US20180223225A1 - Laundry detergent sheet with microcapsules - Google Patents
Laundry detergent sheet with microcapsules Download PDFInfo
- Publication number
- US20180223225A1 US20180223225A1 US15/888,115 US201815888115A US2018223225A1 US 20180223225 A1 US20180223225 A1 US 20180223225A1 US 201815888115 A US201815888115 A US 201815888115A US 2018223225 A1 US2018223225 A1 US 2018223225A1
- Authority
- US
- United States
- Prior art keywords
- laundry detergent
- detergent sheet
- microcapsule
- fibrous laundry
- fibrous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 142
- 239000003094 microcapsule Substances 0.000 title claims abstract description 126
- 239000002002 slurry Substances 0.000 claims description 85
- 239000004094 surface-active agent Substances 0.000 claims description 65
- -1 polyethylenes Polymers 0.000 claims description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 43
- 150000008051 alkyl sulfates Chemical class 0.000 claims description 42
- 239000002304 perfume Substances 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 20
- 239000003945 anionic surfactant Substances 0.000 claims description 19
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 18
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 18
- 239000002736 nonionic surfactant Substances 0.000 claims description 17
- 229920001223 polyethylene glycol Polymers 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 235000019441 ethanol Nutrition 0.000 claims description 15
- 239000002243 precursor Substances 0.000 claims description 15
- 239000001913 cellulose Substances 0.000 claims description 10
- 229920002678 cellulose Polymers 0.000 claims description 10
- 238000004049 embossing Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- 150000001412 amines Chemical class 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 9
- 150000001298 alcohols Chemical class 0.000 claims description 8
- 235000010980 cellulose Nutrition 0.000 claims description 8
- 239000004368 Modified starch Substances 0.000 claims description 7
- 229920000881 Modified starch Polymers 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 7
- 235000019426 modified starch Nutrition 0.000 claims description 7
- 229920000058 polyacrylate Polymers 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 229920006317 cationic polymer Polymers 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- 229920003169 water-soluble polymer Polymers 0.000 claims description 5
- 229920002472 Starch Polymers 0.000 claims description 4
- 229920003180 amino resin Polymers 0.000 claims description 4
- YIOJGTBNHQAVBO-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)azanium Chemical compound C=CC[N+](C)(C)CC=C YIOJGTBNHQAVBO-UHFFFAOYSA-N 0.000 claims description 4
- 150000004676 glycans Chemical class 0.000 claims description 4
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 4
- 229920001282 polysaccharide Polymers 0.000 claims description 4
- 239000005017 polysaccharide Substances 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 4
- 239000008107 starch Substances 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001195 polyisoprene Polymers 0.000 claims description 3
- 229920000193 polymethacrylate Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 claims description 2
- 150000003926 acrylamides Chemical class 0.000 claims description 2
- 150000002460 imidazoles Chemical class 0.000 claims description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 claims description 2
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 58
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 19
- 239000004372 Polyvinyl alcohol Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 239000004744 fabric Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000011257 shell material Substances 0.000 description 9
- 239000005977 Ethylene Substances 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical class NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 229920000877 Melamine resin Polymers 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 239000007844 bleaching agent Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Substances OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 239000004281 calcium formate Substances 0.000 description 4
- 235000019255 calcium formate Nutrition 0.000 description 4
- 229940044172 calcium formate Drugs 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 159000000003 magnesium salts Chemical class 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 239000006057 Non-nutritive feed additive Substances 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 235000013877 carbamide Nutrition 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 238000007046 ethoxylation reaction Methods 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000002516 radical scavenger Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- QJRVOJKLQNSNDB-UHFFFAOYSA-N 4-dodecan-3-ylbenzenesulfonic acid Chemical compound CCCCCCCCCC(CC)C1=CC=C(S(O)(=O)=O)C=C1 QJRVOJKLQNSNDB-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 108700020962 Peroxidase Proteins 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 229920002396 Polyurea Polymers 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical compound NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001408 amides Chemical group 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 229920006318 anionic polymer Polymers 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000003006 anti-agglomeration agent Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000005923 long-lasting effect Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920001281 polyalkylene Polymers 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Substances CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000015227 regulation of liquid surface tension Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- ILAPVZVYHKSGFM-UHFFFAOYSA-N 1-(carboxymethoxy)ethane-1,1,2-tricarboxylic acid Chemical class OC(=O)COC(C(O)=O)(C(O)=O)CC(O)=O ILAPVZVYHKSGFM-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- GOKVKLCCWGRQJV-UHFFFAOYSA-N 2-[6-(decanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O GOKVKLCCWGRQJV-UHFFFAOYSA-N 0.000 description 1
- ISBYGXCCBJIBCG-UHFFFAOYSA-N 2-[6-(nonanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O ISBYGXCCBJIBCG-UHFFFAOYSA-N 0.000 description 1
- JKZLOWDYIRTRJZ-UHFFFAOYSA-N 2-[6-(octanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O JKZLOWDYIRTRJZ-UHFFFAOYSA-N 0.000 description 1
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- KOEDSBONUVRKAF-UHFFFAOYSA-N 4-(nonylamino)-4-oxobutaneperoxoic acid Chemical compound CCCCCCCCCNC(=O)CCC(=O)OO KOEDSBONUVRKAF-UHFFFAOYSA-N 0.000 description 1
- AVLQNPBLHZMWFC-UHFFFAOYSA-N 6-(nonylamino)-6-oxohexaneperoxoic acid Chemical compound CCCCCCCCCNC(=O)CCCCC(=O)OO AVLQNPBLHZMWFC-UHFFFAOYSA-N 0.000 description 1
- JHRDMNILWGIFBI-UHFFFAOYSA-N 6-diazenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(N=N)=N1 JHRDMNILWGIFBI-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 244000186892 Aloe vera Species 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 229910011255 B2O3 Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- MMOXZBCLCQITDF-UHFFFAOYSA-N N,N-diethyl-m-toluamide Chemical compound CCN(CC)C(=O)C1=CC=CC(C)=C1 MMOXZBCLCQITDF-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- BCXBKOQDEOJNRH-UHFFFAOYSA-N NOP(O)=O Chemical class NOP(O)=O BCXBKOQDEOJNRH-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 229920002266 Pluriol® Polymers 0.000 description 1
- 229920002065 Pluronic® P 105 Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PZKRHHZKOQZHIO-UHFFFAOYSA-N [B].[B].[Mg] Chemical compound [B].[B].[Mg] PZKRHHZKOQZHIO-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000003118 aryl group Chemical class 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002752 cationic softener Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- PBGVINUJNVKNBY-UHFFFAOYSA-J dicalcium;tetraacetate Chemical compound [Ca+2].[Ca+2].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O PBGVINUJNVKNBY-UHFFFAOYSA-J 0.000 description 1
- 229960001673 diethyltoluamide Drugs 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- JHUXOSATQXGREM-UHFFFAOYSA-N dodecanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCCCC(=O)OO JHUXOSATQXGREM-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- VPVSTMAPERLKKM-UHFFFAOYSA-N glycoluril Chemical compound N1C(=O)NC2NC(=O)NC21 VPVSTMAPERLKKM-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 238000010412 laundry washing Methods 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 229960002337 magnesium chloride Drugs 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- FODOUIXGKGNSMR-UHFFFAOYSA-L magnesium;2-oxidooxycarbonylbenzoate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-]OC(=O)C1=CC=CC=C1C([O-])=O FODOUIXGKGNSMR-UHFFFAOYSA-L 0.000 description 1
- GMDNUWQNDQDBNQ-UHFFFAOYSA-L magnesium;diformate Chemical compound [Mg+2].[O-]C=O.[O-]C=O GMDNUWQNDQDBNQ-UHFFFAOYSA-L 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- UHGIMQLJWRAPLT-UHFFFAOYSA-N octadecyl dihydrogen phosphate Chemical class CCCCCCCCCCCCCCCCCCOP(O)(O)=O UHGIMQLJWRAPLT-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229950005308 oxymethurea Drugs 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical class OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920000162 poly(ureaurethane) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- MSLRPWGRFCKNIZ-UHFFFAOYSA-J tetrasodium;hydrogen peroxide;dicarbonate Chemical compound [Na+].[Na+].[Na+].[Na+].OO.OO.OO.[O-]C([O-])=O.[O-]C([O-])=O MSLRPWGRFCKNIZ-UHFFFAOYSA-J 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical class N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/37—Mixtures of compounds all of which are anionic
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/042—Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
- C11D17/044—Solid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3707—Polyethers, e.g. polyalkyleneoxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3753—Polyvinylalcohol; Ethers or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
- C11D1/24—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds containing ester or ether groups directly attached to the nucleus
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
Definitions
- the present invention is directed to non-fibrous laundry detergent sheets having microcapsules that can help clean laundry and impart freshness to the laundry.
- Non-fibrous laundry sheets are suitable for cleaning fabrics, but currently marketed sheets fall short in fulfilling this consumer need.
- volatile scent characters such as fruity, citrus, green, lighter florals, and the like on their fabrics.
- the issue is that the perfume ingredients that are needed to produce these character types do not readily deposit onto clothing during laundering (i.e., fabric cleaning) or because they can be lost during the drying process given, inter alia, high temperatures.
- Non-fibrous laundry sheets are a convenient vehicle for delivering freshness (via perfume) onto consumers' clothing.
- Long-lasting freshness e.g., scent that lasts for several days
- One suitable way includes the use of friable perfume microcapsules.
- friable perfume microcapsules verses moisture activated microcapsules (e.g., cyclodextrin)
- traditional manufacturing approaches of making non-fibrous laundry sheets likely lead to pre-mature rupturing of the microcapsule thereby providing unacceptable yields in the manufacture of these sheets.
- the present invention is based on the surprising discovery that friable microcapsules can be more effectively incorporated into non-fibrous laundry detergent sheets after the sheet is formed during the manufacturing process. In other words by dispensing the friable microcapsules to the sheet later in the manufacturing process, as opposed to being incorporating in the original starting materials, a better yield of friable microcapsules can be obtain in the final product.
- One advantage of the present invention is better incorporation of perfume into onto the non-fibrous laundry detergent sheets by use of friable perfume microcapsules.
- Another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user smelling desirable volatile scent characters.
- Yet still another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user having long-lasting freshness imparted to their clothing.
- Yet still another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user experience a pleasant burst of freshness upon normal everyday physical movements such as taking off a jacket; pulling a shirt over your head; or taking off/putting on socks.
- One aspect of the invention provides a non-fibrous laundry detergent sheet comprising: (a) at least one surfactant; (b) at least one film former; and (c) a friable microcapsule; wherein said laundry detergent sheet has a thickness ranging from 0.1 mm to 2 mm, a length-to-thickness aspect ratio of at least 5:1, and a width-to-thickness aspect ratio of at least 5:1.
- Another aspect of the invention provides for a method of making a non-fibrous laundry detergent sheet comprising the step of dispensing a microcapsule to a precursor non-fibrous laundry detergent sheet, wherein the precursor non-fibrous laundry detergent sheet comprising (a) at least one surfactant; (b) at least one film former; and (c) a thickness ranging from 0.1 mm to 2 mm.
- FIG. 1 is a cylinder laundry detergent sheet production system suitable for making a non-fibrous laundry detergent sheet comprising a friable microcapsule of the present invention
- FIG. 2 is a heated rotatable cylinder of the system of FIG. 1 ;
- FIG. 3 is a feeding mechanism of the system of FIG. 1 ;
- FIG. 4 is a slicing device of system of FIG. 1 ;
- FIG. 5 is a microcapsule slurry tank device of the system of FIG. 1 .
- water-soluble refers to a solubility of more than about 30 grams per liter (g/L) of deionized water measured at 20° C. and under the atmospheric pressure.
- substantially water-soluble refers to a solubility of more than about 25 grams per liter (g/L) of deionized water measured at 20° C. and under the atmospheric pressure.
- the term “sheet” refers to a three-dimensional shape having a thickness, a length, and a width, while the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 5:1, and the length-to-width aspect ratio is at least about 1:1.
- the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 10:1, and the length-to-width aspect ratio is at least about 1.2:1. More preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 15:1, and the length-to-width aspect ratio is at least about 1.5:1.
- the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 20:1, and the length-to-width aspect ratio is at least about 1.618:1.
- non-fibrous refers to a structure that is free of or substantially free of fibrous elements.
- Fibrous element as used herein means elongated particulate having a length greatly exceeding its average diameter, i.e., a length-to-average-diameter aspect ratio of at least 10:1, and an average diameter of no more than 1 mm.
- laundry detergent refers to all-purpose or “heavy-duty” washing agents, especially cleaning detergents, for fabrics, as well as cleaning auxiliaries such as bleach, rinse aids, additives, or pre-treat types.
- Water Dissolvability refers to the ability of a sample material to dissolve in water within a specific time period at 20° C. and under the atmospheric pressure without any stirring. This parameter is measured by placing 10 grams of the sample material in 1 liter of deionized water at 20° C. and under the atmospheric pressure for one (1) minute without any stirring. The remaining undissolved solids then are filtered out from the solution and immediately weighed (without drying). The Water Dissolvability is calculated as
- the terms “consisting essentially of” means that the composition contains no ingredient that will interfere with benefits or functions of those ingredients that are explicitly disclosed. Further, the terms “essentially free of,” “substantially free of” or “substantially free from” means that the indicated material is present in the amount of from 0 wt % to about 1 wt %, or preferably from 0 wt % to about 0.5 wt %, or more preferably from 0 wt % to about 0.1 wt %, and most preferably it is not present at analytically detectable levels.
- substantially pure or “essentially pure” means that the indicated material is present in the amount of from about 99.5 wt % to about 100 wt %, preferably from about 99.9 wt % to about 100 wt %, and more preferably from 99.99 wt % to about 100 wt %, and most preferably all other materials are present only as impurities below analytically detectable levels.
- the laundry detergent sheet of the present invention is non-fibrous, i.e., it is free of or substantially free of fibrous elements.
- a laundry detergent sheet can be formed by first providing a slurry containing raw materials dissolved or dispersed in water, and then shaping the slurry into a sheet-like form. Drying is carried out either simultaneously with the shaping step, or it can be carried out subsequently, to remove water and form a finished sheet with little or no moisture content (e.g., less than 3 wt % water).
- the laundry detergent sheet of the present invention is completely or substantially water-soluble. In other words, it does not contain a water-insoluble substrate, as some of the conventional laundry detergent sheets do.
- the laundry detergent sheet of the present invention has a Water Dissolvability of at least 90%, preferably at least 95%, and more preferably at least 98%, and most preferably at least 99%.
- the entire laundry detergent sheet of the present invention can be completely dissolved in a liter of deionized water, i.e., leaving no visible residue in the solution, within 15 seconds, more preferably within 10 seconds, and more preferably within 5 seconds, at 20° C. under atmospheric pressure and without any stirring.
- the laundry detergent sheet of the present invention can have any shape or size, as long as its thickness, its length, and its width are characterized by a length-to-thickness aspect ratio of at least about 5:1, a width-to-thickness aspect ratio of at least about 5:1, and a length-to-width aspect ratio of at least about 1:1.
- the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 10:1, and the length-to-width aspect ratio is at least about 1.2:1. More preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 15:1, and the length-to-width aspect ratio is at least about 1.5:1.
- the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 20:1, and the length-to-width aspect ratio is at least about 1.618:1.
- the thickness of the laundry detergent sheet of the present invention may range from about 0.1 mm to about 10 cm, preferably from about 0.2 mm to about 5 mm, more preferably from about 0.3 mm to about 4 mm, and most preferably from about 0.5 mm to about 2 mm.
- the width of the laundry detergent sheet may range from about 2 cm to about 1 meter, preferably from about 5 cm to about 50 cm, more preferably from about 10 cm to about 40 cm.
- the length of the laundry detergent sheet may range from about 2 cm to about 50 meters, preferably from about 5 cm to about 1 meter, and more preferably from about 10 cm to about 80 cm.
- the laundry detergent sheet has a golden rectangular shape (i.e., with a length-to-width aspect ratio of about 1.618:1), and it is characterized by a width of about 10-15 cm and a thickness of about 0.5 mm to about 2 mm.
- a golden rectangular shape is aesthetically pleasing and beloved to the consumers, so multiple sheets of such shape can be stacked up and packaged together for sale in a container that is also characterized by a similar golden rectangular shape.
- the laundry detergent sheet has an elongated shape (i.e., with a length-to-width aspect ratio of about 10-50:1), and it is characterized by a width of about 10-15 cm and a thickness of about 0.5 mm to about 2 mm.
- elongated shape allows the laundry detergent sheet to be rolled up or folded into a compact unit for easy of packaging, storage, shipment and display.
- the laundry detergent sheet of the present invention is characterized by a sufficiently high Surfactant Activity, e.g., at least 30%, preferably at least 50%, more preferably at least 60%, and most preferably at least 70%.
- a sufficiently high Surfactant Activity provides a very compact and concentrated form of laundry detergent, which is particularly convenient for consumers who travel often and need to do laundry on the road. Further, shipping and handling costs for such compact and concentrated form are significantly reduced, in comparison with the traditional powder or liquid forms of laundry detergents, which make this laundry detergent sheet particularly desirable to be marketed through e-commerce channels.
- the laundry detergent sheet of the present invention has certain attributes that render it aesthetically pleasing to the consumers.
- the sheet may have a relatively smooth surface, thereby providing a pleasant feel when touched by the consumer.
- the laundry detergent sheet may have little or no perceivable pores on its surface.
- laundry detergent sheet of the present invention is strong to withstand substantive mechanical forces without losing its structural integrity, yet at the same time is sufficiently flexible for ease of packaging and storage.
- the present invention is based, in part, on the discovery that there can be less breakage of friable perfume microcapsules (“PMC”) if the friable PMCs are added after a sheet forming step (and optionally before a stamping/embossing step) even if there are additional capital costs associated with such a step. These capital costs are more than off-set by the improved yield obtained in unruptured friable PMC delivered to the final non-fibrous laundry detergent sheet product.
- PMC friable perfume microcapsules
- a non-fibrous laundry detergent sheet comprising a friable PMC.
- “Friability” refers to the propensity of the microcapsules to rupture or break open when subjected to direct external pressures or shear forces.
- the microcapsules utilized are “friable” if, while attached to fabrics treated therewith, they can be ruptured by the forces encountered when the capsule-containing fabrics are manipulated by being worn or handled (thereby releasing the contents of the capsule).
- Friable perfume microcapsules are distinguished from moisture-activated microcapsules such as those microcapsules comprising mostly of cyclodextrin.
- Friable PMC are attractive for use in non-fibrous laundry detergent sheets because not only do the friable PMC enables top-note scent characters to deposit onto fabrics, but also allows the consumer to experience these scent types throughout the day while wearing their article of clothing.
- Friable PMC rupture and release perfume by a mechanical means (e.g., friction)—not a chemical means (e.g., water hydrolysis).
- Minimal fracture pressure is typically needed to break the structure such as normal everyday physical movements such as taking off a jacket; pulling a shirt over your head; or taking off/putting on socks.
- friable PMC also allow the consumer to have a beautiful scent experience on fabrics which have been in storage even for long durations of time due to their ability to protect perfume from volatilization to the surrounding air space.
- Microcapsules of the current invention are formed by a variety of procedures that include, but are not limited to, coating, extrusion, spray-drying, interfacial, in-situ and matrix polymerization.
- the possible shell materials vary widely in their stability toward water (i.e., laundry washing and laundry rinsing).
- PMU polyoxymethyleneurea
- Such systems include but are not limited to urea-formaldehyde and/or melamine-formaldehyde.
- microcapsules comprise a shell material and a core material, said shell material encapsulating said core material, said core material comprising a perfume composition and said shell comprising a material selected from the group consisting of polyethylenes; polyamides; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; aminoplasts, in one aspect said aminoplast comprises a polyureas, polyurethane, and/or polyureaurethane, in one aspect said polyurea comprises polyoxymethyleneurea and/or melamine formaldehyde; polyvinylamine, polyvinyl formamide, polyolefins; polyvinyl alcohol, polysaccharides, in one aspect alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof.
- the friable PMC may have a volume weighted mean particle size from about, from 5 microns to 45 microns more preferably from 8 microns to 25 microns, or alternatively a volume weighted mean particle size from, from about 25 microns to 60 microns, more preferably from 25 microns to 60 microns.
- the shell comprises melamine formaldehyde and/or cross linked melamine formaldehyde.
- the shell material may be coated by a water-soluble cationic polymer, for example, selected from the group that consists of polysaccharides, cationically modified starch and cationically modified guar, polysiloxanes, dimethyldiallylammonium polyhalogenides, copolymers of dimethyldiallylammonium polychloride and vinyl pyrrolidone, acrylamides, imidazoles, imidazolinium halogenides and imidazolium halogenides and polyvinyl amine and its copolymers with N-vinyl formamide.
- the coating that coats said shell comprises a cationic polymer and an anionic polymer.
- said cationic polymer comprises hydroxyl ethyl cellulose; and said anionic polymer comprises carboxyl methyl cellulose.
- the process for making friable PMC may include one or more of the following steps:
- a) preparing a first solution that may comprise, based on total solution weight from 20% to 90%, from 40% to 80%, or even from 60% to 80% water, of a first emulsifier and a first resin, the ratio of said first emulsifier and said first resin being from 0.1:0 to 10:0, from about 0.1:1 to 10:1, from 0.5:1 to 3:1, or even from 0.8:1 to 1.1:1;
- a second solution that may comprise based on total solution weight from 20% to 95% water, of a second emulsifier and a second resin, the ratio of said second emulsifier and said second resin being from 0:1 to 3:1, from 0.04:1 to 0.2:1, or even from 0.05:1 to 0.15:1;
- first composition and said second solution may be combined in any order but in one aspect said second solution is added to said first composition or said second solution and said first composition are combined simultaneously;
- any scavenger material, structurant, and/or anti-agglomeration agent may be combined in any order but in one aspect the scavenger material is combined first, any structurant second, and then anti-agglomeration agent is combined;
- said first and second resins may comprise the reaction product of an aldehyde and an amine
- suitable aldehydes include, formaldehyde.
- suitable amines include melamine, urea, benzoguanamine, glycoluril, and mixtures thereof.
- Suitable melamines include, methylol melamine, methylated methylol melamine, imino melamine and mixtures thereof.
- Suitable ureas include, dimethylol urea, methylated dimethylol urea, urea-resorcinol, and mixtures thereof.
- said first and second emulsifiers may comprise a moiety selected from the group consisting of carboxy, hydroxyl, thiol, amine, amide and combinations thereof.
- said emulsifier may have a pKa of less than 5, preferably greater than 0 but less than 5.
- Emulsifiers include acrylic acid-alkyl acrylate copolymer, poly(acrylic acid), polyoxyalkylene sorbitan fatty esters, polyalkylene co-carboxy anhydrides, polyalkylene co-maleic anhydrides, poly(methyl vinyl ether-co-maleic anhydride), poly(propylene-co-maleic anhydride), poly(butadiene co-maleic anhydride), and poly(vinyl acetate-co-maleic anhydride), polyvinyl alcohols, polyalkylene glycols, polyoxyalkylene glycols, and mixtures thereof.
- the pH of the first and second solutions may be controlled such that the pH of said first and second solution is from about 3.0 to 7.0.
- step f. from 0% to 10%, from 1% to 5% or even from 2% to 4%, based on total second composition weight, of a salt comprising an anion and cation, said anion being selected from the group consisting of chloride, sulfate, phosphate, nitrate, polyphosphate, citrate, maleate, fumarate and mixtures thereof; and said cation being selected from the group consisting of a Periodic Group IA element, Periodic Group IIA element, ammonium cation and mixtures thereof, preferably sodium sulfate, may be combined with said second composition.
- any of the aforementioned processing parameters may be combined.
- Suitable equipment for use in the processes disclosed herein may include continuous stirred tank reactors, homogenizers, turbine agitators, recirculating pumps, paddle mixers, ploughshear mixers, ribbon blenders, vertical axis granulators and drum mixers, both in batch and, where available, in continuous process configurations, spray dryers, and extruders.
- Such equipment can be obtained from Lodige GmbH (Paderborn, Germany), Littleford Day, Inc.
- the present invention is not be limited to only those microcapsules encapsulating perfume. Rather, the friable microcapsules may encapsulate any active that is suitable to have on clothing. Non-limiting examples of such actives include skin care agents (such as aloe vera or skin moisturizer) or insect repellent (such as DEET).
- skin care agents such as aloe vera or skin moisturizer
- insect repellent such as DEET
- One aspect of the invention comprises a microcapsule slurry, preferably wherein the microcapsule is a friable microcapsule or even more preferably a friable perfume microcapsule, contained in the microcapsule slurry tank.
- microcapsule slurry tank is used herein the broadest sense to include any container suitable for containing commercial quantities of a microcapsule slurry.
- the microcapsule slurry tank may comprise a heating element that imparts heat to the microcapsule slurry contained within the microcapsule slurry tank.
- the microcapsule slurry tank may also comprise a mixing element.
- heating element is used herein the broadest sense to include any device that may impart heat to the microcapsule slurry contained within the microcapsule slurry tank.
- the microcapsule slurry is at a heated temperature in the microcapsule slurry tank (i.e., the microcapsule slurry is heated while in the microcapsule slurry tank or delivered to the microcapsule slurry already in a heated form, or combination thereof).
- a heating element may include: electric heat tracing in the jacket of the microcapsule slurry tank (e.g., there is an outer layer and inner layer to the microcapsule slurry tank and between these layers there is an electric tracing that is controlled via a computer).
- mixing elements is used herein the broadest sense and includes any means of mixing the microcapsule slurry in the microcapsule slurry tank on a commercial scale.
- Non-limiting examples of mixing elements includes a wall scraper, agitator, recycle pump, or combinations thereof.
- a wall scraper works by scraping, in a circular pattern, microcapsule slurry that has adhered to the wall of the microcapsule slurry tank.
- An agitator is located at the bottom of the microcapsule slurry tank. Much like a blender, an agitator rotates in a circular fashion such that the microcapsule slurry is not allowed to settle at the bottom of the microcapsule slurry tank.
- a recycle pump pushes the microcapsule slurry from the bottom of the vessel through piping and back into the top of the microcapsule slurry tank.
- Manufacturers of mixing elements include Chemineer Kinetics.
- the microcapsule slurry is heated within at least about ⁇ 30° C., preferably ⁇ 20° C., preferably ⁇ 10° C. of the temperature of precursor laundry detergent sheet (i.e., after the sheet is removed from a roller) to which the microcapsule slurry is applied (i.e., dispensed thereto).
- the temperature of the detergent sheet is taken immediately before the microcapsule slurry is dispensed thereto.
- An infrared temperature gun is one method of taking the temperature under these conditions.
- the microcapsule slurry is at a temperature from 50° C. to 100° C., alternatively from 55° C. to 99° C., alternatively 60° C. to 98° C.
- the temperature is of the microcapsule slurry is assessed as the slurry is contained in the microcapsule slurry tank.
- the precursor laundry detergent sheet (after the detergent sheet forming step, but before the microcapsule slurry is dispensed to said detergent sheet) is at a temperature from 50° C. to 100° C., alternatively from 55° C. to 99° C., alternatively 60° C. to 98° C.
- This aspect of the invention is based, in part, on the observation that if the microcapsule slurry is not of sufficient elevated temperature upon the addition of the detergent sheet the microcapsule treated detergent sheet then the potential for several negatives including imperfections to the sheet (e.g., less smooth surface, or bumps or other undesirable effects to the aesthetics). Without wishing to be bound by theory, this temperature difference may impact the “curing” of the sheet.
- the microcapsule slurry comprises less than 75% water, alternatively less than 50% water, alternatively less than 42% water, by weight of the microcapsule slurry.
- the microcapsule slurry comprises from 75% to 20% water, alternatively from 65% to 30%, alternatively from 60% to 35%, alternatively from 50% to 38% by weight of the microcapsule slurry.
- Some water in the microcapsule slurry is desirable.
- Many suppliers of friable PMC provide the friable PMC as a friable PMC slurry comprising water (vs. a powder form). These friable PMC slurries are typically less expensive than powdered or dry forms of the same. Moreover, powdered forms of the friable PMC or those friable PMC slurries with high non-aqueous solvent levels may pose safety issues given the flammability associated with fine dust of the PMC and the flammability associated with some solvents, respectively. Water in the PMC slurry may also provide more uniform distribution of the PMC in the PMC slurry such as to avoid additional mixing steps such as ball mills and colloid mills. Preferably PMC is incorporated into the laundry detergent sheet without, or substantially without, ball milling or colloid milling steps.
- Yet another aspect of the invention provides for mixing the microcapsule slurry while the slurry is contained in the perfume slurry tank.
- Suitable ways of the mixing the slurry while in the perfume slurry tank include: a wall scraper, agitator, or combination thereof in the microcapsule slurry tank; or a static mixer in the pipe to or from the microcapsule slurry tank; or combinations thereof. Mixing by ball mills, colloid mills should preferably be avoided as to avoid breakage of the microcapsules.
- This aspect of the invention is based, in part, on the observation that mixing the PMC slurry provides more homogenous, uniform, incorporation of the microcapsule in the finished product.
- the microcapsule slurry comprises a structurant. While not being bound by theory, it is believed that the anionic materials that are sometimes part of the microcapsule slurry may adversely interact with the cationic materials that may be part of the precursor laundry detergent sheet (or even visa versa). The interaction between anionic and cationic species may lead to aggregation or phase separation. In addition to the unacceptable aesthetics that results from aggregation of particles, such aggregates may result in rapid phase separation of the particles from the bulk phase. It is discovered that such aggregates may be prevented by the addition of structurants chosen from salts, polymers, or combinations thereof.
- Useful structurants may include: (1) divalent salts such as: magnesium salts, e.g., magnesium chloride, magnesium acetate, magnesium phosphate, magnesium formate, magnesium boride, magnesium titanate, magnesium sulfate heptahydrate; calcium salts, e.g., calcium chloride, calcium formate, calcium calcium acetate, calcium bromide; (2) trivalent salts such as: aluminum salts, e.g., aluminum sulfate, aluminum phosphate, aluminum chloride n-hydrate; and (3) polymers that have the ability to suspend anionic particles, such as soil suspension polymers, e.g., (polyethylene imines, alkoxylated polyethylene imines, polyquarternium-6 and polyquarternium-7).
- divalent salts such as: magnesium salts, e.g., magnesium chloride, magnesium acetate, magnesium phosphate, magnesium formate, magnesium boride, magnesium titanate, magnesium sulfate heptahydrate
- calcium salts e.
- calcium formate and/or formic acid may be added to a microcapsule slurry comprising water.
- Calcium formate and/or formic acid is typically combined with, based on total aqueous microcapsule slurry weight, at a level of from 0.6% to 3%, from 1% to 2%, alternatively from 1.2% to 1.5%, of the microcapsule slurry.
- An additional benefit with the use of calcium formate and/or formic acid may include microbial inhibition.
- the structurant for example, may comprise from 0.1% to 5%, alternatively, 0.5% to 4%, alternatively 0.6% to 3%, by weight of the microcapsule slurry.
- the microcapsule slurry comprises a formaldehyde scavenger.
- the detergent sheet and friable PMC slurry may combine resulting in a composition that comprises from 0.1% to 10%, alternatively from 0.5% to 7%, alternatively from 1% to 6%, alternatively from 1.5% to 5%, alternatively from 1.5% to 4%, friable PMC by weight of the composition (wherein the composition comprises the detergent sheet and PMC).
- the combined detergent sheet and friable PMC upon drying, may comprise from 5% to 0%, alternatively less than 4%, alternatively less than 3%, alternatively less than 2%, alternatively less than 1%, alternatively less than 0.5%, alternatively less than about 0.1%, alternatively substantially free, alternatively free, of water, by weight of the composition (wherein the composition comprises the detergent sheet and PMC).
- a nozzle is fluidly connected with the microcapsule slurry tank by way of through piping.
- An electromagnetic valve is placed on the through piping or nozzle.
- the nozzle is capable of spraying or otherwise dispensing the PMC slurry onto the precursor laundry detergent sheet.
- a composition of a friable PMC comprising a low amount of water (e.g., 5% to 0% water by weight of the composition such as in a powdered or granular form of the friable PMC) to the precursor laundry detergent sheet.
- the substantially solid form of the friable PMC or low water composition containing PMC may be added after the detergent sheet is formed.
- the process may include spraying the PMC composition to detergent sheet.
- the low water composition of the friable PMC may comprise less than 5%, or 4%, or 3%, or 2%, or 1%, or 0.5%, or 0.1% water by weight of the composition.
- the lower water composition of the friable PMC may comprise from 99.9% to 1%, alternatively from 80% to 99%, alternatively from 90% to 99% of the friable PMC by weight of the composition.
- the low water composition of friable PMC is free or substantially free of detersive surfactants.
- the low water composition of friable PMC may be in a powder or granular form.
- Step(s) in making the non-fibrous laundry detergent sheet are described.
- the system comprises a base bracket 1 , a heated rotatable cylinder 2 (see FIG. 2 ) is installed on the said base bracket 1 .
- a heated rotatable cylinder 2 can be driven by the motorized drive A 1 installed on the said base bracket 1 , and work at a predetermined rotation speed.
- Said rotating heat roll 2 is also coated with a non-stick coating 21 .
- the non-stick coating 21 may be overlying on the outer surface of the heated rotatable cylinder 2 , or the said non-stick coating 21 is fixed to medium 22 of the outer surface of the heated rotatable cylinder 2 .
- the medium 22 includes, but is not limited to, heat-resisting non-woven fabrics, heat-resisting carbon fiber, heat-resisting metal or non-metallic mesh and the like.
- the said non-stick coating 21 effectively preserves the activity of the laundry detergent composition in the sheet material from damage.
- the feeding mechanism 3 includes the feeding rack 31 installed on the said bracket 1 ; at least one (preferably two) feeding hopper(s) 32 installed on the said feeding rack 31 ; as well as an imaging device 33 for dynamic observation of the feeding.
- the imaging device 33 is installed on the said feeding rack 31 as well as the adjustment device 34 for adjusting the position and inclination angle of said feeding hopper 32 .
- the adjustment device 34 can adjust the feeding hopper 3 : 2 to different angles as to meet the material requirements of speed and quality.
- the heating shield 4 is a modular assembly structure, or integrated structure, and can be freely detached from the said bracket 1 .
- the suction device 41 is also installed on the heating shield 4 , for sucking the hot steam, to avoid any water condensate falling on the raw material of laundry detergent sheet.
- start feeding mechanism 5 (see FIG. 1 ) installed on the said bracket 1 , which is for scooping up the laundry detergent sheet raw material dried by the said heated rotatable cylinder 2 .
- the start feeding mechanism 5 is installed on the said bracket 1 , or on one side of the self-propelled platform 6 , for transporting down the scooped laundry detergent sheet raw material (i.e., a precursor non-fibrous laundry detergent sheet).
- the said start feeding mechanism 5 can automatically or manually move close and go away from the heated rotatable cylinder 2 .
- start feeding mechanism 5 can prematurely burst friable microcapsules if these microcapsules had otherwise been added to the original liquid laundry detergent sheet material.
- the other side of the said self-propelled platform 6 is connected to the slicing device 7 , for shape slicing the laundry detergent sheet raw material, said self-propelled platform 6 is located at the bottom or one side of the microcapsule slurry tank device 8
- said self-propelled platform is located at the bottom or one side of an embossing device 9 .
- the embossing device 9 (see FIG. 6 ) is assembled by the freely stretching and rotating mobile arm 91 , freely exchangeable embossing mold 92 installed on the one end of the said mobile arm 91 , and the drive A 3 for driving the said mobile arm 91 .
- any embossing steps are conducted before the dispensing of PMC slurry to the precursor non-fibrous laundry detergent sheet. Embossing the detergent sheet after microcapsule addition may burst the friable microcapsules.
- the said self-propelled platform 6 (see FIG. 1 ) is assembled by the platform bracket 61 , the self-propelled belt 62 installed on the platform bracket 61 , and the drive A 2 installed on platform bracket 61 , for driving said self-propelled belt 62 .
- the said slicing device 7 (see FIG. 4 ) is assembled by the slicing device housing 71 , the cutter 72 placed inside the said slicing device housing 71 , and the drive A 4 installed in the said slicing device housing 71 , for driving the cutter 72 .
- the microcapsule slurry tank device 9 (see FIG. 5 ) is assembled by microcapsule slurry tank 81 used for storing the microcapsule slurry (and is preferably pressurized or gravity fed).
- Nozzle 83 is fluidly connected with the microcapsule slurry tank 81 by way of through piping 82 .
- An electromagnetic valve 84 is placed on said through piping 82 or nozzle 83 .
- the nozzle 83 is on the top of said self-propelled belt 62 of the said self-propelled platform 6 .
- the nozzle 83 is capable of spraying or otherwise dispensing the PMC slurry onto the detergent sheet.
- the making process of the non-fibrous laundry detergent sheet is described. Firstly, the heated rotatable cylinder 2 , with the non-stick coating 21 , on the said bracket 1 , is driven by the drive A 1 . Next, the adjustment device 34 adjusts the feeding mechanism 3 so that the distance between the feeding hopper 32 and the outer surface of the heated rotatable cylinder 2 reaches a preset value. Meanwhile, the feeding hopper 32 adds liquid laundry detergent sheet raw material (free of friable microcapsules) to the heated rotatable cylinder 2 . The suction device 41 of the heating shield 4 sucks the hot steam generated by the heated rotatable cylinder 2 . Next, the start feeding mechanism 5 scoops up the laundry detergent sheet upon evaporated water reaches a predetermined value.
- Drive A 2 drives the self-propelled belt 62 of the self-propelled platform 6 to work to transport down the laundry detergent sheet raw material which is scooped up by the said start feeding mechanism 5 .
- Drive A 3 drives the mobile arm 91 of the embossing device 9 stretching and rotating freely, so that the embossing mold 92 can freely emboss the different shapes on the laundry detergent sheet material.
- the electromagnetic valve 84 is opened in order to spray the microcapsule slurry in the pressure vessel 81 through nozzle 83 to the dried (and embossed) laundry detergent sheet raw material.
- drive A 4 drives the cutter 72 of the slicing device 7 in order to cut the laundry detergent sheet into desired shapes to be packaged.
- the non-fibrous laundry detergent sheet of the present invention may comprise at least one surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, amphoteric surfactants, cationic surfactants, and combinations thereof.
- Such at least one surfactant form a surfactant system in the non-fibrous laundry detergent sheet, which can be present in an amount ranging from about 5% to about 90%, preferably from about 10% to about 90%, more preferably from about 20% to about 90%, still more preferably from about 30% to about 90%, and most preferably from about 50% to about 90%, by total weight of the non-fibrous laundry detergent sheet.
- the laundry detergent sheet may have a surfactant system containing only anionic surfactants, e.g., either a single anionic surfactant or a combination of two or more different anionic surfactants.
- the laundry detergent sheet of the present invention may have a composite surfactant system, e.g., containing a combination of one or more anionic surfactants with one or more nonionic surfactants, or a combination of one or more anionic surfactants with one or more amphoteric surfactants, or a combination of one or more anionic surfactants with one or more cationic surfactants, or a combination of all the above-mentioned types of surfactants (i.e., anionic, nonionic, amphoteric and cationic).
- the laundry detergent sheet of the present invention has a composite surfactant system containing a combination of one or more anionic surfactants with one or more nonionic surfactants.
- Anionic surfactants suitable for forming the laundry detergent sheet of the present invention can be readily selected from the group consisting of C 6 -C 20 linear or branched alkyl benzene sulfonates (LAS), C 6 -C 20 linear or branched alkyl sulfates (AS), C 6 -C 20 linear or branched alkyl alkoxylated sulfates (AAS), C 6 -C 20 linear or branched alkyl sulfonates, C 6 -C 20 linear or branched alkyl carboxylates, C 6 -C 20 linear or branched alkyl phosphates, C 6 -C 20 linear or branched alkyl phosphonates, and combinations thereof.
- LAS alkyl benzene sulfonates
- AS linear or branched alkyl sulfates
- AAS alkyl alkoxylated sulfates
- Preferred anionic surfactants of the present invention are selected from the group consisting of LAS, AS, AAS, and combinations thereof.
- the total amount of anionic surfactants in the laundry detergent sheet may range from 5% to 90%, preferably from 10% to 80%, more preferably from 20% to 75%, and most preferably from 30% to 70%, by total weight of the non-fibrous laundry detergent sheet.
- a particularly preferred type of anionic surfactants for forming the non-fibrous laundry detergent sheet of the present invention are C 6 -C 18 alkyl sulfates, which are referred to as “mid-cut AS” hereinafter, while each of which has a branched or linear unalkoxylated alkyl group containing from about 6 to about 18 carbon atoms.
- the mid-cut AS is present as the main surfactant in the laundry detergent sheet, i.e., it is present in an amount that is greater than 50% by total weight of all surfactants in said sheet, while other anionic surfactants (such as LAS and/or AAS) are present as co-surfactants for such mid-cut AS.
- the mid-cut AS of the present invention has the generic formula of R—O—SO 3 ⁇ M + , while R is branched or linear unalkoxylated C 6 -C 18 alkyl group, and M is a cation of alkali metal, alkaline earth metal or ammonium.
- the R group of the AS surfactant contains from about 8 to about 16 carbon atoms, more preferably from about 10 to about 14 carbon atoms, and most preferably from about 12 to about 14 carbon atoms.
- R can be substituted or unsubstituted, and is preferably unsubstituted.
- R is substantially free of any alkoxylation.
- M is preferably a cationic of sodium, potassium, or magnesium, and more preferably M is a sodium cation.
- Such mid-cut AS surfactant(s) preferably functions as the main surfactant in the surfactant system of the non-fibrous laundry detergent sheet of the present invention.
- the mid-cut AS surfactant(s) are present in an amount of greater than 50% by total weight of all surfactants in the laundry detergent sheet.
- the surfactant system of the present invention contains a mixture of mid-cut AS surfactants, in which C 6 -C 14 AS surfactants are present in an amount ranging from about 85% to about 100% by total weight of the mixture.
- This mixture can be referred to as a “C 6 -C 14 -rich AS mixture.” More preferably, such C 6 -C 14 -rich AS mixture contains from about 90 wt % to about 100 wt %, or from 92 wt % to about 98 wt %, or from about 94 wt % to about 96 wt %, or 100 wt % (i.e., pure), of C 6 -C 14 AS.
- the surfactant system contains a mixture of mid-cut AS surfactants comprising from about 30 wt % to about 100 wt % or from about 50 wt % to about 99 wt %, preferably from about 60 wt % to about 95 wt %, more preferably from about 65 wt % to about 90 wt %, and most preferably from about 70 wt % to about 80 wt % of C 12 -C 14 AS, which can be referred to as a “C 12 -C 14 -rich AS mixture.”
- C 12 -C 14 -rich AS mixture contains a majority of C 12 AS.
- the surfactant system contains a mixture of mid-cut AS surfactants that consist of C 12 and/or C 14 AS surfactants, e.g., 100% C 12 AS or from about 70 wt % to about 80 wt % of C 12 AS and from 20 wt % to about 30 wt % of C 14 AS, with little or no other AS surfactants therein.
- a commercially available mid-cut AS mixture particularly suitable for practice of the present invention is Texapon® V95 G from Cognis (Monheim, Germany).
- the surfactant system of the present invention may contain a mixture of mid-cut AS surfactants comprising more than about 50 wt %, preferably more than about 60 wt %, more preferably more than 70 wt % or 80 wt %, and most preferably more than 90 wt % or even at 100 wt % (i.e., substantially pure), of linear AS surfactants having an even number of carbon atoms, including, for example, C 6 , C 8 , C 10 , C 12 , C 14 , C 16 , and C 18 AS surfactants.
- the amount of mid-cut AS surfactants used in the present invention may range from about 5% to about 90%, preferably from about 10% to about 80%, more preferably from about 20% to about 75%, and most preferably from about 30% to about 70%, by total weight of the non-fibrous laundry detergent sheet.
- the non-fibrous laundry detergent sheet contains from about 10 wt % to about 60 wt %, preferably from about 20 wt % to about 50 wt %, of pure C 12 AS or a C 12 -C 14 -rich AS mixture by total weight of such sheet, while the C 12 -C 14 -rich AS mixture contains from about 70 wt % to about 80 wt % of C 12 AS and from 20 wt % to about 30 wt % of C 14 AS by total weight of such mixture.
- the non-fibrous laundry detergent sheet of the present invention may contain, either alone as a main surfactant, or preferably in combination with the mid-cut AS described hereinabove as its co-surfactant, a C 6 -C 20 linear alkylbenzene sulfonate (LAS).
- LAS is present as the main surfactant in the laundry detergent sheet, i.e., it is present in an amount that is greater than 50% by total weight of all surfactants in said sheet, while other anionic surfactants (such as mid-cut AS and/or AAS) are present as co-surfactants for such LAS.
- LAS anionic surfactants are well known in the art and can be readily obtained by sulfonating commercially available linear alkylbenzenes.
- Exemplary C 6 -C 20 linear alkylbenzene sulfonates that can be used in the present invention include alkali metal, alkaline earth metal or ammonium salts of C 6 -C 20 linear alkylbenzene sulfonic acids, and preferably the sodium, potassium, magnesium and/or ammonium salts of C 11 -C 18 or C 11 -C 14 linear alkylbenzene sulfonic acids.
- sodium or potassium salts of C 12 linear alkylbenzene sulfonic acids More preferred are the sodium or potassium salts of C 12 linear alkylbenzene sulfonic acids, and most preferred is the sodium salt of C 12 linear alkylbenzene sulfonic acid, i.e., sodium dodecylbenzene sulfonate.
- the amount of LAS in the non-fibrous laundry detergent sheet of the present invention may range from about 5% to about 90%, preferably from about 10% to about 80%, more preferably from about 20% to about 75%, and most preferably from about 30% to about 70%, by total weight of the laundry detergent sheet.
- the non-fibrous laundry detergent sheet contains from about 5 wt % to about 20 wt % of a sodium, potassium, or magnesium salt of C 12 linear alkylbenzene sulfonic acid.
- the non-fibrous laundry detergent sheet of the present invention may contain, either alone as a main surfactant, or preferably in combination with the mid-cut AS and/or LAS described hereinabove as a co-surfactant, a C 10 -C 20 linear or branched alkylalkoxy sulfate (AAS) having an average degree of alkoxylation ranging from about 0.1 to about 5.
- AAS alkylalkoxy sulfate
- the AAS surfactants preferably are C 10 -C 20 linear or branched alkylethoxy sulfate (AES) with the following formula (I):
- R is a linear or branched alkyl chain having from 10 to 20 carbon atoms, either saturated or unsaturated; x averages from 1 to 3; and M is selected from the group consisting of alkali metal ions, ammonium, or substituted ammonium.
- R is a linear or branched alkyl chain having from 12 to 16 carbon atoms; x averages 3; and M is sodium.
- the most preferred anionic surfactant for the practice of the present invention is sodium lauryl ether sulphate with an average degree of ethoxylation of about 3.
- the AAS surfactants if present, can be provided in an amount ranging from about 1% to about 30%, preferably from about 2% to about 20%, more preferably from about 5% to about 15%, by total weight of the non-fibrous laundry detergent sheet.
- the non-fibrous laundry detergent sheet of the present invention may contain one or more nonionic surfactants, which are to be used in combination with the anionic surfactants described hereinabove.
- Such nonionic surfactant(s) may be present in an amount ranging from 1% to 40%, preferably from 2% to 30%, more preferably from 5% to 25%, and most preferably from 10% to 20%, by total weight of such non-fibrous laundry detergent sheet.
- Suitable nonionic surfactants useful herein can comprise any conventional nonionic surfactant. These can include, for e.g., amine oxide surfactants and alkoxylated fatty alcohols.
- the nonionic surfactants may be selected from the ethoxylated alcohols and ethoxylated alkyl phenols of the formula R(OC 2 H 4 ) n OH, wherein R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15.
- the nonionic surfactant is selected from ethoxylated alcohols having an average of about 24 carbon atoms in the alcohol and an average degree of ethoxylation of about 9 moles of ethylene oxide per mole of alcohol.
- Other non-limiting examples of nonionic surfactants useful herein include: C 8 -C 18 alkyl ethoxylates, such as, NEODOL® nonionic surfactants from Shell; C 6 -C 12 alkyl phenol alkoxylates where the alkoxylate units may be ethyleneoxy units, propyleneoxy units, or a mixture thereof; C 12 -C 18 alcohol and C 6 -C 12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic® from BASF; C 14 -C 22 mid-chain branched alcohols; C 14 -C 22 mid-chain branched alkyl alkoxylates, wherein x is from 1 to 30; alkylpolysaccharides, and specifically
- nonionic surfactants of the present invention include alkyl polyglucoside, alkyl alcohols, alkyl alkoxylated alcohols, alkyl alkoxylates, alkyl phenol alkoxylates, alkylcelluloses, polyhydroxy fatty acid amides, ether capped poly(oxyalkylated) alcohol surfactants.
- the nonionic surfactant is selected from alkyl alkoxylated alcohols, such as a C 8-18 alkyl alkoxylated alcohol, and more specifically a C 8-18 alkyl ethoxylated alcohol.
- the alkyl alkoxylated alcohol may have an average degree of alkoxylation of from about 1 to about 50, or from about 1 to about 30, or from about 1 to about 20, or from about 1 to about 10.
- the alkyl alkoxylated alcohol can be linear or branched, substituted or unsubstituted.
- the non-fibrous laundry detergent sheet of the present invention contains a C 12-14 alkyl ethoxylated alcohol having an average degree of ethoxylation of from about 1 to about 10, or from about 1 to about 8, or from about 3 to about 7, in an amount ranging from about 1% to about 40%, preferably from about 5% to about 25%, and more preferably from about 10% to about 20%, by total weight of the laundry detergent sheet.
- the non-fibrous laundry detergent sheet of the present invention may optionally include one or more other adjunct detergent ingredients for assisting or enhancing cleaning performance or to modify the aesthetics of the sheet.
- adjunct detergent ingredients include: (1) inorganic and/or organic builders, such as carbonates (including bicarbonates and sesquicarbonates), sulphates, phosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, zeolite, citrates, polycarboxylates and salts thereof (such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof), ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2
- the non-fibrous laundry detergent sheet of the present invention contains, in addition to the surfactant(s) described and adjunct detergent ingredients described hereinabove, at least one film former.
- at least one film former can be selected from water-soluble polymers, either synthetic or natural in origin and may be chemically and/or physically modified.
- Suitable examples of water-soluble polymers for the practice of the present invention include polyalkylene glycols (also referred to as polyalkylene oxides or polyoxyalkylenes), polyvinyl alcohols, polysaccharides (such as starch or modified starch, cellulose or modified cellulose, pullulan, xanthum gum, guar gum, and carrageenan), polyacrylates, polymethacrylates, polyacrylamides, polyvinylpyrrolidones, and proteins/polypeptides or hydrolyzed products thereof (such as collagen and gelatin).
- polyalkylene glycols also referred to as polyalkylene oxides or polyoxyalkylenes
- polysaccharides such as starch or modified starch, cellulose or modified cellulose, pullulan, xanthum gum, guar gum, and carrageenan
- polyacrylates polymethacrylates
- polyacrylamides polyacrylamides
- polyvinylpyrrolidones polyvinylpyrrolidone
- the film former to be used in the present invention is selected from the group consisting of polyalkylene glycols, polyvinyl alcohols, starch or modified starch, cellulose or modified cellulose, polyacrylates, polymethacrylates, polyacrylamides, polyvinylpyrrolidones, and combinations thereof.
- the non-fibrous laundry detergent sheet contains a polyethylene glycol (PEG) or a polyvinyl alcohol (PVA), either alone (i.e., without other film formers) or in combination with a polystarch, modified starch, cellulose, or modified cellulose.
- the PEG may be selected from poly(ethylene glycol) homopolymers and poly(ethylene glycol) copolymers having a weight average molecular weight of between about 2,000 and about 100,000 g/mol, preferably between about 4,000 and about 90,000 g/mol, and more preferably between about 6,000 and about 8,000 g/mol.
- Suitable poly(ethylene glycol) copolymers preferably contain at least about 50 wt % of PEG and may be selected from the group consisting of poly(lactide-block-ethylene glycol), poly(glycolide-block-ethylene glycol), poly(lactide-co-caprolactone)-block-poly(ethylene glycol), poly(ethylene glycol-co-lactic acid), poly(ethylene glycol-co-glycolic acid), poly(ethylene glycol-co-poly(lactic acid-co-glycolic acid), poly(ethylene glycol-co-propylene glycol), poly(ethylene oxide-block-propylene oxide-block-ethylene oxide), poly(propylene oxide-block-ethylene glycol-block-propylene glycol), and poly(ethylene glycol-co-caprolactone).
- Exemplary poly(ethylene glycol) homopolymers are commercially available from Sigma Aldrich, or from Dow under the tradename of CARBOWAXTM, or from BASF under the tradename of Pluriol®.
- Exemplary poly(ethylene glycol) copolymers are commercially available from BASF under the tradenames of Pluronic® F127, Pluronic® F108, Pluronic® F68 and Pluronic® P105.
- a particularly preferred PEG for the practice of the present invention is a poly(ethylene glycol) homopolymer having a weight average molecular weight of between about 6,000 and about 80,000 g/mol.
- the PVA may be unmodified or modified, e.g., carboxylated or sulfonated.
- the PVA is partially or fully alcoholised or hydrolysed.
- it may be from 40 to 100%, preferably 70 to 92%, more preferably 88% to 92%, alcoholised or hydrolysed.
- the degree of hydrolysis is known to influence the temperature at which the PVA starts to dissolve in water, e.g., 88% hydrolysis corresponds to a PVA film soluble in cold (i.e. room temperature) water, whereas 92% hydrolysis corresponds to a PVA film soluble in warm water.
- An example of preferred PVA is ethyoxylated PVA.
- PVA polyvinyl acrylate copolymer
- Sekisui Specialty Chemicals America, LLC (Dallas, Tex.) under the tradename CELVOL®.
- Another more preferred example of PVA is the so-called G Polymer commercially available Nippon Ghosei.
- the film former may be present in the non-fibrous laundry detergent sheet of the present invention at from about 1% to about 70%, preferably from about 2% to about 60%, more preferably from about 5% to about 50%, and most preferably from about 10% to about 40%, by total weight of the sheet.
- the non-fibrous laundry detergent sheet may also comprise suitable additives such as plasticizers and solids, for modifying the properties of the film former.
- suitable plasticizers are, for example, pentaerythritols such as depentaerythritol, sorbitol, mannitol, glycerine and glycols such as glycerol or ethylene glycol.
- Plasticizers are generally used in an amount of up to 35 wt %, for example from 5 to 35 wt %, preferably from 7 to 20 wt %, more preferably from 10 to 15 wt %.
- Solids such as talc, stearic acid, magnesium stearate, silicon dioxide, zinc stearate or colloidal silica may also be used, generally in an amount ranging from about 0.5 to 5 wt %.
- the pH of the detergent sheet is about neutral to basic, preferably having a pH from 7 to 9, more preferably from 7.5 to 9.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Textile Engineering (AREA)
- Detergent Compositions (AREA)
- Fats And Perfumes (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
- The present invention is directed to non-fibrous laundry detergent sheets having microcapsules that can help clean laundry and impart freshness to the laundry.
- Consumers are continually expressing the desire to have scents on their fabrics that lasts longer & throughout the entire day. Non-fibrous laundry sheets are suitable for cleaning fabrics, but currently marketed sheets fall short in fulfilling this consumer need. With the growing & evolving scent trends in today's market place, especially in candles & the air care category, consumers want volatile scent characters such as fruity, citrus, green, lighter florals, and the like on their fabrics. The issue is that the perfume ingredients that are needed to produce these character types do not readily deposit onto clothing during laundering (i.e., fabric cleaning) or because they can be lost during the drying process given, inter alia, high temperatures.
- Non-fibrous laundry sheets are a convenient vehicle for delivering freshness (via perfume) onto consumers' clothing. Long-lasting freshness (e.g., scent that lasts for several days) is particularly appealing to many consumer, and as a result of this, numerous ways to encapsulate perfume so as to increase its ability to last on clothing have been described. One suitable way includes the use of friable perfume microcapsules. However, a problem with friable perfume microcapsule, verses moisture activated microcapsules (e.g., cyclodextrin), is that traditional manufacturing approaches of making non-fibrous laundry sheets likely lead to pre-mature rupturing of the microcapsule thereby providing unacceptable yields in the manufacture of these sheets. There is a need to identify a non-fibrous laundry sheets having such friable microcapsules, and manufacturing processes suitable to incorporate friable microcapsules into such sheets.
- The present invention is based on the surprising discovery that friable microcapsules can be more effectively incorporated into non-fibrous laundry detergent sheets after the sheet is formed during the manufacturing process. In other words by dispensing the friable microcapsules to the sheet later in the manufacturing process, as opposed to being incorporating in the original starting materials, a better yield of friable microcapsules can be obtain in the final product.
- One advantage of the present invention is better incorporation of perfume into onto the non-fibrous laundry detergent sheets by use of friable perfume microcapsules.
- Another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user smelling desirable volatile scent characters.
- Yet still another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user having long-lasting freshness imparted to their clothing.
- Yet still another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user experience a pleasant burst of freshness upon normal everyday physical movements such as taking off a jacket; pulling a shirt over your head; or taking off/putting on socks.
- One aspect of the invention provides a non-fibrous laundry detergent sheet comprising: (a) at least one surfactant; (b) at least one film former; and (c) a friable microcapsule; wherein said laundry detergent sheet has a thickness ranging from 0.1 mm to 2 mm, a length-to-thickness aspect ratio of at least 5:1, and a width-to-thickness aspect ratio of at least 5:1.
- Another aspect of the invention provides for a method of making a non-fibrous laundry detergent sheet comprising the step of dispensing a microcapsule to a precursor non-fibrous laundry detergent sheet, wherein the precursor non-fibrous laundry detergent sheet comprising (a) at least one surfactant; (b) at least one film former; and (c) a thickness ranging from 0.1 mm to 2 mm.
- These and other features, aspects and advantages of specific embodiments will become evident to those skilled in the art from a reading of the present disclosure.
- The embodiments set forth in the drawings are illustrative in nature and not intended to limit the invention defined by the claims. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, and in which:
-
FIG. 1 is a cylinder laundry detergent sheet production system suitable for making a non-fibrous laundry detergent sheet comprising a friable microcapsule of the present invention; -
FIG. 2 is a heated rotatable cylinder of the system ofFIG. 1 ; -
FIG. 3 is a feeding mechanism of the system ofFIG. 1 ; -
FIG. 4 is a slicing device of system ofFIG. 1 ; and -
FIG. 5 is a microcapsule slurry tank device of the system ofFIG. 1 . - Features and benefits of the various embodiments of the present invention will become apparent from the following description, which includes examples of specific embodiments intended to give a broad representation of the invention. Various modifications will be apparent to those skilled in the art from this description and from practice of the invention. The scope of the present invention is not intended to be limited to the particular forms disclosed and the invention covers all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the claims.
- The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
- As used herein, articles such as “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described. The terms “comprise,” “comprises,” “comprising,” “contain,” “contains,” “containing,” “include,” “includes” and “including” are all meant to be non-limiting.
- As used herein, the term “water-soluble” refers to a solubility of more than about 30 grams per liter (g/L) of deionized water measured at 20° C. and under the atmospheric pressure. The term “substantially water-soluble” refers to a solubility of more than about 25 grams per liter (g/L) of deionized water measured at 20° C. and under the atmospheric pressure.
- As used herein, the term “sheet” refers to a three-dimensional shape having a thickness, a length, and a width, while the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 5:1, and the length-to-width aspect ratio is at least about 1:1. Preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 10:1, and the length-to-width aspect ratio is at least about 1.2:1. More preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 15:1, and the length-to-width aspect ratio is at least about 1.5:1. Most preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 20:1, and the length-to-width aspect ratio is at least about 1.618:1.
- As used herein, the term “non-fibrous” refers to a structure that is free of or substantially free of fibrous elements. “Fibrous element” as used herein means elongated particulate having a length greatly exceeding its average diameter, i.e., a length-to-average-diameter aspect ratio of at least 10:1, and an average diameter of no more than 1 mm.
- As used herein, the term “laundry detergent” refers to all-purpose or “heavy-duty” washing agents, especially cleaning detergents, for fabrics, as well as cleaning auxiliaries such as bleach, rinse aids, additives, or pre-treat types.
- As used herein, the term “Water Dissolvability” refers to the ability of a sample material to dissolve in water within a specific time period at 20° C. and under the atmospheric pressure without any stirring. This parameter is measured by placing 10 grams of the sample material in 1 liter of deionized water at 20° C. and under the atmospheric pressure for one (1) minute without any stirring. The remaining undissolved solids then are filtered out from the solution and immediately weighed (without drying). The Water Dissolvability is calculated as
-
- As used herein, the terms “consisting essentially of” means that the composition contains no ingredient that will interfere with benefits or functions of those ingredients that are explicitly disclosed. Further, the terms “essentially free of,” “substantially free of” or “substantially free from” means that the indicated material is present in the amount of from 0 wt % to about 1 wt %, or preferably from 0 wt % to about 0.5 wt %, or more preferably from 0 wt % to about 0.1 wt %, and most preferably it is not present at analytically detectable levels. The term “substantially pure” or “essentially pure” means that the indicated material is present in the amount of from about 99.5 wt % to about 100 wt %, preferably from about 99.9 wt % to about 100 wt %, and more preferably from 99.99 wt % to about 100 wt %, and most preferably all other materials are present only as impurities below analytically detectable levels.
- As used herein, all concentrations and ratios are on a weight basis unless otherwise specified. All temperatures herein are in degrees Celsius (° C.) unless otherwise indicated. All conditions herein are at 20° C. and under the atmospheric pressure, unless otherwise specifically stated. All polymer molecular weights are determined by weight average number molecular weight unless otherwise specifically noted.
- The laundry detergent sheet of the present invention is non-fibrous, i.e., it is free of or substantially free of fibrous elements. Such a laundry detergent sheet can be formed by first providing a slurry containing raw materials dissolved or dispersed in water, and then shaping the slurry into a sheet-like form. Drying is carried out either simultaneously with the shaping step, or it can be carried out subsequently, to remove water and form a finished sheet with little or no moisture content (e.g., less than 3 wt % water).
- The laundry detergent sheet of the present invention is completely or substantially water-soluble. In other words, it does not contain a water-insoluble substrate, as some of the conventional laundry detergent sheets do. The laundry detergent sheet of the present invention has a Water Dissolvability of at least 90%, preferably at least 95%, and more preferably at least 98%, and most preferably at least 99%. Preferably, the entire laundry detergent sheet of the present invention can be completely dissolved in a liter of deionized water, i.e., leaving no visible residue in the solution, within 15 seconds, more preferably within 10 seconds, and more preferably within 5 seconds, at 20° C. under atmospheric pressure and without any stirring.
- The laundry detergent sheet of the present invention can have any shape or size, as long as its thickness, its length, and its width are characterized by a length-to-thickness aspect ratio of at least about 5:1, a width-to-thickness aspect ratio of at least about 5:1, and a length-to-width aspect ratio of at least about 1:1. Preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 10:1, and the length-to-width aspect ratio is at least about 1.2:1. More preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 15:1, and the length-to-width aspect ratio is at least about 1.5:1. Most preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 20:1, and the length-to-width aspect ratio is at least about 1.618:1. The thickness of the laundry detergent sheet of the present invention may range from about 0.1 mm to about 10 cm, preferably from about 0.2 mm to about 5 mm, more preferably from about 0.3 mm to about 4 mm, and most preferably from about 0.5 mm to about 2 mm. The width of the laundry detergent sheet may range from about 2 cm to about 1 meter, preferably from about 5 cm to about 50 cm, more preferably from about 10 cm to about 40 cm. The length of the laundry detergent sheet may range from about 2 cm to about 50 meters, preferably from about 5 cm to about 1 meter, and more preferably from about 10 cm to about 80 cm.
- In a preferred but not necessary embodiment of the present invention, the laundry detergent sheet has a golden rectangular shape (i.e., with a length-to-width aspect ratio of about 1.618:1), and it is characterized by a width of about 10-15 cm and a thickness of about 0.5 mm to about 2 mm. Such a golden rectangular shape is aesthetically pleasing and delightful to the consumers, so multiple sheets of such shape can be stacked up and packaged together for sale in a container that is also characterized by a similar golden rectangular shape.
- In an alternative embodiment of the present invention, the laundry detergent sheet has an elongated shape (i.e., with a length-to-width aspect ratio of about 10-50:1), and it is characterized by a width of about 10-15 cm and a thickness of about 0.5 mm to about 2 mm. Such elongated shape allows the laundry detergent sheet to be rolled up or folded into a compact unit for easy of packaging, storage, shipment and display.
- The laundry detergent sheet of the present invention is characterized by a sufficiently high Surfactant Activity, e.g., at least 30%, preferably at least 50%, more preferably at least 60%, and most preferably at least 70%. Such high Surfactant Activity provides a very compact and concentrated form of laundry detergent, which is particularly convenient for consumers who travel often and need to do laundry on the road. Further, shipping and handling costs for such compact and concentrated form are significantly reduced, in comparison with the traditional powder or liquid forms of laundry detergents, which make this laundry detergent sheet particularly desirable to be marketed through e-commerce channels.
- Preferably, the laundry detergent sheet of the present invention has certain attributes that render it aesthetically pleasing to the consumers. For example, the sheet may have a relatively smooth surface, thereby providing a pleasant feel when touched by the consumer. Further, it is desirable that the laundry detergent sheet may have little or no perceivable pores on its surface.
- It is also desirable that the laundry detergent sheet of the present invention is strong to withstand substantive mechanical forces without losing its structural integrity, yet at the same time is sufficiently flexible for ease of packaging and storage.
- The present invention is based, in part, on the discovery that there can be less breakage of friable perfume microcapsules (“PMC”) if the friable PMCs are added after a sheet forming step (and optionally before a stamping/embossing step) even if there are additional capital costs associated with such a step. These capital costs are more than off-set by the improved yield obtained in unruptured friable PMC delivered to the final non-fibrous laundry detergent sheet product.
- One aspect of the invention provides a non-fibrous laundry detergent sheet comprising a friable PMC. “Friability” refers to the propensity of the microcapsules to rupture or break open when subjected to direct external pressures or shear forces. For purposes of the present invention, the microcapsules utilized are “friable” if, while attached to fabrics treated therewith, they can be ruptured by the forces encountered when the capsule-containing fabrics are manipulated by being worn or handled (thereby releasing the contents of the capsule). Friable perfume microcapsules are distinguished from moisture-activated microcapsules such as those microcapsules comprising mostly of cyclodextrin.
- Friable PMC are attractive for use in non-fibrous laundry detergent sheets because not only do the friable PMC enables top-note scent characters to deposit onto fabrics, but also allows the consumer to experience these scent types throughout the day while wearing their article of clothing. Friable PMC rupture and release perfume by a mechanical means (e.g., friction)—not a chemical means (e.g., water hydrolysis). Minimal fracture pressure is typically needed to break the structure such as normal everyday physical movements such as taking off a jacket; pulling a shirt over your head; or taking off/putting on socks. Furthermore, friable PMC also allow the consumer to have a delightful scent experience on fabrics which have been in storage even for long durations of time due to their ability to protect perfume from volatilization to the surrounding air space.
- Microcapsules of the current invention are formed by a variety of procedures that include, but are not limited to, coating, extrusion, spray-drying, interfacial, in-situ and matrix polymerization. The possible shell materials vary widely in their stability toward water (i.e., laundry washing and laundry rinsing). Among the most stable are polyoxymethyleneurea (PMU)-based materials, which may hold certain PRMs for even long periods of time in aqueous solution (or product). Such systems include but are not limited to urea-formaldehyde and/or melamine-formaldehyde.
- Generally microcapsules comprise a shell material and a core material, said shell material encapsulating said core material, said core material comprising a perfume composition and said shell comprising a material selected from the group consisting of polyethylenes; polyamides; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; aminoplasts, in one aspect said aminoplast comprises a polyureas, polyurethane, and/or polyureaurethane, in one aspect said polyurea comprises polyoxymethyleneurea and/or melamine formaldehyde; polyvinylamine, polyvinyl formamide, polyolefins; polyvinyl alcohol, polysaccharides, in one aspect alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof. The friable PMC may have a volume weighted mean particle size from about, from 5 microns to 45 microns more preferably from 8 microns to 25 microns, or alternatively a volume weighted mean particle size from, from about 25 microns to 60 microns, more preferably from 25 microns to 60 microns. In one example, the shell comprises melamine formaldehyde and/or cross linked melamine formaldehyde.
- The shell material may be coated by a water-soluble cationic polymer, for example, selected from the group that consists of polysaccharides, cationically modified starch and cationically modified guar, polysiloxanes, dimethyldiallylammonium polyhalogenides, copolymers of dimethyldiallylammonium polychloride and vinyl pyrrolidone, acrylamides, imidazoles, imidazolinium halogenides and imidazolium halogenides and polyvinyl amine and its copolymers with N-vinyl formamide. In one example, the coating that coats said shell, comprises a cationic polymer and an anionic polymer. In another example, said cationic polymer comprises hydroxyl ethyl cellulose; and said anionic polymer comprises carboxyl methyl cellulose.
- The process for making friable PMC may include one or more of the following steps:
- a) preparing a first solution that may comprise, based on total solution weight from 20% to 90%, from 40% to 80%, or even from 60% to 80% water, of a first emulsifier and a first resin, the ratio of said first emulsifier and said first resin being from 0.1:0 to 10:0, from about 0.1:1 to 10:1, from 0.5:1 to 3:1, or even from 0.8:1 to 1.1:1;
- b) preparing a second solution that may comprise based on total solution weight from 20% to 95% water, of a second emulsifier and a second resin, the ratio of said second emulsifier and said second resin being from 0:1 to 3:1, from 0.04:1 to 0.2:1, or even from 0.05:1 to 0.15:1;
- c) combining a core material that may comprise a perfume disclosed in the present specification and said first solution to form a first composition;
- d) emulsifying said first composition;
- e) combining said first composition and said second solution to form a second composition and optionally combining any processing aids and said second composition—said first composition and said second solution may be combined in any order but in one aspect said second solution is added to said first composition or said second solution and said first composition are combined simultaneously;
- f) mixing said second composition for at least 15 minutes, at least 1 hour or even from 4 hours to 100 hours at a temperature of from 25° C. to 100° C., from 45° C. to 90° C., or even from 50° C. to 80° C. heat and optionally combining any processing aids to said second composition;
- g) optionally combining any scavenger material, structurant, and/or anti-agglomeration agent with said second composition during step f.) or thereafter—such materials may be combined in any order but in one aspect the scavenger material is combined first, any structurant second, and then anti-agglomeration agent is combined; and
- h) optionally spray drying said second composition.
- In one or more aspects of the process, said first and second resins may comprise the reaction product of an aldehyde and an amine, suitable aldehydes include, formaldehyde. Suitable amines include melamine, urea, benzoguanamine, glycoluril, and mixtures thereof. Suitable melamines include, methylol melamine, methylated methylol melamine, imino melamine and mixtures thereof. Suitable ureas include, dimethylol urea, methylated dimethylol urea, urea-resorcinol, and mixtures thereof.
- In one or more aspects of the process, said first and second emulsifiers may comprise a moiety selected from the group consisting of carboxy, hydroxyl, thiol, amine, amide and combinations thereof. In one aspect, said emulsifier may have a pKa of less than 5, preferably greater than 0 but less than 5. Emulsifiers include acrylic acid-alkyl acrylate copolymer, poly(acrylic acid), polyoxyalkylene sorbitan fatty esters, polyalkylene co-carboxy anhydrides, polyalkylene co-maleic anhydrides, poly(methyl vinyl ether-co-maleic anhydride), poly(propylene-co-maleic anhydride), poly(butadiene co-maleic anhydride), and poly(vinyl acetate-co-maleic anhydride), polyvinyl alcohols, polyalkylene glycols, polyoxyalkylene glycols, and mixtures thereof.
- In one or more aspects of the process, the pH of the first and second solutions may be controlled such that the pH of said first and second solution is from about 3.0 to 7.0.
- In one or more aspects of the process, during step f.), from 0% to 10%, from 1% to 5% or even from 2% to 4%, based on total second composition weight, of a salt comprising an anion and cation, said anion being selected from the group consisting of chloride, sulfate, phosphate, nitrate, polyphosphate, citrate, maleate, fumarate and mixtures thereof; and said cation being selected from the group consisting of a Periodic Group IA element, Periodic Group IIA element, ammonium cation and mixtures thereof, preferably sodium sulfate, may be combined with said second composition.
- In one or more aspects of the process, any of the aforementioned processing parameters may be combined.
- Supplemental teachings of making suitable encapsulates as well as suitable shell materials are described in U.S. Pat. No. 6,869,923 B1 and US Published Patent Applications Nos. 2005/0276831 A1 and 2007/020263 A1. Suitable equipment for use in the processes disclosed herein may include continuous stirred tank reactors, homogenizers, turbine agitators, recirculating pumps, paddle mixers, ploughshear mixers, ribbon blenders, vertical axis granulators and drum mixers, both in batch and, where available, in continuous process configurations, spray dryers, and extruders. Such equipment can be obtained from Lodige GmbH (Paderborn, Germany), Littleford Day, Inc. (Florence, Ky., U.S.A.), Forberg AS (Larvik, Norway), Glatt Ingenieurtechnik GmbH (Weimar, Germany), Niro (Soeborg, Denmark), Hosokawa Bepex Corp. (Minneapolis, Minn., U.S.A.), Arde Barinco (New Jersey, U.S.A.).
- Although the a preferred aspect of the invention is directed to perfume encapsulated within the friable microcapsule, i.e., a friable PMC, the present invention is not be limited to only those microcapsules encapsulating perfume. Rather, the friable microcapsules may encapsulate any active that is suitable to have on clothing. Non-limiting examples of such actives include skin care agents (such as aloe vera or skin moisturizer) or insect repellent (such as DEET).
- One aspect of the invention comprises a microcapsule slurry, preferably wherein the microcapsule is a friable microcapsule or even more preferably a friable perfume microcapsule, contained in the microcapsule slurry tank.
- The term “microcapsule slurry tank” is used herein the broadest sense to include any container suitable for containing commercial quantities of a microcapsule slurry. The microcapsule slurry tank may comprise a heating element that imparts heat to the microcapsule slurry contained within the microcapsule slurry tank. The microcapsule slurry tank may also comprise a mixing element.
- The term “heating element” is used herein the broadest sense to include any device that may impart heat to the microcapsule slurry contained within the microcapsule slurry tank. In another embodiment, the microcapsule slurry is at a heated temperature in the microcapsule slurry tank (i.e., the microcapsule slurry is heated while in the microcapsule slurry tank or delivered to the microcapsule slurry already in a heated form, or combination thereof). Non-limiting examples of a heating element may include: electric heat tracing in the jacket of the microcapsule slurry tank (e.g., there is an outer layer and inner layer to the microcapsule slurry tank and between these layers there is an electric tracing that is controlled via a computer).
- The term “mixing elements” is used herein the broadest sense and includes any means of mixing the microcapsule slurry in the microcapsule slurry tank on a commercial scale. Non-limiting examples of mixing elements includes a wall scraper, agitator, recycle pump, or combinations thereof. A wall scraper works by scraping, in a circular pattern, microcapsule slurry that has adhered to the wall of the microcapsule slurry tank. An agitator is located at the bottom of the microcapsule slurry tank. Much like a blender, an agitator rotates in a circular fashion such that the microcapsule slurry is not allowed to settle at the bottom of the microcapsule slurry tank. A recycle pump pushes the microcapsule slurry from the bottom of the vessel through piping and back into the top of the microcapsule slurry tank. Manufacturers of mixing elements include Chemineer Kinetics.
- Preferably the microcapsule slurry is heated within at least about ±30° C., preferably ±20° C., preferably ±10° C. of the temperature of precursor laundry detergent sheet (i.e., after the sheet is removed from a roller) to which the microcapsule slurry is applied (i.e., dispensed thereto). For purposes of this invention, the temperature of the detergent sheet is taken immediately before the microcapsule slurry is dispensed thereto. An infrared temperature gun is one method of taking the temperature under these conditions.
- In one example, the microcapsule slurry is at a temperature from 50° C. to 100° C., alternatively from 55° C. to 99° C., alternatively 60° C. to 98° C. For purposes of this invention, the temperature is of the microcapsule slurry is assessed as the slurry is contained in the microcapsule slurry tank.
- In one example, the precursor laundry detergent sheet (after the detergent sheet forming step, but before the microcapsule slurry is dispensed to said detergent sheet) is at a temperature from 50° C. to 100° C., alternatively from 55° C. to 99° C., alternatively 60° C. to 98° C.
- This aspect of the invention is based, in part, on the observation that if the microcapsule slurry is not of sufficient elevated temperature upon the addition of the detergent sheet the microcapsule treated detergent sheet then the potential for several negatives including imperfections to the sheet (e.g., less smooth surface, or bumps or other undesirable effects to the aesthetics). Without wishing to be bound by theory, this temperature difference may impact the “curing” of the sheet.
- Another aspect of the invention provides for the amount of water in the microcapsule slurry to be minimized. For example, the microcapsule slurry comprises less than 75% water, alternatively less than 50% water, alternatively less than 42% water, by weight of the microcapsule slurry. In another example, the microcapsule slurry comprises from 75% to 20% water, alternatively from 65% to 30%, alternatively from 60% to 35%, alternatively from 50% to 38% by weight of the microcapsule slurry.
- Some water in the microcapsule slurry is desirable. Many suppliers of friable PMC provide the friable PMC as a friable PMC slurry comprising water (vs. a powder form). These friable PMC slurries are typically less expensive than powdered or dry forms of the same. Moreover, powdered forms of the friable PMC or those friable PMC slurries with high non-aqueous solvent levels may pose safety issues given the flammability associated with fine dust of the PMC and the flammability associated with some solvents, respectively. Water in the PMC slurry may also provide more uniform distribution of the PMC in the PMC slurry such as to avoid additional mixing steps such as ball mills and colloid mills. Preferably PMC is incorporated into the laundry detergent sheet without, or substantially without, ball milling or colloid milling steps.
- Yet another aspect of the invention provides for mixing the microcapsule slurry while the slurry is contained in the perfume slurry tank. Suitable ways of the mixing the slurry while in the perfume slurry tank include: a wall scraper, agitator, or combination thereof in the microcapsule slurry tank; or a static mixer in the pipe to or from the microcapsule slurry tank; or combinations thereof. Mixing by ball mills, colloid mills should preferably be avoided as to avoid breakage of the microcapsules. This aspect of the invention is based, in part, on the observation that mixing the PMC slurry provides more homogenous, uniform, incorporation of the microcapsule in the finished product.
- Yet in another aspect of the invention, the microcapsule slurry comprises a structurant. While not being bound by theory, it is believed that the anionic materials that are sometimes part of the microcapsule slurry may adversely interact with the cationic materials that may be part of the precursor laundry detergent sheet (or even visa versa). The interaction between anionic and cationic species may lead to aggregation or phase separation. In addition to the unacceptable aesthetics that results from aggregation of particles, such aggregates may result in rapid phase separation of the particles from the bulk phase. It is discovered that such aggregates may be prevented by the addition of structurants chosen from salts, polymers, or combinations thereof. Useful structurants may include: (1) divalent salts such as: magnesium salts, e.g., magnesium chloride, magnesium acetate, magnesium phosphate, magnesium formate, magnesium boride, magnesium titanate, magnesium sulfate heptahydrate; calcium salts, e.g., calcium chloride, calcium formate, calcium calcium acetate, calcium bromide; (2) trivalent salts such as: aluminum salts, e.g., aluminum sulfate, aluminum phosphate, aluminum chloride n-hydrate; and (3) polymers that have the ability to suspend anionic particles, such as soil suspension polymers, e.g., (polyethylene imines, alkoxylated polyethylene imines, polyquarternium-6 and polyquarternium-7).
- In one aspect, calcium formate and/or formic acid may be added to a microcapsule slurry comprising water. Calcium formate and/or formic acid is typically combined with, based on total aqueous microcapsule slurry weight, at a level of from 0.6% to 3%, from 1% to 2%, alternatively from 1.2% to 1.5%, of the microcapsule slurry. An additional benefit with the use of calcium formate and/or formic acid may include microbial inhibition. The structurant, for example, may comprise from 0.1% to 5%, alternatively, 0.5% to 4%, alternatively 0.6% to 3%, by weight of the microcapsule slurry.
- Optionally the microcapsule slurry comprises a formaldehyde scavenger.
- The flow of the microcapsule slurry, exiting from through piping from the microcapsule slurry tank, is pumped and can be regulated by a flow meter. The detergent sheet and friable PMC slurry may combine resulting in a composition that comprises from 0.1% to 10%, alternatively from 0.5% to 7%, alternatively from 1% to 6%, alternatively from 1.5% to 5%, alternatively from 1.5% to 4%, friable PMC by weight of the composition (wherein the composition comprises the detergent sheet and PMC). The combined detergent sheet and friable PMC, upon drying, may comprise from 5% to 0%, alternatively less than 4%, alternatively less than 3%, alternatively less than 2%, alternatively less than 1%, alternatively less than 0.5%, alternatively less than about 0.1%, alternatively substantially free, alternatively free, of water, by weight of the composition (wherein the composition comprises the detergent sheet and PMC).
- A nozzle is fluidly connected with the microcapsule slurry tank by way of through piping. An electromagnetic valve is placed on the through piping or nozzle. The nozzle is capable of spraying or otherwise dispensing the PMC slurry onto the precursor laundry detergent sheet.
- Less preferred, but within the scope of one aspect of the invention, is adding a composition of a friable PMC comprising a low amount of water (e.g., 5% to 0% water by weight of the composition such as in a powdered or granular form of the friable PMC) to the precursor laundry detergent sheet. The substantially solid form of the friable PMC or low water composition containing PMC may be added after the detergent sheet is formed. The process may include spraying the PMC composition to detergent sheet. The low water composition of the friable PMC may comprise less than 5%, or 4%, or 3%, or 2%, or 1%, or 0.5%, or 0.1% water by weight of the composition. The lower water composition of the friable PMC may comprise from 99.9% to 1%, alternatively from 80% to 99%, alternatively from 90% to 99% of the friable PMC by weight of the composition. In yet another embodiment, the low water composition of friable PMC is free or substantially free of detersive surfactants. The low water composition of friable PMC may be in a powder or granular form.
- Step(s) in making the non-fibrous laundry detergent sheet are described.
- Referring to
FIG. 1-6 of a cylinder laundry detergent sheet production system, the system comprises abase bracket 1, a heated rotatable cylinder 2 (seeFIG. 2 ) is installed on the saidbase bracket 1. A heatedrotatable cylinder 2 can be driven by the motorized drive A1 installed on the saidbase bracket 1, and work at a predetermined rotation speed. Said rotatingheat roll 2 is also coated with anon-stick coating 21. Thenon-stick coating 21 may be overlying on the outer surface of the heatedrotatable cylinder 2, or the saidnon-stick coating 21 is fixed tomedium 22 of the outer surface of the heatedrotatable cylinder 2. The medium 22 includes, but is not limited to, heat-resisting non-woven fabrics, heat-resisting carbon fiber, heat-resisting metal or non-metallic mesh and the like. The saidnon-stick coating 21 effectively preserves the activity of the laundry detergent composition in the sheet material from damage. - There is also a feeding mechanism 3 (see
FIG. 3 ) installed on the saidbracket 1, which is for adding the liquid laundry detergent sheet material (that is free of friable microcapsules) to said heatedrotatable cylinder 2. The liquid laundry detergent sheet material may comprise surfactants and film former materials described below. Notably, the liquid laundry detergent sheet material is free of friable microcapsules. Thefeeding mechanism 3 includes thefeeding rack 31 installed on the saidbracket 1; at least one (preferably two) feeding hopper(s) 32 installed on the saidfeeding rack 31; as well as animaging device 33 for dynamic observation of the feeding. Theimaging device 33 is installed on the saidfeeding rack 31 as well as theadjustment device 34 for adjusting the position and inclination angle of saidfeeding hopper 32. By adjusting the saidadjustment device 34 to adjust the distance between said feedinghopper 32 and the outer surface of the said heatedrotatable cylinder 2, the need for different thicknesses of the laundry detergent sheet production can be met. Theadjustment device 34 can adjust the feeding hopper 3:2 to different angles as to meet the material requirements of speed and quality. - There is also a heating shield 4 (see
FIG. 1 ) installed on the saidbracket 1, to prevent rapid heat lost. Otherwise, the laundry detergent sheet liquid material can be dried too quickly by the said heatedrotatable cylinder 2. The heating shield can also effectively save energy needed by the said heatedrotatable cylinder 2, thereby achieving reduced energy consumption and provide cost savings. Theheating shield 4 is a modular assembly structure, or integrated structure, and can be freely detached from the saidbracket 1. Thesuction device 41 is also installed on theheating shield 4, for sucking the hot steam, to avoid any water condensate falling on the raw material of laundry detergent sheet. - There is also a start feeding mechanism 5 (see
FIG. 1 ) installed on the saidbracket 1, which is for scooping up the laundry detergent sheet raw material dried by the said heatedrotatable cylinder 2. Thestart feeding mechanism 5 is installed on the saidbracket 1, or on one side of the self-propelledplatform 6, for transporting down the scooped laundry detergent sheet raw material (i.e., a precursor non-fibrous laundry detergent sheet). The saidstart feeding mechanism 5 can automatically or manually move close and go away from the heatedrotatable cylinder 2. - Without wishing to be bound by theory, the use of the
start feeding mechanism 5 can prematurely burst friable microcapsules if these microcapsules had otherwise been added to the original liquid laundry detergent sheet material. - The other side of the said self-propelled
platform 6 is connected to theslicing device 7, for shape slicing the laundry detergent sheet raw material, said self-propelledplatform 6 is located at the bottom or one side of the microcapsuleslurry tank device 8 - Optionally, if an embossing step is desired to the detergent sheet, said self-propelled platform is located at the bottom or one side of an
embossing device 9. The embossing device 9 (seeFIG. 6 ) is assembled by the freely stretching and rotating mobile arm 91, freely exchangeable embossing mold 92 installed on the one end of the said mobile arm 91, and the drive A3 for driving the said mobile arm 91. - Preferably any embossing steps are conducted before the dispensing of PMC slurry to the precursor non-fibrous laundry detergent sheet. Embossing the detergent sheet after microcapsule addition may burst the friable microcapsules.
- Wherein, the said self-propelled platform 6 (see
FIG. 1 ) is assembled by theplatform bracket 61, the self-propelledbelt 62 installed on theplatform bracket 61, and the drive A2 installed onplatform bracket 61, for driving said self-propelledbelt 62. - The said slicing device 7 (see
FIG. 4 ) is assembled by theslicing device housing 71, thecutter 72 placed inside the saidslicing device housing 71, and the drive A4 installed in the saidslicing device housing 71, for driving thecutter 72. - The microcapsule slurry tank device 9 (see
FIG. 5 ) is assembled bymicrocapsule slurry tank 81 used for storing the microcapsule slurry (and is preferably pressurized or gravity fed).Nozzle 83 is fluidly connected with themicrocapsule slurry tank 81 by way of throughpiping 82. Anelectromagnetic valve 84 is placed on said through piping 82 ornozzle 83. Thenozzle 83 is on the top of said self-propelledbelt 62 of the said self-propelledplatform 6. Thenozzle 83 is capable of spraying or otherwise dispensing the PMC slurry onto the detergent sheet. - The making process of the non-fibrous laundry detergent sheet is described. Firstly, the heated
rotatable cylinder 2, with thenon-stick coating 21, on the saidbracket 1, is driven by the drive A1. Next, theadjustment device 34 adjusts thefeeding mechanism 3 so that the distance between thefeeding hopper 32 and the outer surface of the heatedrotatable cylinder 2 reaches a preset value. Meanwhile, thefeeding hopper 32 adds liquid laundry detergent sheet raw material (free of friable microcapsules) to the heatedrotatable cylinder 2. Thesuction device 41 of theheating shield 4 sucks the hot steam generated by the heatedrotatable cylinder 2. Next, thestart feeding mechanism 5 scoops up the laundry detergent sheet upon evaporated water reaches a predetermined value. Drive A2 drives the self-propelledbelt 62 of the self-propelledplatform 6 to work to transport down the laundry detergent sheet raw material which is scooped up by the saidstart feeding mechanism 5. Drive A3 drives the mobile arm 91 of theembossing device 9 stretching and rotating freely, so that the embossing mold 92 can freely emboss the different shapes on the laundry detergent sheet material. Thereafter theelectromagnetic valve 84 is opened in order to spray the microcapsule slurry in thepressure vessel 81 throughnozzle 83 to the dried (and embossed) laundry detergent sheet raw material. Finally, drive A4 drives thecutter 72 of theslicing device 7 in order to cut the laundry detergent sheet into desired shapes to be packaged. - The non-fibrous laundry detergent sheet of the present invention may comprise at least one surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, amphoteric surfactants, cationic surfactants, and combinations thereof. Such at least one surfactant form a surfactant system in the non-fibrous laundry detergent sheet, which can be present in an amount ranging from about 5% to about 90%, preferably from about 10% to about 90%, more preferably from about 20% to about 90%, still more preferably from about 30% to about 90%, and most preferably from about 50% to about 90%, by total weight of the non-fibrous laundry detergent sheet.
- In a particularly preferred but not necessary embodiment of the present invention, the laundry detergent sheet may have a surfactant system containing only anionic surfactants, e.g., either a single anionic surfactant or a combination of two or more different anionic surfactants. Alternatively, the laundry detergent sheet of the present invention may have a composite surfactant system, e.g., containing a combination of one or more anionic surfactants with one or more nonionic surfactants, or a combination of one or more anionic surfactants with one or more amphoteric surfactants, or a combination of one or more anionic surfactants with one or more cationic surfactants, or a combination of all the above-mentioned types of surfactants (i.e., anionic, nonionic, amphoteric and cationic). Preferably but not necessarily, the laundry detergent sheet of the present invention has a composite surfactant system containing a combination of one or more anionic surfactants with one or more nonionic surfactants.
- Anionic surfactants suitable for forming the laundry detergent sheet of the present invention can be readily selected from the group consisting of C6-C20 linear or branched alkyl benzene sulfonates (LAS), C6-C20 linear or branched alkyl sulfates (AS), C6-C20 linear or branched alkyl alkoxylated sulfates (AAS), C6-C20 linear or branched alkyl sulfonates, C6-C20 linear or branched alkyl carboxylates, C6-C20 linear or branched alkyl phosphates, C6-C20 linear or branched alkyl phosphonates, and combinations thereof. Preferred anionic surfactants of the present invention are selected from the group consisting of LAS, AS, AAS, and combinations thereof. The total amount of anionic surfactants in the laundry detergent sheet may range from 5% to 90%, preferably from 10% to 80%, more preferably from 20% to 75%, and most preferably from 30% to 70%, by total weight of the non-fibrous laundry detergent sheet.
- A particularly preferred type of anionic surfactants for forming the non-fibrous laundry detergent sheet of the present invention are C6-C18 alkyl sulfates, which are referred to as “mid-cut AS” hereinafter, while each of which has a branched or linear unalkoxylated alkyl group containing from about 6 to about 18 carbon atoms. In a particularly preferred embodiment of the present invention, the mid-cut AS is present as the main surfactant in the laundry detergent sheet, i.e., it is present in an amount that is greater than 50% by total weight of all surfactants in said sheet, while other anionic surfactants (such as LAS and/or AAS) are present as co-surfactants for such mid-cut AS.
- The mid-cut AS of the present invention has the generic formula of R—O—SO3 −M+, while R is branched or linear unalkoxylated C6-C18 alkyl group, and M is a cation of alkali metal, alkaline earth metal or ammonium. Preferably, the R group of the AS surfactant contains from about 8 to about 16 carbon atoms, more preferably from about 10 to about 14 carbon atoms, and most preferably from about 12 to about 14 carbon atoms. R can be substituted or unsubstituted, and is preferably unsubstituted. R is substantially free of any alkoxylation. M is preferably a cationic of sodium, potassium, or magnesium, and more preferably M is a sodium cation.
- Such mid-cut AS surfactant(s) preferably functions as the main surfactant in the surfactant system of the non-fibrous laundry detergent sheet of the present invention. In other words, the mid-cut AS surfactant(s) are present in an amount of greater than 50% by total weight of all surfactants in the laundry detergent sheet.
- Preferably, but not necessarily, the surfactant system of the present invention contains a mixture of mid-cut AS surfactants, in which C6-C14 AS surfactants are present in an amount ranging from about 85% to about 100% by total weight of the mixture. This mixture can be referred to as a “C6-C14-rich AS mixture.” More preferably, such C6-C14-rich AS mixture contains from about 90 wt % to about 100 wt %, or from 92 wt % to about 98 wt %, or from about 94 wt % to about 96 wt %, or 100 wt % (i.e., pure), of C6-C14 AS.
- In a particularly preferred embodiment of the present invention, the surfactant system contains a mixture of mid-cut AS surfactants comprising from about 30 wt % to about 100 wt % or from about 50 wt % to about 99 wt %, preferably from about 60 wt % to about 95 wt %, more preferably from about 65 wt % to about 90 wt %, and most preferably from about 70 wt % to about 80 wt % of C12-C14 AS, which can be referred to as a “C12-C14-rich AS mixture.” Preferably, such C12-C14-rich AS mixture contains a majority of C12 AS. In a most preferred embodiment of the present invention, the surfactant system contains a mixture of mid-cut AS surfactants that consist of C12 and/or C14 AS surfactants, e.g., 100% C12 AS or from about 70 wt % to about 80 wt % of C12 AS and from 20 wt % to about 30 wt % of C14 AS, with little or no other AS surfactants therein.
- A commercially available mid-cut AS mixture particularly suitable for practice of the present invention is Texapon® V95 G from Cognis (Monheim, Germany).
- Further, the surfactant system of the present invention may contain a mixture of mid-cut AS surfactants comprising more than about 50 wt %, preferably more than about 60 wt %, more preferably more than 70 wt % or 80 wt %, and most preferably more than 90 wt % or even at 100 wt % (i.e., substantially pure), of linear AS surfactants having an even number of carbon atoms, including, for example, C6, C8, C10, C12, C14, C16, and C18 AS surfactants.
- The amount of mid-cut AS surfactants used in the present invention may range from about 5% to about 90%, preferably from about 10% to about 80%, more preferably from about 20% to about 75%, and most preferably from about 30% to about 70%, by total weight of the non-fibrous laundry detergent sheet. In a most preferred embodiment of the present invention, the non-fibrous laundry detergent sheet contains from about 10 wt % to about 60 wt %, preferably from about 20 wt % to about 50 wt %, of pure C12 AS or a C12-C14-rich AS mixture by total weight of such sheet, while the C12-C14-rich AS mixture contains from about 70 wt % to about 80 wt % of C12 AS and from 20 wt % to about 30 wt % of C14 AS by total weight of such mixture.
- The non-fibrous laundry detergent sheet of the present invention may contain, either alone as a main surfactant, or preferably in combination with the mid-cut AS described hereinabove as its co-surfactant, a C6-C20 linear alkylbenzene sulfonate (LAS). In a particularly preferred embodiment of the present invention, LAS is present as the main surfactant in the laundry detergent sheet, i.e., it is present in an amount that is greater than 50% by total weight of all surfactants in said sheet, while other anionic surfactants (such as mid-cut AS and/or AAS) are present as co-surfactants for such LAS.
- LAS anionic surfactants are well known in the art and can be readily obtained by sulfonating commercially available linear alkylbenzenes. Exemplary C6-C20 linear alkylbenzene sulfonates that can be used in the present invention include alkali metal, alkaline earth metal or ammonium salts of C6-C20 linear alkylbenzene sulfonic acids, and preferably the sodium, potassium, magnesium and/or ammonium salts of C11-C18 or C11-C14 linear alkylbenzene sulfonic acids. More preferred are the sodium or potassium salts of C12 linear alkylbenzene sulfonic acids, and most preferred is the sodium salt of C12 linear alkylbenzene sulfonic acid, i.e., sodium dodecylbenzene sulfonate.
- If present, the amount of LAS in the non-fibrous laundry detergent sheet of the present invention may range from about 5% to about 90%, preferably from about 10% to about 80%, more preferably from about 20% to about 75%, and most preferably from about 30% to about 70%, by total weight of the laundry detergent sheet. In a most preferred embodiment of the present invention, the non-fibrous laundry detergent sheet contains from about 5 wt % to about 20 wt % of a sodium, potassium, or magnesium salt of C12 linear alkylbenzene sulfonic acid.
- The non-fibrous laundry detergent sheet of the present invention may contain, either alone as a main surfactant, or preferably in combination with the mid-cut AS and/or LAS described hereinabove as a co-surfactant, a C10-C20 linear or branched alkylalkoxy sulfate (AAS) having an average degree of alkoxylation ranging from about 0.1 to about 5.
- The AAS surfactants preferably are C10-C20 linear or branched alkylethoxy sulfate (AES) with the following formula (I):
-
R—O—(C2H4O)x—SO3 −M+ (I), - wherein R is a linear or branched alkyl chain having from 10 to 20 carbon atoms, either saturated or unsaturated; x averages from 1 to 3; and M is selected from the group consisting of alkali metal ions, ammonium, or substituted ammonium. Preferably, R is a linear or branched alkyl chain having from 12 to 16 carbon atoms; x
averages 3; and M is sodium. The most preferred anionic surfactant for the practice of the present invention is sodium lauryl ether sulphate with an average degree of ethoxylation of about 3. - The AAS surfactants, if present, can be provided in an amount ranging from about 1% to about 30%, preferably from about 2% to about 20%, more preferably from about 5% to about 15%, by total weight of the non-fibrous laundry detergent sheet.
- The non-fibrous laundry detergent sheet of the present invention may contain one or more nonionic surfactants, which are to be used in combination with the anionic surfactants described hereinabove. Such nonionic surfactant(s) may be present in an amount ranging from 1% to 40%, preferably from 2% to 30%, more preferably from 5% to 25%, and most preferably from 10% to 20%, by total weight of such non-fibrous laundry detergent sheet.
- Suitable nonionic surfactants useful herein can comprise any conventional nonionic surfactant. These can include, for e.g., amine oxide surfactants and alkoxylated fatty alcohols. The nonionic surfactants may be selected from the ethoxylated alcohols and ethoxylated alkyl phenols of the formula R(OC2H4)nOH, wherein R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15. In one example, the nonionic surfactant is selected from ethoxylated alcohols having an average of about 24 carbon atoms in the alcohol and an average degree of ethoxylation of about 9 moles of ethylene oxide per mole of alcohol. Other non-limiting examples of nonionic surfactants useful herein include: C8-C18 alkyl ethoxylates, such as, NEODOL® nonionic surfactants from Shell; C6-C12 alkyl phenol alkoxylates where the alkoxylate units may be ethyleneoxy units, propyleneoxy units, or a mixture thereof; C12-C18 alcohol and C6-C12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic® from BASF; C14-C22 mid-chain branched alcohols; C14-C22 mid-chain branched alkyl alkoxylates, wherein x is from 1 to 30; alkylpolysaccharides, and specifically alkylpolyglycosides; polyhydroxy fatty acid amides; and ether capped poly(oxyalkylated) alcohol surfactants. Suitable nonionic surfactants also include those sold under the tradename Lutensol® from BASF.
- Preferred nonionic surfactants of the present invention include alkyl polyglucoside, alkyl alcohols, alkyl alkoxylated alcohols, alkyl alkoxylates, alkyl phenol alkoxylates, alkylcelluloses, polyhydroxy fatty acid amides, ether capped poly(oxyalkylated) alcohol surfactants. In a more preferred embodiment, the nonionic surfactant is selected from alkyl alkoxylated alcohols, such as a C8-18 alkyl alkoxylated alcohol, and more specifically a C8-18 alkyl ethoxylated alcohol. The alkyl alkoxylated alcohol may have an average degree of alkoxylation of from about 1 to about 50, or from about 1 to about 30, or from about 1 to about 20, or from about 1 to about 10. The alkyl alkoxylated alcohol can be linear or branched, substituted or unsubstituted.
- In a most preferred embodiment, the non-fibrous laundry detergent sheet of the present invention contains a C12-14 alkyl ethoxylated alcohol having an average degree of ethoxylation of from about 1 to about 10, or from about 1 to about 8, or from about 3 to about 7, in an amount ranging from about 1% to about 40%, preferably from about 5% to about 25%, and more preferably from about 10% to about 20%, by total weight of the laundry detergent sheet.
- The non-fibrous laundry detergent sheet of the present invention may optionally include one or more other adjunct detergent ingredients for assisting or enhancing cleaning performance or to modify the aesthetics of the sheet. Illustrative examples of such adjunct detergent ingredients include: (1) inorganic and/or organic builders, such as carbonates (including bicarbonates and sesquicarbonates), sulphates, phosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, zeolite, citrates, polycarboxylates and salts thereof (such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof), ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulphonic acid, 3,3-dicarboxy-4-oxa-1,6-hexanedioates, polyacetic acids (such as ethylenediamine tetraacetic acid and nitrilotriacetic acid) and salts thereof, fatty acids (such as C12-C18 monocarboxylic acids); (2) chelating agents, such as iron and/or manganese-chelating agents selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein; (3) clay soil removal/anti-redeposition agents, such as water-soluble ethoxylated amines (particularly ethoxylated tetraethylene-pentamine); (4) polymeric dispersing agents, such as polymeric polycarboxylates and polyethylene glycols, acrylic/maleic-based copolymers and water-soluble salts thereof of, hydroxypropylacrylate, maleic/acrylic/vinyl alcohol terpolymers, polyethylene glycol (PEG), polyaspartates and polyglutamates; (5) optical brighteners, which include but are not limited to derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and the like; (6) suds suppressors, such as monocarboxylic fatty acids and soluble salts thereof, high molecular weight hydrocarbons (e.g., paraffins, haloparaffins, fatty acid esters, fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones, etc.), N-alkylated amino triazines, propylene oxide, monostearyl phosphates, silicones or derivatives thereof, secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils; (7) suds boosters, such as C10-C16 alkanolamides, C10-C14 monoethanol and diethanol amides, high sudsing surfactants (e.g., amine oxides, betaines and sultaines), and soluble magnesium salts (e.g., MgCl2, MgSO4, and the like); (8) fabric softeners, such as smectite clays, amine softeners and cationic softeners; (9) dye transfer inhibiting agents, such as polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof; (10) enzymes, such as proteases, amylases, lipases, cellulases, and peroxidases, and mixtures thereof; (11) enzyme stabilizers, which include water-soluble sources of calcium and/or magnesium ions, boric acid or borates (such as boric oxide, borax and other alkali metal borates); (12) bleaching agents, such as percarbonates (e.g., sodium carbonate peroxyhydrate, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide), persulfates, perborates, magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid, 6-nonylamino-6-oxoperoxycaproic acid, and photoactivated bleaching agents (e.g., sulfonated zinc and/or aluminum phthalocyanines); (13) bleach activators, such as nonanoyloxybenzene sulfonate (NOBS), tetraacetyl ethylene diamine (TAED), amido-derived bleach activators including (6-octanamidocaproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamidocaproyl)oxybenzenesulfonate, and mixtures thereof, benzoxazin-type activators, acyl lactam activators (especially acyl caprolactams and acyl valerolactams); and (14) any other known detergent adjunct ingredients, including but not limited to carriers, hydrotropes, processing aids, dyes or pigments, and solid fillers.
- The non-fibrous laundry detergent sheet of the present invention contains, in addition to the surfactant(s) described and adjunct detergent ingredients described hereinabove, at least one film former. Such at least one film former can be selected from water-soluble polymers, either synthetic or natural in origin and may be chemically and/or physically modified.
- Suitable examples of water-soluble polymers for the practice of the present invention include polyalkylene glycols (also referred to as polyalkylene oxides or polyoxyalkylenes), polyvinyl alcohols, polysaccharides (such as starch or modified starch, cellulose or modified cellulose, pullulan, xanthum gum, guar gum, and carrageenan), polyacrylates, polymethacrylates, polyacrylamides, polyvinylpyrrolidones, and proteins/polypeptides or hydrolyzed products thereof (such as collagen and gelatin). Preferably, the film former to be used in the present invention is selected from the group consisting of polyalkylene glycols, polyvinyl alcohols, starch or modified starch, cellulose or modified cellulose, polyacrylates, polymethacrylates, polyacrylamides, polyvinylpyrrolidones, and combinations thereof. In a particularly preferred embodiment of the present invention, the non-fibrous laundry detergent sheet contains a polyethylene glycol (PEG) or a polyvinyl alcohol (PVA), either alone (i.e., without other film formers) or in combination with a polystarch, modified starch, cellulose, or modified cellulose.
- In the execution of PEG, the PEG may be selected from poly(ethylene glycol) homopolymers and poly(ethylene glycol) copolymers having a weight average molecular weight of between about 2,000 and about 100,000 g/mol, preferably between about 4,000 and about 90,000 g/mol, and more preferably between about 6,000 and about 8,000 g/mol. Suitable poly(ethylene glycol) copolymers preferably contain at least about 50 wt % of PEG and may be selected from the group consisting of poly(lactide-block-ethylene glycol), poly(glycolide-block-ethylene glycol), poly(lactide-co-caprolactone)-block-poly(ethylene glycol), poly(ethylene glycol-co-lactic acid), poly(ethylene glycol-co-glycolic acid), poly(ethylene glycol-co-poly(lactic acid-co-glycolic acid), poly(ethylene glycol-co-propylene glycol), poly(ethylene oxide-block-propylene oxide-block-ethylene oxide), poly(propylene oxide-block-ethylene glycol-block-propylene glycol), and poly(ethylene glycol-co-caprolactone). Exemplary poly(ethylene glycol) homopolymers are commercially available from Sigma Aldrich, or from Dow under the tradename of CARBOWAX™, or from BASF under the tradename of Pluriol®. Exemplary poly(ethylene glycol) copolymers are commercially available from BASF under the tradenames of Pluronic® F127, Pluronic® F108, Pluronic® F68 and Pluronic® P105. A particularly preferred PEG for the practice of the present invention is a poly(ethylene glycol) homopolymer having a weight average molecular weight of between about 6,000 and about 80,000 g/mol.
- In the execution of PVA, the PVA may be unmodified or modified, e.g., carboxylated or sulfonated. Preferably, the PVA is partially or fully alcoholised or hydrolysed. For example it may be from 40 to 100%, preferably 70 to 92%, more preferably 88% to 92%, alcoholised or hydrolysed. The degree of hydrolysis is known to influence the temperature at which the PVA starts to dissolve in water, e.g., 88% hydrolysis corresponds to a PVA film soluble in cold (i.e. room temperature) water, whereas 92% hydrolysis corresponds to a PVA film soluble in warm water. An example of preferred PVA is ethyoxylated PVA. A more preferred example of PVA is commercially available from Sekisui Specialty Chemicals America, LLC (Dallas, Tex.) under the tradename CELVOL®. Another more preferred example of PVA is the so-called G Polymer commercially available Nippon Ghosei.
- The film former may be present in the non-fibrous laundry detergent sheet of the present invention at from about 1% to about 70%, preferably from about 2% to about 60%, more preferably from about 5% to about 50%, and most preferably from about 10% to about 40%, by total weight of the sheet.
- In addition to the film former, the non-fibrous laundry detergent sheet may also comprise suitable additives such as plasticizers and solids, for modifying the properties of the film former. Suitable plasticizers are, for example, pentaerythritols such as depentaerythritol, sorbitol, mannitol, glycerine and glycols such as glycerol or ethylene glycol. Plasticizers are generally used in an amount of up to 35 wt %, for example from 5 to 35 wt %, preferably from 7 to 20 wt %, more preferably from 10 to 15 wt %. Solids such as talc, stearic acid, magnesium stearate, silicon dioxide, zinc stearate or colloidal silica may also be used, generally in an amount ranging from about 0.5 to 5 wt %.
- The pH of the detergent sheet is about neutral to basic, preferably having a pH from 7 to 9, more preferably from 7.5 to 9.
- The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
- Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
- While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/077,345 US11680232B2 (en) | 2017-02-06 | 2020-10-22 | Laundry detergent sheet with microcapsules |
US18/313,572 US12129454B2 (en) | 2017-02-06 | 2023-05-08 | Laundry detergent sheet with microcapsules |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/072927 WO2018141096A1 (en) | 2017-02-06 | 2017-02-06 | Laundry detergent sheet with microcapsules |
CN2017/072927 | 2017-02-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/077,345 Division US11680232B2 (en) | 2017-02-06 | 2020-10-22 | Laundry detergent sheet with microcapsules |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180223225A1 true US20180223225A1 (en) | 2018-08-09 |
Family
ID=63037029
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/888,115 Abandoned US20180223225A1 (en) | 2017-02-06 | 2018-02-05 | Laundry detergent sheet with microcapsules |
US17/077,345 Active US11680232B2 (en) | 2017-02-06 | 2020-10-22 | Laundry detergent sheet with microcapsules |
US18/313,572 Active US12129454B2 (en) | 2017-02-06 | 2023-05-08 | Laundry detergent sheet with microcapsules |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/077,345 Active US11680232B2 (en) | 2017-02-06 | 2020-10-22 | Laundry detergent sheet with microcapsules |
US18/313,572 Active US12129454B2 (en) | 2017-02-06 | 2023-05-08 | Laundry detergent sheet with microcapsules |
Country Status (10)
Country | Link |
---|---|
US (3) | US20180223225A1 (en) |
EP (1) | EP3577205A4 (en) |
JP (1) | JP6882496B2 (en) |
KR (1) | KR102360241B1 (en) |
CN (1) | CN110225967A (en) |
BR (1) | BR112019015854A2 (en) |
CA (1) | CA3050343A1 (en) |
MX (1) | MX2019009276A (en) |
RU (1) | RU2742886C1 (en) |
WO (1) | WO2018141096A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190093057A1 (en) * | 2017-09-25 | 2019-03-28 | The Procter & Gamble Company | Unitary laundry detergent article |
WO2020252502A1 (en) * | 2019-06-13 | 2020-12-17 | The Procter & Gamble Company | Process for making a fibrous structure |
US20210238509A1 (en) * | 2018-10-19 | 2021-08-05 | Henkel Ag & Co. Kgaa | Soluble Laundry Detergent Sheets With Textile Stiffening Agent And Cellulase |
US20210238508A1 (en) * | 2018-10-19 | 2021-08-05 | Henkel Ag & Co. Kgaa | Soluble Laundry Detergent Sheets With Textile Stiffening Agents |
US20210238517A1 (en) * | 2018-10-19 | 2021-08-05 | Henkel Ag & Co. Kgaa | Soluble Laundry Detergent Sheets With Soil Release Polymers |
US20220054365A1 (en) * | 2020-08-19 | 2022-02-24 | The Procter & Gamble Company | Flexible, porous, dissolvable solid sheet article containing direct-added microcapsules and process for making the same |
US11544764B2 (en) | 2019-06-10 | 2023-01-03 | The Procter & Gamble Company | Method of generating user feedback information to enhance product use results |
US11680232B2 (en) | 2017-02-06 | 2023-06-20 | The Procter & Gamble Company | Laundry detergent sheet with microcapsules |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112064350B (en) * | 2020-08-19 | 2023-04-25 | 广州视源电子科技股份有限公司 | Tablet for clothing care and preparation method thereof |
WO2022036581A1 (en) | 2020-08-19 | 2022-02-24 | The Procter & Gamble Company | Flexible, porous, dissolvable solid sheet article containing direct-added microcapsules and process for making same |
MX2023002188A (en) * | 2020-09-01 | 2023-03-03 | Procter & Gamble | Detergent granule. |
IT202000026401A1 (en) | 2020-11-05 | 2022-05-05 | Francesco Beneduce | INNOVATIVE AND LOW ENVIRONMENTAL IMPACT SOLUTION FOR LAUNDRY. DETERGENT AND SOFTENER ON SOLID SUPPORT FOR SANITIZING LAUNDRY |
CN115572643A (en) * | 2022-10-19 | 2023-01-06 | 宝洁公司 | Laundry detergent compositions containing dye fixing agent and water soluble calcium salt |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040152617A1 (en) * | 2003-02-03 | 2004-08-05 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Laundry cleansing and conditioning compositions |
US20070269651A1 (en) * | 2006-05-05 | 2007-11-22 | Denome Frank W | Films with microcapsules |
US20080305982A1 (en) * | 2007-06-11 | 2008-12-11 | Johan Smets | Benefit agent containing delivery particle |
US20100239622A1 (en) * | 2005-09-26 | 2010-09-23 | Photo Print Soap Ltd. | Detergent printed film |
US20110039985A1 (en) * | 2001-10-09 | 2011-02-17 | Arrow Coated Products, Ltd. | Method of manufacturing embedded water soluble film carrier |
US20140315772A1 (en) * | 2013-04-18 | 2014-10-23 | The Procter & Gamble Company | Fragrance materials |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3126675B2 (en) * | 1997-01-23 | 2001-01-22 | 花王株式会社 | Sheet detergent |
TW399096B (en) | 1996-07-03 | 2000-07-21 | Kao Corp | The sheet-like article for laundry |
JP2000169896A (en) * | 1998-12-11 | 2000-06-20 | Kao Corp | Article for laundry |
US6818606B1 (en) | 1999-06-16 | 2004-11-16 | Kao Corporation | Article for use in washing in sheet form |
JP3544156B2 (en) | 1999-10-29 | 2004-07-21 | 花王株式会社 | Manufacturing method of sheet-like laundry article |
DE19955240A1 (en) | 1999-11-17 | 2001-05-23 | Henkel Kgaa | Production of laundry and other detergent tablets, useful in washing machine or dishwasher, or bleach or water softener tablets by pressing detergent composition(s), uses ink-jet printing for marking tablets |
GB9929843D0 (en) | 1999-12-16 | 2000-02-09 | Unilever Plc | Process for preparing granular detergent compositions |
JP2001294899A (en) * | 2000-04-12 | 2001-10-23 | Lion Corp | Sheet-like washing product |
EP1462512B1 (en) * | 2003-03-24 | 2007-08-01 | The Procter & Gamble Company | Compositions comprising complexes of cyclodextrin and at least one laundry treatment active |
US7285520B2 (en) * | 2003-12-01 | 2007-10-23 | Kimberly-Clark Worldwide, Inc. | Water disintegratable cleansing wipes |
JP2005179430A (en) * | 2003-12-17 | 2005-07-07 | Lion Corp | Coated particle for detergent composition and detergent composition |
GB0425795D0 (en) * | 2004-11-24 | 2004-12-22 | Givaudan Sa | Composition |
US20080014393A1 (en) * | 2006-05-05 | 2008-01-17 | The Procter & Gamble Company | Functionalized substrates comprising perfume microcapsules |
US7786027B2 (en) * | 2006-05-05 | 2010-08-31 | The Procter & Gamble Company | Functionalized substrates comprising perfume microcapsules |
US7659239B2 (en) * | 2006-05-24 | 2010-02-09 | The Procter & Gamble Company | Process of incorporating microcapsules into dryer-added fabric care articles |
BRPI0718782B1 (en) * | 2006-11-22 | 2023-10-10 | Encapsys, Llc | BENEFICIAL AGENT CONTAINING RELEASE PARTICLE AND NON-THERAPEUTIC METHOD FOR APPLYING A PARTICLE COMPOSITION TO A NON-HUMAN AND NON-ANIMAL TISSUE OR SURFACE |
WO2009047124A1 (en) | 2007-10-12 | 2009-04-16 | Unilever Plc | Laundry treatment compositions with lamellar visual cues |
GB0814423D0 (en) * | 2008-08-08 | 2008-09-10 | Unilever Plc | Improvements relating to surfactant-containing compositions |
CA2695068A1 (en) | 2009-03-02 | 2010-09-02 | Dizolve Group Corporation | Dissolvable laundry detergent sheet |
MX2011012309A (en) | 2009-05-19 | 2011-12-14 | Procter & Gamble | A method for printing water-soluble film. |
US8367596B2 (en) * | 2009-07-30 | 2013-02-05 | The Procter & Gamble Company | Laundry detergent compositions in the form of an article |
ES2647570T3 (en) * | 2009-11-06 | 2017-12-22 | The Procter & Gamble Company | High efficacy capsules comprising beneficial agent |
EP2512406B1 (en) | 2009-12-18 | 2018-01-24 | The Procter and Gamble Company | Perfumes and perfume encapsulates |
US9186642B2 (en) * | 2010-04-28 | 2015-11-17 | The Procter & Gamble Company | Delivery particle |
US20110269657A1 (en) | 2010-04-28 | 2011-11-03 | Jiten Odhavji Dihora | Delivery particles |
US8849750B2 (en) | 2010-10-13 | 2014-09-30 | International Business Machines Corporation | Synchronization for initialization of a remote mirror storage facility |
JP2014508830A (en) * | 2011-02-16 | 2014-04-10 | ノボザイムス アクティーゼルスカブ | Detergent composition containing metalloprotease |
ES2809509T3 (en) | 2011-05-05 | 2021-03-04 | Procter & Gamble | Compositions and Methods Comprising Serine Protease Variants |
WO2012157851A2 (en) | 2011-05-13 | 2012-11-22 | 주식회사 엘지생활건강 | Sheet for washing |
US20120296603A1 (en) | 2011-05-16 | 2012-11-22 | Qualcomm Incorporated | Sensor orientation measurement with respect to pedestrian motion direction |
US9179814B2 (en) | 2012-04-13 | 2015-11-10 | The Procter & Gamble Company | Cleaning article comprising lines of frangibility with marked indicia |
KR101368844B1 (en) | 2012-04-30 | 2014-03-04 | 주식회사 엘지생활건강 | Case for detergent of sheet type |
CN104919033B (en) * | 2012-10-12 | 2017-10-10 | 国际香料和香精公司 | Utilize the Ethyl vanillin or the enhanced deposition of vanillic aldehyde of fragile microcapsule |
JP6431087B2 (en) | 2013-12-09 | 2018-11-28 | ザ プロクター アンド ギャンブル カンパニー | Fiber structure containing activator and printed graphics |
CA2842442C (en) * | 2014-02-06 | 2020-07-14 | Dizolve Group Corp. | Method for making a laundry detergent sheet comprising a first shelf-stable solution and a second non-shelf-stable solution |
US9827173B2 (en) | 2014-05-05 | 2017-11-28 | The Procter & Gamble Company | Porous dissolvable solid structure with two benefit agents and methods of forming an aqueous treatment liquor therefrom |
WO2015193488A1 (en) * | 2014-06-20 | 2015-12-23 | Novozymes A/S | Metalloprotease from kribbella aluminosa and detergent compositions comprising the metalloprotease |
CN105796375B (en) * | 2014-12-31 | 2018-07-13 | 罗允俊 | Portable clearing article |
CN105199887B (en) | 2015-10-19 | 2018-10-02 | 茗燕生物科技(上海)有限公司 | Instant pummelo peel extract laundry sheet and preparation method thereof |
CN205398584U (en) | 2016-02-17 | 2016-07-27 | 茗燕生物科技(上海)有限公司 | Roll -type laundry piece production system |
CN105602773B (en) | 2016-02-17 | 2018-08-03 | 茗燕生物科技(上海)有限公司 | Laundry sheet intellectualized production system |
WO2017184606A2 (en) * | 2016-04-18 | 2017-10-26 | Monosol, Llc | Perfume microcapsules and related film and dtergent compositions |
CN205856432U (en) | 2016-08-15 | 2017-01-04 | 邓国政 | A kind of Superconcentrated washing sheet |
JP6882496B2 (en) | 2017-02-06 | 2021-06-02 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | Laundry detergent sheet with microcapsules |
-
2017
- 2017-02-06 JP JP2019542171A patent/JP6882496B2/en active Active
- 2017-02-06 MX MX2019009276A patent/MX2019009276A/en unknown
- 2017-02-06 RU RU2019127975A patent/RU2742886C1/en active
- 2017-02-06 BR BR112019015854A patent/BR112019015854A2/en not_active Application Discontinuation
- 2017-02-06 KR KR1020197022392A patent/KR102360241B1/en active IP Right Grant
- 2017-02-06 CA CA3050343A patent/CA3050343A1/en not_active Abandoned
- 2017-02-06 WO PCT/CN2017/072927 patent/WO2018141096A1/en active Application Filing
- 2017-02-06 CN CN201780084834.7A patent/CN110225967A/en active Pending
- 2017-02-06 EP EP17895413.7A patent/EP3577205A4/en active Pending
-
2018
- 2018-02-05 US US15/888,115 patent/US20180223225A1/en not_active Abandoned
-
2020
- 2020-10-22 US US17/077,345 patent/US11680232B2/en active Active
-
2023
- 2023-05-08 US US18/313,572 patent/US12129454B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110039985A1 (en) * | 2001-10-09 | 2011-02-17 | Arrow Coated Products, Ltd. | Method of manufacturing embedded water soluble film carrier |
US20040152617A1 (en) * | 2003-02-03 | 2004-08-05 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Laundry cleansing and conditioning compositions |
US20100239622A1 (en) * | 2005-09-26 | 2010-09-23 | Photo Print Soap Ltd. | Detergent printed film |
US20070269651A1 (en) * | 2006-05-05 | 2007-11-22 | Denome Frank W | Films with microcapsules |
US20080305982A1 (en) * | 2007-06-11 | 2008-12-11 | Johan Smets | Benefit agent containing delivery particle |
US20140315772A1 (en) * | 2013-04-18 | 2014-10-23 | The Procter & Gamble Company | Fragrance materials |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11680232B2 (en) | 2017-02-06 | 2023-06-20 | The Procter & Gamble Company | Laundry detergent sheet with microcapsules |
US12129454B2 (en) | 2017-02-06 | 2024-10-29 | The Procter & Gamble Company | Laundry detergent sheet with microcapsules |
US20190093057A1 (en) * | 2017-09-25 | 2019-03-28 | The Procter & Gamble Company | Unitary laundry detergent article |
US11118146B2 (en) * | 2017-09-25 | 2021-09-14 | The Procter & Gamble Company | Unitary laundry detergent article |
US20210238509A1 (en) * | 2018-10-19 | 2021-08-05 | Henkel Ag & Co. Kgaa | Soluble Laundry Detergent Sheets With Textile Stiffening Agent And Cellulase |
US20210238508A1 (en) * | 2018-10-19 | 2021-08-05 | Henkel Ag & Co. Kgaa | Soluble Laundry Detergent Sheets With Textile Stiffening Agents |
US20210238517A1 (en) * | 2018-10-19 | 2021-08-05 | Henkel Ag & Co. Kgaa | Soluble Laundry Detergent Sheets With Soil Release Polymers |
US11544764B2 (en) | 2019-06-10 | 2023-01-03 | The Procter & Gamble Company | Method of generating user feedback information to enhance product use results |
WO2020252502A1 (en) * | 2019-06-13 | 2020-12-17 | The Procter & Gamble Company | Process for making a fibrous structure |
US20220054365A1 (en) * | 2020-08-19 | 2022-02-24 | The Procter & Gamble Company | Flexible, porous, dissolvable solid sheet article containing direct-added microcapsules and process for making the same |
Also Published As
Publication number | Publication date |
---|---|
RU2742886C1 (en) | 2021-02-11 |
EP3577205A4 (en) | 2020-10-28 |
US11680232B2 (en) | 2023-06-20 |
KR20190100965A (en) | 2019-08-29 |
BR112019015854A2 (en) | 2020-04-07 |
EP3577205A1 (en) | 2019-12-11 |
JP6882496B2 (en) | 2021-06-02 |
KR102360241B1 (en) | 2022-02-10 |
US20230272312A1 (en) | 2023-08-31 |
CA3050343A1 (en) | 2018-08-09 |
CN110225967A (en) | 2019-09-10 |
US12129454B2 (en) | 2024-10-29 |
JP2020506992A (en) | 2020-03-05 |
US20210040420A1 (en) | 2021-02-11 |
WO2018141096A1 (en) | 2018-08-09 |
MX2019009276A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12129454B2 (en) | Laundry detergent sheet with microcapsules | |
JP5649817B2 (en) | Film with microcapsules | |
CA2653119C (en) | Process of incorporating microcapsules into dryer-added fabric care articles | |
CN111051490B (en) | Integrated laundry detergent article | |
JP7046829B2 (en) | Fragrance microcapsules and related films and detergent compositions | |
JP7414839B2 (en) | Method of manufacturing fibrous water-soluble unit dose articles | |
EP3132016A1 (en) | Laundry detergent composition | |
US20090029897A1 (en) | Detergent or Cleaning Agent | |
KR20220111295A (en) | Unit dose articles for packaging personal care products | |
US20220356418A1 (en) | Water-soluble unit dose article including water-soluble core construction | |
KR20240019086A (en) | Water-soluble unit dose article comprising a water-soluble core component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE PROCTER AND GAMBLE COMPANY, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAN, HONG SING;TANG, MING;SIVIK, MARK ROBERT;AND OTHERS;SIGNING DATES FROM 20170303 TO 20171108;REEL/FRAME:044827/0220 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |