al., Am. J. Physiol., 240:F319 (1981).
    • Cserr at al., Brain Pathol., 2:269 (1992).
    • Dahlin et al., Eur. J. Pharm. Sci., 14:75 (2001).
    • Danhof et al., American Association of Pharmaceutical Scientists Annual Meeting, Atlanta, Ga. (2008).
    • Danielyan et al., Eur, J. Cell. Biol., 88:315 (2009).
    • Davis et al., Clin. Pharmacokinet., 42:1107 (2003).
    • de Lorenzo, In: Wolstenholme GEW, Knight J, editors. Taste and smell in vertebrates. London: Churchill. pp. 151-175 (1970).
    • De Rosa et al., Proc. Natl. Acad. Sci. USA, 102:3811 (2005).
    • DeSesso, Qual. Assur., 2:213 (1993).
    • deSouza et al., Eur, Neuropsychopharmacol., 19:53 (2009).
    • Dhanda et al., Drug Del. Tech., 5:64 (2005).
    • Dhuria et al., J. Pharm. Sci., 98:2501 (2009b).
    • Dhuria et al., J. Pharmaceutical Sciences, 99:1654 (2010),
    • Dhuria et al., J. Pharmacol. Exp. Ther., 328:312 (2009a),
    • Diano et al., J. Clin. Invest., 118:26 (2008).
    • Dickson et al., Mol. Gen. Metab., 91:61 (2007).
    • Djupesand et al, Laryngoscope, 116:466 (2006).
    • Domes et al., Biol. Psychiatry, 61:731 (2007h).
    • Domes et al., Biol. Psychiatry, 62:1187 (2007a).
    • Dufes et al.. Int. J. Pharm., 255:87 (2003).
    • Einer-Jensen et al.. Exp. Brain Res., 130:216 (2000b).
    • Einer-Jensen et al., Pharmacol. Toxicol., 87:276 (2000a).
    • Einer-Jensen et al.. Reproduction, 129:9 (2005).
    • Ellinwood et al., Mol. Genet. Metab., 91:239 (2007).
    • Fehm et al., J. Clin. Endocrinol. Metab., 86:1144 (2001).
    • Field et al., J. Neurocytol., 32:317 (2003).
    • Fliedner et al., Endocrinology., 17:2088 (2006).
    • Foust et al., Nat. Biotech., 27:5 (2009)).
    • Francis et al., Brain, 131:3311 (2008).
    • Fratantoni et al., Science, 162:570 (1968).
    • Frey et al., Drug Delivery, 4:87 (1997).
    • Frey II, Drug Del. Tech., 2:46 (2002).
    • Fuss et al., Eur. J. Neurosci., 22:2649 (2005).
    • Gao et al., Biomaterials. 27:3482 (2006).
    • Gao et al., Int. J. Pharm., 340:207 (2007a).
    • Gao et al., J. Control Release, 121:156 (2007b).
    • Gopinath et al., Current Ther. Res., 23:596 (1978).
    • Gazes et al., Curr. Alzheimer Res., 4:507 (2007).
    • Graff et al., Pharm. Res., 20:1225 (2003).
    • Graff et al., Pharm. Res., 22:235 (2005a).
    • Graff et al., Pharm. Res., 22:86 (2005b).
    • Gray, 15th revised edition (Classic Collectors edition). New York: Bounty Books (1978).
    • Grevers et al., Arch. Otorhinolaryngol., 244:55 (1987).
    • Groothuis et al., J. Cereb. Blood Flow Metab., 27:43 (2007).
    • Gross et al., J. Anat., 135:83 (1982).
    • Guastella et al., Biol. Psychiatry, 63:3 (2008).
    • Hadaczek et al., Mol. Ther., 14:69 (2006).
    • Hallschmid et al., Regul. Peat., 149:79 (2008).
    • Han et al., J. Mol. Med., 85:75 (2007).
    • Hanson et al., BMC Neurosci., 9:S5 (2008).
    • Hanson et al., Drug Del. Tech., 4:66 (2004).
    • Hanson et al., San Diego, Calif.: Society for Neuroscience (2007).
    • Hanson et al.. In: EPO, editor. Biopharm and HealthPartners Research Foundation (2008).
    • Hartung et al., J. Am. Soc. Gene Ther., 9:866 (2004).
    • Hartung et al., Mol. Thera., 9:869 (2004).
    • Hashizume et al., Neuro. Oncol., 10:112 (2008).
    • Hatterer et al., Blood, 107:806 (2006).
    • Herati et al., J. Gene Med., 10:972 (2008).
    • Hess et al., Exp. Neuro., 186:134 (2004).
    • Horvat et al., Eur. J. Pharm. Biapharm., 72:252 (2009).
    • Hussar et al., Chem. Senses, 27:7 (2002).
    • Ilium, J. Control Release, 87:187 (2003).
    • Ilium, J. Pharm. Pharmacol., 56:3 (2004).
    • Itaya et al., Brain Res., 398:397 (1986).
    • Jansson et al., J. Drug Target, 10:379 (2002).
    • Jogani et al., Alzheimer Dis. Assoc. Disord., 22:116 (2008).
    • Johnston et al., Cerebrospinal Fluid Res., 1:2 (2004).
    • Kakkis et al., Mol. Gen. Met., 83:163 (2004).
    • Kandimalla et al., J. Pharm. Sci., 94:613 (2005b).
    • Kandimalla et al., Pharm. Res., 22:1121 (2005a).
    • Kida et al., Neuropathol. Appl. Neurobiol., 19:480 (1993).
    • Kirsch et al., J. Neurosci., 25:11489 (2005).
    • Klein et al., J. Am. Soc. Gene Ther., 13:517 (2006).
    • Koos et al., Neuroreport, 16:1929 (2005).
    • Kosfeid et al., Nature, 435:673 (2005).
    • Kristensson et al., Acta Neuropathol (Berl), 19:145 (1971).
    • Krivit, Springer Seminars in Immunopathology, 26:119 (2004).
    • Kumar et al., Curr, Sci., 43:435 (1974).
    • Kumar et al,. Int. J. Pharm., 358:285 (2008).
    • Li et al., Chin. J. Physiol., 48:7 (2005c).
    • Li et al., Glia, 52:245 (2005a).
    • Li et al., J. Neurocytol., 34:343 (2005b).
    • Loftus et al., Neuroscience, 139:1061 (2006).
    • Luzzati et al., J. Mol. Biol., 343:199 (2004).
    • Mackay-Sim, In: Doty R L, editor. Handbook of olfaction and gustation. 2nd edition, New York: Marcel
    • Dekker. Inc. pp. 93-113 (2003).
    • Martinez et al., Neuroscience, 157:908 (2008).
    • Minn et al., J. Drug Target, 10:285 (2002).
    • Miragali et al., J. Comp. Neurol., 341:433 (1994).
    • Muenzer, J. Pediatrics, 144:527 (2004).
    • Munoz-Rojas et al., Am. J. Med. Gen., 146A:2538 (2008).
    • Neufeld and Muenzer, In A. L. B. C.R. Scriver, W.S. Sly, et al (ed.), McGraw Hill, N.Y., pg. 3421 (2001).
    • Nonaka et al., J. Pharmacol, Exp. Ther., 325:513 (2008).
    • Ohlfest et al., Blood, 105:2691 (2005).
    • Orchard et al., J. Pediatrics, 151:340 (2007).
    • Owens et al., Diabet. Med., 20:886 (2003).
    • Pan et al., Brain Res., 1188:241 (2008).
    • Pardridge, NeuroRx, 2:3 (2005).
    • Parker et al., Psychoneuroendocrinology, 30:924 (2005).
    • Pastores, Exp. Opn, Biol. Ther., 8:1003 (2008).
    • Peri et al., Lancet. 1:1028 (1987).
    • Peters et al., Bone Marrow Transpl., 31:229 (2003).
    • Pollock et al., J. Anat., 191:337 (1997).
    • Raghavan et al, J. Laryngol. Otol., 114:456 (2000).
    • Reger et al., J. Alzheimers Dis., 13:323 (2008a).
    • Roger et al., Neurobiol. Aging, 27:451 (2006).
    • Reger et al., Neurology, 70:440 (2008b).
    • Rennels et al., Adv. Neurol., 52:431 (1990).
    • Rennels et al., Brain Res., 326:47 (1985).
    • Radon et al., Brain Res., 1076:225 (2006).
    • Rimmele et al., J. Neurosci., 29:38 (2009).
    • Ross et al., J. Neuroimmunol., 151:66 (2004).
    • Ross et al., Neurosci. Lett., 439: 30 (2008).
    • Sakane et al., J. Pharm. Pharmacol., 46:378 (1994).
    • Sakane et al., J. Pharm. Pharmacol., 47:379 (1995).
    • Sarkar, Pharm, Res., 9:1 (1992).
    • Schaefer et al., J. Comp. Neurol, 444:221 (2002).
    • Scheibe et al., Arch. Otolaryngol. Head Neck Sura., 134:643 (2008).
    • Schley et al., J. Theor. Biol., 238:962 (2006).
    • Schulz et al., Endocrinology, 145:2696 (2004).
    • Scott et al., Am. J. Hum. Genet., 53:973 (1993).
    • Shimizu et al.. Int. J. Obes. (Lond), 29:858 (2005).
    • Shipley, Brain Res. Bull., 15:129 (1985).
    • Skipor et al., Reprod. Biol., 3:143 (2003).
    • Steen et al.. J. Alzheimers Dis., 7:63 (2005).
    • Stefanczyk-Krzymowska et al., Exp. Physiol., 85:801 (2000).
    • Takano et al., J. Histochem. Cytochem., 53:611 (2005).
    • Thorne et al., Brain Res., 692:278 (1995).
    • Thorne et al., Clin, Pharmacokinet., 40:907 (2001).
    • Thorne et al., Neuroscience, 127:481 (2004).
    • Thorne et al., Neuroscience, 152:785 (2008).
    • Thorne, R G. 2002. The nasal pathways for drug delivery to the central nervous system: Studies with protein tracers and therapeutics. Doctoral Dissertation, University of Minnesota.
    • Unger et al., J. Neuropath. Exp. Neuro., 52:460 (1993).
    • van den Berg et al., Eur. J. Pharm. Biopharm., 58:131 (2004b).
    • Van den Berg et al., J. Drug Target, 11:325 (2003).
    • van den Berg et al., J. Neurosci. Methods, 116:99 (2002).
    • van den Berg et al., Pharm. Res., 21:799 (2004a).
    • Van Diest et al., J. Anat., 128:293 (1979).
    • Vyas et al., AAPS PharmSciTech., 7:E1 (2006c).
    • Vyas et al., Crit. Rev. Ther. Drug Carrier Syst., 23:319 (2006b).
    • Vyas et al,. J. Druq Target. 13:317 (2005).
    • Vyas et al., J. Pharm. Sci., 95:570 (2006a).
    • Walter et al., Arch. Histol. Cytol., 69:37 (2006a).
    • Walter et al., Neuropathol. AppL Neurobiol., 32:388 (2006b).
    • Wang et al., Cancer Chemother. Pharmacol., 57:97 (2006a).
    • Wang et al., Eur. J. Pharm. Biooharm., 70:735 (2008).
    • Wang et al., Int. J. Pharm., 317:40 (2006b).
    • Wang et al., Int. J. Pharm., 341:20 (2007).
    • Watson et aL, Gene Therapy, 16 Feb. 2006, doi:10.1038/sj.gt.3302735.
    • Weller et al.,Neurol. Res., 25:611 (2003).
    • Westin et al., Eur. J. Pharm. Sci., 24:565 (2005).
    • Westin et al., Pharm. Res., 23:565 (2006).
    • Williams et al., J. Comp. Neurol., 470:50 (2004).
    • Wioland et al., J. Histochem. Cytochem., 48:1215 (2000).
    • Wolf et al., Neurobio. Dis., 43:123 (2011).
    • Xu et al., J. Clin. Invest., 118:272 (2008).
    • Yamada et al., Am. J. Physiol., 261:H1197 (1991).
    • Yang et al., J. Pharm. Sci., 94:1577 (2005).
    • Zhang et al., Acta Neuropathol, (Berl), 83:233 (1992).
    • Zhang et al., Acta Pharmacol, Sin., 25:522 (2004a).
    • Zhang et al.. Int. J. Pharm., 275:85 (2004b).
    • Zhang et al., J. Drug Target, 14:281 (2006).
    • Zhao et ai., Acta Pharmacol. Sin., 28:273 (2007).
    • Zhao et al., Chin. Med. Sci. J., 19:257 (2004).
    • Zheng et al., Mol. Genet. Metab., 79:233 (2003).
    • Ziegler and Shapiro. In J. Donders and S. Hunter (ed.), Cambridge University Press, p. 427 (2007).
  • All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification, this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details herein may be varied considerably without departing from the basic principles of the invention.

Claims (20)

What is claimed is:
1. A method to inhibit or treat one or more symptoms of ceroid lipofuscinosis in a mammal in need thereof, comprising:
administering to a cisterna magna of the mammal in need thereof a composition
comprising an amount of a recombinant adeno-associated virus (rAAV) 9 or rAAVrh10 vector comprising an open reading frame encoding a lysosomal enzyme effective to inhibit or treat the one or more symptoms of ceroid lipofuscinosis.
2. The method of claim 1 wherein the mammal is an immunocompetent adult.
3. The method of claim 1 wherein the mammal is a human.
4. The method of claim 1 wherein neurodegeneration is inhibited or treated by the administration.
5. The method of claim 1 wherein prior to administration of the composition the mammal is immunotolerized to said lysosomal enzyme.
6. The method of claim 1 wherein the amount administered reduces glycosaminoglycans (GAG).
7. The method of claim 1 wherein rAAV9 vector is administered.
8. The method of claim 1 wherein rAAVrh10 vector is administered.
9. A method to inhibit or treat one or more symptoms of ceroid lipofuscinosis in a mammal in need thereof, comprising: administering to the mammal in need thereof an immune suppressant, and to a cisterna magna of the mammal a composition comprising an amount of a rAAV9 or rAAVrh10 vector comprising an open reading frame encoding a lysosomal enzyme effective to inhibit or treat the one or more symptoms of ceroid lipofuscinosis.
10. The method of claim 9 wherein the immune suppressant comprises cyclophosphamide.
11. The method of claim 9 wherein the immune suppressant comprises a glucocorticoid, cytostatic agents including an alkylating agent, an anti-metabolite, a cytotoxic antibiotic, an antibody, or an agent active on immunophilin.
12. The method of claim 9 wherein the immune suppressant comprises a nitrogen mustard, nitrosourea, platinum compound, methotrexate, azathioprine, mercaptopurine, fluorouracil, dactinomycin, an anthracyclin e, mitomycin C, bleomycin, mithramycin, IL-2 receptor-(CD25-) or CD3-directed antibodies, anti-IL-2 antibodies, ciclosporin, tacrolimus, sirolimus, IFN-beta, IFN-gamma, an opioid, or a TNF-alpha (tumor necrosis factor-alpha) binding agent.
13. The method of claim 9 wherein the rAAV vector and the immune suppressant are co-administered or the immune suppressant is administered after the rAAV vector.
14. The method of claim 9 wherein the rAAV vector is a rAAV-9 vector,
15. The method of claim 9 wherein multiple doses of the composition comprising the rAAV9 or rAAVrh10 vector are administered.
16. The method of claim 9 wherein the rAAV vector is rAAVrh10 vector.
17. The method of claim 9 wherein the immune suppressant is administered before the rAAV9 or rAAVrh10 vector.
18. The method of claim 9 wherein the immune suppressant is systemically administered.
19. The method of claim 9 wherein the mammal is a human.
20. The method of claim 9 wherein the amount administered reduces glycosaminoglycans (GAG).
US15/989,405 2013-05-15 2018-05-25 Adeno-associated virus mediated gene transfer to the central nervous system Abandoned US20180271955A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/989,405 US20180271955A1 (en) 2013-05-15 2018-05-25 Adeno-associated virus mediated gene transfer to the central nervous system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361823757P 2013-05-15 2013-05-15
PCT/US2014/038209 WO2014186579A1 (en) 2013-05-15 2014-05-15 Adeno-associated virus mediated gene transfer to the central nervous system
US201514889750A 2015-11-06 2015-11-06
US15/717,450 US20180036388A1 (en) 2013-05-15 2017-09-27 Adeno-associated virus mediated gene transfer to the central nervous system
US15/717,358 US12121567B2 (en) 2013-05-15 2017-09-27 Methods to treat mucopolysaccharidosis type II or deficiency in iduronate-2-sulfatase using a recombinant adeno-associated virus (AAV) vector encoding iduronate-2-sulfatase
US15/989,405 US20180271955A1 (en) 2013-05-15 2018-05-25 Adeno-associated virus mediated gene transfer to the central nervous system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/717,358 Continuation US12121567B2 (en) 2013-05-15 2017-09-27 Methods to treat mucopolysaccharidosis type II or deficiency in iduronate-2-sulfatase using a recombinant adeno-associated virus (AAV) vector encoding iduronate-2-sulfatase

Publications (1)

Publication Number Publication Date
US20180271955A1 true US20180271955A1 (en) 2018-09-27

Family

ID=51898870

Family Applications (11)

Application Number Title Priority Date Filing Date
US14/889,750 Active US9827295B2 (en) 2013-05-15 2014-05-15 Methods to treat mucopolysaccharide type I or deficiency in alpha-L-iduronidase using a recombinant adeno-associated virus encoding alpha-L-iduronidase
US15/717,450 Abandoned US20180036388A1 (en) 2013-05-15 2017-09-27 Adeno-associated virus mediated gene transfer to the central nervous system
US15/717,358 Active US12121567B2 (en) 2013-05-15 2017-09-27 Methods to treat mucopolysaccharidosis type II or deficiency in iduronate-2-sulfatase using a recombinant adeno-associated virus (AAV) vector encoding iduronate-2-sulfatase
US15/987,490 Abandoned US20180264090A1 (en) 2013-05-15 2018-05-23 Adeno-associated virus mediated gene transfer to the central nervous system
US15/989,405 Abandoned US20180271955A1 (en) 2013-05-15 2018-05-25 Adeno-associated virus mediated gene transfer to the central nervous system
US15/995,055 Abandoned US20180271957A1 (en) 2013-05-15 2018-05-31 Methods to treat ceroid lipofuscinosis using a recombinant adeno-associated virus
US15/995,045 Abandoned US20180271956A1 (en) 2013-05-15 2018-05-31 Methods to treat pompe disease using a recombinant adeno-associated virus
US16/438,143 Abandoned US20190298812A1 (en) 2013-05-15 2019-06-11 Adeno-associated virus mediated gene transfer to the central nervous system
US17/118,395 Abandoned US20210085760A1 (en) 2013-05-15 2020-12-10 Adeno-associated virus mediated gene transfer to the central nervous system
US17/118,353 Abandoned US20210085759A1 (en) 2013-05-15 2020-12-10 Methods to treat pompe disease using a recombinant adeno-associated virus
US17/212,516 Abandoned US20210346473A1 (en) 2013-05-15 2021-03-25 Adeno-associated virus mediated gene transfer to the central nervous system

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US14/889,750 Active US9827295B2 (en) 2013-05-15 2014-05-15 Methods to treat mucopolysaccharide type I or deficiency in alpha-L-iduronidase using a recombinant adeno-associated virus encoding alpha-L-iduronidase
US15/717,450 Abandoned US20180036388A1 (en) 2013-05-15 2017-09-27 Adeno-associated virus mediated gene transfer to the central nervous system
US15/717,358 Active US12121567B2 (en) 2013-05-15 2017-09-27 Methods to treat mucopolysaccharidosis type II or deficiency in iduronate-2-sulfatase using a recombinant adeno-associated virus (AAV) vector encoding iduronate-2-sulfatase
US15/987,490 Abandoned US20180264090A1 (en) 2013-05-15 2018-05-23 Adeno-associated virus mediated gene transfer to the central nervous system

Family Applications After (6)

Application Number Title Priority Date Filing Date
US15/995,055 Abandoned US20180271957A1 (en) 2013-05-15 2018-05-31 Methods to treat ceroid lipofuscinosis using a recombinant adeno-associated virus
US15/995,045 Abandoned US20180271956A1 (en) 2013-05-15 2018-05-31 Methods to treat pompe disease using a recombinant adeno-associated virus
US16/438,143 Abandoned US20190298812A1 (en) 2013-05-15 2019-06-11 Adeno-associated virus mediated gene transfer to the central nervous system
US17/118,395 Abandoned US20210085760A1 (en) 2013-05-15 2020-12-10 Adeno-associated virus mediated gene transfer to the central nervous system
US17/118,353 Abandoned US20210085759A1 (en) 2013-05-15 2020-12-10 Methods to treat pompe disease using a recombinant adeno-associated virus
US17/212,516 Abandoned US20210346473A1 (en) 2013-05-15 2021-03-25 Adeno-associated virus mediated gene transfer to the central nervous system

Country Status (13)

Country Link
US (11) US9827295B2 (en)
EP (2) EP3622821A1 (en)
JP (4) JP2016523835A (en)
KR (3) KR20160010526A (en)
CN (3) CN105377039A (en)
AU (3) AU2014265417B2 (en)
BR (1) BR112015028605A8 (en)
CA (2) CA2912678C (en)
HK (2) HK1222093A1 (en)
MX (2) MX2015015560A (en)
RU (1) RU2692251C2 (en)
SG (2) SG11201509419QA (en)
WO (1) WO2014186579A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11253612B2 (en) 2016-04-15 2022-02-22 The Trustees Of The University Of Pennsylvania Gene therapy for treating mucopolysaccharidosis type II
US11819539B2 (en) 2017-09-22 2023-11-21 The Trustees Of The University Of Pennsylvania Gene therapy for treating Mucopolysaccharidosis type II
US12121567B2 (en) 2013-05-15 2024-10-22 Regents Of The University Of Minnesota Methods to treat mucopolysaccharidosis type II or deficiency in iduronate-2-sulfatase using a recombinant adeno-associated virus (AAV) vector encoding iduronate-2-sulfatase

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747998B1 (en) 2013-03-15 2024-07-24 The Trustees of the University of Pennsylvania Compositions for treating mpsi
EP3151866B1 (en) 2014-06-09 2023-03-08 Voyager Therapeutics, Inc. Chimeric capsids
CA2966620A1 (en) 2014-11-05 2016-05-12 Voyager Therapeutics, Inc. Aadc polynucleotides for the treatment of parkinson's disease
CA2967367C (en) 2014-11-14 2023-05-16 Voyager Therapeutics, Inc. Compositions and methods of treating amyotrophic lateral sclerosis (als)
MX2017006217A (en) 2014-11-14 2018-05-02 Voyager Therapeutics Inc Modulatory polynucleotides.
EP3230441A4 (en) 2014-12-12 2018-10-03 Voyager Therapeutics, Inc. Compositions and methods for the production of scaav
WO2016115503A1 (en) * 2015-01-16 2016-07-21 Voyager Therapeutics, Inc. Central nervous system targeting polynucleotides
EP3285788A4 (en) 2015-04-23 2018-12-05 University of Massachusetts Modulation of aav vector transgene expression
GB201508025D0 (en) 2015-05-11 2015-06-24 Ucl Business Plc Fabry disease gene therapy
RU2751952C2 (en) 2015-05-15 2021-07-21 Реджентс Оф Зэ Юниверсити Оф Миннесота Adeno-associated virus vector for therapeutic delivery into the central nervous system
US11027024B2 (en) 2015-05-29 2021-06-08 University Of Iowa Research Foundation Methods of delivery of transgenes for treating brain diseases
CN108601771B (en) * 2015-10-23 2023-02-21 衣阿华大学研究基金会 Methods of treating neurodegenerative diseases using gene therapy to delay disease onset and progression while providing cognitive protection
CN118267490A (en) 2015-11-05 2024-07-02 通用医疗公司 Intrathecal delivery of nucleic acid sequences encoding ABCD1 for the treatment of adrenomyeloneuropathy
JP6930052B2 (en) * 2016-01-15 2021-09-01 サンガモ セラピューティクス, インコーポレイテッド Methods and compositions for the treatment of neurological disorders
SG11201806270XA (en) * 2016-02-03 2018-08-30 Univ Pennsylvania Gene therapy for treating mucopolysaccharidosis type i
JP7231922B2 (en) * 2016-02-22 2023-03-02 ザ ユニヴァーシティー オブ ノース カロライナ アト チャペル ヒル AAV-IDUA vectors for the treatment of MPS-I-associated blindness
US11185555B2 (en) 2016-04-11 2021-11-30 Noah James Harrison Method to kill pathogenic microbes in a patient
US11299751B2 (en) 2016-04-29 2022-04-12 Voyager Therapeutics, Inc. Compositions for the treatment of disease
CA3024448A1 (en) 2016-05-18 2017-11-23 Voyager Therapeutics, Inc. Modulatory polynucleotides
CA3024449A1 (en) 2016-05-18 2017-11-23 Voyager Therapeutics, Inc. Compositions and methods of treating huntington's disease
AU2017313917B2 (en) 2016-08-18 2023-12-21 The Regents Of The University Of California CRISPR-Cas genome engineering via a modular AAV delivery system
EP3831281A1 (en) 2016-08-30 2021-06-09 The Regents of The University of California Methods for biomedical targeting and delivery and devices and systems for practicing the same
AU2017336440B2 (en) 2016-09-28 2022-06-02 Cohbar, Inc. Therapeutic MOTS-c related peptides
BR112019015482A2 (en) * 2017-01-31 2020-03-31 Regenxbio Inc. METHOD FOR TREATING A HUMAN INDIVIDUAL DIAGNOSED WITH MUCOPOLYSACARIDOSIS I (MPS I)
WO2018156892A1 (en) 2017-02-23 2018-08-30 Adrx, Inc. Peptide inhibitors of transcription factor aggregation
CN117821509A (en) 2017-04-03 2024-04-05 编码治疗公司 Tissue-selective transgene expression
IL269892B2 (en) * 2017-04-14 2024-04-01 Regenxbio Inc Treatment of mucopolysaccharidosis ii with recombinant human iduronate-2 sulfatase (ids) produced by human neural or glial cells
SG11201909870SA (en) 2017-05-05 2019-11-28 Voyager Therapeutics Inc Compositions and methods of treating amyotrophic lateral sclerosis (als)
MX2019013172A (en) 2017-05-05 2020-09-07 Voyager Therapeutics Inc Compositions and methods of treating huntington's disease.
CN110997693A (en) 2017-06-07 2020-04-10 阿德克斯公司 Tau aggregation inhibitors
IL271193B1 (en) 2017-06-07 2024-09-01 Regeneron Pharma Compositions and methods for internalizing enzymes
JOP20190269A1 (en) 2017-06-15 2019-11-20 Voyager Therapeutics Inc Aadc polynucleotides for the treatment of parkinson's disease
KR20240063170A (en) 2017-07-06 2024-05-09 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 Aav9-mediated gene therapy for treating mucopolysaccharidosis type i
AU2018302016A1 (en) 2017-07-17 2020-02-06 The Regents Of The University Of California Trajectory array guide system
EP3662060A2 (en) 2017-08-03 2020-06-10 Voyager Therapeutics, Inc. Compositions and methods for delivery of aav
MX2020004005A (en) 2017-10-03 2020-10-05 Prevail Therapeutics Inc Gene therapies for lysosomal disorders.
CN111492061A (en) 2017-10-03 2020-08-04 普利维尔治疗公司 Gene therapy for lysosomal disorders
EP3692075A4 (en) 2017-10-03 2022-02-09 Prevail Therapeutics, Inc. Gene therapies for lysosomal disorders
US20200237799A1 (en) 2017-10-16 2020-07-30 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
TW202413649A (en) 2017-10-16 2024-04-01 美商航海家醫療公司 Treatment of amyotrophic lateral sclerosis (als)
JP7401432B2 (en) 2017-12-01 2023-12-19 エンコーデッド セラピューティクス, インコーポレイテッド engineered DNA binding protein
WO2019132624A1 (en) 2017-12-29 2019-07-04 주식회사 헬릭스미스 Adeno-associated virus (aav) vector having hybrid hgf gene introduced thereto
EP3796980A4 (en) * 2018-05-22 2022-03-23 The Brigham & Women's Hospital, Inc. Gene therapy for alzheimer's disease
JP2022502046A (en) 2018-09-26 2022-01-11 カリフォルニア インスティテュート オブ テクノロジー Adeno-associated virus composition for targeted gene therapy
CA3127336A1 (en) 2019-01-28 2020-08-06 Cohbar, Inc. Therapeutic peptides
EP3952923A4 (en) * 2019-04-10 2023-10-18 Prevail Therapeutics, Inc. Gene therapies for lysosomal disorders
CN114174324A (en) 2019-04-10 2022-03-11 普利维尔治疗公司 Gene therapy for lysosomal disorders
CA3134841A1 (en) * 2019-04-10 2020-10-15 Prevail Therapeutics, Inc. Gene therapies for lysosomal disorders
CN114026115A (en) 2019-04-10 2022-02-08 普利维尔治疗公司 Gene therapy for lysosomal disorders
BR112022011332A2 (en) 2019-12-10 2022-08-23 Takeda Pharmaceuticals Co VECTOR OF RECOMBINANT ADENO-ASSOCIATED VIRUS, RECOMBINANT ADENO-ASSOCIATED VIRUS, AND, METHOD TO TREAT AN INDIVIDUAL WITH HUNTER'S SYNDROME
EP4118219A4 (en) * 2020-03-11 2024-04-17 Shanghai Belief-Delivery Biomed Co., Ltd. Novel use of aspirin compound in increasing nucleic acid expression
JP2023548118A (en) * 2020-10-30 2023-11-15 イミュソフト コーポレーション Method of administering genetically modified B cells for in vivo delivery of therapeutic agents
JP2024505257A (en) 2021-02-01 2024-02-05 レジェンクスバイオ インコーポレーテッド Gene therapy for neuronal ceroid lipofuscinosis
WO2022170082A1 (en) * 2021-02-05 2022-08-11 Regents Of The University Of Minnesota Methods for preventing cardiac or skeletal defects in diseases including mucopolysaccharidoses

Family Cites Families (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US200901A (en) * 1878-03-05 Improvement in machines for compressing and purifying air
JPS5929648A (en) 1982-08-10 1984-02-16 Mitsubishi Chem Ind Ltd Peptide and analgesic agent
US5624898A (en) 1989-12-05 1997-04-29 Ramsey Foundation Method for administering neurologic agents to the brain
DE69031279T2 (en) 1989-12-05 1998-03-19 Ramsey Foundation NEUROLOGICAL ACTIVE SUBSTANCES FOR NASAL ADMINISTRATION TO THE BRAIN
US6407061B1 (en) 1989-12-05 2002-06-18 Chiron Corporation Method for administering insulin-like growth factor to the brain
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
PT733103E (en) 1993-11-09 2004-07-30 Targeted Genetics Corp CREATION OF HIGH RECOMBINANT AAV VECTOR TITLES
DE69433922T2 (en) 1993-11-09 2005-07-28 Medical College Of Ohio, Toledo STABLE CELL LINE THAT IS ABLE TO EXPRESS THE REPLICATION GENE OF THE ADENOASSOCATED VIRUS
WO1996017947A1 (en) 1994-12-06 1996-06-13 Targeted Genetics Corporation Packaging cell lines for generation of high titers of recombinant aav vectors
US5656785A (en) 1995-08-07 1997-08-12 The Charles Stark Draper Laboratory, Inc. Micromechanical contact load force sensor for sensing magnitude and distribution of loads and tool employing micromechanical contact load force sensor
US6190659B1 (en) * 1996-09-17 2001-02-20 The Rockefeller University Bacterial plasmin binding protein and methods of use thereof
ATE355645T1 (en) 1996-11-19 2006-03-15 Surgx Corp PROTECTIVE DEVICE AGAINST TRANSIENT VOLTAGE AND METHOD FOR PRODUCING THE SAME
AU741605B2 (en) 1996-12-18 2001-12-06 Targeted Genetics Corporation AAV split-packaging genes and cell lines comprising such genes for use in the production of recombinant AAV vectors
EP1002078A1 (en) * 1997-07-31 2000-05-24 Chiron Corporation Method enabling readministration of aav vector via immunosuppresion of host
EP1658857A1 (en) * 1997-10-29 2006-05-24 Genzyme Corporation Compositions and methods for treating lysosomal storage disease
CA2329259C (en) 1998-05-27 2003-08-05 Avigen, Inc. Convection-enhanced delivery of aav vectors
US7273618B2 (en) 1998-12-09 2007-09-25 Chiron Corporation Method for administering agents to the central nervous system
JP2002531489A (en) 1998-12-09 2002-09-24 カイロン コーポレイション Administration of neurotrophic drugs to the central nervous system
JP2002531490A (en) 1998-12-09 2002-09-24 カイロン コーポレイション Methods for administering drugs to the central nervous system
US20050032841A1 (en) * 1999-04-20 2005-02-10 Steven Walkley Therapeutic compositions and methods of treating glycolipid storage related disorders
US6585971B1 (en) 1999-11-12 2003-07-01 Harbor-Ucla Research And Education Institute Recombinant α-L-iduronidase, methods for producing and purifying the same and methods for treating disease caused by deficiencies thereof
US6569661B1 (en) 1999-11-12 2003-05-27 Biomarin Pharmaceutical Inc. Recombinant α-L-iduronidase, methods for producing and purifying the same and methods for treating diseases caused by deficiencies thereof
AU1775901A (en) * 1999-11-17 2001-05-30 Avigen, Inc. Recombinant adeno-associated virus virions for the treatment of lysosomal disorders
AU783208B2 (en) 1999-12-09 2005-10-06 Novartis Vaccines And Diagnostics, Inc. Method for administering a cytokine to the central nervous system and the lymphatic system
US7084126B1 (en) 2000-05-01 2006-08-01 Healthpartners Research Foundation Methods and compositions for enhancing cellular function through protection of tissue components
US20040204379A1 (en) * 2000-06-19 2004-10-14 Cheng Seng H. Combination enzyme replacement, gene therapy and small molecule therapy for lysosomal storage diseases
ES2700865T3 (en) 2000-07-18 2019-02-19 Univ Duke Treatment of type II glycogenosis
US20020014242A1 (en) 2000-07-31 2002-02-07 Abraham Scaria Use of rapamycin to inhibit immune response and induce tolerance to gene therapy vector and encoded transgene products
WO2002032449A2 (en) 2000-10-13 2002-04-25 Chiron Corporation Method for treating ischemic events affecting the central nervous system
US20020169102A1 (en) 2001-04-03 2002-11-14 Frey William H. Intranasal delivery of agents for regulating development of implanted cells in the CNS
WO2002086105A1 (en) 2001-04-20 2002-10-31 Chiron Corporation Delivery of polynucleotide agents to the central nervous sysstem
WO2003072056A2 (en) 2002-02-25 2003-09-04 Chiron Corporation Intranasal administration of mc4-r agonists
US7485314B2 (en) 2002-05-06 2009-02-03 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Induction of antigen specific immunologic tolerance
AU2003302724A1 (en) * 2002-08-13 2004-07-09 Mcivor, Scott, R. Methods of using vectors to treat metabolic disorders
WO2004028468A2 (en) 2002-09-27 2004-04-08 Children's Medical Center Corporation Methods and compositions for treatment of neurological disorder
US8512710B2 (en) 2002-11-22 2013-08-20 Ansun Biopharma, Inc. Class of therapeutic protein based molecules
US7446098B2 (en) * 2003-02-18 2008-11-04 Mount Sinai School Of Medicine Of New York University Combination therapy for treating protein deficiencies
CA2500523A1 (en) 2003-05-01 2004-11-18 University Of Florida Research Foundation, Inc. Vp2-modified raav vector compositions and uses therefor
US20050026823A1 (en) 2003-06-20 2005-02-03 Biomarin Pharmaceutical Inc. Use of the chaperone receptor-associated protein (RAP) for the delivery of therapeutic compounds to the brain and other tissues
US7442372B2 (en) * 2003-08-29 2008-10-28 Biomarin Pharmaceutical Inc. Delivery of therapeutic compounds to the brain and other tissues
WO2005062881A2 (en) * 2003-12-24 2005-07-14 Transgenrx, Inc. Gene therapy using transposon-based vectors
US7776312B2 (en) 2004-08-13 2010-08-17 Healthpartners Research Foundation Method of treating Alzheimer's disease comprising administering deferoxamine (DFO) to the upper one-third of the nasal cavity
US7618615B2 (en) 2004-08-13 2009-11-17 Healthpartners Research Foundation Methods for providing neuroprotection for the animal central nervous system against neurodegeneration caused by ischemia
CN101184499B (en) 2005-02-23 2012-03-28 阿尔扎公司 Intranasal administration of active agents to the central nervous system
US20090136505A1 (en) 2005-02-23 2009-05-28 Johanna Bentz Intranasal Administration of Active Agents to the Central Nervous System
CA2620202C (en) 2005-08-26 2016-10-04 The Board Of Trustees Of The Leland Stanford Junior University Therapy procedure for drug delivery for trigeminal pain
DK1986661T3 (en) * 2006-02-08 2019-01-02 Genzyme Corp GENTERAPY AGAINST NIEMANN-PICK'S DISEASE TYPE A
US20100221235A1 (en) * 2006-02-08 2010-09-02 Diatos Compositions and Methods for Treating Lysosomal Storage Diseases
HUE040490T2 (en) 2006-02-09 2019-03-28 Genzyme Corp Slow intraventricular delivery
WO2007127163A2 (en) 2006-04-24 2007-11-08 Geron Corporation Cns-tumor treatment method and composition
EP1915986A1 (en) 2006-10-23 2008-04-30 BIOPHARM GESELLSCHAFT ZUR BIOTECHNOLOGISCHEN ENTWICKLUNG VON PHARMAKA mbH Lipid growth factor formulations
EP2132309A4 (en) 2007-02-23 2011-01-05 Univ Florida Compositions and methods for treating glycogen storage diseases
US20120322861A1 (en) 2007-02-23 2012-12-20 Barry John Byrne Compositions and Methods for Treating Diseases
PT2158322T (en) * 2007-06-06 2017-08-09 Genzyme Corp Gene therapy for lysosomal storage diseases
WO2008154337A1 (en) 2007-06-08 2008-12-18 Healthpartners Research Foundation Pharmaceutical compositions and methods for enhancing targeting of therapeutic compounds to the central nervous system
US8283160B2 (en) 2007-09-11 2012-10-09 Frey Ii William H Methods, pharmaceutical compositions and articles of manufacture for administering therapeutic cells to the animal central nervous system
EP2058401A1 (en) * 2007-10-05 2009-05-13 Genethon Widespread gene delivery to motor neurons using peripheral injection of AAV vectors
WO2009075815A1 (en) 2007-12-07 2009-06-18 Duke University Immunomodulating gene therapy
WO2009097129A1 (en) 2008-01-29 2009-08-06 Applied Genetic Technologies Corporation Recombinant virus production using mammalian cells in suspension
WO2009120978A2 (en) * 2008-03-27 2009-10-01 The Ohio State University Treatment of metabolic-related disorders using hypothalamic gene transfer of bdnf and compositions therfor
WO2009137006A2 (en) 2008-04-30 2009-11-12 The University Of North Carolina At Chapel Hill Directed evolution and in vivo panning of virus vectors
US11219696B2 (en) * 2008-12-19 2022-01-11 Nationwide Children's Hospital Delivery of polynucleotides using recombinant AAV9
US9415121B2 (en) * 2008-12-19 2016-08-16 Nationwide Children's Hospital Delivery of MECP2 polynucleotide using recombinant AAV9
WO2010071832A1 (en) * 2008-12-19 2010-06-24 Nationwide Children's Hospital Delivery of polynucleotides across the blood brain barrier using recombinant aav9
US7989502B2 (en) 2009-02-06 2011-08-02 Sri International Intranasal delivery of modafinil
WO2010093784A2 (en) * 2009-02-11 2010-08-19 The University Of North Carolina At Chapel Hill Modified virus vectors and methods of making and using the same
WO2010138263A2 (en) 2009-05-28 2010-12-02 University Of Massachusetts Novel aav 's and uses thereof
US20110070241A1 (en) * 2009-06-30 2011-03-24 Duke University Methods for modulating immune responses to aav gene therapy vectors
US8622993B2 (en) 2009-12-18 2014-01-07 Healthpartners Research Foundation Device and method for delivering therapeutic substances to the maxillary sinus of a patient
CA3066596A1 (en) * 2010-04-23 2011-10-27 University Of Massachusetts Cns targeting aav vectors and methods of use thereof
EP2394667A1 (en) * 2010-06-10 2011-12-14 Laboratorios Del Dr. Esteve, S.A. Vectors and sequences for the treatment of diseases
MX2020001395A (en) * 2010-06-25 2022-03-24 Shire Human Genetic Therapies Methods and compositions for cns delivery of iduronate-2-sulfatas e.
KR102663407B1 (en) * 2010-06-25 2024-05-10 샤이어 휴먼 지네틱 테라피즈 인크. CNS delivery of therapeutic agents
CN103282046B (en) * 2010-06-25 2015-05-13 夏尔人类遗传性治疗公司 Methods and compositions for CNS delivery of arylsulfatase A
CA2805413A1 (en) * 2010-06-25 2011-12-29 Shire Human Genetic Therapies, Inc. Methods and compositions for cns delivery of heparan n-sulfatase
PT2593131T (en) * 2010-06-25 2019-10-30 Shire Human Genetic Therapies Methods and compositions for cns delivery of iduronate-2-sulfatase
AR082319A1 (en) * 2010-07-22 2012-11-28 Biomarin Pharm Inc PRODUCTION OF A HIGHLY ACTIVE PHOSPHORILED HUMAN N-ACETILGALACTOSAMINE-6-SULPHATASE AND ITS USES
EP4234571A3 (en) 2011-02-10 2023-09-27 The University of North Carolina at Chapel Hill Viral vectors with modified transduction profiles and methods of making and using the same
CA2832151C (en) 2011-03-31 2021-06-15 University Of Iowa Research Foundation Methods and compositions for treating brain diseases
US10196636B2 (en) * 2011-04-21 2019-02-05 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of myotilin
WO2012145597A2 (en) * 2011-04-21 2012-10-26 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of myotilin
US8609088B2 (en) * 2011-05-10 2013-12-17 Regents Of The University Of Minnesota Intranasal delivery of therapeutic enzymes to the central nervous system for the treatment of lysosomal storage diseases
WO2012159052A2 (en) * 2011-05-18 2012-11-22 Children's Hospital Medical Center Targeted delivery of proteins across the blood brain barrier
US20130039888A1 (en) * 2011-06-08 2013-02-14 Nationwide Children's Hospital Inc. Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders
US9387236B2 (en) 2011-06-10 2016-07-12 Prothera Inc. Pharmaceutical compositions containing protease and methods for the treatment of lysosomal storage diseases
EP2736539B1 (en) * 2011-07-25 2017-08-23 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of dux4
US9579366B2 (en) * 2011-10-12 2017-02-28 Alexion Pharmaceuticals, Inc. Recombinant human NaGlu protein and uses thereof
US9821149B2 (en) 2011-10-14 2017-11-21 Healthpartners Research & Education Methods for using ultrasound for enhancing efficiency and targeting of intranasal administration of therapeutic compounds to the central nervous system
EP2771457B1 (en) 2011-10-27 2017-11-22 Sangamo Therapeutics, Inc. Methods and compositions for modification of the hprt locus
ES2983576T3 (en) * 2011-12-02 2024-10-23 Armagen Inc Methods and compositions for increasing arylsulfatase activity in the CNS
KR102063195B1 (en) 2012-02-07 2020-01-07 글로벌 바이오 테라퓨틱스, 인크. Compartmentalized Method of Nucleic Acid Delivery and Compositions and Uses Thereof
PT3292875T (en) 2012-06-19 2020-08-31 Univ Florida Compositions and methods for treating diseases
EP2864488A1 (en) * 2012-06-21 2015-04-29 Association Institut de Myologie Widespread gene delivery of gene therapy vectors
CA3086754C (en) 2012-08-01 2023-06-13 Nationwide Children's Hospital Recombinant adeno-associated virus 9
US12024568B2 (en) * 2012-09-13 2024-07-02 Cornell University Treatment of brain cancers using central nervous system mediated gene transfer of monoclonal antibodies
AR093626A1 (en) 2012-11-27 2015-06-17 Biomarin Pharm Inc FUSION PROTEINS OF LISOSOMAL ENZYME AND USES OF THE SAME
CA3201710A1 (en) * 2013-04-20 2014-10-23 Research Institute At Nationwide Children's Hospital Recombinant adeno-associated virus delivery of exon 2-targeted u7snrna polynucleotide constructs
CA2911105A1 (en) 2013-05-01 2014-11-06 Genzyme Corporation Compositions and methods for treating spinal muscular atrophy
CA2912678C (en) * 2013-05-15 2023-10-10 Regents Of The University Of Minnesota Adeno-associated virus mediated gene transfer to the central nervous system
MX2016001026A (en) 2013-07-26 2016-08-03 Univ Iowa Res Found Methods and compositions for treating brain diseases.
WO2015021443A1 (en) 2013-08-08 2015-02-12 Global Bio Therapeutics Usa, Inc. Clamp device for minimally invasive procedures and uses thereof
US20160272976A1 (en) * 2013-08-27 2016-09-22 Research Institute Ata Nationwide Children's Hospital Products and methods for treatment of familial amyotrophic lateral sclerosis
EP3060669A1 (en) * 2013-10-24 2016-08-31 uniQure IP B.V. Aav-5 pseudotyped vector for gene therapy for neurological diseases
EP3134113A4 (en) 2014-04-25 2017-11-29 University of Florida Research Foundation, Inc. Methods of permitting a subject to receive multiple doses of recombinant adeno-associated virus
EA034355B1 (en) * 2014-05-02 2020-01-30 Джензим Корпорейшн Aav vectors for retinal and cns gene therapy
WO2015196150A2 (en) 2014-06-20 2015-12-23 Wisconsin Alumni Research Foundation (Warf) Mutations that confer genetic stability to additional genes in influenza viruses
US10370432B2 (en) 2014-10-03 2019-08-06 University Of Massachusetts Heterologous targeting peptide grafted AAVS
CN107249646B (en) 2014-12-16 2021-06-29 内布拉斯加大学董事会 Gene therapy for juvenile batten disease
US10538589B2 (en) 2015-01-14 2020-01-21 Armagen Inc. Methods and compositions for increasing N-acetylglucosaminidase (NAGLU) activity in the CNS using a fusion antibody comprising an anti-human insulin receptor antibody and NAGLU
RU2751952C2 (en) 2015-05-15 2021-07-21 Реджентс Оф Зэ Юниверсити Оф Миннесота Adeno-associated virus vector for therapeutic delivery into the central nervous system
CN108472314A (en) 2015-07-31 2018-08-31 明尼苏达大学董事会 The cell and therapy of modification
SG11201806270XA (en) 2016-02-03 2018-08-30 Univ Pennsylvania Gene therapy for treating mucopolysaccharidosis type i
IL300254A (en) 2016-02-05 2023-03-01 Univ Emory Administration of single stranded or self-complementary adeno-associated virus 9 by injection into the cerebrospinal fluid to target gene therapy to the central nervous system
JP7059285B2 (en) * 2016-09-30 2022-04-25 エステベ プアルマセウティカルス, エッセ.ア. Adeno-associated virus vector for the treatment of mucopolysaccharidosis
EP3541946A1 (en) 2016-11-15 2019-09-25 Regents Of The University Of Minnesota Method for improving neurological function in mpsi and mpsii and other neurological disorders
WO2018136435A1 (en) * 2017-01-17 2018-07-26 Children's Medical Center Corporation Compositions and methods for treating lysosomal storage diseases and disorders
AU2018265531B2 (en) 2017-05-11 2024-07-11 The Trustees Of The University Of Pennsylvania Gene therapy for neuronal ceroid lipofuscinoses
KR20240063170A (en) 2017-07-06 2024-05-09 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 Aav9-mediated gene therapy for treating mucopolysaccharidosis type i
WO2022170082A1 (en) 2021-02-05 2022-08-11 Regents Of The University Of Minnesota Methods for preventing cardiac or skeletal defects in diseases including mucopolysaccharidoses
AU2022258447A1 (en) * 2021-04-13 2023-10-12 Capsida, Inc. Aav compositions having high expression levels in brain

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12121567B2 (en) 2013-05-15 2024-10-22 Regents Of The University Of Minnesota Methods to treat mucopolysaccharidosis type II or deficiency in iduronate-2-sulfatase using a recombinant adeno-associated virus (AAV) vector encoding iduronate-2-sulfatase
US11253612B2 (en) 2016-04-15 2022-02-22 The Trustees Of The University Of Pennsylvania Gene therapy for treating mucopolysaccharidosis type II
US11819539B2 (en) 2017-09-22 2023-11-21 The Trustees Of The University Of Pennsylvania Gene therapy for treating Mucopolysaccharidosis type II

Also Published As

Publication number Publication date
WO2014186579A1 (en) 2014-11-20
BR112015028605A8 (en) 2019-12-24
US20210085760A1 (en) 2021-03-25
US20210346473A1 (en) 2021-11-11
EP2996475A4 (en) 2017-01-11
KR20240093939A (en) 2024-06-24
US20180271956A1 (en) 2018-09-27
US20180099030A1 (en) 2018-04-12
EP3622821A1 (en) 2020-03-18
US20180036388A1 (en) 2018-02-08
JP2023089201A (en) 2023-06-27
CN105377039A (en) 2016-03-02
US9827295B2 (en) 2017-11-28
HK1222093A1 (en) 2017-06-23
CA2912678C (en) 2023-10-10
JP2016523835A (en) 2016-08-12
RU2692251C2 (en) 2019-06-24
MX2015015560A (en) 2016-06-17
JP2022065134A (en) 2022-04-26
US20190298812A1 (en) 2019-10-03
AU2018253615A1 (en) 2018-11-22
AU2014265417B2 (en) 2018-07-26
AU2014265417A1 (en) 2015-12-03
US20160120960A1 (en) 2016-05-05
EP2996475A1 (en) 2016-03-23
KR20220119187A (en) 2022-08-26
US12121567B2 (en) 2024-10-22
CN115120745A (en) 2022-09-30
US20210085759A1 (en) 2021-03-25
AU2021200982A1 (en) 2021-03-11
SG11201509419QA (en) 2015-12-30
US20180271957A1 (en) 2018-09-27
CA2912678A1 (en) 2014-11-20
RU2015152546A (en) 2017-06-20
CA3209821A1 (en) 2014-11-20
SG10201710448SA (en) 2018-01-30
MX2021009634A (en) 2021-09-08
JP2020073559A (en) 2020-05-14
HK1222767A1 (en) 2017-07-14
US20180264090A1 (en) 2018-09-20
BR112015028605A2 (en) 2017-07-25
CN115120746A (en) 2022-09-30
KR20160010526A (en) 2016-01-27

Similar Documents

Publication Publication Date Title
US20210346473A1 (en) Adeno-associated virus mediated gene transfer to the central nervous system
US20230226225A1 (en) Adeno-associated virus for therapeutic delivery to central nervous system
RU2801511C1 (en) Adeno-associated virus-mediated gene transfer into the central nervous system
RU2804953C2 (en) Vector based on adeno-associated virus for therapeutic delivery to central nervous system

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF MINNESOTA, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCIVOR, R. SCOTT;BELUR, LALITHA R.;LOW, WALTER;AND OTHERS;SIGNING DATES FROM 20160302 TO 20170918;REEL/FRAME:046639/0468

Owner name: REGENXBIO INC., MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOZARSKY, KAREN, PH.D;REEL/FRAME:046639/0778

Effective date: 20170914

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MINNESOTA;REEL/FRAME:047570/0858

Effective date: 20180723

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION