US20180059421A1 - Micro doppler presentations in head worn computing - Google Patents
Micro doppler presentations in head worn computing Download PDFInfo
- Publication number
- US20180059421A1 US20180059421A1 US15/790,684 US201715790684A US2018059421A1 US 20180059421 A1 US20180059421 A1 US 20180059421A1 US 201715790684 A US201715790684 A US 201715790684A US 2018059421 A1 US2018059421 A1 US 2018059421A1
- Authority
- US
- United States
- Prior art keywords
- light
- hwc
- location
- user
- pen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 38
- 239000003550 marker Substances 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 description 119
- KRUDZWOELKQDJW-UHFFFAOYSA-N 3-amino-5-bromo-1-methylpyridin-2-one Chemical compound CN1C=C(Br)C=C(N)C1=O KRUDZWOELKQDJW-UHFFFAOYSA-N 0.000 description 83
- 230000008859 change Effects 0.000 description 30
- 230000000694 effects Effects 0.000 description 30
- 230000010287 polarization Effects 0.000 description 25
- 239000011521 glass Substances 0.000 description 20
- 238000005286 illumination Methods 0.000 description 20
- 239000007787 solid Substances 0.000 description 20
- 238000003384 imaging method Methods 0.000 description 19
- 230000033001 locomotion Effects 0.000 description 17
- 239000002096 quantum dot Substances 0.000 description 14
- 230000006854 communication Effects 0.000 description 12
- 210000003128 head Anatomy 0.000 description 12
- 238000004891 communication Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000004297 night vision Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000004438 eyesight Effects 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000007794 visualization technique Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 239000005336 safety glass Substances 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/012—Head tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/013—Eye tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03542—Light pens for emitting or receiving light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03545—Pens or stylus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/60—Editing figures and text; Combining figures or text
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/61—Scene description
Definitions
- This disclosure relates to head worn computing. More particularly, this disclosure relates to micro Doppler presentation techniques used in head worn computing.
- aspects of the present disclosure relate to methods and systems for presenting intuitive and useful micro Doppler signatures in head worn computing.
- FIG. 1 illustrates a head worn computing system in accordance with the principles of the present disclosure.
- FIG. 2 illustrates a head worn computing system with optical system in accordance with the principles of the present disclosure.
- FIG. 3 a illustrates a large prior art optical arrangement.
- FIG. 3 b illustrates an upper optical module in accordance with the principles of the present disclosure.
- FIG. 4 illustrates an upper optical module in accordance with the principles of the present disclosure.
- FIG. 4 a illustrates an upper optical module in accordance with the principles of the present disclosure.
- FIG. 4 b illustrates an upper optical module in accordance with the principles of the present disclosure.
- FIG. 5 illustrates an upper optical module in accordance with the principles of the present disclosure.
- FIG. 5 a illustrates an upper optical module in accordance with the principles of the present disclosure.
- FIG. 5 b illustrates an upper optical module and dark light trap according to the principles of the present disclosure.
- FIG. 5 c illustrates an upper optical module and dark light trap according to the principles of the present disclosure.
- FIG. 5 d illustrates an upper optical module and dark light trap according to the principles of the present disclosure.
- FIG. 5 e illustrates an upper optical module and dark light trap according to the principles of the present disclosure.
- FIG. 6 illustrates upper and lower optical modules in accordance with the principles of the present disclosure.
- FIG. 7 illustrates angles of combiner elements in accordance with the principles of the present disclosure.
- FIG. 8 illustrates upper and lower optical modules in accordance with the principles of the present disclosure.
- FIG. 8 a illustrates upper and lower optical modules in accordance with the principles of the present disclosure.
- FIG. 8 b illustrates upper and lower optical modules in accordance with the principles of the present disclosure.
- FIG. 8 c illustrates upper and lower optical modules in accordance with the principles of the present disclosure.
- FIG. 9 illustrates an eye imaging system in accordance with the principles of the present disclosure.
- FIG. 10 illustrates a light source in accordance with the principles of the present disclosure.
- FIG. 10 a illustrates a back lighting system in accordance with the principles of the present disclosure.
- FIG. 10 b illustrates a back lighting system in accordance with the principles of the present disclosure.
- FIGS. 11 a to 11 d illustrate light source and filters in accordance with the principles of the present disclosure.
- FIGS. 12 a to 12 c illustrate light source and quantum dot systems in accordance with the principles of the present disclosure.
- FIGS. 13 a to 13 c illustrate peripheral lighting systems in accordance with the principles of the present disclosure.
- FIGS. 14 a to 14 c illustrate a light suppression systems in accordance with the principles of the present disclosure.
- FIG. 15 illustrates an external user interface in accordance with the principles of the present disclosure.
- FIGS. 16 a to 16 c illustrate distance control systems in accordance with the principles of the present disclosure.
- FIGS. 17 a to 17 c illustrate force interpretation systems in accordance with the principles of the present disclosure.
- FIGS. 18 a to 18 c illustrate user interface mode selection systems in accordance with the principles of the present disclosure.
- FIG. 19 illustrates interaction systems in accordance with the principles of the present disclosure.
- FIG. 20 illustrates external user interfaces in accordance with the principles of the present disclosure.
- FIG. 21 illustrates mD trace representations presented in accordance with the principles of the present disclosure.
- FIG. 22 illustrates mD trace representations presented in accordance with the principles of the present disclosure.
- FIG. 23 illustrates an mD scanned environment in accordance with the principles of the present disclosure.
- FIG. 23 a illustrates mD trace representations presented in accordance with the principles of the present disclosure.
- HWC head-worn computing
- the glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user.
- the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality (“AR”).
- AR augmented reality
- HWC involves more than just placing a computing system on a person's head.
- the system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of emersion comprised of the displayed digital content and the see-through view of the environmental surroundings.
- User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop.
- the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like.
- the HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware HWC.
- the glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses.
- the glasses may further be used to control or coordinate with external devices that are associated with the glasses.
- the HWC system 100 comprises a HWC 102 , which in this instance is configured as glasses to be worn on the head with sensors such that the HWC 102 is aware of the objects and conditions in the environment 114 .
- the HWC 102 also receives and interprets control inputs such as gestures and movements 116 .
- the HWC 102 may communicate with external user interfaces 104 .
- the external user interfaces 104 may provide a physical user interface to take control instructions from a user of the HWC 102 and the external user interfaces 104 and the HWC 102 may communicate bi-directionally to affect the user's command and provide feedback to the external device 108 .
- the HWC 102 may also communicate bi-directionally with externally controlled or coordinated local devices 108 .
- an external user interface 104 may be used in connection with the HWC 102 to control an externally controlled or coordinated local device 108 .
- the externally controlled or coordinated local device 108 may provide feedback to the HWC 102 and a customized GUI may be presented in the HWC 102 based on the type of device or specifically identified device 108 .
- the HWC 102 may also interact with remote devices and information sources 112 through a network connection 110 .
- the external user interface 104 may be used in connection with the HWC 102 to control or otherwise interact with any of the remote devices 108 and information sources 112 in a similar way as when the external user interfaces 104 are used to control or otherwise interact with the externally controlled or coordinated local devices 108 .
- HWC 102 may interpret gestures 116 (e.g. captured from forward, downward, upward, rearward facing sensors such as camera(s), range finders, IR sensors, etc.) or environmental conditions sensed in the environment 114 to control either local or remote devices 108 or 112 .
- the HWC 102 is a computing platform intended to be worn on a person's head.
- the HWC 102 may take many different forms to fit many different functional requirements.
- the HWC 102 will be designed in the form of conventional glasses.
- the glasses may or may not have active computer graphics displays.
- the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of the environment 114 .
- see-through optical designs including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like.
- lighting systems used in connection with the display optics may be solid state lighting systems, such as LED, OLED, quantum dot, quantum dot LED, etc.
- the optical configuration may be monocular or binocular. It may also include vision corrective optical components.
- the optics may be packaged as contact lenses.
- the HWC 102 may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like.
- the HWC 102 may also have a number of integrated computing facilities, such as an integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)), and the like.
- the HWC 102 may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like.
- the HWC 102 may also have integrated control technologies.
- the integrated control technologies may be contextual based control, passive control, active control, user control, and the like.
- the HWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for the HWC 102 .
- the HWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response.
- the HWC 102 may also automatically control itself based on measured or perceived environmental conditions.
- the HWC 102 may increase the brightness or contrast of the displayed image.
- the integrated control technologies may be mounted on the HWC 102 such that a user can interact with it directly.
- the HWC 102 may have a button(s), touch capacitive interface, and the like.
- the HWC 102 may be in communication with external user interfaces 104 .
- the external user interfaces may come in many different forms.
- a cell phone screen may be adapted to take user input for control of an aspect of the HWC 102 .
- the external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like.
- the external controller may be integrated into another device such as a ring, watch, bike, car, and the like.
- the external user interface 104 may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling the HWD 104 .
- sensors e.g. IMU, accelerometers, compass, altimeter, and the like
- the HWC 102 may control or coordinate with other local devices 108 .
- the external devices 108 may be an audio device, visual device, vehicle, cell phone, computer, and the like.
- the local external device 108 may be another HWC 102 , where information may then be exchanged between the separate HWCs 108 .
- the HWC 102 may control or coordinate with remote devices 112 , such as the HWC 102 communicating with the remote devices 112 through a network 110 .
- the form of the remote device 112 may have many forms. Included in these forms is another HWC 102 .
- each HWC 102 may communicate its GPS position such that all the HWCs 102 know where all of HWC 102 are located.
- FIG. 2 illustrates a HWC 102 with an optical system that includes an upper optical module 202 and a lower optical module 204 .
- the upper and lower optical modules 202 and 204 will generally be described as separate modules, it should be understood that this is illustrative only and the present disclosure includes other physical configurations, such as that when the two modules are combined into a single module or where the elements making up the two modules are configured into more than two modules.
- the upper module 202 includes a computer controlled display (e.g. LCoS, DLP, OLED, etc.) and image light delivery optics.
- the lower module includes eye delivery optics that are configured to receive the upper module's image light and deliver the image light to the eye of a wearer of the HWC.
- FIG. 1 illustrates a HWC 102 with an optical system that includes an upper optical module 202 and a lower optical module 204 .
- the upper and lower optical modules 202 and 204 will generally be described as separate modules, it should be understood that this is illustrative
- FIG. 3 b illustrates an upper optical module 202 in accordance with the principles of the present disclosure.
- the upper optical module 202 includes a DLP (also known as DMD or digital micromirror device) computer operated display 304 which includes pixels comprised of rotatable mirrors (such as, for example, the DLP3000 available from Texas Instruments), polarized light source 302 , 1 ⁇ 4 wave retarder film 308 , reflective polarizer 310 and a field lens 312 .
- the polarized light source 302 provides substantially uniform polarized light that is generally directed towards the reflective polarizer 310 .
- the reflective polarizer reflects light of one polarization state (e.g.
- the polarized light source 302 and the reflective polarizer 310 are oriented so that the polarized light from the polarized light source 302 is reflected generally towards the DLP 304 .
- the light then passes through the 1 ⁇ 4 wave film 308 once before illuminating the pixels of the DLP 304 and then again after being reflected by the pixels of the DLP 304 .
- the light is converted from one polarization state to the other polarization state (e.g. the light is converted from S to P polarized light).
- the light then passes through the reflective polarizer 310 .
- the DLP pixel(s) are in the “on” state (i.e. the mirrors are positioned to reflect light towards the field lens 312 , the “on” pixels reflect the light generally along the optical axis and into the field lens 312 .
- This light that is reflected by “on” pixels and which is directed generally along the optical axis of the field lens 312 will be referred to as image light 316 .
- the image light 316 then passes through the field lens to be used by a lower optical module 204 .
- the light that is provided by the polarized light source 302 , which is subsequently reflected by the reflective polarizer 310 before it reflects from the DLP 304 , will generally be referred to as illumination light.
- the light that is reflected by the “off” pixels of the DLP 304 is reflected at a different angle than the light reflected by the ‘on” pixels, so that the light from the “off’ pixels is generally directed away from the optical axis of the field lens 312 and toward the side of the upper optical module 202 as shown in FIG. 3 .
- the light that is reflected by the “off” pixels of the DLP 304 will be referred to as dark state light 314 .
- the DLP 304 operates as a computer controlled display and is generally thought of as a MEMs device.
- the DLP pixels are comprised of small mirrors that can be directed. The mirrors generally flip from one angle to another angle. The two angles are generally referred to as states. When light is used to illuminate the DLP the mirrors will reflect the light in a direction depending on the state. In embodiments herein, we generally refer to the two states as “on” and “off,” which is intended to depict the condition of a display pixel. “On” pixels will be seen by a viewer of the display as emitting light because the light is directed along the optical axis and into the field lens and the associated remainder of the display system.
- “Off” pixels will be seen by a viewer of the display as not emitting light because the light from these pixels is directed to the side of the optical housing and into a light trap or light dump where the light is absorbed.
- the pattern of “on” and “off” pixels produces image light that is perceived by a viewer of the display as a computer generated image.
- Full color images can be presented to a user by sequentially providing illumination light with complimentary colors such as red, green and blue. Where the sequence is presented in a recurring cycle that is faster than the user can perceive as separate images and as a result the user perceives a full color image comprised of the sum of the sequential images.
- Bright pixels in the image are provided by pixels that remain in the “on” state for the entire time of the cycle, while dimmer pixels in the image are provided by pixels that switch between the “on” state and “off” state within the time of the cycle, or frame time when in a video sequence of images.
- FIG. 3 a shows an illustration of a system for a DLP 304 in which the unpolarized light source 350 is pointed directly at the DLP 304 .
- the angle required for the illumination light is such that the field lens 352 must be positioned substantially distant from the DLP 304 to avoid the illumination light from being clipped by the field lens 352 .
- the large distance between the field lens 352 and the DLP 304 along with the straight path of the dark state light 354 means that the light trap for the dark state light 354 is also located at a substantial distance from the DLP. For these reasons, this configuration is larger in size compared to the upper optics module 202 of the preferred embodiments.
- the configuration illustrated in FIG. 3 b can be lightweight and compact such that it fits into a small portion of a HWC.
- the upper modules 202 illustrated herein can be physically adapted to mount in an upper frame of a HWC such that the image light can be directed into a lower optical module 204 for presentation of digital content to a wearer's eye.
- the package of components that combine to generate the image light i.e. the polarized light source 302 , DLP 304 , reflective polarizer 310 and 1 ⁇ 4 wave film 308 ) is very light and is compact.
- the height of the system, excluding the field lens may be less than 8 mm.
- the width (i.e. from front to back) may be less than 8 mm.
- the weight may be less than 2 grams.
- the compactness of this upper optical module 202 allows for a compact mechanical design of the HWC and the light weight nature of these embodiments help make the HWC lightweight to provide for a HWC that is comfortable for a wearer of the HWC.
- the configuration illustrated in FIG. 3 b can produce sharp contrast, high brightness and deep blacks, especially when compared to LCD or LCoS displays used in HWC.
- the “on” and “off” states of the DLP provide for a strong differentiator in the light reflection path representing an “on” pixel and an “off” pixel.
- the dark state light from the “off” pixel reflections can be managed to reduce stray light in the display system to produce images with high contrast.
- FIG. 4 illustrates another embodiment of an upper optical module 202 in accordance with the principles of the present disclosure.
- This embodiment includes a light source 404 , but in this case, the light source can provide unpolarized illumination light.
- the illumination light from the light source 404 is directed into a TIR wedge 418 such that the illumination light is incident on an internal surface of the TIR wedge 418 (shown as the angled lower surface of the TRI wedge 418 in FIG. 4 ) at an angle that is beyond the critical angle as defined by Eqn 1.
- illumination light is turned toward the DLP 402 at an angle suitable for providing image light 414 as reflected from “on” pixels.
- the illumination light is provided to the DLP 402 at approximately twice the angle of the pixel mirrors in the DLP 402 that are in the “on” state, such that after reflecting from the pixel mirrors, the image light 414 is directed generally along the optical axis of the field lens.
- the illumination light from “on” pixels may be reflected as image light 414 which is directed towards a field lens and a lower optical module 204 , while illumination light reflected from “off” pixels (generally referred to herein as “dark” state light, “off” pixel light or “off” state light) 410 is directed in a separate direction, which may be trapped and not used for the image that is ultimately presented to the wearer's eye.
- the light trap for the dark state light 410 may be located along the optical axis defined by the direction of the dark state light 410 and in the side of the housing, with the function of absorbing the dark state light.
- the light trap may be comprised of an area outside of the cone of image light 414 from the “on” pixels.
- the light trap is typically made up of materials that absorb light including coatings of black paints or other light absorbing materials to prevent light scattering from the dark state light degrading the image perceived by the user.
- the light trap may be recessed into the wall of the housing or include masks or guards to block scattered light and prevent the light trap from being viewed adjacent to the displayed image.
- the embodiment of FIG. 4 also includes a corrective wedge 420 to correct the effect of refraction of the image light 414 as it exits the TIR wedge 418 .
- a corrective wedge 420 to correct the effect of refraction of the image light 414 as it exits the TIR wedge 418 .
- the image light from the “on” pixels can be maintained generally in a direction along the optical axis of the field lens (i.e. the same direction as that defined by the image light 414 ) so it passes into the field lens and the lower optical module 204 .
- the image light 414 from the “on” pixels exits the corrective wedge 420 generally perpendicular to the surface of the corrective wedge 420 while the dark state light exits at an oblique angle.
- the direction of the image light 414 from the “on” pixels is largely unaffected by refraction as it exits from the surface of the corrective wedge 420 .
- the dark state light 410 is substantially changed in direction by refraction when the dark state light 410 exits the corrective wedge 420 .
- the embodiment illustrated in FIG. 4 has the similar advantages of those discussed in connection with the embodiment of FIG. 3 b .
- the dimensions and weight of the upper module 202 depicted in FIG. 4 may be approximately 8 ⁇ 8 mm with a weight of less than 3 grams.
- a difference in overall performance between the configuration illustrated in FIG. 3 b and the configuration illustrated in FIG. 4 is that the embodiment of FIG. 4 doesn't require the use of polarized light as supplied by the light source 404 . This can be an advantage in some situations as will be discussed in more detail below (e.g. increased see-through transparency of the HWC optics from the user's perspective). Polarized light may be used in connection with the embodiment depicted in FIG. 4 , in embodiments.
- the dark state light (shown as DLP off light 410 ) is directed at a steeper angle away from the optical axis of the image light 414 due to the added refraction encountered when the dark state light 410 exits the corrective wedge 420 .
- This steeper angle of the dark state light 410 allows for the light trap to be positioned closer to the DLP 402 so that the overall size of the upper module 202 can be reduced.
- the light trap can also be made larger since the light trap doesn't interfere with the field lens, thereby the efficiency of the light trap can be increased and as a result, stray light can be reduced and the contrast of the image perceived by the user can be increased.
- FIG. 4 a illustrates the embodiment described in connection with FIG. 4 with an example set of corresponding angles at the various surfaces with the reflected angles of a ray of light passing through the upper optical module 202 .
- the DLP mirrors are provided at 17 degrees to the surface of the DLP device.
- the angles of the TIR wedge are selected in correspondence to one another to provide TIR reflected illumination light at the correct angle for the DLP mirrors while allowing the image light and dark state light to pass through the thin air gap, various combinations of angles are possible to achieve this.
- FIG. 5 illustrates yet another embodiment of an upper optical module 202 in accordance with the principles of the present disclosure.
- the embodiment shown in FIG. 5 does not require the use of polarized light. Polarized light may be used in connection with this embodiment, but it is not required.
- the optical module 202 depicted in FIG. 5 is similar to that presented in connection with FIG. 4 ; however, the embodiment of FIG. 5 includes an off light redirection wedge 502 . As can be seen from the illustration, the off light redirection wedge 502 allows the image light 414 to continue generally along the optical axis toward the field lens and into the lower optical module 204 (as illustrated).
- the off light 504 is redirected substantially toward the side of the corrective wedge 420 where it passes into the light trap.
- This configuration may allow further height compactness in the HWC because the light trap (not illustrated) that is intended to absorb the off light 504 can be positioned laterally adjacent the upper optical module 202 as opposed to below it.
- the light trap (not illustrated) that is intended to absorb the off light 504 can be positioned laterally adjacent the upper optical module 202 as opposed to below it.
- there is a thin air gap between the TIR wedge 418 and the corrective wedge 420 similar to the embodiment of FIG. 4 .
- There is also a thin air gap between the corrective wedge 420 and the off light redirection wedge 502 There may be HWC mechanical configurations that warrant the positioning of a light trap for the dark state light elsewhere and the illustration depicted in FIG.
- FIG. 5 should be considered illustrative of the concept that the off light can be redirected to create compactness of the overall HWC.
- FIG. 5 a illustrates an example of the embodiment described in connection with FIG. 5 with the addition of more details on the relative angles at the various surfaces and a light ray trace for image light and a light ray trace for dark light are shown as it passes through the upper optical module 202 . Again, various combinations of angles are possible.
- FIG. 4 b shows an illustration of a further embodiment in which a solid transparent matched set of wedges 456 is provided with a reflective polarizer 450 at the interface between the wedges.
- the interface between the wedges in the wedge set 456 is provided at an angle so that illumination light 452 from the polarized light source 458 is reflected at the proper angle (e.g. 34 degrees for a 17 degree DLP mirror) for the DLP mirror “on” state so that the reflected image light 414 is provided along the optical axis of the field lens.
- the general geometry of the wedges in the wedge set 456 is similar to that shown in FIGS. 4 and 4 a .
- a quarter wave film 454 is provided on the DLP 402 surface so that the illumination light 452 is one polarization state (e.g. S polarization state) while in passing through the quarter wave film 454 , reflecting from the DLP mirror and passing back through the quarter wave film 454 , the image light 414 is converted to the other polarization state (e.g. P polarization state).
- the reflective polarizer is oriented such that the illumination light 452 with its polarization state is reflected and the image light 414 with its other polarization state is transmitted. Since the dark state light from the “off pixels 410 also passes through the quarter wave film 454 twice, it is also the other polarization state (e.g. P polarization state) so that it is transmitted by the reflective polarizer 450 .
- the angles of the faces of the wedge set 450 correspond to the needed angles to provide illumination light 452 at the angle needed by the DLP mirrors when in the “on” state so that the reflected image light 414 is reflected from the DLP along the optical axis of the field lens.
- the wedge set 456 provides an interior interface where a reflective polarizer film can be located to redirect the illumination light 452 toward the mirrors of the DLP 402 .
- the wedge set also provides a matched wedge on the opposite side of the reflective polarizer 450 so that the image light 414 from the “on” pixels exits the wedge set 450 substantially perpendicular to the exit surface, while the dark state light from the ‘off’ pixels 410 exits at an oblique angle to the exit surface.
- the image light 414 is substantially unrefracted upon exiting the wedge set 456
- the dark state light from the “off” pixels 410 is substantially refracted upon exiting the wedge set 456 as shown in FIG. 4 b.
- the flatness of the interface is reduced, because variations in the flatness have a negligible effect as long as they are within the cone angle of the illuminating light 452 .
- which can be f#2.2 with a 26 degree cone angle.
- the reflective polarizer is bonded between the matched internal surfaces of the wedge set 456 using an optical adhesive so that Fresnel reflections at the interfaces on either side of the reflective polarizer 450 are reduced.
- the optical adhesive can be matched in refractive index to the material of the wedge set 456 and the pieces of the wedge set 456 can be all made from the same material such as BK7 glass or cast acrylic.
- the wedge material can be selected to have low birefringence as well to reduce non-uniformities in brightness.
- the wedge set 456 and the quarter wave film 454 can also be bonded to the DLP 402 to further reduce Fresnel reflections at the DLP interface losses.
- the flatness of the surface is not critical to maintain the wavefront of the image light 414 so that high image quality can be obtained in the displayed image without requiring very tightly toleranced flatness on the exit surface.
- a yet further embodiment of the disclosure that is not illustrated, combines the embodiments illustrated in FIG. 4 b and FIG. 5 .
- the wedge set 456 is comprised of three wedges with the general geometry of the wedges in the wedge set corresponding to that shown in FIGS. 5 and 5 a .
- a reflective polarizer is bonded between the first and second wedges similar to that shown in FIG. 4 b , however, a third wedge is provided similar to the embodiment of FIG. 5 .
- there is an angled thin air gap between the second and third wedges so that the dark state light is reflected by TIR toward the side of the second wedge where it is absorbed in a light trap.
- This embodiment like the embodiment shown in FIG. 4 b , uses a polarized light source as has been previously described. The difference in this embodiment is that the image light is transmitted through the reflective polarizer and is transmitted through the angled thin air gap so that it exits normal to the exit surface of the third wedge.
- FIG. 5 b illustrates an upper optical module 202 with a dark light trap 514 a .
- image light can be generated from a DLP when using a TIR and corrective lens configuration.
- the upper module may be mounted in a HWC housing 510 and the housing 510 may include a dark light trap 514 a .
- the dark light trap 514 a is generally positioned/constructed/formed in a position that is optically aligned with the dark light optical axis 512 .
- the dark light trap may have depth such that the trap internally reflects dark light in an attempt to further absorb the light and prevent the dark light from combining with the image light that passes through the field lens.
- the dark light trap may be of a shape and depth such that it absorbs the dark light.
- the dark light trap 514 b in embodiments, may be made of light absorbing materials or coated with light absorbing materials.
- the recessed light trap 514 a may include baffles to block a view of the dark state light. This may be combined with black surfaces and textured or fibrous surfaces to help absorb the light.
- the baffles can be part of the light trap, associated with the housing, or field lens, etc.
- FIG. 5 c illustrates another embodiment with a light trap 514 b .
- the shape of the trap is configured to enhance internal reflections within the light trap 514 b to increase the absorption of the dark light 512 .
- FIG. 5 d illustrates another embodiment with a light trap 514 c .
- the shape of the trap 514 c is configured to enhance internal reflections to increase the absorption of the dark light 512 .
- FIG. 6 illustrates a combination of an upper optical module 202 with a lower optical module 204 .
- the image light projected from the upper optical module 202 may or may not be polarized.
- the image light is reflected off a flat combiner element 602 such that it is directed towards the user's eye.
- the combiner element 602 is a partial mirror that reflects image light while transmitting a substantial portion of light from the environment so the user can look through the combiner element and see the environment surrounding the HWC.
- the combiner 602 may include a holographic pattern, to form a holographic mirror. If a monochrome image is desired, there may be a single wavelength reflection design for the holographic pattern on the surface of the combiner 602 . If the intention is to have multiple colors reflected from the surface of the combiner 602 , a multiple wavelength holographic mirror maybe included on the combiner surface. For example, in a three-color embodiment, where red, green and blue pixels are generated in the image light, the holographic mirror may be reflective to wavelengths substantially matching the wavelengths of the red, green and blue light provided by the light source. This configuration can be used as a wavelength specific mirror where pre-determined wavelengths of light from the image light are reflected to the user's eye.
- This configuration may also be made such that substantially all other wavelengths in the visible pass through the combiner element 602 so the user has a substantially clear view of the surroundings when looking through the combiner element 602 .
- the transparency between the user's eye and the surrounding may be approximately 80% when using a combiner that is a holographic mirror.
- holographic mirrors can be made using lasers to produce interference patterns in the holographic material of the combiner where the wavelengths of the lasers correspond to the wavelengths of light that are subsequently reflected by the holographic mirror.
- the notch mirror is designed to reflect a single narrow band of light that is matched to the wavelength range of the light provided by the light source while transmitting the remaining visible wavelengths to enable a see-thru view of the environment.
- the combiner 602 with the notch mirror would operate, from the user's perspective, in a manner similar to the combiner that includes a holographic pattern on the combiner element 602 .
- the combiner, with the tristimulus notch mirror would reflect the “on” pixels to the eye because of the match between the reflective wavelengths of the notch mirror and the color of the image light, and the wearer would be able to see with high clarity the surroundings.
- the transparency between the user's eye and the surrounding may be approximately 80% when using the tristimulus notch mirror.
- the image provided by the upper optical module 202 with the notch mirror combiner can provide higher contrast images than the holographic mirror combiner due to less scattering of the imaging light by the combiner.
- Light can escape through the combiner 602 and may produce face glow as the light is generally directed downward onto the cheek of the user.
- the escaping light can be trapped to avoid face glow.
- a linear polarizer can be laminated, or otherwise associated, to the combiner, with the transmission axis of the polarizer oriented relative to the polarized image light so that any escaping image light is absorbed by the polarizer.
- the image light would be polarized to provide S polarized light to the combiner for better reflection.
- the linear polarizer on the combiner would be oriented to absorb S polarized light and pass P polarized light. This provides the preferred orientation of polarized sunglasses as well.
- a microlouvered film such as a privacy filter can be used to absorb the escaping image light while providing the user with a see-thru view of the environment.
- the absorbance or transmittance of the microlouvered film is dependent on the angle of the light. Where steep angle light is absorbed and light at less of an angle is transmitted.
- the combiner with the microlouver film is angled at greater than 45 degrees to the optical axis of the image light (e.g. the combiner can be oriented at 50 degrees so the image light from the file lens is incident on the combiner at an oblique angle.
- FIG. 7 illustrates an embodiment of a combiner element 602 at various angles when the combiner element 602 includes a holographic mirror.
- a mirrored surface reflects light at an angle equal to the angle that the light is incident to the mirrored surface.
- the combiner element be at 45 degrees, 602 a , if the light is presented vertically to the combiner so the light can be reflected horizontally towards the wearer's eye.
- the incident light can be presented at angles other than vertical to enable the mirror surface to be oriented at other than 45 degrees, but in all cases wherein a mirrored surface is employed (including the tristimulus notch mirror described previously), the incident angle equals the reflected angle.
- a holographic mirror combiner included in embodiments, can be made such that light is reflected at a different angle from the angle that the light is incident onto the holographic mirrored surface. This allows freedom to select the angle of the combiner element 602 b independent of the angle of the incident image light and the angle of the light reflected into the wearer's eye.
- the angle of the combiner element 602 b is greater than 45 degrees (shown in FIG. 7 ) as this allows a more laterally compact HWC design.
- the increased angle of the combiner element 602 b decreases the front to back width of the lower optical module 204 and may allow for a thinner HWC display (i.e. the furthest element from the wearer's eye can be closer to the wearer's face).
- FIG. 8 illustrates another embodiment of a lower optical module 204 .
- polarized image light provided by the upper optical module 202 , is directed into the lower optical module 204 .
- the image light reflects off a polarized mirror 804 and is directed to a focusing partially reflective mirror 802 , which is adapted to reflect the polarized light.
- An optical element such as a 1 ⁇ 4 wave film located between the polarized mirror 804 and the partially reflective mirror 802 , is used to change the polarization state of the image light such that the light reflected by the partially reflective mirror 802 is transmitted by the polarized mirror 804 to present image light to the eye of the wearer.
- the user can also see through the polarized mirror 804 and the partially reflective mirror 802 to see the surrounding environment. As a result, the user perceives a combined image comprised of the displayed image light overlaid onto the see-thru view of the environment.
- the image light and dark light production and management functions described in connection with the upper module may be arranged to direct light in other directions (e.g. upward, sideward, etc.).
- the lower optical module is generally configured to deliver the image light to the wearer's eye and allow the wearer to see through the lower optical module, which may be accomplished through a variety of optical components.
- FIG. 8 a illustrates an embodiment of the present disclosure where the upper optical module 202 is arranged to direct image light into a TIR waveguide 810 .
- the upper optical module 202 is positioned above the wearer's eye 812 and the light is directed horizontally into the TIR waveguide 810 .
- the TIR waveguide is designed to internally reflect the image light in a series of downward TIR reflections until it reaches the portion in front of the wearer's eye, where the light passes out of the TIR waveguide 812 into the wearer's eye.
- an outer shield 814 is positioned in front of the TIR waveguide 810 .
- FIG. 8 b illustrates an embodiment of the present disclosure where the upper optical module 202 is arranged to direct image light into a TIR waveguide 818 .
- the upper optical module 202 is arranged on the side of the TIR waveguide 818 .
- the upper optical module may be positioned in the arm or near the arm of the HWC when configured as a pair of head worn glasses.
- the TIR waveguide 818 is designed to internally reflect the image light in a series of TIR reflections until it reaches the portion in front of the wearer's eye, where the light passes out of the TIR waveguide 812 into the wearer's eye.
- FIG. 8 c illustrates yet further embodiments of the present disclosure where an upper optical module 202 is directing polarized image light into an optical guide 828 where the image light passes through a polarized reflector 824 , changes polarization state upon reflection of the optical element 822 which includes a 1 ⁇ 4 wave film for example and then is reflected by the polarized reflector 824 towards the wearer's eye, due to the change in polarization of the image light.
- the upper optical module 202 may be positioned to direct light to a mirror 820 , to position the upper optical module 202 laterally, in other embodiments, the upper optical module 202 may direct the image light directly towards the polarized reflector 824 . It should be understood that the present disclosure comprises other optical arrangements intended to direct image light into the wearer's eye.
- FIG. 9 illustrates a system where the eye imaging camera 802 is mounted and angled such that the field of view of the eye imaging camera 802 is redirected toward the wearer's eye by the mirror pixels of the DLP 402 that are in the “off” state. In this way, the eye imaging camera 802 can be used to image the wearer's eye along the same optical axis as the displayed image that is presented to the wearer.
- image light that is presented to the wearer's eye illuminates the wearer's eye so that the eye can be imaged by the eye imaging camera 802 .
- the light reflected by the eye passes back though the optical train of the lower optical module 204 and a portion of the upper optical module to where the light is reflected by the “off” pixels of the DLP 402 toward the eye imaging camera 802 .
- the eye imaging camera may image the wearer's eye at a moment in time where there are enough “off” pixels to achieve the required eye image resolution.
- the eye imaging camera collects eye image information from “off” pixels over time and forms a time lapsed image.
- a modified image is presented to the user wherein enough “off” state pixels are included that the camera can obtain the desired resolution and brightness for imaging the wearer's eye and the eye image capture is synchronized with the presentation of the modified image.
- the eye imaging system may be used for security systems.
- the HWC may not allow access to the HWC or other system if the eye is not recognized (e.g. through eye characteristics including retina or iris characteristics, etc.).
- the HWC may be used to provide constant security access in some embodiments.
- the eye security confirmation may be a continuous, near-continuous, real-time, quasi real-time, periodic, etc. process so the wearer is effectively constantly being verified as known.
- the HWC may be worn and eye security tracked for access to other computer systems.
- the eye imaging system may be used for control of the HWC.
- a blink, wink, or particular eye movement may be used as a control mechanism for a software application operating on the HWC or associated device.
- the eye imaging system may be used in a process that determines how or when the HWC 102 delivers digitally displayed content to the wearer. For example, the eye imaging system may determine that the user is looking in a direction and then HWC may change the resolution in an area of the display or provide some content that is associated with something in the environment that the user may be looking at. Alternatively, the eye imaging system may identify different user's and change the displayed content or enabled features provided to the user. User's may be identified from a database of users eye characteristics either located on the HWC 102 or remotely located on the network 110 or on a server 112 .
- the HWC may identify a primary user or a group of primary users from eye characteristics wherein the primary user(s) are provided with an enhanced set of features and all other users are provided with a different set of features.
- the HWC 102 uses identified eye characteristics to either enable features or not and eye characteristics need only be analyzed in comparison to a relatively small database of individual eye characteristics.
- FIG. 10 illustrates a light source that may be used in association with the upper optics module 202 (e.g. polarized light source if the light from the solid state light source is polarized such as polarized light source 302 and 458 ), and light source 404 .
- the solid state light source 1002 may be projected into a backlighting optical system 1004 .
- the solid state light source 1002 may be one or more LEDs, laser diodes, OLEDs.
- the backlighting optical system 1004 includes an extended section with a length/distance ratio of greater than 3, wherein the light undergoes multiple reflections from the sidewalls to mix of homogenize the light as supplied by the solid state light source 1002 .
- the backlighting optical system 1004 can also include structures on the surface opposite (on the left side as shown in FIG. 10 ) to where the uniform light 1008 exits the backlight 1004 to change the direction of the light toward the DLP 302 and the reflective polarizer 310 or the DLP 402 and the TIR wedge 418 .
- the backlighting optical system 1004 may also include structures to collimate the uniform light 1008 to provide light to the DLP with a smaller angular distribution or narrower cone angle.
- Diffusers or polarizers can be used on the entrance or exit surface of the backlighting optical system. Diffusers can be used to spread or uniformize the exiting light from the backlight to improve the uniformity or increase the angular spread of the uniform light 1008 . Elliptical diffusers that diffuse the light more in some directions and less in others can be used to improve the uniformity or spread of the uniform light 1008 in directions orthogonal to the optical axis of the uniform light 1008 . Linear polarizers can be used to convert unpolarized light as supplied by the solid state light source 1002 to polarized light so the uniform light 1008 is polarized with a desired polarization state.
- a reflective polarizer can be used on the exit surface of the backlight 1004 to polarize the uniform light 1008 to the desired polarization state, while reflecting the other polarization state back into the backlight where it is recycled by multiple reflections within the backlight 1004 and at the solid state light source 1002 . Therefore by including a reflective polarizer at the exit surface of the backlight 1004 , the efficiency of the polarized light source is improved.
- FIGS. 10 a and 10 b show illustrations of structures in backlight optical systems 1004 that can be used to change the direction of the light provided to the entrance face 1045 by the light source and then collimates the light in a direction lateral to the optical axis of the exiting uniform light 1008 .
- Structure 1060 includes an angled sawtooth pattern in a transparent waveguide wherein the left edge of each sawtooth clips the steep angle rays of light thereby limiting the angle of the light being redirected. The steep surface at the right (as shown) of each sawtooth then redirects the light so that it reflects off the left angled surface of each sawtooth and is directed toward the exit surface 1040 .
- Structure 1050 can be smooth and coated (e.g. with an aluminum coating or a dielectric mirror coating) to provide a high level of reflectivity without scattering.
- Structure 1050 includes a curved face on the left side (as shown) to focus the rays after they pass through the exit surface 1040 , thereby providing a mechanism for collimating the uniform light 1008 .
- a diffuser can be provided between the solid state light source 1002 and the entrance face 1045 to homogenize the light provided by the solid state light source 1002 .
- a polarizer can be used between the diffuser and the entrance face 1045 of the backlight 1004 to provide a polarized light source.
- the polarization state of the light can be preserved from the entrance face 1045 to the exit face 1040 .
- the light entering the backlight from the solid state light source 1002 passes through the polarizer so that it is polarized with the desired polarization state. If the polarizer is an absorptive linear polarizer, the light of the desired polarization state is transmitted while the light of the other polarization state is absorbed. If the polarizer is a reflective polarizer, the light of the desired polarization state is transmitted into the backlight 1004 while the light of the other polarization state is reflected back into the solid state light source 1002 where it can be recycled as previously described, to increase the efficiency of the polarized light source.
- FIG. 11 a illustrates a light source 1100 that may be used in association with the upper optics module 202 .
- the light source 1100 may provide light to a backlighting optical system 1004 as described above in connection with FIG. 10 .
- the light source 1100 includes a tristimulus notch filter 1102 .
- the tristimulus notch filter 1102 has narrow band pass filters for three wavelengths, as indicated in FIG. 11 c in a transmission graph 1108 .
- the graph shown in FIG. 11 b , as 1104 illustrates an output of three different colored LEDs. One can see that the bandwidths of emission are narrow, but they have long tails.
- the tristimulus notch filter 1102 can be used in connection with such LEDs to provide a light source 1100 that emits narrow filtered wavelengths of light as shown in FIG. 11 d as the transmission graph 1110 . Wherein the clipping effects of the tristimulus notch filter 1102 can be seen to have cut the tails from the LED emission graph 1104 to provide narrower wavelength bands of light to the upper optical module 202 .
- the light source 1100 can be used in connection with a combiner 602 with a holographic mirror or tristimulus notch mirror to provide narrow bands of light that are reflected toward the wearer's eye with less waste light that does not get reflected by the combiner, thereby improving efficiency and reducing escaping light that can cause faceglow.
- FIG. 12 a illustrates another light source 1200 that may be used in association with the upper optics module 202 .
- the light source 1200 may provide light to a backlighting optical system 1004 as described above in connection with FIG. 10 .
- the light source 1200 includes a quantum dot cover glass 1202 . Where the quantum dots absorb light of a shorter wavelength and emit light of a longer wavelength ( FIG. 12 b shows an example wherein a UV spectrum 1202 applied to a quantum dot results in the quantum dot emitting a narrow band shown as a PL spectrum 1204 ) that is dependent on the material makeup and size of the quantum dot.
- quantum dots in the quantum dot cover glass 1202 can be tailored to provide one or more bands of narrow bandwidth light (e.g. red, green and blue emissions dependent on the different quantum dots included as illustrated in the graph shown in FIG. 12 c where three different quantum dots are used.
- the LED driver light emits UV light, deep blue or blue light.
- multiple light sources 1200 would be used where each light source 1200 would include a quantum dot cover glass 1202 with a quantum dot selected to emit at one of the desired colors.
- the light source 1100 can be used in connection with a combiner 602 with a holographic mirror or tristimulus notch mirror to provide narrow transmission bands of light that are reflected toward the wearer's eye with less waste light that does not get reflected.
- a solid state lighting system e.g. LED, OLED, etc
- the solid state lighting system may be included inside the optical elements of an lower optical module 204 .
- the solid state lighting system may be arranged such that lighting effects outside of a field of view (FOV) of the presented digital content is presented to create an immersive effect for the person wearing the HWC.
- FOV field of view
- the lighting effects may be presented to any portion of the HWC that is visible to the wearer.
- the solid state lighting system may be digitally controlled by an integrated processor on the HWC.
- the integrated processor will control the lighting effects in coordination with digital content that is presented within the FOV of the HWC.
- a movie, picture, game, or other content may be displayed or playing within the FOV of the HWC.
- the content may show a bomb blast on the right side of the FOV and at the same moment, the solid state lighting system inside of the upper module optics may flash quickly in concert with the FOV image effect.
- the effect may not be fast, it may be more persistent to indicate, for example, a general glow or color on one side of the user.
- the solid state lighting system may be color controlled, with red, green and blue LEDs, for example, such that color control can be coordinated with the digitally presented content within the field of view.
- FIG. 13 a illustrates optical components of a lower optical module 204 together with an outer lens 1302 .
- FIG. 13 a also shows an embodiment including effects LED's 1308 a and 1308 b .
- FIG. 13 a illustrates image light 1312 , as described herein elsewhere, directed into the upper optical module where it will reflect off of the combiner element 1304 , as described herein elsewhere.
- the combiner element 1304 in this embodiment is angled towards the wearer's eye at the top of the module and away from the wearer's eye at the bottom of the module, as also illustrated and described in connection with FIG. 8 (e.g. at a 45 degree angle).
- the image light 1312 provided by an upper optical module 202 (not shown in FIG.
- the wearer 13 a reflects off of the combiner element 1304 towards the collimating mirror 1310 , away from the wearer's eye, as described herein elsewhere.
- the image light 1312 then reflects and focuses off of the collimating mirror 1304 , passes back through the combiner element 1304 , and is directed into the wearer's eye.
- the wearer can also view the surrounding environment through the transparency of the combiner element 1304 , collimating mirror 1310 , and outer lens 1302 (if it is included).
- various surfaces are polarized to create the optical path for the image light and to provide transparency of the elements such that the wearer can view the surrounding environment. The wearer will generally perceive that the image light forms an image in the FOV 1305 .
- the outer lens 1302 may be included.
- the outer lens 1302 is an outer lens that may or may not be corrective and it may be designed to conceal the lower optical module components in an effort to make the HWC appear to be in a form similar to standard glasses or sunglasses.
- the effects LEDs 1308 a and 1308 b are positioned at the sides of the combiner element 1304 and the outer lens 1302 and/or the collimating mirror 1310 .
- the effects LEDs 1308 a are positioned within the confines defined by the combiner element 1304 and the outer lens 1302 and/or the collimating mirror.
- the effects LEDs 1308 a and 1308 b are also positioned outside of the FOV 1305 . In this arrangement, the effects LEDs 1308 a and 1308 b can provide lighting effects within the lower optical module outside of the FOV 1305 .
- the light emitted from the effects LEDs 1308 a and 1308 b may be polarized such that the light passes through the combiner element 1304 toward the wearer's eye and does not pass through the outer lens 1302 and/or the collimating mirror 1310 .
- This arrangement provides peripheral lighting effects to the wearer in a more private setting by not transmitting the lighting effects through the front of the HWC into the surrounding environment.
- the effects LEDs 1308 a and 1308 b may be unpolarized so the lighting effects provided are made to be purposefully viewable by others in the environment for entertainment such as giving the effect of the wearer's eye glowing in correspondence to the image content being viewed by the wearer.
- FIG. 13 b illustrates a cross section of the embodiment described in connection with FIG. 13 a .
- the effects LED 1308 a is located in the upper-front area inside of the optical components of the lower optical module. It should be understood that the effects LED 1308 a position in the described embodiments is only illustrative and alternate placements are encompassed by the present disclosure. Additionally, in embodiments, there may be one or more effects LEDs 1308 a in each of the two sides of HWC to provide peripheral lighting effects near one or both eyes of the wearer.
- FIG. 13 c illustrates an embodiment where the combiner element 1304 is angled away from the eye at the top and towards the eye at the bottom (e.g. in accordance with the holographic or notch filter embodiments described herein).
- the effects LED 1308 a is located on the outer lens 1302 side of the combiner element 1304 to provide a concealed appearance of the lighting effects.
- the effects LED 1308 a of FIG. 13 c may include a polarizer such that the emitted light can pass through a polarized element associated with the combiner element 1304 and be blocked by a polarized element associated with the outer lens 1302 .
- Another aspect of the present disclosure relates to the mitigation of light escaping from the space between the wearer's face and the HWC itself.
- Another aspect of the present disclosure relates to maintaining a controlled lighting environment in proximity to the wearer's eyes.
- both the maintenance of the lighting environment and the mitigation of light escape are accomplished by including a removable and replaceable flexible shield for the HWC.
- the removable and replaceable shield can be provided for one eye or both eyes in correspondence to the use of the displays for each eye. For example, in a night vision application, the display to only one eye could be used for night vision while the display to the other eye is turned off to provide good see-thru when moving between areas where visible light is available and dark areas where night vision enhancement is needed.
- FIG. 14 a illustrates a removable and replaceable flexible eye cover 1402 with an opening 1408 that can be attached and removed quickly from the HWC 102 through the use of magnets.
- magnets may be included in the eye cover 1402 and magnets of an opposite polarity may be included (e.g. embedded) in the frame of the HWC 102 .
- the magnets of the two elements would attract quite strongly with the opposite polarity configuration.
- one of the elements may have a magnet and the other side may have metal for the attraction.
- the eye cover 1402 is a flexible elastomeric shield.
- the eye cover 1402 may be an elastomeric bellows design to accommodate flexibility and more closely align with the wearer's face.
- FIG. 14 b illustrates a removable and replaceable flexible eye cover 1404 that is adapted as a single eye cover.
- a single eye cover may be used for each side of the HWC to cover both eyes of the wearer.
- the single eye cover may be used in connection with a HWC that includes only one computer display for one eye. These configurations prevent light that is generated and directed generally towards the wearer's face by covering the space between the wearer's face and the HWC.
- the opening 1408 allows the wearer to look through the opening 1408 to view the displayed content and the surrounding environment through the front of the HWC.
- the image light in the lower optical module 204 can be prevented from emitting from the front of the HWC through internal optics polarization schemes, as described herein, for example.
- FIG. 14 c illustrates another embodiment of a light suppression system.
- the eye cover 1410 may be similar to the eye cover 1402 , but eye cover 1410 includes a front light shield 1412 .
- the front light shield 1412 may be opaque to prevent light from escaping the front lens of the HWC.
- the front light shield 1412 is polarized to prevent light from escaping the front lens.
- the internal optical elements of the HWC e.g. of the lower optical module 204
- the front light shield 1412 may be polarized to prevent the light from transmitting through the front light shield 1412 .
- an opaque front light shield 1412 may be included and the digital content may include images of the surrounding environment such that the wearer can visualize the surrounding environment.
- One eye may be presented with night vision environmental imagery and this eye's surrounding environment optical path may be covered using an opaque front light shield 1412 .
- this arrangement may be associated with both eyes.
- the display lighting and/or effects lighting may be controlled in a manner suitable for when an eye cover 1408 is attached or removed from the HWC 102 .
- the lighting system(s) in the HWC may go into a low light mode to further control any amounts of stray light escaping from the HWC and the areas around the HWC.
- Covert operations at night, while using night vision or standard vision, may require a solution which prevents as much escaping light as possible so a user may clip on the eye cover(s) 1408 and then the HWC may go into a low light mode.
- the low light mode may, in some embodiments, only go into a low light mode when the eye cover 1408 is attached if the HWC identifies that the environment is in low light conditions (e.g. through environment light level sensor detection).
- the low light level may be determined to be at an intermediate point between full and low light dependent on environmental conditions.
- Another aspect of the present disclosure relates to automatically controlling the type of content displayed in the HWC when eye covers 1408 are attached or removed from the HWC.
- the displayed content may be restricted in amount or in color amounts.
- the display(s) may go into a simple content delivery mode to restrict the amount of information displayed. This may be done to reduce the amount of light produced by the display(s).
- the display(s) may change from color displays to monochrome displays to reduce the amount of light produced.
- the monochrome lighting may be red to limit the impact on the wearer's eyes to maintain an ability to see better in the dark.
- the pen 1500 is a specially designed external user interface 104 and can operate as a user interface, such as to many different styles of HWC 102 .
- the pen 1500 generally follows the form of a conventional pen, which is a familiar user handled device and creates an intuitive physical interface for many of the operations to be carried out in the HWC system 100 .
- the pen 1500 may be one of several user interfaces 104 used in connection with controlling operations within the HWC system 100 .
- the HWC 102 may watch for and interpret hand gestures 116 as control signals, where the pen 1500 may also be used as a user interface with the same HWC 102 .
- a remote keyboard may be used as an external user interface 104 in concert with the pen 1500 .
- the combination of user interfaces or the use of just one control system generally depends on the operation(s) being executed in the HWC's system 100 .
- the pen 1500 may follow the general form of a conventional pen, it contains numerous technologies that enable it to function as an external user interface 104 .
- FIG. 15 illustrates technologies comprised in the pen 1500 .
- the pen 1500 may include a camera 1508 , which is arranged to view through lens 1502 . The camera may then be focused, such as through lens 1502 , to image a surface upon which a user is writing or making other movements to interact with the HWC 102 .
- the pen 1500 will also have an ink, graphite, or other system such that what is being written can be seen on the writing surface.
- the pen 1500 may include a sensor, such as an IMU 1512 .
- the IMU could be included in the pen 1500 in its separate parts (e.g. gyro, accelerometer, etc.) or an IMU could be included as a single unit.
- the IMU 1512 is used to measure and predict the motion of the pen 1500 .
- the integrated microprocessor 1510 would take the IMU information and camera information as inputs and process the information to form a prediction of the pen tip movement.
- the pen 1500 may also include a pressure monitoring system 1504 , such as to measure the pressure exerted on the lens 1502 .
- the pressure measurement can be used to predict the user's intention for changing the weight of a line, type of a line, type of brush, click, double click, and the like.
- the pressure sensor may be constructed using any force or pressure measurement sensor located behind the lens 1502 , including for example, a resistive sensor, a current sensor, a capacitive sensor, a voltage sensor such as a piezoelectric sensor, and the like.
- the pen 1500 may also include a communications module 1518 , such as for bi-directional communication with the HWC 102 .
- the communications module 1518 may be a short distance communication module (e.g. Bluetooth).
- the communications module 1518 may be security matched to the HWC 102 .
- the communications module 1518 may be arranged to communicate data and commands to and from the microprocessor 1510 of the pen 1500 .
- the microprocessor 1510 may be programmed to interpret data generated from the camera 1508 , IMU 1512 , and pressure sensor 1504 , and the like, and then pass a command onto the HWC 102 through the communications module 1518 , for example.
- the data collected from any of the input sources e.g.
- the microprocessor may be communicated by the communication module 1518 to the HWC 102 , and the HWC 102 may perform data processing and prediction of the user's intention when using the pen 1500 .
- the data may be further passed on through a network 110 to a remote device 112 , such as a server, for the data processing and prediction.
- the commands may then be communicated back to the HWC 102 for execution (e.g. display writing in the glasses display, make a selection within the UI of the glasses display, control a remote external device 112 , control a local external device 108 ), and the like.
- the pen may also include memory 1514 for long or short term uses.
- the pen 1500 may also include a number of physical user interfaces, such as quick launch buttons 1522 , a touch sensor 1520 , and the like.
- the quick launch buttons 1522 may be adapted to provide the user with a fast way of jumping to a software application in the HWC system 100 .
- the user may be a frequent user of communication software packages (e.g. email, text, Twitter, Instagram, Facebook, Google+, and the like), and the user may program a quick launch button 1522 to command the HWC 102 to launch an application.
- the pen 1500 may be provided with several quick launch buttons 1522 , which may be user programmable or factory programmable.
- the quick launch button 1522 may be programmed to perform an operation.
- buttons may be programmed to clear the digital display of the HWC 102 . This would create a fast way for the user to clear the screens on the HWC 102 for any reason, such as for example to better view the environment.
- the quick launch button functionality will be discussed in further detail below.
- the touch sensor 1520 may be used to take gesture style input from the user. For example, the user may be able to take a single finger and run it across the touch sensor 1520 to affect a page scroll.
- the pen 1500 may also include a laser pointer 1524 .
- the laser pointer 1524 may be coordinated with the IMU 1512 to coordinate gestures and laser pointing.
- a user may use the laser 1524 in a presentation to help with guiding the audience with the interpretation of graphics and the IMU 1512 may, either simultaneously or when the laser 1524 is off, interpret the user's gestures as commands or data input.
- FIGS. 16A-C illustrate several embodiments of lens and camera arrangements 1600 for the pen 1500 .
- One aspect relates to maintaining a constant distance between the camera and the writing surface to enable the writing surface to be kept in focus for better tracking of movements of the pen 1500 over the writing surface.
- Another aspect relates to maintaining an angled surface following the circumference of the writing tip of the pen 1500 such that the pen 1500 can be rolled or partially rolled in the user's hand to create the feel and freedom of a conventional writing instrument.
- FIG. 16A illustrates an embodiment of the writing lens end of the pen 1500 .
- the configuration includes a ball lens 1604 , a camera or image capture surface 1602 , and a domed cover lens 1608 .
- the camera views the writing surface through the ball lens 1604 and dome cover lens 1608 .
- the ball lens 1604 causes the camera to focus such that the camera views the writing surface when the pen 1500 is held in the hand in a natural writing position, such as with the pen 1500 in contact with a writing surface.
- the ball lens 1604 should be separated from the writing surface to obtain the highest resolution of the writing surface at the camera 1602 .
- the ball lens 1604 is separated by approximately 1 to 3 mm.
- the domed cover lens 1608 provides a surface that can keep the ball lens 1604 separated from the writing surface at a constant distance, such as substantially independent of the angle used to write on the writing surface. For instance, in embodiments the field of view of the camera in this arrangement would be approximately 60 degrees.
- the domed cover lens, or other lens 1608 used to physically interact with the writing surface will be transparent or transmissive within the active bandwidth of the camera 1602 .
- the domed cover lens 1608 may be spherical or other shape and comprised of glass, plastic, sapphire, diamond, and the like. In other embodiments where low resolution imaging of the surface is acceptable.
- the pen 1500 can omit the domed cover lens 1608 and the ball lens 1604 can be in direct contact with the surface.
- FIG. 16B illustrates another structure where the construction is somewhat similar to that described in connection with FIG. 16A ; however this embodiment does not use a dome cover lens 1608 , but instead uses a spacer 1610 to maintain a predictable distance between the ball lens 1604 and the writing surface, wherein the spacer may be spherical, cylindrical, tubular or other shape that provides spacing while allowing for an image to be obtained by the camera 1602 through the lens 1604 .
- the spacer 1610 is transparent.
- the spacer 1610 is shown as spherical, other shapes such as an oval, doughnut shape, half sphere, cone, cylinder or other form may be used.
- FIG. 16C illustrates yet another embodiment, where the structure includes a post 1614 , such as running through the center of the lensed end of the pen 1500 .
- the post 1614 may be an ink deposition system (e.g. ink cartridge), graphite deposition system (e.g. graphite holder), or a dummy post whose purpose is mainly only that of alignment.
- the selection of the post type is dependent on the pen's use. For instance, in the event the user wants to use the pen 1500 as a conventional ink depositing pen as well as a fully functional external user interface 104 , the ink system post would be the best selection. If there is no need for the ‘writing’ to be visible on the writing surface, the selection would be the dummy post.
- the 16C includes camera(s) 1602 and an associated lens 1612 , where the camera 1602 and lens 1612 are positioned to capture the writing surface without substantial interference from the post 1614 .
- the pen 1500 may include multiple cameras 1602 and lenses 1612 such that more or all of the circumference of the tip 1614 can be used as an input system.
- the pen 1500 includes a contoured grip that keeps the pen aligned in the user's hand so that the camera 1602 and lens 1612 remains pointed at the surface.
- the force measurement may be used in a number of ways.
- the force measurement may be used as a discrete value, or discontinuous event tracking, and compared against a threshold in a process to determine a user's intent.
- the user may want the force interpreted as a ‘click’ in the selection of an object, for instance.
- the user may intend multiple force exertions interpreted as multiple clicks. There may be times when the user holds the pen 1500 in a certain position or holds a certain portion of the pen 1500 (e.g. a button or touch pad) while clicking to affect a certain operation (e.g. a ‘right click’).
- the force measurement may be used to track force and force trends.
- the force trends may be tracked and compared to threshold limits, for example. There may be one such threshold limit, multiple limits, groups of related limits, and the like.
- threshold limits for example. There may be one such threshold limit, multiple limits, groups of related limits, and the like.
- the microprocessor 1510 may interpret the force trend as an indication that the user desires to maintain the current writing style, writing tip type, line weight, brush type, and the like.
- the microprocessor may interpret the action as an indication that the user wants to change the current writing style, writing tip type, line weight, brush type, and the like.
- a change in the current writing style, writing tip type, line weight, brush type, and the like may be executed.
- the change may be noted to the user (e.g. in a display of the HWC 102 ), and the user may be presented with an opportunity to accept the change.
- FIG. 17A illustrates an embodiment of a force sensing surface tip 1700 of a pen 1500 .
- the force sensing surface tip 1700 comprises a surface connection tip 1702 (e.g. a lens as described herein elsewhere) in connection with a force or pressure monitoring system 1504 .
- a force monitoring system 1504 measures the force or pressure the user applies to the writing surface and the force monitoring system communicates data to the microprocessor 1510 for processing.
- the microprocessor 1510 receives force data from the force monitoring system 1504 and processes the data to make predictions of the user's intent in applying the particular force that is currently being applied.
- the processing may be provided at a location other than on the pen (e.g. at a server in the HWC system 100 , on the HWC 102 ).
- the processing of information contemplates processing the information at a location other than on the pen.
- the microprocessor 1510 may be programmed with force threshold(s), force signature(s), force signature library and/or other characteristics intended to guide an inference program in determining the user's intentions based on the measured force or pressure.
- the microprocessor 1510 may be further programmed to make inferences from the force measurements as to whether the user has attempted to initiate a discrete action (e.g. a user interface selection ‘click’) or is performing a constant action (e.g. writing within a particular writing style).
- the inferencing process is important as it causes the pen 1500 to act as an intuitive external user interface 104 .
- FIG. 17B illustrates a force 1708 versus time 1710 trend chart with a single threshold 1718 .
- the threshold 1718 may be set at a level that indicates a discrete force exertion indicative of a user's desire to cause an action (e.g. select an object in a GUI).
- Event 1712 may be interpreted as a click or selection command because the force quickly increased from below the threshold 1718 to above the threshold 1718 .
- the event 1714 may be interpreted as a double click because the force quickly increased above the threshold 1718 , decreased below the threshold 1718 and then essentially repeated quickly.
- the user may also cause the force to go above the threshold 1718 and hold for a period indicating that the user is intending to select an object in the GUI (e.g. a GUI presented in the display of the HWC 102 ) and ‘hold’ for a further operation (e.g. moving the object).
- a threshold value may be used to assist in the interpretation of the user's intention
- a signature force event trend may also be used.
- the threshold and signature may be used in combination or either method may be used alone.
- a single-click signature may be represented by a certain force trend signature or set of signatures.
- the single-click signature(s) may require that the trend meet a criteria of a rise time between x any y values, a hold time of between a and b values and a fall time of between c and d values, for example.
- Signatures may be stored for a variety of functions such as click, double click, right click, hold, move, etc.
- the microprocessor 1510 may compare the real-time force or pressure tracking against the signatures from a signature library to make a decision and issue a command to the software application executing in the GUI.
- FIG. 17C illustrates a force 1708 versus time 1710 trend chart with multiple thresholds 1718 .
- the force trend is plotted on the chart with several pen force or pressure events.
- the two thresholds 1718 of FIG. 4C create three zones of force: a lower, middle and higher range.
- the beginning of the trend indicates that the user is placing a lower zone amount of force. This may mean that the user is writing with a given line weight and does not intend to change the weight, the user is writing.
- the trend shows a significant increase 1720 in force into the middle force range. This force change appears, from the trend to have been sudden and thereafter it is sustained.
- the microprocessor 1510 may interpret this as an intentional change and as a result change the operation in accordance with preset rules (e.g. change line width, increase line weight, etc.).
- preset rules e.g. change line width, increase line weight, etc.
- the trend then continues with a second apparently intentional event 1720 into the higher-force range.
- the force dips below the upper threshold 1718 . This may indicate an unintentional force change and the microprocessor may detect the change in range however not affect a change in the operations being coordinated by the pen 1500 .
- the trend analysis may be done with thresholds and/or signatures.
- instrument stroke parameter changes may be referred to as a change in line type, line weight, tip type, brush type, brush width, brush pressure, color, and other forms of writing, coloring, painting, and the like.
- the pen 1500 may have several operating modes. For instance, the pen 1500 may have a writing mode where the user interface(s) of the pen 1500 (e.g. the writing surface end, quick launch buttons 1522 , touch sensor 1520 , motion based gesture, and the like) is optimized or selected for tasks associated with writing. As another example, the pen 1500 may have a wand mode where the user interface(s) of the pen is optimized or selected for tasks associated with software or device control (e.g. the HWC 102 , external local device, remote device 112 , and the like).
- software or device control e.g. the HWC 102 , external local device, remote device 112 , and the like.
- the pen 1500 may have a presentation mode where the user interface(s) is optimized or selected to assist a user with giving a presentation (e.g. pointing with the laser pointer 1524 while using the button(s) 1522 and/or gestures to control the presentation or applications relating to the presentation).
- the pen may, for example, have a mode that is optimized or selected for a particular device that a user is attempting to control.
- the pen 1500 may have a number of other modes and an aspect of the present disclosure relates to selecting such modes.
- FIG. 18A illustrates an automatic user interface(s) mode selection based on contextual information.
- the microprocessor 1510 may be programmed with IMU thresholds 1814 and 1812 .
- the thresholds 1814 and 1812 may be used as indications of upper and lower bounds of an angle 1804 and 1802 of the pen 1500 for certain expected positions during certain predicted modes.
- the microprocessor 1510 may then institute a writing mode for the pen's user interfaces. Similarly, if the microprocessor 1510 determines (e.g.
- the microprocessor may institute a wand mode for the pen's user interface.
- a wand mode for the pen's user interface Both of these examples may be referred to as context based user interface mode selection as the mode selection is based on contextual information (e.g. position) collected automatically and then used through an automatic evaluation process to automatically select the pen's user interface(s) mode.
- the microprocessor 1510 may monitor the contextual trend (e.g. the angle of the pen over time) in an effort to decide whether to stay in a mode or change modes. For example, through signatures, thresholds, trend analysis, and the like, the microprocessor may determine that a change is an unintentional change and therefore no user interface mode change is desired.
- the contextual trend e.g. the angle of the pen over time
- the microprocessor may determine that a change is an unintentional change and therefore no user interface mode change is desired.
- FIG. 18B illustrates an automatic user interface(s) mode selection based on contextual information.
- the pen 1500 is monitoring (e.g. through its microprocessor) whether or not the camera at the writing surface end 1508 is imaging a writing surface in close proximity to the writing surface end of the pen 1500 . If the pen 1500 determines that a writing surface is within a predetermined relatively short distance, the pen 1500 may decide that a writing surface is present 1820 and the pen may go into a writing mode user interface(s) mode. In the event that the pen 1500 does not detect a relatively close writing surface 1822 , the pen may predict that the pen is not currently being used to as a writing instrument and the pen may go into a non-writing user interface(s) mode.
- FIG. 18C illustrates a manual user interface(s) mode selection.
- the user interface(s) mode may be selected based on a twist of a section 1824 of the pen 1500 housing, clicking an end button 1828 , pressing a quick launch button 1522 , interacting with touch sensor 1520 , detecting a predetermined action at the pressure monitoring system (e.g. a click), detecting a gesture (e.g. detected by the IMU), etc.
- the manual mode selection may involve selecting an item in a GUI associated with the pen 1500 (e.g. an image presented in the display of HWC 102 ).
- a confirmation selection may be presented to the user in the event a mode is going to change.
- the presentation may be physical (e.g. a vibration in the pen 1500 ), through a GUI, through a light indicator, etc.
- FIG. 19 illustrates a couple pen use-scenarios 1900 and 1901 .
- FIG. 19 illustrates a couple pen use-scenarios 1900 and 1901 .
- Use scenario 1900 is a writing scenario where the pen 1500 is used as a writing instrument.
- quick launch button 122 A is pressed to launch a note application 1910 in the GUI 1908 of the HWC 102 display 1904 .
- the HWC 102 launches the note program 1910 and puts the pen into a writing mode.
- the user uses the pen 1500 to scribe symbols 1902 on a writing surface, the pen records the scribing and transmits the scribing to the HWC 102 where symbols representing the scribing are displayed 1912 within the note application 1910 .
- Use scenario 1901 is a gesture scenario where the pen 1500 is used as a gesture capture and command device.
- the quick launch button 122 B is activated and the pen 1500 activates a wand mode such that an application launched on the HWC 102 can be controlled.
- the user sees an application chooser 1918 in the display(s) of the HWC 102 where different software applications can be chosen by the user.
- the user gestures e.g. swipes, spins, turns, etc.
- the user may gesture or click or otherwise interact with the pen 1500 such that the identified application is selected and launched.
- the wand mode may be used to scroll, rotate, change applications, select items, initiate processes, and the like, for example.
- the quick launch button 122 A may be activated and the HWC 102 may launch an application chooser presenting to the user a set of applications.
- the quick launch button may launch a chooser to show all communication programs (e.g. SMS, Twitter, Instagram, Facebook, email, etc.) available for selection such that the user can select the program the user wants and then go into a writing mode.
- the launcher may bring up selections for various other groups that are related or categorized as generally being selected at a given time (e.g. Microsoft Office products, communication products, productivity products, note products, organizational products, and the like)
- FIG. 20 illustrates yet another embodiment of the present disclosure.
- FIG. 2000 illustrates a watchband clip on controller 2000 .
- the watchband clip on controller may be a controller used to control the HWC 102 or devices in the HWC system 100 .
- the watchband clip on controller 2000 has a fastener 2018 (e.g. rotatable clip) that is mechanically adapted to attach to a watchband, as illustrated at 2004 .
- the watchband controller 2000 may have quick launch interfaces 2008 (e.g. to launch applications and choosers as described herein), a touch pad 2014 (e.g. to be used as a touch style mouse for GUI control in a HWC 102 display) and a display 2012 .
- the clip 2018 may be adapted to fit a wide range of watchbands so it can be used in connection with a watch that is independently selected for its function.
- the clip in embodiments, is rotatable such that a user can position it in a desirable manner.
- the clip may be a flexible strap.
- the flexible strap may be adapted to be stretched to attach to a hand, wrist, finger, device, weapon, and the like.
- the watchband controller may be configured as a removable and replaceable watchband.
- the controller may be incorporated into a band with a certain width, segment spacing's, etc. such that the watchband, with its incorporated controller, can be attached to a watch body.
- the attachment in embodiments, may be mechanically adapted to attach with a pin upon which the watchband rotates.
- the watchband controller may be electrically connected to the watch and/or watch body such that the watch, watch body and/or the watchband controller can communicate data between them.
- the watchband controller may have 3-axis motion monitoring (e.g. through an IMU, accelerometers, magnetometers, gyroscopes, etc.) to capture user motion. The user motion may then be interpreted for gesture control.
- 3-axis motion monitoring e.g. through an IMU, accelerometers, magnetometers, gyroscopes, etc.
- the watchband controller may comprise fitness sensors and a fitness computer.
- the sensors may track heart rate, calories burned, strides, distance covered, and the like. The data may then be compared against performance goals and/or standards for user feedback.
- mD micro Doppler
- mD signatures are visual display techniques relating to micro Doppler (“mD”) target tracking signatures (“mD signatures”).
- mD is a radar technique that uses a series of angle dependent electromagnetic pulses that are broadcast into an environment and return pulses are captured. Changes between the broadcast pulse and return pulse are indicative of changes in the shape, distance and angular location of objects or targets in the environment. These changes provide signals that can be used to track a target and identify the target through the mD signature.
- Each target or target type has a unique mD signature. Shifts in the radar pattern can be analyzed in the time domain and frequency domain based on mD techniques to derive information about the types of targets present (e.g.
- the pulse can penetrate the known objects to enable information about targets to be gathered even when the targets are visually blocked by the known objects.
- pulse frequencies can be used that will penetrate concrete buildings to enable people to be identified inside the building.
- Multiple pulse frequencies can be used as well in the mD radar to enable different types of information to be gathered about the objects in the environment.
- the mD radar information can be combined with other information such as distance measurements or images captured of the environment that are analyzed jointly to provide improved object identification and improved target identification and tracking.
- the analysis can be performed on the HWC or the information can be transmitted to a remote network for analysis and results transmitted back to the HWC.
- Distance measurements can be provided by laser range finding, structured lighting, stereoscopic depth maps or sonar measurements. Images of the environment can be captured using one or more cameras capable of capturing images from visible, ultraviolet or infrared light.
- the mD radar can be attached to the HWC, located adjacently (e.g. in a vehicle) and associated wirelessly with the HWC or located remotely. Maps or other previously determined information about the environment can also be used in the analysis of the mD radar information. Embodiments of the present disclosure relate to visualizing the mD signatures in useful ways.
- FIG. 21 illustrates a FOV 2102 of a HWC 102 from a wearer's perspective.
- the wearer as described herein elsewhere, has a see-through FOV 2102 wherein the wearer views adjacent surroundings, such as the buildings illustrated in FIG. 21 .
- the wearer as described herein elsewhere, can also see displayed digital content presented within a portion of the FOV 2102 .
- the embodiment illustrated in FIG. 21 is indicating that the wearer can see the buildings and other surrounding elements in the environment and digital content representing traces, or travel paths, of bullets being fired by different people in the area.
- the surroundings are viewed through the transparency of the FOV 2102 .
- the traces are presented via the digital computer display, as described herein elsewhere.
- the trace presented is based on a mD signature that is collected and communicated to the HWC in real time.
- the mD radar itself may be on or near the wearer of the HWC 102 or it may be located remote from the wearer. In embodiments, the mD radar scans the area, tracks and identifies targets, such as bullets, and communicates traces, based on locations, to the HWC 102 .
- the traces communicated from the mD radar may be associated with GPS locations and the GPS locations may be associated with objects in the environment, such as people, buildings, vehicles, etc, both in latitude and longitude perspective and an elevation perspective.
- the locations may be used as markers for the HWC such that the traces, as presented in the FOV, can be associated, or fixed in space relative to the markers. For example, if the friendly fire trace 2108 is determined, by the mD radar, to have originated from the upper right window of the building on the left, as illustrated in FIG. 21 , then a virtual marker may be set on or near the window.
- the trace may then virtually anchor with the virtual marker on the window.
- a marker may be set near the termination position or other flight position of the friendly fire trace 2108 , such as the upper left window of the center building on the right, as illustrated in FIG. 21 .
- This technique fixes in space the trace such that the trace appears fixed to the environmental positions independent of where the wearer is looking. So, for example, as the wearer's head turns, the trace appears fixed to the marked locations.
- certain user positions may be known and thus identified in the FOV.
- the shooter of the friendly fire trace 2108 may be from a known friendly combatant and as such his location may be known.
- the position may be known based on his GPS location based on a mobile communication system on him, such as another HWC 102 .
- the friendly combatant may be marked by another friendly.
- a wearer of the HWC 102 may use a gesture or external user interface 104 to mark the location.
- the originating position of the friendly fire trace 2108 may be color coded or otherwise distinguished from unidentified traces on the displayed digital content.
- enemy fire traces 2104 may be color coded or otherwise distinguished on the displayed digital content.
- the trace colors or appearance may be different from the originating position to the terminating position.
- This path appearance change may be based on the mD signature.
- the mD signature may indicate that the bullet, for example, is slowing as it propagates and this slowing pattern may be reflected in the FOV 2102 as a color or pattern change. This can create an intuitive understanding of where the shooter is located.
- the originating color may be red, indicative of high speed, and it may change over the course of the trace to yellow, indicative of a slowing trace.
- This pattern changing may also be different for a friendly, enemy and unknown combatant. The enemy may go blue to green for a friendly trace, for example.
- FIG. 21 illustrates an embodiment where the user sees the environment through the FOV and may also see color coded traces, which are dependent on bullet speed and combatant type, where the traces are fixed in environmental positions independent on the wearer's perspective.
- Other information such as distance, range, range rings, time of day, date, engagement type (e.g. hold, stop firing, back away, etc.) may also be displayed in the FOV.
- FIG. 22 illustrates a through wall mD visualization technique according to the principles of the present disclosure.
- the mD radar scanning the environment may be local or remote from the wearer of a HWC 102 .
- the mD radar may identify a target (e.g. a person) that is visible 2204 and then track the target as he goes behind a wall 2208 .
- the tracking may then be presented to the wearer of a HWC 102 such that digital content reflective of the target and the target's movement, even behind the wall, is presented in the FOV 2202 of the HWC 102 .
- the target when out of visible sight, may be represented by an avatar in the FOV to provide the wearer with imagery representing the target.
- mD target recognition methods can identify the identity of a target based on the vibrations and other small movements of the target. This can provide a personal signature for the target. In the case of humans, this may result in a personal identification of a target that has been previously characterized.
- the cardio, heartbeat, lung expansion and other small movements within the body may be unique to a person and if those attributes are pre-identified they may be matched in real time to provide a personal identification of a person in the FOV 2202 .
- the person's mD signatures may be determined based on the position of the person.
- the database of personal mD signature attributes may include mD signatures for a person standing, sitting, laying down, running, walking, jumping, etc.
- a specific indication of the person's identity may be presented in the FOV 2202 .
- the indication may be a color, shape, shade, name, indication of the type of person (e.g. enemy, friendly, etc.), etc. to provide the wearer with intuitive real time information about the person being tracked. This may be very useful in a situation where there is more than one person in an area of the person being tracked. If just one person in the area is personally identified, that person or the avatar of that person can be presented differently than other people in the area.
- FIG. 23 illustrates an mD scanned environment 2300 .
- An mD radar may scan an environment in an attempt to identify objects in the environment.
- the mD scanned environment reveals two vehicles 2302 a and 2302 b , an enemy combatant 2309 , two friendly combatants 2308 a and 2308 b and a shot trace 2318 .
- Each of these objects may be personally identified or type identified.
- the vehicles 2302 a and 2302 b may be identified through the mD signatures as a tank and heavy truck.
- the enemy combatant 2309 may be identified as a type (e.g. enemy combatant) or more personally (e.g. by name).
- the friendly combatants may be identified as a type (e.g. friendly combatant) or more personally (e.g. by name).
- the shot trace 2318 may be characterized by type of projectile or weapon type for the projectile, for example.
- FIG. 23 a illustrates two separate HWC 102 FOV display techniques according to the principles of the present disclosure.
- FOV 2312 illustrates a map view 2310 where the mD scanned environment is presented.
- the wearer has a perspective on the mapped area so he can understand all tracked targets in the area. This allows the wearer to traverse the area with knowledge of the targets.
- FOV 2312 illustrates a heads-up view to provide the wearer with an augmented reality style view of the environment that is in proximity of the wearer.
- HWC has been described in language specific to features, systems, computer processes and/or methods
- the appended claims are not necessarily limited to the specific features, systems, computer processes and/or methods described. Rather, the specific features, systems, computer processes and/or and methods are disclosed as non-limited example implementations of HWC.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Optics & Photonics (AREA)
Abstract
Description
- This application claims the benefit of priority to and is a continuation of the following U.S. patent application, which is hereby incorporated by reference in its entirety:
- U.S. non-provisional application Ser. No. 14/950,523, filed Nov. 24, 2015 (ODGP-3001-U01-C03), which is a continuation of U.S. non-provisional application Ser. No. 14/178,047, entitled MICRO DOPPLER PRESENTATIONS IN HEAD WORN COMPUTING, filed Feb. 11, 2014 (ODGP-3001-U01).
- This disclosure relates to head worn computing. More particularly, this disclosure relates to micro Doppler presentation techniques used in head worn computing.
- Wearable computing systems have been developed and are beginning to be commercialized. Many problems persist in the wearable computing field that need to be resolved to make them meet the demands of the market.
- Aspects of the present disclosure relate to methods and systems for presenting intuitive and useful micro Doppler signatures in head worn computing.
- These and other systems, methods, objects, features, and advantages of the present disclosure will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
- Embodiments are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:
-
FIG. 1 illustrates a head worn computing system in accordance with the principles of the present disclosure. -
FIG. 2 illustrates a head worn computing system with optical system in accordance with the principles of the present disclosure. -
FIG. 3a illustrates a large prior art optical arrangement. -
FIG. 3b illustrates an upper optical module in accordance with the principles of the present disclosure. -
FIG. 4 illustrates an upper optical module in accordance with the principles of the present disclosure. -
FIG. 4a illustrates an upper optical module in accordance with the principles of the present disclosure. -
FIG. 4b illustrates an upper optical module in accordance with the principles of the present disclosure. -
FIG. 5 illustrates an upper optical module in accordance with the principles of the present disclosure. -
FIG. 5a illustrates an upper optical module in accordance with the principles of the present disclosure. -
FIG. 5b illustrates an upper optical module and dark light trap according to the principles of the present disclosure. -
FIG. 5c illustrates an upper optical module and dark light trap according to the principles of the present disclosure. -
FIG. 5d illustrates an upper optical module and dark light trap according to the principles of the present disclosure. -
FIG. 5e illustrates an upper optical module and dark light trap according to the principles of the present disclosure. -
FIG. 6 illustrates upper and lower optical modules in accordance with the principles of the present disclosure. -
FIG. 7 illustrates angles of combiner elements in accordance with the principles of the present disclosure. -
FIG. 8 illustrates upper and lower optical modules in accordance with the principles of the present disclosure. -
FIG. 8a illustrates upper and lower optical modules in accordance with the principles of the present disclosure. -
FIG. 8b illustrates upper and lower optical modules in accordance with the principles of the present disclosure. -
FIG. 8c illustrates upper and lower optical modules in accordance with the principles of the present disclosure. -
FIG. 9 illustrates an eye imaging system in accordance with the principles of the present disclosure. -
FIG. 10 illustrates a light source in accordance with the principles of the present disclosure. -
FIG. 10a illustrates a back lighting system in accordance with the principles of the present disclosure. -
FIG. 10b illustrates a back lighting system in accordance with the principles of the present disclosure. -
FIGS. 11a to 11d illustrate light source and filters in accordance with the principles of the present disclosure. -
FIGS. 12a to 12c illustrate light source and quantum dot systems in accordance with the principles of the present disclosure. -
FIGS. 13a to 13c illustrate peripheral lighting systems in accordance with the principles of the present disclosure. -
FIGS. 14a to 14c illustrate a light suppression systems in accordance with the principles of the present disclosure. -
FIG. 15 illustrates an external user interface in accordance with the principles of the present disclosure. -
FIGS. 16a to 16c illustrate distance control systems in accordance with the principles of the present disclosure. -
FIGS. 17a to 17c illustrate force interpretation systems in accordance with the principles of the present disclosure. -
FIGS. 18a to 18c illustrate user interface mode selection systems in accordance with the principles of the present disclosure. -
FIG. 19 illustrates interaction systems in accordance with the principles of the present disclosure. -
FIG. 20 illustrates external user interfaces in accordance with the principles of the present disclosure. -
FIG. 21 illustrates mD trace representations presented in accordance with the principles of the present disclosure. -
FIG. 22 illustrates mD trace representations presented in accordance with the principles of the present disclosure. -
FIG. 23 illustrates an mD scanned environment in accordance with the principles of the present disclosure. -
FIG. 23a illustrates mD trace representations presented in accordance with the principles of the present disclosure. - While the disclosure has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
- Aspects of the present disclosure relate to head-worn computing (“HWC”) systems. HWC involves, in some instances, a system that mimics the appearance of head-worn glasses or sunglasses. The glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user. In embodiments, the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality (“AR”).
- HWC involves more than just placing a computing system on a person's head. The system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of emersion comprised of the displayed digital content and the see-through view of the environmental surroundings. User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop. For the HWC and associated systems to be most effective, the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like. The HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware HWC. The glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses. The glasses may further be used to control or coordinate with external devices that are associated with the glasses.
- Referring to
FIG. 1 , an overview of theHWC system 100 is presented. As shown, theHWC system 100 comprises aHWC 102, which in this instance is configured as glasses to be worn on the head with sensors such that theHWC 102 is aware of the objects and conditions in theenvironment 114. In this instance, theHWC 102 also receives and interprets control inputs such as gestures andmovements 116. TheHWC 102 may communicate withexternal user interfaces 104. Theexternal user interfaces 104 may provide a physical user interface to take control instructions from a user of theHWC 102 and theexternal user interfaces 104 and theHWC 102 may communicate bi-directionally to affect the user's command and provide feedback to theexternal device 108. TheHWC 102 may also communicate bi-directionally with externally controlled or coordinatedlocal devices 108. For example, anexternal user interface 104 may be used in connection with theHWC 102 to control an externally controlled or coordinatedlocal device 108. The externally controlled or coordinatedlocal device 108 may provide feedback to theHWC 102 and a customized GUI may be presented in theHWC 102 based on the type of device or specifically identifieddevice 108. TheHWC 102 may also interact with remote devices andinformation sources 112 through anetwork connection 110. Again, theexternal user interface 104 may be used in connection with theHWC 102 to control or otherwise interact with any of theremote devices 108 andinformation sources 112 in a similar way as when theexternal user interfaces 104 are used to control or otherwise interact with the externally controlled or coordinatedlocal devices 108. Similarly,HWC 102 may interpret gestures 116 (e.g. captured from forward, downward, upward, rearward facing sensors such as camera(s), range finders, IR sensors, etc.) or environmental conditions sensed in theenvironment 114 to control either local orremote devices - We will now describe each of the main elements depicted on
FIG. 1 in more detail; however, these descriptions are intended to provide general guidance and should not be construed as limiting. Additional description of each element may also be further described herein. - The
HWC 102 is a computing platform intended to be worn on a person's head. TheHWC 102 may take many different forms to fit many different functional requirements. In some situations, theHWC 102 will be designed in the form of conventional glasses. The glasses may or may not have active computer graphics displays. In situations where theHWC 102 has integrated computer displays the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of theenvironment 114. There are a number of see-through optical designs that may be used, including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like. In embodiments, lighting systems used in connection with the display optics may be solid state lighting systems, such as LED, OLED, quantum dot, quantum dot LED, etc. In addition, the optical configuration may be monocular or binocular. It may also include vision corrective optical components. In embodiments, the optics may be packaged as contact lenses. In other embodiments, theHWC 102 may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like. - The
HWC 102 may also have a number of integrated computing facilities, such as an integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)), and the like. TheHWC 102 may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like. - The
HWC 102 may also have integrated control technologies. The integrated control technologies may be contextual based control, passive control, active control, user control, and the like. For example, theHWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for theHWC 102. In another example, theHWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response. TheHWC 102 may also automatically control itself based on measured or perceived environmental conditions. For example, if it is bright in the environment theHWC 102 may increase the brightness or contrast of the displayed image. In embodiments, the integrated control technologies may be mounted on theHWC 102 such that a user can interact with it directly. For example, theHWC 102 may have a button(s), touch capacitive interface, and the like. - As described herein, the
HWC 102 may be in communication withexternal user interfaces 104. The external user interfaces may come in many different forms. For example, a cell phone screen may be adapted to take user input for control of an aspect of theHWC 102. The external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like. In embodiments, the external controller may be integrated into another device such as a ring, watch, bike, car, and the like. In each case, theexternal user interface 104 may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling theHWD 104. - As described herein, the
HWC 102 may control or coordinate with otherlocal devices 108. Theexternal devices 108 may be an audio device, visual device, vehicle, cell phone, computer, and the like. For instance, the localexternal device 108 may be anotherHWC 102, where information may then be exchanged between theseparate HWCs 108. - Similar to the way the
HWC 102 may control or coordinate with local devices 106, theHWC 102 may control or coordinate withremote devices 112, such as theHWC 102 communicating with theremote devices 112 through anetwork 110. Again, the form of theremote device 112 may have many forms. Included in these forms is anotherHWC 102. For example, eachHWC 102 may communicate its GPS position such that all theHWCs 102 know where all ofHWC 102 are located. -
FIG. 2 illustrates aHWC 102 with an optical system that includes an upperoptical module 202 and a loweroptical module 204. While the upper and loweroptical modules upper module 202 includes a computer controlled display (e.g. LCoS, DLP, OLED, etc.) and image light delivery optics. In embodiments, the lower module includes eye delivery optics that are configured to receive the upper module's image light and deliver the image light to the eye of a wearer of the HWC. InFIG. 2 , it should be noted that while the upper and loweroptical modules -
FIG. 3b illustrates an upperoptical module 202 in accordance with the principles of the present disclosure. In this embodiment, the upperoptical module 202 includes a DLP (also known as DMD or digital micromirror device) computer operateddisplay 304 which includes pixels comprised of rotatable mirrors (such as, for example, the DLP3000 available from Texas Instruments), polarizedlight source 302, ¼wave retarder film 308,reflective polarizer 310 and afield lens 312. The polarizedlight source 302 provides substantially uniform polarized light that is generally directed towards thereflective polarizer 310. The reflective polarizer reflects light of one polarization state (e.g. S polarized light) and transmits light of the other polarization state (e.g. P polarized light). The polarizedlight source 302 and thereflective polarizer 310 are oriented so that the polarized light from the polarizedlight source 302 is reflected generally towards theDLP 304. The light then passes through the ¼wave film 308 once before illuminating the pixels of theDLP 304 and then again after being reflected by the pixels of theDLP 304. In passing through the ¼wave film 308 twice, the light is converted from one polarization state to the other polarization state (e.g. the light is converted from S to P polarized light). The light then passes through thereflective polarizer 310. In the event that the DLP pixel(s) are in the “on” state (i.e. the mirrors are positioned to reflect light towards thefield lens 312, the “on” pixels reflect the light generally along the optical axis and into thefield lens 312. This light that is reflected by “on” pixels and which is directed generally along the optical axis of thefield lens 312 will be referred to asimage light 316. Theimage light 316 then passes through the field lens to be used by a loweroptical module 204. - The light that is provided by the polarized
light source 302, which is subsequently reflected by thereflective polarizer 310 before it reflects from theDLP 304, will generally be referred to as illumination light. The light that is reflected by the “off” pixels of theDLP 304 is reflected at a different angle than the light reflected by the ‘on” pixels, so that the light from the “off’ pixels is generally directed away from the optical axis of thefield lens 312 and toward the side of the upperoptical module 202 as shown inFIG. 3 . The light that is reflected by the “off” pixels of theDLP 304 will be referred to asdark state light 314. - The
DLP 304 operates as a computer controlled display and is generally thought of as a MEMs device. The DLP pixels are comprised of small mirrors that can be directed. The mirrors generally flip from one angle to another angle. The two angles are generally referred to as states. When light is used to illuminate the DLP the mirrors will reflect the light in a direction depending on the state. In embodiments herein, we generally refer to the two states as “on” and “off,” which is intended to depict the condition of a display pixel. “On” pixels will be seen by a viewer of the display as emitting light because the light is directed along the optical axis and into the field lens and the associated remainder of the display system. “Off” pixels will be seen by a viewer of the display as not emitting light because the light from these pixels is directed to the side of the optical housing and into a light trap or light dump where the light is absorbed. The pattern of “on” and “off” pixels produces image light that is perceived by a viewer of the display as a computer generated image. Full color images can be presented to a user by sequentially providing illumination light with complimentary colors such as red, green and blue. Where the sequence is presented in a recurring cycle that is faster than the user can perceive as separate images and as a result the user perceives a full color image comprised of the sum of the sequential images. Bright pixels in the image are provided by pixels that remain in the “on” state for the entire time of the cycle, while dimmer pixels in the image are provided by pixels that switch between the “on” state and “off” state within the time of the cycle, or frame time when in a video sequence of images. -
FIG. 3a shows an illustration of a system for aDLP 304 in which the unpolarizedlight source 350 is pointed directly at theDLP 304. In this case, the angle required for the illumination light is such that thefield lens 352 must be positioned substantially distant from theDLP 304 to avoid the illumination light from being clipped by thefield lens 352. The large distance between thefield lens 352 and theDLP 304 along with the straight path of the dark state light 354, means that the light trap for the dark state light 354 is also located at a substantial distance from the DLP. For these reasons, this configuration is larger in size compared to theupper optics module 202 of the preferred embodiments. - The configuration illustrated in
FIG. 3b can be lightweight and compact such that it fits into a small portion of a HWC. For example, theupper modules 202 illustrated herein can be physically adapted to mount in an upper frame of a HWC such that the image light can be directed into a loweroptical module 204 for presentation of digital content to a wearer's eye. The package of components that combine to generate the image light (i.e. the polarizedlight source 302,DLP 304,reflective polarizer 310 and ¼ wave film 308) is very light and is compact. The height of the system, excluding the field lens, may be less than 8 mm. The width (i.e. from front to back) may be less than 8 mm. The weight may be less than 2 grams. The compactness of this upperoptical module 202 allows for a compact mechanical design of the HWC and the light weight nature of these embodiments help make the HWC lightweight to provide for a HWC that is comfortable for a wearer of the HWC. - The configuration illustrated in
FIG. 3b can produce sharp contrast, high brightness and deep blacks, especially when compared to LCD or LCoS displays used in HWC. The “on” and “off” states of the DLP provide for a strong differentiator in the light reflection path representing an “on” pixel and an “off” pixel. As will be discussed in more detail below, the dark state light from the “off” pixel reflections can be managed to reduce stray light in the display system to produce images with high contrast. -
FIG. 4 illustrates another embodiment of an upperoptical module 202 in accordance with the principles of the present disclosure. This embodiment includes alight source 404, but in this case, the light source can provide unpolarized illumination light. The illumination light from thelight source 404 is directed into aTIR wedge 418 such that the illumination light is incident on an internal surface of the TIR wedge 418 (shown as the angled lower surface of theTRI wedge 418 inFIG. 4 ) at an angle that is beyond the critical angle as defined byEqn 1. -
Critical angle=arc-sin(1/n)Eqn 1 - Where the critical angle is the angle beyond which the illumination light is reflected from the internal surface when the internal surface comprises an interface from a solid with a higher refractive index (n) to air with a refractive index of 1 (e.g. for an interface of acrylic, with a refractive index of n=1.5, to air, the critical angle is 41.8 degrees; for an interface of polycarbonate, with a refractive index of n=1.59, to air the critical angle is 38.9 degrees). Consequently, the
TIR wedge 418 is associated with athin air gap 408 along the internal surface to create an interface between a solid with a higher refractive index and air. By choosing the angle of thelight source 404 relative to theDLP 402 in correspondence to the angle of the internal surface of theTIR wedge 418, illumination light is turned toward theDLP 402 at an angle suitable for providing image light 414 as reflected from “on” pixels. Wherein, the illumination light is provided to theDLP 402 at approximately twice the angle of the pixel mirrors in theDLP 402 that are in the “on” state, such that after reflecting from the pixel mirrors, theimage light 414 is directed generally along the optical axis of the field lens. Depending on the state of the DLP pixels, the illumination light from “on” pixels may be reflected as image light 414 which is directed towards a field lens and a loweroptical module 204, while illumination light reflected from “off” pixels (generally referred to herein as “dark” state light, “off” pixel light or “off” state light) 410 is directed in a separate direction, which may be trapped and not used for the image that is ultimately presented to the wearer's eye. - The light trap for the dark state light 410 may be located along the optical axis defined by the direction of the dark state light 410 and in the side of the housing, with the function of absorbing the dark state light. To this end, the light trap may be comprised of an area outside of the cone of image light 414 from the “on” pixels. The light trap is typically made up of materials that absorb light including coatings of black paints or other light absorbing materials to prevent light scattering from the dark state light degrading the image perceived by the user. In addition, the light trap may be recessed into the wall of the housing or include masks or guards to block scattered light and prevent the light trap from being viewed adjacent to the displayed image.
- The embodiment of
FIG. 4 also includes acorrective wedge 420 to correct the effect of refraction of theimage light 414 as it exits theTIR wedge 418. By including thecorrective wedge 420 and providing a thin air gap 408 (e.g. 25 micron), the image light from the “on” pixels can be maintained generally in a direction along the optical axis of the field lens (i.e. the same direction as that defined by the image light 414) so it passes into the field lens and the loweroptical module 204. As shown inFIG. 4 , the image light 414 from the “on” pixels exits thecorrective wedge 420 generally perpendicular to the surface of thecorrective wedge 420 while the dark state light exits at an oblique angle. As a result, the direction of the image light 414 from the “on” pixels is largely unaffected by refraction as it exits from the surface of thecorrective wedge 420. In contrast, the dark state light 410 is substantially changed in direction by refraction when the dark state light 410 exits thecorrective wedge 420. - The embodiment illustrated in
FIG. 4 has the similar advantages of those discussed in connection with the embodiment ofFIG. 3b . The dimensions and weight of theupper module 202 depicted inFIG. 4 may be approximately 8×8 mm with a weight of less than 3 grams. A difference in overall performance between the configuration illustrated inFIG. 3b and the configuration illustrated inFIG. 4 is that the embodiment ofFIG. 4 doesn't require the use of polarized light as supplied by thelight source 404. This can be an advantage in some situations as will be discussed in more detail below (e.g. increased see-through transparency of the HWC optics from the user's perspective). Polarized light may be used in connection with the embodiment depicted inFIG. 4 , in embodiments. An additional advantage of the embodiment ofFIG. 4 compared to the embodiment shown inFIG. 3b is that the dark state light (shown as DLP off light 410) is directed at a steeper angle away from the optical axis of theimage light 414 due to the added refraction encountered when the dark state light 410 exits thecorrective wedge 420. This steeper angle of the dark state light 410 allows for the light trap to be positioned closer to theDLP 402 so that the overall size of theupper module 202 can be reduced. The light trap can also be made larger since the light trap doesn't interfere with the field lens, thereby the efficiency of the light trap can be increased and as a result, stray light can be reduced and the contrast of the image perceived by the user can be increased.FIG. 4a illustrates the embodiment described in connection withFIG. 4 with an example set of corresponding angles at the various surfaces with the reflected angles of a ray of light passing through the upperoptical module 202. In this example, the DLP mirrors are provided at 17 degrees to the surface of the DLP device. The angles of the TIR wedge are selected in correspondence to one another to provide TIR reflected illumination light at the correct angle for the DLP mirrors while allowing the image light and dark state light to pass through the thin air gap, various combinations of angles are possible to achieve this. -
FIG. 5 illustrates yet another embodiment of an upperoptical module 202 in accordance with the principles of the present disclosure. As with the embodiment shown inFIG. 4 , the embodiment shown inFIG. 5 does not require the use of polarized light. Polarized light may be used in connection with this embodiment, but it is not required. Theoptical module 202 depicted inFIG. 5 is similar to that presented in connection withFIG. 4 ; however, the embodiment ofFIG. 5 includes an offlight redirection wedge 502. As can be seen from the illustration, the offlight redirection wedge 502 allows theimage light 414 to continue generally along the optical axis toward the field lens and into the lower optical module 204 (as illustrated). However, theoff light 504 is redirected substantially toward the side of thecorrective wedge 420 where it passes into the light trap. This configuration may allow further height compactness in the HWC because the light trap (not illustrated) that is intended to absorb theoff light 504 can be positioned laterally adjacent the upperoptical module 202 as opposed to below it. In the embodiment depicted inFIG. 5 there is a thin air gap between theTIR wedge 418 and the corrective wedge 420 (similar to the embodiment ofFIG. 4 ). There is also a thin air gap between thecorrective wedge 420 and the offlight redirection wedge 502. There may be HWC mechanical configurations that warrant the positioning of a light trap for the dark state light elsewhere and the illustration depicted inFIG. 5 should be considered illustrative of the concept that the off light can be redirected to create compactness of the overall HWC.FIG. 5a illustrates an example of the embodiment described in connection withFIG. 5 with the addition of more details on the relative angles at the various surfaces and a light ray trace for image light and a light ray trace for dark light are shown as it passes through the upperoptical module 202. Again, various combinations of angles are possible. -
FIG. 4b shows an illustration of a further embodiment in which a solid transparent matched set ofwedges 456 is provided with areflective polarizer 450 at the interface between the wedges. Wherein the interface between the wedges in the wedge set 456 is provided at an angle so that illumination light 452 from the polarized light source 458 is reflected at the proper angle (e.g. 34 degrees for a 17 degree DLP mirror) for the DLP mirror “on” state so that the reflectedimage light 414 is provided along the optical axis of the field lens. The general geometry of the wedges in the wedge set 456 is similar to that shown inFIGS. 4 and 4 a. Aquarter wave film 454 is provided on theDLP 402 surface so that the illumination light 452 is one polarization state (e.g. S polarization state) while in passing through thequarter wave film 454, reflecting from the DLP mirror and passing back through thequarter wave film 454, theimage light 414 is converted to the other polarization state (e.g. P polarization state). The reflective polarizer is oriented such that the illumination light 452 with its polarization state is reflected and theimage light 414 with its other polarization state is transmitted. Since the dark state light from the “offpixels 410 also passes through thequarter wave film 454 twice, it is also the other polarization state (e.g. P polarization state) so that it is transmitted by thereflective polarizer 450. - The angles of the faces of the wedge set 450 correspond to the needed angles to provide illumination light 452 at the angle needed by the DLP mirrors when in the “on” state so that the reflected
image light 414 is reflected from the DLP along the optical axis of the field lens. The wedge set 456 provides an interior interface where a reflective polarizer film can be located to redirect the illumination light 452 toward the mirrors of theDLP 402. The wedge set also provides a matched wedge on the opposite side of thereflective polarizer 450 so that the image light 414 from the “on” pixels exits the wedge set 450 substantially perpendicular to the exit surface, while the dark state light from the ‘off’pixels 410 exits at an oblique angle to the exit surface. As a result, theimage light 414 is substantially unrefracted upon exiting the wedge set 456, while the dark state light from the “off”pixels 410 is substantially refracted upon exiting the wedge set 456 as shown inFIG. 4 b. - By providing a solid transparent matched wedge set, the flatness of the interface is reduced, because variations in the flatness have a negligible effect as long as they are within the cone angle of the illuminating light 452. Which can be f#2.2 with a 26 degree cone angle. In a preferred embodiment, the reflective polarizer is bonded between the matched internal surfaces of the wedge set 456 using an optical adhesive so that Fresnel reflections at the interfaces on either side of the
reflective polarizer 450 are reduced. The optical adhesive can be matched in refractive index to the material of the wedge set 456 and the pieces of the wedge set 456 can be all made from the same material such as BK7 glass or cast acrylic. Wherein the wedge material can be selected to have low birefringence as well to reduce non-uniformities in brightness. The wedge set 456 and thequarter wave film 454 can also be bonded to theDLP 402 to further reduce Fresnel reflections at the DLP interface losses. In addition, since theimage light 414 is substantially normal to the exit surface of the wedge set 456, the flatness of the surface is not critical to maintain the wavefront of theimage light 414 so that high image quality can be obtained in the displayed image without requiring very tightly toleranced flatness on the exit surface. - A yet further embodiment of the disclosure that is not illustrated, combines the embodiments illustrated in
FIG. 4b andFIG. 5 . In this embodiment, the wedge set 456 is comprised of three wedges with the general geometry of the wedges in the wedge set corresponding to that shown inFIGS. 5 and 5 a. A reflective polarizer is bonded between the first and second wedges similar to that shown inFIG. 4b , however, a third wedge is provided similar to the embodiment ofFIG. 5 . Wherein there is an angled thin air gap between the second and third wedges so that the dark state light is reflected by TIR toward the side of the second wedge where it is absorbed in a light trap. This embodiment, like the embodiment shown inFIG. 4b , uses a polarized light source as has been previously described. The difference in this embodiment is that the image light is transmitted through the reflective polarizer and is transmitted through the angled thin air gap so that it exits normal to the exit surface of the third wedge. -
FIG. 5b illustrates an upperoptical module 202 with a darklight trap 514 a. As described in connection withFIGS. 4 and 4 a, image light can be generated from a DLP when using a TIR and corrective lens configuration. The upper module may be mounted in aHWC housing 510 and thehousing 510 may include a darklight trap 514 a. The darklight trap 514 a is generally positioned/constructed/formed in a position that is optically aligned with the dark lightoptical axis 512. As illustrated, the dark light trap may have depth such that the trap internally reflects dark light in an attempt to further absorb the light and prevent the dark light from combining with the image light that passes through the field lens. The dark light trap may be of a shape and depth such that it absorbs the dark light. In addition, the darklight trap 514 b, in embodiments, may be made of light absorbing materials or coated with light absorbing materials. In embodiments, the recessedlight trap 514 a may include baffles to block a view of the dark state light. This may be combined with black surfaces and textured or fibrous surfaces to help absorb the light. The baffles can be part of the light trap, associated with the housing, or field lens, etc. -
FIG. 5c illustrates another embodiment with alight trap 514 b. As can be seen in the illustration, the shape of the trap is configured to enhance internal reflections within thelight trap 514 b to increase the absorption of thedark light 512.FIG. 5d illustrates another embodiment with alight trap 514 c. As can be seen in the illustration, the shape of thetrap 514 c is configured to enhance internal reflections to increase the absorption of thedark light 512. -
FIG. 5e illustrates another embodiment of an upperoptical module 202 with a darklight trap 514 d. This embodiment ofupper module 202 includes an offlight reflection wedge 502, as illustrated and described in connection with the embodiment ofFIGS. 5 and 5 a. As can be seen inFIG. 5e , thelight trap 514 d is positioned along the optical path of thedark light 512. The darklight trap 514 d may be configured as described in other embodiments herein. The embodiment of thelight trap 514 d illustrated inFIG. 5e includes a black area on the side wall of the wedge, wherein the side wall is located substantially away from the optical axis of theimage light 414. In addition, baffles 5252 may be added to one or more edges of thefield lens 312 to block the view of thelight trap 514 d adjacent to the displayed image seen by the user. -
FIG. 6 illustrates a combination of an upperoptical module 202 with a loweroptical module 204. In this embodiment, the image light projected from the upperoptical module 202 may or may not be polarized. The image light is reflected off aflat combiner element 602 such that it is directed towards the user's eye. Wherein, thecombiner element 602 is a partial mirror that reflects image light while transmitting a substantial portion of light from the environment so the user can look through the combiner element and see the environment surrounding the HWC. - The
combiner 602 may include a holographic pattern, to form a holographic mirror. If a monochrome image is desired, there may be a single wavelength reflection design for the holographic pattern on the surface of thecombiner 602. If the intention is to have multiple colors reflected from the surface of thecombiner 602, a multiple wavelength holographic mirror maybe included on the combiner surface. For example, in a three-color embodiment, where red, green and blue pixels are generated in the image light, the holographic mirror may be reflective to wavelengths substantially matching the wavelengths of the red, green and blue light provided by the light source. This configuration can be used as a wavelength specific mirror where pre-determined wavelengths of light from the image light are reflected to the user's eye. This configuration may also be made such that substantially all other wavelengths in the visible pass through thecombiner element 602 so the user has a substantially clear view of the surroundings when looking through thecombiner element 602. The transparency between the user's eye and the surrounding may be approximately 80% when using a combiner that is a holographic mirror. Wherein holographic mirrors can be made using lasers to produce interference patterns in the holographic material of the combiner where the wavelengths of the lasers correspond to the wavelengths of light that are subsequently reflected by the holographic mirror. - In another embodiment, the
combiner element 602 may include a notch mirror comprised of a multilayer coated substrate wherein the coating is designed to substantially reflect the wavelengths of light provided by the light source and substantially transmit the remaining wavelengths in the visible spectrum. For example, in the case where red, green and blue light is provided by the light source to enable full color images to be provided to the user, the notch mirror is a tristimulus notch mirror wherein the multilayer coating is designed to reflect narrow bands of red, green and blue light that are matched to the what is provided by the light source and the remaining visible wavelengths are transmitted through the coating to enable a view of the environment through the combiner. In another example where monochrome images are provided to the user, the notch mirror is designed to reflect a single narrow band of light that is matched to the wavelength range of the light provided by the light source while transmitting the remaining visible wavelengths to enable a see-thru view of the environment. Thecombiner 602 with the notch mirror would operate, from the user's perspective, in a manner similar to the combiner that includes a holographic pattern on thecombiner element 602. The combiner, with the tristimulus notch mirror, would reflect the “on” pixels to the eye because of the match between the reflective wavelengths of the notch mirror and the color of the image light, and the wearer would be able to see with high clarity the surroundings. The transparency between the user's eye and the surrounding may be approximately 80% when using the tristimulus notch mirror. In addition, the image provided by the upperoptical module 202 with the notch mirror combiner can provide higher contrast images than the holographic mirror combiner due to less scattering of the imaging light by the combiner. - Light can escape through the
combiner 602 and may produce face glow as the light is generally directed downward onto the cheek of the user. When using a holographic mirror combiner or a tristimulus notch mirror combiner, the escaping light can be trapped to avoid face glow. In embodiments, if the image light is polarized before the combiner, a linear polarizer can be laminated, or otherwise associated, to the combiner, with the transmission axis of the polarizer oriented relative to the polarized image light so that any escaping image light is absorbed by the polarizer. In embodiments, the image light would be polarized to provide S polarized light to the combiner for better reflection. As a result, the linear polarizer on the combiner would be oriented to absorb S polarized light and pass P polarized light. This provides the preferred orientation of polarized sunglasses as well. - If the image light is unpolarized, a microlouvered film such as a privacy filter can be used to absorb the escaping image light while providing the user with a see-thru view of the environment. In this case, the absorbance or transmittance of the microlouvered film is dependent on the angle of the light. Where steep angle light is absorbed and light at less of an angle is transmitted. For this reason, in an embodiment, the combiner with the microlouver film is angled at greater than 45 degrees to the optical axis of the image light (e.g. the combiner can be oriented at 50 degrees so the image light from the file lens is incident on the combiner at an oblique angle.
-
FIG. 7 illustrates an embodiment of acombiner element 602 at various angles when thecombiner element 602 includes a holographic mirror. Normally, a mirrored surface reflects light at an angle equal to the angle that the light is incident to the mirrored surface. Typically, this necessitates that the combiner element be at 45 degrees, 602 a, if the light is presented vertically to the combiner so the light can be reflected horizontally towards the wearer's eye. In embodiments, the incident light can be presented at angles other than vertical to enable the mirror surface to be oriented at other than 45 degrees, but in all cases wherein a mirrored surface is employed (including the tristimulus notch mirror described previously), the incident angle equals the reflected angle. As a result, increasing the angle of thecombiner 602 a requires that the incident image light be presented to thecombiner 602 a at a different angle which positions the upperoptical module 202 to the left of the combiner as shown inFIG. 7 . In contrast, a holographic mirror combiner, included in embodiments, can be made such that light is reflected at a different angle from the angle that the light is incident onto the holographic mirrored surface. This allows freedom to select the angle of thecombiner element 602 b independent of the angle of the incident image light and the angle of the light reflected into the wearer's eye. In embodiments, the angle of thecombiner element 602 b is greater than 45 degrees (shown inFIG. 7 ) as this allows a more laterally compact HWC design. The increased angle of thecombiner element 602 b decreases the front to back width of the loweroptical module 204 and may allow for a thinner HWC display (i.e. the furthest element from the wearer's eye can be closer to the wearer's face). -
FIG. 8 illustrates another embodiment of a loweroptical module 204. In this embodiment, polarized image light provided by the upperoptical module 202, is directed into the loweroptical module 204. The image light reflects off apolarized mirror 804 and is directed to a focusing partiallyreflective mirror 802, which is adapted to reflect the polarized light. An optical element such as a ¼ wave film located between thepolarized mirror 804 and the partiallyreflective mirror 802, is used to change the polarization state of the image light such that the light reflected by the partiallyreflective mirror 802 is transmitted by thepolarized mirror 804 to present image light to the eye of the wearer. The user can also see through thepolarized mirror 804 and the partiallyreflective mirror 802 to see the surrounding environment. As a result, the user perceives a combined image comprised of the displayed image light overlaid onto the see-thru view of the environment. - While many of the embodiments of the present disclosure have been referred to as upper and lower modules containing certain optical components, it should be understood that the image light and dark light production and management functions described in connection with the upper module may be arranged to direct light in other directions (e.g. upward, sideward, etc.). In embodiments, it may be preferred to mount the
upper module 202 above the wearer's eye, in which case the image light would be directed downward. In other embodiments it may be preferred to produce light from the side of the wearer's eye, or from below the wearer's eye. In addition, the lower optical module is generally configured to deliver the image light to the wearer's eye and allow the wearer to see through the lower optical module, which may be accomplished through a variety of optical components. -
FIG. 8a illustrates an embodiment of the present disclosure where the upperoptical module 202 is arranged to direct image light into aTIR waveguide 810. In this embodiment, the upperoptical module 202 is positioned above the wearer'seye 812 and the light is directed horizontally into theTIR waveguide 810. The TIR waveguide is designed to internally reflect the image light in a series of downward TIR reflections until it reaches the portion in front of the wearer's eye, where the light passes out of theTIR waveguide 812 into the wearer's eye. In this embodiment, anouter shield 814 is positioned in front of theTIR waveguide 810. -
FIG. 8b illustrates an embodiment of the present disclosure where the upperoptical module 202 is arranged to direct image light into aTIR waveguide 818. In this embodiment, the upperoptical module 202 is arranged on the side of theTIR waveguide 818. For example, the upper optical module may be positioned in the arm or near the arm of the HWC when configured as a pair of head worn glasses. TheTIR waveguide 818 is designed to internally reflect the image light in a series of TIR reflections until it reaches the portion in front of the wearer's eye, where the light passes out of theTIR waveguide 812 into the wearer's eye. -
FIG. 8c illustrates yet further embodiments of the present disclosure where an upperoptical module 202 is directing polarized image light into anoptical guide 828 where the image light passes through apolarized reflector 824, changes polarization state upon reflection of theoptical element 822 which includes a ¼ wave film for example and then is reflected by thepolarized reflector 824 towards the wearer's eye, due to the change in polarization of the image light. The upperoptical module 202 may be positioned to direct light to amirror 820, to position the upperoptical module 202 laterally, in other embodiments, the upperoptical module 202 may direct the image light directly towards thepolarized reflector 824. It should be understood that the present disclosure comprises other optical arrangements intended to direct image light into the wearer's eye. - Another aspect of the present disclosure relates to eye imaging. In embodiments, a camera is used in connection with an upper
optical module 202 such that the wearer's eye can be imaged using pixels in the “off” state on the DLP.FIG. 9 illustrates a system where theeye imaging camera 802 is mounted and angled such that the field of view of theeye imaging camera 802 is redirected toward the wearer's eye by the mirror pixels of theDLP 402 that are in the “off” state. In this way, theeye imaging camera 802 can be used to image the wearer's eye along the same optical axis as the displayed image that is presented to the wearer. Wherein, image light that is presented to the wearer's eye illuminates the wearer's eye so that the eye can be imaged by theeye imaging camera 802. In the process, the light reflected by the eye passes back though the optical train of the loweroptical module 204 and a portion of the upper optical module to where the light is reflected by the “off” pixels of theDLP 402 toward theeye imaging camera 802. - In embodiments, the eye imaging camera may image the wearer's eye at a moment in time where there are enough “off” pixels to achieve the required eye image resolution. In another embodiment, the eye imaging camera collects eye image information from “off” pixels over time and forms a time lapsed image. In another embodiment, a modified image is presented to the user wherein enough “off” state pixels are included that the camera can obtain the desired resolution and brightness for imaging the wearer's eye and the eye image capture is synchronized with the presentation of the modified image.
- The eye imaging system may be used for security systems. The HWC may not allow access to the HWC or other system if the eye is not recognized (e.g. through eye characteristics including retina or iris characteristics, etc.). The HWC may be used to provide constant security access in some embodiments. For example, the eye security confirmation may be a continuous, near-continuous, real-time, quasi real-time, periodic, etc. process so the wearer is effectively constantly being verified as known. In embodiments, the HWC may be worn and eye security tracked for access to other computer systems.
- The eye imaging system may be used for control of the HWC. For example, a blink, wink, or particular eye movement may be used as a control mechanism for a software application operating on the HWC or associated device.
- The eye imaging system may be used in a process that determines how or when the
HWC 102 delivers digitally displayed content to the wearer. For example, the eye imaging system may determine that the user is looking in a direction and then HWC may change the resolution in an area of the display or provide some content that is associated with something in the environment that the user may be looking at. Alternatively, the eye imaging system may identify different user's and change the displayed content or enabled features provided to the user. User's may be identified from a database of users eye characteristics either located on theHWC 102 or remotely located on thenetwork 110 or on aserver 112. In addition, the HWC may identify a primary user or a group of primary users from eye characteristics wherein the primary user(s) are provided with an enhanced set of features and all other users are provided with a different set of features. Thus in this use case, theHWC 102 uses identified eye characteristics to either enable features or not and eye characteristics need only be analyzed in comparison to a relatively small database of individual eye characteristics. -
FIG. 10 illustrates a light source that may be used in association with the upper optics module 202 (e.g. polarized light source if the light from the solid state light source is polarized such as polarizedlight source 302 and 458), andlight source 404. In embodiments, to provide a uniform surface of light 1008 to be directed into the upperoptical module 202 and towards the DLP of the upper optical module, either directly or indirectly, the solidstate light source 1002 may be projected into a backlightingoptical system 1004. The solidstate light source 1002 may be one or more LEDs, laser diodes, OLEDs. In embodiments, the backlightingoptical system 1004 includes an extended section with a length/distance ratio of greater than 3, wherein the light undergoes multiple reflections from the sidewalls to mix of homogenize the light as supplied by the solidstate light source 1002. The backlightingoptical system 1004 can also include structures on the surface opposite (on the left side as shown inFIG. 10 ) to where the uniform light 1008 exits thebacklight 1004 to change the direction of the light toward theDLP 302 and thereflective polarizer 310 or theDLP 402 and theTIR wedge 418. The backlightingoptical system 1004 may also include structures to collimate the uniform light 1008 to provide light to the DLP with a smaller angular distribution or narrower cone angle. Diffusers or polarizers can be used on the entrance or exit surface of the backlighting optical system. Diffusers can be used to spread or uniformize the exiting light from the backlight to improve the uniformity or increase the angular spread of theuniform light 1008. Elliptical diffusers that diffuse the light more in some directions and less in others can be used to improve the uniformity or spread of the uniform light 1008 in directions orthogonal to the optical axis of theuniform light 1008. Linear polarizers can be used to convert unpolarized light as supplied by the solidstate light source 1002 to polarized light so theuniform light 1008 is polarized with a desired polarization state. A reflective polarizer can be used on the exit surface of thebacklight 1004 to polarize the uniform light 1008 to the desired polarization state, while reflecting the other polarization state back into the backlight where it is recycled by multiple reflections within thebacklight 1004 and at the solidstate light source 1002. Therefore by including a reflective polarizer at the exit surface of thebacklight 1004, the efficiency of the polarized light source is improved. -
FIGS. 10a and 10b show illustrations of structures in backlightoptical systems 1004 that can be used to change the direction of the light provided to theentrance face 1045 by the light source and then collimates the light in a direction lateral to the optical axis of the exitinguniform light 1008.Structure 1060 includes an angled sawtooth pattern in a transparent waveguide wherein the left edge of each sawtooth clips the steep angle rays of light thereby limiting the angle of the light being redirected. The steep surface at the right (as shown) of each sawtooth then redirects the light so that it reflects off the left angled surface of each sawtooth and is directed toward theexit surface 1040. The sawtooth surfaces shown on the lower surface inFIGS. 10a and 10b , can be smooth and coated (e.g. with an aluminum coating or a dielectric mirror coating) to provide a high level of reflectivity without scattering.Structure 1050 includes a curved face on the left side (as shown) to focus the rays after they pass through theexit surface 1040, thereby providing a mechanism for collimating theuniform light 1008. In a further embodiment, a diffuser can be provided between the solidstate light source 1002 and theentrance face 1045 to homogenize the light provided by the solidstate light source 1002. In yet a further embodiment, a polarizer can be used between the diffuser and theentrance face 1045 of thebacklight 1004 to provide a polarized light source. Because the sawtooth pattern provides smooth reflective surfaces, the polarization state of the light can be preserved from theentrance face 1045 to theexit face 1040. In this embodiment, the light entering the backlight from the solidstate light source 1002 passes through the polarizer so that it is polarized with the desired polarization state. If the polarizer is an absorptive linear polarizer, the light of the desired polarization state is transmitted while the light of the other polarization state is absorbed. If the polarizer is a reflective polarizer, the light of the desired polarization state is transmitted into thebacklight 1004 while the light of the other polarization state is reflected back into the solidstate light source 1002 where it can be recycled as previously described, to increase the efficiency of the polarized light source. -
FIG. 11a illustrates alight source 1100 that may be used in association with theupper optics module 202. In embodiments, thelight source 1100 may provide light to a backlightingoptical system 1004 as described above in connection withFIG. 10 . In embodiments, thelight source 1100 includes atristimulus notch filter 1102. Thetristimulus notch filter 1102 has narrow band pass filters for three wavelengths, as indicated inFIG. 11c in atransmission graph 1108. The graph shown inFIG. 11b , as 1104 illustrates an output of three different colored LEDs. One can see that the bandwidths of emission are narrow, but they have long tails. Thetristimulus notch filter 1102 can be used in connection with such LEDs to provide alight source 1100 that emits narrow filtered wavelengths of light as shown inFIG. 11d as the transmission graph 1110. Wherein the clipping effects of thetristimulus notch filter 1102 can be seen to have cut the tails from theLED emission graph 1104 to provide narrower wavelength bands of light to the upperoptical module 202. Thelight source 1100 can be used in connection with acombiner 602 with a holographic mirror or tristimulus notch mirror to provide narrow bands of light that are reflected toward the wearer's eye with less waste light that does not get reflected by the combiner, thereby improving efficiency and reducing escaping light that can cause faceglow. -
FIG. 12a illustrates anotherlight source 1200 that may be used in association with theupper optics module 202. In embodiments, thelight source 1200 may provide light to a backlightingoptical system 1004 as described above in connection withFIG. 10 . In embodiments, thelight source 1200 includes a quantumdot cover glass 1202. Where the quantum dots absorb light of a shorter wavelength and emit light of a longer wavelength (FIG. 12b shows an example wherein aUV spectrum 1202 applied to a quantum dot results in the quantum dot emitting a narrow band shown as a PL spectrum 1204) that is dependent on the material makeup and size of the quantum dot. As a result, quantum dots in the quantumdot cover glass 1202 can be tailored to provide one or more bands of narrow bandwidth light (e.g. red, green and blue emissions dependent on the different quantum dots included as illustrated in the graph shown inFIG. 12c where three different quantum dots are used. In embodiments, the LED driver light emits UV light, deep blue or blue light. For sequential illumination of different colors, multiplelight sources 1200 would be used where eachlight source 1200 would include a quantumdot cover glass 1202 with a quantum dot selected to emit at one of the desired colors. Thelight source 1100 can be used in connection with acombiner 602 with a holographic mirror or tristimulus notch mirror to provide narrow transmission bands of light that are reflected toward the wearer's eye with less waste light that does not get reflected. - Another aspect of the present disclosure relates to the generation of peripheral image lighting effects for a person wearing a HWC. In embodiments, a solid state lighting system (e.g. LED, OLED, etc), or other lighting system, may be included inside the optical elements of an lower
optical module 204. The solid state lighting system may be arranged such that lighting effects outside of a field of view (FOV) of the presented digital content is presented to create an immersive effect for the person wearing the HWC. To this end, the lighting effects may be presented to any portion of the HWC that is visible to the wearer. The solid state lighting system may be digitally controlled by an integrated processor on the HWC. In embodiments, the integrated processor will control the lighting effects in coordination with digital content that is presented within the FOV of the HWC. For example, a movie, picture, game, or other content, may be displayed or playing within the FOV of the HWC. The content may show a bomb blast on the right side of the FOV and at the same moment, the solid state lighting system inside of the upper module optics may flash quickly in concert with the FOV image effect. The effect may not be fast, it may be more persistent to indicate, for example, a general glow or color on one side of the user. The solid state lighting system may be color controlled, with red, green and blue LEDs, for example, such that color control can be coordinated with the digitally presented content within the field of view. -
FIG. 13a illustrates optical components of a loweroptical module 204 together with anouter lens 1302.FIG. 13a also shows an embodiment including effects LED's 1308 a and 1308 b.FIG. 13a illustrates image light 1312, as described herein elsewhere, directed into the upper optical module where it will reflect off of thecombiner element 1304, as described herein elsewhere. Thecombiner element 1304 in this embodiment is angled towards the wearer's eye at the top of the module and away from the wearer's eye at the bottom of the module, as also illustrated and described in connection withFIG. 8 (e.g. at a 45 degree angle). The image light 1312 provided by an upper optical module 202 (not shown inFIG. 13a ) reflects off of thecombiner element 1304 towards thecollimating mirror 1310, away from the wearer's eye, as described herein elsewhere. The image light 1312 then reflects and focuses off of thecollimating mirror 1304, passes back through thecombiner element 1304, and is directed into the wearer's eye. The wearer can also view the surrounding environment through the transparency of thecombiner element 1304,collimating mirror 1310, and outer lens 1302 (if it is included). As described herein elsewhere, various surfaces are polarized to create the optical path for the image light and to provide transparency of the elements such that the wearer can view the surrounding environment. The wearer will generally perceive that the image light forms an image in theFOV 1305. In embodiments, theouter lens 1302 may be included. Theouter lens 1302 is an outer lens that may or may not be corrective and it may be designed to conceal the lower optical module components in an effort to make the HWC appear to be in a form similar to standard glasses or sunglasses. - In the embodiment illustrated in
FIG. 13a , theeffects LEDs combiner element 1304 and theouter lens 1302 and/or thecollimating mirror 1310. In embodiments, theeffects LEDs 1308 a are positioned within the confines defined by thecombiner element 1304 and theouter lens 1302 and/or the collimating mirror. Theeffects LEDs FOV 1305. In this arrangement, theeffects LEDs FOV 1305. In embodiments the light emitted from theeffects LEDs combiner element 1304 toward the wearer's eye and does not pass through theouter lens 1302 and/or thecollimating mirror 1310. This arrangement provides peripheral lighting effects to the wearer in a more private setting by not transmitting the lighting effects through the front of the HWC into the surrounding environment. However, in other embodiments, theeffects LEDs -
FIG. 13b illustrates a cross section of the embodiment described in connection withFIG. 13a . As illustrated, the effects LED 1308 a is located in the upper-front area inside of the optical components of the lower optical module. It should be understood that the effects LED 1308 a position in the described embodiments is only illustrative and alternate placements are encompassed by the present disclosure. Additionally, in embodiments, there may be one ormore effects LEDs 1308 a in each of the two sides of HWC to provide peripheral lighting effects near one or both eyes of the wearer. -
FIG. 13c illustrates an embodiment where thecombiner element 1304 is angled away from the eye at the top and towards the eye at the bottom (e.g. in accordance with the holographic or notch filter embodiments described herein). In this embodiment, the effects LED 1308 a is located on theouter lens 1302 side of thecombiner element 1304 to provide a concealed appearance of the lighting effects. As with other embodiments, the effects LED 1308 a ofFIG. 13c may include a polarizer such that the emitted light can pass through a polarized element associated with thecombiner element 1304 and be blocked by a polarized element associated with theouter lens 1302. - Another aspect of the present disclosure relates to the mitigation of light escaping from the space between the wearer's face and the HWC itself. Another aspect of the present disclosure relates to maintaining a controlled lighting environment in proximity to the wearer's eyes. In embodiments, both the maintenance of the lighting environment and the mitigation of light escape are accomplished by including a removable and replaceable flexible shield for the HWC. Wherein the removable and replaceable shield can be provided for one eye or both eyes in correspondence to the use of the displays for each eye. For example, in a night vision application, the display to only one eye could be used for night vision while the display to the other eye is turned off to provide good see-thru when moving between areas where visible light is available and dark areas where night vision enhancement is needed.
-
FIG. 14a illustrates a removable and replaceableflexible eye cover 1402 with anopening 1408 that can be attached and removed quickly from theHWC 102 through the use of magnets. Other attachment methods may be used, but for illustration of the present disclosure we will focus on a magnet implementation. In embodiments, magnets may be included in theeye cover 1402 and magnets of an opposite polarity may be included (e.g. embedded) in the frame of theHWC 102. The magnets of the two elements would attract quite strongly with the opposite polarity configuration. In another embodiment, one of the elements may have a magnet and the other side may have metal for the attraction. In embodiments, theeye cover 1402 is a flexible elastomeric shield. In embodiments, theeye cover 1402 may be an elastomeric bellows design to accommodate flexibility and more closely align with the wearer's face.FIG. 14b illustrates a removable and replaceableflexible eye cover 1404 that is adapted as a single eye cover. In embodiments, a single eye cover may be used for each side of the HWC to cover both eyes of the wearer. In embodiments, the single eye cover may be used in connection with a HWC that includes only one computer display for one eye. These configurations prevent light that is generated and directed generally towards the wearer's face by covering the space between the wearer's face and the HWC. Theopening 1408 allows the wearer to look through theopening 1408 to view the displayed content and the surrounding environment through the front of the HWC. The image light in the loweroptical module 204 can be prevented from emitting from the front of the HWC through internal optics polarization schemes, as described herein, for example. -
FIG. 14c illustrates another embodiment of a light suppression system. In this embodiment, theeye cover 1410 may be similar to theeye cover 1402, buteye cover 1410 includes afront light shield 1412. Thefront light shield 1412 may be opaque to prevent light from escaping the front lens of the HWC. In other embodiments, thefront light shield 1412 is polarized to prevent light from escaping the front lens. In a polarized arrangement, in embodiments, the internal optical elements of the HWC (e.g. of the lower optical module 204) may polarize light transmitted towards the front of the HWC and thefront light shield 1412 may be polarized to prevent the light from transmitting through thefront light shield 1412. - In embodiments, an opaque front
light shield 1412 may be included and the digital content may include images of the surrounding environment such that the wearer can visualize the surrounding environment. One eye may be presented with night vision environmental imagery and this eye's surrounding environment optical path may be covered using an opaque frontlight shield 1412. In other embodiments, this arrangement may be associated with both eyes. - Another aspect of the present disclosure relates to automatically configuring the lighting system(s) used in the
HWC 102. In embodiments, the display lighting and/or effects lighting, as described herein, may be controlled in a manner suitable for when aneye cover 1408 is attached or removed from theHWC 102. For example, at night, when the light in the environment is low, the lighting system(s) in the HWC may go into a low light mode to further control any amounts of stray light escaping from the HWC and the areas around the HWC. Covert operations at night, while using night vision or standard vision, may require a solution which prevents as much escaping light as possible so a user may clip on the eye cover(s) 1408 and then the HWC may go into a low light mode. The low light mode may, in some embodiments, only go into a low light mode when theeye cover 1408 is attached if the HWC identifies that the environment is in low light conditions (e.g. through environment light level sensor detection). In embodiments, the low light level may be determined to be at an intermediate point between full and low light dependent on environmental conditions. - Another aspect of the present disclosure relates to automatically controlling the type of content displayed in the HWC when eye covers 1408 are attached or removed from the HWC. In embodiments, when the eye cover(s) 1408 is attached to the HWC, the displayed content may be restricted in amount or in color amounts. For example, the display(s) may go into a simple content delivery mode to restrict the amount of information displayed. This may be done to reduce the amount of light produced by the display(s). In an embodiment, the display(s) may change from color displays to monochrome displays to reduce the amount of light produced. In an embodiment, the monochrome lighting may be red to limit the impact on the wearer's eyes to maintain an ability to see better in the dark.
- Referring to
FIG. 15 , we now turn to describe a particularexternal user interface 104, referred to generally as apen 1500. Thepen 1500 is a specially designedexternal user interface 104 and can operate as a user interface, such as to many different styles ofHWC 102. Thepen 1500 generally follows the form of a conventional pen, which is a familiar user handled device and creates an intuitive physical interface for many of the operations to be carried out in theHWC system 100. Thepen 1500 may be one ofseveral user interfaces 104 used in connection with controlling operations within theHWC system 100. For example, theHWC 102 may watch for and interprethand gestures 116 as control signals, where thepen 1500 may also be used as a user interface with thesame HWC 102. Similarly, a remote keyboard may be used as anexternal user interface 104 in concert with thepen 1500. The combination of user interfaces or the use of just one control system generally depends on the operation(s) being executed in the HWC'ssystem 100. - While the
pen 1500 may follow the general form of a conventional pen, it contains numerous technologies that enable it to function as anexternal user interface 104.FIG. 15 illustrates technologies comprised in thepen 1500. As can be seen, thepen 1500 may include acamera 1508, which is arranged to view throughlens 1502. The camera may then be focused, such as throughlens 1502, to image a surface upon which a user is writing or making other movements to interact with theHWC 102. There are situations where thepen 1500 will also have an ink, graphite, or other system such that what is being written can be seen on the writing surface. There are other situations where thepen 1500 does not have such a physical writing system so there is no deposit on the writing surface, where the pen would only be communicating data or commands to theHWC 102. The lens configuration is described in greater detail herein. The function of the camera is to capture information from an unstructured writing surface such that pen strokes can be interpreted as intended by the user. To assist in the predication of the intended stroke path, thepen 1500 may include a sensor, such as anIMU 1512. Of course, the IMU could be included in thepen 1500 in its separate parts (e.g. gyro, accelerometer, etc.) or an IMU could be included as a single unit. In this instance, theIMU 1512 is used to measure and predict the motion of thepen 1500. In turn, theintegrated microprocessor 1510 would take the IMU information and camera information as inputs and process the information to form a prediction of the pen tip movement. - The
pen 1500 may also include apressure monitoring system 1504, such as to measure the pressure exerted on thelens 1502. As will be described in greater detail herein, the pressure measurement can be used to predict the user's intention for changing the weight of a line, type of a line, type of brush, click, double click, and the like. In embodiments, the pressure sensor may be constructed using any force or pressure measurement sensor located behind thelens 1502, including for example, a resistive sensor, a current sensor, a capacitive sensor, a voltage sensor such as a piezoelectric sensor, and the like. - The
pen 1500 may also include acommunications module 1518, such as for bi-directional communication with theHWC 102. In embodiments, thecommunications module 1518 may be a short distance communication module (e.g. Bluetooth). Thecommunications module 1518 may be security matched to theHWC 102. Thecommunications module 1518 may be arranged to communicate data and commands to and from themicroprocessor 1510 of thepen 1500. Themicroprocessor 1510 may be programmed to interpret data generated from thecamera 1508,IMU 1512, andpressure sensor 1504, and the like, and then pass a command onto theHWC 102 through thecommunications module 1518, for example. In another embodiment, the data collected from any of the input sources (e.g. camera 1508,IMU 1512, pressure sensor 1504) by the microprocessor may be communicated by thecommunication module 1518 to theHWC 102, and theHWC 102 may perform data processing and prediction of the user's intention when using thepen 1500. In yet another embodiment, the data may be further passed on through anetwork 110 to aremote device 112, such as a server, for the data processing and prediction. The commands may then be communicated back to theHWC 102 for execution (e.g. display writing in the glasses display, make a selection within the UI of the glasses display, control a remoteexternal device 112, control a local external device 108), and the like. The pen may also include memory 1514 for long or short term uses. - The
pen 1500 may also include a number of physical user interfaces, such asquick launch buttons 1522, atouch sensor 1520, and the like. Thequick launch buttons 1522 may be adapted to provide the user with a fast way of jumping to a software application in theHWC system 100. For example, the user may be a frequent user of communication software packages (e.g. email, text, Twitter, Instagram, Facebook, Google+, and the like), and the user may program aquick launch button 1522 to command theHWC 102 to launch an application. Thepen 1500 may be provided with severalquick launch buttons 1522, which may be user programmable or factory programmable. Thequick launch button 1522 may be programmed to perform an operation. For example, one of the buttons may be programmed to clear the digital display of theHWC 102. This would create a fast way for the user to clear the screens on theHWC 102 for any reason, such as for example to better view the environment. The quick launch button functionality will be discussed in further detail below. Thetouch sensor 1520 may be used to take gesture style input from the user. For example, the user may be able to take a single finger and run it across thetouch sensor 1520 to affect a page scroll. - The
pen 1500 may also include alaser pointer 1524. Thelaser pointer 1524 may be coordinated with theIMU 1512 to coordinate gestures and laser pointing. For example, a user may use thelaser 1524 in a presentation to help with guiding the audience with the interpretation of graphics and theIMU 1512 may, either simultaneously or when thelaser 1524 is off, interpret the user's gestures as commands or data input. -
FIGS. 16A-C illustrate several embodiments of lens andcamera arrangements 1600 for thepen 1500. One aspect relates to maintaining a constant distance between the camera and the writing surface to enable the writing surface to be kept in focus for better tracking of movements of thepen 1500 over the writing surface. Another aspect relates to maintaining an angled surface following the circumference of the writing tip of thepen 1500 such that thepen 1500 can be rolled or partially rolled in the user's hand to create the feel and freedom of a conventional writing instrument. -
FIG. 16A illustrates an embodiment of the writing lens end of thepen 1500. The configuration includes aball lens 1604, a camera orimage capture surface 1602, and adomed cover lens 1608. In this arrangement, the camera views the writing surface through theball lens 1604 anddome cover lens 1608. Theball lens 1604 causes the camera to focus such that the camera views the writing surface when thepen 1500 is held in the hand in a natural writing position, such as with thepen 1500 in contact with a writing surface. In embodiments, theball lens 1604 should be separated from the writing surface to obtain the highest resolution of the writing surface at thecamera 1602. In embodiments, theball lens 1604 is separated by approximately 1 to 3 mm. In this configuration, thedomed cover lens 1608 provides a surface that can keep theball lens 1604 separated from the writing surface at a constant distance, such as substantially independent of the angle used to write on the writing surface. For instance, in embodiments the field of view of the camera in this arrangement would be approximately 60 degrees. - The domed cover lens, or
other lens 1608 used to physically interact with the writing surface, will be transparent or transmissive within the active bandwidth of thecamera 1602. In embodiments, thedomed cover lens 1608 may be spherical or other shape and comprised of glass, plastic, sapphire, diamond, and the like. In other embodiments where low resolution imaging of the surface is acceptable. Thepen 1500 can omit thedomed cover lens 1608 and theball lens 1604 can be in direct contact with the surface. -
FIG. 16B illustrates another structure where the construction is somewhat similar to that described in connection withFIG. 16A ; however this embodiment does not use adome cover lens 1608, but instead uses aspacer 1610 to maintain a predictable distance between theball lens 1604 and the writing surface, wherein the spacer may be spherical, cylindrical, tubular or other shape that provides spacing while allowing for an image to be obtained by thecamera 1602 through thelens 1604. In a preferred embodiment, thespacer 1610 is transparent. In addition, while thespacer 1610 is shown as spherical, other shapes such as an oval, doughnut shape, half sphere, cone, cylinder or other form may be used. -
FIG. 16C illustrates yet another embodiment, where the structure includes apost 1614, such as running through the center of the lensed end of thepen 1500. Thepost 1614 may be an ink deposition system (e.g. ink cartridge), graphite deposition system (e.g. graphite holder), or a dummy post whose purpose is mainly only that of alignment. The selection of the post type is dependent on the pen's use. For instance, in the event the user wants to use thepen 1500 as a conventional ink depositing pen as well as a fully functionalexternal user interface 104, the ink system post would be the best selection. If there is no need for the ‘writing’ to be visible on the writing surface, the selection would be the dummy post. The embodiment ofFIG. 16C includes camera(s) 1602 and an associatedlens 1612, where thecamera 1602 andlens 1612 are positioned to capture the writing surface without substantial interference from thepost 1614. In embodiments, thepen 1500 may includemultiple cameras 1602 andlenses 1612 such that more or all of the circumference of thetip 1614 can be used as an input system. In an embodiment, thepen 1500 includes a contoured grip that keeps the pen aligned in the user's hand so that thecamera 1602 andlens 1612 remains pointed at the surface. - Another aspect of the
pen 1500 relates to sensing the force applied by the user to the writing surface with thepen 1500. The force measurement may be used in a number of ways. For example, the force measurement may be used as a discrete value, or discontinuous event tracking, and compared against a threshold in a process to determine a user's intent. The user may want the force interpreted as a ‘click’ in the selection of an object, for instance. The user may intend multiple force exertions interpreted as multiple clicks. There may be times when the user holds thepen 1500 in a certain position or holds a certain portion of the pen 1500 (e.g. a button or touch pad) while clicking to affect a certain operation (e.g. a ‘right click’). In embodiments, the force measurement may be used to track force and force trends. The force trends may be tracked and compared to threshold limits, for example. There may be one such threshold limit, multiple limits, groups of related limits, and the like. For example, when the force measurement indicates a fairly constant force that generally falls within a range of related threshold values, themicroprocessor 1510 may interpret the force trend as an indication that the user desires to maintain the current writing style, writing tip type, line weight, brush type, and the like. In the event that the force trend appears to have gone outside of a set of threshold values intentionally, the microprocessor may interpret the action as an indication that the user wants to change the current writing style, writing tip type, line weight, brush type, and the like. Once the microprocessor has made a determination of the user's intent, a change in the current writing style, writing tip type, line weight, brush type, and the like may be executed. In embodiments, the change may be noted to the user (e.g. in a display of the HWC 102), and the user may be presented with an opportunity to accept the change. -
FIG. 17A illustrates an embodiment of a force sensing surface tip 1700 of apen 1500. The force sensing surface tip 1700 comprises a surface connection tip 1702 (e.g. a lens as described herein elsewhere) in connection with a force orpressure monitoring system 1504. As a user uses thepen 1500 to write on a surface or simulate writing on a surface theforce monitoring system 1504 measures the force or pressure the user applies to the writing surface and the force monitoring system communicates data to themicroprocessor 1510 for processing. In this configuration, themicroprocessor 1510 receives force data from theforce monitoring system 1504 and processes the data to make predictions of the user's intent in applying the particular force that is currently being applied. In embodiments, the processing may be provided at a location other than on the pen (e.g. at a server in theHWC system 100, on the HWC 102). For clarity, when reference is made herein to processing information on themicroprocessor 1510, the processing of information contemplates processing the information at a location other than on the pen. Themicroprocessor 1510 may be programmed with force threshold(s), force signature(s), force signature library and/or other characteristics intended to guide an inference program in determining the user's intentions based on the measured force or pressure. Themicroprocessor 1510 may be further programmed to make inferences from the force measurements as to whether the user has attempted to initiate a discrete action (e.g. a user interface selection ‘click’) or is performing a constant action (e.g. writing within a particular writing style). The inferencing process is important as it causes thepen 1500 to act as an intuitiveexternal user interface 104. -
FIG. 17B illustrates aforce 1708 versustime 1710 trend chart with asingle threshold 1718. Thethreshold 1718 may be set at a level that indicates a discrete force exertion indicative of a user's desire to cause an action (e.g. select an object in a GUI).Event 1712, for example, may be interpreted as a click or selection command because the force quickly increased from below thethreshold 1718 to above thethreshold 1718. Theevent 1714 may be interpreted as a double click because the force quickly increased above thethreshold 1718, decreased below thethreshold 1718 and then essentially repeated quickly. The user may also cause the force to go above thethreshold 1718 and hold for a period indicating that the user is intending to select an object in the GUI (e.g. a GUI presented in the display of the HWC 102) and ‘hold’ for a further operation (e.g. moving the object). - While a threshold value may be used to assist in the interpretation of the user's intention, a signature force event trend may also be used. The threshold and signature may be used in combination or either method may be used alone. For example, a single-click signature may be represented by a certain force trend signature or set of signatures. The single-click signature(s) may require that the trend meet a criteria of a rise time between x any y values, a hold time of between a and b values and a fall time of between c and d values, for example. Signatures may be stored for a variety of functions such as click, double click, right click, hold, move, etc. The
microprocessor 1510 may compare the real-time force or pressure tracking against the signatures from a signature library to make a decision and issue a command to the software application executing in the GUI. -
FIG. 17C illustrates aforce 1708 versustime 1710 trend chart withmultiple thresholds 1718. By way of example, the force trend is plotted on the chart with several pen force or pressure events. As noted, there are both presumablyintentional events 1720 and presumablynon-intentional events 1722. The twothresholds 1718 ofFIG. 4C create three zones of force: a lower, middle and higher range. The beginning of the trend indicates that the user is placing a lower zone amount of force. This may mean that the user is writing with a given line weight and does not intend to change the weight, the user is writing. Then the trend shows asignificant increase 1720 in force into the middle force range. This force change appears, from the trend to have been sudden and thereafter it is sustained. Themicroprocessor 1510 may interpret this as an intentional change and as a result change the operation in accordance with preset rules (e.g. change line width, increase line weight, etc.). The trend then continues with a second apparentlyintentional event 1720 into the higher-force range. During the performance in the higher-force range, the force dips below theupper threshold 1718. This may indicate an unintentional force change and the microprocessor may detect the change in range however not affect a change in the operations being coordinated by thepen 1500. As indicated above, the trend analysis may be done with thresholds and/or signatures. - Generally, in the present disclosure, instrument stroke parameter changes may be referred to as a change in line type, line weight, tip type, brush type, brush width, brush pressure, color, and other forms of writing, coloring, painting, and the like.
- Another aspect of the
pen 1500 relates to selecting an operating mode for thepen 1500 dependent on contextual information and/or selection interface(s). Thepen 1500 may have several operating modes. For instance, thepen 1500 may have a writing mode where the user interface(s) of the pen 1500 (e.g. the writing surface end,quick launch buttons 1522,touch sensor 1520, motion based gesture, and the like) is optimized or selected for tasks associated with writing. As another example, thepen 1500 may have a wand mode where the user interface(s) of the pen is optimized or selected for tasks associated with software or device control (e.g. theHWC 102, external local device,remote device 112, and the like). Thepen 1500, by way of another example, may have a presentation mode where the user interface(s) is optimized or selected to assist a user with giving a presentation (e.g. pointing with thelaser pointer 1524 while using the button(s) 1522 and/or gestures to control the presentation or applications relating to the presentation). The pen may, for example, have a mode that is optimized or selected for a particular device that a user is attempting to control. Thepen 1500 may have a number of other modes and an aspect of the present disclosure relates to selecting such modes. -
FIG. 18A illustrates an automatic user interface(s) mode selection based on contextual information. Themicroprocessor 1510 may be programmed withIMU thresholds thresholds angle pen 1500 for certain expected positions during certain predicted modes. When themicroprocessor 1510 determines that thepen 1500 is being held or otherwise positioned withinangles 1802 corresponding to writingthresholds 1814, for example, themicroprocessor 1510 may then institute a writing mode for the pen's user interfaces. Similarly, if themicroprocessor 1510 determines (e.g. through the IMU 1512) that the pen is being held at anangle 1804 that falls between thepredetermined wand thresholds 1812, the microprocessor may institute a wand mode for the pen's user interface. Both of these examples may be referred to as context based user interface mode selection as the mode selection is based on contextual information (e.g. position) collected automatically and then used through an automatic evaluation process to automatically select the pen's user interface(s) mode. - As with other examples presented herein, the
microprocessor 1510 may monitor the contextual trend (e.g. the angle of the pen over time) in an effort to decide whether to stay in a mode or change modes. For example, through signatures, thresholds, trend analysis, and the like, the microprocessor may determine that a change is an unintentional change and therefore no user interface mode change is desired. -
FIG. 18B illustrates an automatic user interface(s) mode selection based on contextual information. In this example, thepen 1500 is monitoring (e.g. through its microprocessor) whether or not the camera at the writingsurface end 1508 is imaging a writing surface in close proximity to the writing surface end of thepen 1500. If thepen 1500 determines that a writing surface is within a predetermined relatively short distance, thepen 1500 may decide that a writing surface is present 1820 and the pen may go into a writing mode user interface(s) mode. In the event that thepen 1500 does not detect a relativelyclose writing surface 1822, the pen may predict that the pen is not currently being used to as a writing instrument and the pen may go into a non-writing user interface(s) mode. -
FIG. 18C illustrates a manual user interface(s) mode selection. The user interface(s) mode may be selected based on a twist of asection 1824 of thepen 1500 housing, clicking an end button 1828, pressing aquick launch button 1522, interacting withtouch sensor 1520, detecting a predetermined action at the pressure monitoring system (e.g. a click), detecting a gesture (e.g. detected by the IMU), etc. The manual mode selection may involve selecting an item in a GUI associated with the pen 1500 (e.g. an image presented in the display of HWC 102). - In embodiments, a confirmation selection may be presented to the user in the event a mode is going to change. The presentation may be physical (e.g. a vibration in the pen 1500), through a GUI, through a light indicator, etc.
-
FIG. 19 illustrates a couple pen use-scenarios FIG. 19 as a way of illustrating use scenarios to further the understanding of the reader. As such, the use-scenarios should be considered illustrative and non-limiting. - Use
scenario 1900 is a writing scenario where thepen 1500 is used as a writing instrument. In this example, quick launch button 122A is pressed to launch anote application 1910 in the GUI 1908 of theHWC 102display 1904. Once the quick launch button 122A is pressed, theHWC 102 launches thenote program 1910 and puts the pen into a writing mode. The user uses thepen 1500 toscribe symbols 1902 on a writing surface, the pen records the scribing and transmits the scribing to theHWC 102 where symbols representing the scribing are displayed 1912 within thenote application 1910. - Use
scenario 1901 is a gesture scenario where thepen 1500 is used as a gesture capture and command device. In this example, the quick launch button 122B is activated and thepen 1500 activates a wand mode such that an application launched on theHWC 102 can be controlled. Here, the user sees anapplication chooser 1918 in the display(s) of theHWC 102 where different software applications can be chosen by the user. The user gestures (e.g. swipes, spins, turns, etc.) with the pen to cause theapplication chooser 1918 to move from application to application. Once the correct application is identified (e.g. highlighted) in thechooser 1918, the user may gesture or click or otherwise interact with thepen 1500 such that the identified application is selected and launched. Once an application is launched, the wand mode may be used to scroll, rotate, change applications, select items, initiate processes, and the like, for example. - In an embodiment, the quick launch button 122A may be activated and the
HWC 102 may launch an application chooser presenting to the user a set of applications. For example, the quick launch button may launch a chooser to show all communication programs (e.g. SMS, Twitter, Instagram, Facebook, email, etc.) available for selection such that the user can select the program the user wants and then go into a writing mode. By way of further example, the launcher may bring up selections for various other groups that are related or categorized as generally being selected at a given time (e.g. Microsoft Office products, communication products, productivity products, note products, organizational products, and the like) -
FIG. 20 illustrates yet another embodiment of the present disclosure. -
FIG. 2000 illustrates a watchband clip oncontroller 2000. The watchband clip on controller may be a controller used to control theHWC 102 or devices in theHWC system 100. The watchband clip oncontroller 2000 has a fastener 2018 (e.g. rotatable clip) that is mechanically adapted to attach to a watchband, as illustrated at 2004. - The
watchband controller 2000 may have quick launch interfaces 2008 (e.g. to launch applications and choosers as described herein), a touch pad 2014 (e.g. to be used as a touch style mouse for GUI control in aHWC 102 display) and adisplay 2012. Theclip 2018 may be adapted to fit a wide range of watchbands so it can be used in connection with a watch that is independently selected for its function. The clip, in embodiments, is rotatable such that a user can position it in a desirable manner. In embodiments the clip may be a flexible strap. In embodiments, the flexible strap may be adapted to be stretched to attach to a hand, wrist, finger, device, weapon, and the like. - In embodiments, the watchband controller may be configured as a removable and replaceable watchband. For example, the controller may be incorporated into a band with a certain width, segment spacing's, etc. such that the watchband, with its incorporated controller, can be attached to a watch body. The attachment, in embodiments, may be mechanically adapted to attach with a pin upon which the watchband rotates. In embodiments, the watchband controller may be electrically connected to the watch and/or watch body such that the watch, watch body and/or the watchband controller can communicate data between them.
- The watchband controller may have 3-axis motion monitoring (e.g. through an IMU, accelerometers, magnetometers, gyroscopes, etc.) to capture user motion. The user motion may then be interpreted for gesture control.
- In embodiments, the watchband controller may comprise fitness sensors and a fitness computer. The sensors may track heart rate, calories burned, strides, distance covered, and the like. The data may then be compared against performance goals and/or standards for user feedback.
- Another aspect of the present disclosure relates to visual display techniques relating to micro Doppler (“mD”) target tracking signatures (“mD signatures”). mD is a radar technique that uses a series of angle dependent electromagnetic pulses that are broadcast into an environment and return pulses are captured. Changes between the broadcast pulse and return pulse are indicative of changes in the shape, distance and angular location of objects or targets in the environment. These changes provide signals that can be used to track a target and identify the target through the mD signature. Each target or target type has a unique mD signature. Shifts in the radar pattern can be analyzed in the time domain and frequency domain based on mD techniques to derive information about the types of targets present (e.g. whether people are present), the motion of the targets and the relative angular location of the targets and the distance to the targets. By selecting a frequency used for the mD pulse relative to known objects in the environment, the pulse can penetrate the known objects to enable information about targets to be gathered even when the targets are visually blocked by the known objects. For example, pulse frequencies can be used that will penetrate concrete buildings to enable people to be identified inside the building. Multiple pulse frequencies can be used as well in the mD radar to enable different types of information to be gathered about the objects in the environment. In addition, the mD radar information can be combined with other information such as distance measurements or images captured of the environment that are analyzed jointly to provide improved object identification and improved target identification and tracking. In embodiments, the analysis can be performed on the HWC or the information can be transmitted to a remote network for analysis and results transmitted back to the HWC. Distance measurements can be provided by laser range finding, structured lighting, stereoscopic depth maps or sonar measurements. Images of the environment can be captured using one or more cameras capable of capturing images from visible, ultraviolet or infrared light. The mD radar can be attached to the HWC, located adjacently (e.g. in a vehicle) and associated wirelessly with the HWC or located remotely. Maps or other previously determined information about the environment can also be used in the analysis of the mD radar information. Embodiments of the present disclosure relate to visualizing the mD signatures in useful ways.
-
FIG. 21 illustrates aFOV 2102 of aHWC 102 from a wearer's perspective. The wearer, as described herein elsewhere, has a see-throughFOV 2102 wherein the wearer views adjacent surroundings, such as the buildings illustrated inFIG. 21 . The wearer, as described herein elsewhere, can also see displayed digital content presented within a portion of theFOV 2102. The embodiment illustrated inFIG. 21 is indicating that the wearer can see the buildings and other surrounding elements in the environment and digital content representing traces, or travel paths, of bullets being fired by different people in the area. The surroundings are viewed through the transparency of theFOV 2102. The traces are presented via the digital computer display, as described herein elsewhere. In embodiments, the trace presented is based on a mD signature that is collected and communicated to the HWC in real time. The mD radar itself may be on or near the wearer of theHWC 102 or it may be located remote from the wearer. In embodiments, the mD radar scans the area, tracks and identifies targets, such as bullets, and communicates traces, based on locations, to theHWC 102. - There are
several traces FIG. 21 . The traces communicated from the mD radar may be associated with GPS locations and the GPS locations may be associated with objects in the environment, such as people, buildings, vehicles, etc, both in latitude and longitude perspective and an elevation perspective. The locations may be used as markers for the HWC such that the traces, as presented in the FOV, can be associated, or fixed in space relative to the markers. For example, if thefriendly fire trace 2108 is determined, by the mD radar, to have originated from the upper right window of the building on the left, as illustrated inFIG. 21 , then a virtual marker may be set on or near the window. When the HWC views, through its camera or other sensor, for example, the building's window, the trace may then virtually anchor with the virtual marker on the window. Similarly, a marker may be set near the termination position or other flight position of thefriendly fire trace 2108, such as the upper left window of the center building on the right, as illustrated inFIG. 21 . This technique fixes in space the trace such that the trace appears fixed to the environmental positions independent of where the wearer is looking. So, for example, as the wearer's head turns, the trace appears fixed to the marked locations. - In embodiments, certain user positions may be known and thus identified in the FOV. For example, the shooter of the
friendly fire trace 2108 may be from a known friendly combatant and as such his location may be known. The position may be known based on his GPS location based on a mobile communication system on him, such as anotherHWC 102. In other embodiments, the friendly combatant may be marked by another friendly. For example, if the friendly position in the environment is known through visual contact or communicated information, a wearer of theHWC 102 may use a gesture orexternal user interface 104 to mark the location. If a friendly combatant location is known the originating position of thefriendly fire trace 2108 may be color coded or otherwise distinguished from unidentified traces on the displayed digital content. Similarly, enemy fire traces 2104 may be color coded or otherwise distinguished on the displayed digital content. In embodiments, there may be an additional distinguished appearance on the displayed digital content for unknown traces. - In addition to situationally associated trace appearance, the trace colors or appearance may be different from the originating position to the terminating position. This path appearance change may be based on the mD signature. The mD signature may indicate that the bullet, for example, is slowing as it propagates and this slowing pattern may be reflected in the
FOV 2102 as a color or pattern change. This can create an intuitive understanding of where the shooter is located. For example, the originating color may be red, indicative of high speed, and it may change over the course of the trace to yellow, indicative of a slowing trace. This pattern changing may also be different for a friendly, enemy and unknown combatant. The enemy may go blue to green for a friendly trace, for example. -
FIG. 21 illustrates an embodiment where the user sees the environment through the FOV and may also see color coded traces, which are dependent on bullet speed and combatant type, where the traces are fixed in environmental positions independent on the wearer's perspective. Other information, such as distance, range, range rings, time of day, date, engagement type (e.g. hold, stop firing, back away, etc.) may also be displayed in the FOV. - Another aspect of the present disclosure relates to mD radar techniques that trace and identify targets through other objects, such as walls (referred to generally as through wall mD), and visualization techniques related therewith.
FIG. 22 illustrates a through wall mD visualization technique according to the principles of the present disclosure. As described herein elsewhere, the mD radar scanning the environment may be local or remote from the wearer of aHWC 102. The mD radar may identify a target (e.g. a person) that is visible 2204 and then track the target as he goes behind awall 2208. The tracking may then be presented to the wearer of aHWC 102 such that digital content reflective of the target and the target's movement, even behind the wall, is presented in theFOV 2202 of theHWC 102. In embodiments, the target, when out of visible sight, may be represented by an avatar in the FOV to provide the wearer with imagery representing the target. - mD target recognition methods can identify the identity of a target based on the vibrations and other small movements of the target. This can provide a personal signature for the target. In the case of humans, this may result in a personal identification of a target that has been previously characterized. The cardio, heartbeat, lung expansion and other small movements within the body may be unique to a person and if those attributes are pre-identified they may be matched in real time to provide a personal identification of a person in the
FOV 2202. The person's mD signatures may be determined based on the position of the person. For example, the database of personal mD signature attributes may include mD signatures for a person standing, sitting, laying down, running, walking, jumping, etc. This may improve the accuracy of the personal data match when a target is tracked through mD signature techniques in the field. In the event a person is personally identified, a specific indication of the person's identity may be presented in theFOV 2202. The indication may be a color, shape, shade, name, indication of the type of person (e.g. enemy, friendly, etc.), etc. to provide the wearer with intuitive real time information about the person being tracked. This may be very useful in a situation where there is more than one person in an area of the person being tracked. If just one person in the area is personally identified, that person or the avatar of that person can be presented differently than other people in the area. -
FIG. 23 illustrates an mD scannedenvironment 2300. An mD radar may scan an environment in an attempt to identify objects in the environment. In this embodiment, the mD scanned environment reveals twovehicles enemy combatant 2309, twofriendly combatants shot trace 2318. Each of these objects may be personally identified or type identified. For example, thevehicles enemy combatant 2309 may be identified as a type (e.g. enemy combatant) or more personally (e.g. by name). The friendly combatants may be identified as a type (e.g. friendly combatant) or more personally (e.g. by name). Theshot trace 2318 may be characterized by type of projectile or weapon type for the projectile, for example. -
FIG. 23a illustrates twoseparate HWC 102 FOV display techniques according to the principles of the present disclosure.FOV 2312 illustrates amap view 2310 where the mD scanned environment is presented. Here, the wearer has a perspective on the mapped area so he can understand all tracked targets in the area. This allows the wearer to traverse the area with knowledge of the targets.FOV 2312 illustrates a heads-up view to provide the wearer with an augmented reality style view of the environment that is in proximity of the wearer. - Although embodiments of HWC have been described in language specific to features, systems, computer processes and/or methods, the appended claims are not necessarily limited to the specific features, systems, computer processes and/or methods described. Rather, the specific features, systems, computer processes and/or and methods are disclosed as non-limited example implementations of HWC.
- All documents referenced herein are hereby incorporated by reference.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/790,684 US20180059421A1 (en) | 2014-02-11 | 2017-10-23 | Micro doppler presentations in head worn computing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/178,047 US9229233B2 (en) | 2014-02-11 | 2014-02-11 | Micro Doppler presentations in head worn computing |
US14/950,523 US9841602B2 (en) | 2014-02-11 | 2015-11-24 | Location indicating avatar in head worn computing |
US15/790,684 US20180059421A1 (en) | 2014-02-11 | 2017-10-23 | Micro doppler presentations in head worn computing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/950,523 Continuation US9841602B2 (en) | 2014-02-11 | 2015-11-24 | Location indicating avatar in head worn computing |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180059421A1 true US20180059421A1 (en) | 2018-03-01 |
Family
ID=53774812
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/178,047 Active 2034-04-07 US9229233B2 (en) | 2008-12-16 | 2014-02-11 | Micro Doppler presentations in head worn computing |
US14/185,988 Active 2034-06-19 US9229234B2 (en) | 2014-02-11 | 2014-02-21 | Micro doppler presentations in head worn computing |
US14/931,955 Active US9784973B2 (en) | 2014-02-11 | 2015-11-04 | Micro doppler presentations in head worn computing |
US14/950,523 Active US9841602B2 (en) | 2014-02-11 | 2015-11-24 | Location indicating avatar in head worn computing |
US15/790,684 Abandoned US20180059421A1 (en) | 2014-02-11 | 2017-10-23 | Micro doppler presentations in head worn computing |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/178,047 Active 2034-04-07 US9229233B2 (en) | 2008-12-16 | 2014-02-11 | Micro Doppler presentations in head worn computing |
US14/185,988 Active 2034-06-19 US9229234B2 (en) | 2014-02-11 | 2014-02-21 | Micro doppler presentations in head worn computing |
US14/931,955 Active US9784973B2 (en) | 2014-02-11 | 2015-11-04 | Micro doppler presentations in head worn computing |
US14/950,523 Active US9841602B2 (en) | 2014-02-11 | 2015-11-24 | Location indicating avatar in head worn computing |
Country Status (1)
Country | Link |
---|---|
US (5) | US9229233B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10062182B2 (en) | 2015-02-17 | 2018-08-28 | Osterhout Group, Inc. | See-through computer display systems |
US10139632B2 (en) | 2014-01-21 | 2018-11-27 | Osterhout Group, Inc. | See-through computer display systems |
US10558420B2 (en) | 2014-02-11 | 2020-02-11 | Mentor Acquisition One, Llc | Spatial location presentation in head worn computing |
US10591728B2 (en) | 2016-03-02 | 2020-03-17 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US10667981B2 (en) | 2016-02-29 | 2020-06-02 | Mentor Acquisition One, Llc | Reading assistance system for visually impaired |
US10698223B2 (en) | 2014-01-21 | 2020-06-30 | Mentor Acquisition One, Llc | See-through computer display systems |
US10878775B2 (en) | 2015-02-17 | 2020-12-29 | Mentor Acquisition One, Llc | See-through computer display systems |
US12112089B2 (en) | 2014-02-11 | 2024-10-08 | Mentor Acquisition One, Llc | Spatial location presentation in head worn computing |
US12142242B2 (en) | 2023-06-09 | 2024-11-12 | Mentor Acquisition One, Llc | See-through computer display systems |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9298007B2 (en) | 2014-01-21 | 2016-03-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US20150205111A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9400390B2 (en) | 2014-01-24 | 2016-07-26 | Osterhout Group, Inc. | Peripheral lighting for head worn computing |
US9229233B2 (en) | 2014-02-11 | 2016-01-05 | Osterhout Group, Inc. | Micro Doppler presentations in head worn computing |
EP2678709B1 (en) | 2011-02-21 | 2018-03-28 | Transrobotics, Inc. | System and method for sensing distance and/or movement |
EP3828591A1 (en) | 2012-10-05 | 2021-06-02 | Transrobotics, Inc. | Systems and methods for high resolution distance sensing and applications |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US20160019715A1 (en) | 2014-07-15 | 2016-01-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US20150277118A1 (en) | 2014-03-28 | 2015-10-01 | Osterhout Group, Inc. | Sensor dependent content position in head worn computing |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US9448409B2 (en) | 2014-11-26 | 2016-09-20 | Osterhout Group, Inc. | See-through computer display systems |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US9299194B2 (en) | 2014-02-14 | 2016-03-29 | Osterhout Group, Inc. | Secure sharing in head worn computing |
US11737666B2 (en) | 2014-01-21 | 2023-08-29 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US12105281B2 (en) | 2014-01-21 | 2024-10-01 | Mentor Acquisition One, Llc | See-through computer display systems |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US11669163B2 (en) | 2014-01-21 | 2023-06-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9811159B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11892644B2 (en) | 2014-01-21 | 2024-02-06 | Mentor Acquisition One, Llc | See-through computer display systems |
US12093453B2 (en) | 2014-01-21 | 2024-09-17 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US9746676B2 (en) | 2014-01-21 | 2017-08-29 | Osterhout Group, Inc. | See-through computer display systems |
US20150205135A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | See-through computer display systems |
US9811153B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9532714B2 (en) | 2014-01-21 | 2017-01-03 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11487110B2 (en) | 2014-01-21 | 2022-11-01 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9846308B2 (en) | 2014-01-24 | 2017-12-19 | Osterhout Group, Inc. | Haptic systems for head-worn computers |
US9401540B2 (en) | 2014-02-11 | 2016-07-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9852545B2 (en) | 2014-02-11 | 2017-12-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US20160187651A1 (en) | 2014-03-28 | 2016-06-30 | Osterhout Group, Inc. | Safety for a vehicle operator with an hmd |
US10853589B2 (en) | 2014-04-25 | 2020-12-01 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US9423842B2 (en) | 2014-09-18 | 2016-08-23 | Osterhout Group, Inc. | Thermal management for head-worn computer |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US10663740B2 (en) | 2014-06-09 | 2020-05-26 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
USD751552S1 (en) | 2014-12-31 | 2016-03-15 | Osterhout Group, Inc. | Computer glasses |
USD753114S1 (en) | 2015-01-05 | 2016-04-05 | Osterhout Group, Inc. | Air mouse |
WO2016176600A1 (en) * | 2015-04-30 | 2016-11-03 | Google Inc. | Rf-based micro-motion tracking for gesture tracking and recognition |
US20170017323A1 (en) * | 2015-07-17 | 2017-01-19 | Osterhout Group, Inc. | External user interface for head worn computing |
US10139966B2 (en) | 2015-07-22 | 2018-11-27 | Osterhout Group, Inc. | External user interface for head worn computing |
US11003246B2 (en) | 2015-07-22 | 2021-05-11 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US10353219B1 (en) * | 2015-08-20 | 2019-07-16 | Verily Life Sciences Llc | Device, method and system to provide accommodation during a stereoscopic display |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10466491B2 (en) | 2016-06-01 | 2019-11-05 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10152141B1 (en) | 2017-08-18 | 2018-12-11 | Osterhout Group, Inc. | Controller movement tracking with light emitters |
JP2022501754A (en) * | 2018-09-18 | 2022-01-06 | トランスロボティックス,インク. | Technology that works based on object detection |
EP3719532B1 (en) | 2019-04-04 | 2022-12-28 | Transrobotics, Inc. | Technologies for acting based on object tracking |
US11514649B2 (en) | 2020-05-29 | 2022-11-29 | Microsoft Technology Licensing, Llc | Camera for augmented reality display |
Family Cites Families (723)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1897833A (en) | 1931-01-26 | 1933-02-14 | William G G Benway | Audiphone |
US2064604A (en) | 1934-04-04 | 1936-12-15 | Hempel Paul | Spectacle frame |
US3305294A (en) | 1964-12-03 | 1967-02-21 | Optical Res & Dev Corp | Two-element variable-power spherical lens |
US3531190A (en) | 1969-06-18 | 1970-09-29 | Foster Grant Co Inc | Spectacle frame assembly |
US3671111A (en) | 1970-10-12 | 1972-06-20 | Standard Optical Mfg Co | Biased hinge for spectacle frames |
GB1540992A (en) | 1975-04-22 | 1979-02-21 | Smiths Industries Ltd | Display or other systems and equipment for use in such systems |
US4145125A (en) | 1977-07-20 | 1979-03-20 | Hani Chika | Eyeglass lens with indicia and method of making same |
US7030925B1 (en) | 1978-04-23 | 2006-04-18 | Canon, Inc. | Camera system having converting means, recording means, reproduction means, plate-shaped display and protection means |
US4811739A (en) | 1982-09-03 | 1989-03-14 | Silver Robert H | Method and apparatus for the determination of substances in human fluids |
US4788535A (en) | 1983-11-10 | 1988-11-29 | Matsushita Electric Industrial Co., Ltd. | Display apparatus |
SE454250B (en) | 1984-09-24 | 1988-04-18 | Asea Ab | INDUSTRIAL ROBOT WITH LINEAR DRIVE DEVICES |
US4842389A (en) | 1987-06-12 | 1989-06-27 | Flight Dynamics, Inc. | Vehicle display system using a holographic windshield prepared to withstand lamination process |
US4852988A (en) | 1988-09-12 | 1989-08-01 | Applied Science Laboratories | Visor and camera providing a parallax-free field-of-view image for a head-mounted eye movement measurement system |
US4928301A (en) | 1988-12-30 | 1990-05-22 | Bell Communications Research, Inc. | Teleconferencing terminal with camera behind display screen |
USD327674S (en) | 1990-02-21 | 1992-07-07 | Primax Electronics Ltd. | Video display control or similar article |
US5151722A (en) | 1990-11-05 | 1992-09-29 | The Johns Hopkins University | Video display on spectacle-like frame |
US8730129B2 (en) | 1990-12-07 | 2014-05-20 | Dennis J Solomon | Advanced immersive visual display system |
US5257094A (en) | 1991-07-30 | 1993-10-26 | Larussa Joseph | Helmet mounted display system |
US5303085A (en) | 1992-02-07 | 1994-04-12 | Rallison Richard D | Optically corrected helmet mounted display |
US5621424A (en) | 1992-08-24 | 1997-04-15 | Olympus Optical Co., Ltd. | Head mount display apparatus allowing easy switching operation from electronic image to external field image |
US5579026A (en) | 1993-05-14 | 1996-11-26 | Olympus Optical Co., Ltd. | Image display apparatus of head mounted type |
US5490647A (en) | 1993-08-09 | 1996-02-13 | Rice; Gregory H. | Palm rest for use with computer data entry devices |
DE69434851T2 (en) | 1993-08-12 | 2007-04-19 | Seiko Epson Corp. | Head-mounted image display device and data processing device containing the same |
JPH07110735A (en) | 1993-10-14 | 1995-04-25 | Nippon Telegr & Teleph Corp <Ntt> | Fitting type pen input device |
US7310072B2 (en) | 1993-10-22 | 2007-12-18 | Kopin Corporation | Portable communication display device |
USD352930S (en) | 1993-10-29 | 1994-11-29 | Hunter Fan Company | Remote control for a ceiling fan |
US5717422A (en) | 1994-01-25 | 1998-02-10 | Fergason; James L. | Variable intensity high contrast passive display |
US6160666A (en) | 1994-02-07 | 2000-12-12 | I-O Display Systems Llc | Personal visual display system |
US6147805A (en) | 1994-08-24 | 2000-11-14 | Fergason; James L. | Head mounted display and viewing system using a remote retro-reflector and method of displaying and viewing an image |
US5808589A (en) | 1994-08-24 | 1998-09-15 | Fergason; James L. | Optical system for a head mounted display combining high and low resolution images |
US5606458A (en) | 1994-08-24 | 1997-02-25 | Fergason; James L. | Head mounted display and viewing system using a remote retro-reflector and method of displaying and viewing an image |
US5483307A (en) | 1994-09-29 | 1996-01-09 | Texas Instruments, Inc. | Wide field of view head-mounted display |
US5808800A (en) | 1994-12-22 | 1998-09-15 | Displaytech, Inc. | Optics arrangements including light source arrangements for an active matrix liquid crystal image generator |
US5596451A (en) | 1995-01-30 | 1997-01-21 | Displaytech, Inc. | Miniature image generator including optics arrangement |
JP3390289B2 (en) | 1995-06-16 | 2003-03-24 | 富士重工業株式会社 | Alarm device |
US6369952B1 (en) | 1995-07-14 | 2002-04-09 | I-O Display Systems Llc | Head-mounted personal visual display apparatus with image generator and holder |
US5767841A (en) | 1995-11-03 | 1998-06-16 | Hartman; William M. | Two-sided trackball |
USD375748S (en) | 1995-11-03 | 1996-11-19 | Hartman William M | Hand held remote |
USD376790S (en) | 1995-12-21 | 1996-12-24 | Goulet Matthew G | Computer hand controller |
JPH09219832A (en) | 1996-02-13 | 1997-08-19 | Olympus Optical Co Ltd | Image display |
US6379009B1 (en) | 1996-04-24 | 2002-04-30 | James L. Fergason | Conjugate optics projection display with image enhancement |
US5729242A (en) | 1996-05-08 | 1998-03-17 | Hughes Electronics | Dual PDLC-projection head-up display |
US6046712A (en) | 1996-07-23 | 2000-04-04 | Telxon Corporation | Head mounted communication system for providing interactive visual communications with a remote system |
US6310733B1 (en) | 1996-08-16 | 2001-10-30 | Eugene Dolgoff | Optical elements and methods for their manufacture |
US6847336B1 (en) | 1996-10-02 | 2005-01-25 | Jerome H. Lemelson | Selectively controllable heads-up display system |
US6204974B1 (en) | 1996-10-08 | 2001-03-20 | The Microoptical Corporation | Compact image display system for eyeglasses or other head-borne frames |
US5808802A (en) | 1996-11-15 | 1998-09-15 | Daewoo Electronics Co. Ltd. | Head-mounted display apparatus with a single image display device |
US5914818A (en) | 1996-11-29 | 1999-06-22 | Texas Instruments Incorporated | Offset projection lens for use with reflective spatial light modulators |
US6160552A (en) | 1997-01-09 | 2000-12-12 | Sun Microsystems, Inc. | Method and apparatus for managing multiple hierarchical lists within a browser |
USD392959S (en) | 1997-02-26 | 1998-03-31 | Kensington Microware Limited | Computer pointing device |
US6650357B1 (en) | 1997-04-09 | 2003-11-18 | Richardson Technologies, Inc. | Color translating UV microscope |
US6028608A (en) | 1997-05-09 | 2000-02-22 | Jenkins; Barry | System and method of perception-based image generation and encoding |
US6034653A (en) | 1997-08-01 | 2000-03-07 | Colorado Microdisplay, Inc. | Head-set display device |
US5991084A (en) | 1998-02-04 | 1999-11-23 | Inviso | Compact compound magnified virtual image display with a reflective/transmissive optic |
US20040080541A1 (en) | 1998-03-20 | 2004-04-29 | Hisashi Saiga | Data displaying device |
USD410638S (en) | 1998-05-08 | 1999-06-08 | Logitech Incorporated | Optical trackball |
US6610917B2 (en) | 1998-05-15 | 2003-08-26 | Lester F. Ludwig | Activity indication, external source, and processing loop provisions for driven vibrating-element environments |
US6734838B1 (en) | 1998-05-18 | 2004-05-11 | Dimension Technologies Inc. | Enhanced resolution for image generation |
JPH11327492A (en) | 1998-05-20 | 1999-11-26 | Mitsubishi Electric Corp | Plane sequential color image display device and plane sequential color image display method |
JP2000102036A (en) | 1998-09-22 | 2000-04-07 | Mr System Kenkyusho:Kk | Composite actual feeling presentation system, composite actual feeling presentation method, man-machine interface device and man-machine interface method |
JP2000194726A (en) | 1998-10-19 | 2000-07-14 | Sony Corp | Device, method and system for processing information and providing medium |
US20020007510A1 (en) | 1998-10-29 | 2002-01-24 | Mann W. Stephen G. | Smart bathroom fixtures and systems |
JP2000199883A (en) | 1998-10-29 | 2000-07-18 | Fujitsu Ltd | Reflection type projector device |
US6297749B1 (en) | 1998-11-06 | 2001-10-02 | Eric S. Smith | Emergency operating system for piloting an aircraft in a smoke filled cockpit |
US6535182B2 (en) | 1998-12-07 | 2003-03-18 | Koninklijke Philips Electronics N.V. | Head-mounted projection display system |
US6433760B1 (en) | 1999-01-14 | 2002-08-13 | University Of Central Florida | Head mounted display with eyetracking capability |
US6563626B1 (en) | 1999-02-25 | 2003-05-13 | Brother Kogyo Kabushiki Kaisha | Display device |
US6222677B1 (en) | 1999-04-12 | 2001-04-24 | International Business Machines Corporation | Compact optical system for use in virtual display applications |
US6461000B1 (en) | 1999-06-29 | 2002-10-08 | U.S. Precision Lens Incorporated | Optical systems for projection displays |
US6456438B1 (en) | 1999-08-12 | 2002-09-24 | Honeywell Inc. | Variable immersion vignetting display |
US6480174B1 (en) | 1999-10-09 | 2002-11-12 | Optimize Incorporated | Eyeglass-mount display having personalized fit module |
US20020149545A1 (en) | 1999-11-15 | 2002-10-17 | Ryotaro Hanayama | Head mounted display system |
USD451892S1 (en) | 1999-11-19 | 2001-12-11 | Tefal S.A. | Switch with a light |
US6717348B2 (en) | 1999-12-09 | 2004-04-06 | Fuji Photo Film Co., Ltd. | Display apparatus |
US6771294B1 (en) | 1999-12-29 | 2004-08-03 | Petri Pulli | User interface |
JP3957468B2 (en) | 2000-03-31 | 2007-08-15 | 日立造船株式会社 | Mixed reality realization system |
JP2001311904A (en) | 2000-04-28 | 2001-11-09 | Canon Inc | Device and system for image display |
US6642945B1 (en) | 2000-05-04 | 2003-11-04 | Microsoft Corporation | Method and system for optimizing a visual display for handheld computer systems |
US6995753B2 (en) | 2000-06-06 | 2006-02-07 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing the same |
US6417970B1 (en) | 2000-06-08 | 2002-07-09 | Interactive Imaging Systems | Two stage optical system for head mounted display |
JP4626019B2 (en) | 2000-07-05 | 2011-02-02 | 株式会社ニコン | Glasses frame |
US6747611B1 (en) | 2000-07-27 | 2004-06-08 | International Business Machines Corporation | Compact optical system and packaging for head mounted display |
WO2002016905A2 (en) | 2000-08-21 | 2002-02-28 | Euro-Celtique, S.A. | Near infrared blood glucose monitoring system |
US7003308B1 (en) | 2000-09-12 | 2006-02-21 | At&T Corp. | Method and system for handwritten electronic messaging |
AU2001292234A1 (en) | 2000-09-26 | 2002-04-08 | Matsushita Electric Industrial Co., Ltd. | Display unit and drive system thereof and an information display unit |
US6542307B2 (en) | 2000-10-20 | 2003-04-01 | Three-Five Systems, Inc. | Compact near-eye illumination system |
US6563648B2 (en) | 2000-10-20 | 2003-05-13 | Three-Five Systems, Inc. | Compact wide field of view imaging system |
US6347764B1 (en) | 2000-11-13 | 2002-02-19 | The United States Of America As Represented By The Secretary Of The Army | Gun hardened, rotary winged, glide and descent device |
JP3406965B2 (en) | 2000-11-24 | 2003-05-19 | キヤノン株式会社 | Mixed reality presentation device and control method thereof |
JP4560958B2 (en) | 2000-12-21 | 2010-10-13 | 日本テキサス・インスツルメンツ株式会社 | Micro electro mechanical system |
USD460071S1 (en) | 2001-03-01 | 2002-07-09 | Logitech Europe S.A. | Mouse with side gap |
KR100408518B1 (en) | 2001-04-12 | 2003-12-06 | 삼성전자주식회사 | Pen input device and Measuring method of coordinate |
US6957089B2 (en) | 2001-05-31 | 2005-10-18 | Coby Electronics Corporation | Compact hands-free adapter for use with a cellular telephone |
US7452098B2 (en) | 2001-06-15 | 2008-11-18 | Apple Inc. | Active enclosure for computing device |
US6562466B2 (en) | 2001-07-02 | 2003-05-13 | Essilor International Compagnie Generale D'optique | Process for transferring a coating onto a surface of a lens blank |
US20030030597A1 (en) | 2001-08-13 | 2003-02-13 | Geist Richard Edwin | Virtual display apparatus for mobile activities |
US20040162211A1 (en) | 2001-09-27 | 2004-08-19 | Domey Jeffrey J. | Fused silica having high internal transmission and low birefringence |
US20050010091A1 (en) | 2003-06-10 | 2005-01-13 | Woods Joe W. | Non-invasive measurement of blood glucose using retinal imaging |
US7088234B2 (en) | 2001-11-27 | 2006-08-08 | Matsushita Electric Industrial Co., Ltd. | Wearing information notifying unit |
US6959990B2 (en) | 2001-12-31 | 2005-11-01 | Texas Instruments Incorporated | Prism for high contrast projection |
IL148804A (en) | 2002-03-21 | 2007-02-11 | Yaacov Amitai | Optical device |
JP2003279881A (en) | 2002-03-27 | 2003-10-02 | Hitachi Ltd | Portable information device |
USD470144S1 (en) | 2002-04-18 | 2003-02-11 | Huixia Li | Computer mouse |
US20040030448A1 (en) | 2002-04-22 | 2004-02-12 | Neal Solomon | System, methods and apparatus for managing external computation and sensor resources applied to mobile robotic network |
US6870303B2 (en) | 2002-05-08 | 2005-03-22 | Pohang University Of Science And Technology Foundation | Multi-mode vibration damping device and method using negative capacitance shunt circuits |
JP2003337963A (en) | 2002-05-17 | 2003-11-28 | Seiko Epson Corp | Device and method for image processing, and image processing program and recording medium therefor |
TW594658B (en) | 2002-07-01 | 2004-06-21 | Leadtek Research Inc | Helmet-mounted display |
USD473871S1 (en) | 2002-07-08 | 2003-04-29 | Mar Santos | Desktop/hand-held trackball |
KR20040005521A (en) | 2002-07-10 | 2004-01-16 | 삼성전자주식회사 | Display device adjustable lightness of backlight and method for controlling the same |
USD478052S1 (en) | 2002-07-12 | 2003-08-05 | Hunter Fan Company | Ceiling fan remote control |
US6896655B2 (en) | 2002-08-05 | 2005-05-24 | Eastman Kodak Company | System and method for conditioning the psychological state of a subject using an adaptive autostereoscopic display |
US20040032392A1 (en) | 2002-08-19 | 2004-02-19 | Topseed Technology Corp. | Mouse pen device having remote-control function |
US6906836B2 (en) | 2002-10-04 | 2005-06-14 | William Parker | Full color holographic image combiner system |
US20040130522A1 (en) | 2003-01-08 | 2004-07-08 | Wen-Po Lin | System and method for presenting real handwriting trace |
US7685538B2 (en) | 2003-01-31 | 2010-03-23 | Wacom Co., Ltd. | Method of triggering functions in a computer application using a digitizer having a stylus and a digitizer system |
US7409234B2 (en) | 2003-03-07 | 2008-08-05 | Cardo Systems, Inc. | Wireless communication headset with exchangeable attachments |
US7333113B2 (en) | 2003-03-13 | 2008-02-19 | Sony Corporation | Mobile motion capture cameras |
US8106911B2 (en) | 2003-03-13 | 2012-01-31 | Sony Corporation | Mobile motion capture cameras |
JP2004298461A (en) | 2003-03-31 | 2004-10-28 | Topcon Corp | Refraction measuring apparatus |
US7380936B2 (en) | 2003-10-09 | 2008-06-03 | Ipventure, Inc. | Eyeglasses with a clock or other electrical component |
US7806525B2 (en) | 2003-10-09 | 2010-10-05 | Ipventure, Inc. | Eyeglasses having a camera |
US7500746B1 (en) | 2004-04-15 | 2009-03-10 | Ip Venture, Inc. | Eyewear with radiation detection system |
US7792552B2 (en) | 2003-04-15 | 2010-09-07 | Ipventure, Inc. | Eyeglasses for wireless communications |
US8109629B2 (en) | 2003-10-09 | 2012-02-07 | Ipventure, Inc. | Eyewear supporting electrical components and apparatus therefor |
US7500747B2 (en) | 2003-10-09 | 2009-03-10 | Ipventure, Inc. | Eyeglasses with electrical components |
US7255437B2 (en) | 2003-10-09 | 2007-08-14 | Howell Thomas A | Eyeglasses with activity monitoring |
US8465151B2 (en) | 2003-04-15 | 2013-06-18 | Ipventure, Inc. | Eyewear with multi-part temple for supporting one or more electrical components |
US20050010563A1 (en) | 2003-05-15 | 2005-01-13 | William Gross | Internet search application |
US20040227994A1 (en) | 2003-05-16 | 2004-11-18 | Jiaying Ma | Polarizing beam splitter and projection systems using the polarizing beam splitter |
US20050041289A1 (en) | 2003-08-22 | 2005-02-24 | Arthur Berman | Advanced prism assemblies and prism assemblies using cholesteric reflectors |
US20130258111A1 (en) | 2009-03-02 | 2013-10-03 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US20050157949A1 (en) | 2003-09-30 | 2005-07-21 | Seiji Aiso | Generation of still image |
US7677723B2 (en) | 2003-10-09 | 2010-03-16 | Ipventure, Inc. | Eyeglasses with a heart rate monitor |
JP2005138755A (en) | 2003-11-07 | 2005-06-02 | Denso Corp | Device and program for displaying virtual images |
EP2148504B1 (en) | 2003-12-03 | 2012-01-25 | Nikon Corporation | Information Display Device |
US7528825B2 (en) | 2003-12-08 | 2009-05-05 | Fujitsu Component Limited | Input pen and input device |
US7561966B2 (en) | 2003-12-17 | 2009-07-14 | Denso Corporation | Vehicle information display system |
US20050156915A1 (en) | 2004-01-16 | 2005-07-21 | Fisher Edward N. | Handwritten character recording and recognition device |
WO2005076869A2 (en) | 2004-02-04 | 2005-08-25 | Displaytech, Inc. | Compact electronic viewfinder |
USD513233S1 (en) | 2004-02-28 | 2005-12-27 | Hunter Fan Company | Ceiling fan remote |
USD514525S1 (en) | 2004-02-28 | 2006-02-07 | Hunter Fan Company | Ceiling fan wall controller |
USD512027S1 (en) | 2004-03-15 | 2005-11-29 | Nokia Corporation | Remote control |
JP2005274656A (en) | 2004-03-23 | 2005-10-06 | Fuji Photo Film Co Ltd | Display device and display method |
CA2561287C (en) | 2004-04-01 | 2017-07-11 | William C. Torch | Biosensors, communicators, and controllers monitoring eye movement and methods for using them |
US9460346B2 (en) | 2004-04-19 | 2016-10-04 | Google Inc. | Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device |
JP4373286B2 (en) | 2004-05-06 | 2009-11-25 | オリンパス株式会社 | Head-mounted display device |
EP1748305A4 (en) | 2004-05-17 | 2009-01-14 | Nikon Corp | Optical element, combiner optical system, and image display unit |
EP1754201A1 (en) | 2004-05-27 | 2007-02-21 | Canon Kabushiki Kaisha | Information processing method, information processing apparatus, and image sensing apparatus |
IL162572A (en) | 2004-06-17 | 2013-02-28 | Lumus Ltd | High brightness optical device |
US6987787B1 (en) | 2004-06-28 | 2006-01-17 | Rockwell Collins | LED brightness control system for a wide-range of luminance control |
US7307793B2 (en) | 2004-07-02 | 2007-12-11 | Insight Technology, Inc. | Fusion night vision system |
US8337013B2 (en) | 2004-07-28 | 2012-12-25 | Ipventure, Inc. | Eyeglasses with RFID tags or with a strap |
US7126610B2 (en) | 2004-07-28 | 2006-10-24 | Honeywell International Inc. | System and method for image luminance transformation |
US7295904B2 (en) | 2004-08-31 | 2007-11-13 | International Business Machines Corporation | Touch gesture based interface for motor vehicle |
US7450310B2 (en) | 2005-05-03 | 2008-11-11 | Optical Research Associates | Head mounted display devices |
US7545571B2 (en) | 2004-09-08 | 2009-06-09 | Concurrent Technologies Corporation | Wearable display system |
US20060061542A1 (en) | 2004-09-23 | 2006-03-23 | Stokic Dragan Z | Dynamic character display input device |
JP4560368B2 (en) | 2004-10-08 | 2010-10-13 | キヤノン株式会社 | Eye detection device and image display device |
JP4533087B2 (en) | 2004-10-28 | 2010-08-25 | キヤノン株式会社 | Image processing method and image processing apparatus |
US7350919B2 (en) | 2004-12-03 | 2008-04-01 | Searete Llc | Vision modification with reflected image |
US20060152686A1 (en) | 2004-12-09 | 2006-07-13 | Serdar Yeralan | Short arc lamp light engine for video projection |
US7053866B1 (en) | 2004-12-18 | 2006-05-30 | Emile Mimran | Portable adaptor and software for use with a heads-up display unit |
USD541226S1 (en) | 2004-12-21 | 2007-04-24 | Kabushiki Kaisha Toshiba | Controller for forceps for medical robot |
US7619616B2 (en) | 2004-12-21 | 2009-11-17 | Microsoft Corporation | Pressure sensitive controls |
US20060173351A1 (en) | 2005-01-03 | 2006-08-03 | Ronald Marcotte | System and method for inserting a needle into a blood vessel |
USD521493S1 (en) | 2005-01-21 | 2006-05-23 | Koninklikjke Philips Electronics, N.V. | Gaming headphone |
EP1686554A3 (en) | 2005-01-31 | 2008-06-18 | Canon Kabushiki Kaisha | Virtual space generating system, image processing apparatus and information processing method |
JP4642497B2 (en) | 2005-02-10 | 2011-03-02 | クラリオン株式会社 | Navigation device |
US20060183986A1 (en) | 2005-02-11 | 2006-08-17 | Rice Mark J | Intraocular lens measurement of blood glucose |
US20060238550A1 (en) | 2005-03-17 | 2006-10-26 | Symagery Microsystems Inc. | Hands-free data acquisition system |
US7457434B2 (en) | 2005-04-04 | 2008-11-25 | Massachusetts Eye & Ear Infirmary | Adaptively focusing extra-ocular vision prostheses |
WO2006118784A2 (en) | 2005-04-20 | 2006-11-09 | Wavefront Technology, Inc. | Elliptical diffusers used in displays |
US20060288233A1 (en) | 2005-04-25 | 2006-12-21 | Douglas Kozlay | Attachable biometric authentication apparatus for watchbands and other personal items |
US20060250322A1 (en) | 2005-05-09 | 2006-11-09 | Optics 1, Inc. | Dynamic vergence and focus control for head-mounted displays |
USD529467S1 (en) | 2005-06-01 | 2006-10-03 | Research In Motion Limited | Handset |
US20090183929A1 (en) | 2005-06-08 | 2009-07-23 | Guanglie Zhang | Writing system with camera |
US20060285315A1 (en) | 2005-06-20 | 2006-12-21 | Welch Allyn, Inc. | Hybrid surgical headlight |
US20070003168A1 (en) | 2005-06-29 | 2007-01-04 | Microsoft Corporation | Computer input device |
US20070004451A1 (en) | 2005-06-30 | 2007-01-04 | C Anderson Eric | Controlling functions of a handheld multifunction device |
US8249626B2 (en) | 2005-07-14 | 2012-08-21 | Huston Charles D | GPS based friend location and identification system and method |
US7434937B2 (en) | 2005-07-29 | 2008-10-14 | Optoma Technology, Inc. | Methods and systems for calibrating rear projection video |
US20070024823A1 (en) | 2005-07-29 | 2007-02-01 | Optoma Technology, Inc. | Methods and systems for improving operation of a video projector |
US20070024764A1 (en) | 2005-07-29 | 2007-02-01 | Optoma Technology, Inc. | Methods and systems that compensate for distortion introduced by anamorphic lenses in a video projector |
US8089567B2 (en) | 2005-07-29 | 2012-01-03 | Optoma Technology, Inc. | Methods and systems for displaying video on an adjustable screen |
US7701518B2 (en) | 2005-07-29 | 2010-04-20 | Optoma Technology, Inc. | Methods and systems for displaying video in multiple aspect ratios |
US7529029B2 (en) | 2005-07-29 | 2009-05-05 | 3M Innovative Properties Company | Polarizing beam splitter |
US20070025273A1 (en) | 2005-07-29 | 2007-02-01 | Chung Yau W | Methods and systems for detecting video signals and sources |
JP2007041385A (en) | 2005-08-04 | 2007-02-15 | Seiko Epson Corp | Display device and method for controlling the same |
US20070109284A1 (en) | 2005-08-12 | 2007-05-17 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US20070035563A1 (en) | 2005-08-12 | 2007-02-15 | The Board Of Trustees Of Michigan State University | Augmented reality spatial interaction and navigational system |
IL173361A (en) | 2005-09-12 | 2012-03-29 | Elbit Systems Ltd | Near eye display system |
JP2007079943A (en) | 2005-09-14 | 2007-03-29 | Toshiba Corp | Character reading program, character reading method and character reader |
US20070069976A1 (en) | 2005-09-26 | 2007-03-29 | Willins Bruce A | Method and system for interface between head mounted display and handheld device |
US7707035B2 (en) | 2005-10-13 | 2010-04-27 | Integrated Wave Technologies, Inc. | Autonomous integrated headset and sound processing system for tactical applications |
US8018579B1 (en) | 2005-10-21 | 2011-09-13 | Apple Inc. | Three-dimensional imaging and display system |
US7543943B1 (en) | 2005-10-28 | 2009-06-09 | Hewlett-Packard Development Company, L.P. | Color permuting light projector |
EP1946179B1 (en) | 2005-11-10 | 2012-12-05 | BAE Systems PLC | Method of modifying a display apparatus |
JP4341661B2 (en) | 2005-11-22 | 2009-10-07 | ソニー株式会社 | Input device, input method, and input device manufacturing method |
US9093041B2 (en) | 2005-11-28 | 2015-07-28 | Honeywell International Inc. | Backlight variation compensated display |
US7810750B2 (en) | 2006-12-13 | 2010-10-12 | Marcio Marc Abreu | Biologically fit wearable electronics apparatus and methods |
US7522344B1 (en) | 2005-12-14 | 2009-04-21 | University Of Central Florida Research Foundation, Inc. | Projection-based head-mounted display with eye-tracking capabilities |
IL172797A (en) | 2005-12-25 | 2012-09-24 | Elbit Systems Ltd | Real-time image scanning and processing |
WO2007084311A2 (en) | 2006-01-13 | 2007-07-26 | Liberty Sport, Inc. | Eyewear frames with magnetic lens attachments |
US8092007B2 (en) | 2006-01-13 | 2012-01-10 | Switch Vision, Llc | Eyewear frames with magnetic lens attachments |
US20070178950A1 (en) | 2006-01-19 | 2007-08-02 | International Business Machines Corporation | Wearable multimodal computing device with hands-free push to talk |
WO2007087314A2 (en) | 2006-01-23 | 2007-08-02 | Zeavision Llc | Macular pigment diagnostic system |
US7637609B1 (en) | 2006-02-24 | 2009-12-29 | Chic Optic, Inc. | Resilient hinge for eyeglasses |
USD631881S1 (en) | 2006-03-28 | 2011-02-01 | Quinn Bryan C | Computer mouse |
US7734414B2 (en) | 2006-04-04 | 2010-06-08 | Yariv Gershony | Device, system and method for displaying a cell phone control signal in front of a driver |
US20110176106A1 (en) | 2006-05-01 | 2011-07-21 | Christopher Paul Lewkowski | Portable eye monitoring device and methods for using the same |
TWI292052B (en) | 2006-05-09 | 2008-01-01 | Young Optics Inc | Optical projection and image detection apparatus |
US20080121441A1 (en) | 2006-05-12 | 2008-05-29 | Velosum, Inc. | Systems and methods for mutually exclusive options on a paper form for use with a digital pen |
JP2009538532A (en) | 2006-05-23 | 2009-11-05 | クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド | Lighting device |
SE0601216L (en) | 2006-05-31 | 2007-12-01 | Abb Technology Ltd | Virtual workplace |
US20070282682A1 (en) | 2006-06-02 | 2007-12-06 | Paul Dietz | Method for metered advertising based on face time |
USD571816S1 (en) | 2006-06-19 | 2008-06-24 | Logitech Europe S.A. | Computer mouse topcase |
US7605795B2 (en) | 2006-06-21 | 2009-10-20 | Intel Corporation | Power efficient screens through display size reduction |
US7928926B2 (en) | 2006-06-27 | 2011-04-19 | Panasonic Corporation | Display apparatus and method for hands free operation that selects a function when window is within field of view |
JP3125129U (en) | 2006-06-28 | 2006-09-07 | 敏貴 並木 | mouse |
US7542210B2 (en) | 2006-06-29 | 2009-06-02 | Chirieleison Sr Anthony | Eye tracking head mounted display |
US8368034B2 (en) | 2006-06-29 | 2013-02-05 | Cdex, Inc. | Substance detection, inspection and classification system using enhanced photoemission spectroscopy |
US7813743B1 (en) | 2006-07-10 | 2010-10-12 | Loeb Enterprises Llc | Location dependent non-commercial messaging |
US7855743B2 (en) | 2006-09-08 | 2010-12-21 | Sony Corporation | Image capturing and displaying apparatus and image capturing and displaying method |
US20080071559A1 (en) | 2006-09-19 | 2008-03-20 | Juha Arrasvuori | Augmented reality assisted shopping |
JP4375377B2 (en) | 2006-09-19 | 2009-12-02 | 富士ゼロックス株式会社 | WRITING INFORMATION PROCESSING SYSTEM, WRITING INFORMATION GENERATION DEVICE, AND PROGRAM |
JP5017989B2 (en) | 2006-09-27 | 2012-09-05 | ソニー株式会社 | Imaging apparatus and imaging method |
US8212859B2 (en) | 2006-10-13 | 2012-07-03 | Apple Inc. | Peripheral treatment for head-mounted displays |
USD559793S1 (en) | 2006-10-25 | 2008-01-15 | Hannspree, Inc. | Remote control |
SG142292A1 (en) | 2006-11-07 | 2008-05-28 | Agency Science Tech & Res | Device and method to realize a light processor |
CA2756711C (en) | 2006-11-10 | 2014-03-25 | Okamura Corporation | Chair backrest device |
US20100073376A1 (en) | 2006-11-30 | 2010-03-25 | Koninklijke Philips Electronics N.V. | Electronic imaging device and method of electronically rendering a wavefront |
US20080186255A1 (en) | 2006-12-07 | 2008-08-07 | Cohen Philip R | Systems and methods for data annotation, recordation, and communication |
US9217868B2 (en) | 2007-01-12 | 2015-12-22 | Kopin Corporation | Monocular display device |
WO2008088691A2 (en) | 2007-01-12 | 2008-07-24 | Kopin Corporation | Head mounted monocular display device |
US20080191965A1 (en) | 2007-02-09 | 2008-08-14 | Raffaele Martini Pandozy | Apparatus and method for eye exercises |
KR101341494B1 (en) | 2007-02-13 | 2013-12-16 | 엘지전자 주식회사 | Apparatus for providing location information of hand-held devices and method thereof |
US20080219025A1 (en) | 2007-03-07 | 2008-09-11 | Spitzer Mark B | Bi-directional backlight assembly |
JP5009361B2 (en) | 2007-03-29 | 2012-08-22 | 京セラ株式会社 | Portable radio |
US8515728B2 (en) | 2007-03-29 | 2013-08-20 | Microsoft Corporation | Language translation of visual and audio input |
US7777690B2 (en) | 2007-03-30 | 2010-08-17 | Itt Manufacturing Enterprises, Inc. | Radio frequency lens and method of suppressing side-lobes |
US8549415B2 (en) | 2007-05-04 | 2013-10-01 | Apple Inc. | Automatically adjusting media display in a personal display system |
US8068700B2 (en) | 2007-05-28 | 2011-11-29 | Sanyo Electric Co., Ltd. | Image processing apparatus, image processing method, and electronic appliance |
US7934291B2 (en) | 2007-06-07 | 2011-05-03 | Apple Inc. | Multi-position magnetic detents |
US8156363B2 (en) | 2007-07-02 | 2012-04-10 | Panasonic Corporation | Information processing device and mobile phone including comparison of power consumption information and remaining power |
US7733571B1 (en) | 2007-07-24 | 2010-06-08 | Rockwell Collins, Inc. | Phosphor screen and displays systems |
EP2183742A2 (en) | 2007-07-31 | 2010-05-12 | Kopin Corporation | Mobile wireless display providing speech to speech translation and avatar simulating human attributes |
US7954047B2 (en) | 2007-08-06 | 2011-05-31 | Apple Inc. | Cutting and copying discontiguous selections of cells |
US20090040296A1 (en) | 2007-08-06 | 2009-02-12 | Moscato Jonathan D | Head mounted display assembly |
US20110118870A1 (en) | 2007-09-06 | 2011-05-19 | Olympus Corporation | Robot control system, robot, program, and information storage medium |
US7904485B2 (en) | 2007-09-06 | 2011-03-08 | Apple Inc. | Graphical representation of assets stored on a portable media device |
US7777960B2 (en) | 2007-09-10 | 2010-08-17 | Microvision, Inc. | Wide field of view head-up display system |
US7656585B1 (en) | 2008-08-19 | 2010-02-02 | Microvision, Inc. | Embedded relay lens for head-up displays or the like |
US8286734B2 (en) | 2007-10-23 | 2012-10-16 | Weatherford/Lamb, Inc. | Low profile rotating control device |
JP4956375B2 (en) | 2007-10-30 | 2012-06-20 | キヤノン株式会社 | Image processing apparatus and image processing method |
US7800360B2 (en) | 2007-10-31 | 2010-09-21 | Sony Ericsson Mobile Communications Ab | Connector system with magnetic audio volume control and method |
JP5237268B2 (en) | 2007-11-21 | 2013-07-17 | パナソニック株式会社 | Display device |
US9158116B1 (en) | 2014-04-25 | 2015-10-13 | Osterhout Group, Inc. | Temple and ear horn assembly for headworn computer |
FR2926373B1 (en) | 2008-01-11 | 2010-07-30 | Essilor Int | TRANSPARENT COMPONENT WITH SWITCHABLE REFLECTING ELEMENTS, AND DEVICES COMPRISING SUCH A COMPONENT |
US8166421B2 (en) | 2008-01-14 | 2012-04-24 | Primesense Ltd. | Three-dimensional user interface |
JP2009171505A (en) | 2008-01-21 | 2009-07-30 | Nikon Corp | Head-mounted display |
US8384997B2 (en) | 2008-01-21 | 2013-02-26 | Primesense Ltd | Optical pattern projection |
US8786675B2 (en) | 2008-01-23 | 2014-07-22 | Michael F. Deering | Systems using eye mounted displays |
US20090251441A1 (en) | 2008-04-03 | 2009-10-08 | Livescribe, Inc. | Multi-Modal Controller |
US20100149073A1 (en) | 2008-11-02 | 2010-06-17 | David Chaum | Near to Eye Display System and Appliance |
CN101720445B (en) | 2008-04-30 | 2013-02-27 | 松下电器产业株式会社 | Scanning image display device, eyeglasses-style head-mount display, and automobile |
US8423288B2 (en) | 2009-11-30 | 2013-04-16 | Apple Inc. | Dynamic alerts for calendar events |
US7926951B2 (en) | 2008-07-11 | 2011-04-19 | Eastman Kodak Company | Laser illuminated micro-mirror projector |
USD680112S1 (en) | 2008-07-25 | 2013-04-16 | Michael J. Monahan | Movement filtered mouse |
US7690799B2 (en) | 2008-08-26 | 2010-04-06 | Microvision, Inc. | Optical relay for compact head up display |
US7850306B2 (en) | 2008-08-28 | 2010-12-14 | Nokia Corporation | Visual cognition aware display and visual data transmission architecture |
US8520309B2 (en) | 2008-09-04 | 2013-08-27 | Innovega Inc. | Method and apparatus to process display and non-display information |
US20100060713A1 (en) | 2008-09-10 | 2010-03-11 | Eastman Kodak Company | System and Method for Enhancing Noverbal Aspects of Communication |
US7738190B2 (en) | 2008-09-27 | 2010-06-15 | Meistream International Optical Ltd. | Optical engine and wide angle projection lens module thereof |
US20100082368A1 (en) | 2008-09-29 | 2010-04-01 | Corquality Systems, Inc. | Wrong site surgery prevention system |
US20100079508A1 (en) | 2008-09-30 | 2010-04-01 | Andrew Hodge | Electronic devices with gaze detection capabilities |
US8482545B2 (en) | 2008-10-02 | 2013-07-09 | Wacom Co., Ltd. | Combination touch and transducer input system and method |
US8585609B2 (en) | 2008-10-09 | 2013-11-19 | Neuro Kinetics, Inc. | Quantitative, non-invasive, clinical diagnosis of traumatic brain injury using simulated distance visual stimulus device for neurologic testing |
US9480919B2 (en) | 2008-10-24 | 2016-11-01 | Excalibur Ip, Llc | Reconfiguring reality using a reality overlay device |
WO2010062481A1 (en) | 2008-11-02 | 2010-06-03 | David Chaum | Near to eye display system and appliance |
US9366867B2 (en) | 2014-07-08 | 2016-06-14 | Osterhout Group, Inc. | Optical systems for see-through displays |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US9298007B2 (en) | 2014-01-21 | 2016-03-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150277120A1 (en) | 2014-01-21 | 2015-10-01 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150205111A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9229233B2 (en) | 2014-02-11 | 2016-01-05 | Osterhout Group, Inc. | Micro Doppler presentations in head worn computing |
US9400390B2 (en) | 2014-01-24 | 2016-07-26 | Osterhout Group, Inc. | Peripheral lighting for head worn computing |
US8594467B2 (en) | 2008-12-19 | 2013-11-26 | Microsoft Corporation | Interactive virtual display system for ubiquitous devices |
GB2466497B (en) | 2008-12-24 | 2011-09-14 | Light Blue Optics Ltd | Touch sensitive holographic displays |
CN101774179B (en) | 2009-01-10 | 2012-09-19 | 鸿富锦精密工业(深圳)有限公司 | Robot connecting shaft |
US8482520B2 (en) | 2009-01-30 | 2013-07-09 | Research In Motion Limited | Method for tap detection and for interacting with and a handheld electronic device, and a handheld electronic device configured therefor |
US8494215B2 (en) | 2009-03-05 | 2013-07-23 | Microsoft Corporation | Augmenting a field of view in connection with vision-tracking |
US20100240988A1 (en) | 2009-03-19 | 2010-09-23 | Kenneth Varga | Computer-aided system for 360 degree heads up display of safety/mission critical data |
US20140240313A1 (en) | 2009-03-19 | 2014-08-28 | Real Time Companies | Computer-aided system for 360° heads up display of safety/mission critical data |
US8629784B2 (en) | 2009-04-02 | 2014-01-14 | GM Global Technology Operations LLC | Peripheral salient feature enhancement on full-windshield head-up display |
US8159751B2 (en) | 2009-04-05 | 2012-04-17 | Miguel Marques Martins | Apparatus for head mounted image display |
US8570656B1 (en) | 2009-04-06 | 2013-10-29 | Paul Weissman | See-through optical system |
US20120081800A1 (en) | 2009-04-20 | 2012-04-05 | Dewen Cheng | Optical see-through free-form head-mounted display |
WO2010123521A1 (en) | 2009-04-21 | 2010-10-28 | The Trustees Of Columbia University In The City Of New York | Sensors for long-term and continuous monitoring of biochemicals |
US20100280904A1 (en) | 2009-05-01 | 2010-11-04 | Sumit Pradeep Ahuja | Social marketing and networking tool with user matching and content broadcasting / receiving capabilities |
US8094377B2 (en) | 2009-05-13 | 2012-01-10 | Nvis, Inc. | Head-mounted optical apparatus using an OLED display |
JP5257695B2 (en) | 2009-05-20 | 2013-08-07 | アイシン精機株式会社 | Monitoring device |
US8282274B2 (en) | 2009-06-30 | 2012-10-09 | Autovision Technology Limited | Remote temperature sensing device |
KR20110004027A (en) | 2009-07-07 | 2011-01-13 | 삼성전자주식회사 | Apparatus of pen-type inputting device and inputting method thereof |
US9728006B2 (en) | 2009-07-20 | 2017-08-08 | Real Time Companies, LLC | Computer-aided system for 360° heads up display of safety/mission critical data |
US20130009907A1 (en) | 2009-07-31 | 2013-01-10 | Rosenberg Ilya D | Magnetic Stylus |
US8473241B2 (en) | 2009-08-03 | 2013-06-25 | Thales Visionix, Inc. | Navigation trajectory matching |
CN106081109B (en) | 2009-09-09 | 2020-09-08 | 威罗门飞行公司 | System for a transmitter for a remotely operated unmanned aerial vehicle |
US9460601B2 (en) | 2009-09-20 | 2016-10-04 | Tibet MIMAR | Driver distraction and drowsiness warning and sleepiness reduction for accident avoidance |
DE102009049849B4 (en) | 2009-10-19 | 2020-09-24 | Apple Inc. | Method for determining the pose of a camera, method for recognizing an object in a real environment and method for creating a data model |
TR201205754T1 (en) | 2009-11-03 | 2012-09-21 | Vawd Applied Science & Technology Corporation | Safety distance, despite the obstacle detection radar system. |
CA2781064C (en) | 2009-11-19 | 2019-07-02 | Esight Corp. | Image magnification on a head mounted display |
EP2502223A4 (en) | 2009-11-21 | 2016-05-18 | Douglas Peter Magyari | Head mounted display device |
RU2012130357A (en) | 2009-12-18 | 2014-01-27 | ТиПи ВИЖН ХОЛДИНГ Б.В. | BACKLIGHT SYSTEM USING GENERAL CONTENT CHARACTERISTICS |
JP5146845B2 (en) | 2009-12-24 | 2013-02-20 | ブラザー工業株式会社 | Head mounted display |
US8244311B2 (en) | 2009-12-29 | 2012-08-14 | International Business Machines Corporation | Time-related power systems |
US8905547B2 (en) | 2010-01-04 | 2014-12-09 | Elbit Systems Of America, Llc | System and method for efficiently delivering rays from a light source to create an image |
US8400548B2 (en) | 2010-01-05 | 2013-03-19 | Apple Inc. | Synchronized, interactive augmented reality displays for multifunction devices |
US8922530B2 (en) | 2010-01-06 | 2014-12-30 | Apple Inc. | Communicating stylus |
US8890771B2 (en) | 2010-01-06 | 2014-11-18 | Apple Inc. | Transparent electronic device |
US8847972B2 (en) | 2010-01-20 | 2014-09-30 | Intellectual Ventures Fund 83 Llc | Adapting display color for low luminance conditions |
USD631882S1 (en) | 2010-01-31 | 2011-02-01 | Swiftpoint Limited | Computer interface device |
US8463543B2 (en) | 2010-02-05 | 2013-06-11 | Apple Inc. | Schematic maps |
US8489326B1 (en) | 2010-02-09 | 2013-07-16 | Google Inc. | Placemarked based navigation and ad auction based on placemarks |
US8353729B2 (en) | 2010-02-18 | 2013-01-15 | Apple Inc. | Low profile connector system |
US8928644B2 (en) | 2010-02-19 | 2015-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for driving display device |
US9182596B2 (en) | 2010-02-28 | 2015-11-10 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light |
US20110213664A1 (en) | 2010-02-28 | 2011-09-01 | Osterhout Group, Inc. | Local advertising content on an interactive head-mounted eyepiece |
US9091851B2 (en) | 2010-02-28 | 2015-07-28 | Microsoft Technology Licensing, Llc | Light control in head mounted displays |
US9129295B2 (en) | 2010-02-28 | 2015-09-08 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear |
US20120212484A1 (en) | 2010-02-28 | 2012-08-23 | Osterhout Group, Inc. | System and method for display content placement using distance and location information |
US9128281B2 (en) | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
US20140063055A1 (en) | 2010-02-28 | 2014-03-06 | Osterhout Group, Inc. | Ar glasses specific user interface and control interface based on a connected external device type |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
CN102906623A (en) | 2010-02-28 | 2013-01-30 | 奥斯特豪特集团有限公司 | Local advertising content on an interactive head-mounted eyepiece |
US20120212499A1 (en) | 2010-02-28 | 2012-08-23 | Osterhout Group, Inc. | System and method for display content control during glasses movement |
US20120120103A1 (en) | 2010-02-28 | 2012-05-17 | Osterhout Group, Inc. | Alignment control in an augmented reality headpiece |
US9097890B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | Grating in a light transmissive illumination system for see-through near-eye display glasses |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
US8477425B2 (en) | 2010-02-28 | 2013-07-02 | Osterhout Group, Inc. | See-through near-eye display glasses including a partially reflective, partially transmitting optical element |
US8964298B2 (en) | 2010-02-28 | 2015-02-24 | Microsoft Corporation | Video display modification based on sensor input for a see-through near-to-eye display |
US8488246B2 (en) | 2010-02-28 | 2013-07-16 | Osterhout Group, Inc. | See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film |
US8472120B2 (en) | 2010-02-28 | 2013-06-25 | Osterhout Group, Inc. | See-through near-eye display glasses with a small scale image source |
US20120242698A1 (en) | 2010-02-28 | 2012-09-27 | Osterhout Group, Inc. | See-through near-eye display glasses with a multi-segment processor-controlled optical layer |
US20140063054A1 (en) | 2010-02-28 | 2014-03-06 | Osterhout Group, Inc. | Ar glasses specific control interface based on a connected external device type |
US20120194550A1 (en) | 2010-02-28 | 2012-08-02 | Osterhout Group, Inc. | Sensor-based command and control of external devices with feedback from the external device to the ar glasses |
US20120194553A1 (en) | 2010-02-28 | 2012-08-02 | Osterhout Group, Inc. | Ar glasses with sensor and user action based control of external devices with feedback |
US20130278631A1 (en) | 2010-02-28 | 2013-10-24 | Osterhout Group, Inc. | 3d positioning of augmented reality information |
US8482859B2 (en) | 2010-02-28 | 2013-07-09 | Osterhout Group, Inc. | See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film |
KR20110101944A (en) | 2010-03-10 | 2011-09-16 | 삼성전자주식회사 | 3-dimension glasses, method for driving 3-dimension glass and system for providing 3d image |
US20110234631A1 (en) | 2010-03-25 | 2011-09-29 | Bizmodeline Co., Ltd. | Augmented reality systems |
CN101800816B (en) | 2010-04-08 | 2012-10-17 | 华为终端有限公司 | Method for horizontal and vertical switching of touch screen of mobile terminal and mobile terminal |
US8678581B2 (en) | 2010-04-13 | 2014-03-25 | Pixeloptics, Inc. | Attachable electro-active lens systems |
US9124692B2 (en) | 2010-04-14 | 2015-09-01 | Adesh Bhargava | System and method for optimizing communication |
WO2011143655A1 (en) | 2010-05-14 | 2011-11-17 | Advitech, Inc. | System and method for prevention and control of the effects of spatial disorientation |
US8570273B1 (en) | 2010-05-20 | 2013-10-29 | Lockheed Martin Corporation | Input device configured to control a computing device |
JP2011242685A (en) | 2010-05-20 | 2011-12-01 | Hitachi Consumer Electronics Co Ltd | Image display device |
US8791900B2 (en) | 2010-05-21 | 2014-07-29 | Microsoft Corporation | Computing device notes |
US8594425B2 (en) | 2010-05-31 | 2013-11-26 | Primesense Ltd. | Analysis of three-dimensional scenes |
US9046999B1 (en) | 2010-06-08 | 2015-06-02 | Google Inc. | Dynamic input at a touch-based interface based on pressure |
US8531394B2 (en) | 2010-07-23 | 2013-09-10 | Gregory A. Maltz | Unitized, vision-controlled, wireless eyeglasses transceiver |
US20120026088A1 (en) | 2010-08-01 | 2012-02-02 | T-Mobile Usa, Inc. | Handheld device with projected user interface and interactive image |
US9760123B2 (en) | 2010-08-06 | 2017-09-12 | Dynavox Systems Llc | Speech generation device with a projected display and optical inputs |
JP5499985B2 (en) | 2010-08-09 | 2014-05-21 | ソニー株式会社 | Display assembly |
US10134150B2 (en) | 2010-08-10 | 2018-11-20 | Monotype Imaging Inc. | Displaying graphics in multi-view scenes |
US8957948B2 (en) | 2010-08-24 | 2015-02-17 | Siemens Corporation | Geometric calibration of head-worn multi-camera eye tracking system |
US20120050140A1 (en) | 2010-08-25 | 2012-03-01 | Border John N | Head-mounted display control |
JP5459150B2 (en) | 2010-09-03 | 2014-04-02 | セイコーエプソン株式会社 | Light guide plate and virtual image display device including the same |
US8619005B2 (en) | 2010-09-09 | 2013-12-31 | Eastman Kodak Company | Switchable head-mounted display transition |
US8649099B2 (en) | 2010-09-13 | 2014-02-11 | Vuzix Corporation | Prismatic multiple waveguide for near-eye display |
US8773464B2 (en) | 2010-09-15 | 2014-07-08 | Sharp Laboratories Of America, Inc. | Methods and systems for collaborative-writing-surface image formation |
US8582206B2 (en) | 2010-09-15 | 2013-11-12 | Microsoft Corporation | Laser-scanning virtual image display |
JP5974008B2 (en) | 2010-09-20 | 2016-08-23 | コピン コーポレーション | Wireless interface such as Bluetooth (registered trademark) with power management function for head mounted display |
US8941559B2 (en) | 2010-09-21 | 2015-01-27 | Microsoft Corporation | Opacity filter for display device |
US8376548B2 (en) | 2010-09-22 | 2013-02-19 | Vuzix Corporation | Near-eye display with on-axis symmetry |
US20120078628A1 (en) | 2010-09-28 | 2012-03-29 | Ghulman Mahmoud M | Head-mounted text display system and method for the hearing impaired |
EP2624217A4 (en) | 2010-09-30 | 2017-07-26 | FUJIFILM Corporation | Information presentation device, digital camera, head mount display, projector, information presentation method, and information presentation program |
US9202233B1 (en) | 2010-09-30 | 2015-12-01 | Imdb.Com, Inc. | Event attendance determinations |
EP2625845B1 (en) | 2010-10-04 | 2021-03-03 | Gerard Dirk Smits | System and method for 3-d projection and enhancements for interactivity |
US8837880B2 (en) | 2010-10-08 | 2014-09-16 | Seiko Epson Corporation | Virtual image display device |
US20120092329A1 (en) | 2010-10-13 | 2012-04-19 | Qualcomm Incorporated | Text-based 3d augmented reality |
US8884984B2 (en) | 2010-10-15 | 2014-11-11 | Microsoft Corporation | Fusing virtual content into real content |
US9632315B2 (en) | 2010-10-21 | 2017-04-25 | Lockheed Martin Corporation | Head-mounted display apparatus employing one or more fresnel lenses |
US20140043682A1 (en) | 2010-10-21 | 2014-02-13 | Patrick Hussey | Flip Up Interchangeable System |
US8692845B2 (en) | 2010-10-28 | 2014-04-08 | Eastman Kodak Company | Head-mounted display control with image-content analysis |
US9292973B2 (en) | 2010-11-08 | 2016-03-22 | Microsoft Technology Licensing, Llc | Automatic variable virtual focus for augmented reality displays |
US20120113514A1 (en) | 2010-11-08 | 2012-05-10 | Polycom, Inc. | Picoprojector with Image Stabilization [Image-Stabilized Projector] |
US8576276B2 (en) | 2010-11-18 | 2013-11-05 | Microsoft Corporation | Head-mounted display device which provides surround video |
US9304319B2 (en) | 2010-11-18 | 2016-04-05 | Microsoft Technology Licensing, Llc | Automatic focus improvement for augmented reality displays |
CA2821401C (en) | 2010-12-16 | 2019-04-30 | Lockheed Martin Corporation | Collimating display with pixel lenses |
US20130154913A1 (en) | 2010-12-16 | 2013-06-20 | Siemens Corporation | Systems and methods for a gaze and gesture interface |
US9690099B2 (en) | 2010-12-17 | 2017-06-27 | Microsoft Technology Licensing, Llc | Optimized focal area for augmented reality displays |
WO2012088454A1 (en) | 2010-12-22 | 2012-06-28 | Energy Focus, Inc. | An elongated led lighting arrangement |
US9280938B2 (en) | 2010-12-23 | 2016-03-08 | Microsoft Technology Licensing, Llc | Timed sequence mixed color display |
US8665214B2 (en) | 2010-12-29 | 2014-03-04 | Qualcomm Incorporated | Extending battery life of a portable electronic device |
US8531773B2 (en) | 2011-01-10 | 2013-09-10 | Microvision, Inc. | Substrate guided relay having a homogenizing layer |
US20120188245A1 (en) | 2011-01-20 | 2012-07-26 | Apple Inc. | Display resolution increase with mechanical actuation |
US8787006B2 (en) | 2011-01-31 | 2014-07-22 | Apple Inc. | Wrist-worn electronic device and methods therefor |
US8366273B2 (en) | 2011-01-31 | 2013-02-05 | National Chiao Tung University | Iris image definition estimation system using the astigmatism of the corneal reflection of a non-coaxial light source |
JP5633406B2 (en) | 2011-02-04 | 2014-12-03 | セイコーエプソン株式会社 | Virtual image display device |
JP5742263B2 (en) | 2011-02-04 | 2015-07-01 | セイコーエプソン株式会社 | Virtual image display device |
JP2012163656A (en) | 2011-02-04 | 2012-08-30 | Seiko Epson Corp | Virtual image display device |
JP5760465B2 (en) | 2011-02-04 | 2015-08-12 | セイコーエプソン株式会社 | Virtual image display device |
EP3527121B1 (en) | 2011-02-09 | 2023-08-23 | Apple Inc. | Gesture detection in a 3d mapping environment |
US9489078B2 (en) | 2011-02-10 | 2016-11-08 | Samsung Electronics Co., Ltd. | Portable device comprising a touch-screen display, and method for controlling same |
US20120224060A1 (en) | 2011-02-10 | 2012-09-06 | Integrated Night Vision Systems Inc. | Reducing Driver Distraction Using a Heads-Up Display |
JP5720290B2 (en) | 2011-02-16 | 2015-05-20 | セイコーエプソン株式会社 | Virtual image display device |
US20120212593A1 (en) | 2011-02-17 | 2012-08-23 | Orcam Technologies Ltd. | User wearable visual assistance system |
EP3674964B1 (en) | 2011-02-18 | 2024-05-01 | Malikie Innovations Limited | Quick text entry on a portable electronic device |
DE112012001032T5 (en) | 2011-02-28 | 2014-01-30 | Osterhout Group, Inc. | Lighting control in displays to be worn on the head |
US20120223885A1 (en) | 2011-03-02 | 2012-09-06 | Microsoft Corporation | Immersive display experience |
KR101383238B1 (en) | 2011-03-07 | 2014-04-08 | 케이비에이2, 인코포레이티드 | Systems and methods for analytic data gathering from image providers at an event or geographic location |
US8670183B2 (en) | 2011-03-07 | 2014-03-11 | Microsoft Corporation | Augmented view of advertisements |
EP2499960B1 (en) | 2011-03-18 | 2015-04-22 | SensoMotoric Instruments Gesellschaft für innovative Sensorik mbH | Method for determining at least one parameter of two eyes by setting data rates and optical measuring device |
US9033502B2 (en) | 2011-03-18 | 2015-05-19 | Sensomotoric Instruments Gesellschaft Fur Innovative Sensorik Mbh | Optical measuring device and method for capturing at least one parameter of at least one eye wherein an illumination characteristic is adjustable |
US9895058B2 (en) | 2011-03-25 | 2018-02-20 | Carl Zeiss Meditec Ag | Heads-up vision analyzer |
WO2012135554A1 (en) | 2011-03-29 | 2012-10-04 | Qualcomm Incorporated | System for the rendering of shared digital interfaces relative to each user's point of view |
JP2012212990A (en) | 2011-03-30 | 2012-11-01 | Brother Ind Ltd | Head-mounted display |
US8953242B2 (en) | 2011-03-31 | 2015-02-10 | Honeywell International Inc. | Varible focus stereoscopic display system and method |
US20120264510A1 (en) | 2011-04-12 | 2012-10-18 | Microsoft Corporation | Integrated virtual environment |
US9330499B2 (en) | 2011-05-20 | 2016-05-03 | Microsoft Technology Licensing, Llc | Event augmentation with real-time information |
US8885877B2 (en) | 2011-05-20 | 2014-11-11 | Eyefluence, Inc. | Systems and methods for identifying gaze tracking scene reference locations |
US20120306850A1 (en) | 2011-06-02 | 2012-12-06 | Microsoft Corporation | Distributed asynchronous localization and mapping for augmented reality |
US8766819B2 (en) | 2011-06-17 | 2014-07-01 | The Boeing Company | Crew allertness monitoring of biowaves |
US20120327040A1 (en) | 2011-06-22 | 2012-12-27 | Simon David I | Identifiable stylus |
US20120326948A1 (en) | 2011-06-22 | 2012-12-27 | Microsoft Corporation | Environmental-light filter for see-through head-mounted display device |
US20120327116A1 (en) | 2011-06-23 | 2012-12-27 | Microsoft Corporation | Total field of view classification for head-mounted display |
US8558759B1 (en) | 2011-07-08 | 2013-10-15 | Google Inc. | Hand gestures to signify what is important |
US8228315B1 (en) | 2011-07-12 | 2012-07-24 | Google Inc. | Methods and systems for a virtual input device |
US8593795B1 (en) | 2011-08-09 | 2013-11-26 | Google Inc. | Weight distribution for wearable computing device |
US9153195B2 (en) | 2011-08-17 | 2015-10-06 | Microsoft Technology Licensing, Llc | Providing contextual personal information by a mixed reality device |
US9285592B2 (en) | 2011-08-18 | 2016-03-15 | Google Inc. | Wearable device with input and output structures |
CA2750287C (en) | 2011-08-29 | 2012-07-03 | Microsoft Corporation | Gaze detection in a see-through, near-eye, mixed reality display |
US8817002B2 (en) | 2011-09-01 | 2014-08-26 | Blackberry Limited | Data display adapted for bright ambient light |
US9324250B2 (en) | 2011-09-09 | 2016-04-26 | Dolby Laboratories Licensing Corporation | High dynamic range displays comprising MEMS/IMOD components |
TW201312200A (en) | 2011-09-14 | 2013-03-16 | Hon Hai Prec Ind Co Ltd | Glass adjust structure |
JP6127359B2 (en) | 2011-09-15 | 2017-05-17 | セイコーエプソン株式会社 | Virtual image display device and method of manufacturing virtual image display device |
US8786686B1 (en) | 2011-09-16 | 2014-07-22 | Google Inc. | Head mounted display eyepiece with integrated depth sensing |
US9354445B1 (en) | 2011-09-16 | 2016-05-31 | Google Inc. | Information processing on a head-mountable device |
US8941560B2 (en) | 2011-09-21 | 2015-01-27 | Google Inc. | Wearable computer with superimposed controls and instructions for external device |
US8767306B1 (en) | 2011-09-22 | 2014-07-01 | Google Inc. | Display system |
WO2013049248A2 (en) | 2011-09-26 | 2013-04-04 | Osterhout Group, Inc. | Video display modification based on sensor input for a see-through near-to-eye display |
US8998414B2 (en) | 2011-09-26 | 2015-04-07 | Microsoft Technology Licensing, Llc | Integrated eye tracking and display system |
JP5786601B2 (en) | 2011-09-28 | 2015-09-30 | セイコーエプソン株式会社 | Electro-optical device and electronic apparatus |
JP5834705B2 (en) | 2011-09-28 | 2015-12-24 | セイコーエプソン株式会社 | Electro-optical device and electronic apparatus |
US8681073B1 (en) | 2011-09-29 | 2014-03-25 | Rockwell Collins, Inc. | System for and method of controlling contrast or color contrast in see-through displays |
US9121724B2 (en) | 2011-09-30 | 2015-09-01 | Apple Inc. | 3D position tracking for panoramic imagery navigation |
US8847988B2 (en) | 2011-09-30 | 2014-09-30 | Microsoft Corporation | Exercising applications for personal audio/visual system |
JP2013080040A (en) | 2011-10-03 | 2013-05-02 | Seiko Epson Corp | Electrooptical device, method for manufacturing electrooptical device, and electronic equipment |
US20130088413A1 (en) | 2011-10-05 | 2013-04-11 | Google Inc. | Method to Autofocus on Near-Eye Display |
US20150153572A1 (en) | 2011-10-05 | 2015-06-04 | Google Inc. | Adjustment of Location of Superimposed Image |
US20130088507A1 (en) | 2011-10-06 | 2013-04-11 | Nokia Corporation | Method and apparatus for controlling the visual representation of information upon a see-through display |
US9081177B2 (en) | 2011-10-07 | 2015-07-14 | Google Inc. | Wearable computer with nearby object response |
US8813109B2 (en) | 2011-10-21 | 2014-08-19 | The Nielsen Company (Us), Llc | Methods and apparatus to identify exposure to 3D media presentations |
USD666237S1 (en) | 2011-10-24 | 2012-08-28 | Google Inc. | Wearable display device |
US8970452B2 (en) | 2011-11-02 | 2015-03-03 | Google Inc. | Imaging method |
US8752963B2 (en) | 2011-11-04 | 2014-06-17 | Microsoft Corporation | See-through display brightness control |
JP5783885B2 (en) | 2011-11-11 | 2015-09-24 | 株式会社東芝 | Information presentation apparatus, method and program thereof |
US9311883B2 (en) | 2011-11-11 | 2016-04-12 | Microsoft Technology Licensing, Llc | Recalibration of a flexible mixed reality device |
US8553910B1 (en) | 2011-11-17 | 2013-10-08 | Jianchun Dong | Wearable computing device with behind-ear bone-conduction speaker |
US20150143297A1 (en) | 2011-11-22 | 2015-05-21 | Google Inc. | Input detection for a head mounted device |
US8611015B2 (en) | 2011-11-22 | 2013-12-17 | Google Inc. | User interface |
US8235529B1 (en) | 2011-11-30 | 2012-08-07 | Google Inc. | Unlocking a screen using eye tracking information |
US8872853B2 (en) | 2011-12-01 | 2014-10-28 | Microsoft Corporation | Virtual light in augmented reality |
US9135508B2 (en) | 2011-12-20 | 2015-09-15 | Microsoft Technology Licensing, Llc. | Enhanced user eye gaze estimation |
US8824779B1 (en) | 2011-12-20 | 2014-09-02 | Christopher Charles Smyth | Apparatus and method for determining eye gaze from stereo-optic views |
US9075453B2 (en) | 2011-12-29 | 2015-07-07 | Khalifa University of Science, Technology & Research (KUSTAR) | Human eye controlled computer mouse interface |
US8982471B1 (en) | 2012-01-04 | 2015-03-17 | Google Inc. | HMD image source as dual-purpose projector/near-eye display |
US20130176626A1 (en) | 2012-01-05 | 2013-07-11 | Google Inc. | Wearable device assembly with input and output structures |
US9230501B1 (en) | 2012-01-06 | 2016-01-05 | Google Inc. | Device control utilizing optical flow |
US8913789B1 (en) | 2012-01-06 | 2014-12-16 | Google Inc. | Input methods and systems for eye positioning using plural glints |
US8955973B2 (en) | 2012-01-06 | 2015-02-17 | Google Inc. | Method and system for input detection using structured light projection |
US8384999B1 (en) | 2012-01-09 | 2013-02-26 | Cerr Limited | Optical modules |
US8638989B2 (en) | 2012-01-17 | 2014-01-28 | Leap Motion, Inc. | Systems and methods for capturing motion in three-dimensional space |
US8971023B2 (en) | 2012-03-21 | 2015-03-03 | Google Inc. | Wearable computing device frame |
EP3270194B1 (en) | 2012-01-24 | 2020-10-14 | The Arizona Board of Regents on behalf of The University of Arizona | Compact eye-tracked head-mounted display |
EP2806782B1 (en) | 2012-01-26 | 2019-08-14 | Nokia Technologies Oy | Capacitive eye tracking sensor |
US8894484B2 (en) | 2012-01-30 | 2014-11-25 | Microsoft Corporation | Multiplayer game invitation system |
US20130194389A1 (en) | 2012-01-31 | 2013-08-01 | Ben Vaught | Head-mounted display device to measure attentiveness |
US8854433B1 (en) | 2012-02-03 | 2014-10-07 | Aquifi, Inc. | Method and system enabling natural user interface gestures with an electronic system |
US8982014B2 (en) | 2012-02-06 | 2015-03-17 | Battelle Memorial Institute | Image generation systems and image generation methods |
US9076368B2 (en) | 2012-02-06 | 2015-07-07 | Battelle Memorial Institute | Image generation systems and image generation methods |
KR101709844B1 (en) | 2012-02-15 | 2017-02-23 | 애플 인크. | Apparatus and method for mapping |
US9001030B2 (en) | 2012-02-15 | 2015-04-07 | Google Inc. | Heads up display |
US20140247286A1 (en) | 2012-02-20 | 2014-09-04 | Google Inc. | Active Stabilization for Heads-Up Displays |
US8745058B1 (en) | 2012-02-21 | 2014-06-03 | Google Inc. | Dynamic data item searching |
US20130214909A1 (en) | 2012-02-22 | 2013-08-22 | Qualcomm Incorporated | Airplane mode for wireless transmitter device and system using short-range wireless broadcasts |
CN103293675A (en) | 2012-02-24 | 2013-09-11 | 精工爱普生株式会社 | Virtual image display device |
US9075249B2 (en) | 2012-03-07 | 2015-07-07 | Google Inc. | Eyeglass frame with input and output functionality |
JP5970872B2 (en) | 2012-03-07 | 2016-08-17 | セイコーエプソン株式会社 | Head-mounted display device and method for controlling head-mounted display device |
US8970495B1 (en) | 2012-03-09 | 2015-03-03 | Google Inc. | Image stabilization for color-sequential displays |
US8866702B1 (en) | 2012-03-13 | 2014-10-21 | Google Inc. | Use of optical display system as a visual indicator for a wearable computing device |
US20130241805A1 (en) | 2012-03-15 | 2013-09-19 | Google Inc. | Using Convergence Angle to Select Among Different UI Elements |
JP5884576B2 (en) | 2012-03-16 | 2016-03-15 | セイコーエプソン株式会社 | Head-mounted display device and method for controlling head-mounted display device |
US8760765B2 (en) | 2012-03-19 | 2014-06-24 | Google Inc. | Optical beam tilt for offset head mounted display |
US8947323B1 (en) | 2012-03-20 | 2015-02-03 | Hayes Solos Raffle | Content display methods |
US9274338B2 (en) | 2012-03-21 | 2016-03-01 | Microsoft Technology Licensing, Llc | Increasing field of view of reflective waveguide |
US9116337B1 (en) | 2012-03-21 | 2015-08-25 | Google Inc. | Increasing effective eyebox size of an HMD |
US8985803B2 (en) | 2012-03-21 | 2015-03-24 | Microsoft Technology Licensing, Llc | Freeform-prism eyepiece with illumination waveguide |
US9096920B1 (en) | 2012-03-22 | 2015-08-04 | Google Inc. | User interface method |
JP5987387B2 (en) | 2012-03-22 | 2016-09-07 | ソニー株式会社 | Head mounted display and surgical system |
USD718305S1 (en) | 2012-03-22 | 2014-11-25 | Google Inc. | Wearable display device |
JP5938977B2 (en) | 2012-03-23 | 2016-06-22 | ソニー株式会社 | Head mounted display and surgical system |
US20130248691A1 (en) | 2012-03-23 | 2013-09-26 | Google Inc. | Methods and Systems for Sensing Ambient Light |
US20150316766A1 (en) | 2012-03-23 | 2015-11-05 | Google Inc. | Enhancing Readability on Head-Mounted Display |
US9207468B2 (en) | 2012-03-30 | 2015-12-08 | Honeywell International Inc. | Personal protection equipment verification |
US9128522B2 (en) | 2012-04-02 | 2015-09-08 | Google Inc. | Wink gesture input for a head-mountable device |
JP6060512B2 (en) | 2012-04-02 | 2017-01-18 | セイコーエプソン株式会社 | Head-mounted display device |
KR102223290B1 (en) | 2012-04-05 | 2021-03-04 | 매직 립, 인코포레이티드 | Wide-field of view (fov) imaging devices with active foveation capability |
US8937591B2 (en) | 2012-04-06 | 2015-01-20 | Apple Inc. | Systems and methods for counteracting a perceptual fading of a movable indicator |
US9417660B2 (en) | 2012-04-25 | 2016-08-16 | Kopin Corporation | Collapsible head set computer |
US20130297460A1 (en) | 2012-05-01 | 2013-11-07 | Zambala Lllp | System and method for facilitating transactions of a physical product or real life service via an augmented reality environment |
US20130293530A1 (en) | 2012-05-04 | 2013-11-07 | Kathryn Stone Perez | Product augmentation and advertising in see through displays |
US20130300634A1 (en) | 2012-05-09 | 2013-11-14 | Nokia Corporation | Method and apparatus for determining representations of displayed information based on focus distance |
WO2013176079A1 (en) | 2012-05-21 | 2013-11-28 | オリンパス株式会社 | Eyeglasses-shaped wearable device and front and temple parts of eyeglasses-shaped wearable device |
US9747306B2 (en) | 2012-05-25 | 2017-08-29 | Atheer, Inc. | Method and apparatus for identifying input features for later recognition |
USD690684S1 (en) | 2012-05-30 | 2013-10-01 | Samsung Electronics Co., Ltd. | Remote controller |
TWI474069B (en) | 2012-06-05 | 2015-02-21 | Largan Precision Co Ltd | Image capturing optical lens assembly |
JP2013257492A (en) | 2012-06-14 | 2013-12-26 | Sony Corp | Control device, display device, control method, illumination control method, and program |
EP2675173A1 (en) | 2012-06-15 | 2013-12-18 | Thomson Licensing | Method and apparatus for fusion of images |
US9398844B2 (en) | 2012-06-18 | 2016-07-26 | Microsoft Technology Licensing, Llc | Color vision deficit correction |
US9219901B2 (en) | 2012-06-19 | 2015-12-22 | Qualcomm Incorporated | Reactive user interface for head-mounted display |
US9373277B2 (en) | 2012-06-21 | 2016-06-21 | Bae Systems Information And Electronic Systems Integration Inc. | Extending dynamic range of a display |
US9874936B2 (en) | 2012-06-22 | 2018-01-23 | Cape Evolution Limited | Wearable electronic device |
US9645394B2 (en) | 2012-06-25 | 2017-05-09 | Microsoft Technology Licensing, Llc | Configured virtual environments |
US9696547B2 (en) | 2012-06-25 | 2017-07-04 | Microsoft Technology Licensing, Llc | Mixed reality system learned input and functions |
US20130346245A1 (en) | 2012-06-26 | 2013-12-26 | Ebay, Inc. | System and Method for Conducting Delegated Payments |
JP2014013320A (en) | 2012-07-04 | 2014-01-23 | Sony Corp | Head-mounted type display device and optical unit |
KR101861380B1 (en) | 2012-07-16 | 2018-05-28 | 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 | A Method of Providing Contents Using Head Mounted Display and a Head Mounted Display Thereof |
CN103576315B (en) | 2012-07-30 | 2017-03-01 | 联想(北京)有限公司 | Display device |
TWD152714S (en) | 2012-08-15 | 2013-04-01 | 昆盈企業股份有限公司 | Ring mouse |
KR101958778B1 (en) | 2012-08-31 | 2019-03-15 | 엘지전자 주식회사 | A Head Mounted Display and a Method for Controlling a Digital Device Using the Same |
ITTO20120756A1 (en) | 2012-08-31 | 2014-03-01 | St Microelectronics Srl | PICO-PROJECTOR DEVICE STABILIZED AND RELATIVE TO IMAGE STABILIZATION METHOD |
US8836768B1 (en) | 2012-09-04 | 2014-09-16 | Aquifi, Inc. | Method and system enabling natural user interface gestures with user wearable glasses |
US9122966B2 (en) | 2012-09-07 | 2015-09-01 | Lawrence F. Glaser | Communication device |
EP2896986B1 (en) | 2012-09-12 | 2021-02-24 | Sony Corporation | Image display device, image display method, and recording medium |
US8482527B1 (en) | 2012-09-14 | 2013-07-09 | Lg Electronics Inc. | Apparatus and method of providing user interface on head mounted display and head mounted display thereof |
JP6036065B2 (en) | 2012-09-14 | 2016-11-30 | 富士通株式会社 | Gaze position detection device and gaze position detection method |
USD711456S1 (en) | 2012-09-25 | 2014-08-19 | Google Inc. | Wearable display device |
USD710928S1 (en) | 2012-09-25 | 2014-08-12 | Google Inc. | Wearable display device |
US9063563B1 (en) | 2012-09-25 | 2015-06-23 | Amazon Technologies, Inc. | Gesture actions for interface elements |
US10573037B2 (en) | 2012-12-20 | 2020-02-25 | Sri International | Method and apparatus for mentoring via an augmented reality assistant |
US10620902B2 (en) | 2012-09-28 | 2020-04-14 | Nokia Technologies Oy | Method and apparatus for providing an indication regarding content presented to another user |
US20140101608A1 (en) | 2012-10-05 | 2014-04-10 | Google Inc. | User Interfaces for Head-Mountable Devices |
US8994614B2 (en) | 2012-10-11 | 2015-03-31 | Sony Computer Entertainment Europe Limited | Head mountable display |
US20140104692A1 (en) | 2012-10-11 | 2014-04-17 | Sony Computer Entertainment Europe Limited | Head mountable display |
US8750541B1 (en) | 2012-10-31 | 2014-06-10 | Google Inc. | Parametric array for a head-mountable device |
US9524585B2 (en) | 2012-11-05 | 2016-12-20 | Microsoft Technology Licensing, Llc | Constructing augmented reality environment with pre-computed lighting |
US20140129328A1 (en) | 2012-11-07 | 2014-05-08 | Microsoft Corporation | Providing augmented purchase schemes |
KR101385681B1 (en) | 2012-11-08 | 2014-04-15 | 삼성전자 주식회사 | Head-mount type display apparatus and control method thereof |
US8743052B1 (en) | 2012-11-24 | 2014-06-03 | Eric Jeffrey Keller | Computing interface system |
US20140146394A1 (en) | 2012-11-28 | 2014-05-29 | Nigel David Tout | Peripheral display for a near-eye display device |
US9189021B2 (en) | 2012-11-29 | 2015-11-17 | Microsoft Technology Licensing, Llc | Wearable food nutrition feedback system |
US8867139B2 (en) | 2012-11-30 | 2014-10-21 | Google Inc. | Dual axis internal optical beam tilt for eyepiece of an HMD |
US20140152676A1 (en) | 2012-11-30 | 2014-06-05 | Dave Rohn | Low latency image display on multi-display device |
US20140152558A1 (en) | 2012-11-30 | 2014-06-05 | Tom Salter | Direct hologram manipulation using imu |
US20140152530A1 (en) | 2012-12-03 | 2014-06-05 | Honeywell International Inc. | Multimedia near to eye display system |
US20140160170A1 (en) | 2012-12-06 | 2014-06-12 | Nokia Corporation | Provision of an Image Element on a Display Worn by a User |
USD685019S1 (en) | 2012-12-11 | 2013-06-25 | Weihua Li | Sunglasses camera |
US20140160157A1 (en) | 2012-12-11 | 2014-06-12 | Adam G. Poulos | People-triggered holographic reminders |
US20140160137A1 (en) | 2012-12-12 | 2014-06-12 | Qualcomm Mems Technologies, Inc. | Field-sequential color mode transitions |
US20140160055A1 (en) | 2012-12-12 | 2014-06-12 | Jeffrey Margolis | Wearable multi-modal input device for augmented reality |
US9081210B2 (en) | 2012-12-12 | 2015-07-14 | Microsoft Technology Licensing, Llc | Head worn device having temple arms to provide long axis compression |
US9448407B2 (en) | 2012-12-13 | 2016-09-20 | Seiko Epson Corporation | Head-mounted display device, control method for head-mounted display device, and work supporting system |
US9996150B2 (en) | 2012-12-19 | 2018-06-12 | Qualcomm Incorporated | Enabling augmented reality using eye gaze tracking |
US10146053B2 (en) | 2012-12-19 | 2018-12-04 | Microsoft Technology Licensing, Llc | Multiplexed hologram tiling in a waveguide display |
US20140176591A1 (en) | 2012-12-26 | 2014-06-26 | Georg Klein | Low-latency fusing of color image data |
KR102004265B1 (en) | 2012-12-28 | 2019-07-26 | 엘지전자 주식회사 | Head mounted display and the method of video communication |
US8948935B1 (en) | 2013-01-02 | 2015-02-03 | Google Inc. | Providing a medical support device via an unmanned aerial vehicle |
US20160089272A1 (en) | 2013-01-18 | 2016-03-31 | Conghua Li | Methods and apparatus for partial obstruction of vision for treating forward head posture and related conditions |
US20140204759A1 (en) | 2013-01-21 | 2014-07-24 | Mitsubishi Electric Research Laboratories, Inc. | Load Balanced Routing for Low Power and Lossy Networks |
US9370302B2 (en) | 2014-07-08 | 2016-06-21 | Wesley W. O. Krueger | System and method for the measurement of vestibulo-ocular reflex to improve human performance in an occupational environment |
US8989773B2 (en) | 2013-01-29 | 2015-03-24 | Apple Inc. | Sharing location information among devices |
US20140222929A1 (en) | 2013-02-06 | 2014-08-07 | Brent Grossman | System, Method And Device For Creation And Notification Of Contextual Messages |
WO2014127249A1 (en) | 2013-02-14 | 2014-08-21 | Apx Labs, Llc | Representing and interacting with geo-located markers |
US9223139B2 (en) | 2013-02-15 | 2015-12-29 | Google Inc. | Cascading optics in optical combiners of head mounted displays |
WO2014130396A1 (en) | 2013-02-19 | 2014-08-28 | Rubeyes Intangible Holdings, Llc | Continuous proximity and relational analysis of user devices in a network |
US20140253605A1 (en) | 2013-03-05 | 2014-09-11 | John N. Border | Controlling brightness of a displayed image |
US10685487B2 (en) | 2013-03-06 | 2020-06-16 | Qualcomm Incorporated | Disabling augmented reality (AR) devices at speed |
CA3157218A1 (en) | 2013-03-11 | 2014-10-09 | Magic Leap, Inc. | System and method for augmented and virtual reality |
US9898866B2 (en) | 2013-03-13 | 2018-02-20 | The University Of North Carolina At Chapel Hill | Low latency stabilization for head-worn displays |
WO2014144035A1 (en) | 2013-03-15 | 2014-09-18 | Brian Adams Ballard | Method and system for representing and interacting with augmented reality content |
US9685001B2 (en) | 2013-03-15 | 2017-06-20 | Blackberry Limited | System and method for indicating a presence of supplemental information in augmented reality |
US20140362195A1 (en) | 2013-03-15 | 2014-12-11 | Honda Motor, Co., Ltd. | Enhanced 3-dimensional (3-d) navigation |
WO2014147455A1 (en) | 2013-03-18 | 2014-09-25 | Minkovitch Zvi | Sports match refereeing system |
USD696668S1 (en) | 2013-03-18 | 2013-12-31 | Asustek Computer Inc. | Input device |
US10165255B2 (en) | 2013-03-20 | 2018-12-25 | Trimble Inc. | Indoor navigation via multi-beam laser projection |
EP2979125B1 (en) | 2013-03-26 | 2020-02-26 | Lusospace, Projectos Engenharia Lda | Display device |
JP6308213B2 (en) | 2013-04-04 | 2018-04-11 | ソニー株式会社 | Information processing apparatus, information processing method, and program |
US9176582B1 (en) | 2013-04-10 | 2015-11-03 | Google Inc. | Input system |
US9883209B2 (en) | 2013-04-15 | 2018-01-30 | Autoconnect Holdings Llc | Vehicle crate for blade processors |
US9069115B2 (en) | 2013-04-25 | 2015-06-30 | Google Inc. | Edge configurations for reducing artifacts in eyepieces |
US9443354B2 (en) | 2013-04-29 | 2016-09-13 | Microsoft Technology Licensing, Llc | Mixed reality interactions |
US9129157B2 (en) | 2013-04-30 | 2015-09-08 | Qualcomm Incorporated | Method for image-based status determination |
US20140341441A1 (en) | 2013-05-20 | 2014-11-20 | Motorola Mobility Llc | Wearable device user authentication |
US20140363797A1 (en) | 2013-05-28 | 2014-12-11 | Lark Technologies, Inc. | Method for providing wellness-related directives to a user |
US10019057B2 (en) | 2013-06-07 | 2018-07-10 | Sony Interactive Entertainment Inc. | Switching mode of operation in a head mounted display |
US9329682B2 (en) | 2013-06-18 | 2016-05-03 | Microsoft Technology Licensing, Llc | Multi-step virtual object selection |
US9235051B2 (en) | 2013-06-18 | 2016-01-12 | Microsoft Technology Licensing, Llc | Multi-space connected virtual data objects |
US9256987B2 (en) | 2013-06-24 | 2016-02-09 | Microsoft Technology Licensing, Llc | Tracking head movement when wearing mobile device |
US9129430B2 (en) | 2013-06-25 | 2015-09-08 | Microsoft Technology Licensing, Llc | Indicating out-of-view augmented reality images |
US20140375542A1 (en) | 2013-06-25 | 2014-12-25 | Steve Robbins | Adjusting a near-eye display device |
US8988345B2 (en) | 2013-06-25 | 2015-03-24 | Microsoft Technology Licensing, Llc | Adaptive event recognition |
US9664905B2 (en) | 2013-06-28 | 2017-05-30 | Microsoft Technology Licensing, Llc | Display efficiency optimization by color filtering |
US9058763B2 (en) | 2013-07-01 | 2015-06-16 | Symbol Technologies, Llc | System and method for automatic aggregation of multiple physical display devices into a single logical display surface |
JP6364715B2 (en) | 2013-07-18 | 2018-08-01 | セイコーエプソン株式会社 | Transmission display device and control method of transmission display device |
KR102086511B1 (en) | 2013-07-25 | 2020-03-09 | 엘지전자 주식회사 | Head Mounted Display and controlling method thereof |
US10345903B2 (en) | 2013-07-30 | 2019-07-09 | Microsoft Technology Licensing, Llc | Feedback for optic positioning in display devices |
USD746288S1 (en) | 2013-08-02 | 2015-12-29 | Sanofi-Aventis Deutschland Gmbh | Display for use with pen-type injection device |
USD738373S1 (en) | 2013-08-09 | 2015-09-08 | Kopin Corporation | Eyewear viewing device |
KR102138511B1 (en) | 2013-08-28 | 2020-07-28 | 엘지전자 주식회사 | Apparatus and Method for Portable Device transmitting marker information for videotelephony of Head Mounted Display |
US9158115B1 (en) | 2013-09-16 | 2015-10-13 | Amazon Technologies, Inc. | Touch control for immersion in a tablet goggles accessory |
USD728573S1 (en) | 2013-09-20 | 2015-05-05 | Jianbo Deng | Computer input device |
US20150097719A1 (en) | 2013-10-03 | 2015-04-09 | Sulon Technologies Inc. | System and method for active reference positioning in an augmented reality environment |
US20150134143A1 (en) | 2013-10-04 | 2015-05-14 | Jim Willenborg | Novel tracking system using unmanned aerial vehicles |
US9390649B2 (en) | 2013-11-27 | 2016-07-12 | Universal Display Corporation | Ruggedized wearable display |
US9569669B2 (en) | 2013-11-27 | 2017-02-14 | International Business Machines Corporation | Centralized video surveillance data in head mounted device |
US9791700B2 (en) | 2013-11-27 | 2017-10-17 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
US20150161913A1 (en) | 2013-12-10 | 2015-06-11 | At&T Mobility Ii Llc | Method, computer-readable storage device and apparatus for providing a recommendation in a vehicle |
US9870375B2 (en) | 2013-12-20 | 2018-01-16 | Nvidia Corporation | Image analysis of display content for dynamic adjustment of a continuous scan display |
US20150181383A1 (en) | 2013-12-20 | 2015-06-25 | Egan Schulz | Location-based messages |
WO2015094371A1 (en) | 2013-12-20 | 2015-06-25 | Intel Corporation | Systems and methods for augmented reality in a head-up display |
US9684778B2 (en) | 2013-12-28 | 2017-06-20 | Intel Corporation | Extending user authentication across a trust group of smart devices |
USD716808S1 (en) | 2014-01-06 | 2014-11-04 | Lg Electronics Inc. | Head mounted display device |
US20150309562A1 (en) | 2014-04-25 | 2015-10-29 | Osterhout Group, Inc. | In-vehicle use in head worn computing |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9299194B2 (en) | 2014-02-14 | 2016-03-29 | Osterhout Group, Inc. | Secure sharing in head worn computing |
US9448409B2 (en) | 2014-11-26 | 2016-09-20 | Osterhout Group, Inc. | See-through computer display systems |
US20150205351A1 (en) | 2014-01-17 | 2015-07-23 | Osterhout Group, Inc. | External user interface for head worn computing |
US9366868B2 (en) | 2014-09-26 | 2016-06-14 | Osterhout Group, Inc. | See-through computer display systems |
US20160085071A1 (en) | 2014-09-18 | 2016-03-24 | Osterhout Group, Inc. | See-through computer display systems |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US20150294156A1 (en) | 2014-04-14 | 2015-10-15 | Osterhout Group, Inc. | Sight information collection in head worn computing |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US20150277118A1 (en) | 2014-03-28 | 2015-10-01 | Osterhout Group, Inc. | Sensor dependent content position in head worn computing |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US20160048019A1 (en) | 2014-08-12 | 2016-02-18 | Osterhout Group, Inc. | Content presentation in head worn computing |
US20160019715A1 (en) | 2014-07-15 | 2016-01-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US20160147063A1 (en) | 2014-11-26 | 2016-05-26 | Osterhout Group, Inc. | See-through computer display systems |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US20150228119A1 (en) | 2014-02-11 | 2015-08-13 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
WO2015109145A1 (en) | 2014-01-17 | 2015-07-23 | Osterhout Group, Inc. | See-through computer display systems |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
US9550419B2 (en) | 2014-01-21 | 2017-01-24 | Honda Motor Co., Ltd. | System and method for providing an augmented reality vehicle interface |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US9811153B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9532714B2 (en) | 2014-01-21 | 2017-01-03 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150205135A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | See-through computer display systems |
US9746676B2 (en) | 2014-01-21 | 2017-08-29 | Osterhout Group, Inc. | See-through computer display systems |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9766463B2 (en) | 2014-01-21 | 2017-09-19 | Osterhout Group, Inc. | See-through computer display systems |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US9811159B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9310610B2 (en) | 2014-01-21 | 2016-04-12 | Osterhout Group, Inc. | See-through computer display systems |
US9201578B2 (en) | 2014-01-23 | 2015-12-01 | Microsoft Technology Licensing, Llc | Gaze swipe selection |
JP6421445B2 (en) | 2014-01-24 | 2018-11-14 | 株式会社リコー | Projection system, image processing apparatus, calibration method, system, and program |
US9524588B2 (en) | 2014-01-24 | 2016-12-20 | Avaya Inc. | Enhanced communication between remote participants using augmented and virtual reality |
US20160018653A1 (en) | 2014-01-24 | 2016-01-21 | Osterhout Group, Inc. | See-through computer display systems |
US9846308B2 (en) | 2014-01-24 | 2017-12-19 | Osterhout Group, Inc. | Haptic systems for head-worn computers |
US20150213754A1 (en) | 2014-01-27 | 2015-07-30 | Emagin Corporation | High efficiency beam combiner coating |
US9852545B2 (en) | 2014-02-11 | 2017-12-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9401540B2 (en) | 2014-02-11 | 2016-07-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US20150228120A1 (en) | 2014-02-11 | 2015-08-13 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
KR102292192B1 (en) | 2014-02-17 | 2021-08-23 | 엘지전자 주식회사 | The Apparatus and Method for Display System displaying Augmented Reality image |
WO2015125626A1 (en) | 2014-02-20 | 2015-08-27 | ソニー株式会社 | Display control device, display control method, and computer program |
US9544675B2 (en) | 2014-02-21 | 2017-01-10 | Earlens Corporation | Contact hearing system with wearable communication apparatus |
US9615177B2 (en) | 2014-03-06 | 2017-04-04 | Sphere Optics Company, Llc | Wireless immersive experience capture and viewing |
GB2524068B (en) | 2014-03-13 | 2018-09-05 | Thermoteknix Systems Ltd | Improvements in or relating to optical data insertion devices |
EP2927735B1 (en) | 2014-03-14 | 2017-10-25 | LG Electronics Inc. | Head Mounted Display clipped on spectacles frame |
US10490167B2 (en) | 2014-03-25 | 2019-11-26 | Intel Corporation | Techniques for image enhancement using a tactile display |
US20160187651A1 (en) | 2014-03-28 | 2016-06-30 | Osterhout Group, Inc. | Safety for a vehicle operator with an hmd |
US9465215B2 (en) | 2014-03-28 | 2016-10-11 | Google Inc. | Lightguide with multiple in-coupling holograms for head wearable display |
US10444834B2 (en) | 2014-04-01 | 2019-10-15 | Apple Inc. | Devices, methods, and user interfaces for a wearable electronic ring computing device |
US10051209B2 (en) | 2014-04-09 | 2018-08-14 | Omnivision Technologies, Inc. | Combined visible and non-visible projection system |
US9342147B2 (en) | 2014-04-10 | 2016-05-17 | Microsoft Technology Licensing, Llc | Non-visual feedback of visual change |
KR102353766B1 (en) | 2014-04-15 | 2022-01-20 | 삼성전자 주식회사 | Apparatus and method for controlling display |
US9946324B2 (en) | 2014-04-16 | 2018-04-17 | Facebook, Inc. | Location based facial recognition on online social networks |
US9423842B2 (en) | 2014-09-18 | 2016-08-23 | Osterhout Group, Inc. | Thermal management for head-worn computer |
US20150309534A1 (en) | 2014-04-25 | 2015-10-29 | Osterhout Group, Inc. | Ear horn assembly for headworn computer |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US20160137312A1 (en) | 2014-05-06 | 2016-05-19 | Osterhout Group, Inc. | Unmanned aerial vehicle launch system |
WO2016018488A2 (en) | 2014-05-09 | 2016-02-04 | Eyefluence, Inc. | Systems and methods for discerning eye signals and continuous biometric identification |
US9710629B2 (en) | 2014-05-13 | 2017-07-18 | Google Technology Holdings LLC | Electronic device with method for controlling access to same |
US20160025979A1 (en) | 2014-08-28 | 2016-01-28 | Osterhout Group, Inc. | External user interface for head worn computing |
US20160025977A1 (en) | 2014-07-22 | 2016-01-28 | Osterhout Group, Inc. | External user interface for head worn computing |
US20160062118A1 (en) | 2014-07-22 | 2016-03-03 | Osterhout Group, Inc. | External user interface for head worn computing |
US20160027414A1 (en) | 2014-07-22 | 2016-01-28 | Osterhout Group, Inc. | External user interface for head worn computing |
WO2015179877A2 (en) | 2014-05-19 | 2015-11-26 | Osterhout Group, Inc. | External user interface for head worn computing |
JP1511166S (en) | 2014-05-21 | 2014-11-10 | ||
US9323983B2 (en) | 2014-05-29 | 2016-04-26 | Comcast Cable Communications, Llc | Real-time image and audio replacement for visual acquisition devices |
USD751551S1 (en) | 2014-06-06 | 2016-03-15 | Alpha Primitus, Inc. | Pair of temple arms for an eyeglass frame with mount |
US9143693B1 (en) | 2014-06-10 | 2015-09-22 | Google Inc. | Systems and methods for push-button slow motion |
EP3180676A4 (en) | 2014-06-17 | 2018-01-10 | Osterhout Group, Inc. | External user interface for head worn computing |
JP1544540S (en) | 2014-06-24 | 2019-02-18 | ||
US20150382305A1 (en) | 2014-06-27 | 2015-12-31 | Sony Corporation | Silent mode for submerged devices |
USD716813S1 (en) | 2014-07-28 | 2014-11-04 | Jianbo Deng | Computer mouse |
US9582076B2 (en) | 2014-09-17 | 2017-02-28 | Microsoft Technology Licensing, Llc | Smart ring |
JP2016085234A (en) | 2014-10-22 | 2016-05-19 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | Image processing apparatus, image processing method, computer program, and image display device |
US20160131904A1 (en) | 2014-11-07 | 2016-05-12 | Osterhout Group, Inc. | Power management for head worn computing |
US9406211B2 (en) | 2014-11-19 | 2016-08-02 | Medical Wearable Solutions Ltd. | Wearable posture regulation system and method to regulate posture |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
US9728010B2 (en) | 2014-12-30 | 2017-08-08 | Microsoft Technology Licensing, Llc | Virtual representations of real-world objects |
USD751552S1 (en) | 2014-12-31 | 2016-03-15 | Osterhout Group, Inc. | Computer glasses |
USD753114S1 (en) | 2015-01-05 | 2016-04-05 | Osterhout Group, Inc. | Air mouse |
WO2016133886A1 (en) | 2015-02-17 | 2016-08-25 | Osterhout Group, Inc. | See-through computer display systems |
US10878775B2 (en) | 2015-02-17 | 2020-12-29 | Mentor Acquisition One, Llc | See-through computer display systems |
US20160239985A1 (en) | 2015-02-17 | 2016-08-18 | Osterhout Group, Inc. | See-through computer display systems |
US20160274365A1 (en) | 2015-03-17 | 2016-09-22 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays with heterogeneous display quality |
US20160286210A1 (en) | 2015-03-27 | 2016-09-29 | Osterhout Group, Inc. | See-through computer display systems |
WO2017015093A1 (en) | 2015-07-17 | 2017-01-26 | Osterhout Group, Inc. | External user interface for head worn computing |
-
2014
- 2014-02-11 US US14/178,047 patent/US9229233B2/en active Active
- 2014-02-21 US US14/185,988 patent/US9229234B2/en active Active
-
2015
- 2015-11-04 US US14/931,955 patent/US9784973B2/en active Active
- 2015-11-24 US US14/950,523 patent/US9841602B2/en active Active
-
2017
- 2017-10-23 US US15/790,684 patent/US20180059421A1/en not_active Abandoned
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10139632B2 (en) | 2014-01-21 | 2018-11-27 | Osterhout Group, Inc. | See-through computer display systems |
US11947126B2 (en) | 2014-01-21 | 2024-04-02 | Mentor Acquisition One, Llc | See-through computer display systems |
US10698223B2 (en) | 2014-01-21 | 2020-06-30 | Mentor Acquisition One, Llc | See-through computer display systems |
US10866420B2 (en) | 2014-01-21 | 2020-12-15 | Mentor Acquisition One, Llc | See-through computer display systems |
US11619820B2 (en) | 2014-01-21 | 2023-04-04 | Mentor Acquisition One, Llc | See-through computer display systems |
US11622426B2 (en) | 2014-01-21 | 2023-04-04 | Mentor Acquisition One, Llc | See-through computer display systems |
US11599326B2 (en) | 2014-02-11 | 2023-03-07 | Mentor Acquisition One, Llc | Spatial location presentation in head worn computing |
US10558420B2 (en) | 2014-02-11 | 2020-02-11 | Mentor Acquisition One, Llc | Spatial location presentation in head worn computing |
US12112089B2 (en) | 2014-02-11 | 2024-10-08 | Mentor Acquisition One, Llc | Spatial location presentation in head worn computing |
US11721303B2 (en) | 2015-02-17 | 2023-08-08 | Mentor Acquisition One, Llc | See-through computer display systems |
US10878775B2 (en) | 2015-02-17 | 2020-12-29 | Mentor Acquisition One, Llc | See-through computer display systems |
US10062182B2 (en) | 2015-02-17 | 2018-08-28 | Osterhout Group, Inc. | See-through computer display systems |
US11298288B2 (en) | 2016-02-29 | 2022-04-12 | Mentor Acquisition One, Llc | Providing enhanced images for navigation |
US11654074B2 (en) | 2016-02-29 | 2023-05-23 | Mentor Acquisition One, Llc | Providing enhanced images for navigation |
US10849817B2 (en) | 2016-02-29 | 2020-12-01 | Mentor Acquisition One, Llc | Providing enhanced images for navigation |
US10667981B2 (en) | 2016-02-29 | 2020-06-02 | Mentor Acquisition One, Llc | Reading assistance system for visually impaired |
US11592669B2 (en) | 2016-03-02 | 2023-02-28 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US11156834B2 (en) | 2016-03-02 | 2021-10-26 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US12007562B2 (en) | 2016-03-02 | 2024-06-11 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US10591728B2 (en) | 2016-03-02 | 2020-03-17 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US12142242B2 (en) | 2023-06-09 | 2024-11-12 | Mentor Acquisition One, Llc | See-through computer display systems |
Also Published As
Publication number | Publication date |
---|---|
US20150228099A1 (en) | 2015-08-13 |
US20150226966A1 (en) | 2015-08-13 |
US9784973B2 (en) | 2017-10-10 |
US20160054566A1 (en) | 2016-02-25 |
US9229233B2 (en) | 2016-01-05 |
US9229234B2 (en) | 2016-01-05 |
US9841602B2 (en) | 2017-12-12 |
US20160077342A1 (en) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12007571B2 (en) | Suppression of stray light in head worn computing | |
US9841602B2 (en) | Location indicating avatar in head worn computing | |
US9684165B2 (en) | Eye imaging in head worn computing | |
US9811152B2 (en) | Eye imaging in head worn computing | |
US9811159B2 (en) | Eye imaging in head worn computing | |
US10191279B2 (en) | Eye imaging in head worn computing | |
US20230400684A1 (en) | Eye imaging in head worn computing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OSTERHOUT GROUP, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OSTERHOUT, RALPH F.;BORDER, JOHN N.;SIGNING DATES FROM 20150113 TO 20150114;REEL/FRAME:045136/0713 |
|
AS | Assignment |
Owner name: JGB COLLATERAL, LLC, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNOR:OSTERHOUT GROUP, INC.;REEL/FRAME:045606/0295 Effective date: 20180313 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: JP MORGAN CHASE BANK, N.A., NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:MAGIC LEAP, INC.;MOLECULAR IMPRINTS, INC.;MENTOR ACQUISITION ONE, LLC;REEL/FRAME:050138/0287 Effective date: 20190820 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., NEW YORK Free format text: ASSIGNMENT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:050967/0138 Effective date: 20191106 |