[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20180065317A1 - Additive manufacturing system having in-situ fiber splicing - Google Patents

Additive manufacturing system having in-situ fiber splicing Download PDF

Info

Publication number
US20180065317A1
US20180065317A1 US15/599,649 US201715599649A US2018065317A1 US 20180065317 A1 US20180065317 A1 US 20180065317A1 US 201715599649 A US201715599649 A US 201715599649A US 2018065317 A1 US2018065317 A1 US 2018065317A1
Authority
US
United States
Prior art keywords
head
reinforcement
additive manufacturing
manufacturing system
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/599,649
Inventor
Kenneth Lyle Tyler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continuous Composites Inc
Original Assignee
CC3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CC3D LLC filed Critical CC3D LLC
Priority to US15/599,649 priority Critical patent/US20180065317A1/en
Assigned to CC3D LLC reassignment CC3D LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TYLER, KENNETH LYLE
Priority to EP17849244.3A priority patent/EP3509824A4/en
Priority to PCT/US2017/041203 priority patent/WO2018048502A1/en
Priority to CN201780052258.8A priority patent/CN109843563A/en
Priority to CA3032622A priority patent/CA3032622A1/en
Priority to RU2019106164A priority patent/RU2019106164A/en
Priority to AU2017324066A priority patent/AU2017324066A1/en
Priority to JP2019502088A priority patent/JP2019526467A/en
Publication of US20180065317A1 publication Critical patent/US20180065317A1/en
Assigned to CONTINUOUS COMPOSITES reassignment CONTINUOUS COMPOSITES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CC3D LLC
Assigned to CONTINUOUS COMPOSITES INC. reassignment CONTINUOUS COMPOSITES INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CC3D LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • B29C67/0081
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • B25J9/026Gantry-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/255Flow control means, e.g. valves
    • B29C48/2556Flow control means, e.g. valves provided in or in the proximity of dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/266Means for allowing relative movements between the apparatus parts, e.g. for twisting the extruded article or for moving the die along a surface to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/301Extrusion nozzles or dies having reciprocating, oscillating or rotating parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C67/0051
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • B29C70/384Fiber placement heads, e.g. component parts, details or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/304Extrusion nozzles or dies specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns

Definitions

  • the present disclosure relates generally to a manufacturing system and, more particularly, to an additive manufacturing system having in-situ fiber splicing.
  • Extrusion manufacturing is a known process for producing continuous structures.
  • a liquid matrix e.g., a thermoset resin or a heated thermoplastic
  • the material upon exiting the die, cures and hardens into a final form.
  • UV light and/or ultrasonic vibrations are used to speed the cure of the liquid matrix as it exits the die.
  • the structures produced by the extrusion manufacturing process can have any continuous length, with a straight or curved profile, a consistent cross-sectional shape, and excellent surface finish.
  • extrusion manufacturing can be an efficient way to continuously manufacture structures, the resulting structures may lack the strength required for some applications.
  • Pultrusion manufacturing is a known process for producing high-strength structures.
  • individual fiber strands, braids of strands, and/or woven fabrics are coated with or otherwise impregnated with a liquid matrix (e.g., a thermoset resin or a heated thermoplastic) and pulled through a stationary die where the liquid matrix cures and hardens into a final form.
  • a liquid matrix e.g., a thermoset resin or a heated thermoplastic
  • UV light and/or ultrasonic vibrations are used in some pultrusion applications to speed the cure of the liquid matrix as it exits the die.
  • the structures produced by the pultrusion manufacturing process have many of the same attributes of extruded structures, as well as increased strength due to the integrated fibers.
  • pultrusion manufacturing can be an efficient way to continuously manufacture high-strength structures, the resulting structures may lack the form (shape, size, and/or precision) required for some applications.
  • conventional pultrusion manufacturing may lack precise control over curing and the ability to dynamically change fibers during manufacture.
  • the disclosed system is directed to addressing one or more of the problems set forth above and/or other problems of the prior art.
  • the present disclosure is directed to an additive manufacturing system.
  • the additive manufacturing system may include a head configured to discharge a composite material, including a matrix and a first reinforcement.
  • the system may also include a splicing mechanism configured to selectively swap out the first reinforcement with a second reinforcement.
  • the present disclosure is directed to another additive manufacturing system.
  • This additive manufacturing system may include a head configured to discharge a composite material including a matrix and a first reinforcement, and a support configured to move the head in multiple dimensions during discharging by the head.
  • the additive manufacturing system may also include a splicing mechanism configured to at least one of dynamically swap out or supplement the first reinforcement with a second reinforcement during discharging by the head.
  • the additive manufacturing system may further include a controller configured to receive information regarding a structure to be manufactured with the composite material, and to coordinate operation of the splicing mechanism with movement of the head based on the information.
  • the present disclosure is directed to a head for an additive manufacturing system.
  • the head may include a housing, and a nozzle located at a discharge end of the housing.
  • the head may also include a cutter disposed inside the housing, an adhesive dispenser disposed inside the housing and adjacent the cutter, and an internal cure enhancer disposed inside the housing and downstream of the adhesive dispenser.
  • FIGS. 1 and 2 are diagrammatic illustrations of exemplary disclosed manufacturing systems
  • FIG. 3 is a diagrammatic illustration of an exemplary disclosed head that may be used in conjunction with the manufacturing systems of FIGS. 1 and 2 .
  • FIGS. 1 and 2 illustrate different exemplary systems 10 and 12 , which may be used to continuously manufacture composite structures 14 having any desired cross-sectional shape (e.g., circular, polygonal, etc.).
  • Each of systems 10 , 12 may include at least a support 16 and a head 18 .
  • Head 18 may be coupled to and moved by support 16 .
  • support 16 is a robotic arm capable of moving head 18 in multiple directions during fabrication of structure 14 , such that a resulting longitudinal axis of structure 14 is three-dimensional.
  • support 16 is an overhead gantry also capable of moving head 18 in multiple directions during fabrication of structure 14 .
  • a drive may mechanically couple head 18 to support 16 , and may include components that cooperate to move and/or supply power or materials to head 18 .
  • Head 18 may be configured to receive or otherwise contain a matrix material.
  • the matrix material may include any type of matrix material (e.g., a liquid resin, such as a zero volatile organic compound resin; a powdered metal; etc.) that is curable.
  • Exemplary resins include thermosets, epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, and more.
  • the matrix material inside head 18 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 18 via a corresponding conduit (not shown).
  • the pressure may be generated completely inside of head 18 by a similar type of device.
  • the matrix material may be gravity-fed through head 18 .
  • the matrix material inside head 18 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix material may need to be kept warm for the same reason. In either situation, head 18 may be specially configured (e.g., insulated, chilled, and/or warmed) to provide for these needs.
  • the matrix material may be used to coat, encase, or otherwise surround any number of continuous reinforcements (e.g., separate fibers, tows, rovings, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 14 .
  • the reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through head 18 (e.g., fed from external spools). When multiple reinforcements are simultaneously used, the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, etc.), or of a different type with different diameters and/or cross-sectional shapes.
  • the reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials encased in the matrix material discharging from head 18 .
  • the reinforcements may be exposed to (e.g., coated with) the matrix material while the reinforcements are inside head 18 , while the reinforcements are being passed to head 18 , and/or while the reinforcements are discharging from head 18 , as desired.
  • the matrix material, dry reinforcements, and/or reinforcements that are already exposed to the matrix material may be transported into head 18 in any manner apparent to one skilled in the art.
  • One or more cure enhancers (e.g., a UV light, an ultrasonic emitter, a laser, a heater, a catalyst dispenser, etc.) 20 may be mounted proximate (e.g., within or on) head 18 and configured to enhance a cure rate and/or quality of the matrix material as it is discharged from head 18 .
  • Cure enhancer 20 may be controlled to selectively expose surfaces of structure 14 to energy (e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, etc.) during the formation of structure 14 . The energy may increase a rate of chemical reaction occurring within the matrix material, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from head 18 .
  • cure enhancer 20 includes multiple LEDs (e.g., 6 different LEDs) that are equally distributed about a center axis of head 18 .
  • any number of LEDs or other energy sources could alternatively be utilized for the disclosed purposes and/or arranged in another manner (e.g., unequally distributed, arranged in a row, etc.).
  • the amount of energy produced by cure enhancer 20 may be sufficient to cure the matrix material before structure 14 axially grows more than a predetermined length away from head 18 .
  • structure 14 is completely cured before the axial growth length becomes equal to an external diameter of the matrix-coated reinforcement.
  • the matrix material and reinforcement may be discharged from head 18 via at least two different modes of operation.
  • a first mode of operation the matrix material and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from head 18 , as head 18 is moved by support 16 to create the 3-dimensional shape of structure 14 .
  • a second mode of operation at least the reinforcement is pulled from head 18 , such that a tensile stress is created in the reinforcement during discharge.
  • the matrix material may cling to the reinforcement and thereby also be pulled from head 18 along with the reinforcement, and/or the matrix material may be discharged from head 18 under pressure along with the pulled reinforcement.
  • the resulting tension in the reinforcement may increase a strength of structure 14 , while also allowing for a greater length of unsupported material to have a straighter trajectory (i.e., the tension may act against the force of gravity to provide free-standing support for structure 14 ).
  • the reinforcement may be pulled from head 18 as a result of head 18 moving away from an anchor point 22 .
  • a length of matrix-impregnated reinforcement may be pulled and/or pushed from head 18 , deposited onto an anchor point 22 , and cured, such that the discharged material adheres to anchor point 22 .
  • head 18 may be moved away from anchor point 22 , and the relative movement may cause the reinforcement to be pulled from head 18 .
  • the movement of reinforcement through head 18 could be assisted (e.g., via internal head mechanisms), if desired.
  • the discharge rate of reinforcement from head 18 may primarily be the result of relative movement between head 18 and anchor point 22 , such that tension is created within the reinforcement.
  • anchor point 22 could be moved away from head 18 instead of or in addition to head 18 being moved away from anchor point 22 .
  • FIG. 3 An exemplary control arrangement is shown in FIG. 3 that may be used to regulate operation of system 10 and/or 12 (referring to FIG. 1 ).
  • a controller 24 is provided and shown as being communicatively coupled with support 16 , head 18 , and any number and type of cure enhancers 20 .
  • Controller 24 may embody a single processor or multiple processors that include a means for controlling an operation of system(s) 10 and/or 12 .
  • Controller 24 may include one or more general- or special-purpose processors or microprocessors.
  • Controller 24 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 14 , and corresponding parameters of each component of system(s) 10 and/or 12 .
  • Various other known circuits may be associated with controller 24 , including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry.
  • controller 24 may be capable of communicating with other components of system(s) 10 and/or 12 via wired and/or wireless transmission.
  • One or more maps may be stored in the memory of controller 24 and used during fabrication of structure 14 .
  • Each of these maps may include a collection of data in the form of lookup tables, graphs, and/or equations.
  • the maps are used by controller 24 to determine desired characteristics of cure enhancers 20 , the associated matrix, and/or the associated reinforcements at different locations within structure 14 .
  • the characteristics may include, among others, a type, quantity, and/or configuration of reinforcement to be discharged at a particular location within structure 14 .
  • Controller 24 may then correlate operation of support 16 (e.g., the location and/or orientation of head 18 ) and/or the discharge of material from head 18 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 20 such that structure 14 is produced in a desired manner
  • a splicing mechanism 26 may be associated with head 18 and regulated by controller 24 .
  • Splicing mechanism 26 may be located inside of or upstream of head 18 (e.g., within a housing of head 18 and upstream of a discharge nozzle), and include components that cooperate to dynamically change the number and/or types of reinforcements discharging from head 18 .
  • certain portions may call for a first type, amount, and/or configuration of reinforcement (e.g., 6 k tow of carbon fiber), while another portion may call for a second type (e.g., 24 k braid of fiberglass) of and/or additional reinforcement.
  • a first type, amount, and/or configuration of reinforcement e.g., 6 k tow of carbon fiber
  • another portion may call for a second type (e.g., 24 k braid of fiberglass) of and/or additional reinforcement.
  • the components of slicing mechanism 26 may include, among other things, a cutter 28 , a driver 30 , an adhesive dispenser 32 , and an internal cure enhancer 34 .
  • Cutter 28 may embody, for example, one or more blades, and an actuator configured to push the blade(s) through one or more of the reinforcements at a time when the dynamic reinforcement change is commanded by controller 24 .
  • cutter 28 is shown in association with only one reinforcement. It should be noted, however, that another cutter 28 could additionally be associated with each of any different reinforcements available within head 18 .
  • Driver 30 may embody, for example, one or more rollers that are powered (e.g., via a motor) to drive the replacing reinforcement toward cure enhancer 34 .
  • the reinforcement being replaced may be pulled from head 18 during manufacture of structure 14 and, thus, not require the use of a driver.
  • the replacing reinforcement since it may not yet be pulled from head 18 , may require the use of driver 30 to drive the replacing reinforcement through head 18 .
  • a dedicated driver 30 could be associated with each type of reinforcement, as desired.
  • Driver 30 may be configured to push the replacing reinforcement to abut or overlap (e.g., directly overlap, overlap at an angle and/or scarf interface, etc.) the reinforcement being replaced before, during, and/or after the reinforcement being replaced has been severed by cutter 28 .
  • an adhesive may be applied to one or both of the reinforcements by adhesive dispenser 32 .
  • the adhesive may be of the same composition as the matrix material that later coats the reinforcement being discharged, or a different adhesive.
  • the adhesive may be a more flexible adhesive that allows the spliced joint to bend as it exits head 18 .
  • Internal cure enhancer 34 may be selectively activated by controller 24 to then cure the adhesive, thereby bonding the new upstream and severed downstream reinforcements to each other at the abutment or overlap. Thereafter, the replacing reinforcement may be pulled from head 18 (e.g., by pulling on the existing reinforcement already protruding from head 18 ) and used to manufacture structure 14 .
  • Internal cure enhancer 34 may be of the same type as external cure enhancer 34 , or different, as desired.
  • the existing and new reinforcements may need to be pressed together and/or shaped during curing to enhance the bond between the reinforcements and to make sure that the spliced joint can fit through the nozzle tip of head 18 .
  • This may be accomplished, for example, by a die, a funnel, an actuator, a squeegee, or another similar device 36 .
  • mechanism 36 may also need to be swapped out to accommodate a different internal shape and/or diameter of the orifice in the nozzle tip.
  • the location along structure 14 at which splicing occurs may be important, for example for reasons of structural integrity (e.g., fatigue) and/or cosmetic appearance. Accordingly, the splicing location may be determined and/or correlated by controller 24 with the location of particular features (e.g., corners, recesses, contour changes, etc.) of structure 14 .
  • the disclosed systems may be used to continuously manufacture composite structures having any desired cross-sectional shape and length.
  • the composite structures may include any number of different fibers of the same or different types, diameters, shapes, configurations, and consist.
  • the fibers used to make the composite structures may be dynamically changed (swapped out, combined, supplemented, etc.) during manufacture of the structures. Operation of systems 10 and 12 will now be described in detail.
  • information regarding a desired structure 14 may be loaded into systems 10 and 12 (e.g., into controller 24 that is responsible for regulating operations of support 16 and/or head 18 ).
  • This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), desired weave patterns, weave transition locations, location-specific matrix stipulations, location-specific fiber stipulations, etc.
  • a size e.g., diameter, wall thickness, length, etc.
  • a contour e.g., a trajectory
  • surface features e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.
  • connection geometry e.g., locations and
  • this information may alternatively or additionally be loaded into systems 10 and 12 at different times and/or continuously during the manufacturing event, if desired.
  • one or more different reinforcements and/or matrix materials may be selectively installed and/or continuously supplied into systems 10 and 12 .
  • the reinforcements may also need to be connected to a pulling machine (not shown) and/or to a mounting fixture (e.g., to anchor point 22 ).
  • Installation of the matrix material may include filling head 18 and/or coupling of an extruder (not shown) to head 18 .
  • the component information may then be used to control operation of systems 10 and 12 .
  • the reinforcements may be pulled and/or pushed from head 18 (along with the matrix material), while support 16 selectively moves head 18 in a desired manner, such that an axis of the resulting structure 14 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory).
  • a desired trajectory e.g., a free-space, unsupported, 3-D trajectory
  • the information received at the start of the manufacturing process may dictate a change in reinforcements.
  • the information may require the use of a thicker reinforcement (e.g., a 24 k tow instead of a 6 k tow), the use of another type of reinforcement (e.g., carbon instead of glass), the use of combined fibers (e.g., carbon+optical tubes), the use of another form of reinforcement (e.g., ribbon or sheets instead of fibers), etc. at a particular location within structure 14 .
  • controller 24 may selectively activate splicing mechanism 26 to provide for the change in reinforcements.
  • structure 14 may need greater strength at a critical area (e.g., at a neck or mounting area), as compared to a non-critical area (e.g., at a non-structural fill area).
  • controller 24 may selectively activate cutter 28 to sever the reinforcement currently being discharged from head 18 .
  • controller 24 may selectively activate driver 30 to advance the new reinforcement to either abut the severed end of the existing reinforcement or to overlap the severed end by a predetermined distance.
  • Adhesive dispenser 32 may be selectively activated by controller 24 to dispense a desired amount of adhesive onto one or both of the existing reinforcement (e.g., at the severed end) and the new reinforcement (e.g., at a leading end).
  • the adhesive dispensing may be performed before or after severing of the existing reinforcement and advancing of the new reinforcement.
  • the abutted or overlapped reinforcements may then be at least partially cured as they pass near internal cure enhancer 34 , thereby joining the reinforcements to each other. Thereafter, continued movement of head 18 away from anchor point 22 (and/or away from previously dispensed and cured portions of structure 14 ) may cause the replacing reinforcement to be pulled from head 18 .
  • a similar process may be used to switch to another reinforcement and/or to return to the original reinforcement, as desired.
  • the new reinforcement could be dispensed from head 18 without first severing the existing reinforcement, if desired.
  • the new reinforcement may be advanced to overlap the existing reinforcement, coated with adhesive, and cured, without ever severing the existing reinforcement. This may allow for a greater amount and/or a different mix of reinforcements to be discharged from head 18 .
  • the new and/or the existing reinforcement may be selectively severed by cutter 28 to again change the amount and/or mix of reinforcements discharging from head 18 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Composite Materials (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulding By Coating Moulds (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A system is disclosed for use in additively manufacturing a composite structure. The system may include a head configured to discharge a composite material, including a matrix and a first reinforcement. The system may also include a splicing mechanism configured to selectively swap out the first reinforcement with a second reinforcement.

Description

    RELATED APPLICATIONS
  • This application is based on and claims the benefit of priority from U.S. Provisional Application No. 62/383,801 that was filed on Sep. 6, 2016, the contents of all of which are expressly incorporated herein by reference
  • TECHNICAL FIELD
  • The present disclosure relates generally to a manufacturing system and, more particularly, to an additive manufacturing system having in-situ fiber splicing.
  • BACKGROUND
  • Extrusion manufacturing is a known process for producing continuous structures. During extrusion manufacturing, a liquid matrix (e.g., a thermoset resin or a heated thermoplastic) is pushed through a die having a desired cross-sectional shape and size. The material, upon exiting the die, cures and hardens into a final form. In some applications, UV light and/or ultrasonic vibrations are used to speed the cure of the liquid matrix as it exits the die. The structures produced by the extrusion manufacturing process can have any continuous length, with a straight or curved profile, a consistent cross-sectional shape, and excellent surface finish. Although extrusion manufacturing can be an efficient way to continuously manufacture structures, the resulting structures may lack the strength required for some applications.
  • Pultrusion manufacturing is a known process for producing high-strength structures. During pultrusion manufacturing, individual fiber strands, braids of strands, and/or woven fabrics are coated with or otherwise impregnated with a liquid matrix (e.g., a thermoset resin or a heated thermoplastic) and pulled through a stationary die where the liquid matrix cures and hardens into a final form. As with extrusion manufacturing, UV light and/or ultrasonic vibrations are used in some pultrusion applications to speed the cure of the liquid matrix as it exits the die. The structures produced by the pultrusion manufacturing process have many of the same attributes of extruded structures, as well as increased strength due to the integrated fibers. Although pultrusion manufacturing can be an efficient way to continuously manufacture high-strength structures, the resulting structures may lack the form (shape, size, and/or precision) required for some applications. In addition, conventional pultrusion manufacturing may lack precise control over curing and the ability to dynamically change fibers during manufacture.
  • The disclosed system is directed to addressing one or more of the problems set forth above and/or other problems of the prior art.
  • SUMMARY
  • In one aspect, the present disclosure is directed to an additive manufacturing system. The additive manufacturing system may include a head configured to discharge a composite material, including a matrix and a first reinforcement. The system may also include a splicing mechanism configured to selectively swap out the first reinforcement with a second reinforcement.
  • In another aspect, the present disclosure is directed to another additive manufacturing system. This additive manufacturing system may include a head configured to discharge a composite material including a matrix and a first reinforcement, and a support configured to move the head in multiple dimensions during discharging by the head. The additive manufacturing system may also include a splicing mechanism configured to at least one of dynamically swap out or supplement the first reinforcement with a second reinforcement during discharging by the head. The additive manufacturing system may further include a controller configured to receive information regarding a structure to be manufactured with the composite material, and to coordinate operation of the splicing mechanism with movement of the head based on the information.
  • In yet another aspect, the present disclosure is directed to a head for an additive manufacturing system. The head may include a housing, and a nozzle located at a discharge end of the housing. The head may also include a cutter disposed inside the housing, an adhesive dispenser disposed inside the housing and adjacent the cutter, and an internal cure enhancer disposed inside the housing and downstream of the adhesive dispenser.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 and 2 are diagrammatic illustrations of exemplary disclosed manufacturing systems; and
  • FIG. 3 is a diagrammatic illustration of an exemplary disclosed head that may be used in conjunction with the manufacturing systems of FIGS. 1 and 2.
  • DETAILED DESCRIPTION
  • FIGS. 1 and 2 illustrate different exemplary systems 10 and 12, which may be used to continuously manufacture composite structures 14 having any desired cross-sectional shape (e.g., circular, polygonal, etc.). Each of systems 10, 12 may include at least a support 16 and a head 18. Head 18 may be coupled to and moved by support 16. In the disclosed embodiment of FIG. 1, support 16 is a robotic arm capable of moving head 18 in multiple directions during fabrication of structure 14, such that a resulting longitudinal axis of structure 14 is three-dimensional. In the embodiment of FIG. 2, support 16 is an overhead gantry also capable of moving head 18 in multiple directions during fabrication of structure 14. Although supports 16 of both embodiments are shown as being capable of 6-axis movements, it is contemplated that any other type of support 16 capable of moving head 18 in the same or in a different manner could also be utilized, if desired. In some embodiments, a drive may mechanically couple head 18 to support 16, and may include components that cooperate to move and/or supply power or materials to head 18.
  • Head 18 may be configured to receive or otherwise contain a matrix material. The matrix material may include any type of matrix material (e.g., a liquid resin, such as a zero volatile organic compound resin; a powdered metal; etc.) that is curable. Exemplary resins include thermosets, epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, and more. In one embodiment, the matrix material inside head 18 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 18 via a corresponding conduit (not shown). In another embodiment, however, the pressure may be generated completely inside of head 18 by a similar type of device. In yet other embodiments, the matrix material may be gravity-fed through head 18. In some instances, the matrix material inside head 18 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix material may need to be kept warm for the same reason. In either situation, head 18 may be specially configured (e.g., insulated, chilled, and/or warmed) to provide for these needs.
  • The matrix material may be used to coat, encase, or otherwise surround any number of continuous reinforcements (e.g., separate fibers, tows, rovings, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 14. The reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through head 18 (e.g., fed from external spools). When multiple reinforcements are simultaneously used, the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, etc.), or of a different type with different diameters and/or cross-sectional shapes. The reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials encased in the matrix material discharging from head 18.
  • The reinforcements may be exposed to (e.g., coated with) the matrix material while the reinforcements are inside head 18, while the reinforcements are being passed to head 18, and/or while the reinforcements are discharging from head 18, as desired. The matrix material, dry reinforcements, and/or reinforcements that are already exposed to the matrix material (e.g., wetted reinforcements) may be transported into head 18 in any manner apparent to one skilled in the art.
  • One or more cure enhancers (e.g., a UV light, an ultrasonic emitter, a laser, a heater, a catalyst dispenser, etc.) 20 may be mounted proximate (e.g., within or on) head 18 and configured to enhance a cure rate and/or quality of the matrix material as it is discharged from head 18. Cure enhancer 20 may be controlled to selectively expose surfaces of structure 14 to energy (e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, etc.) during the formation of structure 14. The energy may increase a rate of chemical reaction occurring within the matrix material, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from head 18. In the depicted embodiments, cure enhancer 20 includes multiple LEDs (e.g., 6 different LEDs) that are equally distributed about a center axis of head 18. However, it is contemplated that any number of LEDs or other energy sources could alternatively be utilized for the disclosed purposes and/or arranged in another manner (e.g., unequally distributed, arranged in a row, etc.). The amount of energy produced by cure enhancer 20 may be sufficient to cure the matrix material before structure 14 axially grows more than a predetermined length away from head 18. In one embodiment, structure 14 is completely cured before the axial growth length becomes equal to an external diameter of the matrix-coated reinforcement.
  • The matrix material and reinforcement may be discharged from head 18 via at least two different modes of operation. In a first mode of operation, the matrix material and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from head 18, as head 18 is moved by support 16 to create the 3-dimensional shape of structure 14. In a second mode of operation, at least the reinforcement is pulled from head 18, such that a tensile stress is created in the reinforcement during discharge. In this mode of operation, the matrix material may cling to the reinforcement and thereby also be pulled from head 18 along with the reinforcement, and/or the matrix material may be discharged from head 18 under pressure along with the pulled reinforcement. In the second mode of operation, where the matrix material is being pulled from head 18, the resulting tension in the reinforcement may increase a strength of structure 14, while also allowing for a greater length of unsupported material to have a straighter trajectory (i.e., the tension may act against the force of gravity to provide free-standing support for structure 14).
  • The reinforcement may be pulled from head 18 as a result of head 18 moving away from an anchor point 22. In particular, at the start of structure-formation, a length of matrix-impregnated reinforcement may be pulled and/or pushed from head 18, deposited onto an anchor point 22, and cured, such that the discharged material adheres to anchor point 22. Thereafter, head 18 may be moved away from anchor point 22, and the relative movement may cause the reinforcement to be pulled from head 18. It should be noted that the movement of reinforcement through head 18 could be assisted (e.g., via internal head mechanisms), if desired. However, the discharge rate of reinforcement from head 18 may primarily be the result of relative movement between head 18 and anchor point 22, such that tension is created within the reinforcement. It is contemplated that anchor point 22 could be moved away from head 18 instead of or in addition to head 18 being moved away from anchor point 22.
  • An exemplary control arrangement is shown in FIG. 3 that may be used to regulate operation of system 10 and/or 12 (referring to FIG. 1). As can be seen in this figure, a controller 24 is provided and shown as being communicatively coupled with support 16, head 18, and any number and type of cure enhancers 20. Controller 24 may embody a single processor or multiple processors that include a means for controlling an operation of system(s) 10 and/or 12. Controller 24 may include one or more general- or special-purpose processors or microprocessors. Controller 24 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 14, and corresponding parameters of each component of system(s) 10 and/or 12. Various other known circuits may be associated with controller 24, including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry. Moreover, controller 24 may be capable of communicating with other components of system(s) 10 and/or 12 via wired and/or wireless transmission.
  • One or more maps may be stored in the memory of controller 24 and used during fabrication of structure 14. Each of these maps may include a collection of data in the form of lookup tables, graphs, and/or equations. In the disclosed embodiment, the maps are used by controller 24 to determine desired characteristics of cure enhancers 20, the associated matrix, and/or the associated reinforcements at different locations within structure 14. The characteristics may include, among others, a type, quantity, and/or configuration of reinforcement to be discharged at a particular location within structure 14. Controller 24 may then correlate operation of support 16 (e.g., the location and/or orientation of head 18) and/or the discharge of material from head 18 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 20 such that structure 14 is produced in a desired manner
  • As can be seen in FIG. 3, a splicing mechanism 26 may be associated with head 18 and regulated by controller 24. Splicing mechanism 26 may be located inside of or upstream of head 18 (e.g., within a housing of head 18 and upstream of a discharge nozzle), and include components that cooperate to dynamically change the number and/or types of reinforcements discharging from head 18. Specifically, when creating structure 14, certain portions may call for a first type, amount, and/or configuration of reinforcement (e.g., 6 k tow of carbon fiber), while another portion may call for a second type (e.g., 24 k braid of fiberglass) of and/or additional reinforcement. The disclosed arrangement of FIG. 3 may allow for the first type of reinforcement to be dynamically swapped (and/or supplemented) with the second type of reinforcement without halting of structure manufacturing. The components of slicing mechanism 26 may include, among other things, a cutter 28, a driver 30, an adhesive dispenser 32, and an internal cure enhancer 34.
  • Cutter 28 may embody, for example, one or more blades, and an actuator configured to push the blade(s) through one or more of the reinforcements at a time when the dynamic reinforcement change is commanded by controller 24. In the disclosed embodiment, cutter 28 is shown in association with only one reinforcement. It should be noted, however, that another cutter 28 could additionally be associated with each of any different reinforcements available within head 18.
  • Driver 30 may embody, for example, one or more rollers that are powered (e.g., via a motor) to drive the replacing reinforcement toward cure enhancer 34. In most embodiments, the reinforcement being replaced may be pulled from head 18 during manufacture of structure 14 and, thus, not require the use of a driver. However, during reinforcement replacement, the replacing reinforcement, since it may not yet be pulled from head 18, may require the use of driver 30 to drive the replacing reinforcement through head 18. It is contemplated that a dedicated driver 30 could be associated with each type of reinforcement, as desired. Driver 30 may be configured to push the replacing reinforcement to abut or overlap (e.g., directly overlap, overlap at an angle and/or scarf interface, etc.) the reinforcement being replaced before, during, and/or after the reinforcement being replaced has been severed by cutter 28.
  • At some point in time, before the severed reinforcement and/or the replacing reinforcement reaches internal cure enhancer 34, an adhesive may be applied to one or both of the reinforcements by adhesive dispenser 32. The adhesive may be of the same composition as the matrix material that later coats the reinforcement being discharged, or a different adhesive. For example, the adhesive may be a more flexible adhesive that allows the spliced joint to bend as it exits head 18. Internal cure enhancer 34 may be selectively activated by controller 24 to then cure the adhesive, thereby bonding the new upstream and severed downstream reinforcements to each other at the abutment or overlap. Thereafter, the replacing reinforcement may be pulled from head 18 (e.g., by pulling on the existing reinforcement already protruding from head 18) and used to manufacture structure 14. Internal cure enhancer 34 may be of the same type as external cure enhancer 34, or different, as desired.
  • It is contemplated that, during splicing in some applications, the existing and new reinforcements may need to be pressed together and/or shaped during curing to enhance the bond between the reinforcements and to make sure that the spliced joint can fit through the nozzle tip of head 18. This may be accomplished, for example, by a die, a funnel, an actuator, a squeegee, or another similar device 36. It is contemplated that, as the nozzle tip of head 18 is swapped out for another nozzle tip, mechanism 36 may also need to be swapped out to accommodate a different internal shape and/or diameter of the orifice in the nozzle tip.
  • It should be noted that the location along structure 14 at which splicing occurs may be important, for example for reasons of structural integrity (e.g., fatigue) and/or cosmetic appearance. Accordingly, the splicing location may be determined and/or correlated by controller 24 with the location of particular features (e.g., corners, recesses, contour changes, etc.) of structure 14.
  • INDUSTRIAL APPLICABILITY
  • The disclosed systems may be used to continuously manufacture composite structures having any desired cross-sectional shape and length. The composite structures may include any number of different fibers of the same or different types, diameters, shapes, configurations, and consist. In addition, the fibers used to make the composite structures may be dynamically changed (swapped out, combined, supplemented, etc.) during manufacture of the structures. Operation of systems 10 and 12 will now be described in detail.
  • At a start of a manufacturing event, information regarding a desired structure 14 may be loaded into systems 10 and 12 (e.g., into controller 24 that is responsible for regulating operations of support 16 and/or head 18). This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), desired weave patterns, weave transition locations, location-specific matrix stipulations, location-specific fiber stipulations, etc. It should be noted that this information may alternatively or additionally be loaded into systems 10 and 12 at different times and/or continuously during the manufacturing event, if desired. Based on the component information, one or more different reinforcements and/or matrix materials may be selectively installed and/or continuously supplied into systems 10 and 12. In some embodiments, the reinforcements may also need to be connected to a pulling machine (not shown) and/or to a mounting fixture (e.g., to anchor point 22). Installation of the matrix material may include filling head 18 and/or coupling of an extruder (not shown) to head 18.
  • The component information may then be used to control operation of systems 10 and 12. For example, the reinforcements may be pulled and/or pushed from head 18 (along with the matrix material), while support 16 selectively moves head 18 in a desired manner, such that an axis of the resulting structure 14 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory). Once structure 14 has grown to a desired length, structure 14 may be disconnected (e.g., severed) from head 18 in any desired manner
  • During the growth of structure 14, the information received at the start of the manufacturing process may dictate a change in reinforcements. For example, the information may require the use of a thicker reinforcement (e.g., a 24 k tow instead of a 6 k tow), the use of another type of reinforcement (e.g., carbon instead of glass), the use of combined fibers (e.g., carbon+optical tubes), the use of another form of reinforcement (e.g., ribbon or sheets instead of fibers), etc. at a particular location within structure 14. Responsive to the manufacturing progress of head 18, relative to the spatial requirements of structure 14, controller 24 may selectively activate splicing mechanism 26 to provide for the change in reinforcements.
  • For example, structure 14 may need greater strength at a critical area (e.g., at a neck or mounting area), as compared to a non-critical area (e.g., at a non-structural fill area). As head 14 reaches the critical area, controller 24 may selectively activate cutter 28 to sever the reinforcement currently being discharged from head 18. At about this same time, controller 24 may selectively activate driver 30 to advance the new reinforcement to either abut the severed end of the existing reinforcement or to overlap the severed end by a predetermined distance. Adhesive dispenser 32 may be selectively activated by controller 24 to dispense a desired amount of adhesive onto one or both of the existing reinforcement (e.g., at the severed end) and the new reinforcement (e.g., at a leading end). The adhesive dispensing may be performed before or after severing of the existing reinforcement and advancing of the new reinforcement. The abutted or overlapped reinforcements may then be at least partially cured as they pass near internal cure enhancer 34, thereby joining the reinforcements to each other. Thereafter, continued movement of head 18 away from anchor point 22 (and/or away from previously dispensed and cured portions of structure 14) may cause the replacing reinforcement to be pulled from head 18. A similar process may be used to switch to another reinforcement and/or to return to the original reinforcement, as desired.
  • It should be noted that the new reinforcement could be dispensed from head 18 without first severing the existing reinforcement, if desired. For example, when the structure information stipulates a change in reinforcement mix and/or quality, the new reinforcement may be advanced to overlap the existing reinforcement, coated with adhesive, and cured, without ever severing the existing reinforcement. This may allow for a greater amount and/or a different mix of reinforcements to be discharged from head 18. At any point thereafter, the new and/or the existing reinforcement may be selectively severed by cutter 28 to again change the amount and/or mix of reinforcements discharging from head 18.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed systems and head. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed systems and heads. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.

Claims (20)

What is claimed is:
1. An additive manufacturing system, comprising:
a head configured to discharge a composite material including a matrix and a first reinforcement; and
a splicing mechanism configured to selectively swap out the first reinforcement with a second reinforcement.
2. The additive manufacturing system of claim 1, wherein the splicing mechanism is configured to dynamically swap out the first reinforcement with the second reinforcement during discharging by the head.
3. The additive manufacturing system of claim 1, further including a support configured to move the head in multiple dimensions during discharging.
4. The additive manufacturing system of claim 3, wherein the splicing mechanism is located within at least one of the head or the support.
5. The additive manufacturing system of claim 1, further including a controller configured to:
receive information regarding a structure to be manufactured with the composite material; and
coordinate operation of the splicing mechanism with movement of the head based on the information.
6. The additive manufacturing system of claim 1, further including an external cure enhancer configured to enhance curing of the matrix after discharge.
7. The additive manufacturing system of claim 6, wherein the splicing mechanism includes:
a cutter configured to selectively sever the first reinforcement;
a driver configured to selectively drive the second reinforcement to at least one of abut or overlap the first reinforcement;
an adhesive dispenser configured to apply adhesive to at least one of the first and second reinforcements; and
an internal cure enhancer configured to cure the adhesive before the second reinforcement is coated with the matrix material.
8. The additive manufacturing system of claim 6, wherein the adhesive is more flexible than the matrix material.
9. The additive manufacturing system of claim 1, wherein the splicing mechanism further includes a device configured to press together and shape ends of the first and second reinforcements.
10. The additive manufacturing system of claim 1, wherein the first reinforcement is different than the second reinforcement in at least one of a type, a composition, and a size.
11. The additive manufacturing system of claim 1, wherein the splicing mechanism is further configured to selectively supplement the first reinforcement with the second reinforcement.
12. An additive manufacturing system, comprising:
a head configured to discharge a composite material including a matrix and a first reinforcement;
a support configured to move the head in multiple dimensions during discharging by the head;
a splicing mechanism configured to at least one of dynamically swap out or supplement the first reinforcement with a second reinforcement during discharging by the head; and
a controller configured to:
receive information regarding a structure to be manufactured with the composite material; and
coordinate operation of the splicing mechanism with movement of the head based on the information.
13. A head for an additive manufacturing system, comprising:
a housing;
a nozzle located at a discharge end of the housing;
a cutter disposed inside the housing;
an adhesive dispenser disposed inside the housing and adjacent the cutter; and
an internal cure enhancer disposed inside the housing and downstream of the adhesive dispenser.
14. The head of claim 13, wherein cutter is configured to cut a first reinforcement currently being discharged through the nozzle.
15. The head of claim 14, further including a driver configured to advance a second reinforcement to at least one of abut and overlap the first reinforcement.
16. The head of claim 15, further including a device configured to press together and shape ends of the first and second reinforcements.
17. The head of claim 15, wherein the adhesive dispenser is configured to dispense an adhesive onto at least one of the first and second reinforcements.
18. The head of claim 17, wherein the nozzle is configured to discharge at least one of the first and second reinforcements along with a matrix.
19. The head of claim 18, wherein the adhesive and the matrix are of a same composition.
20. The head of claim 18, further including an external cure enhancer configured to enhance curing of the matrix, wherein the internal cure enhancer is configured to enhance curing of the adhesive.
US15/599,649 2016-09-06 2017-05-19 Additive manufacturing system having in-situ fiber splicing Abandoned US20180065317A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US15/599,649 US20180065317A1 (en) 2016-09-06 2017-05-19 Additive manufacturing system having in-situ fiber splicing
JP2019502088A JP2019526467A (en) 2016-09-06 2017-07-07 Additive manufacturing system with on-site fiber bonding
CA3032622A CA3032622A1 (en) 2016-09-06 2017-07-07 Additive manufacturing system having in-situ fiber splicing
PCT/US2017/041203 WO2018048502A1 (en) 2016-09-06 2017-07-07 Additive manufacturing system having in-situ fiber splicing
CN201780052258.8A CN109843563A (en) 2016-09-06 2017-07-07 The addition type manufacture system of fiber can be spliced in situ
EP17849244.3A EP3509824A4 (en) 2016-09-06 2017-07-07 Additive manufacturing system having in-situ fiber splicing
RU2019106164A RU2019106164A (en) 2016-09-06 2017-07-07 ADDITIVE FIBER SPLIT PRODUCTION SYSTEM IN-SITE
AU2017324066A AU2017324066A1 (en) 2016-09-06 2017-07-07 Additive manufacturing system having in-situ fiber splicing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662383801P 2016-09-06 2016-09-06
US15/599,649 US20180065317A1 (en) 2016-09-06 2017-05-19 Additive manufacturing system having in-situ fiber splicing

Publications (1)

Publication Number Publication Date
US20180065317A1 true US20180065317A1 (en) 2018-03-08

Family

ID=61281566

Family Applications (6)

Application Number Title Priority Date Filing Date
US15/599,649 Abandoned US20180065317A1 (en) 2016-09-06 2017-05-19 Additive manufacturing system having in-situ fiber splicing
US15/608,017 Expired - Fee Related US10766191B2 (en) 2016-09-06 2017-05-30 Additive manufacturing system having in-head fiber weaving
US15/611,430 Expired - Fee Related US10632673B2 (en) 2016-09-06 2017-06-01 Additive manufacturing system having shutter mechanism
US15/603,328 Expired - Fee Related US10647058B2 (en) 2012-08-29 2017-06-02 Control methods for additive manufacturing system
US15/617,052 Expired - Fee Related US10603840B2 (en) 2016-09-06 2017-06-08 Additive manufacturing system having adjustable energy shroud
US15/623,529 Active 2039-02-27 US10864715B2 (en) 2016-09-06 2017-06-15 Additive manufacturing system having multi-channel nozzle

Family Applications After (5)

Application Number Title Priority Date Filing Date
US15/608,017 Expired - Fee Related US10766191B2 (en) 2016-09-06 2017-05-30 Additive manufacturing system having in-head fiber weaving
US15/611,430 Expired - Fee Related US10632673B2 (en) 2016-09-06 2017-06-01 Additive manufacturing system having shutter mechanism
US15/603,328 Expired - Fee Related US10647058B2 (en) 2012-08-29 2017-06-02 Control methods for additive manufacturing system
US15/617,052 Expired - Fee Related US10603840B2 (en) 2016-09-06 2017-06-08 Additive manufacturing system having adjustable energy shroud
US15/623,529 Active 2039-02-27 US10864715B2 (en) 2016-09-06 2017-06-15 Additive manufacturing system having multi-channel nozzle

Country Status (8)

Country Link
US (6) US20180065317A1 (en)
EP (2) EP3509824A4 (en)
JP (2) JP2019526467A (en)
CN (2) CN109843563A (en)
AU (2) AU2017324066A1 (en)
CA (2) CA3032622A1 (en)
RU (2) RU2019106164A (en)
WO (6) WO2018048502A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11318654B2 (en) * 2018-08-23 2022-05-03 The Yokohama Rubber Co., Ltd. Method and device for manufacturing rubber coated cord
US20240025112A1 (en) * 2022-07-21 2024-01-25 Massivit 3D Printing Technologies Ltd. Method And Apparatus For Additive Manufacturing

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US20220009163A1 (en) * 2012-08-29 2022-01-13 Continuous Composites Inc. Control methods for additive manufacturing system
US20210094230A9 (en) 2016-11-04 2021-04-01 Continuous Composites Inc. System for additive manufacturing
US20180186043A1 (en) * 2017-01-04 2018-07-05 Brunswick Corporation Systems and Methods for Manufacturing Boat Parts
US20190091927A1 (en) 2017-09-22 2019-03-28 Ut-Battelle, Llc Penetrating and actuating nozzle for extrusion-based 3d printing
US10131088B1 (en) * 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US10870235B2 (en) * 2018-04-24 2020-12-22 Xerox Corporation Method for operating a multi-nozzle extruder using zig-zag patterns that provide improved structural integrity
CN108437456B (en) * 2018-05-03 2020-02-28 湘潭大学 Arrangement device for fiber orientation in selective laser sintering powder laying and implementation method
US11035511B2 (en) * 2018-06-05 2021-06-15 Divergent Technologies, Inc. Quick-change end effector
WO2020004328A1 (en) * 2018-06-25 2020-01-02 Kjケミカルズ株式会社 Three-dimensional shaping device and three-dimensional shaping method using heterogeneous materials
DE102018216792A1 (en) * 2018-09-28 2020-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 3D printing device
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
KR102135311B1 (en) * 2018-10-10 2020-07-17 주식회사 클리셀 Shutter structure and method for preventing uv curing for biomaterial within a dispenser for bio 3d printer
US11124961B2 (en) 2018-11-13 2021-09-21 Stratasys, Inc. System and method for 3D construction printing
US11426898B2 (en) * 2018-12-28 2022-08-30 Konica Minolta Business Solutions U.S.A., Inc. Process for fabrication of fiber composites using dual-cure free-form 3D-printed tailored fiber placement preform
US20200376758A1 (en) 2019-05-28 2020-12-03 Continuous Composites Inc. System for additively manufacturing composite structure
US20210078257A1 (en) * 2019-09-18 2021-03-18 Triex, Llc System and method for additive manufacturing
US11701828B2 (en) 2019-10-28 2023-07-18 Medtronic, Inc. Additive manufacturing for medical devices
US20210178659A1 (en) * 2019-12-17 2021-06-17 Saudi Arabian Oil Company Grooved die for manufacturing unidirectional tape
US11794402B2 (en) 2019-12-18 2023-10-24 Saudi Arabian Oil Company Reducing manufacturing defects of a wound filament product
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
CN111791456A (en) * 2020-07-14 2020-10-20 重庆会通科技有限公司 Fiber-reinforced ABS material and preparation method thereof
WO2022026771A1 (en) 2020-07-31 2022-02-03 Medtronic, Inc. Systems and methods for manufacturing 3d printed medical devices
WO2022026838A1 (en) 2020-07-31 2022-02-03 Medtronic, Inc. Method and system of additive manufacturing medical devices including internal shaping
US11766538B2 (en) * 2020-07-31 2023-09-26 Medtronic, Inc. Systems and methods for manufacturing 3D printed medical devices
CN112265266B (en) * 2020-09-30 2021-05-25 青岛科技大学 Bionic 3D printing equipment
CA3214568A1 (en) * 2021-04-07 2022-10-13 Harris Taylor Nozzles, nozzle assemblies, and related methods
CN113524662B (en) * 2021-07-08 2022-05-17 吉林大学 Method for adopting electric arc ultrasonic composite multi-material 3D printing device based on jet polishing assistance
CN114407352A (en) * 2022-01-30 2022-04-29 西安交通大学 Continuous fiber 3D printer and method for manufacturing composite material component
NL2036686B1 (en) * 2023-12-27 2024-08-13 Univ Nanjing Aeronautics & Astronautics Additive manufacturing mechanism suitable for continuous fiber reinforced composites of different sizes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120234468A1 (en) * 2011-03-14 2012-09-20 Pitman Frank M Method and apparatus for combining elongated strips
US20140034214A1 (en) * 2012-07-31 2014-02-06 Makerbot Industries, Llc Build material switching
US20140287139A1 (en) * 2013-03-19 2014-09-25 Eads Uk Limited Extrusion-based additive manufacturing
US20150108677A1 (en) * 2013-03-22 2015-04-23 Markforged, Inc. Three dimensional printer with composite filament fabrication
US20160052208A1 (en) * 2014-08-21 2016-02-25 Mosaic Manufacturing Ltd. Series enabled multi-material extrusion technology
US20160075089A1 (en) * 2014-09-15 2016-03-17 Massachusetts Institute Of Technology Methods and apparatus for additive manufacturing along user-specified toolpaths
US20160339633A1 (en) * 2014-01-17 2016-11-24 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
US9579851B2 (en) * 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9688028B2 (en) * 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044961A (en) * 1935-07-25 1936-06-23 Goodrich Co B F Method and apparatus for making inner tubes for tires
US2578229A (en) * 1947-11-17 1951-12-11 Clement Marcel Rene Draw plate
US3286305A (en) 1964-09-03 1966-11-22 Rexall Drug Chemical Apparatus for continuous manufacture of hollow articles
US3393090A (en) * 1964-10-08 1968-07-16 Varian Associates Method of making cathodes having a hard, smooth electron-emitting surface
US3480999A (en) * 1965-10-21 1969-12-02 Louis David Carlo Apparatus for making forming rolls from a plastic material
BE791272A (en) 1971-11-13 1973-03-01 Castro Nunez Elem Huecos CONTINUOUS MANUFACTURING MACHINE FOR HOLLOW ELEMENTS
US3984271A (en) 1973-06-25 1976-10-05 Owens-Corning Fiberglas Corporation Method of manufacturing large diameter tubular structures
US3993726A (en) 1974-01-16 1976-11-23 Hercules Incorporated Methods of making continuous length reinforced plastic articles
US4089727A (en) 1976-09-07 1978-05-16 Shakespeare Company Apparatus for making fiber reinforced plastic members
DE3424269C2 (en) 1984-06-30 1994-01-27 Krupp Ag Device for producing reinforced profiles and reinforced hoses
US4643940A (en) 1984-08-06 1987-02-17 The Dow Chemical Company Low density fiber-reinforced plastic composites
US4734024A (en) * 1986-01-16 1988-03-29 Rheon Automatic Machinery Co., Ltd. Apparatus for shaping a spherical body
US4851065A (en) 1986-01-17 1989-07-25 Tyee Aircraft, Inc. Construction of hollow, continuously wound filament load-bearing structure
DE3619981A1 (en) 1986-06-13 1987-12-17 Freudenberg Carl Fa METHOD AND DEVICE FOR PRODUCING A THREAD-REINFORCED HOSE FROM POLYMER MATERIAL
US5037691A (en) 1986-09-15 1991-08-06 Compositech, Ltd. Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products
US4865735A (en) * 1988-02-18 1989-09-12 Caschem, Inc. Amine containing polyurethane compositions for separatory devices
DE3835575A1 (en) 1988-10-19 1990-04-26 Bayer Ag COMPOSITES
US5134569A (en) * 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
US5121329A (en) 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5204124A (en) * 1990-10-09 1993-04-20 Stanley Secretan Continuous extruded bead object fabrication apparatus
DE4102257A1 (en) 1991-01-23 1992-07-30 Artos Med Produkte Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle
US5139710A (en) * 1991-05-24 1992-08-18 Global Thermal Conditioning, Inc. Shadow boundary process for the continuous radiant cure of composites
US5296335A (en) 1993-02-22 1994-03-22 E-Systems, Inc. Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling
TW225010B (en) 1993-10-21 1994-06-11 Image Techology Internat Inc A non-scanning 3D photographic printer with a partitioned aperture
US5534101A (en) * 1994-03-02 1996-07-09 Telecommunication Research Laboratories Method and apparatus for making optical components by direct dispensing of curable liquid
US5746967A (en) 1995-06-26 1998-05-05 Fox Lite, Inc. Method of curing thermoset resin with visible light
US6144008A (en) 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5866058A (en) 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
IL121458A0 (en) 1997-08-03 1998-02-08 Lipsker Daniel Rapid prototyping
US5936861A (en) 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
US6257863B1 (en) * 1997-10-31 2001-07-10 Industrial Thermo Polymers Limited Extruder dies with shaping means
US6261675B1 (en) 1999-03-23 2001-07-17 Hexcel Corporation Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures
US6214279B1 (en) * 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
EP1226019B1 (en) 1999-11-05 2004-03-03 Z Corporation Methods of three-dimensional printing
US6501554B1 (en) 2000-06-20 2002-12-31 Ppt Vision, Inc. 3D scanner and method for measuring heights and angles of manufactured parts
US6471800B2 (en) 2000-11-29 2002-10-29 Nanotek Instruments, Inc. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US6797220B2 (en) 2000-12-04 2004-09-28 Advanced Ceramics Research, Inc. Methods for preparation of three-dimensional bodies
US6803003B2 (en) 2000-12-04 2004-10-12 Advanced Ceramics Research, Inc. Compositions and methods for preparing multiple-component composite materials
US20020113331A1 (en) 2000-12-20 2002-08-22 Tan Zhang Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers
US6899777B2 (en) 2001-01-02 2005-05-31 Advanced Ceramics Research, Inc. Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
US20030044539A1 (en) 2001-02-06 2003-03-06 Oswald Robert S. Process for producing photovoltaic devices
US7029621B2 (en) 2001-03-01 2006-04-18 Schroeder Ernest C Apparatus and method of fabricating fiber reinforced plastic parts
US7189344B2 (en) * 2001-03-12 2007-03-13 Ivoclar Vivadent Ag Method for producing a synthetic material part
US6767619B2 (en) 2001-05-17 2004-07-27 Charles R. Owens Preform for manufacturing a material having a plurality of voids and method of making the same
US6866807B2 (en) 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
CA2369710C (en) 2002-01-30 2006-09-19 Anup Basu Method and apparatus for high resolution 3d scanning of objects having voids
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
JP3927878B2 (en) * 2002-04-16 2007-06-13 シーシーエス株式会社 Lighting device used for inspection
US7229586B2 (en) 2002-05-07 2007-06-12 Dunlap Earl N Process for tempering rapid prototype parts
US7093527B2 (en) 2003-06-10 2006-08-22 Surpass Medical Ltd. Method and apparatus for making intraluminal implants and construction particularly useful in such method and apparatus
US7572403B2 (en) 2003-09-04 2009-08-11 Peihua Gu Multisource and multimaterial freeform fabrication
US7293590B2 (en) 2003-09-22 2007-11-13 Adc Acquisition Company Multiple tape laying apparatus and method
US7063118B2 (en) 2003-11-20 2006-06-20 Adc Acquisition Company Composite tape laying apparatus and method
US7824001B2 (en) 2004-09-21 2010-11-02 Z Corporation Apparatus and methods for servicing 3D printers
US8905669B2 (en) 2004-12-06 2014-12-09 Medhesives, Inc. Dispensing apparatus including an applicator and shield for photocurable resins
EP1757433B1 (en) * 2005-08-25 2009-12-30 Ingersoll Machine Tools, Inc. Compact fiber placement apparatus
US7680555B2 (en) 2006-04-03 2010-03-16 Stratasys, Inc. Auto tip calibration in an extrusion apparatus
WO2009052263A1 (en) 2007-10-16 2009-04-23 Ingersoll Machine Tools, Inc. Fiber placement machine platform system having interchangeable head and creel assemblies
DE102008022946B4 (en) 2008-05-09 2014-02-13 Fit Fruth Innovative Technologien Gmbh Apparatus and method for applying powders or pastes
KR100995983B1 (en) 2008-07-04 2010-11-23 재단법인서울대학교산학협력재단 Cross printing method and apparatus of circuit board
MX2012002615A (en) 2009-09-04 2012-04-20 Bayer Materialscience Llc Automated processes for the production of polyurethane wind turbine blades.
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
DE102009052835A1 (en) 2009-11-13 2011-05-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for producing a component from a fiber-reinforced material
DE102010015199B9 (en) * 2010-04-16 2013-08-01 Compositence Gmbh Fiber guiding device and apparatus for constructing a three-dimensional preform
US9086033B2 (en) 2010-09-13 2015-07-21 Experimental Propulsion Lab, Llc Additive manufactured propulsion system
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
KR101172859B1 (en) 2010-10-04 2012-08-09 서울대학교산학협력단 Ultra precision machining apparatus using nano-scale three dimensional printing and method using the same
WO2012070052A1 (en) 2010-11-28 2012-05-31 Objet Ltd. System and method for additive manufacturing of an object
JP5653818B2 (en) * 2011-03-29 2015-01-14 富士フイルム株式会社 Inkjet recording apparatus and image forming method
DE102011109369A1 (en) 2011-08-04 2013-02-07 Arburg Gmbh + Co Kg Method and device for producing a three-dimensional object with fiber feed
US9457521B2 (en) 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts
WO2013061892A1 (en) 2011-10-26 2013-05-02 日本水産株式会社 Method for producing feed or food
EP2589481B1 (en) 2011-11-04 2016-01-20 Ralph Peter Hegler Device for continuously manufacturing a composite pipe with connection sleeve
US20130164498A1 (en) 2011-12-21 2013-06-27 Adc Acquisition Company Thermoplastic composite prepreg for automated fiber placement
US10518490B2 (en) 2013-03-14 2019-12-31 Board Of Regents, The University Of Texas System Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices
US9884318B2 (en) 2012-02-10 2018-02-06 Adam Perry Tow Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing
US8919410B2 (en) 2012-03-08 2014-12-30 Fives Machining Systems, Inc. Small flat composite placement system
US9764378B2 (en) 2012-04-04 2017-09-19 Massachusetts Institute Of Technology Methods and apparatus for actuated fabricator
DE102012007439A1 (en) 2012-04-13 2013-10-17 Compositence Gmbh Laying head and apparatus and method for building a three-dimensional preform for a component made of a fiber composite material
GB201210850D0 (en) 2012-06-19 2012-08-01 Eads Uk Ltd Thermoplastic polymer powder
GB201210851D0 (en) 2012-06-19 2012-08-01 Eads Uk Ltd Extrusion-based additive manufacturing system
JP2015534006A (en) 2012-07-20 2015-11-26 エムエージー エアロスペイス インダストリーズ, エルエルシィ Composite material element for transporting waste, composite element for transporting water for aircraft, and method of manufacturing
US9205204B2 (en) 2012-08-06 2015-12-08 Elwha Llc Devices and methods for wearable injection guides
US8962717B2 (en) 2012-08-20 2015-02-24 Basf Se Long-fiber-reinforced flame-retardant polyesters
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US9718248B2 (en) 2012-10-12 2017-08-01 The Boeing Company Thermoplastic composite structures embedded with at least one load fitting and methods of manufacturing same
US9174393B2 (en) * 2012-10-12 2015-11-03 The Boeing Company Thermoplastic composite tubular structures and methods of fabricating the same
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
JP2014125643A (en) * 2012-12-25 2014-07-07 Honda Motor Co Ltd Apparatus for three-dimensional shaping and method for three-dimensional shaping
US20140232035A1 (en) 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
US9314970B2 (en) * 2013-02-27 2016-04-19 CEL Technology Limited Fluid-dispensing head for a 3D printer
EP2971311B1 (en) * 2013-03-15 2017-11-22 Tamicare Ltd. An apparatus for producing a nonwoven product in a non-industrial environment
JP6286022B2 (en) 2013-03-15 2018-02-28 セリフォージ インコーポレイテッド 3D weaving method of composite preform and product with graded cross-sectional topology
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
EP2976205B1 (en) 2013-03-22 2020-11-18 Markforged, Inc. Three dimensional printing
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
US20170173868A1 (en) 2013-03-22 2017-06-22 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
US9956725B2 (en) 2013-03-22 2018-05-01 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
EP3003694B1 (en) 2013-05-31 2018-10-10 United Technologies Corporation Continuous fiber-reinforced component fabrication
AU2014274824B2 (en) 2013-06-05 2018-02-15 Markforged, Inc. Methods for fiber reinforced additive manufacturing
EP3012079A4 (en) * 2013-06-17 2017-02-22 Biomedical 3D Printing Co., Ltd Curing apparatus for 3d printer, using ultraviolet light emitting diode
EP3613581B1 (en) * 2013-07-17 2021-09-15 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
EP3845365A1 (en) 2013-10-30 2021-07-07 Branch Technology, Inc. Additive manufacturing of buildings and other structures
US10618217B2 (en) 2013-10-30 2020-04-14 Branch Technology, Inc. Cellular fabrication and apparatus for additive manufacturing
EP3063340B1 (en) 2013-10-30 2020-04-15 Laing O'Rourke Australia Pty Limited Method for fabricating an object
US20160243762A1 (en) 2013-11-15 2016-08-25 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
US20150136455A1 (en) 2013-11-15 2015-05-21 Robert J. Fleming Shape forming process and application thereof for creating structural elements and designed objects
EP3970945A1 (en) 2013-11-19 2022-03-23 Guill Tool & Engineering Filament for use in a 3d printer and method for producing the same
US10730232B2 (en) 2013-11-19 2020-08-04 Guill Tool & Engineering Co, Inc. Coextruded, multilayer and multicomponent 3D printing inputs
US10436983B2 (en) * 2013-11-19 2019-10-08 Verizon Patent And Licensing Inc. Machine-to-machine plant automation using 3D printed fiber splicing
CA2935221C (en) 2013-12-26 2022-10-04 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
US20150201500A1 (en) 2014-01-12 2015-07-16 Zohar SHINAR System, device, and method of three-dimensional printing
KR20160117503A (en) 2014-02-04 2016-10-10 사미르 샤 Device and method of manufacturing customizable three-dimensional objects
US9102099B1 (en) 2014-02-05 2015-08-11 MetaMason, Inc. Methods for additive manufacturing processes incorporating active deposition
WO2015149054A1 (en) 2014-03-28 2015-10-01 Ez Print, Llc 3d print bed having permanent coating
US10449731B2 (en) 2014-04-30 2019-10-22 Magna International Inc. Apparatus and process for forming three-dimensional objects
US11104120B2 (en) 2014-05-27 2021-08-31 Nihon University Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method thereof
US9579829B2 (en) * 2014-06-02 2017-02-28 Vadient Optics, Llc Method for manufacturing an optical element
US9796140B2 (en) * 2014-06-19 2017-10-24 Autodesk, Inc. Automated systems for composite part fabrication
US9757802B2 (en) * 2014-06-30 2017-09-12 General Electric Company Additive manufacturing methods and systems with fiber reinforcement
US20160009029A1 (en) 2014-07-11 2016-01-14 Southern Methodist University Methods and apparatus for multiple material spatially modulated extrusion-based additive manufacturing
US20160012935A1 (en) 2014-07-11 2016-01-14 Empire Technology Development Llc Feedstocks for additive manufacturing and methods for their preparation and use
WO2016011252A1 (en) 2014-07-17 2016-01-21 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9808991B2 (en) 2014-07-29 2017-11-07 Cc3D Llc. Method and apparatus for additive mechanical growth of tubular structures
FR3024391B1 (en) * 2014-07-30 2017-03-03 Michelin & Cie MATRIX WITH TEXTURED INSERTS FOR MANUFACTURING A TEXTURE MOLD FOR MOLDING AND VULCANIZING TIRES
DE102014110909A1 (en) * 2014-07-31 2016-02-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fiber laying device
DE102014215935A1 (en) 2014-08-12 2016-02-18 Airbus Operations Gmbh Apparatus and method for manufacturing components from a fiber reinforced composite material
US9266286B1 (en) * 2014-12-20 2016-02-23 Creopop Pte. Ltd. Pen for three-dimensional printing
US10118375B2 (en) 2014-09-18 2018-11-06 The Boeing Company Extruded deposition of polymers having continuous carbon nanotube reinforcements
US9931778B2 (en) 2014-09-18 2018-04-03 The Boeing Company Extruded deposition of fiber reinforced polymers
EP3197680B1 (en) * 2014-09-26 2020-07-01 Stratasys, Inc. Liquefier assembly for additive manufacturing system, and method of use thereof
CN104309122A (en) * 2014-10-17 2015-01-28 北京化工大学 3D printing method and device of carbon fiber reinforced composite
EP3218160A4 (en) 2014-11-14 2018-10-17 Nielsen-Cole, Cole Additive manufacturing techniques and systems to form composite materials
CN105643924A (en) * 2014-11-25 2016-06-08 南京百川行远激光科技有限公司 Blue light photocuring 3D printing pen
EP3227090B1 (en) 2014-12-01 2019-01-30 SABIC Global Technologies B.V. Rapid nozzle cooling for additive manufacturing
US20170266876A1 (en) 2014-12-01 2017-09-21 Sabic Global Technologies B.V. Nozzle tool changing for material extrusion additive manufacturing
EP3227088A1 (en) 2014-12-01 2017-10-11 SABIC Global Technologies B.V. Additive manufacturing process automation systems and methods
US10226103B2 (en) 2015-01-05 2019-03-12 Markforged, Inc. Footwear fabrication by composite filament 3D printing
FR3031471A1 (en) 2015-01-09 2016-07-15 Daher Aerospace PROCESS FOR THE PRODUCTION OF A COMPLEX COMPOSITE WORKPIECE, IN PARTICULAR A THERMOPLASTIC MATRIX AND PIECE OBTAINED BY SUCH A METHOD
EP4238732A3 (en) * 2015-02-02 2023-12-13 Massivit 3D Printing Technologies Ltd. Curing system having ring-form geometry
US20160263823A1 (en) 2015-03-09 2016-09-15 Frederick Matthew Espiau 3d printed radio frequency absorber
US20160271876A1 (en) 2015-03-22 2016-09-22 Robert Bruce Lower Apparatus and method of embedding cable in 3D printed objects
EP3263310B1 (en) * 2015-03-31 2024-10-16 Kyoraku Co., Ltd. Filament resin molding, three-dimensional object fabrication method, and filament resin molding manufacturing method
ES2958412T3 (en) 2015-05-29 2024-02-08 Alexion Pharma Inc Cerdulatinib for the treatment of malignant B cell tumors
WO2016196382A1 (en) 2015-06-01 2016-12-08 Velo3D, Inc. Three-dimensional printing and three-dimensional objects formed using the same
US20180071986A1 (en) * 2015-06-01 2018-03-15 Velo3D, Inc. Three-dimensional printing
DE102015109855A1 (en) 2015-06-19 2016-12-22 Airbus Operations Gmbh Method for producing components, in particular elongated profiles from strip-shaped, pre-impregnated fibers (prepreg)
US10363116B2 (en) 2015-07-07 2019-07-30 Align Technology, Inc. Direct fabrication of power arms
WO2017006178A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Systems, apparatuses and methods for substance delivery from dental appliances and for ornamental designs on dental appliances
US10201409B2 (en) 2015-07-07 2019-02-12 Align Technology, Inc. Dental appliance having ornamental design
US11642194B2 (en) 2015-07-07 2023-05-09 Align Technology, Inc. Multi-material aligners
US11576750B2 (en) 2015-07-07 2023-02-14 Align Technology, Inc. Direct fabrication of aligners for arch expansion
US10492888B2 (en) 2015-07-07 2019-12-03 Align Technology, Inc. Dental materials using thermoset polymers
US11045282B2 (en) 2015-07-07 2021-06-29 Align Technology, Inc. Direct fabrication of aligners with interproximal force coupling
CN109874326A (en) * 2015-07-09 2019-06-11 萨姆希3D有限公司 Method and apparatus for 3 D-printing
EP3957654A1 (en) 2015-07-15 2022-02-23 Prosit Sole Biotechnology (Beijing) Co., Ltd Fusion polypeptides and methods of use
US9944016B2 (en) 2015-07-17 2018-04-17 Lawrence Livermore National Security, Llc High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
US20170015060A1 (en) 2015-07-17 2017-01-19 Lawrence Livermore National Security, Llc Additive manufacturing continuous filament carbon fiber epoxy composites
WO2017018758A1 (en) 2015-07-24 2017-02-02 엘지전자 주식회사 Downlink control information receiving method and user equipment, and downlink control information transmission method and base station
US9926796B2 (en) 2015-07-28 2018-03-27 General Electric Company Ply, method for manufacturing ply, and method for manufacturing article with ply
US10232570B2 (en) 2015-07-31 2019-03-19 The Boeing Company Systems for additively manufacturing composite parts
US10343355B2 (en) 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
US10201941B2 (en) 2015-07-31 2019-02-12 The Boeing Company Systems for additively manufacturing composite parts
US10343330B2 (en) 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
US10166752B2 (en) * 2015-07-31 2019-01-01 The Boeing Company Methods for additively manufacturing composite parts
US10195784B2 (en) 2015-07-31 2019-02-05 The Boeing Company Systems for additively manufacturing composite parts
US10232550B2 (en) 2015-07-31 2019-03-19 The Boeing Company Systems for additively manufacturing composite parts
US10582619B2 (en) 2015-08-24 2020-03-03 Board Of Regents, The University Of Texas System Apparatus for wire handling and embedding on and within 3D printed parts
US10814607B2 (en) 2015-08-25 2020-10-27 University Of South Carolina Integrated robotic 3D printing system for printing of fiber reinforced parts
US10464268B2 (en) 2015-08-25 2019-11-05 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US10357924B2 (en) 2015-08-25 2019-07-23 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US10336056B2 (en) 2015-08-31 2019-07-02 Colorado School Of Mines Hybrid additive manufacturing method
GB201516943D0 (en) 2015-09-24 2015-11-11 Victrex Mfg Ltd Polymeric materials
CN105172144B (en) * 2015-09-29 2017-09-12 西安交通大学 A kind of multistage wire feed printhead of continuous fiber reinforced composite materials 3D printing
US10207426B2 (en) 2015-10-14 2019-02-19 Northrop Grumman Systems Corporation Continuous fiber filament for fused deposition modeling (FDM) additive manufactured (AM) structures
US11097440B2 (en) 2015-11-05 2021-08-24 United States Of America As Represented By The Administrator Of Nasa Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof
US10500836B2 (en) 2015-11-06 2019-12-10 United States Of America As Represented By The Administrator Of Nasa Adhesion test station in an extrusion apparatus and methods for using the same
US10513080B2 (en) 2015-11-06 2019-12-24 United States Of America As Represented By The Administrator Of Nasa Method for the free form fabrication of articles out of electrically conductive filaments using localized heating
US10894353B2 (en) 2015-11-09 2021-01-19 United States Of America As Represented By The Administrator Of Nasa Devices and methods for additive manufacturing using flexible filaments
US9889606B2 (en) 2015-11-09 2018-02-13 Nike, Inc. Tack and drag printing
EP3168034A1 (en) * 2015-11-12 2017-05-17 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Device for additive production of a component
ITUB20155642A1 (en) 2015-11-17 2017-05-17 Milano Politecnico Equipment and method for three-dimensional printing of continuous fiber composite materials
US11691333B2 (en) * 2015-11-17 2023-07-04 Zephyros, Inc. Additive manufacturing materials system
US10150262B2 (en) 2015-11-20 2018-12-11 The Boeing Company System and method for cutting material in continuous fiber reinforced additive manufacturing
US20170151728A1 (en) 2015-11-30 2017-06-01 Ut-Battelle, Llc Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements
US10625466B2 (en) 2015-12-08 2020-04-21 Xerox Corporation Extrusion printheads for three-dimensional object printers
US10456968B2 (en) 2015-12-08 2019-10-29 Xerox Corporation Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads
US10335991B2 (en) 2015-12-08 2019-07-02 Xerox Corporation System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers
US10173410B2 (en) 2015-12-08 2019-01-08 Northrop Grumman Systems Corporation Device and method for 3D printing with long-fiber reinforcement
EP3386734B1 (en) 2015-12-11 2021-11-10 Massachusetts Institute Of Technology Methods for deposition-based three-dimensional printing
DE102015122647A1 (en) * 2015-12-22 2017-06-22 Arburg Gmbh + Co. Kg Device and method for producing a three-dimensional object with a fiber feed device
US10369742B2 (en) 2015-12-28 2019-08-06 Southwest Research Institute Reinforcement system for additive manufacturing, devices and methods using the same
CA3011286C (en) 2016-01-12 2020-07-21 Markforged, Inc. Embedding 3d printed fiber reinforcement in molded articles
KR101826970B1 (en) 2016-01-14 2018-02-07 주식회사 키스타 Raw material feeding apparatus for feeding raw material made of plastic formable materials, and three-dimensional product manufacturing robot having the same
KR101755015B1 (en) 2016-01-14 2017-07-06 주식회사 키스타 Transformer controlling movement of head unit and tension and temperature of plastic formable material
KR101785703B1 (en) 2016-01-14 2017-10-17 주식회사 키스타 Head unit and head supply unit for controlling discharge of raw material made of plastic formable materials
AU2017208085B2 (en) 2016-01-15 2019-09-12 Markforged, Inc. Continuous and random reinforcement in a 3D printed part
JP6602678B2 (en) 2016-01-22 2019-11-06 国立大学法人岐阜大学 Manufacturing method of three-dimensional structure
JP6251925B2 (en) 2016-01-22 2017-12-27 国立大学法人岐阜大学 Manufacturing method of three-dimensional structure and filament for 3D printer
WO2017137851A2 (en) 2016-02-11 2017-08-17 Martin Kuster Movable printing devices for three-dimensional printers
WO2017142867A1 (en) 2016-02-15 2017-08-24 Georgia-Pacific Chemicals Llc Extrusion additive manufacturing of pellets or filaments of thermosetting resins
WO2017150186A1 (en) 2016-02-29 2017-09-08 学校法人日本大学 Three-dimensional printing apparatus and three-dimensional printing method
US10611182B2 (en) * 2016-03-02 2020-04-07 Massivit 3D Printing Technologies Ltd. System for shielding printer heads and nozzles from curing radiation
WO2017156348A1 (en) 2016-03-10 2017-09-14 Mantis Composites Inc. Additive manufacturing of composites
EP3219474B1 (en) 2016-03-16 2019-05-08 Airbus Operations GmbH Method and device for 3d-printing a fiber reinforced composite component by tape-laying
US10052813B2 (en) 2016-03-28 2018-08-21 Arevo, Inc. Method for additive manufacturing using filament shaping
US10234342B2 (en) 2016-04-04 2019-03-19 Xerox Corporation 3D printed conductive compositions anticipating or indicating structural compromise
US20170291364A1 (en) * 2016-04-11 2017-10-12 Timothy W. Womer Single screw micro-extruder for 3d printing
US10766241B2 (en) * 2016-11-18 2020-09-08 The Boeing Company Systems and methods for additive manufacturing
US20180207863A1 (en) * 2017-01-20 2018-07-26 Southern Methodist University Methods and apparatus for additive manufacturing using extrusion and curing and spatially-modulated multiple materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120234468A1 (en) * 2011-03-14 2012-09-20 Pitman Frank M Method and apparatus for combining elongated strips
US20140034214A1 (en) * 2012-07-31 2014-02-06 Makerbot Industries, Llc Build material switching
US20140287139A1 (en) * 2013-03-19 2014-09-25 Eads Uk Limited Extrusion-based additive manufacturing
US20150108677A1 (en) * 2013-03-22 2015-04-23 Markforged, Inc. Three dimensional printer with composite filament fabrication
US9579851B2 (en) * 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9688028B2 (en) * 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US20160339633A1 (en) * 2014-01-17 2016-11-24 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
US20160052208A1 (en) * 2014-08-21 2016-02-25 Mosaic Manufacturing Ltd. Series enabled multi-material extrusion technology
US20160075089A1 (en) * 2014-09-15 2016-03-17 Massachusetts Institute Of Technology Methods and apparatus for additive manufacturing along user-specified toolpaths

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US12122120B2 (en) 2018-08-10 2024-10-22 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11318654B2 (en) * 2018-08-23 2022-05-03 The Yokohama Rubber Co., Ltd. Method and device for manufacturing rubber coated cord
US20240025112A1 (en) * 2022-07-21 2024-01-25 Massivit 3D Printing Technologies Ltd. Method And Apparatus For Additive Manufacturing

Also Published As

Publication number Publication date
EP3509814A1 (en) 2019-07-17
US20180065322A1 (en) 2018-03-08
CA3032622A1 (en) 2018-03-15
JP2019531922A (en) 2019-11-07
WO2018048502A1 (en) 2018-03-15
AU2017324612B2 (en) 2022-03-31
US20180065320A1 (en) 2018-03-08
EP3509824A1 (en) 2019-07-17
WO2018048557A1 (en) 2018-03-15
US10864715B2 (en) 2020-12-15
US10647058B2 (en) 2020-05-12
US20180065144A1 (en) 2018-03-08
US10632673B2 (en) 2020-04-28
US10603840B2 (en) 2020-03-31
CN109789637A (en) 2019-05-21
WO2018048540A1 (en) 2018-03-15
WO2018048539A1 (en) 2018-03-15
EP3509814A4 (en) 2020-06-03
WO2018048530A1 (en) 2018-03-15
US20180065318A1 (en) 2018-03-08
RU2019106161A (en) 2020-10-08
JP2019526467A (en) 2019-09-19
CN109843563A (en) 2019-06-04
RU2019106164A (en) 2020-10-08
US20180065316A1 (en) 2018-03-08
CA3035819A1 (en) 2018-03-15
US10766191B2 (en) 2020-09-08
AU2017324066A1 (en) 2019-03-21
WO2018048560A1 (en) 2018-03-15
AU2017324612A1 (en) 2019-03-28
EP3509824A4 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
US20180065317A1 (en) Additive manufacturing system having in-situ fiber splicing
US11014290B2 (en) Additive manufacturing system having automated reinforcement threading
US10933584B2 (en) Additive manufacturing system having dynamically variable matrix supply
US10932325B2 (en) Additive manufacturing system and method for discharging coated continuous composites
US10807303B2 (en) Additive manufacturing system implementing hardener pre-impregnation
US10543640B2 (en) Additive manufacturing system having in-head fiber teasing
US10759113B2 (en) Additive manufacturing system having trailing cure mechanism

Legal Events

Date Code Title Description
AS Assignment

Owner name: CC3D LLC, IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TYLER, KENNETH LYLE;REEL/FRAME:042434/0827

Effective date: 20170519

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CONTINUOUS COMPOSITES, IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CC3D LLC;REEL/FRAME:049700/0038

Effective date: 20190709

AS Assignment

Owner name: CONTINUOUS COMPOSITES INC., IDAHO

Free format text: CHANGE OF NAME;ASSIGNOR:CC3D LLC;REEL/FRAME:049772/0013

Effective date: 20190611

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION