US20180134259A1 - System and method for wiping a circular surface - Google Patents
System and method for wiping a circular surface Download PDFInfo
- Publication number
- US20180134259A1 US20180134259A1 US15/352,649 US201615352649A US2018134259A1 US 20180134259 A1 US20180134259 A1 US 20180134259A1 US 201615352649 A US201615352649 A US 201615352649A US 2018134259 A1 US2018134259 A1 US 2018134259A1
- Authority
- US
- United States
- Prior art keywords
- wiping
- sensor
- circular
- armature
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title description 7
- 238000001514 detection method Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- -1 dirt Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/10—Cleaning by methods involving the use of tools characterised by the type of cleaning tool
- B08B1/14—Wipes; Absorbent members, e.g. swabs or sponges
- B08B1/143—Wipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/56—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
- B60S1/566—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens including wiping devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
- G01S7/4813—Housing arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0006—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
- G01S2007/4975—Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
- G01S2007/4977—Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen including means to prevent or remove the obstruction
Definitions
- the present disclosure relates to systems and methods for wiping a circular surface, and more particularly to a system and method which is able to wipe a circular sensor surface over a full 360 degree path of travel.
- Autonomous vehicles typically make use of one or more LIDAR (Light Detection and Ranging) sensors to provide real time detection of objects around the perimeter of the vehicle while the vehicle is in use.
- LIDAR Light Detection and Ranging
- a circular LIDAR sensor is disposed on a surface of the vehicle and includes a laser light generating subsystem that generates laser light pulses over a predetermined arc, for example 30-75 degrees, and which is scanned about a 360 degree field of view (FOV) around the perimeter of the vehicle.
- the LIDAR sensor also typically makes use of a housing having a circular lens through which the laser light pulses are emitted and received.
- the present disclosure relates to a wiping system for use with a circular sensor having a circular lens.
- the system may comprise an electric motor having an armature, and a wiping subsystem for wiping the lens in a circular motion.
- the wiping system may be driven rotationally by the armature of the electric motor and orientated so as not to obstruct a field of view of the circular sensor.
- the motor armature may be rotated at a speed in accordance with a circular scanning speed of the sensor.
- the present disclosure relates to a wiping system for use with a circular LIDAR sensor having a circular lens.
- the system may comprise an electric motor disposed adjacent the circular LIDAR sensor, and a wiping subsystem having a wiper blade for wiping the lens of the circular LIDAR sensor in a circular motion.
- the wiping system may be driven rotationally by the electric motor at the same rotational speed as the LIDAR sensor is scanned.
- the wiper blade may be arranged at least about 0.5 degree ahead of a field of view of the LIDAR sensor.
- FIG. 1 is a side view of a vehicle having a LIDAR sensor mounted on a vehicle, and further illustrating one embodiment of a wiping system in accordance with the present disclosure for wiping a circular lens surface of the LIDAR sensor;
- FIG. 2 is a high level, cross sectional side view of the wiping system of FIG. 1 also showing the LIDAR sensor in simplified cross sectional form;
- FIG. 3 is a high level top view looking down on the wiping system.
- FIG. 1 there is shown one embodiment of a wiping system 10 in accordance with the present disclosure.
- the wiping system 10 in this example is positioned adjacent to, and is integrated into the construction of, a LIDAR (Light Detection and Ranging) sensor 12 .
- the LIDAR sensor 12 is shown positioned on a surface 14 of a vehicle 16 , although it will be appreciated that the wiping system 10 does not restrict the use of the LIDAR sensor 12 to use on only the surface 14 .
- the wiping system 10 can be used with the LIDAR sensor 12 at other locations on the vehicle 16 if desired.
- the wiping system 10 may include a motor 18 , for example a DC powered motor, having an armature 20 which extends through an opening 22 a in a lower housing portion 22 and through an opening 24 a in an upper housing portion 24 of the LIDAR sensor 12 .
- the motor 18 may even be housed in one or the other of the housing portions 22 and 24 if the housing portion 22 or 24 is of sufficient dimensions. In this example, however, the motor 18 is shown mounted externally of the LIDAR sensor 12 slightly below the surface 14 of the vehicle 16 .
- a distal end 26 of the armature 20 may be fixedly coupled to a cantilevered member 28 , which in turn may be fixedly coupled to a wiper frame element 30 .
- the wiper frame element 30 may be coupled to a wiper blade 32 , for example a flexible rubber or synthetic wiper blade similar to a conventional windshield wiper blade.
- the cantilevered member 28 has a length that places the wiper blade 32 in contact with a circular lens 34 of the LIDAR sensor 12 when the wiper blade is coupled to the cantilevered member.
- the armature 20 of the electric motor 18 may extend generally parallel to the lens 34 , and therefore rotation of the armature produces a corresponding rotation of the wiper blade 32 which maintains the wiper blade in constant contact with the lens.
- the wiper blade 32 preferably has a length which is similar to a height of the circular lens 34 which enables it to wipe all, or substantially all, of a surface area of the circular lens.
- the cantilevered member 28 may be connected to the armature 20 below the LIDAR sensor 12 . In this example, however, the cantilevered member 28 is shown connected above the LIDAR sensor 12 .
- the motor armature 20 is driven rotationally, for example in accordance with dashed arrow 36 , which drives the cantilevered member 28 , the wiper frame element 30 and the wiper blade 32 in a circular path over the lens 34 of the LIDAR sensor 12 .
- the motor 18 is a reversible stepper motor, then an oscillating, circular wiping pattern could also be generated. Whether a continuous circular motion or an oscillating circular motion is used, the wiper blade 32 wipes substantially the entire surface of the lens 34 .
- the motor 18 is preferably in communication with a wiring harness (not shown) of the vehicle 16 , which allows the motor to communicate with and be controlled by an electronic controller, such as an on-board vehicle computer, of the vehicle 16 .
- the motor 18 can be controlled automatically in accordance with operation of the vehicle. It is also possible that the motor armature 20 could be used to rotate the sensing element(s) of the LIDAR sensor 12 , thus removing the need for a separate motor for rotating the sensing element(s). It is also possible that the motor armature 20 could be used to rotate the lens 34 against a stationary wiping element, such as a stationary mounted wiper blade 32 . This stationary wiping element could be positioned within a blind zone of the LIDAR sensor 12 .
- a field of view (FOV) 38 of the LIDAR sensor 12 which is rotating in accordance with directional arrow 40 , needs to maintained clear at all times during operation of the LIDAR sensor for the LIDAR sensor to operate properly.
- the cantilevered member 28 is orientated so that it just slightly ahead (e.g., at least about 0.5-1.0 degree) of a leading edge 42 of the FOV 38 of the LIDAR sensor 12 as the sensor scans in a circular path.
- the cantilevered member 28 could be positioned at a trailing edge 44 of the FOV 38 .
- the cantilevered member 28 does not obstruct any portion of the FOV 38 of the LIDAR sensor 12 during its operation.
- the motor armature 20 is driven rotationally at the same speed that the LIDAR sensor 12 is scanned so that the wiper blade 32 never obstructs the FOV 38 of the LIDAR sensor during its operation.
- an active wiping system is illustrated with the wiper blade 32 contacting the lens 34 .
- the cantilevered element 28 could utilize a mechanism, such as telescoping members or hinges, to remove and/or apply the wiper blade 32 to the lens 34 .
- This mechanism could be controlled by the rotational speed of the armature 20 , or through external operating forces such as pneumatics, hydraulics, or additional motors.
- the wiper blade 28 could continue to rotate while disengaged from the lens 34 , or remain stationary in a FOV 34 blind zone. This mechanism will help prolong the functional life of the wiper blade 32 and avoid dry wiping noises.
- Spatial and functional relationships between elements are described using various terms, including “connected,” “engaged,” “coupled,” “adjacent,” “next to,” “on top of,” “above,” “below,” and “disposed.” Unless explicitly described as being “direct,” when a relationship between first and second elements is described in the above disclosure, that relationship can be a direct relationship where no other intervening elements are present between the first and second elements, but can also be an indirect relationship where one or more intervening elements are present (either spatially or functionally) between the first and second elements.
- the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean “at least one of A, at least one of B, and at least one of C.”
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
A wiping system is disclosed for use with a circular sensor having a circular lens. The system may have an electric motor having an armature, and a wiping subsystem for wiping the lens in a circular motion. The wiping system may be driven rotationally by the armature of the electric motor and orientated so as not to obstruct a field of view of the circular sensor. The motor armature may be rotated at a speed in accordance with a circular scanning speed of the sensor.
Description
- The present disclosure relates to systems and methods for wiping a circular surface, and more particularly to a system and method which is able to wipe a circular sensor surface over a full 360 degree path of travel.
- The background description provided here is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
- At the present time there is a growing interest in the development and use of autonomous vehicles. Autonomous vehicles typically make use of one or more LIDAR (Light Detection and Ranging) sensors to provide real time detection of objects around the perimeter of the vehicle while the vehicle is in use. Typically, a circular LIDAR sensor is disposed on a surface of the vehicle and includes a laser light generating subsystem that generates laser light pulses over a predetermined arc, for example 30-75 degrees, and which is scanned about a 360 degree field of view (FOV) around the perimeter of the vehicle. The LIDAR sensor also typically makes use of a housing having a circular lens through which the laser light pulses are emitted and received. It is important that the circular lens is kept clean for the LIDAR sensor to operate in its intended manner. Dust, dirt, mud, slush, sleet, rain water and other contaminants that collect on the lens of the LIDAR sensor can adversely affect its operation. Accordingly, there is a need for some system and/or method which is able to clean a substantial portion of a circular lens of a circular LIDAR sensor while the vehicle is in use, and which does not otherwise affect the operation of the LIDAR sensor or obstruct the transmission or reception of laser light pulses generated by the LIDAR sensor.
- In one aspect the present disclosure relates to a wiping system for use with a circular sensor having a circular lens. The system may comprise an electric motor having an armature, and a wiping subsystem for wiping the lens in a circular motion. The wiping system may be driven rotationally by the armature of the electric motor and orientated so as not to obstruct a field of view of the circular sensor. The motor armature may be rotated at a speed in accordance with a circular scanning speed of the sensor.
- In another aspect the present disclosure relates to a wiping system for use with a circular LIDAR sensor having a circular lens. The system may comprise an electric motor disposed adjacent the circular LIDAR sensor, and a wiping subsystem having a wiper blade for wiping the lens of the circular LIDAR sensor in a circular motion. The wiping system may be driven rotationally by the electric motor at the same rotational speed as the LIDAR sensor is scanned. The wiper blade may be arranged at least about 0.5 degree ahead of a field of view of the LIDAR sensor.
- Further areas of applicability of the present disclosure will become apparent from the detailed description, the claims and the drawings. The detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
- The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
-
FIG. 1 is a side view of a vehicle having a LIDAR sensor mounted on a vehicle, and further illustrating one embodiment of a wiping system in accordance with the present disclosure for wiping a circular lens surface of the LIDAR sensor; -
FIG. 2 is a high level, cross sectional side view of the wiping system ofFIG. 1 also showing the LIDAR sensor in simplified cross sectional form; and -
FIG. 3 is a high level top view looking down on the wiping system. - In the drawings, reference numbers may be reused to identify similar and/or identical elements.
- Referring to
FIG. 1 there is shown one embodiment of awiping system 10 in accordance with the present disclosure. Thewiping system 10 in this example is positioned adjacent to, and is integrated into the construction of, a LIDAR (Light Detection and Ranging)sensor 12. The LIDARsensor 12 is shown positioned on asurface 14 of avehicle 16, although it will be appreciated that thewiping system 10 does not restrict the use of theLIDAR sensor 12 to use on only thesurface 14. Thewiping system 10 can be used with the LIDARsensor 12 at other locations on thevehicle 16 if desired. - Referring to
FIG. 2 , thewiping system 10 may include amotor 18, for example a DC powered motor, having anarmature 20 which extends through anopening 22 a in alower housing portion 22 and through anopening 24 a in anupper housing portion 24 of the LIDARsensor 12. Alternatively, themotor 18 may even be housed in one or the other of thehousing portions housing portion motor 18 is shown mounted externally of the LIDARsensor 12 slightly below thesurface 14 of thevehicle 16. Adistal end 26 of thearmature 20 may be fixedly coupled to a cantileveredmember 28, which in turn may be fixedly coupled to awiper frame element 30. Thewiper frame element 30 may be coupled to awiper blade 32, for example a flexible rubber or synthetic wiper blade similar to a conventional windshield wiper blade. The cantileveredmember 28 has a length that places thewiper blade 32 in contact with acircular lens 34 of the LIDARsensor 12 when the wiper blade is coupled to the cantilevered member. Thearmature 20 of theelectric motor 18 may extend generally parallel to thelens 34, and therefore rotation of the armature produces a corresponding rotation of thewiper blade 32 which maintains the wiper blade in constant contact with the lens. Thewiper blade 32 preferably has a length which is similar to a height of thecircular lens 34 which enables it to wipe all, or substantially all, of a surface area of the circular lens. Together thecantilevered member 28, thewiper frame element 30 and thewiper blade 32 may be viewed as forming awiping subsystem 33. Alternatively, thecantilevered member 28 may be connected to thearmature 20 below the LIDARsensor 12. In this example, however, thecantilevered member 28 is shown connected above the LIDARsensor 12. - The
motor armature 20 is driven rotationally, for example in accordance with dashedarrow 36, which drives the cantileveredmember 28, thewiper frame element 30 and thewiper blade 32 in a circular path over thelens 34 of the LIDARsensor 12. If themotor 18 is a reversible stepper motor, then an oscillating, circular wiping pattern could also be generated. Whether a continuous circular motion or an oscillating circular motion is used, thewiper blade 32 wipes substantially the entire surface of thelens 34. Themotor 18 is preferably in communication with a wiring harness (not shown) of thevehicle 16, which allows the motor to communicate with and be controlled by an electronic controller, such as an on-board vehicle computer, of thevehicle 16. In this manner themotor 18 can be controlled automatically in accordance with operation of the vehicle. It is also possible that themotor armature 20 could be used to rotate the sensing element(s) of theLIDAR sensor 12, thus removing the need for a separate motor for rotating the sensing element(s). It is also possible that themotor armature 20 could be used to rotate thelens 34 against a stationary wiping element, such as a stationary mountedwiper blade 32. This stationary wiping element could be positioned within a blind zone of the LIDARsensor 12. - With reference to
FIG. 3 , a field of view (FOV) 38 of the LIDARsensor 12, which is rotating in accordance withdirectional arrow 40, needs to maintained clear at all times during operation of the LIDAR sensor for the LIDAR sensor to operate properly. Accordingly, in this example thecantilevered member 28 is orientated so that it just slightly ahead (e.g., at least about 0.5-1.0 degree) of a leadingedge 42 of theFOV 38 of the LIDARsensor 12 as the sensor scans in a circular path. Alternatively, thecantilevered member 28 could be positioned at atrailing edge 44 of the FOV 38. In either position, thecantilevered member 28 does not obstruct any portion of theFOV 38 of the LIDARsensor 12 during its operation. Preferably, themotor armature 20 is driven rotationally at the same speed that the LIDARsensor 12 is scanned so that thewiper blade 32 never obstructs theFOV 38 of the LIDAR sensor during its operation. - With reference to
FIG. 2 , an active wiping system is illustrated with thewiper blade 32 contacting thelens 34. As thevehicle 16 will not always require thelens 34 to be wiped, a method to disengage and/or engage thewiper blade 32 to thelens 34 could be implemented. The cantileveredelement 28 could utilize a mechanism, such as telescoping members or hinges, to remove and/or apply thewiper blade 32 to thelens 34. This mechanism could be controlled by the rotational speed of thearmature 20, or through external operating forces such as pneumatics, hydraulics, or additional motors. Thewiper blade 28 could continue to rotate while disengaged from thelens 34, or remain stationary in aFOV 34 blind zone. This mechanism will help prolong the functional life of thewiper blade 32 and avoid dry wiping noises. - The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure. Further, although each of the embodiments is described above as having certain features, any one or more of those features described with respect to any embodiment of the disclosure can be implemented in and/or combined with features of any of the other embodiments, even if that combination is not explicitly described. In other words, the described embodiments are not mutually exclusive, and permutations of one or more embodiments with one another remain within the scope of this disclosure.
- Spatial and functional relationships between elements (for example, between modules, circuit elements, semiconductor layers, etc.) are described using various terms, including “connected,” “engaged,” “coupled,” “adjacent,” “next to,” “on top of,” “above,” “below,” and “disposed.” Unless explicitly described as being “direct,” when a relationship between first and second elements is described in the above disclosure, that relationship can be a direct relationship where no other intervening elements are present between the first and second elements, but can also be an indirect relationship where one or more intervening elements are present (either spatially or functionally) between the first and second elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean “at least one of A, at least one of B, and at least one of C.”
- None of the elements recited in the claims are intended to be a means-plus-function element within the meaning of 35 U.S.C. § 112(f) unless an element is expressly recited using the phrase “means for,” or in the case of a method claim using the phrases “operation for” or “step for.”
Claims (11)
1. A wiping system for use with a circular sensor having a circular lens, the system comprising:
an electric motor having an armature;
a wiping subsystem for wiping the lens in a circular motion, the wiping subsystem being driven rotationally by the armature of the electric motor and orientated so as not to obstruct a field of view of the circular sensor; and
the armature being rotated at a speed in accordance with a circular scanning speed of the sensor.
2. The wiping system of claim 1 , wherein the armature extends through the sensor.
3. The wiping system of claim 1 , wherein the wiping subsystem includes:
a cantilevered arm coupled to the armature;
a wiper frame element supported by the cantilevered arm adjacent the lens of the sensor; and
a wiper blade, supported by the wiper frame element, which wipes the lens of the sensor.
4. The wiping system of claim 3 , wherein the wiper frame element is positioned at least about 0.5 degree ahead of a field of view of the sensor.
5. The wiping system of claim 1 , wherein the wiping system is arranged to extend partially over an upper housing portion of the sensor.
6. The wiping system of claim 1 , wherein the electric motor is positioned below a lower housing portion of the sensor, and the armature extends completely through the sensor generally parallel to the lens of the sensor.
7. A wiping system for use with a circular LIDAR sensor having a circular lens, the system comprising:
an electric motor disposed adjacent the circular LIDAR sensor;
a wiping subsystem having a wiper blade for wiping the circular lens of the circular LIDAR sensor in a circular motion, the wiping subsystem being driven rotationally by the electric motor at the same rotational speed as the LIDAR sensor is scanned; and
wherein the wiper blade is arranged at least about 0.5 degree ahead of a field of view of the LIDAR sensor.
8. The wiping system of claim 7 , wherein the electric motor includes an armature, and the electric motor is disposed adjacent to but apart from the LIDAR sensor such that the armature extends through an internal area of the LIDAR sensor.
9. The wiping system of claim 7 , wherein the wiping subsystem includes a cantilevered member overhanging a portion of the LIDAR sensor.
10. The wiping system of claim 9 , wherein the cantilevered member is coupled to a wiper frame element, and wherein the wiper frame element supports the wiper blade.
11. The wiping system of claim 9 , wherein the electric motor includes an armature and wherein the armature of the electric motor extends generally parallel to the circular lens of the LIDAR sensor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/352,649 US9969363B1 (en) | 2016-11-16 | 2016-11-16 | System and method for wiping a circular surface |
CN201711089321.3A CN108067450A (en) | 2016-11-16 | 2017-11-08 | For wiping the system and method for circular surface |
DE102017126770.0A DE102017126770B4 (en) | 2016-11-16 | 2017-11-14 | WIPER SYSTEM FOR USE WITH A CIRCULAR SENSOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/352,649 US9969363B1 (en) | 2016-11-16 | 2016-11-16 | System and method for wiping a circular surface |
Publications (2)
Publication Number | Publication Date |
---|---|
US9969363B1 US9969363B1 (en) | 2018-05-15 |
US20180134259A1 true US20180134259A1 (en) | 2018-05-17 |
Family
ID=62026851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/352,649 Active US9969363B1 (en) | 2016-11-16 | 2016-11-16 | System and method for wiping a circular surface |
Country Status (3)
Country | Link |
---|---|
US (1) | US9969363B1 (en) |
CN (1) | CN108067450A (en) |
DE (1) | DE102017126770B4 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020001498A (en) * | 2018-06-26 | 2020-01-09 | 株式会社デンソー | Vehicular cleaning device, vehicular cleaning system and method for controlling vehicular cleaning system |
WO2020254105A1 (en) * | 2019-06-21 | 2020-12-24 | Valeo Systèmes d'Essuyage | Wiper blade, wiping system and cleaning module |
WO2021150499A1 (en) * | 2020-01-20 | 2021-07-29 | Monomer Software LLC | Optical device field of view cleaning apparatus |
WO2022035569A1 (en) * | 2020-08-13 | 2022-02-17 | Gm Cruise Holdings Llc | Rotating blade mechanism for cleaning cylindrical sensors |
US20220234545A1 (en) * | 2020-08-13 | 2022-07-28 | Gm Cruise Holdings Llc | Rotating blade mechanism for cleaning cylindrical sensors |
US11782142B2 (en) * | 2017-11-30 | 2023-10-10 | Robert Bosch Gmbh | Device designed to detect surroundings and method for cleaning a cover of a device of this type |
JP7480750B2 (en) | 2021-06-08 | 2024-05-10 | 株式会社デンソー | CLEANING APPARATUS, CLEANING CONTROL DEVICE, CLEANING CONTROL METHOD, AND CLEANING CONTROL PROGRAM |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10627486B2 (en) * | 2018-02-06 | 2020-04-21 | Ford Global Technologies, Llc | Sensor cleaner |
US11279324B2 (en) * | 2018-09-26 | 2022-03-22 | Waymo Llc | Rotary wiper system |
US10946838B2 (en) * | 2019-03-21 | 2021-03-16 | Ford Global Technologies, Llc | Cleaning apparatus for sensor |
US11548481B2 (en) | 2020-01-13 | 2023-01-10 | GM Global Technology Operations LLC | Sensor cleaning system |
CN112731347A (en) * | 2020-12-23 | 2021-04-30 | 深圳砺剑天眼科技有限公司 | Laser radar convenient to adjust and preparation device thereof |
DE102021200098A1 (en) | 2021-01-08 | 2022-07-14 | Robert Bosch Gesellschaft mit beschränkter Haftung | Cleaning device, LiDAR sensor array and working device |
CN113484495B (en) * | 2021-07-12 | 2022-02-15 | 无锡博思创至科技有限公司 | Small-size liquid attribute detector for diesel vehicle |
CN114904811B (en) * | 2022-05-17 | 2023-04-25 | 国家电网有限公司 | Self-cleaning visual target and manufacturing method thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013081097A (en) * | 2011-10-04 | 2013-05-02 | Aisin Seiki Co Ltd | Camera lens wiper |
JP5494743B2 (en) * | 2011-10-14 | 2014-05-21 | 株式会社デンソー | Camera cleaning device |
JP5633503B2 (en) * | 2011-11-29 | 2014-12-03 | 株式会社リコー | Image processing system, vehicle equipped with image processing system, image processing method and program |
JP6379665B2 (en) * | 2013-08-12 | 2018-08-29 | 株式会社デンソー | In-vehicle optical sensor cleaning device |
KR20150076759A (en) | 2013-12-27 | 2015-07-07 | 주식회사 만도 | Controlling device and method of camera for vehicle |
DE102014202072A1 (en) * | 2014-01-24 | 2015-07-30 | Bayerische Motoren Werke Aktiengesellschaft | Device for cleaning an optical lens of a parking assistance camera |
US9973663B2 (en) * | 2014-05-15 | 2018-05-15 | GM Global Technology Operations LLC | Systems and methods for self-cleaning camera |
JP6172181B2 (en) | 2015-02-25 | 2017-08-02 | トヨタ自動車株式会社 | Peripheral information detection device and autonomous driving vehicle |
CN205085046U (en) * | 2015-11-05 | 2016-03-16 | 卢丽花 | Clear camera of oneself |
US20170210351A1 (en) * | 2016-01-22 | 2017-07-27 | Ford Global Technologies, Llc | Exterior view camera washer system with elastic, changeable, self-wetting and cleaning mechanism |
US20170313288A1 (en) * | 2016-04-14 | 2017-11-02 | Ford Global Technologies, Llc | Exterior vehicle camera protection and cleaning mechanisms |
-
2016
- 2016-11-16 US US15/352,649 patent/US9969363B1/en active Active
-
2017
- 2017-11-08 CN CN201711089321.3A patent/CN108067450A/en active Pending
- 2017-11-14 DE DE102017126770.0A patent/DE102017126770B4/en active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11782142B2 (en) * | 2017-11-30 | 2023-10-10 | Robert Bosch Gmbh | Device designed to detect surroundings and method for cleaning a cover of a device of this type |
JP2020001498A (en) * | 2018-06-26 | 2020-01-09 | 株式会社デンソー | Vehicular cleaning device, vehicular cleaning system and method for controlling vehicular cleaning system |
JP7067311B2 (en) | 2018-06-26 | 2022-05-16 | 株式会社デンソー | Control method of vehicle cleaning device, vehicle cleaning system and vehicle cleaning system |
WO2020254105A1 (en) * | 2019-06-21 | 2020-12-24 | Valeo Systèmes d'Essuyage | Wiper blade, wiping system and cleaning module |
FR3097503A1 (en) * | 2019-06-21 | 2020-12-25 | Valeo Systèmes D’Essuyage | Wiper blade, wiper system and cleaning module |
WO2021150499A1 (en) * | 2020-01-20 | 2021-07-29 | Monomer Software LLC | Optical device field of view cleaning apparatus |
WO2022035569A1 (en) * | 2020-08-13 | 2022-02-17 | Gm Cruise Holdings Llc | Rotating blade mechanism for cleaning cylindrical sensors |
US20220234545A1 (en) * | 2020-08-13 | 2022-07-28 | Gm Cruise Holdings Llc | Rotating blade mechanism for cleaning cylindrical sensors |
US11708053B2 (en) * | 2020-08-13 | 2023-07-25 | GM Cruise Holdings LLC. | Rotating blade mechanism for cleaning cylindrical sensors |
JP7480750B2 (en) | 2021-06-08 | 2024-05-10 | 株式会社デンソー | CLEANING APPARATUS, CLEANING CONTROL DEVICE, CLEANING CONTROL METHOD, AND CLEANING CONTROL PROGRAM |
Also Published As
Publication number | Publication date |
---|---|
US9969363B1 (en) | 2018-05-15 |
DE102017126770A1 (en) | 2018-05-17 |
DE102017126770B4 (en) | 2024-04-25 |
CN108067450A (en) | 2018-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9969363B1 (en) | System and method for wiping a circular surface | |
US10549726B2 (en) | Assembly for cleaning sensor cover and method of using the same | |
US11827187B2 (en) | Apparatus embodied to detect the surroundings and method for cleaning a cover of such an apparatus | |
US11752981B1 (en) | Wiper timing and geometry to minimize sensor occlusion | |
US10391981B2 (en) | Washing apparatus for a sensor enclosure | |
US10969478B2 (en) | Vehicle object-detection sensor system | |
CN105480202B (en) | Windshield wiper, system and method for wiping a glass surface of a motor vehicle | |
US10232824B2 (en) | System and method for wiping a vehicle window | |
US20180244245A1 (en) | Sensor and cleaning apparatus | |
US20230011410A1 (en) | Methods and apparatus for clearing surfaces of sensors | |
JP2023512326A (en) | Wiping device for detection system | |
KR102417547B1 (en) | Apparatus for Removing the Objection of the Camera Lens | |
JP4483631B2 (en) | Wiper drive control device | |
JP2020001601A (en) | Washing apparatus for vehicle | |
US20200406861A1 (en) | On-vehicle sensor cleaning device | |
US20240083388A1 (en) | Power head or power arm assembly for linear reciprication of windshield wiper blade | |
CN218610557U (en) | Optical sensor belt cleaning device | |
EP3178711A1 (en) | Wiper control device | |
JP6891683B2 (en) | Vehicle wiper device | |
WO2023287791A1 (en) | Methods and apparatus for clearing surfaces of sensors | |
EP3750760B1 (en) | Windshield wiper assemblies, windshield wiper systems, and methods of controlling wiper blade sweep in windshield wiper systems | |
JP2005205929A (en) | Windshield wiper device | |
KR102540521B1 (en) | Apparatus for Removing the Objection of the Camera Lens | |
US11897435B1 (en) | Parallel motion window wiper in an autonomous vehicle | |
US20230227110A1 (en) | Wiper covering system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WACHTER, BRIAN R.;REEL/FRAME:040337/0523 Effective date: 20161114 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |