[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20180205204A1 - Ignition apparatus - Google Patents

Ignition apparatus Download PDF

Info

Publication number
US20180205204A1
US20180205204A1 US15/743,732 US201615743732A US2018205204A1 US 20180205204 A1 US20180205204 A1 US 20180205204A1 US 201615743732 A US201615743732 A US 201615743732A US 2018205204 A1 US2018205204 A1 US 2018205204A1
Authority
US
United States
Prior art keywords
terminal
spring
extension portion
main body
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/743,732
Other versions
US10291000B2 (en
Inventor
Akimitsu Sugiura
Kenji Hattori
Shunichi Takeda
Kaori DOI
Ryota WAKASUGI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKEDA, SHUNICHI, WAKASUGI, Ryota, HATTORI, KENJI, DOI, KAORI, SUGIURA, AKIMITSU
Publication of US20180205204A1 publication Critical patent/US20180205204A1/en
Application granted granted Critical
Publication of US10291000B2 publication Critical patent/US10291000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T15/00Circuits specially adapted for spark gaps, e.g. ignition circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/04Means providing electrical connection to sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/08Mounting, fixing or sealing of sparking plugs, e.g. in combustion chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/38Selection of materials for insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • H01T13/42Sparking plugs structurally combined with other devices with magnetic spark generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode

Definitions

  • the present invention relates to ignition apparatuses for internal combustion engines.
  • ignition apparatuses for internal combustion engines there are known those which include a spark plug to be used as an ignition means for an internal combustion engine and an ignition coil that applies a high voltage to the spark plug.
  • inductance is formed in a spring that electrically connects between a secondary coil of the ignition coil and the spark plug. Specifically, inductance is formed by increasing the number of turns or the like at a part of the spring. Consequently, it is possible to reduce noise, which is generated during a discharge of the spark plug, without increasing the parts count of the ignition apparatus.
  • the present invention has been made in view of the above problems, and aims to provide an ignition apparatus capable of effectively reducing the noise.
  • An ignition apparatus includes:
  • a spark plug to be used as an ignition means for an internal combustion engine
  • the spark plug has a plug terminal electrically connected with a center electrode and protruding proximalward from an insulator
  • the ignition coil includes a coil main body, which includes a primary coil and a secondary coil, and a helical spring that electrically connects the secondary coil and the plug terminal,
  • the plug terminal is made of a material that is both electrically conductive and magnetic
  • the plug terminal includes a terminal main body, which has an outer diameter greater than an inner diameter of the spring, and a terminal extension portion that has an outer diameter less than the inner diameter of the spring and extends proximalward from the terminal main body,
  • the terminal extension portion is inserted and arranged in the spring
  • an insulating member is interposed between an outer circumferential surface of the terminal extension portion and an inner circumferential surface of the spring, there is interposed an insulating member.
  • the terminal extension portion provided in the plug terminal is inserted in the spring. That is, the terminal extension portion made of the magnetic material is arranged in the spring, thereby increasing the inductance component of the spring. Moreover, between the outer circumferential surface of the terminal extension portion and the inner circumferential surface of the spring, there is interposed the insulating member. Consequently, it is possible to prevent a reduction in impedance due to a short circuit of the spring to the electrically-conductive terminal extension portion. As a result, it is possible to improve the impedance to noise current, thereby effectively reducing the noise.
  • FIG. 1 is a partially cross-sectional view showing part of an ignition apparatus according to a first embodiment.
  • FIG. 2 is a front view in partial cross section showing a spring and a spark plug of the ignition apparatus according to the first embodiment.
  • FIG. 3 is a front view in partial cross section showing the spark plug of the ignition apparatus according to the first embodiment.
  • FIG. 4 is a front view in partial cross section showing the spring and a plug terminal of the ignition apparatus according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along lines V-V in FIG. 4 .
  • FIG. 6 is an enlarged cross-sectional view showing a terminal extension portion and components surrounding it in an ignition apparatus according to a second embodiment.
  • FIG. 7 is an exploded side view showing a terminal extension portion and components surrounding it in an ignition apparatus according to a third embodiment.
  • FIG. 8 is an enlarged cross-sectional view showing the terminal extension portion and the components surrounding it in the ignition apparatus according to the third embodiment.
  • FIG. 9 is a cross-sectional view taken along lines IX-IX in FIG. 8 .
  • An ignition apparatus 1 according to a first embodiment will be described with reference to FIGS. 1-5 .
  • the ignition apparatus 1 includes a spark plug 2 to be used as an ignition means for an internal combustion engine and an ignition coil 3 that applies a high voltage to the spark plug 2 .
  • the spark plug 2 has a plug terminal 22 electrically connected with a center electrode 21 and protruding proximalward from an insulator 23 .
  • the ignition coil 3 includes a coil main body 30 , which includes a primary coil 31 and a secondary coil 32 , and a helical spring 33 that electrically connects the secondary coil 32 and the plug terminal 22 .
  • the plug terminal 22 is made of a material that is both electrically conductive and magnetic. As shown in FIGS. 1-5 , the plug terminal 22 includes a terminal main body 221 , which has an outer diameter greater than an inner diameter of the spring 33 , and a terminal extension portion 222 that has an outer diameter less than the inner diameter of the spring 33 and extends proximalward from the terminal main body 221 .
  • a distal end portion 331 of the spring 33 abuts the terminal main body 221 .
  • the terminal extension portion 222 is inserted and arranged in the spring 33 . Between an outer circumferential surface of the terminal extension portion 222 and an inner circumferential surface of the spring 33 , there is interposed an insulating member 4 .
  • the ignition apparatus 1 is to be provided in, for example, an internal combustion engine of a motor vehicle or the like.
  • the ignition coil 3 includes a tubular joint 12 that connects the coil main body 30 and the spark plug 2 .
  • the joint 12 is to be inserted in a plug hole (not shown) of the internal combustion engine to which the spark plug 2 is to be mounted.
  • a plug hole not shown
  • explanation is made referring to the side of the spark plug 2 in an axial direction of the joint 12 as the distal side and the opposite side as the proximal side.
  • the coil main body 30 is formed by receiving the primary coil 31 and the secondary coil 32 in a case 35 . From the case 35 , a high-voltage tower portion 11 protrudes distalward. To the high-voltage tower portion 11 , there is connected a proximal end portion of the joint 12 . A distal end portion of the joint 12 is fitted to the spark plug 2 .
  • the high-voltage tower portion 11 holds therein a high-voltage output terminal 111 for outputting the high voltage generated in the coil main body 30 .
  • the spring 33 has its proximal end abutting the high-voltage output terminal 111 and its distal end abutting the plug terminal 22 of the spark plug 2 . That is, the spring 33 is interposed between the high-voltage output terminal 111 and the plug terminal 22 to electrically connect the high-voltage output terminal 111 and the plug terminal 22 .
  • the spark plug 2 has the insulator 23 holding the center electrode 21 therein and a housing 24 holding the insulator 23 therein. To a distal end portion of the housing 24 , there is joined a ground electrode 25 that forms a discharge gap between it and the center electrode 21 . Moreover, the plug terminal 22 is held in the insulator 23 and protrudes proximalward from the insulator 23 .
  • the terminal plug 22 is made, for example, of carbon steel. As shown in FIGS. 3-5 , the terminal plug 22 has the terminal main body 221 and the terminal extension portion 222 formed integrally into one piece. Moreover, a distal protruding portion 223 , which protrudes distalward from the terminal main body 221 , is also formed integrally with the terminal main body 221 and the terminal extension portion 222 into one piece. The terminal plug 22 has the distal protruding portion 223 fitted in the insulator 23 and the terminal main body 221 and the terminal extension portion 222 protruding proximalward from the insulator 23 .
  • the terminal main body 221 and the terminal extension portion 222 have respective substantially cylindrical shapes with outer diameters different from each other.
  • the terminal main body 221 and the terminal extension portion 222 are in a state where their central axes coincide with each other.
  • the terminal main body 221 has a shape such that its outer diameter varies depending on the axial position; at least the maximum outer diameter of the terminal main body 221 is greater than the inner diameter of the spring 33 .
  • a proximal end surface 224 of the terminal main body 221 is formed as a substantially flat surface; the proximal end surface 224 has an outer diameter greater than the inner diameter of the spring 33 .
  • the outer diameter of the terminal extension portion 222 is less than the inner diameter of the spring 33 .
  • the terminal extension portion 222 has such a shape as to extend straight proximalward in the axial direction from the terminal main body 221 .
  • the axial length of the terminal extension portion 222 is set according to a desired inductance. For example, it is preferable for the axial length of the terminal extension portion 222 to be greater than or equal to 10 mm. In the present embodiment, the axial length of the terminal extension portion 222 is greater than the axial length of the terminal main body 221 . Moreover, the axial length of the terminal extension portion 222 is also greater than the axial length of that portion of the insulator 23 which protrudes proximalward from the housing 24 . In addition, the axial length of the terminal extension portion 222 is less than the axial length of the spring 33 .
  • the spring 33 has its distal end abutting and thereby being electrically connected with the plug terminal 22 . However, it is necessary for the spring 33 to be not electrically connected with the plug terminal 22 except at the distal end portion thereof. If the spring 33 was in contact with the terminal extension portion 222 at a portion thereof other than the distal end portion, a short circuit would be formed between the contact portion and the distal end portion in the spring 33 ; consequently, the inductance might be lowered. Therefore, between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33 , there is interposed the insulating member 4 .
  • the insulating member 4 is constituted of an insulating coat 41 that is coated on the spring 33 .
  • the insulating coat 41 is formed, for example, of resin, such as polyester, nylon, polyimide, urethane or the like.
  • the insulating coat 41 is formed over the entire circumference of the surface of winding of the spring 33 .
  • the distal end portion 331 of the spring 33 is exposed from the insulating coat 41 ; the exposed portion is placed in contact with the terminal main body 221 of the plug terminal 22 .
  • the distal end portion 331 of the spring 33 exposed from the insulating coat 41 may also be placed in contact with the terminal extension portion 222 .
  • the terminal extension portion 222 provided in the plug terminal 22 is inserted in the spring 33 . That is, the terminal extension portion 222 made of the magnetic material is arranged in the spring 33 , thereby increasing the inductance component of the spring 33 .
  • the insulating member 4 between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33 , there is interposed the insulating member 4 . Consequently, it is possible to prevent a reduction in impedance due to a short circuit of the spring 33 to the electrically-conductive terminal extension portion 222 . As a result, it is possible to improve the impedance to noise current, thereby effectively reducing the noise.
  • the insulating coat 41 coated on the spring 33 is employed. Consequently, it is possible to easily and reliably insulate between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33 .
  • inductance can be formed with part of the plug terminal 22 and the spring 33 , it is possible to effectively reduce the noise without increasing the parts count of the ignition apparatus 1 . That is, it becomes unnecessary to additionally incorporate a resistor for suppressing the noise into the electric current path between the coil main body 30 and the spark plug 2 . In addition, even if such a resistor was incorporated, the formation of inductance with part of the plug terminal 22 and the spring 33 would still provide advantages, such as making it possible to downsize the resistor.
  • the insulating member 4 which insulates between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33 , is constituted of an insulating coat 42 that is coated on the terminal extension portion 222 .
  • the insulating coat 42 is formed by applying, on the outer surface of the terminal extension portion 222 , resin such as epoxy, unsaturated polyester, silicone, fluororesin or the like.
  • no insulating coat 41 is coated on the spring 33 .
  • the insulating coat 42 covers a proximal end surface of the terminal extension portion 222 as well as the outer circumferential surface of the terminal extension portion 222 .
  • the insulating coat 42 may be not formed on the proximal end surface of the terminal extension portion 222 , provided that the insulating coat 42 can insulate between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33 .
  • the insulating coat 42 is coated on the outer circumferential surface of the terminal extension portion 222 .
  • the insulating member 4 is constituted of an insulating spacer 43 that is arranged between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33 .
  • the insulating spacer 43 is formed, for example of resin such as polyolefin, polyester or the like, into a thin cylindrical shape. As shown in FIGS. 8 and 9 , the inner diameter of the thin cylindrical insulating spacer 43 is greater than the outer diameter of the terminal extension portion 222 . Moreover, the outer diameter of the insulating spacer 43 is less than the inner diameter of the spring 33 .
  • the insulating spacer 43 has its distal end abutting the proximal end surface 224 of the terminal main body 221 . Moreover, it is preferable for the insulating spacer 43 to have an axial length greater than or equal to the axial length of the terminal extension portion 222 . In the present embodiment, the axial length of the insulating spacer 43 is slightly greater than the axial length of the terminal extension portion 222 . However, the axial length of the insulating spacer 43 is not particularly limited.
  • the insulating spacer 43 as the insulating member 41 . Consequently, it becomes unnecessary to coat the insulating coat 41 or 42 on either the spring 33 or the terminal extension portion 222 . Besides, it is also possible to achieve the same advantageous effects as in the first embodiment.
  • the present invention is not limited to the above-described embodiments and can be carried out in various modes without departing from the spirit of the invention.
  • the first to the third embodiments may be suitably combined.
  • the shape of the insulating spacer 43 may be suitably modified. Specifically, it is only necessary for the insulating spacer to be configured to be capable of securing insulation between the outer circumferential surface of the terminal extension portion and the inner circumferential surface of the spring.
  • the insulating spacer may be provided over only part of the entire circumferential range. That is, the insulating spacer may be configured to have a substantially C-shaped cross section perpendicular to the axial direction.
  • the insulating member (the insulating coat 41 or 42 or the insulating spacer 43 ) is formed of resin.
  • the insulating member may alternatively be formed of other electrically-insulative materials, such as a ceramic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

An ignition apparatus includes a spark plug and an ignition coil. The spark plug has a plug terminal protruding proximalward from an insulator. The ignition coil includes a coil main body, which includes a primary coil and a secondary coil, and a helical spring that electrically connects the secondary coil and the plug terminal. The plug terminal is made of a material that is both electrically conductive and magnetic. The plug terminal includes a terminal main body, which has an outer diameter greater than an inner diameter of the spring, and a terminal extension portion that has an outer diameter less than the inner diameter of the spring and extends proximalward from the terminal main body. A distal end portion of the spring abuts the terminal main body. The terminal extension portion is inserted and arranged in the spring. Between an outer circumferential surface of the terminal extension portion and an inner circumferential surface of the spring, there is interposed an insulating member.

Description

    TECHNICAL FIELD
  • The present invention relates to ignition apparatuses for internal combustion engines.
  • BACKGROUND ART
  • As ignition apparatuses for internal combustion engines, there are known those which include a spark plug to be used as an ignition means for an internal combustion engine and an ignition coil that applies a high voltage to the spark plug.
  • In an ignition apparatus disclosed in Patent Document 1, inductance is formed in a spring that electrically connects between a secondary coil of the ignition coil and the spark plug. Specifically, inductance is formed by increasing the number of turns or the like at a part of the spring. Consequently, it is possible to reduce noise, which is generated during a discharge of the spark plug, without increasing the parts count of the ignition apparatus.
  • PRIOR ART LITERATURE Patent Literature
  • [PATENT DOCUMENT 1] Japanese Patent Application Publication No. JP2002266737A
  • SUMMARY OF THE INVENTION Problems To Be Solved By the Invention
  • However, there is a limit in the inductance that can be secured by increasing the number of turns of a part of the spring or the like. Therefore, it is difficult to sufficiently improve the impedance to the noise; thus, there are cases where it is difficult to achieve a reduction in the noise.
  • The present invention has been made in view of the above problems, and aims to provide an ignition apparatus capable of effectively reducing the noise.
  • Means For Solving the Problems
  • An ignition apparatus according to the present invention includes:
  • a spark plug to be used as an ignition means for an internal combustion engine; and
  • an ignition coil that applies a high voltage to the spark plug,
  • wherein
  • the spark plug has a plug terminal electrically connected with a center electrode and protruding proximalward from an insulator,
  • the ignition coil includes a coil main body, which includes a primary coil and a secondary coil, and a helical spring that electrically connects the secondary coil and the plug terminal,
  • the plug terminal is made of a material that is both electrically conductive and magnetic,
  • the plug terminal includes a terminal main body, which has an outer diameter greater than an inner diameter of the spring, and a terminal extension portion that has an outer diameter less than the inner diameter of the spring and extends proximalward from the terminal main body,
  • a distal end portion of the spring abuts the terminal main body,
  • the terminal extension portion is inserted and arranged in the spring, and
  • between an outer circumferential surface of the terminal extension portion and an inner circumferential surface of the spring, there is interposed an insulating member.
  • ADVANTAGEOUS EFFECTS OF THE INVENTION
  • In the above ignition apparatus, the terminal extension portion provided in the plug terminal is inserted in the spring. That is, the terminal extension portion made of the magnetic material is arranged in the spring, thereby increasing the inductance component of the spring. Moreover, between the outer circumferential surface of the terminal extension portion and the inner circumferential surface of the spring, there is interposed the insulating member. Consequently, it is possible to prevent a reduction in impedance due to a short circuit of the spring to the electrically-conductive terminal extension portion. As a result, it is possible to improve the impedance to noise current, thereby effectively reducing the noise.
  • As described above, according to the present invention, it is possible to provide an ignition apparatus capable of effectively reducing the noise.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partially cross-sectional view showing part of an ignition apparatus according to a first embodiment.
  • FIG. 2 is a front view in partial cross section showing a spring and a spark plug of the ignition apparatus according to the first embodiment.
  • FIG. 3 is a front view in partial cross section showing the spark plug of the ignition apparatus according to the first embodiment.
  • FIG. 4 is a front view in partial cross section showing the spring and a plug terminal of the ignition apparatus according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along lines V-V in FIG. 4.
  • FIG. 6 is an enlarged cross-sectional view showing a terminal extension portion and components surrounding it in an ignition apparatus according to a second embodiment.
  • FIG. 7 is an exploded side view showing a terminal extension portion and components surrounding it in an ignition apparatus according to a third embodiment.
  • FIG. 8 is an enlarged cross-sectional view showing the terminal extension portion and the components surrounding it in the ignition apparatus according to the third embodiment.
  • FIG. 9 is a cross-sectional view taken along lines IX-IX in FIG. 8.
  • EMBODIMENTS FOR CARRYING OUT THE INVENTION First Embodiment
  • An ignition apparatus 1 according to a first embodiment will be described with reference to FIGS. 1-5.
  • As shown in FIG. 1, the ignition apparatus 1 includes a spark plug 2 to be used as an ignition means for an internal combustion engine and an ignition coil 3 that applies a high voltage to the spark plug 2.
  • As shown in FIG. 3, the spark plug 2 has a plug terminal 22 electrically connected with a center electrode 21 and protruding proximalward from an insulator 23.
  • As shown in FIG. 1, the ignition coil 3 includes a coil main body 30, which includes a primary coil 31 and a secondary coil 32, and a helical spring 33 that electrically connects the secondary coil 32 and the plug terminal 22.
  • The plug terminal 22 is made of a material that is both electrically conductive and magnetic. As shown in FIGS. 1-5, the plug terminal 22 includes a terminal main body 221, which has an outer diameter greater than an inner diameter of the spring 33, and a terminal extension portion 222 that has an outer diameter less than the inner diameter of the spring 33 and extends proximalward from the terminal main body 221.
  • As shown in FIG. 4, a distal end portion 331 of the spring 33 abuts the terminal main body 221.
  • The terminal extension portion 222 is inserted and arranged in the spring 33. Between an outer circumferential surface of the terminal extension portion 222 and an inner circumferential surface of the spring 33, there is interposed an insulating member 4.
  • The ignition apparatus 1 is to be provided in, for example, an internal combustion engine of a motor vehicle or the like.
  • As shown in FIG. 1, the ignition coil 3 includes a tubular joint 12 that connects the coil main body 30 and the spark plug 2. The joint 12 is to be inserted in a plug hole (not shown) of the internal combustion engine to which the spark plug 2 is to be mounted. In the present description, explanation is made referring to the side of the spark plug 2 in an axial direction of the joint 12 as the distal side and the opposite side as the proximal side.
  • The coil main body 30 is formed by receiving the primary coil 31 and the secondary coil 32 in a case 35. From the case 35, a high-voltage tower portion 11 protrudes distalward. To the high-voltage tower portion 11, there is connected a proximal end portion of the joint 12. A distal end portion of the joint 12 is fitted to the spark plug 2.
  • The high-voltage tower portion 11 holds therein a high-voltage output terminal 111 for outputting the high voltage generated in the coil main body 30. Moreover, inside the joint 12, there is arranged the spring 33. The spring 33 has its proximal end abutting the high-voltage output terminal 111 and its distal end abutting the plug terminal 22 of the spark plug 2. That is, the spring 33 is interposed between the high-voltage output terminal 111 and the plug terminal 22 to electrically connect the high-voltage output terminal 111 and the plug terminal 22.
  • As shown in FIG. 3, the spark plug 2 has the insulator 23 holding the center electrode 21 therein and a housing 24 holding the insulator 23 therein. To a distal end portion of the housing 24, there is joined a ground electrode 25 that forms a discharge gap between it and the center electrode 21. Moreover, the plug terminal 22 is held in the insulator 23 and protrudes proximalward from the insulator 23.
  • The terminal plug 22 is made, for example, of carbon steel. As shown in FIGS. 3-5, the terminal plug 22 has the terminal main body 221 and the terminal extension portion 222 formed integrally into one piece. Moreover, a distal protruding portion 223, which protrudes distalward from the terminal main body 221, is also formed integrally with the terminal main body 221 and the terminal extension portion 222 into one piece. The terminal plug 22 has the distal protruding portion 223 fitted in the insulator 23 and the terminal main body 221 and the terminal extension portion 222 protruding proximalward from the insulator 23.
  • The terminal main body 221 and the terminal extension portion 222 have respective substantially cylindrical shapes with outer diameters different from each other. The terminal main body 221 and the terminal extension portion 222 are in a state where their central axes coincide with each other. The terminal main body 221 has a shape such that its outer diameter varies depending on the axial position; at least the maximum outer diameter of the terminal main body 221 is greater than the inner diameter of the spring 33. In the present embodiment, a proximal end surface 224 of the terminal main body 221 is formed as a substantially flat surface; the proximal end surface 224 has an outer diameter greater than the inner diameter of the spring 33.
  • On the other hand, the outer diameter of the terminal extension portion 222 is less than the inner diameter of the spring 33. The terminal extension portion 222 has such a shape as to extend straight proximalward in the axial direction from the terminal main body 221. The axial length of the terminal extension portion 222 is set according to a desired inductance. For example, it is preferable for the axial length of the terminal extension portion 222 to be greater than or equal to 10 mm. In the present embodiment, the axial length of the terminal extension portion 222 is greater than the axial length of the terminal main body 221. Moreover, the axial length of the terminal extension portion 222 is also greater than the axial length of that portion of the insulator 23 which protrudes proximalward from the housing 24. In addition, the axial length of the terminal extension portion 222 is less than the axial length of the spring 33.
  • In a state where the joint 12 of the ignition coil 3 and the spark plug 2 are connected, as shown in FIGS. 1 and 2, the terminal extension portion 222 of the plug terminal 22 is inserted in the spring 33 from the proximal end of the spring 33. Consequently, a magnetic body is arranged in the spring 33, thereby increasing inductance in the spring 33. That is, inductance is increased in the electric current path between the coil main body 30 of the ignition coil 3 and the spark plug 2.
  • The spring 33 has its distal end abutting and thereby being electrically connected with the plug terminal 22. However, it is necessary for the spring 33 to be not electrically connected with the plug terminal 22 except at the distal end portion thereof. If the spring 33 was in contact with the terminal extension portion 222 at a portion thereof other than the distal end portion, a short circuit would be formed between the contact portion and the distal end portion in the spring 33; consequently, the inductance might be lowered. Therefore, between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33, there is interposed the insulating member 4.
  • As shown in FIG. 4, in the present embodiment, the insulating member 4 is constituted of an insulating coat 41 that is coated on the spring 33. The insulating coat 41 is formed, for example, of resin, such as polyester, nylon, polyimide, urethane or the like. The insulating coat 41 is formed over the entire circumference of the surface of winding of the spring 33. However, the distal end portion 331 of the spring 33 is exposed from the insulating coat 41; the exposed portion is placed in contact with the terminal main body 221 of the plug terminal 22. In addition, the distal end portion 331 of the spring 33 exposed from the insulating coat 41 may also be placed in contact with the terminal extension portion 222.
  • Next, operational effects of the present embodiment will be described.
  • In the above-described ignition apparatus 1, the terminal extension portion 222 provided in the plug terminal 22 is inserted in the spring 33. That is, the terminal extension portion 222 made of the magnetic material is arranged in the spring 33, thereby increasing the inductance component of the spring 33.
  • Moreover, between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33, there is interposed the insulating member 4. Consequently, it is possible to prevent a reduction in impedance due to a short circuit of the spring 33 to the electrically-conductive terminal extension portion 222. As a result, it is possible to improve the impedance to noise current, thereby effectively reducing the noise.
  • Moreover, as the insulating member 4, the insulating coat 41 coated on the spring 33 is employed. Consequently, it is possible to easily and reliably insulate between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33.
  • Moreover, since inductance can be formed with part of the plug terminal 22 and the spring 33, it is possible to effectively reduce the noise without increasing the parts count of the ignition apparatus 1. That is, it becomes unnecessary to additionally incorporate a resistor for suppressing the noise into the electric current path between the coil main body 30 and the spark plug 2. In addition, even if such a resistor was incorporated, the formation of inductance with part of the plug terminal 22 and the spring 33 would still provide advantages, such as making it possible to downsize the resistor.
  • As described above, according to the present embodiment, it is possible to provide an ignition apparatus capable of effectively reducing the noise.
  • Second Embodiment
  • In an ignition apparatus 1 according to the present embodiment, as shown in FIG. 6, the insulating member 4, which insulates between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33, is constituted of an insulating coat 42 that is coated on the terminal extension portion 222. Specifically, the insulating coat 42 is formed by applying, on the outer surface of the terminal extension portion 222, resin such as epoxy, unsaturated polyester, silicone, fluororesin or the like. Moreover, in the present embodiment, unlike in the first embodiment, no insulating coat 41 is coated on the spring 33.
  • In the present embodiment, the insulating coat 42 covers a proximal end surface of the terminal extension portion 222 as well as the outer circumferential surface of the terminal extension portion 222. In addition, the insulating coat 42 may be not formed on the proximal end surface of the terminal extension portion 222, provided that the insulating coat 42 can insulate between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33.
  • The others are the same as in the first embodiment. In addition, from the second embodiment on, unless specified otherwise, elements having reference signs identical to those used hitherto are identical to the elements having the identical reference signs in the previous embodiment.
  • In the present embodiment, the insulating coat 42 is coated on the outer circumferential surface of the terminal extension portion 222. In this case, it is also possible to easily and reliably insulate between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33. Besides, it is also possible to achieve the same advantageous effects as in the first embodiment.
  • Third Embodiment
  • In an ignition apparatus 1 according to the present embodiment, as shown in FIGS. 7-9, the insulating member 4 is constituted of an insulating spacer 43 that is arranged between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33.
  • The insulating spacer 43 is formed, for example of resin such as polyolefin, polyester or the like, into a thin cylindrical shape. As shown in FIGS. 8 and 9, the inner diameter of the thin cylindrical insulating spacer 43 is greater than the outer diameter of the terminal extension portion 222. Moreover, the outer diameter of the insulating spacer 43 is less than the inner diameter of the spring 33.
  • As shown in FIG. 8, the insulating spacer 43 has its distal end abutting the proximal end surface 224 of the terminal main body 221. Moreover, it is preferable for the insulating spacer 43 to have an axial length greater than or equal to the axial length of the terminal extension portion 222. In the present embodiment, the axial length of the insulating spacer 43 is slightly greater than the axial length of the terminal extension portion 222. However, the axial length of the insulating spacer 43 is not particularly limited.
  • Moreover, in the present embodiment, unlike in the first embodiment, no insulating coat 41 is coated on the spring 33.
  • The others are the same as in the first embodiment.
  • In the present embodiment, between the outer circumferential surface of the terminal extension portion 222 and the inner circumferential surface of the spring 33, there is interposed the insulating spacer 43 as the insulating member 41. Consequently, it becomes unnecessary to coat the insulating coat 41 or 42 on either the spring 33 or the terminal extension portion 222. Besides, it is also possible to achieve the same advantageous effects as in the first embodiment.
  • The present invention is not limited to the above-described embodiments and can be carried out in various modes without departing from the spirit of the invention. For example, the first to the third embodiments may be suitably combined. Moreover, in the third embodiment, the shape of the insulating spacer 43 may be suitably modified. Specifically, it is only necessary for the insulating spacer to be configured to be capable of securing insulation between the outer circumferential surface of the terminal extension portion and the inner circumferential surface of the spring. For example, the insulating spacer may be provided over only part of the entire circumferential range. That is, the insulating spacer may be configured to have a substantially C-shaped cross section perpendicular to the axial direction. Moreover, in the above-described embodiments, the insulating member (the insulating coat 41 or 42 or the insulating spacer 43) is formed of resin. However, the insulating member may alternatively be formed of other electrically-insulative materials, such as a ceramic.
  • DESCRIPTION OF REFERENCE SIGNS
    • 1: ignition apparatus
    • 2: spark plug
    • 21: center electrode
    • 22: plug terminal
    • 221: terminal main body
    • 222: terminal extension portion
    • 3: ignition coil
    • 30: coil main body
    • 31: primary coil
    • 32: secondary coil
    • 33: spring
    • 4: insulating member

Claims (3)

1. An ignition apparatus comprising:
a spark plug to be used as an ignition means for an internal combustion engine; and
an ignition coil that applies a high voltage to the spark plug,
wherein
the spark plug has a plug terminal electrically connected with a center electrode and protruding proximalward from an insulator,
the ignition coil includes a coil main body, which includes a primary coil and a secondary coil, and a helical spring that electrically connects the secondary coil and the plug terminal,
the plug terminal is made of a material that is both electrically conductive and magnetic,
the plug terminal includes a terminal main body, which has an outer diameter greater than an inner diameter of the spring, and a terminal extension portion that has an outer diameter less than the inner diameter of the spring and extends proximalward from the terminal main body,
a distal end portion of the spring abuts the terminal main body,
the terminal extension portion is inserted and arranged in the spring, and
between an outer circumferential surface of the terminal extension portion and an inner circumferential surface of the spring, there is interposed an insulating member. The ignition apparatus as set forth in claim 1, wherein the insulating member is constituted of an insulating coat that is coated on the spring.
3. The ignition apparatus as set forth in claim 1, wherein the insulating member is constituted of an insulating coat that is coated on the terminal extension portion.
4. The ignition apparatus as set forth in claim 1, wherein the insulating member is constituted of an insulating spacer that is arranged between the outer circumferential surface of the terminal extension portion and the inner circumferential surface of the spring.
US15/743,732 2015-07-13 2016-07-05 Ignition apparatus Active US10291000B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015139755A JP6528573B2 (en) 2015-07-13 2015-07-13 Igniter
JP2015-139755 2015-07-13
PCT/JP2016/069862 WO2017010341A1 (en) 2015-07-13 2016-07-05 Ignition device

Publications (2)

Publication Number Publication Date
US20180205204A1 true US20180205204A1 (en) 2018-07-19
US10291000B2 US10291000B2 (en) 2019-05-14

Family

ID=57757141

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/743,732 Active US10291000B2 (en) 2015-07-13 2016-07-05 Ignition apparatus

Country Status (3)

Country Link
US (1) US10291000B2 (en)
JP (1) JP6528573B2 (en)
WO (1) WO2017010341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608416B2 (en) * 2018-07-05 2020-03-31 Ngk Spark Plug Co., Ltd. Spark plug

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6503949B2 (en) * 2015-07-13 2019-04-24 株式会社デンソー Ignition coil and ignition device for internal combustion engine
DE102018108292B4 (en) * 2017-11-17 2023-05-11 Borgwarner Ludwigsburg Gmbh Connector for connecting an ignition coil to a spark plug and protective tube for a connector

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617907A (en) * 1983-08-05 1986-10-21 Saab-Scania Aktiebolag Ignition unit in the ignition system of an internal combustion engine
US4621881A (en) * 1983-08-05 1986-11-11 Saab-Scania Aktiebolag Connection device in an ignition system
US5357233A (en) * 1991-08-23 1994-10-18 Nippondenso Co., Ltd. Ignition apparatus for internal combustion engine
US5890473A (en) * 1996-02-06 1999-04-06 Robert Bosch Gmbh Ignition device for a multi-cylinder internal combustion engine
US20020014939A1 (en) * 2000-07-28 2002-02-07 Federal-Mogul Ignition Srl Ignition coil for vehicles
US6363898B1 (en) * 1996-11-14 2002-04-02 Quik-Change International, Llc Quick replacement igniter assembly
US20030197584A1 (en) * 2002-04-17 2003-10-23 Ford Dean M. Ignition apparatus having spark plug connection which supplies isolation between plug and apparatus
US20060061446A1 (en) * 2004-09-17 2006-03-23 Denso Corporation Ignition coil having rigid mounting structure
US20080024258A1 (en) * 2006-07-26 2008-01-31 Denso Corporation Ignition coil having plug cap
US20160115935A1 (en) * 2014-10-23 2016-04-28 Mitsubishi Electric Corporation Internal combustion engine ignition coil apparatus
US20160211072A1 (en) * 2015-01-21 2016-07-21 Denso Corporation Ignition coil for internal combustion engine
US20170016422A1 (en) * 2015-07-16 2017-01-19 Denso Corporation Ignition coil for internal combustion engine
US20170152829A1 (en) * 2014-04-22 2017-06-01 Imagineering, Inc. Spark plug and socket
US20170321648A1 (en) * 2014-11-11 2017-11-09 Denso Corporation Ignition coil for internal combustion engine
US20180030947A1 (en) * 2015-01-29 2018-02-01 Cummins Inc. Shielded spark plug extension for conventional spark plugs
US20180108473A1 (en) * 2016-10-17 2018-04-19 Denso Corporation Ignition coil for internal combustion engine
US20180294092A1 (en) * 2017-04-07 2018-10-11 Denso Corporation Ignition coil for internal combustion engine
US20180309268A1 (en) * 2015-11-12 2018-10-25 Mitsubishi Electric Corporation Ignition device for internal combustion engine
US20180316161A1 (en) * 2017-04-26 2018-11-01 Woodward, Inc. Method And System for A Unique Material And Geometry In A High Temperature Spark Plug Extender
US20180342347A1 (en) * 2015-11-26 2018-11-29 Hitachi Automotive Systems Hanshin, Ltd. Ignition coil for internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150680A (en) * 1985-12-24 1987-07-04 株式会社デンソー Ignition plug
JPH07111929B2 (en) 1986-11-05 1995-11-29 日本電装株式会社 Ignition coil for internal combustion engine
GB2328324B (en) 1997-06-09 2001-10-17 Ford Global Tech Inc Ignition coil assembly
US6437674B1 (en) * 2001-01-31 2002-08-20 Delphi Technologies, Inc. Ignition apparatus having built-in noise suppression
JP3502354B2 (en) 2001-03-06 2004-03-02 株式会社日立製作所 Ignition device for internal combustion engine
JP5434966B2 (en) 2011-06-06 2014-03-05 株式会社デンソー Ignition coil
ITTO20111098A1 (en) 2011-11-29 2013-05-30 Eldor Corp Spa IGNITION COIL UNIT WITH ELECTRICAL CONNECTION EXTENSION OF AN IGNITION CANDLE
JP6094346B2 (en) * 2013-04-11 2017-03-15 株式会社デンソー Spark plug for internal combustion engine

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621881A (en) * 1983-08-05 1986-11-11 Saab-Scania Aktiebolag Connection device in an ignition system
US4617907A (en) * 1983-08-05 1986-10-21 Saab-Scania Aktiebolag Ignition unit in the ignition system of an internal combustion engine
US5357233A (en) * 1991-08-23 1994-10-18 Nippondenso Co., Ltd. Ignition apparatus for internal combustion engine
US5890473A (en) * 1996-02-06 1999-04-06 Robert Bosch Gmbh Ignition device for a multi-cylinder internal combustion engine
US6363898B1 (en) * 1996-11-14 2002-04-02 Quik-Change International, Llc Quick replacement igniter assembly
US20020014939A1 (en) * 2000-07-28 2002-02-07 Federal-Mogul Ignition Srl Ignition coil for vehicles
US20030197584A1 (en) * 2002-04-17 2003-10-23 Ford Dean M. Ignition apparatus having spark plug connection which supplies isolation between plug and apparatus
US20060061446A1 (en) * 2004-09-17 2006-03-23 Denso Corporation Ignition coil having rigid mounting structure
US20080024258A1 (en) * 2006-07-26 2008-01-31 Denso Corporation Ignition coil having plug cap
US20170152829A1 (en) * 2014-04-22 2017-06-01 Imagineering, Inc. Spark plug and socket
US20160115935A1 (en) * 2014-10-23 2016-04-28 Mitsubishi Electric Corporation Internal combustion engine ignition coil apparatus
US20170321648A1 (en) * 2014-11-11 2017-11-09 Denso Corporation Ignition coil for internal combustion engine
US20160211072A1 (en) * 2015-01-21 2016-07-21 Denso Corporation Ignition coil for internal combustion engine
US20180030947A1 (en) * 2015-01-29 2018-02-01 Cummins Inc. Shielded spark plug extension for conventional spark plugs
US20170016422A1 (en) * 2015-07-16 2017-01-19 Denso Corporation Ignition coil for internal combustion engine
US20180309268A1 (en) * 2015-11-12 2018-10-25 Mitsubishi Electric Corporation Ignition device for internal combustion engine
US20180342347A1 (en) * 2015-11-26 2018-11-29 Hitachi Automotive Systems Hanshin, Ltd. Ignition coil for internal combustion engine
US20180108473A1 (en) * 2016-10-17 2018-04-19 Denso Corporation Ignition coil for internal combustion engine
US20180294092A1 (en) * 2017-04-07 2018-10-11 Denso Corporation Ignition coil for internal combustion engine
US20180316161A1 (en) * 2017-04-26 2018-11-01 Woodward, Inc. Method And System for A Unique Material And Geometry In A High Temperature Spark Plug Extender

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608416B2 (en) * 2018-07-05 2020-03-31 Ngk Spark Plug Co., Ltd. Spark plug

Also Published As

Publication number Publication date
WO2017010341A1 (en) 2017-01-19
US10291000B2 (en) 2019-05-14
JP2017020444A (en) 2017-01-26
JP6528573B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP4267042B2 (en) Ignition coil device for internal combustion engine
JP6095700B2 (en) Corona tip insulator
US7501923B2 (en) Ignition coil having plug cap
US10291000B2 (en) Ignition apparatus
US20120186568A1 (en) Ignition coil, spark plug, and ignition set-up including an ignition coil and spark plug,
JPS62165887A (en) Spark plug connector
US9551314B2 (en) Internal combustion engine ignition coil apparatus
KR101236308B1 (en) Plasma spark plug for an internal combustion engine
JP2014502401A (en) Spark plug for internal combustion engine
KR20170110022A (en) Ignition system
US9366221B2 (en) Corona ignition device
JP4377252B2 (en) Ignition coil with connecting device for contact with spark plug
US7753038B2 (en) Ignition coil
US6694958B2 (en) Ignition device for internal combustion engine
US20050284454A1 (en) Ignition device for internal combustion engine
JP4158180B2 (en) Ignition device for internal combustion engine
US10907605B2 (en) Ignition apparatus having a spring for electrically connecting a spark plug
US6422225B1 (en) Ignition coil and method of making
US6698411B2 (en) Ignition device for internal combustion engine
KR101638723B1 (en) Glow plug
US7252078B2 (en) Spark plug connector
JP6397687B2 (en) AC ignition device
JP2000145603A (en) Ignition device for internal combustion engine
JP4288167B2 (en) Bar ignition coil for ignition device
JP5411822B2 (en) Ignition system and spark plug

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUGIURA, AKIMITSU;HATTORI, KENJI;TAKEDA, SHUNICHI;AND OTHERS;SIGNING DATES FROM 20180119 TO 20180130;REEL/FRAME:044933/0879

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4